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A B S T R A C T   

Potholes are symptoms of a poorly maintained road, pointing to an underlying structural issue. A vehicle’s 
impact with a pothole not only makes for an uncomfortable journey, but it can also cause damage to the vehicle’s 
wheels, tyres and suspension system resulting in high repair bills. This study presents a comparative study of 
machine learning models for pothole detection. The data was collected from multiple android devices/routes/ 
cars and pre-processed using a 2-second non-overlapping moving window to extract relevant statistical features 
for training a binary classifier. The Test dataset was isolated entirely from the Training and Validation datasets, 
and a stratified K-fold cross-validation was applied to the Training dataset. The Random Forest Tree and KNN 
showed the best performance on the Test dataset with a similar accuracy of 0.8889. The model performance 
increased when random search hyperparameter tuning was applied to optimise the Random Forest Tree model’s 
hyperparameters. The Random Forest Tree model’s performance after hyperparameter tuning is 0.9444, 1.0000, 
0.8889 and 0.9412 for accuracy, precision, recall, and F-score, respectively.   

1. Introduction 

Potholes are symptoms of a poorly maintained road, which could 
point to an underlying structural issue. A vehicle’s impact with a pothole 
not only makes for an uncomfortable journey, but it can also cause 
damage to the vehicle’s wheels, tyres and suspension system resulting in 
high repair bills. A recent survey showed an increase of 24% in the 
number of filled potholes in England and Wales (Asphalt Industry Alli-
ance, 2019). Potholes account for a third of mechanical issues on the UK 
roads, and they cause the British motorist £2.8 billion every year 
(Asphalt Industry Alliance, 2013). The amount paid in road user 
compensation in England and Wales is £6.9 m, which excludes the £19.8 
m staff cost for settling claims. About 89% of claims in England are 
because of potholes damages, which is up by 80% from 2018 (Asphalt 
Industry Alliance, 2019). 

These figures are alarming and can be significantly reduced by 
investing in appropriate pothole detection technologies that make the 
reporting process seamless. In a recent RAC Business survey involving 
500 UK companies, 46% of bosses reported the poor state of the roads 
and the cost associated with repairing a vehicle damaged by potholes is a 
significant challenge for business (RAC Business, 2016). Of more 

concern, the effect of potholes on pedestrians, cyclists and motorbike 
riders could be much more severe as it could lead to personal injuries. 
Research by Cycling UK suggests that 56% of people say they would 
cycle more if roads had fewer faults, such as potholes (Jones, 2018). 
Hence, the detection and reporting of potholes is key to ensuring the 
appropriate authorities are aware of the issue’s scale. This will ensure 
that appropriate repairs are carried out in a timely manner. 

The rapid technological advancement in recent years has led to 
miniaturisation and incorporation of robust sensors such as gyroscope, 
accelerometer, GPS, electronic compass, microphone, camera, etc., into 
mobile devices. This is the cheapest and most efficient way of pothole 
detection, as most people have a mobile phone, and there is no need for 
the installation of specialised hardware. This study utilised data 
collected from mobile devices in real-time to detect potholes. Most 
existing pothole detection approaches rely on specialised and expensive 
hardware devices, have lower accuracy or are not robust enough to 
detect real-world potholes. 

This paper contains six sections. Section 2 includes the related work 
relevant to this study. Section 3 describes the machine learning models, 
whilst the research methodology is presented in Section 4. The results 
and analysis are discussed in Section 5. Finally, the conclusion and 
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future work are shown in Section 6. 

2. Related work 

Several pothole detections approaches have been proposed over the 
last couple of years. According to Kulkarni et al. (2014), the existing 
pothole detection approaches can be classified into vibration-based 
methods, 3D reconstruction-based methods and vision-based methods. 

The vibration-based approached involves the use of accelerometers, 
most often from a mobile device. This approach was used by Mednis 
et al. (2011); the authors compared the performance of multiple 
threshold-based approaches based on z-axis mobile sensing data. The 
authors claim a true positive rate as high as 90% for a small dataset. 
Also, Wang et al. (2015) and Madli et al. (2015) applied a threshold- 
based approach. 

Fox et al. (2015) utilised a machine learning-based pothole detection 
approach. This approach relies on extracted features from crowdsourc-
ing under-sampled simulated vehicles sensor data using CarSim. The 
authors claimed a simulated accuracy of 99.6% and an empirical 
experiment accuracy of 88.9% based on the simulated model. The au-
thors’ choice of aggregating simulated data from 500 vehicles will be 
challenging to replicate in the real world. There are additional GPS error 
issues, missing data, varying sensor configurations, and difficulty gen-
eralising the simulation platform, as shown in the accuracy degradation 
to 88.9% on a single stretch of road. A comparison of two machine 
learning models (SVM and gradient boosting) was carried out by Bhatt 
et al. (2017). The authors collected 21,300 observations of accelerom-
eter and gyroscope with 96-labelled potholes from a single car using an 
iPhone 6Ss. They claim that SVM with an RBF kernel and gradient 
boosting achieved the best accuracy of 92.9% and 92.02%, respectively. 
However, the achieved precision (0.78) and recall (0.42) are much 
lower. 

The image/vision-based approach involves using cameras (images or 
videos) for pothole data collection. Authors such as Zhang et al. (2014), 
Wang et al. (2017), Jo and Ryu (2015), Ouma and Hahn (2017), Ryu 
et al. (2015), Koch et al. (2013), Li Shuai et al. (2016) and Youquan et al. 
(2011) have used various image processing approaches on a small data 
sample for pothole detection. Other authors, such as Anand et al. (2018), 
have combined texture and spatial features of a camera image to train a 
deep neural network. The model was evaluated with 969 images. The 
resulting precision, recall and F-score are 92.4, 93.8 and 93.0%, 
respectively. However, this approach is computational complex 
rendering it less practical for real-time detection. 

Most of the work in this area has used an image-based approach for 
pothole detection. They rely on libraries of actual potholes; hence, any 
variation in the pothole size, road markings, or even the presence of dirt 
on the road can affect the non-machine learning model’s accuracy. This 
approach requires high computational power because of its computa-
tional complexity. Hence, it is not suitable for real-time pothole detec-
tion. The threshold-based model provides a simplified approach for the 
detection of a pothole. However, the heuristic process of determining 
the thresholds is tedious and prone to human error. Moreover, there is a 
high likelihood of encountering difficulty in generalising the model 
when it is deployed to other kinds of road surfaces or cars or the size of 
potholes. Most existing pothole detection approaches either rely on a 
specialised and expensive hardware device, have lower accuracy in 
pothole detection, or are not robust enough to detect all kinds of pot-
holes. Also, the performance metric relied upon by some of the models is 
accuracy. This can often be confused with better model performance. 
Some of the existing work presented a higher accuracy with much lower 
precision and recall scores, highlighting the challenges they faced effi-
ciently detecting potholes. 

This study presents a comparative study of machine learning models 
for pothole detection. The data was collected from multiple android 
devices/routes/cars and pre-processed using 2-second interval aggre-
gated chunks of data to extract relevant statistical features for training a 

binary classifier. 

3. Machine learning models 

Machine learning is a mathematical algorithm that enables a com-
puter to learn from example data. The most common types of machine 
learning models are supervised and unsupervised learning. The algo-
rithm learns from an example of labelled data in supervised learning and 
learns from unlabelled data in unsupervised learning. This paper com-
pares the performance of five classification models (Naïve Bayes, Lo-
gistic Regression, Support Vector Machine (SVM), K-Nearest Neighbour 
(KNN) and Random Forest Tree). 

3.1. Naïve Bayes 

Naïve Bayes is a simplified probabilistic machine-learning algorithm 
that is commonly used in a classification task. The model can also be 
referred to as a simplified Bayesian probability model (Russell & Norvig, 
n.d.). The Naïve Bayes model assumes that all input features are inde-
pendent of each other. Hence, changing the value of one should not 
directly influence the other feature present in the model. This assump-
tion rarely holds in real-world applications, which is the reason it is 
called Naïve (Chai et al., 2004). 

3.2. Logistic Regression 

Logistic regression is a probability-based machine-learning approach 
that is mainly used for binary classification problems. The algorithm is 
similar to a linear regression model; however, it uses a more sophisti-
cated cost function called the ’logistic or sigmoid function’. The sigmoid 
function maps a given input (z) to an output (S(z)) that varies between 
0 and 1 (Peng et al., 2002). 

3.3. K-Nearest Neighbours 

K-Nearest Neighbours (KNN) is a basic but effective non-parametric 
supervised machine learning algorithm that can solve either classifica-
tion or regression problems. The underlying intuition behind KNN re-
quires classifying an unidentified test sample to a class ’c’ represented 
by the majority of its k nearest neighbours in the Training dataset 
(Okfalisa et al., 2017). This approach is sometimes called the voting 
KNN rule and can often outperform more sophisticated methods. The k- 
nearest neighbours of an unidentified test sample are determined by 
calculating the Euclidean distance between the training and test points 
(Sun & Huang, 2010). 

3.4. Support vector Machine (SVM) 

A support vector machine is an algorithm that forms part of a su-
pervised machine-learning approach. The algorithm is used either for 
regression or classification problems. The algorithm functions by finding 
the hyperplane in an N-dimension space (N – number of features) that 
distinctively separate/classify data points. The hyperplane is a decision 
boundary that helps separate the different classes of the data points, and 
its dimension depends on the number of features. For example, in a two- 
class classification problem, the algorithm estimates the hyperplane that 
maximises the margin (the distance between the data points from both 
classes) and minimises a quantity proportional to the misclassification 
error. This maximises the robustness of the model in reducing the clas-
sification error. The trade-off between maximising the margin and 
achieving a low training/test error is controlled by the positive regu-
larisation parameter ’C’. Also, SVM can be used for cases where linear 
separation is not possible by varying the ’kernels’, resulting in a hy-
perplane/feature mapping with non-linear boundary (Tzotsos & Argia-
las, 2008). 
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3.5. Random Forest Tree 

Random Forest Tree (tree-based ensemble model) is a combination of 
multiple decision tree predictors, where an individual tree relies on 
values of an independently sampled random vector with a similar dis-
tribution. The basic principle of an ensemble approach is having a group 
of weak learners (individual tree/decision tree) to form a strong learner 
(forest). The models are fast and easy to implement; the Random Forest 
Tree model’s bootstrapping nature reduces the model’s tendency to 
over-fit when dealing with significant input variables/data. The trees are 
grown using the CART methodology developed by Georganos et al. 
(2019). The final training outcome is a set of decision rules; this includes 
rules that decide how to split the data at the node and decide when the 
branch is terminal and can no longer be split. These rules can either be 
continuous (for regression tree) or categorical (for classification tree) 
and capable of predicting an outcome variable. 

4. Methodology: 

This study focused on identifying pothole and non-pothole events. 
Hence, it was a binary classification problem. The initial stage of the 
project involved the data collection and labelling of the pothole or non- 
pothole events. This led to the development of two bespoke android 
applications (apps). The first records the accelerometer, gyroscope and 
GPS data, and the second app help in data labelling. The raw sensor data 
from both apps were pre-processed, merged, cleansed, and split 
(Training/Validation and Test) before extracting relevant features ready 
to train with the machine learning model. The research methodology is 
shown in Fig. 1. 

The devices selected were relatively cheap phones that were capable 
of running Android One (v9.0). The three selected android phones used 
for data collection and labelling are the Nokia 3.1/5.1 and the Motorola 
G7. An adhesive sticking pad was used to mount the first phone to the 
centre of the dashboard face up, so the positive and negative z-axis is 
faced upwards and downwards, respectively. The data collection 
covered five different routes, road surfaces and four cars (Toyota Yaris 
Hybrid (sedan), Kia Niro (SUV), Skoda Octavia Estate (sedan) and 
Hyundai Getz (sedan)). 

4.1. Data Collection 

The two developed bespoke apps ran on two different android 
phones. App 1, as shown in Fig. 2, records the UNIX timestamp, accel-
erometer data (x, y, z), gyroscope data (x, y, x) and location data 
(longitude and latitude). App 2, as shown in Fig. 3, records the GPS and 
UNIX timestamp data and is used for the manual recording of pothole 
events. Both devices have a sampling frequency of approximately 100 
Hz. The device with app1 was mounted at the centre of the car’s dash-
board in a specific orientation; a passenger held the second device with 
app 2 in the car. The passenger was required to press and hold the blue 
button shown in Fig. 3 when the car approaches a pothole and release 
the button soon after the car has driven over the pothole. The app starts 
recording the sensor UNIX timestamp and GPS location when pressed 
until it is released. The authors took care to ensure that the clocks of both 
devices were synchronised. The recorded data was stored in the phone 
storage and uploaded to a database. The data from both phones were 
merged using the UNIX timestamp and the GPS location for extra 
validation. 

4.2. Feature Extraction 

The data collection process resulted in 10,913,863 observations of 
accelerometer, gyroscope, location data (longitude and latitude) and 
UNIX timestamp with 30,808-labelled potholes. The labelled potholes 
account for approximately 0.28% of the whole dataset, which is highly 
imbalanced. The data was collected at a high frequency; hence there is a 
likelihood of capturing measurements unrelated to the variables of in-
terest and the measurement error resulting in noisy data points. Care 
was taken to minimise the noisy data points by grouping the data into 2- 
second interval chunks and calculating the aggregated statistical fea-
tures for each interval chunk. This approach is similar to the non- 
overlapping moving window. The moving window computes the sta-
tistical features at time (t) by using a window that includes the raw data 
at a time (t) as well as past data up to time (t-2) seconds. The window is 
then shifted forward by time (t + 2), and the process continues until 
features for all the raw data are computed. The authors ensured there 
were no overlapping data chunks to avoid data leakage. Overall, an 
aggregate of 42 statistical features was extracted from each interval of 
the raw accelerometer and gyroscope data, as shown in Table 1. 

4.3. Data Exploration 

The time-domain of the z-axis for all the trips is shown in Fig. 4. This 
plot consists of the pothole and non-pothole events for all routes/cars 
used for data collection. The abrupt changes in values seen in the time 
domain can be due to noisy signals from the sensors. The signal noise can 
be noticed in the frequency domain shown in Fig. 5. A much cleaner 
signal can be seen in Fig. 6 after applying the 2-second aggregated sta-
tistical feature extraction on the raw z-axis data. 

Fig. 1. Flow chart of research methodology.  
Fig. 2. App 1 – Data logger (Accelerometer, Gyroscope, GPS and 
UNIX timestamp). 
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4.4. Evaluation Metric and Cross-Validation 

The performance metrics used for this paper are accuracy, precision, 
recall and F-score. The accuracy consists of the ratio of correctly pre-
dicted observations to total observations, and it is the commonly used 
predictive model evaluation metric. It is common to confuse high ac-
curacy with better model performance; however, this can only be when 
the number of false-positive and false-negative events are almost the 
same for a balanced dataset. The precision is the ratio of the correctly 
predicted positive observation and the total predicted positive obser-
vation. The precision is a good measure when the cost of false positive is 
high. The recall is a measure of how much of the total actual positively 
labelled datasets the model captures. Recall is a good measure when 
there is a high cost associated with false-negative. A combination of the 
precision and recall metrics into a single metric that capture both 
properties can be represented by the F-score (Divya et al., 2019). The F- 
score gives an overall view of model performance so that neither pre-
cision nor recall can be considered individually. 

The dataset was balanced by randomly and uniformly under- 
sampling the majority class. This ensures that the overall data to be 
used for the machine-learning models have equal numbers of potholes 
and non-potholes samples. A vital step in developing a machine learning 
model and ensuring it generalises better is the cross-validation step. This 
will help to prevent developing a model with high bias or variance. The 
datasets collected were concatenated into a single data source to form a 
combined training/validation dataset, except for data from two routes/ 
two cars which was separated to be used as a test dataset for the machine 
learning model. This was separated to avoid similarity bias and data 
leakage where information from the Test dataset is present in the 
Training dataset. As described in Section 4.2, the features extraction was 
applied separately to the combined (Training/Validation) and Test 
datasets. 

A combination of holdout and the stratified K-fold cross-validation 
approach was used in this paper. The combined dataset was partition 
into training and validation datasets. The models were trained on the 
training dataset, and the Validation dataset was used to manually tune 
the machine learning models’ hyperparameters. This approach utilises a 
different combination of the hyperparameter set based on experience to 
tune the model. The performance was relatively similar to the model 
with the default parameters (scikit-learn python libraries (Pedregosa 
et al., 2011)). Afterwards, the Test dataset is used to evaluate how well 
the models perform on unseen data. The current data has been split into 
80% Train, 10% Validation and 10% Test. A stratified K-fold cross- 
validation was applied to the Training dataset portion of the split with 
K = 10. The K-fold cross-validation randomly partitioned the data into K 
smaller sets. One of the K-subsets is used to evaluate the model, and the 
other (K-1) subsets are used to train the model. The process is repeated K 

Fig. 3. App 2 – Data Logger (GPS and UNIX timestamp).  

Table 1 
Feature Extractions.  

Name Axis (Accelerometer and Gyroscope) Domain 

Minimum Value X, Y, Z Time 
Maximum Value X, Y, Z Time 
Mean X, Y, Z Time 
Standard Deviation X, Y, Z Time 
Variance X, Y, Z Time 
Skewness X, Y, Z Time 
Kurtosis X, Y, Z Time  

Fig. 4. Time Domain – Raw Z-axis data.  

Fig. 5. Frequency Domain - Z-axis data.  

Fig. 6. Frequency Domain – Z-axis Mean ( non-overlapping 2-second Window).  
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times until all unique subsets have been used to evaluate the model. The 
average accuracy and standard deviation can be computed across all K- 
sessions. This will give a better indication of the model performance and 
whether it overfits the data. 

5. Result and analysis 

The average accuracy at the 95% confidence interval (µ ± 2σ, where 
µ is the mean and σ the standard deviation) for the five machine learning 
models – Naïve Bayes, Logistic Regression, SVM, K-Nearest neighbour 
and Random Forest Tree with K = 10 is shown in Table 2. The SVM, 
Random Forest Tree and KNN are the best performing model with an 
average accuracy at a 95% confidence interval of 0.8200 ± 0.1598, 
0.8071 ± 0.1259 and 0.7879 ± 0.1371, respectively. The KSVM, 
Random Forest Tree and KNN default Hyperparameters and their 
description for the trained model are given in Table 3. A detailed 
explanation of the hyperparameters can be found in the scikit-learn 
python libraries documentation (Pedregosa et al., 2011). 

The Validation dataset was used to evaluate the manual parameter 
turning of the models. The performance of the machine-learning models 
on the Validation dataset is shown in Table 4. The Random Forest Tree 
and KNN are the two best performing models with accuracy, precision, 
recall and F-score of over 77%. According to the precision, recall, F-score 
and AUC metrics in Table 4, the Random Forest Tree and KNN are the 
best performing models amongst the five considered models. The ac-
curacy, precision, recall, F-score and AUC for the Random Forest Tree 
and KNN are 0.8889, 0.8571, 0.8571, 0.8831 and 0.8889, and 0.7778, 1, 
0.8750 and 0.9091 respectively. The recall of the KNN is perfect at 1.00 
– meaning the model has found all the actual potholes that can be found 
in the Validation dataset. However, the lower precision is because of the 
many false positives (non-pothole data points classified as a pothole by 
the model). 

The Test dataset was used to evaluate the model’s performance on 
totally unseen data. The performance of the machine-learning models on 
the Test dataset is shown in Table 5. Except for the Logistic Regression, 
all the models have a Test dataset accuracy that is over 83%. The per-
formance metrics for the Naïve Bayes and KNN are the same for the 
accuracy and AUC and both have similar F-scores. The Random Forest 
Tree model performed the best with Test dataset accuracy, precision, 
recall, F-score and AUC of 0.8889, 1.0000, 0.7778, 0.8750 and 0.8889, 
respectively. The Random Forest Tree precision is a perfect score of 
1.0000 – this implies that when the model predicts a pothole, it is correct 
100% of the time. However, a lower recall score of 0.8889 is because of 
the many false negatives (i.e., potholes data points classified as non- 
potholes). 

5.1. Hyperparameter tuning of Random Forest Tree using Random Search 

The Random Forest Tree model is one of the best performing models 
in the previous section using the hyperparameters shown in Table 3. The 
selected hyperparameters are the best starting point for tuning the 
model’s hyperparameter for better performance. This section explores 
the impact of using the random search hyperparameter tuning on the 
Random Forest Tree model’s performance. This hyperparameter tuning 
approach is beneficial because it does not use the entire hyperparameter 
combination. Instead, it used a random combination of the initialised 

grid of hyperparameter values to train and score a model. The number of 
search iteration can be set based on the available resources and time 
(Bergstra & Bengio, 2012). The initialised grid of hyperparameter values 
is shown in Table 6, and the search was run for 100 iterations. The same 
Training and Validation datasets used in the previous section were used 

Table 2 
Performance Metric – K-Fold Cross-Validation (K = 10) Training Dataset.  

Models Average Accuracy (95% Confidence interval) 

Naive Bayes 0.7758 ± 0.0985 
Logistic Regression 0.7825 ± 0.1345 
SVM 0.8200 ± 0.1598 
KNN 0.7879 ± 0.1371 
Random Forest Tree 0.8071 ± 0.1259  

Table 3 
Random Forest Tree and K-Nearest Neighbours Hyperparameter Parameter.  

Machine Learning 
Model 

Parameters and 
Values 

Parameters Description 

SVM Kernal = rbf Specifies the kernel type to be used in 
the algorithm  

Probability = True Enables probability estimates  
Random_state = 0 Controls the pseudo-random number 

generation 
Random Forest 

Tree 
n_estimators: 100 Sets the number of decision trees to be 

used in the forest  
min_samples_split: 2 Minimum number of samples needed 

before a split  
min_samples_leaf: 1 Minimum number of samples needed 

to create a leaf  
max_features: auto Number of features to consider for the 

best node split  
max_depth: None Maximum depth of the tree  
Criterion: gini Measures the quality of a split  
Bootstrap: True Specify if bootstrap samples are used 

when building trees  
Random_state = 0 Controls the randomness of the 

bootstrapping of the samples 
K-Nearest 

Neighbours 
n_neighbor: 5 Number of neighbours to use for 

neighbours’ queries  
weights: uniform The weight function used in the 

prediction  
Algorithm: auto Use to compute the nearest 

neighbours  
Metric: Minkowski The distance metric to use for the tree  
P: 2 Power parameter for the Minkowski 

metric  

Table 4 
Performance Metric – Validation Dataset.  

Models Accuracy Precision Recall F-score AUC 

Naive Bayes  0.8333  0.7500  0.8571  0.8000  0.8377 
Logistic Regression  0.8333  0.7500  0.8571  0.8000  0.8377 
KSVM  0.8333  0.7500  0.8571  0.8000  0.8377 
KNN  0.8889  0.7778  1.0000  0.8750  0.9091 
Random Forest Tree  0.8889  0.8571  0.8571  0.8571  0.8831  

Table 5 
Performance Metric – Test Dataset.  

Models Accuracy Precision Recall F-score AUC 

Naive Bayes  0.8889  1.0000  0.7778  0.8750  0.8889 
Logistic Regression  0.6667  0.7143  0.5556  0.6250  0.6667 
KSVM  0.8333  1.0000  0.6667  0.8000  0.8333 
KNN  0.8889  0.8889  0.8889  0.8889  0.8889 
Random Forest Tree  0.8889  1.0000  0.7778  0.8750  0.8889  

Table 6 
Initialised Grid of Hyperparameter for Random Forest Tree 
Model.  

Parameters Values 

n_estimators 100–2000 
min_samples_split 2, 5, 10, 15 
min_samples_leaf 1, 2, 4, 8 
max_features auto, sqrt 
max_depth 10–120 
Criterion gini, entropy 
bootstrap True, False  

O.A. Egaji et al.                                                                                                                                                                                                                                 



Expert Systems With Applications 184 (2021) 115562

6

for the random search model. The optimum hyperparameters for the 
Random Forest Tree model after tuning with random search is shown in 
Table 7. There was a 6.2500% improvement in the Validation dataset’s 
accuracy after the hyperparameters tuning, as shown in Table 8. The 
percentage improvement after hyperparameter tuning on the Validation 
dataset for accuracy, precision, recall, F-score and AUC is 6.2487, 
2.0884, 16.6725, 8.8943 and 8.0903%, respectively. The optimised 
model was evaluated further on the Test dataset, and the results are 
shown in Table 9. The percentage improvement after hyperparameter 
tuning on the Test dataset for accuracy, precision, recall, F-score and 
AUC are 6.2500, 0.0000, 14.2857, 7.5630 and 6.2500%, respectively. 

The precision-recall curve for the optimised Random Forest Tree 
model on the Test data is shown in Fig. 7. The curve shows the rela-
tionship between precision and recalls at every possible threshold/cut- 
off. The cut-off values determine the fraction of true positive or true 
negative prediction of the model. The perfect performance is a model 
that can discriminate between pothole and non-pothole with 100% 
recall and 100% precision. Hence, the graph line will pass through the 
top left corner (0.0, 1.0) and top right corner (1.0, 1.0). The curve that is 
closer to the perfect precision curve has a better performance than the 
baseline. The Random Forest Tree model’s chosen cut-off led to accu-
racy, precision, recall and F-score of 0.9444, 1.0000, 0.8889 and 0.9412, 
respectively. 

5.2. Overview 

The model was evaluated on data completely isolated from the 
Training and Validation datasets. The Validation datasets were used to 
evaluate the performance of the hyperparameter tuning. The Random 
Forest Tree and KNN models showed the best performance on the Test 
dataset compared to the other models before tuning the hyper-
parameter. The random search hyperparameter tuning approach was 
then applied to the Random Forest Tree model, and it furthered 
increased the model’s performance. In addition, the model generalises 
better to unseen data, which contradicts the behaviour noticed by Fox 
et al. (2015). This might have resulted from the use of an overlapping 
sliding window for feature extraction, which can cause Train-Test 
contamination as the pattern used for testing is not distinguishable 
from the training. This phenomenon was referred to as similarity bias by 
Rauber et al. (2021). It can overly simplify the model for generalising 
real-world problems. 

6. Conclusion 

This paper developed an intelligent pothole detection system using 
data collected from mobile sensors. The data was pre-processed to 
extract statistical features using a 2-second non-overlapping moving 
window. 

A comparative study using five binary classification machine 
learning models (Naïve Bayes, Logistic regression, SVM, KNN and 
Random Forest Tree) was performed for balanced data. The Training 
and Validation datasets were isolated entirely from the Test dataset 
before feature extractions. A 2-second non-overlapping moving window 
was used for feature extraction to avoid similarity bias in the Training/ 

Validation and Test data. A stratified K-fold cross-validation technique 
was applied to the training dataset with K = 10. 

The Random Forest Tree and KNN showed the best performance on 
the Test dataset with a similar accuracy of 0.8889. This performance 
increased when random search hyperparameter tuning was used to 
optimised the Random Forest Tree model. The Random Forest Tree 
model’s performance after hyperparameter tuning is 0.9444, 1.0000, 
0.8889 and 0.9412 for accuracy, precision, recall, and F-score. The 
percentage improvement after hyperparameter tuning on the Test 
dataset for accuracy, precision, recall, F-score and AUC are 6.2500, 
0.0000, 14.2857, 7.5630 and 6.2500, respectively. The Random Forest 
Tree model’s precision is a perfect score of 1.0000 – this implies that 
when the model predicts a pothole, it is correct 100% of the time. 
However, a lower recall score of 0.8889 is because of the many false 
negatives (i.e., potholes data points classified as non-potholes). Hence, 
the model performed well on a new route/car, which was not part of the 
Training data. 

However, sufficient samples from all roads and cars are required to 
evaluate further and build models that perform well on diverse road/car 
types. In addition, further annotation will be needed to help build a 
model that can categorise the potholes in more detail. This will enable 
road maintenance agencies to prioritise pothole fixing based on their 
severity. 
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Table 7 
Optimum Hyperparameter for Random Forest Tree 
parameter.  

Parameters Values 

n_estimators 311 
min_samples_split 5 
min_samples_leaf 1 
max_features sqrt 
max_depth 46 
Criterion entropy 
bootstrap False  

Table 8 
Performance Metric – Validation Dataset.  

Models Accuracy Precision Recall F- 
score 

AUC 

Random Forest Tree  0.9444  0.8750  1.0000  0.9333  0.9545 
Percentage 

Improvement (%)  
6.2487  2.0884  16.6725  8.8943  8.0903  

Table 9 
Performance Metric– Test Dataset.  

Models Accuracy Precision Recall F- 
score 

AUC 

Random Forest Tree  0.9444  1.0000  0.8889  0.9412  0.9444 
Percentage 

Improvement (%)  
6.2500  0.0000  14.2857  7.5630  6.2500  

Fig. 7. Precision-Recall Curve (Test Data).  
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