
Expert Systems With Applications 184 (2021) 115562

Available online 10 July 2021
0957-4174/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Real-time machine learning-based approach for pothole detection

Oche Alexander Egaji a,1,*, Gareth Evans a, Mark Graham Griffiths a, Gregory Islas b

a Centre of Excellence in Mobile and Emerging Technologies (CEMET), Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
b Mobilized Construction, Brunel House 1st Floor, 2 Fitzalan Rd, Cardiff, UK

A R T I C L E I N F O

Keywords:
Pothole detection
Machine learning
Vibration-based analysis
Accelerometer and Gyroscope
K-fold cross-validation

A B S T R A C T

Potholes are symptoms of a poorly maintained road, pointing to an underlying structural issue. A vehicle’s
impact with a pothole not only makes for an uncomfortable journey, but it can also cause damage to the vehicle’s
wheels, tyres and suspension system resulting in high repair bills. This study presents a comparative study of
machine learning models for pothole detection. The data was collected from multiple android devices/routes/
cars and pre-processed using a 2-second non-overlapping moving window to extract relevant statistical features
for training a binary classifier. The Test dataset was isolated entirely from the Training and Validation datasets,
and a stratified K-fold cross-validation was applied to the Training dataset. The Random Forest Tree and KNN
showed the best performance on the Test dataset with a similar accuracy of 0.8889. The model performance
increased when random search hyperparameter tuning was applied to optimise the Random Forest Tree model’s
hyperparameters. The Random Forest Tree model’s performance after hyperparameter tuning is 0.9444, 1.0000,
0.8889 and 0.9412 for accuracy, precision, recall, and F-score, respectively.

1. Introduction

Potholes are symptoms of a poorly maintained road, which could
point to an underlying structural issue. A vehicle’s impact with a pothole
not only makes for an uncomfortable journey, but it can also cause
damage to the vehicle’s wheels, tyres and suspension system resulting in
high repair bills. A recent survey showed an increase of 24% in the
number of filled potholes in England and Wales (Asphalt Industry Alli-
ance, 2019). Potholes account for a third of mechanical issues on the UK
roads, and they cause the British motorist £2.8 billion every year
(Asphalt Industry Alliance, 2013). The amount paid in road user
compensation in England and Wales is £6.9 m, which excludes the £19.8
m staff cost for settling claims. About 89% of claims in England are
because of potholes damages, which is up by 80% from 2018 (Asphalt
Industry Alliance, 2019).

These figures are alarming and can be significantly reduced by
investing in appropriate pothole detection technologies that make the
reporting process seamless. In a recent RAC Business survey involving
500 UK companies, 46% of bosses reported the poor state of the roads
and the cost associated with repairing a vehicle damaged by potholes is a
significant challenge for business (RAC Business, 2016). Of more

concern, the effect of potholes on pedestrians, cyclists and motorbike
riders could be much more severe as it could lead to personal injuries.
Research by Cycling UK suggests that 56% of people say they would
cycle more if roads had fewer faults, such as potholes (Jones, 2018).
Hence, the detection and reporting of potholes is key to ensuring the
appropriate authorities are aware of the issue’s scale. This will ensure
that appropriate repairs are carried out in a timely manner.

The rapid technological advancement in recent years has led to
miniaturisation and incorporation of robust sensors such as gyroscope,
accelerometer, GPS, electronic compass, microphone, camera, etc., into
mobile devices. This is the cheapest and most efficient way of pothole
detection, as most people have a mobile phone, and there is no need for
the installation of specialised hardware. This study utilised data
collected from mobile devices in real-time to detect potholes. Most
existing pothole detection approaches rely on specialised and expensive
hardware devices, have lower accuracy or are not robust enough to
detect real-world potholes.

This paper contains six sections. Section 2 includes the related work
relevant to this study. Section 3 describes the machine learning models,
whilst the research methodology is presented in Section 4. The results
and analysis are discussed in Section 5. Finally, the conclusion and

* Corresponding author.
E-mail addresses: alexander.egaji@southwales.ac.uk (O.A. Egaji), gareth.evans@southwales.ac.uk (G. Evans), mark.griffiths@southwales.ac.uk (M.G. Griffiths),

gregory@mobilizedconstruction.com (G. Islas).
1 ORCID ID: 0000-0001-6661-7415.

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.115562
Received 18 March 2020; Received in revised form 25 May 2021; Accepted 3 July 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of South Wales Research Explorer

https://core.ac.uk/display/478160946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alexander.egaji@southwales.ac.uk
mailto:gareth.evans@southwales.ac.uk
mailto:mark.griffiths@southwales.ac.uk
mailto:gregory@mobilizedconstruction.com
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.115562
https://doi.org/10.1016/j.eswa.2021.115562
https://doi.org/10.1016/j.eswa.2021.115562
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.115562&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expert Systems With Applications 184 (2021) 115562

2

future work are shown in Section 6.

2. Related work

Several pothole detections approaches have been proposed over the
last couple of years. According to Kulkarni et al. (2014), the existing
pothole detection approaches can be classified into vibration-based
methods, 3D reconstruction-based methods and vision-based methods.

The vibration-based approached involves the use of accelerometers,
most often from a mobile device. This approach was used by Mednis
et al. (2011); the authors compared the performance of multiple
threshold-based approaches based on z-axis mobile sensing data. The
authors claim a true positive rate as high as 90% for a small dataset.
Also, Wang et al. (2015) and Madli et al. (2015) applied a threshold-
based approach.

Fox et al. (2015) utilised a machine learning-based pothole detection
approach. This approach relies on extracted features from crowdsourc-
ing under-sampled simulated vehicles sensor data using CarSim. The
authors claimed a simulated accuracy of 99.6% and an empirical
experiment accuracy of 88.9% based on the simulated model. The au-
thors’ choice of aggregating simulated data from 500 vehicles will be
challenging to replicate in the real world. There are additional GPS error
issues, missing data, varying sensor configurations, and difficulty gen-
eralising the simulation platform, as shown in the accuracy degradation
to 88.9% on a single stretch of road. A comparison of two machine
learning models (SVM and gradient boosting) was carried out by Bhatt
et al. (2017). The authors collected 21,300 observations of accelerom-
eter and gyroscope with 96-labelled potholes from a single car using an
iPhone 6Ss. They claim that SVM with an RBF kernel and gradient
boosting achieved the best accuracy of 92.9% and 92.02%, respectively.
However, the achieved precision (0.78) and recall (0.42) are much
lower.

The image/vision-based approach involves using cameras (images or
videos) for pothole data collection. Authors such as Zhang et al. (2014),
Wang et al. (2017), Jo and Ryu (2015), Ouma and Hahn (2017), Ryu
et al. (2015), Koch et al. (2013), Li Shuai et al. (2016) and Youquan et al.
(2011) have used various image processing approaches on a small data
sample for pothole detection. Other authors, such as Anand et al. (2018),
have combined texture and spatial features of a camera image to train a
deep neural network. The model was evaluated with 969 images. The
resulting precision, recall and F-score are 92.4, 93.8 and 93.0%,
respectively. However, this approach is computational complex
rendering it less practical for real-time detection.

Most of the work in this area has used an image-based approach for
pothole detection. They rely on libraries of actual potholes; hence, any
variation in the pothole size, road markings, or even the presence of dirt
on the road can affect the non-machine learning model’s accuracy. This
approach requires high computational power because of its computa-
tional complexity. Hence, it is not suitable for real-time pothole detec-
tion. The threshold-based model provides a simplified approach for the
detection of a pothole. However, the heuristic process of determining
the thresholds is tedious and prone to human error. Moreover, there is a
high likelihood of encountering difficulty in generalising the model
when it is deployed to other kinds of road surfaces or cars or the size of
potholes. Most existing pothole detection approaches either rely on a
specialised and expensive hardware device, have lower accuracy in
pothole detection, or are not robust enough to detect all kinds of pot-
holes. Also, the performance metric relied upon by some of the models is
accuracy. This can often be confused with better model performance.
Some of the existing work presented a higher accuracy with much lower
precision and recall scores, highlighting the challenges they faced effi-
ciently detecting potholes.

This study presents a comparative study of machine learning models
for pothole detection. The data was collected from multiple android
devices/routes/cars and pre-processed using 2-second interval aggre-
gated chunks of data to extract relevant statistical features for training a

binary classifier.

3. Machine learning models

Machine learning is a mathematical algorithm that enables a com-
puter to learn from example data. The most common types of machine
learning models are supervised and unsupervised learning. The algo-
rithm learns from an example of labelled data in supervised learning and
learns from unlabelled data in unsupervised learning. This paper com-
pares the performance of five classification models (Naïve Bayes, Lo-
gistic Regression, Support Vector Machine (SVM), K-Nearest Neighbour
(KNN) and Random Forest Tree).

3.1. Naïve Bayes

Naïve Bayes is a simplified probabilistic machine-learning algorithm
that is commonly used in a classification task. The model can also be
referred to as a simplified Bayesian probability model (Russell & Norvig,
n.d.). The Naïve Bayes model assumes that all input features are inde-
pendent of each other. Hence, changing the value of one should not
directly influence the other feature present in the model. This assump-
tion rarely holds in real-world applications, which is the reason it is
called Naïve (Chai et al., 2004).

3.2. Logistic Regression

Logistic regression is a probability-based machine-learning approach
that is mainly used for binary classification problems. The algorithm is
similar to a linear regression model; however, it uses a more sophisti-
cated cost function called the ’logistic or sigmoid function’. The sigmoid
function maps a given input (z) to an output (S(z)) that varies between
0 and 1 (Peng et al., 2002).

3.3. K-Nearest Neighbours

K-Nearest Neighbours (KNN) is a basic but effective non-parametric
supervised machine learning algorithm that can solve either classifica-
tion or regression problems. The underlying intuition behind KNN re-
quires classifying an unidentified test sample to a class ’c’ represented
by the majority of its k nearest neighbours in the Training dataset
(Okfalisa et al., 2017). This approach is sometimes called the voting
KNN rule and can often outperform more sophisticated methods. The k-
nearest neighbours of an unidentified test sample are determined by
calculating the Euclidean distance between the training and test points
(Sun & Huang, 2010).

3.4. Support vector Machine (SVM)

A support vector machine is an algorithm that forms part of a su-
pervised machine-learning approach. The algorithm is used either for
regression or classification problems. The algorithm functions by finding
the hyperplane in an N-dimension space (N – number of features) that
distinctively separate/classify data points. The hyperplane is a decision
boundary that helps separate the different classes of the data points, and
its dimension depends on the number of features. For example, in a two-
class classification problem, the algorithm estimates the hyperplane that
maximises the margin (the distance between the data points from both
classes) and minimises a quantity proportional to the misclassification
error. This maximises the robustness of the model in reducing the clas-
sification error. The trade-off between maximising the margin and
achieving a low training/test error is controlled by the positive regu-
larisation parameter ’C’. Also, SVM can be used for cases where linear
separation is not possible by varying the ’kernels’, resulting in a hy-
perplane/feature mapping with non-linear boundary (Tzotsos & Argia-
las, 2008).

O.A. Egaji et al.

Expert Systems With Applications 184 (2021) 115562

3

3.5. Random Forest Tree

Random Forest Tree (tree-based ensemble model) is a combination of
multiple decision tree predictors, where an individual tree relies on
values of an independently sampled random vector with a similar dis-
tribution. The basic principle of an ensemble approach is having a group
of weak learners (individual tree/decision tree) to form a strong learner
(forest). The models are fast and easy to implement; the Random Forest
Tree model’s bootstrapping nature reduces the model’s tendency to
over-fit when dealing with significant input variables/data. The trees are
grown using the CART methodology developed by Georganos et al.
(2019). The final training outcome is a set of decision rules; this includes
rules that decide how to split the data at the node and decide when the
branch is terminal and can no longer be split. These rules can either be
continuous (for regression tree) or categorical (for classification tree)
and capable of predicting an outcome variable.

4. Methodology:

This study focused on identifying pothole and non-pothole events.
Hence, it was a binary classification problem. The initial stage of the
project involved the data collection and labelling of the pothole or non-
pothole events. This led to the development of two bespoke android
applications (apps). The first records the accelerometer, gyroscope and
GPS data, and the second app help in data labelling. The raw sensor data
from both apps were pre-processed, merged, cleansed, and split
(Training/Validation and Test) before extracting relevant features ready
to train with the machine learning model. The research methodology is
shown in Fig. 1.

The devices selected were relatively cheap phones that were capable
of running Android One (v9.0). The three selected android phones used
for data collection and labelling are the Nokia 3.1/5.1 and the Motorola
G7. An adhesive sticking pad was used to mount the first phone to the
centre of the dashboard face up, so the positive and negative z-axis is
faced upwards and downwards, respectively. The data collection
covered five different routes, road surfaces and four cars (Toyota Yaris
Hybrid (sedan), Kia Niro (SUV), Skoda Octavia Estate (sedan) and
Hyundai Getz (sedan)).

4.1. Data Collection

The two developed bespoke apps ran on two different android
phones. App 1, as shown in Fig. 2, records the UNIX timestamp, accel-
erometer data (x, y, z), gyroscope data (x, y, x) and location data
(longitude and latitude). App 2, as shown in Fig. 3, records the GPS and
UNIX timestamp data and is used for the manual recording of pothole
events. Both devices have a sampling frequency of approximately 100
Hz. The device with app1 was mounted at the centre of the car’s dash-
board in a specific orientation; a passenger held the second device with
app 2 in the car. The passenger was required to press and hold the blue
button shown in Fig. 3 when the car approaches a pothole and release
the button soon after the car has driven over the pothole. The app starts
recording the sensor UNIX timestamp and GPS location when pressed
until it is released. The authors took care to ensure that the clocks of both
devices were synchronised. The recorded data was stored in the phone
storage and uploaded to a database. The data from both phones were
merged using the UNIX timestamp and the GPS location for extra
validation.

4.2. Feature Extraction

The data collection process resulted in 10,913,863 observations of
accelerometer, gyroscope, location data (longitude and latitude) and
UNIX timestamp with 30,808-labelled potholes. The labelled potholes
account for approximately 0.28% of the whole dataset, which is highly
imbalanced. The data was collected at a high frequency; hence there is a
likelihood of capturing measurements unrelated to the variables of in-
terest and the measurement error resulting in noisy data points. Care
was taken to minimise the noisy data points by grouping the data into 2-
second interval chunks and calculating the aggregated statistical fea-
tures for each interval chunk. This approach is similar to the non-
overlapping moving window. The moving window computes the sta-
tistical features at time (t) by using a window that includes the raw data
at a time (t) as well as past data up to time (t-2) seconds. The window is
then shifted forward by time (t + 2), and the process continues until
features for all the raw data are computed. The authors ensured there
were no overlapping data chunks to avoid data leakage. Overall, an
aggregate of 42 statistical features was extracted from each interval of
the raw accelerometer and gyroscope data, as shown in Table 1.

4.3. Data Exploration

The time-domain of the z-axis for all the trips is shown in Fig. 4. This
plot consists of the pothole and non-pothole events for all routes/cars
used for data collection. The abrupt changes in values seen in the time
domain can be due to noisy signals from the sensors. The signal noise can
be noticed in the frequency domain shown in Fig. 5. A much cleaner
signal can be seen in Fig. 6 after applying the 2-second aggregated sta-
tistical feature extraction on the raw z-axis data.

Fig. 1. Flow chart of research methodology.
Fig. 2. App 1 – Data logger (Accelerometer, Gyroscope, GPS and
UNIX timestamp).

O.A. Egaji et al.

Expert Systems With Applications 184 (2021) 115562

4

4.4. Evaluation Metric and Cross-Validation

The performance metrics used for this paper are accuracy, precision,
recall and F-score. The accuracy consists of the ratio of correctly pre-
dicted observations to total observations, and it is the commonly used
predictive model evaluation metric. It is common to confuse high ac-
curacy with better model performance; however, this can only be when
the number of false-positive and false-negative events are almost the
same for a balanced dataset. The precision is the ratio of the correctly
predicted positive observation and the total predicted positive obser-
vation. The precision is a good measure when the cost of false positive is
high. The recall is a measure of how much of the total actual positively
labelled datasets the model captures. Recall is a good measure when
there is a high cost associated with false-negative. A combination of the
precision and recall metrics into a single metric that capture both
properties can be represented by the F-score (Divya et al., 2019). The F-
score gives an overall view of model performance so that neither pre-
cision nor recall can be considered individually.

The dataset was balanced by randomly and uniformly under-
sampling the majority class. This ensures that the overall data to be
used for the machine-learning models have equal numbers of potholes
and non-potholes samples. A vital step in developing a machine learning
model and ensuring it generalises better is the cross-validation step. This
will help to prevent developing a model with high bias or variance. The
datasets collected were concatenated into a single data source to form a
combined training/validation dataset, except for data from two routes/
two cars which was separated to be used as a test dataset for the machine
learning model. This was separated to avoid similarity bias and data
leakage where information from the Test dataset is present in the
Training dataset. As described in Section 4.2, the features extraction was
applied separately to the combined (Training/Validation) and Test
datasets.

A combination of holdout and the stratified K-fold cross-validation
approach was used in this paper. The combined dataset was partition
into training and validation datasets. The models were trained on the
training dataset, and the Validation dataset was used to manually tune
the machine learning models’ hyperparameters. This approach utilises a
different combination of the hyperparameter set based on experience to
tune the model. The performance was relatively similar to the model
with the default parameters (scikit-learn python libraries (Pedregosa
et al., 2011)). Afterwards, the Test dataset is used to evaluate how well
the models perform on unseen data. The current data has been split into
80% Train, 10% Validation and 10% Test. A stratified K-fold cross-
validation was applied to the Training dataset portion of the split with
K = 10. The K-fold cross-validation randomly partitioned the data into K
smaller sets. One of the K-subsets is used to evaluate the model, and the
other (K-1) subsets are used to train the model. The process is repeated K

Fig. 3. App 2 – Data Logger (GPS and UNIX timestamp).

Table 1
Feature Extractions.

Name Axis (Accelerometer and Gyroscope) Domain

Minimum Value X, Y, Z Time
Maximum Value X, Y, Z Time
Mean X, Y, Z Time
Standard Deviation X, Y, Z Time
Variance X, Y, Z Time
Skewness X, Y, Z Time
Kurtosis X, Y, Z Time

Fig. 4. Time Domain – Raw Z-axis data.

Fig. 5. Frequency Domain - Z-axis data.

Fig. 6. Frequency Domain – Z-axis Mean (non-overlapping 2-second Window).

O.A. Egaji et al.

Expert Systems With Applications 184 (2021) 115562

5

times until all unique subsets have been used to evaluate the model. The
average accuracy and standard deviation can be computed across all K-
sessions. This will give a better indication of the model performance and
whether it overfits the data.

5. Result and analysis

The average accuracy at the 95% confidence interval (µ ± 2σ, where
µ is the mean and σ the standard deviation) for the five machine learning
models – Naïve Bayes, Logistic Regression, SVM, K-Nearest neighbour
and Random Forest Tree with K = 10 is shown in Table 2. The SVM,
Random Forest Tree and KNN are the best performing model with an
average accuracy at a 95% confidence interval of 0.8200 ± 0.1598,
0.8071 ± 0.1259 and 0.7879 ± 0.1371, respectively. The KSVM,
Random Forest Tree and KNN default Hyperparameters and their
description for the trained model are given in Table 3. A detailed
explanation of the hyperparameters can be found in the scikit-learn
python libraries documentation (Pedregosa et al., 2011).

The Validation dataset was used to evaluate the manual parameter
turning of the models. The performance of the machine-learning models
on the Validation dataset is shown in Table 4. The Random Forest Tree
and KNN are the two best performing models with accuracy, precision,
recall and F-score of over 77%. According to the precision, recall, F-score
and AUC metrics in Table 4, the Random Forest Tree and KNN are the
best performing models amongst the five considered models. The ac-
curacy, precision, recall, F-score and AUC for the Random Forest Tree
and KNN are 0.8889, 0.8571, 0.8571, 0.8831 and 0.8889, and 0.7778, 1,
0.8750 and 0.9091 respectively. The recall of the KNN is perfect at 1.00
– meaning the model has found all the actual potholes that can be found
in the Validation dataset. However, the lower precision is because of the
many false positives (non-pothole data points classified as a pothole by
the model).

The Test dataset was used to evaluate the model’s performance on
totally unseen data. The performance of the machine-learning models on
the Test dataset is shown in Table 5. Except for the Logistic Regression,
all the models have a Test dataset accuracy that is over 83%. The per-
formance metrics for the Naïve Bayes and KNN are the same for the
accuracy and AUC and both have similar F-scores. The Random Forest
Tree model performed the best with Test dataset accuracy, precision,
recall, F-score and AUC of 0.8889, 1.0000, 0.7778, 0.8750 and 0.8889,
respectively. The Random Forest Tree precision is a perfect score of
1.0000 – this implies that when the model predicts a pothole, it is correct
100% of the time. However, a lower recall score of 0.8889 is because of
the many false negatives (i.e., potholes data points classified as non-
potholes).

5.1. Hyperparameter tuning of Random Forest Tree using Random Search

The Random Forest Tree model is one of the best performing models
in the previous section using the hyperparameters shown in Table 3. The
selected hyperparameters are the best starting point for tuning the
model’s hyperparameter for better performance. This section explores
the impact of using the random search hyperparameter tuning on the
Random Forest Tree model’s performance. This hyperparameter tuning
approach is beneficial because it does not use the entire hyperparameter
combination. Instead, it used a random combination of the initialised

grid of hyperparameter values to train and score a model. The number of
search iteration can be set based on the available resources and time
(Bergstra & Bengio, 2012). The initialised grid of hyperparameter values
is shown in Table 6, and the search was run for 100 iterations. The same
Training and Validation datasets used in the previous section were used

Table 2
Performance Metric – K-Fold Cross-Validation (K = 10) Training Dataset.

Models Average Accuracy (95% Confidence interval)

Naive Bayes 0.7758 ± 0.0985
Logistic Regression 0.7825 ± 0.1345
SVM 0.8200 ± 0.1598
KNN 0.7879 ± 0.1371
Random Forest Tree 0.8071 ± 0.1259

Table 3
Random Forest Tree and K-Nearest Neighbours Hyperparameter Parameter.

Machine Learning
Model

Parameters and
Values

Parameters Description

SVM Kernal = rbf Specifies the kernel type to be used in
the algorithm

Probability = True Enables probability estimates
Random_state = 0 Controls the pseudo-random number

generation
Random Forest

Tree
n_estimators: 100 Sets the number of decision trees to be

used in the forest
min_samples_split: 2 Minimum number of samples needed

before a split
min_samples_leaf: 1 Minimum number of samples needed

to create a leaf
max_features: auto Number of features to consider for the

best node split
max_depth: None Maximum depth of the tree
Criterion: gini Measures the quality of a split
Bootstrap: True Specify if bootstrap samples are used

when building trees
Random_state = 0 Controls the randomness of the

bootstrapping of the samples
K-Nearest

Neighbours
n_neighbor: 5 Number of neighbours to use for

neighbours’ queries
weights: uniform The weight function used in the

prediction
Algorithm: auto Use to compute the nearest

neighbours
Metric: Minkowski The distance metric to use for the tree
P: 2 Power parameter for the Minkowski

metric

Table 4
Performance Metric – Validation Dataset.

Models Accuracy Precision Recall F-score AUC

Naive Bayes 0.8333 0.7500 0.8571 0.8000 0.8377
Logistic Regression 0.8333 0.7500 0.8571 0.8000 0.8377
KSVM 0.8333 0.7500 0.8571 0.8000 0.8377
KNN 0.8889 0.7778 1.0000 0.8750 0.9091
Random Forest Tree 0.8889 0.8571 0.8571 0.8571 0.8831

Table 5
Performance Metric – Test Dataset.

Models Accuracy Precision Recall F-score AUC

Naive Bayes 0.8889 1.0000 0.7778 0.8750 0.8889
Logistic Regression 0.6667 0.7143 0.5556 0.6250 0.6667
KSVM 0.8333 1.0000 0.6667 0.8000 0.8333
KNN 0.8889 0.8889 0.8889 0.8889 0.8889
Random Forest Tree 0.8889 1.0000 0.7778 0.8750 0.8889

Table 6
Initialised Grid of Hyperparameter for Random Forest Tree
Model.

Parameters Values

n_estimators 100–2000
min_samples_split 2, 5, 10, 15
min_samples_leaf 1, 2, 4, 8
max_features auto, sqrt
max_depth 10–120
Criterion gini, entropy
bootstrap True, False

O.A. Egaji et al.

Expert Systems With Applications 184 (2021) 115562

6

for the random search model. The optimum hyperparameters for the
Random Forest Tree model after tuning with random search is shown in
Table 7. There was a 6.2500% improvement in the Validation dataset’s
accuracy after the hyperparameters tuning, as shown in Table 8. The
percentage improvement after hyperparameter tuning on the Validation
dataset for accuracy, precision, recall, F-score and AUC is 6.2487,
2.0884, 16.6725, 8.8943 and 8.0903%, respectively. The optimised
model was evaluated further on the Test dataset, and the results are
shown in Table 9. The percentage improvement after hyperparameter
tuning on the Test dataset for accuracy, precision, recall, F-score and
AUC are 6.2500, 0.0000, 14.2857, 7.5630 and 6.2500%, respectively.

The precision-recall curve for the optimised Random Forest Tree
model on the Test data is shown in Fig. 7. The curve shows the rela-
tionship between precision and recalls at every possible threshold/cut-
off. The cut-off values determine the fraction of true positive or true
negative prediction of the model. The perfect performance is a model
that can discriminate between pothole and non-pothole with 100%
recall and 100% precision. Hence, the graph line will pass through the
top left corner (0.0, 1.0) and top right corner (1.0, 1.0). The curve that is
closer to the perfect precision curve has a better performance than the
baseline. The Random Forest Tree model’s chosen cut-off led to accu-
racy, precision, recall and F-score of 0.9444, 1.0000, 0.8889 and 0.9412,
respectively.

5.2. Overview

The model was evaluated on data completely isolated from the
Training and Validation datasets. The Validation datasets were used to
evaluate the performance of the hyperparameter tuning. The Random
Forest Tree and KNN models showed the best performance on the Test
dataset compared to the other models before tuning the hyper-
parameter. The random search hyperparameter tuning approach was
then applied to the Random Forest Tree model, and it furthered
increased the model’s performance. In addition, the model generalises
better to unseen data, which contradicts the behaviour noticed by Fox
et al. (2015). This might have resulted from the use of an overlapping
sliding window for feature extraction, which can cause Train-Test
contamination as the pattern used for testing is not distinguishable
from the training. This phenomenon was referred to as similarity bias by
Rauber et al. (2021). It can overly simplify the model for generalising
real-world problems.

6. Conclusion

This paper developed an intelligent pothole detection system using
data collected from mobile sensors. The data was pre-processed to
extract statistical features using a 2-second non-overlapping moving
window.

A comparative study using five binary classification machine
learning models (Naïve Bayes, Logistic regression, SVM, KNN and
Random Forest Tree) was performed for balanced data. The Training
and Validation datasets were isolated entirely from the Test dataset
before feature extractions. A 2-second non-overlapping moving window
was used for feature extraction to avoid similarity bias in the Training/

Validation and Test data. A stratified K-fold cross-validation technique
was applied to the training dataset with K = 10.

The Random Forest Tree and KNN showed the best performance on
the Test dataset with a similar accuracy of 0.8889. This performance
increased when random search hyperparameter tuning was used to
optimised the Random Forest Tree model. The Random Forest Tree
model’s performance after hyperparameter tuning is 0.9444, 1.0000,
0.8889 and 0.9412 for accuracy, precision, recall, and F-score. The
percentage improvement after hyperparameter tuning on the Test
dataset for accuracy, precision, recall, F-score and AUC are 6.2500,
0.0000, 14.2857, 7.5630 and 6.2500, respectively. The Random Forest
Tree model’s precision is a perfect score of 1.0000 – this implies that
when the model predicts a pothole, it is correct 100% of the time.
However, a lower recall score of 0.8889 is because of the many false
negatives (i.e., potholes data points classified as non-potholes). Hence,
the model performed well on a new route/car, which was not part of the
Training data.

However, sufficient samples from all roads and cars are required to
evaluate further and build models that perform well on diverse road/car
types. In addition, further annotation will be needed to help build a
model that can categorise the potholes in more detail. This will enable
road maintenance agencies to prioritise pothole fixing based on their
severity.

CRediT authorship contribution statement

Oche Alexander Egaji: . : Conceptualization, Data curation, Meth-
odology, Formal analysis, Software, Validation, Visualization, Writing -
original draft, Writing - review & editing. Gareth Evans: Con-
ceptualisation, Data Curation , Visualisation, Software, Validation.
Mark Graham Griffiths: Supervision, Funding acquisition. Gregory
Islas: Conceptualization, Data curation.

Table 7
Optimum Hyperparameter for Random Forest Tree
parameter.

Parameters Values

n_estimators 311
min_samples_split 5
min_samples_leaf 1
max_features sqrt
max_depth 46
Criterion entropy
bootstrap False

Table 8
Performance Metric – Validation Dataset.

Models Accuracy Precision Recall F-
score

AUC

Random Forest Tree 0.9444 0.8750 1.0000 0.9333 0.9545
Percentage

Improvement (%)
6.2487 2.0884 16.6725 8.8943 8.0903

Table 9
Performance Metric– Test Dataset.

Models Accuracy Precision Recall F-
score

AUC

Random Forest Tree 0.9444 1.0000 0.8889 0.9412 0.9444
Percentage

Improvement (%)
6.2500 0.0000 14.2857 7.5630 6.2500

Fig. 7. Precision-Recall Curve (Test Data).

O.A. Egaji et al.

Expert Systems With Applications 184 (2021) 115562

7

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

The authors will like to acknowledge the European Regional Devel-
opment Fund (ERDF) and the Welsh Government for funding this study
(WEFO 82127 &WEFO 80849). We will also like to acknowledge the
contribution of Mobilized Construction in the data collection process
phase of the project. Finally, our gratitude goes to all members of the
Centre of Excellence in Mobile and Emerging Technologies (CEMET),
the University of South Wales, for their contribution in various capacity
in this study.

References

Anand, S., Gupta, S., Darbari, V., & Kohli, S. (2018). Crack-pot: Autonomous road crack
and pothole detection. Digital Image Computing: Techniques and Applications (DICTA),
2018, 1–6. https://doi.org/10.1109/DICTA.2018.8615819

Asphalt Industry Alliance. (2013). Annual Local Authority Road Maintenance (ALARM)
Survey. HMPR Limited. https://www.asphaltuk.org/wp-content/uploads/ALARM_
survey_2013.pdf.

Asphalt Industry Alliance. (2019). Annual Local Authority Road Maintenance (ALARM)
Survey. Asphalt Industry Alliance. https://www.asphaltuk.org/wp-content/uploads/
alarm-survey-2019-digital.pdf.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(2).

Bhatt, U., Mani, S., Xi, E., & Kolter, J. Z. (2017). Intelligent pothole detection and road
condition assessment. ArXiv Preprint ArXiv:1710.02595.

Chai, X., Deng, L., Yang, Q., & Ling, C. X. (2004). Test-cost sensitive naive bayes
classification. In Proceedings of the Fourth IEEE International Conference on Data Mining
(pp. 51–58).

Divya, K., & Pabitha, P. (2019). Analysing the competency of various decision trees
towards community formation in multiple social networks. International Conference
on Communication and Signal Processing (ICCSP), 2019, 0099–0103. https://doi.org/
10.1109/ICCSP.2019.8698110

Fox, A., Kumar, B. V. K. V., Chen, J., & Bai, F. (2015). Crowdsourcing undersampled
vehicular sensor data for pothole detection. In 2015 12th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON) (pp. 515–523).
https://doi.org/10.1109/SAHCN.2015.7338353

Georganos, S., Grippa, T., Gadiaga, A., Vanhuysse, S., Kalogirou, S., Lennert, M., &
Linard, C. (2019). An application of geographical random forests for population
estimation in dakar, senegal using very-high-resolution satellite imagery. Joint Urban
Remote Sensing Event (JURSE), 2019, 1–4. https://doi.org/10.1109/
JURSE.2019.8809049

Jo, Y., & Ryu, S. (2015). Pothole detection system using a black-box camera. Sensors
(Basel, Switzerland), 15(11), 29316–29331. https://doi.org/10.3390/s151129316

Jones, S. (2018, May 31). Britain’s potential cyclists put off cycling due to traffic
conditions and potholes [Cycling UK]. Cycling UK. https://www.cyclinguk.org/
press-release/britains-potential-cyclists-put-cycling-due-traffic-conditions-and-
potholes.

Koch, C., Jog, G. M., & Brilakis, I. (2013). Automated pothole distress assessment using
asphalt pavement video data. Journal of Computing in Civil Engineering, 27(4),
370–378.

Kulkarni, A., Mhalgi, N., Gurnani, S., & Giri, N. (2014). Pothole Detection System using
Machine Learning on Android.

Madli, R., Hebbar, S., Pattar, P., & Golla, V. (2015). Automatic detection and notification
of potholes and humps on roads to aid drivers. IEEE Sensors Journal, 15(8),
4313–4318. https://doi.org/10.1109/JSEN.2015.2417579

Mednis, A., Strazdins, G., Zviedris, R., Kanonirs, G., & Selavo, L. (2011). Real time
pothole detection using android smartphones with accelerometers. 1–6.

Okfalisa, Gazalba, I., Mustakim, M., & Reza, N. G. I. (2017). Comparative analysis of k-
nearest neighbor and modified k-nearest neighbor algorithm for data classification.
2017 2nd International Conferences on Information Technology, Information
Systems and Electrical Engineering (ICITISEE), 294–298. doi: 10.1109/
ICITISEE.2017.8285514.

Ouma, Y. O., & Hahn, M. (2017). Pothole detection on asphalt pavements from 2D-colour
pothole images using fuzzy c-means clustering and morphological reconstruction.
doi: 10.1016/j.autcon.2017.08.017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12(85), 2825–2830.

Peng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression
analysis and reporting. The Journal of Educational Research, 96(1), 3–14. https://doi.
org/10.1080/00220670209598786

RAC Business. (2016, June 16). Potholes and congestion top Brit bosses’ business
bugbears [Royal Automobile Club]. RAC. https://media.rac.co.uk/pressreleases/
potholes-and-congestion-top-brit-bosses-business-bugbears-1442185.

Rauber, T. W., da Silva Loca, A. L., de Boldt, F. de A., Rodrigues, A. L., & Varejão, F. M.
(2021). An experimental methodology to evaluate machine learning methods for
fault diagnosis based on vibration signals. Expert Systems with Applications, 167,
114022. https://doi.org/10.1016/j.eswa.2020.114022

Russell, S., & Norvig, P. (n.d.). Artificial Intelligence A Modern Approach 3 edition.
Pearson Education Limited.

Ryu, S.-K., Kim, T., & Kim, Y.-R. (2015). Image-based pothole detection system for ITS
service and road management system [Research article]. Mathematical Problems in
Engineering, 2015, 1–10. https://doi.org/10.1155/2015/968361

Shuai, L., Chenxi, Y., Donghai, L., & Hubo, C. (2016). Integrated processing of image and
GPR data for automated pothole detection. Journal of Computing in Civil Engineering,
30(6), 04016015. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000582

Sun, S., & Huang, R. (2010). An adaptive k-nearest neighbor algorithm. 2010 Seventh
International Conference on Fuzzy Systems and Knowledge Discovery, 1, 91–94. doi:
10.1109/FSKD.2010.5569740.

Tzotsos, A., & Argialas, D. (2008). Support Vector Machine Classification for Object-
Based Image Analysis. In T. Blaschke, S. Lang, & G. J. Hay (Eds.), Object-based image
analysis: Spatial concepts for knowledge-driven remote sensing applications (pp.
663–677). Springer. doi: 10.1007/978-3-540-77058-9_36.

Wang, H.-W., Chen, C.-H., Cheng, D.-Y., Lin, C.-H., & Lo, C.-C. (2015). A real-time
pothole detection approach for intelligent transportation system. Mathematical
Problems in Engineering, 2015.

Wang, P., Hu, Y., Dai, Y., & Tian, M. (2017). Asphalt pavement pothole detection and
segmentation based on wavelet energy field. Mathematical Problems in Engineering,
2017.

Youquan, H., Jian, W., Hanxing, Q., Zhang, W., & Jianfang, X. (2011). A research of
pavement potholes detection based on three-dimensional projection transformation.
2011 4th International Congress on Image and Signal Processing, 4, 1805–1808. doi:
10.1109/CISP.2011.6100646.

Zhang, Z., Ai, X., Chan, C. K., & Dahnoun, N. (2014). An efficient algorithm for pothole
detection using stereo vision. In 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 564–568). https://doi.org/10.1109/
ICASSP.2014.6853659

O.A. Egaji et al.

https://doi.org/10.1109/DICTA.2018.8615819
http://refhub.elsevier.com/S0957-4174(21)00968-4/h0020
http://refhub.elsevier.com/S0957-4174(21)00968-4/h0020
http://refhub.elsevier.com/S0957-4174(21)00968-4/h0030
http://refhub.elsevier.com/S0957-4174(21)00968-4/h0030
http://refhub.elsevier.com/S0957-4174(21)00968-4/h0030
https://doi.org/10.1109/ICCSP.2019.8698110
https://doi.org/10.1109/ICCSP.2019.8698110
https://doi.org/10.1109/SAHCN.2015.7338353
https://doi.org/10.1109/JURSE.2019.8809049
https://doi.org/10.1109/JURSE.2019.8809049
https://doi.org/10.3390/s151129316
http://refhub.elsevier.com/S0957-4174(21)00968-4/h0060
http://refhub.elsevier.com/S0957-4174(21)00968-4/h0060
http://refhub.elsevier.com/S0957-4174(21)00968-4/h0060
https://doi.org/10.1109/JSEN.2015.2417579
https://doi.org/10.1080/00220670209598786
https://doi.org/10.1080/00220670209598786
https://doi.org/10.1016/j.eswa.2020.114022
https://doi.org/10.1155/2015/968361
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000582
https://doi.org/10.1109/ICASSP.2014.6853659
https://doi.org/10.1109/ICASSP.2014.6853659

	Real-time machine learning-based approach for pothole detection
	1 Introduction
	2 Related work
	3 Machine learning models
	3.1 Naïve Bayes
	3.2 Logistic Regression
	3.3 K-Nearest Neighbours
	3.4 Support vector Machine (SVM)
	3.5 Random Forest Tree

	4 Methodology:
	4.1 Data Collection
	4.2 Feature Extraction
	4.3 Data Exploration
	4.4 Evaluation Metric and Cross-Validation

	5 Result and analysis
	5.1 Hyperparameter tuning of Random Forest Tree using Random Search
	5.2 Overview

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References

