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Confidence-based Contractor, Propagation and

Potential Clouds for Differential Equations∗

Julien Alexandre dit Sandrettoa

Abstract

A novel interval contractor based on the confidence assigned to a random
variable is proposed in this paper. It makes it possible to consider at the same
time an interval in which the quantity is guaranteed to be, and a confidence
level to reduce the pessimism induced by interval approach. This contractor
consists in computing a confidence region. Using different confidence levels,
a particular case of potential cloud can be computed. As application, we
propose to compute the reachable set of an ordinary differential equation
under the form of a set of confidence regions, with respect to confidence
levels on initial value.

Keywords: interval analysis, confidence level, potential cloud, reachability
for ODEs

1 Introduction

An interval (see [16] for more details) aims to bound all the values of an uncertain
quantity, for example provided by a measurement device [11]. This approach is
highly effective for every safety, verification or validation procedures because in-
tervals are conservative. The major inconvenience is that intervals are sometimes
too pessimistic, and lead to unexploitable results. Obviously, bounds can be set
on a given measured datum (arbitrarily large), therefore the measurement can be
guaranteed to be enclosed in an interval. However, a probability distribution can
also be deduced from past observations, with more effort, and associated to the
measurement device. We propose to exploit a probability distribution to reduce
the pessimism of intervals.

In order to filter (or reduce) an interval with respect to a given information
(such as a constraint, a measurement or any kind of information), contractors
are mainly used [5]. A contractor is a function taking an interval as input and
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returning a smaller interval (included in the previous one). It can be seen as a
filtering approach in the sense that a contractor reduces an interval without any
solution loss. Contractors are often associated to a propagation procedure, at least a
propagation loop, to communicate a contraction on a variable to the others through
some constraints.

In this paper, a novel contractor is proposed to filter an interval following a
confidence level given on the associated quantity. This confidence level is an in-
put of the contractor, the “new” information, while the probability distribution of
the considered variable is a characteristic of the associated random variable. To
compute such contraction, the probability density function (or density for short)
is taken into account. In this paper, we then focus on random continuous vari-
able with a known (and analytical) density function, such as uniform distribution,
normal distribution, beta distribution, etc.

Combining intervals and probability has been already proposed in numerous
papers using techniques such as p-boxes [8, 21], fuzzy sets [7, 18], box-particles [1]
and potential cloud [9, 18]. Some of these representations can be deduced from
probability intervals [6]. The notion of cloud is interesting for us to represent a
very substantial result to a problem such as computing the image of a function, a
set inversion, or the solution of a constraint satisfaction problem (these problems
have been solved with interval methods in [11]). Computing a solution of such
a problem with several confidence levels provides different boxes which, gathered,
provide a particular type of potential cloud.

We are particularly interested in Ordinary Differential Equations (ODEs)
and validated methods to compute their reachable sets via validated simulation
[3, 12, 17, 20]. In the case of Initial Value Problems (IVPs) with ODEs, the initial
state is primordial. An uncertain initial state is generally bounded in a box (also
in a zonotope [3] or a polytope [4]). As experimentation, we propose to consider
in addition to this initial box some confidence levels, and we apply the presented
approach. It allows us to describe the reachable set by a cloud. This more expres-
sive result can then be used in various control problems, parameter identification,
verification, etc.

This paper is organized as follows. The next section is dedicated to establishing
the notation and recall the notion of confidence in probability theory. Section 3
presents the relationship we use between probabilities and interval analysis. Sec-
tions 4 and 5 contain the main results presented in this article: a confidence-based
contractor and the propagation of a confidence contraction to a potential cloud.
The last section concludes the article and gives some hint on future works.

2 Confidence Interval

In this section, some notions required for the definition of confidence interval are in-
troduced. However, to clarify the concept of confidence interval as soon as possible,
an informal explanation can be given:
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A confidence interval is a set S for which the probability of the given random
variable that lies in this set is equal to the given probability P .

Let us define X a random variable (also called random quantity, aleatory vari-
able). A random variable takes different values, resulting from a random phe-
nomenon. In this paper, we focus on continuous univariate distributions such that
X ∈ R. Such a variable implies a mapping (a function) between its possible values
and a probability of appearance. It means that X is measurable.

Definition 1 (Continuous random real variable). A continuous random vari-
able is a random variable whose cumulative distribution function is continuous
everywhere [14].

Considering a continuous random real variable X : Ω 7→ A, X is a measurable
function from a set of possible outcomes Ω to the measurable space A.

The probability that X takes a value in a measurable subset S ⊂ A is given by:

Pr[X ∈ S] = P ({ω ∈ Ω|X(ω) ∈ S}),

where P is the probability measure equipped with Ω.

Considering continuous variable, X can take any numerical value in an inter-
val following the distribution. The distribution is then fully characterized by a
probability density function (see Figure 1).

Definition 2 (Probability density function). A random variable X with values in
a measurable space (usually Rn) has probability density function fX , where
fX is a non-negative Lebesgue-integrable function, if:

Pr[a ≤ X ≤ b] =

∫ b

a

fX(x) dx.

A property is fundamental in probability:

Pr[−∞ < X <∞] =

∫ ∞
−∞

fX(x) dx = 1.

Let us define x̂ a single observed sample of the quantity X. In statistics, an
observed datum allows to compute a confidence interval [19], that is to say an
interval which may contain the actual value, with respect to a given confidence
level. A formal definition can then be stated:

Definition 3 (Confidence interval). Let X be a random sample from a probability
distribution fX . A confidence interval with confidence level cc is an interval with
endpoints a and b with the property:

Pr(a < X < b) =

∫ b

a

fX(x) dx = cc. (1)
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fX(x)

∫ b
a
fX(x) dx

a b x

Figure 1: Probability density function of a variable X.

For example, considering a confidence level CL = 95%, one can define the
confidence interval C95%. This interval can be obtained by observation (statistical
approach) or with the help of a known distribution (probability approach). A
new measurement x̂ coming from the (same) experiment will be in the associated
confidence interval such that:

x̂ ∈ C95% 95% of the time.

Figure 2 illustrates the concept of confidence interval and confidence level for a
normal distribution.

In the particular case of symmetric distribution and regarding centered confi-
dence intervals, they follow the inclusion property:

CL1 < CL2 =⇒ CCL1
⊂ CCL2

For example, C90% ⊂ C95%.

Remark 1. The extremal values for a confidence level have a particular meaning:
0% means that there is no chance that a future observation will follow the previous
observations, while 100% means that it is sure that a future observation will follow
the previous observations.

In the following, the distribution are considered symmetric. Therefore, we
mainly focus on normal dstribution.
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3 Interval Analysis and Probability

3.1 Introduction to intervals

The simplest and most common way to represent and manipulate sets of values is
interval arithmetic (see [15]). An interval [xi] = [xi, xi] defines the set of reals xi
such that xi ≤ xi ≤ xi. IR denotes the set of all intervals over reals. The size or
the width of [xi] is denoted by w([xi]) = xi − xi.

Interval arithmetic extends to IR elementary functions over R. For instance,
the interval sum, i.e., [x1] + [x2] = [x1 +x2, x1 +x2], encloses the image of the sum
function over its arguments. An interval vector or a box [x] ∈ IRn, is a Cartesian
product of n intervals. The enclosing property basically defines what is called an
interval extension or an inclusion function.

Definition 4 (Inclusion function). Consider a function f : Rn → Rm, then [f ] :
IRn → IRm is said to be an extension of f to intervals if

∀[x] ∈ IRn, [f ]([x]) ⊇ {f(x),x ∈ [x]} .

It is possible to define inclusion functions for all elementary functions such as
×, ÷, sin, cos, exp, etc. The natural inclusion function is the simplest to obtain: all
occurrences of the real variables are replaced by their interval counterpart and all
arithmetic operations are evaluated using interval arithmetic. More sophisticated
inclusion functions such as the centered form, or the Taylor inclusion function may
also be used (see [11] for more details).

Combining the inclusion function and the rectangle rule, integral can be
bounded following: ∫ b

a

f(x) dx ∈ (b− a) · [f ]([a, b])

Standard deviations from the mean
µ

68%

95%

99%

C99%

C95%

C68%

Figure 2: Confidence intervals and confidence levels.
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Figure 3: Computation of
∫ 5

−5 sin(0.5x) dx. With interval [−5, 5] (in light grey),
result is [−10, 10] while with two intervals ([−5, 0], [0, 5]) (in darker grey) we obtain
[−5, 5].

In order to obtain a better approximation, a discretization of the integral can
be used, as shown in Figure 3:∫ b

a

f(x) dx =

n∑
i=1

∫ ki+1

ki

f(x) dx ∈
n∑
i=1

(ki+1 − ki) · [f ]([ki, ki+1]), (2)

with k1 = a and kn+1 = b.

Notations: In the following, we denote by 1.2[3, 4] the interval [1.23, 1.24].

3.2 Intervals and probability

A random variable X with a probability density fX is observed via a measurement
device. We consider that the density is defined by µ, a mean or expectation of
the distribution, and σ a standard deviation. An observed sample is denoted by
x̂, given with the device associated uncertainty ±m. An interval containing the
actual value can be defined as [x] = [x̂ −m, x̂ + m] (bias can also be added). For
example, we consider that X follows a normal distribution, such that

fX(x|µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2

with µ = 1.0 and σ = 1.0 (then the variance σ2 = 1.0). Interval arithmetic and
Equation (2) allow us to compute an enclosure of the integral of the density between
0 and 1 (i.e., the probability Pr[0 ≤ X ≤ 1]), as depicted in Figure 4. The computed
result with n = 100 is 0.34[05578, 21275] (while a mathematical tool1 using floating

1Matlab was used for this comparison.
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numbers computes 0.341345). Using symmetry, the integral between 0 and 2, that
is to say between µ − σ and µ + σ, is included in 0.68[11, 42], which contains the
theoretical confidence level (68.27%) for the confidence interval [µ− σ, µ+ σ].
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-4 -3 -2 -1 0 1 2 3 4

fX(x|µ, σ)

Figure 4: Interval computation of the integral of a probability density (for a normal
distribution).

In theory, about 95% of the values lie within two standard deviations, that is to
say in the interval [µ−2σ, µ+ 2σ]. With interval analysis, the obtained probability
is 0.9[48, 61], with n = 100, while with n = 1000 it is reduced to 0.95[38, 51] (the
approximation is better).

Remark 2. The extremal values for a confidence level have a particular meaning
(see Remark 1). We define the associated confidence intervals such that C0% = ∅
and C100% = [−∞,∞].

4 Confidence-based Contractor

The main idea of our contribution is that a measurement provides an interval (by
considering the uncertainty of the measurement device) which is guaranteed to
contain the actual quantity2, but sometimes too pessimistic to be workable. In
addition to an enclosure, the observed variable can be associated to a probability
distribution. Our idea is to combine an interval provided by a measurement and
the probability distribution by establishing a confidence level on the quantity.

4.1 A confidence-based contractor

A generic contractor Cr must satisfy two properties [11]:

• Contractance : ∀[x] ∈ IR, Cr([x]) ⊂ [x],

2Outliers are not considered in this paper.
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• Correctness : ∀[x] ∈ IR, [x] ∩ S ⊆ Cr([x]) (with S the solution set).

We propose a confidence-based contractor, denoted Cbc, defined as follows:

Cbc([x]|fX , cc) : IR 7→ IR
[x] → [x] ∩ [y]

with [y] defined such that Pr(x ∈ [y]) =
∫
[y]
fX(x) dx = cc ([y] is the confidence

interval), cc being the confidence coefficient (0 ≤ cc ≤ 1). For example, one can
use the parameter assignment cc = 0.68 for a confidence level of 68%.

Proposition 1. The confidence-based contractor is a contractor.

Proof. Two properties have to hold: contractance and correctness. The contrac-
tance is obvious because the confidence-based contractor uses the intersection op-
eration, and [x] ∩ [y] ⊆ [x],∀[y]. Correctness is more complex to handle as a new
type of correctness needs to be introduced: the confidence correctness. Confidence
correctness means that if the confidence given on the quantity is well estimated for
a sample, then the variable lies in the corresponding confidence interval with the
associated probability and then the correctness holds. Therefore, if the correctness
may not hold, the confidence correctness holds (all computations are conducted
with validated interval arithmetic). For example, the 90%-correctness holds, ex-
cept for 10% of the samples.

Figure 5 illustrates the effect of the confidence-based contractor applied to the
following example:

Example 1. Let X a random variable with a normal distribution, such that

fX(x|µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2

with µ = 1.0 and σ = 1.0. The quantity X is observed and one measurement is
obtained: [x] = [0.7, 2.1]. A confidence level of 68.27% is given on X, that is to say
that we are confident on the accuracy of the observations, so X stays close to its
mean. Our method computes the contraction such that:

Cbc([0.7, 2.1]|(1.0, 1.0), 0.6827) = [0.7, 2.1] ∩ [0.0, 2.0]

= [0.7, 2.0]

So the upper bound is reduced with respect to the confidence level. The pessimism
induced by interval approach is thus limited.

As seen before, two special cases can be described:

• ∀[x], Cbc([x]|fX , 0) = ∅ (annihilating element)

• ∀[x], Cbc([x]|fX , 1) = [x] (identity element)
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Figure 5: Illustration of confidence-based contraction.

For two different confidence coefficients cc1 and cc2 such that cc1 < cc2, the
following order holds:

∀[x], Cbc([x]|fX , cc1) ⊂ Cbc([x]|fX , cc2)

The contractor Cbc can be composed with other contractors or with itself. The
order previously shown leads to two particularities:

• ∀[x], Cbc(Cbc([x]|fX , cc2)|fX , cc1) = Cbc([x]|fX , cc1)

• ∀[x], Cbc(Cbc([x]|fX , cc1)|fX , cc2) = Cbc([x]|fX , cc1)

That is to say that the lower confidence coefficient is primary. The standard
operations on sets can be extended to this specific contractor:

• (Cbc([x]|fX , cc1) ∩ Cbc([x]|fX , cc2))([x]) = Cbc([x]|fX , cc1) (intersection)

• (Cbc([x]|fX , cc1) ∪ Cbc([x]|fX , cc2))([x]) = Cbc([x]|fX , cc2) (union)

Remark 3. As a confidence interval is enclosed by its support interval (which
guarantee the enclosure of the quantity), outliers can be automatically detected and
rejected. Our approach can then be able to produce robust confidence intervals.

4.2 Computation of confidence interval

The confidence-based contractor presented in this paper needs the computation of
the confidence interval associated to a given confidence level. Three cases can be
detailed:

• Case 1: a well known probability distribution and a particular confidence level
with known confidence interval. For example, a normal distribution with a
95% confidence level gives a confidence interval [µ− 2σ, µ+ 2σ].
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• Case 2: a probability distribution with a known inverse function, such as the
inverse of error function for Gaussian density function (i.e. erf−1).

• Case 3: the general symmetric case without any particular values.

We focus on the third case with the presentation of Algorithm 1. This algorithm
follows a predictor-corrector based approach. This latter needs guesses a and b. For
mean-centered confidence intervals, a and b have to be chosen such that µ = a+b

2
(but it is not mandatory, in presence of bias for example). Two operations are also
needed to implement this algorithm: Narrow and Widen. Widen is equivalent to
an inflation of a well chosen percentage (e.g. 1%), while Narrow is a deflation of
the same percentage.

We apply the proposed algorithm to Example 1 for different confidence lev-
els. The results are gathered in Table 1 and plotted in Figure 6. Experiments
are as follows: for different confidence levels cci from 10% to 99% – and with
the particular value 68.27% – (first column of Table 1), we apply the contractor
Cbc([−5, 5]|fX , cci), with fX from Example 1. It provides several contracted confi-
dence intervals (second column of Table 1). Then, for all these confidence intervals,
we compute the probability for the variable to be in the confidence interval with
the method presented in Section 3.2 (third column of Table 1) for verification.

Remark 4. In the case of a non symmetric distribution, the maximal confidence
interval can be computed to obtain a one-to-one application between a confidence
coefficient cc and confidence interval [a, b]. The maximal confidence interval is
defined by:

max
[a,b]
||b− a||, Pr[a ≤ X ≤ b] = cc (3)

5 Application to Reachability

As an application, we propose to compute the reachability of Ordinary Differential
Equations (ODEs) from an interval initial value. We imagine that the initial value

Algorithm 1 Confidence interval computation

Require: A distribution fX , a confidence coefficient cc, guesses for the bounds of confi-
dence interval a and b

Compute [Pa,b] = Pr[a ≤ X ≤ b] =
∫ b

a
fX(x) dx with the interval method presented in

Section 3
while cc 6∈ [Pa,b] do

if cc < [Pa,b] then
Narrow [a, b]

else
Widen [a, b]

end if
Compute [Pa,b] = Pr[a ≤ X ≤ b] =

∫ b

a
fX(x) dx

end while
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Table 1: Confidence intervals for different values of confidence level and computed
probabilities.

Confidence Interval Probability
10% [0.8743, 1.1256] [0.0999, 0.1000]
20% [0.7466, 1.2533] [0.1999, 0.2000]
30% [0.6146, 1.3853] [0.2999, 0.3000]
40% [0.4756, 1.5243] [0.3999, 0.4000]
50% [0.3256, 1.6743] [0.4998, 0.5000]
60% [0.1581, 1.8418] [0.5999, 0.6003]

68.27% [0, 2] [0.6824, 0.6830]
70% [−0.0362, 2.0362] [0.6995, 0.7002]
80% [−0.2800, 2.2800] [0.7988, 0.8000]
90% [−0.6450, 2.6450] [0.8990, 0.9010]
95% [−0.9500, 2.9500] [0.9475, 0.9501]
99% [−1.5200, 3.5200] [0.9863, 0.9901]
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Figure 6: Confidence intervals for different values of confidence level with respect
to computed probabilities.

is provided by a measurement and that different confidence levels can be considered.
The proposed confidence-based contractor can then be used to reduce the initial
interval. We solve the Initial Value Problem (IVP) for all the obtained intervals
by the help of validated integration. The collection of computed reachable sets is
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depicted through a kind of potential cloud that is useful for verification, control
synthesis, or validation problems on ODEs. An approach consisting also in the
propagation of probabilities through an initial value problem with ODE has been
proposed in last decade [13]. If the goal is the same, how to add information
coming from a probability knowledge to the reachability analysis, the technique is
different. In [13], authors exploit Taylor models to reprensent uncertainties (mainly
on parameters), and propagate them into an integration process to compute fuzzy
trajectories (see [22] for fuzzy sets). Our contribution is mainly based on confidence
level, this concept is not considered in [13]. Nevertheless, an example from this
latter is studied in Section 5.3 to compare and discuss both approaches.

5.1 Integration and propagation

5.1.1 Validated simulation

When dealing with validated computation, mathematical representation of an IVP-
ODE is as follows: {

ẏ(t) = g(t,y(t))

y(0) ∈ [y0] ⊆ Rn.
(4)

We assume that g : R×Rn → Rn is continuous in t and globally Lipschitz in y, so
Equation (4) admits a unique solution.

The set (expressed as a box) [y0] of initial conditions is used to model some
(bounded) uncertainties. For a given initial condition y0 ∈ [y0], the solution at
time t > 0, when it exists, is denoted y(t; y0). The goal, for validated numerical
integration methods, is then to compute the set of solutions of Equation (4), i.e.,
the set of possible solutions at time t given the initial condition in the set of initial
conditions [y0]:

y(t; [y0]) = {y(t; y0) | y0 ∈ [y0]}. (5)

Validated numerical integration schemes, exploiting set-membership framework,
aim at producing the solution of the IVP-ODE that is the set defined in Equa-
tion (5). It results in the computation of an outer approximation of y(t; [y0]). The
use of set-membership computation for the problem described above makes pos-
sible the design of an inclusion function for the computation of [y](t; [y0]), which
is an outer approximation of y(t; [y0]) defined in Equation (5). To do so, a se-
quence of time instants t1, . . . , tn such that t1 < · · · < tn and a sequences of boxes
[y1], . . . , [yn] such that y(ti+1; [yi]) ⊆ [yi+1], ∀i ∈ [0, n − 1] are computed. From
[yi], computing the box [yi+1] is a classical 2-step method (see [12]):

• Phase 1: compute an a priori enclosure [ỹi] of the set {y(tk; yi) | tk ∈
[ti, ti+1],yi ∈ [yi]}, such that y(tk; [yi]) is guaranteed to exist,

• Phase 2: compute a tight enclosure of the solution [yi+1] at time ti+1.

Two main approaches can be used to compute the tight enclosure in Phase 2. The
first one, and the most used, is the Taylor method [15, 17]. The second one, more
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recently studied, is the validated Runge-Kutta approach [3]. The reachability
consists in computing the enclosure of the set of states at a specific instant τ as
defined above by [y(τ); [y0]].

5.1.2 Propagation

The procedure given in Section 5.1.1, applied to Equation (5), produces a reachable
tube based on time discretization as depicted in Figure 7. Considering an initial
value [y0]∗ such that [y0]∗ ⊆ [y0], a propagation procedure [2] can be performed
to compute the solution of the IVP-ODE:{

ẏ(t) = g(t,y(t))

y(0) ∈ [y0]∗ ⊆ Rn.
(6)

by keeping in mind the fact that y(t; [y0]∗) ⊆ y(t; [y0]),∀t. We propagate along the
discretization the contraction of the initial state with the help of a Runge-Kutta
based contractor as proposed in [3]. The resulting reachable tube is showed in
Figure 7.

One simulation followed by several propagation is much faster than several
simulations [2] due to the economy of the dynamic discretization re-computation
and the conservation of the first phase results (which is the more time-consuming
step).

Time

S
ta

te

[y0]

[ỹ0]

t0 t1

t2
t3

[y1]∗ [y2]∗

[y3]∗

[y0]∗

Forward
Propagation

[ỹ1]

[ỹ2]

Figure 7: Continuous reachable tube (in blue) and propagation (in red) of a new
initial condition [y0]∗ (with [y0]∗ ⊂ [y0]).

5.2 Potential clouds

The formalism of clouds has been proposed in [18] to handle uncertainties. With
clouds, uncertainties are seen as safety constraints. The potential clouds can be
exploited for high dimensional and non-formalised uncertainties, as in [10].



62 Julien Alexandre dit Sandretto

From [18], the formal definition of a cloud over a set M is a mapping x that
associates with each ξ ∈ M a nonempty, closed and bounded interval x(ξ) such
that

]0, 1[⊆
⋃
ξ∈M

x(ξ) ⊆ [0, 1]. (7)

x(ξ) = [x(ξ), x(ξ)] is called the level of ξ in the cloud x. A cloud and an α-cut are
illustrated in Figure 8.

0

1

x(ξ)

upper α-cut
(Pr ≥ 1− α)

lower α-cut
(Pr ≤ 1− α)

ξ

α

support

Figure 8: A cloud over R with an α-cut at α = 0.6.

In the particular case where a cloud x is defined by a potential function V :
M 7→ R (bounded below) such that

x(ξ) := [Pr(V (x) > V (ξ)), P r(V (x) ≥ V (ξ))] (8)

that can be written x(ξ) := [α(V (ξ)), α(V (ξ))] where α-cuts are level sets of V . In
general, the probabilities are not known and then α, α : R 7→ [0, 1] are assumed (we
call these functions potential level maps), and x is called a potential cloud.

Regarding the definition, determining a cloud is similar to compute a lower
and an upper bounds of the confidence regions for different confidence levels (a
discretization from 100% to 10% for example) with the help of Cumulative Distri-
bution Functions (CDFs). Considering multivariate problems, a potential function
is used to map a multivariate random variable to a univariate one. In the follow-
ing, we consider only the upper bound of the confidence regions because our main
interest concerns safety.

Proposition 2. The collection of the reachable sets [y(τ ; [y0]i)], i = 1 . . .m, with
[y0]i = Cbc([y0]|fX , cci) is a special case of potential clouds applied to reachability.
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In order to illustrate this capability, a one-dimensional example is studied (multi-
variate problems can be considered by the help of a potential function).

Example 2. The following IVP is considered:{
ẏ(t) = y cos(y)

y(0) ∈ [0, 2]
(9)

The initial condition follows a normal distribution, such that

fX(x|µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2

with µ = 1.0 and σ = 1.0 (same as before, recalled for clarity). The system
described by Equation (9) has to reach a goal given by the interval [1.5, 1.6] at
t = 5, i.e., [y(5; [y0])] ⊂ [1.5, 1.6]. Our objective is to prove that the system
reaches its goal with respect to a confidence level given on the initial condition.
Equation (9) is solved with validated simulation as described in [3]. The obtained
reachable set at t = 5 is [−276.986, 279.276]. The goal is then unfulfilled. With
successive tests from a confidence of 90% to 10% (from pessimistic to optimistic),
the confidence-based contractor is applied followed by a forward propagation along
the validated simulation (as presented in Section 5.1.2).

The reachable sets of problems described by:{
ẏ(t) = y cos(y)

y(0) ∈ [y0]i = Cbc([0, 2]|fX , cci)
(10)

are gathered in Table 2.

Table 2: Confidence levels, contracted initial intervals and reachable sets.

Confidence Initial Final
90% [0, 2] [−276.986, 279.276]
80% [0, 2] [−276.986, 279.276]
70% [0, 2] [−276.986, 279.276]
60% [0.1581, 1.8418] [−189.871, 192.408]
50% [0.3256, 1.6743] [1.56281, 1.57764]
40% [0.4756, 1.5243] [1.56871, 1.57205]
30% [0.6146, 1.3853] [1.56964, 1.57119]
20% [0.7466, 1.2533] [1.57004, 1.57082]
10% [0.8743, 1.1256] [1.57027, 1.57061]

It shows that:

• Goal can be proved to be achieved after 50%, i.e., we have one chance out of
two that the initial state is in the contracted interval;
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• Confidence contractor has effect from 60%;

• Contraction-propagation approach reduces computation time (106 seconds for
ten simulations versus 87 seconds for one simulation and nine propagations).

The trajectories for 50% and 60% are given in Figure 9. A potential cloud composed
by the reachable sets for different confidence levels is depicted in Figure 10.
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Figure 9: Validated trajectories for 60% (in grey waves) and for 50% (in light grey)
confidence contraction.
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5.3 Comparison with trapezoidal fuzzy numbers

In [13], authors propose several interesting examples. In particular, a two-state
bioreactor model with uncertain parameters is studied. It consists in a well-mixed
bioreactor in which biomass of a single organism is produced with respect to a
single limiting substrate. The continuous dynamics is described by:{

Ẋ = (µ− aD)X

Ṡ = D(Sf − S)− kµX,
(11)

where X and S are the concentrations of biomass and substrate. Here µ is a func-
tion of S describing the specific growth rate of biomass given by µ = µmaxS

Ks+S
(in the

case of monod kinetics), D is the dilution rate, a the biomass washout fraction, k
the inverse yield coefficient, and Sf the substrate feed concentration. The param-
eter values are: a = 0.5, k = 10.53, Sf = 5.7g/L and µmax = 1.2h−1. The initial
states are: X(0) = 0.829g/L and S(0) = 0.8g/L. The two parameters D and Ks are
treated as uncertain and represented by symmetric trapezoidal fuzzy numbers in
[13]. This kind of fuzzy number is described by its support and core intervals. For
D, support and core are [0.35, 0.37]h−1 and [0.35667, 0.36333]h−1 (respectively),
and for Ks they are [6.8, 7.2]g/L and [6.93333, 7.06667]g/L (respectively). We con-
sider support and core intervals as confidence intervals (with a confidence level at
100% for the support and ε << 1% for the core). Simulations are performed till
t = 8h, and the final states are used to rebuild the trapezoidal fuzzy numbers as
given in Figure 11.

Discussion: The example from [13] being different than the purpose treated in
this paper, the capabilities of confidence based contractor are not really exploited.
However, the comparison is interesting. First of all, it is important to notice that the
reachability method used in [13] is more efficient than the one used here (VSPODE
is dedicated to handle uncertain parameters), and thus the reachable tube seems
thinner. However, the way that discretization with α-cuts is performed in [13] leads
to consider as constant a parameter during all the integration process while our
approach allows all the possible values at each instant. Based on this observation,
the method proposed in [13] is probably more optimistic than the confidence based
propagation, as depicted in Figure 11. To conclude this discussion, our method is
not dedicated to consider correlation between parameters. Furthermore, this point
is not clearly treated in [13].

5.4 Inverse problem

The inverse problem consisting in finding the confidence level such that a constraint
on reachable set can be proved is interesting. For example, a requirement in term
of confidence level on the position of a robot is directly connected to the quality
of the measurement devices of the robot. Therefore, if a certain sensor quality is
required by the system to validate a given property (e.g. safety), it is important to
be able to bound the required confidence level.
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Figure 11: Results for Example (11) at t = 8h (in blue: the concentrations w.r.t.
confidence intervals for parameters (support / core); in dashed lines: results from
[13]).

A contractor approach associated with a forward-backward propagation (the
specific contractor programming approach presented in [2] is exploited) can be
used to compute the initial condition [y0] such that [y(5; [y0])] ⊂ [1.5, 1.6]. After
this preliminary step, the confidence coefficient is computed with: cc = Pr(x ∈
[y0]) =

∫
[y0]

fX(x) dx.

The algorithm used consists of four steps:

1. Validated simulation with [y0] till tend to obtain [y(tend; [y0])]

2. Intersection of [y(tend; [y0])] with the goal: [y(tend)] = [y(tend; [y0])] ∩ [ygoal]

3. Backward propagation from tend to t = 0 to obtain [y(0; [y(tend)])]

4. Computation of the confidence coefficient: Pr(x ∈ [y(0; [y(tend)])])

On the previous example, the backward propagation provides [y0] =
[0.200625, 1.79937] which gives a confidence coefficient cc = [0.576115, 0.576464],
i.e., a confidence level of around 57.62%.

6 Conclusion and future works

In this paper, a novel contractor based on confidence level is proposed. It aims to
reduce the pessimism of the interval approach by considering the probability density
of the variables. We showed on a simple running example that our method pro-
vides results corresponding to the theory on normal density. An application to the
reachability of ordinary differential equations has been proposed. The confidence-
based contractor has been associated to a validated integration method to compute
reachable sets for different values of confidence level. A propagation procedure
allows one to propagate the contraction on initial state to the reachable set. We
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proposed to depict the different reachable sets under the form of a potential cloud.
This method was tested on an example. Finally, the inverse problem consisting in
computing the confidence coefficient such that a constraint on the reachable set is
fulfilled has been solved.

As future work, even if no limits exist on the proposed approach in terms of
problem size or considered distribution, we should apply it to more complex exam-
ples and different probability densities. Moreover, it could be interesting to exploit
it in the field of robotics considering the distribution of the sensors in a control
synthesis, safety verification or path planning.
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[13] Măceş, D Andrei and Stadtherr, Mark A. Computing fuzzy trajectories for
nonlinear dynamic systems. Computers & chemical engineering, 52:10–25,
2013. DOI: 10.1016/j.compchemeng.2012.11.008.

[14] Mendenhall, William, Beaver, Robert J, and Beaver, Barbara M. Introduction
to Probability and Statistics. Cengage Learning, 2012.

[15] Moore, Ramon E. Interval Analysis. Series in Automatic Computation. Pren-
tice Hall, 1966.

[16] Moore, Ramon E., Kearfott, R Baker, and Cloud, Michael J. Introduction to
Interval Analysis. Siam, 2009. DOI: 10.1137/1.9780898717716.

[17] Nedialkov, N. S., Jackson, K. R., and Corliss, G. F. Validated solutions of
initial value problems for ordinary differential equations. Applied Mathemat-
ics and Computation, 105(1):21–68, 1999. DOI: 10.1016/S0096-3003(98)

10083-8.

[18] Neumaier, Arnold. Clouds, fuzzy sets, and probability intervals. Reliable
computing, 10(4):249–272, 2004. DOI: 10.1023/B:REOM.0000032114.08705.

cd.

[19] Neyman, Jerzy. Outline of a theory of statistical estimation based on the
classical theory of probability. Phil. Trans. R. Soc. Lond. A, 236(767):333–
380, 1937. DOI: 10.1098/rsta.1937.0005.

[20] Rauh, A., Hofer, E. P., and Auer, E. Valencia-ivp: A comparison with other
initial value problem solvers. In 12th GAMM - IMACS International Sympo-
sium on Scientific Computing, Computer Arithmetic and Validated Numerics
(SCAN 2006), pages 36–36, 2006. DOI: 10.1109/SCAN.2006.47.

[21] Williamson, Robert C. and Downs, Tom. Probabilistic arithmetic. I. Nu-
merical methods for calculating convolutions and dependency bounds. In-
ternational Journal of Approximate Reasoning, 4(2):89 – 158, 1990. DOI:
10.1016/0888-613X(90)90022-T.

[22] Zadeh, Lotfi A. Fuzzy sets. Information and control, 8(3):338–353, 1965.
DOI: 10.1016/S0019-9958(65)90241-X.


