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realistic transactions costs. Even though pre-crash option prices follow the Black-Scholes-
Merton (BSM) model reasonably well, they are incorrectly priced, if index return
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below the bounds, contrary to received wisdom that historical volatility generally
underprices options in the BSM model, dispelling the common misconception that the
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1 Introduction and Summary

A robust prediction of the celebrated Black and Scholes (1973) and Merton (1973)
(BSM) option pricing model is that the volatility implied by market prices of
options is constant across striking prices. Rubinstein (1994) tested this prediction
on the S&P 500 index options traded on the Chicago Board Options Exchange, an
exchange that comes close to the dynamically complete and perfect market
assumptions underlying the BSM model. As a function of the strike price, the
implied volatility is flat from the start of the exchange-based trading in April 1986
until the October 1987 stock market crash. Thereafter, it is downward-sloping, a
pattern referred to as the “volatility smile” that is also observed in international
markets and to a lesser extent on individual-stock options.!

Ait-Sahalia and Lo (1998) Jackwerth and Rubinstein (1996), and Jackwerth
(2000), among others, refined the result by estimating the risk-neutral stock price
distribution from the cross section of option prices. Jackwerth and Rubinstein
(1996) confirmed that, prior to the October 1987 crash, the risk-neutral stock price
distribution is close to lognormal, consistent with flat implied volatility. Thereafter,
the distribution is systematically skewed to the left, consistent with downward-
sloping implied volatility. Jackwerth (2000) found that the pricing kernel implied
by the observed cross section of prices of S&P 500 index options is everywhere
decreasing prior to the October 1987 crash but that widespread violations are
observed thereafter.

These findings raise several important questions. Does the BSM model work
well prior to the crash? If it does, is it because the risk-neutral probability of a
stock market crash was low and consistent with a lognormal distribution? Or, is it
because the risk-neutral probability of a stock market crash was erroneously
perceived to be low by the market participants? Why does the BSM model fail

after the crash? Is it because the risk neutral probability of a stock market crash

! Jackwerth (2004), Brown and Jackwerth (2004), and Whaley (2003) review the literature and
potential explanations. Jackwerth (2004) also reviews the parametric and non-parametric

methods for estimating the risk-neutral distribution.



increased after the crash and became inconsistent with a lognormal distribution?
Or, is it because the risk neutral probability of a stock market crash was
erroneously perceived to do so? These are some of the questions that we address in
this paper.

Whereas a downward sloping implied volatility is inconsistent with the BSM
model, it is important to realize that this pattern is not inconsistent with economic
theory in general. Two fundamental assumptions of the BSM model are that the
market is frictionless and dynamically complete. We empirically investigate
whether the observed cross section of S&P 500 index option prices are consistent
with various economic models that explicitly allow for a dynamically incomplete
market and also recognize trading costs and bid-ask spreads.

Both dynamic incompleteness and frictions have drastic consequences for
option pricing. In both cases arbitrage methods alone are incapable of producing a
unique option price. Market incompleteness is generally handled either by
employing an equilibrium model that prices risk, or by testing bounds within which
the option price should lie, along the lines explored in this paper Bounds
containing the option price also arise when there are trading costs and bid-ask
spreads.?

We avoid any a priori assumptions about the form of the real unconditional
distribution of the S&P 500 index returns and use histograms extracted from three
different data samples as estimates of this distribution: the historical index sample
(1928-1985) and two forward-looking samples, one that includes the October 1987
crash (1986-1995) and one that excludes it (1988-1995). Based on the index return
distributions extracted from these samples, we test the compliance of option prices
to the predictions of models that sequentially introduce market incompleteness,
transactions costs, and intermediate trading over the life of the options.

The paper is organized as follows. In Section 2, we present a general model
for pricing options that incorporates market incompleteness, transactions costs, and
intermediate trading over the life of the options. We specialize this model into a

series of models that sequentially introduce market incompleteness, transactions

? For models that price risk, see, for instance, Bailey and Stulz (1989) and Amin (1993).
? See Leland (1985) and Bensaid et al (1992).



costs, and intermediate trading over the life of the options. Each model imposes
restrictions on the cross section of the prices of options. In Section 3, we test the
compliance of bid and ask one-month index options to the theoretical restrictions

and discuss the results. The results are summarized in Section 4.

2 Theoretical Restrictions on Option Prices

2.1 A Model for Trading Equity and Bonds

We consider a market with heterogeneous agents and investigate the restrictions on
option prices imposed by a particular class of utility-maximizing traders that we
simply refer to as traders. We do not make the restrictive assumption that all
agents belong to the class of the utility-maximizing traders. Thus our results are
unaffected by the presence of agents with beliefs, endowments, preferences, trading
restrictions, and transaction cost schedules that differ from those of the utility-
maximizing traders.

Trading occurs at a finite number of trading dates, ¢t = 0,1,...,7,...,T"'.* The
utility-maximizing traders are allowed to hold only two primary securities in the
market, a bond and a stock. The stock has the natural interpretation as the
market index. Derivatives are introduced in the next section. The bond is risk free
and pays constant interest R—1 each period. The traders may buy and sell the
bond without incurring transactions costs. At date t, the cum dividend stock price
is (1+6,)5,, the cash dividend is 6,5,, and the ex dividend stock price is S, , where
1)

t

(1+6,)S

t+1

is the dividend yield. We assume that the rate of return on the stock,
/S, is identically and independently distributed over time. The

assumption of i.i.d. returns is not innocuous and, in particular, rules out stochastic

4 The calendar length of the trading horizon is N years and the calendar length between trading
dates is N/T' years. Later on we vary T' and consider the mispricing of options under different

assumptions regarding the calendar length between trading dates.



volatility. We deliberately rule out stochastic volatility in order to explore the
extent to which market incompleteness and market imperfections (trading costs)
alone explain the prices of index options.®

Stock trades incur proportional transaction costs charged to the bond
account as follows. At each date ¢, the trader pays (1+#k)S, out of the bond
account to purchase one ez dividend share of stock and is credited (1-£k)S,in the
bond account to sell (or, sell short) one ez dividend share of stock. We assume that
the transactions cost rate satisfies the restriction 0 < k < 1. Note that there is no
presumption that all agents in the economy face the same schedule of transactions
costs as the traders do.

A trader enters the market at date ¢ with dollar holdings x, in the bond
account and y, /S, ex diwidend shares of stock. The endowments are stated net of
any dividend payable on the stock at time t.° The trader increases (or, decreases)
the dollar holdings in the stock account from y,to y,'=y, + v, by decreasing (or,
increasing) the bond account from z, to z,'=z,—v,—k|v,|. The decision
variable v,is constrained to be measurable with respect to the information at date t.
The bond account dynamics is
={z,—v,—k|v,|}R+(y, +v,) =+, t<T'-1 (2.1)

xt+1

and the stock account dynamics is

Sy
Yn =( +0))=gh, E<T-1 (2.2)

’ The results in Sections 2.3 and 2.4 hold without the i.i.d. returns assumption. The assumption
may also be relaxed in Sections 2.5 and 2.6 for special classes of stock return distributions.

5 We elaborate on the precise sequence of events. The trader enters the market at date t with
dollar holdings x, —9,y,in the bond account and y,/S, cum dividend shares of stock. Then the
stock pays cash dividend &,y, and the dollar holdings in the bond account become x,. Thus, the

trader has dollar holdings x, in the bond account and y,/S, ez dividend shares of stock.



At the terminal date, the stock account is liquidated, v, = —y,., and the net

worth is =, +y, —k|ys |. At each date t, the trader chooses investment v, to
maximize the expected utility of net worth, E[u(a}T +yp =k | yp |)| SJ.Y We

make the plausible assumption that the utility function, w (), is increasing and
concave, and is defined for both positive and negative terminal net worth.®* Note
that even this weak assumption of monotonicity and concavity of preferences is not
imposed on all agents in the economy but only on the subset of agents that we refer
to as traders.

We define the value function recursively as

V(mt,yt,t):maqu{V({xt—u—k|u]}R+(yt+U)%,(yt+u)%,t+lj]5t}
t t
(2.3)
for t<T'-1 and
V(ITWyT'?T') = U(xT' +yr =k yp |) (2.4)

We assume that the parameters satisfy appropriate technical conditions such that
the value function exists and is once differentiable.

Equations (2.1)-(2.4) define a dynamic program that can be numerically
solved for given utility function and stock return distribution. We shall not solve

this dynamic program because our goal is to derive restrictions on the prices of

" The results extend routinely to the case that consumption occurs at each trading date and
utility is defined over consumption at each of the trading dates and over the net worth at the
terminal date. See Constantinides (1979) for details. The model with utility defined over
terminal net worth alone is a more realistic representation of the objective function of financial
institutions.

8 If utility is defined only for non-negative net worth, then the decision variable is constrained to
be a member of a convex set that ensures the non-negativity of net worth. See, Constantinides
(1979) for details. However, the derivation of bounds on the prices of derivatives requires an
entirely different approach and yields weaker bounds. This problem is studied in Constantinides

and Zariphopoulou (1999, 2001).



options that are independent of the specific functional form of the utility function
but solely depend on the plausible assumption that the traders’ utility function is
monotone increasing and concave in the terminal wealth.

Without explicitly solving the above dynamic program, we identify certain
necessary properties of the value function. The value function, V (t) = V(xt,yt,t),
is increasing and concave in (z,,y,), properties that it inherits from the assumed
monotonicity and concavity of the utility function, as proved in Constantinides

(1979). We state the monotonicity of the value function as
V.(t)>0, V, (t)>0, t=0,.,7T,..T". (2.5)
and its concavity with respect to (x,,y,) as’

2
V,(1)<0, V,(5)<0, V. MV, )-(V,®) >0, 26)
t=0,..T,..,T" '
On each date, the trader may transfer funds between the bond and stock
accounts and incur transactions costs. Therefore, the marginal rate of substitution
between the bond and stock accounts differs from unity by, at most, the

transactions cost rate:
(1-K)V (t) < Vy(t) <(1L+kK)V, (t, t=0,..,T,..,T". (2.7)

Marginal analysis on the bond holdings leads to the following condition on the

marginal rate of substitution between the bond holdings at dates ¢ and t+1:

V.(t)=RE|[V.(t+1)], t=0,.T,.,T—1. (2.8)

% The second-order partial derivatives of the value function exist everywhere except on the

boundaries of the region of no transactions.



Finally, marginal analysis on the stock holdings leads to the following condition on
the marginal rate of substitution between the stock holdings at date ¢ and the bond

and stock holdings at date t+1:

S
S,

1n(t+1)+%vz(t+1), t=0,.T,.,T—1. (2.9)

t

Below we employ these conditions on the value function to derive restrictions on

the prices of options.

2.2 Restrictions on the Prices of Options

We consider J, j =1,2,...,J, European call and put options on the index, with
random cash payoff X, at their common expiration date 7', T < T''. At time zero,

the trader can buy the ;" derivative at price P, +k; and sell it at price P, —k;,
net of transactions costs. Thus 2k, is the bid-ask spread plus the round-trip
transactions cost that the trader incurs in trading the ;" derivative. In our
empirical investigation we consider both the case where £, is common across
derivatives and the case where k; is proportional to the price of the j" derivative.
Note that there is no presumption that all agents in the economy face the same bid-
ask spreads and transactions costs as the traders do.

We assume that the traders are marginal in all the J derivatives.
Furthermore, we assume that, if a trader holds a finite (positive or negative)
number of the derivatives, these positions are sufficiently small relative to her
holdings in the bond and stock that the monotonicity and concavity conditions
(2.5) and (2.6) on the value function remain valid. (Conditions (2.7)-(2.9) remain
valid even if the holdings of the derivatives are not small.)

Marginal analysis leads to the following restrictions on the prices of options:

(P, k)V,(0) < B [XV,(T)] < (P +£)V.(0), j =12, (210



Similar restrictions on the prices of options apply at dates ¢t =1,...,T — 1.

Below, we illustrate the implementation of the restrictions on the prices of
options in a number of important special cases. First, we consider the case T =1
which rules out trading between the bond and stock accounts over the lifetime of
the options. We refer to this case as the single-period case. Note that the single-
period case does not rule out trading over the trader’s horizon after the options
expire; it just rules out trading over the lifetime of the options. We discuss the
single-period case both with and without transactions costs. Then we consider the
more realistic case T =2 which allows for one intermediate trading between the
bond and stock accounts over the lifetime of the options.

A useful way to identify the options that cause infeasibility or near-
infeasibility of the problem is to single out a “test” option, say the n™ option, and

solve the following problem:

max (2.11)

min
{(v.oov,w} L {v.ow,wm}

subject to the conditions (2.5)-(2.10), where the n™ option is removed from the set
of the J options in conditions (2.10). If this problem is feasible, then the attained
maximum and minimum have the following interpretation. If one can buy the test
option for less than the minimum attained in this problem, then there is stochastic
dominance: at least one investor, but not necessarily all investors, increases her
expected utility by trading the test option. Likewise, if one can write the test
option, for more than the maximum attained in this problem, then again there is

stochastic dominance.

2.3 Special Case: Zero Transactions Costs and no Trading

over the Life of the Options

The stock market index has price S, at the beginning of the period; ezx dividend
price S; with probability 7, in state i,¢=1,...,] at the end of the period; and cum



dividend price (1+ ), at the end of the period. We order the states such that S,
is increasing in i. The j" derivative, j=1,...,J , has price P at the beginning
period and cash payoff X, at the end of the period in state .

Since the transactions cost rate is assumed to be =zero, we have
V,(0)=V,(0) and V,(1)=V,(1). We denote by m, the marginal rate of

substitution in state i, m, =V, (1) /V,(0). The conditions (2.8)-(2.10) become:

L=RY mm, (2.12)

Sy =D mm (1+6)8,. (2.13)
and

Pj - Zj:l WimiXiﬁ ] = 17“-7J . (214)

The random variable m :m,, 1 =1,...,1 is the stochastic discount factor or

pricing kernel. Absence of arbitrage implies and is implied by the existence of a
strictly positive pricing kernel that satisfies (2.12)-(2.14). Non-existence of a
strictly positive pricing kernel signifies arbitrage such as violations of the Merton
(1973) no-arbitrage restrictions on the prices of options.

The concavity of the value function implies additional restrictions on the
pricing kernel. Historically, the expected premium of the return on the stock over
the bond is positive. Under the assumption of positive expected premium, the
trader is long in the stock. Since the assumption in the single-period model is that
there is no trading between the bond and stock accounts over the life of the option,
the trader’s wealth at the end of the period is increasing in the stock return. Note
that this conclusion critically depends on the assumption that there is no
intermediate trading in the bond and stock. Since we employed the convention
that the stock return is increasing in the state i, the trader’s wealth on date T is
increasing in the state 7. Then the concavity of the value function implies that the

marginal rate of substitution is decreasing in the state i

m,>m,>...>m; >0. (2.15)

10



Existence of a pricing kernel that satisfies the restrictions (2.12)-(2.15) is
said to rule out stochastic dominance. Ruling out stochastic dominance means that
there exists at least one trader with increasing and concave utility that supports the
observed prices. If we cannot rule out stochastic dominance, then any trader with
increasing and concave utility can improve her expected utility through trading.

We emphasize that the restriction on option prices imposed by the criterion
of the absence of stochastic dominance is motivated by the economically plausible
assumption that there exists at least one agent in the economy with the properties
that we assigned to a trader. This is a substantially weaker assumption than
requiring that all agents have the properties that we assigned to traders. Stochastic
dominance then implies that at least one agent, but not necessarily all agents,
increases her expected utility by trading."

In our empirical investigation, we find that in none of the months a pricing
kernel exists that satisfies the restrictions (2.12)-(2.15), if we rule out bid-ask
spreads and transactions costs. Therefore, in all months in our sample there is
stochastic dominance.

A useful way to identify the options that cause infeasibility or near-
infeasibility of the problem is to single out a “test” option, say the n” option and
derive bounds that signify infeasibility if the price of the test option lies outside the
bounds. The general form of this problem was stated in equation (2.11). In the
special case of no trading over the life of the option and zero transactions costs, the

bounds on the test option with payoff X, in state i are given by

7

max (min) ZI mm, X, (2.16)

{mi} \ {m;} =1

" We also emphasize that the restriction of the absence of stochastic dominance is weaker than
the restriction that the capital asset pricing model (CAPM) holds. The CAPM requires that the
pricing kernel be linearly decreasing in the index price. The absence of stochastic dominance

merely imposes that the pricing kernel be monotone decreasing in the index price.

11



subject to the conditions (2.12)-(2.15), where the n" option is removed from the set

of the J options in conditions (2.14)."

2.4 Special Case: Transactions Costs and no Trading over

the Life of the Options

We denote by V, (z),and V, (z), the partial derivatives of the value function at date
one and state 7 with respect to the bond and stock respectively. Conditions (2.8)-
(2.10) become

I
V,(0)=R> mV,(i). (2.17)
I
V,(0)=>"m %vy(iw%vx(i) (2.18)
i=1 0 0

and

%

I
(P, —k)V,(0) <> mX,V, (i) < (P +k)V,(0), j=1..,J. (2.19)

Conditions (2.5)-(2.7) become”

V.(0)>0,V,(0)>0,V,(i)>0,V, (i)>0, i=1..1 (2.20)
V.()>V (2)>..>V, (I)>0 (2.21)

and
A=KV, <V, (i) <A +k)V, (i), i=1,..1. (2.22)

! Perrakis and Ryan (1984), Levy (1985), Ritchken (1985), and Ryan (2000, 2003) were the first to
derive upper and lower bounds on the prices of European options in this case and under the
assumption of zero transaction costs. See also Perrakis (1986) and Ritchken and Kuo (1988).

12 Since the value of the bond account at the end of the period is independent of the state i, the

concavity conditions V,, (1) <0 and V_(1)V, (1)—(ny (1))2 >0 cannot be imposed. Only the

concavity condition V, (t) < 0is imposed as in equation (2.21).

12



In our empirical investigation, we report the percentage of months for which
the problem defined by equations (2.17)-(2.22) is feasible. These are months for
which stochastic dominance is ruled out. As before, a useful way of pinpointing the
options that cause infeasibility or near-infeasibility of the problem is to single out a
“test” option and solve the problem (2.11) subject to the restrictions (2.17)-(2.22),

where the test option is removed from the set of the J options in conditions (2.19).

2.5 Intermediate Trading over the Life of the Options

In the next major step towards realism, we allow for intermediate trading, relaxing
the implausible assumption of the single-period model that, over the life of the
options, markets for trading are open only at the initial trading date and at the
common expiration date of the options.

Recall that the single-period stochastic-dominance model without
transactions implies that the wealth at the end of the period is an increasing
function of the stock price at the end of the period and, therefore, the pricing kernel
is a decreasing function of the stock price at the end of the period. Likewise, with
transactions costs, the value of the stock account at the end of the period is an
increasing function of the stock price at the end of the period and, therefore, the
marginal utility of wealth out of the stock account is a decreasing function of the
stock price at the end of the period.

Constantinides and Zariphopoulou (1999) pointed out that intermediate
trading invalidates these implications because the wealth at the end of the period
(or, the value of the stock account at the end of the period) becomes a function not
only of the stock price at the option’s expiration but also of the entire sample path

of the stock price.?

3 In the special case of i.i.d. returns, power utility and zero transactions costs, the wealth at the
end of the period is a function only of the stock price. However, these assumption would

considerably diminish the generality of the present paper.

13



In the empirical section, we test for violations of stochastic dominance by
testing for the feasibility of the conditions (2.5)-(2.10) in the case T'=2. For T
large, the numerical implementation becomes tedious and potentially explosive.
This consideration motivates the development of bounds that are independent of
the allowed frequency of trading of the stock and bond over the life of the option.

These bounds are presented below.

2.6 The Constantinides-Perrakis Option Bounds

Constantinides and Perrakis (2002) recognized that it is possible to recursively
apply the single-period approach and derive stochastic dominance bounds on option
prices in a market with intermediate trading over the life of the options. The task
of computing these bounds is easy compared to the full-fledged investigation of the
feasibility of conditions (2.5)-(2.10) for large T for two reasons. First, the
derivation of the bounds takes advantage of the special structure of the payoff of a
call or put option, specifically the convexity of the payoff as a function of the stock
price. Second, the set of assets is limited to three assets: the bond, stock and one
option, the test option.

The upper and lower bounds on a test option have the following
interpretation. If one can buy the test option for less than the lower option bound,
then there is stochastic dominance between the bond, stock and the test option.
Likewise, if one can write the test option for more than the upper option bound,
then again there is stochastic dominance between the bond, stock and the test
option. Below, we state these bounds without proof.*

At any time ¢ prior to expiration, the following is an upper bound on the

price of a call:

" These bounds may not be the tightest possible bounds for any given frequency of trading.
However, they are presented here because of their universality in that they do not depend on the
frequency of trading over the life of the option. For a comprehensive discussion and derivation of
these and other possibly tighter bounds that are specific to the allowed frequency of trading, see
Constantinides and Perrakis (2002). See also Constantinides and Perrakis (2004) for extensions

to American-style options and futures options.
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(1+k)

E(Sta t) :W

B|[S; - K]'|S,]. (2.23)

where R; is the expected return on the stock.

A partition-independent lower bound for a call option can also be found, but
only if it is additionally assumed that there exists at least one trader for whom the
investment horizon coincides with the option expiration, 7'=T". In such a case,
transactions costs become irrelevant in the put-call parity and the following is a

lower bound:*
oS, t)= (146)" S,- K /R"" + E[(K — 8,)"|S, ]/Rs" (2.24)

where R is one plus the risk free interest rate.
Put option upper and lower bounds also exist that are independent of the

frequency of trading. They are given as follows:

_ K 1=k, ;4\t +
p(SH t)_F—’_H_—k(RS ) [E“K_ST] }_K| Sfl? (2'25)
and
p(S,t) = (RI )11 kE[K S, ] |S] t<T—1
- (2.26)
=08, T) = K-S, t=T,

In the empirical section, we test for violations of stochastic dominance by testing for
violations of these bounds, first without transactions costs and second with

transactions costs.

% In the special case of zero transactions costs, the assumption 7' =T is redundant because the

put-call parity holds.
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3 Empirical Results
3.1 The Data

We use the historical daily record of the S&P 500 index and its daily dividend
record over the period 1928-1995. The monthly index return is based on 30
calendar day (21 trading day) returns. In order to avoid difficulties with the
estimated historical mean of the returns, we demean all our samples and
reintroduce a mean 4% annualized premium over the risk free rate. The
unconditional distribution of the index is extracted from three alternative samples
of thirty-day index returns: the historical sample uses returns over the period 1928-
1986; the forward-looking sample inclusive of the crash uses the returns over the
period 1987-1995 and includes the 1987 stock market crash; finally, the forward-
looking sample exclusive of the crash uses the returns over the period 1988-1995 and
excludes the stock market crash.

For the S&P 500 index options we use the tick-by-tick Berkeley Options
Database of all quotes and trades over the years 1986-1995. We focus on the most
liquid options by excluding options that are deeper than 10% out of the money or
deeper than 5% in the money. For 108 months we retain only the call option
quotes for the day corresponding to options thirty days to expiration.”” For each
day retained in the sample, we aggregate the quotes to the minute and pick the
minute between 9:00-11:00 AM with the most quotes as our cross-section for the
month. We present these quotes in terms of their bid and ask implied
volatilities. These are the volatilities which would be needed in the BSM formula
to price the option exactly at the bid or ask quote, respectively. Details on the
databases can be found in the appendix, in Jackwerth and Rubinstein (1996), and
in Jackwerth (2000).

6 We lose some month for which we do not have sufficient data, namely after the crash of

October 1987 and before the introduction of S&P 500 index options in April 1986.
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3.2 Assumptions on Bid-Ask Spreads and Trading Fees

We introduce bid-ask spreads and trading fees as follows. For the index, we model
the combined one-half bid-ask spread and one-way trading fees as a one-way
proportional transactions cost rate equal to 0.5% of the index price.

For the options, we present results under a variety of assumptions regarding
bid-ask spreads and trading fees. In our standard case, we set the combined one-
half bid-ask spread and one-way trading fees on one option as equal to fraction
0.002 (or 0.0005 or 0.005) of the index price. This corresponds to about 75 (or 19
or 188) cents one-way fee per option, irrespective of the moneyness and, therefore,
the price of the option. We also present results in which the transaction cost is
proportional to the option price and calculated as follows. The combined one-half
bid-ask spread and one-way trading fees on the at-the-money option is set equal to
fraction 0.002 of the index price. The combined one-half bid-ask spread and one-
way trading fees on some other option equals the fee on the at-the-money option
multiplied by the ratio of the price of the said option and the price of the at-the-

money option.

3.3 Stochastic Dominance in the Single-Period Case

We check each month for feasibility of the conditions (2.12)-(2.15). Infeasibility of
these conditions implies stochastic dominance: an investor can improve her utility
by trading in these assets without incurring any out-of-pocket costs. If the
conditions (2.12)-(2.15) are infeasible, we check for their feasibility by using option
prices one hour later and one day later. It is only after we establish that the
conditions are infeasible at all three dates that we pronounce infeasibility of the
conditions in a given month.

If we rule out bid-ask spreads and trading fees, we find that in none of the
months the conditions (2.12)-(2.15) are feasible. Therefore, in all months in our

sample there is stochastic dominance.
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We introduce bid-ask spreads and trading fees as described in Section 3.2.
The one-way transactions cost rate (one-way trading fees plus half the bid-ask
spread) on the index is 50 bps. The one-way transactions cost on each option is 20
bps of the index price. The number of options in each monthly cross-section
fluctuates between 3 and 34 with a median of 10. The percentage of months
without stochastic dominance violations are displayed in Table 1. The non-
violations in the cases with one-way transaction cost on each option equal to 5 bps
and 50 bps of the index price are displayed in parentheses.

The time series of option prices is divided over four subperiods and
stochastic dominance violations are reported in different columns for each
subperiod. The first subperiod extends from May 1986 to October 16 1987, just
prior to the crash. The other three samples are all post-crash and span July 1988
to March 1991, April 1991 to August 1993, and September 1993 to December 1995.

The time series of index returns is divided into three subperiods and
stochastic dominance violations are reported in different rows for each subperiod.
The first subperiod covers 1928-1986. Since there are too many observations, only
every 6™ return is recorded in building the empirical return distribution. The
second subperiod covers 1987-1995, including the crash. The third subperiod covers
1988-1995, excluding the crash. In all three subperiods, the mean premium of the

index return over the risk free return is adjusted to be 4% annually.!”

" We make this adjustment in order to eschew the issue of the predictability of the equity
premium. Qur results remain practically unchanged if we do not make this adjustment.

Essentially, the prices of one-month options are insensitive to the expected return on the stock.
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Table 1. Percentage of Months without Stochastic Dominance Violations in the

Single-Period Case

The table displays the percentage of months in which stochastic dominance is absent in the cross-
section of option prices. The one-way transactions cost rate (one-way trading fees plus half the bid-
ask spread) on the index is 50 bps. The one-way transactions cost on each option is 20 bps of the
index price. In parentheses, the table displays the percentage of months in the cases with one-way

transactions cost on each option equal to 5 and 50 bps of the index price.

Panel A: | Panel B: | Panel C: | Panel D:
860516- 880715- 910419- 930917-
871016 910315 930820 951215

Number of Months in each Period 18 33 28 28
Feasibility in the Historical Index 73% 90% 79% 19%
Sample 1928-1986 (47,100) | (41,97) | (18,96) | (0, 96)
Feasibility in the Forward-Looking 13% 55% 100% 96%

Index Sample (including the crash) | (13, 73) | (31,83) | (57,100) | (42, 100)
1987-1995

Feasibility in the Forward-Looking 13% 34% 89% 100%
Index Sample (excluding the crash) (0, 53) (21, 72) | (29, 100) | (15, 100)
1988-1995

Most entries in the table are well below 100%, suggesting that there are a
number of months in which the risk free rate, the price of the index, and the
prices of the cross-section of options are inconsistent with a market where none of
the securities are stochastically dominated, net of generous transactions costs.
The pattern of violations differs considerably when using the historical index
sample as opposed to using the forward-looking sample.

The top left entry of 73% refers to the index return distribution over the
period 1928-1986 and the option prices over the pre-crash period from May 1986
to October 16, 1987. In 27% of the months the conditions (2.11)-(2.14) are

infeasible and the prices imply stochastic dominance despite the generous
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allowance for transactions costs. In the same row to the right, the entries refer
to the index return distribution over the period 1928-1986 and the option prices
over the post-crash sub-periods. More violations occur in the post-crash sub-
periods, consistent with the evidence in Jackwerth (2000) who finds that the
estimated pricing kernel is monotonically decreasing in the pre-crash period, but
locally increasing during the post-crash period.*

Using the forward-looking index sample 1987-1995 that includes the crash,
or the forward-looking index sample 1988-1995 that excludes the crash, the
pattern reverses itself and there are now more stochastic dominance violations in
the pre-crash period than in the post-crash period. Comparing the top left
entries and the bottom right entries that match the index period with the option
period, we observe fewer cases of infeasibility with recent index and option prices
than with more distant index and option prices. Thus, options are more
rationally priced in the post-crash than the pre-crash period. This, despite the
fact that the volatility smile is pronounced in the post-crash period and hardly
present in the pre-crash period.

Since it is unclear what are appropriate transactions costs for options, in
the same table the first entries in brackets present the percentage of non-
violations for the case that the combined one-half bid-ask spread and one-way
trading fees on one option is 5 bps of the index price. We observe a huge
percentage of violations for all index and option price sub-periods. The second
entries in brackets present the percentage of non-violations for the case that the
combined one-half bid-ask spread and one-way trading fees on one option is 50
bps of the index price. Violations in the top left and bottom right entries of the
table disappear but only because the transactions costs now are quite large.

Table 2 displays the percentage of months in which stochastic dominance
is absent in the cross-section of in-the-money calls (top entry) and out-of-money
calls (bottom entry). The one-way transactions cost rate (one-way trading fees

plus half the bid-ask spread) on the index is 0.5%. The one-way transactions

'® The patterns in Jackwerth (2000) do not exactly match with Table 1 as he is using a different
technique when he estimates the smoothed risk-neutral and actual distributions and divides them

into each other.
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cost on each option is 20 bps of the index price. For the pre-crash sample of
index and option prices, there are fewer violations for ITM than OTM calls.
Nonetheless, both I'TM and OTM display virtually identical patterns of results,
which are broadly similar to those in Table 1. For both forward-looking samples,
feasibility is poor in the pre-crash and the early post-crash periods, and good to
excellent in the two late post-crash periods. In the historical sample, feasibility
deteriorates substantially in the late post-crash period. More significantly,
feasibility improves dramatically for the more recent period in which the index
and option quotes are matched: the violations disappear in the bottom right

panel, while their numbers are substantial in the top left panel.
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Table 2. Percentage of Months without Stochastic Dominance Violations in the

Single-Period Case—ITM and OTM Calls Separately

The table displays the percentage of months in which stochastic dominance is
absent in the cross-section of in-the-money calls (top entry) and out-of-money calls
(bottom entry). The one-way transactions cost rate (one-way trading fees plus half
the bid-ask spread) on the index is 50 bps. The one-way transaction cost on each

option is 20 bps of the index price.

Panel A: | Panel B: | Panel C: | Panel D:

860516- 880715- 910419- 930917-

871016 910315 930820 951215
Number of Months in each Period 18 33 28 28
Feasibility in the Historical Index 87% 90% 86% 46%
Sample 1928-1986 80% 90% 100% 81%
Feasibility in the Forward-Looking 53% 59% 100% 96%
Index Sample (including the crash) 27% 66% 100% 100%
1987-1995
Feasibility in the Forward-Looking 20% 41% 96% 100%
Index Sample (excluding the crash) 13% 48% 89% 100%
1988-1995

Table 3 displays the percentage of months in which stochastic dominance
is absent in the cross-section of option prices but now with proportional instead
of fixed transactions costs. The one-way transactions cost rate (one-way trading
fees plus half the bid-ask spread) on the index is 0.5%. The one-way transaction

cost on each option is proportional to the index price, as explained in Section 3.2.
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The top left entry of 73% refers to the percent feasibility in case that the
index return distribution is over the period 1928-1986 and the option prices are
over the pre-crash period from May 1986 to October 16, 1987. The feasibility
with proportional transactions costs is identical to the feasibility with fixed
transaction costs. However, with the forward-looking index sample, both
including and excluding the crash, and with the options in all the post-crash sub-
periods, the feasibility with proportional transactions costs is substantially lower
than the feasibility with fixed transaction costs. With proportional transactions
costs, options are more rationally priced in the post-crash than the pre-crash
period, but in both periods the percentage of months with feasible pricing is well

below 100%.

Table 3. Percentage of Months without Stochastic Dominance Violations in the

Single-Period Case and Proportional Transactions Costs

The table displays the percentage of months in which stochastic dominance is absent in the cross-
section of option prices. The one-way transactions cost rate (one-way trading fees plus half the bid-
ask spread) on the index is 50 bps. The one-way transactions cost on each option is proportional to

the index price, as explained in Section 3.2.

Panel A: | Panel B: | Panel C: | Panel D:
860516- 8R0715- 910419- 930917-
871016 910315 930820 951215

Number of Months in each Period 18 33 28 28
Feasibility in the Historical Index 73% 90% 86% 50%
Sample 1928-1986

Feasibility in the Forward-Looking 13% 48% 89% 92%
Index Sample (including the crash)

1987-1995

Feasibility in the Forward-Looking ™% 31% 1% 92%

Index Sample (excluding the crash)
1988-1995
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In the next section, we examine the implications of relaxing the
assumption that trading in the stock and bond over the life of the option is

forbidden.

3.4 Stochastic Dominance in the Multiperiod Case

In the previous section, we considered feasibility in the context of the single-period
model.  We established that there is infeasibility, and therefore stochastic
dominance violations, in a significant percentage of the months. Does the
percentage of stochastic dominance violations increase or decrease as the allowed
frequency of trading in the stock and bond over the life of the option increases? In
the very special case of zero transactions costs, i.i.d. returns and constant relative
risk aversion, we can prove that the percentage of stochastic dominance violations
increases as the allowed frequency of trading increases. However, we cannot
provide a theoretical answer if we relax any of the above three assumptions.
Therefore, we address the question empirically.

We compare the percentage of stochastic dominance violations in two
models, one with one intermediate trading date over the life of the options and
another with no intermediate trading dates over the life of the options. To this
end, we partition the 30-day horizon into two 15-day intervals and approximate the
15-day return distribution by an 11-point kernel density estimate of the 15-day
returns. We use the standard Gaussian kernel of Silverman (1986, pp. 15, 43, and
45). The assumed transactions costs are as in the base case presented in Table 1.
The one-way transactions costs rate (one-way trading fees plus half the bid-ask
spread) on the index is 50 bps. The one-way transactions cost on each option is 20
bps of the index price. The results are presented in Table 4.

We may not investigate the effect of intermediate trading by directly
comparing the results in Tables 1 and 4 because the return generating process
differs in the two tables. Recall that the results in Table 1 are based on a 30-day

stock return generating process that has as many different returns as the different
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observed realizations and frequency equal to the observed frequency.” By contrast,
the results in Table 4 are based on a simplified 15-day 11-point kernel density
estimate of the 15-day returns. The coarseness of the grid is dictated by the need
to keep the problem computationally manageable. The 30-day return then is the
product of two 15-day returns treated as i.i.d. With this process of the 30-day
return, we calculate the percentage of months without stochastic dominance
violations and report the results in Table 4 in brackets.

The effect of allowing for one intermediate trading date over the life of the
one-month options is illustrated by the main entries in Table 4. These entries are
contrasted with the bracketed entries which represent the percentage of months
without stochastic dominance violations when intermediate trading is forbidden.
Intermediate trading generally decreases the number of feasible months in our
subperiods.” We conclude that intermediate trading strengthens the single-period

systematic evidence of stochastic dominance violations.

9 For the historic sample of stock returns we take only one every six monthly returns.
? In only one case does this effect go the other way and we suspect a convergence problem with

the MATLAB optimization code, pending further investigation.
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Table 4. Percentage of Months without Stochastic Dominance Violations, in the

2-Period Case

The table displays the percentage of months in which stochastic dominance is absent in the cross
section of option prices when one intermediate trading date is allowed over the life of the one-month
options. The one-way transactions cost rate (one-way trading fees plus half the bid-ask spread) on
the index is 50 bps. The one-way transactions cost on each option is 20 bps of the index price. In
parentheses, the table displays the percentage of months in which stochastic dominance is absent in

the case when no intermediate trading is allowed over the life of the one-month options. Two periods

of 15 days and a kernel density of 15-day returns is used (discretized to 11 values from ¢** to ",

spaced 0.04 apart in log spacing).

Panel A: | Panel B: | Panel C: | Panel D:

860516- 880715- 910419- 930917-

871016 910315 930820 951215
Number of Months in each Period 18 33 28 28
Feasibility in the Historical Index 53% 45% 14% 0%
Sample 1928-1936 (80%) (62%) (21%) (0%)
Feasibility in the Forward- 13% 17% 64% 50%
Looking Index Sample (including (13%) (31%) (64%) (58%)
the crash) 1987-1995
Feasibility in the Forward- 13% 1% 93% 96%
Looking Index Sample (excluding (13%) (41%) (86%) (96%)
the crash) 1988-1995

In the next section, we obtain further insights as to which options cause

infeasibility by displaying the options that violate the upper and lower bounds on

option prices.
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3.5 Stochastic Dominance Bounds in the Single-Period and

Multiperiod Cases

In Section 2.6, equations (2.23)-(2.26), we stated a set of stochastic dominance
bounds on option prices that are valid irrespective of whether trading in the bond
and stock over the life of the option is allowed or not. In this section, we calculate
these bounds on option prices and translate them as bounds on the implied
volatility of option prices. In the figures that follow, a violation occurs whenever an
observed option bid price (translated into implied volatility) lies above the tighter
of the two upper bounds or an observed option ask price (translated into implied
volatility) lies below the tighter of the two lower bounds.

In Figures 1-3, we set the transactions costs rate on the stock equal to zero
and also set the trading fees on the options equal to zero. The bid-ask spread on
the option price is taken under consideration, as we present both the bid and ask
option prices. With zero transactions costs, the two upper bounds on the implied
volatility coincide because the put upper bound in equation (2.25) may be obtained
from the call upper bound in equation (2.23) through the put-call parity. Likewise,
with zero transactions costs, the two lower bounds on the implied volatility coincide
because the put lower bound in equation (2.26) may be obtained from the call lower
bound in equation (2.24) through the put-call parity.

In Figure 1, the bounds are based on the historical sample of stock returns,
1928-1986. In Figure 2, the bounds are based on the forward-looking sample of
stock returns, 1987-1995, inclusive of the crash. In Figure 3, the bounds are based
on the forward-looking sample of stock returns, 1988-1995, exclusive of the crash.
The options data confirm what we already know from the literature: before the
crash, the smile is largely flat and, after the crash, it is downward sloping.

We find that the bounds are similar across the samples (namely, they are
downward sloping) but the historical stock sample induces bounds that are
altogether higher as the volatility is higher in the historical sample than in the
forward looking samples. The pattern of violations follows quite naturally. The

flat pre-crash smile fits reasonably well within the rather high historical bounds
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even though these are downward sloping. The post-crash smiles are too low for the
rather high location of the historical sample bounds. Going to the forward-looking
sample bounds, these are located somewhat lower than the historical sample
bounds. Therefore, they match the also downward-sloping post-crash option prices
rather well because they are located somewhat lower too. However, they do not
match very well the higher horizontal smile of the pre-crash options.

In Figure 1, we observe that both upper and lower bounds exhibit a clear
smile pattern, which is present in similar forms in all four panels of Figure 1. In
particular, the smile in the bounds is very much present in the pre-crash panel A, in
spite of the fact that the observed option prices conform approximately to the BSM
model, with a horizontal smile, which lies almost entirely within the bounds. By
contrast, in post-crash panels B-D, the observed option prices show progressively
more marked departures from horizontality, which still lie within the bounds in
panel B but violate strongly the bounds in panels C and D, even around at-the-
money. This conforms closely to the observation originally made by Rubinstein
(1994), that option prices behave differently pre- and post-crash, with the former
following the BSM model and the latter not.

In panel A, several pre-crash ask prices of OTM calls fall below the lower
bound. Even though pre-crash option prices follow the BSM model reasonably well,
it does not follow that these options are correctly priced. Our novel finding is that
pre-crash option prices are incorrectly priced, if index return expectations are
formed based on the historical experience. Furthermore, some of these prices are
below the bounds, contrary to received wisdom that historical volatility generally

underprices options in the BSM model.
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Figure 1. Bounds Based on the Historical Sample without Transactions Costs

The figure displays the observed bid and ask quotes during one pre-crash and three post-crash
periods. It also shows the call and put upper and lower bounds from Section 2.6 without transaction
costs on the option prices during those periods, based on the historical sample of stock returns, 1928-

1986. Since there are no transaction costs, the two upper bounds coincide and the two lower bounds

coincide.
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Figures 2 and 3 display the same case as Figure 1, except that the bounds
are now estimated with the forward-looking sample of stock returns, one including
the crash (Figure 2) and the other excluding the crash (Figure 3). We observe very
different estimates of the bounds, in which the smile is much steeper in all periods
and creates a very different pattern of bounds violations. Thus, it is in the pre-
crash panel A that we now observe the sharpest violations of the bounds, while the
violations are weaker in the first post-crash panel B, and disappear completely in
the later panels C and D. The shift in the underlying index distribution, clearly
visible in the change of the bounds estimates when we move from the historical to
the forward-looking sample, seems to have been reflected in the option market
prices as a type of “learning process” for the option investor, albeit with a certain
lag. This shift is particularly pronounced in Figure 3, where the crash period has
been excluded and for which the fit of the bounds with the observed option prices is
better.

The following plausible scenario emerges from this pattern. In the early
years since April 1986, when index options were introduced on the Chicago Board
Options Exchange, investors applied the BSM model to price options without
questioning the empirical validity of the constant-volatility assumption of the
model. Hence prices largely adhere to the BSM model during this period.
Following the crash of 1987, investors seem to have recognized the limitations of
the BSM model.

Figures 2 and 3, panels B-D, dispel another common misconception, that the
observed smile is too steep after the crash. Our novel finding is that most of the
bound violations post-crash are due to the option smile not being steep enough
relative to expectations on the index price formed post-crash. Even though the
BSM model assumes that there is no smile, an investor who properly understood
the post-crash distribution of index returns should have priced the options with a

steeper smile than the smile reflected in the actual option prices.
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Figure 2. Bounds Based on the Forward Looking Sample (1987-1995) without

Transactions Costs

The figure displays the observed bid and ask quotes during one pre-crash and three post-crash
periods. It also shows the call and put upper and lower bounds from Section 2.6 without transaction
costs on the option prices during those periods, based on the forward looking sample of stock returns,
1987-1995. Since there are no transaction costs, the two upper bounds coincide and the two lower

bounds coincide.
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Figure 3. Bounds Based on the Forward Looking Sample (1988-1995) without

Transactions Costs

The figure displays the observed bid and ask quotes during one pre-crash and three post-crash

periods. It also shows the call and put upper and lower bounds from Section 2.6 without transaction

costs on the option prices during those periods, based on the forward looking sample of stock returns,

1988-1995. Since there are no transaction costs, the two upper bounds coincide and the two lower

bounds coincide.
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Figures 4-6 are the counterparts of Figures 1-3 with a generous allowance of
0.5% transactions cost rate in trading the stock. With transactions costs, the two
upper bounds no longer coincide. We present both upper bounds but focus on the
tighter of the two. The two lower bounds almost coincide. Again, we present both
lower bounds but focus on the tighter of the two. Transactions costs have
relatively little impact on the tighter of the two upper bounds and the tighter of the
two lower bounds. The pattern of violations pre-crash and post-crash remains
unchanged, although their intensity in the post-crash periods decreases due to the
moderate widening of the bounds.

When the forward-looking sample is used in the estimation of the bounds,
the shift in the bounds results in a worse fit of the observed option prices in the
pre-crash period, but in a much better fit in the post-crash periods. In fact, the
observed option prices now lie almost entirely within the bounds in the last two
post-crash periods. The fit is best in Figure 6, when the year of the crash is

excluded from the sample with which the bounds are estimated.
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Figure 4. Bounds Based on the Historical Sample with Transactions Costs

The figure displays the observed bid and ask quotes during one pre-crash and three post-crash
periods. It also shows the call and put upper and lower bounds from Section 2.6 with transaction
costs on the index of 20 bps during those periods, based on the historical sample of stock returns,

1928-1986.
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Figure 5. Bounds Based on the Forward Looking Sample (1987-1995) with

Transactions Costs

The figure displays the observed bid and ask quotes during one pre-crash and three post-crash
periods. It also shows the call and put upper and lower bounds from Section 2.6 with transaction
costs on the index of 20 bps during those periods, based on the forward looking sample of stock

returns, 1987-1995.
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Figure 6. Bounds Based on the Forward Looking Sample (1988-1995) with

Transactions Costs

The figure displays the observed bid and ask quotes during one pre-crash and three post-crash
periods. It also shows the call and put upper and lower bounds from Section 2.6 with transaction
costs on the index of 20 bps during those periods, based on the forward looking sample of stock

returns, 1988-1995.
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4  Concluding Remarks

We document violations of stochastic dominance in the one-month S&P 500 index
options market in the period 1986-1995 when the unconditional index return
distribution is taken to be that of the historical index sample (1928-1985), the
forward-looking sample that includes the crash (1986-1995), or the forward-looking
sample that excludes the crash (1988-1995).

Evidence of stochastic dominance means that a trader can improve her
expected utility by engaging in a zero-net-cost trade. We consider a market with
heterogeneous agents and investigate the restrictions on option prices imposed by a
particular class of utility-maximizing traders that we simply refer to as traders. We
do not make the restrictive assumption that all economic agents belong to the class
of the utility-maximizing traders. Thus our results are robust and unaffected by
the presence of agents with beliefs, endowments, preferences, trading restrictions,
and transactions cost schedules that differ from those of the utility-maximizing
traders modeled in this paper.

The violations increase when we allow for trading the index over the life of
the options. Violations persist even when we allow for realistic trading fees in the
index and options markets and recognize bid-ask spreads in the options market.
The pattern of violations changes with the index sample: the historical sample
generates fewer violations pre-crash and in the first sub-period after the crash and
more violations in the later two subperiods of the post-crash period. The forward-
looking samples generate the opposite pattern.

We also investigate violations of stochastic dominance through violations of
upper and lower bounds on the bid and ask prices of options. This is a less
demanding scenario in that it tests whether options, taken only one at a time, are
correctly priced relative to the index. An advantage of this investigation is that the
bounds are independent of assumptions regarding the allowed frequency of trading
during the one-month life of each option. The observed violations of the bounds

reinforce our earlier findings.
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We find that the bounds are similar across the samples (namely, they are
downward sloping) but the historical index sample induces bounds that are higher
as the volatility is higher in the historical sample than in the forward looking
samples. The flat pre-crash smile fits reasonably well within the rather high
historical bounds even though these are downward sloping. The post-crash smiles
are too low for the rather high location of the historical sample bounds. The
forward-looking sample bounds are located somewhat lower than the historical
sample bounds. Therefore, they match the also downward-sloping post-crash
option prices rather well because they are located somewhat lower too. However,
they do not match very well the higher horizontal smile of the pre-crash options.

One novel finding is that, even though pre-crash option prices follow the
BSM model reasonably well, it does not follow that these options are correctly
priced. Pre-crash option prices are incorrectly priced, if index return expectations
are formed based on the historical experience. Furthermore, some of these prices
are below the bounds, contrary to received wisdom that historical volatility
generally underprices options in the BSM model.

Another novel finding dispels the common misconception that the observed
smile is too steep after the crash. Most of the bound violations post-crash are due
to the option smile not being steep enough relative to expectations on the index
price formed post-crash. Even though the BSM model assumes that there is no
smile, an investor who properly understood the post-crash distribution of index
returns should have priced the options with a steeper smile than the smile reflected
in the actual option prices.

The violations reported in this paper are based on the unconditional index
return distribution. = We recognize the non-stationarity of the index return
distribution to the extent that we model the unconditional index return distribution
after three different and representative index return samples, the historical index
sample and the two forward-looking samples, one that includes the crash and one
that that excludes it. It remains an open and challenging topic for future research
to investigate whether the observed violations can be explained away with a more

detailed model of the conditional index return distribution. It also remains a topic
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for future research to investigate whether priced state variables, omitted in our

investigation, explain the observed violations.
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Appendix

The empirical tests are based on a database containing all minute-by-minute
European option quotes and trades on the S&P500 index from April 2, 1986 to
December 29, 1995. We use only option quotes since we cannot know for actual
trades where they occurred relative to the bid/ask spread and our results might be
affected. The database also contains all futures trades and quotes on the S&P 500.
Our goal is to obtain a panel of daily return observations on the index, the risk-free
rate, and on several options with different strike price/index level ratios
(moneyness) and constant maturity.

Index Level. Traders typically use the index futures market rather than the
cash market to hedge their option positions. The reason is that the cash market
prices lag futures prices by a few minutes due to lags in reporting transactions of
the constituent stocks in the index. We check this claim by regressing the index on
each of the first twenty minute lags of the futures price. The single regression with
the highest adjusted R? was assumed to indicate the lag for a given day. The
median lag of the index over the 1542 days from 1986 to 1992 was seven minutes.
Because the index is stale, we compute a future-based index for each minute from

the future market

where F'is the futures price at option expiration.

For each day, we use the median interest rate implied by all futures quotes
and trades and the index level at that time. We approximate the dividend yield by
assuming that the dividend amount and timing expected by the market were
identical to the dividends actually paid on the S&P 500 index. However, some
limited tests indicate that the choice of the index does not seem to affect the results
of this paper.

Interest Rates. We compute implied interest rates embedded in the

European put-call parity relation. Armed with option quotes, we calculate separate
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lending and borrowing interest returns from put-call parity where we used the
above future-based index. We assign, for each expiration date, a single lending and
borrowing rate to each day, which is the median of all daily observations across all
striking prices. We then use the average of those two interest rates as our daily
spot rate for the particular time-to-expiration. Finally, we obtain the interpolated
interest rates from the implied forward curve. If there is data missing, we assume
that the spot rate curve can be extrapolated horizontally for the shorter and longer
times-to-expiration. Again, some limited tests indicate that the results are not
affected by the exact choice of the interest rate.

Options with adjusted moneyness and constant maturity. It is important to
use options with adjusted moneyness and constant maturity since our test statistics
involve the conditional covariance matrix of option pricing errors. If the maturity
of the options were not constant over time, then the conditional covariance matrix
of the pricing errors would be time varying, too. This would require additional
exogenous assumptions on the structure of the covariance matrix and the
estimation of several additional parameters, which could lead to additional
estimation error in our test statistics.

In our data set, all puts are translated into calls using European put-call
parity. Then, we compute the implied volatilities where we use the Black-Scholes
formula as a translation device only. We then adjust throughout each day for the
movement of the stock price by assuming that the implied volatilities are
independent of the underlying stock price. Then, we pick the stock price closest to
12 pm as our daily stock price and value all options from throughout the day as if
they were call options with the implied volatilities measured above and struck at
the moneyness level measured above. We do not eliminate any daily observations
due to their level of moneyness.

Arbitrage Violations. In the process of setting up the database, we check for
a number of errors, which might have been contained in the original minute-by-
minute transaction level data. We eliminate a few obvious data-entry errors as well
as a few quotes with excessive spreads—more than 200 cents for options and 20

cents for futures. General arbitrage violations are eliminated from the data set. We
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also check for violations of vertical and butterfly spreads. Within each minute we

keep the largest set of option quotes which does not violate:
S1+6) > C; > max[0,5(1 + 6) — K,R] (A2)
American early exercise is not an issue as the S&P 500 options are European
in nature, and the discreteness of quotes and trades only introduces a stronger

upward bias in the midpoint implied volatilities for deep-out-of-the-money puts

(moneyness less than 0.6) which we do not use in our empirical work.
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