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ABSTRACT 

by 
Timothy T. Brister 
Harding University 

May 2021 
 

Title: Participation in Open Up Resources by Gender and Family-Income Level on 
Mathematics Achievement of Grades 7 and 8 Students. (Under the direction of Dr. Usen 
Akpanudo) 
 

The purpose of this dissertation was to determine the effects by gender and by 

family-income level between students using Open Up Resources (OUR) curriculum (a 

Problem-Based Learning [PBL] curriculum) versus traditional curriculum on 

mathematics achievement of Grades 7 and 8 students. A stratified random sample of 320 

students from four Central and Southeast Arkansas schools (n = 160 for Grades 7 and 8, 

respectively) was drawn for this study. Data analysis involved the use of 2 x 2 factorial 

ANOVAs. The key findings of the study were that the mathematics achievement of 

Grade 8 students using OUR was significantly higher than the scores of those using 

traditional mathematics curricula. The scores of Grade 7 students using both curriculum 

types were similar. Seventh-grade females had higher mathematics achievement than 

males. Students from low family-income levels had lower mathematics achievement in 

both grades than those from higher family-income levels. Based on these findings, PBL 

curricula such as OUR are recommended as a strategy for closing gaps in mathematics 

achievement.  
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CHAPTER I 

INTRODUCTION 

Transitioning mathematics instruction from classroom instruction to application in 

novel situations has become a challenge for graduates in the United States. Many adults 

in the United States struggle with mathematics after graduating from high school. In 

2017, only 34.4% (compared to a 42.2% international average) of adults in the United 

States reached proficiency Level 3 or above (Levels 3, 4, or 5) on the Organization for 

Economic Cooperation and Development (OECD) Survey of Adult Skills, a part of the 

Programme for the International Assessment of Adult Competencies (OECD, 2019). A 

proficiency Level 3 on the Programme for the International Assessment of Adult 

Competencies survey represents the ability to perform tasks that “…require the 

application of number sense and spatial sense; recognizing and working with 

mathematical relationships, patterns, and proportions expressed in verbal or numerical 

form; and interpreting data and statistics in texts, tables, and graphs" (p. 13). Adults in the 

United States were unable to demonstrate the ability to apply mathematical knowledge to 

the items on the Programme for the International Assessment of Adult Competencies 

survey. Results of the 2012 Programme for the International Assessment of Adult 

Competencies survey were similar to the 2017 results, and members of OECD (2019) 

noted that even though the education level is higher in the United States than in most 

participating countries, United States students demonstrated a weaker application of basic 
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numeracy skills. The problem seems to persist over time. Adults in the United Stated 

have not compared favorably to international students in measures of the application of 

numeracy skills.  

Students in the United States have also failed to demonstrate reasoning and 

application of knowledge gained in the mathematics classroom. This problem was 

illustrated by Kaplinsky (2013) when he interviewed 32 eighth-grade students with the 

question, “There are 125 sheep and five dogs in a flock. How old is the shepherd?” (para. 

1). Seventy-five percent of the students Kaplinsky interviewed gave a numerical answer 

to the question rather than stating that the question made no sense. The students 

interviewed did not express reasoning about the problem presented and did not appear to 

connect common sense knowledge to mathematics. The National Assessment of 

Educational Progress (NAEP, 2019) Mathematics Assessment measures the United States 

fourth- and eighth-grade students' knowledge, skills, and ability to apply knowledge in 

problem-solving situations. According to the Institute of Education Sciences National 

Center for Education Statistics (2019), only 33% of eighth-grade students nationally and 

27% of students in Arkansas scored at the NAEP proficient level or above on the 2019 

mathematics assessment. Students taking the assessment appeared unable to apply 

knowledge learned to the NAEP Mathematics Assessment. Both anecdotal data and 

assessment results indicate that many American students cannot demonstrate the ability 

to reason mathematically or apply mathematical knowledge proficiently. 

Educators’ use of quality curricular materials can help develop student 

mathematical reasoning and apply mathematical knowledge. Drinan (1997) asserted that 

curricula could influence students’ motivation for learning, decision-making ability, 
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acquisition of knowledge, awareness of the complexity of issues, and capacity for self-

directed learning. A well-written curriculum might address each of these elements. 

Bergqvist and Bergqvist (2017) asserted that curricula designed for traditional 

mathematics focused primarily on content and ability to apply procedures, and more 

contemporary, problem-based materials focused more centrally on problem-solving, 

reasoning, representing, connecting, and communicating. The choice of mathematics 

curriculum resources may affect the way students experience mathematics. Educators’ 

curriculum choices may influence students’ abilities to reason mathematically and to 

apply mathematical knowledge. 

 The use of problem-based learning (PBL), based on constructivist learning theory, 

might encourage students' mathematical reasoning and the ability to apply mathematical 

knowledge. Dewey (1938) proposed that experience is the optimal stimulus for learning, 

and educators should structure the learning environment to encourage learning to occur. 

Students learning in an experiential environment are active participants in learning. 

Students experientially learning would apply the knowledge they have in a way that 

activates new learning. PBL enables understanding in this way. Barrows (1996) claimed 

that PBL is a method of instruction emphasizing reasoning and problem-solving, 

allowing for improved utilization of knowledge in real-world contexts. Students’ 

experiencing this method of teaching would regularly apply mathematical knowledge to 

solving problems. Hiebert et al. (1996), while discussing PBL, called for the 

problematization of mathematics, “…allowing students to wonder why things are, to 

inquire, to search for solutions, and to resolve incongruities” (p. 12) as a way to increase 

students’ mathematical understanding and ability to apply mathematics. The 
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problematization of mathematics supports students’ experience of both purely 

mathematical and real-world problems. Students in PBL environments experience 

learning by becoming activated in the mathematical learning process through using 

problems. 

 Open educational resources, including the problem-based Open Up Resources 

(OUR) Mathematics curriculum, are now available to educators. According to the OECD 

(2007), open educational resources are digitized materials offered freely and openly for 

educators, students, and self-learners to use and reuse for teaching, learning, and 

research. Open resources are a low-cost or free alternative to commercially available 

materials. OUR Mathematics curriculum is a problem-based curriculum for students in 

Grades 6-8 addressing the practice and content standards outlined in the Common Core 

State Standards for Mathematics. The curriculum is freely available online (Illustrative 

Mathematics, 2019). Since the OUR Mathematics Curriculum is freely available to 

educators, many school educators may consider using the OUR curriculum. Open 

Educational Recourses, including OUR, represent a free or low-cost option for educators 

seeking curricular resources. 

Educators considering curricular resources for mathematics have several options, 

and educators may find this study useful when making mathematics curricular decisions. 

Slavin, Lake, and Groff (2008) categorized three types of mathematics curricular 

materials: (a) textbooks that emphasize problem-solving, alternative solutions, and 

conceptual understanding using innovative strategies; (b) textbooks with a more 

traditional balance between algorithms, concepts, and problem-solving; and (c) textbooks 

that emphasize a step-by-step approach to mathematics. Educators may choose from a 
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variety of mathematics curricular materials. In this study, PBL resources, specifically 

OUR, will be investigated to provide educators with information that may be used when 

considering mathematics curricula resources. 

Statement of the Problem 

The purposes of this study were four-fold. First, the purpose of this study is to 

determine the effects by gender between students using OUR curriculum versus students 

using traditional curriculum on mathematics achievement as measured by the ACT 

Aspire mathematics test for seventh-grade students in two Central Arkansas schools and 

two Southeast Arkansas schools. Second, the purpose of this study is to determine the 

effects by gender between students using OUR curriculum versus students using 

traditional curriculum on mathematics achievement as measured by the ACT Aspire 

mathematics test for eighth-grade students in two Central Arkansas schools and two 

Southeast Arkansas schools.  

Third, the purpose of this study is to determine the effects by family-income level 

(as measured by school lunch status) between students using OUR curriculum versus 

students using traditional curriculum on mathematics achievement as measured by the 

ACT Aspire mathematics test for seventh-grade students in two Central Arkansas schools 

and two Southeast Arkansas schools. Fourth, the purpose of this study is to determine the 

effects by family-income level (as measured by school lunch status) between students 

using OUR curriculum versus students using traditional curriculum on mathematics 

achievement as measured by the ACT Aspire mathematics test for eighth-grade students 

in two Central Arkansas schools and two Southeast Arkansas schools.  
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Background 

Theoretical Framework: Constructivism 

Proponents of constructivism claim that learning occurs as learners construct 

knowledge based upon their experiences. Piaget (1975) theorized that logic does not arise 

through language but coordination of actions. Piaget recommended that instructors begin 

with a qualitative investigation and then follow with more formal representations at a 

time that will accompany students' development of logic structures. In Piaget’s model, 

students construct logical structures as they act upon problems. Vygotsky (2017) built on 

the theory of constructivism by hypothesizing that learning occurs in the zone of 

proximate development, which represents the gap between what a student can do with the 

help of an adult and what can be completed independently. According to Vygotsky, 

learning occurs when teaching focuses on applying prior knowledge to tasks that fall 

within the zone of proximate development, and students develop logical structures which 

they can use to solve a variety of other problems. As suggested by Vygotsky, teaching 

would require that teachers present students with problems before they can perform them 

independently. According to constructivist theory, students develop logical structures as 

they experience challenging problems (see Figure 1). 
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Figure 1: Progression of constructivism and problem-based learning toward student 

achievement. 

 

Educators employing constructivist theory would expect students to construct 

logical structures as they engage in presented problems. Beard (2018) described 

constructivism as a system in which educators attempt to create concrete, educative 

experiences leading the learner to new observations and understandings. Constructivism 

involves the use of carefully designed experiences to promote students’ construction of 

knowledge. Cooper (1993) equated learning in constructivism to problem-solving. 

Students’ in a constructivist classroom setting apply the knowledge they have to solve 

problems. Constructivists create experiences designed to prompt learners to build on their 

existing knowledge to construct new knowledge. 

Problem-Based Learning 

Instructors of medical students developed PBL to engage medical students in the 

experience of learning, and the practice expanded to diverse fields of knowledge. 
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Barrows (1996) reiterated that the creation of PBL was a response to students’ claims that 

knowledge gained in medical school was irrelevant in the practice of medicine. The goals 

of PBL include developing problem-solving skills, supporting self-directed learning as a 

lifetime habit, promoting teamwork, and acquiring an integrated body of knowledge from 

many different subject areas or disciplines (Barrows, 2002). The goals of PBL are 

focused on the learners' experiences rather than on the educator. PBL rapidly spread to 

other fields such as mechanical engineering, social work, optometry, architecture, 

nursing, legal training, business, and industry (Boud & Feletti, 1997). Each of the fields 

of study required different problems, but the goals remained applicable. PBL was 

developed in the medical field and quickly expanded to other disciplines. 

PBL represents an application of the theory of constructivism since problem-

solving has remained central to PBL implementation. Barrows (1986) noted that PBL 

was modified for particular applications in various fields of knowledge. Still, the defining 

attribute of PBL, compared to other teaching methods, is the use of problem-solving as 

the stimulus for learning. Barrows’ viewpoint aligned with Cooper’s (1993) description 

of learning in constructivism as problem-solving. Barrows explained that problems might 

include posed questions, unexplained phenomena, or problems involving health or 

community in the instructional sequence. Although strategies may vary across different 

disciplines, the use of problems characterized all applications of PBL. Boud and Feletti 

(1997) also asserted that problems are a part of PBL implementation but warned that PBL 

requires a change in instruction rather than merely adding problem-solving exercises to 

traditional curricula. The student-centered goals of PBL require that facilitators engage 
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students in problem-solving rather than only including problems in exercise sets. PBL’s 

use of problems to motivate students’ learning is an application of constructivist theory. 

Problem-Based Learning in Mathematics 

 The use of a problem-based approach in mathematics may encourage greater 

mathematical understanding in students. Some have described a problem-based approach 

in mathematics as one that makes use of real-world problems, integrates learning of 

understanding with the learning of skills, involves student sharing and discovery, 

emphasizes both process and product, and may use both student-created and teacher-

created problems (Hiebert et al., 1996, Jensen, 2015). The integration of these 

characteristics promotes learning that goes beyond memorization and applications of 

procedures. Schoenfeld (1988) asserted that students learning through only memorization 

and practice of mathematical procedures exhibited a fragmented understanding of 

mathematics and exhibited many mathematical misconceptions about the inability to 

make connections between different procedures and ideas. Schoenfeld emphasized that 

problem-solving tasks that require higher-order thinking should be used regularly in the 

mathematics classroom. The focus on problems in PBL may lead to greater student 

understanding and diminish misunderstandings associated with an overemphasis on 

procedures. Students’ understanding and application of mathematics may improve with 

the use of problem-based strategies. 

 However, researchers have reached conflicting conclusions regarding the 

effectiveness of PBL practices. While some researchers have reported positive effects on 

student achievement measures with the use of problem-based strategies (Rosli, Capraro, 

& Capraro, 2014; Şad, Kiş, & Demı̇r, 2017; Trinter, Moon, & Brighton, 2015), 



10 

researchers conducting other studies noted no effect on students achievement with the use 

of PBL (Cai, Wang, Moyer, Wang, & Nie, 2011; Maree & Molepo, 2005). Although the 

results of some studies would support the claim that PBL is the preferred instructional 

method for increasing student achievement, other study results have indicated no 

significant difference in instructional methods. Boaler (1998), Ridlon (2009), and Rosli et 

al. (2014) have described increased student problem-solving skills and more positive 

student perceptions of mathematics with PBL. Even with mixed results of studies that 

compared PBL with instructional methods for effect on student achievement, results of 

studies that indicated increased problem-solving skills and attitudes toward mathematics 

might prompt educators to consider the use of PBL. 

Gender and Mathematics Achievement 

 Differences in mathematics instruction could affect the achievement of males and 

females in mathematics. Fennema and Hart (1994) performed a meta-analysis of previous 

research on gender and mathematics achievement and noted a gender gap in mathematics, 

with males scoring higher on achievement measures than females. More recently, Voyer 

and Voyer (2014) and Robinson and Lubienski (2011) reported achievement gaps 

favoring males over females on mathematics achievement. Mathematics achievement 

differences by gender have long been a topic of study. After conducting a large-scale 

analysis of gender and mathematics achievement using international data the Trends in 

International Mathematics and Science Study and the Programme for International 

Student Assessment, Else-Quest, Hyde, and Linn (2010) revealed much variability 

existed by nation and proposed that other factors such as culture, instructional practices, 

or family-income level may have affected achievement by gender. Determining if the 
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factors proposed by Else-Quest et al. (2010) affect mathematics achievement by gender 

would require further study. Differences in mathematics achievement by gender may 

relate to the type of instruction students receive. 

Educators’ choices of problem-based instruction or traditional instruction may 

affect mathematics achievement by gender. Lindberg, Hyde, Petersen, and Linn (2010), 

concluded that males performed better than females on multiple-choice items, but 

females outperformed males on open-ended items. Educators using PBL advocate the use 

of more open-ended items in mathematics instruction. Boaler and Staples (2008) 

observed no achievement difference in males and females implementing a problem-based 

approach, and a gender difference remained at similar schools using a traditional 

approach. The type of instruction could influence gender differences in the mastery of 

mathematics concepts. Problem-based instruction and traditional instruction may affect 

the mathematics achievement of males and females.  

Family-Income Level and Mathematics Achievement  

 Observed achievement differences between student groups, based on family-

income levels, may be related to differences in learning opportunities. According to meta-

analysis results reported on Corwin Visible Learning Meta X (2019), a site that regularly 

adds and compiles meta-analysis on various educational topics, the level of household 

income significantly affects student achievement. The significance of the effect by the 

level of household income should not be interpreted as an inherent difference in students 

having these backgrounds but as an incentive to look deeper into the effect's causes. 

Gustafsson, Nilsen, and Hansen (2018) identified family income as a powerful influence 

on student achievement and noted that students living in poverty (identified by 
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qualification for free or reduced-cost lunches) were more likely to receive poor quality 

instruction than those not qualifying for free or reduced-cost school lunches. If a 

difference in achievement by household income levels (school lunch status) exists, 

differences in the quality of instruction could cause the gap to widen. Payne (1996) 

proposed that achievement differences for students from families with low-income 

backgrounds are not due to differences in ability but are due to differences in background 

knowledge. Payne asserted that changes in teaching practice could help students from 

backgrounds of poverty achieve at higher levels. The use of quality instructional practices 

in all classes may provide students, including those from low family-income 

backgrounds, the opportunity to engage in rigorous mathematics. Differences in 

opportunities of students, based on a family’s income status (whether deliberate or 

accidental), to engage in rigorous mathematics may explain achievement gaps between 

students qualifying for free or reduced lunch and those who do not qualify.  

Learning in a problem-based environment could influence the attitude and 

achievement of students with different family income backgrounds. Gibbs and Hunter 

(2018) noticed that students from both high- and low-socioeconomic backgrounds 

perceived themselves as doers and users of mathematics when problems focused on 

exploring and understanding mathematical relationships rather than solely on procedures 

and correct answers. Students’ awareness of being able to do mathematics and the 

usefulness of mathematics might positively impact mathematics achievement. Hwang, 

Choi, Bae, and Shin (2018) indicated that the mathematics achievement gap by level of 

family income narrowed when student-centered, rather than traditional instruction, was 

employed in teaching mathematics. Holmes and Hwang (2016) recorded no differences in 
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the effects of PBL versus traditional instruction on student achievement, even if poverty 

was a factor. Conflicting results of studies of how the level of family income affects 

mathematics achievement prohibit a confident conclusion. Results reported by 

researchers investigating the effects of problem-centered instruction on students from 

differing family income backgrounds are mixed and could be a reason to investigate 

further the relationship between PBL and student achievement by family income status.  

Hypotheses 

The following hypotheses were generated: 

1. No significant difference will exist by gender between students using OUR 

curriculum versus students using traditional curriculum on mathematics 

achievement as measured by the ACT Aspire mathematics test for seventh-

grade students in two Central Arkansas schools and two Southeast Arkansas 

schools.  

2. No significant difference will exist by gender between students using OUR 

curriculum versus students using traditional curriculum on mathematics 

achievement as measured by the ACT Aspire mathematics test for eighth-

grade students in two Central Arkansas schools and two Southeast Arkansas 

schools.  

3. No significant difference will exist by family-income level (school lunch 

status) between students using OUR curriculum versus students using 

traditional curriculum on mathematics achievement as measured by the ACT 

Aspire mathematics test for seventh-grade students in two Central Arkansas 

schools and two Southeast Arkansas schools.  
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4. No significant difference will exist by family-income level (school lunch 

status) between students using OUR curriculum versus students using 

traditional curriculum on mathematics achievement as measured by the ACT 

Aspire mathematics test for seventh-grade students in two Central Arkansas 

schools and two Southeast Arkansas schools. 

Description of Terms 

 ACT Aspire. The ACT Aspire (2016) is a “vertically articulated system of 

summative, interim, and classroom assessments” designed to measure student 

achievement in English, mathematics, reading, science, and writing for Grades 3-8 and 

early high school (ACT Aspire, 2016, para. 2). For this study, ACT Aspire will be used to 

refer to the summative assessment, which is administered to Arkansas public school 

students in Grades 3-10 unless they qualify for an alternate assessment (Arkansas 

Department of Education, 2014). ACT Aspire was used in this study as the operational 

definition of mathematics achievement. 

Conceptual knowledge (understanding). According to the National Council of 

Teachers of Mathematics (2014), conceptual understanding is the ability to explain the 

mathematical basis for procedures used, demonstrate flexible use of strategies, and 

determine whether strategies generalize to a broader set of problems. 

Department of Elementary and Secondary Education (DESE). As part of 

Governor Asa Hutchison's reorganization in 2019, the Arkansas Department of Education 

became the Department of Elementary and Secondary Education (Brantley, 2019). The 

Department of Elementary and Secondary Education refers to the entity formerly called 
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the Arkansas Department of Education (ADE). The Department of Elementary and 

Secondary Education is now a department of ADE, which includes other departments.  

Family-Income Level. The Arkansas Department of Education (2010) classified 

students who qualify for free or reduced lunches in the National School Lunch Program 

as low income and eligible for supplemental education services. Students reported as 

qualifying for free or reduced lunch in the National School Lunch Program are reported 

as economically disadvantaged on the Arkansas reports of achievement measures. School 

lunch status will be used in this study as the operational definition for family-income 

level. Family-income level is often referred to as socioeconomic status, SES (Pomeroy, 

2016; Sirin, 2005; White & Reynolds, 1993).  

Open Up Resources (OUR) Mathematics Curriculum. OUR mathematics 

curriculum is an open-source, standards-aligned (aligned to the Common Core State 

Standards for Mathematics) core curriculum for Grades 6-8 funded by OUR and authored 

by Illustrative Mathematics (OUR, 2019). Members of Illustrative Mathematics (2019) 

described the curriculum as a problem-based core curriculum designed to address content 

and practice standards and foster learning by engaging students in learning by doing 

mathematics, solving mathematical and real-world problems, and constructing arguments 

using precise language. 

Mathematical problem. According to Hiebert et al. (1996), a mathematical 

problem is a mathematical task that encourages students to “…wonder why things are, to 

inquire, to search for solutions, and to resolve incongruities” (p. 12), as opposed to a 

mathematical exercise involves only direct application of previously-learned procedures 

to obtain an answer. 
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Problem-based curriculum. Members at Illustrative Mathematics (2019) defined 

a problem-based curriculum as a curriculum in which students work on carefully crafted 

and sequenced mathematics problems during most of the instructional time.  

Problem-based learning (PBL). Boud and Feletti (1997) defined PBL as 

constructing and teaching courses using problems as the stimulus and focus of student 

activity. 

Procedural knowledge (fluency). Hiebert and Lafevre(1986) defined procedural 

knowledge as knowledge of the symbol representation system of mathematics and 

algorithms (rules) for completing mathematical problems.  

Traditional curriculum. Bergqvist and Bergqvist (2017) defined traditional 

mathematics curriculum as a mathematics curriculum focused primarily on content and 

applying procedures. In this study, traditional curriculum will refer to Big Ideas Math 

curriculum, a commercially available text, or Engage NY, a curriculum available as an 

Open Educational Recourse. 

Significance 

Research Gaps 

 This study provided quantitative data on the effect of using PBL, specifically the 

OUR Mathematics Curriculum, to assist educators in making decisions about curriculum. 

Increasing numbers of schools and districts across the United States are using OUR 

curriculum (Business Wire, 2018). OUR is a problem-based mathematics curriculum. 

Several researchers have investigated the effect of problem-based curricula and materials 

on student achievement (Cai et al., 2011; Kul, Çelik, & Aksu, 2018; Şad et al., 2017), but 

studies explicitly focused on OUR are needed. Some teachers, such as Powers (2019), 
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have shared anecdotal data, and the results seem promising. This study provided 

quantitative results on the effects of OUR on student achievement in mathematics. The 

results of this study will contribute to the knowledge-base to assist schools and districts 

considering the choices of curriculum materials for mathematics in Arkansas and other 

states. 

Possible Implications for Practice 

 The results of this study could provide schools and districts in Arkansas specific 

data on the effects of the use of OUR mathematics curriculum on student achievement. 

Districts and school leaders could use these data to inform decisions about adopting 

curricular materials for mathematics. State educational agencies could use the results of 

this study when choosing curricular mathematics materials for use in professional 

development or when recommending materials to districts. Universities could use the 

findings in this study to inform faculty, staff, and future educators about available 

mathematics curricular materials. If the free OUR Mathematics Curriculum materials are 

as effective as or more effective than higher-cost materials, school administrators may 

want to consider the fee materials. The results of this study could be used as background 

knowledge contributing to further research on OUR or other problem-based curricular 

materials, whether open-source or commercial.  

Process to Accomplish 

Design 

A quantitative, causal-comparative strategy was used in this study. For 

Hypotheses 1 through 4, the researcher used four 2 x 2 factorial between-groups designs. 

The independent variables for Hypotheses 1 and 2 were the type of mathematics 
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curriculum (OUR versus traditional) and gender (male versus female). The independent 

variables for Hypotheses 3 and 4 were the type of mathematics curriculum (OUR versus 

traditional) and school lunch status (free or reduced lunch versus no free or reduced 

lunch). The dependent variable for Hypotheses 1 through 4 was mathematics 

achievement measured by ACT Aspire mathematics test scores.  

Sample 

 This study's sample included scores from seventh- and eighth-grade students at 

two rural schools in Central Arkansas and two rural schools in Southeast Arkansas. The 

two schools in Central Arkansas, one using OUR and one using Big Ideas Math, were 

similar in demographics. The OUR school had a student population that consisted of 

Caucasian (92%) and Hispanic (8%). The comparison school had a racial demographic of 

Caucasian (88%), Hispanic (8%), American Indian/Alaskan Native (2%), and Two or 

more (3%). Family-income level was determined by lunch status, with 37% of the OUR 

school’s population on free or reduced lunches and 34% of the comparison school’s 

students receiving free or reduced-cost lunches. The two schools were also similar in 

school demographics regarding grade configuration (i.e., seventh grade included in 

elementary and eighth grade included in high school), district size (OUR = 764 and 

comparison = 842), and the average teacher tenure at the present school (OUR = 12.56 

years and comparison = 11.78 years). A difference was indicated in the student-teacher 

ratio (OUR = 5:1 and comparison = 8:1). 

 There were some demographic differences between the two Southeast Arkansas 

schools, one using OUR and one using Engage NY, from which sample student data were 

drawn for this study. For instance, the OUR school had a student population that 
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consisted of Caucasian (78%), African American (14%), Hispanic (5%), and Two or 

more (2%). The comparison school had Caucasian (83%), African American (10%), and 

Hispanic (5%), and Two or more (2%). Family-income level was determined by lunch 

status, with 62% of the OUR school’s population on free or reduced lunches and 1% of 

the comparison school’s students. Other demographics for the two schools included grade 

configuration (a Grades 6-7 middle school building for the OUR school and a Grades 7-

12 high school building for the comparison school), district size (OUR = 1,219 and 

comparison = 634), the average teacher tenure (OUR = 12.1 years and comparison = 8.2 

years), and student-teacher ratio (OUR = 11:1 and comparison = 7:1). The scores of 

students from each of the two OUR schools were stratified by grade level, gender, and 

family-income level for the data analysis. Students' scores from the two schools using a 

traditional mathematics curriculum were also stratified by grade level, gender, and 

family-income level.  

Instrumentation 

 In the spring, educators in all four schools administered the ACT Aspire 

mathematics subtest to all the students as part of the ACT Aspire Summative Assessment 

to measure achievement. ACT (2019) noted that the mathematics test measures topics 

including the number system, expressions and equations, ratios and proportional 

reasoning (Grade 7), functions (Grade 8), geometry, and statistics and probability. The 

test also includes lasting topics from previous grades: numbers and operation in base 10, 

numbers and operations-fractions, operations and algebraic thinking, and measurement 

and data. Item types on the subtest include selected-response, constructed-response, and 

technology-enhanced. Each correct selected-response and technology-enhanced item has 
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a score of 1 point with no points deducted for incorrect responses. Trained raters score 

constructed-response items according to a predetermined rubric. The mathematics scale 

score ranges from 400-453 in seventh grade and 400-456 in eighth grade, with 400 being 

a low score (ACT, 2019). ACT Aspire test items are aligned to predetermined 

benchmarks and undergo rigorous internal reviews and external audits to ensure validity. 

According to ACT (2019), Cronbach’s alpha was used to determine an internal reliability 

coefficient range for the mathematics test in each grade: seventh grade (.86 - .87) and 

eighth grade (.87 - .88). 

Data Analysis 

 Two by two factorial between-groups analyses of variance (ANOVAs) were 

conducted to address Hypothesis 1 and 2 using the type of mathematics curriculum (OUR 

versus traditional) and gender as the independent variables. Two by two factorial 

between-groups ANOVAs were conducted to address Hypotheses 3 and 4 using the type 

of mathematics curriculum (OUR versus traditional) and school lunch status as the 

independent variables. The dependent variable for all four hypotheses was student 

mathematics achievement, as measured by the ACT Aspire mathematics subtest scale 

score for the two grade levels. As is common in educational studies, an alpha level of .05 

was set for the two-tailed test of each null hypothesis (Siegle, 2009).  

Summary 

 A well-written PBL mathematics curriculum may assist educators desiring to 

implement PBL to increase students’ ability to transfer knowledge. Both adults and 

students in the United States have been unable to demonstrate the ability to transfer 

mathematical knowledge to new problem situations. Proponents of PBL, based on 
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constructivist learning theory, have suggested that students learning in problem-solving 

environments will develop logical structures that allow them to apply knowledge to 

various new problems and situations. Implementation of PBL requires carefully chosen 

problems that fall with a student’s zone of proximal development. Creating and finding 

these problems can be a challenge for educators; so, a well-written PBL curriculum may 

help educators teach mathematics. 

The use of problem-based curricular materials assists educators in desiring to 

implement PBL. The OUR Mathematics curriculum used by the experimental group in 

this study is a freely available PBL curriculum. This study is designed to compare scores 

of students taught using OUR Mathematics curriculum to those who have used more 

traditional mathematics curricula. Chapter II includes a review of the literature. Topics 

include PBL, PBL in mathematics, gender, and family-income level.   
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CHAPTER II 

REVIEW OF THE RELATED LITERATURE 

Curricular materials play an essential role in the educational process. Developers 

of mathematics curricular resources often endorse a teaching style, such as PBL or more 

traditional instruction, and this endorsement affects educators and learners' experience. 

Slavin et al. (2008) explained that some textbooks focus on innovative strategies such as 

problem-solving, alternate solutions, and conceptual understanding; some include a more 

traditional balance between algorithms concepts and problem-solving; and some 

emphasize a step-by-step approach to mathematics. Educators choosing and using each of 

these different resources would likely also advocate an associated teaching style, and 

curricular materials choices may affect students’ interactions with mathematics. 

According to Silver (1986), students working on story problems in traditional 

mathematics texts can often bypass the mathematical understanding of the problem by 

applying the operation emphasized in that section of the text. If this is true, students could 

obtain correct results without understanding the underlying mathematics. An educator's 

choice of textbooks or other curricular materials could influence instruction and alter 

students' learning experience. 

 An argument for using problem-based instruction is that it may ensure students 

have considered the underlying mathematical understanding as they have engaged in 

solving problems. Barrows (1986) asserted that PBL, grounded in authentic problems, 
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developed a better reasoning process in students and better prepared them to apply 

previously-learned knowledge. The use of authentic problems might discourage the 

student practice of basing solutions to problems on only the operation used in a text. 

Hiebert et al. (1996) argued that while authentic tasks were useful, tasks that appeared 

routine to educators could be seen as genuine problems if presented at the right time. If 

Hiebert’s assertion is correct, mathematics curricular materials employing a problem-

based theory of learning might include both authentic and purely mathematical problems 

in the educational sequence to promote students’ conceptual and procedural awareness of 

mathematical ideas. Employment of problem-based strategies might deepen students’ 

understanding of mathematics, promoting applying knowledge in diverse situations. 

However, whether the deepened understanding of mathematical concepts translates to 

better performance on standardized assessments remains to be seen. 

 This chapter will provide a review of relevant literature detailing PBL and the 

theoretical framework of experiential learning and constructivism. A discussion of 

problem-based instruction, as applied in mathematics, will include the use of problem-

based curricular materials. This chapter will also include a discussion of specific 

curricular materials implemented by the schools in this study, OUR Mathematics 

Curriculum, Eureka Math, and Big Ideas Math. The effects of gender and family-income 

level in mathematics will be summarized along with the influence of PBL-use on students 

of a different gender or family-income level. 

Theoretical Framework: Constructivism 

 Constructivism emphasizes the experiences of the learner as central to the 

learning process. Constructivist learning theory is built upon the idea that reality is 
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constructed based on the learner's experiences (Cooper, 1993), and therefore concrete 

experiences are an integral part of the learning process (Beard, 2018). Educators are 

employing constructivist theory approaches to create new experiences for the learner and 

promote new learning. Constructivist theory is based upon Dewey’s (1938) theory of 

experiential learning, in which he stated that experience is the optimal stimulus for 

learning. Dewey claimed that social and interactive processes were essential to learning, 

and the role of the educator is to create an educative experience. An educative experience 

is an active, rather than passive, learning process. Educators employing practices based 

on experiential learning and constructivist theories attempt to create students' experiences 

to promote new learning. 

 Well-designed educational experiences promote both new learning and good 

judgment. Dewey (1938) explained that not all experiences are educational, and some 

experiences hinder growth. Experiences should be designed to activate the learner and 

promote desired learning. Dewey warned that growth could happen in an undesirable 

direction, such as helping one become a better thief. Dewey proposed that educators 

should provide experiences that help learners to judge wisely and evaluate their desires. 

Experiential learning is not about catering to learners’ desires but includes experiences 

that help learners consider the consequences of following their desires. Educative 

experiences are designed to promote positive learner growth and judgment. 

 In constructivism, an extension of experiential learning theory, learning is 

described as a repeating cycle. Peterson and Kolb (2018) intimated that learning is a 

recursive cycle of concrete experience, reflective observation, abstract thinking, and 

active experimentation. This learning cycle is not linear but rather a cycle repeated as 
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learners construct and deepen their knowledge. Peterson and Kolb proposed that learners 

in this cycle attend to the experience, reflect on its meaning, reason about the 

generalization of the experience to make a decision, and then act on the decision. This 

cycle would promote learners’ critiques of ideas and desires, as Dewey (1938) 

recommended. Both constructivism and experiential learning theory describe learning as 

a repeating cycle resulting in more in-depth reflection and understanding. 

 Proponents of constructivism extend the experiential learning ideas by claiming that 

learners think about and reflect on knowledge and construct knowledge as they engage in 

problem-solving. Peterson and Kolb (2018) described changes in the learner required for new 

learning by saying, “…we accept that learning and change can only occur when the individual 

perception and meaning-making are interrupted" (p. 228). New learning requires an alteration of 

current thinking patterns. Cooper (1993) claimed that experiences determine a learner’s reality 

and that learning is problem-solving based on personal discovery. Learners discover new ideas 

by solving and reflecting upon challenging problems. Learners construct knowledge as they 

experience and engage in challenging problems, and PBL was designed according to this 

theoretical background. 

Problem-Based Learning 

 PBL, an application of constructivism, began as an adaptation applied during instruction 

to solve a learning problem rather than beginning as a theory developed independently from 

practical application. Barrows (1996) stated that PBL was developed in response to student 

claims that knowledge gained in medical school was largely irrelevant. Barrows claimed that 

PBL was developed at McMaster University Faculty of Health Sciences and was used during the 

3-year curriculum cycle of medical school, with the class graduating in 1927. By 1967, PBL had 



26 

been implemented in over 60 medical schools (Savery & Duffy, 1995) and expanded to other 

areas such as mechanical engineering, social work, optometry, architecture, nursing, legal 

training, business, and industry (Boud & Feletti, 1997). PBL extended into many fields in an 

attempt to make knowledge more meaningful for students. PBL was developed not in an office 

as an idea but by trial and error as educators were trying to make knowledge more applicable to 

and valuable for students. 

 PBL is an attempt to increase the practicality and applicability of the knowledge students 

gained in their studies. The original objectives for PBL included structuring knowledge for use 

in clinical contexts, developing an effective clinical reasoning process, developing self-directed 

learning skills, and increasing motivation for learning (Barrows, 1986). These objectives focused 

on the application of medical knowledge. A method was developed to meet these objectives in 

which ill-structured problems (problems with no clear solution path) were presented as they are 

in the real world. Learners assumed responsibility for their learning, teachers served as 

facilitators (tutors), and the authentic problems were those likely to be encountered during a 

student’s career (Barrows, 2002). The learner's role in PBL is like the role taken during a career 

where, as a part of a job, one faces problems to solve, takes responsibility for solving problems, 

and occasionally consults with others for potential solutions. The objectives and structure of PBL 

focus on what learners will be using and applying in their respective fields. 

 Students experiencing learning focused on using and applying knowledge may increase 

their abilities to acquire and use knowledge. Medical students in PBL environments performed 

as well or better on clinical examinations and evaluations, exhibited a higher degree of 

independent learning, considered PBL more enjoyable than traditional (tell and practice) 

methods, and placed greater emphasis on understanding the content (Albanese & Mitchell, 1993; 
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Vernon & Blake, 1993). In other fields, students experiencing PBL gained the ability to be self-

directed learners, acquired content knowledge in context, and became better problem-solvers 

(Boud & Feletti, 1997; Margetson, 1997; Savery & Duffy, 1995). The stated results appear 

consistent across different fields of study. Learning in a PBL environment may be associated 

with greater pleasure in learning, the ability to apply knowledge learned, and the capability to 

acquire new knowledge. 

 Since PBL emphasizes the application of knowledge and problem-solving, 

implementation methods have been adapted as PBL has been applied to different fields of 

knowledge. Boud and Feletti (1997) hinted that translation of the method to a new context 

without some changes is seldom possible. Educators often take ideas and modify them to fit the 

students or the context. Barrows (1986) posited that in the original PBL clinical model, students 

were given a patient's presenting picture in a simulation format, the students were then allowed 

free inquiry, and finally, the teacher might have facilitated or tutored. In fields that have no 

patients, PBL required adaptation. Barrows added that PBL had been transformed to meet the 

needs of different fields of study, but the use of problems in the instructional sequence as the 

stimulus for learning is the defining characteristic of PBL. The instructional sequence may 

include posed questions, unexplained phenomena, or problems involving health or community. 

PBL may describe various related strategies, but PBL strategies follow the general steps shown 

in Figure 2, comparing the method to traditional instruction. Traditional learning is content-

focused, and PBL involves working on a problem through which content is learned. Problem-

solving is common to different adaptations of PBL into other learning contexts. 
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Figure 2: The PBL learning process. From “Problem-based learning” by Queen’s University 

Centre for Teaching and Learning (2005). Reprinted with permission. 

 

In problem-based learning, educators sequence problems in an order designed for 

students to construct knowledge by interacting with problems. Barrows (1986) claimed that in 

PBL, educators design and sequence problems, and students develop knowledge as they engage 

in the problems. Instructors in the PBL environment serve as facilitators rather than dispensers of 

knowledge. Barrows claims that teachers provide knowledge when students determine that 

knowledge is needed to solve a given problem. PBL is an application of Peterson and Kolb’s 

(2018) recursive cycle of concrete experience, reflective observation, abstract thinking, and 

active experimentation. Students in PBL environments experience the problems as they reflect 

upon, think about, and experiment with posed problems. In PBL, students take time to ponder 

problems as their knowledge is constructed. 

Since students in PBL environments construct knowledge through solving problems, 

PBL may take more time than other methods to gain an organized base of knowledge. Albanese 
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and Mitchell (1993) noted that students learning through PBL processes sometimes scored lower 

than those learning in a traditional environment on general sciences exams. Since general 

sciences exams have typically measured basic knowledge and skills, this may indicate that basic 

knowledge and skills are more readily learned through other teaching methods. Albanese and 

Mitchell (1993) and Margetson (1997) noted disadvantages of PBL, including that PBL took 

more time, used more resources, and resulted in unpredictable or random learning. Two of these 

criticisms had to do with the cost, and a third was related to the learning. These criticisms may 

cause educators to pause as they consider implementing PBL. 

PBL may take more time than other methods, and effective PBL implementation involves 

careful planning by educators. Boud and Feletti (1997) warned that PBL is not only adding 

problem-solving exercises to traditional curricula. Implementation of PBL involves an in-depth 

change in the materials and instructional facilitation methods used rather than a quick addition of 

problem-solving tasks. Boud and Feletti (1997) and Margetson (1997) argued that including 

appropriate structures and critical reflections on the learning process during PBL implementation 

facilitate discovery and make learning both reliable and predictable. PBL implementation 

requires careful planning of problems, structures, and student reflection. The problems must fall 

within the learners’ zones of proximate development, as described by Vygotsky (2017). If 

students are to construct knowledge as they engage in problems. If a problem is too easy for 

students or so difficult that students cannot engage effectively in the problem, learning is 

unlikely to occur. Educators wishing to implement PBL must plan and work to ensure effective 

implementation. 

Despite the work required, those in many different educational settings began using 

problems as the basis for learning. A method launched in the medical field to increase student 
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motivation and diagnose problems has affected many other fields, including mathematics classes 

in public schools. Implementation in all these fields was intended to encourage learners to 

construct and apply knowledge. 

Problem-Based Learning in K-12 Mathematics 

The use of PBL expanded from medical and technical fields into public schools, and 

promises of student mathematical learning and problem solving motivated some mathematics 

instructors to move toward a problem-based approach. The first formal record of PBL used in K-

12 school mathematics programs was the Problem Based Learning Institute (Barrows, 1996). 

Some elements of PBL were integrated into mathematics before that time. For instance, 

Schoenfeld (1988) demonstrated that teaching only for procedural understanding could interfere 

with students’ abilities to learn new mathematical concepts and recommended posing 

mathematical problems to develop student understanding. Instructors implementing this 

approach would have been engaging some aspects of PBL. Later, Carpenter, Ansell, Franke, 

Fennema, and Weisbeck (1993) discovered that children could solve a wide range of problems 

much earlier than generally had been presumed and could solve problems based on modeling the 

problem rather than requiring pre-teaching of methods or algorithms. According to Carpenter et 

al. (1993), the prevailing belief before this time was that children must be taught algorithms or 

problem-solving methods before they can solve problems. Students learning by actively 

modeling problems is one characteristic of PBL. PBL teaching methods were developed to 

engage and build upon existing student modeling and problem-solving skills.  

Classrooms in which students actively use existing knowledge to engage in problems to 

understand mathematics have been described using several names. Approaches with these 

characteristics have been called problem-based learning (Barrows, 1986; Boaler, 1998; Erickson, 
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1999; Walker, 1999), a problem-solving approach (Erickson, 1999), reform mathematics 

(Erickson, 1999), open-ended mathematics (Boaler, 1998), constructivist mathematics (Walker, 

1999), student-centered mathematics (Saragih & Napitupulu, 2015; Walker, 1999), and open 

mathematics (Boaler, 1998; Erickson, 1999). Although these approaches may vary, making 

sense of mathematical situations and problem-solving are integral elements of each approach. 

PBL, by any name, is an instructional process in which students are expected to reason about and 

solve problems. 

Problem-Based Learning as Active Learning Through Problem Solving 

PBL involves learning through active student engagement in mathematical problems. 

Davis (1986) argued that doing mathematics was a process of thinking, not just symbolic 

manipulation. He claimed that doing mathematics involved creating a mental representation of 

the problem and some relevant knowledge to creating a solution. This idea parallels Piaget’s 

(1975) theory that students construct logical structures as they engage in problems. Erickson 

(1999) later contended that problem-solving tasks could inspire students to develop 

understandings of mathematical ideas and called for the implementation of PBL in mathematics. 

Learning mathematics by engaging in problems is an example of experiential learning, as 

Peterson and Kolb (2018) described. PBL applies experiential and constructivist theories by 

actively engaging students in doing mathematics. 

The use of PBL in mathematics immerses students in the experience of doing 

mathematics. Davis (1986) compared doing mathematics to a movie where one hears the words 

on a script, but one's thoughts are on "...the action, the dialogue, and the development of 

characters..." (p. 266). From Davis’s point of view, the joy of mathematics arises from 

developing and understanding mathematical ideas, just as the joy of seeing a movie includes the 
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action, the dialogue, and character development. Students who do not develop mathematical 

understanding may miss out on the joy of mathematics, just as those who only focus only on the 

words in a movie would not truly experience the movie. Implementation of PBL in mathematics 

includes actively engaging students in problems to encourage student development of 

mathematical ideas. 

Students in a PBL setting engage in problem-solving tasks, make sense of problems, and 

use their understanding to solve problems. Erikson (1999) described a problem-based approach 

as one in which students are given a problem-solving task, asked to make conjectures, asked to 

justify their thinking, and encouraged to discuss different strategies or approaches. He defined 

PBL as an approach in which students are expected to make sense of mathematical situations and 

solve problems with no well-defined solutions or procedures for solving. Even though Erikson’s 

description did not necessitate an authentic context for all of the work as described by Barrows 

(1986), Erikson’s description allowed for real-world problems, required the learner to take 

ownership of learning, encouraged the teacher to act as a facilitator, and made use of authentic 

problems as presented in Barrows (2002). Others, such as Hiebert et al. (1996) and Jensen 

(2015), have described a problem-solving approach as one that involved student sharing and 

discovery, made use of real-word problems, integrated learning of understanding with the 

learning of skills, emphasized both process and product, and may have used both student-created 

and teacher-created problems. All of these characteristics of a problem-solving approach were 

intended to encourage a more in-depth understanding of mathematics. Students engaging in PBL 

of mathematics are expected to make sense of mathematics as they engage in different types of 

challenging problems. 
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Problematizing Mathematics 

In mathematics, both authentic problems and routine problems can engage learners in 

investigating mathematical relationships. Authentic mathematics problems (ill-structured 

problems that might be encountered outside of an educational setting) were used in the Problem 

Based Learning Institute, the initial implementation of PBL in mathematics (Barrows, 1996). 

Traits of PBL, initially developed in the medical field, were transferred to a public-school 

mathematics environment. Barrows (2002) and Savery and Duffy (1995) argued that in PBL, 

problems must be authentic. However, Hiebert et al. (1996) ascertained that tasks that may 

appear routine (structured problems having no context or a made-up context unlikely to be 

encountered outside of an educational setting) to teachers might seem authentic to students. He 

asserted that problems are not inherently problematic nor routine, and teachers should 

problematize the subject rather than requiring mastery and application of skills. A problem 

would be problematized if presented so that learners engage in a problem to understand the 

concept before seeing solution methods. Hiebert et al. (1996) argued that mathematical 

understanding, organizing information in ways that highlight relationships between ideas, is 

more important than the type of problem used. The relational thinking described by Heibert et al. 

differed distinctly from mathematics in classrooms, where each day involves memorization and 

practice of a new mathematical procedure. When implementing PBL, both routine and authentic 

problems may promote a learner’s discovery of mathematical relationships and ideas. 

Problematizing mathematics, however, involves more than merely adding problems to an 

existing instruction. Instead, it requires changing the entire system of instruction so that learners 

participate in a community of people who practice mathematics (Hiebert et al., 1996). This 

community of practitioners represents an application of Vygotsky’s (2017) social constructivism. 
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In a mathematics community, students see themselves as participants rather than spectators of 

mathematics. Students in a PBL environment make reasoned conjectures about problem-solving 

tasks, justify their thinking, and listen to and consider others' ideas (Erikson, 1999). These 

actions describe the work of mathematicians. Mathematicians regularly engage in problem 

situations unfamiliar to them and consider engagement in problem-solving the nature of 

mathematics. Problematizing mathematics involves encouraging students to think and react as 

mathematicians who make conjectures and explore ideas within a community of learners. 

Problem-Based Learning Implementation and Student Achievement and Attitudes 

If the implementation of PBL encourages students to think like mathematicians, this 

thinking should translate to student success in mathematics. For instance, Jensen (2015), Ridlon 

(2009), Rosli et al. (2014), Şad et al. (2017), Trinter et al. (2015), and Yancy (2012) indicated 

increased student achievement in mathematics as a result of PBL implementation. However, 

Boaler (1998) noticed only a small effect of PBL on student achievement compared to more 

traditional methods. Despite this disparity, PBL implementation appears to overall positively 

impact student achievement in K-12 mathematics. However, overall achievement is only one 

measure of the success of students in mathematics. 

Problem-solving represents another measure of student achievement. Ridlon (2009) and 

Rosli et al. (2014) conducted studies revealing large positive effects of PBL implementation on 

problem-solving abilities in mathematics. However, Maree and Molepo’s (2005) study revealed 

no difference with the implementation of PBL on problem-solving behavior. Even though Maree 

and Molepo reported no significant difference in PBL implementation on students’ problem-

solving ability, overall PBL implementation appears to affect students' problem-solving ability 

positively. Boaler (1998) found that those taught using PBL demonstrated significantly higher 
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scores on application and problem-solving tests than those taught using traditional methods. She 

reported that students taught using traditional methods believed they should remember a rule or 

equation to solve problems rather than consider different methods that might be used to approach 

the problem. PBL may encourage students to consider different problem-solving methods. 

Dewey (1930) mentioned that in constructivism, students learn as they critique ideas. 

Considering different problem-solving methods involves a critique of the methods to determine 

which methods are viable to solve the given problem. Student mathematics achievement and 

problem-solving abilities are not the only measures that appear to be affected by PBL 

implementation. 

Student attitudes towards mathematics are essential to students’ success in mathematics. 

Boaler (1998), Ridlon (2009), and Rosli et al. (2014), observed more positive student attitudes 

toward mathematics with PBL implementation; however, Maree and Molepo (2005) observed no 

difference with the implementation of PBL on student attitudes towards mathematics. Overall, 

PBL appears to have a positive effect on student attitudes toward mathematics. Positive attitudes 

toward mathematics could affect student success in mathematics. Ridlon (2009) reported that 

students taught using PBL methods felt empowered because their ideas were valued. Students 

who believe their ideas are valued may be more likely to adapt their ideas to new problem 

situations. Boaler (1998) asserted that students’ beliefs that mathematics is adaptable, rather than 

rigid, were associated with student achievement. Students who see mathematics as adaptable 

may also be more likely to see value in conceptual rather than procedural mathematical 

knowledge. 
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Conceptual and Procedural Knowledge 

Conceptual and procedural knowledge are crucial to mathematics as mathematicians 

often make conjectures and work to understand a problem before arriving at a problem solution. 

Both conceptual knowledge (often referred to as conceptual understanding) and procedural 

knowledge (procedural fluency) are essential in mathematics (Carpenter, 1986; Hiebert et al., 

1996; Laswadi, Yaya, Darwis & Afghani, 2016; Rittle-Johnson, Schneider, & Star, 2015; Wu, 

1999). Mathematics instruction can aid the development of conceptual and procedural 

mathematics knowledge. 

Conceptually-focused instruction may increase both types of knowledge. Evidence has 

indicated that teaching methods, including a focus on conceptual understanding, resulted in 

increased conceptual and procedural knowledge (Canobi, 2009; Pesek & Kirshner, 2000) and 

increased students’ later mathematical development (Hecht & Vagi, 2010). Teaching focused on 

conceptual knowledge resulted in increased knowledge of other types. Conceptually-focused 

teaching increases both conceptual and procedural knowledge, which are both needed for 

students’ mathematical development. 

Traditional learning alone may not lead to conceptual understanding. Students in one 

causal-comparative study who received only relational instruction (instruction for meaning and 

understanding) outperformed those who received only procedural instruction and those who 

received a mix of procedural and relational instruction (Pesek & Kirshner, 2000). Schoenfeld 

(1988), in a case study involving 11 geometry classes with 2010 subjects, reported that many 

students who performed well on traditional assessments could not apply the knowledge they had 

proven in one question to a construction question requiring the application of that knowledge. 

Even though these students could write a proof, they did not demonstrate understanding allowing 
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them to apply their knowledge. Procedural knowledge without conceptual knowledge appeared 

to affect the usefulness of students' mathematical knowledge. 

Students who learn procedural knowledge without conceptual knowledge may exhibit 

more learning misconceptions. Learning procedures did not ensure usable knowledge had been 

acquired (Carpenter, 1986), and procedural fluency without conceptual understanding led to 

many common procedural flaws or misconceptions (Silver, 1986). Kamii and Dominick (1997) 

indicated that a group of third- and fourth-grade students who were asked to understand and 

invent their own procedures for number operations correctly answered more questions and 

demonstrated more mathematical understanding with fewer misconceptions than the group that 

was taught procedures. They also found that the taught-procedures group exhibited more severe 

misconceptions than those in the invented-procedures group. Students’ conceptual knowledge 

did not appear to increase and may have been harmed by rote learning of procedures. Boaler 

(1998) reported that students in a traditional learning environment developed cue-based behavior 

in which they tried to access the procedural knowledge they believed was expected in a given 

situation and often did not base choices on the context of the problems. Learning procedures 

without conceptual knowledge may lead to the misapplication of mathematical knowledge. Both 

conceptual and procedural knowledge may be necessary to promote the flexible use of 

knowledge in learners.  

While both conceptual and procedural knowledge are essential, disagreement exists about 

when and how to promote learners’ conceptual knowledge. NCTM (2014) claimed conceptual 

understanding should be taught before learning procedures; however, Rittle-Johnson and 

Koedinger (2009) indicated that students receiving concepts-first instruction and those receiving 

mixed instruction of concepts and procedures had similar achievements and demonstrated 
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similar conceptual knowledge. The order in which conceptual and procedural knowledge was 

learned may not matter. Students gained conceptual understanding through abstraction of 

procedures (Siegler & Stern, 1998), and other students receiving procedural instruction achieved 

at the same level as those receiving conceptually focused instruction (Perry, 1991). The success 

of procedurally focused instruction in these studies illustrated that conceptually-focused 

instruction is not the only way to increase students’ conceptual knowledge. Many agree that 

conceptual and procedural knowledge are essential, but no clear indication exists that one type of 

knowledge follows the other. 

Procedural knowledge and conceptual knowledge each promote learning of the other type 

of knowledge. Conceptual and procedural knowledge have been predictive of each other (Rittle-

Johnson et al., 2015; Schneider, Rittle-Johnson, & Star, 2011). Hiebert and Lefevre (1986) and 

Wu (1999) argued that meaningful learning includes the relationship between conceptual and 

procedural knowledge, and instruction should focus on both. Instruction emphasizing both types 

of knowledge may assist students in making connections among mathematical ideas. PBL 

emphasizes both conceptual and procedural knowledge. 

Implementation of PBL may lead to increases in procedural and conceptual knowledge. 

Problem-solving requires the application of both conceptual and procedural knowledge (Silver, 

1986). Implementing problem-based methods in the classroom has led to increased conceptual 

understanding and procedural knowledge (Inpinit & Inprasit, 2016; Laswadi et al., 2016). 

However, other researchers comparing the two methods, such as Boaler (1998) and Wilson, 

Nazemi, Jackson, and Wilhelm (2019), have determined that PBL implementation resulted in 

increased conceptual understanding but no significant change in procedural knowledge. 

Evidence from the studies mentioned seems to indicate that PBL positively affects conceptual 
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knowledge and does not negatively affect procedural knowledge. Walker (1999) performed an 

item analysis of TIMMS test items and reported that students learning in a student-centered 

environment performed slightly better than students taught using other methods on achievement 

test items measuring conceptual understanding. PBL implementation appears to have resulted in 

increases and conceptual knowledge and, in some cases, increased procedural knowledge. 

Learning of both conceptual and procedural knowledge through PBL may allow students to 

apply their knowledge better. 

Problem-Based Learning and Learning Transfer 

Knowledge becomes more flexible as learners strive to apply their understandings in 

different contexts. While applying strategies in different situations, students are provided with 

the opportunity to adapt and change (Roh, 2003). Any learning requires some change. Learners 

who struggled as they obtained knowledge demonstrated increased transfer (ability to apply in 

new situations) of knowledge (Boaler, 1998; Hiebert & Grouws, 2007; Jonsson, Kulaksiz, & 

Lithner, 2016; Schoenfeld, 1988). Learners in PBL environments may experience struggle as 

they adapt and change to new problem situations, but learning occurs amid this struggle. 

Although learners may struggle to use knowledge in new situations, this struggle may better 

prepare them to transfer their knowledge.  

One measure of learning is the ability to apply knowledge learned in new situations and 

new ways. Young (1993) claimed that the real learning test is the transfer of knowledge from the 

learning situation to a novel situation. If mathematics is to be useful outside of a classroom 

setting, transfer of learning is required. Billing (2007) described low-road transfer as the ability 

to apply knowledge in situations like the context in which it was learned. He described the high-

road transfer as the ability to extract principles underlying existing knowledge and apply them to 
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novel situations. The high-road transfer would require both procedural and conceptual 

knowledge of mathematics used. Billings also noted that rote learning of facts discouraged 

transfer, and learning principles and concepts encouraged the transfer of knowledge. Facts are 

essential, but more understanding may be needed to make the knowledge useful in new 

situations. Learning is useful when it can be applied in situations that differ from the learning 

context. 

A variety of teacher and student practices promote the transfer of learning. VanderStoep 

and Seifert (1993) posited that teaching why a formula applies to a given situation promoted 

better transfer than teaching how to apply it to a situation. Thinking about why a formula applies 

may promote a deeper understanding of the formula, allowing for better knowledge transfer. 

McGraw and Patterson (2017) noticed that learners working on tasks where all needed 

information was provided were hesitant to consider external information or set up boundaries on 

open-ended problems. Considering external information and considering problem boundaries are 

essential for the effective transfer of learning. Researchers have also noted transfer is promoted 

by dialogue and reflection (Nelissen, 2016); student struggle (Jonsson et al., 2016); and focusing 

student noticing on critical mathematical ideas (Lobato, Rhodehamel, & Hohensee, 2012). 

Implementation of PBL, as described by Barrows (2002) and Erickson (1999), would include the 

practices mentioned. If PBL includes the practices mentioned above, it follows that PBL 

implementation should promote more significant knowledge transfer than other teaching 

methods. 

Some instructional approaches appear to have no significant effect on student transfer of 

learning. Belenky and Nokes-Malach (2013) compared groups taught using a tell-and-practice 

strategy to those being encouraged to invent strategies to solve problems and found no 
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significant difference in transfer. Jitendra, Star, Dupuis, and Rodriguez (2013) reported that 

while students receiving schema-based instruction (instruction explicitly teaching problem 

structures, encouraging the use of visual representations, including heuristics, and emphasizing 

multiple strategies) outperformed the control group (traditional instruction) on problem-solving, 

both groups performed similarly on measures of transfer. Schema-based instruction and 

instruction encouraging student invention of strategies did not significantly affect the transfer of 

knowledge when compared to traditional instruction. 

PBL implementation may promote increased student ability to transfer knowledge. Kapur 

(2014) found that students receiving unguided problem-solving tasks before instruction, as is 

common in PBL, exhibited higher transfer than both those who received direct instruction and 

those who received guided problem-solving instruction first. Allowing students to struggle with 

the problem first may increase the ability to transfer knowledge to new situations. Similarly, 

Schalk, Schumacher, Barth, and Stern (2018) discovered that students presented with problems 

before instruction were better able to transfer knowledge than those receiving tell-and-practice 

instruction, common in traditional instruction. Schalk et al.’s results appear to validate Heibert et 

al.’s (1996) claim that non-contextual tasks can be considered problems for use in PBL if 

presented at the right time. Boaler (1998) reported that students in a school implementing PBL 

were better able to apply their knowledge compared to students in a school receiving traditional 

instruction. The ability to apply knowledge in new contexts is evidence of the transfer of 

knowledge. Learning in a problem-based setting appears to affect students’ ability to transfer 

knowledge positively. 
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Problem-Based Mathematics Curricula 

 Curricula for problem-based instruction were developed to engage students in the 

process of learning mathematics. The development of problem-based curricula began as 

early as 1927 (Barrows, 1996). Early PBL adopters noticed the need for curricular 

materials. According to Senk and Thompson (2003), problem-based curricula were often 

called standards-based curricula because of attention to mathematics content and process 

standards and were outlined in the 1989 publication, Curriculum and Evaluation 

Standards for School Mathematics, by the National Council of Teachers of Mathematics. 

Process standards describe how students are to reason with mathematical content and 

include reasoning about mathematical problems. The reasoning described in the process 

standards aligns with Barrows’ (1996) assertion that students develop knowledge to solve 

problems. Problem-based curricula are designed to engage students in solving problems, 

which is a learning process for students. 

 Because of an emphasis on the learning process, problem-based curricula contain 

different types of problems and exercises than traditional mathematics curricula. Senk 

and Thompson explained that standards-based (PBL) curricula contained more problem-

solving tasks, contained fewer exercises requiring only memorization or application of 

algorithms, and emphasized engagement and problem-solving. While some curricula 

appear to be focused on learning (algorithms and facts), PBL curricula were designed to 

engage students in the learning process by using mathematical problems. Bergqvist and 

Bergqvist (2017) highlighted six mathematical competencies: problem-solving ability, 

reasoning ability, representation ability, connection ability, communication ability, and 

applying procedures ability. They proposed that curricula emphasizing the first five of 
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these competencies represent a more problem-based message, and curricula emphasizing 

the content and applying procedures competencies represent traditional mathematics. 

Problem-based materials use engaging problems to encourage students to reason about, 

represent, and communicate mathematical ideas. 

Problem-based curricula assist instructors as they attempt to engage students in 

reasoning, communication, and problem-solving. According to Barrows (1996), problem-

based curricula have provided problem collections to keep learning on track, learning 

objectives associated with problems, and guidelines to assist with the transition from 

traditional to problem-based instruction. Problem-based curricula are designed to assist 

educators with the time-consuming challenge of choosing problems to meet different 

mathematical objectives. Boud and Feletti (1997) argued that problem-based curricula 

were needed because of the difficulty of translating a given approach to another context 

without modification. Translating problem-based learning from one context to another 

would require consideration of both the subject objectives and the zone of proximal 

development of students involved. Problem-based curricula may ease educators' burden 

by providing problems that are likely to engage students in problems on their level that 

align with the course or grade-level objectives. 

Problem-Based Learning Curricula and Measures of Student Success 

 If curricula are aligned to students' ability and grade level, one might expect to see 

differences in student success measures using the curricula. Students using standards-

based curricula and those using traditional curricula have scored similarly on measures of 

student achievement (Cai et al., 2011; Harwell, Medhanie, Post, Norman, & Dupuis, 

2012; Mathematica Policy Research & What Works Clearinghouse, 2017; Ridgeway, 
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Zawojewski, Hoover, & Lambdin, 2003; Ridlon, 2009, Tarr et al., 2008). However, Nargi 

(2018) indicated that students learning with a problem-based curriculum scored lower on 

mathematical achievement measures. Overall, the use of problem-based curricula appears 

to have little or no effect on traditional measures of student achievement. However, one 

may ask if the implementation of problem-based curricula affects student success in other 

ways. 

 Students’ transfer of learning, attitudes towards mathematics, and motivation to 

learn mathematics are also essential success measures in mathematics. The use of 

problem-based materials has been linked to increases in students’ skills in solving more 

complex problems (Budak, 2015; Cai et al., 2011; Ridgeway et al., 2003). Students’ 

engagement in problems provided in the curriculum may lead to greater abilities to solve 

other complex problems, which is evidence of learning transfer. Saragih and Napitupulu 

(2015) observed that students using problem-based materials improved mathematical 

thinking ability, exhibited more positive attitudes towards mathematics, and displayed 

greater motivation. Ridlon (2009) also noticed more positive student attitudes with the 

implementation of problem-based curricula. Increased thinking ability, attitudes toward 

mathematics, and motivation parallel the attitude changes and content understanding 

noticed by Vernon and Blake (1993) with PBL implementation in other study fields. The 

studies of curricula discussed here were not studies exploring the specific curricula used 

in this study, but similar results might be expected based on the curricula types. 

Open Educational Resources 

 Some curricula used in this study are open educational resources. According to 

Atenas and Havemann (2014), open educational resources are teaching and learning 
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materials that are freely available and openly licensed. Hylén, Van Damme, Mulder, and 

D’Antoni (2012) wrote that open educational resources were made initially available for 

higher education and are now available at all education levels: primary, secondary, and 

higher education. Free, openly licensed materials can be used at little or no cost by school 

districts. Open resources' benefits include innovative potential, cost efficiency, increased 

efficiency and quality, and open and flexible learning opportunities (Hylén et al., 2012). 

Many curriculum adopters could be drawn to open resources for the cost and efficiency 

benefits alone. Whatever the reason, the popularity of the materials is increasing at all 

levels. 

 Open educational resources seem to be as effective as commercially available 

materials. Hylén et al. (2012) claimed that open educational resources are not covered 

well by research. Most available research studies investigating open educational 

resources focus on social or economic issues such as widening access to resources or 

lowering the costs of resources. However, Hilton, Larsen, Wiley, and Fischer (2019) 

compared students’ mathematics achievement scores and reported that open educational 

resources were as useful as commercial resources. Although only one study comparing 

open educational resources to commercially available materials could be found, one 

would not expect a difference in the use of open educational resources on student 

achievement since open educational resources are defined by the distribution method 

rather than on the quality of materials. With that in mind, the focus needs to be on the 

quality of specific materials or curricula. 
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Open Up Resources Mathematics Curriculum 

 The OUR Mathematics curriculum was designed to offer a free, high-quality, 

problem-based curriculum to Grades 6-8 mathematics educators. According to OUR 

(2019), the OUR mathematics curriculum began as a 13-state initiative funded by the 

Gates Foundation and OUR to provide equitable access to a quality curriculum. OUR 

worked with experts from Illustrative Mathematics to write a curriculum made freely 

available as an open educational resource (OUR, 2019). If the freely available 

mathematics curricula are of high quality, school districts could adopt the curriculum 

without the financial burden of commercial curricula, thereby increasing equity among 

districts with differing financial resources. According to Illustrative Mathematics (2019), 

the OUR Mathematics Curriculum is a problem-based curriculum aligned to the content 

and practice standards outlined in the Common Core State Standards for Mathematics. 

Illustrative Mathematics claimed that students using the curriculum would learn by doing 

mathematics, would solve problems in mathematical and real-world contexts, and would 

construct arguments using precise language, which aligns with characteristics of 

problem-based curricula as described by Bergqvist and Bergqvist (2017). The problem-

based OUR Mathematics curriculum is designed to provide more equitable access to 

mathematics instruction. 

 To further encourage equity, the OUR Mathematics Curriculum was designed to 

aid teachers in implementing effective practices. According to Illustrative mathematics 

(2018), the curriculum was designed so that conceptual understanding and procedural 

fluency are taught together. Mathematics problems are sequenced to engage students in 

problems, and mathematics problems increase in sophistication to deepen students’ 
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understanding of mathematical relationships and expertise in mathematics. This 

approach, similar to that described by Hiebert et al. (1996), allows students to experience 

mathematics being learned and then revisit the same topics in other problems in the 

sequence to gain a deeper understanding. Illustrative Mathematics (2018) further asserted 

that the materials contain instructional strategy ideas associated with specific parts of 

lessons to encourage effective practices. According to Slavin et al. (2008), curricular 

programs that affect daily teaching practices and student interactions have more 

substantial effects on achievement measures than those emphasizing content or 

technology alone. If the materials are quality materials and promote effective teaching 

practices, educators may see increased student achievement. 

Open Up Resources Use, Quality, and Student Achievement 

 The OUR Mathematics curriculum received high ratings from curricula evaluators 

and was adopted by several school districts. The OUR Mathematics Curriculum has been 

evaluated by EdReports, an independent organization that evaluates curricula on focus 

and coherence, rigor and mathematics practices, alignment, and usability. OUR 6–8 

Mathematics curriculum received the highest rating among middle school mathematics 

programs on EdReports and was the only curricula rated to meet expectations in every 

category (EdReports.org, 2020; Illustrative Mathematics, 2018). The high ratings by 

EdReports may be related to the design of the curriculum described earlier. With the high 

evaluation ratings and free avaIlability of the curriculum, one may expect widespread 

use, and according to Business Wire (2018), by December 2018, over 200 districts and 

300,000 students had used the mathematics curriculum. Since the curriculum was 

launched in 2017, many districts had adopted the curricula soon after the initial release. 
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While high evaluation ratings and popularity of the curriculum are positive indicators of 

successful curricula, they are not measures of student success. 

 No formal studies on the effect of the OUR Mathematics curricula on student 

achievement could be found, but educators’ descriptions of the effect on student 

achievement appear promising. According to Business Wire (2018), teachers 

implementing the curriculum reported more student engagement and indicated they were 

surprised by what the mathematics students could do. Students in these classes appeared 

to have responded positively to the expectations of problem-solving. Powers (2019), a 

seventh-grade teacher using the materials, reported increased student achievement results 

for all students and subpopulations of students (including economically disadvantaged 

students) using the OUR Mathematics Curriculum. Limited teacher testimony indicates 

that the use of OUR Mathematics resources may positively influence student 

achievement, but no scientific studies investigating the OUR mathematics curriculum 

were found. 

Eureka Math (EngageNY) Curriculum 

 The Eureka Math curriculum was initially developed as an open education 

resource. According to Great Minds (2016), the Eureka Math curriculum was founded by 

the non-profit Great Minds in 2007 and developed by classroom teachers and 

mathematicians across the United States in collaboration with New York state. The 

Eureka Math curriculum is freely available as an open educational resource under the 

curriculum's original name, Engage NY (Great Minds, 2016; New York State Education 

Department, 2020). Similar to the OUR mathematics curriculum, Eureka Math is freely 

available for use by educators. Eureka Math also received high ratings when evaluated by 
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EdReports. According to Heitin (2015), the EdReports ratings of Engage NY (now also 

called Eureka Math) were higher than the ratings of any other middle school mathematics 

curricula in 2015. These ratings remained the highest ratings for middle school 

mathematics curricula until the release of the OUR mathematics curricula in 2017. OUR 

Mathematics and Eureka Math Curricula share more characteristics than being freely 

available and receiving high ratings. 

 The Eureka Math curriculum also shares the OUR mathematics curriculum goals 

of building both conceptual and procedural knowledge; however, differences exist in the 

way Eureka math is designed to reach those goals. Diniz (2020) claimed that the Eureka 

Math curriculum was designed using learning progressions to teach mathematics as a 

coherent body of knowledge to build in-depth conceptual and procedural knowledge 

(fluency). Diniz explained that fluency requires understanding, not just obtaining 

answers. Both the OUR Mathematics Curricula and the Eureka Math Curricula were 

designed to help students gain procedural knowledge through understanding; however, 

the two curricula' instructional approaches differ. The OUR mathematics curriculum 

aligns with descriptions of problem-based texts described by Bergqvist and Bergqvist 

(2017), while Eureka Math contains fewer elements of problem-based curricula and more 

elements of traditional texts as described by Slavin et al. (2008). The Eureka 

Mathematics curriculum is designed for more direct teacher instruction. Educators using 

the Eureka Math curriculum would teach both conceptual and procedural knowledge 

using more traditional rather than problem-based methods. 

 The Eureka Math Curriculum gained quick popularity and resulted in reports of 

success from educators using the curriculum. According to Great Minds (2016), within 3 
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years of the release of the Engage NY curriculum (later known as Eureka Math), it 

became the most widely used mathematics curriculum in the United States. According to 

data stories posted on the Eureka Math (2020) website, several districts reported gains in 

student achievement measures after adopting and using the curriculum, such as an 

average gain of 16 percentage points on the Smarter Balanced assessment after 4 years of 

curriculum implementation in nine partner elementary schools in Los Angeles, 4.4 

average percentage point gains on the TNReady Mathematics achievement test across all 

grades in Jackson-Madison County Public Schools in Tennessee, and 7.3 average 

percentage points gains on the Grades 3-8 state LEAP test in West Feliciana Parish 

Schools near Baton Rouge, Louisiana. Several districts reported increases in the percent 

of students scoring proficient and above (or equivalent) on achievement tests in their 

areas: Shelby County Schools, Memphis, Tennessee; Detroit Public Schools, Michigan; 

St. James Parish Schools, Louisanna; Iberia Parish Schools, Louisiana; Washington DC 

schools; and Public Charter Schools, Oakland, California (Eureka Math, 2020). The data 

described by these districts appear to indicate student achievement gains using Eureka 

Math; however, no scientific studies supporting this assertion could be located. 

Big Ideas Math Mathematics Curriculum 

 Big Ideas Math is a commercially available curriculum emphasizing traditional 

instruction. According to Big Ideas Learning (2019), the commercially available 

curriculum represents a balanced approach of discovery and direct instruction based on 

learning and instructional theory. The curriculum includes reasoning opportunities, 

engaging activities for understanding examples with steps, thought-provoking exercises, 

and sequencing, which builds on previously taught material. The description suggests a 
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blending of traditional and PBL approaches. Each lesson begins with an inquiry activity 

and then direct instruction (Big Ideas Learning, 2019). Slavin et al. (2008) claimed that a 

traditional text might contain inquiry activities, but instruction focuses on content and 

procedures rather than on problem-solving. Since the bulk of the text is content and 

procedure-focused, Big Ideas Math might best be described as a traditional commercial 

textbook curriculum and contains more traditional instruction elements than either the 

OUR or the Eureka Math curriculum. 

 Even though the Big Ideas Math curriculum may be described as a traditional 

curriculum, it contains several features that may be useful to educators and students. The 

authors of Big Ideas Math emphasized both conceptual understanding and procedural 

fluency (Big Ideas Learning, 2019). Hiebert and Lefevre (1986) claimed that an emphasis 

on procedural and conceptual understanding, regardless of instructional methods, resulted 

in increased student achievement. The authors of the text blended both types of 

understanding. Intervention strategies were embedded in Big Ideas Math with the 

inclusion of more in-depth supplemental materials. (Big Ideas Learning, 2019). Educators 

may assist in meeting the diverse needs of learners using provided intervention materials. 

Big Ideas Math supplemental resources also contain technology connections. Educators 

could blend instructional practices for students using technology resources. Big Ideas 

Math contains several aids for educators; however, no studies of Big Ideas Math's 

effectiveness could be located. 

Gender and Mathematics Achievement 

 Historically, males and females have performed differently on measures of mathematics 

achievement. Since the 1970s, researchers such as Awofala (2017); Fennema (1974); Fennema 
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and Hart (1994); Hyde, Fennema, Ryan, Frost, and Hopp (1990); Voyer and Voyer (2014) have 

noticed a gender gap in mathematics achievement. Recently, Guven and Cabakcor (2012), 

Pomeroy (2016), Fennema (1974), Reilly et al. (2015), Moore (2015); and Witonski (2013) 

reported the achievement gap might be closing or nonexistent, but Robinson and Lubienski 

(2011) reported the gap favoring males in mathematics achievement is widening. Overall, the 

evidence indicates a difference in males' and females' performance in mathematics achievement 

measures. This difference could be grounds for investigating the mathematics performance of 

males and females more closely. 

Males and females may experience divergent rates of growth in mathematics 

achievement. After following students from the beginning of kindergarten through their eighth-

grade year, Robinson and Lubienski (2011) reported that mathematics achievement scores were 

similar in kindergarten and lowered through elementary school so that females’ scores were 

lower than males by eighth grade. Similarly, Ai (2002) reported that females started school with 

higher mathematics achievement than males but had a slower growth rate. These differing rates 

of growth may contribute to the gender gap in mathematics. If differences in mathematics 

achievement of males and females are considered critical, this change in achievement over time 

could be the pretext for further exploration. 

Career Choices and Attitudes Towards Mathematics by Gender 

The gender gap in mathematics may influence students' career choices, and this influence 

may be a reason to investigate gender differences in mathematics. Compared to males, females 

are underrepresented in science, technology, engineering, and mathematics (STEM) fields 

(Fennema & Hart, 1994; Reilly et al., 2015). Boaler, Altendorff, and Kent (2011) asked if 

females' career choices could be affected by differences in mathematics achievement and if other 
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factors such as class choice or interest contributed to differences in males' and females' career 

choices. Boaler et al. noticed that males participated in more advanced mathematics classes than 

females. Advanced mathematics classes have been a gateway to many STEM careers. Pomeroy 

(2016) determined that females were less likely than males to express interest in a mathematics-

related career. Mathematics achievement could affect students’ choice of mathematics courses 

taken in high school and choice of career. However, other factors such as attitude towards 

mathematics could affect both achievement and choices made by students. 

Males and females may also differ in their attitudes towards mathematics. Compared to 

males, females reported more anxiety (Hyde et al., 1990) and less self-confidence (Çiftçi & 

Yildiz, 2019) in mathematics. Anxiety and lack of confidence could affect mathematics 

achievement. Fennema and Hart (1994) and Hyde et al. (1990) reported females had a more 

negative attitude than males towards mathematics on measures of confidence, anxiety, and the 

perceived usefulness of mathematics, and according to Hyde, differences in attitudes increase as 

students age. This widening difference in attitude parallels a widening difference in mathematics 

achievement scores noticed by Robinson and Lubienski (2011). According to Pomeroy (2016), 

females reported feeling less confident about mathematics than did males, even when 

achievement test scores were the same. This evidence suggests that achievement may not be the 

sole cause of differences in attitudes towards mathematics. However, Ai (2002) discovered that 

attitudes toward mathematics were related to growth in mathematics achievement. Mathematics 

achievement and attitudes towards mathematics appear to be related in some way. Since attitudes 

could vary by country or culture, an investigation of males’ and females' international 

comparisons may be warranted. 
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International Comparisons on Mathematics and Gender 

Mathematics achievement, at the international level, may differ from mathematics 

achievement in the United States. After comparing international mathematics results, Else-Quest 

et al. (2010) reported evidence of males and females' overall similarity in mathematics 

achievement but found differing achievement of males and females in particular countries. In 

Nigeria, Awofla (2017) noticed correlations between gender and performance in mathematics. 

Awolfa’s correlations could parallel the reported achievement gaps by gender in the United 

States (Hyde et al., 1990; Voyer & Voyer, 2014). In the United States, a difference was noted in 

both achievement and attitudes towards mathematics, causing one to ponder international 

attitudes towards mathematics by gender. 

Internationally, attitudes toward mathematics by gender also differ from those described 

in the United States. Else-Quest et al. (2010) observed that males, in general, reported more 

positive attitudes than females towards mathematics, but this difference was not observed in 

every country. They found that, generally, students from nations with higher overall mathematics 

achievement expressed more negative attitudes toward mathematics. This finding could lead to 

consideration of a correlation between pressure to perform and attitudes towards mathematics. 

Awofla (2017) also reported connections between gender and attitudes toward mathematics in 

Nigeria. Similar to evidence of international mathematics achievement, no overall differences in 

attitudes towards mathematics were observed, but differences existed in particular countries, 

such as the United States (Fennema & Hart, 1994; Hyde et al., 1990). Attitude differences in 

particular countries that do not appear to exist internationally may be grounds for wondering if 

instructional practices such as the teaching methods used in classrooms may play a role in 

mathematics achievement or attitudes towards mathematics by gender. 
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Gender and Problem-Based Learning 

Implementation of problem-based learning may affect the mathematics achievement and 

choice of mathematics courses of males and females. Ajai and Imolo (2015), Ojeleye and 

Awofala (2018), and Yancy (2012) reported that males and females scored similarly on 

mathematics achievement measures with the implementation of PBL. Boaler and Staples (2008) 

noted that no mathematics achievement gap by gender existed in schools implementing PBL, 

while a gap persisted in schools using traditional instruction. PBL may help narrow the 

achievement gap by gender and may affect males and females in other ways. Boaler and Staples, 

2008 noticed that both males and females in schools implementing PBL progressed to higher 

mathematics courses than students in schools implementing traditional instruction (Boaler & 

Staples, 2008). These results may be grounds for considering the effects of PBL implementation 

on the choice of mathematics courses. If the implementation of PBL affects the mathematics 

achievement and attitudes of males and females, one might wonder if it also affects attitudes 

towards mathematics. 

Males’ and females’ attitudes towards mathematics appear to be affected by the 

implementation of PBL. According to Boaler (1997, 1998) and Yancy (2012), males and females 

exhibited different attitudes towards traditional and problem-based mathematics instruction, but 

females expressed significantly more positive attitudes towards PBL. If females’ attitudes are 

more positively affected, the gender difference in mathematics attitudes could narrow with PBL 

implementation. According to Boaler (1997), even though both males and females expressed 

dislike for traditional mathematics, females reported being more disaffected. Boaler noted that 

females' responses indicated their dislike of traditional mathematics was related to their desire to 

understand the concepts thoroughly, and males seemed more content to “play the mathematics 
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game” (p. 292) by participating in mathematics they did not yet understand. Females seemed 

more dissatisfied in mathematics classes, emphasizing procedural knowledge rather than 

conceptual knowledge (understanding). Implementation of PBL affects males' and females' 

attitudes towards mathematics, which could provide grounds for consideration of reasons for 

further investigation of the effect of PBL on females' attitudes. 

Females have reported several appealing characteristics of problem-based instruction. 

After analyzing results of a qualitative study, Schettino (2018) created a framework for 

mathematics instruction that included themes reported as noteworthy to females such as “(1) 

ownership of knowledge, (2) justification—not prescription, (3) the connected curriculum, and 

4) shared authority" (p. 60). The themes outlined in this framework are typically present in PBL. 

Students are expected to be responsible for their learning (ownership), be able to explain why 

their solutions to problems make sense (justification), and view the teacher and others as 

facilitators of learning (shared authority). Additionally, curricular materials such as OUR, 

Eureka Math, or Big Ideas Math help ensure a connected curriculum. Females have responded 

positively to many themes that are often present in PBL. If specific instructional strategies 

worked for males and females, in general, they might work for other student groups in improving 

mathematics achievement. 

Level of Family Income and Mathematics Achievement 

Family-income level is referred to by different terms in research. Family-income level is 

often referred to as socioeconomic status or SES (Pomeroy, 2016; Sirin, 2005; White & 

Reynolds, 1993). School lunch status has often been used to measure family-income level and 

may refer to family-income levels using the term school lunch status (Boaler et al., 2011; 

Witonski, 2013). School lunch status was used in this study as a measure of family-income level. 
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Investigations by family-income levels are needed because low family-income levels 

may affect students’ education. Reardon (2013) claimed that students from low-income 

households were less likely to attend college and scored lower on achievement tests. Reardon 

further explained that the achievement gap between children from low-income and high-income 

homes has widened in the last 30 years, while the achievement gaps related to other demographic 

characteristics, such as race, have narrowed. The observed achievement gap and decreased 

likelihood of college attendance may be the result of students' challenges from low-income 

families. 

Challenges and Strengths of Students with Low Family-income Level 

Students from low-income backgrounds face obstacles within their families and in the 

world outside of the family setting. Students from families with low-income levels may be 

affected by household disorganization (Garrett-Peters, Mokrova, Vernon-Feagans, Willoughby, 

& Pan, 2016), a lack of resources (Reardon, 2013), an increased likelihood of being raised in a 

single-parent home (Reardon, 2013), uneducated parents (Reardon, 2013), fixed mindsets (Claro, 

Paunesku, & Dweck, 2016), and lack of parental involvement (Gordon & Cui, 2014). These 

challenges in the family present possible obstacles to learning. Also, students with low-income 

backgrounds are less likely to participate in sports, academic clubs, civic activities, and 

community life (Reardon, 2013). Challenges such as household disorganization or lack of 

resources may place such a burden on students that participation in sports or clubs might be 

difficult. Students from households with low family-income levels may have many challenges 

but also may possess specific strengths. 

Students’ family-income level appears to be related to characteristics that may affect 

students positively and negatively. For instance, White and Reynolds (1993) discovered that 
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students from families with low family-income levels scored lower than those from families with 

higher family-income levels. Similarly, White and British Columbia Teachers’ Federation (2012) 

reported that many students with low family-income levels also have reduced attendance rates. 

However, White and British Columbia Teachers’ Federation (2012) also noted many positive 

characteristics of these students with low family-income levels: the ability to verbalize their 

needs, to be sensitive towards other students, and to recover more quickly from setbacks. 

Adverse conditions associated with low family-income levels could cause challenges in some 

areas and build strengths in others. Therefore, the test becomes how these challenges and 

strengths affect performance in mathematics. 

Family-Income Level and Mathematics Performance 

Given the influence of family-income level on other areas of student learning, it would 

not be surprising to find that students’ family-income level is related to their mathematics 

performance. Students having low family-income levels scored lower on measures of 

mathematics achievement than students with a higher family-income level (Alordiah, Akpadaka, 

& Oviogbodu, 2015; Boaler et al., 2011; Gustafsson et al., 2018; Pomeroy, 2016; Sirin, 2005). 

Overall, evidence suggests that family-income level affects student achievement. Childers (2015) 

revealed students in Arkansas with higher family-income levels performed better than those with 

lower family-income levels on the Arkansas End of Course Geometry Examination. Although 

the Geometry exam is not given to middle school students, one may wonder if middle school 

students in Arkansas would be similarly affected. Family-income level appears to negatively 

affect student achievement. 

The belief that one is not a person who can achieve in mathematics or the belief that 

mathematics does not lead to a career might influence one’s desire to engage in the subject. 
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Pomeroy (2016) reported that students with a higher family-income level reported more 

confidence in mathematics than students having a lower family-income level. Confidence in 

mathematics could affect achievement and desire to participate in the subject. Pomeroy further 

noted that students perceive mathematics as a subject in which only smart people excel and that 

students of low family-income level reported seeing sports, rather than mathematics, as a path to 

their future career. In this case, students’ perceptions of their abilities may have affected their 

choice of career. Boaler et al. (2011) noticed that students with low family-income levels were 

less likely to participate in higher-level mathematics courses. Students' beliefs about their ability 

to achieve in mathematics may affect both mathematics courses and career choices. If a sub-

group of students, such as those with low family-income levels, do not take higher-level 

mathematics courses, this could result in mathematics classes grouped by student sub-group. 

Ability Grouping and Students with Low Family-income Levels 

Ability grouping may affect the types of tasks students are given in mathematics classes. 

Pomeroy (2016) reported that ability grouping created classes segregated by family-income level 

and ethnicity, with top classes given high cognitive demand tasks and low classes given only low 

cognitive demand assignments. If students are not provided the opportunity to engage in rigorous 

mathematics because of the school setting, they may be unlikely to achieve at a rigorous level. If 

this is not the cause of the gap, it might widen an already existing gap. 

Ability grouping may affect the overall quality of instruction received by students. 

Gustafsson et al. (2018) asserted that students of low family-income levels tended to receive 

lower-quality instruction. The students in most need of high-quality instruction may be the ones 

least likely to receive it. Gibbs and Hunter (2018) asserted that unless a teacher intervenes to 

encourage all students' participation, those who know more learn more and do not know as much 
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learn less. They wondered if there was a way to combine students in classes while ensuring 

partition by all students in quality instruction. Dietrichson, Bog, Filges, and Jorgensen (2017) 

suggested that interventions such as tutoring, progress monitoring with feedback, and 

cooperative learning positively affect the achievement of students from low socioeconomic 

backgrounds. Implementing strategies such as these in classes that include students from both 

low and high family-income backgrounds may be one way to avoid ability grouping and narrow 

the achievement gap by family-income level. 

Problem-Based Learning and Family-Income Level 

Implementation of PBL requires all learners' participation (Barrows, 1986) and may also 

decrease the performance gap present by family-income level. Ridlon (2009) reported that 

students taught with a PBL approach exhibited improved student achievement, and students 

having low family-income levels demonstrated higher achievement gains than students from 

higher family-income levels. If the use of PBL leads to higher gains for students and more 

significant achievement gains for students with low family-income levels, then the use of PBL 

may assist in diminishing the achievement gap by family-income level. Holmes and Hwang 

(2016) and Hwang et al. (2018) observed that the mathematics achievement gap by family-

income level narrows or remains about the same with PBL implementation. Vega and Travis 

(2011) and Witte and Rogge (2012) revealed that, at times, even when overall student 

achievement in mathematics did not significantly improve with PBL implementation, students 

with low family-income levels displayed significant gains. Using PBL may improve students' 

mathematics achievement with low family-income levels more than that of students with higher 

family-income levels. Because of PBL implementation's positive effect on students with low 
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family-income levels, the use of the method may serve to narrow or close the achievement gap 

by family-income level. 

Implementation of PBL could affect students’ decisions to take higher-level mathematics 

courses in high school. Boaler et al. (2011) asserted that more problem-based mathematics 

practices would decrease differences by family-income level of students participating in higher-

level mathematics courses after studying students’ progress from middle school into high school. 

This assertion provides grounds for considering a possible effect of PBL implementation on 

students’ participation in higher-level mathematics courses. The possible effects of PBL 

implementation on students from low family income backgrounds highlight the need to consider 

family income in the present study. 

Summary 

 Implementation of PBL in mathematics differs slightly from the original PBL 

design but still uses problems, often found in problem-based curricula, as a learning tool. 

PBL, proposed by Barrows (1996) for use in the medical field, referred to using real-

world problems as the stimulus for teaching. As the method spread to mathematics, PBL 

was modified to include both real-world and purely mathematical problems (Hiebert et 

al., 1996). If mathematical problems are used at an appropriate time, students may 

approach mathematical problems with the same sense of wonder and intrigue as they 

would real-world problems. Educators may use problem-based curricula as a resource for 

mathematical problems when implementing PBL (Boud & Feletti, 1997). Suitable 

materials may allow educators to focus on practical implementation rather than spending 

time searching for problems to use. Problem-based curricula include both real-world and 

mathematical problems for use by educators implementing PBL. 
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 The use of PBL might affect student achievement and the ability to solve complex 

mathematical problems (Boaler, 1998, Budak, 2015); the performance of males and 

females on achievement measures (Boaler, 1998; Yancy, 2012); and the achievement gap 

by family-income level (Ridlon, 2009; Witte & Rogge, 2012). Given these possible 

effects, this study's focus was to explore the effects of a problem-based curriculum 

(OUR) on student achievement by gender and by family-income level. The goal is to 

increase the knowledge base of those making decisions about the use of curricular 

materials. Chapter III includes a discussion of the methodology used in this study, 

including a description of the research design, instrumentation, data collection, sample, 

data analysis, and limitations. 
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CHAPTER III 

METHODOLOGY 

 The review of literature suggested that students can construct knowledge as they 

engage in and experience challenging problems as their teachers serve as facilitators of 

learning in PBL settings with PBL curriculum. PBL in mathematics has focused on 

problem-solving, reasoning, and communication to develop students' conceptual and 

procedural knowledge of mathematics. Mathematics curricula have been designed to 

facilitate educators with the implementation of PBL. PBL implementation may affect 

students' mathematical achievement, including attitudes towards mathematics and 

problem-solving abilities. Implementation of PBL could positively affect females and 

students with low family-income levels, groups that have scored lower on mathematics 

achievement measures. Information about the effectiveness of mathematics curricula, 

both with the entire student population and with specific sub-groups of students, is useful 

to educators making decisions about adopting curricula for use in middle school 

mathematics. This chapter discusses the research design, the sample used in the study, the 

instrumentation, the data collection procedures, the analytical methods, and the study's 

limitations. 

Research Design 

A quantitative, causal-comparative design was used in this study. A causal-

comparative design was used because the grouping variables could not be manipulated, 
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and the researcher was attempting to determine the cause for possible differences in the 

groups (Mills & Gay, 2019). Hypotheses 1-4 were tested using four 2 x 2 factorial 

between-groups designs. The independent variables for Hypotheses 1 and 2 were the type 

of mathematics curriculum (OUR versus traditional) and gender (male versus female). 

The independent variables for Hypotheses 3 and 4 were the type of mathematics 

curriculum (OUR versus traditional) and school lunch status (free or reduced lunch 

versus no free or reduced lunch). The dependent variable for Hypotheses 1 through 4 was 

mathematics achievement measured by ACT Aspire Mathematics test scores. According 

to Leech, Barrett, and Morgan (2015), a factorial between-groups design was appropriate 

because each participant score was in only one group, there were two or more 

independent variables, and there was only one dependent variable. Each of the four 

hypotheses in this study used a 2 x 2 factorial ANOVA. 

Sample 

 This study's sample included a stratified random sample of scores from seventh- 

and eighth-grade students at two rural schools in Central Arkansas and two rural schools 

in Southeast Arkansas. The populations of the two schools in Central Arkansas, one using 

OUR and one using Big Ideas Math, were similar in demographics. The OUR school had 

a student population that consisted of Caucasian (92%) and Hispanic (8%). The 

comparison school had a racial demographic of Caucasian (88%), Hispanic (8%), 

American Indian/Alaskan Native (2%), and Two or more (3%). Students' family-income 

level was determined by school lunch status, with 37% of the OUR school's population 

receiving free or reduced lunches and 34% of the comparison school's students receiving 

free or reduced-cost lunches. The two schools were also similar in school demographics 
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regarding grade configuration (seventh grade included in elementary and eighth grade 

included in high school), district size (OUR = 764 and comparison = 842), and the 

average teacher tenure at the present school (OUR = 12.56 years and comparison = 11.78 

years). The schools were different in the student-teacher ratio (OUR = 5:1 and 

comparison = 8:1). 

 The two Southeast Arkansas schools from which samples of student data were 

drawn for this study had similar racial makeup and percentages of students with free or 

reduced lunch status but different building configurations and district sizes. The control 

group school used OUR, and the comparison school used the Engage NY mathematics 

curriculum. The OUR school had a student population that consisted of Caucasian (78%), 

African American (14%), Hispanic (5%), and Two or more (2%). The comparison school 

had Caucasian (83%), African American (10%), Hispanic (5%), and Two or more (2%). 

Socioeconomic status was determined by lunch status, with 62% of the OUR school's 

population on free or reduced lunches and 61% of the comparison school's students. 

Other demographics for the two schools included grade configuration (a sixth-grade 

through seventh-grade middle school building for the OUR school and a 7th-grade 

through and 12th-grade high school building for the comparison school), district size 

(OUR = 1,219 and comparison = 634), the average teacher tenure (OUR = 12.1 years and 

comparison = 8.2 years), and student-teacher ratio (OUR = 11:1 and comparison = 7:1). 

 This study's sample data were obtained using a stratified random sample of scores 

from the four schools in the study. Each grade level data was stratified by family-income 

level and gender, yielding a sample that consisted of 160 seventh graders and 160 eighth 

graders. For each grade level, the sample included 40 male, low family-income level, 
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OUR use; 40 female, low family-income level, OUR use; 40 male, not low family-

income level, OUR use; 40 female, not low family-income level, OUR use; 40 male, low 

family-income level, traditional curriculum use; 40 female, low family-income level, 

traditional curriculum use; 40 male, not low family-income level, traditional curriculum 

use; and 40 female, not low family-income level, traditional curriculum use. The 

ethnicity of students in the sample included Caucasian (88.1%), African American 

(6.9%), Two or more races (4.1%), and three students missing ethnicity data (0.9%). 

Instrumentation 

 Scores from the mathematics subtest of the 2019 ACT Aspire Summative 

Assessment served as the instrument used to measure student achievement in this study. 

The ACT Aspire mathematics subtest scores were obtained in the form of secondary data 

from school databases. The ACT Aspire mathematics subtest scale score was used to 

provide data for the dependent variables in Hypothesis 1-4. The mathematics scale score 

ranges from 400-453 in seventh grade and 400-456 in eighth grade, with 400 being a low 

score (ACT, 2019). According to ACT (2019), the ACT Aspire test used items across an 

expected learning trajectory for each domain, and expected grade-level student 

achievement across the trajectory is considered. 

Students in grades 3-10 in Arkansas schools take the ACT Aspire Summative 

Assessment to measure achievement each year. ACT (2019) noted that the mathematics 

test measures topics including the number system, expressions and equations, ratios and 

proportional reasoning (Grade 7), functions (Grade 8), geometry, and statistics and 

probability. The test also measures lasting content, a content category created to assess 

students’ knowledge of mathematical content expected to be retained from previous 
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grade levels (numbers and operation in base 10, numbers and operations-fractions, 

operations and algebraic thinking, and measurement and data). Item types on the subtest 

included selected-response, constructed-response, and technology-enhanced. Each correct 

selected-response and the technology-enhanced item has a score of 1 point with no points 

deducted for incorrect responses. Trained raters score constructed-response items 

according to a predetermined rubric. The ACT Aspire also meets reliability benchmarks. 

According to ACT (2019), Cronbach's alpha was used to determine an internal reliability 

coefficient range for the mathematics subtest in each grade: seventh grade (.86-.87) and 

eighth grade (.87-.88), as shown in Table 1. 

 

Table 1 

Reliability of ACT Aspire Mathematics Subtest 
 

 

 

Several validity measures were investigated during the ACT Aspire development, 

and validity measures are employed with each new form of the assessment. According to 

ACT (2019), the validity of the ACT Aspire is obtained by determining that scores on the 

exam are indicative of performance on a particular set of constructs based on the ACT 

College and Career Readiness Standards (Grades 8 and above) and the ACT Readiness 

Standards (Grades 3-7). These standards were developed by content and measurement 

Grade Level α 
Standard Error of 

Measurement/ Scale Score Scale Score Ranges 

7 .86-.87 2.74 400-453 

8 .87-.88 2.82 400-456 
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experts based on research conducted in the National ACT Curriculum Study (ACT, 

2019). Item writers using these standards develop assessment items that undergo internal 

and external audits to ensure validity. Additionally, pretests are administered to ensure 

item quality and characteristics. The ACT Aspire passes validity for construct- and 

criterion-related measures (ACT, 2019). 

Data Collection Procedures 

 After approval was obtained from the Institutional Review Board, the researcher 

contacted building administrators from participating schools to obtain permission to use 

students' anonymized scores and demographic data from the ACT 2019 mathematics 

subtest. In the spring of 2019, educators in all four schools administered the ACT Aspire 

mathematics subtest to all the students as part of the ACT Aspire Summative Assessment 

to measure achievement. Once the data were received, they were kept on password-

protected devices to ensure privacy. Scores of students labeled “Migrant” were excluded 

from data collections since students of migrant parents were likely not in the school for a 

full school year. The researcher then entered demographic data and assessment results 

into an Excel spreadsheet, sorted the data based on gender and family-income level, and 

used the random number generator to obtain a stratified random sample of student scores 

for use in the study. 

Analytical Methods 

 This study's data were analyzed using the IBM Statistical Packages for the Social 

Sciences Version 26 (IBM Corporation, 2019). Each of the four hypotheses was analyzed 

with a 2 x 2 factorial ANOVA, and a two-tailed test with a .05 level of significance was 

used for statistical analysis. Data were examined to verify that the assumptions were met 
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for the test of significance, and there were no outliers before running statistical tests 

(Leech et al., 2015). To test Hypotheses 1-2, two 2 x 2 ANOVAs (one for seventh-grade 

and one for eighth-grade students) were conducted using Curriculum Type (OUR versus 

traditional) by gender (male versus female) as the independent variables. Hypotheses 3-4 

were tested by conducting two 2 x 2 ANOVAs (one for seventh-grade and one for eighth-

grade students) using Curriculum Type (OUR versus traditional) by family-income level 

(free or reduced lunch versus no free or reduced lunch) as the independent variables. The 

dependent variable for Hypotheses 1-4 was mathematics achievement measured by scores 

on the 2019 ACT Aspire mathematics subtest. 

Limitations 

 There are several limitations to the design of this study. First, the independent 

variables could not be manipulated. The researcher used a causal-comparative study 

because the independent variables of gender and family-income level could not be 

manipulated. Second, the fidelity of implementing the curriculum at each school was not 

evaluated or considered as part of this study. The type of curriculum used by each school 

was based upon reports by the school administration and a visit to the schools by either 

the researcher (3 schools) or another Arkansas State Mathematics Specialist (1 school). 

Although the visits confirmed the curriculum was in use at each school, no measure of 

the fidelity of use was included in this study. 

 Third, a potential threat to the validity of the instrument used in this study exists. 

Arkansas uses Arkansas Mathematics Standards, Grades 6-8 (Arkansas Department of 

Education, 2016), but the ACT Aspire Summative assessment is based on ACT College 

and Career Readiness Standards (Grades 8 and above) and the ACT Readiness Standards 
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(Grades 3-7). Since the ACT Aspire summative assessment was deemed by state officials 

to be the educational measure for students' mathematics achievement in Arkansas 

(Arkansas Department of Education, 2014), the assumption of the correlation between the 

standards was assumed by the researcher. No document verifying this correlation could 

be located. 

 Fourth, the limited geographic area and the limited number of schools from which 

the study samples were taken may result in limited applicability of the results. Scores 

from the sample represented only four schools, only rural schools, only schools in Central 

and Southeast Arkansas, and schools with limited ethnic diversity. This limitation could 

not be avoided due to the limited number of schools implementing OUR at the time that 

were willing to allow student scores to be used in the study. Finally, since the sample 

included scores from only four schools, only two examples of traditional mathematics 

curricula were represented in this study. Other traditional curricula not used by schools in 

this study may have different effects on student achievement. 

Summary 

This study consisted of four hypotheses, each tested using a 2 x 2 factorial 

ANOVA. The dependent variable for each hypothesis was mathematics achievement 

scores (2019 ACT Aspire mathematics subtest scores of seventh-grade students for 

Hypothesis 1 and 3; eighth-grade students for Hypothesis 2 and 4). The independent 

variables for Hypothesis 1and 2 were the type of mathematics curriculum used (OUR 

versus traditional) and gender (male versus female). The independent variables for 

Hypothesis 3 and 4 were the type of mathematics curriculum used (OUR versus 

traditional) and family-income level (No free or reduced lunch versus free or reduced 
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lunch). A stratified random sample of student achievement scores from two rural Central 

Arkansas and two rural Southeast Arkansas were used in the analysis. Chapter 4 contains 

a discussion of the results of the data analysis. 
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CHAPTER IV 

RESULTS 

The purposes of this study were four-fold. First, the purpose of this study is to 

determine the effects by gender of the mathematics curriculum used (OUR versus 

traditional) on mathematics achievement scores (2019 ACT Aspire mathematics subtest) 

of seventh-grade students in two Central Arkansas schools and two Southeast Arkansas 

schools. Second, the purpose of this study is to determine the effects by gender of 

mathematics curriculum used (OUR versus traditional) on mathematics achievement 

scores of seventh- and eighth-grade students in two Central Arkansas schools and two 

Southeast Arkansas schools. Hypothesis 1-2 were tested using two 2 x 2 factorial 

ANOVAs (one for each grade). The independent variables for Hypothesis 1-2 were the 

mathematics curriculum used (OUR versus traditional) and gender (male versus female), 

and the dependent variable was mathematics achievement (2019 ACT Aspire 

mathematics subtest). Third, the purpose of this study is to determine the effects by 

family-income level on mathematics achievement scores of seventh-grade students in two 

Central Arkansas schools and two Southeast Arkansas schools. Fourth, the purpose of 

this study is to determine the effects by family-income level (as measured by school 

lunch status) on mathematics achievement scores (2019 ACT Aspire mathematics 

subtest) of eighth-grade students in two Central Arkansas schools and two Southeast 

Arkansas schools. Hypothesis 2-3 were tested using two 2 x 2 factorial ANOVAs (one 
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for each grade). The independent variables for Hypothesis 3-4 were the mathematics 

curriculum used (OUR versus traditional) and family-income level (No free or reduced 

lunch versus Free or reduced lunch), and the dependent variable was mathematics 

achievement (2019 ACT Aspire mathematics subtest). 

Hypothesis 1 

Hypothesis 1 stated that no significant difference will exist by gender between 

students using OUR curriculum versus students using traditional curriculum on 

mathematics achievement as measured by the ACT Aspire mathematics subtest for 

seventh-grade students in two Central Arkansas schools and two Southeast Arkansas 

schools. Two additional hypotheses were also examined as part of this analysis: (1) 

Curriculum type does not significantly affect mathematics achievement, and (2) Gender 

does not significantly affect mathematics achievement. The assumptions of independent 

observations, homogeneity of variances, and normal distributions of the dependent 

variable for each group were checked. The study's design was such that the assumption of 

independent observations was met; no subject contributed scores in more than one group. 

Normality was tested with the Shapiro-Wilk test, and the assumption was met for all 

groups: male traditional curriculum, W(40) = 0.98, p = .605; female traditional 

curriculum, W(40) = 0.97, p = .277; male OUR curriculum, W(40) = 0.97, p = .318; and 

female OUR curriculum, W(40) = 0.96, p = .147. A Levene’s test, F (3, 156) = 4.83, p = 

.000, indicated that homogeneity of variances was violated. However, according to Leech 

et al. (2015), since SPSS uses the regression approach to calculate ANOVA, the test can 

be conducted, but this violation should be considered when deciding on a post hoc test. 

The means and standard deviations of each group are recorded in Table 2. 
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Table 2 

Descriptive Statistics for Seventh-Grade Students’ Mathematics Achievement by Type of 

Curriculum and Gender 

Gender Mathematics Curriculum M SD N 

Male Traditional 419.10 5.52 40 

OUR 420.80 9.14 40 

Total 419.95 7.55 80 

Female Traditional 421.30 5.46 40 

OUR 423.20 7.00 40 

Total 422.25 6.31 80 

Total Traditional 420.20 5.57 80 

OUR 422.00 8.18 80 

Total 421.10 7.03 160 

 

 

To test Hypothesis 1, a 2 x 2 factorial ANOVA was conducted to evaluate the 

effects of the type of mathematics curriculum used by gender on mathematics 

achievement as measured by the 2019 ACT Aspire mathematics subtest. Figure 3 shows 

the means for mathematics achievement as a function of curriculum type and gender. 
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Figure 3. Mean mathematics achievement of seventh-grade students by curriculum type 

and gender. 

 

The analysis revealed no significant interaction, F(1, 156) = 0.01, p = .928, partial 

η2 < 0.001, between curriculum type and gender, and as a result, the null hypothesis could 

not be rejected. Table 3 contains the results of the analysis. 
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Table 3 

Factorial ANOVA Results for Seventh-Grade Students’ Mathematics Achievement as a 

Function of Curriculum Type and Gender 

 

Source SS df MS F p ES 

Curriculum Type 129.60 1 129.60 2.69 .103 0.017 

Gender 211.60 1 211.60 4.39 .038 0.027 

Curr Type*Gender 0.40 1 0.40 0.01 .928 0.000 

Error 7518.80 156 48.20    

Total 28379894.00 160     

Note. Curr Type*Gender = Curriculum Type by Gender. 

 

Given that the interaction was not significant, the main effects for each 

independent variable were examined separately. The main effect for curriculum type was 

not significant, F(1, 156) = 2.69, p = .103, partial η2 = 0.017, and this null hypothesis was 

not rejected. The mean of the OUR group (M = 422.00, SD = 8.18) was higher but not 

significantly different from the mean of the traditional group (M = 420.20, SD = 5.57). 

This result indicated that curriculum type, regardless of gender, was not a significant 

factor for increasing students’ mathematics achievement. On the other hand, the main 

effect for gender was significant, F(1, 156) = 4.39, p = .038, partial η2 = 0.027, and the 

null hypothesis, that gender does not significantly affect mathematics achievement, was 

rejected. The mean of the female group (M = 422.25, SD = 6.31) was significantly higher 

compared to the mean of the male group (M = 419.95, SD = 7.55). This result indicated 
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that gender, regardless of curriculum type, was a significant factor for increasing 

students’ mathematics achievement. However, gender predicted only approximately 2.7% 

of the variance for mathematics achievement, which is considered a small effect (Cohen, 

1988). Therefore, a significant difference in the mathematics achievement of seventh-

grade male and female students did exist. 

Hypothesis 2 

Hypothesis 2 stated that no significant difference will exist by gender between 

students using OUR curriculum versus students using traditional curriculum on 

mathematics achievement as measured by the ACT Aspire mathematics subtest for 

eighth-grade students in two Central Arkansas schools and two Southeast Arkansas 

schools. Two additional hypotheses were also examined as part of this analysis: (1) 

Curriculum type does not significantly affect mathematics achievement, and (2) Gender 

does not significantly affect mathematics achievement. The assumptions of independent 

observations, homogeneity of variances, and normal distributions of the dependent 

variable for each group were checked. The study's design was such that the assumption of 

independent observations was met; no subject contributed scores in more than one group. 

Normality was tested with the Shapiro-Wilk test, and the assumption was met for all 

groups except for the female traditional curriculum group: male, traditional curriculum, 

W(40) = 0.95, p = .061; female, traditional curriculum, W(40) = 0.93, p = .014; male, 

OUR curriculum, W(40) = 0.98, p = .586; and female, OUR curriculum, W(40) = 0.97, p 

= .356. However, according to Leech et al. (2015), factorial ANOVA is robust against 

assumptions of normality of the dependent variable and recommends considering the 

transformation of data only if skewness is more than 1.0 or less than -1.0. The skewness 
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values of the groups were male, traditional curriculum (.618); female, traditional 

curriculum (.970); male, OUR curriculum (.004); and female, OUR curriculum (.085). 

Since the skewness was not severe and was in the same direction for each group, the 

ANOVA was conducted. A Levene’s test, F(3, 156) = 1.75, p = .158, indicated that 

homogeneity of variances was not violated. The means and standard deviations of each 

group are recorded in Table 4. 

 

Table 4 

Descriptive Statistics for Eighth-Grade Students’ Mathematics Achievement by Type of 

Curriculum and Gender 

Gender Mathematics Curriculum M SD N 

Male Traditional 422.73 7.86 40 

OUR 426.45 8.50 40 

Total 424.69 8.35 80 

Female Traditional 424.40 6.06 40 

OUR 427.40 8.35 40 

Total 425.90 7.42 80 

Total Traditional 423.56 7.03 80 

OUR 426.93 8.39 80 

Total 425.24 7.90 160 

 

 

To test Hypothesis 2, a 2 x 2 factorial ANOVA was conducted to evaluate the 

effects of the type of mathematics curriculum used by gender on mathematics 
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achievement as measured by the 2019 ACT Aspire mathematics subtest. Figure 4 shows 

the means for mathematics achievement as a function of curriculum type and gender. 

 

 
 
Figure 4. Mean mathematics achievement of eighth-grade students by curriculum type 

and gender. 

 

The analysis revealed no significant interaction F(1, 156) = 0.09, p = .768, partial 

η2 = 0.001 between curriculum type and gender, and as a result, the null hypothesis could 

not be rejected. Table 5 contains the results of the analysis. 
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Table 5 

Factorial ANOVA Results for Eighth-Grade Students’ Mathematics Achievement as a 

Function of Curriculum Type and Gender 

Source SS df MS F p ES 

Curriculum Type 452.26 1 452.26 7.51 .007 0.046 

Gender 68.91 1 68.91 1.15 .286 0.007 

Curr Type*Gender 5.26 1 5.26 0.09 .768 0.001 

Error 9391.08 156 60.20    

Total 28943077.00 160     

Note. Curr Type*Gender = Curriculum Type by Gender. 

 

Given that the interaction was not significant, the main effects for each 

independent variable were examined separately. The main effect for the type of 

mathematics curriculum was significant, F(1, 156) = 7.51, p = .007, partial η2 = 0.046, 

and the null hypothesis, that curriculum type does not significantly affect mathematics 

achievement, was rejected. The mean of the OUR group (M = 426.93, SD = 8.39) was 

significantly higher compared to the mean of the traditional group (M = 423.56, SD = 

7.03). This result indicated that curriculum type, regardless of gender, was a significant 

factor for increasing students’ mathematics achievement. The curriculum type predicted 

approximately 4.6% of the variance for mathematics achievement, which is considered a 

small effect size. However, the main effect for gender was not significant, F(1, 156) = 

1.15, p = .286, partial η2 = 0.007, and the null hypothesis was not rejected. The mean of 
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the female group (M = 425.90, SD = 7.42) was higher but not significantly different from 

the mean of the male group (M = 424.69, SD = 8.35). This result indicated that gender, 

regardless of curriculum type, was not a significant factor for increasing students’ 

mathematics achievement. Therefore, a significant difference in the mathematics 

achievement of eighth-grade students using OUR mathematics curriculum and those 

using traditional curriculum did exist. 

Hypothesis 3 

Hypothesis 3 stated that no significant difference will exist by family-income 

level (school lunch status) between students using OUR curriculum versus students using 

traditional curriculum on mathematics achievement as measured by the ACT Aspire 

mathematics subtest for seventh-grade students in two Central Arkansas schools and two 

Southeast Arkansas schools. Two additional hypotheses were also examined as part of 

this analysis: (1) Curriculum type does not significantly affect mathematics achievement, 

and (2) Family-income level does not significantly affect mathematics achievement. The 

assumptions of independent observations, homogeneity of variances, and normal 

distributions of the dependent variable for each group were checked. The study's design 

was such that the assumption of independent observations was met; no subject 

contributed scores in more than one group. Normality was tested with the Shapiro-Wilk 

test, and the assumption was met for all groups: traditional curriculum no free or reduced 

lunch, W(40) = 0.98, p = .680; traditional curriculum free or reduced lunch, W(40) = 0.97, 

p = .388; OUR curriculum no free or reduced lunch, W(40) = 0.97, p = .406; and OUR 

curriculum free or reduced lunch, W(40) = 0.98, p = .698. A Levene’s test, F (3, 156) = 

9.21, p = .000, indicated that homogeneity of variances was violated. However, according 
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to Leech et al. (2015), since SPSS uses the regression approach to calculate ANOVA, the 

test can be conducted, but this violation should be considered when deciding on a post 

hoc test. The means and standard deviations of each group are recorded in Table 6. 

 

Table 6 

Descriptive Statistics for Seventh-Grade Students’ Mathematics Achievement by 

Curriculum Type and Family Income 

Lunch Participation Mathematics Curriculum M SD N 

No Free/Reduced Traditional 421.45 6.26 40 

OUR 423.78 9.37 40 

Total 422.61 8.00 80 

Free/Reduced Traditional 418.95 4.53 40 

OUR 420.23 6.42 40 

Total 419.59 5.56 80 

Total Traditional 420.20 5.57 80 

OUR 422.00 8.18 80 

Total 421.10 7.03 160 

 

 

To test Hypothesis 3, a 2 x 2 factorial ANOVA was conducted to evaluate the 

effects of the type of mathematics curriculum used by family-income level (school lunch 

status) on mathematics achievement as measured by the 2019 ACT Aspire mathematics 

subtest. Figure 5 shows the means for mathematics achievement as a function of 

curriculum type and family-income level.  
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Figure 5. Mean mathematics achievement of seventh-grade students by curriculum type 

and family-income level. 

 

The analysis revealed no significant interaction, F(1, 156) = 0.23, p = .629, partial 

η2 = 0.001, between curriculum type and family-income level, and as a result, the null 

hypothesis could not be rejected. Table 7 contains the results of the analysis. 
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Table 7 

Factorial ANOVA Results for Seventh-Grade Students’ Mathematics Achievement as a 

Function of Curriculum Type and Family Income 

Source SS df MS F p ES 

Curriculum Type 129.60 1 129.60 2.75 .099 0.017 

Family-Income Level 366.03 1 366.03 7.77 .006 0.047 

Curr Type*Fam Inc 11.025 1 11.03 0.23 .629 0.001 

Error 7353.75 156 4    

Total 28379894.00 160     

Note. Curr Type*Fam Inc = Curriculum Type by Family-Income Level. 

 

Given that the interaction was not significant, the main effects for each 

independent variable were examined separately. The main effect for the type of 

mathematics curriculum was not significant, F(1, 156) = 2.75, p = .099, partial η2 = 

0.017, and the null hypothesis was not rejected. The mean of the OUR group (M = 

422.00, SD = 8.18) was higher but not significantly different compared to the mean of the 

traditional group (M = 420.20, SD = 5.57). This result indicated that curriculum type, 

regardless of gender, was not a significant factor for increasing students’ mathematics 

achievement. The main effect for family-income level was significant, F(1, 156) = 7.77, p 

= .006, partial η2 = 0.047, and the null hypothesis, that family-income level does not 

significantly affect mathematics achievement, was rejected. The mean of the no free or 

reduced lunch group (M = 422.61, SD = 8.00) was significantly higher compared to the 
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mean of the free or reduced lunch group (M = 419.59, SD = 5.56). This result indicated 

that lunch eligibility, regardless of curriculum type, was a significant factor for increasing 

students’ mathematics achievement. However, family-income level predicted only 

approximately 4.7% of mathematics achievement variance, which was considered a small 

effect size. Therefore, a significant difference in the mathematics achievement of students 

with low and high family-income levels did exist. 

Hypothesis 4 

Hypothesis 4 stated that no significant difference will exist by family-income 

level (school lunch status) between students using OUR curriculum versus students using 

traditional curriculum on mathematics achievement as measured by the ACT Aspire 

mathematics subtest for eighth-grade students in two Central Arkansas schools and two 

Southeast Arkansas schools. Two additional hypotheses were also examined as part of 

this analysis: (1) Curriculum type does not significantly affect mathematics achievement, 

and (2) Family-income level does not significantly affect mathematics achievement. The 

assumptions of independent observations, homogeneity of variances, and normal 

distributions of the dependent variable for each group were checked. The study's design 

was such that the assumption of independent observations was met; no subject 

contributed scores in more than one group. Normality was tested with the Shapiro-Wilk 

test, and the assumption was met for all groups except the female traditional curriculum 

group: male traditional curriculum, W(40) = 0.96, p = .170; female traditional curriculum, 

W(40) = 0.92, p = .007; male OUR curriculum, W(40) = 0.98, p = .646; and female OUR 

curriculum, W(40) = 0.96, p = .189. However, according to Leech et al. (2015), factorial 

ANOVA is robust against assumptions of normality of the dependent variable and 
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recommends transformation of data only if skewness is more than 1.0 or less than -1.0. 

The skewness values of the groups were no free or reduced lunch traditional curriculum 

(.359); free or reduced lunch traditional curriculum (.982); no free or reduced lunch OUR 

curriculum (-.007); and no free or reduced lunch OUR curriculum (-.022). Since the 

skewness was not severe, the ANOVA was conducted. A Levene’s test, F (3, 156) = 

1.51, p = .215, indicates that homogeneity of variances was not violated. The means and 

standard deviations of each group are recorded in Table 8. 

 

Table 8 

Descriptive Statistics for Eighth-Grade Students’ Mathematics Achievement by Type of 

Curriculum and Family Income 

Lunch Participation Mathematics Curriculum M SD N 

No Free/Reduced Traditional 424.85 6.95 40 

OUR 428.35 8.74 40 

Total 426.60 8.04 80 

Free/Reduced Traditional 422.28 6.95 40 

OUR 425.50 7.88 40 

Total 423.89 7.56 80 

Total Traditional 423.56 7.03 80 

OUR 426.93 8.39 80 

Total 425.24 7.90 160 
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To test Hypothesis 4, a 2 x 2 factorial ANOVA was conducted to evaluate the 

effects of the type of mathematics curriculum used by family-income level (school lunch 

status) on mathematics achievement as measured by the 2019 ACT Aspire mathematics 

subtest. Figure 6 shows the means for mathematics achievement as a function of 

curriculum type and family-income level. 

 

 
Figure 6. Mean mathematics achievement of eighth-grade students by curriculum type 

and family-income level. 

 

The analysis revealed no significant interaction, F(1, 156) = 0.01, p = .910, partial 

η2 < 0.001, between curriculum type and family-income level, and as a result, the null 

hypothesis could not be rejected. Table 9 contains the results of the analysis. 
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Table 9 

Factorial ANOVA Results for Eighth-Grade Students’ Mathematics Achievement as a 

Function of Curriculum Type and Family Income 

Source SS df MS F p ES 

Curriculum Type 452.26 1 452.26 7.69 .006 0.047 

Family Income-Level 294.31 1 294.31 5.01 .027 0.031 

Curr Type*Fam Inc 0.76 1 0.76 0.01 .910 0.000 

Error 9170.18 156 58.78    

Total 28943077.00 160     

Note. Curr Type*Fam Inc = Curriculum Type by Family-Income Level. 

 

Given that the interaction was not significant, the main effects for each 

independent variable was examined separately. The main effect for the type of 

mathematics curriculum was significant, F(1, 156) = 7.69, p = .006, partial η2 = 0.047, 

and the null hypothesis that the type of mathematics curriculum does not significantly 

affect mathematics achievement was rejected. The mean of the OUR group (M = 426.93, 

SD = 8.39) was significantly higher compared to the mean of the traditional group (M = 

423.56, SD = 7.03). This result indicated that curriculum type, regardless of lunch 

eligibility, was a significant factor for increasing students’ mathematics achievement. 

However, curriculum type predicted only approximately 4.6% of mathematics 

achievement variance, which is considered a small effect size. Similarly, the main effect 

for family-income level was significant, F(1, 156) = 5.01, p = .027, partial η2 = 0.031, 
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and the null hypothesis, that family-income level does not significantly affect 

mathematics achievement, was rejected. The mean of the no free or reduced lunch group 

(M = 426.60, SD = 8.04) was significantly higher compared to the mean of the free or 

reduced lunch group (M = 423.89, SD = 7.56). This result indicated that lunch eligibility, 

regardless of curriculum type, was a significant factor for increasing students’ 

mathematics achievement. However, family-income level predicted only approximately 

3.1% of mathematics achievement variance, which is considered a small effect size. 

Evidence indicates a significant difference in the mathematics achievement of eighth-

grade students with curriculum type and a significant difference in students' mathematics 

achievement with lunch eligibility. 

Summary 

This study consisted of four hypotheses, each tested using a 2 x 2 factorial 

ANOVA. The dependent variable for each hypothesis was student mathematics 

achievement as measured by the 2019 ACT Aspire mathematics subtest scores (seventh-

grade scores for Hypothesis 1 and 3; eighth-grade scores for Hypothesis 2 and 4). The 

independent variables for Hypothesis 1and 2 were the type of mathematics curriculum 

used (OUR versus traditional) and gender (male versus female). The independent 

variables for Hypothesis 3 and 4 were the type of mathematics curriculum used (OUR 

versus traditional) and family-income level (no free or reduced lunch versus free or 

reduced lunch). A summary of the data analysis results for the four hypotheses is 

presented in Table 10. 
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Table 10 

Summary of Statistically Significant Results for Hypothesis 1 Through 4 
 

Hypothesis Grade Significant Result p ES 

1 7 Main effect of Gender .038 0.027 

2 8 Main effect of Curriculum Type .007 0.046 

3 7 Main effect of Family-Income Level .006 0.047 

4 8 Main effect of Curriculum Type .006 0.047 

4 8 Main effect of Family-Income Level .027 0.031 

 
 

Results of tests in this study indicated that seventh-grade females have higher 

mathematics achievement than males and that seventh-grade students from families with 

higher income levels have higher mathematics achievement than students from families 

with low family-income levels. Results also indicated that eighth-grade students using the 

OUR mathematics curriculum have higher mathematics achievement than those using a 

traditional mathematics curriculum and that eighth-grade students from families with 

higher income levels have higher mathematics achievement than students from families 

with low family-income levels in these Central and Southeast Arkansas schools. Chapter 

V will include findings and implications, the potential for practice or policy, and future 

research considerations based upon this study's results. 
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CHAPTER V 

DISCUSSION 

 This study was conducted to determine the effects of the type of mathematics 

curriculum used on the mathematics achievement scores of seventh- and eighth-grade 

students by gender and family-income level. This chapter presents a summary of the main 

findings of this study. The implications of the relationship between the types of 

mathematics curriculum, gender, and family-income level are discussed. Finally, 

recommendations for practice related to mathematics curriculum use and future research 

considerations are provided. 

Findings and Implications 

Overall, in this study, no meaningful interaction between type of curriculum and 

gender, or type of curriculum and family income, was found on the mathematics 

achievement of seventh-grade and eighth-grade students. However, the results 

highlighted several independent effects of type of curriculum, gender, and family income 

on students' mathematics achievement at the grade levels under investigation. 

Findings by Hypothesis 

For Hypothesis 1, the findings indicated that the use of the OUR mathematics 

curriculum did not affect seventh-grade students' mathematics achievement. The findings 

also revealed that seventh-grade females had significantly higher levels of mathematics 

achievement than seventh-grade males. For Hypothesis 2, the use of the OUR 
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mathematics curriculum was connected to significantly higher mathematics achievement 

for eighth-grade students when compared to the use of traditional mathematics curricula. 

On the other hand, no meaningful differences in eighth-grade students' mathematics 

achievement were found based on their gender. For Hypothesis 3, the findings indicated 

that the use of the OUR mathematics curriculum did not affect seventh-grade students' 

mathematics achievement. However, the findings revealed that seventh-grade students 

receiving free or reduced lunch had significantly lower mathematics achievement scores 

than those who did not receive free or reduced lunch. For Hypothesis 4, not only was the 

use of the OUR mathematics curriculum associated with significantly higher mathematics 

achievement, but the eighth-grade students who did not participate in the free or reduced 

lunch program had higher mathematics achievement than students who participated in the 

program. 

Implications Related to the Use of Mathematics Curriculum 

The findings in this study provide evidence that constructivist-teaching methods, 

such as PBL, that actively involve students in the learning process lead to higher student 

achievement than traditional methods for students in Grade 8. Piaget (1975) suggested 

that students construct logical structures as they act on problems and that these logical 

structures can be used to solve new problems (see Figure 1). In this study, the benefits of 

the constructivist approach to learning revealed a greater impact on students' academic 

achievement in Grade 8, more so than for the students in Grade 7. There is room to 

speculate on why a positive effect of using OUR PBL curriculum is observed at one 

grade level but not the other. Differences in the complexity of the mathematics content, 

students’ experience with the PBL approach, and the teachers' fidelity in implementing 
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OUR curriculum are among possible other factors. Despite these unknowns, the 

overwhelming evidence from this study suggests that high school students benefit from 

the implementation of constructivist PBL curricula such as OUR. Rosli et al. (2014), in a 

meta-analysis of problem- and project-based learning, and Yancy (2012), found that the 

use of PBL resulted in positive gains in student achievement scores. This study's results 

align well with the existing evidence indicating PBL use positively affects student 

achievement in mathematics. This evidence reinforces the basic tenets of the 

constructivist theory that connecting abstract content to real-world ideas that learners can 

identify with is an effective way to facilitate the delivery of mathematics content to high 

school students.  

Beyond the direct benefits to their academic achievement, the implementation of 

PBL may have other positive effects on students. Albanese and Mitchell (1993) and 

Vernon and Blake (1993) asserted that those experiencing PBL place greater emphasis on 

understanding content. This understanding of students may overcome the disadvantage of 

the time needed for PBL implementation noted by Albanese and Mitchell (1993). PBL 

use may also include other positive results for students such as better transfer of learning 

to new contexts (Budak, 2015; Ridgeway et al., 2003), positive student attitudes towards 

mathematics (Ridlon, 2009; Saragih & Napitupulu, 2015), and greater interest in 

understanding content (Albanese & Mitchell, 1993; Vernon & Blake, 1993). Considering 

all of this evidence, one can conclude that PBL use is as effective as or more effective 

than traditional teaching methods.  

Additionally, this study's results indicated that the use of problem-based curricula 

is as or more effective than the use of traditional mathematics curricula. Cai et al. (2011), 
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Mathematica Policy Research & What Works Clearinghouse (2017), and Ridgeway et al. 

(2003) reported that students in Grades 6-8 using the problem-based, Connected 

Mathematics Project curriculum had similar achievement to students using more 

traditional mathematics curriculum. Similarly, Ridlon (2009) found no mathematics 

achievement difference in Grades 6-8 students using the QUASAR Project Mathematics 

curriculum compared to those using more traditional mathematics curricula. Tarr et al. 

(2008) found no difference in grades 6-8 mathematics achievement of students in 24 

schools using four different problem-based curriculum types funded by the National 

Science Foundation compared to students in 24 schools using different traditional 

mathematics curricula. Based on the results of this study, educators should consider using 

problem-based mathematics curricula at the eighth-grade level and possibly at the 

seventh-grade level because the use of problem-based mathematics curricula does not 

harm the mathematics achievement of seventh graders but is associated with higher 

mathematics achievement at the eighth-grade level. 

Implications Related to Gender 

The findings in this study related to the effect of gender on seventh- and eighth-

grade students' mathematics achievement are limited. The lack of interaction between 

curriculum type and gender in this study suggested that PBL may not be effective for 

closing achievement gaps by gender, as suggested by Boaler and Staples (2008). 

However, gender difference that favored female students, regardless of curriculum type, 

was found at the seventh-grade level but not at the eighth-grade level. The lack of a 

difference by gender in the scores of eighth-grade students aligns with claims by Reilly et 

al. (2015), Moore (2015), and Witonski (2013) that the mathematics achievement gap 
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between male and female students is closing. According to Else-Quest et al. (2010), 

analyses of international mathematics achievement scores indicated that achievement 

gaps were not present in all countries and that in some countries, an achievement gap 

favoring females existed. Mathematics achievement by gender varies in different 

countries, and as indicated by the achievement gap favoring seventh-grade females in this 

study, it could vary by region in the United States or by subgroups of the student 

population. 

Implications Related to Family-Income Level 

A key finding in this study is that mathematics achievement gaps still exist by 

family-income level at both the seventh-grade and eighth-grade levels. Therefore, 

educators should monitor achievement by family-income level and take steps to close any 

noted achievement gaps. Students receiving free or reduced lunch have lower 

mathematics achievement scores than students who do not receive free or reduced lunch. 

These findings are independent of the use of OUR or a more traditional mathematics 

curriculum. This study's findings contrasted the findings of Ridlon (2009) that the 

implementation of PBL resulted in increased student achievement of students from low 

family income backgrounds. However, the findings aligned more closely with those of 

Hwang et al. (2018), claiming that the achievement of students from low family income 

backgrounds may remain the same with PBL implementation. 

Furthermore, evidence from this study supported Reardon’s (2013) assertions that 

students from low-income households scored lower on achievement tests than students 

from homes with higher family-income levels. Additionally, this study provided evidence 

to strengthen the claims of Alordiah et al. (2015), Boaler et al. (2011), Gustafsson et al. 
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(2018), and Pomeroy (2016) that students from families with lower income levels have 

lower mathematics achievement than students from families with higher income levels. 

Ultimately, this study adds to the knowledge regarding the academic challenges facing 

students from low income. 

Recommendations 

Potential for Practice/Policy 

Interpretation of these results may lead to several recommendations useful to 

educators. First, since problem-based curricular materials appear to be as effective or 

more effective than traditional mathematics curricula, teachers, principals, and 

superintendents should implement PBL and consider using problem-based mathematics 

curricula such as OUR to assist educators. According to Boud and Feletti (1997), the 

translation of PBL to a new context without some changes is seldom possible, and 

mathematics curricula can help this process. From a constructivist viewpoint, as 

suggested by Vygotsky (2017), problems should fall within a student's zone of proximal 

development, and educators should facilitate rather than dispense learning. In line with 

this viewpoint, a problem-based curriculum provides teachers with well-written problems 

so that more time could be spent considering how to scaffold problems and facilitate 

learning so that the problem falls within the student’s zone of proximal development. 

According to Boud and Feletti (1997) and Margetson (1997), appropriate structures and 

critical reflection on the learning process are crucial during PBL implementation. 

Educators should be provided training and support in PBL implementation and the use of 

new curricular materials as they learn to implement constructivist teaching methods. The 

OUR (2019) mathematics curriculum is an open educational resource that is freely 
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available to teachers, representing a low-cost (only indirect costs such as printing or 

internet access costs), high-quality option for mathematics curriculum that includes 

problems at different levels of student thinking. OUR is one possible choice of problem-

based curricular materials. The implementation of PBL using problem-based curricula 

such as OUR and providing appropriate support for educators is recommended. 

Second, based on the mixed results regarding the effect of gender on student 

achievement, educators should monitor student achievement by gender. This study's 

results did not suggest a cause for the noticed difference by gender among seventh-grade 

students but did indicate that the differences with certain groups seem to persist. If an 

achievement difference by gender exists in a school or subgroup within the school, a 

further examination into the causes of the problem and potential solutions may be 

advantageous. Implementation of measures based on data and research could help narrow 

or close any existing gaps in student achievement by gender and may also serve to help 

eliminate potential future achievement gaps. 

Finally, since evidence indicates a difference in mathematics achievement by 

family-income level, educators should consider ways to narrow or close this achievement 

gap. Reardon (2013) suggested that children living in poverty may be affected by a lack 

of resources, an increased likelihood of being raised in a single-parent home, uneducated 

parents, and parents' anxiety. These challenges go beyond what happens in the school 

building; therefore, educators may need to partner with other organizations in the 

community to provide the support required for students from low family-income level 

backgrounds. Within the school, investigating and implementing research-based 

strategies for closing the achievement gap by family-income level could result in positive 
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gains for all students, especially those from low family income backgrounds. For 

example, Dietrichson et al. (2017), after conducting a meta-analysis of 101 experimental 

or quasi-experimental studies, suggested that interventions such as tutoring, progress 

monitoring with feedback, and cooperative learning have a positive effect on the 

achievement of students from low socioeconomic backgrounds. Although the present 

study found no significant interaction between OUR use and different income levels on 

student achievement, others such as Boaler and Staples (2008) and Ridlon (2009) 

reported positive gains in students' achievement from low-income backgrounds with PBL 

implementation in mathematics. Mathematics achievement gaps by family-income level 

persist, and research-based strategies, such as tutoring, feedback, and cooperative 

learning, may help close the achievement gap. However, more research would be 

required to determine if and how PBL implementation may affect the mathematics 

achievement gap by family-income level.  

Future Research Considerations 

The findings in this study provide limited evidence of the effect of the use of PBL 

and problem-based curricula on the mathematics performance of seventh-grade and 

eighth-grade students. Therefore, further research is needed to gain a clearer knowledge 

of this phenomenon. In the extant literature, the use of PBL has been shown to affect 

attitudes, complex problem-solving abilities, choices of higher-level mathematics 

courses, and students' career choices. However, only a few studies examining these 

effects on students are available. Additionally, no evidence for the effects of problem-

based mathematics curriculum use on these outcomes was found in the existing literature. 

Unfortunately, most studies examining the effects of using different types of mathematics 
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curricula are non-experimental studies and do not focus on the long-term effects of the 

use of different curricula. Further investigation of the effects of the use of different 

mathematics curriculum types is warranted. The researcher, therefore, recommends the 

following considerations for further study. 

First, an extension of this study measuring long-term effects of problem-based 

curriculum use, including measures of the fidelity of curriculum implementation, is 

recommended. Since Boaler and Staples’ (2008) longitudinal study found that PBL 

implementation was effective for all students and specifically for those from low family-

income level backgrounds, research extending the present study may provide evidence 

useful in determining the effectiveness of problem-based curricula in PBL 

implementation for all students and specific subgroups of students. 

Second, an extension of this study that includes the effects of problem-based 

curricula use on other measures of student success, such as complex problem solving, 

student attitudes, students’ choices to take higher-level mathematics, and students’ choice 

of career would help determine if the use of current problem-based curricula affects any 

of these student characteristics. 

Finally, more research, particularly experimental or quasi-experimental designs, is 

needed to directly compare the effects of the use of problem-based and traditional 

teaching curricula. While much research investigating traditional or problem-based 

teaching methods and curricula is available, very few studies could be located directly 

comparing the two methods. Of the studies that were located, few were of experimental 

or quasi-experimental design, limiting the generalizability of the evidence. 
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Conclusion 

 This study investigated the effects of the use of problem-based and traditional 

mathematics curriculum types by gender and family-income levels on the mathematics 

achievement of seventh- and eighth-grade students. The mathematics achievement of 

eighth-grade students using OUR, a problem-based mathematics curriculum, was 

significantly higher than for those using more traditional curriculum types. The 

mathematics achievement of seventh-grade students using the two mathematics 

curriculum types was similar. However, a difference was indicated by gender for seventh-

grade students and by family-income level for both seventh- and eighth-grade students. 

Overall, this study's findings contribute to the evidence that mathematics achievement 

gaps by family-income level persist among high school students in the United States. 

Mathematics achievement gaps by gender and family-income level appear to be 

unaffected by curriculum type, so educators should monitor and investigate other 

strategies for closing these gaps. Finally, educational practices based on constructivist 

learning theory, specifically problem-based learning, appear to be effective for teaching 

mathematics at the middle school level, especially at the eighth-grade level. 
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