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Abstract: Concrete is an important construction material. Its characteristics depend on the environ-

mental conditions, construction methods, and mix factors. Working with concrete is particularly 

tricky in a hot climate. This study predicts the properties of concrete in hot conditions using the case 

study of Rawalpindi, Pakistan. In this research, variable casting temperatures, design factors, and 

curing conditions are investigated for their effects on concrete characteristics. For this purpose, 

water–cement ratio (w/c), in-situ concrete temperature (T), and curing methods of the concrete are 

varied, and their effects on pulse velocity (PV), compressive strength (fc), depth of water penetra-

tion (WP), and split tensile strength (ft) were studied for up to 180 days. Quadratic regression and 

artificial neural network (ANN) models have been formulated to forecast the properties of concrete 

in the current study. The results show that T, curing period, and moist curing strongly influence 

fc, ft, and PV, while WP is adversely affected by T and moist curing. The ANN model shows better 

results compared to the quadratic regression model. Furthermore, a combined ANN model of fc, 

ft, and PV was also developed that displayed higher accuracy than the individual ANN models. 

These models can help construction site engineers select the appropriate concrete parameters 

when concreting under hot climates to produce durable and long-lasting concrete. 

Keywords: artificial neural network; concrete properties; hot climate; regression analysis; Rawal-

pindi Pakistan 

 

1. Introduction and Background 

In the era of globalization and immense focus on the construction of critical facili-

ties, various construction materials and their properties are investigated by researchers 

worldwide. In line with this wave of construction, ordinary Portland concrete (OPC) has 

emerged as one of the commonly used construction materials [1]. The mechanical and 

physical properties of concrete are complex in comparison to other materials, since these 

are influenced by the environment, especially hot conditions [2]. Placing concrete in hot-

ter conditions and climates presents additional challenges [3]. In addition to the hotter 

temperatures, high ambient air temperature, high wind speeds, low relative humidity, 

and direct solar radiation or exposure to sunlight also affect the properties of concrete. 

These factors contribute to rapid water evaporation that negatively affects concrete [4–
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6]. Accordingly, structures constructed in hotter conditions require large funding for an-

nual repairs, maintenance, and rehabilitation. 

Concrete can develop undesirable characteristics when mixed, transported, or placed 

in hot weather. Hot climate adversely affects concrete, leading to increased mix water de-

mand, increased slump loss and plastic shrinkage, decreased setting times, difficulty in 

finishing, and diminished control of entrained air content [7]. Further, hot weather con-

creting leads to increased evaporation, changes in w/c, reduced strength, and lower work-

ability. The hot climate also leads to a decrease in the ultimate strength of concrete. In 

addition, it increases the formation of cracks and decreases the durability of concrete. Plas-

tic shrinkage and cracking of concrete are increased in windy, dry, and hot climates. Such 

cracking results in an increased corrosion of steel [8]. Thus, to have more sustainable and 

durable concrete, it is imperative to investigate the effect of climate conditions on concrete. 

The elevated temperature in hot climates leads to the increased evaporation of water 

in concrete. The slump loss is also increased, which increases the difficulty in transporting 

and placing the concrete. To maintain the needed workability and slump loss, admixtures 

are added to the concrete. Further, different concreting methods and technologies are used 

to deal with these issues while concreting in hot climates. These include the addition of 

self-curing admixtures [5], phase change materials [9], ground granulated blast furnace 

slag [10], date palm fibers [11], and other materials. Similarly, concrete with modified 

properties such as self-compacting concrete [10] and high-strength flowable concrete [12], 

as well as the use of various curing techniques, have also been reported in the pertinent 

literature. In line with these studies, the current study targets this area and investigates 

the effects of high temperature on the properties of concrete in a hot climate zone (Rawal-

pindi, Pakistan). The study highlights the best curing method and w/c for concreting in 

such hot climates. The impact of the hot climate on the properties of concrete is analyzed 

in this study using artificial neural network (ANN) and regression models. In this study, 

first, the ANN and regression models are used to forecast the characteristics of concrete 

in hot climates. Then, the results are compared to find the most accurate forecasting 

method for predicting concrete properties. 

ANN is an advanced computing technique and a powerful analysis tool for dealing 

with nonlinear and complex generalizations. It acts like a human brain when processing 

a problem. ANN models use many layers and activation functions to analyze the data. It 

has become a popular technique because of its sophisticated computing power. It can 

learn from experience by analyzing the huge amount of data fed to it, known as the train-

ing data. It adapts by assigning weights to variables and adjusting them accordingly [13–

15]. 

ANN models are incredibly adaptive and can solve many civil engineering problems. 

Due to this adaptability, these are used to model nonlinear multivariant relationships be-

tween setting time and strength of concrete [16]. These have also been used by researchers 

for developing prediction models for reservoir discharge calculations [17], municipal solid 

waste management [18], rainfall prediction [19], sediment transport [20], and rock 

strength prediction [21]. al-Swaidani and Khwies [22] developed an ANN model to inves-

tigate five parameters for predicting the properties of concrete. These parameters include 

the curing period, w/c, volcanic scoria, and super plasticizer content. The authors used 21 

different mixes of concrete with three w/c: 0.5, 0.6, and 0.7. Similarly, Wu [23] used the 

radial basis function with an ANN model to predict the 28 day strength of concrete. 

Regression is the second technique used in this study. It has been used in multiple 

concrete-related studies. For example, a multiple linear regression model was used by 

Kiambigi et al. to forecast the strength of concrete using its w/c, mix design ratios, and 

properties of aggregates [24]. These factors were used for forecasting the strength of con-

crete after 7, 14, 28, 56, 112, and 180 days of curing. Similarly, in another study, a regres-

sion model was used to investigate the impact of various curing techniques on the 

strength of concrete [25]. The authors prepared 69 samples of concrete, cured them using 

different techniques, and performed water penetration (WP) tests to find the strength. 
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The current paper centers around the utilization of computational methods (ANN 

and Regression) to forecast the compressive strength (fc), depth of WP, ultrasonic pulse 

velocity (PV), and split tensile strength (ft) of concrete at high temperatures. Concrete’s 

properties are very sensitive to changes in temperature. For example, Farzampour [26] 

analyzed the impact of low temperature on fc of concrete and found that concrete does 

not perform well below 15 °C. Further, the fc of concrete is reduced by 20% at such tem-

peratures. Another study highlighted that the properties of concrete are affected by dif-

ferent types of environments (unsheltered, sheltered, and laboratory environments) [27]. 

Similarly, the bond strength of concrete is affected by salts (NaCl solution). Accordingly, 

the bond strength is reduced by 32%, 28%, and 8% in the first year when exposed to salts. 

Thus, it is evident that concrete properties are affected by different environments. As a 

result, researchers are actively investigating the effects of different types of environments 

on concrete properties. 

Overall, the factors that affect the characteristics of concrete are w/c, curing time and 

method, and temperature [28]. However, the effects of hot climates on concrete properties 

have not been rigorously investigated, presenting a gap targeted in the current study. 

Among the few relevant studies targeting this area, Nasir et al. [29] explored the influence 

of the hot climate of UAE on the properties of concrete. However, a comprehensive study 

has not been conducted for concreting in the hot climate of Pakistan so far. This gap is 

targeted in the current study. For this purpose, ANN and regression models are used in 

the current study to forecast the characteristics of the concrete in hot climates. These mod-

els can help the construction engineers and site managers to develop durable and tough 

concrete suitable for hot climatic conditions. 

1.1. Concreting under Hot Climate 

Favorable characteristics of concrete can be achieved by following the global stand-

ards of the American Concrete Institute (ACI), the American Society for Testing and Ma-

terials (ASTM), and the British Standards (BS). ACI 305 recommends keeping the concrete 

evaporation rate under 1 kg/m2 to avoid plastic shrinkage. According to ACI 305.1−06, the 

in-situ temperature of concrete should be less than 35 °C. Different techniques can be used 

to maintain this temperature, such as shading the aggregate stockpiles, sprinkling water 

on coarse aggregate stockpiles, using cold water or ice as mix water, and quick placement 

and finishing [30]. Mouret et al. [31] investigated the effects of aggregates temperature 

between 20 and 70 °C on concrete properties. The authors outline that the water require-

ment will increase with the increase in aggregates temperature, causing the fc of concrete 

to decrease by 15%. Hasanain et al. [32] studied the impacts of using shaded and non-

shaded aggregates on fresh concrete characteristics. The investigation highlighted that 

shaded aggregates reduce the loss of mixing water by 50% compared to non-shaded ag-

gregates. 

Similarly, various studies considered the effect of placement, distribution, and mix-

ing on the characteristics of fresh concrete [33–36]. These studies revealed that maintain-

ing the evaporation rate of mix water under 0.2 kg/m2 controlled the development of plas-

tic shrinkage cracks. Further, delaying the mixing time and casting between 40–60 min 

has no negative influence on concrete characteristics. 

Almusallam [37] prepared concrete samples in a special chamber at an atmospheric 

temperature of 30 to 45 °C. The author concluded that casting the samples at a higher 

temperature increases the fc of concrete initially. However, it will go down after some 

time. Kim et al. [38] prepared concrete samples using different types of cement and 

checked the effect of curing temperature on the samples. The temperature was kept be-

tween 10 to 50 °C, and the fc and ft of concrete were observed. By curing the concrete for 

up to 28 days, the authors found that the strength increases at an early age with an increase 

in the temperature and then goes down at later ages. Klieger [39] reported that increasing 

the curing temperature at the initial stages for up to seven days will increase the strength 

of concrete. However, after seven days, the samples made at 41 °C observe a strength 
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reduction up to 15% compared to the sample prepared at 23 °C or below. Nasir et al. [40] 

and Ortiz et al. [33] stated that ideal characteristics of concrete are attained when the tem-

perature difference between atmosphere and concrete is minimum. This is because the 

temperature difference between concrete and the atmosphere elevates the escape of mois-

ture from concrete to the atmosphere. This results in the development of microcracks, 

causing loss of strength and life of the concrete structure. 

w/c is an important concrete parameter that affects the properties of concrete [41]. 

ACI318 and BS8110 suggested using a low w/c if the structure is to be exposed to severe 

atmospheric conditions. Similarly, for maintaining workability, the recommendation is to 

use water-reducing admixtures. Al-Amoudi and Maslehuddin [42] found that if the w/c is 

less than 0.45, the permeability of concrete will be reduced. Ait-Aider et al. [43] recom-

mended using high w/c under hot climate conditions. According to the authors, hot 

weather has no negative effect on the fc of concrete. The authors discussed that evapora-

tion increases in hot weather. Therefore, a high w/c should be used in hot climates so that 

water is available for hydration reaction and workability is not disturbed. ACI 318 recom-

mends using lower w/c with a proper quantity of admixture to achieve the optimum work-

ability and strength conditions. 

Curing is another significant parameter to be considered when concreting under hot 

weather conditions. It is used to complete the hydration of cement in hot weather by con-

trolling the temperature and moisture movement in and out of the concrete [44,45]. Se-

lecting the most suitable curing technique depends on labor, budget, and w/c [28]. Sldoz-

ian and Hamad [46] explored the effects of different curing techniques on the fc of con-

crete. The authors used immersive, quickened warm water and wet gunny bag curing 

strategies. As per the authors, immersive curing is the best technique among the three, 

giving high-strength concrete. Reddy [47] evaluated the effects of different curing meth-

ods on the fc of concrete and argued that the pond curing method shows an accurate result 

compared to the other methods. Usman and Isa [48] also checked the effects of different 

curing methods on the fc of concrete using four methods: immersion, sprinkling, poly-

thene sheeting, and sharp sand coating. The authors reported that water immersion and 

sprinkling are more effective curing methods. Thus, different curing methods, supple-

mented with additional steps on a case-to-case basis, can be used when curing concrete 

under different conditions. 

1.2. Models to Predict Properties of Concrete 

Usage of numerical and analytical models has resulted in saving time and resources 

in defining the characteristics of concrete based on their quick, predictive analytics. Simi-

lar to its industrial counterparts, various computing models have been successfully intro-

duced in civil engineering. These include ANN, convolutional neural network (CNN), re-

current neural network, and others [49,50]. For example, CNN has been used to detect 

cracks in concrete structures from images [51]. These have also been used to estimate con-

crete’s fc based on analyses of images captured with a digital microscope [52]. ANN mod-

els have been used to investigate the effects of recycled aggregates on concrete properties 

[53]. It is one of the most effective and popular techniques that has proven to be useful 

over time for concrete studies [14,54]. 

Based on specific curing methods and mixed design parameters, the fc of concrete 

can be predicted using ANN. Yeh [55] and Kim et al. [56] developed ANN models for 

forecasting the fc of concrete. Lai and Serra [16] used ANN for forecasting the fc of high-

performance concrete when aggregates with varying characteristics were used. Nehdi et 

al. [57] used it to forecast concrete slump, filling capacity, and segregation. Sancak [58] 

used it to forecast the bond strength of lightweight aggregates. Demir [59] forecasted elas-

tic moduli for concrete with normal and high strength using the ANN model. Similarly, 

Atici [60] used it to study the effects of different quantities of fly ash and slag on concrete’s 
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strength. A key advantage of ANN is that it does not require any information when adapt-

ing to a new problem. This property is pivotal to its usage in the current study, where 

concreting in a hot climate is investigated. 

The rest of the paper is organized as follows. In Section 2, the reasons for selection of 

the study area are discussed. In Section 3, the development of ANN and regression models 

is discussed. The material and sample preparation are also discussed in this section. In 

Section 4, results are discussed, and key findings are stated. Finally, Section 5 concludes 

the study and presents its futuristic expansion areas and limitations. 

2. Study Area 

Rawalpindi, a city in the Punjab province of Pakistan, is located near the federal cap-

ital Islamabad. The climatic conditions in Rawalpindi are extreme due to the excessive 

urbanization in the city [61]. The city experiences five different seasons: summer, winter, 

autumn, spring, and monsoon. In summer, the hottest month is June, with the highest 

recorded temperature of 48.3 °C recorded on 13 June 1953 [62]. On the other hand, January 

is the coldest month with the lowest recorded temperature of −3.9 °C recorded on 17 Jan-

uary 1967 [63]. 

Rawalpindi is one of the rapidly developing cities of Pakistan [61]. Many mega con-

struction projects such as river courtyard, river loft, river hills 4, and grand millennium 

are under construction in the city. Many more projects are planned for the near future. 

The extreme summer temperature in Rawalpindi negatively affects the properties of con-

crete. The associated hot weather accelerates the cement hydration. Hot weather also in-

creases the difficulty of mixing, transporting, placing, consolidating, and finishing con-

crete works [64]. This decreases the strength and increases the crack formation in concrete. 

Likewise, warm climate conditions speed up surface vanishing, and plastic shrinkage in 

concrete leads to crusting and other issues. As a result, a lot of money is spent annually to 

maintain the concrete structures in Rawalpindi city. Therefore, there is a need for a study 

of concrete properties to eliminate the negative effects of hot weather on concrete struc-

tures in Rawalpindi in line with the modern smart cities and societies initiatives [65–69]. 

Owing to this, various researchers have investigated the civil infrastructure of Ra-

walpindi city and proposed mitigation measures to deal with relevant issues. Some of the 

relevant studies include designing energy-efficient intelligent buildings [70], solid waste 

management [64], the impact of urbanization on ground water [71], seismic mapping [72], 

construction management [73,74], transportation issues [61], and crises in megaprojects 

[75]. In terms of concrete-related research, some relevant studies are focused on seismic 

demand for low-rise reinforced concrete buildings [76], the effects of adding coconut fiber 

to concrete [77], and enhancing the hardened properties of recycled concrete through syn-

ergistic incorporation of fiber reinforcement and silica fume [78]. However, a study fo-

cused on the prediction of properties of concrete in the region has not been conducted to 

date. which is the humble contribution of the current study. With many new projects such 

as the Ring Road and the Naya Pakistan Housing Scheme (involving the construction of 

more than 1000 houses and associated infrastructure) announced for the Rawalpindi re-

gion, such studies must be conducted. 

3. Materials and Methods 

Figure 1 shows the overview of the method adopted in this study. First, the literature 

related to the properties of concrete was studied. Then, four characteristics of concrete 

were selected that greatly influence its properties. These include the fc, WP, PV, and ft. 

This research develops an ANN model for the accurate prediction of concrete character-

istics in a hot climate. Two models were developed for this purpose: regression and ANN. 

The sampling procedure of the study is focused on variable curing methods, as these 

greatly influence the properties of concrete. To select the best curing method, samples 

were prepared, and tests were conducted to predict the fc, WP, PV, and ft of concrete. 

Based on the results, the best curing method was selected. Afterward, prediction models 
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were developed using ANN and regression for predicting the properties of the concrete 

samples. These models were trained and tested subsequently. The results of the models 

were evaluated based on the values of R2, mean absolute error (MAE), and Root-mean-

square error (RMSE). Scatter plots were developed to compare the results. Based on this, 

the model with the most accurate predictions is recommended in the study to be adopted 

for predicting the properties of concrete in hot regions. 

 

Figure 1. Overview of research methodology of the current study. 

Overall, the study is conducted in three steps: material and concrete sample prepa-

ration, sample assessments, and prediction model development. These are explained sub-

sequently. 

3.1. Materials and Sample Preparation 

The experiments of this study were carried out in Rawalpindi, Pakistan, from May 

2021 to August 2021. The reason for using these months is that these mark the peak of 

summers in Rawalpindi, Pakistan. First, using ordinary Portland cement with coarse ag-

gregate (ASTM C 33 size # 67), cubic and cylindrical specimens were prepared. Crushed 

limestone, with a specific gravity of 2.6% and water absorption of 1.1%, was used in the 

process. Similarly, sand dunes with fine aggregate having a specific gravity of 2.56% and 

water absorption of 0.6% were used in the study. A total of twelve different concrete mix-

tures were prepared for this experiment with the following design parameters: 
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 The density of aggregate was 2600 kg/m3; 

 The concrete used in the experiment had a mix ratio of 1:2:4; 

 Portland cement prepared by the Maple Leaf company was used in the experiment; 

 The initial and final setting times of concrete were 30 and 60 min, respectively; 

 The aggregate fineness was 2250 cm2/g, which was tested using the Blaine air perme-

ability method; 

 Soundness was consistent with 10 mm fineness using the Le-Chatelier method; 

 Super Plasticizer was added equivalent to 0.1% of the cement weight; 

 Casting was done at an identical time from 10 am to 12 pm throughout the summer-

time with an atmospheric temperature of 34–38 °C; 

 The slump value was between 75 to 125 mm, obtained using the proper number of 

superplasticizers; 

 The quantity of cement used was 350 kg/m3; 

 The coarse to fine aggregate ratio was 1.8 (by weight). 

For the concrete mix design, the following conditions or criteria were ensured: 

1. Three different variants of w/c were used: 0.298, 0.398, and 0.448; 

2. The concrete temperature was set at 23, 30, 36, and 43 °C. This was accomplished by 

warming and chilling the aggregate in sunlight and the lab environment; 

3. Curing techniques included immersion (set in the lab at 22 ± 3 °C), wet burlap, and 

water sprinkling twice a day (in the field), and sprinkling curing compound on the 

sample after demolding; 

4. A variable interval of curing was used. 

The monthly variations in the relative humidity, rainfall, temperature, length of sun-

light, and wind velocity in Rawalpindi were considered, for which the data are available 

at http://www.pakistan.climatemps.com/(accessed on 17 August 2021). The altitude con-

sidered in this study was 508m. Further, the specimens cured using burlap or the moist 

curing technique were introduced to the laboratory under field conditions. A total of 36 

samples were collected and tested after 14 days of initial curing. 

3.2. Assessment of Concrete Performance 

In the current study, the performance of the concrete was determined through as-

sessments of its mechanical properties and durability characteristics. Three specimens 

were tested each time after 3, 7, 28, 90, and 180 days of curing. The water depth penetration 

test was performed on the 28th day of curing. The following conditions were maintained 

during the experiment: 

 Compressive strength (fc): according to BS 1881−116, the fc of concrete was deter-

mined using a 100 mm cube sample; 

 Split tensile strength (ft): by following the procedure stated by ASTM C 496, the ft 

was determined using cylindrical concrete specimens with a 75 mm diameter and a 

height of 150 mm; 

 Ultrasonic pulse velocity (PV): similar to fc, the ultrasonic pulse velocity of concrete 

was determined using 100 mm cube specimens following ASTM C 597; 

 Depth of water penetration (WP): following the procedure reported in DIN 1048, a 

water pressure (5 bar) was applied to the sample for 72 h to determine WP depth. 

3.3. Models Development 

The models used to find concrete properties were the quadratic regression and the 

ANN models. These are subsequently discussed. 
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3.3.1. Quadratic Regression 

Quadratic regression models are used to assess the relation between reliant and in-

dependent variables [79]. The general form of a quadratic equation is presented in equa-

tion 1. 

Y = ax2+ bx + c (1)

In Equation (1), x is independent, and Y is the dependent variable. Further, “a” is the 

model intercept, whereas “b” and “c” are the vectors for model coefficients. For estimating 

the model coefficients, the least square method is used [29]. The significance of the coeffi-

cients is tested using student’s t distribution at an assurance level of 5%. The final or most 

reliable model is the one for which the coefficients of associated parameters are higher 

than the t-estimation with a probability of 5% [80]. 

3.3.2. Artificial Neural Network 

ANN gives an approximate output by estimating the weights and constant values for 

every hidden neuron and reducing the error in the target values. For each input x, a cor-

responding weight w signifies how strongly it influences the output. The neuron output 

(Y) is calculated using Equation (2): 

Y = f (b + W X) (2)

where Y is the output, X is the input given to the model by the previous layer, b is the 

proportional constant, and W is the weight given to each variable X. The value of Y is 

calculated using an activation function [81]. Commonly used activation functions are Sig-

moid, ReLU, and Tan h. 

In the ANN model, learning algorithms are used to approximate weights and con-

stants. Backpropagation is the most used learning algorithm. First, it appraises the weights 

and constants. Then, it calculates the inaccuracies for out of sight values in the output 

layer. Finally, the weights and constants are updated [82]. The ANN models utilized in 

this research were developed using the conjugate gradient backpropagation (CGB) 

method. The CGB technique maximizes the weights and constants besides the conjugate 

gradient path [83]. Then, the constants and weights participating in forecasting every 

characteristic of concrete are inputted into the model. Figure 2 provides an overview of 

the generic ANN model. 

 

Figure 2. ANN model architecture. 
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In the input layer, each X represents the individual features of samples in the data 

set that are inputted into the model. Every input is linked to each unit in the hidden layer. 

Each link between the layers moves the output from the preceding layer to the next layer 

as an input. Weights are assigned to all connections. The input received from previous 

layers is multiplied by the assigned weight at the particular connection. In the training of 

the ANN model, the data set is used to adjust the weights assigned through iteration. 

During this process, the assigned weights are optimized using the backpropagation 

method. RMSE and MAE are used to measure the performance of the model. The 

weighted sum is computed along each connection to the neuron. The sum is passed on to 

the activation function in the output layer, which transforms the result into a number be-

tween 0 and 1.3.3.3 Statistical calculations 

Statistical application SPSS® was used to analyze the predicted concrete properties 

(WP, ft, fc, and PV). W/c, age of concrete, and in situ temperature were used as independ-

ent variables to predict the properties of concrete. Age of concrete was not used as an 

input in the model because WP was measured after 28 days. The models’ accuracy is 

checked and compared using RMSE, R2, and MAE shown in equations 3 to 5. R2 highlights 

the closeness of the cluster of data to the trend line. The associated values, ranging from 0 

to 1, show the closeness of every data point to the trend line. 

R2 = 1 −
�(�����

�)�

�(����)�   (3)

RMSE = �
�(�����

�)�

�
      (4)

MAE = 
�|(�����

�)

�
              (5)

where y is the expected value of the dependent variable and n is the number of samples. 

ANN and regression were used to develop the prediction models to determine the 

properties of concrete. Further, a combined ANN model of ft, fc, and PV was also devel-

oped to check the combined effect of these variables on concrete properties. Each model 

requires two-thirds of the data points to be selected randomly. The rest of the data points 

are used to test and train the model. 

4. Results and Discussion 

Based on the method adopted in the study, first, the properties of the concrete sam-

ples were tested in the laboratory. The test results are discussed subsequently. 

4.1. Properties of the Concrete Sample 

Table 1 shows the mechanical characteristics and WP of concrete samples cured for 

28 days. It shows different curing methods used at varying temperatures in the current 

study and their effects on the concrete properties. This was done to choose the best curing 

method when concreting in a hot climate. Overall, three curing methods are used in this 

study. 

Table 1. Mechanical characteristics and water penetration for concrete cured for 28 days. 

Mix 

Number 
w/c In Situ Concrete Temperature (°C) fc (Mpa) ft (Mpa) PV (m/s) WP (mm) 

Cured by submerging in water 

1 

0.298 

23 30.75 2.94 4282 28 

2 30 31.95 3.06 4292 16 

3 36 33.85 3.09 4312 20 

4 43 35.85 3.23 4352 28 

5 
0.398 

23 24.45 2.57 4182 34 

6 30 25.35 2.62 4202 20 
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7 36 27.45 2.8 4232 28 

8 43 30.55 3.06 4242 33 

9 

0.448 

23 20.55 2.29 4142 42 

10 30 20.95 2.37 4142 25 

11 36 22.65 2.63 4152 35 

12 43 25.35 2.7 4192 42 

Cured by covering with wet burlap 

1 

0.298 

23 40.85 3.32 4332 38 

2 30 46.75 3.69 4372 27 

3 36 44.45 3.42 4372 35 

4 43 39.65 3.35 4322 39 

5 

0.398 

23 33.65 3.95 4222 44 

6 30 39.45 3.22 4212 33 

7 36 36.05 3.19 4272 40 

8 43 32.55 3.05 4232 46 

9 

0.448 

23 30.15 2.7 4192 54 

10 30 35.75 2.99 4212 41 

11 36 33.45 2.92 4202 47 

12 43 28.95 2.88 4182 57 

Cured by applying curing compound 

1 

0.298 

23 37.55 3.25 4302 51 

2 30 43.95 3.63 4352 35 

3 36 41.65 3.33 4322 44 

4 43 36.95 3.27 4312 48 

5 

0.398 

23 31.45 2.92 4202 55 

6 30 37.95 3.13 4242 42 

7 36 34.95 3.16 4242 49 

8 43 29.75 2.83 4202 57 

9 

0.448 

23 27.05 2.62 4122 57 

10 30 34.15 2.87 4162 50 

11 36 32.05 2.84 4152 55 

12 43 26.65 2.7 4142 63 

When the w/c is increased, it causes a decrease in ft, fc, and WP, whereas, by increas-

ing the temperature, ft, fc, and PV values are increased. In the first curing method, the 

concrete is cured by submerging it in water. The results show that, for a w/c of 0.298, the 

values of fc, ft, and PV are 30.75, 2.94, and 4282, respectively. Similarly, for a w/c of 0.398, 

the values of fc, ft, and PV are 24.45, 2.57, and 4182. Whereas for a w/c of 0.448, the values 

of fc, ft, and PV are 20.55, 2.29, and 4142. From these values, a decreasing trend in fc, ft, and 

PV can be observed with the increase in w/c. Similarly, the increase in the values of con-

crete properties can be observed when the temperature is increased. In the first method, 

concrete samples were cured by immersing the samples in water at varying temperatures 

of 23 °C, 30 °C, 43 °C, and 36 °C. After 28 days, tests were carried out, and fc, ft, PV, and 

WP were determined. The samples with a w/c of 0.298 gave the highest fc compared to 

other w/c values. At 43 °C, the fc is observed to be 35.85 Mpa, which is the highest among 

all alternatives. Further, the value of PV is also the highest (4352 m/s at 43 °C) at a w/c of 

0.298, showing superior concrete quality. The maximum tensile strength of 3.23 Mpa is 

observed at 43 °C at the same w/c. WP value of 16mm is obtained at 30 °C. In comparison, 

the w/c of 0.398 and 0.448 have lower fc, ft, WP, and PV values. This shows that the sample 

prepared with a w/c of 0.298 at 43 °C gives superior quality concrete in hot climates such 

as Rawalpindi. 
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In the second method, curing is done by covering the concrete with wet burlap. In 

this method, water is sprayed on the concrete, and burlap blankets are placed over it. The 

burlap side of the blanket faces down towards the concrete. Burlap is made of natural 

moisture-absorbing fibers that retain moisture. It also shields the surface of the water from 

direct exposure to sunlight. Identical samples with the same w/c are prepared that are 

cured using wet burlap to determine the fc, ft, PV, and WP. In this case, the highest fc (46.75 

Mpa) and PV (4372 m/s) were observed at a w/c of 0.298 at 30 °C. The maximum ft (3.95 

Mpa) is observed at a w/c of 0.298 at 23 °C. Further, the lowest WP (27 mm) is observed at 

0.298 w/c at 30 °C. Based on these results, it can be concluded that superior quality concrete 

cured using wet burlaps can be obtained at a w/c of 0.298 at 30 °C. 

In the third method, curing compounds are used to cure the concrete. Concrete treat-

ment agent SPEC Chen SC 500 is used for curing concrete in this method. SPEC Chen SC 

500 is sprinkled over the surface of the concrete. The compound minimizes the evapora-

tion of concrete water, which helps in preventing shrinkage cracking. Afterward, the 

properties of concrete are determined using similar steps as mentioned in the first two 

methods. For this technique, the sample prepared with w/c of 0.298 at 30 °C gives the 

maximum fc (43.95 Mpa), ft (3.63 Mpa), and PV (4352 m/s) compared to other w/c values. 

This ratio also gives the lowest WP value (35 mm). By comparing the results from all meth-

ods in Table 1, it can be concluded that using a w/c of 0.298 at an in situ temperature of 30 

°C and covering the aggregate with wet burlap, concrete with improved characteristics 

can be obtained that is best suited for use in hot climates. 

4.2. Results and Discussion of Quadratic Regression Models 

Based on the developed quadratic regression models, the results and discussions are 

presented below. Scatter plots are presented and discussed subsequently, where the ob-

served and predicted values are presented on the x-axis and y-axis, respectively. For fc, ft, 

and PV, the data were collected up to 180 days, while, for WP, the data were collected up 

to 36 days. Tables 2–6 present the values of regression models for WP, fc, ft, and PV, re-

spectively. The variables significantly impacting the model are included in the final re-

gression model. The t-values and their corresponding p-values show the chances of pre-

diction deviation from the mean. Thus, the larger the absolute t-value and the smaller the 

p-value, the greater the evidence shown against the null hypothesis. The predictions are 

considered more accurate when the corresponding p-values are less than 5%. Figures 3–5 

show the observed and predicted values for each regression model. 

 

Figure 3. Scatter plot for water penetration using R2 values of the regression model. 
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Figure 4. Scatter plot for compressive strength using the regression model. 

 

Figure 5. Scatter plot of split tensile strength using the regression model. 

4.2.1. WP Results Using Quadratic Regression Models 

Table 2 presents the results of the quadratic regression model for WP. Accordingly, 

wet burlap and moist curing have a p-value of less than 5%, highlighting their greater 

impacts on WP. When a curing substance is utilized, the value of mentioned variables will 

be 0 due to their direct relation. Therefore, variables of all curing compounds are not sta-

tistically significant in the model. The variables having a p-value greater than 5% means 

that their chances of occurring are rare. If their t-value is 0, it validates the null hypothesis 

and shows flaws in the predictions. The null hypothesis, in this case, states that there is 

no connection between the two groups of data sets. 
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Table 2. Regression model results for water penetration. 

Parameter Estimated Value t-Value p-Value 

Intercept 123.7 7.48 0 

Moist curing −19.53 −13.97 0 

Wet burlap −8.17 −5.16 0 

w/c 67.84 7.12 0 

T −5.85 −5.6 0 

T2 0.2 6.8 0 

R2 0.87   

RMSW-Training 3.23   

RMSE-Test 4.32   

MAE-Training 3.14   

MAE-test 4.03   

w/c and T are significant variables; T has a second-degree impact on the model. WP 

is negatively affected by wet burlap and moist curing, as is evident from the negative 

estimated t-value of these variables. WP is directly proportional to the rise and fall of w/c. 

Since WP depends on permeability and there are no notable changes throughout curing, 

it is not much affected by the curing period. WP has a higher R2 value of 0.87. The associ-

ated data of this model on a scatter plot are spaced closely around the trend line, as shown 

in Figure 3. Such a close alliance of the scatter points around the trend line shows the 

accuracy of the developed model. 

The values of RMSE and MAE are 4.32 and 4.03, as shown in Table 2. The value of R2, 

when closer to 1, shows that the actual values and predicted values are closely aligned. 

On the other hand, if the R2 value is closer to 0, it shows greater variation between actual 

and predicted values. The zero value of p shows the accuracy of the estimated values. The 

t-value is used to check the accuracy of the estimated value; thus, with the values of t 

moving farther from 0, the accuracy of prediction is increased. The negativity or positivity 

of the numbers does not matter, as absolute values are considered for t-values. The esti-

mated value of the intercept is 123.7, having a t-value of 7.48 and a p-value of 0. The p-

value for moist curing, w/c, wet burlap, T, and �� is zero, representing the correctness of 

the prediction. Similarly, the t-values of moist curing, w/c, T, ��, and wet burlap shows 

the difference in the mean of samples. These correspond to the standard deviation of data 

from the group mean. The lower deviations from the mean show that the standard error 

is in an acceptable range. 

Figure 3 presents the graph of the R2 value for WP of the concrete sample. A limitation 

of R2 is that it cannot predict the data bias. Accordingly, the value can be low for a very 

good model and vice versa. Because of these shortcomings of R2 values, graphical repre-

sentations are used to get clear results. The graph is plotted between observed and pre-

dicted values. The centerline represents the data pattern known as the trend line or the 

regression line. The model predicts the change in Y when X increases by one unit. If the 

data points are clustered around the trend line, it shows coherence between the model 

predicted values and observed values, highlighting the fitness of the model for accurate 

forecasting. In Figure 3, data points are clustered around the trend line, signifying the 

accuracy of results and the fitness of the developed prediction model. The training data 

points range from (21, 23) to (80, 80), whereas the testing data set ranges from (20, 20) to 

(80, 80) on the scatter plot. Thus, the testing data set shows a positive correlation between 

observed and predicted WP values. 

4.2.2. Compressive and Split Tensile Strength Results Using Quadratic Regression Mod-

els 

The values of fc and ft estimated using the regression model are presented in Tables 

3 and 4. The associated values highlight that curing methods (except moist curing) do not 
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cause a noteworthy change in the fc. Further, T and t have a second-degree relationship 

with the fc. Moist curing is directly proportional to fc and results in an increase in the fc. 

Similarly, T and the age of concrete increases the fc. The values of R2 are 0.835 and 0.89 for 

ft and fc of the predicted model, which are closer to one, signifying the accuracy of the 

results. Predicted and observed values are uniformly dispersed around the trend line in 

the associated scatter plots, as shown in Figures 4 and 5. In comparison to other studies, 

the regression model developed by Othman et al. [84] shows a value of R2 as 0.93 when 

determining fc. Similarly, the regression model developed by Pichumani et al. [85] gave a 

value of R2 as 0.99 when predicting ft. Though their studies show superior results, the 

contexts were different in their studies that affect prediction accuracy; hence, these may 

not be comparable to the current study in terms of contexts. Nevertheless, the values of R2 

are in an acceptable range in the current study. 

The values of RMSE and MAE represent the reliability of predictions of the regression 

model. In this study, the values of RMSE for training and testing data sets are 7.87 and 

8.84 for fc. The MAE has values of 6.97 and 7.634 for fc, as shown in Table 3. For ft, the 

values of RMSE for training and testing are 0.318 and 0.362, as shown in Table 4. Similarly, 

for MAE, the values are 0.267 and 0.316 for training and testing, respectively, to estimate 

ft. Thus, the values of errors for the training and testing data sets are very similar, imply-

ing that the models developed for fc and ft are fit for predictions. 

Table 3. Regression model results for estimating compressive strength. 

Parameter Estimated Value t-Value p-Value 

Intercept −34.818 −1.834 0 

Moist curing 7.338 5.58 0 

T 6.165 5.754 0 

t 0.64 14.44 0 

T2 −0.08 −3.51 0 

t2 0.008 −7.532 0 

R2 0.89   

RMSE-Training 7.87   

RMSE-Test 8.839   

MAE-Training 6.97   

MAE-Test 7.634   

Table 4. Regression model for estimating split tensile strength. 

Parameter Estimated Value t-Value p-Value 

Intercept 0.781 1.116 0.321 

Moist curing 0.242 3.682 0 

T 0.13 2.343 0.018 

t 0.054 10.877 0 

T2 0.004 −2.102 0.042 

t2 0.004 −6.502 0 

R2 0.835   

RMSE-Training 0.318   

RMSE-Test 0.362   

MAE-Training 0.267   

MAE-Test 0.316   

The p-value from Table 4 (0.321) implies that the probability of rejecting the null hy-

pothesis is lower. Since the p-value is greater than 0.05, the probability of our predictions 

being correct is reduced. However, since the t-value, which represents the deviation from 

the group mean of two samples, is 1.116, the standard error in the data is very low. This 
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increases the confidence in the prediction results. For moist curing, the p-value is 0, im-

plying higher reliability of predicted values. The associated t-value (3.682) provides proof 

to reject the null hypothesis. For T, the value of p is 0.018, which is less than 0.05 and 

represents a greater probability of the correctness of predictions. This is supported by a 

higher value of t. Again, the predictions are accurate for t, t2, and T2, as evidenced from 

the lower p-value and higher t-values. Figure 4 shows the scatter plot of fc developed us-

ing the regression model with the observed values on the x-axis and predicted values on 

the y-axis. The data are evenly clustered around the trend line, which shows that the 

model is suitable for prediction. This is further supported by the high R2 value. 

In comparison to other studies, Saravanakumar [86] developed a regression model 

to predict the fc of concrete. The R2 value of their model is 0.8. In comparison, the current 

study shows superior values and more reliable predictions. The training data set ranges 

from (20, 24) to (80, 80), whereas the testing data set ranges from (20, 20) to (80, 80) on the 

scatter plot, as is evident from Figure 4. These values show a positive correlation. 
Figure 5 shows the scatter plot of ft developed using the regression model. The cluster 

of data concentrated around the trend line shows that the model for ft is highly accurate. 

This is supported by the high R2 value, showing a high correlation between the predicting 

and testing data sets. Furthermore, for ft, low values of RMSE and MAE are obtained, 

which further validates the reliability of the model. The training data set ranges from (2, 

2) to (6.5, 6.5), and the testing data set ranges from (1.9, 1.5) to (6.5, 6.5) on the scatter plot, 

showing a positive correlation. In comparison to published studies, Hassan and Arman 

[87] developed a regression model for predicting the ft. The value of R2 predicted by their 

model is 0.674 with MAE and RMSE values of 0.288 and 0.364, respectively. The current 

study shows superior values and prediction performance. 

4.2.3. Pulse Velocity Results Using the Regression Models 

According to Table 5, all the variables (except T and t) have significant effects on PV. 

These factors have a positive impact on the model’s predictions. Whereas T and t have a 

second-degree impact on the prediction. The data on the scatter plot are closely aligned 

with the trend line, as shown in Figure 6. The value of R2 for the PV regression model is 

0.66, showing acceptable model accuracy. However, since the value is not close to 1, the 

prediction accuracy is lower. PV has the lowest R2 value compared to the other regression 

models (fc, ft, and WP). The main reason for this variation is the higher uncertainty around 

input and output variables. This is because multiple variables that affect the PV are un-

known. Compared to other published studies, Chandak and Pawade [88] developed a 

regression model to predict the PV where a value of 0.947 was obtained for the coefficient 

of the correlation. Similarly, Godinho et al. [89] developed a regression model to predict 

PV where an R2 value of 0.89 is obtained. These models show superior performance to the 

current study. 

Table 5. Regression model for pulse velocity. 

Parameter Estimated Value t-Value p-Value 

Intercept 3622.854 19.429 0 

Moist curing 92.351 3.94 0 

Wet burlap 40.23 1.274 0.019 

T 27.239 1.381 0.027 

t 3.768 4.639 0 

T2 −0.25 −1.885 0.021 

t2 −0.016 −4.832 0 

R2 0.66   

RMSE-Training 63.834   

RMSE-Test 71.819   

MAE-Training 53.495   

MAE-Test 59.754   
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Figure 6. Scatter chart of pulse velocity developed using the regression model. 

As shown in Table 5, the p-values of intercept, moist curing, t, and �� are zero, im-

plying a higher probability of accurate predictions. The p-value of wet burlap, T, and �� 

are 0.019, 0.027, and 0.021, again signifying the accuracy of predictions. These are comple-

mented by a higher t-value of the intercept, representing a lesser deviation between the 

actual and predicted values. The values of training data sets range from (41, 41) to (44.8, 

44.8), and the testing data sets range from (41, 41) to (44.8, 44.8) on the scatter plot, as 

shown in Figure 6. These values show a positive correlation. In Figure 6, the cluster of 

data is closer to the trend line and is evenly distributed, highlighting the reliability and 

accuracy of the model. 

4.3. Results and Discussion of the ANN Models 

Table 6 lists the predicted properties of concrete prepared under a hot climate using 

ANNs models. ANNs models were developed to reduce the square error difference be-

tween experimental and forecasted values. This was achieved by iterating the hidden neu-

ron weights using the learning algorithm. The scatter plots for all data points of the de-

veloped ANN models are presented in Figures 7–10. Accordingly, both the experimental 

and forecasted data on the scatter plot are observed to be equally spread and closely 

aligned with the trend line, signifying the accuracy of results in the figures. A combined 

ANN model was also developed to check the combined effect of fc, ft, and PV. WP was not 

included in the combined ANN model because the tests needed to be carried out after 28 

days of curing. For normalization of the values, the variables were preprocessed using the 

min–max function, as shown in equation 6. In equation 6, X’ is the normalized value and 

X is the observed value, whereas min and max represent the minimum and maximum 

values of variables [90]. 

X’ = X − Min/Max−Min (6)

Table 6. Results of ANN models for predicting the properties of concrete. 

Parameter 
ANN Models 

WP fc  ft  PV  

Type MLP MLP MLP MLP 

Variable normalization Min–max Min–max Min–max Min–max 

Hidden layer activation function Hyperbolic Hyperbolic Hyperbolic Hyperbolic 

Input/output layer activation function Linear Linear Linear Linear 
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Number of hidden layers 1 1 1 1 

Number of hidden neurons 6 8 4 5 

Learning algorithm CGB CGB CGB CGB 

Error function Sum-squared Sum-squared Sum-squared Sum-squared 

R2 0.92 0.94 0.88 0.94 

RMSE-Training 3.048 2.48 0.901 17.216 

RMSE-Test 2.834 3.17 0.913 21.847 

MAE-Training 2.603 2.13 0.869 13.778 

MAE-Test 2.388 2.75 0.884 18.224 

As shown in Table 6, R2 values of WP, fc, ft, and PV are close to 1, showing the pre-

diction accuracy of the model. RMSE and MAE of training and testing models, mentioned 

in Table 6, represent the errors in the analyses. For WP, fc, and ft, the values of RMSE and 

MAE are very small, showing that the model’s predictions are very accurate. However, 

the values for PV, MAE, and RMSE are higher, indicating more errors in the results. These 

errors may be associated with human error in recording the data, the model’s inability to 

properly analyze the data, or incorrect selection of the number of hidden layers. The acti-

vation function provides the output at all nodes. It is a hyperbolic function in ANN mod-

els and provides values ranging from −1 to 1. 

The layer between input and output layers is known as the hidden layer. In the cur-

rent ANN model, one hidden layer is used for WP, fc, ft, and PV. It is very important to 

determine the number of hidden layers because, if too many hidden layers are used, the 

neurons will remember the data well but will not generalize it properly. On the other 

hand, if the number of neurons is too low, the neurons will generalize the data well, but 

the patterns will not be remembered well. Therefore, in this ANN model, six neurons are 

used for predicting WP, eight for fc, four for ft, and five for PV. 

Compared to other published studies, Mai et al. [87] developed an ANN model to 

predict the fc of concrete. Their model showed an R2 value of 0.9285, and RMSE and MAE 

as 4.4266 and 3.2971, respectively. In the model developed by Yousif et al. [91], ANN was 

used to predict the PV of concrete that displayed an R2 value of 0.94. Vineela et al. [92] 

developed an ANN model to predict the ft of concrete where a value of 0.98 was obtained 

for R2. For WP prediction using ANN, Mustafa et al. [93] developed a model that displayed 

an R2 value of 0.98. The current study results are comparable to these relevant studies and 

show identical results for the ANN model used to predict properties of concrete in hot 

climates. 

The values for both training and testing data sets range from (20, 20) to (80, 80) on 

the scatter plot in Figure 7. Each data point represents observed and predicted WP on the 

x-axis and y-axis, respectively. Compared to the values obtained from the regression 

model for WP in the current study, the R2 of the ANN model (0.92) is superior to that of 

the regression model (0.87). This shows that the correlation between the testing and train-

ing data sets of the ANN model is higher than that of the regression model developed in 

the current study. 
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Figure 7. Scatter plot of water penetration developed using ANN model. 

Further, the values of RMSE and MAE for the training regression model are 3.23 and 

3.14, which are greater than the ANN model (3.048 and 2.603). The same observations are 

made for the RMSE and MAE values of the testing data sets of the regression model (4.32, 

4.03), which are also higher than the ANN model (2.834, 2.388). This highlights that the 

ANN model gives more accurate predictions with the least errors. Hence, the ANN 

model’s prediction capabilities are more accurate compared to the regression model. Sim-

ilar observations were made by Sarkar and Pandey [94], who used an ANN model to pre-

dict the WP of concrete and obtained an R2 value of 0.92. 

Different ANN models were tried by varying the number of hidden layers, activation 

function, and neurons in the current study. The accuracies for all models were estimated 

and recorded. It was observed that the maximum accuracy is given by the activation func-

tion with one hidden layer. Some minor errors were observed in the model values. At least 

two hidden layers are required in combined ANN models due to the higher complexity 

within the problem. A maximum of seven neurons has been used in the developed mod-

els, while the minimum number is three. For example, seven neurons are used to predict 

fc, while three neurons are used for predicting ft. The neurons connect the input and out-

put variables. Thus, the variables with greater correlation will necessitate more neurons. 

The number of neurons does not significantly affect the processing time, nor does it re-

quire some special computational package. 

ANN models displayed superior results than the quadratic regression models. In all 

cases, the value of R2 for the ANN model is greater than the values obtained by the regres-

sion model. Scatter plots of ANN models for determining fc, ft, and PV are shown in Fig-

ures 8–10. The ANN models have fewer variations compared to the regression models. 

There is a large difference between the accuracy of ANN and the regression models for fc, 

ft, and PV, where ANN models show superior predictions. Further, the scatter plots for 

these parameters in the regression models are impractical as they display more predicted 

values to be out of range. 

The combined ANN model of fc, ft, and PV shows a higher prediction accuracy for 

determining all the parameters, as shown in Table 7. Furthermore, R2, RMSE, and MAE 

values for the combined model are improved in comparison to the previous ANN models. 

For fc, the data on the scatter plot are spread widely but equally around the trend line, as 

shown in Figure 11, highlighting data accuracy. The corresponding R2 value is 0.96, which 

is close to one, indicating more reliability. The ft data on the scatter plot follow a similar 

trend as shown in Figure 12, with an R2 value of 0.95. Similarly, for PV data the R2 value 
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is 0.9. The closer concentration around the trendline for the values of fc, ft, and PV repre-

sents higher accuracy of the combined ANN model for determining the characteristics of 

concrete prepared in a hot climate. 

Table 7. Combined ANN model results for predicting properties of concrete. 

Parameter Description/Value 

Type MLP 

Variable normalization Min-max 

Hidden layer activation function Hyperbolic 

Input/output layer activation function Linear 

Number of hidden layers 1 

Number of hidden neurons 9 

Learning algorithm CGB 

Error function Sum-squared 

Values for fc 

R2 0.96 

RMSE-Training 3.047 

RMSE-Test 3.287 

MAE-Training 2.555 

MAE-Test 2.771 

Values for ft 

R2 0.95 

RMSE-Training 0.762 

RMSE-Test 0.805 

MAE-Training 0.744 

MAE-Test 0.784 

Values of PV 

R2 0.97 

RMSE-Training 17.253 

RMSE-Test 22.482 

MAE-Training 13.487 

MAE-Test 18.3 

The values for fc of the concrete in the training and testing data sets range from (20, 

20) to (80, 80) on the scatter plot and display a positive correlation, as shown in Figure 8. 

In comparison to the regression model, the R2 value has improved from 0.93 in the regres-

sion model to 0.94 in the ANN model. Thus, the ANN model gives a superior performance 

in both training and testing phases. In comparison to other studies, Abuodeh et al. [95] 

used a back-propagation neural network model to predict the fc of concrete where the R2 

value of 80.1 is obtained. In comparison, the current study shows superior results. 
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Figure 8. Scatter plot of compressive strength established using ANN model. 

Figure 9 shows the ft predictions using the ANN model. The training and testing data 

sets range from (2, 1.5) to (6.8, 6.8) on the scatter plot in Figure 9, displaying a positive 

correlation. In comparison to the R2 value of the regression model (0.835), there is an im-

provement in the value of R2 of the ANN model (0.88). Further, the correlation between 

training and testing data sets of the ANN model is improved in comparison to the regres-

sion model. However, the RMSE values for the training and testing data sets of the regres-

sion model were 0.318 and 0.362, compared to 0.901 and 0.913 for ANN. Thus, compared 

to the regression model, the ANN model has more RMSE error value for ft prediction, but 

high R2. In comparison to published studies, Gülbandılar and Koçak [96] predicted the ft 

of concrete using the ANN model and obtained an R2 value of 0.90, which is very close to 

the findings of the current study. 

 
Figure 9. Scatter plot of split tensile strength using ANN model. 
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Figure 10 shows the values for PV using the ANN model. The scatter plot in Figure 

10 shows that the training and testing data sets range from (41, 41) to (45, 45), showing a 

positive correlation. In comparison, the R2 value of the regression model is very low (0.66) 

compared to the ANN model (0.94). Thus, there is a weak correlation between testing and 

training data sets in regression model when compared to the ANN model. The values of 

RMSE and MAE further support this. These are 71.819 and 59.754 for the regression model 

and 21.847 and 18.224 for the ANN model. Thus, the ANN model has less error and a high 

correlation between testing and training data sets compared to the regression model. 

Therefore, the ANN model is more accurate in predicting PV. In comparison to published 

studies, Trtnik et al. [14] developed an ANN model to predict the PV of concrete where 

the R2 value of 0.84 was obtained. The current ANN model shows superior results. As 

discussed in Section 4.3, a combined ANN model was also developed in the current study. 

This model combines all the previously developed ANN models to improve the predic-

tions. The combined ANN model uses a CGB learning algorithm with one hidden layer 

and nine neurons. Table 7 shows the results of the combined ANN model for predicting 

the properties of concrete. The R2 values of fc, ft, and PV obtained through this model are 

above 0.9, reflecting higher prediction accuracy. 

 
Figure 10. Scatter plot of pulse velocity for concrete using ANN model. 

In comparison to other studies, Yue et al. [97] developed an ANN model to predict 

fc, ft, elastic modulus, and concrete slump. The resulting �� values obtained for these 

properties were above 0.94. The current study shows similar results for fc and ft. In the 

current study, the R2 values of the combined ANN model are higher than the individual 

ANN models of fc, ft, and PV. Thus, the combined ANN model has improved prediction 

accuracy in comparison to individual ANN models. Therefore, the combined ANN model 

should be used for forecasting characteristics of concrete with more accuracy. 

As shown in Figure 11, the values for both training and testing data sets range from 

(20, 20) to (80, 80) on the scatter plot, showing a positive correlation. Figure 11 shows the 

predicted fc values using the combined ANN model. R2 of fc for the combined ANN model 

is 0.96, which is improved in comparison to the initial ANN model (0.94). This shows that 

the combined ANN model has a better correlation between testing and training data set 

models than the individual models. The value of RMSE and MAE for the combined ANN 

model for the testing data sets are 3.287 and 2.771, which are improved in comparison to 

the individual ANN (3.17 and 2.75). The errors in both combined and individual models 
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remain the same. Hence, the combined ANN model is better at predicting the fc of con-

crete with the same errors. In comparison to other studies, Uchechukwu and Austin [98] 

obtained an R2 value of 0.97 for fc. The current study has nearly similar results. 

 
Figure 11. Scatter plot of compressive strength developed using combined ANN model. 

Figure 12 shows the ft values obtained from the combined ANN model. As shown in 

Figure 12, the training data set ranges from (1.6, 1.6) to (6.6, 6.7) on the scatter plot for 

predicting the ft of concrete using the combined ANN model. The testing data set ranges 

from (1.6, 1.5) to (6.5, 6.5) on the scatter plot, showing a positive correlation. 

 
Figure 12. Scatter plot of split tensile strength developed using combined ANN model. 

The R2 value for ft using the combined ANN model is 0.95, compared to 0.88 for the 

individual ANN model, showing superior performance. The values of RMSE and MAE 
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for the testing data sets of the combined ANN model are 0.805 and 0.784, compared to 

0.913 and 0.884 for the individual ANN model. This shows that the individual ANN mod-

els have more errors than the combined ANN model. The combined ANN model has a 

high R2 value, better correlation between training and testing data sets, and fewer errors. 

Therefore, the combined model is more suitable for predicting the ft of concrete. 

In this study, regression models, ANN models, and a combined ANN model for pre-

dicting the properties of concrete were developed. The models were used to predict con-

crete properties (fc, ft, PV, and WP) when prepared in hot climates. In the studies by Nikoo 

et al. [99], an R2 value of 0.899 was obtained when predicting the fc of concrete. In compar-

ison, the current model gives a value of 0.96, showing better performance and increased 

reliability for both testing and training models. In another study by Nikoo et al. [100], R2 

values of 0.880, 0.993, and 0.946 were for training, validation, and testing phases when 

determining concrete strength. In comparison, the values obtained in this study are 

higher. Similarly, Ray et al. [101] determined the value of R2 for ft to be 0.958, which is the 

same as the current study, thus validating the results. Further, Yousif et al. [91] deter-

mined the R2 for PV to be 0.93, whereas the current combined ANN model gave a value 

of 0.97, showing superior performance. Therefore, based on the above comparisons, the 

combined ANN model developed in the current study is better at predicting the proper-

ties of concrete and is recommended to be used for such purposes. 

4.4. Comparison of the Results with Previous Studies 

Table 8 compares the ANN models developed in this study with previous studies. It 

must be noted that the models developed by previous researchers are not for concrete 

prepared in hot climatic conditions. Therefore, variations in values are expected. How-

ever, since both are based on ANN models, the studies are presented here to compare the 

model performance. 

Table 8. Comparison of the results with other studies. 

Variable Technique Value in the Current Study Value in Referred Study References 

Fc 

ANN/R2 

0.96 

0.9 [102] 

0.942 [54] 

0.9338 [103] 

0.9091 [104] 

Ft 0.95 
0.94 [105] 

0.89 [106] 

PV 0.97 0.88 [29] 

In the ANN model by Naderpour et al. [102], an R2 value of 0.9 was obtained to fore-

cast fc of concrete that is lower than the value in the current study, as shown in Table 8. 

Keshavarz and Torkian [54] developed an ANN model to predict the fc of concrete, where 

they obtained an R2 value of 0.942. Similarly, Yeh [55] developed an ANN model to predict 

the fc of high-performance concrete where an R2 value of 0.914 was obtained. Yeh and Lien 

[103] obtained an R2 value of 0.9338. Chou et al. [104] obtained a value of 0.9091. These 

values are less than the R2 value of 0.96 displayed by the model developed in the current 

study. Thus, the current model shows superior performance. 

For ft, Karthiyaini et al. [105] developed an ANN model to predict ft of concrete and 

obtained an R2 value of 0.94. Behnood et al. [106] obtained an R2 value of 0.89. Again, these 

values are lower than the R2 value of the model for ft developed in the current study (0.95). 

Similarly, for PV, Nasir et al. [29] developed an ANN model that shows an R2 value 

of 0.88 which is lower than the 0.97 forecasted in this research. Based on these, the current 

model humbly improves the predictions of concrete parameters using ANN models. 

Overall, in this paper, a combined ANN model has been developed to check the com-

bined effect of fc, ft, and PV, as shown in Table 8, that has not been considered in previous 
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studies. A key contribution of this study is the consideration of concreting under hot cli-

mates that the previous ANN models have not considered. The ANN model established 

in this research can help forecast concrete characteristics under hot climatic conditions 

with greater accuracy. In addition to the widely used R2 value, the current study also used 

RMSE and MAE to measure the accuracy of the developed models. This is because the R2 

value does not depend on the output, and, hence, measuring accuracy solely based on the 

R2 value may not be the best approach when developing or testing ANN models. 

5. Conclusions 

The properties of concrete are highly affected by environmental conditions whose 

adverse effects are more pronounced in hot climates. Rawalpindi, Pakistan was used as a 

case study area in the current study to determine the characteristics of concrete in a hot 

climate. Different samples were prepared by varying the curing techniques, in situ tem-

peratures, and w/c to study the mechanical properties of concrete prepared in a hot cli-

mate. It was found that the desirable characteristics of concrete can be achieved using a 

w/c of 0.298, in situ temperature of 30 °C, and covering it with wet burlap for curing. ANN 

and quadratic regression models are used in this study to develop prediction models for 

analyzing concrete properties. 

The quadratic regression model had higher accuracy in predicting the fc, ft, PV, and 

WP. However, for PV, its accuracy was low. From the results of the regression models, it 

can be inferred that T had a secondary impact on the regression model, w/c had a direct 

relationship with the WP, and moist curing had a great linear impact on all studied prop-

erties of concrete. Further, WP is not much affected by the age of concrete after 28 days, 

while the age of concrete had a secondary impact on other characteristics of concrete. Fur-

thermore, moist curing, t, and T positively influenced fc, ft, and PV, while WP was ad-

versely affected by T and moist curing. 

The ANN models were more accurate than the quadratic regression model. A com-

bined ANN model was also developed, giving more precise predications than independ-

ent ANN models of fc, ft, and PV. The combined ANN model is more accurate and reliable 

for designing and predicting properties of concrete in hot climates. A higher number of 

neurons were needed for a smaller number of samples. Overall, the combined ANN 

model displayed R2 values of 0.96, 0.95, and 0.97 for fc, ft, and PV that are superior to other 

published studies. Thus, the combined ANN model in this paper humbly improves the 

predictions of concrete properties while applying it to a hot climate zone. 

A limiting factor of the current model is its accuracy in predicting PV. The MAE and 

RMSE values for PV are 71.819 and 59.754, showing lesser accuracy of the model for pre-

dicting PV. Thus, in the future, the PV-related considerations of the current model could 

be improved. Further, this study used a limited number of samples that should be in-

creased to improve the accuracy of the experimental results in the future. Furthermore, 

this research only deals with predicting four properties of concrete: fc, WP, PV, and ft. It 

does not deal with the thermal properties of concrete that can also affect the properties of 

concrete under hot climates. Thus, the thermal properties that influence concrete, such as 

specific heat, mass loss, conductivity, and diffusivity, should be added to the model in the 

future. Finally, the developed ANN model uses the CGB method only. In the future, other 

algorithms such as the fletcher reeves conjugate gradient algorithm, powellbeale conju-

gate algorithm, Shanno (BFGS), scaled conjugate gradient backpropagation, quasi newton 

algorithm, and one step secant backpropagation could be used to enhance the efficiency 

of the developed models. 
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