
University of Southern Queensland

Faculty of Health, Engineering & Sciences

Harmony Analysis in A’Capella Singing

A dissertation submitted by

J. Oliver

in fulfilment of the requirements of

ENG4111/ENG4112 Research Project

towards the degree of

Bachelor of Electrical & Electronic Engineering

Submitted: October, 2019

Abstract

Speech production is made by the larynx and then modified by the articulators; this

speech contains large amounts of useful information. Similar to speech, singing is made

by the same method; albeit with a specific acoustic difference; singing contains rhythm

and is usually of a higher intensity. Singing is almost always accompanied by musical

instruments which generally makes detecting and separating voice difficult (Kim Hm

2012). A’ Capella singing is known for singing without musical accompaniment, making

it somewhat easier to retrieve vocal information.

The methods developed to detect information from speech are not new concepts and are

commonly applied to almost every item in the average household. Singing processing

adapts a large portion of these techniques to detect vocal information of singers including

melody, language, emotion, harmony and pitch. The techniques used in speech and singing

processing are catagorised into one of three categories:

1. Time Domain

2. Frequency Domain

3. Other Algorithms

This project will utilise an algorithm from each category; In particular, Average Mag-

nitude Difference Function (AMDF), Cepstral Analysis and Linear Predictive Coding

(LPC). AMDF is the result of taking the absolute value of a sample taken a time (k) and

a delayed version of itself at (k-n). Its known to provide relatively good accuracy with

low computational cost, however it is prone to variation in background noise (Hui, L et

al 2006).

Cepstral Analysis is known for separating the convolved version of a signal into the source

and voice tract components and provides fast computational speeds from utilising the

ii

Fourier Transform and its Inverse. LPC provides a linear estimation of past values of a

signal, the resulting predictor and error coefficients are utilised to develop the spectral

envelope for pitch detection.

The project tested the algorithms against 11 tracks containing different harmonic con-

tent, each method was compared on their speed, accuracy, where applicable the number of

notes correctly identified. All three algorithms gave relatively good results against single

note tracks, with the LPC algorithms providing the most accurate results. When tested

against multi-note tracks and pre-recorder singing tracks the AMDF and Cepstral Analy-

sis methods performed poorly in terms of the accuracy and number of correctly identified

notes. LPC method performed considerably better returning an average of 66.8% of notes

correctly.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to con-

tribute to the overall education within the student’s chosen degree program. This doc-

ument, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

J. Oliver

Acknowledgments

First and foremost I would like to thank my partner Amanda for the support she has

provided me throughout this degree. I would like to thank my supervisor Mark Phythian

for not only the idea of the project, also the support and guidance provided throughout

the project. Finally, I would like to thank my university peers for the support they have

provided throughout the year.

J. Oliver

Contents

Abstract i

Acknowledgments v

List of Figures xi

List of Tables xiii

Nomenclature xv

Chapter 1 Introduction 1

1.1 Aims of this research project . 2

1.2 Overview of the Dissertation . 3

Chapter 2 Literature Review 4

2.1 Vocal Production . 4

2.2 Pitch Detection Methods . 5

2.2.1 Time Domain Algorithms . 6

2.2.2 Frequency Domain Algorithms . 9

CONTENTS viii

2.2.3 Other Algorithims . 12

2.3 Signal Separation . 19

2.3.1 Signal Separation from accompaniment 19

2.3.2 Multiple Speaker Signal Separation 20

2.4 Programmable Logic Devices . 23

2.4.1 SPLDS . 24

2.4.2 CPLDS . 25

2.4.3 FPGA . 26

2.5 Speech Signal Processing with FPGA Architecture 29

2.6 Ethical Considerations . 31

Chapter 3 Methodology 33

3.1 Software Design . 33

3.1.1 Pre-Processing . 35

3.1.2 Signal Analysis . 38

3.1.3 Post-Processing . 41

3.2 Software Testing and Evaluation . 42

3.3 Hardware Design . 43

3.3.1 Hardware Requirements . 43

3.3.2 Hardware Implementation . 44

Chapter 4 Results 46

CONTENTS ix

4.1 Linear Predictive Coding . 48

4.2 Cepstral Analysis . 50

4.3 Average Magnitude Difference Function 51

4.4 Hardware Requirements . 54

Chapter 5 Conclusions and Further Work 57

5.1 Conclusions . 57

5.2 Further Work . 58

References 59

Appendix A Project Specification 63

Appendix B Risk Assessment 65

Appendix C Resource Requirements 69

C.1 Consumables . 70

C.2 Lab Equipment and Software . 70

Appendix D MATLAB Code 71

D.1 The Low Pass Filter MATLAB Function 73

D.2 The Peak Detection Algorithim MATLAB Function 74

D.3 The Pitch Period Estimation MATLAB Function 77

D.4 The Note Estimation MATLAB Function 78

D.5 The Harmonic Ratio MATLAB Function 87

CONTENTS x

D.6 The Linear Predictive Coding MATLAB Function 89

D.7 The Cepstral Analysis MATLAB Function 95

D.8 The AMDF MATLAB Function . 102

Appendix E Project Timeline 108

List of Figures

2.1 Block Diagram of the speech system (Kovacevic 2017) 5

2.2 Autocorrelation of a randomly generated signal 7

2.3 HPS Process . 11

2.4 Cepstrum Analysis block diagram (Furui, 2001) 13

2.5 Speech Production block digram (Deller 1993) 14

2.6 Wavelet Variations (Shukla 2013) . 18

2.7 Parallel processing scheme (Min, Chien, Li & Jones 1988) 20

2.8 ICA Voice separation(Kwan, Ayhan, Chu, Liu, Puckett, Zhao, Ho, Kruger

& Sityar 2008) . 21

2.9 Block Diagram Source Mixing and Separation (Kwan et al. 2008). 22

2.10 ADF Processing steps (Kwan et al. 2008) 22

2.11 ADF Voice separation(Kwan et al. 2008) 23

2.12 Logic Families (Rao 2016). 25

2.13 CPLD Architecture (Rao 2016). 25

2.14 Microcontroller Architecture (Rao 2016). 27

LIST OF FIGURES xii

3.1 System Block Diagram . 34

3.2 LPF: Frequency Response . 36

3.3 LPF: Zero Pole Plot . 36

3.4 LPC spectrum envelope . 39

3.5 MATLAB Profiler Viewer . 44

4.1 LPC Track 5 . 49

4.2 LPC Track 9 . 50

4.3 Cepstral Analysis Track 4 . 51

4.4 Cepstral Analysis Track 8 . 52

4.5 AMDF Track 2 . 53

4.6 AMDF Track 8 . 54

4.7 Average Time Taken Compared to Window Size 55

4.8 Average Memory used for computation . 56

List of Tables

2.1 Comparison of Signal separation algorithims (Guan 2017). 24

2.2 Comparison between systems (Rao 2016). 28

2.3 Experiment Results (J.L. Gomez Cipriano et al 2002). 30

3.1 Musical Note Information. 42

4.1 Track Information. 47

4.2 LPC Tacks 1-5 Results. 48

4.3 LPC Tacks 1-5 Results. 49

4.4 LPC Tracks 8-11 Results. 49

4.5 Cepstral Analysis Tacks 1-5 Results. 50

4.6 Cepstral Analysis Tacks 6 and 7 Results. 51

4.7 Cepstral Analysis Tacks 8-11 Results. 52

4.8 AMDF Tacks 1-5 Results. 52

4.9 Cepstral Analysis Tacks 6 and 7 Results. 53

4.10 AMDF Tacks 8-11 Results. 54

4.11 FLOP Estimation. 55

LIST OF TABLES xiv

4.12 Estimated Memory Blocks Required. 56

Nomenclature

ACF Autocorrelation Function

ADF Adaptive Decorrelation Filtering

AMDF Average Mean Difference Function

ASDF Average Squared Difference Function

ASIC Application Specific Integrated Circuit

BSS Blind Source Separation

CASA Computational Auditory Scene Analysis

CIS Continuous Interleaved Sampling

CPLD Complex Programmable Logic Device

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

HPS Harmonic Product Spectrum

ICA Independent Component Analysis

LPA Linear Predictive Analysis

LPC Linear Predictive Coding

PAL Programmable Array Logic

PLA Programmable Logic Array

NOMENCLATURE xvi

PROM Programmable Read Only Memory

SPLD Simple Programmable Logic Device

Chapter 1

Introduction

Speech analysis has touched the lives of almost every person in some way. It has been

implemented in a variety of systems from simple everyday items such as children’s toys to

the more sophisticated, cochlear implants. Continued advances in this field are improving

the way people connect with technology. Software such as Apple’s Siri use sophisticated

algorithms to interact with the user. Speech signal processing still contains many dis-

advantages, it tends to operate poorly in multiple speaker environments or areas that

contain a substantial amount of background noise. This makes most speech signal pro-

cessing algorithms perform poorly when used for singing analysis. The production of

speech is made by the larynx or voice box, this sound source contains a spectrum of fre-

quencies which are then modified using the articulators (contains the teeth, tongue and

lips), these modifications which are made over time produce the vowels and consonants

the are contained in speech (J. Wolfe et al 2013).

While singing uses the same human organs to develop the sound, singing is more rhyth-

mic and consists of a higher intensity than speech. In general singers have longer vocalic

segments along with improved resonance quality in their speaking voice than those who

don’t sing (Riley and Carrol 2016). Riley and Carrol go on to state that the “benefits

from training of the voice include respiratory health, psychological well being through

socialization, vocal stability through longevity and maintenance of cognitive function”;

these benefits gained from training go on to produce improved vocal quality as well as

efficiency of vocal power. Techniques such as SOVT and breath management are used to

help make these improvements in singing clarity and quality. One of the most important

1.1 Aims of this research project 2

traits for a singer and arguably one of the hardest traits to learn is to be able to sing in

pitch all the time. The singer needs to be able to review and learn when they are either

singing too flat or too sharp (Brophy 2015)

In A’ Capella singing, singers don’t tune their voice to musical instruments, instead

they tune their voice to each other. Generally speaking, the music scale is separated into

12 different tones of an equally tempered tuning system, this is known as the chromatic

scale, it is commonly used in western music. The subset of these 12 tones is known as

the diatonic scale and it consists of 7 tones which are said to be in key, while the other 5

are out of key (Brattico et al, 2006). With out musical accompaniment it makes it easier

for the singers to tune to each other using a musical scale as the one described above,

however they still lack any feedback excluding their own auditory perception.

1.1 Aims of this research project

The singing voice contains large amount of information including melody, language, emo-

tion and pitch, currently there has been a moderate effort of research into the area of

singing analysis or signal processing of music. Most deal with music that contains mu-

sical accompaniment and tends to separate the singing segments from the non-singing

segments. Techniques that are widely employed have been adapted from standard speech

processing algorithms for use with moderately good results (Muller, Ellis, Klapuri &

Richard 2011). Most systems developed used in singing processing utilise LPC, Cepstral

Analysis, HMM or variants of either to detect traits in the singing voice. The intended

aim of the research project is to develop a system that will provide singers with visual

feedback on singing information to help in the development of their singing ability. The

algorithm will be analysing the following specific traits: Pitch, Melody, Harmony and

timbre. The main objectives of this project are

1. Design an algorithm to analyse vocal cues such as pitch and quality.

2. Analyse two or more A’ Capella tracks.

3. Determine the closeness of the detected signals.

4. Provide visual feedback to the user.

1.2 Overview of the Dissertation 3

5. If time permits develop and implement a Hardware solution.

1.2 Overview of the Dissertation

This dissertation covers a range of areas dealing with signal processing of A’ Capella and

is arranged as follows:

Chapter 2: Literature Review – Describes previous research done in the area of speech

and singing signal processing

Chapter 3: Methodology – Discusses the methods used for development of the prototype

Chapter 4: Results – Discusses the results of the initial prototype along with prototype

improvements made throughout the development process

Chapter 5: Conclusions – An overview of the project, results and details any further

work required for this area of research

Chapter 2

Literature Review

This chapter presents a thorough review of vocal production, the techniques developed

for use in speech signal processing and FPGA implementation.

2.1 Vocal Production

Speech is generated using the lungs, trachea, larynx, pharynx, mouth and naval cavity.

The airstream as it passes through the larynx, the airstream is modulated from the activity

of the vocal cords, this modulated speech signal is then modified as it passes through the

mouth and nose (Kovacevic 2017).

The phoneme is the basic linguistic element of a language which can be divided into the

following categories, vowels, fricatives, plosives, affricates. (Kovacevic 2017). Vowels: are

created when phonation occurs in the larynx and passes through the vocal track before

radiation at the lips (Huckvale 2019). Consonants: are an articulation of the vocal tract

causing the vocal tract to narrow or close completely, they are classified into three different

categories:

1. Fricative: are created when the mouth is positioned in such a way to cause a partial

block (narrowing of the air passage) of the air stream, causing the airstream to

generate audible friction.

2. Plosives: Is a consonant that is created from a momentary occlusion of select parts

2.2 Pitch Detection Methods 5

Figure 2.1: Block Diagram of the speech system (Kovacevic 2017)

of the oral cavity this differs from a fricative in that the occlusion is total rather

than partial

3. Affricates: are a consonant that beings a stop or complete obstruction of air and

concludes with an incomplete closure and friction sound. This obstruction of air

occurs when a barrier is created within the mouth cavity causing a abrupt removal of

the airstream followed by a narrowing of the mouth cavity in turn causing turbulent

motion of the air which the vocal tract reacts too. (Kovacevic 2017, Britannica

2016).

When a person sings, production of the musical notes depends on the use of the lungs,

larynx, head cavities and the tongue; these mechanisms act independently of each other

and are coordinated to establish a vocal output. Singing distinguishes itself from speaking

by the requirement of how the breath is expended to vibrate the vocal cords, it also

requires more breath the louder, longer and higher a person sings (Britannica 2018).

2.2 Pitch Detection Methods

Many of the techniques used through out digital signal processing in speech have readily

been applied to the field of singing process or music processing. Singing however possess

specific acoustic and structural characteristics that distinguishes itself from speech or non-

2.2 Pitch Detection Methods 6

musical signals. Singing is almost always accompanied by musical instruments, these are

generally harmonic, broadband and coherent to the singing voice. This makes separating

the singing voice from music more difficult than it would to remove speech (Kim Hm 2012).

A’Capella singing however is considered as singing without instrumental accompaniment,

in some case A’Capella groups use their voices to emulate instruments, while there may

not be the need to remove the singers voice from accompaniment many of the techniques

described during in the following sections can be adapted for use in this project.

2.2.1 Time Domain Algorithms

The time domain algorithms presented in this section process raw audio signals that have

been digitized at various sampling rates. Sampling rates for most audio signals are 44100

samples per second. This section summarises commonly used time domain algorithms for

pitch detection including autocorrelation (ACF), average magnitude difference function

(AMDF) and Average Sqaure Difference Method (ASDF).

Autocorrelation Method

Autocorrelation method is a widely used approach in signal processing industry. It is

employed in a variety of area within the signal processing realm including radar, pitch

detection, and noise rejection (El-Ali, TS 2012). Autocorrelation is defined as the correla-

tion or similarity between a signal and a delay (k) version of itself and is mathematically

represented by equation 2.1

Rxx =
1

N

∞∑
n=−∞

x(n)x(n− k) (2.1)

Where n is the nth sample of N length and k is the lag or delay of the signal being

correlated. A signal of period ‘p’ will have a maximum, where the signal matches or has

a high correlation with the delayed version of itself and k=0. In practice this is computed

over a short time period of windowed data. This causes the frequencies within the window

to appear stationary. This window is normally kept to a minimum of two periods of the

waveform to correlate the waveform accurately (McLeod 2008). Windowing functions are

generally applied to the autocorrelation to reduce leakage or edge effects as the windows

transitions throughout the signal. Once autocorrelation of the window is performed, the

2.2 Pitch Detection Methods 7

Figure 2.2: Autocorrelation of a randomly generated signal

maximum peak is found and is used as the fundamental period estimate. To determine

the frequency this is value is divided by the sampling rate.

Frequency =
P

Fs
(2.2)

Where Fs is the sampling frequency and P is the period to the location of the local

maxima.

This algorithm performs well with periodic waveforms however it usually sees degraded

performance with speech processing due to the changing periods, pitches and amplitudes

of the speech waveform.

Center-clipping autocorrelation method is a method in which the autocorrelated waveform

is clipped at a predetermined level. This helps to minimise the vocal tract transfer function

and enhancing the vocal source (McLeod 2008). First the waveform is pre-processed where

computation of the clipping level is done. The window is then center clipped and infinite

peak clipped resulting in a signal of that either exceeds the clipping level or falls below the

clipping level. If the waveform doesn’t meet this criteria it is given a value of 0 (Rabiner,

Cheng, Rosenberg & McGonegal 1976).

2.2 Pitch Detection Methods 8

Average Magnitude Difference Function

Average Magnitude Difference Method of pitch detection is a variation of the autocor-

relation analysis. It provides an estimate of pitch periods within voice signals based of

a signal difference formed between the signal at time (k) and a delayed signal at (k-n).

The absolute magnitude difference is taken, this value will be negative going at delays

corresponding to the pitch periods of voiced speech. AMDF only needs subtraction, add

and absolute operations for the detection of pitch. It provides accurate detection with

low computational cost. AMDF is unfortunately prone to variations in background noise

within the speech signal (Hui, L et al 2006).

Xm(m) =
1

N −m− 1

N−m−1∑
n=0

|Sw(n+m)− Sw(n)| (2.3)

Xm(m) =
1

N −m− 1

N−m−1∑
n=0

|Sw(n)− Sw(n−m)| (2.4)

Where Sw(n) is the speech signal. N is the frame length of the signal and the range of

m is 0 to N. AMDF will produce a notch in the output as opposed to a peak found with

autocorrelation (Suma 2010). The pitch period is found by finding the minimum value

from the output of AMDF and calculating the distance between the position and the

origin point.

Average Squared Difference Function

The Squared difference function possess similarities to the AMDF covered earlier in this

section. Instead of finding the absolute difference between the signal and a delayed version,

SDF finds the squared difference between the two inputs. The squared difference results

in the equation:
t+k∑
n=1

(x(n)− x(n+ k))2 = 0 (2.5)

This makes sure that the opposite values do not cancel each other when computing the

SDF values. The minima occurs when k is a multiple of the period, this corresponds to

the ACF at zero lag where the ACF produces a maximum (Kumaraswamy 2017, McLeod

2.2 Pitch Detection Methods 9

2008). Like AMDF and ACF, the SDF or ASDF is required to have at least two cycles

of the waveform present in the window segment. There is presently a modified version of

the SDF function the provides a normalised output, known as YIN. YIN is defined as:

d′(n) =


1, if k = 0

dt(k)

1
k

k∑
j=1

dt(j)

, otherwise
(2.6)

2.2.2 Frequency Domain Algorithms

Frequency domain methods of pitch detection use the property of periodic and quasi-

periodic waveforms producing sharp peaks when transformed into the frequency domain.

To transform a waveform from its time domain to its frequency domain a discrete Fourier

transform (DFT) or Fast Fourier Transform (FFT) is used. Fourier’s theorem states

that any periodic function may be decomposed into an infinite series of sine and cosine

functions Mathematically, this is defined as

x(t) = a0 +

∞∑
K=1

(akcos(KΩ0t) + bksin(KΩ0t)) (2.7)

The coefficients are then found by integrating over one period of the waveform

a0 =
1

t

∫ π
2

−π
2

x(t)dt (2.8)

a0 =
1

t

∫ π
2

−π
2

x(t)cos(KΩ0t)dt (2.9)

a0 =
1

t

∫ π
2

−π
2

x(t)sin(KΩ0t)dt (2.10)

If the requirement to have a periodic waveform of period (t) is now removed, the equation

can be applied to convert any signal to the frequency domain. This is known as the

Fourier Transform; it is defined as:

X(t) =

∫ ∞
−∞

x(t)e−jΩ0t (2.11)

2.2 Pitch Detection Methods 10

The Fourier transform as defined above is used on continuous time systems, for discrete

or sampled system the Fourier transform is known as discrete Fourier transform and can

be defined as

X(k) =

N−1∑
n=0

x(n)e−jnωk (2.12)

where

ωk =
2πk

N
= frequency of the kth sinusoid (2.13)

The DFT is a cyclic function and results in the mirror imaging of components sampled at

time k. The DFT is computationally expensive to carry out, in most circumstances the

function known as the Fast Fourier Transform is used to carry out the Fourier Transform

of periodic and qausi-periodic signals. The Fast Fourier Transform reduces the amount

of calculations required by reducing one large calculation in to several sequential smaller

calculations (Leis, 2011).

Autocorrelation via FFT

Autocorrelation is generally considered a time domain method of pitch estimation, how-

ever using the properties of the Wiener-Khinchin equation combined with the FFT re-

viewed earlier, autocorrelation computation can be significantly reduced improving effi-

ciency (McLeod, 2008).

The Wiener-Khinchin Theorem states that the power spectrum is the Fourier transform

of the autocovariance function (Zbilut & Marwan 2008). The Wiener-Khinchin theorem

is defined as:

Rxx = F [|s(t)|2] =

∫ ∞
−∞
|s(t)|2e−j2π∂ft (2.14)

Where F [|s(t)|2] is the power spectrum and Rxx is the autocorrelation of the signal. This

algorithm is relatively easy to implement in MATLAB, and very efficient to carry out.

The resulting output of algorithm is the equivalent autocorrelation of the signal input.

2.2 Pitch Detection Methods 11

Figure 2.3: HPS Process

Harmonic Product Spectrum

Harmonic Product Spectrum compares the harmonics within a waveform to determine

the fundamental frequency f0 . To achieve this the signal is initially windowed to size

N with a set hop size. The Fourier Transform is carried out on the windowed segment

to transition to the frequency domain. The signal gets down sampled at multiples of

the fundamental using a process known as re-sampling, once this process is complete the

fundamental is found by finding the harmonics that corresponds to the peak located in

the unmodified signal as seen in figure 2.3.

HPS estimates the best harmonic using the following equation

N(w) =

S∏
s=1

|M(ws)| (2.15)

S is the number of harmonics to be considered. The pitch estimate is found using

N̂ = maxN(w); where w is the range of possible fundamental frequencies (Kodag, Patil

& Gaikwad 2016) HPS allows for higher pitches to be tracked accurately and is compu-

tationally efficient. However, it does perform poorly with increasingly smaller windows,

this is due to the accuracy in the bins, causing the harmonic peaks to become combined

(McLeod 2008).

2.2 Pitch Detection Methods 12

Cepstral Analysis

To accurately measure and analyse the components of singing, which can be considered

a convolution of the excitation source and the voice tract components, they first need to

be separated. Cepstral analysis separates such a signal into its two separate components

without any knowledge of the signal being analysed. The output is known as the Cep-

strum. The Cepstrum will represent the transformation of the signal with two important

properties:

1. The representatives of the component signals will be separated in the Cepstrum

2. The representatives of the component signals will be linearly combined in the cep-

strum (Rabiner 1978).

To carry out Cepstral analysis of a signal, first the waveform is windowed to the required

size, then the log of the Fourier transform is carried out on the signal, before the inverse

Fourier transform is carried out. This can be seen in figure 2.4.

The coefficients of Cepstal analysis are found with the following equation

c(τ) = F−1{log(|F{x[n]}|2)} (2.16)

The independent parameter of the Cepstrum is called the Quefrency, which is a time

domain parameter. The process of sperating these cepstral elements is known as liftering

or linear filtering.

2.2.3 Other Algorithims

Previously this report looked at methods that can be distinctly seperated by the domain

used to find pitch information from a signal. This section of the report will describe

methods that are not easily sepearated into the frequency or time domain.

2.2 Pitch Detection Methods 13

Figure 2.4: Cepstrum Analysis block diagram (Furui, 2001)

2.2 Pitch Detection Methods 14

Figure 2.5: Speech Production block digram (Deller 1993)

Linear Prediction Analysis

The Linear Predication Analysis (LPA), commonly referred to as Linear Predictive Coding

(LPC) technique was first described in the later years of the 1960s and has become a widely

used tool in the analysis of speech parameters such as pitch, spectra and formants. It can

provide accurate results with good computational performance.

In modelling a voiced system, figure 2.5 shows that voiced speech is simulated by an

impulse train and unvoiced speech is simulated by a random noise generator. Noting that

the parameters in the model are pitch period for voiced speech, gain, the digital filter and

voiced/unvoiced classification, they are therefore represented by the equation:

A(z) =
G

1−
n∑
k=1

αkZ−k
(2.17)

In LPA the speech is approximated as a linear combination of the past speech samples;

predictor coefficients are developed by minimizing the sum of the squared differences

between actual speech samples and linear predict samples. Due to the time varying

nature of speech signals, the mean squared prediction error must be completed in a short

period of time by utilising an N length hamming window or similar (Rabiner 1978).

Since:

e(n) = s(n)− s̃(n) = s(n)

p∑
k=1

aks(n− k) = Gu(n) (2.18)

2.2 Pitch Detection Methods 15

e(n) would result in small impulses for voiced speech segments and if excited by non-

time varying white noise then it would result in the mean squared prediction error to be

identical to the coefficients of s(n)

Where:

s(n) =

p∑
k=1

aks(n− k) = Gu(n) (2.19)

This allows for the set of model parameters to be solved by a set of linear equations,

which give way to an accurate representation of the speech signal.

En =
∑
m

e− n2(m) (2.20)

=
∑
m

(Sn(m)− S(M))2 (2.21)

=
∑
m

[Sn(m)−
p∑

k=1

akSn(m− k)]2 (2.22)

The limits for the linear equations are specified by one of two basic methods, Autocorre-

lation and Covariance methods.

The Autocorrelation Method for determining the limits

The autocorrelation method assumes that the waveform is segmented, where all values

of Sn(m) are zero outside the limits of the equation.

Sn(m) = S(m+ n)w(m) (2.23)

Where w(m) is a finite length window such as a Hamming window. It can be seen by using

a Hamming window of N length that the prediction error en(m) will only be non-zero for

the interval 0 ≤ m ≤ N − 1 + p for a pth order system (Rabiner 1978).

Therefore En can be expressed as

En =

N+p−1∑
m=0

e2
n(m) (2.24)

The Covariance Method for determining the limits The covariance method ap-

proach to defining the limits of an LPA is to fix the interval over which the mean squared

error is computed and then consider any effects on the computation of φ(i, k).

2.2 Pitch Detection Methods 16

Where:

φn(i, k) =
N−k−1∑
m=−k

Sn(m)Sn(m+ k − i) (2.25)

This function is a crosscorrelation between two similar signals of finite length segments

of a speech wave (Rabiner 1978), which produces a set of equations to be solved in the

form of:

p∑
k=1

αφn(i, 0) i = 1, 2, ...p (2.26)

Both methods produce a solution in the form of a linear vector matrix problem; Ax=b,

where A is a square matrix and x is the vector which needs to be found.

Solution to the Autocorrelation method The Levison-Durbin alogrithm is a recur-

sive solution developed to solve for the autocorrelation equations, the solution is developed

from the lower order models starting at the 0th order predictor model or no predictor

model (Deller 1993). This algorithm is considered one of the most efficient solutions to

the autocorrelation problem. It is mathematically stated as:

p∑
k=1

αφn(i, 0) i = 1, 2, ...p (2.27)

This group of equations is resolved recursively for I = 1,2, to nth iteration with the final

solution give as

E(0) = R(0) (2.28)

ki =

(R(i)−
i−1∑
j=1

α
(i−1)
j R(i− j))

E(i−1)
(2.29)

α
(i)
j = ki (2.30)

E(i) = (1− k2
i)E

(i−1) (2.31)

2.2 Pitch Detection Methods 17

This group of equations is resolved recursively for I = 1, 2, · · · pth iteration with the final

solution give as

αj = α
(p)
j 1 ≤ j ≤ i− 1 (2.32)

If the autocorrelation coefficients are replaced with normalised coefficients, it can be shown

that the system polynomial roots are located inside the unit circle, which guarantees the

stability of the autocorrelation system (Rabiner 1978).

Solution to the Covariance Method In the covariance method the equations are in

the form of equation (2.26). The covariance matrix is not a Toeplitz matrix is however

still symmetrical matrix of the form φα = ψ where φ is a positive definite symmetric

matrix and α is the column vector to be found (Rabiner 1978).

Solving the covariance equations is done by the decomposition of φ into lower and upper

triangles L and U, therefore φ = LU , once decomposition has occurred the covariance

method can be sequentially solved by solving the equations:

φs(m) = LδLT (2.33)

Φs(m) = CCT (2.34)

Wavelets

Wavelets is a function that meets two criterion the first, the integral of the function of x

is 0 and the second; the square of the function has an integral of 1. Mathematically these

can both be represented by the following equations

∫ ∞
−∞

ψ(x)dx = 0 (2.35)

∫ ∞
−∞

ψ(x)dx = 1 (2.36)

This shows that a wavelet function has an equal area above and below zero, and that the

function approaches zero and positive and negative infinity (Wavelets 2014). Wavelets

2.2 Pitch Detection Methods 18

are generated from a single wavelet known as a mother wavelet by scaling and translating

operations. The general wavelet function is defined by:

ψs,t(x) ≡ 1
√
sψ((x−t)

s)
(2.37)

The function varies in both time and scale and may be translated and shifted by ‘s’ and

‘t’ where necessary. Where t is the time series x(t) and s is the scale, which is similar

to the frequency for the FFT function. The scaling provides the advantages of large- or

small-scale transform windows over the same time series. There are variations of wavelet

functions commonly used throughout signal processing including the Morlet wavelet used

for short, high frequency transients, and the Mexican Hat wavelet used when temporal

resolution is important. Other variations of note include Haar wavelet, Meyer Wavelet

and S8 Symment wavelet (Shukla 2013) these variations are shown in figure 2.6

Figure 2.6: Wavelet Variations (Shukla 2013)

The Continuous Wavelet Transform (CWT) maps a one-dimensional function to a two-

dimensional function of two continuous variables. The CWT can be defined by

CWT (s, t) =

∫ ∞
−∞

x(u)ψs,t(u)du (2.38)

2.3 Signal Separation 19

Therefore the Discretised Wavelet Transform (DWT) is given by

DWT (j, k) =

∫
x(t)ψj,k(t)dt (2.39)

Since the DWT generates a large amount of data for every scale, the scales are based

on a power of two also known as the dyadic scales. Shukla, kk 2013, shows that the

computation of the DWT can be performed using Finite Impulse Response (FIR) filters.

It results in a recursive transform and the outputs are used to compute the wavelet

coefficients at the next octave of resolution.

2.3 Signal Separation

2.3.1 Signal Separation from accompaniment

While A’Capella is generally singing without accompaniment, most research is done in the

area of singing analysis with accompaniment, removing and analysing voice from broad

band instrumental backgrounds. Hu and Wangs propose an algorithm, where the target

pitch can be estimated using a few harmonics of the target signal, this estimate is then

used separate the target speech, consider the harmonicity and temporal continuity and

improve the accuracy of the results iteratively. This system shown to give better results

than current CASA systems for auditory analysis (Guoning & Deliang 2010).

Chao-Ling Hsu and DeLain Wang expanded on Hu and Wangs tandem algorithm; their

improved tandem algorithm uses a trend estimation algorithm that first estimates the

pitch ranges of the singers. The estimation is used to limit the range in the tandem

algorithm to get an accurate initial estimate of the singer’s pitch. The voice is then

separated using the estimated pitch and improved each iteration. Hsu and Wang, also in-

corporated a post processing to deal with sequential grouping problems (Chao-Ling Hsu,

Deliang Wang, Jang & Ke Hu 2012). Other existing methods can be categorised into three

different areas depending on the methods that are used; Model based, Pitch based, and

Spectrogram factorisation based. Spectrogram factorisation methods use the redundancy

of the singing voice and music component by decomposing the input signal into a pool of

repetitive components. Each of which is then assigned to a sound source. Model based

methods learn a set of music only sections; spectra of the voice are then learned from the

sound mixture by the comparing music only sections. Pitch based methods extract vocal

2.3 Signal Separation 20

pitch contours to separate the singing voice (Chao-Ling Hsu et al. 2012).

Each method has their own limitations, pitch-based methods tend to have fewer limi-

tations than that of modelling or spectrogram factorisation methods. This is due to only

requiring pitch contours as the cue for separation of the voice signal. Their main draw

back is its interdependency between pitch estimation and pitch-based separation. These

systems have been previously implemented in areas that have broad band background

noise produced from musical instruments. Separating two speakers or singers voice pro-

motes its own difficulties particularly when they are matched closely in pitch and harmony,

currently there is limited progress in the area of separating multiple speakers.

K. Min, D. Chen, S. Li and C. Jones present a system for improving separation techniques

of voices recorded on a single channel. The system (a multi-step pitch detection scheme)

includes auto-correlation functions, AMDF, and look forward and backward checking

schemes. The pitch detection scheme is used to determine the frame size to have suffi-

cient length to cover a multiple number of pitch periods for each speech signal. Speech

detection is applied to determine if one or more speakers exists in each frame. Then the

desired spectral components are selected and reconstructed. Filtering is used to reduce

any high frequency noise as part of the post processing scheme (Min et al. 1988).

Figure 2.7: Parallel processing scheme (Min et al. 1988)

2.3.2 Multiple Speaker Signal Separation

Speech analysis software is generally utilised for single person environments, when faced

with multiple speakers, performance of these systems tends to degrade to a point where

the system becomes unusable. To account for such environments a speech or signal sepa-

ration stage is essential for continued performance of speech analysis systems.

2.3 Signal Separation 21

C. Kwan et al conducted a study to analyse some of the current methods for signal sep-

aration in noisy environments. Their study looked at three algorithms, examined their

performance and formulated guidelines on which algorithm is appropriate for different

applications. The three different methods examined are, blind source separation (BSS)

based on independent component analysis (ICA), BSS based on Adaptive Decorrelation

Filtering (ADF) and Beamforming algorithms (Kwan et al. 2008).

The signals being measured in a real time environment are convolved with acoustic path

impulse responses, these signals by their nature are extremely difficult to separate. BSS

based on ICA resulted in the signals being separated effectively, Kwan et al notes that

the algorithm can be done with multiple signal sources, however it must be done pair-

wisely and needs an alignment algorithm to be implemented to fuse the separated signals

together. The results of signal separation of BSS based on ICA is shown in figure 2.8, the

voice signal is now easily recognisable once removed from the background noise.

Figure 2.8: ICA Voice separation(Kwan et al. 2008)

BSS based on ICA was implanted in the C software language, running on a Windows

environment. It consisted of 3 modules, the input module, processing module (In the

frequency domain) and the output module which displays the results (Kwan et al. 2008).

BSS based on ADF is an adaptive technique, with the convolutive nature of speech signals.

BSS algorithms are required to estimate de-mixing filters, therefor the speech separation

result is dependent on the reverberation level, source microphone distance and spatial

separation of sources. Figures 2.9 and 2.10 shows Kwans mixing and separation block

diagram and the processing steps required of the ADF algorithm. Kwan et al found similar

2.3 Signal Separation 22

results to BSS based on ICA, however the computation of BSS based on ADF takes longer

and the ADF based algorithm can be repeated for improved results. In similar structure

to the ICA, the ADF based algorithm used three modules, input, processing and output

to separate voices. Figure 2.11 shows the results from the ADF based algorithm, two

speakers can clearly be identified.

Figure 2.9: Block Diagram Source Mixing and Separation (Kwan et al. 2008).

Figure 2.10: ADF Processing steps (Kwan et al. 2008)

.

The Beamforming technique trialled by C.Kwan’s team implemented three beamformers.

A Delay and Sum beamformer, in which they compute the delay time for a given speaker

location to microphone location. Each speech signal is then divided into frequency bins

and processed by a weighting function and an inverse FFT function to obtain time domain

data. The DS beamformer was implemented in both MATLAB and C language. Next

was a Super-directive Beamformer otherwise known as Minimum Variance Distortion-less

Response Filter; this system was developed to alleviate the wide beam and lack of control

of the DS beamforming technology. The Super-directive beamformer surppresses side lobe

energy. In this system the speaker locations are known and parameters a pre calculated,

when speech is detected, the system beamforms to each location and selects the signal

2.4 Programmable Logic Devices 23

with the highest energy.

Figure 2.11: ADF Voice separation(Kwan et al. 2008)

The final beamforming implementation is known as Interference Rejection Beamformer,

in this system the interference signal location needs to be known, once known, zero gain

is placed in that direction eliminating any background noise. Table 2.1 shows the key

features of each beamforming technology and comparisons to BSS based ICA and BSS

based ADF technologies.

2.4 Programmable Logic Devices

Introduced in the late 1970s, the PLD; is a reconfigurable electronic component that has

no specific function at the time of manufacture and only needs to be programmed to

perform a specific task. The PLD family consists SPLDS, CPLDS and FPGAs. The PLD

family has several advantages over traditional SSI/MSI IC systems, namely, less board

space, faster, lower power requirement, cost and reliability (Rao 2016).

2.4 Programmable Logic Devices 24

Table 2.1: Comparison of Signal separation algorithims (Guan 2017).

System Advantages Disadvantages

BSS based ICA

Fast, no need of speaker

direction and location

information

May not yield good results for

many situations,

dependent on speaker

characteristics

BSS based ADF
Good performance,

no speaker location needed

Long computation time, dependent

on speaker characteristics

Beamforming

Fast, excellent performance,

independent of

speech characteristics

Needs speaker location and direction

Beamforming Type Key Features

DS

Spatial matched filter

Maximize bemformer output SNR

No sidelobe control, Wide beams

hence low resolving power

between close sources

Super-Directive

Minimize energy from other directions

Narrow beams, Good resolving

power between close by sources

Interference Rejection
Good rejection of directional

interferences, Narraow Beams

2.4.1 SPLDS

SPLDS come in several configurations, PROM, PAL and PLA. All these configurations

utilise AND arrays and OR array setups. In PROM, the OR array is programmable, PAL

the AND array is programmable and in PLA both the arrays are programmable. SPLDS

have a costly disadvantage, being that they are only one time programmable and can only

be programmed for combinational logic.

2.4 Programmable Logic Devices 25

Figure 2.12: Logic Families (Rao 2016).

2.4.2 CPLDS

Complex programmable logic devices are used for more complex tasks than their SPLDS

counterparts. A CPLD consist of multiple circuit blocks on a single chip with internal

resources to connect each block, with more inputs and outputs than the SPLD setups.

Each block is similar to a PLA or PAL these like blocks are connected to wire intercon-

nections and to a sub circuit I/O block. They can perform a variety of functions that a

SPLD cannot, however they are slow in operation compared to a SPLD. A CPLD is show

below in figure 2.12.

Figure 2.13: CPLD Architecture (Rao 2016).

2.4 Programmable Logic Devices 26

2.4.3 FPGA

Field Programmable gate arrays have become an important logic device since their im-

plementation in the mid 1980’s, they have good performance and have the potential to

use less power than other programmable logic devices if used correctly (Leong 2008).

A FPGA array is an integrated circuit configurable by the consumer or a designer af-

ter manufacturer. They are used in several various industries from communications,

office automation through to defence. There are several architectures of FPGA, the two

primary variants are coarse grained and fine grained. Coarse grained have fewer larger

components than fine grained systems. Early and simpler versions of FPGAs generally

consisted of logic blocks and registers, called configurable logic blocks (CLBs) and a ring

of programmable input/output blocks providing interface to the user or outside world.

As advances were made, FPGAs began to get additional resources such as a clock man-

agers, multipliers, RAM, Hard and Soft processors, DSPs and transceivers (Rao 2016).

Blocks such as the DSP added in later model give the FPGA support for logical oper-

ations, shifting, addition and complex multiplication. This has further been improved

through multiple word-length support and cascadability (Leong 2008). Implementing

these commonly used blocks increases the speed of the FPGA while reducing the power

usage of the system.

The decision to implement FPGA system over other systems such as an application specific

integrated circuit, will be made considering many factors such as cost, speed, software,

hardware and power. One of the main advantages of an FPGA based system over others is

that they have a lower cost when compared to custom systems and provides the flexibility

to be used in several areas. ASICs are a system that are built around a specific application,

which has some obvious advantages such as size and operating speed (generally in the

order of 20 times faster), they also don’t include any unnecessary gates. This make ASICs

an obvious choice for high speed applications.

The other major competitor to FPGA technology is the microcontroller; these systems are

constructed from a CPU, memory, general and special purpose controllers and interfaces.

They tend to have limited access to ROM, EPROM, Flash ROM/RAM and I/O ports.

Microcontrollers also need a program loaded on to the system, which can take considerable

amount of time to program and debug. Industries that utilise the microcontroller include

2.4 Programmable Logic Devices 27

Figure 2.14: Microcontroller Architecture (Rao 2016).

the automotive, communication, military and medical for applications like automatic

breaking or theft deterrent systems.

Table 2.2 provides a snapshot of the differences between FPGA, Microcontroller and ASIC

systems. Each of these options are suitable for signal processing of audio or speech signals.

2.4 Programmable Logic Devices 28

Table 2.2: Comparison between systems (Rao 2016).

System MICROCONTROLLER FPGA ASIC

Structure

Custom Builtcomputers

with limited

resources

Interconnected logicblocks

interconnected

electrically

Full Custom System

POWER USAGE Low moderate

COST Low Low - Moderate

Lower for large

number of

units

SOFTWARE Yes Mostly Hardwired Yes

APPLICATIONS
Some Real time

application
Most real time applications

Real time (Cars,voice

recorders, mobile

phones etc)

SETUP TIME Low-Med High

SPEED Low Med- High High

2.5 Speech Signal Processing with FPGA Architecture 29

2.5 Speech Signal Processing with FPGA Architecture

As technology improves signal processing of speech is finding its way into everyday life;

computer systems provide good results for implementing speech processing methods, if

the user is willing to accept some latency. However, it is not always the most convenient

option, economically viable or suitable for the application. FPGA architecture provides

the developer with the ability to configure the system after manufacturer.

While FPGAs haven’t been heavily used for processing of singing, they have found use

in speech processing and speech recognition applications; Melnikoff, Quigley and Russell

used FPGA architecture for such a system. Speech recognition is a computationally de-

manding task, requiring the system to convert and continually process real time data.

Melnikoff et al implemented an FPGA on the decoder for discrete and continuous Hidden

Markov Models and successfully processed data nearly 5000 times faster than real time.

Their system design uses a pre-processing stage, which takes the speech input extracts fea-

tures and observation vectors required for the speech recognition. The second stage of the

system is for recognition and decoding performed using the hidden Markov models(Melnikoff,

Quigley & Russell 2002). Although the system uses an FPGA structure it still utilises

a PC as a host system. The hardware consist of a Xilinx Virtex XCV1000 FPGA in

conjunction with a Celoxica’s RC1000-PP development board, an RC1000 PCI card, and

8 Mb of RAM accessible by both the FPGA and the Pentium III 450 Mhz host computer

(Melnikoff et al. 2002).

Melnikoff found that an FPGA in conjunction with a Pentium III PC was highly capable

of implementing signal processing for speech recognition applications far faster than the

software equivalent. There was a trade off between the speed at which the system can

process information and the accuracy of the processed information.

2.5 Speech Signal Processing with FPGA Architecture 30

Table 2.3: Experiment Results (J.L. Gomez Cipriano et al 2002).

Hardware Software

Stage Time (us) Time (us)

Parameter Extractionand Pre-Processing 2085 110000

Vector Quantization 173 440000

Recognition withViterbi decoding 375 50000

A similar system proposed by Jose L Gomez Cipriano, was implemented with func-

tional blocks for a portable speech recognition system using FPGAs. It contained a

pre-processing system, a Mel-Cepstra Parameters extraction system and a Viterbi pro-

cessor. The pre-processing system carries out pre-emphasis, frame separation and win-

dowing of the signal. The Mel-Cepstra system caries out the FFT, processes it through

a bandpass filter and carries out the discrete cosine transform. The output is passed

through to the Viterbi processor via a vector quantization stage. Left and Right HMM

are then outputted (J.L. Gomez Cipriano et al 2002).

The functions in Gomez Ciprianos design were implemented using Maxplus II in con-

junction with MATLAB and the C software language. The results from J.L. Gomez

Ciprianos study are listed in table 2.3. It clearly shows that implementing speech pro-

cessing with hardware takes a fraction of the processing time compared to its software

counterpart.

Other projects of note were developed by Amit.B and Jun Xu; Amit used a FPGA to im-

plement an efficient speaker verification system. The system was developed around a 10th

order LPC algorithm. To implement the system in hardware they utilised the efficient

Levison Durbin algorithm to determine the LPC coefficients (Amit S B 2018). These coef-

ficients are then compared to the stored data vectors to verify the speaker. Implementing

the algorithm in hardware required Amit’s team developed five main hardware sections,

segmentation logic, Autocorrelation Logic, Reflection coefficients Logic, LPC coefficients

logic and LPC Vector Matching logic. The signal was sampled using a 8Khz sampling

frequency, then segmented into 160 samples (Amit S B 2018).

The system was implemented on a VIRTEX-7 and a KINTEX-7 FGPA, the VIRTEX -

7 implementation used a little over 6% of the on board memory and 50% of the bonded

2.6 Ethical Considerations 31

I/O. While the KINTEX-78.71 used 10% of the on board memory and 70% of the bonded

I/O(Amit S B 2018).

Jum Xu’s dystem was implemented on a Virtex E V2000 FPGA. Like Amit’s implemen-

tation this system used the Levison Durbin algorithm to obtain the LPC Coefficients.

The system was a 10th order system and used 84.66% of the CLB slices and 44.06% of

the available I/O (Jun 2005).

2.6 Ethical Considerations

This project focuses around analysing vocal traits of A’ Capella singers; with that comes

several ethical considerations that need to be accounted for when analysing tracks. Speech

or singing signals contains a large amount of information including pitch, emotion, lan-

guage and emotion and in some cases can be used to identify the individual. According

to the Queensland Government personal information must meet two criteria

1. It must be about the individual

2. The individuals identity must be reasonably ascertainable from the information or

opinion

(Government 2019)

In most states of Australia, it is illegal to record or reproduce a recording of a person

without consent. Some states, such as Queensland, it is considered legal to record a

conversation you’re involved in without consent (Queensland 2019). Most of these acts

deal with the recording conversations between people and not singing.

It is still highly important that through out this project no breaches of privacy have been

made and consent must be sought from the persons on the track. There-for, the research

conducted throughout this project will be done using audio tracks that have been provided

by and with consent from the supervisor of this project and no recordings will be made.

The legal acts that pertain to this research are:

1. The Invasion of Privacy Act 1971 – QLD

2.6 Ethical Considerations 32

2. Information Privacy Act 2009 – QLD

Since this report will only be showing results of the analysed tracks, with limited in-

formation related to speech or singing traits of the people singing on the track; It is

highly unlikely that personnel information about the people singing on the track will be

attainable from this report.

Furthermore, the Institute of Engineers Australia requires Engineers, including students,

working around Australia to strictly follow a Code of Ethics. This code is published freely

on the Engineers Australia webpage. As such, while conducting this research the mem-

bers of this project are required to demonstrate Integrity, practice competently, exercise

leadership and promote sustainability.

Chapter 3

Methodology

This chapter will detail the methodology of this research project. The chapter will out-

line the following phases of the research project: Software design, Software Test and

Evaluation and Hardware Design.

3.1 Software Design

Generally, singing analysis techniques have been derived for traditional speech analysis

techniques. Singing possesses specific acoustic characteristics that separate it from speech.

Typically singing consists of pitch, timbre, rhythm and harmony. This project will be

developed based upon Linear Predictive coding, Average Magnitude Difference Function

and Cepstral Analysis techniques.

Each algorithm has been coded using the MATLAB development environment. Three

MATLAB scripts were developed with common sub-functions called by each script. The

sub-functions perform the tasks that are not directly related to the algorithm being tested,

they are described later in this chapter.

Figure 3.1 depicts a simplified version of the overall system. It is separated into three main

components, Pre-processing, Signal Analysis and Post-processing. The Pre-processing

stage contains the functions to prepare the track to be analysed by one of the algorithms.

Signal Analysis section calls the applicable algorithm to analyse the window and the Post-

processing section calls the functions required to extract and display pertinent information

3.1 Software Design 34

Figure 3.1: System Block Diagram

to the user.

3.1 Software Design 35

Once a track is loaded into the MATLAB script, the audio information is passed to the pre-

processing stage, where it is filtered, windowed and its periodicity emphasised. It is then

passed to the Signal Analysis section where the HPS algorithm and either LPC, Cepstral

Analysis or AMDF are used to analyse the track. The signal is then processed by the post

processing stage where the notes are detected and displayed. Once the information has

been displayed, the window is incremented to the next window and the process repeats

until then end of the track is reached. All the relevant information is saved to an Excel

spread once the processing of the track is completed.

3.1.1 Pre-Processing

Pre-Emphases and Low Pass Filter

The pre-emphasis and low pass filter are primarily used to balance the spectrum and

remove high frequency noise from the signal. The signal is processed through the pre-

emphasis filter, where the signal is combined with an altered version of itself. This follows

the form of:

y(n) = x(n)− αx(n− 1) (3.1)

Where x(n) is the signal being filtered and α is a filter coefficient of approximately 0.94

(Vergin, R and O’Shaughnessy, D 1995). Since speech naturally attenuates per decade,

passing the signal through the pre-emphasis filters results in the signal having a more

balanced spectrum.

The low pass filter is a finite impulse response filter chosen for its inherent stability

and ease of implementation within MATLAB.

The FIR filter is of the form:

H(n) =

∞∑
n=−∞

hd(λ)ejnλ (3.2)

Where,

λ = Normalised cutoff frequency = Wcπ
Fs N = 31 m = n− (N−1)

2

Substituting our required values into the general equation for a FIR low pass filter, (Wc

3.1 Software Design 36

Figure 3.2: LPF: Frequency Response

Figure 3.3: LPF: Zero Pole Plot

= 4kHz, Fs = 44100, N = 31), results in equation

h(n) =
1

2π

∫ 4π
44.1

−4π
44.1

Hd(
4π

44.1
)[cos(m

4π

44.1
) + jsin(m

4π

44.1
)]dλ (3.3)

Solving the integration results in the equation describing the FIR low pass filter used for

the singing analysis software.

h(n) =
sin(m 4π

44.1)

πm
(3.4)

The filters response was improved by the addition of a hamming window to reduce the

ripple through the stop band. A 4kHz cut off frequency was chosen to ensure all intelligible

information from the singers can be analysed in the program.

3.1 Software Design 37

The required information for low pass filter operation includes cut-off frequency (Wc),

the signal (y), Sampling frequency (Fs) and the filter order(m). The function will then

pass the filtered result back to the main equation for further analysis of the signal.

Windowing

The signal is windowed using a Hamming Function, into short segments with a 25%

overlap on the previous window. The window size is a trade-off between the resolution in

the time domain to that of the frequency domain, as well as processing power required

for program operation. A time sample of 92.9 ms was chosen as the window size. This

requires a window width of 4096 samples at a sampling frequency (Fs) of 44.1kHz.

H = 0.54− 0.46cos(2πn/N) (3.5)

This Hamming window allows for good frequency resolution and reduced spectral leakage

of the signal.

Autocorrelation

By taking the autocorrelation of a signal, periodicity is emphasised; producing relatively

large peaks at periods k = 0, N, 2N, 3N . As k approaches m, the amplitude of the peaks

that do not correlate will reduce to zero. If low frequency noise still prevails on the

signal, it can impact the performance of the pitch estimation being carried out. Using

autocorrelation prior to sending it through the analysis section allows the program to

emphasise any periodic or qausi-periodic waveform that may be accompanied by noise;

from one or more sources. This will reduce the affect any noise has during the analysis

of the signal.

Rxx =
1

m

m−1∑
N=0

x(N)x(N − k) (3.6)

3.1 Software Design 38

3.1.2 Signal Analysis

Linear Predictive Coding Method

LPC analysis is the process of approximating speech for the linear combination of past and

present values. In this program MATLABs built in LPC function is used to create the LPC

coefficients and error values. LPC was chosen for the initial performance testing stages of

this project as it is less computationally expensive compared to some of its counterparts.

The LPC is solved using the autocorrelation method as stated in the literature review, the

result is the linear prediction coefficients that allows accurate representation of a signal.

y(w) =
σ2
e

|A(w)|2
(3.7)

y(w) =
σe
|A(w)|

(3.8)

σ is the variance of the prediction error and A(w) is the prediction coefficients of the

LPC.

The linear prediction coefficients alone are not able to represent the information required

for the project. To accurately gain pitch information the output is converted to the LPC

spectral envelope describe by equation 3.8 above. The LPC analysis block carries out the

conversion to LPC spectral envelope using the following steps:

1. Take the Fourier Transform of the linear prediction coefficients

2. Divide the error coefficient by the output in step 1

3. Take the logarithm of step 2

The LPC envelope is shown in Figure 3.4 by the blue line. This line mirrors the peaks

and troughs of the frequency spectrum.

Some error is introduced when using the spectral envelope, this error can be offset by

increasing the order of the LPC analysis carried out. However, the trade is a higher

computational effort to calculate the LPC coefficients. The order of LPC used determines

the accuracy of the spectral envelope to the original signal frequency spectrum output. For

use in this project, a 150th order Linear predictive analysis was carried out; this provided

3.1 Software Design 39

Figure 3.4: LPC spectrum envelope

the required resolution to separate notes that appear close together on the frequency

spectrum.

Cepstral Analysis Method

Cepstral Analysis is used to accurately separate the convolution of speech signal into its

base components. The complex Cepstrum is defined as the inverse FFT of the complex

logarithm of the FFT, (Verhelst 1988). This is mathematically represented as:

ˆx(n) = F−1log(F [x(n)]) (3.9)

There are two methods used to obtain the cepstral coefficients, Cepstral Analysis as

described in the Chapter 2 of this document and converting LPC Coefficients to Cepstral

Coefficients for further processing. This project looks at the method described in chapter

2.

The following steps are used to calculate the Cepstral coefficients:

1. Calculate the Fourier Transform

2. Calculate the Log of step a

3. Calculate the Inverse Fourier Transform

A liftering operation is carried out on the Cepstral coefficients limiting the output to

frequencies between 100Hz and 2205Hz. The cepstral coefficients are passed back to the

main script along with Quefrency information to plot the data.

3.1 Software Design 40

Average Mean Difference Function Method

The Average Mean Difference Function is a pitch detection method based in the time

domain. It provides accurate estimates of pitch periods based on the difference formed

between time (n) and time (n − m). The absolute value is calculated to remove any

negative going delays that may correspond to voiced sections of the track.

AMDF is defined as:

xm(m) =
1

N −m− 1

N−m−1∑
n=0

|Sw(n+m)− Sw(n)| (3.10)

xm(m) =
1

N −m− 1

N−m−1∑
n=0

|Sw(n)− Sw(n−m)| (3.11)

(Hui, L, Dai, BQ and Wei, L 2006)

The AMDF coefficients are passed to the peak detection algorithm with a parity bit to

tell the function to search for local minima in the signal.

Harmonic Product Spectrum

HPS was added to the program to determine the fundamental frequency of the singer.

To do this it transfers the windowed data to the frequency domain using the Fast Fourier

Transform. The HPS system then downsamples the original data input up to 5 times. It

was limited to 5 to reduce the amount of error when detecting the fundamental frequency;

if the number of downsamples is increased there is a chance the the multiple over tones

of the downsampled data will fall within one frequency bin compromising the results.

Once the data has been down sampled it is then multiplied with previous results and the

maximum peak in the output is found. This frequency is then used to compare the pitch

detected from one of the three previous algorithms discussed. If there is a match between

the two, then the data is stored in a vector array and displayed to the user.

3.1 Software Design 41

3.1.3 Post-Processing

Pitch Detection Algorithm

The PDA MATALB function is passed the output of either one of analysis algorithm as

well as a parity bit. The parity bit tells the PDA function to calculate the maxima or the

minima of the passed signal.

Pitch detection is carried out by iterating through the samples of each frequency spectrum

vector, as it iterates through the algorithm, it takes the differential of the wave form and

looks for a change from a positive going waveform to a negative going wave form. When

this change in slope is detected the algorithm stores the bin location and magnitude of

where the change occurred, which is always located at Bin = n−1 , where n is the current

sample.

Pitch Period Estimation

The pitch period is found by finding the local minima and maxima of the signal, and

calculating the period from time t(0) to the local minima/maxima at time t(k). The

pitch period relates to the frequency by the following equation:

Freq =
1

Period
(3.12)

Note Estimation

The Note Estimation function is used to determine the musical note designation and the

difference between the note sung and the musical note value. Frequency information can

be represented by the Semitone and Cents values, this project will represent the note to

the nearest semitone by implementing the equation:

Semitone = 12log2
F0

440
+ 69 (3.13)

The detected frequency is compared to the required frequency values of the semitones to

determine the error (%). Both the error and the calculated note are passed back to the

main script.

3.2 Software Testing and Evaluation 42

Harmonic Ratio Estimation

The Harmonic Ratio Estimation function calculates the ratios of the fundamental note

of two or more tracks. The ratio between notes is required to be within ± 0.1 of the

following ratios 2
1 ,3

2 ,4
3 ,5

4 ,6
5 ,5

3 and 8
5 in order to be considered in harmony or a consonant

chord. A vector containing the results is then passed back to the main script; a 1 bit

indicating harmony, a 0 indicating the notes are out of harmony.

3.2 Software Testing and Evaluation

Testing and evaluation of the software will be carried out using a combination of pre-

generated frequencies and singing tracks supplied by the supervisor of this project, Mark

Phythian.

First each method was tested against a singular frequency from notes A2 through to

A6. The accuracy, time, and notes detected were documented for each algorithm. These

tracks are software generated tracks of 3 seconds duration with a sampling frequency (Fs)

of 44.1kHz.

Then each MATLAB script was tested against two tracks each containing three different

frequencies, with a duration of 3 seconds and an Fs of 44.1kHz.

Both tracks contain frequencies associated with musical notes commonly used throughout

western music. Table 1 details the note, frequency, period and the MIDI number of the

notes that were used during the second track.

Table 3.1: Musical Note Information.

Midi Note Designation Frequency Period

48 C3 130.813 0.008

55 G3 195.998 0.005

64 E4 329.628 0.00303

69 A4 440 0.00227

73 C5# 554.336 0.00180

78 F5# 739.998 0.00135

3.3 Hardware Design 43

The song Hallelujah by Leonard Cohen 1984 (Adam Scott rendition) was used to assess

each algorithms ability to discern harmonic information from pre-recorded vocals. It was

assessed against a 30 second length of track. There were four tracks used to carry out the

test, Baritone, Bass, Lead and Tenor only tracks. Equation 3.13, was used to calculate

the Semitone values and therefore the corresponding note. This value was rounded to the

nearest whole number.

If HPS detected notes matched those from either LPC, Cepstral analysis or AMDF; the

time stamp and note information are then stored and compared to sheet music for a

match. These results are reported in Chapter 4 of this report.

3.3 Hardware Design

3.3.1 Hardware Requirements

There are several measures to estimate the performance of a system, the most common

are time elapsed and floating point operations per second. A floating point operation

is defined as the addition or multiplication of single or double precision numbers that

conform to the IEEE 754 standard (Parker 2017, Karp & Flatt 1990).

To implement these algorithms in hardware, the hardware resources first needed to be

estimated. MATLAB was used to test the complexity of the software and therefore

estimate the hardware required to implement these algorithms. Three parameters were

used to estimate the requirements; memory utilised, computation time and FLOPS. These

results were then used to estimate the latency and minimum memory resources for each

algorithm to be implemented on an FPGA and an Android Mobile based system. Since

the average mobile device has a significant amount of RAM and flash memory on board,

only the latency of the system was calculated.

Testing was carried out on a Intel I7-7700HQ 2.8 GHz processor. Since it is difficult to

estimate how often and how long MATLAB utilises multiple cores for processing, it was

restricted to one core for testing the time elapsed of each algorithm. The testing took

advantage of MATLAB’s inbuilt profiler estimate the memory used and the tic and toc

functions to accurately estimate the computation time. Each algorithm was timed for

various window lengths; 512(29) through to 16,384(214) samples. This data is used to

3.3 Hardware Design 44

provide an estimate of the latency in the hardware for different data lengths.

To test the capability of the Intel processor I7-7700HQ and Snapdragon 855 processors;

Linpak Extreme and Mobile Linpak were used to estimate the amount of floating point

operations per second. The timing data and GFLOPS data were used to calculate the

expected latency across each system.

Figure 3.5: MATLAB Profiler Viewer

FPGA Calculations were based of the Altera Cyclone series. Using the allocated memory

from MATLABs profiler and the M20K,M10K and M9K memory blocks available on the

FPGA, memory resources to carry out. If the assumption that the memory is set up as

dual port RAM and pipelined then the amount of resources required to store a audio

sample can be calculated using

Memory Blocks Required

=
Allocatedmemory

M ∗ 2
(3.14)

Where M is the size of the FPGA memory block.

3.3.2 Hardware Implementation

The hardware implementation may be undertaken if there is enough time permitting be-

fore completion of this project. The design of the system will likely be based around the

FPGA architecture. FPGAs are integrated circuits that are easily programmable by the

3.3 Hardware Design 45

end user. More information on FPGAs and their architecture can be found in chapter 2

of this report.

If this project moves forward with the hardware design, it is likely that MATLAB and

Simulink will be used to generate C or HDL languages from the code previously devel-

oped for this project. The HDL language will be simulated and optimised using the built

in HDL coder function targeting the following areas Speed, Memory management and

Resource sharing.

Chapter 4

Results

This chapter will review the results for the three types of processing algorithms developed

in this project. The algorithms tested include:

1. Linear Predictive Coding

2. Cepstral Analysis

3. Average Mean Difference Function

Signal processing algorithms are categorised by either the time domain, frequency domain

or a combination of both. The chosen algorithms represent a method from each category.

These algorithms were used in conjunction with common sub function to output informa-

tion related to pitch, harmony and accuracy.

The operation of these MATALB scripts are described in the Methods section of this

report as well as the testing carried out on the three algorithms. Table 4.1 lists the tracks

used for testing in this project.

47

Table 4.1: Track Information.

Track Description Length (s) Sampling Frequency

1 110 Hz 3 44.1kHz

2 220 Hz 3 44.1kHz

3 440 Hz 3 44.1kHz

4 880 Hz 3 44.1kHz

5 1760 Hz 3 44.1kHz

6 130.813 Hz, 329.628 Hz, 554.336 Hz 3 44.1kHz

7 195.998 Hz, 440 Hz, 739.998, Hz 3 44.1kHz

8 Hallelujah: Tenor Only 30 44.1kHz

9 Hallelujah: Bass Only 30 44.1kHz

10 Hallelujah: Baritone Only 30 44.1kHz

11 Hallelujah: Lead Only 30 44.1kHz

4.1 Linear Predictive Coding 48

4.1 Linear Predictive Coding

The LPC testing carried out, approximates the singing content based on the past and

present values. It is converted to the spectral envelope to improve the pitch detection

of the notes. The test conducted on single frequency signals provided relatively accurate

results. Table 4.2 shows the results for the single note tracks using the LPC algorithm.

The accuracy column indicates how close the estimation is to the actual note. A positive

going percentage indicates the note was overestimated while the negative going, indicates

it underestimated the note.

Table 4.2: LPC Tacks 1-5 Results.

Track Freq Detected (Hz) Accuracy % Time(s)

1 110.69 0.6272 0.0047

2 220.378 0.17182 0.0052

3 440.198 0.20864 0.0022

4 884.8801 0.5545 0.0048

5 1764.7 0.26705 0.0047

The accuracy of the LPC pitch detection was affected by the Order of the Linear Predic-

tion being used and the length of the buffer used to create the spectral envelope. This

effect wasn’t seen until the software was tested using multiple note tracks and resulted in

the spectral envelope peak falling between to closely located notes. As a result the order

of the LPC was increased in an attempt to reduce this effect.

The addition of multiple frequencies didn’t affect the speed of computation dramatically;

however, the accuracy of the results were affected; in some instances, up to 10% particu-

larly at the lower end of the frequency range.

The pitch detection algorithm developed, detected several notes that were not contained

within the track used for testing. This inaccuracy was also present when testing against

the Hallelujah tracks as seen in the table 4.4 below.

The LPC algorithm performed relatively well when they were tested with the Hallelujah

tracks; in some case returning up to 89% of all detected notes correctly. The algorithm

performed poorly against the Tenor and Bass tracks returning 33% and 57% of all notes;

respectively. The LPC method provided the best accuracy of the three methods chosen

4.1 Linear Predictive Coding 49

Figure 4.1: LPC Track 5

Table 4.3: LPC Tacks 1-5 Results.

Track Freq Detected (Hz) Accuracy (%) Time (s)

6

144 10.8

0.0053338.1 2.57

554..8 0.0837

7

211.6 7.96

0.0055444.5 1.022

740.5 0.07

to test. It returned an average of 66% of all notes correctly across the test tracks and had

an average accuracy of 4% on the single and multi-note test tracks.

Table 4.4: LPC Tracks 8-11 Results.

Track Notes Correctly Identified % Average Time(s) per sample

8 33.8 0.0044

9 57.02 0.0051

10 86.87 0.0046

11 89.95 0.0044

4.2 Cepstral Analysis 50

Figure 4.2: LPC Track 9

4.2 Cepstral Analysis

Defined as the inverse FFT of the complex logarithm of the FFT, the cepstral analysis

algorithm provided the fastest computation compared to AMDF and LPC algorithms.

Excluding the detection of the A2 note, Cepstral analysis performed adequately against

the single note tracks.

Table 4.5: Cepstral Analysis Tacks 1-5 Results.

Track Freq Detected (Hz) Accuracy % Time(s)

1 Could Not Detect N/A 0.0047

2 227.32 3.32 0.0038

3 421.053 -4.306 0.004

4 882 0.2272 0.004

5 1764 .2272 0.0038

When tested against the multi-note tracks, the Cepstral analysis algorithm was relatively

inaccurate, detecting a frequency 28% greater than the required frequency.

When tested against the pre-recorded tracks containing the song Hallelujah; the algorithm

returned an average of 28.32% of the notes correctly and in one case returned less than 1%

of all notes correctly, since the Cepstral analysis output contains a considerable amount of

4.3 Average Magnitude Difference Function 51

Figure 4.3: Cepstral Analysis Track 4

Table 4.6: Cepstral Analysis Tacks 6 and 7 Results.

Track Freq Detected (Hz) Accuracy (%) Time (s)

6

144.18 10.17

0.0015288.235 12.55

572.727 3.31

7

238.378 28.10

0.0019380.172 -13.59

722.95 2.30

noise, this poor performance could be attributed to the threshold for detecting frequency

at which the peak occurs; resulting in the noise being picked up instead of the pitch

period of the note. The only positive performance from the Cepstral Analysis algorithm

came from its computational speed; which was considerably faster than the other two

algorithms.

4.3 Average Magnitude Difference Function

AMDF is a method based in the time domain; it provides an estimate of the pitch based

on the difference between the current value and the previous value in the signal. The

4.3 Average Magnitude Difference Function 52

Table 4.7: Cepstral Analysis Tacks 8-11 Results.

Track Notes Correctly Identified % Average Time(s) per sample

8 30.8 0.0011

9 41.56 0.0011

10 40.95 0.0012

11 < 1 0.0011

Figure 4.4: Cepstral Analysis Track 8

AMDF algorithm has its bound set at a minimum of 105 Hz to a maximum of 2205 Hz.

The AMDF pitch detection provided accurate results for all single note test tracks (Note

A2 and above). The AMDF algorithm was most accurate sampling the A2 note (110 Hz)

underestimating the fundamental frequency by 0.232 Hz, while the most inaccurate was

sampling the note A4(440 Hz); underestimating the frequency by 18.95 Hz. The Table

Table 4.8: AMDF Tacks 1-5 Results.

Track Freq Detected (Hz) Accuracy % Time(s)

1 109.98 -0.01777 0.0047

2 219.40 -0.272 0.0038

3 421.05 -4.306 0.004

4 864.17 -1.7375 0.004

5 1696.15 -3.627 0.0038

4.3 Average Magnitude Difference Function 53

Table 4.9: Cepstral Analysis Tacks 6 and 7 Results.

Track Freq Detected (Hz) Accuracy (%) Time (s)

6

140 7.023

0.00114279.11 15.325

525 5.29

7

186.075 5.06

0.00108370.588 15.77

711.29 3.879

4.8 shows the test results against the single note test tracks.

These results weren’t replicated in the multi-note tracks used for the next stage of testing.

The algorithm miss detected all the notes embedded on the tracks. It underestimated

the frequency of each note by a minimum of 5%. This caused each note detected to be

returned incorrectly to the user by the Note Estimation script.

Figure 4.5: AMDF Track 2

Against the Hallelujah tracks, the AMDF algorithm performed poorly, returning an av-

erage of 37% of all notes correctly. It performed the best against the Baritone only track

returning a total of 78.13% of the notes detected correctly.

The AMDF algorithm has a longer latency compared to the other two algorithms, in some

4.4 Hardware Requirements 54

Table 4.10: AMDF Tacks 8-11 Results.

Track Notes Correctly Identified % Average Time(s) per sample

8 12.6 0.0099

9 25.24 0.0097

10 78.13 0.0096

11 33.61 0.0098

Figure 4.6: AMDF Track 8

instances it was almost double that of the LPC algorithm.

4.4 Hardware Requirements

To determine the hardware requirements testing was carried out on each algorithm using a

consumer laptop which utilises a Intel I7-7700HQ processor. It was found that on average

the time taken to perform each algorithm varied heavily depending on the window sizethis

can be seen in figure 4.7. Using the average times to process the audio information a

GFLOPS estimate was calculated. Table 4.11 below provides an estimate of the GFLOPS

capable of each piece of Hardware using a single core processing a window size of 4096

samples. If these algorithms were to be used on mobile phone, there would be a significant

amount of latency in the equipment to produce the same result produced by the Intel

4.4 Hardware Requirements 55

Figure 4.7: Average Time Taken Compared to Window Size

processor. An FPGA implementation, has a substantial advantage of speed with Intel

estimating their mid range Altera Cyclone 10 is capable of speeds upwards of 76 GLOPS;

roughly the equivalent to utilising all of the I7-700HQ cores available(79 GFLOPS). Most

Table 4.11: FLOP Estimation.

Hardware GLOPS LPC Latency (S) Cepstral Latency (S) AMDF Latency(S)

Intel I7-7700 17.25 0.007 0.0059 0.0094

Galaxy 10 - Snapdragon 855 0.13682 0.8825 0.7438 1.185

Altera Cyclone 10 76 0.00158 0.001339 0.002135

mobile phone systems have more than enough memory resources to implement these

algorithms. FPGA systems on the other hand are generally limited in on board memory.

Figure 4.8 provides a snap shot of the memory being allocated to the algorithm calculation.

The estimated memory requirement for computation of each algorithm is shown in ta-

ble 4.12. It provides the expected number of memory blocks required to perform the

calculations. Where M20K,M10K and M9K contain 20Kb, 10Kb and 9Kb of memory

respectively; these memory block sizes are commonly used on Intel’s FPGA range. A mid

range FPGA model, such as the Cyclone V from Intel; would be recommended for these

algorithms to be implemented on.

4.4 Hardware Requirements 56

Figure 4.8: Average Memory used for computation

Table 4.12: Estimated Memory Blocks Required.

Memory Type LPC Cepstral AMDF

M20K 82 4 24

M10K 164 8 48

M9K 184 7 52

Chapter 5

Conclusions and Further Work

This chapter provides a summary of the project. It addresses the main lessons learned

and any possible future work that may be carried out.

5.1 Conclusions

The research conducted in this project focused around the use of various speech analysis

techniques used to extract harmonic content from singers vocals. Testing was carried out

using, Linear Predictive Coding, Cepstral Analysis, and Average Magnitude Difference

method against software generated and pre-recoded tracks. The results from the three

methods concluded with LPC providing the most accurate results across all 11 tracks used

in the testing. This resulted from the linear prediction coefficients being used to generate

the LPC spectral envelope, allowing the pitch detection algorithm to easily detect the

correct note.

AMDF and Cepstral analysis, in most cases, the detected note, was found to be within 2%

to 28% of the required note. These in-accuracies were consistent across all 11 tracks. In

the provided test track containing Hallelujah, both AMDF and Cepstral Analysis returned

the least amount of notes correctly, while LPC returned an average of 66.8% of notes.

All methods returned incorrect notes when the singer was transitioning from one note to

the next. In some cases the notes that weren’t returned were due to the HPS output not

being matched to the detected frequencies of the algorithms. Since the HPS algorithm is

dependent on harmonic frequencies present in the signal(Sripriya & Nagarajan 2013), it

5.2 Further Work 58

becomes difficult to estimate the fundamental frequency if the required harmonics aren’t

present. Better results may achieved by using a combination of LPC and Cepstral Analysis

or AMDF instead.

In the initial research for the project, visual feedback to the user wasn’t considered to

be a bottle neck of the program, however it increased the operation time of the program

significantly. General improvements to this can be easily made to improve the efficiency

of plotting.

5.2 Further Work

Given the results obtained in the project thus far. There are several items that can be

considered for future work. These include:

1. Investigate,design and test speech separation algorithms for multi-singer tracks.

2. Develop a rhythm and beat detection systems. Autocorrelation emphasises the peri-

odicity of a signal and has successfully been employed for beat detection previously.

3. Hardware design and construction. Further investigation needs to be done to imple-

ment these algorithms on hardware. Specifically the feasibility into using common

hardware such as a phone or microprocessor compared to a FPGA based system.

Utilising FPGA Architecture would provide a suitable and relatively inexpensive

option for implementing the signal processing system into hardware. Implementing

this on a readily available device such as a phone or tablet, would allow people to

access the system at a fraction of the cost.

4. Investigate improvements to be made to the current Linear prediction program,

including methods for detecting the onset of the note, utilising a combination of

LPC, Cepstral Analysis and HPS for note detection.

References

Amit S B, Rohit R, S. S. B. H. V. V. G. T. R. S. (2018), ‘Power efficient speaker verification

using linear predictive coding on fpga’.

Bahoura, M. & Ezzaidi, H. (2013), ‘Hardware implementation of mfcc feature extraction

for respiratory sounds analysis’, pp. 226–229.

Britannica (2016).

URL: https://www.britannica.com/topic/affricate

Britannica (2018).

URL: https://www.britannica.com/art/singing

Chao-Ling Hsu, J.-S. R., Deliang Wang, J.-S. R., Jang, J.-S. R. & Ke Hu, J.-S. R. (2012),

‘A tandem algorithm for singing pitch extraction and voice separation from music

accompaniment’, Audio, Speech, and Language Processing, IEEE Transactions on

20(5), 1482–1491.

De Cheveigné, A. (2002), ‘Yin, a fundamental frequency estimator for speech and music’,

Journal of the Acoustical Society of America 111(4), 1917–1930.

Deller, J. R. (1993), Discrete-time processing of speech signals, Macmillan Pub. Co., New

York.

Government, Q. (2019), ‘What is personal information’.

URL: https://www.oic.qld.gov.au/guidelines/for-community-members/Information-

sheets-privacy-principles/what-is-personal-information

Guan, L. (2017), FPGA-based Digital Convolution for Wireless Applications, Springer

Series in Wireless Technology, Springer International Publishing, Cham.

REFERENCES 60

Guoning, H. & Deliang, W. (2010), ‘A tandem algorithm for pitch estimation and voiced

speech segregation’, Audio, Speech, and Language Processing, IEEE Transactions on

18(8), 2067–2079.

Gupta, C., Li, H. & Wang, Y. (2017), ‘Perceptual evaluation of singing quality’.

Huckvale, M. (2019), ‘Introduction to speech science’.

URL: https://www.phon.ucl.ac.uk/courses/spsci/iss/week5.php

Jun, Xu Ariyaeeinia, A. R. (2005), ‘Migrate levinson-durbin based linear predictive coding

algorithm into fpgas’.

Karp, A. H. & Flatt, H. P. (1990), ‘Measuring parallel processor performance’, Commu-

nications of the ACM 33(5), 539.

Kodag, R. B., Patil, M. D. & Gaikwad, C. J. (2016), ‘Harmonic product spectrum based

approach for tonic extraction in indian music’.

Kovacevic, B. (2017), Robust Digital Processing of Speech Signals, Springer International

Publishing, Cham.

Kruger, H., Lotter, T. & Vary, P. (2004), ‘A versatile dsp-system for student-projects on

embedded real-time audio signal processing’.

Kumaraswamy, Balachandra Poonacha, P. G. (2017), ‘Modified square difference function

using fourier series approximation for pitch estimation’.

Kwan, C. Yin, J., Ayhan, B., Chu, S., Liu, X., Puckett, K., Zhao, Y., Ho, K. C., Kruger,

M. & Sityar, I. (2008), ‘Speech separation algorithms for multiple speaker environ-

ments’.

Ladefoged, P. (2001), Vowels and consonants : an introduction to the sounds of languages,

Blackwell, Malden, Mass.

Leis, J. W. (2011), Digital signal processing using MATLAB for students and researchers,

John Wiley & Sons, Inc., Hoboken, New Jersey.

Leong, P. H. W. (2008), ‘Recent trends in fpga architectures and applications’.

Makhoul, J. (1975), ‘Linear prediction: A tutorial review’, Proceedings of the IEEE

63(4), 561–580.

McLeod, P. G. (2008), Fast, Accurate Pitch Detection Tools for Music Analysis, Thesis.

REFERENCES 61

Melnikoff, S. J., Quigley, S. F. & Russell, M. J. (2002), ‘Speech recognition on an fpga

using discrete and continuous hidden markov models’, 2438, 202–211.

Min, K., Chien, D., Li, S. & Jones, C. (1988), ‘Automated two speaker separation system’.

Muller, M., Ellis, D. P. W., Klapuri, A. & Richard, G. (2011), ‘Signal processing for music

analysis’, Selected Topics in Signal Processing, IEEE Journal of 5(6), 1088–1110.

Parker, M. (2017), ‘Learn how to calculate and compare the peak floating point

capabilities of digital signal processors (dsps), graphics processing units (gpus), and

fpgas.’.

URL: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-

01222-understanding-peak-floating-point-performance-claims.pdf

Potamitis, I. & Kokkinakis, G. (2007), ‘Speech separation of multiple moving speakers

using multisensor multitarget techniques’, Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Transactions on 37(1), 72–81.

Queensland, L. A. (2019), ‘Privacy’.

URL: http://www.legalaid.qld.gov.au/Find-legal-information/Personal-rights-and-

safety/Privacy-and-identity/Privacy

Rabiner, L., Cheng, M., Rosenberg, A. & McGonegal, C. (1976), ‘A comparative perfor-

mance study of several pitch detection algorithms’, IEEE Transactions on Acoustics,

Speech, and Signal Processing 24(5), 399–418.

Rabiner, L. R. (1978), Digital processing of speech signals, Prentice-Hall signal processing

series, Prentice Hall, Englewood Cliffs, N.J.

Rao, S. S. S. P. (2016), Field programmable gate arrays and applications, Alpha Science

International Ltd, Oxford, England.

Riley, W. D. & Carrol, L. M. (2016), The performer’s voice, second edition. edn, Plural

Publishing, San Diego, California.

Shukla, K. K. (2013), Efficient algorithms for discrete wavelet transform : with applica-

tions to denoising and fuzzy inference systems, SpringerBriefs in computer science,

Springer, London.

Sripriya, N. & Nagarajan, T. (2013), ‘Pitch estimation using harmonic product spectrum

derived from dct’, IEEE International Conference pp. 1–4.

REFERENCES 62

Suma, S. A. Gurumurthy, K. S. (2010), ‘Novel pitch extraction methods using average

magnitude difference function (amdf) for lpc speech coders in noisy environments’.

Verhelst, W. Steenhaut, O. (1988), ‘On short-time cepstra of voiced speech’.

Wavelets (2014).

Zbilut, J. P. & Marwan, N. (2008), ‘The wiener–khinchin theorem and recurrence quan-

tification’, Physics Letters A 372(44), 6622–6626.

Appendix A

Project Specification

ENG 4111/2 Research Project

Project Specification

For: Jarred Oliver
Topic: Harmony Analysis in A ’Capella Singing
Supervisors: M. Phythian
Sponsorship: Faculty of Health, Engineering & Sciences
Project Aim: To research methods for analysing two or more A ’Capella tracks

and to develop a system in MATLAB to analyse these tracks for
characteristics such as pitch; and indicate closeness of harmony
to the user.

Program:

1. Research the background information on Speech analysis and Singing Analysis and their
implementation methods.

2. Critically examine the methods used in analysis of vocal tracks without musical accompaniment.

3. Compare implementation methods.

4. Design and code a system for analyising pitch and harmonic content as an indicator of singing quality.

5. Test the designed system.

6. Analyse the results of the systems with various tracks.

7. Submit an academic disseration on the research.

As time and resources permit:

1. Design and build a practical real-time harmony measurement system.

2. Test the constructed harmony measurement system.

Agreed:

Student Name: Jarred Oliver
Date: 3 April 2019

Supervisor Name: Mark Phythian
Date: 3 April 2019

Appendix B

Risk Assessment

C L
Risk

Rating
C L RR

1 Poor

Communication

No

Approval/Delay

of approval from

USQ to start

project

C 5 Very

High

Communicate

effectively and early

with USQ and

Supervisor

C 1 low

1,2,3,4,5

,6

Poor ergonomic

setup of

workstation

lower back

injuries, repative

strain injuries

B 4 High Set up work station

IAW an approved

ergonimics set up

guide, Take regular

breaks

B 3 Moderate

1,2,3,4,5

,6

Long periods of

computer

monitor use

Possible eye

strain
A 5 Moderate Take regular breaks

from screen use, setup

monitor IAW ergonimcs

guide.

A 1 Low

6 Data Breach Loss of

Personnel

Information

D 2 High No personnel

information will be kept

or stored for the

purposes of this project

C 1 low

Step

Hazards
What could cause

injury or ill health,

damage to property

or damage to the

environment

Risk
What could go wrong

and what might

happen as a result

Initial Risk Rating Potential Control

Measures
(Consider Hierarchy of

Control - Elimination,

Substitution, Isolation,

Engineering Controls,

Residual Risk Rating

Optional

1

Design of

Electrical

Hardware

Poor/inaccurate

electrical design

could result in

injury resulting

from electric

shock

C 3 Moderate Design will be

undertaken in

accordance with

applicable standards.

Utilisations of correct

PPE including saftey

glassess, non

conductive clothing,

ESD safety equipment

C 2 Moderate

Optional

1

Soldering

station use

Incorrect use of

soldering/ air

gun equipment

leading to burn

injuries

B 3 Moderate Use of correct PPE,

including long sleeve

clothing

B 2 Low

Optional

1

use of cutters,

wire-strippers &

filing equipment

Incorrect use

leading to cuts,

lacerasions

B 3 Moderate Use of correct PPE B 2 Low

Optional

1

Poorly

manufactured

system blocks

Smoke

inhalation from

acring

C 1 Low Testing carried out in

well ventilated area,

use of forced

ventilaition system

C 1 Low

Optional

1

Testing of

Electrical

Hardware

Electric Shock C 4 High Reduce period of time

equipment is live, Use

correct PPE

C 2 Moderate

Optional

1

Poorly

Designed

Hardware

Equipment

Damage
C 1 Low Actively Carry out

simulation and

confirmation checks to

ensure equipment

functions correctly

B 1 Low

Optional

1

Lack of

Rsources/

Delay in

Resources

Delay in project

completion or

failure to

complete project

C 3 Moderate Identifiy equipment

early during the project
C 1 Low

Appendix C

Resource Requirements

C.1 Consumables 70

C.1 Consumables

1. Twisted Pair wire 28 AWG 19.90/m USD

2. Solder

3. PVC Case Size -TBA

4. FPGA Development Board

5. Electronic Display - RGB LCD 69.56 USD

6. Microphone

C.2 Lab Equipment and Software

1. Soldering Station

2. Oscilloscope

3. Wire Cutters

4. Wire Strippers

5. Soldering stand

6. Mulitmeter

7. Altium

8. MATLAB

9. Qaurtus Prime

10. Audio Tracks

Appendix D

MATLAB Code

72

This sections presents the code developed for the Harmony Analysis project using MAT-

LAB. This chapter is organised as follows

1. Low Pass Filter

2. Peak Detection Algorithm

3. Pitch Period Estimation

4. Note Estimation

5. Harmonic Ratio

6. Linear Predictive Coding Function

7. Cepstral Analysis Function

8. Average Magnitude Difference Function

D.1 The Low Pass Filter MATLAB Function 73

D.1 The Low Pass Filter MATLAB Function

The function lpfilter.m is passed the audio signal, sampling frequency the required

order of the filter and the cut off frequency. The order and the cut off frequency are

chosen by the user. Once this information is passed to the function, the signal is filtered

using a filter of order n. The filter is a cascaded low pass filter following the equation

sin(ω(n−m+eps)
π(n−m+eps)

sin(ω(n−m+eps)
π(n−m+eps) .

Where n is the order, m is n−1
2 and eps is eqaul to the value of 2.2−16 this is used to

prevent any divide by zero errors from occuring

Once the signal is filter it is passed back to the main equation.

Listing D.1: Low Pass Filter Function.

%Low Pass F i l t e r Function
%Author : Jarred O l i v e r
%Date : 07/04/2019
%Function c r e a t e s low pass f i l t e r c o e f f i c i e n t s by cascad ing the LPF
%f u n c t i o n wi th a de layed v e r s i o n o f i t s s e l f
%the s i g n a l i s then passed through the f i l t e r us ing MATLABs f i l t e r f u n c i t o n
%−−
%Inputs
%Wc − Chosen frequency c u t o f f
%y−s i g n a l input
%Fs − Sampling Frequency
%order − the order o f the f i l t e r
%−−
%output
%r e s u l t − the f i l t e r e d s i g n a l
%−−

f unc t i on [r e s u l t] = l p f i l t e r (Wc, y , Fs , order)
w = Wc∗ pi /(Fs / 2) ;
m = (order −1)/2;

f o r n = 1 : order+1
H(n) = s i n ((n−m+eps)∗w)/(p i ∗(n−m+eps))∗ s i n ((n−m+eps)∗w)/(p i ∗(n−m+eps)) ;

end
LP = hamming(l ength (H)) ’ . ∗H;%

r e s u l t = f i l t e r (LP, 1 , y) ;
end

D.2 The Peak Detection Algorithim MATLAB Function 74

D.2 The Peak Detection Algorithim MATLAB Function

The function axPeakDet.m determines the location of the peaks in the spectral envelope.

The matrix containing the spectral envelope information is iterated through, and each

iteration is passed through to the Peak Detection Algorithim (PDA) function. The PDA

function was developed using the built in fuction diff(), the function determines the

slope at each location in the envelope. This slope is compared with the previous slope

value to determine if there is a change from a positive going slope to a negative going

slope. If a change is detected in the slope then the previous value is stored in matrix

called magvec. This vector is then passed back to the main equation.

Listing D.2: Peak Detection Algorithim.

%Peak Detec t ion Funciton
%Author : Jarred O l i v e r
%Date : 01 Apr i l 2019
%Updated : 20/05/2019
%D e s c r i p t i o n :
%This program c a l c u l a t e s the d i f f e r e n t i a l a t each p o i n t s o f the s p e c t r a l
%enve lope passed to the program . I f the p a r i t y b i t i s s e t to 1 , the
%f u n c t i o n l o c a t e s a l l p o s i t i v e going peaks , i f s e t to 2 the program f i n d s
%the l o c a t i o n o f a l l n e g a t i v e going peaks . I t pass es the magnitude and the
%l o c a t i o n o f each peak back to the main program
%−−
%Input
%s i g n a l − s i g n a l v e c t o r peak search i s to be c a r r i e d out on
%F− Frequency v e c t o r
%b i t− p a r i t y b i t to determine mode o f f u n c t i o n
%−−
%Output
%magvec − magnitude o f each peak
%indexvec − l o c a t i o n or index o f each peak
%−−

f unc t i on [magvec , indexvec] = axPeakDet (s i gna l , b i t ,F)

i f narg in == 1
b i t = 1 ;
F = 1 : l ength (s i g n a l) ;

end
i f narg in == 2

F = 1 : l ength (s i g n a l) ;

end

tempvec = 0 ;

D.2 The Peak Detection Algorithim MATLAB Function 75

indexvec = [] ;
magvec = [] ;
abc = [] ;
s i gdx = d i f f (s i g n a l) ;
i f b i t == 1
th = (max(s igdx)−min (s igdx)) / 2 ;%∗mean(s i g d x) ;
e l s e i f b i t == 2

th = 0 . 3 ;
e l s e i f b i t == 3

th = . 1 ;
end
count = 1 ;
k = 1 ;

whi l e k < l ength (s igdx)
i f b i t == 1 | b i t == 3

i f s igdx (k) > th & s igdx (k) > tempvec ;
tempvec = s igdx (k) ;

end

i f k>2 & s igdx (k)<0 & s igdx (k−1)>=tempvec%l o o k f o r s i g n change

indexvec (count) = F(k) ;
magvec (count) = s i g n a l (k) ;
tempvec = 0 ;
abc (count) = F(k) ;
count = count + 1 ;

end

k = k+1;

i f k == length (s igdx)
%terminate program once the end o f s i g n a l i s reached

break ;
end
end

%−−
i f b i t == 2

i f s igdx (k) < th & s igdx (k) > tempvec ;
tempvec = s igdx (k) ;

end

i f k>2 &s i g n a l (k)< s i g n a l (k+1) & s i g n a l (k−1)> s i g n a l (k) & s i g n a l (k) <= th
%l o o k f o r s i g n change

indexvec (count) = F(k) ;

D.2 The Peak Detection Algorithim MATLAB Function 76

magvec (count) = s i g n a l (k) ;
tempvec = 0 ;
count = count + 1 ;
abc (count) = F(k) ;

end
k = k+1;
i f k == length (s igdx) %terminate program

%once the end o f s i g n a l i s reached
break ;

end
end

%−−
end
return ;
end

D.3 The Pitch Period Estimation MATLAB Function 77

D.3 The Pitch Period Estimation MATLAB Function

The function pitchperiod.m calculates the pitch period in milliseconds and the Frequency

in Hz for a given input. The function requires minimum and maximum samples, Sampling

frequency and index to be passed from the main program to function. The default sample

range is minimum of 10 to a maximum of 300 if no values are passed.

Listing D.3: Pitch Period Estimation Function.

%Pitch Period C a l c u l a t i o n
%Author : Jarred O l i v e r
%Date : 20 May 2019
%D e s c r i p t i o n :
%C a l c u l a t e s the p i t c h per iod o f a time domain s i g n a l v e c t o r
%r e t u r n s the es t imated f requency & the p i t c h per iod to the main program
%−−−
%Input
%indexvec − Index l o c a t i o n o f peaks
%Fs − Sampling Frequency (D e f a u l t 44100)
%−−−
%Freq − f r equency e s t i m a t e
%per iod − c a l c u l a t e d p i t c h per iod
%−−−

f unc t i on [Freq per iod] = p i t chpe r i od (indexvec , magvec , Fs , smin , smax)
per iod = (indexvec /Fs) ; %Estimate per iod in seconds
Freq = 1 ./ per iod ; %Freq
end

D.4 The Note Estimation MATLAB Function 78

D.4 The Note Estimation MATLAB Function

The function NoteEstimation.m determines the semitone value of the detected frequency

according to the equation Semitone = 12 log2(Hz/440) + 69

Listing D.4: Note Estimation Function.

%Note Est imation
%Author : Jarred O l i v e r
%Date : 25/06/2019
%Last Updated 15/09/2019
%−−
%Program e s t i m a t e s the note t h a t i s l i k e l y be ing sung by the s i n g e r on the
%tape . Pi tch v a l u e s are passed to the program , and each p i t c h v a l u e i s
%matched to the p i t c h o f a note . Program then p ass es the note back to the
%main program f o r d i s p l a y
%−−
%Input :
%Pitch − A v e c t o r c o n t a i n i n g the p i t c h v a l u e s found in the audio t r a c k .

%Output :
%Note − A v e c t o r c o n t a i n i n g the s t r i n g v a l u e s o f each note
%Accuracy − A percentage v a l u e o f approximation , e i t h e r p o s i t i v e or
%n e g a t i v e .
%−P o s i t i v e v a l u e i n d i c a t e s the note i s too h igh in p i t c h or sharp .
%−Negat ive v a l u e i n d i c a t e s the note i s too low in p i t c h or f l a t .
%% Note Est imation
f unc t i on [note , Accuracy] = NoteEstimation (Freq , s c a l e)

note = ’ ’ ;
note = char (note) ;
m = 0 ;

f o r k = 1 : l ength (Freq)

Semitone = round (12∗ l og2 (Freq (k)/440)+69) ;

switch Semitone

case 36
Note = ’C2 ’ ;

m = 36 ;
note (k , :) = Note ;
case 37

i f s c a l e == 1
Note = ’C2#’ ;
e l s e
Note = ’Db2 ’ ;
end

m = 37 ;
note (k , :) = Note ;
case 38

D.4 The Note Estimation MATLAB Function 79

Note = ’D2 ’ ;
m = 38 ;
note (k , :) = Note ;
case 39

i f s c a l e == 1
Note = ’D2#’ ;
e l s e
Note = ’Eb2 ’ ;
end

m = 39 ;
note (k , :) = Note ;
case 40

Note = ’E2 ’ ;
m = 40 ;
note (k , :) = Note ;
case 41

Note = ’F2 ’ ;
m = 41 ;
note (k , :) = Note ;
case 42

i f s c a l e == 1
Note = ’F2#’ ;
e l s e
Note = ’Gb2 ’ ;
end

m = 42 ;
note (k , :) = Note ;
case 43

Note = ’G2 ’ ;
m = 43 ;
note (k , :) = Note ;
case 44

Note = ’G2#’ ;
m = 44 ;
note (k , :) = Note ;
case 45

Note = ’A2 ’ ;
m = 45 ;
note (k , :) = Note ;
case 46

i f s c a l e == 1
Note = ’A2#’ ;
e l s e
Note = ’Bb2 ’ ;
end

m = 46 ;
note (k , :) = Note ;
case 47

Note = ’B2 ’ ;
m = 47 ;
note (k , :) = Note ;
case 48

D.4 The Note Estimation MATLAB Function 80

Note = ’C3 ’ ;
m = 48 ;
note (k , :) = Note ;
case 49

i f s c a l e == 1
Note = ’C3#’ ;
e l s e
Note = ’Db3 ’ ;
end

m = 49 ;
note (k , :) = Note ;
case 50

Note = ’D3 ’ ;
m = 50 ;
note (k , :) = Note ;
case 51

i f s c a l e == 1
Note = ’D3#’ ;
e l s e
Note = ’Eb3 ’ ;
end

m = 51 ;
note (k , :) = Note ;
case 52

Note = ’E3 ’ ;
m = 52 ;
note (k , :) = Note ;
case 53

Note = ’F3 ’ ;
m = 53 ;
note (k , :) = Note ;
case 54

i f s c a l e == 1
Note = ’F3#’ ;
e l s e
Note = ’Gb3 ’ ;
end

m = 54 ;
note (k , :) = Note ;
case 55

Note = ’G3 ’ ;
m =55;
note (k , :) = Note ;
case 56

i f s c a l e == 1
Note = ’G3#’ ;
e l s e
Note = ’Ab3 ’ ;
end

m = 56 ;
note (k , :) = Note ;
case 57

D.4 The Note Estimation MATLAB Function 81

Note = ’A3 ’ ;
m = 57 ;

note (k , :) = Note ;
case 58

i f s c a l e == 1
Note = ’A3#’ ;
e l s e
Note = ’Bb3 ’ ;
end

m = 58 ;
note (k , :) = Note ;
case 59

Note = ’B3 ’ ;
m = 59 ;
note (k , :) = Note ;
case 60

Note = ’C4 ’ ;
m =60;
note (k , :) = Note ;
case 61

i f s c a l e == 1
Note = ’C4#’ ;
e l s e
Note = ’Db4 ’ ;
end

m =61;
note (k , :) = Note ;
case 62

Note = ’D4 ’ ;
m = 62 ;
note (k , :) = Note ;
case 63

i f s c a l e == 1
Note = ’D4#’ ;
e l s e
Note = ’Eb4 ’ ;
end

m = 63 ;
note (k , :) = Note ;
case 64

Note = ’E4 ’ ;
m =64;
note (k , :) = Note ;
case 65

Note = ’F4 ’ ;
m =65;
note (k , :) = Note ;
case 66

i f s c a l e == 1
Note = ’F4#’ ;
e l s e
Note = ’Gb4 ’ ;

D.4 The Note Estimation MATLAB Function 82

end
m =66;
note (k , :) = Note ;
case 67

Note = ’G4 ’ ;
m = 67 ;
note (k , :) = Note ;
case 68

i f s c a l e == 1
Note = ’G4#’ ;
e l s e
Note = ’Ab4 ’ ;
end

m = 68 ;
note (k , :) = Note ;
case 69

Note = ’A4 ’ ;
m = 69 ;
note (k , :) = Note ;
case 70

i f s c a l e == 1
Note = ’A4#’ ;
e l s e
Note = ’Bb4 ’
end

m =70;
note (k , :) = Note ;
case 71

Note = ’B4 ’ ;
m =71;
note (k , :) = Note ;
case 72

Note = ’C5 ’ ;
m =72;
note (k , :) = Note ;
case 73

i f s c a l e == 1
Note = ’C5#’ ;
e l s e
Note = ’Db5 ’ ;
end

m =73;
note (k , :) = Note ;
case 74

Note = ’D5 ’ ;
m = 74 ;
note (k , :) = Note ;
case 75

i f s c a l e == 1
Note = ’D5#’ ;
e l s e
Note = ’Eb5 ’ ;

D.4 The Note Estimation MATLAB Function 83

end
m =75;
note (k , :) = Note ;
case 76

Note = ’E5 ’ ;
m =76;
note (k , :) = Note ;
case 77

Note = ’F5 ’ ;
m =77;
note (k , :) = Note ;
case 78

i f s c a l e == 1
Note = ’F5#’ ;
e l s e
Note = ’Gb5 ’ ;
end

m = 78 ;
note (k , :) = Note ;
case 79

Note = ’G5 ’ ;
m =79;
note (k , :) = Note ;
case 80

i f s c a l e == 1
Note = ’G5#’ ;
e l s e
Note = ’Ab5 ’ ;
end

m = 80 ;
note (k , :) = Note ;
case 81

Note = ’A5 ’ ;
m = 81 ;
note (k , :) = Note ;

case 82
i f s c a l e == 1
Note = ’A5#’ ;
e l s e
Note = ’Bb5 ’ ;
end

m =82;
note (k , :) = Note ;
case 83

Note = ’B5 ’ ;
m =83;
note (k , :) = Note ;
case 84

Note = ’C6 ’ ;
m =84;
note (k , :) = Note ;
case 85

D.4 The Note Estimation MATLAB Function 84

i f s c a l e == 1
Note = ’C6#’ ;
e l s e
Note = ’Db6 ’ ;
end

m =85;
note (k , :) = Note ;
case 86

Note = ’D6 ’ ;
m = 86 ;
note (k , :) = Note ;
case 87

i f s c a l e == 1
Note = ’D6#’ ;
e l s e
Note = ’Eb6 ’ ;
end

m =87;
note (k , :) = Note ;
case 88

Note = ’E6 ’ ;
m =88;
note (k , :) = Note ;
case 89

Note = ’F6 ’ ;
m =89;
note (k , :) = Note ;
case 90

i f s c a l e == 1
Note = ’F6#’ ;
e l s e
Note = ’Gb6 ’ ;
end

m = 90 ;
note (k , :) = Note ;
case 91

Note = ’G6 ’ ;
m =91;
note (k , :) = Note ;
case 92 .

i f s c a l e == 1
Note = ’G6#’ ;
e l s e
Note = ’Ab6 ’ ;
end

m = 92 ;
note (k , :) = Note ;
case 93

Note = ’A6 ’ ;
m = 93 ;
note (k , :) = Note ;

case 94

D.4 The Note Estimation MATLAB Function 85

i f s c a l e == 1
Note = ’A6#’ ;
e l s e
Note = ’Bb6 ’ ;
end

m =94;
note (k , :) = Note ;
case 95

Note = ’B6 ’ ;
m =95;
note (k , :) = Note ;
case 96

Note = ’C7 ’ ;
m =96;
note (k , :) = Note ;
case 97

i f s c a l e == 1
Note = ’C7#’ ;
e l s e
Note = ’Db7 ’ ;
end

m =97;
note (k , :) = Note ;
case 98

Note = ’D7 ’ ;
m = 94 ;
note (k , :) = Note ;
case 99

i f s c a l e == 1
Note = ’D7#’ ;
e l s e
Note = ’Eb7 ’ ;
end

m =99;
note (k , :) = Note ;
case 100

Note = ’E7 ’ ;
m =100;
note (k , :) = Note ;
case 101

Note = ’F7 ’ ;
m =101;
note (k , :) = Note ;
case 102

i f s c a l e == 1
Note = ’F7#’ ;
e l s e
Note = ’Gb7 ’ ;
end

m = 102 ;
note (k , :) = Note ;

D.4 The Note Estimation MATLAB Function 86

case 103
Note = ’G7 ’ ;

m =103;
note (k , :) = Note ;
case 104

i f s c a l e == 1
Note = ’G7#’ ;
e l s e
Note = ’Ab7 ’ ;
end

m = 104 ;
note (k , :) = Note ;
case 105

Note = ’A7 ’ ;
m = 105 ;
note (k , :) = Note ;

end

end

ExactFreq = 2ˆ((m−69)/12)∗440;
Accuracy = Freq/ExactFreq ∗100 ;

i f Accuracy < 100
Accuracy = −(100−Accuracy) ;

e l s e i f Accuracy > 100
Accuracy = Accuracy − 100 ;

end
return ;

end

D.5 The Harmonic Ratio MATLAB Function 87

D.5 The Harmonic Ratio MATLAB Function

The function HarmonicRatio.m determines the semitone value of the detected frequency

according to the equation Semitone = 12 log2(Hz/440) + 69, this information is then

passed back to the main script.

Listing D.5: Harmonic Ratio Function.

%Harmonic Rat ios
%Author : Jarred O l i v e r
%Date : 9 Aug 2019
%D e s c r i p t i o n :
%This program c a l c u l a t e s the harmonic r a t i o between the f i r s t d e t e c t e d
%frequency / notes and a l l o th er d e t e c t e d notes . I f the r a t i o o f the d e t e c t e d
%f r e q u e n c i e s matches t h a t o f the known harmonic r a t i o s then the s i n g e r s are
%cons idered to be in harmony , i f they dont match then the s i n g e r s are
%not s i n g i n g in harmony .

%−−
f unc t i on [r e s u l t , b i t] = HarmonicRatio (Freq ,F)

i f l ength (Freq) == 0
r e s u l t = ’ no ’ ;

end
f o r k = 1 : l ength (Freq)

i f F == 1
r a t i o = (Freq (k)/ Freq (1)) ;
e l s e

r a t i o = (Freq (k)/ Freq (end))
end
t o l = 0 . 1 ;

i f r a t i o == 1
r e s u l t (k , :) = ’ yes ’ ;
b i t (k , :) = 1 ;

e l s e i f 2/1− to l<r a t i o & ra t i o <2/1+ t o l
r e s u l t (k , :) = ’ yes ’ ;
b i t (k , :) = 1 ;

e l s e i f 3/2− to l<r a t i o & ra t i o <3/2+ t o l
r e s u l t (k , :) = ’ yes ’ ;
b i t (k , :) = 1 ;

e l s e i f 4/3− to l<r a t i o & ra t i o <4/3+ t o l
r e s u l t (k , :) = ’ yes ’ ;
b i t (k , :) = 1 ;

e l s e i f 5/4− to l<r a t i o & ra t i o <5/4+ t o l
r e s u l t (k , :) = ’ yes ’ ;
b i t (k , :) = 1 ;

e l s e i f 6/5− to l<r a t i o & ra t i o <6/5+ t o l
r e s u l t (k , :) = ’ yes ’ ;
b i t (k , :) = 1 ;

e l s e i f 5/3− to l<r a t i o & ra t i o <5/3+ t o l

D.5 The Harmonic Ratio MATLAB Function 88

r e s u l t (k , :) = ’ yes ’ ;
b i t (k , :) = 1 ;

e l s e i f 8/5− to l<r a t i o & ra t i o <8/2+ t o l
r e s u l t (k , :) = ’ yes ’ ;
b i t (k , :) = 1 ;

e l s e
r e s u l t (k , :) = ’ no ’ ;
b i t (k , :) = 0 ;

end
i f F == 1

r e s u l t = r e s u l t (2 : end , :) ;
end

end

D.6 The Linear Predictive Coding MATLAB Function 89

D.6 The Linear Predictive Coding MATLAB Function

The file LPCMain.m executes the script that calls the following functions:

1. Low Pass Filter

2. Peak Detection Algorithm

3. Linear Predictive Coding Function

4. Note Estimation

5. Harmony Ratio

Listing D.6: Cepstral Analysis Function.

%LPC Main V 4 . 0 1 . 1
%Author : Jarred O l i v e r
%Date 20 March 2019
%Last Updated 14/10/2019

%This program w i l l t ak e the s i g n a l input and
%c a l l s LPCfunction to determine p i t c h in format ion
%conta ined w i t h i n the s i g n a l . I t then c a l c u l a t e s notes o f the s i n g e r
%and i f the notes d e t e c t e d are in harmony

c l e a r ;
c l o s e a l l
c l c

%−−
%read t r a c k
%
% Filename = ’ H a l l e l u j a h−Lead Only 14975399900177 . mp3 ’ ;
% Filename = ’ H a l l e l u j a h−Baritone Only 14975406008818 . mp3 ’
% Filename = ’ H a l l e l u j a h−Tenor Only 14975399951975 . mp3 ’ ;

Filename = ’ Ha l l e lu jah−Bass 14975400262231 . mp3 ’ ;
% Filename = ’880. wav ’ ;

[SoundVec Fs] = audioread (Filename) ;
s c a l e = 2 ;

%−−
%Setup v a l u e s

%s i n g l e channel on ly f o r i n i t i a l program
SoundVec = SoundVec (: , 1) ;
bb = SoundVec ;

% SoundVec = SoundVec (1 : Fs ∗30) ; %F i r s t 30 seconds f o r t e s t i n g on ly
Nx = 2ˆnextpow2 (Fs) ;
%i n i t i a l i s e v a r i a b l e s

D.6 The Linear Predictive Coding MATLAB Function 90

fund = [] ; %Fundemental Freq e s t i m a t i o n
F disp = [] ; %Disp lay F0 e s t i m a t i o n
a = [] ; %Annotation
F i l t e r O r d e r = 31 ; %Order o f f i l t e r
order = 150 ; %LPC Order
Wc = 4000 ;

%−−
%% F i l t e r
%−−
%s p e c t r a l f l a t t e n i n g

s i g n a l p e = SoundVec − 0 . 9 5 ∗ [0 ; SoundVec (1 : end−1)] ;
%Low Pass F i l t e r

[s i g n a l] = l p f i l t e r (Wc, s i g n a l p e , Fs , F i l t e r O r d e r) ;

%% Buf fer
%−−

block = 2ˆ12 ;
% Number o f frames r e q u i r e d f o r window

s t e p s i z e = block ∗ . 7 5 ;
numframe = f l o o r (l ength (SoundVec)/ s t e p s i z e) ;
hamming = (0.54−0.46∗ cos (2∗ pi . ∗ (b lock) . / (b lock))) ;

s t a r t = 1 ; %S t a r t i n g v a l u e s f o r window f u n c t i o n
%−−
f o r x = 1 : numframe

% t i c ;
i f (s t a r t+block−1)> l ength (s i g n a l)
break ;

end
b u f f e r m a t r i x = s i g n a l (s t a r t : s t a r t+block −1);
out = ze ro s (l ength (b u f f e r m a t r i x) , 1) ;

%Normalise Audio f o r p l o t t i n g
n b u f f e r = b u f f e r m a t r i x ;

i f max(n b u f f e r) > abs (min (n b u f f e r))
out = n b u f f e r ∗(1/max(n b u f f e r)) ;

e l s e
out = n b u f f e r ∗((−1)/min (n b u f f e r)) ;

end
%Hamming Window

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Windowed = hamming .∗ bu f f e r mat r ix ’ ;

%% a u t o c o r r e l a t i o n
%−−

a c r s i g = conv (Windowed , f l i p (Windowed)) ;

c l e a r Windowed ;
%% Linear P r e d i c t i o n

%−−
t i c

D.6 The Linear Predictive Coding MATLAB Function 91

[F , LPCR] = lpcBlock (Fs , Nx, order , a c r s i g) ;

% T(x) = t i m e i t (l p c B l o c k) ;
A(1 , x) = toc ;

% LPCR = LPCR/max(LPCR) ;
index = f i n d (F>2000&F<2001);
F=F(1 : index) ;
LPCR=LPCR(1 : index) ;

%−−
%Frequency l o c a t i o n s

%−−
%Find a l l the peaks above ’ x ’ t h r e s h o l d

[mdv, idv] = axPeakDet (LPCR, 1) ;

LPC1 = abs (f f t (a c r s i g ,Nx)) ; %conduct f f t o f waveform
LPC1 = LPC1(1 :Nx/ 2) ;

%−−
%Implement HPS
%−−
[Freq0] = HarmonicProductSpectrum (ac r s i g , Nx, Fs) ;

%−−
%Adjust in format ion be ing d i s p l a y e d to user
%−−

M = length (idv) ;
i f (M==0)

s t a r t = s t a r t + s t e p s i z e ;
cont inue ;

e l s e i f M > 0
% l i m i t to f i r s t 5 f r e q u e n c i e s d e t e c t e d

i f M > 5
idv = idv (1 : 5) ;
mdv = mdv (1 : 5) ;
I = length (idv) ;

f o r k = 1 : I
i f mdv(k) < 55

mdv(k) = 1 ;
idv (k) = 1 ;

end
end

end
Freq = F(idv) ; %g e t f r e q v a l u e

% [r e s u l t , Bi t] = HarmonicRatio (Freq , 1) ;
i f l ength (Freq)<5

Freq (end +1:5) = 1 ;
Bit (end +1:5) = 0 ;

e l s e i f l ength (Bit) == 0
Bit (1 : 5) = 0 ;
Freq (1 : 5) = 1 ;

end

D.6 The Linear Predictive Coding MATLAB Function 92

[Note , Accuracy] = NoteEstimation (Freq , s c a l e) ;
Fstore (x , :) = Freq ; %Store f r e q v a l u e s
Hstore (x , :) = Bit ; %Store Harmony v a l u e s

end
%−−
%Compare HPS and LPC R e s u l t s
%−−
[r c] = s i z e (Freq) ;
f o r k = 1 : c

i f Freq (k)> (Freq0−10)&Freq (k)<(Freq0+10)
fund (x) = Freq0 ;
F disp = Freq0 ;

e l s e i f Freq (k)>(Freq0−10)&Freq (k)<(Freq0+10)
fund (x) = 1 ;

end
end
%−−
%Plot Informat ion
%−−

[R C] = s i z e (Note) ;
[F0 Note] = NoteEstimation (F disp , 1) ;

%p l o t the waveform & l a b e l peak
dim = [. 7 . 6 . 3 . 3] ;
f = ’F0=’ ;

s = s t r c a t (f , F0 Note) ;

f i g u r e (1)
subplot (2 , 1 , 1)
p l o t (F ,LPCR)
hold on
i f l ength (mdv)>0

f o r z = 1 :R
i f Freq (z) < 2000

p lo t (Freq (z) ,mdv(z) , ’ r ∗ ’)
t ex t (Freq (z) , mdv(z) , s p r i n t f (Note (z , :))) %l a b e l

end
end

end

hold o f f
s e t (gca , ’ yl im ’ , [−10 3 00])
s e t (gca , ’ xl im ’ , [0 2000])
t i t l e (’ Spe c t r a l Envelope ’)
x l a b e l (’ Samples ’)
y l a b e l (’ Magnitude ’)

subplot (2 , 1 , 2)
p l o t (out , ’b ’)
t i t l e (’Time Domain S igna l ’)
x l a b e l (’Time (Samples) ’)

D.6 The Linear Predictive Coding MATLAB Function 93

y l a b e l (’ Amplitude ’)

d e l e t e (a) ;
a = annotat ion (’ textbox ’ , dim , ’ s t r i n g ’ , s , ’ FitBoxToText ’ , ’ on ’) ;

S s t a r t (x) = s t a r t /Fs ; %%%%%
S end (x) = (s t a r t+block)/ Fs ; %%%%%

s t a r t = s t a r t + s t e p s i z e ;

i f l ength (Fstore)<x & length (Hstore)<x
Fstore (end : x ,1 :5)= 1 ;
Hstore (end : x , 1 : 5) = 1 ;

end
end

%−−
%Store Informat ion
%−−
%
% S s t a r t = S s t a r t ’ ;
% S end = S end ’ ;
% %Ensure Note Vector has same amount o f rows as o the r s t o r e d v e c t o r s
% F0 = NoteEstimation (fund , s c a l e) ;
% Note 1 = NoteEstimation (Fstore , s c a l e) ;
% i f l e n g t h (F0) < l e n g t h (Note 1)
% F0(end : l e n g t h (Note 1) ,1) = 1;
% fund (end : l e n g t h (Note 1)) = 1 ;
% end
% %Change Heading
% Frequency = Fstore ;
% Harmony = Hstore ;
% S t a r t = S s t a r t ;
% End = S end ;
% Computation Time = A’ ;
% %Store in Table
% Tble = t a b l e (F0 , fund ’ , Note 1 , Frequency , Harmony , Star t , . . .
% End , Computation Time) ;
% w r i t e t a b l e (Tble , ’ H a l l e l u l j a h L P C b a s s . x l s ’)

D.6 The Linear Predictive Coding MATLAB Function 94

The function lpcBlock.m calculates the linear prediction coefficients of the input vector

passed from the main program. It uses the built in MATLAB ’lpc’ function to calculate

the LPC coefficients and the prediction error. It then uses this output to transfer the

coefficients to the power spectrum according to the following equation:

y(w) = σ2
e

|A(w)|2

It then passes the spectral envelope and frequency vector to the main program.

Listing D.7: Linear Predictive Coding Function.

%Linear P r e d i c t i v e Coding Block
%Author : Jarred O l i v e r
%Date : 10/05/2019
%D e s c r i p t i o n :
%This f u n c t i o n c a l c u l a t e s the l i n e a r p r e d i c t i v e c o e f f i e c i e n t s
%s u p p l i e d from the MainV3 .m f i l e . Once c a l c u l a t e d the c o e f f i c i e n t s
%transposed to the LPC s p e c t r a l enve lope and the s p e c t r a l enve lope i s
%passed back to the main program
%−−−
%Input
%Fs = Sampling Frequency
%y = a u t o c o r r e l a t e d v e c t o r
%−−−
%Output
%SEnv = S p e c t r a l Envelope
%F = Normalised Freq
%Speech = Frequency spectrum o f s i n g i n g s i g n a l
%−−
f unc t i on [F SEnv , Product , e] = lpcBlock (Fs , Nx, order , y)
%f o r k = 1 :Row

[a e] = lpc (y , order) ;

F= 0 : Fs/Nx : (Fs+Fs/Nx) / 2 ;
Nxx = Nx/2 + 1 ; %h a l v e t o t a l l e n g t h

SEnv = 20∗ l og10 (abs (f r e q z (1 , a , Nxx))) ;

%Create spectrum enve lope
%s t e p s to t r a n s f e r to s p e c t r a l enve lope

% 1 LPC1 = abs (f f t (a , Nx)) ;
% 2 LPC 1 = (e) . / LPC1(1 : Nx/2+1);
% 3 LPC 1 = − 20∗ l og10 ((LPC1)) ;
% 4 LPC 1 = LPC 1 (1 : l e n g t h (LPC 1) / 2) ;
%end

end

D.7 The Cepstral Analysis MATLAB Function 95

D.7 The Cepstral Analysis MATLAB Function

The file CepstralMain.m executes the script that calls the following functions:

1. Low Pass Filter

2. Peak Detection Algorithm

3. Cepstral Analysis Function

4. Note Estimation

5. Harmony Ratio

Listing D.8: Cepstral Analysis Function.

%C e p s t r a l Main Version 3 . 0 2 . 1
%Author : Jarred O l i v e r
%Date 20 March 2019
%Last Updated 3/10/2019

%This program w i l l t ak e the s i g n a l input and
%c a l l s C e p s t r a l f u n c t i o n to determine p i t c h in format ion
%conta ined w i t h i n the s i g n a l . I t then c a l c u l a t e s notes o f the s i n g e r
%and i f the notes d e t e c t e d are in harmony
c l e a r
c l o s e a l l
c l c

%−−
%read t r a c k

% Filename = ’ H a l l e l u j a h−Baritone Only 14975406008818 . mp3 ’ ;
% Filename =’ H a l l e l u j a h−Tenor Only 14975399951975 . mp3 ’ ;

Filename = ’ Ha l l e lu jah−Bass 14975400262231 . mp3 ’ ;
% Filename = ’ H a l l e l u j a h−Lead Only 14975399900177 . mp3 ’ ;

[SoundVec Fs] = audioread (Filename) ;

%−−
%Setup v a l u e s
% %s i n g l e channel on ly f o r i n i t i a l program

SoundVec = SoundVec (: , 1) ;
SoundVec = SoundVec (1 : Fs ∗3 0) ;
F i l t e r O r d e r = 31 ;

%−−

%FFT Sampling Rate adjustment
Nx = 2ˆnextpow2 (Fs) ;

D.7 The Cepstral Analysis MATLAB Function 96

%−−
%s p e c t r a l f l a t t e n i n g
%−−

s i g n a l p e = SoundVec − 0 . 9 5 ∗ [0 ; SoundVec (1 : end−1)] ;

%−−
%Low Pass F i l t e r
%−−
order = 30 ;
Wc = 4000 ;
[s i g n a l] = l p f i l t e r (Wc, s i g n a l p e , Fs , F i l t e r O r d e r) ;

%−−
% Buf fer
%−−

block = 2ˆ12 ;
% Number o f frames r e q u i r e d f o r window

s t e p s i z e = block ∗ . 7 5 ;
numframe = f l o o r (l ength (SoundVec)/ s t e p s i z e) ;
hamming = (0.54−0.46∗ cos (2∗ pi . ∗ (b lock) . / (b lock))) ;

s t a r t = 1 ; %S t a r t i n g v a l u e s f o r window f u n c t i o n
count = 1 ;
cnt = 1 ;
F0 = [] ;
fund = [] ;
f f = [] ;
F 0 = [] ;
a = [] ;
i dc = [] ;

m= [] ;
%−−
f o r x = 1 : numframe

% t i c ;
b u f f e r m a t r i x = s i g n a l (s t a r t : s t a r t+block −1);
out = ze ro s (l ength (b u f f e r m a t r i x) , 1) ;
%Normalise Audio f o r p l o t t i n g
n b u f f e r = b u f f e r m a t r i x ;

i f max(n b u f f e r) > abs (min (n b u f f e r))
out = n b u f f e r ∗(1/max(n b u f f e r)) ;

e l s e
out = n b u f f e r ∗((−1)/min (n b u f f e r)) ;

end

%−−
%Hamming Window

%−−
Windowed = hamming .∗ bu f f e r mat r ix ’ ;

%−−
% a u t o c o r r e l a t i o n
%−−

D.7 The Cepstral Analysis MATLAB Function 97

a c r s i g = conv (Windowed , f l i p (Windowed)) ;
%−−
%C e p s t r a l Ana lys i s
%−−

t i c ;

[FcHz , cc] = CepAn(ac r s i g , Fs ,Nx) ;
A(1 , x)=toc ;

%normal ise output
cc = cc /max(cc) ;

%−−
%Harmonic Product Spectrum
%−−

[Freq0] = HarmonicProductSpectrum (ac r s i g , Nx, Fs) ;
F0(x) = Freq0 ;

%−−
%Find Locat ions o f Frequencies
%−−
[mag , idx] = f indpeaks (cc) ;

%check peaks are above the average l e v e l
count = 1 ;
av = 0 . 8 ;

f o r k=1: l ength (mag)
i f mag(k) > av

idc (count) = idx (k) ;
m(count) = mag(k) ;
count = count +1;

end
end

% d i s p (m)
% pause
%−−
%Adjust in format ion be ing d i s p l a y e d to user
%−−

i f l ength (idc) <= 0
idc (1 : 5) = 1 ;
m(1 : 5) = 0 ;
e l s e i f l ength (idc)<5

% Bit (end +1:5) = 0;
i d c (end +1:5) = 1 ;
m(end +1:5) = 0 ;

e l s e i f l ength (idc) > 5

idc = idc (1 : 5) ;
m = m(1 : 5)

end

D.7 The Cepstral Analysis MATLAB Function 98

[Freq per iod] = p i t chpe r i od (idc ,m, Fs) ;
%−−
%Compare R e s u l t s betwen HPS and C e p s t r a l Ana lys i s
%−−

[r c] = s i z e (Freq) ;
f o r k = 1 : c

i f Freq (k)> (Freq0−10)&Freq (k)<(Freq0+10)
f f (x) = Freq (k) ;
fund (x) = Freq0 ;
F 0 = Freq0 ;

e l s e i f Freq (k)>(Freq0−10)&Freq (k)<(Freq0+10)

fund (x) = 1 ;
end

end

%−−
%C a l c u l a t e X a x i s v a l u e s and F0 Est imat ion
%−−
[mm i i]= max(m) ; %f i n d maximum magnitude out o f remaining v a l u e s
Q freq = FcHz(idc (i i)) ;
F es t imat ion = 1 ./ Q freq ;

[note , Accuracy] = NoteEstimation (F est imat ion , 1) ;
[Fundemental] = NoteEstimation (F 0 , 1) ;

%−−
%Plot in format ion
%−−

Fstore (x , :) = Freq ; %Store f r e q v a l u e s
% [r c] = s i z e (note) ;

dim = [. 7 . 6 . 3 . 3] ;
f = ’F0=’ ;
s = s t r c a t (f , Fundemental) ;

%
f i g u r e (1)
subplot (2 , 1 , 1)
p l o t (FcHz , cc , ’b ’)

i f l ength (note)>0&length (m)>0&length (Q freq)>0
hold on

f o r z = 1 : l ength (Q freq)
p l o t (Q freq (z) ,m(z) , ’ r ∗ ’)
t ex t (Q freq (z) , m((z)) , s p r i n t f (note (z , :))) ;%l a b e l

end
hold o f f

end
s e t (gca , ’ xl im ’ , [FcHz (1) , FcHz(end)]) %sample 73 Hz to 8kHz
s e t (gca , ’ yl im ’ , [− 1 . 1 , 1 . 1]) ;
t i t l e (’ Cepst ra l Ana lys i s ’)
x l a b e l (’ Quefrency (ms) ’)
y l a b e l (’ Magnitude ’)

D.7 The Cepstral Analysis MATLAB Function 99

subplot (2 , 1 , 2)
p l o t (out , ’b ’)
t i t l e (’ S i gna l ’)
x l a b e l (’Time (Samples) ’)
y l a b e l (’ Magnitude ’)
s e t (gca , ’ yl im ’ , [− 1 . 1 , 1 . 1]) ;

d e l e t e (a) ;
a = annotat ion (’ textbox ’ , dim , ’ s t r i n g ’ , s , ’ FitBoxToText ’ , ’ on ’) ;

S s t a r t (x) = s t a r t /Fs ;
S end (x) = (s t a r t+block)/ Fs ;

i f l ength (Fstore)<x & length (Hstore)<x
Fstore (end : x ,1 :5)= 1 ;

end
%−−

s t a r t = s t a r t + s t e p s i z e ;
i f (s t a r t+block−1)> l ength (SoundVec)

break ;
end

% c l e a r m;
% c l e a r i d c ;

end
%−−
%Store in format ion
%−−

S s t a r t = S s ta r t ’ ;
S end = S end ’ ;

%Ensure Note Vector has same amount o f rows as o t her s t o r e d v e c t o r s
Note 1 = NoteEstimation (Fstore , 1) ;
Fundemental Note = NoteEstimation (fund , 1) ;
F = NoteEstimation (F0 , 1)

i f l ength (Note 1)< l ength (S end)
f o r k = length (Note 1)+1: l ength (S end)

Note 1 (k , :) = ’ ’ ;
end

end
i f l ength (Fundemental Note)< l ength (Note 1)

F(end+1: l ength (Note 1) , 1) = 1 ;
end

%Change Heading
Frequency = Fstore ;
% Harmony = Hstore ;
Star t = S s t a r t ;
End = S end ;
Computation Time = A’ ;

D.7 The Cepstral Analysis MATLAB Function 100

%Store in Table
Tble = t a b l e (F , F0 ’ , Note 1 , Frequency , Start , . . .

End , Computation Time) ;
w r i t e t a b l e (Tble , ’ Cep bass . x l s ’)

D.7 The Cepstral Analysis MATLAB Function 101

The function CepAn.m calculates the Cepstral coefficients for a given time domain signal.

It takes the signal vector, sampling frequency and the desired number of Fourier Transform

points and calculates the FFT, the log and inverse FFT of the signal vector before passing

the coefficients and time vector back to the main program.

Listing D.9: Cepstral Analysis Function.

%C e p s t r a l Ana lys i s Function
%Author : Jarred O l i v e r
%Date : 26/04/2019
%D e s c r i p t i o n :
%This f u n c t i o n c a l c u l a t e s the c e p s t r a l c o e f f i c i e n t s o f the waveform
%s u p p l i e d from MainV3 .m, once c a l c u l a t e d the c e p s t r a l c o e f f i c i e n t s are then
%returned to the main program .
%−−
%Input
%Fs−Sampling Frequency
%S i g n a l : The input s i g n a l v e c t o r
%−−
%Output
%cc − c e p s t r a l c o e f f i c e n t s

f unc t i on [F , cc] = CepAn(Signa l , Fs ,Nx)
smin = 20 ;
smax = 420 ;
S i gna l = S igna l − mean(S igna l) ;
%x f f t = abs (f f t (S i g n a l)) ;
%L f t = l o g (x f f t) ;
cep = r e a l (i f f t (l og (abs (f f t (S i gna l))))) ;

L = c e i l ((l ength (cep)+1)/2) ;
F1=(0:L−1)/Fs ; %Quefrequency
F (1 : (smax−smin+1))=F1(smin : smax) ; ;
cc (1 : (smax−smin+1)) = cep (smin : smax) ;

end

D.8 The AMDF MATLAB Function 102

D.8 The AMDF MATLAB Function

The file AMDFMain.m executes the script that calls the following functions:

1. Low Pass Filter

2. Peak Detection Algorithm

3. Average Magnitude Difference Function

4. Pitch Period Estimation

5. Note Estimation

Listing D.10: Average Magnitude Difference Function Function.

%AMDF Main V 2 . 0 3 . 1
%Author : Jarred O l i v e r
%Date 20 March 2019
%Last Updated 4/10/2019

%This program w i l l t ak e the s i g n a l input and
%c a l l s Average Magnitude D i f f e r e n c e Funciton to determine p i t c h in format ion
%conta ined w i t h i n the s i g n a l . I t then c a l c u l a t e s the fundemental note o f
%the s i n g e r .

c l e a r ;
c l o s e a l l
c l c

%−−
%read t r a c k

% Filename = ’ H a l l e l u j a h−Lead Only 14975399900177 . mp3 ’ ;
% Filename = ’ H a l l e l u j a h−Baritone Only 14975406008818 . mp3 ’

Filename =’ Ha l l e lu jah−Tenor Only 14975399951975 . mp3 ’ ;
% Filename = ’ Track 2 . wav ’ ;
[SoundVec Fs] = audioread (Filename) ;

%−−
%Setup v a l u e s
%s i n g l e channel on ly f o r i n i t i a l program
SoundVec = SoundVec (: , 1) ;
% SoundVec = SoundVec (1 : Fs ∗30) ; %only used f o r t e s t i n g
F i l t e r O r d e r = 31 ;
%−−
%FFT Sampling Rate adjustment

Nx = 2ˆnextpow2 (Fs) ;
%−−

D.8 The AMDF MATLAB Function 103

%s p e c t r a l f l a t t e n i n g
%−−
s i g n a l p e = SoundVec − 0 . 9 5 ∗ [0 ; SoundVec (1 : end−1)] ;

%−−
%Low Pass F i l t e r
%−−
order = 30 ;
Wc = 4000 ;

[s i g n a l] = l p f i l t e r (Wc, s i g n a l p e , Fs , F i l t e r O r d e r) ;

%−−
% Buf fer
%−−
block = 2ˆ12 ;
% Number o f frames r e q u i r e d f o r window
s t e p s i z e = block ∗ . 7 5 ;
numframe = f l o o r (l ength (SoundVec)/ s t e p s i z e) ;

hamming = (0.54−0.46∗ cos (2∗ pi . ∗ (b lock) . / (b lock))) ;

s t a r t = 1 ; %S t a r t i n g v a l u e s f o r window f u n c t i o n

avAc = [] ;
f f = [] ;

fund = [] ;
F disp = [] ;
a = [] ;

%−−
f o r x = 1 : numframe

% t i c ;
i f s t a r t+block−1>l ength (SoundVec)

break ;
end

b u f f e r m a t r i x = s i g n a l (s t a r t : s t a r t+block −1);
%−−
%Hamming Window
%−−

Windowed = hamming .∗ bu f f e r mat r ix ’ ;

%−−
% a u t o c o r r e l a t i o n
%−−

a c r s i g = conv (Windowed , f l i p (Windowed)) ;
%−−
%Average Magnitude D i f f e r e n c e Function
%−−

t i c ;
xamdf = amdfV1(a c r s i g) ;
A(1 , x) = toc ;

D.8 The AMDF MATLAB Function 104

[c d] = s i z e (xamdf) ;
Fa = (1 : d)/ Fs ; %Samples to seconds
t i = [] ;
F disp = [] ;

%−−
%Harmonic Product Spectrum
%−−
[Freq0] = HarmonicProductSpectrum (ac r s i g , Nx, Fs) ;

%−−
%Find p i t c h per iod
%−−

[m, i] = axPeakDet (xamdf , 2) ;

count = 1 ;
av = (max(d i f f (xamdf))−min (d i f f (xamdf)))−mean(m) ;

f o r k=1: l ength (m)
i f m(k) < av

i (count) = i (k) ;
m(count) = m(k) ;
count = count +1;

end

end

[Freq per iod] = p i t chpe r i od (i ,m, Fs) ;

%−−
%Compare r e s u l t s between HPS and AMDF
%−−
[r c] = s i z e (Freq) ;
f o r k = 1 : c

i f Freq (k)> (Freq0−10)&Freq (k)<(Freq0+10)
f f (x) = Freq (k) ;
fund (x) = Freq0 ;
F disp = Freq0 ;

e l s e
F disp = 1 ;
fund (x) = 1 ;

end
end

%−−
%a d j u s t in format ion be ing d i s p l a y e d to user
%−−

i f l ength (Freq) > 0
[r e s u l t , Bit] = HarmonicRatio (Freq , 1) ;

i f l ength (Freq)<5

D.8 The AMDF MATLAB Function 105

Freq (end +1:5) = 1 ;
Bit (end +1:5) = 0 ;

e l s e i f l ength (Bit) == 0
Bit (1 : 5) = 0 ;
Freq (1 : 5) = 1 ;

e l s e i f l ength (Freq) > 5
Freq = Freq (1 : 5) ;
Bit = Bit (1 : 5) ;

end

[Note ,AA] = NoteEstimation (Freq , 1) ;

Fstore (x , :) = Freq ; %%%%
% Hstore (x , :) = Bit ; %%%%

end
%−−
%Plot Informat ion
%−−
[F0 Note] = NoteEstimation (F disp , 1) ;

% dim = [. 7 .62 .3 . 3] ;
% f = ’F0= ’;
% s = s t r c a t (f , F0 Note) ;
% f i g u r e (1)
% s u b p l o t (2 ,1 ,1)
% p l o t (Fa , xamdf , ’ b ’)
%
% i f per iod > 0
% ho ld on
%
%
% [R C] = s i z e (Note) ;
% f o r z = 1:R
% p l o t (per iod (z) ,m(z) , ’ r ∗ ’)
% t e x t (per iod (z) , m(z) , s p r i n t f (Note (z , :))) ; %l a b e l
% end
% ho ld o f f
% end
% t i t l e (’AMDF Output ’)
% x l a b e l (’ Time (S) ’)
% y l a b e l (’ Amplitude ’)
% s e t (gca , ’ ylim ’ , [0 1 . 3]) ;
% s u b p l o t (2 ,1 ,2)
% p l o t (SoundVec (s t a r t : s t a r t+b l o c k) , ’ b ’)
% t i t l e (’ Input Waveform ’)
% x l a b e l (’ Time (Samples) ’)
% y l a b e l (’ Amplitude ’)

d e l e t e (a) ;
% a = annotat ion (’ t e x t b o x ’ , dim , ’ s t r i n g ’ , s , ’ FitBoxToText ’ , ’ on ’) ;

S s t a r t (x) = s t a r t /Fs ; %%%%%

D.8 The AMDF MATLAB Function 106

S end (x) = (s t a r t+block)/ Fs ; %%%%%
s t a r t = s t a r t + s t e p s i z e ;

% pause (. 1)
% A(1 , x) = toc ;

end
%−−
%Store and e x p o r t to e x c e l
%−−
% S s t a r t = S s t a r t ’ ;
% S end = S end ’ ;
% % Ensure Note Vector has same amount o f rows as o the r s t o r e d v e c t o r s
% Note 1 = NoteEstimation (Fstore , 1) ;
% F0 = NoteEstimation (fund , 1) ;
% i f l e n g t h (fund)< l e n g t h (S end)
% f o r k = l e n g t h (fund)+1: l e n g t h (S end)
% F0(k , :) = ’ ’ ;
% end
% end
% % b u f f e r a d d i t i o n a l s t o r a g e v a l u e s to match l e n g t h
% i f l e n g t h (F0)< l e n g t h (Note 1)
%
% F0(end+1: l e n g t h (Note 1) ,1)=1;
% end
% % Change Heading
% Frequency = Fstore ;
%
% S t a r t = S s t a r t ;
% End = S end ;
% Computation Time = A’ ;
% %Store in Table
% Tble = t a b l e (F0 , Note 1 , Star t , End , Computation Time) ;
% w r i t e t a b l e (Tble , ’ AMDF H B 2 . x l s ’)

D.8 The AMDF MATLAB Function 107

The function amdfV1.m calculates the average magnitude difference for a given input

vector. It requires and input vector, sample minimum and sample maximum to be passed

from the main program. Sample minimum and maximum are set to 30 and 300 samples

respectively. This equates to a frequency range of 147 Hz to 1470 Hz.

Listing D.11: Average Magnitude Difference Function Function.

%Average mean d i f f e r e n c e Function
%Author : Jarred O l i v e r
%Date : 13/05/2019
%D e s c r i p t i o n : This f u n c t i o n c a l c u l a t e s the amdf v a l u e s f o r a p a t i c u l a r
%v e c t o r t h a t i s passed to i t from the main program . i f on ly the v e c t o r i s
%passed to the f u n c i t o n then the max and min samples are s e t to 420 and 20
%−−
%Input :
%v e c t o r − Input s i n g i n g s i g n a l
%smin − minimum number o f samples
%smax − maximum nnumber o f samples
%−−
%output
%amdfm − amdf
f unc t i on [amdfm]= amdft (vector , smin , smax)
i f narg in ==1
smin = 20 ; %2205Hz at Fs 44100
smax = 420 ; %105Hz at Fs 44100
end
L = length (vec to r) ;

f o r x = smin : smax
amdf (x) = 1/L ∗ sum(abs (vec to r (1 : L−x+1)−vec to r (x : L))) ;

end

amdfm = amdf/max(amdf) ;
end

Appendix E

