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Abstract

This project applies an understanding of fluid mechanics to study the effects of wind on kayakers

in competition using computational fluid dynamic software. A multiphase model was created on

ANSYS Fluent to simulate the flow conditions and find the drag outputs. The model includes two

inlets, to allow for separate air and water velocities, and uses a volume of fluid multiphase system

with an SST k − ω turbulence model. Kayaker velocities from 1-7m/s are combined with relative

headwinds from 1-10m/s to determine the hydrodynamic and aerodynamic drag due to windy

conditions. The wind stress on the water’s surface is also simulated through small waves included

in the boundary conditions. The results found an exponential increase of drag of approximately

DF = 2.15~V 2 − 6.47~V + 5.43 as a function of velocity in static air conditions. For a kayaker at

racing pace facing a maximum 10m/s headwind, the results show a drag increase of approximately

5%, decreasing as kayak velocity increased. The largest components of drag for a kayaker are the

hydrodynamic skin friction and wave drag, hence the low air drag percentage was expected relative

to the dominant hydrodynamic drag. The drag due to small waves on the water’s surface was found

to range from 5-6% at race pace, and was considered to have the larger effect on competitors, as

wind speeds from 8-10m/s are very high and unlikely during competition. The model was used to

compare the drag of common racing strategies, and findings suggests that an even-pacing requires

less energy than the commonplace ”reverse J” strategy. There were some limitations to the research

project involving software and time constraints, and further work recommendations are made in

the report which suggest refinements and future applications of the model.
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Chapter 1

Introduction

1.1 Background

Indigenous watercraft have existed for thousands of years, with the earliest known canoes, found

in the Netherlands, carbon dated to between 8040 and 7510 BC (Pinkerton 2017). Australia’s

indigenous people utilised bark canoes for fishing, hunting and travelling, with evidence of some

variants being used in Queensland for over 8000 years (Florek 2012). Although these are some

of the earliest extant artefacts, they are probably not the first constructed, with the first known

humans to leave Africa 100,000 years ago likely travelling over water utilising vessels such as canoes

or rafts (Pinkerton 2017). It is accepted that light watercraft are responsible for the early spread

and diversification of the human race.

Kayaking is an evolution of the canoeing, with the main differences being the participant is seated

and uses a double ended paddle, as shown in figure 1.1. The earliest kayaks were used by the

Greenland indigenous Inuit people up to 8000 years ago (Kayak 2020), and the work “ki ak” can

be translated to “man-boat” (ICF: Kayak 2020). Modern kayaks are primarily used for recreation

or sport. Competitive kayaking is an Olympic event covering distances of 200m, 500m and 1000m

as an individual or team sport of up to 4 people (Kayak 2020).
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Figure 1.1: Difference between Kayaking (left) and Canoeing (right) (ICF: Kayak 2020)

1.2 Motivation

Sports engineering is a relatively new disciple which goes about applying sports science into com-

petitive advantage for athletes. Taha et al. (2013) define sports science as the analysis of the

motion, physiology, biomechanics and psychology of an athlete. Sports engineering uses this anal-

ysis in designing, developing and researching methods to improve performance. Some modern

examples are: the full body swimming suits used to break multiple world records; the ’hotspot’

and ’snicko’ devices used in cricket to determine ball contact on the bat; and the vast aerodynamic

improvements made in motor racing through wind tunnels and computational fluid dynamics.

Kayaking is a sport which is well suited to improvement through sports science, as it is essentially

the athlete who overcomes drag the best who will achieve the fastest time, either by effort or

efficiency. The importance of sport and its role in society continues to evolve.

Athletes are some of the largest role models in society, and the social media age means that

competitors are judged for their behaviours and values in the societal and sporting arenas. The

sporting industry seeks to continuously improve in both arenas, and sports engineering offers

performance enhancement. The behaviours and attitudes of athletes goes towards improvement of

society, through the voice it provides for members of all genders, religions and races. The benefits

to society are strengthened by increasing the standing of athletes through high performance.
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1.3 Project Goals

High level athletic kayaking can often be determined by margins of victory as small as thousandths

of a second, making kayaking an extremely competitive sport. The predominant improvements

made to race times during the period of 1948-2000 were associated to changes in design, most appar-

ent when the same athlete competed at two or more Olympics in different boat designs (Robinson

et al. 2002).

The primary goal of this project is to create a better understanding of the effects of wind on a

kayaker during motion. This understanding will be achieved through the creation of a Computation

Fluid Dynamic simulation on ANSYS Fluent. By creating this simulation, the magnitude and

direction of the wind, as well at the kayaker speed, can be adjusted to find the drag forces in any

condition.

From this understanding, it is expected that insights into how sprint kayakers can create a com-

petitive advantage through minimising drag force or appropriately expending energy at the correct

times. This simulation should continue to serve as an easy method of testing different strategies

for kayak racing.

To achieve the primary project goal, a number of sub goals were devised to establish feasibility

and scope of the project. Ordered chronologically, they were:

1. Conduct research on the movement of the kayak through the water, investigating the under-

lying mechanics.

2. Research CFD methods and their applications, including turbulence models, solution meth-

ods and meshing requirements.

3. Create a simple model of a body of water, and determine the impact of wind upon the water’s

surface.

4. Create an object in the centre of the simulation, to investigate the drag coefficients and

compare them to research and expected values.

5. Create a model of a kayak and recreate the simulations, analysing the drag values and

comparing them to the expected results
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6. Provide feedback on observations and method in which a kayaker can achieve better race

times.

If time permits the following tasks could be undertaken to gain a deeper understanding of watercraft

dynamics:

7. Determine the suitability of the simulation for other watercraft, such as canoes, boats or

wakeboards.

8. Find the best pacing strategy from an efficiency standpoint, based on drag findings at various

velocities.

1.4 Overview of the Dissertation

Chapter 1 introduces the background, scope and motivation of the project. Establishes the aims

and provides the outline to achieve them.

Chapter 2 is a review of the literature, establishing the fluid dynamic principals of the kayak mo-

tion. It also examines the best methods to recreate a kayaking system within Computational

Fluid Dynamics software.

Chapter 3 discusses the methodology of the project, and the steps taken to create the project.

This section also determines the feasibility of using the selected software through preliminary

simulations. The scope of the model is also discussed.

Chapter 4 contains the results of the simulations. The results identified the drag outputs and

trends for velocities of water from 1-7m/s and relative headwinds from 1-10m/s.

Chapter 5 provides discussion on the simulations and the results. Some of the projects challenges

and limitations are mentioned, as well as how the project can help provide competition

advantage.

Chapter 6 concludes the dissertation, and outlines further research and work required in this

space.



Chapter 2

Literature Review

2.1 Chapter Overview

A literature review was undertaken seeking understanding in kayak dynamics and how best to

simulate its motion. All the applicable areas of research have been evaluated against the aims of the

project, and related to kayaking where possible. Research areas of interest include fluid dynamics,

simulation techniques and current strategies athletes use to obtain competitive advantage.

2.2 Competitive Kayaking

The official fastest time recorded for a 200m K1 Kayaking event is 33.38 secs (ICF: Kayak 2020),

which equates approximately to an average speed over the course of 6m/s. Records are not strictly

kept in sprint events due to the difference in course set up and conditions. For Kayaking events,

the ICF (International Canoe Federation) requires the water depth to be at least 2 meters. After

research, no set wind limits can be found for kayaking events, only the requirement that conditions

are judged to be safe by event officials.
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2.2.1 Energy Output

Michael et al. (2008) find that kayaking is a sport requiring a high aerobic energy supply, however

both aerobic and anaerobic energy systems are important factors in successful performance. Aer-

obic energy rate is measured as V̇ O2, which indicts how efficiently oxygen is transported to the

muscles. A greater measurement of V̇ O2 indicates a higher rate of oxygen to fuel the muscles, and

supramaximal performance can be increased for sprint kayakers (Bishop et al. 2002). Anaerobic

energy is that which is sourced within the body, and not from oxygen through breathing.

Bishop et al. (2002) states that consensus for racing strategy by kayaking athletes is to start fast

before transitioning to an even pacing strategy. This all-out start method was found to produce

a greater kayak ergometer performance than an even pacing strategy, with a greater V̇ O2 max

evident. Borges et al. (2013) refers to this as a reverse J strategy, and suggests the tactic may be

related to oxygen kinetics, avoiding wash from competitor or provide a psychological advantage.

Pendergast et al. (1989) states the paddling speed of a kayaker can be found as:

~V =
Ė

C
(2.1)

where Ė is the sum of the rate of aerobic (V̇ O2) and anaerobic energy (ĖAN ), and C is the energy

cost per unit distance. As evident from the formula, an increase in either the aerobic or anaerobic

rates of energy will result in faster kayak speed. The energy cost per meter (C) will be a function

of the drag forces which opposes the forward motion of the kayak.

Fleming et al. (2012) tested a group of 10 male international flat-water kayakers to validate er-

gometer usage. During on-water testing the study found that the peak output force for the group

was 238 Newtons, with a mean stroke rate of 82 strokes per minute. The personal best time of

the group for a 500m K1 kayak race was less than 110 seconds (the record is 95 seconds) which

suggests the data is able to be related to competition level athletes.

2.3 Kayak Dynamics

Mantha et al. (2013) have found that race time is the critical measure of performance for com-

petition kayakers, which is determined from the mean velocity during a race. The factors which



2.3 Kayak Dynamics 7

contribute to performance are the athlete’s physical active strength, technique and kayak rowing

hydrodynamic performance (Mantha et al. 2013). During kayaking competition, the athlete has

to increase paddling effort drastically to overcome the sharp increases in drag at higher velocities.

The various components, and subcomponents, of ship resistance is shown in figure 2.1. Hydro-

Figure 2.1: Components of Ship Resistance (Ship Resistance 2020)

dynamic research suggests that during low wind conditions approximately 93% of the drag on a

canoe/kayak is the water, while the remaining 7% is created by the hull and the kayaker moving

through the air above the water (Szanto 2014). This is due to the density of air being approx-

imately 800 times less than water, subject to temperature and pressure. The simulation of the

kayaker in competition requires interaction with two different fluids, water and air. The introduc-

tion of a second fluid increases the difficulty of the model and requires careful selection of model

and solving settings. For a similar kayak CFD project, Barros (2015) summarises the system as a

“two-phase, incompressible, isothermal flow, involving water and air, and the hull is assumed to

have no translational or rotational motion aside from its forward velocity”.
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2.3.1 Hydrodynamics

The motion of the kayak can be simplified to the force applied to the kayak through the athlete

paddling, minus the drag forces of the water and air, with the resultant force a product of the

mass and acceleration of the kayak/athlete system. Szanto (2014) estimates that the components

of water resistant of a canoe being 2% frontal resistance, 80% surface friction, and 18% wave

making resistance. These mechanisms were discussed in Section 2.4

Gomes et. al. (2017) categorises the types of hydrodynamic drag affecting the kayak hull into two

types:

Frictional drag force: Depends solely on the Reynolds number and corresponds to the viscous

forces. Also referred to as the skin friction drag (DF ), it can be simplified to the friction of

the water on the hull. The mechanism causing frictional drag is explained in section 2.4.2.

Residual drag force: Depends exclusively on the Froude number, and contains the pressure drag

(form drag) and wave-making resistance drag (wave drag). The pressure drag (DPR) of the

kayak can be summarised as the force required to move the water to form a path for the

kayak. The wave drag (DW ) is the resistive force association with wave production (Gomes

et. al. 2017).

The kayak’s hydrodynamic performance is mainly dependent on hull geometrical shape, type of

hull surface and weight of kayaker sitting in the boat (Gomes et al. 2017). It is generally accepted

that the longer and slimmer the hull of a craft, the less pronounced the effect of friction will

be (Canoe/Kayak: Hydrodynamics 2020), and modern designs are optimised by evolving to a

narrowed hull with a decreased frontal and wetted surface area. The wetted surface area is critical

as it determines DF , and influences DPR and DW when combined with hull shape (Gomes et al.

2017).

2.3.2 Aerodynamics

Aerodynamic drag on a kayaker is caused by two mechanisms; the kayakers self-generated forward

motion, and the local atmospheric boundary layer (ABL) winds (Barber 2018). The variables of

the kayaker affecting the drag are the shape of the athlete, his/her form while kayaking and the
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form of the kayakers equipment and apparel during motion.

2.3.3 Water Surface Waves

As an object moves on a free surface, a pattern of surface waves will appear, caused as a result

of the kinetic energy transferred to the fluid by the object and the potential energy of the Earths

gravitational pull (Barros 2015). The force imparted by the wind on a body of water is also a cause

of surface waves. Pelikan & Markova (2013) offer the cause of the wind waves as the surface stress

imparted by the wind. For estimating the wind speed over water, they reference the formula:

Uwater = 1.62 + 1.17Uland (2.2)

where the air-water temperature difference does not exceed 5◦C. From this, one proposed equation

for the drag coefficient, subject to elevation and stability, can be found as:

CD = 0.001(1.1 + 0.035U10) (2.3)

where U10 is the wind speed at 10 meters. Finally, from this, the stress imparted on the water is

found as:

τ = ρair · Cd · U2
air (2.4)

These equations are subject to corrections based on temperature and wind speed.

2.3.4 Open Channel Flow

Chanson (2004) considers open channels as systems that flow with a free surface, with examples

being streams, rivers, canals, sewers and drainage ditches. The main parameters affecting open

channel flows are:

• Geometry of the Channel: The width, slope and roughness of the channel, which can cause

the free surface to rise and fall.
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• Fluid Properties: Density and viscosity.

• Flow Parameters: Velocity and flow depth.

The primary focus of open channel analysis is to find the location of the unknown free surface, by

simultaneous solving the continuity and momentum equations. A simplification of the momentum

equations along a streamline assuming frictionless fluid, constant gravity and incompressible flow,

can be rearranged to derive the Bernoulli equation:

P

ρ
+ gz +

~V 2

2
= constant (2.5)

meaning that the total sum of kinetic energy, potential energy and pressure work must remain

constant. For example, as potential energy decreases: such as height of the free surface; then

velocity or pressure of the fluid must increase. Open channel flow varies from pipe flow in that

movement is driven by gravity rather than pressure, and the pressure at the free surface is only

atmospheric.

2.3.5 Shallow Water Equations

Vallis (2019) states that the shallow water equations are used to describes a shallow layer of fluid,

which is of constant density, has a free surface at the top (or bottom) and where the horizontal

scale of the flow is much greater than the layer depth. Shallow water theory is complicated, and

even the deepest ocean waves may be considered shallow water. Feldmeier (2019) explains that

since the tidal force acts at a maximum on the surface to zero at the earths centre, the water depth

is only a fraction of the radius of the Earth. Since the driving material force does almost not vary

over the water column in the vertical direction, the tidal waves can be considered shallow water

per se (Feldmeier 2019).

The shallow water equations are a system of hyperbolic/parabolic partial differential equations

that govern fluid flow for bodies of fluid that mean the shallow water definition. They can almost

always able to be applied to rivers and channels (Dawson & Mirabito 2008). They are derived

from the Navier-Stokes equations and simplify the problem of a three-dimensional fluid motion to

a two dimensional one, with a height-field representation. A basic version of the SWE’s can be

written as:
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∂η

∂t
+ (∇η)~V = −η∇ · ~V (2.6)

∂~V

∂t
+ (∇~V )~V = an∇h (2.7)

Where η represents the height of the fluid above the ground, ~V is the velocity and an is the vertical

acceleration of the fluid. Kayaking events are carried out on lakes and other bodies of water where

the shallow water theory will likely be relevant.

2.3.6 Kelvin Ship Waves

Kelvin Ship Waves refer to the V-shaped waved left behind objects travelling on calm, deep water,

as shown in figure 2.2. The wake pattern has been observed to be a wedge-shaped pattern with

a half angle of 19.5◦, regardless of the ships speed, as long as the deep water condition is satis-

fied (Fang et al. 2011). The waves created by a ship, and the energy they contain, have been of

interest in hydrodynamics because of their impact on the ships motions through the drag created.

In assessing the deep water condition for ships, a typical ship speed of 10m/s requires a water

depth of more than 5.6m (Fang et al. 2011). The Kelvin ship wave theory will have relevance to

the wave-drag acting on the kayak moving though water, as long as the deep water conditions are

met.

Figure 2.2: Scheme of a ship wake (Fang et al. 2011)



2.4 Drag 12

2.4 Drag

Pritchard & Mitchell (2015) describe drag as “the component of force on a body acting parallel

to the direction of relative motion.” In the kayak system, the drag forces act in opposition to the

forward motion of the kayaker created by the aft movement of the paddles in the water. This

includes aerodynamic and hydrodynamic drags, above and below the waterline. Drag forces are

generally divided into three categories:

• Parasitic drag

• Lift induced drag, and

• Wave drag.

The term Parasitic drag is used referring to the combination of form drag and skin friction drag,

both of which are a result of an object moving through a fluid.

The drag equation is used to calculate the drag force, and is dependent on the fluid’s compressibility

and density of the fluid (ρ), the velocity of the object (~V ), the size and shape of the object and

the viscosity of the fluid (µ) (Pritchard & Mitchell 2015). The equation is commonly displayed as:

FD =
1

2
CDρ~V

2A (2.8)

Within equation (2.8), CD is the drag coefficient and A the frontal area of the object. The drag

coefficient is composed of two parts, parasitic drag and the lift induced drag components, the

latter used in the case of wings or other aerofoils. The drag coefficient represents the complex

dependencies of shape, inclination and flow condition and is usually found experimentally from

measured drag forces.

2.4.1 Pressure Drag

Pressure drag, also known as form drag or profile drag, is caused by the separation of the boundary

layer from a surface and the wake created by that separation (Skybrary 2017), and is governed

on the shape of the object making contact with the fluid. As the boundary layer thickens, and
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particularly when boundary later separates, the pressure drag increases. The pressure drag is

proportional to the difference between the pressures acting on the front and back of immersed

bodies and the frontal area, as shown in figure 2.3. From this definition, the pressure drag can be

simplified as the pressure difference over the area as:

FD,form = ∆P ·A (2.9)

Figure 2.3: Mechanism of Pressure Drag, with flow separation aft of plate (NuclearPower 2020)

2.4.2 Friction Drag

Friction/Skin friction drag is the result of the no slip condition at the surface of the boundary layer

along an object, causing shear forces due to the viscous effect of the fluid (Connor 2019). This

zero-velocity fluid at the surface of an object slows down the neighbouring fluid. The region of this

lower velocity fluid is referred to as the boundary layer, and the accumulation of the resistance

of this region accounts for skin friction. A visual representation of a boundary layer is shown in

figure 2.4, and shows the transition from laminar airflow to turbulent. Friction drag is proportional

to the surface area of an object, as the further a fluid flows along an object the boundary layer

thickness, and likely turbulence, increases.
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Figure 2.4: Boundary Layer of an Object, accounting for Friction Drag (NuclearPower 2020)

2.4.3 Lift-Induced Drag

Lift induced drag is a by-product of the lift force produced in aerofoils and hydrofoils, such as

aircraft wings. Perfected-Flight (2020) defines induced drag on an aircraft as being caused “by the

air spilling over the wingtips causing wingtip vortices, span-wise flow, increased downwash, and

inefficiency.” Lift induced drag primarily affects aircraft producing large amounts of lift required

for flight, however it is also a factor in watercraft that travel on the plane at high speeds. Kayak

designs are long and narrow and are not prone to planing even at the fastest possible speeds.

2.4.4 Wave Drag

Wave drag can refer to either the aerodynamic wave drag on an aircraft moving at transonic or

supersonic speeds, or the wave-making resistance caused by a watercraft. The wave drag on an

aircraft is “due the unstable formation of shock waves which transforms a considerable part of the

available propulsive energy into heat, and to the induced separation of the flow from the aircraft

surfaces” (Transonic Flow 2020). As supersonic flow is reached, this flow stabilises and the wave

drag coefficient lowers.

In the context of hydrodynamics, the waves that propagate away from a vessel carry with them

energy that directly relates to the additional component of drag of a ship (Brennen 2018). The

drag force is equal and opposite to the force imposed by the ship on the ocean to create the waves.

This wave drag coefficient increases with the Froude number, and is dependent on the wetted area

and length of the vessel.
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Although the environments of aerodynamic and hydrodynamic wave drag are vastly different, it is

essentially the same mechanism that leads to the increase in drag in both of these cases (Brennen

2018). In reference to kayaking, hydrodynamic wave drag will be a factor, whereas aerodynamics

wave drag will not.

2.5 Dimensionless Numbers

When neither the drag force or drag coefficient is known, equations using dimensionless numbers

such as the Reynolds, Bejan and Froude numbers can be implemented to assist in finding flow

parameters. These numbers are important to analysis of fluid systems as they allow comparison

between other systems even at different scales. The coefficients themselves can be derived from

the results and compared to other literature for validation.

Different dimensionless numbers identify properties about different aspects of the kayak model.

The Reynolds and Froude number describe the flow characters of the fluids. The Drag coefficient

and Bejan number can help derive the drag force. The Bejan number is relatively new to fluid

mechanics, and its inclusion to the review is to determine if energy or heat transfer analysis of

kayak motion may be useful in the simulation or as further research.

2.5.1 Reynolds Number

One of the most important dimensionless numbers found in fluid mechanics is the Reynolds number,

which is the ratio of inertial forces to viscous forces:

Re =
ρ~V L

µ
(2.10)

where L is the size scale of the flow and µ is the dynamic viscosity. Other variants of the equation

substitute ρ
µ for 1

ν , with ν being the kinematic viscosity. Subject to context, a “large” Reynolds

number indicates that viscous forces are negligible, whereas a “small” number will show that

viscous effects are dominant (Pritchard & Mitchell 2015). This number is used frequently in fluid

mechanics by determining whether the fluid flow can be categorised as inviscid or viscous flow; and

if viscous, whether the flow is laminar or turbulent. For kayaking, the Reynolds number will be
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important in calculating the type of drag forces which will be dominant, and whether flow should

be modelled as laminar or turbulent.

2.5.2 Froude Number

The Froude number finds application in hydrodynamics, and can be approximated as the ratio of

inertial forces to gravity forces (Pritchard & Mitchell 2015), expressed as:

Fr =
~V√
gL

(2.11)

where g is gravity, and L is the characteristic length of the flow field, or in the case of open-

channel flow, it is the water depth. Encyclopaedia Britannica (Froude number 2020) describes

the applications of the Froude number as “entering into formulations of the hydraulic jump (rise

in water surface elevation) that occurs under certain conditions, and together with the Reynolds

number, it serves to delineate the boundary between laminar and turbulent flow conditions in open

channels.” Typical Froude numbers and their effect on watercraft is shown in Figure 2.5

Figure 2.5: Froude number as Wave pattern Vs Speed (Vallis 2019)
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2.5.3 Drag Coefficient

The drag coefficient is the dimensionless number which is a function of the complex drag parame-

ters, such as shape, inclination and surface roughness, found at a particular Reynolds, Froude or

Mach number. Due to the complex dependencies involved in calculating the drag coefficient, it is

almost always found experimentally (Hall 2015a) by measuring the drag force (FD) and deriving

the drag coefficient as:

CD =
2FD

ρ~V 2A
(2.12)

2.5.4 Bejan Number

The Bejan number ties together aspects of fluid mechanics and heat transfer, allowing the drag

coefficient to be related to the second law of thermodynamics (Trancossi & Pascoa 2018), that

entropy always increases in an isolated system. There are two different Bejan Numbers, one for

heat transfer and another for fluid mechanics. This section refers to the Bejan number related to

fluid mechanics, where it is a dimensionless number based on the pressure drop along a contact

length (L) between flow and boundaries, expressed as:

Bel =
∆PL2

µDm
(2.13)

where ∆P is the pressure change, µ is the dynamic viscosity and Dm is the momentum diffusivity.

Trancossi & Pascoa (2018) have incorporated the Bejan number into the drag coefficient equation

as:

CD = 2

(
Aw
Af

)(
Bel
Re2l

)
(2.14)

Where Aw is the wetted area and Af is the frontal area. This relationship allows the substitution

of thermodynamic properties as a method of finding the drag coefficient such that:

CD =
2T0Ṡ

′
gen

Afρ~V 3
=

2Ẋ ′

Afρ~V 3
(2.15)

Where Ṡ′gen is the rate of entropy generation, Ẋ ′ is the exergy dissipation rate, and T0 is the initial
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temperature. It has been researched in regards to the aeronautic sector, utilising the second law of

thermodynamics as an alternate analysis of the nature of friction, instead of the more mainstream

thermodynamic first law approach.

Using this coefficient relies on measuring the losses of energy within the system, typically as heat

and work. It will not be relevant for the simulation, however practical field testing in the future

may provide opportunities for temperature testing, and the Bejan equations may be able to assist

in validation. To date, the method has been successfully used for internal fluid flow problems for

incompressible fluid flow.

2.6 Computational Fluid Dynamics

Modern analysis of systems involving fluid flow, heat transfer and associated phenomena such as

chemical reactions are carried out by the use of computer-based simulation known as Computa-

tional Fluid Dynamics, often abbreviated to CFD. Due to the complexities of fluid mechanic or

thermodynamic problems, it is not feasible to carry out accurate hand calculations for complex

fluid flows. CFD also offers a visual interface which assists in an engineer’s understanding of the

simulation. CFD is based around the use of the Navier-Stokes equations for analysis of the flow

properties of a fluid, which are then solved by the most appropriate technique.

There are three distinct steams of numerical solution techniques: The finite difference, finite

element and spectral methods. Most well established CFD codes, such as FLUENT, PHOENICS

and CFX/ANSYS, utilise the finite volume method of numerical solution technique, which is

an evolution of the finite difference method (Versteeg & Malalaseker 2007). The Finite Volume

numerical algorithm consists of:

• Integration of the governing equations of fluid flow over all the (finite) control volumes of

the domain

• Discretisation - conversion of the resulting integral equations into a system of algebraic

equations

• Solution of the algebraic equations by an iterative method

There are a number of ways these steps can be achieved, based on the type of CFD model and the
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required outcomes.

2.6.1 Transport Equations

The transport equations are used within fluid mechanics to describe the relationship between a

fluid’s velocity (~V : (u, v, w)), pressure (P), temperature (T) and density (ρ). They are based on

the three conservation laws: conservation of mass, conservation of momentum and conservation of

energy. All of Computation Fluid Dynamics is based on these equations (Anderson 2013). The

full set of transport equations consist of a time-dependant continuity equation for conservation of

mass (2.16), three time-dependant conservation of momentum equations (2.17-2.19) and a time-

dependant conservation of energy equation (2.20) (Hall 2015b):

• Continuity:
∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (2.16)

• X-Momentum:

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= −∂P

∂x
+

1

Rer

[
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

]
(2.17)

• Y-Momentum:

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
+
∂(ρvw)

∂z
= −∂P

∂y
+

1

Rer

[
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

]
(2.18)

• Z-Momentum:

∂(ρw)

∂t
+
∂(ρuw)

∂x
+
∂(ρvw)

∂y
+
∂(ρw2)

∂z
= −∂P

∂z
+

1

Rer

[
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

]
(2.19)

• Energy:

∂(E)

∂t
+
∂(uE)

∂x
+
∂(vE)

∂y
+
∂(wE)

∂z
= −∂(uP )

∂x
− ∂(vP )

∂y
− ∂(wP )

∂z

+
1

Re

[
∂

∂x
(uτxx + vτxy + wτxz) +

∂

∂y
(uτxy + vτyy + wτyz) +

∂

∂z
(uτxz + vτyz + wτzz)

]

− 1

RePr

[
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

]
(2.20)

Where τ is stress, t is time and q is heat flux. When simplified, the conservation laws state that:

Mass is conserved; F = mA; and energy is conserved.
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2.6.2 Navier Stokes Equations

Historically the original Navier-Stokes equations are identified as the momentum equations 2.17,

2.18 and 2.19 of the previously mentioned transport equations. This set of equations were dis-

covered independently by 19th century mathematicians Claude-Louis Navier and George Gabriel

Stokes, and were since named in their honour. Anderson (2013) explains that for modern CFD

literature, the term ‘Navier Stokes Equations’ have been expanded to include the entire system of

transport equations - continuity, energy and momentum. As such, most CFD literature referring

to the complete Navier-Stokes equations simply means a solution using the full set of governing

transport equations detailed in section 2.6.1.

For cases involving incompressible flow the energy equation cannot be included, as it decouples

from the momentum and continuity equations (Henningson & Berggren 2005). In this situation

the equations are referred to as the Incompressible Navier-Stokes equations. The energy equation

will be required for simulations dealing with temperature changes as it is the only equation which

deals with heat flux and the transfer of heat energy.

2.6.3 Meshing

ANSYS (ANSYS 2020) describes the meshing process as an integral part of the simulation process,

where “complex geometries are divided into simple elements that can be used as a discrete local

approximations of the larger domain”. The ANSYS user guide (ANSYS 2020) prompts users to

consider set-up time, computational expense and calculation speed requirements when selecting a

mesh type. The mesh shapes available within ANSYS are shown in Figure 2.6

In meshing complex geometries, Versteeg & Malalaseker (2007) offers two grid arrangement meth-

ods: Structured Curvilinear and Unstructured. Structured curvilinear, or body-fitted grids, map

the flow domain with a simple shape, and are suitable for domains where the geometries are not

too complex. A basic cartesian structured grid is easy to apply, however often results in wasted

computational resources by having unnecessary cells within the domain. The same number of cells,

applied in a body fitted grid, allows for greater computational efficiency by eliminating this waste.

Figure 2.7a shows examples of Orthogonal and Non-Orthogonal body fitted meshes. Improving

further on efficiency are block structured grids, which divide the domain in sub-regions each with

its own structured mesh. This allows for finer meshing to be applied around objects or boundary
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Figure 2.6: Common 2D and 3D Meshes in ANSY Fluent (ANSYS 2020)

layers, while still maintaining the ease of generation and computational simplicity of the structured

method.

Unstructured grids are a step further on block structured mesh, where it can be thought of as a

multi block grid where each individual cell can be treated as a block (Versteeg & Malalaseker 2007).

The advantage of not being constrained by an arranged grid allows for much greater flexible in

the size and location of cells. Unstructured grids are the most efficient computational in the case

of complex flows, and is now widely used in industry and in all commercial CFD codes today

(Versteeg & Malalaseker 2007). Figure 2.7b shows an unstructured mesh over a three section

aerofoil. Mesh shape is also a consideration for CFD. An article by Peric & Ferguson (2005)

comparing Tetrahedral and Polyhedral meshes found that polyhedral meshing need approximately

four times fewer cells, half the memory and a tenth to fifth of the computing time to reach

solutions of the same accuracy as tetrahedral meshes. The major advantage of the polyhedral

method stems from the high number of sides increasing the neighbouring cells. This provides far

great accuracy, more than compensating the higher storage and computing operations per cell

which comes with increased neighbours. From testing, Peric & Ferguson (2005) found that the

result from 65513 polyhedral cells produced a more accurate result than a tetrahedral mesh of

393273 cells (approximately 6 times more).
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(a) Structured Orthogonal (Top) and Non-

Orthogonal (Bottom) Meshes

(b) Unstructured Mesh over a three section aerofoil

Figure 2.7: Differences between Structured and Unstructured Meshes (Versteeg & Malalaseker 2007)

2.6.4 RANS Turbulence Models

Frei (2017) offers that for fluid flows containing turbulence, it becomes computationally unfeasible

to resolve the small eddies, spatial and temporal scale of the oscillations with the Navier-Stokes

equations. Therefore, CFD problems implement a Reynolds-Averaged Navier-Stokes (RANS) so-

lution, which finds a time averaged sense of the problem. Frei (2017) identified seven RANS

turbulence models, which can be summarised as:

• L-VEL and yPlus: computes the eddy viscosity using algebraic expressions based only

on the local fluid velocity and distance to the closest wall. They are the most robust,

least computationally intensive and generally the least accurate. They can provide good

approximations for some internal flow applications. L-VEL is a combination of L (distance

from the nearest wall) and VEL (the local and laminar velocity).

• Spalart-Allmaras: Adds a single additional variable for undamped kinematic eddy viscos-

ity. It is relatively robust, and requires moderate resolution requirements. It is limited in

accurately computing fields that exhibit shear flow, separated flow of decaying turbulence.

This model was developed for the aerospace industry for the testing of aerofoils.
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• k-ε: This method solves for the turbulent kinetic energy (k), and the rate of dissipation

of turbulent kinetic energy (ε). Some advantages are that it has a good convergence rate

with relatively low memory requirements. Some of its limitations are simulations including

adverse pressure gradients, strong curvature or jet flows. It performs well for external flow

problems around complex geometries.

• k-ω: is similar to the k-ε method however it solves for specific rate of dissipation of kinetic

energy, rather than the rate of turbulence kinetic energy. It requires a good initial guess

and is harder to converge than k-ε, however it can be useful for cases such as internal flows,

strong curvature, separated flows and jets, which are typically weaknesses of the k-ε model.

• Low Reynolds Number k-ε: This is an extension of the standard k-ε method that does

not require wall functions. it generally requires a denser mesh. It uses range from computing

lift and drag forces, heat fluxes and separation and reattachment cases.

• SST k-ω: Is a combination of k-ε in the free stream and k-ω near the walls. The combination

eliminates the some of the weaknesses displayed by the individual components, and is popular

in industry. SST is an abbreviation for shear-stress transport.

• v2-f: This method adds two additional equations to the k-ε model, describing the turbulent

velocity fluctuations normal to the streamlines, and a second equations accounting for nonlo-

cal effects. Its purpose is to account for the fluctuations of velocity near the wall boundaries

The ANSYS user guide offers explanation of some of the other available models:

• Reynolds Stress: Regarded as the most elaborate type of turbulence model that FLUENT

provides, it gives greater potential of accurate predictions for complex flows. It solves trans-

port equations for the Reynolds stress together with an equation for the dissipation rate.

Some examples of the best use cases include cyclone flows, high swirling flows in combustors,

rotating flow passages and stress induced secondary flows in ducts.

• Detached/Large Eddy Simulation: In the Detached Eddy Simulation (DES) setting

unsteady RANS models are employed in the boundary layer while the Large Eddy Simulation

(LES) treatment is applied to the separated regions. It is often referred to as the hybrid

LES/RANS method. DES models are useful for high Reynolds number wall bounded flows,

where the cost of solving wall functions as LES would be prohibitive. The computational
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costs of DES are larger than RANS yet less than LES. Within DES three different models

are offered; the Spalart-Allmaras, k-ε and k-ω.

2.6.5 Multiphase Models

Multiphase flow refers to the simultaneous presence of different phases, where phase refers to

solid, liquid or vapour state of matter (Stenmark 2013). In characterising multi-phase models, the

system should first be characterised. ANSYS splits them into 3 major categories; fluid-fluid flows,

gas-solid flows, and liquids-solid flows. Stenmark (2013) further characterises flows according to

visual appearance as separated, mixed or dispersed. The correct recognition and categorisation

of these flow patterns is comparable to the importance of knowing whether a flow is laminar or

turbulent in single-phase flow (Stenmark 2013).

ANSYS (ANSYS 2020) currently offers a number of options for modelling a Multiphase simulation

of Gas-Liquid or Liquid-Liquid flows. The available models for a Eulerian frame of reference:

• Volume of Fluid (VOF): predicts the interface shape between immiscible fluid phases.

Suitable for immiscible fluids separated by a clearly defined interface.

• Algebraic Interfacial Area Density (AIAD) Model: For flows that may include a

transition between continuous stratified flows and dispersed flow regimes. Best used for

mixed or transitional flows or separated flows.

• Eulerian Model: accurately models multiple separate, yet interacting, phases of solids,

liquids or gases in any combination.

• Mixture Model: a simplified Eulerian model when the relaxation time of the dispersed

time is small.

• Euler-Granular: uses eulerian approach to model dispersed particles in a continuous fluid.

• Population Balance Model: used for systems where particle size distributions change,

such as droplet break up, nucleation or agglomeration. Typical used in combination with

other models to account for particle distributions.

• Volume of Fluid (VOF) to Discrete Phase Model (DPM): the hybrid combination of

two models, in which the VOF method tracks the interface instabilities and surface tension
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effects and the DPM methods takes over to track the droplets. The VOF used the Eulerian

frame of reference, whereas the DPM used the more computational efficient Lagrangian

framework. Best applied to mixed or transitional flows. Further detail on DPM modelling

is found in the next section.

The available models which use the Lagrangian frame of reference, suitable for dispersed flows,

are:

• Discrete Phase Model (DPM): particle interactions are neglected. Is used for simulations

where the dispersed second phase is <10%.

• Dense Discrete Phase Model (DDPM): An extension of the DPM model for higher

volume fractions of the dispersed phase, still <30%.

• Discrete Element Method: Used for flows with high volume fractions, where particle-

particle interaction is importance. The particle interaction with the fluid flow does not need

to be a focus of this method.

The modelling of a kayak system is a fluid-fluid flow containing water and air as fluids, and the

interface between them is further defined in the stratified/free surface category. Stratified/free

surface interaction is applicable when ”the less-dense fluid is separated from (and above) the

more-dense fluid, so that each fluid forms a layer” (Wandel 2020). For this type of problem,

Wandel (2020) recommends the Volume of Fluid method, and this is the selection for this project.

2.6.6 Volume of Fluid Method

The volume of fluid method (VOF) is capable of modelling two or more immiscible fluid, by solving

a single set of momentum equations and tracking the volume fractions of each fluid throughout

the domain (Mantha et al. 2013). The equations for a fluid would appear as:

1

ρq

[
∂

∂t

(
αqρq

)
+∇ ·

(
αqρq~Vq

)
=

n∑
p=1

(
ṁpq − ṁqp

)]
(2.21)

where α is the volume fraction of a cell between 0 and 1, with 1 corresponding to 100% of the cell

occupied by that fluid. For the mass flow rates, ṁpq is the mass transfer from phase p to q and

ṁqp is the transfer from phase q to p (Mantha et al. 2013)
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2.6.7 CFD Solvers

ANSYS Fluent used two solver technologies, pressure-based and density-based. Pressure-based

traditionally has been used for incompressible and mildly compressible flows, while density-based

was originally designed for high speed compressible flows, however both methods are now applicable

for a broad range of flows (ANSYS 2013). In relation to the kayak simulation, the low air flow speed

can be considered incompressible. The model selected in Section 2.6.5 was the VOF multiphase

model, and research was carried out in regards to best options for this choice. The density based

solver is not compatible with the multiphase model options, making it not suitable for the kayak

simulation.

2.7 Chapter Summary

The literature review identified the mechanisms of drag acting on the kayaker, and provided options

to simulate this as a CFD model. Pressure, friction and wave making drag all contribute to the

slowing of the kayaker. The combination of water and air within the simulation also complicates the

analysis, as aerodynamic and hydrodynamic understanding is required. Investigation of the best

suited CFD methods identified that a Volume of Fluid model combined with an Open Channel Flow

sub-model most closely represents the kayaking system. In suggesting methods for competitive

advantage, pacing strategy shows the most potential, due to strict rules on boat and equipment

design.



Chapter 3

Methodology

3.1 Chapter Overview

This chapter details the steps taken to create the simulation of the Kayaker meeting air and water

resistance. ANSYS Fluent was selected to build the model, as it is the CFD package used at

University of Southern Queensland, and features a home academic version. In building to the final

model, a number of preliminary models were designed and tested to demonstrate the methods and

prove the viability of ANSYS Fluent to achieve the project aims. They also allowed slight changes

to be tested on individual sections or geometries, to help predict the effect the change will have

on the full system.

The final methodology details the creation of the project simulation, aimed at achieving the goals

set forth in Section 1.3. Decision on the methodology were made after reviewing the literature for

the best way to model the kayaker and the ANSYS user guide for technical details.

3.2 FLUENT Workspace

ANSYS Fluent simulations involve creating and analysing a system in five steps: Geometry, Mesh,

Setup, Solution and Results. Geometry, meshing and setup help create the system while solution

and results are used to analyse the simulation. The Workbench workspace schematic is shown in

Figure 3.1. A brief summary of each of the groups, and their purpose to this project are:
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Figure 3.1: ANSYS Workbench Schematic

• Geometry: Used for creating or importing the simulations geometry and domain. The created

geometries can be 2D representations or extruded in 3D shapes. CAD models created in other

solid modelling software can be imported. Geometry do not have be solid areas of the model,

and may be used a body of influence for meshing.

• Meshing: The meshing menu allows for the creation of any number of different sizes meshes

over an object. The meshing process can be time consuming, and if areas of high activity

are not meshed correctly the simulation will not provide accurate results. Too fine a mesh

may result in unacceptable processing times or interference errors. One of the important

activities carried out during meshing is to create named selections for any items of interest

for the simulation. These can include inlets, outlets or shapes requiring analysis in the results.

The named selections can be faces or volumes.

• Setup: The setup menu allows for customisation of all the boundary conditions and the

initial state of the model. The simulation model, and turbulence model are selected here.

The range of options within the setup is vast, and many of the setting are not required for

this simulation. FLUENT allows for analysis of fluids, gases and heat transfer.

• Solution: This menu allows for re-solving of a simulation or analysis of the simulation’s

outputs. The convergence figures, iterations and time steps can be adjusted to suit a new

required solution.

• Results: The results menu allows of visual and numerical analysis of the solution. A vast
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array of graphics and be superimposed on the geometry to show fluid properties. The results

for this project are used to show the changes in air and water flow, identifying drag.

3.3 Preliminary Simulations

After reviewing the literature, a number of preliminary simulations were required to establish

the feasibility of using ANSYS FLUENT for the project. The ability to model basic shapes and

determine drag force, as well as establish variable wind and water speeds were key to achieving

the goals set forth in Section 1.1.1. Included in this section are the models, their intentions and

preliminary results.

3.3.1 Basic Wind Simulation

The first simulation created was used for familiarity of the ANSYS software and to establish

a variable wind through a control volume. A domain was created in geometry, and a course

mesh created throughout the domain. An inlet and an outlet were created by the named selection

command in the meshing menu. Figure 3.2 shows the course mesh, and inlet and outlet. Not shown

in figure 3.2 are the other walls of the domain, which when visible created a cube domain. The

Figure 3.2: Basic Model of Wind through a domain, with Inlet (blue) and Outlet (red)

basic wind simulation provided a good visual representation of the direction and velocity changes

within the wind. Although it was expected that a domain boundary layer would be present, it was
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unexpected the size of the region of lower velocity air, caused by the no slip condition at the walls.

For the final simulation, the domain size would need to be adequate enough to not affect the flow

of fluid around the kayak or kayaker.

Figure 3.3: Basic Model of Wind through a domain, with Inlet (forward) and Outlet (aft)

3.3.2 Wind around Cylinder Simulation

The next simulation built upon the basic wind simulation by adding a cylinder in the centre, for

the purpose of determining fluid flow around an object. After creating a new sketch and extrude,

the shape was removed from the wind path via the Boolean command in ANSYS. This creates a

different path for the air, as it now has to flow around the cylinder. Figure 3.4 shows the location

of the cylinder, positioned in the middle of the domain.

The wind around the cylinder simulation at first did not register the cylinder, with the air con-

tinuing through the cylinder as if it didn’t exist. To make the cylinder appear as a solid in the

simulation, a Boolean needed to be created. The simulation was reattempted with the cylinder

removed from the domain, and the results shown in Figure 3.5. The figure shows vectors applied

to the streamline showing the path of the air and the changes in velocity as it diverts around

the cylinder. The streamlines alone were too cluttered and did not screenshot well for the report.

Further analysis found that the size of the domain was too small, not allowing the fluid stream to

return to a steady state condition.
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Figure 3.4: Model of Wind around a Cylinder, with inlet (blue) and outlet (red)

Figure 3.5: Model of Air Flow around a Cylinder showing changes in velocity

3.3.3 Kayak with Single Boundary Inlet Simulation

The Wind/Kayak system includes the option to vary the speed of the water separate to the speed

of the wind. This would simulate a kayaker moving at a set velocity through the water while

encountering wind at a different magnitude or direction. The resultant vector of wind applied to

the model, accounting for the forward motion of the kayaker, is calculated manually before being

entered into the boundary condition. The kayak motion is simulated by moving the water and air
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around a stationary kayak geometry. This is was first multiphase simulation attempted, and as

such was a greater level of complexity. A review of the literature found that a Volume of Fluid

model was best used for this particular problem containing separated multiphase flow.

This modelled a rudimentary kayak shape travelling in water. This design was selected to compare

the results to determine if the drag figures calculated matched previous research findings.

• Geometry: The kayak geometry created approximately matches the dimensions given by

(Mantha et al. 2013) for the Nelo Vanquish, although details or refinements were not made

to the shape at this early stage. An extra volume region was added to allow for a finer mesh

around the kayak and expected waterline.

• Meshing: The kayak / waterline region was given a maximum element size of 5cm, as this is

the area of importance in determining the drag force present. By only creating a finer mesh

in this area, computational power and time is saved by allowing a courser mesh in areas

which don’t affect the calculations.

• Setup: The k-ε model was selected due to its good performance in external flow cases. An

inlet air velocity of 10m/s was set as normal to the boundary. The calculation was set at

500 iterations with a time scale factor of 0.5.

• Results: The single boundary kayak simulation created a good result, with large regions of

changing velocity present around the kayak, indicting its effect on the water. The isosurface

was taken at the surface of the water, with vectors applied to streamline at this location.

It was expected that the surface of the water would be flat, and it is still not known what

exactly has caused the bumpy surface. It is possible that the walls of the simulation are

having a larger effect on the flow than predicted. A much large enclosure may be required

to ensure the walls do not cause the water to be disturbed, as only the wind and the travel

of the kayak are expected to be of importance, and not the sides of the domain area.
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Figure 3.6: Multifluid Model of Kayak with volume region wireframe shown centrally

Figure 3.7: Water Velocity around a Kayak Moving through Water
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3.4 Project Simulation

The final simulations created were built on the principals of the previous models to achieve the

project goals set forth in Section 1.3. This is the main simulation of the project, and includes

variable wind and water speeds. Drag outputs are collated and analysed for this section of the

dissertation.

3.4.1 Scope

The project aim involves determining the effect of the wind on the kayaker, and this was deter-

mined by including a range of winds in the simulations which would realistically be found during

competition kayaking event. The literature review found that the wind affects competitive kayak-

ing in two ways; Increased drag on the above water portion of the kayaker, and small waves on

the water’s surface. Water surface waves are a function of a number of variables, such as the sides

and bottom of the body of water and current flow. A large range of simulations have been created

to determine the effects of both of these. Only head winds were considered, as the component of

drag affecting the kayaker is only opposite to the direction of motion. Crosswind effects on the

rotation of the kayaker were not considered in the scope of this dissertation.

The minimum air speed was set to equal to the water speed, as even on a still day the kayaker will

still be making contact with the air at the same speed as the kayak is travelling. The maximum

kayak speeds considered were 7m/s, as the record time for a 500m sprint was an average of 6m/s.

The inclusion of 7m/s was required as the pacing strategy for kayakers includes an all-out start

before a transition to an even pacing strategy. The maximum headwind speed considered was

10m/s, which is equivalent to 36km/h. The 10m/s was added to the static air speed, so that the

inlet air boundary condition included the kayaker speed plus the headwind speed. For example, a

6m/s kayaker with a 10m/s headwind required a 16m/s inlet air velocity.

The simulations created to show the wind effects were as follows:

• Equal Water and Headwind speed: This simulation recreates a still day with no wind, which

the water and air hitting the kayaker at the velocity of travel. This is carried out for speeds

from 1m/s to 7m/s.
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• Constant Water Speed and increasing Headwind speed: This simulates a headwind for a

kayaker travelling at a set speed with a headwind relative to their forward motion. The

water speeds were set from 1-7m/s, and the relative headwind from 2-10m/s.

• Constant Water Speed with small waves: This simulates a headwind creating small waves on

the water’s surface. This is carried out for water speeds from 4-7m. The wave size selected

was 5cm in height, separated by 20 centimetres per wave, similar to small waves observed on

a windy day on a river. No headwind was included for these simulations.

3.4.2 Geometry

The Kayak and athlete model created is based around dimensions for the Nelo Vanquish series

Kayaks and the torso, head and upper arms of an average person. The Vanquish dimensions were

based on the measurements of Mantha et al. (2013) with a 5.2m overall length and 40mm width

around the centre. The geometries are kept basic, as the simulation has been created to provide

analysis for a form of a kayaker and not a particular kayak or person. The waterline was set

at 0.16m from the bottom of the kayak, which reflects research carried out by (Barros 2015) for

hull displacement on the Nelo Vanquish during tow testing. Some other inclusions are a slightly

higher above waterline portion of the kayak, added to more realistically clear the waterline, and

a curved bottom. The inclusion of further detail, such as forearms and paddle, were restricted in

the meshing limitations of the ANSYS academic version. The kayak geometry created is shown in

Figure 3.8.

Figure 3.8: Geometry representing Kayaker

One of the initial steps within CFD is to setup a domain. Singh et al. (2017) explain that the
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minimum domain size should be at least 1.3L forward and to each side and 5L aft of a hull when

setting a domain for marine CFD applications. Other research for external flow domains recom-

mends using 5-10L upstream and 10-20L downstream, where L is chord length for aerodynamics

analysis (Autodesk 2020). The domain size created is conservative, adding to these minimums,

with the final dimensions being 20m forward, 40m aft, and 4m either side, all measurements taken

from the origin at the centre of the kayaker. The domain and dimensions are shown in Figure 3.9.

(a) Domain used for Analysis (b) Domain Dimensions

Figure 3.9: Geometry of Project Domain

Additional inclusions made in geometry were the air body used as the secondary domain for the

independent air flow, and a tertiary volume later used as a body of influence for meshing refinement,

shown in Figure 3.10. A Boolean was created to remove the kayak and athlete extrusions from the

domain. This ensures the path of the water and air are diverted by these shapes, and is essential

for analysis. Finally, a symmetry plane was made on the YZ axis, effectively halving the geometry

of the model. This was done for computational efficiency and meshing resources purposes.

(a) Geometry of Domain for Air Flow (b) Body of Influence Geometry

Figure 3.10: Other Geometry Features
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3.4.3 Meshing

The meshing selected is based around applying a fine mesh around the kayaker and waterline,

and a course mesh for the free stream flow paths. This was carried out by creating a fine face

mesh around the kayaker and inflating the element size out gradually. The refined mesh around

the waterline was created using the body of influence option with the body meshing option. This

create a volume with a custom mesh, with the body of influence visible in Figure 3.11. The result

is an unstructured inflation mesh with a maximum element size at the body of influence of .2m,

increasing to a global maximum set at 1.5961m. The growth rate is 1.75, therefore the maximum

element sizes at the extremities of the domain decrease by a factor of 1.75 in each layer.

Figure 3.11: Wide View of the Mesh

The mesh size was severely restricted by the academic version only allowing a maximum element

count of 512,000. This did however force the meshing to be efficient, and only applied to areas of

interest. The free air stream not affected by the kayak shape was left with a very course mesh, and

the finest mesh applied to the kayaker and surrounding close area. The symmetry plane created on

the YZ plane effectively doubled the mesh elements available to use. The review of the literature

found that polyhedral meshes are far more efficient than tetrahedral meshes, as much as a factor of

6. The mesh was therefore converted to Polyhedra in the setup menu, after initially being created

as tetrahedral in the meshing menu. The body of influence uses the geometry around the waterline

to improve the create a smaller mesh with the area expected for waves, as well as the flow path for

air flowing over the torso and head. The created mesh around the kayak is shown in Figure 3.12.
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Figure 3.12: Close View of the Mesh around the kayaker

The Meshing phase is also when named selections are applied to parts of the model required for

set up or analysis. The named selections created were:

• WaterInlet: The inlet for the water for the open channel flow boundary condition. The

water inlet stretches the entire height of the domain.

• WaterOutlet: The outlet for the open channel flow, covers the entire height of the domain

• AirInlet: The air inlet is used for the variable head windspeed, and extends from the

waterline (0) to the top of the domain (7m).

• AirOutlet: The outlet for the air flow above the waterline, from 0 to 7m in height.

• Symmetry: This named selection was created for post processing purposes, to enable the

centre plane to be displayed showing all geometries of the model

• Kayak: The Kayak named selection included the all the faces of hull of the kayak and the

kayaker. This is important as the total drag force is found from this area.

Figure 3.13 shows the element arrangement after conversion to a Polyhedral mesh.



3.4 Project Simulation 39

Figure 3.13: Model after conversion to Polyhedral Mesh

3.4.4 Model Selection

The model selected was the Volume of Fluid multiphase model, with water and air being the two

phases. Figure 3.14 shows contours of the starting volume fractions of water for the model, with

red indicating a volume fraction of 1 (100%) and blue indicating no water. For this to work, gravity

was set at -9.81m/s2 in the Y direction. The Transient time option was selected, to enable drag

calculations for period of waves, and to get a clearer picture of the simulations and the effects of

the wind on water.

Surface tension of the water/air interface was set to .072N/m, with the intension of producing

slight waves from this interaction. The ANSYS user manual (ANSYS 2013) provides guidance on

setting up the VOF model within Fluent. Inputs required are the number of phases and whether

the scheme is Explicit or Implicit. Within examples, ANSYS recommended used the implicit

interpolation scheme for flow around a ship’s hull, which mirrors the goals of this project.

Optional choices within the multiphase model include the sub-model option for open channel flow.

The literature review found that the bodies of water that host kayaking events are almost always

representative of open channel flows. Selections within the open channel flow sub-model require

setting the inlet as a pressure inlet, and setting open channel boundary conditions. From the

literature and consultation with the ANSYS user manual, the VOF model with Open-Channel

flow sub model was selected, and open channel boundary conditions applied.
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Figure 3.14: Volume Fraction of water after initialisation, red indicating water.

3.4.5 Turbulence Model

A number of turbulence models would be suitable for this model, however the most suitable selected

was the SST k-ω model, which combines the advantages of the k-ε and k-ω, was selected. SST k-ω

applies k-ε in the free stream and k-ω near the walls, allowing for a courser mesh and a greater

allowable y+ value. Borges et al. (2013) found the SST k-ω model accurate at high Froude numbers

during a similar open channel hydrodynamics project.

Turbulence damping is an option within the SST k-ω model ,which is required for accurate mod-

elling of the interfacial area (ANSYS 2013) where the liquid-liquid contact occurs. This setting

was left at the default of 10.

3.4.6 Boundary Conditions

The Volume of Fluid model with Open Channel sub model activated allow for the inlet and outlet

boundary conditions to be changed. This requires the use of either the Pressure Inlet or Mass flow

rate inlet conditions.
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(a) Volume of Fluid Settings (b) Turbulence model Selections Menu

Figure 3.15: Fluent Menu Settings

3.4.7 Solver Settings

The pressure based solver was selected, as this is mandatory in conjunction with the Volume

of Fluid multiphase model. For the pressure-based solver, the user guide outlines the general

procedures and considerations when setting up the solver within Fluent (ANSYS 2013):

1. Select the pressure-velocity coupling method: ANSYS offers four different options;

SIMPLE, SIMPLEC, PISO and Fractional Step Method (FSM). SIMPLE and SIMPLEC are

generally used for steady state simulations and PISO recommended for transient simulations.

FSM is an option when using the Non-iterative Time advancement model. The PISO selection

was made as the simulations are transient based, due to the inclusion of waves in the boundary

conditions for some simulations.

2. Choose the spatial discretization and pressure interpolation schemes: The options

for spatial discretization are Green-Gauss Cell Based, Green-Gauss Node Based, or Least

Squares Cell Based. The least squares cell based is known to be as accurate as the node

based gradient for irregular unstructured meshes but less expensive to compute, and is rec-

ommended. For the pressure interpolations selections, only the PRESTO! or body-weighted

forces (BWF) are selectable for the VOF method. BWF is recommended for problems with

large body forces, and PRESTO! for high swirl, high-Rayleigh or high rotating flows. The
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Least Squares Cell Based spatial discretization and PRESTO! pressure interpolation schemes

were selected, based on the ANSYS recommendations and low expected body forces.

3. Select the porous media velocity: Allows selection of different methods for models which

include porous media such as filters or perforated plates. Not considered for the Kayak

simulation.

4. Select the method the derivatives are to be evaluated by choosing gradient op-

tions: Each option with the Volume of Fluid method may be adjusted. When deciding

between First-Order vs. Second-Order discretization options ANSYS recommends only us-

ing first-order upwind for flows which are aligned with the mesh. For triangular or tetrahedral

meshes, this is never the case, and the second-order option is more accurate.

5. Set the under-relaxation factors: The default under relaxation factors set in ANSYS

are near optimal for the largest possible amount of iterations. It is good practice to use

the default number, and adjust if the residuals continue to increase after the first 4 or 5

iterations.

6. Make any additional modifications to the solver settings that are suggested in

the chapters or sections that describe the model you are using: The Volume of

Fluid model, or open channel flow guide do not make any special recommendations for these

settings.

7. Enable the appropriate solution monitors: The convergence criteria figures were set at

1e−4 for continuity, x-y-z velocities, k, omega and vf-phase 2. The default setting was 1e−3,

however this represents rather low accuracy. The convergence criteria selected met a good

balance of accuracy and computational time. The drag calculations required did not need to

be highly accurate, merely representative of the drag increases with wind speed.

Two reports were created, monitoring drag within the waterbody, and airbody domains. The

outputs for the drag calculations are set to a parameter set, which collates all the drag figures

and the simulation it originates from. The drag calculations are also graphed and shown on

an output during solving.

8. Initialise the solutions: Before initialisation, a volume region was created on the bottom

half of the waterbody. This is the section of the domain which starts the simulation filled with

water, and must be patched within the initialisation menu. The ‘Open Channel Initialisation

Method’ is set to Flat for simulations that don’t feature waves, and wavy for those that do.
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9. Start calculating: All simulations were set for time steps of 0.1s for 100 time steps, equally

a total of 10sec. The iterations were initially sec to 100 per time step, with the option to

adjust if convergence criteria were not met.

10. If difficulty in converging, consult user guide for methods: The final step of using the

solver is to run the simulation and observe the residuals, drag outputs and volume fractions

to ensure the simulation is running smoothly. If errors are noticed, if it more efficient to stop

the calculation and rectify immediately.

Figure 3.16: Convergence settings for the simulation

Figure 3.17: Calculation settings for the simulation
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3.4.8 Drag Calculation Methods

The primary factor affecting the times of the kayaker are the drag inefficiencies which act opposite

to the forward motion. The skin friction drag, and pressure drag will be the most important

outputs of the simulations, and an understanding of them will be most important in being able

to create a competitive advantage. To find these drag outputs, monitors for the above water and

below water sections of the kayaker were set in Section 3.4.7. The parameter output however

does not entirely determine the phase causing the drag, merely if it is caused above or below the

waterline. As the water rises and falls, the drag due to each fluid will differ in respect to the

waterline on the XZ plane.

The post processing results menu also features a drag calculator, which can be used at any time

step desired of the transient simulation. It does allow the drag to be isolated the different phases

at a particular time step. An example of the drag calculator found in post processing is shown

in Figure 3.18. As all results are compiled over the variety of wind speeds, plots will be made to

shows the relationship between wind speed, kayaker speed and drag force.

Figure 3.18: Drag Calculation Method found in post processing.
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3.5 Chapter Summary

The preliminary simulation identified a number of requirements for the main project simulation

which were not thought of previously. CFD software contains a huge amount of options when

deciding which methods to use and why. The ANSYS fluent user guide was used heavily in

assigning the best methods of recreating the kayaking system.



Chapter 4

Results

4.1 Chapter Overview

The results section contains the simulation drag outputs, both numerical and visual. The tables

and graphs within this section show the drag increases at different kayak velocities, as well as

the effect of wind on drag through headwind and wave simulations. The results are split into the

sections: no wind; low velocity; racing velocity; and small waves.

4.2 Simulation Outputs

A total of 88 simulations were carried out and the drag forces above and below the originally

waterline were stored in a parameter set. The above and below waterline figures would change

depending on the wind speed and its effect on the water level, as well as the air and its own

aerodynamic drag. Therefore, only the total drag was considered for analysis. When further

clarification was required, it was possible to identify which phase is causing the drag at any specific

time by accessing the calculator in the post results, as shown previously in Figure 3.18.
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4.2.1 Convergence

The solution set convergence for all parameters at 1e−4, and all simulations met this requirement,

visible in the monitor and messaged in the console. The residuals tended to move in a zig-zag

pattern throughout the simulations, particularly for the second order and PISO solving method

when compared to the default SIMPLE and first order settings. For the basic geometries created,

the convergence figured were considered adequate, however this will need increasing to 1e−5 or

1e−6 as the geometry becomes more complex. A typical monitor of the scaled residuals is shown

in Figure 4.1.

Figure 4.1: Typical Residual Report for Simulations

4.2.2 yPlus Value

The yPlus value of the model indicates the suitability of the mesh size for the simulation. Due to

meshing constraints, the yPlus is relatively high for this model, at a maximum of approximately

3000 within the water domain, with most of the air enclosed geometries less than 250.
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Figure 4.2: Contour of Yplus for 6m/s, ranged from 10 - 3000

4.3 Project Simulation

4.3.1 No wind Results

The initial simulations attempted used the open channel flow with no additional wind speed,

establishing the baseline for open channel flow and determining the water surface without the

interaction of wind. Figure 4.3 shows the deflection of the water around the hull at a water inlet

boundary condition of 2m/s. The changes in colour of the vectors indicate a velocity change in

the fluid; the lighter colour vectors indict a slowing of the fluid, and the orange free stream vectors

show the initial speed of 2m/s. Figure 4.3 also gives a good indication of the boundary layer by

the deflection of the streamline away from the kayak hull.

4.3.2 Baseline Simulations

The baseline simulations were created with an inlet air speed equal to the inlet water speed, to

create a simulation of a static day with no headwind applied to the kayaker.
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Figure 4.3: Vector of the water’s surface, showing change in velocity.

Figure 4.4: Drag Force Vs Kayak Speed - No Wind present.
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Table 4.1: Drag Forces found with no wind applied to simulation

Waterspeed Airspeed Drag Force (N)

1 1 1.861

2 2 6.278

3 3 15.415

4 4 27.486

5 5 42.703

6 6 62.224

7 7 94.211

Figure 4.5 shows a volume rendering for the changes in velocity for comparison of 1m/s and 5m/s

kayaker. Although the rendering is three-dimensional, the velocity change of air as a result of drag

is visible. Figure 4.6 shows similar results as vectors placed on streamlines for the air domain.

(a) Velocity Changes of Air for 1m/s velocity (b) Velocity Changes of Air for 5m/s velocity

Figure 4.5: Volume Rendering of the Velocity of fluids for a 1m/s and 5m/s kayaker

Figure 4.6: Air Velocity changes shown with Vectors for 5m/s velocity air.
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4.3.3 Low-speed with Headwind

The next set of simulations were carried out for kayak speeds between 1m/s-3m/s. For each speed,

headwinds ranging from 1-10m/s were applied and the drag force calculated. The kayak speeds

tested here are likely to be lower than the racing speed, however their results help to understand

the fundamental relationship of kayaker velocity versus drag force.

The simulation results are shown in tables 4.2, 4.3 and 4.4 with the drag force a sum of the above

and below waterline drag forces. The drag increase is relative to the simulation for that kayak

speed without any headwind present.

Table 4.2: Drag Forces for a Kayaker at 1m/s with increasing headwinds

Waterspeed Headwind Drag Force (N) Drag Increase (%)

1 1 1.861 0.76

1 2 1.875 2.72

1 3 1.911 4.22

1 4 1.939 7.73

1 5 2.004 12.75

1 6 2.098 19.28

1 7 2.219 29.49

1 8 2.409 44.92

1 9 2.696 63.38

1 10 3.040 83.63

Table 4.3: Drag Forces for a Kayaker at 2m/s with increasing headwinds

Waterspeed Headwind Drag Force (N) Drag Increase (%)

2 1 6.430 0.76

2 2 6.454 1.13

2 3 6.465 1.30

2 4 6.531 2.33

2 5 6.657 4.16

2 6 6.862 7.52

2 7 7.100 11.25

2 8 7.352 15.20

2 9 7.631 19.58

2 10 7.955 24.65



4.3 Project Simulation 52

Table 4.4: Drag Forces for a Kayaker at 3m/s with increasing headwinds

Waterspeed Headwind Drag Force (N) Drag Increase (%)

3 1 15.00 0.56

3 2 15.03 0.83

3 3 15.10 1.24

3 4 15.25 1.73

3 5 15.43 2.28

3 6 15.65 2.83

3 7 15.90 3.43

3 8 16.13 4.51

3 9 16.40 5.38

3 10 16.70 6.19

The results show the largest percentage increase of drag for the slowest kayak speed tested of 1m/s,

with an 83.63% increase in drag for the 10m/s headwind, for a total 1.18N increase relative to no

wind. For the 2m/s simulations, this difference was a 24.65% increase for a 1.68N drag increase,

and 3m/s found a 6.19% increase with a 1.7N resistance.

Figure 4.7: Drag Force Vs Headwind Speed - Kayak Velocity 1m/s
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Figure 4.8: Drag Force Vs Headwind Speed - Kayak Velocity 2m/s

Figure 4.9: Drag Force Vs Headwind Speed - Kayak Velocity 3m/s

4.3.4 Racing Velocities with Headwind

The simulations for the low-speed simulations were repeated for speeds between 4-7m/s. These

speeds cover the race pace of a kayaker during competition, and are more pertinent to the aims

of the project. The tables 4.5-4.8 and graph figures 4.10-4.13 are presented, showing the drag

force relative to headwind for each of the kayak speeds. The percentage drag increase for each

simulation, relative to no wind, is included in each table.



4.3 Project Simulation 54

Table 4.5: Drag Forces for a Kayaker at 4m/s with increasing headwinds

Waterspeed Headwind Drag Force (N) Drag Increase (%)

4 1 27.35 0.27

4 2 27.43 0.47

4 3 27.53 0.94

4 4 27.67 1.94

4 5 27.82 3.15

4 6 27.97 4.63

4 7 28.13 6.26

4 8 28.43 7.84

4 9 28.66 9.63

4 10 28.88 11.58

Table 4.6: Drag Forces for a Kayaker at 5m/s with increasing headwinds

Waterspeed Headwind Drag Force (N) Drag Increase (%)

5 1 42.20 0.12

5 2 42.20 0.12

5 3 42.30 0.35

5 4 42.42 0.65

5 5 42.62 1.11

5 6 42.86 1.69

5 7 43.14 2.34

5 8 43.45 3.09

5 9 43.85 4.03

5 10 44.19 4.83

Table 4.7: Drag Forces for a Kayaker at 6m/s with increasing headwinds

Waterspeed Headwind Drag Force (N) Drag Increase (%)

6 1 60.68 0.00

6 2 60.70 0.03

6 3 60.75 0.11

6 4 60.90 0.37

6 5 61.17 0.80

6 6 61.51 1.37

6 7 61.92 2.05

6 8 62.45 2.92

6 9 63.15 4.08

6 10 63.84 5.20
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Table 4.8: Drag Forces for a Kayaker at 7m/s with increasing headwinds

Waterspeed Headwind Drag Force (N) Drag Increase (%)

7 1 91.16 0

7 2 89.91 -1.38

7 3 89.40 -1.93

7 4 89.20 -2.15

7 5 89.19 -2.16

7 6 89.23 -2.11

7 7 89.34 -1.99

7 8 89.62 -1.70

7 9 90.17 -1.08

7 10 90.58 -0.63

Figure 4.10: Drag Force Vs Headwind Speed - Kayak Velocity 4m/s

Figure 4.11: Drag Force Vs Headwind Speed - Kayak Velocity 5m/s
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Figure 4.12: Drag Force Vs Headwind Speed - Kayak Velocity 6m/s

Figure 4.13: Drag Force Vs Headwind Speed - Kayak Velocity 7m/s

The percentage drag increases for the simulations were 11.58%, 4.83%, 5.20% and -0.63% for

respective kayak speeds from 4-7m/s. The decreases of drag found in the 7m/s simulation is

considered a limitation of the model and is discussed further in chapter 5.

4.3.5 Racing Velocities with Headwind and Waves

The final simulation attempted created small waves, similar to those visible on a river on a windy

day, to record the drag changes due to this effect. Figures 4.14 and 4.15 shows the slightly larger

bow wave created with the wave boundary condition applied.
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(a) Simulation of 5m/s without Waves (b) Simulation of 5m/s with Waves

Figure 4.14: Small Wave Effect on Bow Wave created by Kayak

(a) Simulation of 5m/s without waves (b) Simulation of 5m/s with Waves

Figure 4.15: Small Wave Effect on Water Surface close to Kayak

The simulations found increased drag for the wavy conditions at all speeds from 4-7m/s. Speeds

lower than this were not tested as it was deemed unlikely winds lower than these speeds would

create any waves on the water’s surface.

The drag was higher for all wave simulation tested. It was noticed that the above waterline drag

figures increased while the below waterline figures decreased. The approximate percentage drag

increase was between 5-6% for the speeds tested, as shown in Figure 4.16.
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Figure 4.16: Drag Comparison of Wave Effect Vs Flat water Simulations

4.4 Chapter Summary

This chapter communicated the drag outputs from the simulations, and compared the drag in-

creases as a result of headwinds and small waves. The results were mostly consistent with expec-

tations, and make sense when relating to the literature reviewed. There were some inconsistencies

notices in the high velocity simulations, which will be discussed in the next chapter.



Chapter 5

Discussion

5.1 Chapter Overview

This section interprets the results found in chapter 4 and relates the findings to the aims of this

project. Whilst the simulation shows potential for the use is water-based sports, the results require

validation and refinements to the model are required.

5.2 Simulations Results

The largest component of drag for the kayaker was the resistance through the water, both as

parasitic drag and wave drag resistance. This was expected, as the density of water is approximately

800 times less than air, dependant on the temperature and pressure of each. Of the components of

parasitic drag, it is suspected that skin friction drag is dominant for the kayak due to its quite low

frontal area in comparison to its surface area. This is opposite for the athlete, where the frontal

area is relatively large and flat. The simulation does not differentiate the different mechanisms,

only the force opposing motion, so therefore further analysis would be required if this information

was of interest.

The drag figures for the open channel simulations, without additional headwind, shows an expo-

nential increase in drag with a linear increase in velocity. This reflects the research by showing

that the drag coefficient is a function of the fluid velocity at a particular Reynolds number, which
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in itself is a function of velocity. The results for all seven kayak speeds shown previously in Results

Figure 4.4, plotting drag against velocity for n. The 2nd order trend line for the data input into

Microsoft Excel was found as:

DF = 2.15~V 2 − 6.47~V + 5.43 (5.1)

with drag being a function of velocity. From this equation it can be seen as the kayaker velocity

increases, the drag force approaches 2.2~V 2 − 6.5~V , with the residual third term becoming less

significant. Further data points and higher order equations would improve the accuracy and

validate this trend. As the simulation contained no headwind, the drag increase for this parameter

set is due to the travel of the kayak through the water and a simulated static air, with no dynamic

headwind.

Overall the simulations carried out went towards proving the viability of using CFD to recreate the

drag conditions of a kayaker. However, the simulation was limited in by a number of factors, and as

the boundary conditions increased, the confidence in the accuracy of the models became lower. For

example, the 7m/s kayaker encountering headwinds actual registered less drag for headwinds from

1-5m/s than the no wind condition. This is the not able to be explained from an understanding

of the drag mechanisms, and inconsistent with the lower kayak velocities.

5.3 Geometry

The final hull and athlete kayak geometry created was basic in shape, and the drag figures found

in the simulation are unlikely to be highly accurate of the figures found in real life. The simulation

does however provide enough information for trend analysis and the distribution of the drag over

a real kayaker. The shape was limited by the mesh, with draft versions containing arms and a

paddle proving extremely difficult to interface with the mesh of the free steam fluid paths. This is

easily fixed with the availability of more meshing elements, and the domain design of the two-phase

model would lend itself well to other water sport geometries conducted on flat water.
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5.4 Meshing

The meshing process identified the areas of most interest, being the water/air interface surface

and the walls of the kayaker, and attempted to create as fine as possible mesh in these areas. The

limitation of the meshing elements available in the student version did not allow for the mesh to

reach a high degree of accuracy, however the solutions were able to converge and provided data

which could be analysed.

The yPlus figures increased as the fluid velocities increased, further raising the concern for inaccu-

racy as the inlet boundary condition magnitudes increased. The importance of the yPlus is most

applicable to skin friction and the creation of the boundary layer, and is likely most important for

the hull of the kayak, where the frontal area is quite low. The large frontal area of the kayaker’s

body and the dominance of pressure drag for this section would allow for an increase the allowance

of yPlus for this region. Figure 5.1 shows a contour of yPlus for a 6m/s kayak, and the areas

outside of the range on this figure would require mesh refinement. In particular the sections of the

kayak travelling in the water domain. This was limited in this project due to the cap on meshing

elements available in the academic version.

Figure 5.1: Contour of Yplus for 6m/s
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5.5 Wave Creation

The use of the Volume of Fluid multiphase inlet boundary condition allowed for the creation of

waves over the water inlet, and was used to simulate the small waves which would be found on a

body of water on a windy day. Ideally, the small waves would be best modelled by creating a very

fine mesh interface and setting up an accurate surface interaction between the air and the water.

Due to the size of the domain and the meshing restrictions this preferred option was not possible.

5.6 Effects of Wind

The simulations investigated the effect of wind in two ways: through headwind on flat water; and

by creating small waves reflecting the shear stress of the wind on the water. From the results,

it was found that the waves had a larger effect on drag than even the 10m/s headwind at kayak

speeds of 6m/s and greater, and greater than a 9m/s wind at 5m/s kayak velocity. Competition is

unlikely to be conducted at these headwind speeds, which suggests that the primary effect of wind

on kayakers is through hydrodynamic drag through the waves created by the shear stress imparted

by the wind on the water’s surface.

5.7 Pacing Strategy

The results provided insight into the types of increases of drag above at higher velocities. One

example of how these results can be applied to competition would be to compare pacing strategies

of actual races. The 2018 World Championship was won with a time of 207.66 seconds (ICF:

Kayak 2020), which is shown in table 5.1 along with the 250m split times.

Table 5.1: World Championship Final Times

Intervals (m) Splits (secs) Avg Velocities (m/s) (%)

250 48.503 5.15

500 101.104 4.75

750 154.576 4.68

1000 207.666 4.71
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The common pacing strategy used by competition kayakers is referred to as the reverse J strategy,

which includes an all-out start before settling for an even pace, before a slight burst towards the

end. This is reflected in the previous table, and shown in figure 5.2a as the blue line. From the

simulations it was apparently that the cost of increased kayak velocity is a larger increase of drag,

and therefore accelerations and higher velocities require increased effort. It was proposed that an

even pacing strategy for the same winning time would be more efficient.

Simulations were created for the average velocity of even pacing strategy and each average velocity

of the reverse J strategy, and drag outputs taken. The comparison of reverse J strategy and even

pacing strategy is shown in figure 5.2.

(a) Pacing Strategies: Drag Vs Distance (b) Pacing Strategies: Drag Vs Time

Figure 5.2: Comparison of Pacing Strategies for 2018 WC final

From the drag outputs the work for each strategy was calculated from:

Wmin = FD ∗ ~V ∗ (t1 − t0) (5.2)

and it was found that the even pacing required 210.8 Joules less. This efficiency saving could be

applied to a slightly higher average race pace, and a faster time achieved for the same energy as

the reverse J method. Not all variables were tested by this method, as the initial accelerations

were not included as well as the deceleration shown in the reverse J method. The simulations were

also without headwind, which would likely increase the advantage of the even pacing technique.

From research of the literature, the reasons for the reverse J strategy were listed as possibly pro-

viding V̇ O2 max advantages as well as avoiding boat wake of others. It may also be psychological.
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However, the efficiency of this method in regards to drag is lower, and warrants a cost-benefit

analysis in real world conditions.

5.8 Chapter Summary

The use of the simulations to provide pacing strategies shows promise, however requires validation.

The accuracy of the current model is slightly concerning, especially at high velocities. This is due to

the meshing and geometry limitations currently existing within the project. This chapter provided

points of improvement possible explanations for some of the inconsistencies noticed in the results.



Chapter 6

Conclusions and Further Work

6.1 Conclusion

The effect of wind on drag on kayakers in competition was tested by the creation of an ANSYS

Fluent CFD model with variable headwinds and waves. The model featured a dual inlet, which

allowed individual adjustment of water and air speed to separate kayak velocities and head winds.

Section 1.3 details the aims of the project. A summary of these goals and how they were addressed

are as follows:

Conduct Research on the movement of the kayak through the water: Chapter 2 completed

a literature review of the drag mechanisms of the kayaker through water and air. The kayaker

encounters three types of drag: Form drag; Friction drag; and Wave Drag Resistance.

Research CFD methods and their application CFD techniques, particularly those found in

ANSYS Fluent, were researched in Chapter 2. The research identified the suitability of the

Volume of Fluid model, combined with an SST k-ω with standard wall functions to model

turbulence.

Create a simple model of a body of water, determining the impact of wind: This goal

was partly achieved through the preliminary simulations found in Section 3.3. The full

intention of this goal was to accurate simulate the water’s surface through the CFD model

alone, however this was unable to be carried out, as discussed in Section 5.6. This goal was
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instead met by the use of the wave inlet boundary condition within the Volume of Fluid

model.

Determine Drag on an object within CFD: The preliminary simulations in Section 3.3 achieve

drag outputs for a cylinder, and the project simulations in Section 4.3 applied these methods

to achieve the project aim.

Create a kayak model and analysis drag outputs: The final model consisted of a dual inlet

domain for a multiphase model, which created a parameter set of the drag outputs for above

and below the initial waterline. Section 4.3 details the methodology used, the Chapter 4

details the results and the discussion of these findings is found in Chapter 5.

Provide feedback on results and methods for better race times: The results of the drag

outputs are shown in Chapter 4 and discussed in 5. The results provided useable data for

speeds up to 6m/s, however as the velocities increased beyond this the confidence in the

results lessened. The application of the model and the results was provided in Section 5.7,

where the 2018 World Championship winning strategy versus an even pacing strategy, and

it was found that the even pacing strategy was more energy efficient by 210.8 Joules.

6.2 Further Work

6.2.1 Model Refinements

The model shows potential as being a way to simulate water and wind in a single model for CFD

analysis of water sports conducted on flat water. The simulation requires definite refinements in a

number of areas:

Geometry: The geometry is currently quite rough, and not accurate to the dimensions of a

kayak hull or athlete. Further work can be carried out by selecting a particular kayak hull

and creating a 3D model to within a low tolerance limit. The materials of the hull were also

not changed, and the effect of the different kayak composite materials and its effect on drag

is another point of further research.

Mesh: As mentioned in discussion, the limitation of meshing elements on the academic version

of the ANSYS Fluent software did not allow for high level of accuracy on the model. If
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a licenced software version is available, then mesh refinements of the waters surface and

kayaker’s frontal area would be a priority. Another body of influence should be created

purely around the area of water/air interaction, fine enough to allow for waves induced by

the wind as well as bow waves from the kayak. This mesh would need to be very fine to try

and simulation the water’s surface and the wind effects on it. The yPlus would need to be

substantially reduced

Setup: The current residuals are converged to 1−4 for the current mesh, and with improvement

to the geometry and mesh it is likely a highly level of convergence would be required to reach

the accuracy expects.

6.2.2 Wave Creation

The magnitude of the waves created by a particular wind on a water’s surface requires its own

unique CFD model with an extremely find mesh created for the water’s surface. The literature

review provides equations for the wind effect on wave creation on the waters surface, however

recreating this on the project was not possible due to meshing limitations and time restrains.

6.2.3 Practical Testing

Once the geometry and accuracy are refined, the results should be compared to practical testing

in identical conditions. As an initial study, the wind effects on the waters surface should be

conducted on various locations, to determine the impact of other variables on wave creation. The

waters depth, current and width are all likely to change this.

Testing should then be conducted in either a wind tunnel or on a lake to determine the accuracy of

the drag figures produced in Fluent. The preference would be for kayakers on water to incorporate

wave drag resistance as well as hydrodynamic and aerodynamic drag. The research of the literature

found that variable controlled experiments were able to be conducted by use of a cable system

pulling the kayak and measuring the total resistance to forward motion. Headwinds are likely to

be difficult to control outside of a wind tunnel, and this may be the best method of recreating the

drag effects of headwind.
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6.2.4 Expansion of Model

If the kayak simulation reaches a high level of accuracy there is scope to extend the model to other

geometries used in other water sports. This is mentioned in the project aims as a stretch goal

if time permitted. Other sports conducted on flat water are canoeing, paddle boarding, boating,

skiing and jet skiing. Ultimately, this type of simulation may become part of athlete training

though an Institute of Sport, to help analyse times and drag from events and determine strategies

based on this data.
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Project Specification



ENG4111/4112 Research Project 
 

Project Specification 
 
For:  Dean Long 
 
Title:  Simulation of the Effects of Wind on the Drag on Kayakers in Competition 
 
Major:  Mechanical Engineering 
 
Supervisors: Assoc Prof Andrew Wandel 

 
  Dr Khalid Saleh 
  
Sponsorship: N/A 
 
Enrolment: ENG4111 – EXT S1, 2020 
  ENG4112 – EXT S2, 2020 
 
Project Aim: To create a simulation of competition kayakers competing in a range of wind 

conditions, affecting the aerodynamic drag and water surface. Examination of 
the results can identify sources of competitive advantage. 

 
Programme: Version 1, 14 Mar 2020 
 

1. Review literature in regards to the drag forces encountered by Kayakers. 
 

2. Detail the engineering theory behind the forces discovered in step 1, gaining an in-
depth understanding of the drag forces and work that a kayaker produces.  

 
3. Examine Computational Fluid Mechanics (CFD) methods for the use of water and 

wind within a single model. 
 

4. Create a 3D model on CFD software that simulates the water surface affected by 
wind. Compare the simulation to previous wind-wave simulations and to videos of 
water bodies under known wind conditions.  

 
5. Create a 3D model on CFD software of a kayaker moving through the water’s 

surface, encountering drag from the wind and water surface. Validate the results to 
published literature on drag forces found on kayakers and other water athletes.  

 
6. Extend model to vary the wind speed and direction, as both a head wind and tail 

wind. Validate the results against literature.  
 

7. Compilate the results found from the CFD software and compare to the theory 
discussed in step 2. 
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