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Abstract  

A design for continuously variable ratio rocker arms was to be considered as a personal project for a 

a-series engine. It is the desire for me to design a variable lift system to be used in older pushrod 

engines. 

The purpose of this paper is to design a continuously variable valve lift that can be used with a 

british motor company a-series engine as for completion of ENG4111 and ENG4112 reasearch 

project. First current literature was conducted to find out what designs are available and how they 

are implenented. From this a methodology was created to generate a design for the A-series engine. 

Finally the results are published showing how the design was established and a material outcome is 

conluded. Conclusions and further work is published along with a complete set of detailed and 

assembly drawings. 

 

 

 

 

Aftermarket aluminium rockers and standard cast rockers (Calver special tuning-Rocker gear) 
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Chapter 1 – Introduction 

1.1 Background 

 

The BMC A-series was first put into production in 1952 (MGCC 2017).  This first production version of 

the engine was used to power motor cars and had a capacity of 803cc. The first car that this was 

used in was the Austin A30 from 1952 – 1956. The engine was also used in some early Morris minors 

in the same 803cc capacity. In 1957 the capacity was increased to 948cc by increasing the bore size 

from 2.28 to 2.477 inch (David Vizard, tuning the A-series engine pg 16). In 1958 the engine was used 

for the mini but in front wheel drive east west orientation. Although these engines are essentially 

the same there are some differences. The FWD engine has the gearbox housed in the sump and the 

gearbox is driven through a set of gears from the crankshaft. The first FWD engine was the same as 

the 948cc engine but with a reduced crankshaft stroke, this resulted in a capacity 848cc.   

The BMC A-series engine was used in a multitude of different variants with later in 1964 the biggest 

version was produced with 1275cc capacity. The engines all have the same architecture and parts 

can mostly be shared. 

 

When building a-series engines for minis, rocker ratio is of great importance. An example engine was 

capable of having the power curve shifted higher with a set of 1.3 ratio rockers compared with the 

standard 1.2 ratio rockers. The standard 1.2 ratio gave a lower RPM peak power and torque. The 

engine was a 1098cc A-series with 12g295 cylinder head, Graham Russell camshaft and Garrett 

GT2554 turbocharger.  

For everyday driving where the engine spends most of its time at low RPM, a lower ratio generally 

will be more valuable. This is due to the fact that most of the time your engine will reside in the 

lower RPM range unless the car is used for racing. This can be exaggerated even more with different 

cam choices and by using ratios of 1.5 and higher. Removing and changing the rockers is not a hard 

task but requires removing the back cylinder head studs resulting in a risk of head gasket failure. 

Being able to easily change rocker ratio or even have it controlled for you by a computer while the 

engine is running would unlock some performance and drivability by being able to utilise the high 

and low power that the engine could develop. 

1.2 Project Aim 

The Project aim is to produce a design and drawings of a variable valve lift system that can be 

incorporated into the A-series engine. I could then use the drawings to manufacture a complete 

working VVL system for use with my own engine. The aim is to produce a complete working design 

within this paper. Including the following: 

 General drawings and CAD models 

 Detail and workshop drawings 

 Design calculations for stress and verification 
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 Component materials 

 Simulations and finite element analysis 

This will give complete details for the project allowing the complete manufacture the variable ratio 

rocker system. 

1.3 Scope of work 

A list of the work that is performed for this project is listed below, 

 Research on existing production and non production methods and designs of VVL is 

performed. 

 Determine a design that would work with the A-series cylinder head. 

 Determine the amount of variation of lift through research and simulations. 

 Design the components for the VVL. 

 Perform hand calculations and Finite element analysis (FEA) to ensure the design will be 

acceptable for use. This includes fatigue life and stress analysis. 

 Verify the design 

 Produce detail, assembly drawings and material specifications for manufacture. 

1.4 Knowledge gap 

Variable valve lift is no means a new innovation as it is currently used with a number of 

manufactures. Manufactures using this system in discrete (switchable between two lift heights) form 

are more common that continuously variable. From my research the major manufactures using the 

discrete method are listed below. 

 Honda 

 Nissan 

 Toyota 

 General motors 

 Fiat 

 Porsche 

 Subaru  

 Mitsubishi 

Manufactures than I have found to be using a method of continuously variable valve lift are only 

BMW, Honda, Nissan, Toyota and fiat. 

The introduction shows that there is a good advantage of using variable valve lift. There are a large 

number of systems available although a reliable continuously variable rocker arm system for use 

with a pushrod engine has not been successfully used or documented. Some patents show possible 

solutions for older pushrod engines although no reliable solutions can be found for the BMC A-series 

engine or even current use for any pushrod engines. The closest possible solution is that of William 

W. Entzminger (1989 patented) with his gear rack design. All the manufactures using a variable valve 

lift system are using in conjunction with an overhead camshaft engine particularly dual overhead 

camshafts. As pushrod engines are generally older designs and most being developed over 30 years 

ago when variable cam timing and valve lift was not commercially available. 
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The knowledge gap that will be filled is to design a continuously variable valve lift system to be 

designed for use on a BMC A-series engine. This is to be designed to use as many of the standard 

engine parts as possible to minimise modification and to be just as reliable in terms of maintenance 

as the original.  The aim would be to fit in the existing rocker cover and to not appear different from 

the outside. This would be based on a variable ratio arm by moving the centre shaft to adjust the 

pivoting point. A full analysis to ensure a reliable and sturdy design is to be considered. 

1.5 Study justification 

The aim of this project is increase the potential of the A-series engine that could be used as an 

aftermarket alternative for enthusiasts and for circuit racing. 

The use and implementation of the variable valve lift function within the rocker of a BMC a-series 

engine to maximise efficiency to give the best possible performance across the entire rev range. This 

project will focus solely on the mechanical design to full fill the requirements of Mechanical 

engineering Project courses. The interest in this project is from my own building of a 1976 Leyland 

mini which has a 1098cc turbocharged engine.  I’m looking to increase the drivability and efficiency 

of the engine for me personally although there could be some aftermarket possibilities with the 

project. 

1.6 Outline of the study 

Engine manufactures spend huge amounts of time, research and development to increase the 
efficiency and performance capabilities of their engines. These innovations used in engines today 
will have the same gains if utilised in older engine designs. Variable valve lift was first Patented by 
Giovanni Torazza in 1972(free patent) (shown in figure 1) although the early systems used a stepped 
or discrete operation. This meant that they had a low and high setting that could be switched at 
certain rpm. Variable valve lift is commonly used with variable cam timing to ensure the best 
possible conditions throughout the rev range. 
There are many different methods of changing the valve lift as it depends on how the valves are 
operated. Most common methods are by utilising different cam lobes with differing lift amounts. 
Other methods of variable valve lift use varying pivot points to increase and decrease valve lift.  
Many manufactures use different designs with different naming but all doing a similar task. Two 
main types of variable valve lift are; 
 

 Discrete  

 Continuous 

Discrete variable valve is the most common type of system as fond in the knowledge gap. This 

means that the valve lift can be switched from high to low at a defined point in the rev range. This is 

done by Honda, Audi, Mercedes and Chevrolet (National academic press 2015) all using a similar 

technique of switching between two different camshaft profiles. Two cam profiles can be switched 

between, one being an economical design focused on the lower rev range and the latter on peak 

power. These systems increase valve lift and cam duration at a predefined point. This switching 

method is usually done by mechanical means controlled by an engine control unit (ECU). 

The other method is a continuously variable valve lift which can be changed linearly throughout the 

entire RPM range for the engine. Continuously variable valve lift has only been used in engines since 

2001 and was first used by BMW (National academic press 2015). The system was called Valvetronic 

and was used in conjunction with variable intake length and variable cam timing on both intake and 
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exhaust camshafts. This was focused primarily on fuel consumption with the complexity of the 

system adding some valve train losses. Toyota and fiat use a similar system although fiat uses a 

hydraulic solenoid valve opposed to Toyota and BMW using an electric motor. All systems use an 

intermediate cam shaft to change pivoting angles thus increasing valve lift.  

These two systems are common in modern engines but there are no currently available systems for 

non-overhead cam engines. This research proposal will plan a methodology to utilise this technology 

in older pushrod engines.  

 

Figure 1: Giovanni Torazza variable valve (patent 1972) 
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Chapter 2 – Literature Review 

2.1 Introduction 

There are many different types of A-series rockers. These include different versions of the 

manufactures and aftermarket replacement rockers. These rockers can be steel, cast or sintered 

steel for factory manufactured or Aluminium roller tipped and Aluminium full roller rockers for 

aftermarket. All types can be purchased in a number of fixed ratios but none have discrete or 

variable ratio available. This means that in order to find the best performing ratio dynamometer 

tuning would need to be performed using different ratios. This would be time consuming due to A-

series engines rocker design. Removal requires taking the whole assembly off which uses the rear 

head studs thus needing a head gasket change. The new rockers would then require valve lash 

adjustment and the dyno tuning to be done again. 

A book by David Vizard tuning the a-series engine does help with rocker ratio selection in chapter 11 

part 3 “high lift rockers”. Again this favours the peak performance aspect and not the overall 

performance of the engine. David explains that high lift and high ratio do increase the engines ability 

to breath although can be detrimental to low speed output (David Vizard 1999, pg326). Once the 

engine speed has climbed the gain from the extra breathing will pay off this can be seen in figure 2. 

 

 

Figure 2: Difference of power and torque with rocker ratios 1.3 and 1.5, showing loss of low end 

torque with 1.5 ratio rockers over the smaller 1.3. (david Vizard) 
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Figure two compares two rocker ratios 1.3 and 1.5 ratios. This test is done with a 1400cc A-series 

engine with the only variable being the ratio of the rockers. 

The two rocker ratios 1.3 and 1.5 with a 0.290” lift cam would give 0.377” and 0.435” lifts at the 

valve respectively. This equates to a difference of 0.058 or 1.47mm. A can be seen in figure two the 

1.3 ratio has more torque and Hp to roughly 5250 RPM where the 1.5 ratio then out performs the 

1.3. This graph positively shows that having a variable ratio would increase the area under the curve 

giving greater overall performance. 

2.2 Understanding of volumetric efficiency 

Volumetric efficiency is an important engine parameter and is defined as the ratio of the air going 
into the cylinder verses the actual cylinder capacity. This parameter is affected by valve timing, valve 
lift, intake and exhaust runner length, and intake and exhaust pressure (Shumei Yin 2017). Shumei 
thesis shows modelling using GT power software and Matlab modelling for different valve lifts.  His 
finding show that increasing the valve lift shifts the volumetric efficiency curve higher in the rev 
range showing that increasing the valve lift as the engine speed increases can increase the engines 
volumetric efficiency. By having an increased efficiency meaning increased mass flow will allow for 
more performance and better economy. 

2.3 Variable valve lift 

Many car manufacturers produce engines with their own design of variable lift. Most common being 

the discrete method as mentioned in chapter 1. 

Nissan Neo VVL utilises an extra cam lobe with higher lift in between two lower lift lobes. There are 

three rocker arms running on the lobes with the outside ones pushing the valves. At a certain RPM a 

solenoid is activated allowing oil pressure to push a small piston to lock all three rockers together; 

this in turn makes the valves open with the higher centre cam lobe (5523 motorsports). 

General Motors (GM) have a similar method like Nissan which uses oil pressure on a piston to lock 

the rocker arm to utilise the third cam lobe. GM only uses this on the intake valve and is designed to 

increase fuel economy.  

Most discrete methods of lift control use this design of an extra lobe and some sort of rocker 

switching. This works well for overhead cam applications but doesn’t have a continuous of infinite 

lift change. All parts are purely mechanical and suited to the particular engine which won’t allow 

tuning for a specific engine. All these designs work effectively for their application they are not 

suited for a pushrod motor. 

Designs for continuously variable valve lift are much different in design and are less common than 

discrete from my research.  Continuously variable valve lift combined with continuously variable cam 

timing is only been done by a few manufactures. These manufactures are BMW with their 

Valvetronic system, Hondas advanced VTEC (Paultan 2007), Nissan Variable valve event and lift and 

Toyota Valvematic. Honda uses a drum around the camshaft lobes with a small rocker built into it. 

By turning the drum this changes the point at which the rocker is pushed adjusting the ratio to 

change the valve lift.  The two figures below taken from US patents for Honda’s Advance VTEC 

explain the operation. 
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Figure 2.1: Cross sectional view of Honda’s AVTEC continuously variable valve lift 

BMW’s Valvetronic system was developed before Honda’s AVTEC and has been used in production 

since 2001 (BMW Blog 2016).  BMW variable valve lift has complete range from no lift to full lift 

allowing the engine to be run with wide open throttle and control the engine just with valve lift.  This 

uses a second camshaft with a set of intermediate rocker arms and is only fitted to the inlet valves. 

 

Figure 2.2: BMW Valvetronic valve lift (search auto parts 2017, how to repair BMW Valvetronic) 

Both these systems are again system designed specifically for dual overhead cam engines making 

adaption to a pushrod engine relatively complicated.   

2.4 Variable valve lift for pushrod engines 

Research into variable lift rockers found multiple patents which are explained below and also found 

was some information on a product that was proved to be unreliable. No production or current 

variable ratio rockers could be found and particularly none for the BMC A-series engine. 
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David N. Vaseleniuch has a patent for a variable ratio rocker using a radiuses follower in the rocker. 

This allows continuous variable ratio from 1.6-2.11.  The shows a good design for variable ratio 

although no methods of how the follower is moved and also how the valve clearance is accounted 

for. This method would make actuation complicated as the pivot to change the ratio is moving with 

the rocker. Details and diagrams are shown in the appendix in figure A1. 

 Another patent found was by William A Pohle which shows a variable lift rocker using a simple 

method of an eccentric screw for the pushrod seat. This solves David N. Vaseleniuch’s issue of valve 

and rocker clearance although shows no method of actuation. From the look of the patent it is more 

so designed for fast adjustment of rocker ratios rather than variable ratio while the engine is 

operating. Details are shown in the appendix figure A2. 

A company called Eaton manufactures a variety of finger followers for use with variable valve lift and 

or cylinder deactivation for cruising efficiency. These seem to be of similar design to that of the 

Honda VTEC and BMW valvetronic variable valve lift although only being of discrete adjustment. 

Eaton Claims improved fuel economy, performance and drivability with two modes of operation 

(Eaton 2019). Eaten explain that the operation is achieved by a dual lift rocker arm actuated by two 

cam profiles. More information for this twostep rocker design was found in a SAE technical paper 

which evaluates the design and development of a twostep rocker for an overhead cam engine (N. 

Hendriksma, T. Kunz and C. Greene., “Design and Development of a 2-Step Rocker Arm,” SAE 

Technical paper 2007-01-1285, 2007). This design is extremely similar to the Eaton Finger follower 

although the SAE paper follows a more in depth assessment of the design and stress on the 

components.  

Further research showed some interesting information on a Mopar forum for a company called Hot 

Rockers for which the only information I could source was that of the forum. The company seems to 

have disappeared although the product was of a continuously variable rocker arm.  The post states 

the unreliability and high cost of the product. 

Alternatives to variable rocker ratios from this research would be that of a variable lifter. Murl L 

Burton in 1996 Patent a variable duration hydraulic lifter. This design is based on a damper within 

the lifter. A damper responds to acceleration, thus higher acceleration i.e. faster engine speed result 

in more damping. Murl’s patent explains that the “leak” varies the lift over engine speed. The 

downside to this is that it is of a fixed damping and thus needs to be removed to be changed. The 

damping coefficient would be linear with engine acceleration so not be “tuneable” for different 

speeds.  

William W. Entzminger produced a design that was patented in 1989 which shows a possible design 

for a variable ratio lever arm (Appendix, figure A3). This design gives a continuously variable ratio via 

a toothed shaft inside a slot with a rack. This seems the most promising design although no 

prototype or working models can be sourced. 

The literature review conducted shows allot of differing designs and research into the stress and 

analysis of the fulcrum point discrete design. No detailed analysis of the variable ratio arm could be 

sourced although a number of designs were found through past patentees. 
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The design and analysis of rocker arms that are fixed ratio is well documented. A paper by Dr. Goteti 

Chaitanya shows the fatigue of different materials for different ratios. He also explains the 

possibilities of lightweight composite material rocker arms over the conventional forged steel and 

aluminium alloys. Rocker arms are under large fluctuating loads and need to be strong enough to 

withstand a large fatigue life. A model is produced and finite element analysis preformed on three 

different materials including aluminium composite.  

2.5 Understanding of valve lift  

David Vizard explains that in a two valve per cylinder motor valve lift is of high importance. This is 
due to the valve size being limited by the bore size. In the smaller capacity A-series engines this is 
also an issue as they are of “under square design” meaning the bore size is smaller than the stroke. 
This is particularly bad in the original 1952 803cc which comprises of a 3 inch stroke but a small 
2.28” bore meaning valve size is very limited by the bore. David Vizard continues to explain that flow 
will peak at valve lifts of around 35-45% of the valve diameter. 
 
A typical 1098cc A-series engine would be equipped with 1.156” intake valves giving an approximate 
maximum flow of: 

                                         
This is of course looking at peak flow which is only a perfect value for a certain engine speed range 
and won’t be optimised throughout the entire engine operation speed. This also shows that at the 
standard ratio of 1.2 with a 0.290” lift cam only 0.348” lift would be achieved, not given maximum 
flow. 
 

2.6 A-series Engine Builder 

Graham Russell Engineering PTY, LTD. NORTH ROCKS, 2151 NSW, Australia 

Further research was done by speaking with an A-series engine builder. Graham Russell is well 

known in the mini scene for his high performance engines and his personal cam designs. Graham 

races a mini in the historic class and has a great reputation for high quality parts. 

Discussion with him about the project was made and he stated that all engines perform slightly 

different although generally don’t see a gain with higher lift until over 5500rpm. He explained that 

there can be a large gain in low engine speed torque using smaller valve lift although generally at the 

expense of high engine speed power. Cam profile parameters like lobe lift, duration and lobe 

separation all play a part in what actual lift works meaning that a dedicated discrete method would 

only for a specific engine combination and thus continuously variable system that could be tuned 

specifically would work best. 

2.7 Summary 

Research into the variable valve lift found a number of different possibilities for a design to suit the 

a-series engine, although to design this variable valve lift system rocker mechanics and stress need 

to be considered. 

A list of other information that was used for the design is below. 

 Rocker geometry- Rocker geometry by Jim Miller 2010 
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 Rocker forces- International journal of engineering sciences and research technology. Design 

and static structural analysis of a rocker am in an internal combustion engine. By Sachin 

Bacha , P. Swaminadhan and D. Deshpande 2018. 

Going through the literature review didn’t a exact solution for the design although shows potential 

methods. William W. Entzminger patented design is the mechanical principle that will be followed 

here. William did this by having the rocker position over the valve fixed and moving the shaft 

position relative the rockers centreline to change the ratio (William A. Pohle 1980). He used a rack 

and pinion design to hold the rocker in position while moving the shaft. Although usable and a more 

solid method will be used.  
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Chapter 3 – Research Design and Methodology 

This chapter will cover the design considerations, procedures, tools & resources to design a set of 

continuously variable rocker arm for an A-series engine. The final outcome and results will be 

covered in chapter 5 with any design revisions. 

The design that will be utilised for this continuously variable rocker will be of a sliding pivot point. 

This allows the ratio between the pushrod and valve to be changed and thus changing the valve lift. 

An overview of the design is shown below.  

 

Figure 3: exploded diagram of components for a single rocker 

The main rocker components are comprised of the following parts: 

1. Rocker posts and actuating cam follower 

2. Actuating cam 

3. Actuating cam locking pin 

4. Rocker linkage arm 

5. Rocker body 

6. Sliding bush 

7. Main shaft 

8. Roller tip pin 

9. Roller tip 

Each component will be individually assessed and made to fit the original BMC A-series cylinder 

head. Design has been made to be as simple as possible to make manufacturing and repair a simple 

task.  

3.1 Methodology 

The methodology that is going to be used to design the variable ratio rockers will be as follows. 

 Using the research and simulation to find an optimal rocker ratio range, this will be 

compared with fundamental equations for maximum lifts in internal combustion engines. 

 Design a variable rocker that can be used for the A-series engine within the ratios found. 
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 Perform Finite element analysis and hand calculations for stress analysis to find material 

specifications needed. 

 Produce a prototype that can be used.  

 Results and conclusions defined. 

Simulation would be performed using an Engine simulation software package; the software used is 
Performance Trends engine analyzer pro V3.9. The software can calculate engine performance in 
power and torque with being able to change cam specification such as valve lift and valve rocker 
ratio. Kin yip chan explains the difference in engine simulations software stating that the four main 
commercial packages used are; 

 Ricardo wave 

 Lotus engine simulations 

 AVL fire  

 GT Power 

Ricardo wave engine simulation package solves using the one dimensional form of the Navier-Stokes 
equations. This software can analyze the mass flow, pressure and energy within the engines 
manifold and cylinder head components. 

Lotus engine simulation software is code developed by Lotus using combustion and heat transfer 
zero dimensional equations and fuel composition solver based on the engine input data. The 
software can predict gas flow, combustion and performance of internal combustion engines (Kin Yip 
Chan 2013). The input data is quite extensive and requires a lot of input to ensure minimal output 
error. I did manage to get a copy of Lotus engine simulations software although had uses limitations 
of single cylinder evaluation.  

Most engine simulation software is industry specific making it hard to be able to use for individual 
purpose (Kip Yip Chan 2013). For this project Engine Analyzer Pro software will be used and can 
simulate different changes and output a range of data and is available for personal use. The free 
version was used in this instance. Output data includes: 

 Cycle data 

 RPM data 

 Can simulate differing valve lift 

For Valve lift calculations, equations from the internal combustion engine theory and practice by 
Taylor are used. To determine the maximum valve lift the inlet Mach index number is used. This is 
the ratio of the typical velocity to the inlet velocity. 

Taylor determined that when comparing Mach index number with volumetric efficiency over 0.6 
efficiency falls rapidly with increasing engine speed. So when determining valve lift for maximum 
engine efficiency inlet velocity should not exceed 3/5th the speed of sound (Mach 0.6).  This will be 
solved for the entire engine speed range using MATLAB. 

Designing of the actual rocker will be constrained to fit inside the standard cylinder head and rocker 
cover. This will be designed to use as many factory parts as possible and designed as simple as 
possible. Design will be done with hand sketches, then drawn in Solidedge ST10 and movement can 
be simulated to confirm design. This will be done in Solidedge ERA (Explode, render and animate) 
environment.  
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Finite element analysis will be performed as well as hand calculations on the stress of the 
components to ensure an accepted working life is met. FEA will be performed using Creo Parametric 
4.0 using the solid models produced in Solidedge. These models will be saved as STP and IGES files to 
covert between the programs. 

Material Selection process will be done after the hand calculations and FEA is preformed. Material 
selection will be done using easy to source materials and then they will be assessed for strength 
price and availability. Fatigue life will be a factor due to the fluctuating load that the rockers will be 
running with. Heat cycle could be a factor with composite material and will also be assessed. These 
factors will be done with a weight performance requirement system. 

Machining process ability is also a performance requirement of the material; this can add or subtract 
costs during the manufacture and not just at the initial investment. These processing operations can 
have a major influence on the material selection process and need to be accounted for.  

The components for the rocker arm will be broken down into the sections below. 

 Rocker arm geometry and ratio 

 Rocker arm design 

 Rocker post design 

 Variable actuation 

 Material specification 

Rocker arm geometry and ratio is determined by using the simulations along with the fundamental 

equations. This is compared with the knowledge from Graham Russell to establish the ratios that are 

used. This will be based on the 998-1275cc A-series engines and valve lifts to suit. 

Rocker arm design is governed by the rocker ratio and the position of the valve and pushrod. These 

are fixed although heights can be adjusted to raise the rocker position. The rocker posts need to hold 

the rockers over the valve and also support the rocker shaft. This is fixed by the cylinder head casting 

bolts (detail drawing can be found in the appendix). Variable actuation can be performed in a 

number of ways as seen in the literature review. The only constraint here is overall physical size. This 

is determined by the rocker cover which dimensions also can be found in the appendices. 

The design for these rocker arms will be follow some design considerations. The rockers will be 

designed to use as many of the existing components as possible without hindering or 

overcomplicating the system. The system will be designed at half lift for the maximum ratio to 

optimise the rocker and valve position. 

Material specifications will be determined from the geometry and the forces one the components. 

Cost strength summery will conclude the outcome. 

 

3.2 Forces 

The whole rocker assembly is subject to alternating forces that come from rotating parts, cylinder 

pressure and valve spring pressure. All calculations are based from the forces and thus need to be 

calculated first. Below is a diagram of the rocker arm showing the forces acting on the whole system. 
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Forces acting on the rocker can be calculated by the following sets of equations by D. Raja 

Kullayappa from the research article Analysis and Optimization of Rocker arm (2017) 

 

 

 Figure 3.1: Valve train forces 

 

 

Fe = Total load on rocker arm 

P = total load on the valve 

P1 = Gas load from cylinder 
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Fs = spring force 

Fa = Acceleration force 

W = Weight of valve 

Pc = cylinder pressure 

dv = valve head diameter 

Ps = maximum suction pressure 

t = time (s)  

r = Half lift 

h = full lift 

K = spring rate 

  = spring preload 

a = valve acceleration 

                                                          

                                          

 

Where; 
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These equations will find the maximum forces on the valve tip with the pushrod side of the rocker 

having the force multiplied by the rocker ratio. This force will be a maximum at the highest ratio and 

on the inlet valve due to the greater diameter. 

Push rod rocker force can be calculated by; 

                     

3.3 Rocker posts 

Rocker post design will be based on the original mounting within the cylinder head. This will utilise 

the cylinder head bolts and the rocker post studs. The post will also house the rocker shaft and will 

be used for the variable actuation. The rocker posts are subjected to two main forces; these are the 

extra tension on the rear bolts from cylinder pressure and upward force from the valve force. This 

force is transmitted through the centre from the rocker shaft into the sliding bearing. The bolts and 

studs need to be torque to specification this is supplied with the bolt manufactures or by using the 

workshop manual.  Calculation needs to be done for bolt strength and bearing deformation on the 

post itself. The rocker posts need to hold to main shaft and also provide shaft movement to adjust 

the pivot point. Each post holds two rockers although only one rocker is activated at a time.  

3.4 Bolts and studs 

Lifting force Fr on the rocker posts is caused by the moment created by force   . This can be 

calculated by taking moments around the pushrod ball adjuster at point 1. 

                       

   
          

  
 

Since distances         are variable distances calculation needs to be done at maximum and 

minimum ratio. The rocker posts consist of a stud and bolt and the force Fr is shared between the 

two.  

The diagram below shows where the forces are present: 
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Figure 3.2: Rocker post forces 

 

Lifting force Fr needs to be shared between the two bolts in the rocker post. The two bolts are 

governed in size. A factor of safety needs to be used to ensure failure won’t occur. Using the valve 

lift for both minimum and maximum lift bolt stress can be calculated. Bolt specification is selected 

from this. Bolts will be determined for tensile loading only as shear force is assumed to be very 

small. 

Nominal load will be;                      . The bolts undergo fatigue loading with fluctuating 

tension and using the torque specifications the axial force for each bolt can be calculated; 

         

Where: 

                 

               

                                

Fluctuating tension force will be from 0-Fr and individual bolt forces can be calculated by taking 

moments. 

                          ,  
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Bolt initial tension produces root stresses of; 

  
  

  
   

 

Using table the table below (page 452 Rober c. Juvinall) the fatigue stress concentration factor for 

steel threaded members can be calculated. 

Hardness SAE Grade 
(unified Threads) 

SAE Class (ISO 
Threads) 

   Rolled 

Threads 

   Cut Threads 

Below 200Bhn 
(annealed) 

2 and below 5.8 and above 2.2 2.8 

Above 200Bhn 
(hardened) 

4 and above 8.8 and above 3.0 3.8 

Table 1.0: Fatigue stress concentration factors on threaded members 

The rear stud as shown in figure 8 also clamps the cylinder head, so is subjected to extra force than 

that of the front bolt. The extra cylinder force is calculated by; 

              

Cylinder pressure can be directly taken from the simulation data and cylinder area is: 

                                   

There are in total 9 studs so the force is shared between them equally in the 4 cylinders. Therefore: 

          
 

 
    

 

Bolt tension for the rear stud needs to be sufficient to ensure it is greater the cylinder force, if 

              Head gasket separation will occur. 

3.5 Valve lift equations 

With the ratio selected maximum valve lift can be calculated using the rocker movement kinematics.  

The diagram below shows the simplified moment.  The lift from the cam pushing the rocker can be 

pictured as an offset four bar slider crank (Cairo University Scholars 2015). With the push rod being 

moved vertically while the rocker is the crank moving with radius    . 
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Figure 3.3: Valve lift movement kinematics 

This needs to be done to accurately check valve lift as it is not all movment is completely transmitted 

to the valve due to losses in the movements. Rocker arm geometry is important to ensure that there 

is no wasted CAM information (Jim Miller 2010). The rocker arm is given linear movement which is 

converted to rotational movement and back to linear. This set of movements needs to have the 

correct geometry to supply the valve with the same information that the cam shaft is ground too. 

For the A-series engine this geometry is relatively simple for a fixed ratio as the valves are parallel to 

the pushrods although will be of some compromise as the pivot point adjusts. This section will find 

the geometry that best suits the ratios that are chosen. 

 

The relationship between the two angles can be found using the equation: 
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Once    is found the valve lift can be found using: 

                              
                          

Where                    

Once valve lift is found Taylors mach index number can be used to find a theoretical valve lift vs. 

engine speed. 

                    
   

  
                     

Where; 

                

                  

                                   

                              
   

   
                   

3.6 Material specification 

Material specifications will be based on the stress analysis and fatigue life due to fluctuating loading 

on the rocker arm. Minimum weight is of high importance here on the moving components to 

reduce an extra valve train loses. 

Fatigue strength factors for a                     

     
            

Where;                 

                   

                  

                      

                      

Only     cycle strength will be considered so all components are designed for an infinite life. 

Formulas used for fatigue are covered in more detail in Machine component design 2016, Robert 

C.Juvinal, Kurt M. Marshek chapter 8 pages 313-371. 

Using the Ashby diagrams with the strength vs. cost and strength vs. density and material candidate 

can be selected. Figure 8 and 9 show the two Ashby diagrams that will be used. 
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Figure 3.4 & 3.5: Strength vs. Relative cost and strength vs. Density (Canfield joints, material 

selection 
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Chapter 4 – Results  
 

To determine the ratio that the rockers will work within was determined by four resources. The four 

resources that were used to determine this ratio are as followed: 

 Simulations 

 Calculations 

 Literature  

 Experts 

4.1 Engine simulations 

Engine simulations were performed using performance trends software called engine analyser 3.9B. 

This software was used mainly because of cost but it did have some limitations listed below. This 

software is focused on V8 engines although does have some base 4 cylinder models that can be 

used. The cylinder head inputs are specific for individual runners where the A-series engine is 

Siamese port. Limitations found with engine analysis included: 

 No Siamese port option 

 Exhaust length and size 

 Valve lift has no physical limitation 

Initial tests were done with a stock 1098cc engine with specifications for the engine taken from 

Leyland mini workshop manual and flow and performance specifications from David Vizards tuning 

the A-series engine. The engine simulations were run with 1.1 – 2.0 rocker ratios, the max hp and 

torque for each sample rpm was found. Rpm sample were taken every 250 RPM from 1500 to 6250. 

The average HP and torque for the standard ratio is then compared with a varying ratio. The varying 

ratio was computed in excel using the maximum value of hp and torque for each RPM sample.  

Initial results showed some benefit to differing rocker ratio. If the ratio was increased, peak power 

could be increased by 6.5% and also allow the engine to run to a higher RPM than previously with 

the smaller lift. The simulations do prove that if the ratio constantly changed throughout the rev 

range some improvements could be made overall giving a greater area under the torque and hp 

curve.  

Using average torque and HP a comparison between standard 1.25, 1.7 ratio and variable ratio can 

be seen.  

 Average HP Average Torque (lb.ft) 

1.25 ratio 37.809 53.625 

1.7  ratio 39.47575 55.19725 

Variable 1.1-2.0 40.021 55.833 

Table 1.01: Average power from simulations 

This simulation is also comparable to the results from Fig. 11.8 PG326 David Vizard Tuning the A-

series engine. This is shown in figure 2 in the literature review. It was noted that the ratio could be 

increased to 2.2 and would still output higher HP figures. This would be unrealistic for real situations 
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due to spring coil bind and extreme rocker angles. The valve opening area would also exceed the 

intake area resulting in no further gain in airflow.  

Results proved comparable with the workshop manual stating 60lb.ft @2500 rpm and 50hp @5100 

rpm. Standard rocker ratio stated is 1.25. 

Engine analyser showed 4% lower than the stated power for the standard 1098. Simulations were 

done for standard (1.25), 1.4, 1.6, 1.7, 1.8 ratios and 2.0, results show in table below up to 1.7. 

Further ratios were not testing due to physical limitations as of actual space; rocker angles and 

issues of wear and reliability could play a factor. This was noted above that the software would go to 

2.2. 

Ratio Hp (rpm) Torque (rpm) 

1.25 47.97 (5000) 60.2 (2500) 

1.4 49.59 (5250) 60.15 (2500) 

1.6 50.88 (5500) 59.83 (2750) 

1.7 51.425 (5500) 59.77 (3500) 

Table 1.02: Initial power figures from simulations 

 

Figure 4.01: 1098cc standard cam engine simulations (engine analyser 3.9B) 

The variable ratio shows that maximum engine performance can be utilised over the entire rev range 

rather than a specific are with a fixed ratio.  
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As high lift ratio rockers are not something that would be used with a standard engine another 

simulation was performed using the Graham Russel RE-13 camshaft and a 12g295 cylinder head. 

These are common modifications and improve the engines performance and airflow capabilities. 

The second simulations were done using the same engine capacity but using the re-13 camshaft 

which has specifications of -                                                .  The 

compression ratio was also changed to 9.5:1 to better suit the camshaft. 

Results were similar to the standard 1098cc engine but the rocker ratio had a much higher effect on 

the engine torque and hp. 

The transition point or crossover point between the ratios also changed meaning that a continuously 

variable system would give a much smoother transition. 

 

Figure 4.02: 1098cc standard cam engine simulations (engine analyser 3.9B) 

From the figure 4.02 it can be seen that the 1.25 rockers give around 4% increase in torque in the 

lower rpm. Through the transition point the ratio variation actually takes about 1500rpm and this is 

where continuously variable will out-perform discrete ratio rockers. The 1.25 ratio performs best to 

4250rpm where the ratio can slowly change to 1.7 by 5750rpm. Different capacity or differing engine 

and cam combinations all would have diverse needs. The Variable ratio for this simulation would 

change the valve lift from 9.2075mm to 12.522mm. 

4.2 Mach index ratio calculations 

Using Taylor’s inlet mach index vs. volumetric efficiency a theoretical valve lift profile can be created.  
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For a standard 1098cc engine with standard specification, the valve lift was plotted in excel using a 

mach index maximum of 0.6. This ensured the volumetric efficiency is around 80%.  

 

Figure 4.03: Volumetric efficiency vs. inlet-valve Mach index (Taylor pg174). 

Using the equation;    
 

 
 
 
        

Where; 

                

                        

                    

                                         

                                      
    

              
 

Example calculation for 1098cc engine; 

Bore (mm) 64.59 

Stroke (mm) 83.72 

Valve diameter (mm) 29.2862 
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Maximum Lift (mm) 7.9248 

Inlet temperature ( ) 50 

Maximum engine speed (rpm) 5100 

Table 1.03: 1098cc engine specifications 

         
      

       
       

                  

                    

   
     

       
 

 

                   

        

This shows in stock form with the cam having 0.250” lift and 1.25 ratio rockers the mach index 

number is still below 0.6 and can be improved with increased lift. Using the simulations as a guide 

the Engine speed was increased to 5500rpm to find the increased theoretical rocker ratio. Without 

changing the mach index number valve lift can be increased to 8.55mm giving a rocker ratio of 1.35. 

Using the mach index ratio showed that only small valve lifts were needed until higher RPM, the 

actual valve lifts calculated were lower than the simulations. Using the mach index calculation above 

a valve lift vs engine speed graph was created; 

 

Figure 4.04: Mach index ratio, calculated valve lift for 1098cc A-series 

This calculated valve lift showed around 8.7mm lift at 5750rpm which would only be 1.18 ratio as 

opposed to the simulations showing that lifts of 12mm or more are acceptable by 5750rpm. Taylor 

also states that valve lifts of over 0.25 valve diameter are rarely used. 
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4.3 Literature 

To find ideal ratios the literature used was David Vizard tuning the A-series engine. David Vizard 

states that Valve lift is very dependent on engine components (pg 321 tuning the a-series engine). 

This confirms the findings above from the simulations with engine analyser. Vizard does his 

comparisons using mainly the larger A-series engines (1275cc and above) and does explain that 

there can be a large loss with the 1.5 ratio in the smaller engines in the lower RPM. The comparisons 

are mainly using 1.5 ratio although does explain that the 1.7 ratio was in experimental stages during 

the time of the publication and has potential for an increase in volumetric efficiency. Vizard also 

states the same as Taylor with 0.25 x valve diameter = max lift, although he describes that this will 

only work if there is 100% efficiency. This is not obtainable and that flow capabilities continue to 

increase to 0.35 x valve diameter and even more. 

4.4 Experts 

The final decision process for finding the ideal ratio was to speak with Graham Russell from Russell 

Engineering PTY LTD. Graham has had years of experience in the field of building and re-building 

standard and performance A-series engines. Graham stated to a good range of variation would be 

1.3-1.6 ratio. 

4.5 Ratio chosen 

From the four resources it was determined that the ratio needed is very engine dependent. To make 

a design that can be used in wide varieties of capacity and combination it was decided to use a ratio 

from just lower than standard 1.2 to 1.7. This will cater for large varieties of engines and give a good 

advantage of low RPM torque and high RPM Horsepower. The simulations, literature and experts all 

showed similar answers although Taylors Mach index ratio gave anomalous results. 

As cam lift will change the rocker geometry the rockers will be designed around a single cam and 

could be suited to other cams available. The cam the design will be based on is the Russel 

Engineering RE-13 cam as this is a common upgrade and has a maximum lift similar to other 

performance camshafts available. This is based on a performance view in mind which would be the 

main use of the rockers. If tuning for more economy a system similar to BMW valvetronic would be 

better. The valvetronic system allows throttle control by reducing valve lift to zero although was not 

the aim for this project. 

4.6 Forces 

First forces on the rocker are calculated: 

       

   
    

 
                     

Using the gross indicated mean effective pressure (IMEP) which is the mean effective in cylinder 

pressure acting on the piston.  From the simulations this value peaked at around 180Psi. 

Values can reach up to 200psi depending on engine combinations. Valve head diameter can be as 

large as 35mm, therefore; 
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Typical production inlet valve weight is around 57g with larger aftermarket valves generally weighing 

less. 

             

                            

Initial spring force; 

   
 

 
                  

Force due to acceleration of the valve; 

Assuming maximum 8000rpm, camshaft RPM = 
    

 
      

Angle turned by camshaft = 
    

  
                    

Time take for valve to fully open and close; using a typical aftermarket cam of      total crank 

duration.  

  
   

     
          

Using 0.290” lift cam with 1.7 lift ratio; 

   
  

       
 
 

                        

                                  

Total force acting; (C-AEA526 8000rpm valve springs spring constant 87.6N/mm, 6.68mm pre-load) 

                                                

                          

4.7 Bending stress rocker 

Bending stress can be calculated analytically using the force acting on the rocker. 
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Figure 4.05: Rocker force diagram 

                                          

   
       

       
           

                            

             

                 
  

 
 

Taking the moment around Fr; 

                            

Moment of inertia and rocker shaft; 
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Figure 4.06: Section view of rocker for moment of inertia 

 

   
 

  
    

 

  
                  

   
 

  
         

   
 

  
              

   
 

  
                

                
   

   
   

   
 

        

     
        

                    

  
                

         
           

This maximum calculated bending stress is located at the base of the rocker arm directly below the 

rocker shaft when a 1.7 arm ratio is used. 

For more detailed equations refer to appendix. 
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4.8 FEA rocker 

Using the loads calculated above the model was tested in Creo Simulate to verify the design. Using 

the maximum loads and having the rocker arm positioned at maximum lift a number simulations 

were performed. The rocker laod case was done by constraining pushrod adjusting bolt on the radius 

and having the calculated loads on the roller tip and sliding bush. These were usied as bearing loads 

with the roller tip having the 3.45kN load and the sliding bush -9.32kN. The model was meshed using 

a maximum mesh of 2mm and a 1mm mesh for the surface corners. The mesh is shown below in 

figure 4.7. 

 

Figure 4.07: load case 1 meshing. 

Surface contact treatments were used, and the sliding bush was modelled as bonded for the lower 

surfaces and free for the remaining. The roller tip was also modelled as bond to the shaft but free for 

the roller faces. This was done to imitate the working loads as precise as possible. 
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Figure 4.08: Creo Simulate rocker contact surfaces 

 

Figure 4.09: Rocker loads and constraints 
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The analysis was run and checked to see if results were consistent with the calculated bending 

stress. This was located at 27mm from the pushrod end and 8.5mm in the width. Results were 

comparable with the calculated bending stress. 

Calculated bending stress     106.04Mpa 

FEA Von-Mises stress      106.966Mpa 

FEA High stress area A     431.7Mpa 

FEA High stress area B     365.57Mpa 

Table 1.04: Rocker calculated stresses 

 

Figure 4.1: FEA results comparison for rocker 

Although material specifications had not been calculated at this stage it was decided to modify the 

rocker geometry to reduce the stress areas A and B to a lower value. The area A could use a much 

bigger radius without affecting the rocker movement or pushrod adjusting bolt. This was decided to 

modify the radius to 6mm from the original 2mm. Area B was modified to have a complete radius 

rather than a flat bottom, this added material in the critical load are which was of high stress. Both 

modifications were of similar design to a Harland Sharp aftermarket 1.35 ratio rockers which can be 

seen below. 



34 | P a g e  
 

 

Figure 4.11: Comparison of Harland sharp rocker showing large radius in critical areas 

 

Figure 4.12: FEA results for modified design (V2) 

After changing the design in the areas A and B the FEA simulation was repeated with the same 

loading conditions, constraints and contact points. This reduced the stress dramatically to a level 

that was thought to be of a more acceptable level although further refinement of location A was 

done. The results are tabulated below. 
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FEA High stress area A     275.9Mpa 

FEA High stress area B     118.6Mpa 

Table 1.05: Rocker forces modified design (V2) 

The radius was again enlarged in area A to try to reduce the stress to under 200MPa. Unfortunately 

the webbing could not be mirrored as the head of the pushrod would foul. Because of this the radius 

was further enlarged to 10mm. This still allows adjustment and pushrod movement on the ball. 

 

Figure 4.13: Pushrod and pushrod adjuster bolt being the shape limiting factor 

FEA was repeated again with the same conditions with the larger 10mm radius, this further reduced 

the stress point. The high stress in the pushrod adjustment bolt is ignored as this part is a factory 

manufactured part that is not being re-designed. The results from the third variance of the rocker 

are below. 

FEA High stress area A     190.6MPa 

FEA High stress area B     118.6Mpa 

Table 1.06: Rocker forces modified design (V3) 
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Figure 4.14: FEA results with further modifications (V3) 

4.9 Rocker Material analysis 

The material for the rocker needs to satisfy some general conditions. These conditions include 

fatigue loading, temperatures up to 140  and ease of manufacture. Corrosion resistance is not an 

issue as the components have oil lubrication and also subject to splash lubrication. 

The standard rockers come in 3 different materials, Pressed steel, cast steel and sintered steel. 

Aftermarket rockers are generally aluminium and are made from a 6061 or 7075 series alloy.  

Below is a materials table for the material selection (pg831 Juvinall): 

Material Ultimate 
          

Yield           Machining (A= 
best, D=worst) 

Cost 
(A=cheapest, 
D=Costly) 

6061-T6 
Aluminium 

310 275 C C 

7075-T6 
Aluminium 

570 505 B D 

1020 Carbon steel 448.2 330.9 B A 

1040 Carbon steel 620.5 413.7 A B 

4140 Alloy steel 1020.4 655 B C 

Table 1.07: material strengths and parameters for selection 

Aluminium alloys listed are T6 heat treaded while the steels are all rolled state as this is how they 

would be commonly purchased from steel suppliers. Cast, sintered and pressed steel are not 
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considered for this application due to shape constraints and ease of manufacture. From the Ashby 

diagrams carbon steels represent the best cost per strength ratio and also allow for infinite life with 

fatigue loading. Aluminium alloys have a similar cost but slightly reduced strength over the carbon 

steels and can only have calculated fatigue strength of       cycles. For the steels a true endurance 

limit a    -cycle strength can be calculated. 

Fatigue strength is calculated with: 

     
            

Where:  

   
                    

   
                              

               

                   

                  

                      

                      

Aluminium 6061 sample calculation: 

   
                          

               

                 

                                    

              

             

            

The calculated strengths are tabled below: 

 

Material                                                 

6061-T6 Aluminium 78.48 89.28 

7075-T6 Aluminium 144.3 164.16 

1020 Carbon steel 141.83 161.35 

1040 Carbon steel 196.35 223.38 

4140 Alloy steel 322.89 367.344 

Table 1.08: Calculated fatigue strengths for rocker arms 
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From the stress analysis and the fatigue strength calculation it can be seen that for the conditions 

calculated the aluminium alloys would fail during fatigue before the       cycles was met. This only 

leaves the carbon steels as a choice for the rockers. The two steels that would be acceptable for the 

   -cycles would be 1040 and 4140.  

The material for the rockers would be 1040 steel or equivalent as the 4140 is an unnecessary 

strength that would be more expensive and labour intensive to machine. The 1040 carbon steel 

gives a factor of safety of: 

    
      

     
                        

 

4.10 Rocker Post stresses 

Using the force        as the load the two maximums were calculated. 

                             

            

                          

             

Bearing area stress was calculated using   
  

  
 

  
        

     
 

           

Bolt and stud torque from the Leyland workshop manual: 

Location Torque setting    

Rear studs 3/8’’ 42ft/lb / 56.945Nm 56.645    

Front bolts 5/16” 25ft/lb / 33.896Nm 37.42    

Table 1.09: Fastener torque settings 

Bolt axial force (static); 
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Bolt root stress,    taken from table 10.1 (page 413 Rober c. Juvinall); 

      
     

      
 

                               

       
     

     
 

                               

Fluctuating load added, stress with rolled threads       ; 

                

                 

Cylinder pressure force on rear studs; 

          
 

 
        

                                               

      
      

      
   

               

Total forces; 

                       

 

                        

Shear stress bolt surface; 

            
     

      
           

             
     

      
           

4.11 FEA posts 

The FEA on the rocker posts was done similar to the rocker by using the calculated valves and 

comparing the results. The axial bolt loads were used on surface regions on18mm for the rear stud 

and 14mm for the front bolt. The applied loads were -29.9kN and -21.3 respectively. A bearing load 
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was used for the reaction from the rocker shaft and this was 5439.4N.  Results show average stress 

around bearing surface to be close to calculated average.  

 

Figure 4.11: Rocker loads and constraints 

Below is a table of results and areas of interest. Area C is localised around the hole that breaks into 

the stud hole and is ignored. 

Calculated average bearing stress     38.37Mpa 

FEA point stress over bearing face     51.7Mpa 

Shear stress back bolt    162.86Mpa 

Shear stress front bolt    205.89Mpa 

FEA bolt rear (Max)     171.95Mpa 

FEA bolt front (Max)     218.6Mpa 

FEA area A 235.1Mpa 

FEA area B 205.3Mpa 

FEA area C 546.1Mpa 

Table 1.1: Rocker post calculated stresses 
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Figure 4.12: FEA results comparison for single post 

 

4.12 Materials 

For the posts the same materials used for the rocker analysis are used. The alternating stress on the 

posts is caused by the rocker shaft giving a bearing stress to the slotted section of the post. The 

rocker posts are under the same conditions of temperature up to 140  and again ease of 

manufacture. These posts also receive oil lubrication and subject to splash oil. The posts will also be 

designed for maximum life so       cycles for aluminium and for the steels a true endurance limit 

of    -cycle strength can be calculated. 

Fatigue strength is calculated with: 

     
            

Where:  

   
                    

   
                              

Aluminium 6061 sample calculation: 
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The calculated strengths are tabled below: 

 

Material                                                 

6061-T6 Aluminium 69.76 79.36 

7075-T6 Aluminium 128.27 145.92 

1020 Carbon steel 126.07 143.42 

1040 Carbon steel 174.53 198.56 

4140 Alloy steel 287.01 326.528 

Table 1.08: Calculated fatigue strengths for rocker posts 

From the stress analysis and the fatigue strength calculation any material in the table 1.08 would 

meet the material loading conditions. As the rocker post has a bearing surface carbon steel is 

thought to be the preferred material. The material chosen for the rocker post is 1020 steel with 

allowing for the option of being able to carburize the bearing surfaces. 

    
      

    
                        

4.13 Post fastener materials 

From Table 10.5 (pg435 Juvinall) using a SAE class 12.9; 

   
                           

             

             

                                    

              

             

   
            

For rear stud 3/8 UNF; 

                      

                     

                          

For front stud 5/16 UNF; 
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Rear stud design is fine for designed load and fatigue although front stud falls just short. Changing to 

a bigger stud would require drilling and tapping the cylinder head which would make installation 

more difficult. The second option would be to lower the initial tightening torque to reduce static 

load. By reducing initial tightening torque to 30Nm the static stress would be lowered 

to          . New loads would be: 

                      

                     

                           

              

This shows the importance of torques settings on bolts as extra tightening tension could potentially 

lead to failure. A FOS over 1 has been deemed acceptable for this design due to maximum loadings 

and an infinite fatigue life with 90% reliability has been used. 

4.14 Testing 

Once the design was finalised the final models and drawings were produced which can be seen in 

Appendix A.4. From these models a 3D printed prototype was made to confirm the design. The 
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model was simplified to only two rockers as the printer max size is 235x235mm. This was sufficient 

for testing and also reduced printing time. 

The rocker arm was printed with green 1.6mm PLA+ with a layer height of 0.2mm. These proved to 

be acceptable for visual prototypes but were not very structural and too weak for the rocker posts. 

The rocker posts were printed with silver ABS 1.6mm filament; this was sliced using Ultimaker Cura 

4.5 using a layer height of 0.12mm. Print time for this component was 16h 30min. The roller tip, 

roller tip shaft, actuating cam and sliding bush were printed with the same settings. The rocker 

linkage arm was laser cut from 3mm acrylic as was much stronger for a thin part. The rocker shaft 

was machined from 1020 9/16” bright mild steel to make the assembly usable. 

 

Figure 4.13: 3D printed prototype for testing 

 For testing of the variable rocker assembly, they were bolted to a 1098cc A-series engine with a 

12g295 cylinder head. The valve spring was removed as the spring force would break the plastic 

prototype. First the maximum cam lift was measured; this was measured using a dial indicator 

directly on the pushrod while turning the motor over. 

After maximum cam lift was measured valve lift was measure on the rocker at maximum and 

minimum ratios using the variable shaft position. Due to not being able to use the valve spring valve 

lift had to be measure on the tip of the rocker. 

 Measured lift Calculated ratio 

Camshaft 6.67mm  

minimum ratio 8.04mm 1.205:1 

Maximum ratio 10.82mm 1.62:1 

Table 1.09: Calculated rocker ratios 

It is noted that the plastic did give some slight inaccuracies due to flex and also not being able to 

measure direct valve lift. 
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Figure 4.14: Measuring maximum cam lift 

 

Figure 4.15: Measuring maximum valve lift 
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Chapter 5 – Conclusions 

5.1 Introduction 

This report was set out to provide a complete design for fitting of continuously variable ratio rockers 

to an A-series engine. The report has fulfilled a design that has been analysed to perform both for 

strength and mechanical working  

5.2 Conclusions 

Overall this project has met the project specification with a working model and detailed drawings for 

the manufacture of the continuously variable ratio rocker arms. Unfortunately due to time 

constraints a full manufactured prototype was not able to be manufactured. The 3d model was 

successfully run in Solidedge ERA (Explode, Render and animate) with all components working as 

expected. 

In summery the components of the project specification were met and further work is detailed 

below. The project specification can be seen in chapter 8. 

5.3 Further work 

There are a few components that would need to be added to further work for this project. The 

components of this design that are not included are: 

 Variable actuation control 

 Variable actuation control system 

 Components manufactured in material specifications  

 Dynamometer testing on an A-series engine 

5.4 Variable actuation control 

For variable actuation control, the movement of the main shaft needs to have some rotation control. 

From the literature review the current VVL control systems are actuated by either hydraulic of 

electrical. For a hydraulic system to work it can use the engines oil system which can supply oil 

pressure of around 60psi. Although this system could be made quite simple and compact it doesn’t 

suit a continuously variable motion. The hydraulic system could rotate the shaft by using a lever arm 

with a small cylinder but infinitely variable control would become difficult. This system would suit a 

discrete variation as per its use with Honda VTEC and Nissan VVL.  

An electrical controlled system with a stepper motor would be an ideal setup for the variable 

actuation. Stepper motors have precise movement control and high torque at low RPM (MCMA 

2020). This is idea due to the movement from low lift to max lift is only     but needs to be precise. 

Positioning at particular points between max and min would also be possible allowing for completely 

continuous variation. From some quick research a NEMA 17 stepper motor would be physically 

possible to fit although further work for actuating torque and mounting would need to be done. 

Refer to Appendix A5.1 for data sheet. NEMA 17 stepper motors are also run from a 12V system 

which is ideal for most cars. 

5.5 Variable actuation control system 

For the variable actuation control system there are numerous programmable microcontrollers 

available. For the selection process identification for the inputs and outputs and also the memory 
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needed to process and store (ARM 2020). For this project the only output would be the stepper 

motor but there would be a few inputs. Inputs could be: 

 Crank RPM, Rotary encoders, photoelectric or magnetic rotational. 

 Throttle position (TPS) 

 Manifold absolute pressure (MAP) 

 Rocker shaft home positions 

A map based from these inputs would need to be developed to change the position of the stepper 

motor based on the inputs. The microcontroller would also need user friendly software that could be 

developed so that the system could be tuned without needing the knowledge of the programming 

language.  A USB or similar interface for tuning would need to be added to the board. 

5.6 Components manufactured in material specifications  

For testing purposes a full working prototype in the materials specified needs to be manufactured. 

This can then be run to ensure all sizes and the tolerances are acceptable. Manufacturing a 

prototype will show any problems with machining due to complex part design. 

Manufacturing would be done using 2 axis CNC lathes and 3 axis CNC machining centres. This keeps 

cost down and also allows for simplified machining. 

3D models can be saved as IGES files and imported into Mastercam for tool path creation.  

5.7 Dynamometer testing on an A-series engine 

Once a complete prototype is machined using the material specified and full setup with the 

programmable microcontroller and stepper drive could be tested. This would be done on a 1098cc 

A-series at Graham Russell Engineering as they have a water brake dynamometer setup that could 

be utilised. 
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Chapter 6 – Risk Assessment 
This project has some risks involved during and beyond the completion of this dissertation. These 

risks will be identified, evaluated and managed with a risk management control. The risks will be 

categorised into two types, that of during and post project. 

During project risk identification and evaluation; 

1. Using 3d printer for prototype models - Heated table 110 , heated extruder 240  and 

rapidly moving axis and motors with exposed drive belts. 

2. Machining tools - Milling machine and Center lathe, both have risk of hot shavings, heavy 

objects and moving parts. 

3. Fitting – Cylinder head with compressed springs 

4. Fitting  – cylinder head weight and sharp edges 

5. CNC machinery – Heavy objects moving parts and hot shavings. 

Control management; 

1. When using the 3d printer enclosure needs to stay closed until table and extruder nozzle 

have sufficiently cooled this temperature is outputted on the LCD screen so is clear to see. 

Hands and hair to keep clear of moving axis and motors which can be done by keeping 

enclosure closed. 

2. When using machining tools there is a requirement of PPE. Wearing long parts and long 

sleeves but no loose clothing when operating the machines. Safety glasses at all time and 

hearing protection when necessary. Steel cap boots at all times when using the machining 

tools as there is a risk with heavy objects. Hands clear of spinning chuck/tools and tables and 

lead screws. 

3.  When fitting valve springs safety glasses should be worm due to the compressed springs. 

Correct valve spring compressor should be used and steel cap boots worn. 

4. When carrying the cylinder head care should be taken due to the heavy weight of the cast 

steel design. Safety boots should be worn. Gloves can be worn to prevent sharp edges 

cutting fingers. 

5. When using CNC machinery correct operating producers should be followed. This includes 

understanding all door locks and safety, keeping away from moving machine components 

and wearing appropriate PPE. 

 

Post project risk identification and evaluation; 

6. Change in engine tune – Emissions change and poor running if not tuned 

7. Fitting – Moving parts with sharp edges. 

Control management; 

6. When fitted to the engine the engine should be tuned accordingly to ensure correct running 

and air fuel mixture is met. Emissions testing should be done when fitted on vehicles newer 

than 1976 in accordance to the state registrations laws. New south Whales emission laws 
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can be found at: https://www.rms.nsw.gov.au/about/environment/air/emission-

standards.html. Incorrect running at worst could lead to engine failure.  

7. When the rocker assembly is fitted to the engine care should be taken due to moving parts 

and sharp edges on components. Correct torque specifications should be met for all 

fastened hardware. 
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Chapter 7 – Resource Analysis 
This project will use a number of recourses to complete the task these are outlined below. These are 

in no particular order. 

 Computer software – Three software packages will be used for the completion of the 

project.  

-Solidedge ST10 is software I have personally so is free to use for the modeling. 

-Crea Parametric 4.0 can be used with my student license and is free for use. 

-Engine Analyzer Pro will need to be purchased a basic version is $129 or pro version $499. 

 CNC machinery for prototypes can be used after work hours free of charge; I also have 

access to a small centre lathe, drilling equipment and press personally. 

 3d printer will be purchased for initial prototype 

 Materials for prototypes with need to be purchased 

 Engine that will be used for the testing is my own 1098cc engine. 

These resources and estimate prices and tallied in the table below 

Resource Quantity Cost Availability 

Test engine 1 - Any time 

Solidedge ST10 - - Anytime 

Creo Parametric 4.0 - - Anytime 

Engine Analyzer - $129-$499 Anytime 

Machinery 

 Lathe 

 Milling machine 

 Press 

 Drilling machine 

- - CNC machines 
available after work 
hours on request. 
Manual machines 
anytime 

material - Allowance $400 Need to be ordered 

3D printer 1 $263.46 Anytime 

Table 1.0: Resource availability and costing chart 

 

Details for resources 

Machinery and material will be sourced at: Zamco Engineering PTY LTD 1/15 Cranegie Pl Blacktown 

2148 

Engine analyser software will be downloaded from: https://performancetrends.com/Engine-

Analyzer-Pro.htm 

3D printer was sourced from Banggood on the 3/3/20 

 

 

 



51 | P a g e  
 

Chapter 8 - Project Timelines 
Phase Data collection (Semester 1) 

1 Simulation using 1098cc a-series motor specifications 

1.1 
1.2 

Find ideal ratios that can be used 
Size limits  

1.3 Background research 

1.4 Progress report 

 Design 

2. Hand designs and sketches of rocker 

2.1 Cad drawing of new design and existing rocker 

2.2 Hand calculations of rocker forces and stresses 

2.3 FEA analysis of new design and existing 

 Determine material and part drawings (semester 2) 

3. Material specifications  

3.1 2d part drawings for manufacture 

 Manufacture prototype 

4. 3D print working prototype 

4.1 Install on test engine 

4.2 Check specifications (maximum and minimum lift) 

 Results 

5. Conclusions assessed and documented 

5.1 Finish report 

Extra If time persists 

6. Control system 

6.1 Prototype to material specifications 

6.2 Dyno testing 

Table 1.0: Project timeline 

 

The Project timeline is to ensure that the project outline can be met and that it is achievable over 

the two semester of research project part 1 & 2. The projected timeline is shown below in a Gantt 

chart. Project begins Semester 1 2020 and finishes end of semester 2. The Gantt chat does not show 

mid semester break or midyear break. Finish report is work involved throughout both semesters and 

will be the final phase of the timeline. 
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Appendices A.1  
 

Project Specification 

ENG4111/4112 Research Project 

 Project Specification 

For:   Benjamin Schnebli 

Title:   Continuously Variable Ratio Rocker Arms   

Major:   Mechanical Engineering 

Supervisors:  Chris Snook 

Enrolment: - ENG4111 – EXT S1, 2020  
- ENG4112 – EXT S2, 2020 
 

Project Aim:  The project aim is to design and produce a continuously variable ratio rocker 

arm for use with the BMC a-series engines  

Programme:  Version 1, 15th March 2020 

1. Find the useable rocker ratios for the A-series engine 

2. Examine existing rockers and evaluate design and strength 

3. Create a specification for the design 

4. Design a variable rocker to withstand the specification developed. 

5. Perform Finite element analysis and hand calculations for stress analysis to find 

material specifications needed. 

6. Make a prototype that can be tested 

If time and resources persists 

7. Design a system to control the rockers  

8. Test a working prototype 

 



56 | P a g e  
 

 Appendix A.1.1: Hand sketch of basic layout for rocker ratio calculation. 
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Appendix A.1.2: A-series engine general data (Leyland workshop manual) 



58 | P a g e  
 

Appendix A.1.3: 12g295 cylinder head from 998cc A-series 
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Appendices A.2 – Equipment and measuring 

 
Appendix A.2.1: Centre lathe for prototype parts and hand tools above 

 

Appendix A.2.2: Hydraulic press for removing valve springs 
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Appendix A.2.3: drill press 

 

Appendix A.2.4: Hand tools 
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Appendices A.3 - United States patents 

 

Appendix A.3.1: David N.vaseleniuck Unites states patent for a Variable ratio rocker assembly 2007. 
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Appendix A.3.2: William A. Pohle United states patent for Variable ratio rocker arm 1980. 
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Appendix A.3.3: William W. Entzminger 1989 variable ratio rocker. 

  



64 | P a g e  
 

Appendices A.4 – Detailed drawing 
 

Compiled below is a list of the complete assembly and Detail drawings formatted for A3. 

 Complete assembly 

 Complete assembly B 

 Main plate assembly 

 Cam post assembly 

 Rocker assembly 

 Main shaft assembly 

 4mm dowel 

 12mm dowel sleeve 

 Adjusting bolt 

 Cam eccentric 

 Cam post main 

 Cam post side 

 End post 

 End post opposite 

 Main post 

 Main shaft 

 Mounting plate 

 Rocker LH 

 Rocker RH 

 Rocker linkage arm 

 Roller tip pin  

 Roller tip 

 Sliding bush 
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Appendices A.5 – Further work 

 

Appendix A.5.1: NEMA 17 data sheet (AUS 3d) 
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Appendix A.5.2: NEMA 17 stepper motor (AUS 3d) 

 




