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We consider a multivariate response regression model where each coor-
dinate is described by a location-scale non- or semi-parametric regression,
and where the dependence structure of the “noise term” is described by a
parametric copula. Our goal is to estimate the associated Euclidean copula
parameter given a sample of the response and the covariate. In the absence of
the copula sample, the usual oracle ranks are no longer computable. Instead,
we study the normal scores estimator for the Gaussian copula, and general-
ized pseudo-likelihood estimation for general parametric copulas, both based
on residual ranks calculated from preliminary non- or semi-parametric esti-
mators of the location and scale functions. We show that the residual-based
estimators are asymptotically equivalent to their oracle counterparts, and pro-
vide explicit rate of convergence. Partially to serve this objective, we also
study weighted convergence of the residual empirical process under the non-
or semi-parametric regression model.

1. Introduction. Let E= (E1, . . . ,Ep)
⊤ ∈R

p be a random vector; we assume through-
out that Ek, k ∈ [p] ≡ {1, . . . , p} has absolutely continuous marginal distribution function
Fk, and E has joint distribution function F . We consider a multiple-response regression
model where a p × 1 response vector Y = (Y1, . . . , Yp)

⊤ and a q × 1 covariate vector
X = (X1, . . . ,Xq)

⊤ are linked to E through a coordinate-by-coordinate (location-scale, as
will always be assumed) regression model

Yk =mk(X) + σk(X)Ek, ∀k ∈ [p].(1)

We assume throughout that X is independent of E. In its raw form, model (1) is a purely non-
parametric regression model; by specifying particular forms of mk (and at times simply set-
ting σk = 1), model (1) also accommodates a wide range of popular non- and semi-parametric
regression variants such as the partly linear regression model and the additive model. For
identification purpose, we assume EE= 0; if the function σk, k ∈ [p] is not assumed to be a
known constant function, then we further assume Var(Ek) = 1. Under model (1), we observe
a sample of (X,Y), but not the sample of E.

Given model (1) for a single k ∈ [p], there are in general two venues of research. In the first
venue, the interest is in the estimation of mk and σk, utilizing as much assumed structure of
mk and σk as possible but treating Ek as a noise term. In the second venue, the distribution
of Ek is the object of interest instead while mk and σk are treated as nuisance parameters;
this approach belongs to the literature on residual empirical processes.

MSC2020 subject classifications: Primary 62H20; secondary 62G08, 62G20, 62G30.
Keywords and phrases: Non- and semi-parametric regression, normal scores rank correlation estimator, para-

metric copula, pseudo-likelihood, residual empirical processes.
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In this paper we follow the second approach in which (the distribution of) E is our interest,
and face the natural challenge that a sample of E is not observed. However, instead of the
individual marginals Ek, k ∈ [p], here we are more interested in the multivariate dependence
structure of E. At first, we will assume a (semi-parametric) Gaussian copula model on E and
estimate the intrinsic dependence structure of E described by a copula correlation matrix R0

via the normal scores estimator. Later, we broaden our study to the case when the dependence
structure of E is described by a general parametric copula at the Euclidean copula parameter

θ0. We will estimate θ0, our object of interest, by generalized pseudo-likelihood estimation
(PLE). In this paper we follow the convention that copula parameters with subscript zero, for
example R0 and θ0, denote fixed, population quantities, while the un-subscripted versions
denote their variable counterparts in a parametrization. In fact PLE for the Gaussian copula
yields the normal scores estimator as the closed-form solution. However such a clean-cut
solution, which results in more straightforward analysis, are usually not available for general
parametric copulas. Thus, separate treatments for the Gaussian copula and the general case
are natural. To estimate R0 or the more general copula parameter θ0 under model (1), we
will rely on the ranks of estimators Êi,k defined in Section 3.1 of the sample of E based on
some preliminary estimators m̂k and σ̂k of mk and σk, or simply residual ranks, from which
we construct residual (rank)-based estimators of the copula parameter.

To distinguish from model (1), we henceforth refer to the situation when the sample of E
is directly observable as the oracle model, and use the qualifier “oracle” to denote quantities
that could be computed in this setting. Recently, Zhao, Gijbels and Van Keilegom (2020)
carried out the task of estimating R0 under Gaussian copula while restricting model (1) to a
homoscedastic linear regression model. There the function σk = 1 identically and mk admits
the simple form mk(X) =B⊤k X with Bk being the kth column of a q × p unknown coef-
ficient matrix B. These authors showed that the residual-based normal scores estimator (see
Eq. (17)) and Spearman’s rho achieve the same asymptotic distribution as their oracle coun-
terparts, even when the convergence rate of the estimator B̂ to B is almost as slow as n−1/4,
and provided explicit rates of convergence. Omelka, Hudecová and Neumeyer (2020) studied
model (1), but with parametrically specified mk and σk. See also Veraverbeke, Omelka and
Gijbels (2011); Veraverbeke, Gijbels and Omelka (2014); Gijbels, Omelka and Veraverbeke
(2015) for related studies on empirical copula process involving a covariate.

The main contribution of our present paper is two-fold. First, we will study the estimation
of copula parameters in the Gaussian and more general parametric copulas specifically under
regression model (1) in its general, non- or semi-parametric form with arbitrary functions mk

and σk, and not just under linear regression or parametrically specified mk and σk as previ-
ously done. In particular we study the residual-based normal scores estimator (for Gaussian
copula) and PLE (for general parametric copulas), and handle the complications introduced
by the non- or semi-parametric estimators m̂k and σ̂k under unbounded score functions (as
an example, for Gaussian copula, the score function involves Φ←, the standard normal quan-
tile function). Our conclusion is that the residual-based normal scores estimator and the PLE
under model (1) reach the same asymptotic distribution as their oracle counterpart under
mild conditions. We provide explicit rates of convergence, and allow the dimension of the
parametric component in a semi-parametric regression model to vary with n. We apply our
general result to a number of popular non- and semi-parametric regression models.

Second, and partially to serve the first point above, we study residual empirical processes
under model (1), in particular providing explicit and weighted rates for the remainder terms in
the “asymptotic” expansion. Both the rates and the weighing feature are important for taming
the unboundedness of the score functions when analyzing the residual-based estimators for
copula parameters. On the other hand, residual empirical processes concern the individual
marginals of E and hence do not rely on the copula dependence structure. Thus this aspect
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of our study can be more directly seen as the continuation of and improvement over related
works in residual empirical processes under (1) along the lines of Akritas and Van Keilegom
(2001); Neumeyer and Van Keilegom (2010) and Müller, Schick and Wefelmeyer (2009,
2012), among others. In particular we allow the dimension of the parametric component in
a semi-parametric regression model to vary with n, as was done under purely parametric,
linear regression in, e.g., Mammen (1996); Chen and Lockhart (2001) but to the best of our
knowledge not under semi-parametric regression.

Having commented on our contribution to residual empirical processes above, we men-
tion that Chen and Fan (2006); Neumeyer, Omelka and Šárka Hudecová (2019); Chen,
Huang and Yi (2021) studied models similar to (1) but in the time series framework, with
i.i.d. innovations but time-dependent covariate. Their results for the residual-based estima-
tors of the copula parameter are weaker than ours, for instance, Neumeyer, Omelka and Šárka
Hudecová (2019) and the two-stage procedure in (Chen, Huang and Yi, 2021, Section 4) can-
not handle unbounded score functions (see the paragraph following Eq. (8) in Neumeyer,
Omelka and Šárka Hudecová (2019)). This is partially due to their weaker results on residual
empirical processes, for instance see Theorem 4 in Chen, Huang and Yi (2021). However,
in their time series framework many i.i.d. tools we employ are potentially not available, and
thus we refrain from a finer comparison of our manuscript with these papers.

Before getting into further details, as suggested by one referee we provide a short roadmap
of our analysis. We note that under model (1) the residual estimation of the individual
marginal distributions is often merely

√
n-consistent. The slow rate is due to the leading

term (namely, the term proportional to fk in Proposition 3.1) in a decomposition of the resid-
ual empirical processes associated with non- or semi-parametric estimators m̂k and σ̂k. The
slow rate of the leading term becomes even worse after passing from residual distributions
to the deviations between residual ranks and oracle ranks (again see the term proportional to
fk now in Eq. (8) in Proposition 3.2). However, for the latter situation the aforementioned
leading term is now centered (due to subtractions by δ̄n,k,σ and δ̄n,k,m). Thus in our eventual
analysis of residual-based estimators of copula parameters, because the leading term will be
summed over the sample, the resulting average (albeit still indexed by random estimators
m̂k and σ̂k) benefits from an additional n−1/2-scaling and so converges faster than n−1/2.
This coupled with faster rates of the remaining remainder terms in the decomposition in the
residual empirical processes/residual ranks eventually lead to the equivalence between the
residual-based estimators of copula parameters and their oracle counterparts.

The outline of our paper is as follows. In Section 2 we review necessary background on
copula and formally introduce our model associated with (1). In Section 3 we study resid-
ual empirical processes under model (1); this section concerns the individual marginals of
E and does not rely on the copula dependence structure. In Section 4, under the Gaussian
copula, we prove the asymptotic equivalence of the residual-based normal scores estimator
to its oracle counterpart. In Section 5 we present the analogous result for the generalized
pseudo-likelihood estimator under general parametric copulas. In Section 6 we apply our
results to several popular non- and semi-parametric regression models. We also carry out a
small numerical study, with simulation studies presented in Section 7 and with a real data
example deferred to Section F in the supplement. We defer all proofs to Sections A to E in
the supplement.

2. Background on copula, formal model setup, and notations. Recall that E ∈ R
p

has joint distribution function F and absolutely continuous marginal distribution func-
tions Fk, k ∈ [p]. Sklar’s theorem (e.g., Sklar (1959), or Corollary 2.10.10 in Nelsen
(2006)) states that the dependence structure of E can be uniquely described by its as-
sociated copula C : [0,1]p → [0,1], which satisfies C(u) = F (F←1 (u1), . . . , F

←
p (up)), for
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u= (u1, . . . , up)
⊤ ∈ [0,1]p. Here, for k ∈ [p], F←k (t) = inf{x : Fk(x)≥ t} denotes the left-

continuous inverse of Fk for t ∈ [0,1]. The copula C is equivalently the joint distribution
function of the transformed random vector (F1(E1), . . . , Fp(Ep))

⊤, which clearly has uni-
form marginals on the unit interval. Moreover, the copula C remains unchanged if (univari-
ate) strictly increasing transformations are applied to the individual marginals of E. As such,
copulas decouple the dependence structure of a multivariate distribution from the behaviors
of its marginals, and thus present a modular approach to multivariate modeling.

Now we consider a collection of random vectors E on R
p. When the copulas of E within

the collection are not parametrically specified, and the marginals F1, . . . , Fp of E can range
over all p-tuples of absolutely continuous univariate distribution functions, we say that the
collection constitutes a non-parametric copula model. If, in addition, we restrict the copulas
of E within the collection to be smoothly parametrized by an Euclidean copula parameter
(and the copula parameter can typically vary over some set), we call the collection a semi-
parametric copula model. We will exclusively focus on such a semi-parametric copula model
of (that is, a collection of) E in which the copulas of E are always parametric while the
marginals of E are modelled non-parametrically. For brevity we will not often distinguish
between the semi-parametric copula model and the underlying parametric copula, and will
oftentimes ignore displaying the qualifier “semi-parametric”.

Arguably the most popular oracle estimators for copulas are rank-based because they, just
as the copula at the population level, are invariant to strictly increasing marginal transforma-
tions. The estimators based on residual ranks are not strictly invariant under such transforma-
tions, due to the perturbation by the covariate, but as stated are asymptotically indistinguish-
able from their oracle counterparts. This paper focuses exclusively on rank-based estimators.

Now we formally set up our model associated with (1). We say that (Y,X,E) follows a
joint distribution P = PC,F1,...,Fp,m1,...,mp,σ1,...,σp,FX

if the following conditions hold:

(i) Model (1) holds. For simplicity we assume that all coordinates k ∈ [p] follow the same
general non- or semi-parametric regression model, but the functions mk, σk within the
model could be different across k ∈ [p]. The covariate X has distribution function FX and
support X ⊂R

q .
(ii) E= (E1, . . . ,Ep)

⊤ has copula C .
(iii) For each k ∈ [p], Ek has absolutely continuous marginal distribution function Fk with

corresponding marginal density function fk.
(iv) X and E are independent; for identification, EE= 0 and if σk, k ∈ [p] is not assumed

to be a known constant function, then moreover Var(Ek) = 1.

Throughout the remainder of the paper we will assume that the law P holds, but depending on
the context the copula C will admit different parametrizations (Gaussian copula in Section 4,
general parametric copula in Section 5). The elements of P involving the covariate X (namely
FX, themk’s and σk’s) may vary implicitly with sample size, which will allow the dimension
of the parametric component in a semi-parametric regression model to vary as well; however
C , F1, . . . , Fp will remain fixed.

For notations, let M , sometimes with superscript, denote an absolute constant that may
change for each occurrence; such a constant may depend on various parameters we consider
(e.g., fixed Lipschitz constant) but never on n or any parameter that may depend on n. Let .
denote an inequality that holds with such a constant M as the multiplicative factor. Let ‖ · ‖
denote the Euclidean norm and ‖ · ‖∞ the supremum norm of the argument. All convergences
are taken along the limit n→∞. Let ∧/∨ with two vectors of the same dimension on the
two sides return the minimal/maximum values of the two sides component-wise.

3. Results for residual empirical processes and residual ranks.
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3.1. Preliminaries and assumptions. Recall that results in this section do not depend
on the copula dependence structure, that is (ii) in Section 2, and moreover q is allowed to
vary with n. We let (Yi,Xi,Ei), i ≥ 1 be independent copies of (Y,X,E), with Ei =
(Ei,1, . . . ,Ei,p)

⊤, Yi = (Yi,1, . . . , Yi,p)
⊤ and Xi = (Xi,1, . . . ,Xi,q)

⊤.
Under the oracle model, our (observed) sample of size n≥ 1 consists of Ei, i ∈ [n]. Then,

for each k ∈ [p] we define the empirical marginal distribution function for the kth coordinate
of E, and its rescaled version, as Fn,k(t) =

1
n

∑
i∈[n] ✶{Ei,k ≤ t} and F r

n,k(t) =
n

n+1Fn,k(t),
t ∈ R respectively. Note that the rescaled F r

n,k, when supplied with the Ei,k’s, i ∈ [n] as
arguments as we will do shortly, takes values in the interval [1/(n + 1), n/(n + 1)] and
so stays away from the boundary points 0 and 1. Thus supplying such values further as
arguments to an unbounded score function that diverges toward the boundary points, for
instance a function involving Φ←, always results in finite values.

Now we turn to model (1). Here we no longer have access to the sample of the copula
component E, and hence the oracle ranks F r

n,k(Ei,k). Instead, for sample size n ≥ 1, our
sample consists of (Yi,Xi), i ∈ [n]. Therefore, we rely on this sample to construct estimators
of the oracle ranks.

Recall that m̂k and σ̂k, which we assume throughout are constructed from (Yi,Xi),
i ∈ [n], are estimators of mk and σk respectively. For i ∈ [n], let Êi = (Êi,1, . . . , Êi,p)

⊤ with
Êi,k = {Yi,k − m̂k(Xi)}/σ̂k(Xi) be the residual of the ith sample point; Êi serves to esti-
mate Ei. Then, for each k ∈ [p], from {Ê1,k, . . . , Ên,k} we construct the residual (empirical
marginal) distribution function for the kth coordinate of E, and its rescaled version, as

F̂n,k(t) =
1
n

∑
i∈[n] ✶{Êi,k ≤ t}, F̂ r

n,k(t) =
n

n+1 F̂n,k(t), t ∈R

respectively. The functions F̂n,k and F̂ r
n,k serve as the estimators of Fn,k and F r

n,k respec-

tively. The estimators Êi, F̂n,k and F̂ r
n,k in turn give rise to F̂n,k(Êi,k) and F̂ r

n,k(Êi,k) which
we call the residual ranks and which serve to approximate the oracle ones.

Let Tn denote the σ-field generated by the collection of random vectors {(Yi,Xi)}i∈[n],
and E[f(E,X)|Tn] for a random function f = f(E,X) be the conditional expectation given
Tn, which is an expectation over E and X only but not {(Yi,Xi)}i∈[n]. Under model (1),
introduce the following quantities:

δn,k,m(x) = {(m̂k −mk)/σk}(x), δn,k,σ(x) = {(σ̂k − σk)/σk}(x),
δn,k,m,i = δn,k,m(Xi), δn,k,σ,i = δn,k,σ(Xi),

δ̄n,k,m = E [δn,k,m(X)|Tn] , δ̄n,k,σ = E [δn,k,σ(X)|Tn] .(2)

Here δ̄n,k,m and δ̄n,k,σ are expectations over X only while holding m̂k and σ̂k fixed.
When analyzing residual empirical processes, a crucial “oscillation-like” remainder (func-

tion) term (e.g., Lemma A.3 in Neumeyer and Van Keilegom (2010)) is defined as, for t ∈R,

(3)
r1n,k(t) = F̂n,k(t)− Fn,k(t)− P(Êk ≤ t|Tn) + Fk(t)

= 1
n

∑
i∈[n]

{
✶{Êi,k ≤ t} − ✶{Ei,k ≤ t} − P(Êk ≤ t|Tn) + P(Ek ≤ t)

}
.

Here, for k ∈ [p], in the conditional probability P(Êk ≤ ·|Tn)≡ E[✶{Êk ≤ ·}|Tn] the quantity
Êk is defined as Êk = {Yk − m̂k(X)}/σ̂k(X). We let rr

1n,k be defined analogous to (3) but

with F̂n,k replaced by F̂ r
n,k; rr

1n,k is useful in the context of unbounded score functions.
Next, in Section 3.2 we first present some general results on residual empirical processes.

A specific result on the oscillation terms r1n,k and rr
1n,k is deferred to the dedicated Sec-

tion 3.3 that also contains a discussion of the results. Necessary assumptions for our analysis
are collected below.
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ASSUMPTION 3.1. There exist sets Xn ⊂ X , n≥ 1 such that P(∩i∈[n]{Xi ∈ Xn})→ 1
and, for some an,1 = o(1) and an,2 = o(1), the estimators m̂k and σ̂k satisfy ‖δn,k,m‖Xn

=
Op(an,1) and ‖δn,k,σ‖Xn

= Op(an,2) where ‖ · ‖Xn
denotes the supremum norm when re-

stricted to Xn.

ASSUMPTION 3.2. The density fk satisfies supt∈R fk(t)(|t|∨1)<∞ and, for some com-

mon absolute constantL, and ∀t1, t2 ∈R, |fk(t1)−fk(t2)| ≤ L|t1−t2|/{(1∨ |t1|)(1∨ |t2|)}.

Assumption 3.1 will later be superseded by the stronger Assumption 4.1 which further
requires an,1, an,2 = O(n−τ ) for some 1/4 < τ < 1/2. If bounds on δn,k,m and/or δn,k,σ
uniform over X are difficult to find, possibly as a result of mk and/or σk being unbounded
over the full support X , then Assumptions 3.1 and 4.1 allow for bounds on δn,k,m and δn,k,σ
uniform only over a restricted support Xn, so long as Xn grows fast enough to enclose all
Xi, i ∈ [n] with high probability. In general, Xn can be allowed to grow more slowly un-
der stronger moment condition on X. For example, under homoscedastic linear regression
discussed in Section 1 with q fixed (admittedly a simple case that is not our primary inter-
est), if m̂k(x) = B̂⊤k x (and σ̂k(x) = 1 identically) with ‖B̂k −Bk‖=Op(n

−δ1) for δ1 > 1
4 ,

and E[‖X‖δ2 ] <∞ for δ2 > (δ1 − 1
4)
−1, then Assumption 4.1 can be satisfied by taking

Xn = [−n1/δ2 , n1/δ2 ]q which results in τ = δ1 − 1/δ2 >
1
4 . From now on we make the blan-

ket assumption that for each n ≥ 1, the random variable X = X(n) actually comes from a
new, truncated sequence X✶{X ∈ Xn}, n≥ 1, and the i.i.d. copies Xi =X

(n)
i , i ∈ [n] of X

come from the truncated triangular array Xi✶{Xi ∈ Xn}, i ∈ [n], n ≥ 1; this comment ap-
plies to our definitions of δ̄n,k,m and δ̄n,k,σ in (2). Since as n increases the probability of the
truncation actually having taken place on some (newly defined) Xi over i ∈ [n] approaches
zero under Assumption 3.1, and all our analysis are equally valid under the aforementioned
truncated random variable and triangular array setup, the asymptotics we will derive hold
under the original, un-truncated setup. Of course, if we can establish bounds on δn,k,m and
δn,k,σ uniform over X , truncation is no longer necessary and we can simply take Xn ≡ X .
This actually will be the case for all examples in Section 6.

The first half of Assumption 3.2 is weaker than Assumption 4.5 that we will address later.
The second half is a reinforced Lipschitz condition on fk. The reinforcement is needed to
estimate σk 6= 1 under the heteroscedastic case, which causes not only a location but also
a scale shift in the estimator Êi; however, if we assume σk = 1 identically, then the rein-
forcement is no longer necessary. Intuitively, if |t1| and/or |t2| are large, then fk(t1) and/or
fk(t2) should be small to begin with, which restricts how much |fk(t1) − fk(t2)| can be.
Lemma A.3 will verify this assumption with a reasonable L for (univariate) Student’s t-
distributions with degrees of freedom (d.o.f.) νdf ≥ 1 (and densities similarly decaying poly-
nomially as fk(t)∼ (1 + |t|)−(νdf+1)).

3.2. General results on residual empirical processes. The proofs of the propositions be-
low appear in Section B in the supplement. Introduce a remainder (function) term r2n,k as

r2n,k(t) = P(Êk ≤ t|Tn)− Fk(t)− fk(t)
{
tδ̄n,k,σ + δ̄n,k,m

}
, t ∈R.(4)

PROPOSITION 3.1 (Residual empirical process). For all n ≥ 1, k ∈ [p] and t ∈ R the

equality F̂ r
n,k(t) = Fn,k(t) + fk(t)

{
tδ̄n,k,σ + δ̄n,k,m

}
+ rr

1n,k(t) + r2n,k(t) holds. The same

equality also holds with the simultaneous replacements of F̂ r
n,k by F̂n,k, and rr

1n,k by r1n,k.

Moreover, under Assumptions 3.1 and 3.2, the remainder term r2n,k satisfies

supt∈R |r2n,k(t)|=Op(a
2
n,1 + a2n,2).(5)
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For residual ranks we need two other remainder terms r3n,k,i and r4n,k,i:

r3n,k,i = Fn,k(Êi,k)− Fk(Êi,k)− Fn,k(Ei,k) + Fk(Ei,k),(6)

r4n,k,i =
[
Fk(Êi,k)− Fk(Ei,k)− fk(Ei,k){−Ei,kδn,k,σ,i − δn,k,m,i}

]
(7)

+
[
fk(Êi,k)

{
Êi,kδ̄n,k,σ + δ̄n,k,m

}
− fk(Ei,k)

{
Ei,kδ̄n,k,σ + δ̄n,k,m

}]
.

PROPOSITION 3.2 (Residual rank). For all n≥ 1, k ∈ [p] and i ∈ [n],

F̂ r
n,k(Êi,k)− Fn,k(Ei,k) =−fk(Ei,k)

{
Ei,k

(
δn,k,σ,i − δ̄n,k,σ

)
+
(
δn,k,m,i − δ̄n,k,m

)}

+ rr
1n,k(Êi,k) + r2n,k(Êi,k) + r3n,k,i + r4n,k,i.(8)

Moreover, under Assumptions 3.1 and 3.2, the remainder terms r3n,k,i and r4n,k,i satisfy

max
i∈[n]

|r3n,k,i|

log
1

2 (n)n−
1

2

[
fk(Ei,k){|Ei,k|an,2 + an,1}+ a2n,1 + a2n,2

]1/2
+ log(n)

n

=Op(1),(9)

maxi∈[n] |r4n,k,i|=Op(a
2
n,1 + a2n,2).(10)

3.3. Bounds on the oscillation term. We first briefly review the concept of a bracketing
number. Let (F ,‖ ·‖g) be a subset of a normed space of real-valued functions. The bracketing
number N[](µ,F ,‖ · ‖g) is defined as the minimal number of µ-brackets as measured by the
norm ‖ · ‖g needed to cover the set F , where a µ-bracket [l, u] is the set of all functions f ∈ F
with l ≤ f ≤ u where l, u satisfy ‖u− l‖g ≤ µ (see, e.g., Definition 2.1.6 in van der Vaart
and Wellner (1996)).

Denote by L2(FX) the L2 norm on functions from R
q to R with respect to the distribu-

tion FX. Let {D1,n}n≥1, {D2,n}n≥1 be two sequences of collections of functions from Xn

to R in which we will embed the estimators (m̂k −mk)/σk and σ̂k/σk respectively as in As-
sumption 3.3. Recall from (i) in Section 2 that we assume the same non- or semi-parametric
regression model for all coordinates k ∈ [p] (though the functions mk, σk could be different
across k ∈ [p]). Thus it is reasonable that we could embed m̂k, σ̂k across k ∈ [p] into the same
collections, though generalization to coordinate-specific collections is straightforward.

ASSUMPTION 3.3. The classes D1,n, D2,n satisfy supn≥1,d∈D1,n,x∈Xn
|d|(x) < ∞,

inf
n≥1,d̃∈D2,n,x∈Xn

d̃(x)≥ 1/2. For each k ∈ [p] there exists a sequence of events {Dn,k}n≥1
satisfying P(Dn,k)→ 1 and m̂k−mk

σk
∈ D1,n, σ̂k

σk
∈ D2,n on Dn,k. In addition there exist an

absolute constant ε > 0, and constants K1 = K1,n > ε, K2 = K2,n ≥ 0, β = βn > ε and

ν = νn > 1 (that may depend on n) such that

(11)
max{N[](µ,D1,n,L2(FX)),N[](µ,D2,n,L2(FX))}

≤K1(1/µ)
β exp(K2(1/µ)

1/ν), ∀µ ∈ (0,1).

Given Assumption 3.3, define the functionw : (0,1]→R
+ asw(u) = β1/2 log1/2(1/u)u+

K
1/2
2 (1− 1

ν )
−1u1−1/ν , and a remainder term R̃n as

R̃n = β log(n)n−1 + β1/2K
1

2

1

1+1/ν

2 log1/2(n)n
− 1

2

(
1+ 1

1+1/ν

)

+K
1/2
2 (1− 1

ν )
−1n−1/2

{
β1/2 log1/2(n)n−1/2 + (K2n

−1)
1

2

1

1+1/ν

}1−1/ν
.
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PROPOSITION 3.3. Suppose that Assumptions 3.1 to 3.3 hold, and K1 = K1,n, K2 =
K2,n and β = βn satisfy

(12) log(K1) =O(β log(a−1n,1 ∧ a−1n,2 ∧ n)), max{β log(n),K2}n−1 = o(1).

Then for all n large enough,

sup
t∈R

max{|r1n,k(t)|, |rr
1n,k(t)|}

n−1/2w
[
{fk(t)(|t|an,2 + an,1) + a2n,1 + a2n,2}1/2

]
+ R̃n

=Op(1).(13)

If furthermore K2 =K2,n, β = βn and ν = νn satisfy

(14)
ν > 1 + ε, β log(a−1n,1 ∧ a−1n,2) =O(K2(a

−2/ν
n,1 ∧ a−2/νn,2 )),

β log(n)n−1 =O((K2n
−1)

1

1+1/ν ),

then with ∆= 1
2(1− 1/ν) and Rn = n

− 1

1+1/ν (= o(n−1/2)),

sup
t∈R

max{|r1n,k(t)|, |rr
1n,k(t)|}

n−1/2K
1/2
2

{
fk(t)(|t|an,2 + an,1) + a2n,1 + a2n,2

}∆
+K

1

1+1/ν

2 Rn

=Op(1).(15)

The proof of Proposition 3.3 appears in Section B.3. We provide some remarks about
Assumption 3.3 and the proposition. First, Assumption 3.3 will later be superseded by the
stronger Assumption 4.2 when we analyze residual-based estimators for copula parameters.
Both assumptions place conditions on the randomness of m̂k and σ̂k by restricting the com-
plexity, measured by the bracketing numbers in (11) in which K1, K2, β and ν can all po-
tentially vary with n, of the function classes in which we embed m̂k and σ̂k. The constituent
exponential in 1/µ involving K2 and ν in (11) aims toward bounding the complexity of the
non-parametric component of m̂k and σ̂k in either a non- or a semi-parametric model. The
required bound usually translates into a smoothness condition on (the non-parametric com-
ponent of) m̂k and σ̂k, and as such can in principle always be made to satisfy: if the targets
mk and σk are indeed smooth enough but the original estimators m̂k and σ̂k are not, we can
always produce appropriately smoothed versions of m̂k and σ̂k (e.g., by convolution with a
smooth function, as how a smoothed empirical distribution function can be obtained from
the raw empirical distribution function that is a step function) that simultaneously satisfy the
required bound and retain the original convergence rates. Nevertheless later in Section 6 we
will verify Assumption 4.2 by directly checking the smoothness of the original m̂k and σ̂k. In
contrast, the constituent polynomial in 1/µ in (11) involvingK1 and β aims toward bounding
the complexity of any “leftover”, parametric component in either a non- or a semi-parametric
model.

As a simple illustration of Proposition 3.3, we consider a homoscedastic linear regression
in R

q . Then we can set K2 = 0 and an,2 = 0 (which is allowed by Eq. (13)) to eliminate the
complication caused by the non-parametric component. Simple calculation also shows that
we can set β = q and K1 =M qqq . Then from (13) we can recover as a special case a slight
variant of (3.8) in Proposition 3.1 in Zhao, Gijbels and Van Keilegom (2020) under linear
regression, but now we are also allowing β (and thus q) to depend on n; we omit the details
for this recovery. At the other extreme, if (the last two parts of) (14) holds — we interpret this
as the effect of the non-parametric component dominating over the parametric component —
we obtain the simplification (15).

We also note that when model (1) is fixed across n≥ 1, we typically can embed m̂k and σ̂k
into respectively fixed collections D1,n =D1 and D2,n =D2, resulting in fixed constants K1,
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K2, β, ν in (11). Then (12) and (14) hold trivially. Thus intuitively (12) and (14) will also
hold when model (1) does not vary too rapidly, and as a consequence the constantsK1,K2, β,
ν do not vary too greatly, with n. In practice, however, determining the precise dependencies
of K2 and ν on the dimension of the non-parametric component is often unwieldy. Thus
in practice for simplicity for the remainder of the paper we will assume that K2 and ν are
fixed but will allow K1 and β responsible for the parametric component to vary with n under
(12) and (14). (Even with K2 and ν fixed and with (12), (14) and also (18) later enforced,
K1 and β can still increase with n, in particular because under fixed β the dependence on
n on the left-hand sides of (14) and (18) is strictly faster than that on the right-hand sides.
Discarding (12), (14) and (18), thus allowing the parametric component to dominate the non-
parametric component, introduces no extra technical challenge, but for brevity of presentation
we do not discuss this admittedly more general case in the present paper.) The bound (11) in
Assumptions 3.3 and 4.2 will be verified in Propositions 6.1, 6.2 and 6.3 for non-parametric
regression, a partly linear regression variant with the dimension of the parametric component
possibly increasing, and an additive model variant respectively.

The technical details K1 > ε and (12) prevent trivial cases and simplify our analysis. In
addition, instead of in terms of bracketing number, Proposition 3.3 can be presented in terms
of covering number (e.g., Definition 2.1.5 in van der Vaart and Wellner (1996)) as well; this
requires only minor modification of the current proof.

Last but not least, we note that the first-order remainder terms r1n,k, rr
1n,k and r3n,k,i in

Propositions 3.2 and 3.3 reveal two simultaneous features.

• They can all converge as Op(n
−c) with c > 1/2, so strictly faster than op(n

−1/2), given
fast enough an,1 and an,2. For example, under the condition necessary for (9) and (15), if fur-
ther we can take an,1, an,2 = n−τ for 0< τ < 1, and K2 > 0 and ν > 1 to be fixed constants,
then supt∈Rmax{|r1n,k(t)|, |rr

1n,k(t)|} = Op(n
−c) for c = min{1

2 + 1
2(1 − 1

ν )τ,
1

1+1/ν } >
1/2 and maxi∈[n] |r3n,k,i|=Op(log

1

2 (n)n−(
1

2
+ τ

2
)).

• Their rates are weighted down multiplicatively by the density fk, which further sharpens
the rates for a distribution whose density decays in the tails.

Both these features will help to tame unbounded score functions. In contrast, traditional resid-
ual empirical process theory under model (1) (e.g., Akritas and Van Keilegom (2001)) or un-
der linear regression (e.g., Mammen (1996); Chen and Lockhart (2001)) typically only yields
op(n

−1/2) for these terms, and lacks the weighing feature.

4. Residual-based normal scores estimator. In this section we first introduce in Sec-
tion 4.1 the Gaussian copula and the associated oracle and residual-based normal scores
estimators. In Section 4.3 we establish the asymptotic equivalence between these estimators.
Necessary assumptions are collected in Section 4.2.

4.1. Gaussian copula and the (residual-based) normal scores estimator. We call a cop-
ula C = C(·;R) a Gaussian copula uniquely characterized by a copula correlation matrix
R if it is the copula of a p-variate normal distribution Np(0,R) with positive-definite cor-
relation matrix R. If E has Gaussian copula C(·;R), then Φ←(F1(E1)), . . . , Φ←(Fp(Ep))
jointly follows a Np(0,R) distribution. Then it is easily derived that C(·;R) admits the form
C(u;R) = ΦR(Φ

←(u1), . . . ,Φ
←(up)) for u ∈ [0,1]p. Here ΦR is the cumulative distribu-

tion function of the Np(0,R) distribution. The (oracle, semi-parametric) Gaussian copula
model, a straight extension of multivariate normal distributions, is the one where each E

in the model has a Gaussian copula and where the associated R can vary over all positive-
definite correlation matrices.
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A primary theme on the studies of the Gaussian copula is the estimation of the population
copula correlation matrix R0. Among the rank-based estimators for R0, the (oracle) normal
scores estimator holds special importance because it is semi-parametrically efficient in an
unrestricted model for R (where R is a positive-definite correlation matrix but otherwise ar-
bitrary), meaning that it has the smallest (asymptotic) covariance matrix among all estimators
of R0 (Klaassen and Wellner (1997); Segers, van den Akker and Werker (2014); Zhao and
Genest (2019)). The version of this estimator based on residual ranks is the central object of
study in this section, and we first record the form of the original, oracle estimator.

In this paper, for a matrix A, let (A)kk′ denote its (k, k′)th element; for a two-dimensional
array of numbers akk′ , k, k′ ∈ [p], let [akk′ ]k,k′∈[p] denote a matrix A ∈R

p×p with (A)kk′ =
akk′ . With such notations, the (oracle) normal scores estimator Rn = [rn,kk′ ]k,k′∈[p] of R0 ≡
[r0,kk′ ]k,k′∈[p] is defined in, e.g., Eq. (7) on p. 113 in Hájek and Šidák (1967) as

rn,kk′ = φn

n

∑
i∈[n]Φ

←(F r
n,k(Ei,k))Φ

←(F r
n,k′(Ei,k′)), ∀k, k′ ∈ [p].(16)

Here φn = [n−1
∑

i∈[n]{Φ←( i
n+1)}2]−1 = 1 + O(n−1 log(n)) is a deterministic, asymp-

totically insignificant correction factor to ensure that the matrix Rn, and analogously R̂n

given later in (17), have unit diagonal elements, and hence are proper correlation matri-
ces. The elements rn,kk′ , k, k′ ∈ [p] belong to multivariate rank order statistics (abbrevi-
ated as MvROS in this paper) (Hájek and Šidák (1967); Ruymgaart (1974)). In this con-
text the product Φ←(·)Φ←(·) in (16) is called a score function (this terminology is re-
lated to though not entirely identical to the score function in Section 5). Note also that we
can write Rn explicitly in the form of a positive semi-definite sample correlation matrix
as Rn = φn

n

∑
i∈[n]Zn,iZ

⊤
n,i, using the (non-independent) oracle Gaussianized observations

Zn,i = (Φ←(F r
n,1(Ei,1)), . . . ,Φ

←(F r
n,p(Ei,p)))

⊤.
Already under the oracle model, the analysis of MvROSs is complicated by the facts that

the estimators are not simple i.i.d. sums and the score functions are often unbounded (as is
the case here). Model (1) introduces yet another layer of complication due to the necessary
reliance on residual ranks. Overcoming such complication is the major focus of our paper.

Now, define R̂n = [r̂n,kk′ ]k,k′∈[p], the residual-based normal scores estimator of R0, as

r̂n,kk′ = φn

n

∑
i∈[n]Φ

←(F̂ r
n,k(Êi,k))Φ

←(F̂ r
n,k′(Êi,k′)), ∀k, k′ ∈ [p],(17)

with φn as in (16). Just as Rn earlier, but substituting the oracle Zn,i by the residual Gaussian-
ized observations Ẑn,i ≡ (Φ←(F̂ r

n,1(Êi,1)), . . . ,Φ
←(F̂ r

n,p(Êi,p)))
⊤ , R̂n can also be written

as a positive semi-definite sample correlation matrix.

4.2. Assumptions. We remark that some assumptions are strengthened to shorten our
analysis, and thus not all are in the weakest possible form. We provide some insights on the
assumptions at the end of Section 4.2. Also recall that from now on the dimension of the non-
parametric component of model (1), and hence the constants K2 and ν in Assumption 3.3,
are fixed.

ASSUMPTION 4.1. Assumption 3.1 holds, and moreover there exists an absolute constant

1/4< τ < 1/2 such that an,1, an,2 =O(n−τ ) .

ASSUMPTION 4.2. Assumption 3.3, (12) and (14) hold, and furthermore β = βn satisfies

β log(a−1n,1) =O(a
−1/ν
n,1 ) and β log(a−1n,2) =O(a

−1/ν
n,2 ).(18)

Recall the oscillation terms r1n,k and rr
1n,k introduced in (3) and below.
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ASSUMPTION 4.3. For some absolute constants 0 < ∆ < 1/2, 1/2 < ξ < 1 and a re-

mainder term Rn ≤ n−ξ , the following equality holds:

sup
t∈R

max{|r1n,k(t)|, |rr
1n,k(t)|}

n−1/2{fk(t)(|t|an,2 + an,1) + a2n,1 + a2n,2}∆ +Rn
=Op(1).

Next, given γ < 1 in Assumption 4.4, define Un,γ = (n−γ ,1 − n−γ). For k ∈ [p], de-
fine Gk(·;a1, a2) : [0,1]→ R

+ indexed by a1, a2 ∈ R
+ as Gk(u;a1, a2) = fk(F

←
k (u))a1 +

fk(F
←
k (u))|F←k (u)|a2.

ASSUMPTION 4.4. Assumptions 4.1 and 4.3 hold, and moreover there exists an absolute

constant γ satisfying 1/2 < γ < min{2τ,1/2 + 2∆τ, ξ} (note that such a γ exists when

τ > 1/4, ∆> 0 and ξ > 1/2) such that

supu∈Un,γ
Gk(u;an,1, an,2)/{u∧ (1− u)}= o(1),(19)

n−
1

2 supu∈Un,γ
G∆

k (u;an,1, an,2)/{u∧ (1− u)}= o(1),(20)

n−
1

2 log
1

2 (n) supu∈Un,γ
G

1

2

k (u;an,1, an,2)/{u∧ (1− u)}= o(1).(21)

ASSUMPTION 4.5. For some absolute constant 0 < δ ≤ 1/2, for each k ∈ [p] the kth

marginal satisfies supu∈[0,1]Gk(u; 1,1)/{u∧ (1− u)} 1

2
+δ <∞.

Of the assumptions above, Assumptions 4.1 and 4.2 place probabilistic conditions on the
estimators m̂k and σ̂k, and could be verified for particular non- or semi-parametric model on
a case-by-case basis. These assumptions are strengthened versions of Assumptions 3.1 and
3.3 respectively, and together with the latter have been addressed before. We only mention
here in addition that Assumptions 4.1 allows convergence rates of m̂k and σ̂k to be slower
than n−1/2, as is typical in non- and semi-parametric models, and that (18) in Assumption 4.2
is another condition under which the effect of the non-parametric component dominates over
the parametric component.

Assumption 4.3 places a condition on the convergence rate of the oscillation terms r1n,k
and rr

1n,k. In fact this assumption has already been verified in Proposition 3.3 under the
smoothness condition in Assumption 3.3. Nevertheless because the parameters ∆ and ξ in
Assumption 4.3 will appear in Assumption 4.4, we state Assumption 4.3 as a standalone
assumption. As a specific example, in Section 6.1 we will verify Assumption 4.3 for ∆ =
1
2(1− 1/ν) where ν = 1+α/q, and Rn = n

− 1

1+1/ν , when we can choose (q,α) as the Hölder
continuity indices of the estimators m̂k and σ̂k. In addition, of course larger ∆ yields faster
convergence rate, but by our current technique ∆< 1/2 appears to be a barrier when dealing
with the non-parametric component of m̂k and σ̂k. Thus we explicitly set 1/2 as a strict upper
bound, which will also simplify certain expressions later on.

We will verify Assumptions 4.1 to 4.3 in Section 6 for several popular non- and semi-
parametric regression models under (1). Next, Assumptions 4.4 and 4.5, when coupled with
the various convergence rates, are two mild conditions mostly concerning the underlying
marginal distributions Fk. For illustration consider again Student’s t-distributions with d.o.f.
νdf ≥ 1. Here Assumption 4.5 holds quite generously for δ = 1/2 (a larger δ implies a tighter
bound), and (19), (21) in Assumption 4.4 are automatically satisfied, while (20) is guaran-
teed by the mild condition γ < (1/2 + τ∆)/(1−∆). We will not address the mild Assump-
tions 4.4 and 4.5 further.
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4.3. Asymptotics of residual-based normal scores estimator. Introduce

∆n = n−min{τ(1− 1

2ν
),∆τ, 1

2
+2∆τ−γ(1−(1+2δ)∆)} + log(n)n−min{2τ− 1

2
,γ− 1

2
}.

THEOREM 4.1. Suppose that Assumptions 3.2 and 4.1 to 4.5 hold. Then ∆n = o(1) and√
n(r̂n,kk′ − rn,kk′) =Op(∆n), ∀k, k′ ∈ [p].

The proof of Theorem 4.1 appears in Section D.1 in the supplement and essentially pro-
ceeds as a special case of the later Proposition 5.1. The theorem shows that the asymptotic dis-
tribution of the residual-based normal scores estimator R̂n adjusted for model (1) is the same
as its oracle counterpart, which further implies that R̂n is a semi-parametrically efficient
estimator of the copula correlation matrix R0 (in the unrestricted model) under model (1).

Although the normal scores estimator is semi-parametrically efficient, not knowing the
marginals still causes efficiency loss in general. For example, for a bivariate Gaussian distri-
bution with known marginal variances, the information lower bound for estimating the corre-
lation ρ0 (the only unknown parameter) is (1− ρ20)2/(1+ ρ20), but deteriorates to (1− ρ20)2 if
the marginal variances are unknown (p. 38 in Bickel et al. (1993)). The latter coincides with
the semi-parametric lower bound (achieved by the normal scores estimator) in a bivariate
Gaussian copula model for estimating the off-diagonal element ρ0 of R0, the only unknown
Euclidean parameter. Thus, here, no efficiency is lost only at independence when ρ0 = 0.

Beyond the unrestricted model, we can also estimate θ0 in a structured model where R=
R(θ) is parametrized by a lower-dimensional copula parameter θ. This and the study of
general parametric copulas naturally lead to the generalized pseudo-likelihood estimation
which we now describe in Section 5.

5. Residual-based generalized pseudo-likelihood estimation. In this section we ex-
tend beyond the Gaussian copula, and let E in the law P admit a copula C =C(·;θ0) where
C is smoothly parametrized by a copula parameter θ = (θ1, . . . , θd)

⊤ ∈Θ. Here Θ⊂ R
d is

some parameter space, and the dimension d is considered fixed throughout. Our goal is to
estimate θ0 under model (1). To this end, we adapt the PLE method (Oakes (1994); Genest,
Ghoudi and Rivest (1995)). Let g(·;θ) = (g1(·;θ), . . . , gd̄(·;θ))

⊤ be an appropriate score

function. The precise requirements on g will be specified later; a crucial one is that the true
θ0 is the unique solution to the population level equation Egm(U;θ) = 0 for each m ∈ [d̄]
where U= (F1(E1), . . . , Fp(Ep))

⊤. In addition, necessarily d̄≥ d by Theorem 5.2 later. We
will call the particular g in the form of the traditional score function in maximum likelihood
estimation, that is d̄= d and gk(·;θ) =

∂
∂θk

log {c(·;θ)} for k ∈ [d] where c(·;θ) is the den-
sity of C(·;θ), the parametric score function. Because we can accommodate score functions
g that are different from the parametric score function (and sometimes this will be more con-
venient, for instance in Sections D.6.2 and D.6.3), our method should be more appropriately
referred to as the generalized PLE, but for brevity from now on we will omit the qualifier
“generalized” and will still refer to this more general version as the PLE.

Define the residual rank vectors Ûn,i ≡ (F̂ r
n,1(Êi,1), . . . , F̂

r
n,p(Êi,p))

⊤, i ∈ [n]. Then we

let the residual-based PLE estimator θ̂n be the solution to
∥∥∥ 1
n

∑
i∈[n] g(Ûn,i; θ̂n)

∥∥∥= inf
θ∈Θ

∥∥∥ 1
n

∑
i∈[n] g(Ûn,i;θ)

∥∥∥+ op(n
−1/2).(22)

(All probabilistic statements in this section are taken with respect to the law P with cop-
ula C = C(·;θ0).) Note that (22) is simply a Z-estimation problem, and thus θ̂n is just a
Z-estimator, popular in the literature, cf. (i) in Theorem 3.3 in Pakes and Pollard (1989).
Similarly, define the oracle rank vectors Un,i ≡ (F r

n,1(Ei,1), . . . , F
r
n,p(Ei,p))

⊤, i ∈ [n]; then,
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we let the oracle PLE estimator θn be obtained from (22) with the substitution of Ûn,i by
Un,i but otherwise be identical to θ̂n.

Now we can relate the normal scores estimator R̂n under model (1) and its oracle coun-
terpart Rn to the PLE. The unrestricted model for R in the Gaussian copula is equivalent to
parametrizing the copula correlation matrix as R=R(θ) where θ ∈R

p(p−1)/2 is the vector-
ized upper-triangular portion of R. Under this parametrization, the PLE with the parametric
score function under the oracle model and under model (1) turn out to yield closed-form solu-
tions in the form of respectively and precisely the oracle estimator Rn and the residual-based
estimator R̂n; see Section 3.4 in Zhao, Gijbels and Van Keilegom (2020) for this result.

Unfortunately, for PLE of a copula parameter under general parametric copulas, closed-
form solution is the exception rather than the rule even for popular copulas such as the t-
copula. For analysis of the PLE in general, then, the Z-estimation machinery as we tackle
in this section becomes necessary. Genest, Ghoudi and Rivest (1995) and Tsukahara (2005)
have studied the asymptotics of the oracle θn in detail. Our main goal in this section is
to show that under mild conditions, asymptotically the residual-based PLE estimator θ̂n is
indistinguishable from the oracle θn.

Before presenting our result on θ̂n, we first introduce Proposition 5.1 which acts as a
stepping stone. The proposition also extends the asymptotic normality of the classical, ora-
cle MvROS based on a sample of E, namely n−1

∑
i∈[n] g(Un,i) in the proposition, to the

one based on residual ranks, namely n−1
∑

i∈[n] g(Ûn,i) in the proposition. The latter then
applies under model (1). As a concrete example, when g = g(uk, uk′) = Φ←(uk)Φ

←(uk′),
the scaled summation of g over the residual ranks for the (k, k′)th marginal pair becomes a
bivariate rank order statistic that is just the element r̂n,kk′ in the normal scores estimator R̂n

(see Eq. (17)); in fact this estimator is analyzed precisely with Proposition 5.1. We refer to a
remark following Theorem 5.2 for the asymptotic normality of the oracle MvROS itself.

We first collect the necessary Definitions 5.1 to 5.3 and Assumption 5.1. The conditions
on the function g (intended as spatial derivatives or their bounds of a score function) stated
therein concern the interaction of the function g and the underlying copula C , and are trivial
if g is bounded, and hence these conditions constrain the divergence of g. The conditions
associated with the definitions and the assumption, as well as some others (for instance the
earlier Assumptions 4.1 to 4.3 that are on the marginal estimators m̂k and σ̂k and that do not
concern the copula structure), will culminate in Proposition 5.1 and Theorem 5.2. There, all
statements involving γ should be interpreted as “there exists a common 1/2 < γ < 1 such
that these conditions hold”. Section D.4 will provide some general remarks on the verifica-
tion of these new conditions. As a concrete illustration, as mentioned earlier, Theorem 4.1 is
a special case of Proposition 5.1, so the new conditions involved in this proposition have al-
ready been verified for a Gaussian copula. As additional concrete illustrations, we will verify
the new conditions relevant to Proposition 5.1 and Theorem 5.2 in details for estimating the
correlation parameter in a bivariate t-copula (with any known d.o.f. νdf > 0) in Section D.5,
and for three particular families of the bivariate Archimedean copulas, namely the Clayton,
Frank, Gumbel copulas, in Section D.6. Section D.5 also explains how the aforementioned
task generalizes to estimating the correlation matrix for a p-variate t-copula.

Recall the quantities an,1, an,2, τ , ∆, ξ from Assumptions 4.1 and 4.3, and the set Un,γ

and the function Gk defined above Assumptions 4.4.

DEFINITION 5.1. We say that a function g : [0,1]p → R satisfies condition (G1) with

rate bn,1 = o(1) for the tuple (E, k), with k ∈ [p] and E having copula C and marginal

distribution functions F1, . . . , Fp corresponding to densities f1, . . . , fp, if
∫
[0,1]p {|g|(u)Gk(uk; 1,1)}2 dC(u)<∞,(23)
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∫
Up

n,γ
|g|(u)G∆

k (uk;an,1, an,2)dC(u) =O(bn,1),(24)

log1/2(n)
∫
Up

n,γ
|g|(u)G1/2

k (uk;an,1, an,2)dC(u) =O(bn,1),(25)

n−min{2∆τ,2τ− 1

2
,ξ− 1

2
}
∫
Up

n,γ
|g|(u)dC(u) =O(bn,1).(26)

For k ∈ [p], define the function ∆n,k : [0,1]→R
+ as

∆n,k(u) =
√

log log(n)/n
√
u∧ (1− u) +Gk(u;an,1, an,2) + n−

1

2G∆
k (u;an,1, an,2)

+ log
1

2 (n)n−
1

2G
1/2
k (u;an,1, an,2) + n−min{ 1

2
+2∆τ,2τ,ξ}.

DEFINITION 5.2. Under the same notations as Definition 5.1, we say that a function

g : [0,1]p → R
+ satisfies condition (G2) with rate bn,2 = o(1) for the triplet (E, k, k′), if

n1/2
∫
Up

n,γ
g(u)∆n,k(uk)∆n,k′(uk′)dC(u) =O(bn,2).

Let ◦ denote the Hadamard product, and 1p ∈R
p a vector of all ones.

DEFINITION 5.3. We call a function ḡ : [0,1]p →R
+ reproducing if there exist common

0< ǫ < 1 and 1≤M <∞ such that for all u ∈ [0,1]p, supũ∈[u−ǫ{u∧(1p−u)},u+ǫ{u∧(1p−u)}] ḡ(ũ)≤
Mḡ(u).

Our definition above is essentially a generalization of the univariate reproducing u-shape
function and related functions in the literature (e.g., Tsukahara (2005)). A function is repro-
ducing if its value is robust against local perturbation to its argument. A typical reproducing
function is ḡ(u) = g∨(u1)× · · · × g∨(up) where g∨(u) = (u∧ (1− u))−η for some η ≥ 0.

Define the ith oracle sample point, where i ∈ [n], as Ui = (F1(Ei1), . . . , Fp(Eip))
⊤. Then,

define the index set In,γ ≡ {i ∈ [n] :Ui ∈ Up
n,γ}.

ASSUMPTION 5.1. n−1/2
∑

i∈[n]\In,γ
{g(Ûn,i)− g(Un,i)} = Op(bn,3) for some bn,3 =

o(1), that is the “boundary effect” is negligible.

Often the score function g diverges so severely inside the boundary region u ∈ [0,1]p\Up
n,γ

that a careful analysis based on Taylor expansion becomes unmanageable there. Instead, a
much cruder analysis is performed there, taking advantage of the fact that not many sample
points would fall into the boundary region to begin with. Assumption 5.1 then simply assumes
that the latter analysis is still reasonable enough that the boundary effect is indeed negligible.
This assumption is certainly satisfied if g is bounded (admittedly not a very interesting case)
and the boundary region is small (γ > 1/2 suffices), and hence intuitively is also satisfied
with reasonable divergence of g. Section D.4 will explain how Assumption 5.1 can be met.

For a function g dependent on u, let superscript(s) k enclosed in square bracket denote the
“spatial” partial derivative with respect to uk.

PROPOSITION 5.1 (Asymptotic equivalence between the residual-based and the oracle
MvROS). Let g : [0,1]p → R be a function such that for each k ∈ [p], its kth partial

derivative g[k] satisfies condition (G1) with rate bn,1 for the tuple (E, k), and for each tuple

(k, k′) ∈ [p]× [p], its k, k′th mixed partial derivative g[k,k
′] satisfies |g[k,k′]| ≤ ḡ[k,k

′] for some

ḡ[k,k
′] : [0,1]p → R

+ such that ḡ[k,k
′] is reproducing and moreover satisfies condition (G2)

with rate bn,2 for the triplet (E, k, k′). Also suppose that Assumptions 3.2, 4.1 to 4.4, and 5.1

hold. Then n−1/2
∑

i∈[n]{g(Ûn,i)− g(Un,i)}=Op(n
−τ(1− 1

2ν
)+ bn,1+ bn,2+ bn,3) = op(1).
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The proof of Proposition 5.1 appears in Section D.1 in the supplement. Now we are
ready to present our result on θ̂n. For k ∈ [p], m ∈ [d̄] and m′ ∈ [d], let the functions

g
[k]
m (·;θ), gm,m′(·;θ), g

[k]
m,m′(·;θ) : [0,1]p → R be g[k]m (u;θ) = ∂

∂uk
gm(u;θ), gm,m′(·;θ) =

∂
∂θm′

gm(·;θ), g[k]m,m′(u;θ) = ∂
∂uk

gm,m′(u;θ), and the matrices Γ(θ) = [Egm,m′(U;θ)]m∈[d̄],m′∈[d]

and Γ= Γ(θ0). Also define Mn(θ0)≡ n−1
∑

i∈[n] g(Un,i;θ0), an oracle MvROS.

THEOREM 5.2 (Asymptotic equivalence between the residual-based and the oracle PLE).
Suppose that the following sets of conditions hold:

(i) “Z-estimation conditions”: θ0 is an interior point of Θ, Eg(U;θ0) = 0, and inf‖θ−θ0‖>δ

‖Eg(U;θ)‖ > 0 for all δ > 0; Γ has full column rank, Γ(θ) is continuous in a neigh-

borhood of θ0; for each m ∈ [d̄], the class of functions {gm(·;θ) : θ ∈ Θ} is C(·;θ0)-
Donsker.

(ii) “Oracle MvROS conditions”: Mn(θ0) = Nn + op(n
−1/2) where the random vector√

nNn Nd(0,V).
(iii) “Approximation by residual rank conditions”: for each m ∈ [d̄], gm(·;θ0) satisfies the

assumptions in Proposition 5.1 with g replaced by gm(·;θ0) and simply with bn,1, bn,2 =
o(1), and in addition we also assume

supθ∈Θ

∣∣∣n−1/2
∑

i∈[n]\In,γ

{
gm(Ûn,i;θ)− gm(Ui;θ)

}∣∣∣= op(1);(27)

for each k ∈ [p], uniformly over m ∈ [d̄] and θ ∈Θ the functions g
[k]
m (·;θ) are bounded in

magnitude by ḡ[k], and uniformly over m ∈ [d̄], m′ ∈ [d] and θ ∈Θ0 for Θ0 a neighbor-

hood of θ0, the functions g
[k]
m,m′(·;θ) are also bounded in magnitude by ḡ[k], where ḡ[k]

is reproducing and satisfies
∫
[0,1]p ḡ

[k](u){uk ∧ (1− uk)}C(du;θ0)<∞. Moreover, As-

sumptions 3.2 and 4.1 to 4.4 hold (as in Proposition 5.1).

Then, both
√
n(θ̂n − θ0) and

√
n(θn − θ0) admit the asymptotic representation −(Γ⊤Γ)−1

×Γ⊤(
√
nNn)+op(1) where only the op(1) term could differ, and thus

√
n(θ̂n−θn) = op(1).

The proof of Theorem 5.2 appears in Section D.2 in the supplement. We provide a few
remarks on the theorem. First, Eq. (27) is in essence stronger than Assumption 5.1 due to the
required uniformity over θ ∈Θ. Section D.4 will explain how this condition can be met.

Next, the asymptotic i.i.d. representation of the oracle MvROS Mn(θ0) had been estab-
lished in Ruymgaart (1974) for the bivariate case and stated in Proposition 3 in Tsukahara
(2005) for the multivariate case, among others. The required conditions in these works are not
directly comparable to those in our Theorem 5.2 due to different goals (they focus on the ora-
cle case instead of model (1)) and proof techniques, but are in general weaker. In our context,
under the conditions of Theorem 5.2, if also

∫
Up

n,γ
g[k](u;θ0)

2{uk ∧ (1− uk)}C(du;θ0) =
o(n) for all k ∈ [p], then we recover the i.i.d. representation in Tsukahara (2005):

Mn(θ0) =
∑

i∈[n]
1
n

{
g(Ui;θ0) +

∑
k∈[p]

∫
[0,1]p g

[k](u;θ0)

× (✶{Ui,k ≤ uk} − uk)C(du;θ0)
}
+ op(n

−1/2).(28)

The summands on the right-hand side above are i.i.d., have expectation zero, and their second
parts involving the g[k]’s represent the effect of replacing the true marginals by the empirical
ones. Thus we can set the random vector Nn in the “oracle MvROS conditions” as the i.i.d.
sum in Eq. (28); obviously

√
nNn is centered and convergences weakly to a multivariate

normal distribution.
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Analogous to Theorem 4.1 for the normal scores estimator, Theorem 5.2 shows that the
residual-based PLE is asymptotically indistinguishable from its oracle counterpart. However,
not knowing the marginals again causes efficiency loss in general; moreover the PLE is typi-
cally not semi-parametrically efficient (even for the Gaussian copula beyond the unrestricted
model). We will offer more detailed remarks on the optimality of our residual-based PLE in
Section D.3. Finally, as stated earlier, the new conditions in Proposition 5.1 and Theorem 5.2
will be verified in Section D.5 for the bivariate t-copula, and in Section D.6 for the bivariate
Clayton, Frank and Gumbel copulas. We now turn to addressing the earlier Assumptions 4.1
to 4.3.

6. Applications to non- and semi-parametric regression models. In this section we
apply our result in Sections 4 and 5 to several popular non- and semi-parametric regression
models: Section 6.1 deals with the non-parametric regression model, Section 6.2 deals with
a partly linear regression variant, and Section 6.3 deals with an additive model variant. For
the latter two models we simply assume the function σk = 1 identically. Our effort amounts
to verifying that Assumptions 4.1 to 4.3 are satisfied under these models. (We remind the
readers that these assumptions concern the regression function estimators m̂k and σ̂k for the
individual marginals, but do not concern the copula structure that is imposed separately.) As
a consequence Theorem 4.1, Proposition 5.1 and Theorem 5.2 can be applied under these
models as well. We do not attempt to exhaust all possible estimators m̂k and σ̂k in the litera-
ture, but will only consider some specific but popular candidates; we do take these candidates
in their raw forms in the literature, and impose as little extra conditions as possible.

The assumptions we will need to verify are all stated coordinate-wise for each k ∈ [p], and
thus we will verify the assumptions in a coordinate-by-coordinate fashion. In all models, we
set Xn =X in Assumption 4.1.

6.1. Non-parametric regression with multivariate covariate. We assume that q is fixed.
There have been several studies on the estimation of the distribution of Ek, for a single
k ∈ [p], by way of some preliminary estimators of mk and σk under the non-parametric
regression model (1). In particular the case of univariate covariate (i.e., q = 1) was considered
in Akritas and Van Keilegom (2001), while the general q ≥ 1 case was considered in Müller,
Schick and Wefelmeyer (2009); Neumeyer and Van Keilegom (2010) via the local polynomial
estimator (Fan and Gijbels (1996)).

Following the convention in Müller, Schick and Wefelmeyer (2009), a multi-index m ∈R
q

denotes a q-dimensional vector m= (m1, . . . ,mq)
⊤ with non-negative integer components.

For a multi-index m define the function ψm :Rq →R as ψm(x) = (xm1

1 /m1!) · · · (xmq
q /mq!)

for x= (x1, . . . , xq)
⊤. Set m• =m1+ · · ·+mq . Next, for a function h :Rq →R and a multi-

index m, define Dmh(x) = (∂m•/∂xm1

1 . . . ∂x
mq
q )h(x) for x= (x1, . . . , xq)

⊤.
For a non-negative integer d (that is eventually specified as in Proposition 6.1), let Id

and Jd denote the set of multi-indices m with 0 ≤m• ≤ d and with m• = d, respectively.
Let K1, . . . ,Kq be univariate kernels, K the resulting product kernel on R

q , and {cn}n≥1
a bandwidth sequence. Let the local polynomial estimator for the kth coordinate be (as in
Müller, Schick and Wefelmeyer (2009); Neumeyer and Van Keilegom (2010))

(29) β̂(k)(x) = argminβ=(βm)m∈Id

∑
i∈[n]

{
Yi,k −

∑
m∈Id

βmψm

(
Xi−x
cn

)}2
K

(
Xi−x
cn

)
.

Given β̂(k) = β̂(k)(x) (as a function of x), we let the estimator m̂k of the function mk be the

component β̂(k)0 of β̂(k) corresponding to the multi-index 0 = (0, . . . ,0). Next, let γ̂(k) be
defined similarly as β̂(k), but with Yi,k replaced by (Yi,k − m̂k(Xi))

2; given γ̂(k) = γ̂(k)(x),

we finally let the estimator σ̂2k of the function σ2k be the component γ̂(k)0 . This estimator of
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σ2k is asymptotically equivalent to the one in Neumeyer and Van Keilegom (2010), but in our
experience more stable at finite sample sizes.

The above defines the estimators m̂k and σ̂k. Developing their theoretical properties in-
vites some extra technicalities. For a non-negative integer d and a real number κ ∈ (0,1], let
H(d,κ) be the collection of functions h : X → R such that h has continuous partial deriva-
tives up to order d and the dth order partial derivatives are Hölder with exponent κ. As in
Section 2.7 in van der Vaart and Wellner (1996), for h ∈H(d,κ) define the norm

‖h‖d,κ = max
m∈Id

sup
x∈X

|Dmh(x)|+ max
m∈Jd

sup
x,y∈X :x 6=y

|Dmh(x)−Dmh(y)|
‖x−y‖κ .(30)

Let HM ′(d,κ) be the set of functions h ∈ H(d,κ) that further satisfy ‖h‖d,κ ≤ M ′.
Let H̃M ′(d,κ) be similarly defined with the additional constraint that if h ∈ H̃M ′(d,κ),
then infx∈X h(x) ≥ 1/2. Moreover, let fX be the density of X, and for m,m′ ∈ Id, let
Qn,m,m′(x) =

∫
ψm(u)ψm′(u)K(u)fX(x+ cnu)du. Let Qn =Qn(x) be the matrix with

entries Qn,m,m′(x), m,m′ ∈ Id at x.
Assumptions 4.1 to 4.3 are verified in the following Proposition 6.1, whose proof appears

in Section E.1 in the supplement. The required conditions are mostly borrowed from but are
also slightly stronger than, e.g., Lemma 1 in Müller, Schick and Wefelmeyer (2009); in par-
ticular our condition on the moment of Ek is precisely two times theirs due to our estimation
of σk (which was not considered in their context). For succinctness and better connection
with Section 6.2 later, we collect a subset of the conditions below in Assumption 6.1, under
which kn ≡ log(n)/(ncqn) satisfies kn . log4/3(n)n−2/3.

ASSUMPTION 6.1. The density fX has uniformly bounded partial derivatives up to order

q + 1 almost everywhere and its support X is bounded and convex, the kernels K1, . . . ,Kq

are (q + 2)-times continuously differentiable and have compact support [−1,1], the matrix

Qn satisfies infn≥1 infx∈X λmin(Qn(x)) > 0 where λmin returns the minimal eigenvalue,

and finally cn =M(n log(n))−1/(2s) for M > 0 and s to be specified in Proposition 6.1 (in

Section 6.1) or Proposition 6.2 (in Section 6.2).

PROPOSITION 6.1. Suppose that Assumption 6.1 holds, and (i) the functionsmk, σk ∈H(d,κ)
with d≥ q+1, s≡ d+κ > 3q/2, infx∈X σk(x)> 0; (ii) Ek satisfies E[|Ek|ζ ]<∞ for some

ζ > 8s/(2s− q). Then:

(a) Assumption 4.1 is satisfied with an,1 = an,2 = k
1/2
n . By the bound on kn, certainly

an,1, an,2 =O(n−τ ) with τ > 1/4.

(b) For Assumption 4.2, (b1) there exists 0 < α < 1 such that by setting D1,n =HM ′(q,α)

and D2,n = H̃M ′(q,α) for M ′ large enough, the required sequence {Dn,k}n≥1 exists;

(b2) (11), (12), (14) and (18) hold if we set K1,K2, β as large enough positive absolute

constants, and ν = 1+ α/q > 1.

(c) Assumption 4.3 is satisfied with ∆= 1
2(1− 1/ν) for ν given above and Rn = n

− 1

1+1/ν .

6.2. Partly linear regression. The semi-parametric variant of (1) in the form of a partly
linear regression model (PLM) states that the regression functionmk(w,x) = θ⊤k w+m̃k(x);
here (w⊤,x⊤)⊤ ∈ W × X ⊂ R

qL+q is the covariate, and the (linear) regression coefficient
θk ∈ R

qL and the non-parametric component m̃k : Rq → R are the unknown parameters.
We also set the scale function σk = 1 identically. Hence Yk =mk(W,X) +Ek = θ⊤k W +
m̃k(X)+Ek. For identification we assume EEk = 0 as usual, but because σk = 1 we impose
no condition on Var(Ek). We assume that q is fixed. However, we allow the dimension qL =
qL,n of the linear component to vary with n. Let (Yi,Wi,Xi,Ei), i ≥ 1 be independent
copies of (Y,W,X,E), with W = (W1, . . . ,WqL)

⊤; our sample consists of (Yi,Wi,Xi),
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i ∈ [n]. We let θ̂k be an estimator of θk. The particular form of θ̂k is quite irrelevant, as
long as ‖θ̂k − θk‖ satisfies a mild convergence condition in Proposition 6.2; see the remark
following the proposition for a concrete example.

Whenever possible we follow the same notations as in Section 6.1. Then, let the local
polynomial estimator β̂(k) = β̂(k)(x) relevant to m̃k be obtained from (29) but with Yi,k
replaced by Yi,k− θ̂⊤k Wi (as in the last equation on p. 554 in Müller, Schick and Wefelmeyer

(2012)). Then we let the estimator ̂̃mk for the function m̃k be the component β(k)0 of β̂(k)

corresponding to the multi-index 0= (0, . . . ,0). Finally we let the estimator of mk(w,x) be
m̂k(w,x) = θ̂⊤k w+ ̂̃mk(x); we set the estimator σ̂k = 1 identically.

Proposition 6.2 below is the analogy to Proposition 6.1 now in the context of the PLM
variant. The required conditions are mostly borrowed from but are also slightly stronger than
those in Theorem 2.1 in Müller, Schick and Wefelmeyer (2012). In particular the component-
wise uniform boundedness of W facilitates application of deviation inequalities for supre-
mum of empirical processes when qL = qL,n varies with n. Let µ(x) = E(W|X = x),
with µ = (µ1, . . . , µqL)

⊤. Let DqL be the collection DqL = {f(·;δ) : RqL → R, f(w;δ) =
w⊤δ,δ ∈ R

qL ,‖δ‖ ≤ 1} of functions indexed by δ. We refer to, e.g, the beginning of Sec-
tion 2.1 in Giné and Mason (2007) for the definition of Vapnik and Červonenkis (VC)-type
of collection of functions (essentially, the collection with polynomial covering number).

PROPOSITION 6.2. Suppose that Assumption 6.1 holds, and (i) the function m̃k ∈H(d,κ)
with d≥ q+ 1, s≡ d+ κ > 3q/2; (ii) Ek satisfies E[|Ek|ζ ]<∞ for some ζ > 4s/(2s− q);
(iii) W is component-wise uniformly bounded, and each component of µ has partial deriva-

tives up to order q+1 that are uniformly bounded, both by an absolute constantM ; qL = qL,n

satisfies log(qL). log(n), and for all k ∈ [p], for some τ̃ > 1/4 and a sequence {ζn}n≥1 sat-

isfying qLζn = O(n−τ̃ ), θ̂k converges as ‖θ̂k − θk‖ = Op(
√
qLζn); (iv) the collections of

functions K[m]
ℓ ≡

{
K

[m]
ℓ

(
t−·
c

)
: t ∈R, c ∈R

+
}

where K
[m]
ℓ is the mth derivative of Kℓ,

ℓ ∈ [q], m ∈ [d+ 1] are all VC-type. Then:

(a) Assumption 4.1 is satisfied with an,1 = k
1/2
n + qLζn =O(k

1/2
n + n−τ̃ ) for kn as in Sec-

tion 6.1 (so an,1 =O(n−τ ) for some τ > 1/4) and an,2 = 0.

(b) For Assumption 4.2, (b1) there exists 0 < α < 1 such that by setting D1,n as the prod-

uct of the class HM ′(q,α) for M ′ large enough (for the covariate x) and the class DqL

(for the covariate w), and D2,n as the singleton set of the constant function one, the

required sequence {Dn,k}n≥1 exists; (b2) (11), (12), (14) and (18) hold under if we

set K1 =M qLqL
qL , K2 =M ′ with M , M ′ large enough, β = qL, ν = 1 + α/q, and if

qL log(n) =O(a
−1/ν
n,1 ∧n 1

1+ν ). (To be notationally correct in the PLM, for Assumptions 3.3

and 4.2 we should replace L2(FX) by L2(FW,X), where FW,X is the joint distribution

function of (W,X), to accommodate the linear covariate W.)

(c) Assumption 4.3 is satisfied with ∆= 1
2(1− 1/ν) for ν given above and Rn = n

− 1

1+1/ν

(exactly as in Proposition 6.1).

The proof of Proposition 6.2 appears in Section E.2 in the supplement. For the initial
estimator θ̂k ∈ R

qL of the regression coefficient suitable for Proposition 6.2 and specifically
for the condition on the rate of ‖θ̂k −θk‖, Xie and Huang (2009) (among others) has studied
PLM with the dimension qL = qL,n varying with n. (To be exact, Xie and Huang (2009)
focused on the case q = 1 for m̃k, but extension to higher q was also discussed.) In fact the
case considered there is more general: the ambient dimension of θk is qL

+ = qL,n
+ but only

qL = qL,n components of θk are non-zero. Then Theorem 2 in Xie and Huang (2009) shows
that, under regularity conditions that in particular restrict qL

+ = o(n1/2), on an event with
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probability tending to one, all the components of θ̂k corresponding to the zero components
of θk are correctly identified as being zero. Thus by focusing on this event, when applying
Proposition 6.2 we can simply pretend that the actual dimension of θk is qL (rather than qL

+).
Moreover, on this event, by the last equation display on p. 691 and the proof of Theorem 1 in
Xie and Huang (2009) it is straightforward to show that ‖θ̂k − θk‖=Op(

√
qL/n+M

−Sg
n ).

HereMn = o(n) is the number of knots in the polynomial spline to model the non-parametric
component m̃k, and Sg is related to the degree of smoothness, but in principle with enough

smoothness the second term on the right-hand side, M−Sg
n , can be made comparable to the

first. Thus in this case ζn = n−1/2 for our condition on ‖θ̂k − θk‖. Consequently by the
condition on qL, the number of non-zero components of θk must satisfy qL =O(n−τ̃+1/2) =
o(n1/4) for some τ̃ > 1/4 (though a stronger condition could apply because of the bound
on qL log(n) required for Assumption 4.2). On the other hand as we saw earlier the ambient
dimension must satisfy (the more relaxed) qL

+ = o(n1/2), suggesting that the theory of Xie
and Huang (2009) fits nicely into our framework by allowing the ambient dimension qL

+ to
diverge faster than qL, the intrinsic dimension of interest.

6.3. Additive model. The additive model is another variant of (1). Here, the components
of the covariate x= (x1, . . . , xq)

⊤ separately influences the regression outcome; specifically
the location function admits the decomposition mk(x) =mk,0 +mk,1(x1) + · · ·+mk,q(xq)
with intercept mk,0 and univariate functions mk,ℓ, k ∈ [p], ℓ ∈ [q] satisfying Emk,ℓ(Xℓ) =
0. For simplicity we again assume σk = 1 identically, so Yk = mk,0 +mk,1(X1) + · · · +
mk,q(Xq) +Ek. We follow the same identification condition as for the PLM, assume that q
is fixed and, for simplicity, X = [0,1]q .

We let m̂k,ℓ, k ∈ [p] and ℓ ∈ [q] be the smooth backfitting Nadaraya-Watson estimator of
mk,ℓ given by (12) in Mammen, Linton and Nielsen (1999). Specifically, let m̃k,ℓ, p̂ℓ, and
p̂ℓ,ℓ′ be respectively the kernel estimator of E[Yk|Xℓ = xℓ], the density pℓ of Xℓ, and the bi-
variate density pℓ,ℓ′ of (Xℓ,Xℓ′) given by (55), (56) and (57) in Mammen, Linton and Nielsen
(1999) (we should modify the aforementioned (55) in a straightforward way to accommodate
multiple coordinates k ∈ [p] to arrive at our m̃k,ℓ), and let m̃k,0 = n−1

∑
i∈[n] Yi,k be the

population mean estimator of the kth coordinate. Then, the estimator m̂k,ℓ is

m̂k,ℓ(xℓ) = m̃k,ℓ(xℓ)−
∑

ℓ′∈[q]\{ℓ}

∫
[0,1] m̂k,ℓ′(xℓ′)

p̂ℓ,ℓ′ (xℓ,xℓ′ )
p̂ℓ(xℓ)

dxℓ′ − m̃k,0.(31)

The final estimator of mk is m̂k(x) = m̃k,0 + m̂k,1(x1) + · · ·+ m̂k,q(xq).
The simple form of the estimator m̂k,ℓ allows for a straightforward analysis. Also for sim-

plicity we will not treat the boundary bias issue and will only focus on the estimation of mk

away from the boundary. Specifically let ε > 0 be an arbitrarily small but fixed absolute con-
stant and let U− = [ε,1− ε]; then we only consider the estimation of mk,ℓ on U−, and hence
the estimation of mk only on Uq

−. Then the results from the previous sections of this paper
should be understood to be based on the subset of the sample (Yi,Xi), i ∈ [n] satisfying
Xi ∈ Uq

−.
For Proposition 6.3 below, the required conditions are mostly borrowed from but are also

slightly stronger than (B1), (B2’), (B3’) and (B4’) in Theorem 4 in Mammen, Linton and
Nielsen (1999). Let K be the kernel and hn be the bandwidth used in the kernel estimators
m̃k,ℓ, p̂ℓ, p̂ℓ,ℓ′ (the last using a bivariate product kernel built from K). Analogous to (30) ear-
lier but restricting to univariate function h and d= 1, for a real number κ ∈ (0,1] define the
norm ‖ · ‖U−,1,κ as ‖h‖U−,1,κ = supx∈U−

|h(x)|+ supx∈U−
|ḣ(x)|+ supx,y∈U−:x 6=y |ḣ(x)−

ḣ(y)|/‖x− y‖κ where ḣ denotes the derivative of h. Next, analogous to HM ′(d,κ) earlier in
Sections 6.1 and 6.2, define HM ′,U−

(1, κ) as the collection of univariate functions h satisfy-
ing ‖h‖U−,1,κ ≤M ′.
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PROPOSITION 6.3. Suppose that (i) the second derivatives of the functions mk, k ∈ [p]
exist and are continuous; (ii) for some θ > 5/2, E(|Ek|θ)<∞, ∀k ∈ [p]; (iii) the density fX
is bounded away from zero and infinity on the support X , and possesses continuous partial

derivatives up to the second order; (iv) the kernel K is symmetric about zero, two-times

differentiable with uniformly bounded mth derivative K [m] for m ∈ {0,1,2}, has compact

support [−1,1], satisfies infu>0

∫
[0,u]K(v)dv ≥ 0, and finally the collections of functions

K[m] ≡
{
K [m]

(
t−·
c

)
: t ∈R, c ∈R

+
}

, m ∈ {0,1,2} are all VC-type; (v) the bandwidth hn
satisfies n1/5hn → ch for a constant ch. Then:

(a) Assumption 4.1 is satisfied with an,1 = log1/2(n)n−2/5 (where the supremum is under-

stood to be taken over Uq
−) and an,2 = 0. Certainly an,1, an,2 =O(n−τ ) with τ > 1/4.

(b) For Assumption 4.2, (b1) by setting D1,n as the q-time product of HM ′,U−
(1, κ) for M ′

large enough (with the kth factor for xk) and any κ ∈ (0,1/10), and D2,n as the singleton

set of the constant function one, the required sequence {Dn,k}n≥1 exists; (b2) (11), (12),
(14) and (18) hold if we set K1,K2, β as large enough positive absolute constants and

ν = 1+ κ.

(c) Assumption 4.3 is satisfied with ∆= 1
2(1− 1/ν) for ν given above and Rn = n

− 1

1+1/ν .

The proof of Proposition 6.3 appears in Section E.3 in the supplement. In the additive
model the required smoothness on the function mk, namely twice continuous differentiabil-
ity, is independent of q and is thus potentially much weaker than the corresponding require-
ment in the non-parametric regression model considered in Section 6.1. This is the appealing
“free from the curse of dimensionality” consequence of the additive model.

7. Numerical study. In our simulation study we show that the performance of the
residual-based normal scores estimator approaches that of its oracle counterpart as the sample
size increases. We consider two cases, first, in Section 7.1, a non-parametric regression model
with q = 2 and next, in Section 7.2, a partly linear regression variant with q = 1 but with the
dimension of the linear component as high as qL = 10. In contrast, the naive estimator that
does not adjust for the covariate performs significantly worse.

Next we study in Section F (deferred to the supplement) a real data example that examines
the students’ performance in various disciplines across different countries in the Programme
for International Student Assessment (PISA) (OECD (2015)). We first estimate the correla-
tion among the (performance in) different disciplines after adjusting for GDP per capita for
the countries through a pure non-parametric regression in Model (1). Then, in the event that
only one discipline is observed for a country, we develop procedures to predict the remaining
disciplines. Such procedures naturally depend on the assumed dependence structure among
the disciplines, and we will compare prediction results based on the assumed Gaussian, Gaus-
sian copula or t-copula structure on the signal component E.

7.1. Non-parametric regression. We consider a simple case with p = 2 and q = 2. We
first generate the (unobservable) Gaussian copula component E. We denote the single off-
diagonal element in the copula correlation matrix R0 by ρ0, and we first let ρ0 = 0.5. We let
Er follow a bivariate normal distribution with standard Gaussian marginals and correlation
ρ0. Then, we adjust the marginals of Er to be the t-distribution with degrees of freedom
νdf = 5 or (for even heavier tail) νdf = 3, and further normalize the marginals to have unit
variance; we let the copula component E follow the resulting distribution (which clearly
has Gaussian copula with copula correlation matrix R0). We remind the readers that when
estimating the scale function σk it is the square of Yk (among others) that serves as the input,
and hence our specification of E is already quite adversarial for our residual-based estimators.
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For the location and scale functions, we let

m1(x1, x2) = 2(x1 + x2 − 1)2, σ1(x1, x2) = (5 + x21 + x22)/5,

m2(x1, x2) = (x1 − x2)
3, σ2(x1, x2) = (7 + x1 + x2)/7.

We let the covariate X follow the uniform distribution on the unit square. Finally, we build
the response Y as in (1) based on independently drawn E and X.

We compare the performance of the following three estimators of ρ0:

• The oracle normal scores estimator ρn.
• The residual-based normal scores estimator ρ̂n.
• The naive normal scores estimator ρN

n .

The naive estimator is built in the same way as the oracle normal scores estimator ρn, but
using the response sample Yi, i ∈ [n] in place of the oracle copula sample Ei, i ∈ [n], without
taking into account the covariate.

We consider sample sizes n = 50, 100, 200, 400 or 800, and for each sample size we
perform N = 1000 Monte Carlo simulations. To obtain the estimators m̂k and σ̂k (and hence
the residual-based ρ̂n), we rely on the np package in R. Specifically, we employ a dummy
approach, and for each Monte Carlo sample we simply generate the bandwidth automatically
with the npregbw routine. We then feed the bandwidth to the npreg routine to obtain the
estimators m̂k and σ̂k without providing any extra guidance.

The performance of the three estimators is summarized in Table 1, where we display the
biases and the RMSEs of the deviations between the upper-triangular portions (as will be
assumed throughout in this section and Section 7.2) of the estimators and of the true ρ0 gath-
ered from theN = 1000 Monte Carlo samples. For clarity of presentation we have multiplied
(the biases and the RMSEs of) the deviations by a factor of 100.

νdf = 5 νdf = 3

n ρn ρ̂n ρN
n ρ̂n ρN

n
50 -1.3 (10.6) -8.5 (15.5) -5.3 (12.5) -10.3 (17.4) -6.7 (13.3)

100 -0.6 (7.7) -4.4 (9.5) -4.7 (9.4) -5.7 (10.2) -6.2 (10.4)
200 -0.5 (5.4) -2.4 (6.4) -4.4 (7.1) -3.2 (6.6) -5.8 (8.1)
400 -0.1 (3.7) -1.4 (4.1) -3.9 (5.6) -1.9 (4.4) -5.3 (6.7)
800 -0.0 (2.6) -0.7 (2.8) -3.8 (4.7) -1.2 (3.0) -5.2 (5.9)

TABLE 1
The biases and the RMSEs (the latters in parentheses) of the deviations from the true ρ0 = 0.5 associated with

the three estimators considered in Section 7.1, based on N=1 000 Monte Carlo simulations. For clarity numbers

have been multiplied by a factor of 100.

From the table, we can make a few observations. First, as the sample size n increases,
the ratio of the (RMSE of the) deviation between the residual-based estimator ρ̂n and the
truth to the deviation between the oracle estimator ρn and the truth converges to one. This
agrees with our theoretically established asymptotic equivalence between the residual-based
estimator and its oracle counterpart. Second, the aforementioned convergence is slower under
the heavier tail case when νdf = 3. This is expected because the quality of the estimators m̂k

and σ̂k obviously deteriorates under a larger “error” term Ek. Third, at the smallest sample
sizes n = 50 and 100, the naive estimator ρN

n could actually outperform the residual-based
estimator. Again, this is expected because for small sample sizes the estimators m̂k and σ̂k
are less accurate. However, as n increases, the performance of the naive estimator starts to
lag increasingly behind the residual-based estimator.
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7.2. Partly linear variant. We consider p= 2, qL = 3 or qL = 10, and q = 1. We first let
the Gaussian copula component E be identical to that in Section 7.1 (so ρ0 = 0.5), except that
because here σk = 1 identically we do not adjust the marginals of E to have unit variances.
Then, for the linear component, let the regression coefficient matrix be Θ ∈R

qL×2 with

Θ=

(
1−1 1

−1 1−1

)⊤
for qL = 3,

Θ=

(
1−1 1 1 1−1−1−1−1 1

−1 1−1 1 1−1 1 1 1−1

)⊤
for qL = 10.

Then we let the regression coefficients θk, k ∈ {1,2} be the kth column of Θ. We let the
covariate W for the linear component follow a uniform distribution on the unit hypercube
[0,1]qL . Next, for the non-parametric component m̃k with argument X=X , we let

m̃1(x) = 2(x− 0.5)2, m̃2(x) = 4(x− 0.5)3.

Then, we simply let X follow the uniform distribution on the unit interval. Finally, we build
Y based on independently drawn E, W and X .

We consider the same three estimators of ρ0 = 0.5 as in Section 7.1 now adapted to the
partly linear regression variant. We consider sample sizes n = 50, 100, 200, 400 or 800,
and for each sample size we perform N = 1000 Monte Carlo simulations. To obtain the
estimators θ̂k and ̂̃mk, we employ the np package as before. This time, for each Monte Carlo
sample we generate the bandwidth automatically with the npplregbw routine and then feed
the bandwidth to the npplreg routine, again without providing any extra guidance.

The performance of the three estimators is summarized in Table 2. Our comments on the
estimators here also in general agree with the earlier ones in Section 7.1, with the following
adaptations. First, the convergence of the residual-based estimator ρ̂n to the oracle counter-
part under the partly linear regression variant is faster than that under the non-parametric
regression model, even with the presence of the additional linear component and without the
additional normalization of the marginals of E to have unit variances (as was done under
the non-parametric regression model). This is due to a combination of the simpler, univariate
covariate for the non-parametric component considered here and the assumption that σk = 1

identically which eliminates the scale shift in the estimator Êi defined in Section 3.1. Next,
the naive estimator ρN

n simply fails. It performs slightly better under the heavier tail case when
νdf = 3, but only because here the copula component E becomes more dominant compared to
the perturbation by the covariate. In fact, the naive estimator performs not much better than
randomly guessing a positive number (which would on average deviate 0.25 from the target
ρ0 = 0.5).

Next we consider estimations at higher correlation ρ0. We first make a single modification
of our models introduced earlier by raising ρ0 from 0.5 to 0.9, and repeat exactly the earlier
estimation procedures. In place of Table 2, the performance of the three estimators ρn, ρ̂n,
ρN
n under the higher ρ0 setup is summarized in Table 3. As can be seen there, for the residual-

based estimator ρ̂n, its performance converges to that of the oracle estimator ρn a bit slower
than in the previous, ρ0 = 0.5 case, but it outperforms the naive estimator ρN

n even more
substantially than before.

Finally we consider unbounded covariate W. Note that for the non-parametric components
m̃k in Section 6.2 and mk, σk in Section 6.1, the required smoothness conditions dictate that
these functions should be bounded. Thus the effect of unbounded covariate is better explored
in the covariate W in the partly linear model. We focus on the higher-dimensional W case
where qL = 10, and consider both ρ0 = 0.5 and ρ0 = 0.9. We simply generate W as a cen-
tered multivariate normal distribution with a 10× 10 covariance matrix having unit diagonal
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qL = 3

νdf = 5 νdf = 3

n ρn ρ̂n ρN
n ρ̂n ρN

n
50 -1.3 (10.6) -3.1 (11.9) -24.3 (27.8) -3.4 (11.9) -20.5 (24.4)
100 -0.6 (7.7) -1.9 (8.0) -23.2 (25.1) -2.1 (8.0) -19.3 (21.5)
200 -0.5 (5.4) -1.1 (5.6) -23.1 (24.0) -1.4 (5.6) -19.0 (20.1)
400 -0.1 (3.7) -0.5 (3.7) -22.4 (22.9) -0.7 (3.8) -18.4 (19.0)
800 -0.0 (2.6) -0.3 (2.6) -22.3 (22.5) -0.4 (2.6) -18.2 (18.5)

qL = 10

νdf = 5 νdf = 3

n ρn ρ̂n ρN
n ρ̂n ρN

n
50 -1.3 (10.6) -4.0 (12.7) -20.0 (23.8) -4.7 (13.2) -17.3 (21.6)
100 -0.6 (7.7) -2.3 (8.8) -19.0 (21.1) -3.0 (9.0) -16.4 (18.7)
200 -0.5 (5.4) -1.3 (5.7) -18.9 (19.9) -1.8 (5.9) -16.2 (17.3)
400 -0.1 (3.7) -0.6 (3.8) -18.4 (19.0) -0.9 (3.9) -15.7 (16.3)
800 -0.0 (2.6) -0.3 (2.7) -18.3 (18.6) -0.5 (2.7) -15.6 (15.9)

TABLE 2
The biases and the RMSEs (the latters in parentheses) of the deviations from the true ρ0 = 0.5 associated with

the three estimators considered in Section 7.1 now adapted to the partly linear regression variant, based on

N = 1000 Monte Carlo simulations. For clarity numbers have been multiplied by a factor of 100. The

performance of the oracle estimator ρn is obviously the same under qL = 3 and qL = 10.

qL = 3

νdf = 5 νdf = 3

n ρn ρ̂n ρN
n ρ̂n ρN

n
50 -1.5 (3.5) -4.5 (7.1) -31.9 (33.4) -4.6 (8.4) -27.1 (28.6)

100 -0.8 (2.3) -2.6 (3.8) -30.5 (31.3) -2.7 (4.6) -25.6 (26.4)
200 -0.5 (1.5) -1.5 (2.4) -29.8 (30.2) -1.6 (2.4) -24.8 (25.2)
400 -0.2 (1.0) -0.8 (1.4) -29.2 (29.4) -0.9 (1.5) -24.2 (24.4)
800 -0.1 (0.7) -0.5 (0.9) -28.9 (29.0) -0.5 (0.9) -23.9 (24.0)

qL = 10

νdf = 5 νdf = 3

n ρn ρ̂n ρN
n ρ̂n ρN

n
50 -1.5 (3.5) -5.6 (8.4) -35.4 (36.9) -5.6 (8.8) -30.6 (32.2)

100 -0.8 (2.3) -3.1 (4.5) -34.1 (34.8) -3.2 (4.7) -29.1 (29.9)
200 -0.5 (1.5) -1.8 (2.6) -33.6 (34.0) -1.9 (2.8) -28.5 (28.9)
400 -0.2 (1.0) -1.0 (1.6) -33.1 (33.3) -1.2 (1.7) -28.0 (28.2)
800 -0.1 (0.7) -0.6 (0.9) -32.8 (32.9) -0.7 (1.0) -27.6 (27.7)

TABLE 3
The biases and the RMSEs (the latters in parentheses) of the deviations from the true ρ0 associated with the

same three estimators considered in Table 2, under the same models for Table 2 except that now ρ0 = 0.9, based

on N = 1000 Monte Carlo simulations. For clarity numbers have been multiplied by a factor of 100. The

performance of the oracle estimator ρn is obviously the same under qL = 3 and qL = 10.

elements and off-diagonal elements taking a common value 0.5, and repeat the earlier esti-
mation procedures. The performance of the three estimators ρn, ρ̂n, ρN

n in the current cases
is summarized in Table 4. From the table, at least when ρ0 = 0.5, the performance of the
residual-based estimator ρ̂n is again quite reputable compared to the oracle estimator ρn,
though (again) a bit worse than that presented in Table 2 for the same ρ̂n but under bounded
covariate W. At ρ0 = 0.9, the performance of ρ̂n is comparable to itself at ρ0 = 0.5. However
here ρn performs much better than itself at ρ0 = 0.5. The end result is that ρ̂n lags further
behind ρn, though decreasing so at higher sample size. The naive estimator ρN

n performs
abysmally in all cases.
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ρ0 = 0.5, qL = 10

νdf = 5 νdf = 3

n ρn ρ̂n ρN
n ρ̂n ρN

n
50 -1.3 (10.6) -8.3 (17.8) -39.2 (41.6) -8.1 (17.1) -36.5 (39.0)

100 -0.6 (7.7) -5.3 (11.3) -39.9 (41.2) -5.2 (10.6) -37.0 (38.5)
200 -0.5 (5.4) -3.1 (7.3) -39.3 (40.0) -3.2 (7.0) -36.3 (37.0)
400 -0.1 (3.7) -1.5 (4.3) -39.4 (39.7) -1.7 (4.5) -36.3 (36.6)
800 -0.0 (2.6) -0.9 (2.9) -39.4 (39.5) -1.0 (2.9) -36.2 (36.4)

ρ0 = 0.9, qL = 10

νdf = 5 νdf = 3

n ρn ρ̂n ρN
n ρ̂n ρN

n
50 -1.5 (3.5) -14.2 (20.3) -71.2 (72.5) -12.4 (17.9) -66.0 (67.4)

100 -0.8 (2.3) -8.4 (11.9) -71.5 (72.2) -7.6 (10.9) -65.9 (66.7)
200 -0.5 (1.5) -5.0 (7.1) -70.9 (71.2) -4.6 (6.3) -65.0 (65.4)
400 -0.2 (1.0) -2.8 (3.8) -70.7 (70.9) -2.5 (3.5) -64.7 (64.9)
800 -0.1 (0.7) -1.6 (2.2) -70.7 (70.8) -1.5 (2.0) -64.5 (64.6)

TABLE 4
The biases and the RMSEs (the latters in parentheses) of the deviations from the true ρ0 associated with the

same three estimators considered in Tables 2 and 3, now for unbounded covariate W, based on N = 1000

Monte Carlo simulations. For clarity numbers have been multiplied by a factor of 100. The performance of the

oracle estimator ρn in here and in the corresponding entries in Tables 2 and 3 is obviously the same.
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