
This is a repository copy of Evolutionary-Guided Synthesis of Verified Pareto-Optimal MDP
Policies.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178508/

Version: Accepted Version

Proceedings Paper:
Gerasimou, Simos, Camara Moreno, Javier orcid.org/0000-0001-6717-4775, Calinescu,
Radu orcid.org/0000-0002-2678-9260 et al. (3 more authors) (2021) Evolutionary-Guided
Synthesis of Verified Pareto-Optimal MDP Policies. In: 36th IEEE/ACM International
Conference on Automated Software Engineering. .

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/478158796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evolutionary-Guided Synthesis

of Verified Pareto-Optimal MDP Policies

Simos Gerasimou

Department of Computer Science

University of York, UK

simos.gerasimou@york.ac.uk

Javier Cámara

Department of Computer Science

University of York, UK

javier.camaramoreno@york.ac.uk

Radu Calinescu

Department of Computer Science

University of York, UK

radu.calinescu@york.ac.uk

Naif Alasmari

Department of Computer Science

University of York, UK

nnma500@york.ac.uk

Faisal Alhwikem

Department of Computer Science

University of York, UK

faisal.alhwikem@york.ac.uk

Xinwei Fang

Department of Computer Science

University of York, UK

xinwei.fang@york.ac.uk

Abstract—We present a new approach for synthesising Pareto-
optimal Markov decision process (MDP) policies that satisfy
complex combinations of quality-of-service (QoS) software re-
quirements. These policies correspond to optimal designs or
configurations of software systems, and are obtained by trans-
lating MDP models of these systems into parametric Markov
chains, and using multi-objective genetic algorithms to synthesise
Pareto-optimal parameter values that define the required MDP
policies. We use case studies from the service-based systems and
robotic control software domains to show that our MDP policy
synthesis approach can handle a wide range of QoS requirement
combinations unsupported by current probabilistic model check-
ers. Moreover, for requirement combinations supported by these
model checkers, our approach generates better Pareto-optimal
policy sets according to established quality metrics.

I. INTRODUCTION

Markov decision processes (MDPs) provide a powerful

mathematical framework for modelling and analysing sequen-

tial decision-making problems under uncertainty [1], [2]. Their

ability to capture the complexity and uncertainty of modern

software-intensive systems has led to numerous MDP appli-

cations for stochastic control and dynamic optimisation, in

domains ranging from software product lines [3] and service-

based systems [4] to self-adaptive systems [5] and robotics [6].

Software engineers can employ MDPs both during system

design to analyse different system architectures [4], [7] and at

runtime to support system reconfiguration [5], [8]. Consider a

service-based system whose operations can be performed by

alternative combinations of functionally equivalent third-party

services that operate with different reliability, response time

and cost. Modelling this service orchestration problem as an

MDP allows engineers to analyse how the use of different ser-

vice combinations affects the quality attributes of the system.

The solution to the MDP is a policy that determines which

concrete services should be selected so that a given objective,

such as the overall system reliability or operational cost, is

optimised. Given the MDP representation of such a system

and a temporal logic specification [9] that formally defines

the objective to be optimised, probabilistic model checkers

like PRISM [10] and Storm [11] can automatically synthesise

an optimal policy for the specification.

Software systems often require the simultaneous optimisa-

tion of multiple objectives whilst also satisfying a set of strict

constraints. In a service-based system, software engineers may

be interested in policies corresponding to services orchestra-

tion that minimise the system operation cost and response

time, subject to keeping the system reliability above a critical

threshold. This is an instance of a multi-objective optimisation

problem [12]. In software-intensive systems, these objectives

are typically conflicting, e.g., a more reliable or responsive

service tends to be more expensive. As such, the MDP policy

synthesis needs to generate Pareto-optimal policy sets, i.e., sets

of policies that (i) satisfy all constraints, and (ii) for which

no policy exists that also satisfies the system constraints and

achieves better values for all the optimisation objectives [13].

Executing multi-objective model checking on MDPs for

the synthesis of Pareto-optimal policies is an important and

non-trivial problem [14]. Despite recent advances [13], [15],

[16], [17], [18], existing approaches either use simple iter-

ative methods, or rely on reductions and simplifications to

solve the problem using linear programming. This limits their

applicability to (i) single-objective problems with multiple

strict constraints (for which a single best policy exists); or

(ii) unconstrained problems with up to three optimisation

objectives. Accordingly, these approaches support only a

small fragment of the multi-objective MDP model checking

spectrum, and cannot synthesise Pareto-optimal policies for

many practical problems encountered, for instance, in software

product lines [3], [19].

Our paper introduces EvoPoli, an approach that supports

the synthesis of Pareto-optimal policies for MDPs with arbi-

trary combinations of constraints and optimisation objectives.

EvoPoli uses evolutionary algorithms [12] to synthesise poli-

cies that cover sufficiently the policy space enabling decision-

makers to obtain a holistic view of the tradeoffs between the

policies in the objective space and make an informed decision.

The crux of our approach is to cast the synthesis of Pareto-

MDP model

MDP QoS
constraints &
optimisation
objectives

Multiobjective
search-based

policy
synthesis

pDTMC

pDTMC-compliant
QoS constraints
& optimisation
objectives

Action spaceMDP
transformation

Pareto front
approximation
PF
(objectives)

Pareto set
approximation
PS
(policies)

Fig. 1: EvoPoli high-level workflow.

optimal policies for MDPs as a multi-objective search-based

problem [20] and leverage the power of evolutionary algo-

rithms [12] to compute the required Pareto-optimal policies.

As shown in Figure 1, EvoPoli takes as inputs an MDP

model and a set of quality-of-service (QoS) constraints and

optimisation objectives formally defined in probabilistic com-

putational tree logic (PCTL) [9]. Through an MDP analy-

sis and transformation step, EvoPoli produces a parametric

discrete-time Markov chain (pDTMC) in which the model pa-

rameters encode the actions of the original MDP, and extracts

the action space, i.e., the set of possible actions modelled

in the MDP. During this step, EvoPoli also converts the

constraints and optimisation objectives into equivalent PCTL

specifications that comply with the pDTMC representation.

Next, EvoPoli executes a multi-objective search-based policy

synthesis procedure that successively evolves a population of

candidate policies until a termination criterion is met (either

the search budget is exhausted or no improvement occurs

over a specified number of evolution rounds). The result is

an approximate Pareto optimal set of policies, along with the

associated approximate Pareto front of QoS attribute values.

The main contributions of our paper are:

• The EvoPoli approach for the synthesis of Pareto-optimal

policies that extends the multi-objective model checking

on MDPs to a much broader spectrum of QoS software

requirement combinations than currently possible;

• An extensive EvoPoli evaluation on several variants of two

MDPs modelling real-world problems, for a wide variety

of constraints and optimisation objectives. Our experiments

show that EvoPoli can handle multiple QoS requirement

combinations unsupported by current probabilistic model

checkers. Moreover, for requirement combinations sup-

ported by these model checkers, EvoPoli produces much

better Pareto-optimal policy sets according to established

quality indicators [21] and statistical analyses [22].

• A prototype open-source EvoPoli tool and case study

repository, both available from our project web page at

https://github.com/gerasimou/MDPSynthesis.

II. PRELIMINARIES

A. Discrete-time Markov Chains

Definition 1 (Discrete-time Markov chain). A discrete-time

Markov chain (DTMC) over a set of atomic propositions AP

is a tuple D = (S, sI , P, L,R), where S 6= ∅ is a finite set

of states; sI ∈ S is the initial state; P : S × S → [0, 1]

is a transition probability matrix such that, for any states

s, s′ ∈ S, P (s, s′) gives the probability of transitioning from

s to s′, and
∑

s′∈S P (s, s′) = 1 for any s ∈ S; L : S → 2AP

is a labelling function that maps every state s ∈ S to the

atomic propositions from AP that hold in that state; and R is

a (possibly empty) set of functions ρ : S → R≥0 that associate

non-negative values with the DTMC states.

A parametric DTMC (pDTMC) is a discrete-time Markov

chain whose transition probabilities P (s, s′) are specified as

rational functions over a set of parameters [23], [24], [25].

B. Markov Decision Processes

Markov decision processes generalise DTMCs with the

ability to model nondeterminism.

Definition 2 (Markov decision process). A Markov decision

process (MDP) over a set of atomic propositions AP is a

tuple M = (S, sI , A,∆, L,R), where S, sI , L and R are

defined as for a DTMC; A 6= ∅ is a finite set of actions; and

∆ : S × A → Dist(S) is a partial probabilistic transition

function that maps state-action pairs to discrete probability

distributions over S.

In each state s ∈ S, the set of actions a ∈ A for which

∆(s, a) is defined contains the actions enabled in state s, and

is denoted by A(s). The choice of which action from A(s)
to take in every state s is assumed to be nondeterministic.

We reason about the behaviour of MDPs using policies.

A policy resolves the nondeterministic choices of an MDP,

selecting the action taken in every state. MDP policies can be

classified into infinite-memory, finite-memory and memoryless

policies (depending on whether the action selected in a state

depends on all, a finite number, or none of the previously

visited states and on the actions selected in those states).

Our work, and probabilistic model checkers such as PRISM

and Storm, consider memoryless policies. Memoryless policies

can be further classified into deterministic (when the same

action is selected each time when a state is reached) and

randomised (when the action selected in a state is given by a

discrete probability distribution over the feasible actions). In

this work, we use deterministic memoryless policies (called

simply ‘policies’ in the rest of the paper).

Definition 3 (MDP policy). A (deterministic memoryless)

policy of an MDP is a function σ : S → A that maps each

state s ∈ S to an action from A(s).

C. Probabilistic Computation Tree Logic

Probabilistic computation tree logic (PCTL) [9], [26] is used

to quantify properties related to probabilities and rewards in

system specifications modelled by DTMCs and MDPs.

Definition 4 (PCTL formulae). State PCTL formulae Φ and

path PCTL formulae Ψ over an atomic proposition set AP

are defined by the grammar:

Φ::= true |α |Φ∧Φ | ¬Φ | P∼p[Ψ] |R∼r[C
≤k] |R∼r[FΦ]

Ψ::=XΦ | Φ U Φ | Φ U≤k Φ
(1)

TABLE I: Quality requirements for TAS

ID Type Description PCTL

R1 Constraint Workflow executions must succeed
with probability at least 95%

P≥0.95[F wOK]

R2 Objective Minimise the average response time R
time

min=?[C]

R3 Objective Minimise the average operation cost R
cost

min=?[C]

where α ∈ AP is an atomic proposition, ∼∈ {≥, >,<,≤} is

a relational operator, p ∈ [0, 1] is a probability bound, r ∈ R+
0

is a reward bound, and k ∈ N>0 is a timestep bound.

The PCTL semantics is defined using a satisfaction

relation |= over the states S. Given a state s of an MDP

M, s |= Φ means “Φ holds in state s”, and we have:

always s |= true; s |= α iff α ∈ L(s); s |= ¬Φ iff

¬(s |= Φ); and s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2.

The time-bounded until formula Φ1 U
≤k Φ2 holds for a path

iff Φ1 holds in the first i < k path states and Φ2 holds in

the (i + 1)-th path state; and the unbounded until formula

Φ1 UΦ2 removes the bound k from the time-bounded until

formula. The next formula XΦ holds if Φ is satisfied in the

next state. The semantics of the probability P and reward R
operators are defined over all policies σ of M as follows:

P∼p[Ψ] specifies that the probability that paths starting at

a chosen state s satisfy a path property Ψ is ∼ p for all

policies; R∼r[C
≤k] holds if the expected cumulated reward

up to time-step k is ∼ r for all policies; and R∼r[FΦ]
holds if the expected reward cumulated before reaching a

state satisfying Φ is ∼ r for all policies. Replacing ∼ p (or

∼ r) from (1) with min =? or max =? specifies that the

calculation of the minimum/maximum probability (or reward)

over all MDP policies is required. For a full description of the

PCTL semantics, see [9], [26].

III. RUNNING EXAMPLE

We illustrate EvoPoli on a service-based Tele Assistance

System (TAS) introduced in [27]. The TAS continually tracks

a patient’s vital parameters, adapts the drug type or dose

whenever needed, and takes action in case of emergency.

TAS combines three service types in a workflow (Figure 2).

When the system receives a request that includes the patient’s

vital parameters, a Medical Service analyses the data and

replies with instructions to (i) change the patient’s drug type,

(ii) change the drug dose, or (iii) trigger an alarm for first

responders.When changing the drug type or dose, TAS notifies

a local pharmacy using a Drug Service, and the alarm to notify

the first responders is executed via an Alarm Service.

The functionality of each service type can be fulfilled by

multiple service providers that offer functionally equivalent

service implementations with different levels of reliability,

performance, and cost. Reliability is given by the percentage

of service failures over a predefined time period, performance

is given by the service’s mean response time, and cost is the

price per service invocation.

At run time, the quality attributes of the services can vary,

so TAS periodically reconfigures its workflow service bindings

:Tele
Assistance
Service

:Drug
Service

:Medical
Analysis
Service

:Alarm
Service

pick=pickTask()

sendAlarm()

sendAlarm()

alt

opt
[analysisResult!=patientOK]

[analysisResult==sendAlarm]

alt
[pick==vitalParamsMsg]

loop

[pick==buttonMsg]

data=getVitalParams()

analysisResult=analyzeData(data)

changeDrug(patientId)

changeDose(patientId)

[pick!=stopMsg]

[analysisResult==changeDrug]

[analysisResult==changeDose]

Fig. 2: TAS service workflow (adapted from [27]).

to select the combination of service implementations that

optimises its operation, based on the requirements in Table I.

The reconfiguration decision can be cast as an MDP policy

synthesis problem and modeled using high-level specification

languages employed by commonly used probabilistic model

checkers. Figure 3 illustrates the encoding of a TAS problem

instance in Prism, which contains a reconfiguration module

(reconf, lines 2-16) in charge of selecting the alternative

service implementations (one per service type) at the start

of the execution. Each of the implementation selections is

underspecified in the model and encoded as a nondetermin-

istic choice that will be resolved by the policy synthesis

process (lines 7-15). Once reconfiguration is complete, the

TASWorkflow module executes the workflow, communicat-

ing with the different service implementations selected via

synchronous actions with shared labels (between “[]” in each

command). If a service invocation fails, the workflow can

handle timeouts by retrying calls (line 34). The number of

retries is configurable via parameter MAX_TIMEOUTS (line

22). Due to space constraints, we only represent a subset of

commands that bind workflow calls with alternative service

implementations. Below the workflow module, the figure

shows an excerpt of one of the modules that encode service

implementations (medical analysis service MS1), which ac-

crues cost and time rewards (lines 55-59, 60-65, respectively),

whenever a synchronization with TASWorkflow actions oc-

curs, e.g., MS1_call (lines 48, 30).

The problem instance presented here is deliberately small

for illustration purposes. However, the solution space can grow

exponentially as alternative service implementations are added,

resulting in situations in which finding optimal policies for

service selection cannot be achieved using exhaustive search.

1 mdp

2 module reconf
3 MS sel: [0..MAX MS] init 0;
4 DS sel: [0..MAX DS] init 0;
5 AS sel: [0..MAX AS] init 0;
6

7 [sel MS1] (MS sel=0) −> (MS sel’=1);
8 ...
9 [sel MS5] (MS sel=0) −> (MS sel’=5);

10 ...
11 [sel DS1] (MS sel>0) & (DS sel=0) −> (DS sel’=1);
12 ...
13 [sel AS1] (DS sel>0) & (AS sel=0) −> (AS sel’=1);
14 ...
15 [sel AS3] (DS sel>0) & (AS sel=0) −> (AS sel’=3);
16 endmodule

17

18 module TASWorkflow
19 task:[notSelected..buttonMsg] init notSelected; ...
20 wOK : bool init false;
21 wDone : bool init false;
22 tos:[0..MAX TIMEOUTS] init MAX TIMEOUTS;
23

24 [] (reconf done) & (task=notSelected) −> 0.5: (task’=getVitalParams)
25 + 0.5: (task’=buttonMsg);
26

27 [] (task=buttonMsg) & (!MSInvoked) −> (MSInvoked’=true)
28 & (res’=sendAlarm);
29

30 [MS1 call] (task=getVitalParams) & (!MSInvoked) −> (MSInvoked’=true);
31 [MS1 patientOK] (MSInvoked) −> (res’=patientOK) & (wOK’=true)
32 & (wDone’=true);
33 ...
34 [MS1 to] (tos>0) & (MSInvoked) −> (MSInvoked’=false) & (tos’=tos−1);
35 [MS1 to] (tos=0) & (MSInvoked) −> (wDone’=true);
36 ...
37 [MS5 call] (task=getVitalParams) & (!MSInvoked) −> (MSInvoked’=true);
38

39 [DS1 call] (MSInvoked & !DInvoked) & (res=changeDrug) −> (DInvoked’=true);
40

41 [AS1 call] (MSInvoked & !AInvoked) & (res=sendAlarm) −> (AInvoked’=true);
42 endmodule

43

44 module MS1
45 MS1 OK: bool init false;
46 MS1 ready : bool init true;
47

48 [MS1 call] (MS sel=1) & (MS1 ready) −>

49 MS1 failure rate: (MS1 OK’=false) & (MS1 ready’=false)
50 + 1−MS1 failure rate: (MS1 OK’=true) & (MS1 ready’=false);
51 ...
52 [MS1 to] (MS sel=1) & (!MS1 ready) & (!MS1 OK) −> (MS1 ready’=true);
53 endmodule

54

55 rewards ”cost”
56 [MS1 call] true : MS1 cost;
57 ...
58 [AS3 call] true : AS3 cost;
59 endrewards

60 rewards ”time”
61 [MS1 patientOK] true : MS1 response time;
62 ...
63 [AS3 sendAlarmOK] true : AS3 response time;
64 [AS3 to] true : AS3 response time∗TIMEOUT MULT FACTOR;
65 endrewards

Ordered selection of
implementation for: medical
analysis, drug, and alarm
services, encoded as
nondeterministic choices.

reconf module selects alternative
implementations for different service types.

TASWorkflow module models the workflow
depicted in Figure 2.

Once reconfiguration
is done, picks task with
equal probability.

If buttonMsg picked, skips analysis, goes directly to alarm.

Calls/handles MS response to check patient’s vital parameters.

Call to service fails with probability encoding
failure rate for this service implementation.

MS determined to change drug/dose.

MS determined to raise alarm.

MSX, DSX, ASX modules model alternative
service implementations.

cost reward accrues economic cost per service call.

time reward accrues time spent on service operations.

Commands enabled only if service implementation selected.

MS timeout handling.

Fig. 3: MDP model of the Tele Assistance System [27]

encoded in the high-level modelling language of PRISM [10].

IV. EVOPOLI

A. Problem Definition

EvoPoli is applicable to systems whose behaviour can be

modelled by MDPs, with the action set A(s) from Definition 2

encoding the choices (e.g., of functionally equivalent services

that can be invoked to perform an operation) available when

the system state is modelled by state s ∈ S of the MDP.

Definition 5 (Policy Decision Space). The policy decision

space of an MDP M = (S, sI , A,∆, L,R) is the set of all

valid MDP policies, DS = {σ : S → A | σ(s) ∈ A(s)}. The

number of such policies is #DS =
∏

s∈S #A(s).

In line with the standard practice in the engineering of

software-intensive systems [20], EvoPoli considers systems

with n1 ≥ 0 constraints and n2 ≥ 1 optimisation objectives.

A constraint specifies a bound for the acceptable values of

a quality attribute, while an optimisation objective specifies

whether a quality attribute should be maximised or minimised

subject to satisfying all n1 constraints.

Given an MDP M = (S, sI , A,∆, L,R), n1 ≥ 0 PCTL-

encoded constraints of the form

Ci ::= P∼pi
[·] | R∼ri [·], 1 ≤ i ≤ n1, (2)

and n2 ≥ 1 PCTL-encoded optimisation objectives of the form

Oi ::= Pmax[·] |Pmin[·] |Rmax[·] |Rmin[·], 1 ≤ i ≤ n2, (3)

where ‘·’ is a placeholder for the set of PCTL probability

and reward properties supported by (1), the constrained multi-

objective policy synthesis problem solved by EvoPoli is to find

the Pareto-optimal set PS of MDP policies that satisfy the

n1 constraints and are Pareto-optimal with respect to the n2

optimisation objectives. Formally,

PS = {σ ∈ DS |
∧n1

i=1 B (M,σ,Ci) ∧ (∄ σ′ ∈ DS • σ′ ≺ σ)}
(4)

where B (M,σ,Ci)∈B is True if the constraint Ci is satisfied

for the MDP model M and policy σ, and False otherwise. The

dominance relation ≺: DS×DS → B, assuming minimisation

of the optimisation objectives O1, O2, · · · , On2
, is given by

∀σ, σ′ ∈ DS • σ ≺ σ′ ≡ ∀1≤ i≤n2 •Q (M,σ,Oi) ≤
Q (M,σ′, Oi) ∧ ∃1≤ i≤n2 •Q (M,σ,Oi) < Q (M,σ′, Oi)

(5)

where Q (M,σ,Oi) ∈ R denotes the value of the optimisation

objective Oi for policy σ on model M.

Finally, given the Pareto-optimal policies set PS , the Pareto-

optimal front PF is defined by

PF = {(Q (M,σ,O1) , . . . , Q (M,σ,On2
)) |σ ∈ PS} . (6)

Example 1. Requirements R1–R3 from Table I define a

constrained multi-objective optimisation problem for the MDP

modelling the TAS system from our running example (Fig-

ure 3), where n1=1, C1=R1, n2=2, O1=R2 and O2=R3.

Solving the constrained multi-objective policy synthesis

problem to establish the set PS of Pareto-optimal policies (4)

and the Pareto front PF (6) is complex and non-trivial [13].

Existing research [28], [18], [16], [17] can only solve simpler

forms of this problem, i.e., those for which n2=1 (i.e., nu-

merical queries) or n1=0 (i.e., unconstrained Pareto queries).

We explain next how our EvoPoli approach supports the

synthesis of Pareto-optimal policies for an arbitrary number of

constraints and optimisation objectives. Furthermore, through

experiments detailed in Section VI, we illustrate how EvoPoli

subsumes the policies produced by the current state-of-the-art

techniques for the simpler problem variants they can solve.

B. MDP to pDTMC Transformation

To solve the constrained multi-objective policy synthesis

problem for an MDP M= (S, sI , A,∆, L,R), we construct

a parametric DTMC D(M) = (S, sI , P, L,R) with the same

state space, initial state, labelling function and reward function

set as M. For any pDTMC states s, s′ ∈ S with actions

A(s)={a1, a2, . . . , an} enabled in state s, the transition proba-

bility P (s, s′) is defined over a parameter x(s)∈{1, 2, . . . , n}:

P (s, s′) = ∆
(

s, ax(s)
)

(s′). (7)

We use the shorthand notation x : S → N to refer to all

the parameters of this pDTMC. Next, we define n2 pDTMC

optimisation objectives O′
1, O′

2, . . . , O′
n2

analogous to the

MDP optimisation objectives from (3) such that, if the i-th
MDP optimisation objective is Pmax=?[·], then O′

i is ‘max-

imise P=?[·]’, etc. The next result shows that solving the

MDP policy synthesis problem from the previous section is

equivalent to solving a similar problem for this pDTMC.

Theorem 1. If PS ′ is the set of combinations of parameter

values for which D(M) satisfies the constraints (2) and is

Pareto-optimal with respect to the objectives O′
1, O′

2, . . . ,

O′
n2

, the solution PS of the constrained multi-objective policy

synthesis problem for the MDP M is given by

Policies(PS ′) = {σ :S→A | ∃x∈PS
′.(∀s∈S.σ(s) = ax(s))}.

(8)

Proof. We prove the theorem by contradiction. First, suppose

that Policies(PS ′) contains a policy σ /∈ PS , and let x ∈ PS ′

be the combination of pDTMC parameter values associated

with this policy. As x ∈ PS ′, the D(M) instance associated

with x satisfies the constraints (2). Also, according to (7),

the D(M) instance associated with x and the MDP M under

policy σ have identical transition probabilities, so M must also

satisfy these constraints under policy σ. As such, σ /∈ PS =⇒
∃σ′ ∈ PS . σ′ ≺ σ. Additionally, for all 1 ≤ i ≤ n2, D(M)
instance associated with x and the MDP M under policy σ
must yield the same values for the properties evaluated for the

optimisation objectives Oi and O′
i, respectively.

Consider now the D(M) parameter combination x′ that

satisfies ∀s ∈ S . σ′(s) = ai =⇒ x′(s) = i. As before, since

σ′ ∈ PS , both the MDP M under policy σ′ and the D(M)
instance associated with x′ must satisfy the constraints (7)

and must yield identical values for the properties evaluated

for the optimisation objectives Oi and O′
i, respectively, for all

1 ≤ i ≤ n2. It follows that x′ dominates x, and therefore

x /∈ PS ′, which contradicts the assumption we started from.

Accordingly, Policies(PS ′) \ PS = ∅. The same reasoning

can be used to show that PS \ Policies(PS ′) = ∅, and

therefore we must have PS = Policies(PS ′).

Example 2. Figure 4 shows the result of applying the MDP

to pDTMC transformation described above to the reconf

module from the TAS system MDP in Figure 3. This pDTMC

fragment shows how the nondeterministic choices from the

MDP are replaced by choices parameterised by the three

pDTMC parameters defined in lines 2–4.

pDTMC parameters
(possible values

shown in comments)

1 dtmc

2 const int xMS sel; // 1, 2, ..., MAX MS
3 const int xDS sel; // 1, 2, ..., MAX DS
4 const int xAS sel; // 1, 2, ..., MAX AS
5 module reconf
6 MS sel: [0..MAX MS] init 0;
7 DS sel: [0..MAX DS] init 0;
8 AS sel: [0..MAX AS] init 0;
9

10 [sel MS1] (MS sel=0) & (xMS sel=1) −> (MS sel’=1);
11 ...
12 [sel MS5] (MS sel=0) & (xMS sel=5) −> (MS sel’=5);
13 ...
14 [sel DS1] (MS sel>0) & (DS sel=0) & (xDS sel=1)−> (DS sel’=1);
15 ...
16 [sel AS1] (DS sel>0) & (AS sel=0) & (xAS sel=1) −> (AS sel’=1);
17 ...
18 [sel AS3] (DS sel>0) & (AS sel=0) & (xAS sel=3) −> (AS sel’=3);
19 endmodule

Ordered selection of service
implementations, encoded
as parameterised choices.

Fig. 4: pDTMC encoding of the reconf module from the TAS

MDP in Figure 3.

C. Evolutionary-based Policy Synthesis

Using exhaustive analysis to solve the constraint multi-

objective synthesis problem is unfeasible since the policy

decision space DS (cf. Def 5) is typically extremely large.

For instance, for the MDP model of our TAS running example

from Section III |DS| ≈ 1065, while for the systems consid-

ered in our experimental evaluation |DS| > 101000. Clearly,

enumerating and evaluating all possible policies is both time-

consuming and computationally-prohibitive.

EvoPoli reformulates the policy synthesis problem as

a search-based optimisation problem [20] and uses multi-

objective genetic algorithms (MOGA) [12], like the widely-

used NSGA-II [29] and SPEA2 [30] algorithms, to intelli-

gently navigate the decision space. EvoPoli iteratively evolves

a population of candidate policies to identify promising re-

gions in the decision space and synthesise a close approx-

imation of the Pareto-optimal policies set PS. EvoPoli

encodes each candidate policy (i.e., solution) as a tuple of

genes. Each state s ∈ S for which the cardinality of its set

of enabled actions |A(s)| ≥ 2 is mapped to a gene. For any

state s, the corresponding gene can take values from the set

{1, 2, · · · , |A(s)|}. We refer interested readers to [7], [31] for

a detailed description of this encoding.

Algorithm 1 shows the high-level process underpinning

EvoPoli for the synthesis of the Pareto-optimal policies set

PS and the corresponding Pareto front set PF . Given as

inputs the DTMC D(M) induced by the MDP M, the decision

space DS, and the lists of constraints (C1, C2, · · · , Cn1
)

and optimisation objectives (O1, O2, · · · , On2
), EvoPoli starts

with empty PS and PF sets (line 2) and iteratively evolves

them through the loop (lines 3-25) until a termination crite-

rion is met. The function TERMINATE(PS,DS) holds when

the maximum number of candidate policy evaluations has

been carried out (i.e., budget exhausted), or when no new

updates have been made in PS over a fixed number of

successive iterations (i.e., the decision space has been ex-

plored sufficiently yielding diverse and Pareto-optimal poli-

Algorithm 1 Evolutionary-based Pareto Optimal Policy Syn-

thesis

1: function SYNTHESIS (D(M), DS, (Ci)1≤i≤n1
, (Oi)1≤i≤n2

)
2: PS ← ∅, PF ← ∅
3: while ¬TERMINATE(PS,DS) do
4: G ← GENERATECANDIDATEPOLICIES(DS,PS)
5: for all σ ∈ G do
6: {(Ci,σ)1≤i≤n1

, (Oi,σ)1≤i≤n2
} ←

EVALUATEPOLICY(D(M), σ, (Ci)1≤i≤n1
, (Oi)1≤i≤n2

)
7: if ∧1≤i≤n1

{Ci,σ} then
8: dominated← false
9: for all σ′ ∈ PS do

10: if σ ≺ σ′ then
11: PS = PS \ {σ′}
12: PF =PF \{(Q(D(M), σ′, Oi))1≤i≤n2

}
13: else if σ′ ≺ σ then
14: dominated← true
15: break
16: end if
17: end for
18: if ¬dominated then
19: PS = PS ∪ {σ}
20: PF = PF ∪ {(Oi,σ)1≤i≤n2

}
21: end if
22: end if
23: end for
24: PS, PF ← DIVERSIFYPOLICIES(PS, PF)
25: end while
26: return PS, PF
27: end function

cies). Within each iteration, EvoPoli initially employs the

GENERATECANDIDATEPOLICIES function (line 4) to create

a population G of plausible policies using MOGA-specific

crossover and mutation operators. Crossover randomly chooses

two fit policies from the current Pareto-optimal set PS and

exchanges their genes to produce new policies. Mutation, on

the other hand, creates a new policy by randomly changing

a subset of the genes of a policy based on its value range

encoded in the decision space DS. Next, the for loop (lines 5-

23) evaluates each policy σ ∈ G and establishes its dominance

relation (cf. Eq. 5) with respect to the policies in PS.

To this end, the EVALUATEPOLICY function (line 6) uses

a probabilistic model checker to determine the satisfaction

condition of the n1 constraints and obtain the values for the n2

optimisation objectives. The policy σ and the objectives tuple

are added to PS and PF , respectively, only if σ satisfies

all constraints and is not dominated by any other policy in

PS. Similarly, policies dominated by σ are removed from

PS along with their associated objectives tuple (lines 7-22).

The execution of DIVERSIFYPOLICIES (line 24) uses MOGA-

specific mechanisms for diversity preservation to select poli-

cies from PS that will participate in the next iteration. These

mechanisms maintain diversity in the population and generate

a PF that covers sufficiently the objective space. For instance,

the diversity mechanism used by NSGA-II [29] combines the

non-domination level of each evaluated policy and a crowding

distance metric, i.e., the population density in its area of

the search space. Once the evolution terminates, the Pareto-

optimal set approximation PS is returned along with the

Pareto-optimal front approximation PF (line 26).

8.0 8.5 9.0 9.5 10.0
R{"cost"}=? [C]

15

20

25

30

35

40

R{
"t

im
e"

}=
?

[C
]

Evo(NSGAII)
EVO(SPEA2)

Fig. 5: Pareto front of policies for the TAS quality require-

ments from Table I synthesised using EvoPoli instrumented

with NSGA-II [29] and SPEA2 [30].

Example 3. Figure 5 shows two Pareto front PF sets obtained

for our TAS running example using the quality requirements

from Table I. As shown, the NSGA-II-instrumented EvoPoli

produces more policies than its SPEA2-instrumented counter-

part. Both MOGAs had the same experimental setup, i.e., 1000

evaluations and a population of 20. We should also highlight

that neither PRISM [10] nor Storm [11] can produce a Pareto

front for this combination of objectives and constraints.

V. IMPLEMENTATION

To ease the evaluation and adoption of EvoPoli, we have im-

plemented a prototype tool in Java that realises the high-level

EvoPoli workflow from Figure 1. The MDP transformation

component consumes an MDP model specified in the high-

level modelling language of the PRISM model checker [10]

and the PCTL-encoded constraints (2) and optimisation objec-

tives (3), and applies the process described in Section IV-B to

produce the pDTMC and the pDTMC-compliant constraints

and optimisation objectives. We have developed the synthesis

method from Algorithm 1 on top of the search-based soft-

ware engineering tool EvoChecker [7], [31]. The open-source

code of EvoPoli, the full experimental results summarised in

the following section, additional information about EvoPoli

and the case studies used for its evaluation are available at

https://github.com/gerasimou/MDPSynthesis.

VI. EVALUATION

A. Research Questions

RQ1 (Validation): How does our approach perform com-

pare to existing probabilistic model checkers? We analyse if

our approach can synthesise policies of similar quality to those

produced by the probabilistic model checkers PRISM [10]

and Storm [11] for the simpler class of problems (i.e., uncon-

strained Pareto queries) that these model checkers can solve.

RQ2 (Effectiveness): How do EvoPoli instances instru-

mented with different MOGAs compare to each other? We

used this research question to analyse the impact of different

MOGAs in the performance of EvoPoli. To this end, we study

TABLE II: Quality requirements for Ocean Worlds

ID Type Description PCTL

R1 Constraint The robotic lander must complete
its mission within 30 mins

RT

≤30
[C]

R2 Objective Maximise science value RSV

=max?
[C]

R3 Objective Maximise probability of success Pmax=?[F done]

R4 Objective Minimise energy consumption REC

min=?
[C]

the quality of EvoPoli-synthesised policies when our approach

uses the established MOGAs NSGA-II [29] and SPEA2 [32].

RQ3 (Decision support): Can EvoPoli provide useful in-

sights into the trade-offs between the quality attributes

values produced by different policies? To support decision

making and help software engineers to make informed de-

cisions, EvoPoli must synthesise policies with different trade-

offs. Hence, we assessed the trade-offs in policies produced by

EvoPoli for the software systems analysed in our evaluation.

B. Evaluation Methodology

Software Systems. We performed a wide range of exper-

iments to evaluate EvoPoli using multiple variants of two

software systems derived from different application domains:

(1) the service-based Tele Assistance System (TAS) adapted

from [27] and described in Section III; and (2) a prototype

robotic planner software component for ocean world (OW)

exploration [33] which we describe next.

Ocean Worlds (OW). The Ocean Worlds Autonomy Testbed

for Exploration Research and Simulation project led by NASA

Ames Research Center is developing an autonomy software

testbed to spur the development of autonomy technologies for

surface missions [33]. This testbed is conceived for missions

in which a robotic lander collects and analyses samples,

and then sends relevant data back to Earth. To complete

the mission, the robot must choose among xloc alternative

excavation locations each of which has an associated science

value (a measurement of the potential interest of samples in

that location) and an excavatability risk (signifying the safety

and difficulty of excavating in that part of the terrain). For

each successful excavation, the robot must choose where to

dump the resulting rubble by selecting among dloc available

dumping locations. Excavating and moving around the robot’s

arm consumes a corresponding amount of energy. Data is sent

back to Earth during a specific time window for processing and

further analysis. Table II shows the OW mission requirements.

The autonomy software on the robotic lander includes a fa-

cility to replace existing plans as the mission progresses, with

updated plans coming from Earth or generated by automated

planners on-board and/or on Earth. One of such planners

employs MDP policy synthesis to make high-level decisions

about excavation and dumping location selections, which are

encoded as nondeterministic choices in a MDP model. For

the excavation location selection, each alternative is encoded

as a command in which a failure to excavate is associated

with a probability that encodes the excavatability risk. Three

reward structures capture the science value, time, and energy

TABLE III: System variants analysed using EvoPoli

Variant Details #DS Trun:mean(±SD)
TAS2 MAX_Timeout=2 1050 9647.21(±601.56)
TAS3 MAX_Timeout=3 1067 16827.73(±598.35)
TAS4 MAX_Timeout=4 1084 26519.87(±1016.59)
OW4 xloc=4, dloc=4 1072 668.57(±31.15)
OW5 xloc=5, dloc=5 1098 3756.21(±230.38)
OW6 xloc=6, dloc=6 10138 16362.04(±688.61)

consumption associated with each selection. Due to space

constraints we omit the full details of the MDP model of this

system; we refer interested readers to our project webpage.

Experimental Setup. We performed a wide range of ex-

periments using the TAS and OW system variants from

Table III. The ‘Details’ column lists the values specified for the

variables of each system variant, i.e., the maximum timeout

(MAX_Timeout) for the TAS, and the number of excavation

(xloc) and dumping (dloc) locations for the OW system.

The column ‘#DS ’ reports the search space of the policies

according to Def. 5. Finally, the column Trun reports the

average running time (and standard deviation in parenthesis)

for completing a policy synthesis run per system variant.

We instrumented the evolutionary-based policy synthesis

algorithm of EvoPoli using the established MOGAs NSGA-

II [29] and SPEA2 [32]. We also used the following configura-

tion to evaluate our approach: 5,000 evaluations with an initial

population of 100 individuals (i.e., 50 generations in total), and

default values for single-point crossover probability pc = 0.9
and uniform polynomial mutation probability pm = 0.8.

We selected these values based on our experience in the

field [7], [15], [31] and after performing a set of preliminary

experiments.

To alleviate the potential impact of randomness in the per-

formance and effectiveness of MOGAs (e.g., when choosing

the crossover point, when sampling randomly to execute the

mutation operation), we followed the established procedure

in search-based software engineering [20]. We executed 30

independent runs per system variant from Table III and each

multiobjective optimisation algorithm [22]. All the experi-

ments were run on a CentOS Linux 6.5 64bit server with two

2.6GHz Intel Xeon E5-2670 processors and 32GB of memory.

Statistical analysis. For real-world systems such as those

used in our experimental evaluation the policy decision space

DS (Def. 5) is extremely large. Thus, producing the actual

Pareto front is typically unfeasible. Aligned with the standard

practice [21], for each system variant we produce the reference

front comprising the nondominated policies from all the runs

executed across all MOGA-based EvoPoli instances and the

policies produced by the probabilistic model checkers Storm

and PRISM (for the simple class of multi-objective policy

synthesis problems that these models checkers can handle).

We used this reference front and the widely-used Pareto-front

quality indicators below to quantify the ‘goodness of fit’ of

Pareto front approximations synthesised by EvoPoli instances,

Storm and PRISM. For each quality indicator, we use a box

plot to present its central tendency and distribution.

0.64
0.65
0.66
0.67
0.68
0.69 IHV

TAS2
IHV

TAS3
IHV

TAS4

0.0

0.2

0.4

0.6

0.8 IE IE IE

NSGAII SPEA2 PRISM Storm
0.000

0.002

0.004

0.006
IIGD

NSGAII SPEA2 PRISM Storm

IIGD

NSGAII SPEA2 PRISM Storm

IIGD

0.1
0.2
0.3
0.4
0.5

IHV

OW4
IHV

OW5
IHV

OW6

0.0
0.2
0.4
0.6
0.8
1.0 IE IE IE

NSGAII SPEA2 PRISM Storm
0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175 IIGD

NSGAII SPEA2 PRISM Storm

IIGD

NSGAII SPEA2 PRISM Storm

IIGD

Fig. 6: Boxplots comparing EvoPoli (NSGA-II), EvoPoli (SPEA2), PRISM and Storm for the TAS (left) and OW (right) system

variants and for unconstrained Pareto queries (i.e., n1=0, n2=2), evaluated using quality indicators IHV , Iǫ and IIGD.

• The IHV (Hypervolume) indicator uses a reference front

and measures the volume in the objective space consumed

by a Pareto front approximation. IHV measures both diver-

sity and convergence, and is strictly Pareto compliant1 [21].

Better Pareto front approximations have larger IHV values.

• The Iǫ (Unary additive epsilon) denotes the minimum

additive term needed to alter the objective vector from a

Pareto front approximation to dominate the corresponding

objective vector of the reference front. This indicator shows

convergence to the reference front and is Pareto compliant.

Smaller Iǫ values mean better Pareto front approximations.

• The IIGD (Inverted Generational Distance) indicator mea-

sures the Euclidean distance in the objective space between

the reference front and the Pareto front approximation.

IIGD signifies an “error measure”, and indicates both

diversity and convergence to the reference front. Smaller

IIGD values signify better Pareto front approximations.

Following the recommended practice [22], we used infer-

ential statistical tests to compare the quality indicator values

obtained by EvoPoli instances and the values obtained by

PRISM and Storm. We employed the Shapiro-Wilk test and

confirmed that the quality indicator values do not follow a

normal distribution. Thus, we used the Mann-Whitney and

Kruskal-Wallis non-parametric tests with 95% confidence level

(α = 0.05) to analyse the results without making assumptions

about the data distribution or the homogeneity of its vari-

ance. We also performed a post-hoc analysis with pairwise

comparisons between the algorithms, using the conservative

Bonferroni correction pcrit = α/k (k is the number of

comparisons) to control the family-wise error rate.

When statistical significance exists, we use Cohen’s d to

quantify the importance of the observed effect [22]. Cohen’s

d score summarises the difference between two groups as the

1Pareto compliant indicators conform to the order specified by the Pareto
dominance relation on Pareto front approximations [21]

number of standard deviations with d=0.2, d=0.5 and d=0.8
denoting a small, medium and large effect size, respectively.

C. Results & Discussion

RQ1 (Validation). Since neither PRISM nor Storm can solve

the constrained multi-objective policy synthesis problem from

Section IV-A, we can ensure a fair comparison only by

transforming the problem into an unconstrained Pareto query

(i.e., n1 = 0, n2 = 2) that both model checkers can handle2.

To achieve this, we removed constraint R1 from both systems

and retained requirements R2, R3 (minimise response time,

minimise cost) and R2, R4 (maximise science value, minimise

energy) for TAS and OW, respectively.

Figure 6 shows the boxplots for the IHV , Iǫ and IIGD

quality indicators for all six system variants from Table III.

Undoubtedly, for all quality indicators and across all system

variants there is a clear distance between the quality indicator

values obtained by EvoPoli instrumented with NSGA-II or

SPEA2 and those produced by PRISM and Storm. We con-

firmed our findings from the visual inspection of the boxplots

by using the Kruskal-Wallis test which showed statistical

significance (p-value < 0.05) for all system variants and

for all quality indicators. We also ran a post-hoc analysis

of pairwise comparisons between the EvoPoli instances, and

PRISM and Storm using the Mann-Whitney test. For all

comparisons, we observed statistically significant differences

in favour of EvoPoli, with the p-value being in the range

[6.2473E − 15, 1.0016E − 13] and with a high effect size

(d > 0.8). This is a key result of our validation experiments

that indicates EvoPoli’s capacity to produce Pareto fronts of

higher quality than those produced by PRISM and Storm.

We support further our findings through the Pareto front

approximations produced by NSGA-II-based EvoPoli, PRISM

and Storm for the OW system variants (Figure 7). Evidently,

2We selected the maximum number of objectives that both model checkers
support; Storm can handle up to three objectives.

3 4 5 6 7 8
R{"EC"}=? [C]

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

R{
"S

V"
}=

?
[C

]
Evo
Prism
Storm

4 5 6 7 8
R{"EC"}=? [C]

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R{
"S

V"
}=

?
[C

]

Evo
Prism
Storm

2 3 4 5 6 7
R{"EC"}=? [C]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

R{
"S

V"
}=

?
[C

]

Evo
Prism
Storm

Fig. 7: Pareto front approximation for the OW system variants (OW4 left, O5 middle, OW6 right) and objectives R2 (maximise

science value) and R4 (minimise energy) from Table II using PRISM, Storm and NSGA-II-based EvoPoli.

0.660
0.665
0.670
0.675
0.680
0.685
0.690 IHV

TAS2
IHV

TAS3
IHV

TAS4

0.0

0.1

0.2

0.3

0.4 IE IE IE

NSGAII SPEA2
0.0000

0.0002

0.0004

0.0006

0.0008 IIGD

NSGAII SPEA2

IIGD

NSGAII SPEA2

IIGD

0.0
0.1
0.2
0.3
0.4
0.5
0.6 IHV

OW4

IHV

OW5
IHV

OW6

0.0

0.2

0.4

0.6

0.8 IE IE IE

NSGAII SPEA2
0.000

0.005

0.010

0.015

0.020
IIGD

NSGAII SPEA2

IIGD

NSGAII SPEA2

IIGD

Fig. 8: Boxplots comparing EvoPoli (NSGA-II) and EvoPoli (SPEA2) for the TAS (left) and OW (right) system variants and

requirements from Tables I and II, respectively, evaluated using quality indicators IHV , Iǫ and IIGD.

the policies synthesised by EvoPoli for this typical run closely

approximate those produced by the model checkers while also

covering a larger spectrum of the objective space. In general,

both model checkers found the same policies as shown by

the identical Pareto fronts (Figure 7) and the almost identical

quality indicator values (Figure 6) – in few problem instances

Storm produced more solutions than PRISM. Irrespective

of the system variant, however, the produced policies are

constrained to the boundaries of the objective space. Since

the model checkers employ linear programming, they, unsur-

prisingly, have difficulties finding useful policies when the

objective space is non-convex [17]. In contrast, EvoPoli with

its MOGA-based specialisation is not sensitive to the shape or

continuity of the Pareto front, and, thus, can synthesise policies

when the objective space is also discontinuous or concave [12].

We note that due to the iterative nature of MOGAs used

in EvoPoli, our approach takes more time than PRISM or

Storm. We have demonstrated, however, that EvoPoli produces

a richer and more diversified set of solutions than the other

model checkers. Investigating mechanisms to improve the

scalability of EvoPoli is part of our future work.

These findings clearly demonstrate that EvoPoli can syn-

thesise policies of equivalent quality to those produced by

PRISM and Storm for the simpler class of problems (i.e.,

unconstrained Pareto queries) that these model checkers can

solve. Also, the EvoPoli-produced Pareto front is greatly more

diverse and covers a wider spectrum of the objective space.

RQ2 (Effectiveness). We answer this research question by

comparing the quality of the Pareto fronts synthesised by

two EvoPoli instances using NSGA-II [29] and SPEA2 [32]

for the TAS and OW system variants and the full set of

requirements from Tables I and II, respectively. Figure 5 shows

two derived Pareto fronts for a typical run using these two

EvoPoli instances. As shown in Figure 8, the distributions

of the IHV , Iǫ and IIGD quality indicators for the SPEA2-

instrumented EvoPoli have a larger overall variability. In

contrast, the NSGA-II-based boxplots are more concentrated

as indicated by the smaller whiskers and the very few points

above or below them. Since both MOGAs generally follow

the same evolutionary algorithm principles and apply elitism,

i.e., they propagate the best policies across generations, this

behaviour could occur due to the different diversity preserva-

tion mechanisms used; NSGA-II employs a crowding distance

while SPEA2 invokes an archive truncating procedure [12].

The statistical comparison using the Mann-Whitney test

showed statistical significance across all system variants,

with p-value ranging [1.716E−12,2.599E−10] and [6.255E−
10, 2.655E−06] for TAS and OW, respectively. The effect size

was large in all system variant-quality indicator combinations

except from the TAS4-IHV pair where the effect was medium.

These results provide strong empirical evidence that EvoPoli

with NSGA-II can synthesise policies that achieve better

quality indicator values than policies synthesised by EvoPoli

using SPEA2. More importantly, we have shown that EvoPoli

can form effective Pareto optimal policies sets using alternative

MOGAs, thus demonstrating the ability of EvoPolito solve the

constraint multi-objective policy synthesis problem.

RQ3 (Decision Support). We answer this research question

by qualitatively analysing the Pareto front approximations to

identify actionable insights concerning the trade-offs between

the quality attributes encoded by the synthesised policies. First,

through the use of MOGAs, EvoPoli can examine efficiently

the discontinuous, and likely non-convex, policy decision

space to produce Pareto front policy approximations that

cover sufficiently the space. Given this information, software

engineers can have a more informed view of the different

quality attributes trade-off for their system.

Second, EvoPoli enables the identification of the “points

of diminishing returns” where every increase in the value

of a quality attribute incurs a disproportional deterioration to

the other quality attributes. For the OW6 system variant, for

instance, one such point is approximately located at (5,0.75)

signifying that policies which contribute higher science val-

ues consume significantly more energy. Depending on the

system-specific preferences, software engineers can use this

information to eliminate such policies (if a balance in quality

attributes is preferred) or analyse further these policies (e.g.,

equip the robot with a larger battery to accommodate the

increased energy consumption and enable to use this policy).

Finally, a closer inspection of the Pareto policies set revealed

multiple policies that yielded the same quality attribute values.

From a planning perspective, these alternative policies (cannot

be shown on the Pareto fronts as their values overlap) are

very useful as they can support fast system reconfiguration

without the need to perform another policy synthesis operation.

Having, for instance, a repository of policies with the same

quality attributes enables the quick selection of the functioning

policies when a malfunction renders the currently active policy

unusable. This is a unique feature of EvoPoli that does not

exist in either Storm or PRISM.

D. Threats to Validity

We limit construct validity threats that could occur due

to simplifications in the adopted experimental methodology

using the widely-studied TAS case study [27]. We obtained

the information for the OW system from the literature [33].

We mitigate internal validity threats that could introduce

bias when establishing the causality between our findings and

the experimental study by assessing EvoPoli using independent

research questions. We reported results over 30 independent

runs per system variant, thus reducing threats due to the

stochasticity of the employed multi-objective evolutionary

algorithms. Also, we used the inferential statistical tests Mann-

Whitney and Kruskal-Wallis to check for statistical signif-

icance (α = 0.05), supported by post-hoc analysis using

Mann-Whitney’s test and Bonferroni’s correction to control

the family-wise error rate. Finally, we employed Cohen’s d to

assess the effect size and calculate the amount of improvement.

We mitigate external validity threats that could affect the

generalisation of our approach by developing EvoPoli on top

of the search-based software engineering tool EvoChecker [31]

that uses MDP models encoded in the high-level modelling

language of PRISM [10]. The experimental evaluation using

multiple variants of two software systems reduces further

the risk that EvoPoli may be difficult to use in practice.

However, further experiments are needed to establish the

applicability, feasibility and scalability of EvoPoli in domains

and applications with characteristics different from those used

in our evaluation.

VII. RELATED WORK

Markov decision processes (MDP) have a wide range of ap-

plications in software systems across many domains [8], [34],

[35], [36]. MDP models can leave nondeterministic choices

underspecified, which can be resolved in disparate ways by

different control policies that can balance multiple, potentially

conflicting, objectives [3], [37], [38]. In a high optimisation

space, there is typically no single policy that optimises all

objectives, but rather, a set of Pareto optimal policies with

different tradeoffs that form a Pareto front. For existing model

checkers, Pareto fronts are often obtained by either using linear

programming [16], [13] or iterating over weighted sums of

objectives [17], [39], [40]. Employing these methods lead to

limited applicability and scalability due to the computational

cost involved, constrained search space and the limited number

of optimisation objectives supported [7], [31], [18], [28].

PRISM and Storm, for instance, are two of the most advanced

probabilistic model checkers currently available, and they are

limited to synthesis of MDP multi-objective policies that can

consider up to two and three optimisation objectives without

constraints (in Storm and PRISM, respectively), or only one

objective if the problem contains constraints. In contrast,

EvoPoli can handle an arbitrary combination of any number

of constraints and objectives. Also, Pareto fronts generated

by our approach contain much more diversity because, unlike

other approaches, the applicability of evolutionary algorithms

is not constrained to convex optimisation problems, where the

set of achievable values for a Pareto query is also convex [17].

Multi-objective Reinforcement learning (RL) is a technique,

orthogonal to model checking, for obtaining Pareto optimal

policies. A major research direction of multi-objective RL

is currently on improving the efficiency of training [41],

[42], [43]. The approximation of Pareto fronts using RL is

determined by minimising the difference between sampling

actions and feedback signals. In contrast to conventional RL,

multi-objective RL uses one scalar feedback signal per ob-

jective, which amplifies training complexity and makes it less

efficient [44]. Another issue of using RL for obtaining Pareto

optimal policies is that it does not always guarantee safety

properties, although recent works started introducing extra

mechanisms to mitigate this issue (e.g., by integrating human

or domain knowledge in the training) [45]. However, these

approaches have several limitations, i.e., do not support multi-

objective optimisation [46], make strong assumptions [47], or

need complex preprocessing [43].

Search-based software engineering (SBSE), has been exten-

sively studied in various applications and domains, including

project management [48], [49], [50], software testing [51],

[52], [53], model checking [20], [54], [55], [56] and feature

selection in software product lines [57], [58]. SBSE has also

been extended to synthesising Pareto-optimal sets of proba-

bilistic models [7], [31], [59], [60]. EvoChecker [7], [31] uses

multiobjective optimisation (i.e., genetic algorithms) to au-

tomatically produce approximate Pareto-optimal probabilistic

model sets with respect to given requirements or constraints. In

our work, we leverage EvoChecker as a means of supporting

the synthesis method from Algorithm 1.

EvoPoli is, to the best of our knowledge, the first that can

solve the multi-objective constrained policy synthesis problem.

Concretely, EvoPoli can approximate a set of Pareto optimal

policies and the Pareto front for an arbitrary combination of

any number of optimisation objectives and constraints.

VIII. CONCLUSION

We presented EvoPoli, a tool-supported approach for the

automated synthesis of Pareto-optimal policies for MDPs

with complex combinations of constraints and optimisation

objectives. We evaluated EvoPoli on two case studies from

different domains and demonstrated its ability to synthesise

policies for problems that can be handled by the probabilistic

model checkers PRISM [10] and Storm [11] as well as for

more complex problems that neither of them can support. Our

future work includes (1) extending EvoPoli to support policy

synthesis on timed MDPs; (2) explore parallelisation methods

to improve EvoPoli’s scalability; and (3) applying EvoPoli to

other applications and scenarios.

Acknowledgements: This research was supported by the

European Union’s Horizon 2020 project SESAME (grant

agreement No 101017258), the UKRI project EP/V026747/1

‘Trustworthy Autonomous Systems Node in Resilience’, the

UK EPSRC project EP/R026173/1 ‘Offshore Robotics for

Certification of Assets’ (through its PRF project COVE), and

the Assuring Autonomy International Programme.

REFERENCES

[1] M. L. Puterman, “Markov decision processes,” Handbooks in operations

research and management science, vol. 2, pp. 331–434, 1990.

[2] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[3] P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier, “Profeat: feature-
oriented engineering for family-based probabilistic model checking,”
Formal Aspects of Computing, vol. 30, no. 1, pp. 45–75, 2018.

[4] J. Cámara, D. Garlan, and B. Schmerl, “Synthesizing tradeoff spaces
with quantitative guarantees for families of software systems,” Journal

of Systems and Software, vol. 152, pp. 33–49, 2019.

[5] G. Su, T. Chen, Y. Feng, D. S. Rosenblum, and P. Thiagarajan, “An
iterative decision-making scheme for markov decision processes and its
application to self-adaptive systems,” in International Conference on

Fundamental Approaches to Software Engineering. Springer, 2016,
pp. 269–286.

[6] B. Lacerda, D. Parker, and N. Hawes, “Optimal policy generation for
partially satisfiable co-safe ltl specifications.” in IJCAI, 2015, pp. 1587–
1593.

[7] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthesis
of probabilistic models for quality-of-service software engineering,” in
2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE, 2015, pp. 319–330.

[8] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive self-
adaptation under uncertainty: a probabilistic model checking approach,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering, 2015, pp. 1–12.

[9] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.

[10] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification
of probabilistic real-time systems,” in International Conference on

Computer Aided Verification. Springer, 2011, pp. 585–591.

[11] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming:
A modern probabilistic model checker,” in International Conference on

Computer Aided Verification. Springer, 2017, pp. 592–600.

[12] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen et al., Evolutionary

algorithms for solving multi-objective problems. Springer, 2007, vol. 5.

[13] K. Etessami, M. Kwiatkowska, M. Y. Vardi, and M. Yannakakis,
“Multi-objective model checking of Markov decision processes,” in
International Conference on Tools and Algorithms for the Construction

and Analysis of Systems. Springer, 2007, pp. 50–65.

[14] C. Baier, H. Hermanns, and J.-P. Katoen, “The 10,000 facets of MDP
model checking,” in Computing and Software Science. Springer, 2019,
pp. 420–451.

[15] R. Calinescu, M. Autili, J. Cámara, A. Di Marco, S. Gerasimou,
P. Inverardi, A. Perucci, N. Jansen, J.-P. Katoen, M. Kwiatkowska et al.,
“Synthesis and verification of self-aware computing systems,” in Self-

Aware Computing Systems. Springer, 2017, pp. 337–373.

[16] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu,
“Quantitative multi-objective verification for probabilistic systems,” in
International Conference on Tools and Algorithms for the Construction

and Analysis of Systems. Springer, 2011, pp. 112–127.

[17] V. Forejt, M. Kwiatkowska, and D. Parker, “Pareto curves for prob-
abilistic model checking,” in International Symposium on Automated

Technology for Verification and Analysis. Springer, 2012, pp. 317–332.

[18] F. Delgrange, J.-P. Katoen, T. Quatmann, and M. Randour, “Simple
strategies in multi-objective MDPs,” in International Conference on

Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2020, pp. 346–364.

[19] J. R. Harbin, S. Gerasimou, N. Matragkas, A. Zolotas, and R. Calinescu,
“Model-driven simulation-based analysis for multi-robot systems,” in
ACM/IEEE 24th International Conference on Model Driven Engineering

Languages and Systems (MODELS), 2021.

[20] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Computing

Surveys (CSUR), vol. 45, no. 1, pp. 1–61, 2012.

[21] E. Zitzler, J. Knowles, and L. Thiele, “Quality assessment of Pareto set
approximations,” Multiobjective optimization, pp. 373–404, 2008.

[22] A. Arcuri and L. Briand, “A practical guide for using statistical tests
to assess randomized algorithms in software engineering,” in 2011 33rd

International Conference on Software Engineering (ICSE). IEEE, 2011,
pp. 1–10.

[23] C. Daws, “Symbolic and parametric model checking of discrete-time
Markov chains,” in First International Conference on Theoretical As-

pects of Computing (ICTAC), 2005, pp. 280–294.

[24] R. Calinescu, C. Paterson, and K. Johnson, “Efficient parametric model
checking using domain knowledge,” IEEE Transactions on Software

Engineering, vol. 47, no. 6, pp. 1114–1133, 2021.

[25] X. Fang, R. Calinescu, S. Gerasimou, and F. Alhwikem, “Fast parametric
model checking through model fragmentation,” in 2021 IEEE/ACM 43rd

International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 835–846.

[26] A. Bianco and L. De Alfaro, “Model checking of probabilistic and
nondeterministic systems,” in International Conference on Foundations

of Software Technology and Theoretical Computer Science. Springer,
1995, pp. 499–513.

[27] D. Weyns and R. Calinescu, “Tele assistance: A self-adaptive service-
based system exemplar,” in 10th IEEE/ACM International Symposium on

Software Engineering for Adaptive and Self-Managing Systems, SEAMS

2015. IEEE Computer Society, 2015.
[28] T. Quatmann, S. Junges, and J.-P. Katoen, “Markov automata with

multiple objectives,” Formal Methods in System Design, pp. 1–54, 2021.
[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
[30] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength

Pareto evolutionary algorithm,” in Evolutionary Methods for Design

Optimization and Control with Applications to Industrial Problems

(EUROGEN’01), 2001, pp. 95–100.
[31] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of proba-

bilistic models for quality-of-service software engineering,” Automated

Software Engineering, vol. 25, no. 4, pp. 785–831, 2018.
[32] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-

parative case study and the strength pareto approach,” IEEE transactions

on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.
[33] L. Edwards, U. Wong, K. Dalal, C. Kulkarni, A. Rogg, A. Tardy,

T. Stucky, O. Umurhan, D. Catanoso, and T. Welsh, “An autonomy
software testbed simulation for ocean worlds missions,” in Earth and

Space 2021, 2021, pp. 369–380.
[34] T. L. Cheung, K. Okamoto, F. Maker III, X. Liu, and V. Akella, “Markov

decision process (MDP) framework for optimizing software on mobile
phones,” in Proceedings of the seventh ACM International Conference

on Embedded software, 2009, pp. 11–20.
[35] A. Ksentini, T. Taleb, and M. Chen, “A Markov decision process-

based service migration procedure for follow me cloud,” in 2014 IEEE

International Conference on Communications (ICC). IEEE, 2014, pp.
1350–1354.

[36] J. Noppen, M. Aksit, B. Tekinerdogan, and V. Nicola, “Market-driven
approach based on Markov decision theory for optimal use of resources
in software development,” IEE proceedings-Software, vol. 151, no. 2,
pp. 85–94, 2004.

[37] K. Chatterjee, “Markov decision processes with multiple long-run aver-
age objectives,” in International Conference on Foundations of Software

Technology and Theoretical Computer Science. Springer, 2007, pp.
473–484.

[38] E. M. Hahn, V. Hashemi, H. Hermanns, M. Lahijanian, and A. Turrini,
“Multi-objective robust strategy synthesis for interval Markov decision
processes,” in International Conference on Quantitative Evaluation of

Systems. Springer, 2017, pp. 207–223.
[39] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, “The

probabilistic model checker storm,” arXiv preprint arXiv:2002.07080,
2020.

[40] A. Hartmanns, S. Junges, J.-P. Katoen, and T. Quatmann, “Multi-cost
bounded reachability in MDP,” in International Conference on Tools

and Algorithms for the Construction and Analysis of Systems. Springer,
2018, pp. 320–339.

[41] G. Tesauro, R. Das, H. Chan, J. O. Kephart, D. Levine, F. L. Rawson III,
and C. Lefurgy, “Managing power consumption and performance of
computing systems using reinforcement learning.” in NIPS, vol. 7.
Citeseer, 2007, pp. 1–8.

[44] K. Van Moffaert and A. Nowé, “Multi-objective reinforcement learning
using sets of pareto dominating policies,” The Journal of Machine

Learning Research, vol. 15, no. 1, pp. 3483–3512, 2014.

[42] L. Barrett and S. Narayanan, “Learning all optimal policies with
multiple criteria,” in Proceedings of the 25th International Conference

on Machine Learning, 2008, pp. 41–47.

[43] K. Van Moffaert, M. M. Drugan, and A. Nowé, “Scalarized multi-
objective reinforcement learning: Novel design techniques,” in 2013

IEEE Symposium on Adaptive Dynamic Programming and Reinforce-

ment Learning (ADPRL). IEEE, 2013, pp. 191–199.
[45] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-

ment learning,” Journal of Machine Learning Research, vol. 16, no. 1,
pp. 1437–1480, 2015.

[46] S. Junges, N. Jansen, C. Dehnert, U. Topcu, and J.-P. Katoen, “Safety-
constrained reinforcement learning for MDPs,” in International Con-

ference on Tools and Algorithms for the Construction and Analysis of

Systems. Springer, 2016, pp. 130–146.

[47] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[48] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take this
anymore: Multi-objective overtime planning for software engineering
projects,” in 35th International Conference on Software Engineering

(ICSE). IEEE, 2013, pp. 462–471.

[49] J. Ren, M. Harman, and M. Di Penta, “Cooperative co-evolutionary
optimization of software project staff assignments and job scheduling,”
in International Symposium on Search Based Software Engineering.
Springer, 2011, pp. 127–141.

[50] C. Stylianou, S. Gerasimou, and A. S. Andreou, “A novel prototype tool
for intelligent software project scheduling and staffing enhanced with
personality factors,” in 24th IEEE International Conference on Tools

with Artificial Intelligence, vol. 1. IEEE, 2012, pp. 277–284.

[51] J. H. Andrews, T. Menzies, and F. C. Li, “Genetic algorithms for
randomized unit testing,” IEEE Transactions on Software Engineering,
vol. 37, no. 1, pp. 80–94, 2011.

[52] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transac-

tions on Software Engineering, vol. 39, no. 2, pp. 276–291, 2012.

[53] M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order mutation-
based test data generation,” in Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of

Software Engineering, 2011, pp. 212–222.

[54] G. Katz and D. Peled, “Synthesis of parametric programs using genetic
programming and model checking,” arXiv preprint arXiv:1402.6785,
2014.

[55] E. Alba and F. Chicano, “Finding safety errors with aco,” in Proceedings

of the 9th Annual Conference on Genetic and Evolutionary Computation,
2007, pp. 1066–1073.

[56] ——, “Searching for liveness property violations in concurrent systems
with ACO,” in Proceedings of the 10th annual Conference on Genetic

and Evolutionary Computation, 2008, pp. 1727–1734.

[57] L. Ochoa, O. Gonzalez-Rojas, A. P. Juliana, H. Castro, and G. Saake,
“A systematic literature review on the semi-automatic configuration of
extended product lines,” Journal of Systems and Software, vol. 144, pp.
511–532, 2018.

[58] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon, “Combining
multi-objective search and constraint solving for configuring large
software product lines,” in 37th IEEE/ACM International Conference

on Software Engineering, vol. 1. IEEE, 2015, pp. 517–528.

[59] R. Calinescu, M. Češka, S. Gerasimou, M. Kwiatkowska, and N. Pao-
letti, “Efficient synthesis of robust models for stochastic systems,”
Journal of Systems and Software, vol. 143, pp. 140–158, 2018.

[60] ——, “Designing robust software systems through parametric markov
chain synthesis,” in 2017 IEEE International Conference on Software

Architecture (ICSA). IEEE, 2017, pp. 131–140.

