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Natural conversations are characterized by short transition times between turns. This

holds in particular for multi-party conversations. The short turn transitions in everyday

conversations contrast sharply with the much longer speech onset latencies observed

in laboratory studies where speakers respond to spoken utterances. There are many

factors that facilitate speech production in conversational compared to laboratory

settings. Here we highlight one of them, the impact of competition for turns. In multi-

party conversations, speakers often compete for turns. In quantitative corpus analyses

of multi-party conversation, the fastest response determines the recorded turn transition

time. In contrast, in dyadic conversations such competition for turns is much less likely

to arise, and in laboratory experiments with individual participants it does not arise

at all. Therefore, all responses tend to be recorded. Thus, competition for turns may

reduce the recorded mean turn transition times in multi-party conversations for a simple

statistical reason: slow responses are not included in the means. We report two studies

illustrating this point. We first report the results of simulations showing how much the

response times in a laboratory experiment would be reduced if, for each trial, instead

of recording all responses, only the fastest responses of several participants responding

independently on the trial were recorded. We then present results from a quantitative

corpus analysis comparing turn transition times in dyadic and triadic conversations.

There was no significant group size effect in question-response transition times, where

the present speaker often selects the next one, thus reducing competition between

speakers. But, as predicted, triads showed shorter turn transition times than dyads

for the remaining turn transitions, where competition for the floor was more likely to

arise. Together, these data show that turn transition times in conversation should be

interpreted in the context of group size, turn transition type, and social setting.

Keywords: multi-party conversation, turn-taking, turn transitions, competition, response times, response

latencies

INTRODUCTION

In everyday conversation, speakers’ turns are well coordinated in time. As noted in a seminal article
by Sacks et al. (1974), turns alternate such that most of the time only one person talks, and the gaps
and overlaps between their turns are short. For instance, for a corpus of polar (yes/no) questions in
ten languages Stivers et al. (2009) found a mean turn transition duration of around 200 ms when
averaging across languages and little variation between languages. For a corpus of Dutch, English,
and Swedish conversations Heldner and Edlund (2010) reported similar values. An important
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issue in current psycholinguistic work on conversation is how
interlocutors achieve this tight coordination of their turns.
The short turn transition times are remarkable because they
contrast sharply with the much longer speech onset latencies
observed when participants in psycholinguistic experiments
produce simple utterances. For instance, naming an object takes
at least 600 ms (e.g., Indefrey and Levelt, 2004) and planning a
sentence describing a scene can easily take more than a second
(Griffin and Bock, 2000; Konopka, 2012). How can speakers be
so fast to respond to each other in conversation when it takes
them so long to plan simple utterances in the laboratory? As we
review below, many variables have already been identified that
likely support fast turn-taking in natural conversation. In the
present paper, we explore the impact of a variable that has not
received much attention in the literature: competition for turns,
which, we argue, shortens turn transition times in multi-party
conversations compared to dyadic conversations. It may also
contribute to explaining the discrepancy between long response
times in laboratory studies of speech planning and short turn
transition times in corpora of conversational speech.

Levinson and Torreira (2015; see also Levinson, 2016)
proposed that speakers achieve fast transitions between their
turns by being proactive: They do not await the end of the
partner’s turn, but begin to plan a response as soon as possible.
For example, a guest in a restaurant hearing the waiter say “Can
I.?” may often be able to guess the continuation of the question
(“...get you anything else?”) or at least its gist, and plan a response
after the first couple of words. This Early Planning Hypothesis
plays a central role in Levinson and Torreira’s model of turn
taking. Interlocutors begin to plan a response to their partner as
soon as they have sufficient information to do so and launch it
when the end of the turn is imminent.

Several laboratory studies have examined whether speakers
indeed already begin to plan an utterance while still listening
to their partner. This is not self-evident because both
comprehending and planning utterances require cognitive
resources, and because the conceptual and linguistic encoding
processes may interfere with each other (e.g., Ferreira and
Pashler, 2002; Cleland et al., 2012; Boiteau et al., 2014).
In these studies, participants heard utterances and had to
respond as quickly as possible. The critical manipulation was
that the cue to the answer appeared either early or late in
the utterance. If, as the Early Planning Hypothesis predicts,
utterance planning begins as soon as possible, the response
times should be shorter when the cue appears early than when
it appears late in the utterance. As an example, in the first
study of this type, Bögels et al. (2015) used quiz questions,
where the cue to the answer appeared early, as in “Which
character, also called 007, appeared in the famous movies?” or
late, as in “Which character from the famous movies is also
called 007?” They found that the participants responded faster,
on average by about 300 ms, in the former than in the latter
condition (means: 640 versus 950 ms). This suggests that they
must have begun planning their utterances earlier in the early
than in the late cue condition, as predicted by Levinson and
Torreira’s Early Planning Hypothesis. Later studies using similar
paradigms provided further strong support for this hypothesis

(Barthel et al., 2016; Bögels et al., 2018; Corps et al., 2018, 2019;
Meyer et al., 2018).

Though these studies unambiguously supported the Early
Planning Hypothesis, they consistently failed to elicit latencies
that were as short as the mean turn transitions obtained in
quantitative analyses of conversational corpora. These are, as
noted above, often around 200 ms. For instance, in the study
by Bögels et al. (2015), the mean response time in the early cue
condition was 640 ms; in the study by Barthel et al. (2016) it was
806 ms; and in the study by Corps et al. (2018, Experiment 2b)
it was 484 ms. This discrepancy indicates that early planning by
itself does not suffice to explain the speed of conversational turn-
taking and that there must be other factors at play that are absent
in typical laboratory experiments.

A number of potentially important factors have been discussed
in the literature. For instance, in natural conversation speakers
can often refer to mutually shared knowledge (also called
“common ground”), which facilitates understanding and the
generation of appropriate responses (Clark, 1996; Brown-
Schmidt et al., 2015). Relatedly, interlocutors may converge in
their use of words and phrases. Over the course of an interaction,
this may lead to increasing alignment of their conceptual and
linguistic representations, which facilitatesmutual understanding
and responding (e.g., Pickering and Garrod, 2004; Garrod and
Pickering, 2009; Branigan and Pickering, 2017; but see Healey
et al., 2014). Such alignment can also arise in laboratory
contexts (e.g., Garrod and Anderson, 1987; Brennan and Clark,
1996; Branigan et al., 2000). However, often the semantic
and/or syntactic structure of the utterances to be produced
in a laboratory study is largely predetermined, preventing
spontaneous facilitatory alignment (e.g., Sjerps and Meyer, 2015;
Barthel et al., 2017). Furthermore, conversation often features
very short contributions (“yeah”) and utterances beginning with
turn-initial particles, which are likely to be fast to initiate, but
do not appear in typical laboratory speech (e.g., Knudsen et al.,
2020). Finally, natural conversations are often multimodal (e.g.,
including manual, head and facial gestures in addition to speech)
and the presence of visual informationmay substantially facilitate
the comprehension and production of utterances (Holler
et al., 2018). In contrast, most psycholinguistic experiments
assessing the Early Planning Hypothesis have allowed the use of
spoken language only.

In short, there are many potential reasons why laboratory-
recorded response times are much longer than turn transition
times in conversation. In this paper, we draw attention to a factor
that seems to have been largely overlooked so far: competition
for turns, which may arise in multi-speaker conversations but is
much less likely to occur in dyadic conversations and is absent
from standard laboratory experiments where participants are
tested individually.

To elaborate, in a standard psycholinguistic experiment,
participants are tested individually and all of their responses
(perhaps with the exclusion of errors and some outliers, i.e.,
responses with extremely short or long latencies) are recorded
and averaged. The same is likely to apply in analyses of dyadic
conversations. Here participants abide by common turn-taking
rules, which involves that the current speaker gives the other
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speaker(s) the opportunity to take the turn before continuing
to speak themselves (Sacks et al., 1974). This means that in
quantitative corpus analyses of dyadic conversations all speakers’
planned responses (except perhaps for some responses with very
pronounced delays foreshadowing dispreferred responses; see
Kendrick and Holler, 2017) tend to be realized and recorded.

The situation is different in multi-party conversations. Here
several speakers may wish to speak but typically only one person,
the fastest responder, obtains the next turn (Sacks et al., 1974).
Thus, those turns that may have been planned but were never
issued because someone else responded faster will not enter into
the analysis. Alternatively, two or more speakers may start to
speak almost at the same time, but in a quantitative corpus
analysis the turn transition time would typically still be the fastest
responder’s time, or such cases would be removed from the
analysis altogether. In short, in multi-party conversation, only
the fastest of the competing responses are included in the mean
turn transition time, whereas the mean for dyadic conversations
is based on almost all responses.

To illustrate the impact of this sampling bias on typical
response times we describe the results of simulations showing
how the mean and median response times from a laboratory
experiment would change, relative to the mean and median of
all response times, if for each trial only the fastest response times
from two or more participants were recorded and averaged. For
instance, if participant A had a response time of 650 ms and
participant B had a response time of 700 ms, either both latencies
or only A’s latency would be entered into the dataset. These
simulations show the impact of recording all or a subset of the
response times and combining them in a mean or median. They
do not concern the ways the speakers’ behavior may change when
they talk in smaller or larger groups.

Then we turn to actual conversations. As discussed above, in
quantitative analyses of multi-party conversation, the recorded
turn transition time is the response time of the fastest speaker.
It follows that as more people participate in a conversation, the
mean turn transition time, which is the mean fastest response
time, should decrease even when the individual speakers’
behavior is not affected by the number of participants. The
same holds for the median. Of course, the speakers’ behavior
may change as well. For instance, speakers may begin to plan
or launch utterances earlier as they compete for the floor with
more co-participants. Although conversation as a whole may
be characterized as collaborative, there is often a competitive
element to turn-taking (French and Local, 1983; Schegloff, 2000;
Kurtić et al., 2013), arising perhaps most clearly in multi-party
conversation (e.g., Sacks et al., 1974, p. 712).

No systematic quantitative comparison of turn transitions in
dyadic and multi-party conversations appears to exist to date.
The existing quantitative studies of turn transition times focused
on dyads (e.g., ten Bosch et al., 2004; Heldner and Edlund,
2010; Roberts et al., 2015) or on multi-party conversations
(Girard-Groeber, 2015; Holler et al., 2018) or did not distinguish
between dyadic and multi-party conversations in their analyses
(e.g., Stivers et al., 2009; de Vos et al., 2015). The effect of
competition for the floor on turn transition times has been
investigated by comparing dyads interacting in friendly chats or

arguments, with the latter resulting in shorter turn transitions
(Trimboli and Walker, 1984), but not in multi-party compared
to dyadic conversation.

To begin to fill this gap in the literature, we present an analysis
of a corpus of unscripted casual conversations investigating the
effect of group size (dyadic versus triadic) on turn transition
times. The conversations were recorded in a laboratory, and
the participants in the dyadic conversations also participated in
the triadic conversations. We distinguished between two types
of turn transitions, question-response sequences (QR transitions
hereafter) and non-question-response turn transitions (non-QR
transitions). The rationale for this is that questions often specify
a specific respondent even in multi-party settings (e.g., Holler
and Kendrick, 2015) or address several participants as one
collective unit (Lerner, 1993). This may reduce the competitive
element of turn-taking compared to non-QR transitions. In non-
QR transitions, the current speaker may also select the next
speaker, but speakers may more frequently self-select. Hence
competitive effects should be seen more clearly in non-QR
than in QR transitions. Note that in the present study we do
not distinguish between competitive overlap (i.e., overlap that
would be perceived as interruptive) and non-competitive overlap
(Ferguson, 1977; Beattie, 1982; French and Local, 1983; Schegloff,
2000, 2001). This distinction is undoubtedly an important one for
understanding the phenomenon of overlap and its management
in interaction. However, the focus of the present study is on turn
transition times, that is, a continuous measure of the extent of
the gap or overlap that occurs between speakers. This measure is
related to previous studies that have measured response times in
conversational corpora (see above) which also did not consider
different types of overlap. For comparability, we here apply the
same general measure.

In sum, we propose that turn transition times in multi-
party conversation may be reduced for two related reasons:
First, there is a statistical reason; the fastest of several planned
responses determines the recorded turn transition time. Second,
the speakers’ behavior may change when they compete for the
turn. Note that we are not proposing that competition for the
floor is the only, or even the most important, cause of short
turn transition times in multi-party conversation. We view it as
one factor that may be influential but has so far received little
attention in the psycholinguistic literature on conversation.

STUDY 1: SIMULATIONS

The aim of the simulations was to examine how much the
response time distribution obtained in a laboratory experiment
would change if, instead of recording all responses, for each trial
only the fastest response from two or more participants were
recorded. The observed response times, on which the simulations
were based, come from an experiment by Meyer et al. (2018,
Experiment 1), which we briefly describe below.

Experiment and Dataset
The participants were 21 adult native speakers of Dutch. The data
from one participant were excluded due to technical failure. The
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participants were asked to listen to recorded questions about the
objects on their screen (e.g., “Heb je een groene sweater?” English
“Do you have a green sweater?”) and to respond as quickly as
possible with “ja” (yes) or “nee” (no). There were always four
objects on the screen. The referent object (the sweater in the
example) was always included in this four-object display, but
not necessarily in the color mentioned in the question. There
were two experimental conditions, called the monochrome and
the multi-color condition. In the monochrome condition all
objects had the same color. In the multi-color condition they
had different colors. This affected when the participants could
begin to plan their response. For instance, when the question
was about a green sweater and all objects on the screen were
green, the participants could prepare to answer affirmatively as
soon as they had comprehended the color adjective. Similarly,
when all objects were white, the participants could begin to
prepare a negative answer as soon as they had comprehended the
adjective. In contrast, when the four objects on the screen had
different colors, the participants could only begin to prepare a
response after they had comprehended the noun as well. Thus,
the Early Planning Hypothesis predicts that the response times
should to be shorter in the monochrome than in the multi-
color condition. The experiment included 256 trials, with 128
monochrome and 128 multi-colored displays. 64 monochrome
and 64 multi-colored displays required an affirmative answer.
The remaining displays required a negative answer.

A native Dutch speaker transcribed the utterances. Incorrect
responses (less than 3% of the responses) and outliers, i.e.,
responses times deviating by more than 2.5 standard deviations
(SD) from the condition mean (0–3% of the responses per
condition) were excluded from the analyses. Table 1 shows the
results for the remaining responses. As expected, participants
were faster to respond in the monochrome condition than in
the multi-color condition. In addition, affirmative answers were
overall given faster than negative ones. The benefit for affirmative
over negative answers was smaller in themonochrome than in the
multi-color condition. For the statistical analysis and a discussion
of the findings, please refer to the original paper.

Methods
For the simulations, we created simulated pairs of participants,
and for each simulated trial selected the fastest response time:
First, we paired each of the 20 participants with each of the
other participants, yielding 190 pairs. To obtain simulated data
for each trial, response times were selected at random from

each participant’s data per condition (for instance from the
response times in the monochrome affirmative condition). Thus
for each trial, two response times, one from each participant,
were selected. This was done 32 times per condition, simulating
the 32 trials of the experiment. For the entire experiment, this
yielded a dataset of 44,442 response time pairs. The shorter of
the response times was selected and plotted as the “winning”
response time per trial.

Results and Discussion
Figure 1 shows as density plots how the observed response
times per condition (in blue) and the simulated “winning”
response times (in orange) were distributed. As can be seen, the
distributions of “winning” response times peaked earlier and had
thinner right tails, i.e., included fewer long response times.

The simulated condition means and medians of the winning
response times are tabulated in Table 1 next to the empirically
observedmeans andmedians for all responses. The two rightmost
columns of the table show the gain, that is the differences
between the means and median observed in the experiment and
in the simulation.

As the numbers in the gain columns show, in the multi-color
conditions, the estimated mean response time was shorter by
92 ms in both the affirmative and negative response condition for
the “winning” responses compared to all responses. The medians
changed less, by 28 and 48 ms for affirmative and negative
responses, respectively. This is because medians are less affected
by extreme values than means. In the comparison of the two
response times per trial and the selection of the fastest one the
longest response times are most likely to be discarded.

In the monochrome conditions, the response distributions
were bimodal, as can be seen in the density plots. This is because
here participants could, but did not have to, respond before the
end of the question. As all objects on the screen had the same
color, they could respond as soon as they had understood the
adjective (“Do you have a green?”), which yielded response onsets
shortly before the end of the question (“.sweater?”). However,
participants often only responded after they had heard the
entire question, yielding much later response onsets. The average
reduction in mean response time was 149 ms for affirmative and
128 ms for negative responses. The medians were reduced by 66
and 75 ms, respectively.

In further simulations we assessed how the typical “winning”
response times changed when responses from more than two
participants were included and compared, and the fastest

TABLE 1 | Means (with standard deviations [sd] in parentheses) and medians (with median absolute deviation [mad] in parentheses) observed in each condition of

Experiment 1 in Meyer et al. (2018), simulated means and medians for pairs of participants, gain (difference between observed and simulated means and medians).

Display Response Observed responses Simulated pairs (winners) Gain

Mean (sd) Median (mad) Mean (sd) Median (mad) Mean Median

Multi-color Negative 417 ms (177) 325 ms (133) 325 ms (107) 276 ms (77) 92 ms 48 ms

Multi-color Affirmative 344 ms (172) 245 ms (112) 252 ms (103) 217 ms (71) 92 ms 28 ms

Monochrome Negative 200 ms (249) 160 ms (281) 72 ms (179) 85 ms (189) 128 ms 75 ms

Monochrome Affirmative 234 ms (241) 200 ms (181) 96 ms (182) 134 ms (191) 149 ms 66 ms
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FIGURE 1 | Density plots of all response times (blue) and “winning” times (orange) per condition. Data from Meyer et al. (2018, Experiment 1).

response time was selected. The simulations were run in the
same way as described above, but instead of pairs, we generated
sets of up to ten participants. Figure 2 shows how the mean
of the “winning” response times changed with increasing group
size. The mean response times first decreased substantially, but
plateaued at a group size of five or six participants because
the dataset included only a few valid response times below the
plateau. In other words, since the task in, for instance, the multi-
color condition could not reliably be completed correctly in less
than 200 ms after the offset of the question, the number of
data points entering the comparison did not reduce the mean
“winning” response times below that plateau.

The goal of the simulations was to show how the recorded
mean response times would change when, instead of including
all responses, only the fastest, “winning,” response per trial from
a sample of two or more participants was recorded. The key
point–that the mean of the fastest response time is bound to
be shorter than the average time of all response times–could
have been made without the simulations. However, we hope that
the simulations make the point more apparent for the reader.
In addition, we obtained estimates of how much the mean and
median response times across all responses versus the fastest
responses differed from each other.Whether similar values would
be obtained for other datasets remains to be seen. The differences
should depend on the properties of the response distributions.
When the participants already perform, on average, close to the
human performance limit and when there are few slow responses
due to, for instance, lapses of attention, the difference will be
smaller than when the participants respond more slowly, and/or
more erratically. However, regardless of the properties of the
distributions, the mean of the fastest response times will always
be lower than the mean of all response times.

We simulated the effect of selecting all responses versus a
subset of the responses of the participants in an experiment. We
did not simulate any changes in the behavior of the participants

FIGURE 2 | Box-whisker plots for the simulated reaction times for sets up to

10 participants. The boxes give an impression of the 25%, 50% (median), and

75% quantiles of the data. The lines show variability outside the 25 and 75%

quantiles; outliers are plotted as individual dots. The red line gives an

impression of the overall trend. It shows the change in mean response time

with an increasing number of speakers.
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that might occur when they actually compete with each other.
Whether and how competition affects participants’ response
times in a laboratory setting can be assessed in further work. The
point of the simulations was to illustrate the potential impact of
a difference in the data from laboratory experiments on speech
planning and corpora of conversational turn-taking, which
often include multi-speaker conversations. The experimental
data include all response times, but, as explained before, the
corpus data typically only include the fastest responses of
speakers competing for the floor. This may contribute to
explaining why turn-taking in multi-party conversations appears
to be so fast, compared to participants’ response times in
laboratory experiments.

Note (Figure 2): Outliers deviating more than 2.5 SD from the
conditionmean were removed from the dataset. For the negative-
multi-color condition, the lower limit was 112 ms. One outlier
(−109 ms, one response from one of the participants) was not
filtered out. As this is always the fastest response in any pair/set,
this same outlier appears in every box plot.

STUDY 2: CORPUS STUDY

The aim of the corpus study was to examine how group
size may influence turn transition times, i.e., the gaps and
overlaps between turns in conversation. We expected turn
transitions to be faster in triadic than in dyadic conversations.
This should be the case for two reasons: First, in a triadic
conversation two speakers may plan a response to a turn
but only the fastest response enters the analysis and thus
determines the turn transition time. As shown by the above
simulations, the mean of these fastest turn transition times
should be shorter than the mean of all turn transition times
from responses provided by a single speaker in a dyadic
conversation. Second, competition for the turn is more likely
to arise in triadic than dyadic conversations. These influences
should affect turn transition times in non-QR transitions,
i.e., turn transitions that are not questions followed by
responses. We did not expect a strong group size effect for
question-response sequences (QR transitions), since here the
current speaker often selects a next speaker, thus reducing
competition for the floor.

Materials and Methods
Participants and Corpus Creation

We analyzed a corpus of 12 dyadic and 12 triadic conversational
interactions, each about 20min in length. The conversations were
selected from a larger corpus, based on the amount of pre-existing
relevant annotation from a previous study (Holler and Kendrick,
2015). All conversations involved acquainted native speakers of
English, with each participant forming part of one group only
(i.e., there were 36 unique speakers in total, two thirds who took
part in both the dyadic and the triadic conversation, and one third
only in the triadic conversation). The participants’ ages ranged
from 18 to 68 years (21 female).

Participants arrived in groups of three and were recorded
while participating first in a 20-min triadic conversation followed

by a 20-min dyadic conversation. To create the latter, one of
the three people was asked to leave the recording laboratory.
Throughout the session, the participants’ eye movements were
recorded to address questions outside of the scope of this paper
(e.g., Holler and Kendrick, 2015; Kendrick and Holler, 2017).
Which participant was excluded from the second part of the
session depended solely on the quality of the eye movement data
acquired in the first session.

The conversations were unscripted and unprompted in
terms of topic. Participants were left alone in the recording
laboratory and asked to talk to each other as if they were
engaging in casual conversation outside of the laboratory
environment. They could talk about anything they liked, except
for topics which might make their partners feel uncomfortable,
for instance for ethical reasons. The entire test session per
group lasted around 2 h, including set-up, instructions, two
20-min conversations, and obtaining a range of questionnaire
measures at the end of the session, which were not used in the
present analyses.

The recordings were made in a laboratory setting at the Max
Planck Institute for Psycholinguistics in Nijmegen (Netherlands)
and later, when recruitment of native English speakers in
Nijmegen became too slow, at the University of Manchester
(Manchester, United Kingdom). The audio recordings were
made using uni-directional head-mounted microphones (Shure
SM10A) which are suitable for detailed phonetic analyses of
the audio signals from the individual speakers. For details on
the laboratory set-up and equipment see Holler and Kendrick
(2015). The two phases of data collection were approved by the
Social Sciences Faculty Ethics Committee, Radboud University
Nijmegen and the School of Psychological Sciences Ethics
Committee, University of Manchester, respectively.

Measurement of Turn Transition Times

We distinguished turn transition times for question-response
sequences (QR transitions) from other turn transitions (non-QR
transitions). For the analysis of QR transitions, the full 20 min
of each conversation (i.e., 480 min in total) were selected. To
identify QR transitions we used the coding scheme developed
by Stivers and Enfield (2010), which uses both formal criteria
(e.g., syntactic marking) and functional criteria (i.e., the utterance
seeks to elicit information). This resulted in 459 QR transitions
for the dyads (mean = 38.25, SD = 18.85) and 497 for the triads
(mean = 41.42, SD = 23.63).

For the analysis of non-QR transitions, the first 5 min of each
conversation were selected (i.e., 120 min in total). All speaker
changes were included, except for the following categories: (a)
QR transitions; (b) backchannel responses, such as “mhm,”
“uhu” (Yngve, 1970; also referred to as continuers by Schegloff,
1982, such utterances are usually considered as passing up the
opportunity to take the turn), (c) turn transitions in which
the first speaker ended their turn mid-speech due to being
interrupted, and (d) turn transitions that involved extended
silence, for instance because speakers were thinking of a new
topic (e.g., Hoey, 2015); (e) transitions where the coder could not
confidently identify first and next speaker because of too much
overlapping talk; (f) transitions where the next turn started with
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laughter. This left 290 turn transitions for the dyads (per dyad
mean = 24.17, SD = 11.42) and 259 turn transitions for the triads
(per triad mean = 21.58, SD = 9.41) for the analyses.

Turn transitions were measured from the offset of vocalization
of the first turn to the onset of vocalization of the next turn.
This meant that turn transitions involving overlap resulted
in negative numbers, and turn transitions involving a gap
resulted in positive numbers. Vocalizations were any form of
verbal utterance. Audible inbreaths, coughs, and such like were
excluded (see also Kendrick and Torreira, 2015). The onsets
and offsets of the turns were determined through inspection
of their waveforms and spectrograms using Praat (Version
6.1; Boersma and Weenink, 2001). The corpus was annotated
manually to select certain types of contributions and excluded
others, such as to exclude backchannel responses (see above).
These may look like speaker switches, but since they invite
the current speaker to continue, they must be distinguished
from actual turns. As a result, our analyses are based on a
smaller corpus than may be achievable based on automatic
coding of speaker contributions, but it allows us to draw
clearer conclusions.

Statistical Analysis

We excluded as outlier turn transition times deviating by more
than 1.5 times the interquartile range (i.e., >q0.75 + 1.5 × IQR
or <q0.25-1.5 × IQR). This was done separately for the dyads
and the triads, combining QR and non-QR transitions within
those groups. There were 90 outliers (5.98% of the data), 67
QR transitions and 23 non-QR transitions. The data included in
the analysis were characterized by a residuals distribution low
in skewness and kurtosis (see OSF analysis script) with values
falling well within the range of those acceptable for a normal
distribution. We thus considered the assumptions underlying
linear mixed effects models met. Means, medians, and modes
have been calculated to give a comprehensive description of the
data (modes were calculated based on Gaussian kernel density
estimates, function “locmodes,” multimode package).

The data were analyzed using R (Version 4.0.4; R Core
Team, 2020) and the lme4 package (Version 1.1.27; Bates
et al., 2015). A linear mixed effects model was fitted to
predict turn transition duration, with group size (coded using
sum-to-zero contrasts with dyads coded as +0.5 and triads
coded as −0.5) and transition type (also coded using sum-
to-zero contrast, with QR coded as +0.5 and non-QR coded
as −0.5) as fixed effects as well as their interaction. Model
diagnostics showed that this model failed to predict negative
turn transition durations for most groups, despite the presence
of many negative turn transitions in all groups. Therefore,
an additional term for “overlap” was added to the model to
indicate whether a particular turn transition was positive or
negative (see Table 2), resulting in a substantially improved
model fit [χ2(7) = 1124.1, p < 0.001]. For the participant taking
the turn, by-participant intercepts and slopes were included
for transition type and overlap. As the model already showed
signs of approximate singularity, no interaction between the
by-participant slopes were included. The participant identifiers
were distinct for dyads and triads. As such, including a

by-participant slope for group size was not possible. However,
the by-participant contribution was captured by distinct by-
participant intercepts for each conversation. To calculate
p-values, Satterthwaite’s method was used to compute the
denominator degrees of freedom with the lmerTest package
(Kuznetsova et al., 2017).

A secondary analysis using a logistic mixed effects model
(see Table 3) was conducted to see whether the probability of a
negative turn transition duration (i.e., overlap) was influenced by
transition type or group size. The structure of this model matched
the linear mixed model for the transition duration, but overlap
was used as the response instead of as a predictor in the fixed
and random effects.

Results and Discussion
We expected turn transitions to be faster in triads than in
dyads, especially for non-QR transitions, that is, transitions
that are not question-response sequences. Figures 3, 4 show
the distributions of the transition times for QR and non-
QR transitions, respectively, including the means and medians.
These measures of central tendency, as well as the distributions
displayed in the figures, all point toward the same pattern: dyads
and triads did not seem to differ much in their turn timing for
QR transitions, but triads had faster turn transition times than
dyads for non-QR transitions, largely caused by more overlap
(i.e., negative turn transition values).

More precisely, for QR transitions, the distributions strongly
overlapped (Figure 3). The means for the two groups differed
only by 44 ms, and the medians by 9 ms. Thus, turn transitions
were not much faster in triads than dyads. The difference between
the modes was even greater. The distributions for non-QR
transitions also overlapped, but the distribution for triads was
shifted leftward relative to the distribution for dyads (Figure 4).
This indicates that relatively large negative turn transitions
times (i.e., transitions with substantial speaker overlap) were
more likely in triads than dyads. The means for triads and
dyads differed by 151 ms, the medians by 97 ms, and the
comparison of the dyad mode with the lower triad mode
by 91 ms, all favoring the triads. The pattern looks different
when considering the higher triad mode, indicating that fast
responses were not characteristic for all of the triads’ non-QR
transitions. However, the overall picture that emerges from the
measures of central tendency is that group size markedly affected
turn transition times for non-QR transitions, but not for QR
transitions, as we expected.

The statistical models, reported in Tables 2, 3 confirmed this
impression. The linear mixed effects model (Table 2) showed no
significant effects of transition type or group size, but showed
some evidence for faster transition times for triadic conversations
without overlap [β = 54.5, t(58.9) = −1.97, p = 0.053]. That is,
in those cases where turn transitions involved a gap, the gaps
for triads were on average 55 ms shorter than those for dyads.
Despite the model revealing no difference in terms of overlap
duration for the two groups, we applied a second model to test
whether group size nevertheless impacts on the probability of
overlap. While overall (i.e., collapsing across group size), non-
overlap was more probable than overlap (β = −0.75, z = −9.51,
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TABLE 2 | Linear mixed model fit by maximum likelihood for the corpus data.

Formula: turn_transition_time ∼ 1 + overlap/(group_size × transition_type) + (1 + overlap + transition_type | T2_ID)

Model summary

AIC BIC logLik deviance df.resid

19,857.3 19,936.1 −9,913.7 19,827.3 1,400

Scaled residuals

Min 1st Quartile Median 3rd Quartile Max

−2.3786 −0.7638 −0.0828 0.6567 3.2764

Groups: Term Variance Std. Dev. Corr

Random effects

T2_ID: Intercept 5,834.8 76.39

T2_ID: overlapTRUE 5,634.0 75.06 −0.99

T2_ID: transition_type[S.QR] 170.7 13.06 0.99 −1.00

Residual 68,824.8 262.34

Number of obs 1,415

Number of groups (T2_ID) 60

Estimate Std. error df t p

Fixed effects

(Intercept) 365.232 13.826 58.941 26.417 <2e-16∗∗∗

overlapTRUE -636.064 18.832 56.934 -33.776 <2e-16∗∗∗

overlapFALSE:group_size[S.dyadic] 54.509 27.652 58.941 1.971 0.0534

overlapTRUE:group_size[S.dyadic] 22.122 26.022 55.580 0.850 0.3989

overlapFALSE:transition_type[S.QR] 7.033 18.350 944.847 0.383 0.7016

overlapTRUE: transition_type[S.QR] -5.106 25.920 879.721 -0.197 0.8439

overlapFALSE:group_size[S.dyadic]:transition_type[S.QR] -59.155 36.700 944.847 -1.612 0.1073

overlapTRUE:group_size[S.dyadic]:transition_type[S.QR] 42.578 51.840 879.721 0.821 0.4117

t-tests use Satterthwaite’s method. Group size and Transition Type are sum coded (±0.5); overlap is dummy coded and yielded a nested analysis of Group Size and

Transition Type within each level of overlap. The main effect of overlap simply indicates that negative turn transition times were shorter than positive turn transition times

(which is true by definition).

p < 0.001), this logistic model highlighted that the difference in
mean turn transition duration between the groups was mainly
driven by overlap being more probable for triads than dyads
(β = −0.39, z = −2.5, p = 0.012). Additionally, there was an
interaction between transition type and group size (β = 0.56,
z = 2.16, p = 0.03). Decomposing this interaction with expected
marginal means (using the R package emmeans, Lenth, 2021)
showed that overlap was significantly more likely for triads
than for dyads in non-QR transitions (β = −0.67, z = 3.3,
p < 0.001) but not in QR transitions (β = −0.11, z = −0.56,
p = 0.57).

We expected at most a small effect of group size for QR
transitions because in such sequences the current speaker often
selects the next speaker, which reduces competition for the floor
compared to non-QR transitions. Questions in conversation can
have many features that single out a particular addressee, such as
the use of gaze or the addressee’s name (Sacks et al., 1974; Lerner,
1993, 2003). This holds for dyadic and multi-party conversation
alike (see Holler and Kendrick, 2015). This means that QR
transitions in multi-party conversation are often comparable to
QR transitions in dyadic conversation. Bearing this in mind, it
is not surprising that we did not observe reliably faster turn
transitions for triads than dyads for QR transitions.

The absence of a group size effect for QR transitions
might appear to be inconsistent with the results of the
simulations reported above, which yielded strong group size
effects for responses to questions. However, the simulations
merely illustrated howmeans of response times change when they
are based on all responses versus a subset of responses, specifically
the fastest responses per trial from the set of participants. The
linguistic properties of the responses used as the basis for the
simulations, i.e., that they happened to be responses to questions,
played no role for the outcome of the simulations. In other words,
the simulations, while based onQR turn transitions, do not reflect
the pragmatic attributes associated with such transitions and
may, paradoxically, more accurately capture speakers behavior in
non-QR transitions.

For non-QR transitions a substantial effect of group size was
indeed obtained: The mean turn transition time for dyads was
more than double the time observed for triads. The 151 ms
difference corresponds roughly to the duration of a syllable
in colloquial English (Greenberg et al., 2003). This difference
arose at least in part, from a greater chance of speaker overlap
in triads than in dyads. Thus, to the best of our knowledge
the present results are the first to show that under comparable
conditions, here conversations between acquaintances recorded
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TABLE 3 | Generalized linear mixed model fit by maximum likelihood (Laplace approximation) for the corpus data.

Formula: overlap ∼ 1 + group size × transition type + (1 + transition type | T2_ID)

Model summary

AIC BIC logLik Deviance df.resid

1,782.7 1,819.5 −884.4 1,768.7 1,408

Scaled residuals

Min 1st Quartile Median 3rd Quartile Max

−1.0534 −0.7232 −0.5812 1.2107 1.9376

Groups: Term Variance Std. Dev. Corr

Random effects:

T2_ID: Intercept 0.12422 0.3525

T2_ID: transition_type [QR] 0.07033 0.2652 −1.00

Number of obs 1415

Number of groups (T2_ID) 60

Estimate Std. Err. z p

Fixed effects

(Intercept) −0.74698 0.07852 −9.513 <2e-16***

group_size [S.dyadic] −0.39172 0.15649 −2.503 0.0123*

transition_type [S.QR] 0.13720 0.12931 1.061 0.2887

group size [S.dyadic]:transition_type [S.QR] 0.55533 0.25734 2.158 0.0309*

The response family was binomial with a logit link. Group Size and Transition Type are sum coded (±0.5).

FIGURE 3 | Distribution of turn transition times (in ms) for QR transitions for dyadic (dotted blue) and triadic (orange) conversations (outliers excluded).

in the laboratory, triads, on average, have shorter non-QR turn
transitions than dyads.

Of course, this initial finding must be supported by
further work. A strength of the current corpus is that the
same participants were involved in the triadic and dyadic
conversations. An obvious shortcoming is that for all speakers the
triadic conversations preceded the dyadic ones. It is conceivable
that the observed group size effect for non-QR transitions

resulted from fatigue or decreasing motivation to talk in the
second session of the study (i.e., the dyads). However, we
think this is unlikely because fatigue or decreasing motivation
should not selectively affect the non-QR transitions, but also
the QR transitions, for which no group size effect was found.
Nonetheless, further studies with counterbalanced order of group
sizes, or between-participant designs, are needed to separate
group size and order effects more conclusively. Moreover, it
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FIGURE 4 | Distribution of turn transition times (in ms) in non-QR transitions for dyadic (dotted blue) and triadic (orange) conversations (outliers excluded).

would also be good to consider larger corpora and corpora
of different languages to see how generalizable the present
effects are.

GENERAL DISCUSSION

We set out to investigate how the number of potential next
speakers in a conversation may influence turn transition times.
The starting point was the observation that in quantitative corpus
analyses of multi-party conversation, only the fastest response
to a turn enters the analysis. The reason is that participants
who needed more time to respond may end up not producing
a response, or they may produce it after someone else has taken
the next turn, thus precluding it from the analysis. This may
partly explain why turn transition times in natural conversations
are so short compared to the response times in laboratory-
based experimental studies of turn-taking. In the lab, participants
are tested individually and all response times (except for some
extremely long or short response times), feed into the mean.
Indeed, the results of our simulation study confirmed that, up to
a set size of about five participants, the more participants were
entered into the model as potential responders, the shorter the
mean “winning” response time became. This principle–that the
mean of a subset of short response times will be lower than the
mean of all response times in a dataset–is bound to play a role in
multi-party conversation as well.

However, turn transition times may also be shorter in
triads than dyads for other reasons, in particular differences
in competition for the turn. At those points in conversation
where turn transition becomes relevant (i.e., points of semantic,
syntactic and pragmatic completion, Sacks et al., 1974; Ford
et al., 1996), a current speaker either selects the next speaker or
provides other participants with the opportunity to self-select.
Since in multi-party conversation the “first starter acquires rights
to a turn” (Sacks et al., 1974, p. 704), responding fast pays off. This

does not apply to the results of the simulations where competitive
behavior does not come into play. Thus, the strong group size
effect, of 151 ms (for the means) seen for non-QR transitions was
most likely due to a combination of sampling the fastest responses
in the triadic corpus and increased competition for the floor.

The earlier corpus-based literature on turn transition times
has concerned dyads, multi-party conversation, or a mixture
of the two (e.g., Stivers et al., 2009; de Vos et al., 2015;
Girard-Groeber, 2015; Holler et al., 2018). This complicates the
comparison of turn transition times to response times obtained
in laboratory settings from individually tested participants.
We should note, however, that the inclusion of multi-party
conversations in some of the corpora does not fully explain
why the turn transition times are so much shorter than the
response latencies in the laboratory. This is evident from the
observation that turn transition times in dyadic conversation are
also often shorter than response times of individual participants
in the lab (e.g., Knudsen et al., 2020). Thus, there must be
other factors at play that facilitate swift responding in natural
conversations and/or hinder it in experimental settings. These
factors could, for instance, pertain to the speakers’ motivation
and engagement or to the linguistic structure and predictability
of their utterances, as well as to their use of gaze, which has
long been claimed to play an important role in turn-taking
(Kendon, 1967).

While we have here focused on variables that may contribute
to responses in conversation being faster than in the laboratory,
there are also variables that occasion slow responses in
conversation. These may relate to uncertainty about the content
of the response (e.g., Fox and Thompson, 2010), or they may
relate to pragmatics. For instance, dispreferred responses are
often marked by longer turn transition times than preferred
responses (Schegloff, 2007; Kendrick and Torreira, 2015) and
initiations of repair (clarification requests resulting from trouble
in understanding) generally occur after significant delays
(Kendrick, 2015).
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In sum, we propose that the absence of slow responses from
typical corpus data, enhanced by the competition for turns, may
partly explain the short turn transition times in everyday multi-
party conversation. Further work is needed to substantiate this
suggestion. In addition, the impact of other variables that may
also influence turn timing (e.g., Roberts et al., 2015) remains to be
identified.We think this would best be done by combining corpus
analyses and experimental work, with the former providing
fine-grained descriptive evidence about conversation in different
settings and the latter uncovering the cognitive tools at the
speakers’ disposition.
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