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Abstract

We derive the 2d Zakharov–Mikhailov action from 4d Chern–Simons theory. This

2d action is known to produce as equations of motion the flatness condition of a

large class of Lax connections of Zakharov–Shabat type, which includes an ultralocal

variant of the principal chiral model as a special case. At the 2d level, we determine

for the first time the covariant Poisson bracket r -matrix structure of the Zakharov–

Shabat Lax connection, which is of rational type. The flatness condition is then derived

as a covariant Hamilton equation. We obtain a remarkable formula for the covariant

Hamiltonian in terms of the Lax connection which is the covariant analogue of the

well-known formula “H = Tr L2”.

Keywords Integrable field theories · 4d Chern-Simons theory · Covariant

Hamiltonian formalism · Zakharov–Mikhailov action · Covariant classical r-matrix

Mathematics Subject Classification 70H06 · 70S05 · 70S15

1 Introduction

Classical integrable field theories in two dimensions are characterised by the existence

of a Lax connection which is on-shell flat and depends meromorphically on an auxiliary

complex curve, typically the Riemann sphere. Determining whether a given field theory
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is integrable or not is usually a very difficult problem since there is no systematic way

of constructing a suitable Lax connection, if one exists.

Over the past couple of years, however, two closely related general frameworks have

emerged for explaining the algebraic and geometric origins of Lax connections in 2d

integrable field theories. From a Hamiltonian perspective, an origin was proposed in

[30], and further developed in [16], based on Gaudin models associated with untwisted

affine Kac–Moody algebras and the representation theory of such algebras. From a

Lagrangian perspective, an origin was proposed by Costello and Yamazaki [14], fol-

lowing earlier work on integrable spin chains in [10–13,32], based on the introduction

of surface defects in 4d Chern–Simons theory. A much older connection between

Lagrangians for (hierarchies of) integrable field theories in 2d and field theories of

Wess–Zumino–Witten type was pioneered in [25].

In the Hamiltonian formulation of integrable field theories, there is an important

dichotomy between so-called ‘ultralocal’ and ‘non-ultralocal’ theories. This distinc-

tion is based on the classical r -matrix formalism [28,29], specifically on whether or

not the r -matrix of the given integrable field theory is skew-symmetric [23,24,26].

The affine Gaudin model perspective on integrable field theories was specifically

developed in [30] to address the problem of quantisation of non-ultralocal theories.

Note that a related approach was used in [35] to treat ultralocal field theories as

Gaudin models associated with affine Kac–Moody algebras. On the other hand, it was

demonstrated on examples in [14] that both ultralocal and non-ultralocal field theories

can be described from the perspective of 4d Chern–Simons theory. In the non-ultralocal

case, further examples were shown in [17] to fit within this framework, and more

recently a very general family of new non-ultralocal integrable field theories was also

constructed using this approach in [21] following [3]. By performing a Hamiltonian

analysis of 4d Chern–Simons theory, it was shown in [31] that in the case of non-

ultralocal field theories this frameworks is, in fact, intimately related to that of affine

Gaudin models. By contrast, a Hamiltonian analysis of the class of ultralocal theories

from the perspective of 4d Chern–Simons theory has so far not been considered. The

main purpose of this paper is to initiate such a study.

In fact, very recently, an independent line of research emerged in [7] where the

classical r -matrix structure was derived in the context of covariant Hamiltonian field

theory. In that setting, a covariant Poisson bracket replaces the standard Poisson bracket

and the r -matrix determines the Poisson algebra satisfied by the whole Lax connection

(a 1-form) and not just by its spatial component, called the Lax matrix.

Such results have been established successfully for ultralocal theories with rational

r -matrix (nonlinear Schrödinger and modified Korteweg–de Vries) and trigonometric

r -matrix (sine-Gordon). However, the generalisation to non-ultralocal theories has

resisted all attempts so far. In particular, the famous example of the principal chiral

model, which is intrinsically non-ultralocal, does not seem to be easily amenable to this

covariant formalism. Nevertheless, a certain reduction of the principal chiral model

dynamics can be reproduced by an ultralocal integrable field theory [19], for which

an action was obtained in [2]. This model can be seen as a special case of a large

class of models with Lax pairs of Zakharov–Shabat type which derive from an action

first introduced by Zakharov and Mikhailov [33]. Our observation is that this general
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class of models admits an ultralocal r -matrix structure of rational type and is therefore

suited for a covariant Hamiltonian treatment.

The main goal of the present work is to begin exploring the covariant Hamiltonian

structure of certain ultralocal integrable field theories which can be obtained from the

4d Chern–Simons perspective, using the Zakharov–Mikhailov class of models as our

guiding example. The covariant approach to integrable field theories initiated in [7] is

in contrast with the long tradition of analysing the standard Hamiltonian formulation of

integrable field theories and may offer new insights when it comes to their (covariant)

quantisation. An interesting by-product of our approach is the interpretation of the

flatness condition of the Lax connection as a covariant Hamilton equation associated

with a covariant Hamiltonian which we derive from the Zakharov–Mikhailov action.

In Sect. 2, we show that the Zakharov–Mikhailov action of [33] can be derived from

4d Chern–Simons theory. Since, in our case, the meromorphic 1-form ω appearing in

the 4d Chern–Simons action is ω = dz, it has a double pole at infinity so we follow

a similar approach to [3] by first regularising the action of 4d Chern–Simons theory.

We then couple minimally the 4d gauge field A to a collection of Lie group valued

fields {φm}
N1

m=1 and {ψn}
N2

n=1 localised along surface defects.

In Sect. 3, we derive the covariant Poisson algebra satisfied by the Lax connection of

the Zakharov–Mikhailov class of models. We also present the covariant Hamiltonian

of the theory and derive a remarkable formula connecting it to the Lax connection.

This formula represents the covariant analogue of the well-known formula relating

a traditional Hamiltonian H with the Lax matrix L which we write schematically as

“H = Tr L2”. We show that the flatness condition of the Lax connection takes the form

of a covariant Hamilton equation, thus giving it a new interpretation in this context.

The results of this section rely heavily on the variational bicomplex formalism as

presented in [18, Chap. 19] and on ideas developed for instance in [20]. For a detailed

account geared specifically towards the implementation of these ideas in 2d integrable

field theories, we refer the reader to [7].

2 Zakharov–Mikhailov action from 4d Chern–Simons

Using the same notation as in [33], we let N1, N2 ∈ Z≥1 and fix subsets {am}
N1

m=1

and {bn}
N2

n=1 of CP1, which we take to be disjoint as in [33], namely am �= bn for

all m = 1, . . . , N1 and n = 1, . . . , N2. We parametrise the plane � := R
2 with

“light-cone” coordinates η and ξ .

We shall work with the general linear group GL N with Lie algebra glN of N × N

matrices, following [33], but we expect our results to hold more generally for any

semisimple Lie algebra. We denote the trace by Tr : glN → R.

Let X := � × CP1. We shall use the notation

Tr

(

∑

A

uAdx A ∧
∑

B

vBdx B

)

:=
∑

A,B

Tr(uAvB)dx A ∧ dx B
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for glN -valued p- and q-forms on X , where p, q = 0, . . . , 4, uA, vB ∈ glN and A, B

are multi-indices with |A| = p and |B| = q so that {dx A} and {dx B} denote bases of

1-forms for the space Ω p(X) and Ωq(X), respectively.

2.1 Regularised 4d Chern–Simons action

Since the 2d integrable field theory we want to describe is ultralocal, we consider the

meromorphic 1-form ω = dz. The Lagrangian of the corresponding 4d Chern–Simons

theory is given by

LCS :=
i

4π
dz ∧ CS(A), (2.1)

where CS(A) := Tr(A ∧ dA + 2
3

A ∧ A ∧ A) denotes the Chern–Simons 3-form and

A is a glN -valued 1-form on X which we can decompose as

A = Aξ dξ + Aηdη + Az̄dz̄. (2.2)

Note that there is no need to include a dz-component since this would drop out from

the Lagrangian (2.1). The components Aξ , Aη and Az̄ are taken to be smooth functions

away from the set of marked points {am}
N1

m=1 and {bn}
N2

n=1, but it will be important for

later to allow Aξ and Aη to be singular at those points. Specifically, we will assume

that these components can be written locally as Aξ = (z − am)−1 Bm,ξ near am for

m = 1, . . . , N1 and as Aη = (z − bn)−1 Bn,η near bn for n = 1, . . . , N2, where Bm,ξ

and Bn,η are smooth functions on X . One easily checks that, despite the presence of

these singularities, the Lagrangian (2.1) remains locally integrable near � × {am} for

m = 1, . . . , N1 and near � × {bn} for n = 1, . . . , N2.

However, since the 1-form dz has a double pole at z = ∞, the 4-form dz ∧CS(A) is

not locally integrable near � × {∞}. For this reason, we need to regularise the action

which we do following [3]. First, note that

dCS(A) = Tr(dA ∧ dA + 2
3

dA ∧ A ∧ A − 2
3

A ∧ dA ∧ A + 2
3

A ∧ A ∧ dA)

= Tr(F(A) ∧ F(A))

where F(A) := dA + A ∧ A ∈ Ω2(� × CP1, glN ) is the curvature of A. Here, we

have used the fact that Tr(A ∧ A ∧ A ∧ A) = 0 for any 1-form A ∈ Ω1(X , glN ) by

the cyclicity of the trace.

We can now rewrite the Lagrangian (2.1) of 4d Chern–Simons theory as

LCS =
i

4π
d
(

z CS(A)
)

−
i

4π
z Tr(F(A) ∧ F(A)),

where the first term is exact but has a double pole at infinity while the second term

only has a simple pole and is therefore locally integrable near � × {∞}. We therefore

define the regularised action of 4d Chern–Simons theory by dropping the exact term
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above and keeping only the second term, namely we set

S4d(A) := −
i

4π

∫

X

z Tr(F(A) ∧ F(A)). (2.3)

Note that we can continue to assume that A has no dz-component, namely it can be

expressed as in (2.2), since (2.3) is invariant under local transformations

A �→ A + χdz (2.4)

for any χ ∈ C∞(X , glN ). Indeed, under such a transformation the curvature F(A)

transforms as F(A) �→ F(A) + (dχ + [A, χ ]) ∧ dz from which it follows that

z Tr(F(A) ∧ F(A)) �−→ z Tr(F(A) ∧ F(A)) + 2z Tr
(

F(A) ∧ (dχ + [A, χ ])
)

∧ dz

= z Tr(F(A) ∧ F(A)) + 2 d
(

zdz ∧ Tr(F(A)χ)
)

where in the second line we have used the fact that dF(A) = F(A) ∧ A − A ∧ F(A).

The action (2.3) is also invariant under gauge transformations

A �−→ g A := −dgg−1 + g Ag−1 (2.5)

for any g ∈ C∞(X , G). Indeed, the transformation of the curvature F(A) under a

gauge transformation (2.5) is given by conjugation F(g A) = gF(A)g−1; hence, the

result follows by the invariance of the trace.

2.2 Adding surface defects

We would like to modify the action (2.3) by adding to it terms which couple the 4d

bulk field A to a collection of 2d fields localised on the surface defects � × {am} and

� ×{bn} for m = 1, . . . , N1 and n = 1, . . . , N2. We shall make use of the embedding

ιx : � × {x} →֒ X for x ∈ {am}
N1

m=1 ∪ {bn}
N2

n=1.

Specifically, to each marked point am for m = 1, . . . , N1 we associate a Lie group

valued field φm ∈ C∞(�, GL N ) which we think of as living on the surface defect

� ×{am}. Likewise, to each of the marked points bn for n = 1, . . . , N2 we associate a

Lie group valued field ψn ∈ C∞(�, GL N ), living on the surface defect � ×{bn}. Let

us also fix constant non-dynamical elements U
(0)
m , V

(0)
n in glN for m = 1, . . . , N1 and

n = 1, . . . , N2. Note that the 2d fields φm and ψn are effectively valued in a quotient

of GL N by the stabilisers of U
(0)
m and V

(0)
n , respectively.

Following the discussion of order defects in [14], we now couple the 4d gauge field

A to the collection of 2d fields φm and ψn on the surface defects by replacing the

regularised 4d Chern–Simons action (2.3) with

S
(

A, {φm}
N1

m=1, {ψn}
N2

n=1

)

:= S4d(A) + Sdefect

(

A, {φm}
N1

m=1, {ψn}
N2

n=1

)

(2.6)
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where we define

Sdefect

(

A, {φm}
N1

m=1, {ψn}
N2

n=1

)

:= −

N1
∑

m=1

∫

�×{am }

Tr
(

φ−1
m (d� + ι∗am

A)φmU (0)
m

)

∧ dξ

−

N2
∑

n=1

∫

�×{bn}

Tr
(

ψ−1
n (d� + ι∗bn

A)ψn V (0)
n

)

∧ dη.

(2.7)

Here, d� denotes the de Rham differential on �.

To maintain the gauge invariance of the action under (2.5) after introducing the

surface defects, we need to let the 2d fields transform as

φm �−→ gφm, ψn �−→ gψn . (2.8)

It is straightforward to check that the extended action (2.6) is then gauge invariant

since the expressions φ−1
m (d� + ι∗am

A)φm and ψ−1
n (d� + ι∗bn

A)ψn are themselves

gauge invariant.

2.3 Bulk equations of motion

Consider the variation A �→ A + ǫa of the action (2.6), for some arbitrary a =

aηdη + aξ dξ + az̄dz̄ ∈ Ω1
c (X , glN ) of compact support. This reads

δa S
(

A, {φm}
N1

m=1, {ψn}
N2

n=1

)

:=
d

dǫ

∣

∣

∣

∣

ǫ=0

S
(

A + ǫa, {φm}
N1

m=1, {ψn}
N2

n=1

)

=
i

2π

∫

X

dz ∧ Tr(a ∧ F(A)) −

N1
∑

m=1

∫

�×{am }

Tr(aηUm)dη ∧ dξ

+

N2
∑

n=1

∫

�×{bn}

Tr(aξ Vn)dη ∧ dξ,

where we introducedUm := φmU
(0)
m φ−1

m for all m = 1, . . . , N1 and Vn := ψn V
(0)
n ψ−1

n

for all n = 1, . . . , N2. As we will see below, the 2d action obtained from our 4d action

with defects effectively gives equations of motion for Um and Vn which are valued in

the Lie algebra glN . Without any particular model in mind, it is a matter of taste at

this stage whether one wants to interpret the fields of the theory as being those Lie

algebra elements or the group elements φm and ψn . In the former interpretation, the

phase space is thus the (co)adjoint orbit through U
(0)
m and V

(0)
n .

In the first term on the right hand side above, we have dropped a boundary term

which vanishes since a ∈ Ω1
c (X , glN ) is of compact support. The curvature F(A)

is given in components by [recall that (2.4) ensures that we can take A with no dz-

123
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component]

F(A) =
(

∂η Aξ − ∂ξ Aη + [Aη, Aξ ]
)

dη ∧ dξ

+
(

∂z̄ Aξ − ∂ξ Az̄ + [Az̄, Aξ ]
)

dz̄ ∧ dξ

+
(

∂z̄ Aη − ∂η Az̄ + [Az̄, Aη]
)

dz̄ ∧ dη + dz ∧ ∂z A.

Note that the last term does not contribute to the equation of motion. The Az̄ equation

of motion is then given by

∂η Aξ − ∂ξ Aη + [Aη, Aξ ] = 0, (2.9)

which will become the zero curvature equation for the Lax connection. On the other

hand, the Aη and Aξ equations of motion, respectively, read

∂z̄ Aξ − ∂ξ Az̄ + [Az̄, Aξ ] = 2π i

N1
∑

m=1

Umδ(z − am), (2.10a)

∂z̄ Aη − ∂η Az̄ + [Az̄, Aη] = 2π i

N2
∑

n=1

Vnδ(z − bn) (2.10b)

where the δ-functions, satisfying the property

∫

CP1
f (ξ, η, z)δ(z − x)dz ∧ dz̄ = f (ξ, η, x) (2.11)

for any x ∈ C and any smooth function f on X , come from the fact that the surface

defect terms are localised at z = am or z = bn .

2.4 Lax connection

Given the resemblance of (2.9) with the zero curvature equation satisfied by the Lax

connection, we would like to turn A into the Lax connection itself. There are two

obvious issues with this.

The first main issue is that A has an additional dz̄-component compared to the Lax

connection L = Lηdη + Lξ dξ . We can eliminate this problem by focusing on field

configurations with no dz̄-component. This will break some of the gauge invariance

since we must now impose that (2.5) does not re-create any dz̄-component in the gauge

field. In other words, we impose that

Az̄ = 0, ∂̄gg−1 = 0. (2.12)

An obvious way to ensure the latter condition is to take g ∈ C∞(�, GL N ), i.e. g

no longer depends on CP1. These residual gauge transformations will correspond to

gauge transformations in the 2d theory.
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The next difference between A = Aηdη + Aξ dξ and a Lax connection is that the

former depends smoothly on CP1, with singularities at the marked points am and bn

of the form described in Sect. 2.1, while the latter is meromorphic on CP1. This issue

is resolved by focusing again on a subset of gauge fields which satisfy the equations

of motion (2.10). Having fixed Az̄ = 0, these now reduce to

∂z̄ Aξ = 2π i

N1
∑

m=1

Umδ(z − am), ∂z̄ Aη = 2π i

N2
∑

n=1

Vnδ(z − bn).

Using the identity ∂z̄z−1 = −2π iδ(z) we deduce that a solution of the above is

Aξ = Lξ := −U0 −

N1
∑

m=1

Um

z − am

, Aη = Lη := −V0 −

N2
∑

n=1

Vn

z − bn

. (2.13)

These expressions coincide with those for the dξ and dη-components U and V of the

Lax connection from [33, (2) & (6)].

Note that if we have U0 = dξ hh−1 and V0 = dηhh−1 for some h ∈ C∞(�, GL N ),

cf. [33, (5)], then we can set them both to zero in (2.13) using a gauge transformation

with g = h−1. This would have the effect of fixing the residual gauge symmetry

down to the global transformations and the Lax connection (2.13) would then have no

constant term, i.e. it would take the form

Aξ = −

N1
∑

m=1

Um

z − am

, Aη = −

N2
∑

n=1

Vn

z − bn

.

We will, however, keep the residual gauge symmetry for the remainder of this section,

which will become the gauge symmetry in the 2d action.

2.5 Defect equations of motion

We may also consider the variation of the action (2.6) with respect to the 2d defect fields

φm and ψn . Consider the variation φm �→ eǫαm φm for arbitrary αm ∈ C∞(�, glN ) with

m = 1, . . . , N1 and ψn �→ eǫβn ψn for arbitrary βn ∈ C∞(�, glN ) with n = 1, . . . , N2

in the action (2.6). This gives

δ(αm ,βn)S
(

A, {φm}
N1

m=1, {ψn}
N2

n=1

)

:=
d

dǫ

∣

∣

∣

∣

ǫ=0

S
(

A, {eǫαm φm}
N1

m=1, {e
ǫβn ψn}

N2

n=1

)

=

N1
∑

m=1

∫

�×{am }

Tr
(

αm

(

d�Um − [Um, ι∗am
A]

))

∧ dξ

+

N2
∑

n=1

∫

�×{bn}

Tr
(

βn

(

d�Vn − [Vn, ι∗bn
A]

))

∧ dη.
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Taking into account the solution (2.13), this then leads to the equations of motion

∂ηUm = −

[

Um, V0 +

N2
∑

n=1

Vn

am − bn

]

, ∂ξ Vn = −

[

Vn, U0 +

N1
∑

m=1

Um

bn − am

]

(2.14)

for m = 1, . . . , N1 and n = 1, . . . , N2. These coincide with [33, (4)] (noting that

there is a sign mistake in [33, (4)]). Of course, Eq. (2.14) is nothing but the residues

of the zero curvature equation (2.9) at am and bn , respectively, taking into account the

solution (2.13).

2.6 The Zakharov–Mikhailov action

We now substitute the solution (2.13) for A, which we write as L = Lηdη + Lξ dξ

since it corresponds to the Lax connection, into the action (2.6). The 4d Chern–Simons

action term becomes

S4d(L) = −
i

4π

∫

X

z Tr(F(L) ∧ F(L)) = −
i

2π

∫

X

z Tr(∂L ∧ ∂̄L) (2.15)

where in the second equality we used the fact that L only has components along dη

and dξ which implies, in particular, that Tr(dL∧L∧L) = 0. Using the explicit form

(2.13) of L, we find

Tr(∂L ∧ ∂̄L) = 2π i

N1
∑

m=1

N2
∑

n=1

Tr(Um Vn)
(

δ(z − bn) − δ(z − am)
)

(am − bn)2
dz ∧ dz̄ ∧ dη ∧ dξ.

Substituting this into (2.15) and performing the integral over dz ∧ dz̄ by using the

property (2.11) of the δ-function, we find

S4d(L) = −

N1
∑

m=1

N2
∑

n=1

∫

�

Tr(Um Vn)

am − bn

dη ∧ dξ. (2.16)

On the other hand, substituting the solution (2.13) for A into the two surface defect

contributions to the action, namely (2.7), we obtain

Sdefect

(

A, {φm}
N1

m=1, {ψn}
N2

n=1

)

= −

∫

�

Tr

( N1
∑

n=1

φ−1
n (∂η − V0)φnU (0)

n

−

N2
∑

n=1

ψ−1
n (∂ξ − U0)ψn V (0)

n − 2

N1
∑

m=1

N2
∑

n=1

Um Vn

am − bn

)

dη ∧ dξ. (2.17)
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Combining together (2.16) and (2.17), and recalling that Um = φmU
(0)
m φ−1

m and

Vn = ψn V
(0)
n ψ−1

n , we arrive at the following 2d action

S2d

(

{φn}
N1

n=1, {ψn}
N2

n=1

)

= −

∫

�

Tr

( N1
∑

n=1

φ−1
n (∂η − V0)φnU (0)

n −

N2
∑

n=1

ψ−1
n (∂ξ − U0)ψn V (0)

n

−

N1
∑

m=1

N2
∑

n=1

φmU
(0)
m φ−1

m ψn V
(0)
n ψ−1

n

am − bn

)

dη ∧ dξ. (2.18)

This coincides with the Zakharov–Mikhailov action [33, (10)] up to an overall sign.

2.7 Example

The simplest non-trivial example of the Zakharov–Mikhailov action is obtained by

taking N1 = N2 = 1. In this case we only have two fields φ1 and ψ1 which we denote

simply as φ and ψ . Moving to a gauge where V0 = U0 = 0, as described in Sect. 2.4,

and choosing U (0) = −� and V (0) = � for some fixed constant matrix �, the action

(2.18) takes the simple form

S2d(φ,ψ) =

∫

�

Tr

(

φ−1∂ηφ� + ψ−1∂ξψ� +
1

2ν
φ�φ−1ψ�ψ−1

)

dη ∧ dξ,

where we have introduced the coupling 2ν := a1 − b1.

This action coincides with that of the so-called linear chiral model constructed

in [2, (3.20)]. The latter can be seen as a generalisation to an arbitrary Lie algebra

(here written only for glN ) of the model proposed by Faddeev and Reshetikhin in

[19] as an ultralocal reduction of the SU (2) principal chiral model. More precisely,

the Faddeev–Reshetikhin model is defined by replacing the non-ultralocal Poisson

bracket of the SU (2) principal chiral model by an ultralocal one. However, the latter

is degenerated, and therefore, the Faddeev–Reshetikhin model can only reproduce a

reduction of the original principal chiral model dynamics, in which the Casimirs of

the ultralocal Poisson bracket have been set to constants. In the next section, we will

derive the covariant Poisson algebra of the Lax connection (2.13) which in the present

two-point case generalises the ultralocal algebra for the Lax matrix of the linear chiral

model found in [2, (3.5)].

3 Covariant Poisson bracket and r-matrix for the 2d theory

In this section, we will rely heavily on the calculus in the variational bicomplex as

presented in [18]. Informally, we introduce two differentials: d is the “horizontal” dif-

ferential, and acts as the usual exterior differential, while δ is the “vertical” differential

that acts only with respect to the fields. We consider (p, q)-differential forms that have
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a vertical degree p and a horizontal degree q. For instance, L = Lηdη + Lξ dξ is a

(0, 1)-form, or a horizontal 1-form, and Ω(1) below (3.2) is a (1, 1)-form. For details

on how this is used in deriving the r -matrix structure of the covariant Poisson bracket

of the Lax connection of a 2d integrable field theory, or more generally an integrable

hierarchy, we refer the reader to [7,9].

We proceed in four steps: to begin with, we derive the multisymplectic form of the

theory by considering the variation of its Lagrangian volume form, as established in

[18, (19.5.2)] and then used in [7]. We can then define the covariant Poisson bracket

of certain horizontal forms, called Hamiltonian, using the multisymplectic form. We

then show that the Lax form associated with the Zakharov–Mikhailov theory is Hamil-

tonian and compute its covariant Poisson bracket structure à la Sklyanin [28,29], thus

exhibiting its r -matrix structure. Finally, we construct the covariant Hamiltonian for

the 2d theory, which is the covariant analogue of the usual Hamiltonian obtained by

performing the Legendre transformation with respect to both independent variables,

and we interpret the zero-curvature equations as covariant Hamilton equations.

3.1 Themultisymplectic form

Our starting point is the Lagrangian volume form associated with (2.18), where from

now on we shall drop the inessential overall minus sign compared to [33, (10)]. How-

ever, throughout this section we shall work in the gauge where U0 = V0 = 0, so we

start from

LZM := Tr

( N1
∑

m=1

φ−1
m ∂ηφmU (0)

m −

N2
∑

n=1

ψ−1
n ∂ξψn V (0)

n −

N1
∑

m=1

N2
∑

n=1

Um Vn

am − bn

)

dη ∧ dξ,

where we recall the notations Um = φmU
(0)
m φ−1

m and Vn = ψn V
(0)
n ψ−1

n . In particular,

we have δUm = [δφmφ−1
m , Um] and δVn = [δψnψ−1

n , Vn]. We also note the identities

δ
(

Tr
(

φ−1
m ∂ηφmU (0)

m

)

dη ∧ dξ
)

= Tr
(

− ∂ηUmδφmφ−1
m

)

∧ dη ∧ dξ − d Tr
(

φ−1
m δφmU (0)

m ∧ dξ
)

,

− δ
(

Tr
(

ψ−1
n ∂ξψn V (0)

n

)

dη ∧ dξ
)

= Tr
(

∂ξ Vnδψnψ−1
n

)

∧ dη ∧ dξ − d Tr
(

ψ−1
n δψn V (0)

n ∧ dη
)

.
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To show these we need, in particular, to use the fact that δd = −dδ along with the

cyclicity of the trace. Combining the above we then find

δLZM = Tr

(

−

N1
∑

m=1

(

∂ηUm +

N2
∑

n=1

[Um, Vn]

am − bn

)

δφmφ−1
m

+

N2
∑

n=1

(

∂ξ Vn +

N1
∑

m=1

[Vn, Um]

bn − am

)

δψnψ−1
n

)

dη ∧ dξ

− d Tr

( N1
∑

m=1

φ−1
m δφmU (0)

m ∧ dξ +

N2
∑

n=1

ψ−1
n δψn V (0)

n ∧ dη

)

. (3.1)

As expected, the first term reproduces the Euler-Lagrange equations in the form

(2.14), recalling that we are working in the gauge where U0 = V0 = 0. On the other

hand, the last term on the right hand side of (3.1) allows us to identify the form

(1) =

N1
∑

m=1

Tr(φ−1
m δφmU (0)

m ) ∧ dξ +

N2
∑

n=1

Tr(ψ−1
n δψn V (0)

n ) ∧ dη, (3.2)

which in turn yields the multisymplectic form Ω := δ (1) of the model as

Ω = −

N1
∑

m=1

Tr
(

φ−1
m δφm∧φ−1

m δφmU (0)
m

)

∧dξ−

N2
∑

n=1

Tr
(

ψ−1
n δψn∧ψ−1

n δψn V (0)
n

)

∧dη.

(3.3)

The multisymplectic form Ω = ω(ξ)∧dξ+ω(η)∧dη provides the covariant symplectic

structure of a field theory. Its coefficients ω(ξ) and ω(η) contain the pull-back to the

group of the Kostant–Kirillov forms for the orbits through U
(0)
m and V

(0)
n , respectively.

3.2 Covariant Poisson bracket of Hamiltonian 1-forms

We are now ready to define the covariant Poisson bracket {| , |} between certain

horizontal forms called Hamiltonian. Specifically, a horizontal form F is Hamiltonian

if there exists a vector field X F such that

δF = X F�Ω, (3.4)

where � denotes the interior product of a vector field with a form. Let F and G be

two Hamiltonian forms. We define their covariant Poisson bracket as follows

{|F, G|} := (−1)q X F�δG = (−1)q X F�XG�Ω, (3.5)

where q is the horizontal degree of F . Notice that the vector field X F in (3.4) will

generally not be unique since Ω may have a non-trivial kernel. Nevertheless, the
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covariant Poisson bracket (3.5) is seen to be independent of the choice of vector fields

X F and XG for both of the Hamiltonian forms F and G. We remark that the covariant

Poisson bracket is non-trivial and well defined when the Hamiltonian forms F and G

are either both horizontal 1-forms, or one is a horizontal 1-form and the other one is

a 0-form (i.e. a function).

Our objective is to compute the covariant Poisson bracket à la Sklyanin for the Lax

connection L = Lηdη+Lξ dξ corresponding to the solution (2.13) for A, in the gauge

where U0 = V0 = 0. Specifically, let Ei j be the canonical basis for glN and write the

Lax connection in this basis as

L(z) =

N
∑

i, j=1

Li j (z) Ei j ,

where from now on we shall show the explicit dependence on the spectral parameter.

To compute the covariant Poisson brackets between any two components of the Lax

connection, we first need to show that these are Hamiltonian 1-forms.

For this, we shall need the following useful identities. If M is any GL N -valued field

with components Mi j , i, j = 1, . . . , N and C is any non-dynamical matrix (meaning

δC = 0), then we have

N
∑

k=1

Mik

∂

∂ M jk

� Tr
(

M−1δM ∧ M−1δMC
)

= δ(MC M−1)i j , (3.6a)

N
∑

k=1

Mik

∂

∂ M jk

�δ(MC M−1)kl = δ jk(MC M−1)il − δil(MC M−1)k j . (3.6b)

In particular, we can use these with M = φn , C = U
(0)
n and M = ψn , C = V

(0)
n .

Then, a direct calculation shows that

X i j (z) =

N1
∑

m=1

N
∑

β=1

φm,iβ

z − am

∂

∂φm, jβ

+

N2
∑

n=1

N
∑

β=1

ψn,iβ

z − bn

∂

∂ψn, jβ

, (3.7)

satisfies δLi j (z) = X i j (z)�Ω . Therefore, all the components Li j (z) for i, j =

1, . . . , N of the Lax connection are Hamiltonian 1-forms, as required.

We shall write the covariant Poisson bracket of the Lax connection L using the

standard tensorial notation L1 := L ⊗ 1 and L2 := 1 ⊗ L as

{|L1(z),L2(w)|} :=

N
∑

i, j=1

{|Li j (z),Lkl(w)|}Ei j ⊗ Ekl . (3.8)
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3.3 The r-matrix structure

We now turn to the computation of the components on the right hand side of (3.8). We

have

{|Li j (z),Lkl(w)|} = −X i j (z)�δLkl(w)

=

N1
∑

m=1

δ jk(Um)il − δil(Um)k j

(z − am)(w − am)
dξ +

N2
∑

n=1

δ jk(Vn)il − δil(Vn)k j

(z − bn)(w − bn)
dη.

Introducing the permutation operator P12 :=
∑N

i, j=1 Ei j ⊗ E j i with the property

N
∑

i, j=1

(

δ jk Mil − δil Mk j

)

Ei j ⊗ Ekl = [M1, P12] = −[M2, P12],

for any glN -valued field M with components Mi j for i, j = 1, . . . , N , and noting that

for any distinct z, w, a ∈ C we have the identity

1

(z − a)(w − a)
=

1

w − z

(

1

z − a
−

1

w − a

)

, (3.9)

we may rewrite the covariant Poisson bracket (3.8) as

{|L1(z),L2(w)|} =

N1
∑

m=1

[(Um)1, P12]

(z − am)(w − am)
dξ +

N2
∑

n=1

[(Vn)1, P12]

(z − bn)(w − bn)
dη

=

[

P12

z − w
,L1(z) + L2(w)

]

.

In other words, we have the announced result that the Lax connection satisfies the

following Poisson algebra

{|L1(z),L2(w)|} =
[

r12(z − w),L1(z) + L2(w)
]

,

with respect to the covariant Poisson bracket {| , |}, where r12(z) := P12/z is the

rational r -matrix. The fact that we have been working with the Lie algebra glN was

convenient for writing the GL N -valued fields φn and ψn in components. However,

the above derivation can be adapted to hold more generally for any semisimple Lie

algebra, working in a basis of the latter.
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3.4 The covariant Hamiltonian

Following [18, Lemma 19.5.9], the covariant Hamiltonian related to LZM is found to

be equal to

HZM := −LZM +

N1
∑

m=1

Tr
(

φ−1
m ∂ηφmU (0)

m

)

dη ∧ dξ −

N2
∑

n=1

Tr
(

ψ−1
n ∂ξψn V (0)

n

)

dη ∧ dξ

=

N1
∑

m=1

N2
∑

n=1

Tr
Um Vn

am − bn

dη ∧ dξ.

This can be reexpressed directly in terms of the Lax connection as

HZM =

N1
∑

m=1

N2
∑

n=1

resz=am resw=bn Tr
L(z) ∧ L(w)

z − w
. (3.10)

This is a rather remarkable formula extending to the present covariant context the

familiar formula “H = Tr L2” for extracting a Hamiltonian from a Lax matrix in

many finite-dimensional integrable systems, such as the Gaudin model or Calogero–

Moser system. In fact, formula (3.10) is very reminiscent of the expression for the

Hamiltonian in non-ultralocal integrable field theories described by Gaudin models

associated with affine Kac–Moody algebras [16,30].

3.5 Flatness of the Lax connection as a covariant Hamilton equation

It was shown for the first time in [7] for certain 2d integrable field theories (nonlin-

ear Schrödinger, sine-Gordon, modified Korteweg–de Vries) that the zero curvature

equation (2.9) is a covariant Hamilton equation for the Lax connection L associated

with the density of the covariant Hamiltonian. By this we mean that, if we define the

“covariant flow” of L by

dL(z) = {|hZM,L(z)|}dη ∧ dξ, where HZ M = hZ M dη ∧ dξ,

in analogy to what one would do in the traditional Hamiltonian formalism, then since

we have

{|hZM,L(z)|}dη ∧ dξ = −L(z) ∧ L(z), (3.11)

we can conclude that dL(z) + L(z) ∧ L(z) = 0. The main steps in the derivation of

the crucial equality (3.11) are as follows. First, we have by definition

{|hZM,L(z)|} =

N
∑

i, j=1

X i j (z)�δhZM Ei j . (3.12)
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Second, we find

X i j (z)�δhZM =

( N1
∑

m=1

N
∑

β=1

φm,iβ

z − am

∂

∂φm, jβ

+

N2
∑

n=1

N
∑

β=1

ψn,iβ

z − bn

∂

∂ψn, jβ

)

�

( N1
∑

p=1

N2
∑

q=1

N
∑

k,l=1

(δUp)kl(Vq)lk + (Up)lk(δVq)kl

ap − bq

)

=

N1
∑

m=1

N2
∑

q=1

N
∑

k,l=1

(

δ jk(Um)il − δil(Um)k j

)

(Vq)lk

(z − am)(am − bq)

+

N2
∑

n=1

N1
∑

p=1

N
∑

k,l=1

(Up)lk

(

δ jk(Vn)il − δil(Vn)k j

)

(z − bn)(ap − bn)

=

N1
∑

m=1

N2
∑

n=1

([Um, Vn])i j

(z − am)(z − bn)
,

where we have used the identity (3.6b) in the second equality and (3.9) in the last

equality. Substituting the above into (3.12), we obtain (3.11).

4 Conclusion and outlook

In this paper, we derived the Zakharov–Mikhailov 2d action from the 4d Chern–Simons

action in the presence of certain surface defects. At the 2d level, the covariant Poisson

algebra of the Lax connection was shown to possess a classical r -matrix structure

of rational type, thereby recasting the pioneering results of Sklyanin [28,29] into a

covariant Hamiltonian context. So far, this had only been shown for the sine-Gordon

model [7] and the entire AKNS hierarchy [8,9]. There are a number of tantalising

questions and possible further directions following this work.

Some of the models (e.g. deformed Gross–Neveu models) considered in the series

of papers [1,4–6] seem to be cousins of the models of Zakharov–Mikhailov type

studied here. It would be natural to expect that the covariant Poisson algebra of the

Lax connection also holds for these models. Whether this could be achieved by relating

them to the present Zakharov–Mikhailov construction is an interesting problem. The

extension of the covariant Poisson algebra structure to an entire hierarchy, as obtained

in [9], is based on the notions of Hamiltonian multiform and multi-time Poisson bracket

introduced in [8]. In turn, these are based on the idea of Lagrangian multiforms [22]

which provide a generalised variational principle that is able to capture the integrability

properties of classical field theories. The Zakharov–Mikhailov action was analysed

from this point of view and embedded into a Lagrangian multiform in [27]. It is an

intriguing problem to understand how such a multiform could effectively arise from

a higher dimensional theory, in parallel to the present situation where a single 2d

Lagrangian is derived from a 4d one.
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The Poisson algebra of the Lax matrix of a non-ultralocal 2d integrable field theory

was derived in [31] by performing a Hamiltonian analysis of the 4d Chern–Simons

action for a general 1-form ω. It would be interesting to similarly derive the covariant

Poisson algebra of the Lax connection in the present ultralocal setting for which

ω = dz. This would involve performing a covariant Hamiltonian analysis of the 4d

action (2.6) in order to rederive the covariant Poisson bracket obtained in Sect. 3

directly from the 4d Chern–Simons theory.

We showed that the gauge transformations in the Zakharov–Mikhailov action arose

as special types of gauge transformations in the 4d Chern–Simons theory for which

the gauge transformation parameter g ∈ C∞(�, G) is independent of the spectral

parameter. This is the crudest way of ensuring (2.12) but we believe that a more

appropriate condition would be to require that g is (sectionally) holomorphic in order

to make a connection with the theory of dressing transformations [34]. In other words,

it would be interesting to understand if dressing transformations in the 2d integrable

field theory can also be understood as arising from gauge transformations in 4d Chern–

Simons theory by allowing g ∈ C∞(X , G) to depend also on CP1 as long as the

pole structure of the Lax connection (2.13) remains unchanged under such gauge

transformations.

In the ultralocal setting considered in the present paper, the regularised 4d Chern–

Simons action is easily seen to be gauge invariant. Therefore, any defect terms added

to the action, as in (2.6), should be gauge invariant themselves. By contrast, in the

non-ultralocal setting one needs to impose boundary conditions on the bulk field A at

the disorder defects, which are located at the poles of ω [14]. This is necessary in order

to ensure that the action is gauge invariant [3]. Alternatively, the gauge invariance can

be ensured by introducing new fields living on the surface defects, called the edge

modes, and coupling these to the bulk field A [3]. It would be very interesting to

explore the possibility of combining these two approaches by adding further gauge

invariant defect terms to the 4d Chern–Simons action with edge modes. This would

have the interesting effect of coupling, in the sense of [15,16], ultralocal integrable

field theories to a non-ultralocal one.
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