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Abstract

In remote or islanded communities, the use of microgrids (MGs) is necessary to ensure electrification and resilience of supply. However,

even in small-scale systems, it is computationally and mathematically challenging to design low-cost, optimal, sustainable solutions

taking into consideration all the uncertainties of load demands and power generations from renewable energy sources (RESs). This

paper uses the open-source Python-based Energy Planning (PyEPLAN) tool, developed for the design of sustainable MGs in remote

areas, on the Alderney island, the 3rd largest of the Channel Islands with a population of about 2000 people. A two-stage stochastic

model is used to optimally invest in battery storage, solar power, and wind power units. Moreover, the AC power flow equations are

modelled by a linearised version of the DistFlow model in PyEPLAN, where the investment variables are here-and-now decisions and

not a function of uncertain parameters while the operation variables are wait-and-see decisions and a function of uncertain parameters.

The k-means clustering technique is used to generate a set of best (risk-seeker), nominal (risk-neutral), and worst (risk-averse) scenarios

capturing the uncertainty spectrum using the yearly historical patterns of load demands and solar/wind power generations. The proposed

investment planning tool is a mixed-integer linear programming (MILP) model and is coded with Pyomo in PyEPLAN.

Nomenclature

Indices

n Index of nodes where n′ and n′′ stand for nodes before and

after node n, respectively.

d Index of load demands.

g Index of generation units.

o Index of representative days (scenarios).

t Index of time periods.

Parameters

eini
b Initial stored energy of battery unit b (kW).

emax
b Maximum stored energy of battery unit b (kW).

emin
b Minimum stored energy of battery unit b (kW).

pcd Penalty cost of load demand curtailment ($/kWh).

pcr Penalty cost of RES power generation curtailment ($/kWh).

fd Power factor of load demand d.

icb Annualised investment cost of battery unit b ($).

icg Annualised investment cost of generation unit g ($).

mcg Marginal cost of generation unit g ($/kWh).

p
max,c/d
b

Maximum charging/discharging power of battery unit b

(kW).

p̄dto Load demand d at hour t in representative day o ($/kWh).

pmax
n′n Maximum active power flow from node n′ to node n (kW).

pmax
g Maximum active power of generation unit g (kW).

pmax
gto Maximum power generation of generation unit g at hour t

in representative day o (kW).

qmax
b Maximum reactive power of battery unit b (kVAr).

qmin
b Minimum reactive power of battery unit b (kVAr).

qmax
n′n Maximum reactive power flow from node n′ to node n

(kVAr).

qmax
g Maximum reactive power of generation unit g (kVAr).

This work is supported by the UK Engineering and Physical Sciences Research

Council (EPSRC) under Grant EP/R030243/1.

qmin
g Minimum reactive power of generation unit g (kVAr).

rn′n Resistance of the line connecting nodes (n′, n) (ohm).

vmax Maximum permitted voltage magnitude (V).

vmin Minimum permitted voltage magnitude (V).

xn′n Reactance of the line connecting nodes (n′, n) (ohm).

ηc/d
b Reactance of the line connecting nodes (n′, n) (ohm).

Sets

ΩB Set of battery units where ΩBn indicates set of battery units

connected to node n.

ΩN Set of nodes where ΩNn indicates set of nodes after and

connected to node n.

ΩD Set of load demands where ΩDn indicates set of load

demands connected to node n.

ΩL Set of distribution lines connecting nodes.

ΩM Set of micro-turbine/diesel units where ΩMn indicates set

of micro-turbine/diesel generators connected to node n.

ΩR Set of RES units where ΩRn indicates set of RES units

connected to node n.

ΩT Set of hours.

Variables

pc/d
bto Active charging/discharging power of battery unit b at hour

t in representative day o (kW).

pn′nto Active power flow from node n′ to node n at hour t in

representative day o (kW).

pgto Active power generation of generation unit g at hour t in

representative day o (kW).

qbto Reactive power of battery unit b at hour t in representative

day o (kW).

qn′nto Reactive power flow from node n′ to node n at hour t in

representative day o (kVAr).

qgto Reactive power generation of generator g at hour t in

representative day o (kVAr).
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vnto Voltage magnitude of node n at hour t in representative day

o (V).

ydto Curtailment status of load demand d at hour t in represen-

tative day o (i.e., 1/0: curtailed/not-curtailed).

zb Investment status of battery unit b (i.e., 1/0: built/non-built).

zg Investment status of RES unit g (i.e., 1/0: built/non-built).

1 Introduction

Alderney island with an area of 3 square miles runs a closed com-

plex energy system that entirely relies on imported fuel oils for

electricity, heating, and transportation. Major economic activities

on the island include e-trade, ecotourism, small businesses, health

care services. The only energy supplier on the island is Alderney

Electricity Limited (AEL) [1], providing for both electric and heat-

ing loads. AEL is responsible for the importation and distribution

of different fuels, including kerosene and transport fuels, as well as

the generation and distribution of electricity. The company man-

ages both the 11 kV primary distribution network, consisting of

21 substations, as well as the 415 V secondary distribution net-

work. AEL starts with the higher voltage to account for cable

losses ensuring the voltage is still in spec. by the time it gets where

it is going. Networks mainly comprise underground cables, there

are a small number of overheads which are being progressively

replaced. Electric power on Alderney island is centrally generated

by 8× 450 kVA diesel generators and supplied through an exten-

sive network consisting of underground cables. Hence, the main

aim of this paper is to create a sustainable microgrid (MG) on

Alderney island, which obviates the reliance of AEL on only fossil

fuels.

1.1 Literature Review and Contributions

MG is a low-voltage electrical network, including diverse con-

trollable and uncontrollable producers, consumers, and prosumers,

that can be operated autonomously. The concept of MG has been

initially introduced in the seminal reference [2] to cope with

the main challenges in integrating distributed energy resources

into low-voltage electric networks. Most of MGs in remote areas

(like Alderney island) have been operated by fossil fuel-based

generation technologies with competitive costs as compared to

sustainable generation technologies. However, increasing concerns

related to global climate change as well as advances in sustain-

able generation technologies have made renewable energy sources

(RESs) a priority in MGs during the last decade [3]. Since RES

power generation (e.g., solar and wind power) is inherently subject

to uncertainty and volatility, ignoring them may result in infeasible

investment and operation plans. Therefore, it is of utmost impor-

tance to use practical investment and operation planning tools

presenting feasible solutions under different uncertainties.

Previously, stochastic optimisation (SO) [4, 5] and robust opti-

misation (RO) [6–8] have been introduced in the literature to cope

with different uncertain parameters in distribution networks and

MGs. RO provides an investment plan, which is optimal under the

worst-case scenario of uncertain parameters, while SO provides

an investment plan, which is optimal on average for all scenarios

characterising uncertain parameters. It is noteworthy to mention

that the optimal solutions of RO-based investment planning mod-

els may be conservative than the optimal solutions of SO-based

ones in MGs with sufficient historical data. Accordingly, a Python-

based Energy PLANning (PyEPLAN) tool is used in this paper to

propose a sustainable MG strategy on Alderney island based on

a two-stage SO-based model. In the proposed approach, invest-

ment variables are here-and-now decisions and not a function of

uncertain parameters, while operation variables are wait-and-see

decisions and a function of uncertain parameters. In summary,

the main contributions of this paper are as follows: (i) A two-

stage stochastic mixed-integer linear programming (MILP) model

is introduced in this paper to optimally invest in battery, solar,

and wind units on Alderney island under the uncertainty of load

demands and RES power generations; (ii) A practical MG test

system is presented for future investment and operation planning

studies based on the network data of the AEL MG.

1.2 Paper Organisation

The rest of this paper is organised as follows. In Section 2, an

overview about PyEPLAN and its clustering, investment planning,

and operation planning modules are presented. In Section 3, the

proposed two-stage stochastic MG investment planning (SMIP)

model as an MILP optimisation problem is introduced. In Sec-

tion 4, the proposed SMIP model is tested on the AEL MG under

different conditions. Finally, Section 5 concludes the paper.

2 Brief Review of PyEPLAN

The planning tool used in this work, PyEPLAN, has three dif-

ferent modules, including data processing, investment planning,

and operation planning in MGs, as depicted in Fig. 1. In this

paper, only the investment planning module is used to plan a sus-

tainable MG on Alderney island. Internally, PyEPLAN uses the

open-source Python-based optimisation modelling (Pyomo) [9]

language to formulate, solve, and analyze the optimisation prob-

lems for investment and operation planning. Both investment and

operation planning modules in PyEPLAN are developed based on

a concrete [9] model of Pyomo that can be initialised by means

of comma-separated values (CSV) files, including input data sets

(i.e., different characteristics of various components in MGs).

2.1 Investment Planning Module

The objective of the MILP is to minimize both investment and

operation costs during a long-term planning horizon (i.e., from one

year to several years) under both investment and operation related

techno-economic constraints. As input, the module needs network

characteristics (i.e., candidate/existing generation technologies,

candidate/existing lines), as well as long-term estimated/forecasted

load demands and RES power generations to obtain the optimal

solution. Accordingly, the data processor, as discussed in the next

subsection, is considered in PyEPLAN to provide the input data

needed for the investment planning module.

2.2 Data Processor

In the investment planning module, it is assumed that the pattern

of load demands (obtained by dividing the hourly load demands

of each year by its peak), as well as the pattern of RES power

generations (obtained by dividing the hourly power generations of

each RES by its capacity) remain unchanged during a one-year

period [10]. However, the SMIP model needs a sufficient num-

ber of scenarios to characterise the uncertain load demand as well

as the uncertain RES power generation during a one-year period.

Therefore, the k-means clustering technique, as presented in [11],

is used to obtain representative days from daily load demand pro-

files and RES power generation during a year. Then, the SMIP

model incorporates the best (risk-seeker), nominal (risk-neutral),

and worst (risk-averse) representative days [10].
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Fig. 1: Overall PyEPLAN architecture.

3 Stochastic MG Planning Model

In this section, the mathematical formulation of the proposed SMIP

model is briefly reviewed within a single-year planning horizon

under different representative days (scenarios) for load demands

and RES power generations as given below:

minΨinv +Ψ
opr (1a)

s.t.

Ψ
inv =

∑

b∈ΩB

(icb · zb) +
∑

g∈ΩR

(icg · zg) (1b)

Ψ
opr =

∑

o∈ΩO

∑

t∈ΩT

∑

g∈{ΩM ,ΩR}

(τo ·mcg · pgto)+

∑

o∈ΩO

∑

t∈ΩT

∑

s∈ΩS

(τo · pcd · pdto · (1− ydot))+

∑

o∈ΩO

∑

t∈ΩT

∑

g∈ΩR

(

τo · pcr ·
(

p
max
gto − pgto

))

(1c)

pn′nto +
∑

g∈{ΩMn ,ΩRn}

pgto +
∑

b∈ΩBn

(

p
d
bto − p

c
bto

)

=

∑

n′′∈ΩNn

pnn′′to +
∑

d∈ΩDn

(p̄dto · ydto) n ∈ ΩN
, t ∈ ΩT

, o ∈ ΩO

(1d)

qn′nto +
∑

g∈ΩMn

qgto +
∑

b∈ΩBn

qbto =
∑

n′′∈ΩNn

qnn′′t+

∑

d∈ΩDn

tan (arccos (fd)) · (p̄dto · ydto) n ∈ ΩN
, t ∈ ΩT

, o ∈ ΩO

(1e)

(rn′n · pn′nto + xn′n · qn′nto) =

vn′to − vnto n ∈ ΩN
, t ∈ ΩT

, o ∈ ΩO
(1f)

− p
max
nn′′ ≤ pnn′′to ≤ p

max
nn′′

(

n, n
′′)

∈ ΩL
, t ∈ ΩT

, o ∈ ΩO (1g)

− q
max
nn′′ ≤ qnn′′to ≤ q

max
nn′′

(

n, n
′′)

∈ ΩL
, t ∈ ΩT

, o ∈ ΩO (1h)

0 ≤ pgto ≤ p
max
g g ∈ ΩM

, t ∈ ΩT
, o ∈ ΩO (1i)

q
min
g ≤ qgto ≤ q

max
g g ∈ ΩM

, t ∈ ΩT
, o ∈ ΩO (1j)

0 ≤ pgt ≤ p̄
max
gto · zg g ∈ ΩR

, t ∈ ΩT
, o ∈ ΩO (1k)

q
min
g · zg ≤ qgto ≤ q

max
g · zg g ∈ ΩR

, t ∈ ΩT
, o ∈ ΩO (1l)

e
min
b · zb ≤ e

ini
bo +

t
∑

τ=1

(

η
c
b · p

c
bτo −

1

ηd
b

· p
d
bτo

)

≤ e
max
b · zb b ∈ ΩB

, t ∈ ΩT
, o ∈ ΩO

(1m)

T
∑

τ=1

(

η
c
b · p

c
bτo −

1

ηd
· p

d
bτo

)

= 0 b ∈ ΩB
, t ∈ ΩT

, o ∈ ΩO (1n)

0 ≤ p
c
bto ≤ p

max,c
· zb b ∈ ΩB

, t ∈ ΩT
, o ∈ ΩO (1o)

0 ≤ p
d
bto ≤ p

max,d
· zb b ∈ ΩB

, t ∈ ΩT
, o ∈ ΩO (1p)

v
min

≤ vnot ≤ v
max

n ∈ ΩN
, t ∈ ΩT

, o ∈ ΩO (1q)

v1to = 1 t ∈ ΩT
, o ∈ ΩO (1r)

The objective function (1a) minimises the total investment and

operational costs, where Ψ
inv calculates the total investment costs

of battery and RES units, as indicated in (1b), and Ψ
opr represents

the total operational costs of micro-turbine/diesel and RES units as

well as curtailment costs of load demands and RES power genera-

tions, as indicated in (1c). For simplicity, all existing and candidate

technologies are considered as investment candidates, where the

investment costs (resp. decision variables) of existing technologies

(i.e., micro-turbine/diesel units) are set to 0 (resp. 1).

PyEPLAN offers different ways to include the network con-

straints. In this paper, the linearised approximation of the DistFlow

formulation is selected for the AC power flow equations [12]

and the quadratic power flow limitations are linearised by means

of a polygon approximation [13]. Accordingly, constraints (1d)

and (1e) ensure active and reactive power balance at each node

of every hour of all representative days, respectively. Constraint

(1f) denotes the difference of voltage magnitudes between two

neighbor nodes connected. Constraints (1g) and (1h) bound the
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Fig. 2: The AEL network one-line diagram.

active and reactive power flows between two connected neighbor

nodes, respectively. Constraints (1i) and (1j) ensure the limits on

active and reactive power generation for micro-turbine/diesel units,

respectively, while constraints (1k) and (1l) ensure the limits of

active power generation for RES units.

Constraint (1m) bounds the stored energy of each battery unit

at every hour of all representative days. Moreover, constraint (1n)

ensures the initial and final stored energy of battery units for each

representative day. Constraints (1o) and (1p) bound the charging

and discharging power of each battery unit at every hour in all

representative days, respectively. Constraint (1q) limits the allowed

variation bound of the nodal voltage magnitude. Also, constraint

(1r) sets the voltage magnitude at the main AEL substation on one.

The SMIP model in (1a)-(1r) is an MILP problem, which can be

solved by off-the-shelf optimisation packages.

4 Case Studies

4.1 Input Data

In this section, the SMIP model described above is solved using

PyEPLAN [14] to propose a low-carbon MG design for the Alder-

ney electricity network. The AEL 11 kV primary network consists

of four radial feeders as depicted in Fig. 2. Electric power is gen-

erated solely at the power station by the 8× 450 kW diesel units.

The power station is connected to the 11 kV primary distribution

network via two 2500 kVA transformers and the 11 kV primary

distribution network is connected to the 415 V secondary distribu-

tion network by 500 kVA transformers at different substations and

locations. The AEL distribution network comprises mainly three

types of underground copper core cables (16 mm2 PILC cables, 25

mm2 PILC cables, and 70 mm2 XLPE cables). There are a variety

of other types and sizes of cable in certain locations. For example,

newer additions to the high-voltage side are usually 70, 90 or 150

mm2 cables.

Furthermore, battery, solar, and wind units are considered

as investment candidates while investment costs of different

technologies are taken from https://atb.nrel.gov and

depicted in Table 1. Also, it is assumed that the interest rate (i.e.,

i) is equal to 0.053, while the life time (i.e., y) of battery, solar, and

wind units is equal 15, 30, and 30, respectively. Accordingly, the

capital recovery factor (i.e., CRF =
i·(1+i)y

(1+i)y−1
) for battery, solar,

and wind units is equal to 0.098, 0.067, and 0.067, respectively,

Table 1 Investment costs of different technologies
Technology Battery (B) Solar (S) Wind (W)

Investment Cost (M£/MW) 0.98 0.84 1.21

Annualised Investment Cost (£/MW) 96040 56280 81070

Table 2 RES capacity factor on Alderney island

Technology Built Capacity (MW) Capacity Factor (%)

Solar (S) 1.8 16.27

Wind (W) 1.8 54.39

and consequently, the annualised investment costs can be calcu-

lated as depicted in Table 1. Also, it is assumed that operational

costs of battery, solar, and wind units are equal to zero while the

operational cost of diesel units is equal to 196.2 £/MWh [1] on

Alderney island at the time of writing, but fluctuates with market

price on the date of loading at the refinery. The penalty cost of

curtailing load demand is set to 1962 £/MWh.

The k-means clustering technique is used to obtain representa-

tive days using the yearly profiles of load demands and RES power

generations on Alderney island in 2013. The peak load is equal to

1.252 MW. In addition, the solar irradiation and wind speed on

Aldenery island in 2013 are taken from [15]. In this paper, it is

assumed that the efficiency of candidate solar panels/modules in

solar farm is equal to 10% [16] and the cut-in speed, rated speed,

and cut-out speed of candidate wind turbines (i.e., Vestas V90 1.8

MW) are equal to 4 m/s, 12 m/s, and 25 m/s, respectively. In addi-

tion, the hub height of each wind turbine is equal to 80 m. Given

a 1.8 MW solar farm with a 2-hectare land used to construct this

power plant and a 1.8 MW wind farm, the yearly profiles of load

demands, solar power generations, and wind power generations in

2013 are depicted in Fig. 3.

The capacity factors∗ (CFs) of both solar and wind farms are

presented in Table 2. Accordingly, the CF of wind technology is

significantly higher than the CF of solar technology while the land

needed by wind turbines to create a 1.8 MW wind farm is signif-

icantly less of the land needed by solar panels/modules to create

a 1.8 MW solar farm (i.e., approximately 2 hectares). Addition-

ally, according to Table 1, battery units have the highest annualised

investment costs while solar units have the lowest annualised

investment costs. Therefore, it is necessary to use the proposed

planning tool to obtain the optimal technology mix for creating a

sustainable MG on Alderney island under different circumstances.

4.2 Investment Plan Under Best, Nominal, and Worst Scenarios

In this study, one best, nominal, and worst representative day

are constructed using the yearly profiles of load demands and

solar/wind power generations on Alderney island in 2013, as

illustrated in Fig.3. Also, different investment alternatives are con-

sidered at the current location of the AEL power plant, including:

Case 1 (C1): Only 10× 1.8-MW wind units are considered as

investment candidates.

Case 2 (C2): Both 10× 1.8-MW battery units and 10× 1.8-MW

wind units are considered as investment candidates.

Case 3 (C3): Only 10× 1.8-MW solar units are considered as

investment candidates.

∗The capacity factor represents the ratio of the electrical energy generated by a

specific technology to the electrical energy, which could have been generated at

rated capacity continuously during a one-year period (or other specific periods).
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Fig. 3: Yearly profiles of load demands and solar/wind power generations on Alderney island in 2013.
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Fig. 4: The best, nominal, and worst representative days for load demands and solar/wind power generations on Alderney island.

Table 3 Optimal investment plans for different cases under best, nominal, and worst representative days

Case Number C1 C2 C3 C4 C5 C6

Best Representative Day 1× W 1× W 5× S 1× B,2× S 1× W 1× W

Nominal Representative Day 2× W 2× W 9× S 1× B,5× S 1× S,1× W 1× W

Worst Representative Day Infeasible Infeasible 10× S 10× S 10× S AEL MG

C1 C2 C3 C4 C5 C6
0
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0.3
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Fig. 5: Total investment and operational costs for different cases under best, nominal, and worst representative days.

Case 4 (C4): Both 10× 1.8-MW battery units and 10× 1.8-MW

solar units are considered as investment candidates.

Case 5 (C5): All 10× 1.8-MW battery units, 10× 1.8-MW solar

units, and 10× 1.8-MW wind units are considered as investment

candidates.

Case 6 (C6): In addition to the current AEL diesel units, all options

in C5 are considered as investment candidates in C6.

The best, nominal, and worst representative days are illustrated

in Fig. 4 wherein solar/wind power generations are provided for

each unit. The optimal investment plans for all cases under the best,

nominal, and worst representative days are presented in Table 3.

Moreover, the total investment and operational costs are depicted

in Fig. 5. For all cases C1-C6, the total costs under the best rep-

resentative day have the lowest value while the total costs under

the worst representative day have the highest value. For instance,

the total costs for the best, nominal, and worst representative days

are equal to 0.15 M£ in Fig. 5a, 0.29 M£ in Fig. 5b, and 16.57 M£

in Fig. 5c, respectively. It is noteworthy to mention that the best

representative day for wind power generation corresponds to the

maximum capacity of each candidate wind unit while the worst

representative day for wind power generation corresponds to no

power generation. Accordingly, C1 and C2 under the worst repre-

sentative day result in infeasible solutions, as illustrated in Table 3,

and their total costs in Fig. 5c (i.e., 16.57 M£) only correspond

to the penalty cost of load demand curtailment during the entire

planning horizon. However, C1, C2, C5, and C6 under the best rep-

resentative day result in identical optimal investment plans, only

constructing a 1.8 MW wind unit and obviating the need to operate

the current AEL diesel units. Furthermore, C6 provides not only

the lowest total costs, similar to C1, C2, C5, and C5, under the best

representative day, but also the lowest total costs under the nom-

inal and worst representative days. However, C6 under the worst

representative day only rely on the current AEL MG without con-

structing any battery, solar, or wind units. The main reason is that

creating a sustainable MG on Alderney based on only one worst

representative day results in an over-conservative investment plan.

4.3 Investment Plan for Different Number of Representative Days

To enhance the accuracy of the proposed solution, different number

of best, nominal, and worst representative days can be consid-

ered for C6, including 1 (R1), 5 (R5), 10 (R10), 50 (R50), and

100 (R100). The optimal investment plan for C6 for each choice

5



Table 4 Investment plans for different number of best, nominal, and worst representative days for Case C6

Case Number R1 R5 R10 R50 R100

Best Representative Day 1× W 1× W 1× W 1× W 1× S,1× W

Nominal Representative Day 1× W 1× S,1× W 1× S,1× W 1× S,1× W 1× S,1× W

Worst Representative Day AEL MG 2× W 1× S,1× W 1× S,1× W 1× S,1× W
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Fig. 6: Total investment and operational costs for different number of best, nominal, and worst representative days.

are presented in Table 4 and their total investment and operational

costs are depicted in Fig. 6. Increasing the number of represen-

tative days increases the total costs under the best representa-

tive day (Fig. 6a) and the nominal representative day (Fig. 6b),

while decreases the total cost under the worst representative day

(Fig. 6c). Additionally, the investment plans are identical under the

best, nominal, and worst representative days in R100 (construct-

ing one 1.8 MW solar and one 1.8 MW wind unit in addition to

the current AEL MG). It is worthwhile to mention that the opti-

mal investment plan remains unchanged after 5 representative days

under the nominal condition, while it remains unchanged after 100

(resp. 10) representative days under the best (resp. worst) condi-

tions, as shown in Fig. 6. Finally, it can be concluded that 5 nominal

representative days can appropriately characterise the uncertain

profiles of load demand and RES generation on Alderney island

with reasonable computational complexity.

5 Conclusion

This paper presents a two-stage stochastic model for creating a

sustainable MG on Alderney island under the uncertainty of load

demands and RES power generations. Also, the k-means cluster-

ing technique is used to characterise the yearly profiles of load

demands and RES power generations through a sufficient number

of best, nominal, and worst representative days. The proposed MG

planning model is implemented in the open-source tool PyEPLAN.

Simulation results demonstrate that the best low-carbon investment

plan pertains to a hybrid MG including both solar and wind power

in addition to current AEL diesel units.
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