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Abstract—Embedded with producers, consumers, and pro-
sumers, active Low-Voltage Distribution Networks (LVDNs)
with bi-directional power flows are rising to over-shadow the
investment and operation planning in power systems. The
Optimal Power Flow (OPF) has been extensively used in
the recent years to solve different investment and operation
planning problems in LVDNs. However, OPF is inherently
a complex non-linear and non-convex optimization problem.
Hence, different linearization and convexification models have
been introduced in the literature to enhance the modeling
accuracy and computational tractability of the OPF problem in
LVDNs. In this paper, five multi-period OPF models (including
the basic non-linear and non-convex one) are presented, with
different linearizations/convexifications for the power flow equa-
tions. The proposed models are implemented on the IEEE 34-
bus test system and their modeling accuracy and computational
complexity are compared and discussed.

Index Terms—Convex Optimization, Distribution Networks,
Exact Conic Relaxation, Multi-Period Optimal Power Flow.

I. INTRODUCTION

In the past, distribution grids were modeled as passive el-

ements or aggregated loads, due to their lack of participation

in power, frequency and voltage control. In recent years, the

electricity grid has seen major changes in the design and

operation of Low Voltage (LV) Distribution Networks (DNs)

due to the proliferation of Distributed Energy Resources

(DERs), mainly consisting of Renewable Energy Sources

(RES), and the requirement for them to provide active

support to the grid. The electricity grid has become less

reliant on generation and control from the bulk conventional

units and more dependent on diverse DERs located in DNs.

This emergence of Active Distribution Networks (ADNs) and

their increased impact to the grid, requires more accurate

DN modeling, both in investment and operation planning

problems.

One of the major tools used for investment and operation

planning in power systems is the Optimal Power Flow

(OPF) [1], which aims at obtaining a feasible and optimal

operating point that satisfies operational and physical con-

straints at the minimum cost. However, OPF is a complex

problem due to the non-linear and non-convex nature of

the AC power flow equations that govern the grid’s phys-

ical laws. In finding the solution to an OPF problem, the

challenge thus lies between AC feasibility (i.e., exactness),

global optimality, and computational efficiency of the model

adopted.

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) in the UK under grant reference EP/R030243/1.

In the past, different optimization techniques with vari-

ous linearizations, convexifications, and approximations have

been proposed to obtain locally or globally optimal solu-

tions of the OPF problem under specific assumptions [2].

In general, non-linear and non-convex techniques converge

to locally optimal solutions with no guarantees on global

optimality, while their optimal solutions exactly satisfy the

original power flow equations. In contrast, convex relaxations

provide a lower bound on the objective, yield a global

optimum, can certify the existence of problem infeasibility

and tend to be tractable [2]–[4]. However, the solution

obtained is not always physically meaningful and thus can

be inapplicable practically [3], [5].

In this study, we analyze five different widely adopted OPF

formulations used in ADNs and microgrids under different

performance metrics. These OPF models include basic Non-

Linear OPF [6], DistFlow (DF) [7], [8], Linearized DistFlow

(LinDF) [9] without line shunts, Extended DistFlow (ExDF)

with line shunts [7], and Extended Augmented DistFlow

(ExAgDF) [8]. Our focus is to study their performance in

practical situations based on metrics defining the optimality

gap and normalized distance to a local AC feasible solution.

Additionally, we evaluate their computational performance

in a multi-period optimization problem with varying load

and generation profiles for the IEEE 34-bus test system, thus

analyzing their applicability for adoption in LV networks.

The rest of the paper is organized as follows. In Section II,

the mathematical formulations of the five AC OPF models

mentioned above are presented. Section III presents the met-

rics used to compare the different formulations. In Section

IV, the proposed OPF models are implemented on the IEEE

34-bus test system and their performances are evaluated and

discussed. Finally, in Section V, the main conclusions of the

paper are summarized.

II. OPTIMAL POWER FLOW PROBLEM FORMULATIONS

A. Notations

Let j =
√
−1, | • | denote the magnitude, •∗ complex

conjugate while •/• represent lower/upper bounds of the

quantity •. In this study, we consider a balanced radial

DN composed of nodes i ∈ N , with index 1 defined

as the Point of Common Coupling (PCC). The active and

reactive power injections at each bus i are defined by

si = pi + jqi. The power injections are derived from the

bulk grid import (export), DERs, and loads defined by:

simp (sexp), sg : g ∈ G and sdi , respectively. Set Gi

represents all generators connected to node i. The voltage

at each bus is defined by Vi = |Vi|∠θi with the square

of voltage magnitude denoted by vi = |Vi|2. Bus voltage978-1-6654-4875-8/21/$31.00 ©2021 IEEE
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Fig. 1. The Π model of the line and notation used in OPF formulation.

at the PCC node is fixed at V1 = 1∠0◦ pu. Each branch

l ∈ L is represented by a Π model (Fig. 1) with the sending

and receiving ends denoted by l+ and l−, respectively,

connected by two adjacent nodes η(l+) = i and η(l−) = j.

Set Lη(l+) includes all lines connecting from downstream

of a node/line in the from direction indexed by m, while

Lη(l−) includes all lines connecting from upstream in the

to direction indexed by n. ysl is the series admittance given

by ysl = gl + jbl = 1/(rl + jxl) = 1/zl while yshl+ = jbshl+
and yshl− = jbshl+ are the shunt admittances at the sending

and receiving ends, respectively (yshl+ = yshl− = jbshl /2).

The active and reactive power flows into the line at the

sending (receiving) end are denoted by Sl+ = Pl+ + jQl+

(Sl− = Pl− + jQl− ). Il+ = |Il+ |∠ϑl+ (Il− = |Il− |∠ϑl− ) is

the current flowing into the line from sending (receiving)

nodes while Il is the current in the longitudinal section.

The square of current flow is denoted by fl+ = |Il+ |2,

fl− = |Il− |2, and fl = |Il|2 in each case. Each time step

in the planning horizon T is indexed by t ∈ T .

B. Non-Convex Extended AC Optimal Power Flow

Usually, the OPF problem seeks to minimize power gen-

eration costs and power losses, or maximize power reserves,

subject to power balance constraints and operational limits.

The compact formulation of this problem can be defined as:

minimize :
χ

Θ(χ) (1a)

subject to : hk (χ) = 0, k = 1, . . . , n, (1b)

gk (χ) ≤ 0, k = 1, . . . ,m (1c)

where χ represents the operational decision variables that

include: voltages, power in-feed of different generators,

power flows and power consumption in the network.

In (1a) is the objective function, (1b) defines the AC power

flow equations while the operational limits on the control

variables are defined in (1c). In the following, we present

different formulations of (1b) and (1c) considering the same

objective function in each case defined by:

Θ = min
χ





∑

t∈T

(

C imppimp
t − Cexppexpt

)

+
∑

t∈T

∑

g∈G

Cgpgt

+
∑

t∈T

∑

l∈L

C lossplosslt

)

(2)

where χ defines the decision variables while ploss is the

active power loss function for the algorithm. The objective

is to minimize the generation costs and the network real

power losses.

In Model 1 the non-linear AC OPF formulation is pre-

sented taking into account the line shunts. In (3a), the power

balance at each node in the network is enforced while

constraints (3b)-(3d) define the active and reactive power

flows at both ends of each line. In (3e)-(3f), the thermal line

limits are enforced while constraint (3g) ensures that voltage

Model 1 : Generic AC Optimal Power Flow [6]

s
d
it − s

imp
t|i=1 + s

exp
t|i=1 −

∑

g∈Gi

sgt

=
∑

η(l+)=i

Sl+ +
∑

η(l−)=i

Sl− ∀it

(3a)

Sl+ = Vη(l+)t(Il+)
∗
, Sl− = Vη(l−)t(Il−)∗, ∀lt (3b)

Il+ = y
s
l (Vη(l+) − Vη(l−)) + y

sh
l Vη(l+), ∀lt (3c)

Il− = y
s
l (Vη(l−) − Vη(l+)) + y

sh
l Vη(l−), ∀lt (3d)

|Sl+ | ≤ Sl or |Il+ | ≤ Il, ∀lt (3e)

|Sl− | ≤ Sl or |Il− | ≤ Il, ∀lt (3f)

V ≤ |Vη(l)t| ≤ V , |Vt|η(l)=1| = 1, θt|η(l)=1 = 0, ∀it (3g)

0 ≤ p
imp
t ≤ p

imp
t , 0 ≤ p

exp
t ≤ p

exp
t ∀it (3h)

0 ≤ q
imp
t ≤ q

imp
t , 0 ≤ q

exp
t ≤ q

exp
t ∀it (3i)

p
gt

≤ pgt ≤ pgt, q
gt

≤ qgt ≤ qgt ∀gt (3j)

p
d

it
≤ p

d
it ≤ p

d
it, q

d

it
≤ q

d
it ≤ q

d
it ∀it (3k)

magnitudes are kept within limits and voltage reference for

the PCC node η(l) = 1 is set in (3g). The limitations on

power imported (resp. exported) from (resp. to) the grid as

well as power provided by the distributed generators and load

demand are defined in (3h)-(3k).

Note that due to the non-linearity of the power flow

equations in (3b)-(3d), this non-convex model can be solved

only through the adoption of non-linear programming (NLP)

techniques. Given that the model converges, the solution is

locally optimal with no guarantees on global optimality.

C. Branch Flow Model with Approximations and Relax-

ations

Convex relations yield global optimal bounds to the origi-

nal non-convex AC OPF. The exactness of the relaxation will

depend on the tightness of the envelope and defined sufficient

conditions thus providing a lower bound on the objective

at the least. In practical applications, however, sufficient

conditions may not always be entirely satisfied [10]. In this

study, we focus on formulations that adopt the Branch Flow

Model (BFM) due to its desirable numerical characteristics

in relation to radial networks [11]. This model formulates the

power flow equations in terms of active and reactive power

flows, squared current magnitude flows and squared voltage

magnitude at each node as indicated in [11].

At the core of the BFM relaxations based on Second-

Order Cone Programming (SOCP), two relaxation steps are

followed: (i) voltage and current angles are eliminated from

the branch flow equations, and (ii) quadratic equality power

flow equations are relaxed into inequality constraints [11].

Model 2 presents the DistFlow model where the AC power

flows are described by constraints (4a)-(4e). Constraint (4d)

defines the SOCP relaxation applied to the equality constraint

in the original model thus resulting in the convexification

of the model. The model can be used with both zero (DF)

and non-zero line shunts (DFw/s) by modification of line

parameter bshl . The sufficient conditions for the exactness of

this model are defined in [10] for the case of zero line shunts.

A modified linear approximation of the DistFlow formu-

lation in Model 2 defined as LinDistFlow is presented in

Model 3. Here, the power flow equations are defined as in

(5a)-(5b) with the assumption that line losses indicated by the



Model 2 : Adapted DistFlow Relaxation (DFw/s) [7], [8]

Stl+ = s
d
tη(l−) − s

imp

t|η(l−)=1
+ s

exp

t|η(l−)=1
−

∑

g∈Gη(l−)

sgt+

∑

m∈Lη(l+)

S
tl+m

+ zlflt − j(vη(l+)t + vη(l−)t)
bshl
2

, ∀lt (4a)

Stl+ = s
d
tη(l−) − s

imp

t|η(l−)=1
+ s

exp

t|η(l−)=1
−

∑

g∈Gη(l−)

sgt

+
∑

m∈Lη(l+)

S
tl+m

, ∀lt (4b)

vη(l−)t = vη(l+)t + |zl|
2
flt

− 2Re

(

z
∗
l

(

Stl+ + jvη(l+)t

bshl
2

))

, ∀lt (4c)

flt ≥
|Stl+ + jvη(l+)t

bshl
2
|2

vη(l+)t

or
|Stl− − jvη(l−)t

bshl
2
|2

vη(l−)t

, ∀lt (4d)

f lvη(l+)t ≥ |Stl+ |
2
, f lvη(l−)t ≥ |Stl− |2, ∀lt (4e)

|Sl+ | ≤ Sl, |Sl− | ≤ Sl, ∀lt (4f)

v ≤ vη(l)t ≤ v, vtη(l)=1 = 1, ∀it (4g)

(3h) − (3k) (4h)

Model 3 : Modified Lin-DistFlow Relaxation (LinDF) [9]

Stl+ + stη(l−) =
∑

m∈Lη(l+)

S
tl+m

, ∀lt (5a)

vη(l−)t = vη(l+)t − 2 (rlPtl+ + xlQtl+) , ∀lt (5b)

− Sl ≤ Ptl+ + adQtl+ ≤ Sl, ∀lt (5c)

− Sl ≤ Ptl+ − adQtl+ ≤ Sl, ∀lt (5d)

− Sl ≤ adPtl+ +Qtl+ ≤ Sl, ∀lt (5e)

− Sl ≤ adPtl+ −Qtl+ ≤ Sl, ∀lt (5f)

(3g) − (3k) (5g)

square of current flow are negligible in comparison with the

active and reactive power flows (i.e., flt << Stl ∴ flt ≃ 0)

[9]. A modification [9] to include line flow limits using

constraints (5c)-(5f) is made. These are linear approximations

of the quadratic line flow limit (3e) obtained by inner

approximations of the thermal loading circle [12]. Parameter

ad is the derivative of the lines constructing the segments

of the convex approximation. This model provides an upper

bound on voltage and lower bound on power flows in the

network [9].

Model 4 presents a variant of BFM relaxation for the AC

power flows considering non-zero line shunts [7]. Note that

unlike Model 2 where current flow is only defined in the

longitudinal section of the Π model in Fig. 1, the current

and power flows here are defined at both ends of the line.

This enhances the non-violation of the line ampacity limits

in the physical network [6]. Here, (6a)-(6e) define the power

flow equations while the line flows are constrained by (6f).

Parameter αl+ is defined as αl+ = 1+zly
sh
l+ . Constraint (6b)

has been relaxed from an equality to inequality thus obtaining

an SOCP relaxation of the non-convex power flow. Sufficient

conditions for the exact SOCP relation of this model are

detailed in [7].

The formulation in Model 2 is modified by adding a

new set of constraints as indicated in (7c)-(7m) to obtain

an augmented relaxation of the OPF problem defined by

Model 5 [8]. The augmentations create inner approximations

Model 4 : Extended DistFlow Relaxation with Line Shunts (ExDF)
[7]

sit =
∑

η(l+)=i

Sl+ +
∑

η(l−)=i

Sl− ∀it (6a)

ftl+vtη(l+) ≥ |Stl+ |
2 or ftl−vtη(l−) ≥ |Stl− |2, ∀lt (6b)

|αl+ |
2
vtη(l+) − vtη(l−) = 2Re(αl+z

∗
l Stl+)− |zl|

2
ftl+ , ∀lt

(6c)

|αl− |2vtη(l−) − vtη(l+) = 2Re(αl−z
∗
l Stl−)− |zl|

2
ftl− , ∀lt

(6d)

α
∗
l+vtη(l+) − z

∗
l Stl+ =

(

α
∗
l−vtη(l−) − z

∗
l Stl−

)∗
, ∀lt (6e)

0 ≤ fl+ ≤ (f l), 0 ≤ fl− ≤ (f l), ∀lt (6f)

v ≤ vη(l)t ≤ v, vtη(l)=1 = 1, ∀it (6g)

(3h) − (3k) (6h)

(restrictions) for the feasible space of the problem that ensure

a tighter envelope for the original relaxation in Model 2.

This is achieved by introducing auxiliary variables on the

lines and node voltages that apply security constraints on

these variables. In Model 5, auxiliary variables defined by

superscripts •̂/•̌ indicate the lower/upper bound on the asso-

ciated variable. Note that while the set of security constraints

improves the feasibility of the model, it creates a larger

set of optimization variables that widens the solution space.

Sufficient conditions for this relaxation are detailed in [8].

III. MODEL FEASIBILITY ASSESSMENT

A relaxed OPF model is “exact” if its optimal solution

satisfies the original non-convex AC power flow equations.

In the following, we evaluate the optimality, tractablity, and

exactness of the solution to the OPF problem provided by

each model. The metrics used in assessment of a model

performance include the following.

A. Optimality gap

This metric compares the quality of the optimal solution

for approximated/relaxed models (Θrelax) w.r.t the optimal

solution of the basic non-convex NLP-based OPF model

(ΘNLP). It is defined as:

OGrelax =

∣

∣

∣

∣

ΘNLP −Θrelax

ΘNLP

∣

∣

∣

∣

(8)

B. Average normalized deviation from NLP

This metric compares the divergence of the optimal

value of decision variable χrelax
• obtained for the approx-

imated/relaxed models w.r.t. the optimal solution χNLP
•

obtained from the NLP model. It provides an indication

of the AC feasibility of the solutions of the approxima-

tions/relaxations for each of the variables and is defined as

follows:

δrelaxχ =
1

|T | × |Ω|
∑

t∈T

∑

n∈Ω

∣

∣

∣

∣

χNLP
nt − χrelax

nt

χNLP
nt

∣

∣

∣

∣

(9)

The sets T and Ω are the corresponding sets where variable

χ• ≡ χnt lies.

IV. SIMULATION AND RESULTS

A. System Description

We evaluate the aforementioned five OPF models on a

modified version of the IEEE 34-bus network [13]. The

system is adjusted to be balanced and include four distributed

Photo-Voltaic (PV) units. The parameters for the network are



Model 5 : Augmented DistFlow with Line Shunts (ExAgDF) [8]

(4a) − (4e) (7a)

(3h) − (3k) (7b)

Ŝtl+ + stη(l−) =

∑

m∈Lη(l+)

Ŝ
tl+m

− j
(

v̌η(l+)t + v̌η(l−)t

) bshl
2

, ∀lt (7c)

Ŝtl− + stη(l−) =
∑

m∈Lη(l+)

Ŝ
tl+m

, ∀lt (7d)

v̌η(l−)t = v̌η(l+)t − 2Re

(

z
∗
l

(

Stl+ + jv̌η(l+)t

bshl
2

))

, ∀lt

(7e)

Štl+ + stη(l−) =

∑

m∈Lη(l+)

Š
tl+m

+ zlf̌lt − j(vη(l+)t + vη(l−)t)
bshl
2

, ∀lt (7f)

Štl− + stη(l−) =
∑

m∈Lη(l+)

Š
tl+m

, ∀lt (7g)

f̌lvη(l+)t ≥ max

(

∣

∣

∣
P̂tl+

∣

∣

∣

2

,
∣

∣P̌tl+

∣

∣

2
)

+

max

(

∣

∣

∣

∣

Q̂tl+ + v̌η(l+)t

bshl
2

∣

∣

∣

∣

2

,

∣

∣

∣

∣

Q̌tl+ + vη(l+)t

bshl
2

∣

∣

∣

∣

2
)

, ∀lt

(7h)

f̌lvη(l−)t ≥ max

(

∣

∣

∣
P̂tl−

∣

∣

∣

2

,
∣

∣P̌tl−

∣

∣

2
)

+

max

(

∣

∣

∣

∣

Q̂tl− − v̌η(l−)t

bshl
2

∣

∣

∣

∣

2

,

∣

∣

∣

∣

Q̌tl− − vη(l−)t

bshl
2

∣

∣

∣

∣

2
)

, ∀lt

(7i)

f lvη(l+)t ≥ max

(

∣

∣

∣
P̂tl+

∣

∣

∣

2

,
∣

∣P̌tl+

∣

∣

2
)

+

max

(

∣

∣

∣
Q̂tl+

∣

∣

∣
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,
∣

∣Q̌tl+

∣

∣

2
)

, ∀lt (7j)

f lvη(l−)t ≥ max

(

∣

∣

∣
P̂tl−

∣

∣

∣

2

,
∣

∣P̌tl−

∣

∣

2
)

+

max

(

∣

∣

∣
Q̂tl−

∣

∣

∣

2

,
∣

∣Q̌tl−

∣
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2
)

, ∀lt (7k)

v ≤ vit, v̌η(l−)t ≤ v, vt|n=1 = 1, ∀it (7l)

P̂tl+ ≤ P̌tl+ ≤ P l+ , Q̂tl+ ≤ Q̌tl+ ≤ Ql+ , ∀lt (7m)

as indicated in [13] where all loads are modified as balanced

three-phase ones and all transformers are modeled as lines

with series resistance and inductance. The base values of

apparent power and voltage magnitude are assumed to be 1

MVA and 24.9 kV, respectively. The load and PV generation

profiles adopted from [14] in Texas during 2016 for a 24-

hour period. The optimization model was implemented in

PYOMO [15] and GUROBI [16] was employed as the convex

solver while IPOPT [17] was adopted for the NLP problem.

B. Discussion of Results

1) Optimality gap: In Fig. 2, the quality of the objective

value based on the metric OGrelax in (8) is presented. While

a larger gap of over 10% is recorded in the models that

do not consider shunt parameters (DF and LinDF), a near

to zero gap is obtained in the case of the more accurate

models (ExDF and ExAgDF). Although both the 25th and

75th percentiles of the LinDF are closer to AC optimality as

compared to DF, this may not necessarily be an indication

to AC feasibility of the solution. This will be highlighted in

LinDF DF ExDF ExAgDF

0

10

20

30

%
O

G
re

la
x

Fig. 2. Optimality gap of each model w.r.t the total operational cost of the
AC NLP solution.

the the following where we look at the deviations of each

of the variables to the local solution provided by the AC

NLP model. Note that the LinDF model ignores the network

losses thus providing an optimistic total cost in the objective.

2) Deviations from local optimality: A further study into

the solutions provided by each model were made using the

metric defined in (9). The voltage deviations are indicated

in Fig. 3. The average deviations where recorded at 0.52%,

0.57%, 0.005% and 0.003% for the LinDF, DF, ExDF and

ExAgDF models, respectively. The LinDF model marginally

outperforms the DF model as its is known to provide an

upper bound on voltage. This however is not the the case

with regards to the line flow deviations presented in Fig. 4.

The 75th percentile of the DF model is much lower than

that of the LinDF model. The average deviations for active

power line flows are obtained as 6.69%, 4.23%, 0.20%
and 0.03% for the LinDF, DF, ExDF and ExAgDF models,

respectively. The 75th percentile of the ExDF and ExAgDF

models exhibit negligible deviations while the LinDF model

shows the highest deviation. Note that this model neglects

network losses thus providing a higher variation in line flow

deviations. A similar trend is observed in Fig. 5 with regards

to power injection deviations.

It is noteworthy to mention that ignoring the line charging

of the shunt elements in the OPF formulation may result in

significant deviations in the reactive powers of the network.

Hence, in both Fig. 4 and Fig. 5, higher deviations in reactive

power flows as compared to active power flows are obtained

for the models neglecting line shunts (i.e., LinDF and DF).

For reactive power injections, average deviations of 14.14%,

14.53%, 0.19% and 0.16% for the LinDF, DF, ExDF and

ExAgDF models, respectively are obtained. The average

deviations for different variables are summarized in Table I.

Note that the inaccurate modeling of the lines can present

major effects to the reactive power control of the network.

In this study, all models indicated no constraint violation

for the voltage and line thermal limits. The different approx-

imations and relaxations were thus able to provide an AC

feasible solution in each case. However, uncertainties and

variations in operational conditions may lead to deviations

from reported results. We further compared the computa-

tional performance of the different models to access their

practical application.

3) Computational Performance: In Table I, the opera-

tional costs and computational times of the different models

are compared. The LinDF model as a linear approximation

of the AC power flow indicated the fastest time and a low

cost. Note however that this model provides an optimistic

solution for the OPF problem. The ExAgDF provided the

lowest optimal cost but the solution time in comparison
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Fig. 3. Voltage deviations of the different relaxations to the local solution
of the NLP model.
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Fig. 4. Power flow deviations of the different relaxations to the local solution
of the NLP model.

TABLE I
COMPUTATION TIME, OPTIMAL COST AND AVERAGE VARIATIONS OF

THE DIFFERENT ALGORITHMS

NLP LinDF DF ExDF ExAgDF

Comput. Time [s] 727.34 0.18 2.04 2.86 171.52
Total Cost [$] 38133 39088 41155 38122 38080

% δrelaxVi
- 0.52 0.57 0.005 0.003

% δrelaxpi
- 7.54 3.19 0.24 0.03

% δrelaxqi
- 23.60 23.65 0.33 0.31

% δrelaxPl
- 6.69 4.23 0.20 0.03

% δrelaxQl
- 14.14 14.58 0.19 0.16

with the other relaxations is relatively high. It is worth-

while to mention that the auxiliary variables used in the

augmentations of this model while ensuring AC feasibility

and greater accuracy result in a larger solution space that

increases the computational time of the model. The NLP

model guarantees AC feasibility but only provides a locally

optimum solution. However, as detailed in Table I, this model

suffers from a large computational time in comparison with

the approximated and relaxed models and can fail to converge

in some instances. The choice between accuracy in network

modeling and computation performance will thus dictate

the end application of the model. For larger networks, the

computational performance of the LinDF model can provide

a faster solution at a cost of lower accuracy and optimality.

V. CONCLUSION

The OPF solution provides a fundamental result for net-

work analysis. We have compared five models that can

practically be applied in the study of LVDNs using different

metrics for a multi-period formulation. The optimality gap

while providing an indication of the quality of the objective

value may not provide a detailed indication of feasibility of
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Fig. 5. Power injection deviations of the different relaxations to the local
solution of the NLP model.

a linearization or relaxation. Using average deviations of dif-

ferent OPF variables, we were able to obtain the divergence

of each variable from local optimality and an indication

of the AC feasibility of the approximation/relaxation. We

further investigated the effect of accurate network modeling

to the OPF solution by analyzing the results of approxima-

tions and relaxations with/without line shunts. The results of

approximated/relaxed models highlight significant effects of

ignoring shunt elements to reactive power control. Finally,

we analyzed the computational performance of each model

to evaluate their scalability for the larger networks. Future

works will further apply the OPF models that include the line

shunts for voltage and reactive power control in distribution

networks. Additionally, this models will be enhanced to

handle uncertain variations in the network using a robust

reformulation.
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