
Innovative Solutions In Modern Science № 3(47), 2021

DOI 10.26886/2414-634X.3(47)2021.9
UDC: 621.39

GRAAL AS A MULTILINGUAL PLATFORM
Maxim Bartkov
https://orcid.org/0000-0003-3527-3642

e-mail: 1233566789b@gmail.com

RooX Solutions Java Team Lead, Ukraine, Khakov

 The variety of software environments allows everyone to choose what

suits the creation of a specific program, application, etc. GraalVM is

software that provides a significant improvement in program performance

and efficiency, ideal for creating IT products. It is designed for programs

written in Java, JavaScript, LLVM-based languages such as C and C ++

and other dynamic languages. It eliminates isolation between programming

languages and provides compatibility in a common runtime environment. It

can work alone or in the context of OpenJDK, Node.js or Oracle Database.

The paper notes that high-performance virtual machines (VMs) such as

Java, HotSpot VM or V8 JavaScript VM correspond to features that were

first implemented for SELF language: a multilevel optimization system with

adaptive optimization and deoptimization. It is noted that Java has a system

of many very high-quality libraries that are often not available in other

systems, including native programs and other managed languages.

Keywords: high performance virtual machines, application performance

and efficiency, JavaScript VM, GraalVM

Intrоduсtіоn. Most high-performance dynamic speech virtual

machines use a duplication of language semantics in the interpreter,

compiler, and runtime systems. This places an extra burden on the volume

and runtime of the programs. Therefore, a universal interpreter in a single

Innovative Solutions In Modern Science № 3(47), 2021

compiler should be used. The interpreter performs special functions: it

supplements the interpreted program with information about the type about

profiling [1]. The created code is obtained automatically using partial

evaluation when these functions are included. This allows partial evaluation

to be performed in the context of dynamic languages: it reduces the size of

the compiled code while compiling all parts of the operation that are

relevant to a given program. When it fails to generate a file, the execution is

passed back to the interpreter, the program goes through partial evaluation

again at the interpreter, transforms the new file into compiled code again

[6].

 High-performance virtual machines (VMs) such as the Java, HotSpot

VM or V8 JavaScript VM correspond to features that were first implemented

for SELF language: a multi-level optimization system with adaptive

optimization and deoptimization. The first level of execution, usually the

interpreter, or fast compiler of the underlying compiler, provides a fast start.

The second level of execution, the dynamic compiler generates optimized

machine code for multi-execution code, which means that good

performance is ensured. Deoptimization moves execution from the second

level back to the first level, that is, it replaces some optimized code with

some non-optimized code when the dynamic compiler runs longer. Multiple

levels increase the cost of implementing and maintaining a virtual machine.

Although the action of the interpreter or base compiler lower complexity

optimizing compiler, their implementation is far from trivial, in addition, a

new architecture is needed [3, 7]. But essentially, language semantics must

be implemented several times in different styles: for the first level language

operations are usually implemented as assembly code templates [2]. For

the second level, language operations are implemented as an intermediate

image of the compiler for a particular language. And for the runtime system,

language operations are implemented in C or C ++.

Innovative Solutions In Modern Science № 3(47), 2021

Oracle Corporation has developed GraalVM based on

HotSpot/OpenJDK implemented in Java [5]. Creating a Java virtual

machine on Java itself is quite a difficult task. Creating a compiler, on the

other hand, was possible to implement multilingual programs. The GraalVM

compiler is a modern Java compiler.

The first version of GraalVM 19.0 appeared in May 2019, and the next

GraalVM 20.0.0, GraalVM 20.1.0 and GraalVM 20.2.0 in 2020 [4].

Purpose and objectives of the article. The variety of software

environments allows everyone to choose what suits the creation of a

specific program, application, etc. However, there are projects that can be

implemented using multiple programming languages. So, below in the

article we will consider GraalVM as a multilingual environment for

implementing projects.

Theoretical Background. GraalVM is a runtime environment that

provides better performance and efficiency of applications. The compiler is

designed for applications in Java, JavaScript, C and C ++, and other

dynamic languages, and provides interoperability in one runtime

environment.

The main purpose of GraalVM compiler is, first, to improve

performance, reduce launching time of programs and their execution based

on JVM technologies and directly ability to combine code from any

programming language into one program.

 Java Virtual Machine has the cost to run and the value of the program.

GraalVM can create its own images for existing JVM programs. And the

image generation process uses static analysis: find the code, perform full

compilation ahead of time. The resulting file will contain the whole program

for execution. The binary file can additionally include the compiler at a

specific time to run other languages. For additional performance create your

Innovative Solutions In Modern Science № 3(47), 2021

own images using optimized managed profiles obtained by running

previous programs.

 Let's characterize, GraalVM compiler with Node.js programs, the

benefits are the use of Java, R or Python libraries. JavaScript included in

the standard Node.js, tuned to browser configurations and designed to work

efficiently in small scripts. GraalVM allows you to work with significant

volumes: sizes up to 32 GB with 32-bit compression, and large supports in

64-bit configurations. The GraalVM compiler effectively combines native

code with JavaScript code. There is direct access to the native code, and

the compiler allows you to build in any structures. This can be used in a

scenario where effective data structures are managed and distributed in C,

while other parts of the program are written in Node.js. Besides the

standard GraalVM benefits, such as language interoperability (e.g., using

Java or JavaScript from those programs), GraalVM can achieve high

speedups for those languages. GraalVM is designed to be embedded and

can run on databases. GraalVM is an open ecosystem where it is possible

to connect your own programming language, tools, or platform. GraalVM is

a high-performance JDK compiler. It is designed to accelerate the execution

of programs written in Java and other JVM languages, while providing

execution for JavaScript, Ruby, Python, and several other popular

languages. GraalVM's multilingualism gives you the ability to combine

multiple programming languages in a single application while eliminating

any costs. GraalVM Community Edition consists of 3.6 million lines of code.

So, the main GraalVM tools are: the GraalVM compiler is written in Java

and supports both dynamic and static compilation; Truffle, a Truffle

language implementation to create languages and tools for GraalVM;

Substrate VM, a framework that lets you compile Java programs; and

Sulong, to run LLVM bit code on GraalVM. Tools: GraalJS - implementation

of GraalVM JavaScript (compatible with ECMAScript 2020) and Node.js

Innovative Solutions In Modern Science № 3(47), 2021

v12.18.0; FastR - implementation of GraalVM programming language 3.6.1;

GraalPython - implementation of GraalVM programming language Python

3.8; TruffleRuby - implementation of GraalVM programming language Ruby

2.6. 6; SimpleLanguage, a simple demonstration language for GraalVM;

VisualVM, a visual tool that integrates JDK command line tools; VS Code, a

Visual Studio Code extension that supports polyglot application

development with GraalVM.

A logical question arises, but how to work with GraalVM?

Consequently, it is necessary to install GraalVM according to the installed

operating system.

For example, GraalVM Community Edition based on OpenJDK

11:

By downloading and installing GraalVM, you can run applications

based on Java, JavaScript and LLVM.

GraalVM also supports running Node.js programs. Node.js support is

not installed by default, but it can be added surprisingly easily with GraalVM

Updater:

To set up support for the LLVM toolchain:

Innovative Solutions In Modern Science № 3(47), 2021

With GraalVM you can run Python programs in a Python 3 runtime

environment.

Ruby is not available by default in GraalVM, but you can add it with the

GraalVM upgrade tool:

GraalVM provides a GNU-compatible environment for running R

programs directly or in REPL mode.

With GraalVM it is possible to run programs compiled in

WebAssembly.

GraalVM allows you to call one programming language to another and

exchange data between them. GraalVM provides polyglot for compatibility.

Running js --jvm --polyglot example.js runs example.js in polyglot

context.

It is worth noting the benefits of GraalVM. This way, the GraalVM JIT

compiler is automatically used when running the java command included in

GraalVM - no additional configuration is needed. The time command allows

you to get the actual time elapsed to run and execute the whole program

from start to finish, instead of having to configure a complicated Microtest.

GraalVM is written in Java, not C ++ like most other JIT compilers for Java.

This allows it to improve faster than existing compilers, thanks to powerful

new optimizations such as partial output analysis, which is not available in

standard JIT compilers for HotSpot. This makes Java applications much

faster. An example is Twitter, which is one company that uses GraalVM in

Innovative Solutions In Modern Science № 3(47), 2021

production today. Twitter uses GraalVM to run Scala programs - GraalVM

works at the JVM bytecode level, meaning it works for any JVM language.

The strength of the Java platform is evident in long-running processes and

peak loads, but short-running processes can suffer from longer startup

times and large amounts of memory. GraalVM gives us a tool that solves

this problem. GraalVM is a library-compiler and can be used in several

ways. One is to compile ahead-of-time instead of just-in-time for normal

compilers. The executable will run an order of magnitude faster and use an

order of magnitude less memory than running the same program on the

JVM. So GraalVM is a way to use existing Java applications, but with low

memory usage and fast startup. It also frees up configuration issues, such

as finding the right jar files at runtime, and allows you to have smaller

Docker images. Also, Java, GraalVM including new implementations of

JavaScript, Ruby, R and Python. They are written using a new framework

called Truffle, which allows you to create language interpreters that are both

simple and high-performance. When a language interpreter is written with

Truffle, it will automatically use Graal to provide JIT compilation of the

language. So, GraalVM is not only a JIT compiler and ahead of its own

compiler for Java, but it can also be a JIT compiler for JavaScript, Ruby, R

and Python. The languages in GraalVM aim to replace your existing

languages. The execution engines of different languages in GraalVM work

together - there is an API that allows you to run code from one language on

a program written by another. This allows you to write multilingual programs

written in multiple languages. For example, most of the program is written in

one language, but it is possible to use a library written in another

programming language with better data processing. With GraalVM you can

run programs written in different languages and use modules from these

languages together in one program. Another language that GraalVM

supports is C. GraalVM can run C code as well as languages such as

Innovative Solutions In Modern Science № 3(47), 2021

JavaScript and Ruby. With GraalVM it is possible to run programs written in

platform-dependent languages such as C and C ++, and to run C

extensions to languages such as Python and Ruby, which cannot be

implemented in JVM, unless programs written in JRuby are executed. If you

program in Java, you use quality tools such as IDEs, debuggers, and

profilers. Not all languages have such tools, but you can get them if you use

the language in GraalVM. All GraalVM languages (except Java at the

moment) are implemented using a common Truffle structure. This allows

you to implement features such as debuggers once and make them

available to all languages. The Truffle framework is a Nexus for languages

and tools. If you program your language engine with Truffle, and you

program your tools like this debugger with the Truffle API for tools, then

every tool works with every language on Truffle, and you only need to write

that tool once. GraalVM is a platform for creating high-quality tools for

programming languages that don't have a good toolkit of their own. With

Truffle and GraalVM, you can use other development tools, such as the

tools in Chrome Debugger or VisualVM. All languages and tools can be

used separately or together in the case of multilingual programs, these

languages and tools can be added to a Java application. The new API in

org.graalvm.polyglot package allows code in other languages to be loaded

and run, and value from them. GraalVM is a single interface for embedding

language code into a Java application. The Polyglot API allows you to take

guest language objects and use them as Java interfaces and other complex

interactions. GraalVM already includes one built-in library built from

platform-dependent applications - it is a library that allows you to run code

written in any GraalVM language from platform-dependent applications.

GraalVM allows you to use any language in an embedded context in this

way by linking to its Polyglot library. GraalVM - using a single library in an

application to embed any GraalVM language. Java has a system of many

Innovative Solutions In Modern Science № 3(47), 2021

very high-quality libraries that are often not available in other systems,

including native programs and other managed languages. If you use a Java

library from your own application, you can embed the JVM, but it gets big

and complicated. GraalVM allows you to take a Java library, either off-the-

shelf or written in-house, and assemble it into a separate platform-

dependent library for use with other languages. GraalVM gives you the

ability to compile Java code into your own library, which you can then use in

your own programs without using the full JVM. One application for the

Polyglot library is the use in the Oracle database. To do this, the library was

used to create the Oracle Database Multilingual Engine (MLE), which

includes support for using GraalVM languages and modules with SQL.

GraalVM makes it possible to run the languages supported by GraalVM

inside the Oracle database. You can use logic from the front-end or back-

end inside the database instead of always pulling data from the database to

the application server. Truffle is a Java library that helps you write an

abstract syntax tree (AST) interpreter. The AST interpreter is the easiest

way to implement the language because it works directly with the parser's

source data and does not involve interpreting bytes of code or compiling,

but this approach is slow. Therefore, combining it with a technique called

partial computation allows Truffle to use GraalVM to automatically JIT

compile the language, based only on AST interpreter source data. Used by

Truffle to create its own programming language, for a high-performance

implementation of an existing programming language, or DSL. So, Truffle is

a simple way to implement a programming language for GraalVM.

Conclusions. So, GraalVM provides a very wide range of new

functionality - it is a platform on which you can create more powerful

languages and tools and place them in more environments. The latter

allows you to choose the language and modules you want, regardless of

where the program runs or what languages it is written in. It is worth noting

Innovative Solutions In Modern Science № 3(47), 2021

that the benefits of GraalVM extend in the following aspects: fast execution

of Java; start-up and memory usage time for Java is reduced; it is possible

to combine JavaScript, Java, Ruby and R; execute programs written in

platform-dependent languages; common tools for all programming

languages are extended repeatedly, as are JVM applications; support for

multiple programming languages in the database and creating programming

languages for GraalVM is provided.

Rеfеrеnсеs:
1. Kozlov, V. (2021). JEP 410: Remove the Experimental AOT and JIT
Compiler. https://openjdk.java.net/jeps/410
2. GraalVM. (n.d.). Retrieved July 19, 2021, from Graalvm.org website:

https://www.graalvm.org/

3. All posts in a row / Habr. (n.d.). Retrieved July 19, 2021, from Habr.com

website: https://habr.com/

4. Bonetta, Daniele. "GraalVM: metaprogramming inside a polyglot system

(invited talk)." Proceedings of the 3rd ACM SIGPLAN International

Workshop on Meta-Programming Techniques and Reflection. 2018.

5. Šelajev, O. (2020, March 4). A look at GraalVM 20.0: better Windows

support, better Native Images, better tooling. Retrieved July 19, 2021, from

graalvm website: https://medium.com/graalvm/a-look-at-graalvm-20-0-

better-windows-support-better-native-images-better-tooling-4fabc1227a48

6. Šipek, M., Mihaljević, B., & Radovan, A. (2019, May). Exploring Aspects

of Polyglot High-Performance Virtual Machine GraalVM. In 2019 42nd

International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO) (pp. 1671-1676). IEEE.

7. Stadler, L., Welc, A., Humer, C., & Jordan, M. (2016). Optimizing R

language execution via aggressive speculation. Proceedings of the 12th

Symposium on Dynamic Languages. New York, NY, USA: ACM.

Innovative Solutions In Modern Science № 3(47), 2021

Citation: Maxim Bartkov (2021). GRAAL AS A MULTILINGUAL PLATFORM. New York. TK Meganom
LLC. Innovative Solutions in Modern Science. 3(47). doi: 10.26886/2414-634X.3(47)2021.9
__
Copyright: Maxim Bartkov ©. 2021. This is an openaccess article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

