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I. Abbreviations VII 

I. ABBREVIATIONS 

ACE2 angiotensin-converting enzyme 2 

ADE antibody-dependent enhancement 

APC antigen-presenting cell 

ARDS acute respiratory distress syndrome 

Bcl-2 B-cell lymphoma 2 

BSA bovine serum albumin 

CAM chorioallantois membranes 

CD cluster of differentiation 

CDC Centers for Disease Control and Prevention 

CEF chicken embryonic fibroblasts 

CO2 carbon dioxide 

COVID-19 coronavirus disease 2019 

CSG Coronaviridae Study Group 

DAI double-stranded RNA activated inhibitor of translation 

DAPI 4′,6-Diamidin-2-phenylindol 

ddH2O double-distilled water 

DMEM Dulbecco`s modified Eagle`s medium 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

dNTP deoxynucleosidtriphosphate 

DPBS Dulbecco`s phosphate buffered saline 

dsRNA double-stranded RNA 

EBV Epstein–Barr virus 

EDTA ethylene-diamine tetraacetate 

eIF2α eukaryotic initiation factor-2α 

ELISA enzyme-linked immunosorbent assay 

ELISpot enzyme-linked immunosorbent spot assay 

ER endoplasmic reticulum 

ERD enhanced respiratory infection 

ERGIC endoplasmic reticulum Golgi intermediate complex 

EV extracellular virion 

FACS    fluorescence-activated cell sorting 

FBS fetal bovine serum 

FDA Food and Drug Agency 



I. Abbreviations VIII 

FP fusion protein 

GPT glutamate-pyruvate-transaminase 

hpi hours post infection 

HA  hemagglutinin 

HEPES N-(2-Hydroxyethyl)-piperazin-N′-(2-ethansulfonsäure) 

HIV human immunodeficiency virus 

HR heptat repeat 

HRP horseradish peroxidase 

IC50 half maximal inhibitory concentration 

ICS intracellular cytokine staining 

ICU intensive care unit 

IEDB Immune Epitope Database 

i.m. intramuscular 

IMV intracellular mature virus  

IFA Immunofluorescence assay 

IFN interferon 

Ig immunoglobulin  

IL interleukin 

IRF interferon regulatory factor  

I.T. intracellular tail 

kDa kilodalton 

kb kilo base pairs 

LB lysogeny broth 

l liter 

M Mol 

MEM minimal essential medium 

MHC major histocompatibility complex 

mg milligram 

min minute 

ml milliliter 

mM millimol 

MOI multiplicity of infection 

MVA Modified Vaccinia virus Ankara 

MVA-SARS-CoV-2-S/ 

MVA-S  

Modified Vaccinia virus Ankara expressing severe acute 

respiratory syndrome coronavirus 2 spike protein 

NF-κB nuclear factor kappa-light-chain-enhancer of activated B 

cells 
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nsp non-structural protein 

NTD N-terminal domain 

OD optical density 

o/n over night 

PBS(T) phosphate buffered saline (tween20) 

PCR polymerase chain reaction 

PFU plaque-forming units 

PMA phorbol 12-myristate 13-acetate 

PNGase F peptide-N-glycosidase F 

PUMA p53 upregulated modulator of apoptosis 

RBD receptor-binding domain 

RdRp-complex RNA-dependent RNA polymerase complex 

RNA ribonucleic acid 

rpm revolutions per minute 

RPMI Roswell Park Memorial Institute 

RPV Rinderpest virus 

RT room temperature 

RT-PCR reverse transcription polymerase chain reaction 

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

sec second 

SFC spot-forming cells 

T.A. transmembrane anchor 

TAE tris-acetate-EDTA 

TBS tris-buffered saline 

TCID50 tissue culture infection dose 50 

TCR T cell receptor 

Th T helper 

TMB 3,3′,5,5′-Tetramethylbenzidin 

TNF-α tumor necrosis factor alpha 

UV ultraviolet  

V volt, volume 

VNT virus neutralization assay 

VP-SFM virus production serum-free medium 

VSV vesicular stomatitis virus 

WB Western Blot 

WHO World Health Organization 
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II. INTRODUCTION 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the 

causative pathogen of the global pandemic coronavirus disease 2019 (COVID-

19). Due to an extremely efficient human-to-human transmission, a global 

spread of SARS-CoV-2 occurred within months, since affecting the daily life of 

millions of individuals. Many infections are asymptomatic or show mild 

symptoms and the estimated case fatality rate of 2-5% is lower than for 

infections with other coronaviruses, such as SARS-CoV-1 (~10%) (WHO 

2021c) or MERS-CoV (~34 %) (WHO 2019). Nevertheless, cases of long-

lasting diseases following a COVID-19 infection (long-COVID, post-COVID or 

chronic COVID) are described, affecting symptomatic and asymptomatic 

patients. The use of vaccines is the best option to halt the global threat of SARS-

CoV-2 and vaccine research started at an unprecedented speed. One year after 

the emergence of COVID-19, more than 65 SARS-CoV-2 specific vaccine 

candidates are in clinical trials. By the end of February 2021, two mRNA-based 

vaccines and one replication-deficient adenoviral vector vaccine are already 

licensed for immunization in Europe.  Herby, the SARS-CoV-2 spike (S) protein 

is the key antigen for vaccine development. Efficient activation of humoral and 

cell-mediated immune responses is the expected basis of protective 

vaccination.  

 

The aim of this project was the generation and characterization of recombinant 

Modified Vaccinia virus Ankara (MVA) as a new COVID-19 candidate vaccine. 

In cell culture infections, the recombinant virus demonstrated high levels of 

genetic stability, efficient synthesis of SARS-CoV-2 S protein and a growth 

capacity suitable for vaccine production at industrial scale. S protein-specific 

humoral and cell-mediated immune responses were activated in BALB/c mice 

following vaccination with two different doses and two different vaccination 

schedules. These results contributed to a better understanding of spike antigen 

specific immune responses and strongly supported the further development of 

recombinant MVA as vaccine against SARS-CoV-2. 
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III. LITERATURE REVIEW 

1. SARS-CoV-2: an emerging pathogen 

1.1. Year 2020: Beginning of a global pandemic 

On December 13th, 2019, a novel virus invaded the human population (VOLZ et 

al. 2020), leading to a global pandemic within a few months. The first confirmed 

cases were reported at a seafood market in Wuhan (China) and the new agent 

spread throughout the world by travelers and community-based contacts (LI et 

al. 2020; ZHU et al. 2020). On February 11th, 2020, the new virus was named 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the 

Coronaviridae Study Group (CSG) of International Committee on Taxonomy of 

Viruses (CORONAVIRIDAE STUDY GROUP OF THE INTERNATIONAL 

COMMITTEE ON TAXONOMY OF VIRUSES. 2020; HU et al. 2020). The 

disease caused by this agent was named coronavirus infectious disease 2019 

(COVID-19) (SUN et al. 2020b) and on March 11th, 2020, COVID-19 was 

declared as a global pandemic by the World Health Organization (WHO) 

(SONG et al. 2020). Phylogenetic analysis showed relations to severe acute 

respiratory syndrome corona virus 1 (SARS-CoV-1) and Middle East respiratory 

syndrome coronavirus (MERS-CoV), both leading to smaller outbreaks in 2003 

and 2012, respectively (DROSTEN et al. 2003; ZAKI et al. 2012; ZHONG et al. 

2003; KSIAZEK et al. 2003). By the end of February 2021, one year after the 

first outbreak of COVID-19, more than 100 million global cases were confirmed 

with more than 2 million deaths. Globally, the United States, India and Brazil 

are the countries with the highest number of confirmed cases (JHU 2021). 

1.2. Taxonomy and viral life cycle 

SARS-CoV-2 is an enveloped, single-stranded RNA virus with a genome size 

of about 26 to 32 kb (CORONAVIRIDAE STUDY GROUP OF THE 

INTERNATIONAL COMMITTEE ON TAXONOMY OF VIRUSES. 2020; LU et 

al. 2020). The new virus is classified as a member of the order Nidovirales, 

family Coronaviridae, and subfamily Orthocoronavirinae (LAI et al. 2020; LU et 

al. 2020; WOO et al. 2012) (Figure 1). Coronaviruses are found commonly 
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among mammals (including humans) and birds causing a variety of different 

infectious diseases such as respiratory, gastro-intestinal, hepatic or 

neurological disorders (GUY et al. 2000; SIDDELL et al. 2008). Since 2020, 

seven different coronavirus species are known to cause illnesses in humans.  

 

 

Figure 1: Classification of the seven human pathogenic coronaviruses. New SARS-CoV-2 belongs 

to the order Nidovirales, family Coronaviridae, subfamily Orthocoronavirinae, genus β- Coronavirus, 

subgenus Sarbecovirus. Adapted from (Malik 2020). 

 

Four human α- and β-coronaviruses (HCoV-229E, HCoV-OC43, HCoV-NL63, 

and HCoV-HKU1) mainly cause cold-like symptoms, especially in 

immunocompromised individuals and children (GREENBERG 2016; PENE et 

al. 2003; VABRET et al. 2003; WOO et al. 2005), whereas the other three 

human β-coronaviruses, MERS-CoV, SARS-CoV-1 and SARS-CoV-2 are 

connected to severer illnesses (CUI et al. 2018).  

 

Members of the family Coronaviridae, including SARS-CoV-2, encode four 

structural proteins: spike (S) protein, nucleocapsid (N) protein, membrane (M) 

protein and the envelope (E) protein (Figure 2). Furthermore, six-teen non-

structural proteins (nsp 1-16) involved in different regulatory processes (e.g., 

formation of replicase transcriptase complex) have also been identified 

(KHAILANY et al. 2020). 
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The envelope protein is a very small, membrane integral protein with 8.4-12.0 

kDa in size, (KUO et al. 2006; SCHOEMAN and FIELDING 2019) which is 

structured into three main parts: a small hydrophilic amino (N) - terminus (7-12 

amino acids), a large hydrophobic transmembrane domain (25 amino acids) 

and a hydrophilic carboxyl (C) - terminus (CORSE and MACHAMER 2000; 

LIAO et al. 2006). The E protein is predominantly found in the endoplasmic 

reticulum and the Golgi complex, supporting the viral assembly and trafficking 

of infectious virions (CORSE and MACHAMER 2000; OPSTELTEN et al. 1995).  

 

The nucleocapsid protein is phosphorylated and associated with the viral RNA, 

by capsuling the genomic material within the viral particles. The N protein 

contains two RNA-binding domains (N-terminal and C-terminal domain) 

connected with a serine/arginine rich linkage region. Due to the high amount of 

positively charged amino acids, it is able to bind to the viral RNA (HUANG et al. 

2004; HURST et al. 2009; SAIKATENDU et al. 2007). The membrane protein 

with about 25-30 kDa in size has three transmembrane domains 

(ARMSTRONG et al. 1984), an N-terminal ectodomain and a C-terminal 

endodomain. The M protein is responsible for the shape of the virion and 

maintains the membrane curvature. Furthermore, the M protein is able to bind 

Figure 2: Structure of new SARS-CoV-2. Left: 3D structure of SARS-CoV-2. Right: SARS-CoV-2 

encodes four structural proteins: spike (S) protein (green), membrane (M) protein (red), envelope (E) 

protein (yellow) and nucleocapsid (N) protein (light blue) capsuling the viral RNA (dark blue). Created with 

BioRender.com  
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to the nucleocapsid protein (NAL et al. 2005). 

 

The spike glycoprotein is around 150 kDa in size and highly N-glycosylated. It 

is located as a trimer on the surface of the virion showing a crown-like (“corona”) 

appearance (BELOUZARD et al. 2012) (Figure 3).  

 

 

Figure 3: Structural analysis of SARS-CoV-2 spike (S) protein. The S protein consists of two subunits, 

S1 and S2, which are cleaved at a furine cleavage site during the entry of the host cell. The S1 subunit 

contains an N-terminal domain (NTD) and the receptor-binding domain (RBD). The S2 subunit contains 

the fusion protein (FP), a heptad repeat 1 (HR1), a heptad repeat 2 (HR2), a transmembrane anchor (T.A.) 

and an intracellular tail (I.T). Created with BioRender.com 

 

The full-length S protein subsists in a metastable pre-fusion conformation, 

undergoing structural rearrangement to unite with the host cell membrane 

(BOSCH et al. 2003; LI 2016). Upon entry to the host cell, cleavage at a furine 

cleavage site is mediated by host cell proteases, splitting full-length spike 

protein into the S1 and S2 subunit. The S1 subunit is responsible for receptor 

binding, whereas the S2 subunit helps to maintain the structure of the S protein 

(ABRAHAM et al. 2004; LUYTJES et al. 2004; GROOT et al. 2005). Within the 

S1 subunit, the receptor-binding domain (RBD) is able to bind to the human 

angiotensin-converting enzyme 2 (ACE2) receptor with its receptor-binding 
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motif (RBM). The ACE2 receptor is broadly distributed in various tissue cells, 

including heart, testis and intestine. There, ACE2 has a regulatory function to 

maintain heart or kidney function or control the blood pressure (LI et al. 2005; 

LI et al. 2003; LUAN et al. 2020). 

 

The entry of SARS-CoV-2 relies on an interplay between the virion and the host 

cell (Figure 4). The viral particles interact with specific proteins that are found 

on the surface of the host cell. The spike protein plays an important role in this 

early stage of infection by facilitating receptor binding and fusion with the host 

cell membrane. After binding to the ACE2 receptor, the envelope protein fuses 

with the cell membrane, introducing the viral RNA genome into the host cell 

(BELOUZARD et al. 2012; SHANG et al. 2020; ZHOU et al. 2020). The RNA 

genome is translated into polypeptides by the host cell translation machinery 

and they are cleaved into non-structural proteins, including components to form 

the RNA-dependent RNA polymerase (RdRp) complex (HARTENIAN et al. 

2021). The RdRp complex (nsp 12) generates a negative-sense genome and 

RNAs, which serve as templates to synthesize positive-sense progeny 

genomes and mRNAs (SAWICKI and SAWICKI 2005). Some of these mRNAs 

are translated into accessory and structural proteins which are studded on the 

endoplasmic reticulum - Golgi intermediate compartment (ERGIC), a mobile 

compartment responsible for trafficking between endoplasmic reticulum (ER) 

and Golgi complex (APPENZELLER-HERZOG and HAURI 2006). The positive-

sense RNA is capsulated by the nucleocapsid protein and incorporated into the 

ERGIC. The enveloped virion is formed and released from the infected host cell 

by exocytosis (HARTENIAN et al. 2021).  

 



III. Literature review  16 

 

Figure 4: Replication cycle of SARS-CoV-2. Cell entry is mediated by the spike protein (1) binding to 

the ACE2 receptor. The RNA genome is released into the host cell (2) and translated into polypeptides. 

The polyproteins are cleaved into non-structural proteins (nsps) and the negative-sense RNA is 

transcribed (4), serving as a template to transcribe the positive-sense RNA (5). The subgenomic mRNA 

is translated into the structural proteins (spike protein, membrane protein and envelope protein) and other 

accessory proteins (6). These proteins are studded on the ERGIC, where the nucleocapsid protein (+ viral 

RNA) is budding (7). The virions are formed (8) and released via exocytosis (9) (HARTENIAN et al. 2021). 

Created with BioRender.com 

1.3. Clinical manifestations 

SARS-CoV-2 is mainly transmitted via droplets during the contact between 

infected and uninfected individuals. The main routes of transmission are 

coughing, sneezing, spitting or talking. Other routes were also observed, 

including sweat, stool, urine, and respiratory secretions (DING et al. 2004; 

PRAJAPAT et al. 2020; ZAYAS et al. 2012). The infection is caused by the 

contact of infectious droplets with the mucous membranes of eyes, nose and 

mouth (DU et al. 2020; WANG et al. 2020b).  

 

COVID-19 is classified into three categories, depending on the severity of the 

illness: mild, severe and critical (CHEN et al. 2020b; HUANG et al. 2020; TIAN 

et al. 2020; WU and McGOOGAN 2020). The most common symptoms of 
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COVID-19 are fever, cough, shortness of breath, headache, confusion, 

olfactory and taste disorder. Furthermore, many patients develop severe lung 

disease, causing the acute respiratory distress syndrome (ARDS) and 

inflammatory mediator associated airway inflammation. These syndromes 

result in impaired alveolar oxygenation and hypoxemia (CALABRESE et al. 

2020; CHEN et al. 2020a; TIAN et al. 2020). Other severe complications are 

metabolic acidosis, multiple organ failure or acute cardiac failure (HUANG et al. 

2020). Moreover, about 26% of SARS-CoV-2 infected patients end up at the 

intensive care unit (ICU), and elderly or patients with pre-existing illnesses have 

a poor prognosis (DENG and PENG 2020). Severe events developed by 

patients at the ICU include pneumonia and a so-called cytokine storm, driven 

by an over activation of the immune system. Multiple cytokines (IL-6, IL-10, IFN-

γ, TNF-α) could be detected at high amounts in the plasma of those patients 

(GAO et al. 2020; SPADARO et al. 2019).  

 

Although the range of symptoms is broad, and up to now, several millions of 

individuals have been infected with SARS-CoV-2, most cases follow mild 

symptoms and patients recover within a few days or weeks. Nevertheless, 

cases of long-term effects (post-COVID, chronic COVID, or long-COVID) were 

reported in the last couple of months, affecting both asymptomatic and 

symptomatic patients. As SARS-CoV-2 can infiltrate every organ, various long-

term effects were observed, including lung and neuronal injury (BOURGONJE 

et al. 2020; WANG et al. 2020a).  

1.4. Treatment and prevention 

Currently, no treatments are available and therefore, only supportive care is 

possible. There are various guidelines recommending treatments against 

COVID-19 such as bed rest with caloric intake, oxygen therapy via face mask, 

antiviral treatment (ribavirin, remdesivir, lopinavir/ritonavir, IFN-α, 

(hydroxy)chloroquine), plasmapheresis or immunotherapy (tocilizumab) (CHEN 

et al. 2020c; KLUGE et al. 2021).  

 

Lopinavir/ritonavir are mainly used in patients with less severe syndromes 

during the early stage of infection. The drugs inhibit protease enzymes and were 
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used successfully against MERS-CoV and SARS-CoV-1 (CHUNG et al. 2020; 

GUL et al. 2020). Although used in the clinics, a randomized study in 2020 with 

199 SARS-CoV-2 infected patients showed no significant difference between 

control group and treated group (CAO et al. 2020).  

 

Remdesivir was used during the Ebola outbreaks in Africa and patients with 

moderate and/or severe symptoms of COVID-19 are currently treated with this 

drug (ANTINORI et al. 2020). The substance targets the viral replication and is 

approved by the Food and Drug Agency (FDA) for clinical use (CHUNG et al. 

2020). A randomized study with 1,063 patients showed promising results, as 

the progression of COVID-19 could be stopped, and the recovery time could be 

shortened (BEIGEL et al. 2020). 

 

Moreover, anti-inflammatory drugs are used as treatments for COVID-19 

patients, as many patients with severe symptoms develop abnormal immune 

responses with high release of cytokines (e.g., IL-6, TNF-α or INF-γ) (GAO et 

al. 2020; SPADARO et al. 2019). Tocilizumab, a monoclonal antibody directed 

against the IL-6 receptor, was tested in several multicenter studies and showed 

an improvement of clinical syndromes (LUO et al. 2020; XU et al. 2020). 

 

Chloroquine and hydroxychloroquine show anti-inflammatory and anti-viral 

efficacy in patients suffering from rheumatic diseases or Malaria (KRAFTS et 

al. 2012). Both drugs inhibit the entry of SARS-CoV-2 and interfere with the 

glycosylation of the ACE2 receptor. The FDA approved an emergency use of 

chloroquine and hydroxychloroquine for severe cardiac events (CHUNG et al. 

2020). However, several multicenter studies were performed to test these drugs 

in COVID-19 patients for treatment and prophylaxis with no benefit for the 

patients (IBÁÑEZ et al. 2020; MÉGARBANE 2021).  

 

Although several promising drugs and treatments are available, prevention of 

an infection with SARS-CoV-2 by vaccination seems to be the best option to 

combat the global pandemic. By end of February 2021, more than 170 vaccines 

are tested in pre-clinical trials with more than 65 vaccines in clinical trials (WHO 

2021b). New and well-established platforms are used for the development of 
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vaccines against SARS-CoV-2 (Figure 5): (i) whole virus vaccines (attenuated 

or inactivated), (ii) replicating and non-replicating viral vectors, (iii) virus-like 

particles, (iv) DNA or RNA-based vaccines, (v) synthetic vaccines (synthetic 

peptides or protein subunits), and (vi) recombinant viral or bacterial vector 

vaccines. Most vaccines tested in clinical trials are protein subunit vaccines 

(32%) followed by non-replicating viral vector vaccines (16%) (LOCHT 2020; 

WHO 2021b). At the end of January 2021, two messenger RNA-based (mRNA) 

vaccines and one replication-deficient adenovirus vaccine are authorized and 

recommended for prevention of COVID-19 in Europe (CDC 2021a; WHO 

2021a). 

 

 

Figure 5: Approaches to vaccine development against SARS-CoV-2. Different platforms are used in 

the development of a vaccine. The brackets indicate the percentage of each platform tested in clinical 

trials. Protein subunit vaccines (32%) and non-replicating viral vector vaccines (16%) are most frequently 

represented in clinical trials (WHO 2021b). Created with BioRender.com 

 

The first one, named BNT162b2, is manufactures by Pfizer, Inc., and BioNTech. 

Clinical trials showed an efficacy of 95.0% to prevent a SARS-CoV-2 infection. 

The route of application is intramuscular in the upper arm using two shots with 

an interval of 21 days. The vaccine is recommended for individuals older than 
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16 years and the most common side effects include local pain or redness at the 

puncture site and systemic reactions such as fever, fatigue or headache (CDC 

2021c; POLACK et al. 2020; WALSH et al. 2020). 

 

The second one, named mRNA-1273, is manufactured by ModernaTX, Inc. 

Clinical trials showed an efficacy of 94.1% to prevent a SARS-CoV-2 infection. 

The route of application is intramuscular in the upper arm using two shots with 

an interval of 28 days. The vaccine is recommended for individuals older than 

18 years and the most common side effects include local pain or redness at the 

puncture site and systemic reactions such as fever, tiredness or headache 

(ANDERSON et al. 2020; BADEN et al. 2020; CDC 2021b).  

 

The third one, named AZD1222 or ChAdOx1-S (recombinant), is manufactured 

by the University of Oxford/AstraZeneca. The route of application is 

intramuscular in the upper arm using two shots with an interval of 28 to 84 days. 

The vaccine is recommended for individuals older than 18 years. However, due 

to a lack of clinical data, the vaccine efficacy in individuals >65 years is 

uncertain. The most common side effects following vaccination include local 

pain at the puncture site and systemic reactions such as headache, fatigue, 

myalgia and nausea (EMA 2021; WHO 2021d).  

 

The vaccines manufactured by Pfizer, Inc., BioNTech and ModernaTX, Inc.  use 

a mRNA encoding a pre-fusion stabilized version of the full-length SARS-CoV-

2 spike protein, which is delivered and translated in the cytoplasm of the host 

cell. In the last couple of years, mRNA became an encouraging alternative to 

other vaccine platforms, due to their safety, good immune response (high 

neutralizing and binding antibody titers, strong CD4+ and CD8+ T cell response) 

and the quick and low-cost manufacturing (CHUNG et al. 2020; PARDI et al. 

2018; POLACK et al. 2020). Nevertheless, there is still need for improvement 

because of instability and inefficient delivery in vivo (KARIKÓ et al. 2008; 

KAUFFMAN et al. 2016). 

 

In contrast, AZD1222 is based on a replication-deficient simian adenovirus 

expressing the codon-optimized full-length SARS-CoV-2 spike protein 
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intracellularly upon infection of the host cells (GILBERT and WARIMWE 2017; 

van DOREMALEN et al. 2020). The platform is well established and has been 

used to generate vaccines against several infectious pathogens including Ebola 

virus, Lassa virus and MERS-CoV (GILBERT and WARIMWE 2017). Preclinical 

and clinical studies with the new manufactured vaccine AZD1222 revealed a 

robust humoral and cell-mediated immune response (FOLEGATTI et al. 2020; 

GRAHAM et al. 2020; van DOREMALEN et al. 2020).  

2. Modified Vaccinia virus Ankara (MVA) as a viral 

vaccine  

2.1. History of MVA 

The Modified Vaccinia virus Ankara (MVA) was developed by passaging the 

virus on chicken embryonic fibroblasts (CEF) to create a safer vaccine against 

smallpox. The ancestor virus of MVA is Vaccinia virus strain (VACV) Ankara, 

cultured and amplified in Turkey as a vaccine against smallpox. VACV has been 

used as a vaccine for more than 200 years, but unfortunately, its application 

has been associated with rare but severe side effects. These side effects range 

from localized reactions to even death, mainly caused by post vaccinal 

encephalitis (MAYR 2003). In the early 1950s, VACV was distributed to Munich, 

where the virus was cultivated on chorioallantois membranes (CAM) of 

embryonated chicken eggs, renaming the virus as Chorioallantois Vaccinia 

virus Ankara (CVA) (HERRLICH and MAYR 1954). During the smallpox 

eradication campaign, CVA was amplified to obtain a safer vaccine against 

smallpox (1954/55). In parallel, the University of Munich was working on the 

genetic stability of CVA when cultivated on different tissue cultures and in 1968, 

after the 516th passage on chicken embryonic fibroblasts, CVA was renamed 

as Modified Vaccinia virus Ankara. MVA was distributed to the Bavarian State 

Institute for Vaccines for further testing and to confirm suitability as a vaccine 

against smallpox (STICKL and HOCHSTEIN-MINTZEL 1971). First attempts to 

vaccinate people with a MVA vaccine preparation showed no severe side 

effects (STICKL 1974). In 1977, MVA was authorized as primary pre-vaccine in 

Germany, and until 1980, more than 120,000 humans were vaccinated with 

MVA with no severe adverse events even when administered to patients at high 
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risk such as elderly or individuals with allergies and skin affections (MAHNEL 

and MAYR 1994; STICKL 1974). With the eradication of smallpox in 1977, 

further vaccination studies with the MVA vaccine stopped (VOLZ and SUTTER 

2016). Nevertheless, investigation on MVA continued and several years later, a 

restriction mapping of clonal isolate F6, derived from the 572nd passage on CEF 

cells, was performed, showing alterations compared to ancestor strain CVA 

(MEYER et al. 1991). Several mutations and large deletions were found, which 

affect genes involved in virus-host interactions. In total, around 30 kb of genetic 

information was lost, leading to a genome size of MVA of ~178 kb (ANTOINE 

et al. 1998; VOLZ and SUTTER 2016).  

2.2. Taxonomy and viral life cycle 

MVA belongs to the family poxviridae, subfamily chordopoxvirinae, and genus 

orthopoxvirus. Other members of genus orthopoxvirus include Variola virus 

(smallpox), monkeypox virus, cowpox virus and camelpox virus (GUBSER et al. 

2004) (Figure 6). 

 

 

Figure 6: Classification of Modified Vaccinia virus Ankara (MVA). MVA belongs to the family Poxvirus, 

subfamily Chordopoxvirinae, genus Orthopoxvirus, species Vaccinia virus. Modified from (GUBSER et al. 

2004). 
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Poxviruses are large and complex viruses (Figure 7). The envelope of 

extracellular virions (EV) contains two layers, an outer lipid membrane with 

short surface tubules visible upon electron microscope analysis and an inner 

lipid membrane. Inside is the core component of the virus particle with two 

lateral bodies that are important to deliver viral effector proteins into the host 

cell cytosol upon cell entry (BIDGOOD 2019; LALIBERTE et al. 2011). The core 

structure is formed by the core wall, which has a thick outer layer of structural 

proteins and a thin inner protein layer. The double-stranded DNA genome is 

tightly-packed as a nucleoprotein complex with the core structure. Of note, the 

nucleoprotein complex contains important viral enzymes that are also packaged 

within the virion (WESTWOOD et al. 1964). 

 

 

Figure 7: Schematic structure of a Modified Vaccinia virus Ankara (MVA) particle. MVA displays an 

envelope consisting of an outer lipid membrane (with surface tubules) and an inner lipid membrane. The 

inner part of the virion comprises a core structure with two lateral bodies. The core is surrounded by duplex 

protein layers and contains the DNA complex with viral enzymes in the inner part (WESTWOOD et al. 

1964). Created with BioRender.com 

 

Infectious viral particles are brick-shaped with a core structure containing the 

linear 178 kb duplex DNA. Several enzymes, including the DNA-dependent 
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RNA polymerase, capping and methylating enzymes are found within the virus 

core, enabling the virus to synthesize progeny mRNA after cell entry (Figure 

8). Once the mature virion (MV, not shown in the graph) or extracellular virion 

(EV) attach to and enter the host cell, viral DNA is uncoated and early genes 

are transcribed. These early genes encode proteins involved in replication of 

viral genome and transcription of intermediate genes. Afterwards, the viral 

progeny DNA is used as a template to translate intermediate and late genes. 

The three classes of genes (early, intermediate, and late) have promoters 

containing distinctive sequence elements (BALDICK et al. 1992; MOSS 1996), 

which are recognized by viral proteins. This allows for a sequential activation of 

genes during the life cycle of MVA. After translation of the late structural 

proteins, the virion is assembled, transported to the periphery (CUDMORE et 

al. 1995; STOKES 1976), budded through the plasma membrane and released 

from the host cell (PAYNE 1980).  
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Figure 8: Viral life cycle of poxviruses. Extracellular virions (EV) bind to host cells by the interaction of 

virion proteins with glycosaminoglycans (GAGs) on the surface of the cell. The complete replication cycle 

of poxviruses occurs in the cytoplasm of infected cells and is characterized by three steps of mRNA and 

protein synthesis (early, intermediate and late) following assembly and morphogenesis of infectious 

particles. The initial intracellular mature virus (IMV) is transported to the Golgi-apparatus and wrapped 

with Golgi-derived membranes, renaming IMV as intracellular enveloped virus (IEV). IEV is transported to 

the periphery and released by the host cell. Modified from (McFADDEN 2005; SUTTER 2020). Created 

with BioRender.com 

2.3. Virus-host interaction 

Wild type VACV has a subset of viral genes (“host range” genes) encoding 

regulatory proteins that are important to control intracellular host defense 

mechanisms. Most of these proteins are expressed at the early stage of 
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infection, allowing VACV and other poxviruses to inhibit the host cell innate 

immune response (SMITH 1993). MVA lost several of these immunomodulatory 

genes during the attenuation process on CEF cells (ANTOINE et al. 1998; 

CARROLL and MOSS 1997), which might explain the highly immunogenic 

property despite its restricted replication capacity in mammalian cells (GÓMEZ 

et al. 2011). However, MVA induces a cascade-like gene expression upon 

infection of non-permissive cells, but the assembly of virions is blocked at the 

late stage of the viral replication cycle (SUTTER and MOSS 1992). Interestingly, 

the amount of early and late viral proteins is comparable to those produced in 

permissive cells (SANCHO et al. 2002). Although, MVA cannot fulfill its 

complete viral life cycle, the induction of an efficient immune response against 

viral or bacterial antigens is not affected (SUTTER et al. 1994a).  

 

Poxviruses have developed several strategies to hamper the host cell immune 

response, including the inhibition of interferon pathways, the apoptotic response 

or production of cytokines and chemokines (SEET et al. 2003). In regard of IFN 

signaling pathways, VACV expresses a large panel of proteins blocking the 

induction of several transcription factors, such as NF-κB, IRF-3 or IRF-7 (SMITH 

et al. 2001). The pathways are activated by double-stranded (ds) RNAs and 

include the interferon-inducible protein kinase DAI (dsRNA-activated inhibitor of 

translation) and the 2`-5`oligoadenolyate synthase (MANCHE et al. 1992). The 

latter activates an endo-RNase preventing protein synthesis by the cleavage of 

mRNA. Upon activation, the DAI kinase phosphorylates the alpha subunit of the 

eukaryotic translation initiation factor 2 (eIF2α), causing an inhibition of protein 

synthesis at early stage. Viral proteins, such as C7, K1, K3 and E3 are able to 

block virus-induced phosphorylation of eIF2α. Furthermore, E3 inhibits 

phosphorylation of the two transcription factors IRF-3 and IRF-7 (BACKES et 

al. 2010; CHANG et al. 1992; SMITH et al. 2001), blocking type-I interferon 

release in VACV. MVA lacks several of these proteins (e.g., A52, B14, K1, C4, 

M2, N1), resulting in an upregulation of interferon pathways upon infection of 

host cells. A key feature of MVA as a viral vector vaccine is the strong induction 

of cytotoxic T cell responses by the activation of type-I IFNs in human antigen-

presenting cells such as dendritic cells (BÜTTNER et al. 1995; DRILLIEN et al. 

2004). Gene profiling analysis of MVA infected dendritic cells revealed elevated 
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mRNA levels of IL-12, IFN-α/β, IRF-7 and proteins activating the type-I IFN 

production (MDA5, RIG) (GUERRA et al. 2007). Another immune evasion 

mechanism of VACV connected to the interferon pathway is the expression of 

soluble receptors for TNF, IFN-γ, and IFN-α/β. These secreted receptors allow 

evading and inhibiting of the host immune system, and their high prevalence in 

the serum is associated with high virulence (HU et al. 1994; MOSSMAN et al. 

1995; SMITH et al. 1997; SPRIGGS et al. 1992). MVA lacks genes to encode 

those receptors and thus, induces an innate immune response. Furthermore, 

MVA infection induces the production of chemokines (e.g., CCL2) and activation 

of the complement system, causing an increased migration of leucocytes to the 

source of infection (LEHMANN et al. 2009). 

 

Besides, apoptosis of infected cells is blocked by certain VACV proteins. 

Programmed cell death is mediated by caspases and B-cell lymphoma (Bcl)-2 

and Bcl-2-like proteins at the mitochondrion. Once apoptosis is activated, the 

pro-apoptotic proteins Bid, Bim and PUMA activate Bax/Bak or NOXA which 

assemble pores in the mitochondrial membrane (CHIPUK et al. 2010; REN et 

al. 2010). The pores allow the release of cytochrome c from the mitochondrial 

intermembrane space into the cytosol, causing the assemble of the apoptosome 

complex. Thereby, caspase-3 and caspase-7 are activated and the subsequent 

cascade leads to the death of infected cells (DANIAL and KORSMEYER 2004). 

Anti-apoptotic proteins such as Bcl-2, Bcl-w or Bfl-1 interfere with pro-apoptotic 

proteins to block Bax/Bak activation. The VACV E3 protein binds to the pro-

apoptotic NOXA protein, inhibiting apoptosis in infected cells (DAVIES et al. 

1992; VEYER et al. 2017).  

2.4. MVA as a viral vector vaccine  

Due to the replication deficiency of MVA in most cells of mammalian origin and 

the possibility to use the virus for high-level expression of various recombinant 

proteins, MVA is a promising tool to create viral vector vaccines. Moreover, 

recombinant Vaccinia viruses induce high levels of cytotoxic CD8+ T cells in 

immunized animals and humans. The intracellular expression of a target 

antigen allows for processing and presentation to major histocompatibility 

complex (MHC) class I molecules for recognition by T cells (TOWNSEND et al. 
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1988). 

  

The target genes (viral or bacterial antigens) can easily be inserted into one of 

the deletions sites of MVA by homologous recombination. By cloning the genes 

into these sites, changes in genotype and phenotype can be avoided (VOLZ 

and SUTTER 2016). The time-point and amount of expressed antigen is 

controlled by the choice of an early, intermediate or late promoter. The highest 

amount of expressed antigen was observed with late or early/late promoters 

(MACKETT et al. 1984). To generate a recombinant MVA, some general rules 

need to be considered. A transfer plasmid is required, containing an expression 

cassette (poxvirus promoter and a multiple cloning site with restriction sites to 

insert the foreign antigen), which is flanked by poxvirus DNA sequences to 

direct recombination into the preferred locus (EARL et al. 1990; MACKETT et 

al. 1984; STAIB et al. 2004). The DNA sequence TTTTTNT functions as a stop 

signal for viral early gene transcription and foreign antigens should be screened 

for this thymidine rich regions. Furthermore, G/C-runs could lead to a frameshift 

in the MVA genome during DNA replication (WYATT et al. 2009). If the target 

antigen contains these runs of thymidines or G/Cs, the codon usage should be 

changed (EARL et al. 1990). The efficiency of homologous recombination is 

around 0.1% and screening for positive plaques can be performed either by 

DNA hybridization, expression of target antigen (PICCINI et al. 1987), co-

integration of antibiotic selection marker (FRANKE et al. 1985) or co-expression 

of marker genes (WONG et al. 2011). The very first proteins that were 

expressed by recombinant MVAs were the E. coli enzymes guanine-

phosphoribosyl-transferase (GPT) and β-galactosidase using gene sequences, 

which were inserted into deletion site III (SUTTER and MOSS 1992).  

2.5. Vaccinia virus vaccines in veterinary and human 

vaccine trials 

Various recombinant Vaccinia viruses were used in animals against viruses of 

veterinary importance, such as vesicular stomatitis virus (VSV) (MACKETT et 

al. 1985), Rinderpest virus (RPV) (YILMA et al. 1988) or rabies virus (RABV) 

(WIKTOR et al. 1984). Raccoonpox virus vectors were used to prevent RABV 

infections in raccoons (ESPOSITO et al. 1988), capripox virus vectors were 
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used to protect cattle against RPV (ROMERO et al. 1994), fowlpox vectors were 

used to protect chicken against influenza virus (WEBSTER et al. 1991) and 

canarypox virus were used to protect dogs against canine distemper virus 

(CDV) (TAYLOR et al. 1991). 

 

Besides, several Vaccinia virus-based vaccines were used in human vaccine 

trials. In the beginning of the 1990s a randomized phase I clinical trial was 

performed in the USA to test safety and immunogenicity of a recombinant 

Vaccinia virus expressing the envelope protein from human immunodeficiency 

virus 1 (HIV-1). No severe side effects were observed and a prime-boost 

vaccination induced humoral and cell-mediated immune responses (COONEY 

et al. 1991; GRAHAM et al. 1992). A few years later, a recombinant Vaccinia 

virus expressing the membrane protein from Epstein-Barr virus (EBV) was 

administered in China to infants and young children, showing immunogenic 

properties. Over a period of 16 months, natural infections with EBV could be 

delayed or even prevented (GU et al. 1995).   

 

The first recombinant MVA-based candidate vaccine expressing two proteins, 

hemagglutinin (HA) and nucleoprotein of influenza A virus, was tested in mice 

for immunogenicity. High levels of antibodies and cytotoxic T cells could be 

found. Moreover, vaccinated mice could be protected in a challenge model 

following infection with influenza A virus (HESSEL et al. 2014; SUTTER et al. 

1994b). Over the last decades, several MVA-based vaccines were tested in 

various preclinical and clinical trials, including vaccines against Ebola virus 

(ANYWAINE et al. 2019), HIV (MUNSERI et al. 2015) and Mycobacterium 

tuberculosis (MANJALY THOMAS et al. 2019). Recently, an MVA-based 

vaccine against MERS-CoV, closely related to new SARS-CoV-2, was tested in 

a phase I clinical trial, showing strong humoral and cell-mediated immune 

response (KOCH et al. 2020; SONG et al. 2013; VOLZ et al. 2015).  

3. Viral infection and host immune response 

The immune system can be divided into two main parts that act in a synergetic 

way: adaptive and innate immunity. The latter is the first immunological barrier 

against pathogens, showing a rapid (within minutes or hours) and non-specific 
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immune response that has no immunological memory (MURPHY et al. 2014; 

WARRINGTON et al. 2011). The main function is to recruit certain immune cells 

to sites of infection and to produce cytokines causing an inflammation. 

Production of cytokines triggers the release of antibodies and specific 

glycoproteins resulting in an activation of the complement system (LING and 

MURALI 2019). The innate immunity is also responsible for clearance of dead 

cells and promotes removal of foreign substances in various organs, blood and 

lymph. Furthermore, the innate immunity activates the adaptive immunity by 

antigen presentation through phagocytes such as macrophages, neutrophils or 

dendritic cells (TURVEY and BROIDE 2009; WARRINGTON et al. 2011). 

 

In contrast, the adaptive immunity acts in an antigen-dependent and antigen-

specific manner and has the capacity to develop memory, allowing a rapid 

response after re-infection with a given pathogen (MURPHY et al. 2014; 

WARRINGTON et al. 2011). This branch of the immune system is activated 

when the innate immunity is not able to eliminate a certain pathogen and the 

infection is established. The main tasks are the recognition of foreign antigens, 

the activation of effector pathways and the development of an immunologic 

memory. The adaptive immunity can be further classified into cell-mediated (T 

cell) response and antibody-mediated (B cell) response (BONILLA and 

OETTGEN 2010).  

 

T cells originate from hematopoietic stem cells in the bone marrow and mature 

in the thymus, expressing one unique antigen-binding receptor, known as T cell 

receptor (TCR). TCRs interact with antigen-presenting cells (APCs), such as 

macrophages or dendritic cells, to recognize a certain antigen. APCs encode 

cell-surface proteins, which are named major histocompatibility complex 

(MHC). MHC are further divided into class I, which is broadly distributed on all 

nucleated cells, and class II, which is found only on specific immune cells, such 

as macrophages and dendritic cells. Class I MHC molecules present 

intracellular peptides whereas class II MHC molecules display extracellular 

peptides. Those peptides are fragments of antigens, presented by cells after 

contact or infection with a pathogen (BONILLA and OETTGEN 2010; MURPHY 

et al. 2014). T cells bind with their TCRs to the fragmented antigens on MHC 
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molecules and secret cytokines which further active the immune cascade, 

causing a differentiation of T cells into cytotoxic T cells (CD8+ T cells) or T-

helper (Th) cells (CD4+ T cells) (WARRINGTON et al. 2011). CD8+ T cells are 

responsible for destruction of infected cells and are activated by interaction of 

class I MHC bound peptides. Clonal expansion of CD8+ T cells leads to the 

maturation of effector cells which secrete perforin, granzyme and granulysin, 

thereby inducing lysis and apoptosis of infected cells. Once the infection is 

cleared, most effector cells die, but a small portion become memory cells which 

differentiate quickly into effector cells after re-infection with a known antigen 

(BONILLA and OETTGEN 2010; MURPHY et al. 2014; WARRINGTON et al. 

2011).  

 

The major role of CD4+ T cells is to shape the adaptive immune response by 

influencing the function of other immune cells. They are activated by the 

interplay of their TCRs with class II MHC bound molecules, releasing cytokines 

which active other immune cells. CD4+ T cells are divided into two types: Th1 

and Th2. Once Th1 cells are activated, IFN-γ and other cytokines are released, 

inducing B cells to produce (neutralizing) antibodies. Th2 activation causes the 

release of cytokines (e.g., IL-4 and IL-13) which activate IgE-antibody producing 

B cells and eosinophils. Similar to cytotoxic CD8+ T cells, most Th cells die after 

clearance of the infection, with a small amount remaining as memory cells 

(BONILLA and OETTGEN 2010; MURPHY et al. 2014; NICHOLSON 2016).  

 

B cells derive from hematopoietic stem cells in the bone marrow, expressing 

one unique antigen receptor after maturation. In contrast to T cells, B cells need 

no APCs and recognize foreign antigens directly. The main task of B cells is the 

production of specific antibodies against pathogens (MURPHY et al. 2014). 

Once B cells are activated by recognizing foreign antigens, they differentiate 

into antibody-secreting plasma cells or memory cells. The latter are long-living, 

continually expressing antigen-binding receptors and respond quickly upon re-

infection with known antigens. Plasma cells are short-living, express no antigen-

binding receptors and die once the infection is cleared (BONILLA and 

OETTGEN 2010; WARRINGTON et al. 2011). Secreted antibodies are 

classified into five different types: immunoglobulin (Ig) A, IgG, IgE, IgM and IgD 
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(MURPHY et al. 2014; SCHROEDER and CAVACINI 2010). Immunoglobulins 

consist of two polypeptide chains, a heavy and a light chain. Each Ig molecule 

has two heavy and two light chains which are connected by disulfide bonds. 

The structure of the B cell receptor is identical to its corresponding antibody, 

beside a small part at the C- terminus of the heavy chain. The B cell receptor 

has a hydrophobic part to bind to the membrane of the B cell, whereas the 

antibody has a hydrophilic sequence allowing secretion (MURPHY et al. 2014). 

The most important antibodies in terms of clearance of pathogens are IgA, IgG 

and IgM. The latter is expressed during early stage of infection and opsonizes 

the pathogen for destruction. IgA is responsible for mucosal response, either by 

neutralizing viral or bacterial antigens or inhibiting the binding to the mucosal 

surface. The main circulating immunoglobulin, IgG, is expressed at later stage 

of infection and opsonize the antigens for destruction and neutralizes the virus 

(MURPHY et al. 2014; SCHROEDER and CAVACINI 2010).
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IV. MATERIAL AND METHODS 

1. Materials 

1.1. Organism 

1.1.1. Bacterial strains 

NEB 10-beta bacteria (New England Biolabs, Frankfurt, Germany) were used 

for heat-shock transformation and amplification of plasmid DNA. 

1.1.2. Cell lines 

Table 1: Overview of cell lines 

Cell line Detailed information Experiment 

A549  

 

adenocarcinomic, alveolar basal 

epithelial cells (human) 

protein expression, growth 

kinetics 

CEF chicken embryonic fibroblasts virus amplification, protein 

expression 

DF-1 

 

chicken embryonic fibroblasts  virus amplification, plaque 

passage, growth kinetics, 

protein expression 

HaCat epidermal keratinocyte cells (human) protein expression, growth 

kinetics 

HeLa  

 

cervical cancer cells (human) protein expression, growth 

kinetics 

Vero E6  kidney epithelial cells (African green 

monkey) 

protein expression, virus 

neutralization assay (VNT) 
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1.2. Antibodies 

1.2.1. Primary antibodies 

Table 2: Primary antibodies used for western blot analysis (WB), immunofluorescence assay (IFA) 

and intracellular cytokine staining (ICS) 

Antigen Supplier Species WB IFA ICS 

CD3 phycoerithrin 

(PE)-Cy7 

Biolegend, 

London, United 

Kingdom 

mouse - - 1:100 

CD4  

Brilliant Violet  

Biolegend, 

London, United 

Kingdom 

mouse - - 1:600 

CD8α Alexa Fluor 

488 

Biolegend, 

London, United 

Kingdom 

mouse - - 1:300 

CD16/CD32 Biolegend, 

London, United 

Kingdom 

mouse - - 1:500 

HA-tag  Thermo Fisher 

Scientific, 

Planegg, 

Germany 

mouse 1:7,000 1:1,000 - 

IFN-γ Biolegend, 

London, United 

Kingdom 

mouse - - 1:200 

spike protein  Biozol GmbH, 

Eching, 

Germany 

mouse 1:1,000 1:200 - 

TNF-α Biolegend, 

London, United 

Kingdom 

mouse - - 1:200 

Vaccinia virus A27L 

protein 

oriGene, 

Herford, 

Germany 

rabbit - 1:2,000 - 
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1.2.2. Secondary antibodies 

Table 3: Secondary antibodies used for western blot analysis (WB) and immunofluorescence assay 

(IFA) 

Name Supplier Origin WB IFA 

Anti-mouse IgG HRP Agilent Technologies, 

Waldbronn, 

Germany 

goat 1:5,000 1:1000 

Anti-rabbit IgG HRP Cell Signaling, Frankfurt am 

Main, Germany 

goat 1:5,000 - 

Anti-rabbit IgG 

peroxidase 

conjugated 

Jackson Immuno Research, 

Suffolk, United Kingdom 

goat - 1:5,000 

 

1.3. Oligonucleotides 

Table 4: Oligonucleotides used for control PCR 

Name Sequence (5´ 3´) PCR 

MVA-Del 1 for CTTCGCAGCATAAGTAGTATGTC Deletion I 

MVA-Del 1 rev CATTACCGCTTCATTCTTATATTC Deletion I 

MVA-Del 2 for GGGTAAAATTGTAGCATCATATACC Deletion II  

MVA-Del 2 rev AAAGCTTTCTCTCTAGCAAAGATG Deletion II 

MVA-Del 3 for GATGAGTGTAGATGCTGTTATTTTG Deletion III  

MVA-Del 3 rev GCAGCTAAAAGAATAATGGAATTG Deletion III 

MVA-Del 4 for AGATAGTGGAAGATACAACTGTTACG Deletion IV 

MVA-Del 4 rev TCTCTATCGGTGAGATACAAATACC Deletion IV 

MVA-Del 5 for CGTGTATAACATCTTTGATAGAATCAG Deletion V  

MVA-Del 5 rev AACATAGCGGTGTACTAATTGATTT Deletion V 

MVA-Del 6 for CTACAGGTTCTGGTTCTTTATCCT Deletion VI  

MVA-Del 6 rev CACGGTCAATTAACTATAGCTCTG Deletion VI 

III-3´ GTACCGGCATCTCTAGCAGT Deletion III  

III-5´ TGACGAGGTTCCGAGTTCC Deletion III 

SARS-CoV-2 for 1 CCAGAACTCAATTACCCCCTGC Insert 

SARS-CoV-2 rev 1 CATTACAAGGTGTGCTACCGGC Insert  

SARS-CoV-2 for 2 ACAAATCGCTCCAGGGCAAAC Insert  

SARS-CoV-2 rev 2 GCCCCTATTAAACAGCCTGCAC Insert  
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SARS-CoV-2 for 3 TGGCAGAGACATTGCTGACAC Insert  

SARS-CoV-2 rev 3 GCACCAAAGGTCCAACCAGAAG Insert  

SARS-CoV-2 for 4 TCAGACTAATTCTCCTCGGCGG Insert  

SARS-CoV-2 rev 4 CAGCCCTTGAGACAACTACAGC Insert  

C7L for CATGGACTCATAATCTCTATAC C7L  

C7L rev ATGGGTATACAGCACGAATTC C7L  

 

1.4. Plasmids 

Table 5: Expression and shuttle plasmids  

Plasmid Supplier Experiment 

pUC57-SARS-CoV-2-S Genewiz, Leipzig, 

Germany 

cloning 

pIIIH5red-SARS-CoV-2-S Alina Tscherne, LMU cloning 

pIIIH5red Gerd Sutter, LMU cloning 

 

1.5. Peptides 

Table 6: Selected peptides with predicted class I MHC (H2d) and class II MHC (IAd and IEd) 

restriction 

Peptide ID Peptide Length Start End Pool # 

S1 GYLQPRTFL 9 268 276 4 

S2 AYSNNSIAI 9 706 714 10 

S3 IYQAGSTPCNGV 12 472 483 5 

S4 FTISVTTEI 9 718 726 10 

S5 IYQTSNFRV 9 312 320 10 

S6 IYQAGSTPC 9 472 480 5 

S7 QYIKWPWYI 9 1208 1216 6 

S8 CYGVSPTKL 9 379 387 11 

S9 PPIKDFGGFNF 11 792 802 11 

S10 VGYQPYRVVVL 11 503 513 7 

S11 KYNENGTIT 9 278 286 4 

S12 GYQPYRVVV 9 504 512 7 

S13 QYGSFCTQL 9 755 763 8 

S14 SYQTQTNSP 9 673 681 8 
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S15 YQPYRVVVL 9 505 513 7 

S16 WPWYIWLGF 9 1212 1220 6 

S17 VYAWNRKRI 9 350 358 9 

S18 CGPKKSTNL 9 525 533 9 

S19 KYFKNHTSP 9 1154 1162 9 

S20 TRFASVYAWNRKRIS 15 345 359 1 

S21 RFASVYAWNRKRISN 15 346 360 1 

S22 FASVYAWNRKRISNC 15 347 361 1 

S23 INITRFQTLLALHRS 15 233 247 2 

S24 NYLYRLFRKSNLKPF 15 450 464 2 

S25 LIRAAEIRASANLAA 15 1012 1026 3 

S26 NYNYLYRLFRKSNLK 15 448 462 2 

S27 ASVYAWNRKRISNCV 15 348 362 1 

S28 IRAAEIRASANLAAT 15 1013 1027 3 

S29 GNYNYLYRLFRKSNL 15 447 461 2 

S30 AAEIRASANLAATKM 15 1015 1029 3 

S31 GGNYNYLYRLFRKSN 15 446 460 2 

S32 RAAEIRASANLAATK 15 1014 1028 3 

S33 ATRFASVYAWNRKRI 15 344 358 1 

S34 NATRFASVYAWNRKR 15 343 357 1 

F2(G) SPGAAGYDL 9 26 34 - 

 

2. Methods 

2.1. Cell culture 

2.1.1. Passaging, freezing and thawing of cells 

Eucaryotic cells were washed once with 1x DPBS, trypsinized with 1x TrypLE™ 

Select Enzym for 5-10 min at 37 °C. 7-9 ml of cell culture medium were added 

to stop the enzymatic reaction. One part of the cell suspension was distributed 

to new flasks, filled up with cell culture medium and cells were cultured at 37 °C 

with 5% CO2. DF-1 cells were kept in VP-SFM medium supplemented with 2% 

L-glutamine and 2% heat-inactivated FBS. CEF cells were isolated from 10 to 

11-day old chicken embryos and were maintained in VP-SFM medium, 10% 

FBS and 1% L-glutamine. Vero E6 cells were cultured in DMEM with 10% FBS 



IV. Material and Methods 38 

and 1% MEM non-essential amino acid solution. Human A549 cells were 

maintained in DMEM (+ 4500 mg/l glucose) containing 10% FBS. Human HeLa 

cells were maintained in MEM, 7% FBS and 1% MEM non-essential amino acid 

solution. Human HaCat cells were maintained in DMEM, 1% MEM non-

essential amino acid solution, 10% FBS and 1% HEPES solution. 

 

To freeze cells, the protocol for passaging cells was followed until the enzymatic 

reaction of trypsin was stopped. The cell suspension was centrifuged and the 

pellet was resuspended in freezing medium (45% FBS, 45% cell culture 

medium, 10% DMSO). The cells were immediately distributed to cryo tubes and 

frozen at -80 °C. For long term storage, cells were transferred to liquid nitrogen. 

To thaw the cells, cryo tubes were taken from liquid nitrogen or -80 °C, carefully 

thawed in a water bath (37 °C) and immediately filled up with medium to dilute 

the toxic DMSO. Cells were distributed to cell culture flasks and cultured at 37 

°C with 5% CO2. Medium was changed the day after to remove dead cells. 

2.1.2. Generation and purification of recombinant viruses  

To obtain the recombinant MVA vector virus a well-established protocol was 

used as described previously (ALTENBURG et al. 2014; KOCH et al. 2020; 

SONG et al. 2013). Briefly, clonal isolate MVA-F6sfMR was grown on CEF cells 

under serum-free conditions and was used as a non-recombinant backbone 

virus to insert the SARS-CoV-2 spike gene sequence. 6-well tissue culture 

plates with 90-95% confluent DF-1 or CEF cells were infected with non-

recombinant MVA-F6sfMR at a multiplicity of infection (MOI) of 0.05 and 

transfected with 1 µg DNA of expression plasmid pIIIH5red-SARS-CoV-2-S 

using X-tremeGENE HP DNA Transfection Reagent according to the manual. 

Cells were cultured for 48 h at 37 °C and collected afterwards. Recombinant 

MVA viruses were clonally isolated by serial rounds of plaque purification on 

DF-1 or CEF cell monolayers screening for transient co-expression of the 

marker protein mCherry. To obtain large scale virus preparations, recombinant 

MVA-SARS-CoV-2-S was amplified on DF-1 cells grown in T175 tissue culture 

flasks. The virus was purified via ultracentrifugation through 36% sucrose and 

reconstituted in TBS (pH =7.4). For long term storage, recombinant viruses 

were frozen at -80 °C.  
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2.1.3. Determination of plaque-forming units (PFU) 

Recombinant MVA was diluted in 10-fold dilution steps (range 1:10*4 to 1:10*9) 

and used to infect 6-well tissue plates with 90-95% confluent CEF cells. Each 

dilution was prepared in triplicates. Cells were incubated for 48 h and 

afterwards, fixed with ice-cold methanol: acetone (1:1) for 5 min. Plates were 

blocked with PBS (+ 3% FBS) for 1 h at RT or 4 °C o/n. Plates were washed 3x 

with PBS. Primary antibody (anti-Vaccinia virus or anti-HA) was diluted in PBS 

(+ 3% FBS) and plates were incubated for 1 h at RT. Subsequently, plates were 

washed 3x with PBS. Secondary antibody (goat anti-mouse HRP) was diluted 

in PBS (+ 3% FBS) and plates were incubated for 1 h at RT. Afterwards, plates 

were washed 3x with PBS and TrueBlue™ Peroxidase Substrate was added to 

each well until color change could be observed. Plaque-forming units per ml 

(PFU/ml) were determined by counting the plaques.  

2.1.4. Growth kinetics on permissive and non-permissive cell 

lines 

DF-1, HeLa, HaCat and A549 cells were grown on 6-well tissue plates at a 

confluency of 90-95% and were infected with recombinant MVA at a MOI of 

0.05. After certain time points (0, 4, 8, 12, 24, 48 and 72 hpi), whole wells were 

collected and frozen at -20 °C. Three freeze and thaw cycles were performed 

before sonicating three times for 1 min. Afterwards, back titration on CEF cells 

was performed using the protocol descripted in chapter 2.1.3 Determination of 

plaque-forming units (PFU).  

2.1.5. Low MOI passage 

A monolayer of 90-95% confluent DF-1 cells was infected with recombinant 

MVA at a MOI of 0.05 and cultured for 48 h at 37 °C. Afterwards, the amplified 

virus was collected and used to re-infect confluent 6-well tissue plates with DF-

1 cells at a MOI of 0.05. This procedure was repeated four times, ending up 

with five rounds of low MOI passaging. Genetic stability of recombinant MVA-

SARS-CoV-2-S was further validated by PCR analysis and gene expression 

was monitored by SARS-CoV-2 spike protein specific immunostaining.  
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2.1.6. SARS-CoV-2 virus neutralization test (VNT) (performed at 

the Institute of Virology, Philipps University Marburg) 

Mice were immunized according to chapter 2.4.1 vaccination experiments and 

heat-inactivated serum samples were send to Prof. Dr. Stephan Becker`s lab, 

located at the Philipps University Marburg (Germany), to test the sera for their 

neutralization capacity using a protocol described previously (KREER et al. 

2020). Briefly, samples were serially diluted starting with a 1:16 dilution and 

incubated with 100 TCID50 SARS-CoV-2 (BavPat1/2020 isolate, European 

Virus Archive Global # 026V-03883) for 1 h at 37 °C. Serum/virus mixture was 

added to 96-well tissue culture plates with Vero E6 cells and cultured for four 

days. Neutralization capacity was determined as the absence of cytopathic 

effect compared to virus control. 

2.2. Biochemistry 

2.2.1. Generation of cell lysates 

6-well tissue plates or 24-well tissue plates with cells at a confluency of 90- 95% 

were infected with recombinant MVA at a MOI of 10 and were incubated for 0, 

2, 8, 12, 24 and 48 h at 37 °C. Non-infected cells and cells infected with wild-

type MVA were used as controls. To generate the lysates, cells were scraped 

from the plates and centrifuged for 1 min at 13,000 rpm. Supernatant was 

removed and the pellets were washed once with pre-chilled PBS. PBS was 

removed and pellets were reconstituted with lysis buffer (+ proteinase inhibitor). 

The cells were incubated for 30-60 min on ice and centrifuged for 15 min at 

13,000 rpm. The lysates were frozen at -80°C.  

2.2.2. SDS-PAGE and western blot analysis 

Cell lysates (description chapter 2.2.1 Generation of cell lysates) were thawed 

carefully on ice and mixed with 4x reducing agent containing β-

mercaptoethanol. The samples were boiled for 5 min at 95 °C and cooled down 

to RT. Subsequently, samples and a protein standard (Pageruler prestained 

protein ladder) were loaded on a pre-cast gel and proteins were separated by 

using 100 V for 2 h. The proteins were transferred on a nitrocellulose membrane 

using 100 V for 100 min. Afterwards, the membrane was blocked with blocking 
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buffer (1% BSA in PBST) for 1-2 h at RT. The first antibody (anti-HA) was diluted 

in blocking buffer and membrane was incubated for 1 h at RT before washing 

the membrane 3x with PBST for 10 min. The secondary antibody (goat anti-

mouse HRP) was diluted in blocking buffer and the membrane was incubated 

for 1 h at RT. After washing 3x with PBST, the membrane was incubated with 

SuperSignal West Dura Extended Duration Substrate for 1 min and proteins 

were detected by using the ChemiDocTMMP, Imaging System. 

2.2.3. Immunofluorescence 

Vero E6 cells were grown on cover slips in 6-well tissue culture plates. 90-95% 

confluent cells were infected at a MOI of 0.05 with recombinant MVA-SARS-

CoV-2-S and non-recombinant MVA. Non-infected cells served as a control. 

After incubation for 24 h at 37 °C, cells were fixed with 4% 

paraformaldehyde/PBS for 10 min on ice. Cells were washed with PBS, 

permeabilized with 0.1% Triton X-100/PBS and probed with an antibody against 

the HA-tag epitope. Non-permeabilized cells were probed with an antibody 

against the spike protein and fixed with 4% paraformaldehyde/PBS afterwards. 

A secondary goat anti-mouse antibody was used for visualization of S-specific 

staining by red fluorescence. DAPI (1 µg/ml) was used to stain the nuclei and 

cells were further analyzed by Keyence BZ-X700 microscope with a ×100 

objective. 

2.3. Molecular biology 

2.3.1. Heat-shock transformation 

Competent bacteria were carefully thawed on ice and pre-chilled plasmid DNA 

(100-500 ng) was added by slowly pipetting up and down. The tubes were 

incubated for 30 min on 4 °C and afterwards, bacteria were heat- shocked at 42 

°C for 30 sec.  LB-medium without antibiotics was added to the bacteria, which 

were then incubated for 1-3 h at 37 °C. Bacteria were plated on LB-agar plates 

containing antibiotics (50 µg/ml ampicillin or 50 µg/ml kanamycin) and incubated 

o/n at 37 °C. Colonies were selected and grown in LB-medium (+ antibiotics) 

for plasmid isolation. 
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2.3.2. Isolation of plasmid and viral DNA 

To obtain small amounts of plasmid DNA, the NucleoSpin Plasmid Mini kit for 

plasmid DNA was used according to the manual. Briefly, bacteria were 

centrifuged for 1 min at 13,000 rpm. Supernatant was discarded and the pellet 

was resuspended with pre-chilled resuspension buffer R1 (+ RNAse inhibitor). 

Lysis buffer A2 was added and tubes were incubated for 5 min at RT before 

adding neutralization buffer A3. Tubes were centrifuged for 10 min at 13,000 

rpm and the supernatant was loaded on columns. Afterwards, tubes were 

centrifuged for 1 min at 13,000 rpm and the flow through was discarded. Wash 

buffer AQ was added to the tubes and after centrifugation for 3 min at 13,000 

rpm, the DNA was eluted by adding elution buffer AE. 

 

To obtain larger amounts of plasmid DNA, the NucleoBond Xtra Midi kit was 

used according to the manual. Briefly, bacteria were centrifuged for 30 min at 

4,500 rpm and the pellet was resuspended in pre-chilled buffer RES (+ RNAse 

inhibitor). Lysis Buffer LYS was added and the tubes were incubated for 5 min 

at RT before adding buffer NEU. The supernatant was loaded on NucleoBond 

Xtra Column Filter and the flow through was discarded. Buffer WASH was 

added and afterwards, the DNA was collected by adding buffer ELU. To 

precipitate the DNA, isopropanol was used and the pellet was washed once 

with 96% ethanol. The pellet was dried and reconstituted with ddH2O.  

 

To obtain viral DNA, the NucleoSpin Blood Kit was used according to the 

manual. Briefly, infected cells were scraped from the tissue culture plates and 

centrifuged for 2 min at 2,000 rpm. Supernatant was discarded, the pellet was 

resuspended in buffer BQ1 (+ proteinase K) and incubated at 70 °C for 15 min. 

Afterwards, 96% ethanol was added and the liquid was loaded on columns. The 

tubes were centrifuged for 1 min at 13,000 rpm, the flow through was discarded 

and the columns were washed twice with wash buffer BQ2. To elute the DNA, 

pre-heated buffer BE was added to the columns and the tubes were centrifuged 

for 1 min at 13,000 rpm. The DNA was stored at -20 °C until further analysis. 

2.3.3. Digestion with restriction enzymes 

Plasmid DNA was digested with restriction enzymes for 90 min at 37 °C. 
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Restriction enzymes (NotI, PmeI, EcoRI) were obtained from New England 

Biolabs, Frankfurt, Germany. The following protocol was used to digest plasmid 

DNA: 

500-1000 ng plasmid DNA 

5 µl restriction buffer (10x) 

0.2 µl enzyme A 

0.2 µl enzyme B 

ad 50 µl ddH2O 

2.3.4. Polymerase chain reaction (PCR) 

PCR was used to amply specific regions of plasmid or viral DNA using the Taq 

DNA polymerase according to the manual. The oligonucleotide sequences are 

summarized in chapter 1.3 Oligonucleotides. The following protocol was used: 

 

 Final concentration 

0.2 µl polymerase (5 U/µl) 2.5 U/µl 

2.5 µl buffer (10x) 1x 

1 µl forward primer (10 µM)  0.5 µM 

1 µl reverse primer (10 µM) 0.5 µM 

0.75 µl MgCl2 (50 mM) 1.5 mM 

0.5 µl dNTP-Mix (2.5 mM) 0.05 mM each 

5 µl template 1-500 ng 

14.55 µl ddH2O - 

 

Table 7: Temperature profile for control PCR 

Step Temperature  Time 

Initial Denaturation 94 °C 5 min 

Denature 

 

Anneal 

Extend 

94 °C 45 sec 

Depending on primer Tm 

(55-70 °C) 

30 sec 

72 °C 90 sec/kb 

Final extension 72 °C 10 min 

Hold 4 °C indefinitely 

 

30x  

PCR  

cycle

s 
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2.3.5. Quantitative real-time reverse transcription PCR (qRT-

PCR) (performed at the Institute of Virology, Philipps 

University Marburg) 

Mice were immunized as described in chapter 2.4.1 Vaccination experiments. 

The immunized mice were shipped to Prof. Dr. Stephan Becker`s lab, located 

at the Philipps University Marburg (Germany), and challenged as descripted in 

chapter 2.4.2 Transduction of vaccinated mice and challenge infection with 

SARS-CoV-2. Tissue samples were excised from the left lung lobes and 

homogenized in DMEM. Isolation of RNA was achieved using the RNeasy Mini 

Kit according to the manual. Briefly, cells were lysed with buffer RLT, 

homogenized and afterwards, ethanol was added to the mixture. The liquid was 

loaded on columns and centrifuged for 1 min at 13,000 rpm. The columns were 

washed 3x with buffer RW1 and total RNA was eluted in RNAse-free water. 

Total RNA was reverse transcribed and quantified by RT-PCR (OneStep RT-

PCR Kit) using a protocol and primers as described before (CORMAN and 

DROSTEN 2020). Additionally, determination of mCherry mRNA was 

performed by RT-PCR for every tissue sample to confirm successful ACE2 

transduction. Quantification was performed by using a standard curve based on 

10-fold serial dilutions of control RNA (range: 10*2 to 10*5 copies).  

2.3.6. Gel electrophoresis 

Gel electrophoresis was performed to separate digested DNA or PCR products 

according to their sizes. Agarose (0.5-1.5%) was dissolved in 1x TAE buffer and 

boiled in a microwave. GelRed was added and the liquid gel was poured in a 

chamber. The digested DNA or PCR products were mixed with 5x DNA loading 

dye and loaded on the solid gel. To separate the DNA fragments, 100 V for 2 h 

were used. Subsequently, the DNA fragments were analyzed with UV light. 

2.4. Immunology 

2.4.1. Vaccination experiments 

6 to 10-weeks old female BALB/c mice (Charles River, Sulzfeld, Germany) were 

maintained under pathogen-free conditions with free access to food and water. 

They were allowed to adapt to the facility for at least one week before starting 
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the vaccination experiments. All animal experiments were handled in 

compliance with the European and national regulations for animal 

experimentation (European Directive 2010/63/EU; Animal Welfare Acts in 

Germany). Immunizations were performed with recombinant MVA-SARS-CoV-

2-S and non-recombinant MVA diluted in vaccination puffer (= saline, PBS). 

Mice vaccinated with saline served as a control. Two different concentrations 

(10*7 PFU and 10*8 PFU) and two different vaccination schemes (prime only, 

prime-boost: 21-day interval) were used by application into the quadriceps 

muscle of the left hind leg using the intramuscular route. Blood samples were 

collected on day 0, 18 and 35 post 1st immunization. To obtain serum, 

coagulated blood was centrifuged at 2,000 rpm for 10 min. The serum samples 

were stored at -20 °C. 

2.4.2. Transduction of vaccinated mice and challenge infection 

with SARS-CoV-2 (performed at the Institute of Virology, 

Philipps University Marburg) 

Mice were vaccinated as described in 2.4.1 Vaccination experiments and 

shipped to Prof. Dr. Stephan Becker`s lab at the Philipps University Marburg 

(Germany) for further experiments. Mice were isolated for at least one week to 

adapt to the facility. Mice were kept under anesthesia (ketamine/xylazine) and 

inoculated with 5x 10*8 PFU Adenovirus-ACE2-mCherry (cloned at ViraQuest 

Inc., North Liberty, IA, USA) using the intratracheal route. Three days post 

transduction, mice were infected with 1.5x 10*4 TCID50 SARS-CoV-2 

(BavPat1/2020 isolate, European Virus Archive Global #026V-03883) using the 

intranasal route. Mice were euthanized four days post infection and serum and 

tissue samples were taken for further analysis. 

2.4.3. Enzyme-linked immune sorbent assay (ELISA) 

SARS-CoV-2-S specific IgG titers were analyzed as described previously 

(KALODIMOU et al. 2019). Briefly, 96-well ELISA plates were coated with 

recombinant COVID-19 S protein (Full Length-R683A-R685A425 HisTag, 

ACROBiosystems, Newark, USA) o/n at 4 °C. Plates were washed with PBS 

and blocked with PBS (+ 1% BSA, 0.15 M sucrose) for 1 h at 37 °C. Heat-

inactivated mice sera were serially diluted three-fold in PBS (+ 1% BSA), 
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starting with a 1:100 dilution. ELISA plates were rinsed and mixed with the 

diluted mice sera and incubated for 1 h at 37 °C. Afterwards, plates were 

washed and probed with a goat anti-mouse IgG HRP antibody (diluted in PBS 

+ 1% BSA) for 1 h at 37 °C. After another wash step, 3´3´,5´5´- TMB Liquid 

Substrate System for ELISA was added and incubated until a color change was 

observed. The reaction was stopped with stop reagent for TMB substrate. The 

absorbance of each sample was measured at 450 nm with a 620 nm reference 

wavelength. A positive control was used to normalize the data and the control 

group (PBS) was used to set the cut-off value. Therefore, the mean value of the 

normalized OD values from the control group plus six standard deviations was 

determined. 

2.4.4. Prediction and generation of synthetic SARS-CoV-2-S 

peptides 

The Immune Epitope Database and Analysis Resource (IEDB) was used for 

epitope predication (CD8+T cell and CD4+ T cell) on the basis of the full-length 

SARS-CoV-2-S sequence (NCBI ID: QHD43416.1, Uniprot ID: P0DTC2 

(SPIKE_SARS2). The prediction was used only for the species “mouse” with 

the class I MHC alleles H2-Kd, H2-Dd and H2-Ld (CD8+ T cell) and the class II 

MHC alleles H2-IAd and H2-IEd (CD4+ T cell). To identify possible CD8+ T cell 

epitopes, the class I MHC Binding Prediction and class I MHC Processing 

Prediction tools (DHANDA et al. 2019; FLERI et al. 2017) were used, ending up 

with a long list of 9-11 amino acid long peptides restricted to a percentile rank 

cut-off of 10.0. Furthermore, all peptides with an IC50 score of ≤ 500 nM were 

selected for analysis using the class I MHC Processing Prediction tool 

“Proteasomal cleavage/TAP transport/MHC class I combined predictor. 

Peptides with a high score remained in the list of potential epitopes.  

 

To identify probable CD4+ T cell epitopes, the class II MHC Binding Prediction 

tool (DHANDA et al. 2019; FLERI et al. 2017) was used ending up with a list of 

15 amino acid long peptides. Peptides with a percentile rank of ≤10.0 and an 

IC50 rank of ≤1000 nM were selected for synthesis and testing. All peptides were 

obtained from Thermo Fisher Scientific (Planegg, Germany) as crude material. 

For further testing by ELISpot assay and ICS, the lyophilized peptides were 
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diluted in PBS or DMSO. In total, 19 potential CD8+ T cell and 15 CD4+ T cell 

epitopes were synthesized for further testing. 

2.4.5. Enzyme-linked immunosorbent Spot assay (ELISpot 

assay) 

ELISpot assay was performed to measure IFN-γ-producing T cells (VEIT et al. 

2018). At day eight post prime or prime-boost vaccination, mice were 

euthanized and whole splenocytes were prepared. Cell suspensions were 

prepared by passing spleens through a 70 µm strainer and lysed with Red Blood 

Cell Lysis Buffer. Cells were centrifuged for 5 min at 1,500 rpm, washed twice 

and resuspended in RPMI 1640 medium (+ 10% FBS, 1% 

penicillin/streptomycin, 1% HEPES). ELISpot assay was performed according 

to the manual. Briefly, 2x 10*5 splenocytes were seeded in 96-well plates and 

stimulated with the peptides (2 µg/ml in RPMI medium). Non-stimulated cells 

and cells stimulated with PMA/ionomycin or Vaccinia virus peptide SPGAAGYD 

(F2(G)26-34; H-2Ld) (TSCHARKE et al. 2005) served as controls. Cells were 

cultured for 48 h at 37 °C and afterwards stained according to the manual. Spots 

were counted for further analysis by an automated ELISpot plate reader. 

2.4.6. Intracellular cytokine staining (ICS) 

Intracellular cytokine staining was performed as described before 

(KALODIMOU et al. 2019). Briefly, splenocytes were isolated as described in 

chapter 2.4.5. Enzyme-linked immunosorbent Spot assay. Cells were 

stimulated with 8 µg/ml S269-278 peptide or Vaccinia virus peptide F226-34 to 

analyze SARS-CoV-2-S- or MVA-specific CD8+ T cell responses. Splenocytes 

stimulated with PMA/ionomycin were used as positive controls whereas 

splenocytes stimulated with RMPI medium were used as a negative control. 

After 2 h at 37 °C, brefeldin A was added and cells were cultured for 4 h at 37 

°C. The stimulated cells were washed with FACS buffer (+ 2% FBS) and stained 

with anti-mouse CD3 phycoerithrin (PE)-Cy7, anti-mouse CD4 542 Brilliant 

Violet, anti-mouse CD8α Alexa Fluor 488 and CD16/CD32 for 30 min on ice. 

Cells were washed and fixed with fixation buffer for 20 min on RT, resuspended 

in FACS buffer and stored at 4 °C o/n. The next day, cells were permeabilized 

by using intracellular staining permeabilization wash buffer and stained with 
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anti-mouse IFN-γ diluted in perm wash buffer for 30 min at RT. Afterwards, cells 

were washed and resuspended in FACS buffer and data were acquired by 

MACSQuant VYB Flow Analyser. Analysis was performed by using the software 

FlowJo. 

2.5. Statistical analysis 

Data were analyzed using GraphPad Prism 5.0 (GraphPad Sodtware Inc., San 

Diego, CA, USA) and were expressed as mean ± standard error of the mean 

unless stated otherwise. Statistical analysis was performed using unpaired two-

tailed t test to compare two groups. Comparison of three or more groups was 

analyzed by one-way ANOVA and Tukey post-hoc test. P-values less than 0.05 

were considered to be statistically significant. 
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V. OBJECTIVES 

The global pandemic caused by SARS-CoV-2 is still present, affecting the daily 

life of millions of people. Due to the lack of approved therapies and the need for 

more vaccines against SARS-CoV-2, this work describes the following 

milestones in the development of the new candidate vaccine MVA-SARS-CoV-

2-S:  

 

(i) Generation of recombinant MVA expressing the full-length 

SARS-CoV-2 spike protein (MVA-SARS-CoV-2-S). 

 

(ii) In vitro characterization of recombinant MVA-SARS-CoV-2-S 

 

a. Genome analysis and stability testing 

b. Protein expression  

c. Replication capacity 

 

(iii) In vivo characterization of recombinant MVA-SARS-CoV-2-S in 

terms of adaptive immune response in BALB/c mice 

 

a. Immunization experiments  

b. Determination of SARS-CoV-2-S specific CD8+ and CD4+ 

T cell epitopes 

c. Humoral immune response against SARS-CoV-2, 

including analysis of binding and neutralizing antibodies 

d. Protective capacity of MVA-SARS-CoV-2-S upon 

challenge infection 
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VI. RESULTS 

1. Construction and characterization of 

recombinant MVA-SARS-CoV-2-S 

1.1. Construction of recombinant MVA-SARS-CoV-2-S 

To generate the recombinant MVA-SARS-CoV-2-S (MVA-S), the encoding 

sequence of the spike protein from the virus isolate Wuhan HU-1 (GenBank 

accession no. MN908947.1) served as a template. In addition, modifications 

including an HA-tag and codon optimization were made. For the latter, G/C-runs 

and TTTTTNT regions were changed on the genomic level without affecting the 

amino acid sequence. Furthermore, restriction sites (PmeI and NotI) were 

added for cloning the SARS-CoV-2-S sequence into the MVA vector plasmid 

pIIIPmH5red.  

 

The cDNA was placed under the transcriptional control of the Vaccinia virus 

early/late PmH5 promoter (WYATT et al. 1996) by integration of the sequence 

into the MVA vector plasmid pIIIPmH5red. The new plasmid, pIIIPmH5red-

SARS-CoV-2-S contains a resistance gene (AmpR), flank regions (flank-1 and 

flank-2) of MVA genomic DNA and the reporter gene mCherry (Figure 9). 

Correct insertion and identity of the SARS-2-S sequence was confirmed by 

sequencing. 
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Figure 9: Vector plasmid pIIIH5red-SARS-CoV-2-S. The sequence of SARS-CoV-2-S (blue) was cloned 

between flanking regions (flank-1 and flank-2, orange) for homologous recombination into deletion site III 

of the MVA genome. The marker gene mCherry (red) was placed between two flanks (orange) for 

intragenomic homologous recombination during plaque purification. The resistance gene AmpR (blue) was 

used for selection of positive clones after integration of the SARS-CoV-2-S sequence into the plasmid. 

 

The encoding sequence of SARS-CoV-2-S was introduced into deletion site III 

of MVA-F6-sfMR by homologous recombination between MVA DNA sequences 

adjacent to deletion site III in the MVA genome and copies cloned into plasmid 

pIIIPmH5red-SARS-2-S (flank-1 and flank-2). Recombinant MVA-SARS-CoV-

2-S was obtained by plaque purification using the co-expressed fluorescent 

protein mCherry. The latter was removed by intragenomic homologous 

recombination during plaque purification and amplification of the recombinant 

virus (marker gene deletion) (Figure 10). 
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Figure 10: Construction of recombinant MVA-SARS-CoV-2-S. Schematic diagram of the MVA genome 

including the six major deletion sites I-VI. The encoding sequence of SARS-CoV-S was introduced into 

the deletion site III by homologous recombination. Deletion of the marker gene mCherry occurred by 

intragenomic homologous recombination. 

1.2. Genetic characterization and stability of the SARS-

CoV-2 spike sequence 

Viral DNA was isolated and further analyzed in regard to correct insertion and 

genomic integrity of the SARS-CoV-2-S sequence. In addition, correct removal 

of the marker gene mCherry as well as the integrity of the C7L gene region were 

tested. The latter encodes a regulatory Vaccinia virus protein, which is important 

for viral gene expression in mammalian cells (BACKES et al. 2010; MEYER et 

al. 1991; NÁJERA et al. 2006). Therefore, different control PCRs were 

performed, as described previously (SONG et al. 2013; VEIT et al. 2018).  

 

The correct length of the insert could be shown by amplifying a PCR product of 

about 4.8 kb (Figure 11a). The correct removal of mCherry could be shown by 

comparing the PCR product from pIIIH5red-SARS-CoV-2-S (pIII-S) with the 

recombinant MVA-SARS-CoV-2-S (MVA-S). A difference of ~1.0 kb in size 

corresponds to the size of mCherry. The absence of non-recombinant MVA 

could be shown by the lack of the characteristic amplicon of 0.762 kb. Specific 

oligonucleotides binding inside the insert region were designed, allowing an 

amplification of overlapping amplicons with sizes of 0.714 kb, 0.954 kb, 1.341 

kb and 1.689 kb (Figure 11b). Next, the C7L specific PCR was performed 

verifying that the recombinant MVA-SARS-CoV-2-S shows no difference to non-

recombinant MVA (Figure 11c).  
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Figure 11: Genetic integrity of MVA-SARS-CoV-2-S (MVA-S). Genomic DNA was analyzed for correct 

insertion into (a) deletion site III, (b) correct size of the insert, and (c) genetic integrity of the C7L region. 

(a) line 1: H2O control. line 2: non-recombinant MVA. line 3: pIIIPmH5red-SARS-CoV-2-S (pIII-S). line 4: 

recombinant MVA-SARS-CoV-2-S (MVA-S). The absence of non-recombinant MVA was demonstrated by 

the lack of a specific DNA fragment (0.762 kb). Removal of the marker gene mCherry was shown by the 

reduced size (~1.0 kb) of recombinant MVA-S compared to pIII-S. (b) line 1: H2O control. line 2: non-

recombinant MVA. line 3-6: overlapping amplicons to cover full-length S protein. (c) line 1: H2O control. 

line 2: non-recombinant MVA. line 3: MVA-SARS-CoV-2-S (MVA-S).  
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To confirm genetic integrity, recombinant MVA-SARS-CoV-2-S was passaged 

five times on DF-1 cells at a MOI of 0.05 (“low MOI passage”). Afterwards, 

genomic analysis and stable protein expression were further validated. In 

regard of genomic analysis, the six deletion PCRs of passage 1 and passage 5 

were performed by using oligonucleotides that bind to the flank regions of the 

six major MVA deletions sites I-VI. No difference could be observed between 

passage 1 and passage 5 in terms of stability of the SARS-CoV-2-S sequence 

(Figure 12).  

 

 

Figure 12: Genetic stability of the six major deletion sites of MVA-SARS-CoV-2-S (MVA-S) following 

serial passages on DF-1 cells. Viral DNA was isolated and tested for stability of the six major deletion 

sites after serially passaging MVA-S on DF-1 cells for (a) one time or (b) five times. (a, b) line 1: deletion 

site I. line 2: deletion site II. line 3: deletion site III. line 4: deletion site IV. line 5: deletion site V. line 6: 

deletion site VI. line 7: H2O control.  

 

To screen for stable protein expression following low MOI passage, 

immunostaining was conducted (Figure 13). A total of 60 clonal MVA-S isolates 

were collected after the fifth passage on DF-1 cells and used to infect DF-1 cells 

grown on 24-well tissue culture plates. Cells infected with non-recombinant 

MVA were used as control. Cells were incubated for 48 h and stained with anti-

Vaccinia and anti-HA antibodies. Plaques were counted and 60/60 MVA-S 

isolates were tested positive for unimpaired expression of the recombinant 

SARS-CoV-2-S protein. 
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Figure 13: Low MOI passage of recombinant MVA-SARS-CoV-2-S (MVA-S). Recombinant MVA-S was 

serially passaged on DF-1 cells and unimpaired recombinant gene expression was screened by 

immunostaining using an antibody directed against the HA-tag. 

1.3. Protein expression of full-length SARS-CoV-2 spike 

protein 

To evaluate the expression pattern of the recombinant spike protein, Vero E6 

cells were infected with recombinant MVA-SARS-CoV-2-S (MVA-S) and 

stained with antibodies directed against the HA-tag or the spike protein and 

were further analyzed using fluorescence microscopy. The antibody directed 

against the HA-tag at the C-terminal part of the recombinant spike protein 

showed specific staining in permeabilized cells, which corresponds to the 

expected intercellular localization of the C-terminus of the SARS-CoV-2-S 

protein. The SARS-CoV-1/SARS-CoV-2 specific antibody recognizes a region 

in the external domain of the spike protein and allows staining in non-

permeabilized cells, which indicates a translocation of the SARS-CoV-2-S 

protein to the cytoplasm membrane (Figure 14). 
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Figure 14: Immunostaining of SARS-CoV-2 spike protein in MVA-SARS-CoV-2-S (MVA-S) infected 

Vero E6 cells. Cells were infected at a MOI of 0.5 with recombinant MVA-S or non-recombinant MVA 

(control) and fixed with paraformaldehyde. Permeabilized and non-permeabilized cells were probed with 

antibodies directed against the HA-tag or the spike protein and further stained with a secondary antibody 

to perform S-specific fluorescent staining (red). Cell nuclei were counterstained using DAPI (blue). 

 

In addition, the recombinant spike protein was examined in more detail by using 

Western Blot analysis. Vero E6 cells were infected with recombinant MVA-

SARS-CoV-2-S and non-recombinant MVA (control) and lysates were prepared 

after certain time-points to screen for protein expression over time. The proteins 

were separated by SDS-PAGE according to their sizes and stained with a 

specific antibody directed against the HA-tag. Two prominent bands at 190 kDa 

and 90-100 kDa could be observed (Figure 15). The higher band might refer to 

the full-length spike protein whereas the lower band might refer to the S2 

cleavage product as the HA-tag is located at the C-terminal part of the spike 

protein. Due to the early transcription of SARS-CoV-2-S by the MVA PmH5 

promoter, high protein amounts were already detectable two hours post 

infection, continuously increasing until 24 hours post infection. The expected 

size of SARS-CoV-2-S is around 145 kDa which leads to the hypothesis that 

the spike protein might be glycosylated. Indeed, NetNGlyc 1.0 server analysis 

indicated at least 17 N-glycosylation sites for co- and post-translational 

modifications. The treatment of cell lysates with PNGase F, which removes all 

N-linked oligosaccharide chains, reduced the molecular masses of the 

recombinant SARS-CoV-2-S protein bands from 190 kDa to 145 kDa and from 

90-100 kDa to 65 kDa, perfectly matching the expected sizes of unmodified full-

length SARS-CoV-2-S and the S2 cleavage product (Figure 15).  
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Figure 15: Synthesis of full-length spike protein in MVA-SARS-CoV-2-S (MVA-S) infected Vero E6 

cells. Cells were infected at a MOI of 10 and collected after the indicated time points. Furthermore, 

deglycosylation of the S protein was performed using PNGase F (MVA-Sd). Polypeptides were separated 

by SDS-PAGE and analyzed with an antibody directed against the HA-tag. Lysates from non-infected 

(Mock) or non-recombinant MVA infected (MVA) cells were used as controls. 

1.4. Growth kinetics on permissive and non-permissive 

cell lines 

Beside genomic stability and stable expression of SARS-CoV-2-S, another 

important feature of (recombinant) MVA is the replication deficiency in 

mammalian cell lines. To confirm the replication deficiency, a multiple-step 

growth analysis on various mammalian cell lines was performed. Three cell 

lines of human origin (HaCat, HeLa, and A549 cells) were infected with 

recombinant MVA-SARS-CoV-2-S (MVA-S) and non-recombinant MVA 

(control) and collected after the indicated time points. Furthermore, the avian 

cell line DF-1, which was used to amplify the recombinant MVA-S, served as a 

control cell line permissive for MVA growth. No virus replication could be 

observed in human cell lines up to 72 hours post infection. In DF-1 cells, 

however, recombinant MVA-S productively amplified to levels comparable with 

non-recombinant MVA (Figure 16). 
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Figure 16: Multiple-step growth analysis of recombinant MVA-SARS-CoV-2-S (MVA-S) and non-

recombinant MVA (MVA). Cells were infected at a MOI of 0.05 with MVA-S or MVA and collected at the 

indicated time points. Titration was performed on CEF cells and plaque-forming units (PFU) were 

determined. MVA-S and MVA could be amplified on DF-1 cells but failed to replicate on all tested cells of 

human origin (HaCat, HeLa, and A549 cells). 

2. Immune response 

2.1. Determination of a potential CD8+ T cell epitope 

Information about antigen specificities of SARS-CoV-2-S specific T cells is 

limited. Due to that, the IEDB was used for selection of putative S-specific 

peptide epitopes for activation of CD8+ T cell and CD4+ T cell response. The 

predicted peptides were divided into pools of three to six peptides. BALB/c mice 

were vaccinated with 10*8 PFU and euthanized eight days post prime 

immunization. Splenocytes were further processed to test the activation 

capacity of different peptide pools. Several peptide pools showed responses 

above the background signal (Figure 17a) and, after testing single peptides, 

the immunodominant SARS-CoV-2 S H2-Kd epitope S269-278 (GYLQPRTFL; S1 

N-terminal) could be identified (Figure 17b).  



VI. Results 59 

 

 

Figure 17: Identification of H2-d restricted T cell epitopes of the SARS-CoV-2-S protein. BALB/c 

mice (n= 4-6) were immunized once with 10*8 PFU MVA-SARS-CoV-2-S (MVA-S) or non-recombinant 

MVA (MVA) via the i.m. route. Splenocytes were collected and further processed eight days post 

immunization and stimulated with pools of peptides (9-12 mer) or single peptides from positive pools and 

were analyzed by IFN-γ ELISPOT assay. (a) IFN-γ spot forming-cells (SFC) measured by ELISpot assay 

after stimulation with peptide pools. (b) IFN-γ SFC measured by ELISpot assay after stimulation of single 

peptides from the two most promising pools P4 and P9. Statistical differences between MVA-S and MVA 

groups were analyzed by unpaired two-tailed t tests. Asterisks represent statistically significant differences 

between the groups. * p < 0.05, ** p < 0.01, **** p < 0.0001 

 

The predicted CD4+ T cell epitopes were not tested in the prime only schedule, 

but were included as pools of three to six peptides to test CD4+ T cell response 

upon prime-boost vaccination (chapter 2.2.1. Spike specific CD8+ and CD4+ T 

cell response)  



VI. Results 60 

2.2. T cell response 

To assess the S-antigen specific T cell response (CD8+ and CD4+) upon 

vaccination with MVA-SARS-CoV-2-S, two different vaccination schedules 

(prime only, prime-boost) with two different doses (low dose: 10*7 PFU and high 

dose: 10*8 PFU) were performed (Figure 18). 

 

 

Figure 18: Schematic diagram of two immunization schedules (prime only and prime-boost) with 

MVA-SARS-CoV-2-S (MVA-S) to test T cell responses. Groups of BALB/c mice (n=4-6) were vaccinated 

with 10*7 PFU (low dose) or 10*8 PFU (high dose) of MVA-S via the i.m. route using a prime only or prime-

boost schedule. T cell responses were examined at day eight post 1st immunization (prime only) or 2nd 

immunization (prime-boost). Created with BioRender.com 
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2.2.1.  Spike specific CD8+ and CD4+ T cell response 

S-antigen specific CD8+ T cell response was determined by IFN-γ ELISpot 

assay and intracellular cytokine staining (ICS). Splenocytes of mice vaccinated 

according to the prime only or prime-boost schedule were isolated at day eight 

post last immunization and stimulated with the immunodominant SARS-CoV-2-

S H2-Kd epitope S269-278. A single application of MVA-SARS-CoV-2-S (MVA-S) 

induced detectible levels of S269-278 epitope-specific induced CD8+ T cells with 

mean numbers of 342 IFN-γ spot-forming-cells (SFC) in splenocytes for the low 

dose and 275 SFC for the high dose. Mice vaccinated with non-recombinant 

MVA showed no detectible SFC (Figure 19a). 

 

 

Figure 19: Activation of SARS-CoV-2-S specific CD8+ T cell response after prime only 

immunization with MVA-SARS-CoV-2-S (MVA-S). Groups of BALB/c mice (n= 4-6) were immunized 

once with 10*7 or 10*8 PFU MVA-S using the i.m. route. Mice vaccinated with non-recombinant MVA were 

used as controls. Splenocytes were collected and isolated at day eight post immunization and stimulated 

with the H2d restricted peptide of the SARS-CoV-2-S protein S268-276 and measured by (a) IFN-γ ELISpot 

assay and (b-d) IFN-γ and TNF-α ICS plus FACS analysis. (b, c) IFN-γ produced by CD8+ T cells 

measured by FACS analysis. Graphs show (b) frequency and (c) absolute number of IFN-γ producing 

CD8+ T cells. (d) cytokine profile of S268-276 specific CD8+ T cells. Graphs show the mean frequency of 

IFN-γ-TNF-α+, IFN-γ+ TNF-α+ and IFN-γ+ TNF-α- cells within the positive CD8+ T cell population.  
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Intracellular cytokine staining (ICS) for IFN-γ was performed to complement the 

ELISpot results, showing mean values of 0.32% (high dose) and 0.36% (low 

dose) IFN-γ positive splenic CD8+ T cells (Figure 19b). The absolute numbers 

of IFN-γ positive CD8+ T cells were 27,487 (low dose) and 34,294 (high dose). 

Mice vaccinated with non-recombinant MVA showed no detectible number of 

IFN-γ positive CD8+ T cells (Figure 19c). Substantial numbers of IFN-γ positive 

CD8+ T cells showed co-expression of TNF-α, with mean values of 61.7% (low 

dose) and 68.7% (high dose) from total IFN-γ expressing cells (Figure 19d). No 

significant difference between the two doses could be observed for the prime 

only schedule in terms of the CD8+ T cell response. 

 

The second immunization at day 21 with 10*7 PFU (low dose) or 10*8 PFU 

(high dose) of MVA-SARS-CoV-2-S increased the number of S-specific CD8+ 

T cells. At day eight post second immunization, splenocytes were isolated and 

stimulated with the immunodominant SARS-CoV-2 S H2-Kd epitope S269-278. 

ELISpot analysis revealed mean numbers of 1,020 IFN-γ SFC (low dose) and 

1,159 IFN-γ SFC (high dose) in vaccinated animals. Mice vaccinated with saline 

(PBS) showed no SFC (Figure 20a).  

 

Intracellular cytokine staining revealed mean values of 0.62 % (high dose) and 

0.60% (low dose) IFN-γ positive splenic CD8+ T cells (Figure 20b) and total 

numbers of 40,873 (low dose) and 49,553 IFN-γ positive CD8+ T cells (Figure 

20c). As already seen for the prime only immunization, a high proportion of IFN-

γ positive CD8+ T cells co-expressed TNF-α (~70% for low and high dose) 

(Figure 20d). 
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Figure 20: Activation of SARS-CoV-2-S specific CD8+ T cell response after prime- boost 

immunization with MVA-SARS-CoV-2-S (MVA-S). Groups of BALB/c mice (n=4) were immunized twice 

with 10*7 or 10*8 PFU of MVA-S over a 21-day interval using the i.m. route. Mice vaccinated with saline 

(PBS) served as controls. Splenocytes were collected and isolated at day eight post boost immunization 

and stimulated with the H2d restricted peptide of the SARS-2-S protein S268-276 and measured by (a) IFN-

γ ELISpot assay and (b-d) IFN-γ and TNF-α ICS plus FACS analysis. (b, c) IFN-γ produced by CD8+ T 

cells measured by FACS analysis. Graphs show (b) frequency and (c) absolute number of IFN-γ producing 

CD8+ T cells. (d) cytokine profile of S268-276 specific CD8+ T cells. Graphs show the mean frequency of 

IFN-γ-TNF-α+, IFN-γ+ TNF-α+ and IFN-γ+ TNF-α- cells within the positive CD8+ T cell population. 

Differences between the groups were analyzed by one-way ANOVA and Tukey post-hoc test. Asterisks 

represent statistically significant differences between the groups. * p < 0.05, ** p < 0.01 

 

Moreover, activation of S-specific CD4+ T cells was analyzed. The predicted 

epitopes for MHC II binding were tested after a prime-boost immunization with 

low dose (10*7 PFU) or high dose (10*8 PFU) of MVA-SARS-CoV-2-S. 

Splenocytes were collected at day eight post 2nd immunization and stimulated 

with three pools containing three to six peptides (15 mer). The presence of small 

amounts of S-specific CD4+ T cells could be demonstrated with mean values 

of 10-20 SFC (low dose) and 16-25 SFC (high dose) (Figure 21). 
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Figure 21: Analysis of predicted peptides to activate CD4+ T cell response upon prime-boost 

vaccination with MVA-SARS-CoV-2-S (MVA-S). Groups of BALB/c mice (n= 4-6) were immunized twice 

over a 21-day interval with 10*7 PFU or 10*8 PFU MVA-S using the i.m. route. Mice vaccinated with saline 

(PBS) served as controls. Splenocytes were collected and isolated at day eight post 2nd immunization and 

stimulated with three different pools (three to six peptides/pool) containing 15 mer peptides. IFN-γ spot-

forming cells (SFU) were measured by ELISpot assay. 

2.2.2. MVA-specific CD8+ T cell response 

The MVA-specific immunodominant CD8+ T cell epitope F2(G)26-34 served as a 

control for detection and analysis of MVA vector-specific CD8+ T cell response 

in BALB/c mice. A single application of MVA-SARS-CoV-2-S (MVA-S) induced 

substantial levels of F2(G)26-34 epitope-specific CD8+ T cells with mean values 

of 337 IFN-γ SFC (low dose) and 496 IFN-γ SFC (high dose). Mice vaccinated 

with non-recombinant MVA showed mean values of 477 IFN-γ SFC (low dose) 

and 481 IFN-γ SFC (high dose) (Figure 22a). Intracellular cytokine staining 

revealed values of 0.39% (low dose) and 0.26% (high dose) IFN-γ positive 

CD8+ T cells in the spleen (Figure 20b) and total numbers of 33,310 (low dose) 

and 16,624 (high dose) IFN-γ positive CD8+ T cells (Figure 22c). Mice 

vaccinated with non-recombinant MVA showed mean values of 0.37% (low 

dose) and 0.22% (high dose) IFN-γ positive splenic CD8+ T cells (Figure 22b) 

and total numbers of 32,777 (low dose) and 16,672 (high dose) IFN-γ positive 

CD8+ T cells (Figure 22c). A high proportion of IFN-γ positive CD8+ T cells 

also co-expressed TNF-α (68.5% for low dose and 37.7% for high dose) in mice 

vaccinated with MVA-S. In the control group mean values of 77.4% (low dose) 
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and 47.6% (high dose) of IFN-γ+ TNF-α+ CD8+ T cells were observed. 

 

 

Figure 22: Induction of MVA-specific CD8+ T cell response upon prime immunization with MVA-

SARS-CoV-2-S (MVA-S). Groups of BALB/c mice (n=4-6) were vaccinated once with 10*7 PFU (low 

dose) or 10*8 PFU (high dose) MVA-S. Mice vaccinated with non-recombinant MVA were used as controls. 

Splenocytes were collected at day eight post immunization and stimulated with the H2d restricted MVA-

specific peptide F2(G)26-34. Measurement of IFN-γ was performed by IFN-γ ELISpot assay and IFN-γ and 

TNF-α ICS plus FACS analysis. (a) IFN-γ spot-forming-cells (SFC) for splenocytes analysis by ELISpot 

assay. (b) percentage of CD8+ T cells producing IFN-γ. (c) absolute number of CD8+ T cells producing 

IFN-γ. (d) cytokine profile of CD8+ T cells stimulated by MVA-specific F2(G)26-34 peptide. Graph shows 

mean frequency of IFN-γ- TNF-α+, IFN-γ+ TNF-α+ and IFN-γ+ TNF-α- cells within the positive CD8+ T 

cell population. 

 

The second immunization at day 21 with 10*7 PFU (low dose) or 10*8 PFU 

(high dose) MVA-S increased the number of MVA-specific CD8+ T cells. At day 

eight post 2nd immunization, splenocytes were collected and stimulated with the 

MVA-specific F2(G)26-34 peptide. ELISpot analysis revealed mean numbers of 

1,054 IFN-γ SFC (low dose) and 1,230 IFN-γ SFC (high dose) in vaccinated 

animals. Mice vaccinated with saline (PBS) showed no SFC (Figures 23a). 

Intracellular cytokine staining revealed mean values of 0.70% (high dose) and 

0.64% (low dose) IFN-γ positive splenic CD8+ T cells (Figure 23b) and total 

numbers of 48,733 (low dose) and 61,620 IFN-γ positive CD8+ T cells (Figure 

23c). As already seen for the prime only immunization, a high proportion of IFN-
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γ positive CD8+ T cells co-expressed TNF-α (~70% for low and high dose) 

(Figure 23d). 

 

 

Figure 23: Induction of MVA-specific CD8+ T cell response upon prime-boost vaccination (21-day 

interval) with MVA-SARS-CoV-2-S (MVA-S). Groups of BALB/c mice (n=4) were immunized twice with 

10*7 PFU (low dose) or 10*8 PFU (high dose) MVA-S over a 21-day interval. Mice vaccinated with saline 

(PBS) were used as controls. Splenocytes were collected at day eight post 2nd immunization and 

stimulated with the H2d restricted MVA-specific peptide F2(G)26-34. Measurement of IFN-γ was performed 

by IFN-γ ELISpot assay and IFN-γ and TNF-α ICS plus FACS analysis. (a) IFN-γ spot-forming- cells (SFC) 

for splenocytes analysis by ELISpot assay. (b) percentage of CD8+ T cells producing IFN-γ. (c) absolute 

number of CD8+ T cells producing IFN-γ. (d) cytokine profile of CD8+ T cells stimulated by MVA-specific 

F2(G)26-34 peptide. Graph shows mean frequency of IFN-γ- TNF-α+, IFN-γ+ TNF-α+ and IFN-γ+ TNF-α- 

cells within the positive CD8+ T cell population. Differences between the groups were evaluated by one-

way ANOVA and Tukey post-hoc test. Asterisks represent statistically significant differences between the 

groups. * p < 0.05, ** p < 0.01. 

2.3. Spike specific humoral immune response 

To evaluate the S-antigen specific humoral immune response upon vaccination 

with MVA-SARS-CoV-2-S (MVA-S), BALB/c mice were vaccinated twice with 

10*7 PFU (low dose) or 10*8 PFU (high dose) MVA-S over a 21-day interval. 

Serum samples were collected at day 18 post 1st immunization and at day 14 

post 2nd immunization (Figure 24). 
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Figure 24: Schematic diagram of prime-boost immunization schedule with MVA-SARS-CoV-2-S 

(MVA-S) to test humoral immune response. Groups of BALB/c mice (n=7-12) were vaccinated twice 

with 10*7 PFU (low dose) or 10*8 PFU (high dose) MVA-S via the i.m route. Serum samples were collected 

at day 18 post 1st immunization and at day 14 post 2nd immunization and tested for S-antigen specific B 

cell response. Created with BioRender.com  

 

Serum samples from immunized mice were tested for serum IgG antibodies by 

ELISA using full-length SARS-CoV-2 spike protein as the antigen. A single 

application led to seroconversion in 3/8 low dose vaccinated and 4/6 high dose 

vaccinated mice. A second immunization led to seroconversion in all vaccinated 

mice, showing mean titers of 1:900 (low dose) and 1:1,257 (high dose). No S-

specific antibodies could be detected in mice vaccinated with saline (PBS) 

(Figure 25a). 

 

In addition, the neutralizing capacity was further validated by using a virus 

neutralizing assay (VNT100). Following a single application of MVA-S, no 

neutralizing activity could be found in low dose or high dose vaccinated mice 

with a VNT100 assay. A second immunization led to neutralizing activity in 79% 

of all sera from vaccinated mice (low dose and high dose) with average 

reciprocal VNT100 titers of 19.8 (low dose) and 105.8 (high dose). Mice 

vaccinated with saline (PBS) showed no detectible levels of neutralizing 

antibodies (Figure 25b). 
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Figure 25: S-antigen specific humoral immune response induced upon vaccination with MVA-

SARS-CoV-2-S (MVA-S). Groups of BALB/c mice (n= 7-12) were vaccinated twice with 10*7 PFU (low 

dose) or 10*8 (high dose) MVA-S over a 21-day interval using the i.m. route. Mice vaccinated with saline 

(PBS) were used as a control. Serum samples were collected at day 18 post 1st immunization and at day 

14 post 2nd immunization and tested for (a) SARS-CoV-2-S specific IgG titers by ELISA and SARS-CoV-

2 neutralizing antibodies by (b) virus neutralization (VNT100). VNT100 assay was performed by Prof. Dr. 

Stephan Becker`s lab. 

2.4. Protective capacity upon challenge infection  

To determine the protective capacity of the MVA-SARS-CoV-2-S (MVA-S) 

vaccine, an adenoviral transduction-based model was used, as described 

before (SUN et al. 2020a; WONG et al. 2020). Immunized BALB/c mice (MVA-

S or PBS as control) were intratracheally transduced with 5x10*8 PFU of an 

adenoviral vector two weeks after the second immunization. The adenoviral 

vector expresses the human ACE2 receptor and the reporter protein mCherry 

(ViraQuest Inc., North Liberty, IA, USA). Three days later, mice were challenged 

by infection with 1.5x10*4 TCID50 SARS-CoV-2 (isolate BavPat1/2020 isolate, 

European Virus Archive Global # 026V-03883). Four days later, mice were 

euthanized and the viral load was measured in blood samples and lung tissue 

samples (Figure 26).  
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Figure 26: Vaccination schedule prime-boost, following transduction with AdV-ACE2-mCherry and 

challenge infection with SARS-CoV-2. BALB/c mice were vaccinated with MVA-SARS-CoV-2-S (10*7 

or 10*8 PFU) over a 21-day interval. At day 35, mice were inoculated with 5x 10*8 PFU AdV-ACE2-

mCherry. Three days later, mice were infected with 1.4x 10*4 TCID50 SARS-CoV-2 using the intranasal 

route. At day 43, four days after the infection, mice were euthanized and serum samples and tissue 

samples were collected. Created with BioRender.com  

 

The control group showed elevated amounts of viral RNA (>1000 SARS-CoV-

2 genome equivalents/ng of total RNA), whereas the lung tissue samples of 

mice vaccinated with low or high dose MVA-SARS-CoV-2-S showed no 

detectible amount of viral RNA (<100 genome equivalents/ng of total RNA) 

(Figure 27a). To confirm adenoviral vector transduction took place, real-time 

RT-PCR analysis of co-expressed mCherry was performed, showing 

comparable levels of mCherry in all three groups (Figure 27b). Moreover, high 

levels of SARS-CoV-2 (>1000 TCID50/ml) could be detected in lung tissue 

samples of the control group, whereas no replicative SARS-CoV-2 could be 

detected in mice vaccinated with low dose or high dose of MVA-SARS-CoV-2 

(Figure 27c). Furthermore, using a VNT100 assay, neutralizing antibodies could 

be detected in the sera of the vaccinated groups (10/11) but not in the control 

group (0/4) (Figure 27d). 
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Figure 27: Protective capacity of MVA-SARS-CoV-2-S (MVA-S) immunization. Groups of BALB/c 

mice (n=4-6) were immunized twice with MVA-S (10*7 or 10*8 PFU) over a 21-day interval. Mice 

immunized with PBS served as a control. At day 43, mice were euthanized and lung tissue samples were 

tested for (a) viral load (genome copies/ng of total RNA), (b) the expression level of reporter gene mCherry 

(mRNA copies/ng of total RNA) and (c) the amount of replicative SARS-CoV-2 (TCID50/ml). Serum 

samples were analyzed for neutralizing antibodies (VNT100) (d). Statistical analysis was performed by 

one-way ANOVA and Tukey post-hoc test and the statistical significance of differences between 

vaccinated groups and control group is indicated as follows *, p < 0.05, ***, p < 0.001. Experiments were 

performed by Prof. Dr. Stephan Becker`s lab. 
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VII. DISCUSSION 

Since COVID-19 became a global pandemic in 2020, tremendous efforts have 

been undertaken by researchers worldwide to develop suitable treatments and 

efficient vaccines against severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2). Prophylactic immunization of people with high risk for 

infections, including healthcare personal, elderly or people with pre-existing 

illnesses, should be performed to combat the global spread of SARS-CoV-2. 

SARS-CoV-2 spike (S) protein has been chosen as an antigen for vaccine 

development by many researchers, as published data from other coronaviruses 

indicated potential cytotoxic T cell and B cell response, including neutralizing 

antibodies (BISHT et al. 2004; SONG et al. 2013; VEIT et al. 2018; YANG et al. 

2004). With beginning of 2021, several spike protein-based vaccines are in 

preclinical or clinical trials. Two mRNA vaccines and one replication-deficient 

simian adenovirus expressing the full-length S protein are already licensed and 

used as a prevention of COVID-19 in Europe. However, little is known about 

long-living immunity and with the spread of new virus variants (ECDC 2020; 

WHO 2020), suitable and broad-reactive vaccines are urgently needed.  

 

Modified Vaccinia virus Ankara (MVA), an attenuated vaccinia virus strain 

(VACV), lacking virulence factors and immune evasion proteins, is broadly used 

as a vector platform to develop vaccines against various viral and bacterial 

infections. In this study, a recombinant MVA expressing the full-length SARS-

CoV-2 spike (S) protein was generated to investigate S-specific humoral and 

cell-mediated immune responses in BALB/c mice. Thereby, the activation of 

CD4+ and CD8+ T cells as well as circulating antibodies upon vaccination with 

two doses of recombinant MVA-SARS-CoV-2-S (MVA-S) was demonstrated. 

Protective capacity tested with an adenoviral transduction model revealed first 

promising data for protection from a SARS-CoV-2 infection. In addition, the 

compatibility with clinical use and a potential industrial large-scale production 

could be confirmed. Therefore, replication efficiency on DF-1 cells, an optimized 

cell line for manufacturing process, was confirmed. Moreover, stable expression 

of the full-length spike protein upon serial passages of MVA-SARS-CoV-2-S at 
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low MOI was demonstrated. Taken together, these data demonstrate that 

recombinant MVA-S might be a promising candidate vaccine against SARS-

CoV-2. 

 

Vaccine-induced immunity vs. viral infection 

Vaccination remains the most efficient way to prevent infectious diseases, as 

seen by the remarkable success of vaccines against diphtheria, tetanus, polio 

and smallpox (PLOTKIN 2008). The global burden of infectious diseases could 

be reduced, and in the case of smallpox, completely eradicated by vaccination 

(BREMAN and ARITA 2011). However, vaccine development is still a 

challenging area of research since by now, no licensed vaccines are available 

for several life-threatening infectious pathogens such as HIV (JOHNSTON and 

FAUCI 2007; McMICHAEL et al. 2009) and Plasmodium falciparum (HILL 

2006). The protective capacity of vaccines is based on the induction of 

immunological memory responses, which combat an infection or re-infection 

with a certain pathogen (SALLUSTO et al. 2010). The protective capacity of 

most of the licensed vaccines is related to a strong humoral immunity, 

determined by high levels of neutralizing antibodies on the mucosal surfaces or 

in serum of vaccinated individuals (PLOTKIN 2008). Strong humoral immunity 

is one strategy against viruses that infect via the mucosal route, including 

influenza virus and coronaviruses (BELSHE et al. 2000; PULENDRAN and 

AHMED 2011). Vaccine-induced antibodies are the first line of defense on the 

mucosal surface and in the blood, with the purpose to control specific pathogens 

before infecting cells and spreading of the virus (PLOTKIN 2008). Moreover, T 

cell response plays an important role in eradicating pathogens which are 

antigenically highly variable (PULENDRAN and AHMED 2011; SALLUSTO et 

al. 2010). Besides, CD4+ T cells support proliferation and expansion of B cells 

to control an ongoing infection (PLOTKIN 2008). The importance of cell-

mediated and humoral immunity was e.g., demonstrated by a phase I clinical 

trial using a recombinant MVA candidate vaccine against MERS-CoV in 2018. 

Koch and colleagues immunized healthy individuals twice over a 28-day interval 

with recombinant MVA expressing MERS-CoV spike protein (MVA-MERS-S). 

Administration of the vaccine was performed with two different doses by using 

the i.m. route. All individuals immunized with the higher dose showed a 
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seroconversion after the booster immunization and more than 90% showed a 

specific T cell response (KOCH et al. 2020). These data are highly notable, as 

the new SARS-CoV-2 is closely related to MERS-CoV and the results of this 

study might help to better understand the immunological pathways of a SARS-

CoV-2 infection. 

 

It is known that a synergetic interaction between B cell and T cell responses is 

needed for protective capacity against poxviruses. In the course of the smallpox 

eradication program, individuals were tested for long-term humoral immunity 

upon vaccination. The amounts of circulating VACV-specific antibodies 

decreased within the first years, but remained stable for several decades 

(AMANNA et al. 2006; el-AD et al. 1990). Moreover, long-living cell-mediated 

immunity could be observed even decades after immunization with stable levels 

of VACV-specific CD4+ T cells and CD8+ T cells (AMARA et al. 2004; 

HAMMARLUND et al. 2003). These findings suggest that a successful vaccine 

should induce a balanced humoral and cell-mediated immunity to protect 

against infectious diseases.  

 

MVA vector platform for construction of a candidate vaccine against 

SARS-CoV-2 

Several new vaccine platforms, including (non)-replicating adenoviral vector 

vaccines or mRNA-based vaccines are currently being tested in preclinical and 

clinical trials against the new SARS-CoV-2. Strong cell-mediated and humoral 

immunity was induced in immunized individuals, but little is known about 

tolerability and long-term immunity of those vaccines (BADEN et al. 2020; CDC 

2021a; CHUNG et al. 2020; LOCHT 2020).  

 

In contrast, the MVA vector platform had been used for decades to develop 

vaccines against various bacterial and viral infections. The replication 

deficiency of MVA in mammalian cells, the capacity to insert long DNA 

sequences into the MVA genome, the gene expression at the cytosolic site and 

the stability of freeze-dried vaccines (GÓMEZ et al. 2011) are some of the great 

advantages of this vector platform. In comparison to MVA, replicative competent 

viruses can be related with severe side effects in elderly or 
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immunocompromised individuals, which raises concerns regarding the usage 

of those vector vaccine platforms. MVA has no survivability in infected host cells 

of mammalian origin, and therefore, a complete clearance of recombinant virus 

and the expressed target antigen can be assumed to occur within days after the 

vaccination (ALTENBURG et al. 2014). Evidence of strong induction of cell-

mediated and humoral immunity had been shown in vitro, in vivo and in several 

clinical trials for MVA-based vaccines (COONEY et al. 1991; GU et al. 1995; 

KOCH et al. 2020; SONG et al. 2013). Humoral immunity is strongly induced by 

expressing the target antigen in its native form (VRIES and RIMMELZWAAN 

2016). 

 

The main advantage of MVA as a vector platform is the ability of living virus to 

infect mainly antigen-presenting cells, thus leading to intracellular expression of 

target antigens (DRAPER and HEENEY 2010). As a result, antigens are 

processed by the infected cells and presented on class I or class II MHC 

molecules, causing strong activation of the CD8+ and the CD4+ T cell 

responses (ALTENBURG et al. 2014; MURPHY et al. 2014). This immunogenic 

capacity of MVA is related to the fact that MVA, in contrast to wild type VACV, 

lacks several immunomodulatory proteins. Multiple intracellular host cell 

detection mechanisms are activated upon infection, resulting in the release of 

various interferons, chemokines and inflammatory cytokines (ALTENBURG et 

al. 2014; DELALOYE et al. 2009). MVA lacks IFN-α/β receptors, causing a type-

I interferon response upon infection. Several in vitro studies with antigen 

presenting cells, such as dendritic cells, revealed high levels of TNF-α, IFN-β 

and IFN-α upon infection with MVA (BLANCHARD et al. 1998; DAI et al. 2014; 

WAIBLER et al. 2007). Besides, MVA lacks a functional receptor for IFN-γ, 

which represents an advantage for using MVA as a vaccine, since IFN-γ is a 

crucial factor for activating cytotoxic T cells (BLANCHARD et al. 1998). 

Moreover, cytotoxic T cells are not the only immune cells that a recruited to the 

infection site. Studies revealed the immigration of other immune cell 

subpopulations such as monocytes, CD4+ T cells and neutrophils (LEHMANN 

et al. 2009). All these findings confirm the favorable immunogenic properties of 

MVA, with the recruitment of a high number of various immune cells to the site 

of administration and the release of high amounts of proinflammatory cytokines 
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(BLANCHARD et al. 1998; WAIBLER et al. 2007).  

 

Challenges for the development of a vaccine against SARS-CoV-2 

Published data from vaccine candidates against SARS-CoV-1 and MERS-CoV 

accelerated the development of vaccines against SARS-CoV-2 (XU et al. 2019). 

Preclinical studies and animal models indicate the following: (i) the spike protein 

is most likely to induce neutralizing antibodies (COLEMAN et al. 2014), (ii) most 

antibodies are directed against the receptor-binding domain (RBD) (DU et al. 

2013), (iii) induced neutralizing antibodies show protective capacity in various 

animal models (rabbits, non-human primates) (MUNSTER et al. 2017), (iv) 

clinical trials with three different vaccines against MERS, a DNA-based vaccine 

(YOON and KIM 2019), a replication-deficient chimpanzee adenovirus (JIA et 

al. 2019) and a MVA-based vaccine (KOCH et al. 2020; SONG et al. 2013), all 

expressing the S protein, induced robust humoral immunity, (v) many vaccine 

candidates induced cell-mediated immunity too, which plays a crucial role in 

viral clearance (ZHAO et al. 2014; ZHAO et al. 2009). Although, the available 

data about vaccine candidates against SARS and MERS show promising 

results, especially when using the spike protein as target antigen, there are 

several obstacles to circumvent.  

 

One important issue to be discussed is the antibody-dependent enhancement 

(ADE) that had been verified for SARS and MERS during in vitro and in vivo 

studies. ADE increases the severity of several infections occurring when 

antibodies at sub-neutralizing levels bind to the viral antigen without inhibiting 

or clearing the infection (LEE et al. 2020). In terms of respiratory infections, ADE 

can lead to an enhanced respiratory infection (ERD). ERD includes antibody 

mediated mechanisms but also non-antibody-based mechanisms such as 

cytokine cascades or cell-mediated immunopathology (GRAHAM 2016; KIM et 

al. 1969; LEE et al. 2020). Antibodies directed against the spike protein have 

been found to mediate ADE in MERS and SARS infected individuals (WANG et 

al. 2014), causing viral infection of normally unaffected macrophages or B cells 

(YIP et al. 2014). Until now, the extent to which ADE might contribute to COVID-

19 immunopathology is still unclear and further evaluations in terms of safety 

are needed when using spike protein-based vaccines (DANDEKAR and 
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PERLMAN 2005; POLAND et al. 2020). Besides, several animal studies of 

candidate vaccines against SARS-CoV-1 and MERS-CoV indicated lung 

pathology upon live virus challenge. Infiltration of eosinophils, elevated Th2 

responses, and augmented infectivity was observed for whole-virus vaccines 

and S protein-based vaccines (BOLLES et al. 2011; DANDEKAR and 

PERLMAN 2005). 

 

Moreover, a known obstacle and acute problem for several RNA viruses is their 

high genomic mutation rate. RNA viruses show a mutation rate of 10*-6 to 10*-

4 substitutions per nucleotide site per cell infection. In contrast, DNA viruses 

show a lower mutation rate with 10*-8 to 10*-6 substitutions per nucleotide site 

per cell infection (PECK and LAURING 2018; VIGNUZZI and ANDINO 2012). 

One explanation for the higher mutation rate found in RNA viruses is the 

expression of their own replication machinery, including the RNA-dependent 

RNA polymerase (RdRp), whereas DNA viruses use the host cell polymerases 

(DUFFY 2018). The RdRp lacks a proofreading activity and thus, mistakes 

during replication are not corrected. Members of the Nidovirales family, 

including SARS-CoV-2, show fewer mutation rates, because of their RdRp-

independent proofreading activity (GORBALENYA et al. 2006; PECK and 

LAURING 2018). The ability to quickly change the genome allows the virus to 

emerge into novel hosts and to escape vaccine-based immunity (VIGNUZZI et 

al. 2005), thus hampering the development of suitable candidate vaccines. As 

mentioned above, many neutralizing antibodies are directed against the RBD. 

Indeed, several mutations within the RBD have been observed for MERS-CoV 

(TAI et al. 2016; TANG et al. 2014), raising concerns about the mutation rate of 

SARS-CoV-2 and the efficacy of S protein-based vaccines. As expected, 

several mutants of SARS-CoV-2 have already been documented to globally 

accumulate in less than 12 months after the outbreak of the pandemic. Three 

of these new variants are notable, as they are associated with more severe 

outcome of COVID-19 and increased infectivity of SARS-CoV-2 (CDC 2021a; 

WHO 2020). The first variant, B.1.1.7, which was first detected in the United 

Stated of America and is predominantly prevalent in the United Kingdom, 

carries a large number of different mutations and recent studies indicate higher 

risk of death compared to other variants upon infection (PUBLIC HEALTH 
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ENGLAND 2021). The second variant, B.1.351, shares mutations with variant 

B.1.1.7 and is broadly distributed in South Africa (WHO 2020). The third variant, 

P1, was first described in Brazil (TOOVEY et al. 2021), and is characterized by 

17 unique mutations. Three of these mutations are found within the RBD 

(K417T, E484K, N501Y) and non-peer reviewed publication preprints indicate 

that this variant decreases the ability of antibodies to recognize and neutralize 

SARS-CoV-2 (PUBLIC HEALTH ENGLAND 2021). Two specific mutations, 

N501Y and D614G (VOLZ et al. 2020), are shared by all three variants with the 

latter causing an increased infectivity of the virus (KORBER et al. 2020; 

YURKOVETSKIY et al. 2020). The prevalence of new variants raises the 

concern about the efficacy of SARS-CoV-2 vaccines currently being tested in 

preclinical and clinical trials. Hence, the vaccine targeting the full-length spike 

protein as used in the three licensed vaccines and our MVA-SARS-CoV-2-S 

vaccine, might be more effective than RBD-based vaccines. 

 

Future prospective 

New SARS-CoV-2 is still present and only a suitable vaccine will combat the 

global pandemic. With the prevalence of new and more infectious variants of 

the virus, mainly focusing on the S protein as target antigen used for vaccine 

development may need to be reconsidered. Nevertheless, several vaccine 

candidates based on different platforms are currently being tested in preclinical 

and clinical trials and show promising data for induction of cell-mediated and 

humoral immunity. The here descripted recombinant MVA expressing the full-

length SARS-CoV-2 spike protein shows convincing data in terms of genetic 

stability, safety and tolerability upon vaccination and strong induction of CD8+ 

T cell responses as well as high antibody responses. Future work would include 

a more detailed analysis of the immunogenetic capacity of MVA-SARS-CoV-2-

S in preclinical and clinical trials. 
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VIII. SUMMARY 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the 

causative agent of COVID-19 and led to a global pandemic in 2020. Globally, 

millions of people are infected with several thousands of individuals dying every 

day because of COVID-19. Up to now, no treatments are available and the most 

promising option to eradicate SARS-CoV-2 is a successful vaccine. Many 

researchers worldwide are working on different vaccines against SARS-CoV-2, 

with three different vaccines already licensed for immunization in Europe. 

Nevertheless, little is known about long-living immunity, tolerability or protective 

capacity of these new platform vaccines. This fact as well as the observed 

prevalence of new and more infectious virus variants strengthens the necessity 

of developing immunogenic and broad-reactive candidate vaccines of different 

origin. 

 

In this work, the construction and preclinical characterization of recombinant 

MVA expressing the full-length SARS-CoV-2 spike protein is described. In vitro 

characterization including high genetic stability, replicative deficiency in 

mammalian cells, combined with a stable and robust expression of the spike 

antigen, revealed first promising data for further in vivo testing. BALB/c mice 

developed a robust S antigen specific CD8+ T cell response even after one 

immunization, that could be increased after a second immunization. Vaccinated 

mice using a prime-boost schedule over a 21-day interval showed elevated 

levels of serum antibodies against the spike protein. In addition, those serum 

antibodies can neutralize SARS-CoV-2 in the respective assay. Prime-boost 

vaccination with MVA-SARS-CoV-2-S could protect mice transduced with a 

human ACE2-expressing adenovirus from an infection with SARS-CoV-2. 
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IX. ZUSAMMENFASSUNG 

Das severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) führte im 

Jahr 2020 zur globalen Pandemie COVID-19. Weltweit infizierten sich bereits 

mehrere Millionen Menschen mit dem Virus und Tausende Infizierte sterben 

täglich mit oder an COVID-19. Da es bis jetzt keine wirksamen 

Behandlungsmöglichkeiten gibt, scheint eine Impfung die einzige Möglichkeit 

zu sein, die globale Pandemie einzudämmen. Unzählige Wissenschaftler 

arbeiten unter Hochdruck an der Entwicklung neuer Impfstoffe gegen das 

SARS-CoV-2 und mit Ende Februar 2021 gibt es in Europa bereits drei 

zugelassene Impfstoffe. Jedoch ist wenig bekannt über Langzeit-

Immunogenität, Verträglichkeit oder Schutzwirkung dieser neuen Impfstoffe 

und das Auftreten neuer, noch infektiöserer Virus Varianten verdeutlichen die 

Notwendigkeit mehrerer wirksamer Impfstoffe. 

 

In dieser Arbeit wurde die Konstruktion und präklinische Charakterisierung 

eines rekombinanten MVA, das das native SARS-CoV-2 Spike Protein 

exprimiert, beschrieben. Eine in-vitro Charakterisierung in Bezug auf 

genetische Stabilität, der Unfähigkeit von MVA sich auf Säugerzellen zu 

replizieren, sowie eine stabile Expression des Spike Proteins zeigten erste, 

vielversprechende Ergebnisse zur weiteren Testung in vivo. BALB/c Mäuse 

zeigten eine robuste S Antigen spezifische CD8+ T Zellantwort bereits nach 

einer Immunisierung, die nach einer zweiten Immunisierung erhöht werden 

konnte. BALB/c Mäuse, die in einem 21- Tage Intervall immunisiert wurden, 

wiesen erhöhte Serumantikörper gegen das Spike Protein auf und darüber 

hinaus konnte mit einem entsprechenden Assay eine neutralisierende Wirkung 

gegen das SARS-CoV-2 demonstriert werden. Immunisierte BALB/c Mäuse, 

die mit einem humanen ACE2-exprimierenden Adenovirus transduziert wurden, 

konnten vor einer Infektion mit SARS-CoV-2 geschützt werden.
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XI. APPENDIX 

1.1. Chemicals 

Chemical Supplier 

2-Propanol ≥ 99.8% Carl Roth, Karlsruhe, Germany 

Acetone ≥ 99.5% Carl Roth, Karlsruhe, Germany 

Albumine, IgG-free Carl Roth, Karlsruhe, Germany 

Biozym LE Agarose Biozym Scientific, Hessisch 

Oldendorf, Germany 

Brefeldin A Biolegend, London, United Kingdom 

cOMPLETE, EDTA free Roche Diagnostics, Mannheim, 

Germany 

DAPI Thermo Fisher Scientific, Planegg, 

Germany 

DMSO Sigma-Aldrich, Taufkirchen, 

Germany 

Ethanol 96%,  Carl Roth, Karlsruhe, Germany 

GelRed Nucleic Acid Gel Stain, 10 000x Biozol GmbH, Eching, Germany 

Glycin PanReac AppliChem, Darmstadt, 

Germany 

KPL TrueBlueTM Peroxidase Substrate HiSS Diagnostics GmbH, Freiburg im 

Breigau, Germany 

Methanol ≥ 99% Carl Roth, Karlsruhe, Germany 

MACSQuant FACS buffer Milenyi Biotec, Bergisch Gladbach, 

Germany 

MACSQuant Perm buffer Milenyi Biotec, Bergisch Gladbach, 

Germany 

MACSQuant Wash buffer Milenyi Biotec, Bergisch Gladbach, 

Germany 

Nonfat dried milk powder PanReac AppliChem, Darmstadt, 

Germany 

Red Blood Cell Lysing Buffer Hybri-Mix Sigma-Aldrich, Taufkirchen, 

Germany 

Roti-Load 1, reducing, 4x Carl Roth, Karlsruhe, Germany 

Stop Reagent for ELISA Sigma-Aldrich, Taufkirchen, 

Germany 
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Sucrose Sigma-Aldrich, Taufkirchen, 

Germany 

TMB for ELISA Sigma-Aldrich, Taufkirchen, 

Germany 

Tris-Ultrapure PanReac AppliChem, Darmstadt, 

Germany 

Triton-X100 Sigma-Aldrich, Taufkirchen, 

Germany 

Trypan blue Sigma-Aldrich, Taufkirchen, 

Germany 

Tween20 Sigma-Aldrich, Taufkirchen, 

Germany 

Zombie dye Biolegend, London, United Kingdom 

 

1.2. Consumables 

Material Supplier 

6-well tissue culture plates Sarstedt, Nümbrecht, Germany 

24-well tissue culture plates Sarstedt, Nümbrecht, Germany 

96-well tissue culture plates Sarstedt, Nümbrecht, Germany 

Cover slips Thermo Fisher Scientific, Planegg, 

Germany 

CryoPure tube Sarstedt, Nümbrecht, Germany 

Disposal bag Sarstedt, Nümbrecht, Germany 

Ep T.I.P.S Standard 20-300 µl Eppendorf AG, Hamburg, Germany 

Filter tips (20 µl) Sarstedt, Nümbrecht, Germany 

Filter tips (100 µl) Sarstedt, Nümbrecht, Germany 

Filter tips (200 µl) Sarstedt, Nümbrecht, Germany 

Filtopur S0.45 Sarstedt, Nümbrecht, Germany 

Microtest plate 96-well  Sarstedt, Nümbrecht, Germany 

MiniCollect vials  Greiner Bio-One, Frickenhausen, Germany 

Nitrocelluose Blotting Membrane GE Healthcare Europe, Freiburg, Germany 

Nunc-Immuno Plate Thermo Fisher Scientific, Planegg, 

Germany 

SafeSeal reaction tube 1.5 ml Sarstedt, Nümbrecht, Germany 

SafeSeal reaction tube 2 ml Sarstedt, Nümbrecht, Germany 

Serological pipette 5 ml Sarstedt, Nümbrecht, Germany 
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Serological pipette 10 ml Sarstedt, Nümbrecht, Germany 

Serological pipette 25 ml Sarstedt, Nümbrecht, Germany 

TC flask 25 Sarstedt, Nümbrecht, Germany 

TC flask 75 Sarstedt, Nümbrecht, Germany 

TC flask 175  Sarstedt, Nümbrecht, Germany 

Tube 15 ml Sarstedt, Nümbrecht, Germany 

Tube 50 ml Sarstedt, Nümbrecht, Germany 

1.3. Laboratory equipment 

Laboratory equipment Supplier 

A.EL.VIS Universal plate reader V3.0 A.EL.VIS GmbH, Hannover, Germany 

Avanti J-26 XP Centrifuge  Beckmann Coulter, Krefeld, Germany 

Biofuge fresco Heraeus, Hanau, Germany 

Centrifuge 5424 Eppendorf AG, Hamburg, Germany 

ChemiDocTMMP, Imaging System  Bio-Rad, Munich, Germany 

FACS Calibur cytofluorometer  

 

Becton Dickinson, Heidelberg,  

Germany 

Galaxy 170S Incubator New Brunswick (Eppendorf), Hamburg, 

Germany 

KEYENCE BZ-X710 All-in one 

Fluorescence Microscope  

KEYENCE Deutschland GmbH, 

NeuIsenburg, Germany 

Microplate reader Sunrise Tecan Trading AG, Männedorf, 

Switzerland 

MJ Research PTC-200 Peltier Thermal 

Cycler 

GMI, Ramsey, USA 

Olympus CKX41  Olympus Life Sciences, Hamburg, 

Germany 

OptimaTMLE-80K Ultracentrifuge  Beckman Coulter, Krefeld, Germany 

Sonoplus Bandelin electronic, Berlin, Germany 
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1.4. DNA and protein marker 

Material Supplier 

1 kb DNA ladder  New England Biolabs, Frankfurt, 

Germany 

Pageruler prestained protein ladder New England Biolabs, Frankfurt, 

Germany 

 

1.5. Commercial Kits 

Material Supplier 

2.5 mM dNTP Mix Invitrogen, Darmstadt, Germany 

MINI-Protean TGX Bio-Rad, Feldkirchen, Germany 

Mouse IFN-y ELISpotPlus kit (ALP) Mabtech, Nacka Strand, Germany 

NucleoBond Xtra Midi Macherey-Nagel, Düren, Germany 

NucleoSpin Blood QuickPure Macherey-Nagel, Düren, Germany 

NucleoSpin Gel and PCR Clean-up Macherey-Nagel, Düren, Germany 

NucleoSpin Plasmid Macherey-Nagel, Düren, Germany 

OneStep RT-PCR Kit Qiagen, Hilden, Germany 

PNGase F New England Biolabs, Frankfurt, 

Germany 

RNeasy Mini kit Qiagen, Hilden, Germany 

SuperSignal West Dura Extended 

Duration Substrate 

Thermo Fisher Scientific, Planegg, 

Germany 

Taq DNA Polymerase Invitrogen, Darmstadt, Germany 
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1.6. Media and supplements for cell culture 

Material Supplier 

DMEM Sigma-Aldrich, Taufkirchen, Germany 

DMEM (high glucose) Sigma-Aldrich, Taufkirchen, Germany 

DPBS  Thermo Fisher Scientific, Planegg, 

Germany 

FBS Thermo Fisher Scientific, Planegg, 

Germany  

HEPES solution Sigma-Aldrich, Taufkirchen, Germany 

L-Glutamine  Thermo Fisher Scientific, Planegg, 

Germany 

MEM Sigma-Aldrich, Taufkirchen, Germany 

MEM non-essential amino acid solution  Sigma-Aldrich, Taufkirchen, Germany 

Penicillin-Streptomycin Sigma-Aldrich, Taufkirchen, Germany 

RPMI-1640 medium Sigma-Aldrich, Taufkirchen, Germany 

SFP eggs VALO BioMedia GmbH, Cuxhaven, 

Germany 

TrypLE™ Select Enzym  Thermo Fisher Scientific, Planegg, 

Germany 

VP-SFM  Thermo Fisher Scientific, Planegg, 

Germany 

 

1.7. Buffer  

Lysis buffer 

1% Triton X-100 

25 mM Tris 

1 M NaCl 

Transfer buffer (conc.) 

24 g Tris 

114,6 g Glycin 

ad 1l ddH2O 

5x Running buffer  

72.5 g Glycin 

15,2 g Tris 

25 ml 20% SDS 

ad 1l ddH2O 

Transfer buffer (working solution) 

80 ml Towbin buffer (conc.) 

200 ml Methanol 

ad 1 l ddH2O 

Vaccine buffer (pH=7.4) 

10 mM Tris 

140 mM NaCl 

50x TAE buffer (pH= 7.4) 

242 g Tris 

57.1 ml acetic acid glacial 

18.6 g EDTA 
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ad 1l ddH2O 

LB-Medium (pH= 7.5) 

5 g NaCl 

5 g Yeast extract  

10 g Trypton 

ad 1l ddH2O 

LB-agar 

1,5% Agar-Agar in LB-Medium 

10x PBS 

2 g KCl 

2 g KH2PO4 

80 g NaCl 

11.5 g Na2HPO4 

ad 1l ddH2O 

 

 

1.8. Software 

Adobe Reader Adobe Systems, San Jose, USA 

A.EL.VIS V6.1 A.EL.VIS GmbH, Hannover, Germany 

BioRender BioRender, Toronto, USA 

DNASTAR Lasergene  DNASTAR, Inc., Madison, Wisconsin, USA 

FlowJo LLC BD Life Sciences, Ashland, USA 

GraphPad prism GraphPad Software, San Diego, USA 

Image Lab 5.0 Software  Bio-Rad, Feldkirchen, Germany 

Microsoft Office 2016 Microsoft Corp., Redmond, USA 

NetNGlyc 1.0 Server http://www.cbs.dtu.dk/services/NetNGlyc/ 
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