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ABSTRACT 

 

Dravet syndrome is a rare, severe form of pediatric epilepsy, accompanied by cognitive, 

behavioral and motor disturbances. Haploinsufficiency of the Scn1a gene, encoding the 

function of sodium channels on GABAergic neurons, has been detected in over 80 % of 

patients. Thus, it is considered the main cause of hyperexcitability. Albeit few drugs have 

received orphan drug status over the past years, pharmacoresistance remains the biggest 

challenge in the treatment of Dravet syndrome. Therefore, novel therapeutic strategies are 

urgently needed.  

Characterization of a novel, conditional, Scn1a-A1783V knock-in mouse model confirmed an 

increased seizure susceptibility, behavioral and motor alterations and thus demonstrated 

excellent face validity for the further investigation of Dravet syndrome.  

The untargeted proteomic screening displayed more pronounced changes following the onset 

of spontaneous seizures, dominated by the down-regulation of proteins involved in synaptic 

and glutamatergic signaling in the hippocampus of Dravet mice. The proteomic data was 

complemented by metabolome data that detected lower levels of glutamate and GABA in the 

hippocampus, suggesting a disturbed glutamate/GABA-glutamine cycle and an increased 

GABA:glutamate ratio. This can later be supported by GABAergic drugs.  

A comparison of proteomic data to published data from animal models of acquired epilepsies 

revealed common molecular alterations between genetic and acquired epilepsies comprising 

proteins linked with synaptic plasticity, astrogliosis and angiogenesis.  

Metabolomic screening of hippocampal tissue in Dravet mice showed pronounced alterations 

in energy metabolism and an impact of Dravet genotype on concentrations of several glycolysis 

and tricarboxylic acid (TCA) cycle intermediates. These changes in energy metabolism may 

contribute to seizure susceptibility and ictogenesis. Furthermore, they could explain the 
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therapeutic potential of a ketogenic diet, which aims to shift energy metabolism towards a more 

fat-based energy supply. This diet improved the motor deficits observed in Dravet mice. 

Overall, the proteome and metabolome analysis in a mouse model of Dravet syndrome 

demonstrated complex molecular alterations in the hippocampus. Whether these alterations 

may contribute to hyperexcitability or, instead, represent a compensatory mechanism, will have 

to be confirmed by further investigations. The proteomic data indicated more complex 

pathophysiological mechanisms during the course of the disease, which should be considered 

in the management of Dravet syndrome. However, future studies investigating the functional 

relevance of the aforementioned molecular changes may confirm our data and provide valuable 

guidance on the development of novel therapeutic options.  
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INTRODUCTION 

1. Epilepsy: history and definition  

The mention of epilepsy and epileptic seizures dates back to the year 2000 B.C. and the 

Assyrian empire, where epilepsy and seizures were believed to be a manifestation of evil spirits. 

Over the centuries, these beliefs remained through other civilizations up until the ancient Greeks 

who called it a sacred disease. Hippocrates was the first to describe it as the medical condition 

known today, believing its cause originates in the brain. He named it the great disease, which 

would later become the globally accepted term for generalized seizures (grand-mal) 

(Magiorkinis et al., 2010).  

According to The International League Against Epilepsy (ILAE), an epileptic seizure is defined 

as “a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous 

neuronal activity in the brain.” (Fisher et al., 2005). Over the years, the exact definition of 

epilepsy has changed. Today, ILAE’s practical clinical definition describes epilepsy as a brain 

disease including one of three conditions: (1) at least two unprovoked seizures occurring  within 

a 24-hour interval; (2) one unprovoked seizure and high risk for recurrent seizures occurring 

within the next 10 years or (3) an epilepsy syndrome diagnosis (Fisher et al., 2014). 
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2. Dravet Syndrome 

2.1. Epidemiology 

Dravet syndrome is a rare, severe, lifelong form of epileptic encephalopathy that begins within 

the first year of life (Dravet, 2011). It is defined as a syndrome, due to its specific clinical picture 

and accompanying electroencephalogram (EEG) abnormalities (Scheffer et al., 2016). 

Previously known as Severe Myoclonic Epilepsy of Infancy (SMEI), Dravet syndrome was first 

described by doctor Charlotte Dravet in 1978 (Dravet, 2011), after whom it was later named. 

Besides frequent and/or prolonged seizures, the syndrome comprises of intellectual and motor 

disabilities, behavioral and developmental delays, poor immune responses etc. The worldwide 

Dravet syndrome prevalence is one in 40,000 individuals. Thus, the syndrome is listed as a rare 

disease (https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Expert=33069&lng=EN, 

ORPHA: 33069).   

2.2. Scn1a mutation 

Until 2001, it was not known that Dravet syndrome is caused by a genetic deficiency of the 

Scn1a gene in the majority of patients. The Scn1a gene encodes the NaV1.1 sodium channel α 

subunit (Claes et al., 2001) that is widely expressed throughout the brain. It is localized to the 

cell body, dendrites and the initial axonal segments of fast-spiking parvalbumin-positive 

neurons (Ogiwara et al., 2007) and somatostatin-positive neurons (Tai et al., 2014). The channel 

is comprised of four homologous domains (I–IV), each consisting of six transmembrane 

segments (S1–S6) (Escayg and Goldin, 2010). Although numerous mutations in the Scn1a gene 

have been identified, most causing Dravet syndrome were found in the transmembrane region 

(Lossin, 2009). The current state of knowledge is that the mutation causes deficits in action 

potential firing of GABA inhibitory interneurons thus leading to abnormal excitability and 

encephalopathy (Catterall, 2018). Therefore, Dravet syndrome is also considered a 

channelopathy. 
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Over the years, increasing proportions of patients with Dravet syndrome tested positive for the 

SCN1A mutation, reaching a prevalence of over 80% (Rosander and Hallbook, 2015). 

Interestingly, mutations in the same gene can also provoke Generalized Epilepsy with Febrile 

Seizures Plus (GEFS+), usually linked to a missense SCN1A mutation and a milder clinical 

picture (Catterall et al., 2010; Meisler and Kearney, 2005). Furthermore, mutations causing the 

abnormal ion selectivity (segments S5, S6 and S5-S6 linker of NaV1.1 channel) are more 

frequent in Dravet syndrome (Kanai et al., 2004). In Dravet patients, mutations in SCN1A 

mostly result in loss of function (Escayg and Goldin, 2010). While all SCN1A mutations are 

dominantly inherited (Escayg and Goldin, 2010), the majority of mutations in Dravet patients 

occur de novo (Poryo et al., 2017), frequently originating from the paternal chromosomes 

(Heron et al., 2010; Sun et al., 2010). Nonetheless, a large proportion of patients have a family 

history of epilepsy or febrile seizures, with or without SCN1A mutations (Dravet, 2011). 

Interestingly, truncating mutations found in 40-50 % of patients are associated with earlier 

seizure onset and a more severe phenotype (Zuberi et al., 2011). Slightly less abundant were 

missense (40%) and splice site mutations (0-10%). Interestingly, all inherited SCN1A mutations 

were missense (Connolly, 2016).  

2.3. Disease phases 

The first disease phase is known as the “febrile stage” (Dravet, 2011). The initial seizure in 

Dravet patients occurs within the first year of life, mostly between 5 and 8 months of age. The 

seizures, most commonly thermally provoked by a hot bath, fever or vaccination, are clonic, 

unilateral or generalized and frequently prolonged (Dravet, 2011). Vaccination is reported as 

the trigger for the first seizure in more than 50 % of children (Tro-Baumann et al., 2011; von 

Spiczak et al., 2011). Although this link was thought to be due to a provoked fever, a shift 

towards a pro-inflammatory profile in Dravet patients has been demonstrated in vitro (Auvin et 

al., 2018). Nonetheless, disease progression is reported to be the same in patients whose first 
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seizure is not associated with vaccination (McIntosh et al., 2010). Prior to the first convulsive 

seizure, focal myoclonic jerking has been reported in some patients (Dravet, 2011).  

Following the first seizure, repeated febrile or afebrile seizures usually occur once per month 

up until the end of the first year and frequently do not respond well to benzodiazepines 

(Gataullina and Dulac, 2017). Whilst diagnosis may point towards febrile seizures, the 

temperature of Dravet patients is not sufficiently high and seizures are clonic, unilateral, more 

frequent, prolonged and start at an earlier age (Dravet, 2011). The EEG remains normal for 

several years with prominent theta activity starting from the second year of life (Bureau and 

Dalla Bernardina, 2011). 

Following the first year of life until the age of ten, the “worsening” or “catastrophic stage” takes 

place (Dravet, 2011). This phase is characterized by the onset of different types of seizures that 

are the hallmark of Dravet syndrome. Patients start experiencing myoclonic, atypical absence 

seizures, with or without loss of consciousness, and focal seizures sometimes with secondary 

generalization. Convulsions are still present and can progress into status epilepticus (SE). Tonic 

seizures are rarely present (Dravet, 2011; Gataullina and Dulac, 2017). During this stage, EEG 

abnormalities can be detected that can help diagnosis (Dravet, 2011). Hyperthermia remains a 

seizure trigger but other common epilepsy triggers also appear such as photosensitivity, noise, 

altered emotions etc (Dravet, 2011; Gataullina and Dulac, 2017). 

After the sixth year of life, the “stabilization stage” begins characterized by reduced seizure 

frequency and duration (Dravet, 2011). Convulsive seizures frequently occur during sleep, 

absence and myoclonic seizures may disappear and focal seizures occur with a reduced density. 

Nevertheless, in several cases epileptic phenotype worsens even after the age of five (Dravet, 

2011). Magnetic resonance imaging (MRI) during the stabilization stage does not show 



INTRODUCTION 

15 
 

structural abnormalities. However, within the second decade a global volume reduction of white 

and gray matter has been detected in several brain structures (Gataullina and Dulac, 2017).  

2.4. Dravet syndrome phenotype  

In Dravet syndrome, it is thought that seizures themselves contribute to brain impairment and 

the development of cognitive, motor and behavioral alterations (Berg, 2011). Accordingly, 

cognitive and behavioral impairments are associated with seizure frequency (Brunklaus and 

Zuberi, 2014). However, nowadays this claim is rather challenged in epileptic encephalopathies 

where both seizure frequency and phenotype disturbances can be triggered by a particularly 

aggressive epileptogenic process (Avanzini et al., 2013). Preclinical studies have also pointed 

towards NaV1.1 dysfunction in different brain regions affecting the complete phenotype in 

Dravet syndrome (Brunklaus and Zuberi, 2014). For instance, defects in the action potential 

firing of cerebellar GABAergic Purkinje cells are known to cause ataxia (Kalume et al., 2007).  

In patients older than 5 years, whereafter seizures generally decline (Dravet, 2011), at least one 

bad phenotype outcome has been reported, with learning deficits being the most common, then 

speech and motor impairments, autism, attention deficit hyperactivity syndrome and other 

behavioral difficulties (Lagae et al., 2018). 

2.4.1. Intellectual disability 

Cognitive deterioration is a hallmark of Dravet syndrome. Children develop normally in the 

first few months of life, showing the first deficits in the second or third year (Cassé-Perrot et 

al., 2001). However, pre-cognitive abilities such as vision, are affected even before the first 

seizure (Chieffo et al., 2011). Children show slower language development, with a stronger 

effect on speech production than on comprehension (Acha et al., 2015; Chieffo et al., 2016). 

Between 2 and 6 years of age, children develop dysarthria and poor articulation (Chieffo et al., 

2016). Intellectual disability varies from mild to severe mental retardation accompanied by 
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different clinical symptoms. Teenagers with Dravet syndrome and milder retardation mostly 

show visuo-motor disabilities with preserved verbal skills, while moderately and severely 

retarded patients show pronounced cognitive decline (Olivieri et al., 2016). Some patients 

experience attention deficit hyperactivity disorder with hyperkinesia to the detriment of their 

learning abilities. Additionally, over 30 % of patients with Dravet syndrome exhibit autistic 

behaviors, with a higher prevalence of social reserve observed in male patients (Gataullina and 

Dulac, 2017; Villas et al., 2017). 

Children who experience the early appearance of myoclonus, absence seizures and worse 

seizure control, show a poorer cognitive profile (Catarino et al., 2011; Ragona et al., 2011). As 

a consequence of the total seizure accumulation and poor pharmacoresponse, cognitive decline 

increases with age (Acha et al., 2015; Catarino et al., 2011). In line with this, speech alterations 

positively correlate with higher seizure frequency (Lagae et al., 2018). 

2.4.2. Motor dysfunction 

Motor disabilities are frequently observed in Dravet patients. The symptoms seem to deteriorate 

with age. The first clinical sign of motor disabilities is the delayed onset of independent sitting 

and walking by 3 and 8 months on average, respectively (Gitiaux et al., 2016; Verheyen et al., 

2019). Up to the age of six, gait is frequently described as normal or with possible hypermobility 

and ataxia (Gitiaux et al., 2016; Rodda et al., 2012). Most patients develop a crouched gait 

following 6 years of age which worsens during adolescence (Gitiaux et al., 2016; Rilstone et 

al., 2012; Rodda et al., 2012; Wyers et al., 2019). This is characterized by hip and passive knee 

flexion extension, lateral tibial torsion and feet planoabductovalgus (Gitiaux et al., 2016). 

Additionally, ataxia and spasticity progress with age (Gataullina and Dulac, 2017; Rodda et al., 

2012) while parkinsonian gait, antecollis and extrapyramidal signs are frequently observed in 

adults (Aljaafari et al., 2017; Fasano et al., 2014). Overall, motor disabilities in Dravet patients 
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vary, ranging from mild motor impairments to immobility and the need for a wheelchair (Rodda 

et al., 2012). 

Though frequent seizures can worsen gait and ataxia, there is a strong connection between gait 

disturbances and SCN1A mutations in patients with Dravet syndrome. Namely, NaV1.1 channels 

located on nodes of Ranvier and the initial axonal segment are crucial for the electrical outputs 

of neurons. Their dysfunction could explain motor deficits, gait disturbance and crouching in 

Dravet syndrome (Duflocq et al., 2008). Additionally, the impact of these channels’ dysfunction 

on the basal ganglia is linked to parkinsonian features. Severe SCN1A deficiency is linked to an 

earlier onset of symptoms in children (Aljaafari et al., 2017). Importantly, these patients showed 

a good response to levodopa treatment (Fasano et al., 2014). Lastly, data from animal models 

imply the role of impaired GABAergic firing of Purkinje cells as a mechanism of ataxia 

(Kalume et al., 2007; Ogiwara et al., 2007; Yu et al., 2006). 

2.4.3. Sleep disturbances 

Sleep disturbances are frequently reported by caregivers of patients with Dravet syndrome 

(Gataullina and Dulac, 2017; Villas et al., 2017). They are considered a risk factor for nocturnal 

seizures, which occur more frequently after the age of 10 (Dravet and Oguni, 2013). Patients 

usually experience difficulties with initiating and maintaining sleep, sleep-wake transitions and 

sleep breathing (Licheni et al., 2018; Schoonjans et al., 2019). Excessive somnolence and 

daytime sleepiness are consequences of these disturbances. Melatonin has shown some 

beneficial effect on sleep initiation and maintenance, contributing to a better quality of life 

(Myers et al., 2018).     

While data from humans do not provide information about circadian rhythm, preclinical models 

indicate that it may be impaired in Dravet syndrome. Patients show a fragmented rhythm of 

non-rapid eye movement (NREM) sleep and a prolonged circadian period (Sanchez et al., 
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2019). Interestingly, NaV1.1 channels are located in the suprachiasmatic nucleus, whose 

dysfunction could explain the slow EEG background rhythm and sleep impairments starting 

from the second year of life (Gataullina and Dulac, 2017). Moreover, in a mouse model of 

Dravet syndrome, an imbalance between excitatory and inhibitory neurons in the thalamic 

ventrobasal and reticular nucleus could further delay the onset and maintenance of sleep 

(Kalume et al., 2015b). 

2.4.4. Other symptoms of Dravet syndrome 

Caregivers frequently report problems with thermoregulation, overheating and insufficient 

sweating in patients with Dravet syndrome, altogether increasing the risk of thermally provoked 

seizures. Furthermore, Dravet patients frequently suffer from slowed growth, digestion issues 

and constipation (Skluzacek et al., 2011). Osteopenia and increased fracture risk are mentioned 

as major concerns in drug-resistant epilepsy (Connolly, 2016). Additionally, a poor immune 

response with frequent respiratory and urinary tract infections is another concern in Dravet 

patients (Skluzacek et al., 2011). Cardiovascular irregularities are also observed in some 

patients (Skluzacek et al., 2011). 

2.5. Sudden unexpected death in epilepsy 

Dravet syndrome has a high rate of premature death ranging from 3.1 to 20.8 % (Connolly, 

2016). Children from 3 to 7 years of age seem to have the highest death incidence (Sakauchi et 

al., 2011). Sudden unexpected death in epilepsy (SUDEP) is known as the leading cause of 

death, explaining over 50 % of mortalities in patients with Dravet syndrome (Sakauchi et al., 

2011; Skluzacek et al., 2011). SUDEP is defined as sudden, unexpected death in patients 

suffering from epilepsy when no other disease, drowning or injury can be considered causative. 

It may occur with or without confirmed seizures, but status epilepticus (SE) does not precede 

the death (Nashef et al., 2012). In Dravet syndrome, the risk of SUDEP is roughly 15 times 

higher than in other childhood epilepsies (Skluzacek et al., 2011). Besides SUDEP, SE and 
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accidents with drowning are the next leading causes of death (Connolly, 2016; Sakauchi et al., 

2011). The exact mechanism of SUDEP is not yet fully understood but current data from 

patients imply a role of peri-ictal respiratory dysfunction leading to central apnea, bradycardia 

and heart arrest (Kim, 2017). Heart rate variability has also been shown to be a biomarker of 

SUDEP in some patients (Myers et al., 2018). Further research in Dravet patients is still 

necessary to establish the exact mechanisms behind SUDEP and validate the findings from 

animal models.  

2.6. Diagnosis 

Today, according to the 2017 consensus of North American neurologists with expertise in 

Dravet syndrome (Wirrell et al., 2017), the diagnosis of the syndrome is purely clinical using 

the following criteria:  

o typical disease onset within the first year of life, on average 5.2 months (Cetica et al., 

2017; Wirrell et al., 2017)  

o children experience recurrent convulsive or hemiconvulsive seizures, which are 

frequently prolonged  

o myoclonic seizures appear by the age of two, followed by obtundation status, focal 

seizures with loss of consciousness and atypical absence seizures 

o patients are susceptible to thermally provoked seizures with fever, vaccination and 

warm baths as the most frequent triggers 

o photosensitivity, eating, and bowel movements are observed as potential seizure triggers 

o children develop normally until disease onset 

o sodium channel agents are contraindicated and may exacerbate seizures 

In older children and adults the clinical picture consists of: 

o persistent seizures with less frequent and obvious SE over time  

o decreased sensitivity to hyperthermia over time  
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o intellectual disability presenting between 18 and 60 months  

o motor impairment: crouch gait, lack of coordination and muscle tonus, impaired 

physical dexterity 

o normal MRI with mild generalized atrophy and/or hippocampal sclerosis 

o EEG potentially showing diffuse background slowing with multifocal and/or 

generalized interictal discharges 
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3. Animal models 

A major step in filling the gaps in knowledge about Dravet syndrome was the development of 

an animal model back in 2006 (Yu et al., 2006). Today, there are several other models accessible 

to a broad scientific community that have improved our understanding of the 

pathophysiological mechanisms underlying the disease, providing a solid foundation for the 

development of novel treatment candidates in Dravet syndrome. 

Following the discovery of SCN1A deficiency in Dravet children, the exact mechanism of 

epileptogenesis was explained using an Scn1a knock-out mouse model (Ogiwara et al., 2007; 

Yu et al., 2006). These studies elucidated why a loss of function mutation in sodium channels 

leads to seizures by showing that the mutation reduces sodium currents and neuronal firing of 

GABAergic hippocampal interneurons, leading to general hyperexcitability and a lower seizure 

threshold (Ogiwara et al., 2007; Yu et al., 2006). 

Whilst Dravet mutations are present from birth, both mice and humans only experience the first 

seizure later in life. The reason behind this phenomenon was clarified in an animal model of 

Dravet syndrome (Cheah et al., 2012). Namely, the expression of NaV1.1 channels is low at 

birth and increases with age. On the contrary, the expression of NaV1.3 sodium channels 

declines with age in mice, reaching the lowest expression levels around 3 weeks of age, 

corresponding to weaning age. Over these 3 weeks, NaV1.1 deficits in Dravet mice are rescued 

by an up-regulation of NaV1.3 channels in hippocampal interneurons. Thus, the natural decrease 

in NaV1.3 expression along with the failure of NaV1.1 channels to replace their function defines 

the starting point for developing Dravet syndrome, characterized by the disinhibition of 

neuronal circuits, seizures, and other comorbidities (Cheah et al., 2013). Importantly, the same 

pattern was noted in humans, showing that the decline of NaV1.3 and the increase of NaV1.1 

expression at the age of 5-6 months corresponds to the approximate age of seizure onset in 

Dravet patients (Cheah et al., 2013). 
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In addition to neuronal hyperexcitation, the NaV1.1 channelopathy was linked to motor deficits 

including ataxia. Experimental proof came from homozygous Scn1a-/- mice, which related to 

the lack of NaV1.1-positive cerebellar Purkinje cells, exhibit impaired firing of Purkinje cells 

and severe ataxia (Ogiwara et al., 2007; Yu et al., 2006). 

Similarly, a selective NaV1.1 deletion and impaired GABAegic neurotransmission in the 

prefrontal cortex was linked to autistic-like behavior and spatial learning and memory deficits 

in Dravet mice. Low-dose clonazepam fully rescued these social and cognitive deficits in 

Dravet mice, thus demonstrating impaired GABAergic neurotransmission as a cause of Scn1a 

haploinsuficiency (Han et al., 2012). Furthermore, another study has shown that the selective 

blockade of NaV1.1 channels in the basal forebrain region leads to learning and memory 

impairment but no spontaneous seizures (Bender et al., 2013). These findings suggest that 

impaired GABAergic neurotransmission may not only lead to seizure protection but also to 

improved behavioral and motor phenotypes in patients. 

Great progress has been made in understanding the mechanism of SUDEP using animal models 

of Dravet syndrome. Video monitoring of Scn1a heterozygous knock-out mice observed 

SUDEP shortly after generalized tonic-clonic seizures (Kalume, 2013). Moreover, the study 

showed that SUDEP is triggered by increased parasympathetic activity following tonic-clonic 

seizures, resulting in ventricle electrical dysfunction and lethal bradycardia (Kalume, 2013).  

On the other hand, a high rate of seizure-related respiratory difficulties including 

hypoventilation and apnea have been reported in most witnessed SUDEP cases, listing it as a 

possible cause of SUDEP. Additionally, patients who suffered from SUDEP reported impaired 

respiratory function throughout earlier seizures (Kalume, 2013; Langan, 2000). A recent study 

in Dravet mice expressing an Scn1a mutation demonstrated disordered breathing comprised of 

hypoventilation, apnea and diminished CO2 ventilatory response. Hypoexcitability of inhibitory 
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brainstem neurons and hyperexcitability of glutamatergic chemosensitive neurons, responsible 

for the CO2/H
+ ventilatory response, were observed in the retrotrapezoid nucleus of Dravet 

mice. This has therefore been proposed as a possible underlying mechanism in SUDEP (Kuo et 

al., 2019).  

Lastly, animal models of Dravet syndrome used in preclinical drug discovery and development 

studies have been instrumental in the licensing of new therapeutics for Dravet syndrome. For 

instance, some preclinical studies in Dravet animal models provided critical evidence for the 

efficacy and tolerability of cannabidiol, stiripentol and fenfluramine (Cao et al., 2012; Kaplan 

et al., 2017; Zhang et al., 2015) facilitating their approval for the treatment of Dravet syndrome 

in subsequent years. Similarly, the efficacy of a ketogenic diet in seizure protection and 

reducing susceptibility to SUDEP was confirmed in mouse models of Dravet syndrome (Dutton 

et al., 2011; Teran et al., 2019). More details are provided in the following section. 
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4. Current therapeutic options in the treatment of Dravet syndrome 

Currently, the treatment of Dravet syndrome remains very challenging. Medication has to be 

tailored to the types of seizures which demonstrate great interpatient variability. During the 

“febrile” stage, the aim of therapy is to prevent prolonged seizures including SE, which 

frequently require medical intervention (Knupp and Wirrell, 2018). During the “worsening” 

phase, patients require better control of nonconvulsive seizures, which can further contribute 

towards cognitive decline (Ragona, 2011; Ragona et al., 2011). During the “stabilization” 

phase, the focus of therapy is to reduce convulsive nocturnal seizures which are a great risk 

factor for SUDEP (Genton et al., 2011; Knupp and Wirrell, 2018). 

Most patients with Dravet syndrome have an SCN1A sodium channel mutation. The use of 

sodium channels agents is therefore strongly contraindicated as they may exacerbate seizures. 

Moreover, truncating mutations in SCN1A gene can serve as biomarkers predicting a bad 

prognosis to sodium channel blockers (Weber et al., 2014). Thus, carbamazepine, 

oxcarbazepine, phenytoin, lamotrigine and rufinamide should be avoided in the treatment of 

Dravet syndrome. Additionally, an irreversible inhibitor of GABA aminotransferase 

(vigabatrin) should be avoided due to its proconvulsant effect in Dravet patients (Knupp and 

Wirrell, 2018). 

4.1. Stiripentol 

In 2007, Stiripentol (Diacomit) was the first drug approved for the treatment of Dravet patients 

(older than 2 years) in the European Union (EU). Approved as an add-on medication in 

combination with clobazam or valproate, stiripentol is indicated for the treatment of generalized 

tonic-clonic seizures (EU/3/01/071). Recently, the Food and Drug Administration (FDA) also 

approved its use in the United States if combined with clobazam (reference ID: 4309499).  
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Stiripentol is a novel drug that is structurally different from other antiepileptic drugs. There are 

several proposed mechanisms of action. Stiripentol enhances GABAergic neurotransmission 

by increasing GABAA receptor activity (Fisher, 2011). Due to its effect on α4- and δ-containing 

GABAA receptors, it does not lose efficacy during prolonged SE as a consequence of receptor 

internalization (Grosenbaugh and Mott, 2013). Additionally, stiripentol inhibits lactate 

dehydrogenase leading to neuronal hyperpolarization (Sada et al., 2015) and blocks calcium- 

and sodium-channel mediated neurotoxicity (Verleye et al., 2016). It must be considered that 

stiripentol interacts with CYP2C19 and CYP3A4, thus affecting the pharmacokinetics of other 

drugs such as clobazam and valproate (Chiron, 2005; Jogamoto et al., 2017). Therefore, it is 

necessary to adjust its dose when used in combination with other antiseizure drugs. 

The first randomized placebo-controlled clinical studies demonstrated stiripentol’s efficacy in 

the treatment of Dravet syndrome, with 67 and 71 % of patients exhibiting a reduction in the 

frequency of convulsive seizures by more than 50 %, compared to 9 and 5 % observed in the 

placebo groups (Chiron, 2007; Chiron et al., 2000). Further studies confirmed its efficacy for 

generalized tonic-clonic and focal seizures (Myers et al., 2018) as well as for the prevention of 

SE (Buck and Goodkin, 2019). It is considered a safe therapeutic, with anorexia and 

somnolence as the most common adverse events (Buck and Goodkin, 2019). 

4.2. Cannabidiol 

Cannabinoids or derivatives of Cannabis sativa have been used for centuries in herbal medicine 

to treat epilepsy. The story of Charlotte Figi, a girl with Dravet syndrome, whose seizures 

almost completely disappeared with cannabidiol-enriched extract attracted a lot of media 

attention (Maa and Figi, 2014). As one of the dominant non-psychoactive components in 

cannabis, cannabidiol has been widely used in children with Dravet syndrome and reported as 

very promising by their parents (Porter and Jacobson, 2013). Preclinical studies confirmed its 

efficacy in both seizure management and improving social deficits (Kaplan et al., 2017). A 
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double-blind, placebo-controlled clinical study showed that cannabidiol reduces seizures by ≥ 

50 % in 43 % of Dravet patients, as compared to 27 % observed in the placebo group (Devinsky 

et al., 2018b). Furthermore, seizure frequencies of all but non-convulsive seizures were reduced 

and the treatment was well tolerated. Diarrhea, fatigue, somnolence, decreased appetite and 

elevated liver transaminases were the most common adverse events (Devinsky et al., 2018b).  

The proposed mechanism of action is the modulation of intracellular calcium and adenosine 

uptake by antagonizing GPR55-mediated increased excitotoxicity, desensitizing TRPV1 

channels and inhibiting nucleoside transporters (ENT1) (Nichol et al., 2019). Cannabidiol can 

strongly increase the concentration of clobazam and its active metabolite when applied together 

(Geffrey et al., 2015). Thus, dose optimization should be kept in mind. 

In 2019, cannabidiol (Epidiolex) was the first drug approved by the FDA as a single-use therapy 

for Dravet patients older than 2 years, thus receiving orphan drug designation 

(https://www.centerwatch.com/directories/1067-fda-approved-drugs/listing/3466-epidiolex-

cannabidiol; ID: 4282447). A year later, cannabidiol was also approved by the EU as an add-

on therapy (EU/3/14/1339).  

4.3. Fenfluramine 

The most recent drug to receive orphan drug designation for the treatment of Dravet syndrome 

is fenfluramine. The drug was approved for the treatment of patients over 2 years of age by the 

FDA (reference ID: 4631810) and as an add-on therapy by the European Medicines Agency 

(EMA) (EU/3/14/1219). 

Fenfluramine is an amphetamine derivate, previously registered as an appetite suppressor in the 

treatment of obesity. Its frequent combination with the monoamine oxidase inhibitor 

phentermine, raised pulmonary hypertension (Douglas et al., 1981). Later on, severe 

cardiovascular adverse events were observed, leading to its withdrawal from the market 
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(Connolly et al., 1997; Gardin et al., 2000). Nevertheless, a great improvement was observed 

in seizure control in patients with self-induced epilepsy, among which were patients with Dravet 

syndrome. The drug was further examined in lower doses (Schoonjans et al., 2015). In 

comparison to up to 120 mg/day used for appetite suppression, fenfluramine was tested in doses 

under 1 mg/kg/day, thus minimizing risk for cardiac side effects (Knupp and Wirrell, 2018). 

Additionally, Belgian Dravet patients were continuously treated with fenfluramine (10-20 

mg/day) over 28 years with no signs of cardiac valve disease or pulmonary hypertension, thus 

providing the first valid safety data in Dravet patients (Schoonjans et al., 2017). A recent long-

term open-label study further confirmed this finding (Lai et al., 2020). 

Whilst the exact mechanism of action is still unclear, it is know that fenfluramine hydrochloride 

is a  serotonin 5HT-2 receptor agonist that inhibits serotonin transporters thereby increasing 

extracellular serotonin availability (Knupp and Wirrell, 2018). Recent findings demonstrated 

that fenfluramine also acts as a positive allosteric modulator of sigma-1 receptors (Martin et al., 

2020). 

Two double-blind placebo-controlled randomized clinical trials provided crucial data for 

fenfluramine’s approval. The first study showed a clinically relevant seizure frequency 

reduction (≥ 50 %) in 74.9 % of patients treated with fenfluramine hydrochloride as compared 

to 19.2 % observed in the placebo group (Lagae et al., 2019). Additionally, compared to 

placebo, the monthly convulsive seizure frequency was reduced by 62.3 % and 32.4 % with 0.7 

and 0.2 mg/kg/day fenfluramine hydrochloride, respectively (Lagae et al., 2019). The other 

study confirmed its clinical efficacy by reducing monthly convulsive seizure frequency (≥ 50 

%) in 54 % of patients as compared to 5 % in the placebo group (Nabbout et al., 2020). The 

main adverse effects were decreased appetite and body weight, diarrhea, fatigue, pyrexia, 

lethargy and somnolence (Lagae et al., 2019; Nabbout et al., 2020). 
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4.4. Other antiseizure drugs  

While medicating Dravet patients remains very individualized, several standard antiepileptic 

drugs have shown promising effects. As first-line therapeutics, valproic acid and clobazam are 

commonly used (Wirrell et al., 2017). The efficacy of these drugs individually has not shown 

promising results and so they are frequently combined with second-line therapeutics such as 

stiripentol and topiramate. Bromides, zonisamide, levetiracetam, phenobarbital or clonazepam 

serve as third-line therapeutics (Knupp and Wirrell, 2018; Wirrell et al., 2017). In addition, 

ethosuximid can be used for the treatment of absence seizures (Wirrell et al., 2017).  

Buccal or rectal benzodiazepines are indicated in persistent seizures lasting more than 5 

minutes, while intravenous benzodiazepines are indicated in the case of SE (Gataullina and 

Dulac, 2017). According to ILAE, “Tonic-clonic SE is a condition resulting either from the 

failure of the mechanisms responsible for seizure termination or from the initiation of 

mechanisms which lead to abnormally prolonged seizures (> 5 minutes). It is a condition that 

can have long-term consequences if lasting over 30 minutes.” Importantly, after frequent usage 

tolerance to benzodiazepines can develop due to GABAA receptor internalization (Hu and 

Ticku, 1994). 

4.5. Adjunctive therapy 

Although a variety of drugs are available for Dravet patients, the results of individual drug trials 

are often disappointing. Thus, doctors frequently prescribe adjunctive therapies, among which 

a ketogenic diet is commonly used. Both the traditional and modified ketogenic diets are 

commonly prescribed as second-line treatments (Wirrell et al., 2017). The diet consists of a 

high fat to carbohydrate and fat to protein ratio (3:1 to 4:1 respectively), thereby replacing 

glucose with ketone bodies as the main fuel in the central nervous system (Knupp and Wirrell, 

2018).  
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Vagal nerve stimulation is another treatment option. The left cervical vagus nerve is stimulated 

with electrical impulses through a stimulator device consisting of a helical electrode connected 

to a pulse generator. The device emits electrical signals to the brainstem, which further sends 

signals to certain areas in the brain. The treatment has shown encouraging results, reducing 

seizures by more than 50 % in 52.9 % of Dravet patients (Dibué-Adjei et al., 2017). Currently, 

it is considered as a third-line treatment in Dravet patients (Wirrell et al., 2017). The right vagal 

nerve should be avoided except in specific circumstances since its innervation of the sinoatrial 

node could provoke bradycardia, asystole and further cardiac side effects (Giordano et al., 

2017). 

Corpus callosotomy and temporal lobectomy (in cases of temporal sclerosis) have been tested 

in a small number of Dravet patients. However, the success of these procedures was rather 

limited with more than 50 % seizure reduction achieved only in single patients (Dlouhy et al., 

2016; Wirrell et al., 2017). 

4.6. Polytherapy 

Although there are several therapeutic options available, polytherapy seems to be 

predominantly prescribed in Dravet patients of which 40 % use three and 25 % use four different 

antiepileptic drugs (Aras et al., 2015). In Europe, the most frequently prescribed antiseizure 

drugs are valproate, clobazam, topiramate, and stiripentol, used by 86, 55, 44, and 42 % of 

patients with Dravet syndrome, respectively (Brigo et al., 2018). Moreover, a combination of 

stiripentol, clobazam and valproate was the most commonly used combination, prescribed in 

29 % of patients (Brigo et al., 2018).  

The main challenge in Dravet syndrome is the achievement of seizure-freedom. Over time, 

certain algorithms for its treatment have been developed, such as the current one proposed by 

the North American Consensus Panel shown in Figure 1 (Wirrell et al., 2017). 
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Figure 1. Algorithm for the treatment of Dravet syndrome proposed by the North American 

Consensus Panel. Adapted from Wirrel et al., 2017. 
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5. Ketogenic diet  

5.1 Origin and subtypes 

Fasting has been implemented in human medicine to treat epilepsy since at least 500 BC. It was 

also the only therapeutic measure mentioned in the Hippocratic collection (Wheless, 2008). 

Several centuries later, fasting appeared in the bible as a therapy for seizures, believed to be a 

demonic possession. The bible states that Jesus recommended fasting along with praying for 

curing convulsing demon possession (Wheless, 2008). 

In 1921, an important observation was made. Specifically, both starvation and a diet with high-

fat and low-carbohydrate content resulted in increased β-hydroxybutyrate and acetone 

production, today recognized as ketone bodies along with acetoacetate (Peterman, 1924; 

Woodyatt, 1921). In the same year, the ketogenic diet was offered to epileptic patients as a 

substitution for fasting (WILDER, 1921). Even though the diet showed promising effects with 

improvements in both seizure and behavioral outcomes, it was placed aside for decades due to 

the discovery of antiseizure drugs in the late 1930s (Wheless, 2008). In 1997, a captive 

television drama about a two-year-old boy, Charlie, suffering from intractable generalized 

seizures who became seizure-free following the introduction of a ketogenic diet over the next 

5 years, placed the scientific focus back on the ketogenic diet (Wheless, 2008). Numerous 

studies have been executed, leading to the discovery of the emerging role of the diet, not only 

in epilepsy, but also in other diseases (Freeman et al., 2007). Today, a ketogenic diet is the first 

choice in the treatment of glucose transporter deficiency syndrome (Glut1DS) and pyruvate 

dehydrogenase deficiency (PDHD) and second choice in the treatment of Dravet syndrome. In 

addition, it may be one of the early choices in the treatment for epilepsy with myoclonic‐atonic 

seizures, febrile infection-related epilepsy syndrome (FIRES), Angelman syndrome, infantile 

spasms, and tuberous sclerosis complex (Kossoff et al., 2018). 
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Currently, there are four different types of ketogenic diet. The classical, traditional diet is 

defined by a 3:1 to 4:1 mass ratio of fats to combined carbohydrates and proteins. On average, 

about 90 % of calories are ingested from fats.  The medium chain triglyceride diet is based on 

the consumption of more ketogenic oil, which due to its shorter chains of fatty acids allows 

more carbohydrates in the diet. The low glycemic index diet allows an increased intake of low 

glycemic index carbohydrates, leading to a lower calorie intake from fats (around 60 %). 

Finally, the modified Atkins diet is based on greater food variety, yet carbohydrates are limited 

to only 10-20 g per day (Knupp and Wirrell, 2018). 

Overall, the ketogenic diet is generally well tolerated in patients. Hypoglycemia, 

hyperlipidemia, acidosis, dehydration, lethargy, gastrointestinal symptoms, weight loss and 

kidney stones are the main side effects (Tian et al., 2019). 

5.2. Mechanism of action in epilepsy management 

The exact mechanism underlying the anticonvulsive effects of the ketogenic diet remains a 

mystery. Although several hypotheses have been proposed, it seems like the ketogenic diet 

targets multiple pathophysiological mechanisms that can contribute to neuronal 

hyperexcitability (Rho, 2017).  

For instance, ketone bodies demonstrated a direct anti-seizure effect in several animal models 

(Likhodii et al., 2003; Rho et al., 2002). In addition, ketone bodies can indirectly affect 

neurotransmission by increasing GABA and adenosine levels (Masino et al., 2012; Yudkoff et 

al., 2005), activating ATP-sensitive potassium channels (Rho, 2017), enhancing mitochondrial 

biogenesis and reducing oxidative stress (Bough et al., 2006; Rowley and Patel, 2013).  

Furthermore, the ketogenic diet reduces glycolysis by switching the cell’s metabolism to a more 

fat-based energy supply including fatty acids and ketone bodies (Masino and Rho, 2012). 

Additionally, it increases the level of neuroprotective polyunsaturated fatty acids (Michael-
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Titus and Priestley, 2014). Modulation of the tricarboxylic cycle by refilling its intermediates 

with acetyl-CoA produced from the oxidation of ketone bodies or fatty acids and increasing 

ATP production, represents another possible anti-seizure mechanism of the ketogenic diet (Rho, 

2017). The diet is indicated in patients with pyruvate dehydrogenase deficiency, the enzyme 

that converts pyruvate to acetyl-CoA. This deficiency limits cell bioenergetics, which can be 

compensated for by using ketone bodies for the direct synthesis of acetyl-CoA and enhancement 

of the TCA cycle (Wexler et al., 1997).  

As previously mentioned, the ketogenic diet is also indicated in patients with Glut1 deficiency. 

GLUT-1 transports glucose across the blood-brain barrier and its deficiency causes brain 

hypoglycemia that is associated with infantile seizures, acquired microcephaly, ataxia and 

spasticity. The ketogenic diet provides ketone bodies as an alternative brain fuel. They have the 

ability to enter the brain via the monocarboxylic acid transporter (Koch and Weber, 2019).  

5.3. Ketogenic diet for the treatment of Dravet syndrome 

Evidence for the efficacy of the ketogenic diet in the treatment of Dravet syndrome is constantly 

emerging. Several studies presented promising results by showing a diet response rate with ≥ 

50 % in seizure reduction in 52-77 % of patients. The outcome largely depended on the length 

of treatment. The effect was observed for all seizure types including generalized convulsions, 

hemiconvulsions, myoclonic seizures, atypical absence seizures, and status epilepticus 

(Caraballo, 2011; Dressler et al., 2015; Laux and Blackford, 2013; Nabbout et al., 2011; Tian 

et al., 2019; Yan et al., 2018). In addition, EEG abnormalities showed an improvement, 

especially in patients with better seizure protection (Caraballo, 2011). Furthermore, a 

significant improvement in cognition, language production, hyperactivity, attention and motor 

function was observed (Laux and Blackford, 2013; Nabbout et al., 2011; Tian et al., 2019; Yan 

et al., 2018) altogether implying that a ketogenic diet can greatly improve the quality of life in 

Dravet patients. In line with this finding, some patients with no relevant impact on seizures 
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continued the diet because of its positive behavioral and cognitive effects (Nabbout et al., 2011). 

Aditionally, fewer antiseizure drugs were prescribed with the application of the diet (Caraballo, 

2011; Yan et al., 2018). Overall, the diet was well tolerated among patients and the main reason 

for termination was lack of efficacy.  

Adverse events arising during the first 2 weeks of the diet application are usually transient. 

They include hypoglycemia, ketosis, irritability, lethargy, lack of appetite and gastrointestinal 

symptoms (Yan et al., 2018). During diet maintenance, the main side effects comprise 

gastrointestinal symptoms (severe vomiting, constipation and diarrhea) and metabolic disorders 

(transitory anorexia, hyperlipidemia, acidosis) (Caraballo, 2011; Nabbout et al., 2011; Tian et 

al., 2019; Yan et al., 2018). With adjustments of the diet, some of the side effects like kidney 

stones, liver dysfunction and gastrointestinal symptoms were reduced to a tolerable level (Tian 

et al., 2019). The diet also showed advantages over pharmacological treatments including fewer 

neurotoxic adverse events such as lethargy, behavioral and cognitive symptoms (Laux and 

Blackford, 2013). 

Lastly, the ketogenic diet has been compared to other antiseizure drugs in Dravet syndrome. 

Surprisingly, it proved to be equally or more efficacious in seizure reduction than antiseizure 

drugs, including the gold standard combination of clobazam, stiripentol and valproate (Dressler 

et al., 2015). 

As a result, the ketogenic diet is proposed as an alternative treatment strategy in Dravet patients 

who did not reach sufficient improvement in seizures profile with three to four different 

antiseizure drugs (Cross et al., 2019; Wirrell et al., 2017).  The traditional ketogenic diet is 

indicated for children under 2 years of age, the traditional or modified Atkins diet for children 

between 2 and 12 years, and a modified Atkins diet for children over 12 years of age (Wirrell 

et al., 2017). 
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5.4. Ketogenic diet for other indications 

Over the last 20 years, the potential of the ketogenic diet in the treatment of other disorders has 

been established. The diet seems to be protective in many neurodegenerative disorders due to 

the improvement of mitochondrial function. For instance, impaired activity of mitochondrial 

complex I in Parkinson’s disease is assumed to be associated with the death of substantia nigra 

dopaminergic neurons and the development of motor symptoms. Ketone bodies are 

hypothesized to replace glucose as an energy source and therefore bypass the dysfunctional 

mitochondrial complex I (Barañano and Hartman, 2008). In Alzheimer’s disease, ketone bodies 

are postulated to overcome amyloid-induced pyruvate dehydrogenase and GLUT deficiency, 

mitochondrial dysfunction, and possibly protect against extracellular amyloid-β deposition 

(Barañano and Hartman, 2008; Paoli et al., 2014). Moreover, the ketogenic diet has been linked 

to the preservation of motor function in amyotrophic lateral sclerosis, possibly by increasing 

mitochondrial ATP production or reducing cell oxidative stress (Barañano and Hartman, 2008). 

Lastly, it has demonstrated protective effects in brain trauma and ischemia, possibly because 

ketones are the preferred energy source in an injured brain (Prins, 2008). 

The ketogenic diet also caused a marked improvement in the treatment of autism-spectrum 

disorders, depression, migraine and narcolepsy. However, the disease-modifying mechanisms 

remain unknown (Barañano and Hartman, 2008).   

The diet has also proved efficacious in the management of some metabolic diseases including 

phosphofructokinase deficiency and McArdle disease, with a specific glycogen phosphorylase 

deficiency, by improving energy deficits and switching to an alternative energy source (ketone 

bodies). In addition, the diet has been successful in the treatment of diabetes mellitus type 2, 

obesity and metabolic syndrome. By restricting carbohydrate ingestion, glycemic control is 

increased therefore reducing variations in insulin concentration and increasing fats beneficial 

for reducing a risk of cardiovascular diseases (Accurso et al., 2008).  
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Interestingly, the ketogenic diet may also play a role in the treatment of cancer. The underlying 

mechanism may comprise a lower metabolic flexibility of malignant cells, which cannot equally 

adjust to ketones as a novel energy substrate in comparison to normal cells (Seyfried and 

Mukherjee, 2005). In contrast to glucose, ketone bodies cannot produce essential products for 

the growth of proliferative cells, thus resulting in restricted tumor growth (Deberardinis et al., 

2008). 
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6. Omics techniques 

6.1. Definition, application, benefits and limitations  

Over the past decades, the investigation of cellular and subcellular processes in different 

pathologies has become available using a range of new techniques, including “Omics” 

techniques. The beginning of the “Omics” era tracks back to 2003, when the entire human 

genome was sequenced as part of the human genome project (HGP). “Omics” comprises 

branches of science based on novel technologies for high-throughput biomolecular analysis, 

which enables simultaneous quantification of up to thousands of molecules at different cellular 

function levels (Vasilopoulou et al., 2016). The main aim of “Omics” is to fully characterize 

and quantify pools of biological molecules, thus gathering knowledge about the complete 

network of genes and gene products in a biological system (Vidal et al., 2011). Therefore, 

instead of regular hypothesis-driven studies, these studies are exploratory and knowledge-based 

systemic investigations. All “Omics” techniques share a name ending with the same suffix -

omics, such as proteomics, genomics, metabolomics etc. 

The central nervous system represents one of the most complex networks in the human body, 

due to various synergistic and complementary interactions between different brain regions. In 

order to fully understand its architecture and function, a systemic investigation with 

comprehensive brain function mapping combined with should be used and the high-throughput 

quantitative approaches of “Omics” studies could provide a valuable contribution 

(Vasilopoulou et al., 2016).  Among these, connectomics are already widely used for mapping 

neuronal connections (Lichtman et al., 2014) whilst proteomics, transcriptomics and 

metabolomics are used for molecular fingerprinting showing proteins, genes and metabolites 

profiles, respectively (Geschwind and Konopka, 2009). Altogether, these data could advance 

our current state of knowledge and identify novel disease biomarkers and diagnostic tools as 

well as lead to the discovery of personalized medicine approaches (Vasilopoulou et al., 2016). 
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Proteomic profiling is comprised of complete proteome characterization looking at protein 

structure, function, expression, interaction and any kind of modifications (Domon and 

Aebersold, 2006). It provides comprehensive information about gene function and is considered 

the most valuable dataset for biological system characterization. In contrast to transcriptomics, 

which relies on mRNA expression, proteomic profiling measures proteins that are biological 

function effectors, thus capturing not only their expression, but also any proteome modifications 

due to the cellular response to any perturbation at the protein activation level and downstream 

consequences of gene expression regulation (Cox and Mann, 2007).  

Metabolomics is the newest “Omics” discipline. It detects and quantifies free metabolites with 

a low molecular weight. As the metabolite concentration depends on metabolic reactions, the 

profiling provides a metabolic physiology fingerprint and information about in vivo enzymatic 

activity and regulation. In contrast, other screening techniques like transcriptomics or 

proteomics, only capture current gene or protein expression without quantification of the 

ongoing biochemical processes leading to those changes (Hollywood et al., 2006; Kanani et al., 

2008; Patti et al., 2012). Metabolomic screening is particularly relevant for brain research, 

where it combines molecular biology and neurophysiology, thus giving a completely new 

insight into systems biology (Vasilopoulou et al., 2016). 

While this area of research can provide extensive information about early disease diagnosis and 

monitoring, detection of disease biomarkers and novel drug target molecules, the main 

limitations of these technique remain to be the reproducibility and higher costs (Vasilopoulou 

et al., 2016). Therefore, hypothesis-driven techniques are still necessary for confirmatory 

research. 

Another limitation in human “Omics” studies is the difficulty in obtaining biopsies. Only bodily 

fluids such as blood, plasma, serum or cerebrospinal fluid and post-mortem tissue can be used. 
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Animal models therefore play a crucial role in collecting valuable information about 

neurological diseases. They can be used for the comprehensive screening of brain tissue (Chen 

et al., 2015b; Constantinou et al., 2011; Davidovic et al., 2011; González-Domínguez et al., 

2015; Salek et al., 2010), thus avoiding concerns regarding post-mortem tissue (different causes 

of death, processing and sampling time etc). However, interspecies differences need be 

considered.  

In addition, metabolome, proteome or genome changes may vary depending on how well the 

model recapitulates disease pathology (McGonigle and Ruggeri, 2014; Suvorov and Takser, 

2008). Moreover, depending on the pathology in the model, one or more brain regions of 

interest should be carefully chosen for investigation (Ivanisevic et al., 2014; Salek et al., 2010). 

For accuracy, a critical amount of tissue is required, which is hard to obtain in rodents due to 

their small brain size. Therefore, samples are frequently pooled (Vasilopoulou et al., 2016). The 

examination of brain metabolomics in animal models can lead to the discovery of metabolic 

alterations contributing to brain dysfunction. Therefore, metabolomic data can help to 

understand the molecular basis of various neurological and psychiatric diseases (Vasilopoulou 

et al., 2016).  

“Omics” studies are very practical for broad data screening; however, their main limitation is 

the lack of precision. For instance, while proteomics studies can quantify the abundance of a 

certain protein in a specific brain region, they provide no data on protein distribution either 

within the cell layers or in individual cells and elucidate nothing about protein function. 

Therefore, these studies frequently serve as a research starting point to generate hypotheses. 

Lastly, metabolomics experiments should be thoroughly designed in advance in order to ensure 

that research aims can be accomplished. For example, tissue selection and preparation should 

be in line with project objectives, sample size should be calculated with possible sex, age and 
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genetic differences taken into account, and sampling times as well as the necessity for fasting 

should be determined. All aforementioned factors can significantly impact metabolome results 

and lead to unreliable data.  

6.2. “Omics” studies in epilepsy research 

Proteomics data have provided crucial information about physiological and pathophysiological 

brain function and contributed to the identification of disease-associated processes, pathway 

modifications and novel drug candidates (Khurana et al., 2020). Similarly, in epilepsy research, 

the application of molecular techniques could help elucidate molecular alterations underlying 

epileptogenesis and ictogenesis (Bosque et al., 2019). To date, most data comes from animal 

models of acquired structural epilepsy, which have provided evidence for molecular alterations 

associated with neuronal inflammation, synaptic and cellular plasticity, microglial activation, 

angiogenesis, cell stress, blood-brain barrier perturbation, cytoskeleton modification etc 

(Bitsika et al., 2016; Keck et al., 2017; Keck et al., 2018; Li et al., 2010; Liu et al., 2008; Walker 

et al., 2016). Data from the genetic epilepsies have so far been limited to genetic absence 

epilepsy and fragile X syndrome.  These findings pointed towards a change in the regulation of 

proteins involved in energy generation, synaptic transmission, inflammatory processes, 

membrane conductance and ribosomal translation (Danış et al., 2011a; Liao et al., 2008b; Xu 

et al., 2018).  A single transcriptomic study in a mouse model of Dravet syndrome showed 

developmental deficits in neural connectivity (Tsai et al., 2015). As of yet, a broad large-scale 

proteomic data set from Dravet syndrome has not been acquired.  

One of the first metabolomic studies in epileptology demonstrated that glutamate reuptake and 

glutamate-glutamine cycling are affected in patients with epilepsy leading to the accumulation 

of extracellular glutamate, cell toxicity and poor glucose and lactate utilization, thus resulting 

in energetic deficiency (Cavus et al., 2005). Further metabolomic screening of brain tissue from 
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patients with epilepsy identified numerous biomarkers of disease, pharmacological targets, and 

evidence of epilepsy (Donatti et al., 2020).  

Recently, the term “metabolic epilepsies” has been introduced for all epilepsies with a 

metabolic etiology (Scheffer et al., 2016). Importantly, most patients with these disorders also 

possess a genetic defect (Scheffer et al., 2016). Therefore, there is a strong interest in the 

investigation of genetic epilepsies including Dravet syndrome to determine the associated 

metabolic changes and assess if their management could improve patients’ responsiveness to 

antiseizure drugs.  
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7. Future directions in Dravet syndrome treatment – knowledge gap 

The facilitation of orphan drug approval by the Orphan Drug Act in the USA (1983) and in the 

EU (2000) combined with technology advancement, led to greater higher interest and 

investment from pharma companies in the development of treatments for rare diseases, 

including Dravet syndrome (https://pharmaboardroom.com/articles/investments-and-deal-

activity-in-orphan-drug-products/). Over the last decade, progress in the treatment of Dravet 

syndrome has been made, resulting in three drugs gaining approval for its therapeutic 

management. However, we are still far away from the main goal of the treatment, which is 

seizure-freedom. While the available drugs do improve seizure control in some patients, most 

are not seizure-free even with the combination of several antiepileptic drugs. In addition, other 

disease symptoms progress drastically over time, the treatment of which is poorly managed. 

Therefore, the aim of Dravet syndrome treatment may be early disease management which 

should also prove prophylactic for symptoms occurring later in the disease course.  

Most findings regarding the pathophysiological mechanisms underlying the disease are derived 

from animal models of acquired structural epilepsy, while the knowledge about neurobiological 

changes associated with genetic epilepsies including Dravet syndrome, is still very limited. A 

better understanding of these mechanisms and their metabolic consequences may facilitate the 

identification of alternate targets and the development of therapeutic agents tailored to the 

patient’s needs. Therefore, patients could benefit not only from better seizure management, but 

also from an improvement of cognitive, motor and behavioral symptoms. In addition, the 

identification of novel biomarkers may facilitate a more rational selection of drugs or dietary 

approaches. 
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AIMS OF THE THESIS 

The aims of this thesis comprise: 

1. Characterization of a novel mouse model of Dravet syndrome, evaluating its face validity 

and suitability for future pharmacological and biomedical evaluation. 

2. Understanding the molecular and metabolic consequences of Scn1a genetic deficiency 

and the pathophysiological mechanisms developing through the course of the disease. 

3. Identification of possible candidates that could be therapeutically targeted in the 

treatment of Dravet syndrome. 

4. Investigating the effect of the ketogenic diet on the metabolome in Dravet mice. 
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MANUSCRIPTS 

 

1. Manuscript I  

This chapter contains a manuscript submitted to the journal Neurobiology of Disease (doi: 

10.1016/j.nbd.2021.105423). The manuscript aimed to provide the first phenotype 

characterization of a mouse model of Dravet syndrome and highlight relevant proteome 

alterations in the hippocampal brain region before and following epilepsy manifestation. 
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Abstract 

Background: Dravet syndrome is a rare, severe pediatric epileptic encephalopathy associated 

with intellectual and motor disabilities. Proteomic profiling in a mouse model of Dravet 

syndrome can provide information about the molecular consequences of the genetic deficiency 

and about pathophysiological mechanisms developing during the disease course.  

Methods: A knock-in mouse model of Dravet syndrome with Scn1a haploinsufficiency was 

used for whole proteome, seizure and behavioral analysis. Hippocampal tissue was dissected 

from two- (prior to epilepsy manifestation) and four- (following epilepsy manifestation) week-

old male mice and analyzed using LC-MS/MS with label-free quantification. Proteomic data 

sets were subjected to a bioinformatic analysis including pathway enrichment analysis. 

Differential expression of selected proteins was confirmed by immunohistochemical staining.  

Results: Analysis of seizure susceptibility and behavioral patterns confirmed an excellent face 

validity of the novel Dravet mouse model. As expected, proteomic analysis demonstrated more 

pronounced alterations following epilepsy manifestation. In particular, proteins involved in 

neurotransmitter dynamics, receptor and ion channel function, synaptic plasticity, astrogliosis, 

neoangiogenesis, and nitric oxide signaling showed a pronounced regulation in Dravet mice. 

Pathway enrichment analysis identified several significantly regulated pathways at the later 

time point, with pathways linked to synaptic transmission and glutamatergic signaling 

dominating the list. Interestingly, comparison of these data from a genetic epilepsy model to 

published data from acquired epilepsies suggests commonalities in molecular alterations 

comprising protein groups linked with GABAergic, glutamatergic, and dopaminergic 

neurotransmission, voltage-gated ion channels, synaptic plasticity, astrogliosis, angiogenesis, 

and nitric oxide signaling.  



MANUSCRIPTS 

48 
 

Conclusion: In conclusion, the whole proteome analysis in a mouse model of Dravet syndrome 

demonstrated complex molecular alterations in the hippocampus. Some of these alterations may 

have an impact on excitability or may serve a compensatory function, which, however, needs 

to be further confirmed by future investigations. The proteomic data indicate that due to 

molecular consequences of the genetic deficiency the pathophysiological mechanisms may 

become more complex during the course of the disease, and that the management of Dravet 

syndrome may need to consider further molecular and cellular alterations. Along this line, based 

on functional follow-up studies, the data set may provide valuable guidance for future 

development of novel therapeutic approaches.  

Key words: proteome, genetic epilepsy, epileptic encephalopathy, Scn1a, mice.  

 

Abbreviation list: 

MS  Mass spectrometry 

LC-MS/MS Liquid chromatography with tandem mass spectrometry 

Hprt  Hypoxanthine-guanine phosphoribosyltransferase 

VEGF   Vascular endothelial growth factor 

JAK-STAT The Janus kinase/signal transducers and activators of transcription 

PSD  Postsynaptic density 

CaMK  Calcium/calmodulin-dependent protein kinases   

nNOS  Neuronal nitric oxide synthase  

NO  Nitric oxide 

SE  Status epilepticus 
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Introduction 

In the vast majority of patients with Dravet syndrome an SCN1A mutation can be identified, 

which results in functional deficiency of the encoded sodium channel subunit Nav1.1 

(Brunklaus and Zuberi, 2014; Dravet and Oguni, 2013). Dravet syndrome is characterized by 

seizures with a poor pharmacoresponse to available antiepileptic drugs (Wallace et al., 2016). 

Moreover, there is a high risk of sudden unexpected death in epilepsy (SUDEP) in Dravet 

patients (Kalume, 2013). Thus, despite the licensing of orphan drugs for Dravet syndrome there 

is still a particular need for novel therapeutic approaches tailored to the disease. While 

knowledge about the genetic cause provides a first basis for rational development of precision 

medicine approaches (Dugger et al., 2018), the elucidation of the molecular consequences of 

the genetic deficiency can further improve our understanding of the pathophysiological 

mechanisms and can provide a broader framework for the identification of novel targets and 

the subsequent development of innovative therapeutic concepts.   

Proteomic large-scale profiling constitutes one of the most promising tools providing 

comprehensive information about epilepsy-associated alterations at a functionally relevant 

molecular level. During recent years, first studies have been completed that identified proteome 

alteration in models of acquired epilepsy (Bitsika et al., 2016; Keck et al., 2017; Keck et al., 

2018; Li et al., 2010; Liu et al., 2008; Walker et al., 2016). Respective data for genetic epilepsies 

are rather limited with a focus on models of genetic absence epilepsy and fragile X syndrome 

(Danış et al., 2011b; Liao et al., 2008a; Xu et al., 2018). To our knowledge, the molecular 

consequences of Scn1a genetic deficiency have so far not been studied by quantitative whole 

proteome analysis. The characterization of the molecular signature of the Dravet syndrome may 

provide important clues to understand disease-associated alterations of neuronal homeostasis.  

Here, we completed a large-scale proteomic profiling study in a novel conditional mouse line 

carrying a human Dravet syndrome SCN1A mutation (Kuo et al., 2019; Ricobaraza et al., 2019). 

The analysis focused on two time points, prior and following onset of spontaneous recurrent 
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seizures in order to obtain information about both, molecular patterns during epileptogenesis 

and following epilepsy manifestation. The list of differentially expressed proteins was 

compared with published data sets from models of acquired epilepsy aiming to identify 

common epileptogenesis- and epilepsy-associated molecular patterns.  

Taken together, our findings improve the understanding of the complex molecular 

consequences of SCN1A genetic deficiency and provide a basis for discovery of novel 

innovative targets for prevention of disease progression and for therapeutic management of 

Dravet syndrome.  
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Material and methods 

Genetic mouse model: breeding and genotyping  

Breeding colonies of the parental lines B6(Cg)-Scn1atm1.1Dsf/J (#026133(Kuo et al., 2019; 

Ricobaraza et al., 2019)) and 129S1/Sv-Hprttm1(CAG-cre)Mnn/J (#004302(Tang et al., 2002)) were 

generated based on breeding pairs purchased from the Jackson Laboratory (Bar Harbor, Maine, 

USA). Conditional knock-in male mice with floxed Scn1a (mutation A1783V in exon 26) were 

crossed with female mice heterozygous for Cre recombinase (X-linked to neuronal promoter 

Hprt gene). The offspring resulted in heterozygous Dravet mice carrying the A1783V mutation 

(wildtype or heterozygous for Cre recombinase) or wildtype mice without the A1783V mutation 

(wildtype or heterozygous for Cre recombinase). Since the presence of Cre did not affect the 

phenotype, animals were divided into a Dravet group and a wildtype control group depending 

on the presence of the A1783V-Scn1a mutation. The mouse line has been chosen for the 

experiments considering that A1783V represents one of the clinically relevant mutations 

affecting the domain IV S6 transmembrane region of the alpha subunit of the type I voltage-

gated sodium channel in patients with Dravet syndrome (Lossin, 2009). 

The genotype of the animals was confirmed by PCR, using 5′-

GCAACTCTTCACATGGTACTTTCA-3′, 5’-GCACCTCTCCTCCTTAGAACA-3’ and 5′-

GGAGAAACACGAGCAGGAAG-3′ primers: wildtype, 164 bp; heterozygous pre Cre, 164, 

198 and 410 bp; and heterozygous post Cre, 164 and 198 bp (Fig. 1A). Presence of Cre 

recombinase in mice was also confirmed by PCR, using 5′-CTGGTGCTTTACGGTATCGC-

3′, 5’-TTCATAGAGACAAGGAATGTGTCC-3’ and 5′-AATCCAGCAGGTCAGCAAAG-3′ 

primers: WT allele, 217 bp; Cre allele, 450 bp. 

Experiments were approved by the responsible government of Upper Bavaria (license number 

55.2-1-54-2532-166-2015 and 55.2-1-54-2532-168-2016). All experiments were conducted in 

accordance with the EU directive 2010/63/EU for animal experiments and the German Animal 
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Welfare act. All experiments were planned and carried out considering the ARRIVE guidelines 

and the Basel declaration (http://www.basel.declaration.org) including the 3R concept. 

Twenty mice were used for sampling of brain tissue for proteomic analysis with five animals 

per genotype and time point. Sections from four wildtype and four Dravet mice aged 4 weeks 

were used for qualitative immunohistochemical analysis of selected proteins.  

Another group of animals was used for characterization of the phenotype and face validity of 

the line. From 38 heterozygous mutant mice, 23 (11 male; 12 female) survived the phase around 

weaning, which is characterized by a high seizure-associated mortality rate. Data from these 

animals were compared with those from 21 wildtype littermate controls (11 male; 10 female). 

One wildtype and one Dravet female mouse from this group were later used for EEG-telemetry 

recordings.  

In addition, baseline data from 22 heterozygous mutant mice were considered for seizure 

monitoring based on parallel video monitoring and telemetric EEG recordings. These animals 

were also prepared for ECG recordings and were further used for a separate study assessing 

effects of ketogenic diet in Dravet mice (manuscript in preparation). 

 

Housing of animals 

Each litter was housed in individually ventilated cages (Tecniplast, Hohenpeißenberg, 

Germany) from birth until weaning time (3 weeks). Following this phase, mice were grouped 

in 3-5 animals per standard Makrolon type III cage (Ehret, Emmendingen, Germany). Animals 

used for sampling of brain tissue for proteomic analysis were single caged following weaning 

in type II open cage (Ehret, Emmendingen, Germany) in order to confirm presence of seizures. 

Animals used for behavioral assessment were single caged 2 weeks prior to behavioral 

assessment. The order of cages was randomized (randomizer.org). 

Each cage was supplied once weekly with fresh sawdust as a bedding material (Lignocel, 

Rosenberg, Germany), two nestlets (Ancare, Bellmore, New York, USA), and one animal house 
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(Tecniplast, Hohenpeißenberg, Germany; Zoonlab GmbH, Castrop-Rauxel, Germany). 

Standard conditions in the animal facility were set to: lights on from 6 am to 6 pm, temperature 

22 ± 2 ̊ C, and humidity 50 ± 10 %. Animals received food (ssniff® R/M-H, Sniff, Soest, 

Germany) and water ad libitum with Dietgel76A offered as a supplement (Sniff, Soest, 

Germany) between postnatal days P14 and P26.   

 

Brain samples for proteomic analysis 

Brain samples were obtained at two different time points from five mice per genotype and time 

point. Two-week-old mice (early time point, prior to seizure onset) were sacrificed by 

decapitation, whilst the four-week-old mice (later time point) were sacrificed by cervical 

dislocation. Hippocampal tissue from the left hemisphere was dissected and fresh frozen in 

liquid nitrogen (Besamungsstation München-Grub, Poing, Germany) using 1.5 ml Protein 

LoBind Tubes (Eppendorf, Wesseling-Berzdorf, Germany. The experimenter was blinded to 

animals’ genotype and order of animals for dissection was randomized (randomizer.org). Once 

the samples were frozen and stored at -80 °C until analysis. The right brain hemisphere was 

collected and left in 4% PFA solution for 24 hours and then switched to 30 % sucrose solution. 

The brain was cut into 40 µm thick slices, which were later used for immunohistochemistry. 

 

Proteome analysis 

Untargeted proteome analysis was carried out by an experimenter not involved in the in vivo 

experiments, to avoid any expectation-triggered bias. Snap frozen hippocampus samples were 

directly bead milled with a Precellys homogenizer (Peqlab, Lutterworth, U.K.) in extraction 

buffer (10mM Tris-HCl pH 7.6 with 1 % NP40, 10 mM NaCl and Complete protease inhibitors) 

as previously described (Molin et al., 2015). The total protein concentration in sample was 

measured by the Bradford assay. A modified filter-aided sample preparation (FASP) method 

was used for digestion of 10 µg of total protein per sample as described (Lepper et al., 2018). 
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A Q Exactive HF mass spectrometer was used for proteomic screening (ThermoFisher 

Scientific, Dreieich, Germany) with operation in the data independent acquisition (DIA) mode 

(Lepper et al., 2018). Per sample one injection unit of the HRM Calibration Kit (Biognosys, 

Schlieren, Switzerland, #Ki-3003) was used for spiking 1 µg of peptides for indexing of 

retention time. Samples were loaded automatically onto the UPLC system (Ultimate 3000, 

Dionex, Sunnyvale, CA). The system contained a nano trap column (inner ∅ = 300 μm × 5 mm, 

packed with Acclaim PepMap100 C18, 5 μm, 100 Å; LC Packings, Sunnyvale, CA). Following 

5 minutes of elution from the trap column, the peptides were separated by reversed-phase 

chromatography (Acquity UPLC M-Class HSS T3 Column, 1.8 μm, 75 μm × 250 mm; Waters, 

Milford, MA) using a 7−27 % gradient of acetonitrile (flow rate of 250 nL/minute, 90 minutes), 

followed by two short gradients of 27−41 % acetonitrile (15 minutes) and 41−85 % acetonitrile 

(5 minutes). After 5 minutes at 85 % acetonitrile, the gradient was reduced to 3 % acetonitrile 

over 2 minutes and then allowed to equilibrate for 8 minutes. All acetonitrile solutions 

contained 0.1 % formic acid. 

The DIA method comprised alternating mass spectrometry (MS) full scans spanning from 

300−1650 m/z at 120,000 resolution, followed by 37 DIA window scans at 30,000 resolution 

for peptide fragmentation with a variable width ranging from 300−1650 m/z. Normalized 

collision energy was adjusted to 28, with profile type spectra recording.  

The DIA liquid chromatography with tandem MS (LC−MS/MS) raw files were converted 

(HTRMS converter) and analyzed (Spectronaut version 11, Biognosys, Schlieren, Switzerland) 

as described (Lepper et al., 2018). An automatic calibration mode was chosen with precision 

indexed retention time (iRT) alignment enabled for the application of the nonlinear iRT 

calibration strategy. Peptides were identified by comparison with an in-house accumulated 

spectral library, which has been obtained from mouse brain samples measured on the same MS 

set-up with a data-dependent acquisition mode. Peptide identification was filtered for a false 

discovery rate (FDR) of 1 %. Only proteotypic peptides were considered for quantification of 
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proteins, applying MS2 area based summed precursor quantities. The data filtering function 

was set to q-value percentile mode applying a 50 % setting, thus enabling a match between 

runs. This setting allows only peptide precursor signals passing the FDR threshold of 1 % in 

over 50 % of all samples to be further considered for identification and quantification, thus 

working towards a reduction of false positive identifications. The sum of abundances of all 

unique peptides per protein was log2 transformed, and obtained values were compared between 

groups with unpaired Student’s t-test and p<0.05 was set as the level of significance. 

 

Pathway enrichment analysis  

Pathway enrichment analysis was completed using a publicly available pathway tool 

(Consensus PathDB over-representation tool, (Kamburov et al., 2009)). A background list was 

used, comprising of all identified proteins. Only pathways with both, a p<0.01 and at least two 

dysregulated proteins, were considered. Only pathways reaching a q<0.01 (=p-value corrected 

for multiple testing using the FDR method) were considered significant and discussed in this 

study. Protein abundances of all proteins assigned to significantly changed pathways were 

visualized in a heat map. Individual fold changes for each animal were calculated by dividing 

their value against the wildtype group’s mean and then log2 transform the value. The resulting 

matrix was visualized using R software version 3.5.1 (Team, 2017) and “gplots” package 

(Warnes et al., 2016). 

 

Immunohistochemical staining of PPP1R1B (DARPP-32) 

In order to further confirm expression alterations of selected proteins, brains from four-week-

old wildtype and Dravet mice (n=4 per group) were used for immunohistochemistry. Free-

floating sections were washed in PBST (Phosphat-buffered saline, 0.1% Tween 20) at room 

temperature and heat-induced epitope retrieval (HIER) was performed at 80 °C for 30 minutes 

using sodium citrate buffer (pH 6.0). Sections were cooled down on ice and rinsed in PBST. 
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Endogenous peroxidase was inhibited (3 % H₂O₂ in TBS for 60 minutes). Slices were rinsed in 

PBST and a blocking step in 6 % goat serum (60 minutes) was performed to prevent non-

specific antibody binding. Sections were then incubated overnight at 4 °C with a monoclonal 

rabbit DARPP32 primary antibody (Abcam, Berlin, Germany, Cat# ab40801, lot# GR3213231-

3) at 1:2500 dilution. The next day, sections were washed in PBST and incubated for 60 minutes 

at room temperature with biotinylated goat anti-rabbit secondary antibody (Vector laboratories, 

Cat# BA-1000, lot# 2F0430) at 1:1000 dilutions. After washing steps in TBST, brain sections 

were incubated at room temperature in VECTASTAIN ABC-Peroxidase Kit (Vector 

Laboratories Cat# PK-4000, RRID: AB_2336818, lot#2337238, dilution 1:100, 60 minutes). 

The slices were washed in PBS and stained using SIGMAFAST™ 3,3′-Diaminobenzidine 

tablets (Sigma-Aldrich, Darmstadt, Germany, Cat# D4418, lot# SLBR2966V) for 1 minute.   

Brain sections were quickly rinsed in distilled H2O, washed in PBS, mounted on microscope 

glasses using PBST, and cover slipped with Entellan® (107960, Merck, Darmstadt, Germany). 

Negative controls were processed in parallel without the primary antibody.  

 

Immunohistochemical staining of HSD11B1  

The staining protocol for HSD11B1 was identical to the one described above (DARPP-32), 

with the following exceptions. Inhibition of endogenous peroxidase was done in 3 % H₂O₂ in 

TBS for 15 minutes.  A blocking step was performed in 1.5 % goat serum for 120 minutes. The 

primary antibody was HSD11B1 (Abcam, Berlin, Germany; Cat# ab39364, lot# GR3247054-

7) in 1:200 dilution. Slices were stained in SIGMAFAST™ 3,3′-Diaminobenzidine solution for 

100 s. 

 

Microscopy 

Bright field images were captured at 4x, 10x and 40x magnification with an Olympus BH2 

microscope with a single chip charge-coupled device (CCD) color camera (Axiocam; Zeiss, 
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Göttingen, Germany), and an AMD AthlonTM 64 processor based computer with an image 

capture interface card (Axiocam MR Interface Rev.A; Zeiss, Göttingen, Germany).  

 

Hyperthermia-induced seizures and threshold determination 

Hyperthermia-induced seizures were analyzed in mice at postnatal day 23, 25, and 32. Mice 

were transported to the laboratory 30 minutes prior to seizure induction. Temperature and light 

in the laboratory were adjusted to 22 ± 2 ̊ C and 600 lux. At all experimental days, tests began 

at 12 p.m. with a randomized order of animals (randomizer.org). Observers were blind to 

animals’ genotype as far as possible. At the early time point blinding proved to be difficult 

considering the obvious phenotype (lower body weight). The whole procedure was video 

recorded (Axis communications, Lund, Sweden). Body temperature was measured 

continuously with a RET-4 rectal probe (Physitemp, Clifton, New Jersey, USA), which was 

placed in warm saline solution (B. Braun Vet Care GmbH, Tuttlingern, Germany) before use. 

Subjects were placed in a plexiglass cylinder for 5 minutes to habituate to the environment and 

to record basal body temperature data. Then, the IR lamp connected to the temperature 

controller (Physitemp, Clifton, New Jersey, USA) was turned on to slowly increase the body 

temperature with a ramping of 0.5 ̊ C per 2 minutes (Oakley et al., 2009). Heating was stopped 

immediately when generalized tonic-clonic seizures were observed or when the body 

temperature reached 42 ̊C. Animals were allowed to cool down before returning them to their 

home cage. All equipment was cleaned between subjects with 70 % ethanol (CLN, Langenbach, 

Germany). 

Severity of hyperthermia-induced seizures was assessed based on the Racine scoring system 

with scores: I (mouth and facial movements), II (head nodding), III (forelimb clonus), IV 

(rearing with forelimb clonic convulsions) and score V (generalized clonic convulsions 

followed by rearing and falling) (Racine, 1972). 
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Spontaneous seizures  

In order to obtain first information about the onset of spontaneous seizures, their frequency, 

duration and severity score, a continuous video monitoring was started in all animals in the 

second postnatal week and continued following weaning with a total monitoring time of 6 

weeks. Videos have been carefully reviewed by experienced technicians with maximum 8x 

speed and all generalized seizures were documented.  

Two eight-month-old female mice (one wildtype, one Dravet) and 22 twelve-week-old Dravet 

mice (11 males, 11 females) underwent survival surgery for telemetry (ETA-F10 or HD-X02, 

DSI, St. Paul, USA) and EEG electrodes implantation. The order of animals was randomized 

(randomizer.org). Thirty minutes before anesthesia induction, mice received 1 mg/kg 

meloxicam s.c. (Metacam®, Boehringer Ingelheim, Germany). For general anesthesia mice 

received 400 mg/kg chloral hydrate i.p. (Carl Roth, Karlsruhe, Germany) (n=2) or isoflurane 

(Isofluran CP®, Henry Schein Vet, Hamburg, Germany) with a concentration of 4 % and 1.5 

% for anesthesia induction and maintenance, respectively (n=22). The local anesthetic 

bupivacaine (0.5 %; Jenapharm®, Mibe GmbH, Brehna, Germany) was applied subcutaneously 

to surgical areas affected by transmitter implants and placement of leads. For intracranial 

electrode placement, bupivacaine with epinephrine (0.5 % + 0.0005 %; Jenapharm®, Mibe 

GmbH, Brehna, Germany) was applied subcutaneously.  

Firstly, the skin was opened in the dorsocaudal part of the scapula region for placing the 

telemetric transmitter subcutaneously. Mice were then fixed in a stereotactic frame and three 

screws were inserted in the skull. The negative EEG lead was connected to the screw over the 

cerebellum. The positive EEG lead was connected to a bipolar Teflon-isolated stainless-steel 

electrode, which was implanted into the CA1 region of the hippocampus (ap: - 2,00; lat: + 1,3; 

dv: - 1,6). The electrode was fixed with Paladur (Heraeus®, Hanau, Germany). The skin over 

the skull was closed with absorbable sutures, while the initial cut for the transmitter placement 

was closed with tissue adhesive (Surgibond®, Henry Schein Vet, Hamburg, Germany).  
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As stated above 22 animals were prepared for additional ECG analysis in the context of another 

study. Therefore, the negative ECG lead was fixed intramuscularly to the right pectoral muscle, 

whilst the positive ECG lead was fixed left to xyphoid prior to electrode implantation. Skin 

over the ECG connections was closed with absorbable sutures (Smi AG, St. Vith, Belgium). 

Animals were given oxygen until regaining consciousness. On the following day, mice received 

1 mg/kg meloxicam s.c. Mice were allowed to recover for full 2 weeks followed by a two-week 

continuous recording phase. In parallel, animals were video monitored (Axis communications, 

Lund, Sweden) in order to confirm and analyze behavioral seizure activity. Data were acquired 

with Ponemah software (Ponemah R, v. 5.2.0, DSI, St. Paul, USA), and seizure activity was 

detected automatically (NeuroscoreTM v. 3.0, DSI, St. Paul, USA).  

 

Behavioral characterization 

Following hyperthermia-induced seizures, all animals were tested in different behavioral 

paradigms except for one female Dravet mouse and one female wildtype mouse related to an 

age difference to the remaining animals. Thus, 22 Dravet mice (11 males; 11 females) and 20 

wildtype (11 males; 9 females) mice were used for behavioral assessment.  

One male Dravet mouse died following a spontaneous seizure and was therefore not exposed 

to the elevated plus maze and accelerated rotarod test. Data from one male Dravet mouse were 

not considered in the saccharin preference test, due to leakage of one of the water bottles. 

During all behavioral paradigms, animals were single-housed as a presupposition for the social 

interaction test. Social interaction was analyzed at an age of 7 weeks. The order of the 

subsequent tests was as follows: open field test, saccharin preference test, elevated plus maze 

and accelerated rotarod test (Fig. 1B). The testing was completed until an age of 10 weeks. The 

order of animals for each test was randomized (randomizer.org). 

Nest-building activity as well as saccharin preference were assessed in the home cage. All other 

behavior tests (social interaction, open field test, elevated plus maze, accelerated rotarod test) 
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were completed in a test room (temperature 22 ± 2 ̊ C, humidity 55 ± 5 %) under different light 

conditions adjusted to the specific paradigm (stated below). All tests were carried out in 

morning hours (starting from 8 a.m.). All behavioral test runs were documented by 

photographing (nest complexity) or video-recording (all other tests).  

  
 

Fig. 1. A PCR genotyping for distinguishing Dravet mice with Cre activated A1783V mutation 

(post Cre heterozygous) and wildtype mice. B Experimental timeline. 
 

Open field test 

The open field paradigm is a widely used test for assessment of exploratory behavior and 

locomotion in an unfamiliar environment (Carola et al., 2002). Mice were placed in the test 

room for 1 hour to habituate (lighting 15-20 lux). Two round shaped arenas (Ø 61 cm, height 

40 cm) were simultaneously used for the test. Time spend in three different zones (wall, middle 

and center) was analyzed with Ethovision 8.5 software (EthoVision XT, RRID:SCR_000441). 

Each mouse was placed in one arena, 10 cm from the wall, and facing the wall. Locomotion 

was recorded for 30 minutes. Rearing behavior was counted manually. After completing the 

test, mice were returned to their home cage. The arena was cleaned with 0.1 % acetic acid before 

continuing with the next animal. 

 

Saccharin preference test  

The saccharin preference test was used to test anhedonia-associated behavior as one of the 

symptoms of depressive disorders (Klein et al., 2015). The analysis was conducted at four 
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consecutive test days in the home cage. Animals were provided with two water bottles. Tests 

were done in four consecutive 24 hours long periods. First, both bottles were filled with water 

to determine water intake over 24 hours. Then, the bottle on the left side was filled with a 0.1 

% saccharin solution. During the next day, both bottles were again filled with water. At the last 

day, the right bottle was filled with saccharin solution in order to test for a potential side 

preference bias. Liquid consumption was measured after each period.  

 

Nest-building activity  

During postnatal week five, mice were placed individually in type III open cages. The following 

week animals were as always provided with two new nestlets and nest complexity was assessed 

on a daily basis. Nests were photographed each morning. The images were later scored by an 

investigator unaware of the group allocation. Nest complexity was ranked according to the 

scoring system developed by Jirkof and colleagues (Jirkof et al., 2013): score 0 = nestlet intact, 

possibly carried around the cage; score 1 = nestlet is poorly manipulated with more than 80% 

of the nestlet intact; score 3 = evident nest site with most of shreds in the nest site, less than 

80% nestlet material intact, nest is hollow in bedding and mice begin to build walls; score 4 = 

flat nest, hollow in bedding, walls are higher than mice and encasing the nest less than 50%; 

score 5 = complex, bowl-shaped nest with walls higher than mice and encasing the nest more 

than 50%. 

 

Social interaction test  

The social interaction test was performed to assess autism-associated behavioral patterns and 

affinity towards interaction with another mouse. Mice were kept single in a type III open cage 

for 2 weeks prior to testing. On the first 2 days, animals were transported to the test room 

(lighting 15-20 lux) and placed in an empty type III open cage for 10 minutes to habituate. On 

the test day, animals were transported to the test room 30 minutes prior to testing. Two mice of 
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the same sex, same genotype and approximately same weight were then simultaneously placed 

in an empty cage and left for 10 minutes. Active and passive social interaction were measured 

with a stopwatch by an observer blind to animal genotype and sex. The cage was cleaned with 

0.1 % acetic acid between subjects. Sniffing, grooming or following the partner as well as 

aggressive behavior were considered as active social interaction. Laying or sitting next to each 

other, without any interaction was classified as passive social interaction (Holter et al., 2015). 

 

Elevated plus maze  

The elevated plus maze is generally used to assess anxiety-like behavior in rodents (Ben-Hamo 

et al., 2016). Mice were placed in the test room for 1 hour prior to the experiment. The maze 

comprises two open arms (40 cm long and 10 cm wide) and two closed arms (same dimensions 

with walls 15 cm high). The plus maze was elevated 68 cm above the floor. Light was set to 

approximately 200 lux in open and 60 lux in closed arms. Animals were placed in the center of 

the maze facing the open arm. Five-minute-long trial was recorded with Ethovision XT. Head-

dipping and stretching behavior (exploring open arms with head, while the body stays in closed 

arms or center part of the maze) were recorded manually by observers blinded to animals’ group 

allocation. The maze was cleaned with 0.1 % acetic acid between animals.  

 

Accelerated rotarod test 

The accelerated rotarod test is widely used to evaluate motor performance in mice (Shiotsuki 

et al., 2010). Before experiment onset, mice were placed in the test room for 1 hour to habituate 

(15-20 lux). A rotarod apparatus (Ugo Basile 47600, Varese, Italy) was used to assess animals’ 

motor coordination. The settings were chosen so that the rotation accelerates from 4 to 40 rpm 

over 5 minutes. Each animal was subjected to four consecutive trials with approximately 2 

minutes break for cleaning the rod (0.1 % acetic acid). Testing was carried out at three 

subsequent days, first day for training, and second and third days as test sessions. Male animals 
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were always tested before females. Passive rotations were counted and time staying on rod as 

well as current speed were noted. 

 

Statistical analysis 

Statistical analysis was performed with R version 3.5.1. GraphPad Prism (Version 5.04 and 

6.01, GraphPad, USA) was used for data visualization, except for heat maps visualized with R 

and Venn diagrams with an online tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). 

Spearman correlation matrix was calculated using R version 3.5.2. The significance level for 

correlation analysis was set at < - 0.5 or > 0.5. Animals with missing data were not considered 

for the respective correlation analysis. 

All data were expressed as mean ± SEM with exception of nest complexity data, for which the 

median is illustrated in the respective graph. All results were first checked for possible batch 

effects. If present, batch effects were considered in the statistical analysis.  

Two-tailed unpaired t-tests were used for comparison between experimental and control group 

where indicated. Two-, three-, four- and five-way ANOVAs were used to test the effects of 

genotype, sex, time, batch and their interaction where appropriate. Comparisons, which 

included multiple measurements, were tested using repeated measures ANOVA. ANOVA tests 

were followed by a Bonferroni post-hoc test. Two-tailed Mann-Whitney non-parametric test 

was used for analyzing nest complexity scores. The significance level was set at p < 0.05 for 

all tests.  

 

Data availability 

A complete list of abbreviations of significantly regulated proteins mentioned in the 

manuscript, sorted by their function is provided in Supplementary Material (Table A.1). 

 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Results 

Breeding pattern and outcome 

Twenty-three female mice heterozygous for Cre recombinase (129S1/Sv-Hprttm1(CAG-cre)Mnn/J) 

were bred with 21 conditional knock-in male mice with floxed Scn1a-1783V (B6(Cg)-

Scn1atm1.1Dsf/J) in pairwise and trio matings split in two different batches. Eighteen of them 

delivered litters with a total of 38 heterozygous mutant mice (Dravet mice) and 41 wildtype 

littermates. The sex ratio in the offspring was almost balanced with 38 males (19 Dravet; 19 

WT) and 41 females (18 Dravet; 23 WT). Due to the 40 % mortality rate around the time of 

weaning we lost 15 Dravet mice. The remaining 23 Dravet mice and randomly selected 21 

wildtype mice (randomizer.org) were used for model characterization.  

 

General condition, body weight development, seizure thresholds and spontaneous seizures  

The body weight of Dravet mice proved to be significantly lower at the time point of weaning. 

However, following weaning affected animals showed a good development of body 

conditioning scores finally reaching a body weight comparable to wildtype mice (Fig. 2A).  

In response to hyperthermia induction all Dravet mice exhibited generalized tonic-clonic 

seizures at all three testing days. In contrast, their wildtype littermates did not exhibit motor 

seizure activity despite ramping of the body temperature up to at least 41 °C.  

The number of Dravet mice showing running and bouncing behavior increased with repeated 

hyperthermia induction reaching 18/23 animals on P32. The average threshold temperature for 

seizure induction on P23, P25 and P32 amounted to 39.7 ± 0.9 °C at P23, 39.7 ± 0.6 °C at P25, 

and 39.1 ± 0.5 °C at P32 (mean ± SD, Fig. 2B). Seizure duration increased in a significant 

manner with subsequent stimulations (Fig. 2C). No differences were observed when comparing 

female and male mice.  
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Fig. 2. Body weight, spontaneous and hyperthermia-induced seizures. A Body weight 

development following weaning. Body weight in animals with a Dravet genotype (males n = 

11; females n = 11) proved to be significantly lower in the early phase following weaning 

(females until P25, males until P41) as compared to wildtype mice (males n = 11, females n = 

9) (Unpaired t-test; * p < 0.05 males, # p < 0.05 females, mean ± SEM). B Seizure threshold 

temperature at P23, P25, and P32. The threshold significantly decreased on P32 compared to 

previous testing. C Total duration of hyperthermia-induced seizure activity, calculated as the 

sum of all motor seizure periods occurring immediately following stimulation. The duration 

significantly increased with repeated stimulations.  B-C Data are from 11 male and 12 female 

animals with a Dravet genotype (Two-way RM ANOVA, Bonferroni post hoc; * p < 0.05, mean 

± SEM). D Representative EEG recording of a generalized tonic-clonic seizure (Racine score 

V, followed by running und bouncing) in an adult female mouse. 

 

Video monitoring of experimental animals in their home cages demonstrated that the animals 

develop spontaneous motor seizures starting at P16. The seizures observed included generalized 

tonic-clonic seizures, sometimes associated with running and bouncing indicating seizure 

spread towards the brain stem. In addition, prolonged phases with behavioral arrest, immobility, 

1
m

V
1s

To
ta

l s
e

iz
u

re
 d

u
ra

ti
o

n
 [

s]

P23 P25 P32
0

50

100

150

200

250 *
*

Se
iz

u
re

 t
h

re
sh

o
ld

 [


C
]

P23 P25 P32
37

38

39

40

41

42 *
*

Postnatal day

B
o

d
y 

W
e

ig
h

t 
[g

]

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
0

10

20

30

Wildtype males
Wildtype females
Dravet males
Dravet females

#

* * * *
*

* * * *
* * * * * * * * * *

#
#

#
#

A 

B 

D 

C 



MANUSCRIPTS 

66 
 

and lack of responsiveness to external stimuli were observed. Between P20 and P23 several 

Dravet mice died. In several instances video monitoring indicated that death occurred directly 

associated with a generalized seizure in these animals, thus, indicating that animals died from 

probable SUDEP. The mortality rate reached 40 %. The remaining 23 Dravet animals were 

used for behavioral characterization. SUDEP or probable SUDEP seems to be a rare event in 

older animals as only one animal was found dead in the cage at a later time point following the 

fourth postnatal week.  

To further confirm spontaneous seizure activity, first telemetric EEG recordings were 

performed in combination with simultaneous video recordings in an adult female Dravet mouse 

in comparison with a female wildtype mouse. During the one-week recording, a Dravet mouse 

exhibited multiple generalized tonic-clonic seizures often followed by running and bouncing. 

Assessment of the EEG recordings confirmed electrographic seizure activity with high 

amplitude spiking over 500 µV (Fig. 2D). In the wildtype mouse, we did not obtain evidence 

for electrographic seizure events.   

Additional recordings in a group of three-month-old Dravet mice confirmed a high penetrance 

of the epilepsy phenotype with multiple generalized tonic-clonic seizures in 19/22 mice. On 

average, mice experienced seven seizures per week (range: two to 16; data not shown). Seizures 

frequently occurred in clusters with animals often exhibiting seizures at only two subsequent 

days per week (range: one to four, data not shown). The average seizure duration was 50.19 s 

(data not shown).  

 

Phenotype: behavioral alterations  

In the open field paradigm, hyperlocomotion was evident in male and female Dravet mice. 

Throughout the 30 minutes test, the total distance moved and the rearing frequency reached 

significantly higher levels in Dravet mice as compared to wildtype animals (Fig. 3A-B). 

Moreover, immobility time proved to be shorter in Dravet mice (data not shown). Additionally, 
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thigmotaxis proved to be increased in Dravet mice with more time spent in the wall zone. Time 

spent in the other zones (middle and center) was not affected by the genotype (Fig. A.1C).  

 

 

Fig. 3. Open field test, saccharin preference and nest-building behavior. A Distance moved 

in open field test over 30 minutes, divided into mean intervals of 5 minutes. The total distance 

moved of Dravet mice significantly exceeded that of wildtype mice. B Rearing frequency. 

Dravet mice exhibited more frequent rearing positions than wildtype mice.  A-B Data are from 

22 animals with a Dravet genotype and 20 wildtype animals (Three-way RM ANOVA, 

Bonferroni post hoc; * p < 0.05, mean ± SEM). C-D Water or saccharin solution consumption 

per 24 hours. Both, Dravet mice and wildtype mice preferred saccharin solution over water, 

independent of a side preference. E Total saccharin solution consumption over both days. 

Dravet mice consumed significantly less saccharin solution as compared to wildtype mice. C-

E Data shown are from 21 animals with a Dravet genotype and 20 wildtype animals (Three-

way ANOVA, Bonferroni post hoc; * p < 0.05, mean ± SEM). F Nest complexity score over 7 

days. As shown in the graph, nests of Dravet mice (n=22) received lower scores as compared 

to those from wildtype mice (n=20) (Mann-Whitney non-parametric test; * p < 0.05, median). 
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Regardless of the genotype a preference of saccharin solution over water was observed. 

However, the amount of saccharin consumed by wildtype mice exceeded that in mice with the 

Dravet genotype. In line with this finding, the percentage of consumed saccharin solution 

proved to be reduced in Dravet mice (mean ± SD: Dravet mice 64.07 ± 8.64 %; wildtype mice 

70.38 ± 6.41 %) (Fig. 3E). 

Interestingly, when saccharin consumption was compared between the first and the second 

exposure, Dravet mice consumed similar amounts, while an increase in the consumption of 

saccharin solution became evident in wildtype mice (Fig. 3C-D). Findings proved to be 

comparable in male and female mice.  

Assessment of nest-building behavior as a non-essential activity, demonstrated a poorer 

performance in mice with a Dravet genotype (Fig. 3F). 

When analyzing social interaction following a period of social isolation with single-housing, 

all Dravet mice spent more time engaged in active and less time in passive social interaction, 

when compared to wildtype littermates (Fig. A.1A-B).  

In the elevated plus maze Dravet mice spent an increased time in aversive parts, i.e. the open 

arms of the maze (Fig. A.1D). In addition, a higher frequency of head dips, as well as a reduction 

in stretching behavior, was evident in all Dravet mice (Fig. A.1E-F). Sex differences were not 

observed. 

We applied the accelerated rotarod test to address disturbances in motor coordination. During 

the habituation, animals from both groups showed a “learning” curve with an improvement in 

the performance with subsequent trials. Thereby, it was evident that the improved performance 

was related to an increased focus of the animals on the task. When compared to wildtype mice, 

Dravet mice stayed longer on the rod. Also, females performed better than males in both, control 

and experimental group (Fig. A.1G-I).  

The Spearman correlation coefficients between selected parameters were calculated. Open field 

test variables including total distance moved showed a significant correlation (all p<0.001) with 
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social interaction (active r=0.69, passive r=-0.52), nest complexity score (r=-0.57), time spent 

in aversive parts (r=0.58), and number of head-dips in the elevated plus maze test (r=0.76).  

 

Proteomic profiling 

Proteomic profiling identified over 4000 different proteins in the mouse hippocampus samples. 

Comparison of protein abundance revealed significant alterations in the expression of 205 and 

881 proteins as a consequence of the Scn1a genetic deficiency in two- and four-week-old Dravet 

mice as compared to wildtype littermates, respectively (unpaired t-test, p<0.05, Fig. 4A). While 

the majority of these differentially expressed proteins were up-regulated at the early time point, 

more proteins proved to be down-regulated at the later time point (Fig. 4B). As a down-

regulation of proteins can be a general consequence of neuronal damage and cell loss, we 

checked the expression of the neuronal marker NeuN, which remained at control level at both 

time points (data not shown). Moreover, we confirmed that the heterozygous loss-of-function 

Scn1a mutation did not result in changes in NaV1.1 protein abundance regardless of the time 

point (data not shown). Although one would not necessarily expect changes in protein 

expression as a consequence of a missense mutation, this finding is of relevance for model 

characterization as, both, enhanced degradation of a non-functional protein as well as a 

compensatory up-regulation of expression would have been possible.  

A direct comparison of the datasets from both time points revealed an overlap of 67 

differentially expressed proteins (Fig. 4A). Most of the proteins maintained the direction of 

change. However, some proteins were down-regulated at the earlier time point, but later showed 

an overexpression and vice versa (Fig. 4C).  
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Fig. 4. Differentially expressed proteins in Dravet mice. A Overlap in differentially expressed 

proteins of two- and four-week-old Dravet mice illustrated by Venn diagram. B Total number 

of differentially expressed proteins in two- and four-week-old Dravet mice. C Heat map 

illustrating differential protein expression in in two- and four-week-old Dravet mice.  

 

While a more pronounced proteome alteration was evident at the late time point, the functional 

annotation of differentially expressed proteins from both time points revealed some similarities 

in the qualitative pattern of protein regulation with a comparable distribution of regulated 

proteins to different functional groups (Fig. 5A).  

The majority of regulated proteins were classified as nucleic acid binders, enzyme modulators 

and transferases at the earlier time point, and enzyme modulators, hydrolases and transferases 

at the later time point. Regarding the molecular function of dysregulated proteins, again a more 
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pronounced protein regulation was evident at the later time point (Fig. 5B). Proteins associated 

with catalytic activity and binding exhibited the strongest regulation at both time points.  

 

Fig.  5. Classification of differently expressed proteins. Functional (A) and molecular (B) 

annotation of differentially expressed proteins in two- and four-week-old Dravet mice.  

 

Differential Protein Expression – early time point 

Proteomic profiling in Dravet mice prior to the occurrence of first spontaneous seizures and 

epilepsy manifestation can provide information about the process of epileptogenesis as a direct 

consequence of Scn1a genetic deficiency. As mentioned above, a pathway enrichment analysis 

was completed to obtain general information about the regulation pattern concerning function 

and neurobiological significance. Pathway enrichment analysis did not identify any 

significantly regulated pathway (q<0.01).  

When considering significantly regulated individual proteins in Dravet mice (unpaired t-test, 

p<0.05), the most prominent down-regulation became evident for Ras-specific guanine 

nucleotide releasing factor 1 (RASGRF1). RASGRF1 is a member of the Ras GTP protein 

family, which plays a role in synaptic plasticity (Brambilla et al., 1997). RASGRF1 is 

associated with NMDA receptors (Krapivinsky et al., 2003), and its regulation or dysfunction 
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has been discussed in the context of epileptogenesis and epilepsy manifestation (Chen et al., 

2018; Tonini et al., 2001; Vlaskamp et al., 2019). 

Taking the more modest regulation of the majority of significantly regulated proteins into 

account, we only want to highlight a selection of the remaining list of significantly regulated 

proteins. These proteins have been chosen considering their putative functional relevance and 

a minimum change of at least 15 % compared to expression rates in wildtype mice (Fig. 6A).  

CAMK2A encodes the alpha subunit of calcium/calmodulin-dependent protein kinase and 

represents a key player in synaptic plasticity (Lisman et al., 2002). Two-week-old mice 

exhibited a reduced expression rate that proved to persist at the four-week time point. 

Additionally, Dravet mice showed an up-regulation of VEGF receptor KDR (VEGFR2), linked 

with tight junction disassembly and blood-brain barrier dysfunction, which in turn can 

contribute to epileptogenesis (Morin-Brureau et al., 2012).  

Cytidine triphosphate synthetase 2 (CTPS2) is a protein mediating CTP synthesis from UTP a 

process that is linked with glutamine deamination to glutamate (Kassel et al., 2010). In two-

week-old Dravet mice, we obtained evidence for an increased expression level of CTPS2.  

 

Differential Protein Expression – later time point 

Proteomic profiling following epilepsy manifestation capturing direct and indirect 

consequences of Scn1a deficiency in Dravet mice revealed 881 regulated proteins (unpaired t-

test, p<0.05) and 42 regulated pathways (q<0.01, Table 1). A heat map, which illustrates the 

level of individual protein change in relation to the mean of the wildtype group is presented in 

Fig. 6B.   

Pathways functionally linked to synaptic transmission dominated the list of significantly 

enriched pathways, in total comprising five pathways associated with general synaptic function 

and its regulation (Neurotransmitter receptors and postsynaptic signal transmission; 

Transmission across Chemical Synapses; Protein-protein interactions at synapses; Synaptic 
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adhesion-like molecules and Neurexins and neuroligins with corresponding q-values 4.14e-05; 

4.14e-05; 2.33e-04; 0.002; 0.006). The list of differentially expressed proteins linked with these 

pathways comprised 68 proteins. Several of these proteins proved to be down-regulated as a 

consequence of the genetic deficiency. These include synaptic adhesion-like molecules such as 

neurexins and neuroligins (Fig. 6B: NLGN2, NLGN3), which mediate trans-synaptic signaling 

and facilitate processing of complex signals in neuronal networks (Südhof, 2008), as well as 

postsynaptic density (PSD) proteins including proteins of the membrane-associated guanylate 

kinase protein family (Fig. 6B-a), and scaffolding proteins (Fig. 6B-b). Moreover, these 

pathways included proteins associated with synaptic vesicles (Fig. 6B-c).  

Proteins linked with ion channel function showed a complex regulation pattern in Dravet mice. 

Thereby, the abundance of voltage-gated calcium channels (Fig. 6B-d), voltage-gated 

potassium channels (Fig. 6B-e) and two inward-rectifier potassium channels (Fig. 6B-f) was 

reduced in Dravet mice. Another inward-rectifier potassium channel (Fig. 6B: KCNJ10) was 

up-regulated in Dravet mice.      

Interestingly, several neurotransmitter receptor proteins exhibited a differential expression 

pattern in Dravet mice. The list of these proteins was dominated by glutamatergic receptor 

proteins (Fig. 6B-g), which all proved to be expressed at lower levels in Dravet mice. In 

addition, a change in expression of three GABAA receptor subunits (Fig. 6B-h) and of two 

GABAB receptor subunits (Fig. 6B-i) became evident with an induction of GABRA1 and 

GABBR1, and a down-regulation of GABRB1, GABRB3 and GABBR2. 

In the context of neurotransmitter signaling, it is of additional interest that four pathways 

involved in glutamatergic signaling, specifically AMPA and NMDA receptor activation, 

binding, and synapses were regulated in Dravet mice (Glutamatergic synapse; Unblocking of 

NMDA receptor, glutamate binding and activation; Trafficking of AMPA receptors; Glutamate 

binding, activation of AMPA receptors and synaptic plasticity with q-values 1.4e-04; 0.001; 

0.002; 0.002, respectively). Thereby, Dravet mice exhibited a reduced expression of iono- and 
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metabotropic glutamate receptors, glutamate transporters (Fig. 6B: EAAT1, EAAT2), and 

glutamine synthetase (Fig 6B: GLUL).  
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Fig. 6. Expression analysis of proteins significantly regulated in Dravet mice before and 

following epilepsy manifestation. A Expression analysis of proteins significantly regulated in 

Dravet mice prior to epilepsy manifestation, with a minimum change of at least 15 % compared 

to expression rates in wildtype mice. R package ‘gplots’ was used for heat maps and the 

respective color key is provided next to the heat map. B Expression analysis of proteins linked 

to all significantly enriched pathways in Dravet mice following epilepsy manifestation. R 

package ‘gplots’ was used for heat maps. The heat map illustrates the fold change in protein 

level in relation to the mean of the wildtype group and the respective color key is given under 

the heat map. a PSD membrane-associated guanylate kinase protein family, b PSD scaffolding 

proteins, c proteins associated with synaptic vesicles, d voltage-gated calcium channel proteins, 

e voltage-gated potassium channel proteins, f inward-rectifier potassium channel proteins, g 

glutamatergic receptor proteins, h GABAA receptor subunits, i GABAB receptor subunits, j 

proteins functionally associated with dopaminergic (DAergic) synapse function, k calcium 

transporter proteins, l calcium/calmodulin-dependent protein kinases. (Blue cell color indicates 

an up-regulation, while red cell color stands for a down-regulation). 

 

Pathway enrichment analysis also revealed an overrepresentation of proteins functionally 

associated with dopaminergic synapse function (q=0.002, Fig. 6B-j). The changes in the 

pathway were dominated by alterations in the expression of proteins regulating dopamine 

metabolism or stabilizing D2 and D3 receptors on plasma membranes with MAOA being up-

regulated and MAOB, EPB41L1, EPB41L3 being down-regulated. In four-week-old Dravet 

mice, reduced expression levels were also evident for GNG7, the G protein responsible for A2A 

adenosine or D1 dopamine receptor-induced neuroprotective responses (Schwindinger et al., 

2012). Another protein, which plays a role in synaptic plasticity and can be modulated by both, 

dopaminergic D1 and glutamatergic NMDA receptors is the neuronal phosphoprotein 

PPP1R1B. Our data set revealed an overexpression in the hippocampus of four-week-old 

Dravet mice, which was further confirmed by immunohistochemistry. All Dravet animals 

demonstrated a marked hippocampal overexpression, particularly evident in CA1 stratum 

pyramidale neurons (Fig. 7A-B). 

In four-week-old mice, pathway enrichment analysis also demonstrated an over-representation 

of proteins functionally linked to calcium signaling (q=1.4e-04). Individual protein changes 

pointed to a down-regulation of calcium channel proteins and calcium transporters (Fig. 6B-k). 
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Calcium/calmodulin-dependent protein kinases (Fig. 6B-l) proved to be reduced in Dravet 

mice.  

The list of regulated pathways also included a pathway involved in secondary cell signaling 

(Phosphatidylinositol signaling pathway, q=0.008). Moreover, an over-representation of 

proteins linked with the nitric oxide (NO) signaling pathway (q=0.005) became evident. In this 

context, the increased level of nitric oxide synthase, the main enzyme responsible for NO 

synthesis from L-arginine (Knowles et al., 1994), seems to be of interest. 

In addition to pathway enrichment analysis, we also identified the proteins with the most 

prominent regulation pattern. The strongest up-regulation was evident for the intermediate 

filament proteins glial fibrillary acidic protein (GFAP) and vimentin. The expression of both 

proteins was elevated by at least two-fold in Dravet mice.  

The proteins with the strongest down-regulation were TRIM32 and HSD11B1. Proteomic 

profiling pointed to a reduction in HSD11B1 expression in Dravet mice, with a two times lower 

abundance than in wildtype mice. This finding was further confirmed by 

immunohistochemistry. An apparent down-regulation of the protein was evident in the 

hippocampus with the most obvious reduction in the hilus (Fig. 7C-D).  

 

Comparison with published data from models of acquired epilepsy 

Previously, we have completed a proteomic profiling study in an electrical post-status 

epilepticus (SE) rat model (Bauer et al., 2016; Keck et al., 2017; Keck et al., 2018; Walker et 

al., 2016). In that study, we analyzed the course of proteome alterations during epileptogenesis 

focusing on the early post-insult (2 days post SE), latency (10 days post SE) and chronic phase 

(8 weeks post SE).  

In order to compare molecular alterations in a model of acquired and a model of genetic 

epilepsy, we have directly compared the respective time points before and following epilepsy 

manifestation. The overlap between the lists of differentially expressed proteins in two-week-
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old Dravet mice and in the post-SE latency phase comprised 25 proteins, of which 19 showed 

the same direction of change (Fig. 7E). In general, these nine up- and ten down-regulated 

proteins exhibited a more pronounced regulation in the model of acquired epilepsy. This pattern 

was particularly evident for SHANK3 protein, a scaffold protein of the PSD, and CKAP4, a 

cytoskeleton-associated protein and cell proliferation promoter.  

Fig. 7. Immunohistochemical staining of representative proteins and comparison with 

electrical post SE induced rat model. A-B Representative immunohistochemical staining of 

PPP1R1B protein in the hippocampus (low magnification, A) and hippocampal CA1 region 

(high magnification, B). A pronounced protein immunostaining was particularly evident in the 

CA1 region in Dravet mice. C-D Immunohistochemical staining of HSD11B1 protein in the 

hippocampus (low magnification, C) and hippocampal hilar region (higher magnification, D). 

Protein immunoreactivity was reduced in Dravet mice, which was particularly evident in the 

hilus. Scale bars = 200 µm (A, C, D) and 50 µm (B). E Proteins significantly regulated before 

epilepsy manifestation in two-week-old Dravet mice and 10 days following SE induction in the 

kainate post-SE model. F Proteins significantly regulated during the chronic phase with 

spontaneous generalized seizures, corresponding to four-week-old Dravet mice and 8 weeks 

following the SE induction in the kainate post-SE model. GFAP and ANXA2 were the two most 

up-regulated proteins in both animal models. 



MANUSCRIPTS 

78 
 

Comparison of data sets obtained following epilepsy manifestation confirmed a regulation of 

28 proteins in both epilepsy models. Twenty of these proteins showed the same direction of 

change. A general trend for a stronger regulation in one of models was not evident at this time 

point. Interestingly, two proteins showed a strong induction in both epilepsy models: GFAP, 

known as a marker of mature astrocytes, and ANXA2, a pro-angiogenic protein (Fig. 7F).   

Considering that species differences may affect the comparison between these data sets, we 

additionally compared our present data from the mouse Dravet model with published proteomic 

data from a mouse model of mesiotemporal lobe epilepsy reported by Bitsika et al. (Table 2). 

Comparison of data sets prior to epilepsy manifestation, i.e. from the early time point in the 

Dravet model and from 3 days following kainate-induced SE, revealed an overlap of four 

proteins with down-regulation in both epilepsy models. Three of these proteins are functionally 

linked with synaptic transmission. These comprise one presynaptic (PCLO) and two 

postsynaptic proteins (SHANK3, BAIAP2). The fourth protein that proved to be regulated in 

both models is SIPA1L1, involved in regulation of cell processes (Gao et al., 1999). 

Following epilepsy manifestation, an interesting overlap has been observed between four-week-

old Dravet mice and mice 30 days after the kainic acid injection. This overlap between the lists 

of differentially expressed proteins comprised 44 proteins with 23 up-regulated and 21 down-

regulated in both, genetic and acquired epilepsy. Protein regulation was more prominent in the 

acquired epilepsy model (data not shown). Among others, the list of co-regulated proteins 

included cytoskeletal proteins (ARPC1A; DBN1; MAP1A; ADD2; MYO6, PLEC; EZR; 

CTTNBP2) as well as proteins linked with angiogenesis (ANXA4; VIM; ITGAV) and synaptic 

plasticity (SYNGAP1; DLG4; BAIAP2; PPP3CA; PPP3CB; PRKCG; RPH3A; SLC6A1).  
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Discussion 

Large-scale proteomic analysis in a novel conditional mouse model of Dravet syndrome with 

Scn1a genetic deficiency provided comprehensive information about molecular alterations 

characterizing different disease phases. Respective information about the proteomic signature 

of the Dravet syndrome suggests possible pathophysiological mechanisms that beyond the 

Scn1a haploinsufficiency may be involved in epileptogenesis and ictogenesis in Dravet mice.  

As a basis for the proteomic analysis, we initially aimed to validate the novel conditional knock-

in mouse model of Dravet syndrome with a heterozygous Scn1a-A1783V mutation. A model 

with this mutation has previously been generated on a pure C57BL/6J background (Ricobaraza 

et al., 2019) and a mixed (90:10) C57BL/6J and 129S1 background (Kuo et al., 2019) resulting 

in a more severe phenotype and higher mortality rate. Here, we characterized the model bred 

on a mixed (50:50) C57BL/6J and 129S1 background with an Hprt promoter mediated neuronal 

knock-in. We confirmed the development of spontaneous seizures and an increased 

susceptibility for hyperthermia-induced seizures, and demonstrated a mortality rate of 40 %. 

Besides the seizure phenotype, we also observed behavioral alterations dominated by 

hyperactivity, which seem to reflect hyperactivity and attention deficits as common behavioral 

symptoms in patients with Dravet syndrome (Battaglia et al., 2016; Besag, 2004; Dravet, 2011).  

When compared to other animal models of Dravet syndrome with heterozygous Scn1a 

mutation, our model showed a similar age for onset of spontaneous seizures, increased 

susceptibility to thermally provoked seizures and notable hyperactivity. The SUDEP rates were 

relatively low as compared to other models occurring within a short time frame (Table A.2). 

With the approaches used in this study, we failed to detect motor and social deficits in Dravet 

mice, which have been reported in selected mouse models (Table A.2). However, an improved 

performance on accelerated rotarod test was also found in another mouse model (Ito et al., 

2013), suggesting the test itself may not be appropriate to assess the Dravet-associated 
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alterations in motor function and coordination. In this context, it is of interest that we confirmed 

alterations in gait in a follow-up study based on a catwalk test and a detailed assessment of gait 

(Miljanovic et al., under revision).   

To our knowledge, we were the first ones to report anhedonia-associated behavior in a Dravet 

mouse model indicating that SCN1A deficiency may have an impact on the affective state and 

may predispose to depression.   

Information about body weight development has not been provided for all Dravet mouse 

models, so that it is not clear for several models whether there was no delay or whether body 

weight development was not assessed and documented. So, an impact of the genetic deficiency 

on body weight development has only been reported in selected Dravet mouse models with 

heterozygous (Ricobaraza et al., 2019) and homozygous mutation (Martin et al., 2010; Ogiwara 

et al., 2007). In line with these reports, we observed a transient delay in body weight around 

weaning with animals catching up within five (females) or 20 (males) days following weaning. 

Taken together, our comprehensive characterization demonstrated an excellent face validity of 

the Dravet model, thus providing a perfect basis for investigating molecular patterns involved 

in disease manifestation and its further development.  

 

GABAergic, glutamatergic, and dopaminergic neurotransmission 

Loss of function of sodium channel subunits encoded by the SCN1A gene in GABAergic 

interneurons is considered as the main source of hyperexcitability and ictogenesis in Dravet 

patients (Brunklaus and Zuberi, 2014; Catterall, 2018) and animals carrying a respective 

mutation (Almog et al., 2019; Kalume et al., 2015a; Mantegazza and Broccoli, 2019; Mistry et 

al., 2014; Rubinstein et al., 2015b; Salgueiro-Pereira et al., 2019; Tai et al., 2014; Tsai et al., 

2015; Yu et al., 2006). However, an impact of cellular consequences in excitatory neurons on 

seizure susceptibility has also been suggested based on experimental findings. For instance, 

hyperexcitability of dissociated hippocampal pyramidal neurons (Mistry et al., 2014) and 
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granule cells in dentate gyrus (Tsai et al., 2015) in the period of chronic epilepsy, may promote 

life-threatening seizures, known to worsen mice phenotype (Dutton et al., 2017; Salgueiro-

Pereira et al., 2019). On the other hand, Ogiwara and colleagues demonstrated that Scn1a 

haploinsufficiency in hippocampal excitatory neurons, can ameliorate seizures in Dravet mice 

(Ogiwara et al., 2013). Interestingly, Almog and colleagues showed how hyperexcitability of 

CA1 pyramidal neurons during the pre-epileptic state can switch to hypoexcitability during the 

epileptic state in Dravet mice, suggesting the role of these neurons in seizure propagation 

(Almog et al., 2019).  

Altogether, these data already suggest that, both, inhibitory and excitatory neurotransmission 

may be directly and indirectly affected by NaV1.1 dysfunction. Interestingly, the proteomic data 

suggest differential expression of multiple proteins linked with inhibitory and excitatory 

neurotransmission in Scn1a+/− mice.  

With changes in the abundance of various GABAA and GABAB receptor subunits, our findings 

indicate that signaling via both GABA receptor systems can be altered as a consequence of an 

Scn1a genetic deficiency with potential consequences for phasic and tonic inhibition.  Thereby 

it needs to be considered that, both, an up- and a down-regulation was observed for the different 

receptor subunits.  

Concerning glutamatergic signaling, proteomic patterns in Dravet mice revealed a 

comprehensive down-regulation of subunits of NMDA, AMPA, and kainate glutamate 

receptors. In this context, it is of additional interest that several proteins linked with NMDA 

receptor function in the post-synaptic density showed a decreased abundance in Dravet mice. 

In addition, SYNGAP1, a post-synaptic density protein that negatively modulates trafficking 

of AMPA receptors to the membrane (Jeyabalan and Clement, 2016), also exhibited a 

dysregulation in the hippocampus as a consequence of the Scn1a deficiency.  

Concerning the expression patterns of metabotropic glutamate receptor proteins, one needs to 

take into account that some of these receptors serve as a negative feedback function, with a 
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limitation of excessive glutamate secretion (Dedeurwaerdere et al., 2015). Along this line, 

reduced expression of the class two metabotropic glutamate receptor proteins mGluR2 and 

mGluR3 in Dravet mice might be of functional interest.  

In addition to alterations in receptor proteins and PSD proteins, the lowered abundance of 

glutamine synthase and higher abundance of CTPS2, which contributes to deamination of 

glutamine to glutamate (Kassel et al., 2010), may imply that changes occur in glutamate 

metabolism.  

Taken together our proteomic data set suggests that complex alterations occur affecting GABA 

and glutamatergic signaling. The direction of the alterations seems to suggest that some of these 

changes may contribute to hyperexcitability, whereas others may rather reflect compensatory 

mechanisms. Further research is necessary to explore the potential functional consequences.  

Depending on the receptor subtype, dopaminergic signaling can affect seizure thresholds (Bozzi 

and Borrelli, 2013). Altered abundance of the dopamine metabolizing enzymes MAOA and 

MAOB, of a downstream effector protein of D1 receptors (Bozzi and Borrelli, 2013; O'Sullivan 

et al., 2008), and of proteins stabilizing D2 and D3 receptors, suggests that it may also be of 

interest to assess dopamine concentrations in the brain of Dravet mice.  

 

Voltage-gated ion channels 

Voltage-gated ion channels affect neuronal excitability in different subcellular localizations 

therefore serving as important target sites for different antiseizure drugs (Sills and Rogawski, 

2020).  

At the presynaptic level, P/Q- and N-type calcium channels represent important regulators of 

neurotransmitter release (Kassel et al., 2010). Thus, the extensive down-regulation of voltage-

gated calcium channel subunits may constitute a compensatory mechanism counteracting 

increased neuronal excitability characterizing the Dravet syndrome. In this context, it is of 

additional interest that various calcium/calmodulin-dependent protein kinases (CaMK) 
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subtypes proved to be reduced in hippocampal tissue from Dravet mice. CaMK are important 

regulators, which translate intracellular calcium concentrations into phosphorylation patterns 

with functional consequences for the targeted proteins (Swulius and Waxham, 2008).  

Several potassium channels regulate outward potassium currents, thereby affecting membrane 

polarization and neuronal excitability (Villa and Combi, 2016). Proteomic data revealed a 

reduction of three potassium channel subunits (Kv1.2, Kv2.1 and Kv4.2), that attenuate back-

propagating action potentials and prevent highly repetitive neuronal firing as one of the 

pathophysiological hallmarks of epileptic seizures (Niday and Tzingounis, 2018).  

In summary, various changes in voltage-gated ion channel proteins occur in the Dravet mouse 

model. The reduction of calcium channel subunits and of potassium channel subunits may have 

contrasting consequences, which, however, need to be further assessed in follow-up 

investigations.  

While previous studies also suggested alterations in sodium channel subunits with an up-

regulation of NaV1.3 in hippocampal interneurons in a different Dravet mouse model (Yu et al., 

2006), our data did not detect this protein in the Scn1a-A1783V mouse model.  

 

Astrogliosis, angiogenesis and NO signaling 

Reactive astrogliosis can promote hyperexcitability, affect inflammatory signaling, and disrupt 

integrity of the blood–brain barrier (Devinsky et al., 2013). Increased GFAP abundance 

provides evidence for astrogliosis in the Scn1a-A1783V mouse model. This finding is in line 

with previous reports describing astrogliosis in other mouse models of Dravet syndrome 

(Alonso Gómez et al., 2018; Hawkins et al., 2019).  Alterations in the astrocytic functional state 

are further supported by evidence for a reduction of astroglial excitatory amino acid transporters 

(EAAT1 and EAAT2) and for an overexpression of the inward rectifying potassium channel 

Kir4.1 (KCNJ10). These findings may imply contrasting functional consequences, which, 

however, need to be confirmed by further investigations. 
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Following seizure onset, we observed an additional regulation of ANXA2 and vimentin, which 

both act as modulators of VEGF signaling and angiogenesis (Dave and Bayless, 2014; Liu and 

Hajjar, 2016), previously discussed as a pro-epileptogenic factor and as a potential target for 

antiepileptogenesis (Morin-Brureau et al., 2012; Rigau et al., 2007).  

Proteomic profiling also revealed a dysregulation of nitric oxide (NO) signaling in Dravet mice 

with an increased expression of neuronal nitric oxide synthase (nNOS) following onset of 

spontaneous recurrent seizures. Considering that NO can induce reactive glial proliferation and 

promote angiogenesis (Arhan et al., 2011; Morbidelli et al., 2004), it is discussed that it might 

play a role during epileptogenesis and for hyperexcitability in the epileptic brain. 

  

Proteomic alterations before epilepsy manifestation 

While rather limited alterations were evident before epilepsy manifestation, these changes may 

be of interest as they might provide information about molecular mechanisms that occur as an 

early consequence of the SCN1A genetic deficiency and that may contribute to disease onset. 

In this context, the down-regulation of RASGRF1 might be of functional relevance considering 

the fact that a contribution of RASGRF1 to epileptogenesis has been suggested based on a study 

with genetic and pharmacological targeting (Bao et al., 2018). Thus, it might be of interest to 

further explore a potential contribution of early RASGRF1 down-regulation to disease 

manifestation and seizure onset in Dravet mice.  

 

Shared and common pathophysiological mechanisms: Dravet model versus models of acquired 

epilepsy  

The molecular perspective taken in the present study revealed, both, differences to and 

commonalities with mechanisms reported for acquired epilepsies following an initial brain 

insult. Our proteomic data set provides evidence that astrogliosis, enhanced angiogenesis and 

NO signaling might be mechanisms that do not only characterize pathophysiology of acquired 
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epilepsy, but may also contribute to hyperexcitability states in Dravet syndrome. However, the 

findings rather argue against a relevant induction of pro-inflammatory signaling pathways, 

which characterizes epileptogenesis and disease manifestation of acquired epilepsies (Fabene 

et al., 2010; Klein et al., 2018; Terrone et al., 2017; Vezzani, 2014). 

The Scn1a deficiency in the Scn1a-A1783V mouse model triggers complex alterations, which 

may affect GABAergic, glutamatergic and dopaminergic signaling at multiple levels including 

synaptogenesis, synaptic vesicle trafficking, neurotransmitter release, receptor subunit 

expression and composition, and post-synaptic density modulation of receptor function. 

Synaptic plasticity and more specifically plasticity of GABAergic and glutamatergic 

mechanisms has been repeatedly described in different models of acquired epilepsy and in the 

brain of patients with temporal lobe epilepsy (Joshi and Kapur, 2012; Klein et al., 2018; 

Scharfman and Brooks-Kayal, 2014).  

 

Study limitations 

Considering the whole proteome approach applied to hippocampal samples and the 

characteristics of the mouse model, one also needs to take respective limitations into account.   

Firstly, disease manifestation occurs early on in Dravet mice resulting in a delayed postnatal 

bodyweight development, which in itself may also impact molecular alterations in the brain.  

Moreover, considering that untargeted proteomic studies are limited to screening proteins in the 

entire sample, further studies investigating the expression patterns in different hippocampal 

sub-regions and cell types along with studies addressing the functional consequences are needed 

to provide more specific information allowing conclusion about the functional relevance of the 

findings. The present findings provide a perfect basis to design respective studies applying 

targeted proteomic approaches. Finally, one needs to consider that bulk approaches imply the 

risk to miss relevant changes in a selected cell population due to a dilution effect.  
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As a matter of course interpretation needs to take into account that molecular alterations can be 

a mere consequence of repeated seizure activity or disease-associated alterations without 

functional implications. Thus, as repeatedly pointed out, it is of utmost relevance to further 

assess functional implications in future studies.  

 

Conclusions 

In conclusion, the whole proteome analysis in a mouse model of Dravet syndrome demonstrated 

complex molecular alterations in the hippocampus as a consequence of the genetic deficiency.  

Some of these alterations may have an impact on excitability or may serve as a compensatory 

function, which, however, needs to be further confirmed by future investigations.  

The findings provide evidence that genetic epilepsy due to Scn1a haploinsufficiency may share 

pathophysiological mechanisms with acquired epilepsies developing following brain insults. 

Moreover, the proteomic data indicate that due to molecular consequences of the genetic 

deficiency the pathophysiological mechanisms become more complex during the course of the 

disease, and that the management of Dravet syndrome may need to consider further molecular 

and cellular alterations. Along this line, based on functional follow-up studies the data sets may 

provide valuable guidance for future development of novel therapeutic approaches.  
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Tables 

 

Table 1. Overrepresented pathways in four-week-old mice (q<0.01, ConsensusPathDB) 

p-value q-value Pathway Source Overlap members 

0.000 0.000 Neuronal System Reactome 

SLC6A1; CACNG8; PDLIM5; GLUA2; GLUA3; 

GLUA1GLUA1; GLUA4; CACNA1E; CAMKK1; 

GLUL; KCND2; CACNA2D3; GABBR1; 

GABBR2; CACNB4; KCNA2; AP2B1; GNAI1; 

DLGAP2; DLG3; DLG2; GNAI3; PPFIA3; 

GABRA1; CACNB3; CACNA1A; CAMK4; 

NTRK3; AP2M1; ADCY9; DLGAP1; GRIK2; 

DLGAP4; SIPA1L1; MGLUR5; GLUN1; 

HOMER2; RIMS1; EPB41L1; PLCB1; EPB41L3; 

KCNJ10; NLGN2; NLGN3; NPTN; PRKCA; 

PRKCB; CAMK2A; CAMK2B; KCNAB2; 

PRKCG; AP2A2; GABRB1; GABRB3; SHANK3; 

SHANK2; SHANK1; DLG4; KCNJ3; ACTN2; 

PTPRS; RASGRF2; SYT1; KCNJ9; MYO6; 

ALDH2; SYT7; GLUN2B; GNG7; MAOA; 

GLUN2A; FLOT1; FLOT2; NEFL; PDPK1; 

SYN3; EAAT2; EAAT1 

0.000 0.000 

Neurotransmitter 

receptors and 

postsynaptic signal 

transmission 

Reactome 

GLUA2; GLUA3; GLUA1; GLUA4; ADCY9; 

GABBR1; GABBR2; GABRA1; AP2B1; GNAI1; 

CACNG8; DLG3; NPTN; DLG4; NEFL; CAMK4; 

GNAI3; AP2M1; GLUN1; EPB41L1; PLCB1; 

KCNJ10; PRKCA; PRKCB; CAMK2A; 

CAMK2B; PRKCG; AP2A2; GABRB1; 

GABRB3; KCNJ3; ACTN2; RASGRF2; KCNJ9; 

MYO6; GLUN2B; GNG7; CAMKK1; GLUN2A; 

PDPK1; GRIK2 

0.000 0.000 

Transmission across 

Chemical Synapses 

Reactome 

SLC6A1; GLUA2; GLUA3; GLUA1GLUA1; 

GLUA4; ADCY9; CAMKK1; GLUL; 

CACNA2D3; GABBR1; GNAI3; GABRA1; 
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AP2B1; GNAI1; CACNG8; DLG3; NPTN; DLG4; 

CACNB3; CACNA1A; CACNA1E; CAMK4; 

CACNB4; AP2M1; GRIK2; GLUN1; RIMS1; 

EPB41L1; PLCB1; KCNJ10; PRKCA; PRKCB; 

CAMK2A; CAMK2B; PRKCG; GABBR2; 

AP2A2; GABRB1; GABRB3; PPFIA3; KCNJ3; 

ACTN2; RASGRF2; SYT1; KCNJ9; MYO6; 

ALDH2; GLUN2B; GNG7; MAOA; GLUN2A; 

NEFL; PDPK1; SYN3; EAAT2; EAAT1 

0.000 0.000 

Amphetamine addiction - 

Homo sapiens (human) 

KEGG 

GLUN2B; PPP1R1B; PPP1CA; PRKCA; GLUA3; 

GLUA1; CAMK4; CAMK2B; CAMK2A; 

GLUA2; MAOB; MAOA; ARC; GLUA4; 

PRKCB; GLUN2A; PPP3CA; PPP3CB; GLUN1; 

PRKCG 

0.000 0.000 

Calcium signaling 

pathway - Homo sapiens 

(human) 

KEGG 

CAMK1D; ATP2A2; NOS1; PRKCG; CACNA1E; 

PTK2B; VDAC1; ATP2A1; ATP2B2; CACNA1A; 

PDE1A; RYR2; CAMK4; ITPKA; MGLUR5; 

GLUN1; SLC8A2; PLCB1; PRKCA; PRKCB; 

CAMK2A; CHRM1; CAMK2B; ATP2B1; ITPR1; 

MCU; GNAQ; ADCY9; GLUN2A; GNA11; 

PPP3CA; PPP3CB 

0.000 0.000 

Glutamatergic synapse - 

Homo sapiens (human) 

KEGG 

GLUA2; GLUA3; GLUA1; GLUA4; GLUL; 

GNAI3; GNAI1; DLG4; CACNA1A; DLGAP1; 

MGLUR5; GLUN1; HOMER2; MGLUR2; 

MGLUR3; PLCB1; PRKCA; PRKCB; PRKCG; 

ITPR1; SHANK3; SHANK2; SHANK1; KCNJ3; 

GNAQ; GRIK2; ADCY9; GLUN2B; GNG7; 

GLUN2A; PPP3CA; PPP3CB; EAAT2; EAAT1 

0.000 0.000 

Protein-protein 

interactions at synapses 

Reactome 

GLUA3; GLUA1; GLUA4; DLG3; DLG2; 

PPFIA3; NTRK3; DLGAP2; DLGAP1; DLGAP4; 

SIPA1L1; MGLUR5; GLUN1; HOMER2; 

EPB41L1; PDLIM5; EPB41L3; NLGN2; NLGN3; 

SHANK3; SHANK2; SHANK1; DLG4; PTPRS; 
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SYT1; SYT7; GLUN2B; GLUN2A; FLOT1; 

FLOT2 

0.000 0.001 

Unblocking of NMDA 

receptor. glutamate 

binding and activation 

Reactome 

ACTN2; DLG4; GLUA2; GLUA3; GLUA1; 

CAMK2A; GLUA4; GLUN2B; GLUN2A; 

CAMK2B; NEFL; GLUN1 

0.000 0.002 

Dopaminergic synapse - 

Homo sapiens (human) 

KEGG 

GLUA2; GLUA3; GLUA1; GLUA4; AKT3; 

MAPK10; GNAI3; GNAI1; PPP1R1B; MAOB; 

CACNA1A; MAPK8; PLCB1; PRKCA; PRKCB; 

PPP2R2A; CAMK2A; CAMK2B; PRKCG; 

PPP3CA; ITPR1; KCNJ3; GNAQ; PPP1CA; 

KCNJ9; GSK3A; GLUN2B; GNG7; MAOA; 

GLUN2A; PPP2R5E; PPP3CB; PPP2R5C 

0.000 0.002 

Trafficking of AMPA 

receptors 

Reactome 

EPB41L1; CACNG8; PRKCB; DLG4; PRKCA; 

GLUA3; GLUA1; CAMK2B; CAMK2A; PRKCG; 

MYO6; AP2M1; GLUA2; GLUA4; AP2A2; 

AP2B1 

0.000 0.002 

Glutamate binding. 

activation of AMPA 

receptors and synaptic 

plasticity 

Reactome 

EPB41L1; CACNG8; PRKCB; DLG4; PRKCA; 

GLUA3; GLUA1; CAMK2B; CAMK2A; PRKCG; 

MYO6; AP2M1; GLUA2; GLUA4; AP2A2; 

AP2B1 

0.000 0.002 

Synaptic adhesion-like 

molecules 

Reactome 

DLG3; PTPRS; DLG4; GLUA3; GLUA1; 

GLUA4; GLUN2B; GLUN2A; FLOT1; FLOT2; 

GLUN1 

0.000 0.003 

Neuroactive ligand-

receptor interaction - 

Homo sapiens (human) 

KEGG 

GLUA2; GLUA3; GRIK2; GLUA1; S1PR5; 

GLUN2B; GLUN2A; GLUA4; CHRM1; 

GABBR1; MGLUR5; GABRB1; GABBR2; 

GABRB3; GABRA1; GLUN1; MGLUR2; 

MGLUR3 

0.000 0.003 

Amyotrophic lateral 

sclerosis (ALS) - Homo 

sapiens (human) 

KEGG 

GPX1; TOMM40L; RAC1; NEFM; NEFL; 

GLUA1; NEFH; GLUN2B; GLUA2; NOS1; 

GLUN2A; MAP2K6; PPP3CA; PPP3CB; GLUN1; 

EAAT2 
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0.000 0.005 

nitric oxide signaling 

pathway 

BioCarta 

NOS1; DLG4; PRKCA; PRKCB; CAMK2B; 

GLUN2B; GLUN2A; PRKAR1A; PPP3CA; 

PPP3CB; GLUN1 

0.000 0.006 

Neurexins and 

neuroligins 

Reactome 

DLG3; DLG2; DLG4; DLGAP2; DLGAP1; 

DLGAP4; SIPA1L1; MGLUR5; GLUN1; 

HOMER2; EPB41L1; PDLIM5; EPB41L3; 

NLGN2; NLGN3; SHANK3; SHANK2; 

SHANK1; SYT1; SYT7; GLUN2B; GLUN2A 

0.000 0.008 

Cocaine addiction - 

Homo sapiens (human) 

KEGG 

PPP1R1B; DLG4; GLUA2; GLUN2B; MAOB; 

MAOA; GLUN2A; GLUN1; MGLUR3; GNAI3; 

MGLUR2; GNAI1 

0.000 0.008 

Fmlp induced chemokine 

gene expression in hmc-1 

cells 

BioCarta 

PLCB1; RAC1; PRKCA; PRKCB; MAP2K1; 

CAMK2B; MAP2K2; CAMKK2; CAMKK1; 

MAP2K6; PPP3CA; PPP3CB 

0.000 0.008 

Phosphatidylinositol 

signaling system - Homo 

sapiens (human) 

KEGG 

OCRL; PLCB1; PRKCB; PI4KA; INPPL1; 

PRKCA; CDS1; CDS2; DGKQ; PIK3CD; 

SACM1L; INPP4A; ITPKA; IMPA1; PRKCG; 

DGKE; PI4K2A; ITPR1; INPP5J; PIP4K2C; 

CDIPT 
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Table 2. An overlap in differentially expressed proteins with a kainic acid mouse 

model of mesiotemporal lobe epilepsy reported by Bitsika et al., 2016. 

Dravet      

2 weeks 

3 days   

post KA 

PCLO; BAIAP2; SIPA1L; SHANK3 

Dravet        

4 weeks 

30 days 

post KA 

ARPC1A; CYB5R3; SNAP91; CAMKV; HRSP12; NPTX1; ADD2; 

BAIAP2; RPH3A; SYNGAP1; PRMT1; ITGAV; VIM; MYO6; MAP1A; 

CST3; EPB41L1; MYH9; PPP3CB; SUCLG1; CTTNBP2; OXR1; PRRT1; 

PRKCG; CD44; APRT; ANXA4; SNX5; GFAP; RAPGEF2; DLG4; 

PPP3CA; MLC1; EZR; ENDOD1; PLEC; P4HB; SCG2; CYB5A; DBN1; 

DLG2; PSD3; SLC6A1; CLIC1; SLC2A13; PADI2; YWHAB; MAP2K1 

https://www.sciencedirect.com/science/article/pii/S0969996118300196?via%3Dihub#bb0025
https://www.sciencedirect.com/science/article/pii/S0969996118300196?via%3Dihub#bb0025
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Supplementary Information 

Table A.1. List of abbreviations (left column) and full names (right column) of all 

regulated proteins mentioned in the manuscript and their general function.  

GABAergic signaling 

GABBR1 Gamma-aminobutyric acid type B receptor subunit 1 

GABBR2 Gamma-aminobutyric acid type B receptor subunit 2 

GABRA1  Gamma-aminobutyric acid receptor subunit alpha-1 

GABRB1 Gamma-aminobutyric acid receptor subunit beta-1 

GABRB3  Gamma-aminobutyric acid receptor subunit beta-3 

SLC6A1 Sodium- and chloride-dependent GABA transporter 3 

Glutamatergic signaling 

CTPS2 Cytidine triphosphate synthetase 2  

GluA1 Glutamate ionotropic receptor AMPA subunit 1 

GluA2 Glutamate ionotropic receptor AMPA subunit 2 

GluA3 Glutamate ionotropic receptor AMPA subunit 3 

GluA4 Glutamate ionotropic receptor AMPA subunit 4 

GluK2 Glutamate ionotropic receptor kainate type subunit 2 

GLUL Glutamine synthetase 

GluN1 Glutamate ionotropic receptor NMDA type subunit 1 

GluN2A Glutamate ionotropic receptor NMDA type subunit 2A 

GluN2B Glutamate ionotropic receptor NMDA type subunit 2B 

mGluR2 Metabotropic glutamate receptor type 2 

mGluR3 Metabotropic glutamate receptor type 3 

mGluR5 Metabotropic glutamate receptor type 5 

Synaptic transmission 

DLG2 Disks large homolog 2 

DLG3 Disks large homolog 3 

DLG4 Disks large homolog 4 

DLGAP1 Disks large-associated protein 1 

DLGAP2 Disks large-associated protein 2 

DLGAP4 Disks large-associated protein 4 

HOMER2 Homer Scaffold Protein 2 

NLGN2 Neuroligin 2 

NLGN3 Neuroligin 3 

PCLO Protein piccolo 

PPP3CA Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform 

PPP3CB Serine/threonine-protein phosphatase 2B catalytic subunit beta isoform 

PRKCG Protein kinase C gamma type 

RASGRF1 Ras-specific guanine nucleotide releasing factor 1  

RIMS1 Regulating Synaptic Membrane Exocytosis 1 

SHANK1 SH3 and multiple ankyrin repeat domains protein 1 

SHANK2 SH3 and multiple ankyrin repeat domains protein 2 

SHANK3  SH3 and multiple ankyrin repeat domains protein 3 

SYNGAP1 Ras/Rap GTPase-activating protein SynGAP 

SYT Synaptotagmin 
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RPH3A Rabphilin-3A 

BAIAP2 Brain-specific angiogenesis inhibitor 1-associated protein 2 

Dopaminergic signaling 

EPB41L1 Band 4.1-like protein 1 

EPB41L3  Band 4.1-like protein 3 

GNG7 Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7 

MAOA  Monoamine oxidase A 

MAOB Monoamine oxidase B 

PPP1R1B Protein phosphatase 1 regulatory subunit 1B 

Calcium signaling 

CACNA1A  Calcium voltage-gated channel subunit alpha1 A 

CACNA1E Calcium voltage-gated channel subunit alpha1 E 

CACNA2D3 Calcium voltage-gated channel auxiliary subunit alpha2delta 3 

CACNB3 Calcium voltage-gated channel auxiliary subunit beta 3 

CACNB4 Calcium voltage-gated channel auxiliary subunit beta 4 

CACNG8 Calcium voltage-gated channel auxiliary subunit gamma 8 

CAMK1D Calcium/calmodulin-dependent protein kinase type 1D 

CAMK2A Calcium/calmodulin-dependent protein kinase type II subunit alpha 

CAMK2B Calcium/calmodulin-dependent protein kinase type II subunit beta 

CAMK4 Calcium/calmodulin-dependent protein kinase type IV 

CAMKK1 Calcium/calmodulin-dependent protein kinase kinase 1 

CAMKK2 Calcium/calmodulin-dependent protein kinase kinase 2 

Potassium channels 

KCNA2 Potassium voltage-gated channel subfamily A member 2 

KCNAB2 Voltage-gated potassium channel subunit beta-2 

KCND2 Potassium voltage-gated channel subfamily D member 2 

KCNJ10 ATP-sensitive inward rectifier potassium channel 10 

KCNJ3 G protein-activated inward rectifier potassium channel 1 

KCNJ9 G protein-activated inward rectifier potassium channel 3 

Reactive astrogliosis 

GFAP glial fibrillary acidic protein 

EAAT1 Excitatory amino acid transporter 1 

EAAT2 Excitatory amino acid transporter 2 

Angiogenesis 

ANXA2 Annexin A2 

ANXA4 Annexin A4 

ITGAV Integrin alpha-V 

KDR  Vascular endothelial growth factor receptor 2 

VIM Vimentin 

Nitric oxide signaling 

NOS1 Neuronal nitric oxide synthase  

Cytoskeletal proteins 

ADD2  Beta-adducin 

ARPC1A Actin-related protein 2/3 complex subunit 1A 

CKAP4 Cytoskeleton-associated protein 5 

CTTNBP2 Cortactin-binding protein 2 

DBN1 Drebrin 
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EZR Ezrin 

MAP1A Microtubule-associated protein 1A 

MYO6 Unconventional myosin-VI 

PLEC Plectin 
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Table A.2. A comparison between here characterized mouse model of Dravet syndrome 

(Scn1a-A1873V, first row) and other available mouse models with a heterozygous Scn1a 

mutation. The arrow indicates increased or reduced behavior characteristic. Minus (-) indicates 

no significant changes in evaluated tests. P – postnatal day, PW – postnatal week, M – months, 

n.a. - not available. A grey horizontal line was used between mouse models carrying the same 

Scn1a mutation, while a black horizontal line was used between mouse models carrying a 

different Scn1a mutation. 1(Ricobaraza et al., 2019); 2(Kuo et al., 2019); 3(Ogiwara et al., 2007); 
4(Ito et al., 2013); 5(Dutton et al., 2013); 6(Han et al., 2012; Kalume, 2013; Oakley et al., 2009); 
7(Yu et al., 2006); 8(Cheah et al., 2012); 9(Ogiwara et al., 2013); 10(Miller et al., 2014); 11(Mistry 

et al., 2014); 12(Tsai et al., 2015); 13(Martin et al., 2010); 14(Dutton et al., 2017; Sawyer et al., 

2016). 
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Scn1a-A1783V  50:50 40 P16 39.4  

(P23) 

↑ ↓ ↑ - ↑ ↓ ↓ 

1Scn1aWT/A1783V 100:0 75 PW3 38.2 
(1-6 M) 

↑ ↑ - ↓ n.a. ↓ ↓ 

2Scn1a∆E26 90:10 100 P14 41.1 

(P12-14) 

n.a n.a. n.a. n.a. n.a. n.a. - 

3 Scn1aRX/+ 

 

75:25 40 P18 n.a. n.a. n.a. n.a. n.a. n.a. - - 

4Scn1aRX/+ 

 

100:0 40 P18 n.a. ↑ ↓ ↓ ↓ n.a. - - 

5Scn1aFlox/+Cre+/- 100:0 100 P21 40.7  

(P22) 

↑ ↑ ↓ ↓ n.a. n.a. n.a. 

6Scn1a+/- 

 

99.9:0.1 40 P21 39.5  

(P20-46) 

↑ ↑ ↓ ↓ n.a. ↓ n.a. 

7Scn1a+/- 
 

0:100 10 P21 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

7Scn1a+/- 
 

100:0 80 P21 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

8Scn1afl/+  

 

100:0 70 P18 39  

(P35) 

↑ n.a. ↓ ↓ n.a. n.a. n.a. 

9Scn1ad/+  

 

97:3 25 PW3 n.a. 

 

n.a. n.a. n.a. n.a. n.a. - n.a. 

10Scn1atm1Kea  

 

75:25 54 P24 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

11Scn1atm1Kea 50:50 50 P18 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

12Scn1aE1099X/+  75:25 46 P20 40.2  

(PW3-5) 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

13Scn1aRH/+ 

 

100:0 5 n.a. 41.3 

(P14-15) 

↑ - ↓ ↓ n.a. ↓ - 

14Scn1aRH/+ 
 

mix 5 n.a. 43.1 

(P14-15) 

n.a. n.a. n.a. n.a. n.a. n.a. - 
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 Fig. A.1. Social interaction, thigmotaxic behavior, elevated plus maze and accelerated 

rotarod test. A Time spent in active social interaction. Dravet mice engaged more in active 

interaction than their wildtype littermates. B Time spent in passive social interaction. Dravet 

mice spent less time than wildtype animals engaged in passive interaction. A-B Data shown are 

from 10 animal pairs with a Dravet genotype vs 9 wildtype animal pairs (Two-way ANOVA, 

Bonferroni post hoc; * p < 0.05, mean ± SEM). C Time spent in wall, middle and center zone 

over 30 minutes. Dravet mice spent more time in the wall zone than wildtype mice, while no 

significant difference was observed in the time spent in the middle or center zone (Three-way 

RM ANOVA, Bonferroni post hoc; * p < 0.05, mean ± SEM). D Time spent exploring open 

arms of elevated plus maze. Dravet mice exhibited a significantly higher preference towards 

open arms of the maze as compared to wildtype group. E Frequency to dip head over the maze. 

Dravet animals made significantly more head dips than wildtype mice. F Stretching postures to 

explore open arms of EPM. Dravet animals showed significantly lower number of stretching 

positions as compared to wildtype mice (Three-way ANOVA, Bonferroni post hoc; * p < 0.05, 

mean ± SEM). G-I Time on accelerated rod on three consecutive test days. Dravet mice 

performed better on rotarod comparing to wildtype mice. Females performed better than males 

(Five-way RM ANOVA, Bonferroni post hoc; * p < 0.05, mean ± SEM). C-I Data shown are 

from 21 (D-F) or 22 (C, G-I) animals with a Dravet genotype (n = 10 or 11 males, n = 11 

females) vs 20 wildtype (n = 11 males, n = 9 females) animals. 
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2. Manuscript II 

This chapter contains a manuscript submitted to the journal Epilepsia (doi: 10.1111/epi.16976). 

The manuscript aimed to identify metabolic consequences of Scn1a genetic deficiency in the 

hippocampus and plasma of Dravet mice. In addition, we intended to examine the impact of the 

ketogenic diet on the epileptic phenotype and metabolome in these mice. 
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Abstract 

Objective: Alterations in metabolic homeostasis can contribute to neuronal hyperexcitability 

and seizure susceptibility. While the pivotal role of impaired bioenergetics is obvious in 

metabolic epilepsies, there is a gap-of-knowledge regarding secondary changes in metabolite 

patterns as a result of genetic Scn1a deficiency and ketogenic diet in the Dravet syndrome.  

Methods: A comprehensive untargeted metabolomics analysis along with assessment of 

spontaneous seizure activity and behavioral tests, were completed in a Dravet mouse model. 

Data sets were compared between animals on a control and a ketogenic diet and metabolic 

alterations associated with Dravet mice phenotype and ketogenic diet were identified. 

Results: Hippocampal metabolomic data revealed complex alterations in energy metabolism 

with an effect of the genotype on several glycolysis and tricarboxylic acid (TCA) cycle 

intermediates. While low glucose, lactate, malate, and citrate concentrations became evident, 

the increase of several intermediates suggested a genotype-associated activation of catabolic 

processes with enhanced glycogenolysis and glycolysis. Moreover, we observed an impact on 

the glutamate/GABA-glutamine cycle with reduced levels of all components along with a shift 

towards an increased GABA:glutamate ratio. Further alterations in metabolic patterns 

comprised a reduction in hippocampal levels of noradrenaline, corticosterone and of two bile 

acids.  

Significance: Considering that energy depletion can predominantly compromise the function 

of GABAergic interneurons, the changes in energy metabolism may contribute to seizure 

susceptibility and ictogenesis. They may also explain the therapeutic potential of the ketogenic 

diet, which aims to shift energy metabolism towards a more fat-based energy supply. 

Conversely, the increased GABA:glutamate ratio might serve as an endogenous compensatory 

mechanism, which can be further supported by GABAergic drugs, the mainstay of therapeutic 

management of Dravet syndrome. In view of a possible neuroprotective function of bile acids, 
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it might be of interest to explore a possible therapeutic potential of bile-acid mediated therapies, 

which are already in discussion for neurodegenerative disorders.  

Keywords: metabolomics, epileptic encephalopathy, ketogenic diet, Scn1a, mice. 

 

 

Key points box: 

 Metabolomic analysis in a mouse model demonstrated that Dravet syndrome can be 

associated with complex alterations in the metabolome.  

 Pronounced alterations in glucose and TCA cycle metabolism may contribute to seizure 

susceptibility and ictogenesis in Dravet mice. 

 The findings may explain the potential of dietary approaches including KD aiming to 

shift metabolism towards a fat-based energy supply. 

 The increased GABA:glutamate ratio may represent an endogenous compensatory 

mechanism, which can be further supported by GABAergic drugs. 

 Ketogenic diet improved motor function in Dravet mice.  
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Introduction 

Changes in metabolic homeostasis and dysmetabolic states have a major impact on neuronal 

excitability and seizure susceptibility (Masino and Rho, 2019; McDonald et al., 2018; Patel, 

2018). Experimental and clinical research in epileptology has so far focused on energy fueling 

of the brain and its links with hyperexcitability, epileptogenesis and ictogenesis (Kovács et al., 

2018; Oyarzabal and Marin-Valencia, 2019). The fact that permanent neuroglycopenia can 

affect seizure thresholds has been convincingly proven by the characterization of the glucose 

transporter-1 (GLUT1) deficiency syndrome (Pong et al., 2012). The identification of further 

genetic epilepsies related to variance in metabolic pathways has resulted in an integration of 

the term ‘metabolic epilepsies’ in the etiological classification suggested by the International 

League against Epilepsy (Scheffer et al., 2017).  

While the pivotal role of impaired bioenergetics is obvious in metabolic epilepsies, evidence 

exists that relevant alterations in the metabolic state also occur in other genetic epilepsies as 

well as acquired epilepsies (Patel, 2018; Reid et al., 2014; Waldbaum and Patel, 2010). The 

functional relevance of perturbed brain bioenergetics received indirect confirmation by the 

therapeutic success of the ketogenic diet (KD) and alternate dietary approaches aiming to shift 

the energy metabolism from glucose-based towards fat-based energy generation (Barañano and 

Hartman, 2008; McDonald et al., 2018; Youngson et al., 2017). While it is an established first 

line therapeutic concept for GLUT1 deficiency syndrome, the list of possible indications 

comprises different genetic epilepsy syndromes including the Dravet syndrome, which is 

characterized by a severe clinical phenotype and a poor pharmacoresponsiveness (Dravet, 

2011). For Dravet syndrome a recent meta-analysis has suggested an improvement of seizure 

control and behavioral symptoms in response to the KD (Wang et al., 2020).  This finding 

supports the recommendation of KD for Dravet patients with failure to respond to three or four 

different antiseizure drugs (Cross et al., 2019). Therapeutic success of the ketogenic diet 

provides indirect evidence that the metabolic and bioenergetics state might be altered in patients 
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with Dravet syndrome rendering it a valuable target for therapeutic intervention. Further 

evidence for changes in brain bioenergetics came from a limited number of 18F-labelled 

fluorodeoxyglucose positron emission tomography (FDG-PET) studies reporting alterations in 

glucose uptake in a Dravet mouse model and in patients with Dravet syndrome (Haginoya et 

al., 2018; Kumar et al., 2018; Ricobaraza et al., 2019).      

Despite the use of dietary approaches, there is a surprising gap in knowledge when it comes to 

the metabolic consequences of epilepsy syndromes. A gain-in-knowledge will provide a basis 

for a more rational application of dietary approaches, for the identification of potential 

biomarkers predicting responsiveness guiding individualized therapeutic decisions, and 

information for the design and development of small molecule compounds targeting metabolic 

pathways as an alternate to dietary approaches. Alternate metabolism-targeting 

pharmacological approaches are of particular interest considering that KD is characterized by a 

relatively poor tolerability and a high adverse effect potential.    

Thus, there is a particular interest to improve the knowledge about the metabolic state 

developing following SCN1A deficiency as the most frequent clinical cause of Dravet 

syndrome. Therefore, we have completed a metabolomics analysis in a genetic Dravet mouse 

model with animals exposed to a control diet or a KD. Among other findings, the data set 

revealed pronounced alterations in energy metabolism and in the glutamate/GABA-glutamine 

cycle in Dravet mice. The metabolic patterns are of particular interest in the context of 

pathophysiological mechanisms of seizure susceptibility and ictogenesis and of possible 

endogenous compensatory mechanisms.  
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Material and methods 

Animals 

Parental breeding lines, B6(Cg)-Scn1atm1.1Dsf/J (#026133 (Kuo et al., 2019; Ricobaraza et al., 

2019)) and 129S1/Sv-Hprttm1(CAG-cre)Mnn/J (#004302 (Tang et al., 2002)), were purchased from 

the Jackson Laboratory (Bar Harbor, Maine, USA). Heterozygous A1783V-Scn1a Dravet 

(mutant) and wildtype (control) mice were generated by crossing female mice heterozygous for 

Cre recombinase (X-linked to Hprt gene) with male mice with floxed Scn1a. The resulting 

offspring was generated on a mixed (50:50) C57BL/6J and 129S1 genetic background and 

genotyped as previously described (Miljanovic et al., under revision). In a parallel study, we 

demonstrated that Dravet mice exhibit first spontaneous tonic-clonic seizures from P16 on, 

followed by recurrent seizure with a high seizure frequency, a transient delay in body weight 

development and a SUDEP rate of 40 % around the time of weaning. Moreover, a pronounced 

hyperactivity became evident in Dravet mice (Miljanovic et al., under revision). 

All experiments were approved by the government of Upper Bavaria (license number 55.2-1-

54-2532-168-2016) and conducted in line with the EU directive 2010/63/EU for animal 

experiments and the German Animal Welfare act. Experiments were designed and executed in 

line with ARRIVE guidelines and Basel declaration (http://www.basel.declaration.org) 

including the 3R concept. 

A pilot study designed to determine an adequate duration of ketogenic diet exposure was 

performed in five Dravet (2 males; 3 females) and five wildtype (2 males; 3 females) mice (Fig. 

S6). For the main study, 35 heterozygous Dravet and 28 wildtype mice were generated. Nine 

Dravet mice died due to probable SUDEP resulting in a mortality rate of 25.7 %. From 

remaining animals, twenty-two heterozygous (11 males; 11 females) and 20 wildtype mice (10 

males; 10 females) were selected for the experiment and split in two cohorts with 2 weeks apart, 

based on their day of birth.  
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Please note that baseline data from video-EEG recordings in heterozygous mice have already 

previously been presented in the context of a study characterizing the line (Miljanovic et al., 

under revision; Table S1).  

 

Experiment timeline 

Twelve-week-old wildtype and Dravet mice were implanted with telemetric transmitters (HD-

X02, DSI, St. Paul, USA) and depth electrodes in the hippocampus. Recordings were initiated 

after a two-week recovery phase. Following a one-week baseline video-EEG-ECG recording, 

animals were allocated to four groups considering genotype and treatment: wildtype control 

diet (WT CD, n=10), wildtype ketogenic diet (WT KD, n=10), Dravet control diet (Dra CD, 

n=10) and Dravet ketogenic diet (Dra KD, n=11) group. When allocating Dravet mice to 

groups, the number of convulsive seizures was used as a relevant parameter for stratified 

randomization (R software). One male and two female Dravet mice with no seizures during the 

baseline recording, were excluded for the second recording session. Animals were provided 

with CD or KD for a period of 3 weeks, following which the mice had a second week of 

continuous video-EEG-ECG recordings. For the next 2 weeks animals were exposed to 

different behavioral tests comprising nest building activity, saccharin preference test, open field 

test, novel object recognition and gait assessment. Mice were fasted for 6 hours prior to 

euthanasia, and plasma and hippocampal tissue were collected for metabolomic analysis 

(metaSysX GmbH). The experimental timeline is sketched in Fig. S1A. All experimental 

procedures are described in detail in Supporting Information (Fig. S1B). 

 

Statistical analysis 

R software (version 3.6.1.) was used for statistical analysis. GraphPad Prism (Version 5.04, 

GraphPad, USA) and R software (version 3.6.1.) were used for data visualization. Spearman 

correlation matrix was calculated and visualized using R software (R package “gplots”(Warnes 
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et al., 2016)) and the significance level was set at < -0.5 or > 0.5. Missing data from individual 

animals were not considered for the respective correlation analysis. 

All data were expressed as mean ± SEM except for nest complexity score and body weight, for 

which the median and mean are illustrated in respective graphs. Smoothing of body weight 

graph line in Fig. S7 is based on a Loess regression. All results were firstly checked for possible 

batch and sex effects. If present, they were considered in the statistical analysis. 

Two-tailed paired t-test was used for comparison between baseline and post diet seizure data in 

Dravet mice where indicated. Two-tailed unpaired t-test was used for a comparison between 

wildtype and Dravet mice CD fed where indicated. Two-way ANOVAs were used for testing 

the genotype and diet effect where appropriate, followed by a Bonferroni post-hoc test. In 

addition, false discovery rate (FDR) correction was applied to metabolome analysis to minimize 

multiple comparisons error. Next complexity score was analyzed with Friedman non-

parametric test, Dunn's Multiple Comparison Test. The significance level was set at p < 0.05 

for all tests. 
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Results 

Metabolomics 

Metabolomic screening detected 118 and 120 different metabolites in plasma and hippocampal 

samples, respectively. Genotype differences between Dravet and wildtype mice were identified 

for 72 metabolites in the hippocampus and for none of the metabolites in the plasma (Two-way 

ANOVA, FDR corrected).   

The KD affected metabolite levels in both, plasma (18 metabolites) and hippocampus (14 

metabolites) samples of wildtype and Dravet mice (Two-way ANOVA, FDR corrected). No 

relevant difference between sexes were observed. 

 

Genotype associated alteration in hippocampus and plasma metabolites in Dravet  

Following entry into cells, glucose is phosphorylated to glucose-6-phosphate to prevent its 

diffusion out of the cell and create a pool that draws more glucose into the cell (Mergenthaler 

et al., 2013). Interestingly, a decrease in glucose and an increase of phosphorylated glucose (D-

glucose-6-phosphate and α-D-glucose-6-phosphate) were noted in the hippocampus of Dravet 

mice when compared to wildtype mice (Fig. 1, S2A-C). Additionally, α-D-glucose-1-phosphate 

was up-regulated in the hippocampus of Dravet mice (Fig. S2D). Depending of the energetic 

state, it can act as glycogen precursor or as the main product of glycogen degradation, which 

next converts to glucose-6-phosphate and enters glycolysis (Obel et al., 2012). Furthermore, β-

hydroxybutyrate (BHB), a ketone body and alternative brain fuel, was neither regulated in 

plasma nor in the hippocampus of Dravet mice fed CD (Fig. 1, 3D-E). 

Several intermediate metabolites in glycolysis proved to be up-regulated in the hippocampus of 

Dravet mice. These included D-fructose-6-phosphate, D-fructose-1,6-biphosphate, D-fructose-

1-phosphate, dihydroxyacetone-phosphate and pyruvic acid (Fig. 1, S3). Pyruvate can enter the 

tricarboxylic acid (TCA) cycle. Some intermediates of the TCA cycle were down-regulated in 

hippocampal tissue of Dravet mice, including malic acid and citric acid (Fig. 1, S4A-E). (S)-
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lactate is one of the favored brain fuels produced from pyruvate (Smith et al., 2003). Recently, 

its significance in shuttle between astrocytes and neurons and microglia, revealed a pivotal role 

in neuroenergetics (Mason, 2017). Interestingly, Dravet mice displayed a reduced level of (S)-

lactate in the hippocampus in comparison with wildtype controls (Fig. 1, S4F). 

 

Fig. 1 Hippocampal glycolysis, the pentose phosphate pathway and tricarboxylic acid 

(TCA) cycle in mice with Dravet mice. This sketch illustrates metabolites (presented in 

blocks) and proteins detected in the previous study (only text; Miljanovic et al., under revision). 

Changes in metabolite or protein abundance in Dravet mice as compared to wildtype mice are 

indicated by text color (blue = up-regulation, red = down-regulation). Ketogenic diet effects on 

selected metabolites in Dravet mice are indicated with an arrow (up = up-regulation, down = 

down-regulation). HX – hexokinase, GPD - glucose-6-phosphate dehydrogenase, GPI - 

glucose-6-phosphate isomerase, PFK – phosphofructokinase, TA – transaldolase, TK – 

transketolase, FBA - fructose-bisphosphate aldolase, GAPD – glyceraldehyde 3-phosphate 

dehydrogenase, TPI - triose-phosphate isomerase, PGK - phosphoglycerate kinase, PGM - 

phosphoglycerate mutase, ENO – enolase, PK – pyruvate kinase, PDH – pyruvate 

dehydrogenase, BHB – β-hydroxybutyrate, SSADH - succinic semialdehyde dehydrogenase. 

 

Glucose-6-phosphate can be processed in the pentose phosphate pathway (Mergenthaler et al., 

2013). Some of the intermediate metabolites were up-regulated in Dravet mice (Fig. 1). These 

comprised 6-phosphogluconic acid (Fig. S4G) as well as D-fructose-6-phosphate (Fig. S3A), 
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an intermediate which can enter glycolysis. In contrast, ribose-5-phosphate remained 

unchanged in Dravet mice (Fig. S4H). 

Fig. 2 Hippocampal levels of GABA, glutamic acid and its amino acids precoursors. A 

Hippocampal abundance of GABA. Hippocampal levels of GABA were significantly reduced 

in mice with the Dravet genotype. B Hippocampal level of glutamic acid. Dravet mice exhibited 

a reduced abundance of glutamic acid when compared to wildtype mice. C GABA:glutamic 

acid ratio in the hippocampus. This ratio was higher in Dravet mice as compared to wildtype 

mice. D Spearman correlation matrix between GABA, glutamic acid, GABA:glutamic acid 

ratio, and  behavioral parameters, selected hippocampal metabolites and plasma corticosterone. 

The heat map represents individual Spearman correlations between selected parameters in 
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Dravet mice. The color scale is shown below the matrix with blue and red indicating positive 

and negative correlations, respectively.  GABA:glutamic acid ratio showed a strong positive 

correlation with levels of noradrenaline and β-alanine, and a negative correlation with levels of 

phosphorylated forms of glucose, lactate and glutamic acid precursors in the hippocampus. E-

J Hippocampal abundance of L-glutamine (E), L-aspartic acid (F), L-asparagine (G), L-lysine 

(H), L-proline (I) and L-histidine (J). E-G The level of L-glutamine, L-aspartic acid and L-

asparagine was reduced in Dravet mice regardless of the applied diet. H Hippocampal 

abundance of L-lysine was enhanced in Dravet mice. In addition, KD significantly reduced the 

metabolite level only in Dravet mice. I The level of L-proline in the hippocampus of KD fed 

mice was significantly lower in Dravet, as compared to wildtype mice. J The hippocampal level 

of L-histidine remained constant in  all four groups. Data shown are from 20 wildtype mice (10 

CD, 10 KD) and 21 Dravet mice (10 CD, 11 KD). (Two-way ANOVA, FDR correction, 

Bonferroni post-hoc test, * = p<0.05, mean±SEM). 

 

The balance between GABA and glutamate in the brain resembles one of the most important 

mechanisms contributing to hyperexcitability in epilepsies. Hippocampal levels of both, GABA 

and glutamate (glutamic acid), were reduced in Dravet mice (Fig. 1, 2A-B). Yet, the 

GABA:glutamate ratio was significantly increased in Dravet mice, implying a more 

pronounced reduction of glutamate levels (Fig. 2C). Interestingly, the ratio showed a negative 

correlation with D-glucose-6-phosphate, α-D-glucose-6-phosphate, α-D-glucose-1-phosphate, 

α-ketoglutarate, (S)-lactate, L-glutamine, L-asparagine and L-aspartic acid (R=-0.55; -0.53; -

0.53, -0.56, -0.69, -0.55, -0,64, -0.69, respectively) and a positive correlation with noradrenaline 

and β-alanine (R=0.58, 0.74, respectively) (Fig. 2D). 

Since glutamate can be synthesized from L-glutamine through the glutamate/GABA-glutamine 

cycle, it is of interest that Dravet mice showed a pronounced L-glutamine down-regulation in 

the hippocampus (Fig. 1, 2E). Other amino acids known as glutamate precursors were also 

regulated in mice with Scn1a deficiency with aspartic acid and asparagine showing a down-

regulation and lysine showing an up-regulation (Fig. 1, 2F-H). On the other hand, proline and 

histidine were not regulated in the hippocampus of mutant mice (Fig. 1, 2I-J). Lastly, no 

changes in the level of α-ketoglutarate, an TCA cycle intermediator and important glutamate 

precursor, were noted in Dravet mice. 
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Several neurotransmitters were detected in hippocampal tissue. Noradrenaline was reduced and 

beta-alanine, which has been suggested to act as an amino acid neurotransmitter(Tiedje et al., 

2010), was increased in the hippocampus of Dravet mice. Further neurotransmitters including 

serotonin, acetylcholine, histamine and glycine were not affected by the genotype (Fig. S5). 

Analysis of the plasma metabolome in CD fed mice, pointed towards a down-regulation of 

corticosterone, allocholic and cholic bile acid and an up-regulation of malic acid in Dravet mice 

(Fig. 3A-C; unpaired t-test, FDR corrected). Deoxycholic and hyodeoxycholic acid plasma 

levels remained unaffected (data not shown).  

 

Fig. 3 Plasma metabolites and ketosis confirmation. A Plasma level of corticosterone. The 

metabolite level was reduced in mice with the Dravet genotype, regardless of the diet. B-C 

Plasma levels of allocholic (B) and cholic acid (C). Allocholic and cholic acids were reduced 

in Dravet mice, regardless of the diet. D-E β-hydroxybutyrate (BHB) level in the hippocampus 

(D) and plasma (E). KD increased hippocampal and plasma BHB in both wildtype and Dravet 

mice. In addition, the BHB level was higher in wildtype mice consuming KD, as compared to 

Dravet mice in both the hippocampus and plasma. F Plasma level of glucose. KD decreased 

plasma glucose in both wildtype and Dravet mice. Data shown are from 20 wildtype mice (10 

CD, 10 KD) and 21 Dravet mice (10 CD, 11 KD). (Two-way ANOVA, FDR correction, 

Bonferroni post-hoc test, * = p<0.05, mean±SEM). 
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Ketogenic diet effect on hippocampus and plasma metabolome 

An increased BHB in wildtype and Dravet animals, confirmed that KD exposure induced 

ketosis in both genotypes. However, hippocampus and plasma BHB levels in wildtype mice 

exceeded the respective levels in Dravet mice (Fig. 3D-E). As KD is poor in carbohydrates, it 

was no surprise that exposure was associated with lowered plasma glucose levels (Fig. 3F). Yet, 

hippocampal glucose levels remained unaffected (Fig. S2A). Intracellular glucose forms (D-

glucose-6-phosphate, α-D-glucose-6-phosphate) were increased only in Dravet mice fed KD, 

as compared to those fed CD (Fig. 1, S2B-C). Additionally, a mild KD effect on glucose 

metabolism was observed. An increase of two glycolysis intermediates was noted, with D-

fructose-1-phosphate increased only in wildtype and dihydroxyacetone-phosphate increased 

only in Dravet mice (Fig. 1, S3C-D). An intermediate metabolite of the phosphate pentose 

cycle, 6-phosphogluconic acid, was increased in Dravet mice fed KD, as compared to those fed 

CD (Fig. 1, S4G). Concerning the TCA cycle, levels of α-ketoglutarate and succinic acid in 

wildtype mice fed KD exceeded those in Dravet mice with KD exposure (Fig. S4A, D). 

 

Effect of KD on food intake and body weight development 

Over the period of 7 weeks, wildtype and Dravet mice fed CD consumed a higher amount of 

diet than mice fed KD. Additionally, the amount of KD consumption in Dravet mice, exceeded 

the amount consumed by wildtype mice (Fig. S7A). In this context it needs to be considered 

that the caloric value of the KD was higher than that of the CD (KD: 6.7 kcal/g; CD: 3.8 kcal/g). 

Mice fed KD had an overall higher caloric intake. Additionally, Dravet mice fed KD exhibited 

the highest overall caloric intake exceeding that in all other groups (Fig. S7B). 

As expected body weight increased in all groups during the experimental course. However, 

body weight of Dravet mice fed KD exceeded that from all other groups in both, males and 

females (Fig. S7C). 
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Effect of KD on spontaneous generalized tonic-clonic seizures and behavior 

Dravet mice had two video-EEG recording sessions, and the diet effect was examined by 

analyzing a relative change of motor seizure parameters. The diet did not affect any of the motor 

seizure parameters including: total seizure duration, seizure frequency, number of days with 

seizures within a week and Racine score (Fig. 4A, Table S2). Electrographic seizure activity 

was confirmed with EEG recordings and high amplitude spiking over 500 µV (Fig. 4B).   

However, in Dravet mice fed CD seizures were prolonged and more frequent in animals with 

lower levels of D-glucose-6-phosphate and higher levels of citric acid, L-glutamine and other 

amino acids (Fig. 4C-up). Following KD exposure of Dravet mice a positive correlation 

between seizure parameters and metabolites was restricted to α-D-glucose-6-phosphate, α-D-

glucose-1-phosphate and the TCA cycle intermediates α-ketoglutarate and malic acid (Fig. 4C-

down). 
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Fig. 4 Generalized tonic-clonic seizure parameters. A Total seizure duration, seizure 

frequency, number of days with seizures within a week and Racine score in Dravet mice. KD 

did not affect any of the assessed seizure parameters. Data shown are from 17 Dravet mice (8 

CD, 9 KD). (Unpaired t-test, * = p<0.05, mean±SEM). B A representative EEG recording of a 

spontaneous, generalized tonic-clonic seizure in a Dravet mouse. C Spearman correlation 

matrix between seizure parameters, behavioral parameters, selected hippocampal metabolites, 

and plasma corticosterone. The heat map represents individual Spearman correlations between 
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selected parameters in Dravet mice fed control diet (CD, upper band) and Dravet mice fed KD 

(lower band). The color scale is shown below the matrix with blue and red indicating positive 

and negative correlations, respectively. Seizure severity (total seizure frequency and duration) 

showed a strong positive correlation with levels of citric acid, L-glutamine and other amino 

acids and a negative correlation with the level of D-glucose-6-phosphate in Dravet mice fed 

CD (upper band). In Dravet mice fed KD, a positive correlation between seizure severity and 

α-D-glucose-6-phosphate, α-D-glucose-1-phosphate, α-ketoglutarate and malic acid was 

observed (lower band).  

 

Assessment of gait revealed no differences in stride length, regardless of the genotype and diet 

(Fig. 5A). The angle between forelimb paw orientation and body direction proved to be wider 

in Dravet mice (Fig. 5B) without an influence of the diet. The forelimb base of support (BOS) 

was neither affected by genotype nor diet (Fig. 5C). However, hindlimb BOS proved to be 

shorter in Dravet mice. Interestingly, exposure to the KD in Dravet mice, reversed hindlimb 

BOS to wildtype values (Fig. 5D). Notably, an improvement of gait with an increase of 

hindlimb BOS in Dravet mice, showed a strong positive correlation with glucose, D-glucose-

6-phosphate, α-D-glucose-6-phosphate and acetylcholine, and a negative correlation with β-

alanine in the hippocampus (Fig. 5E-up). Moreover, when analyzing data from Dravet mice on 

KD, the hindlimb BOS parameter positively correlated with glucose, lactate, GABA, glutamate, 

acetylcholine, glutamine, aspartic acid, threonine, phenylalanine, lysine and histidine 

concentrations in the hippocampus. Lastly, a negative correlation with fumaric acid was noted 

(Fig. 5E-down). No differences between sexes were detected in any of the gait parameters. 

The impact of genotype and KD on open field test, novel object recognition, saccharin 

preference test and nest-building activity is reported in Supporting Information (Fig. S8). 
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Fig. 5 Gait analysis. A Stride length. Dravet and wildype mice had a comparable length of 

stride, regardless of the consumed diet. B Angle between forelimb paw and body direction. 

Mice with the Dravet genotype had a significantly wider angle than wildtype mice. C-D Base 

of support (BOS) between forelimbs (C) and hindlimbs (D). No differences in forelimb BOS 

were noted between all four groups. Hindlimb BOS was reduced in mice with the Dravet 

genotype. Application of KD in Dravet mice, restored this parameter to the values of wildtype 

mice, thus improving the gait. Data shown are from 20 wildtype mice (10 CD, 10 KD) and 21 

Dravet mice (10 CD, 11 KD). (Two-way ANOVA, Bonferroni post hoc test, * = p<0.05, 

mean±SEM). E Spearman correlation matrix between assessed gait parameters, other 

behavioral parameters and selected hippocampal metabolites (except for corticosterone, 

measured in plasma). The heat map represents individual Spearman correlations between 

selected parameters in Dravet mice (upper band) and Dravet mice fed KD (lower band). The 

color scale is shown below the matrix with blue and red indicating positive and negative 

correlations, respectively. Hindlimb BOS showed a positive correlation with levels of glucose, 

D-glucose-6-phosphate, α-D-glucose-6-phosphate and acetylcholine, and a negative correlation 
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with levels of β-alanine in the hippocampal tissue of Dravet mice (upper band). In Dravet mice 

fed KD, hindlimb BOS showed a positive correlation with levels of glucose, lactate, GABA, L-

glutamic acid, acetylcholine, L-glutamine, L-aspartic acid, L-threonine, L-phenylalanine, L-

lysine and L-histidine, and a negative correlation with the level of fumaric acid in the 

hippocampus (lower band).    
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Discussion 

Hippocampal metabolomic analysis in a Dravet mouse model revealed complex alterations in 

energy metabolism.  Moreover, we obtained evidence for a direct and indirect impact of Scn1a 

deficiency on the glutamate/GABA-glutamine cycle, on concentrations of noradrenaline and 

two bile acids concentrations. A previous large-scale proteomic analysis gave us the 

opportunity to interpret the present findings in the context of alterations in enzymes or 

transporter molecules.  

Alterations in glucose metabolism point to a genotype-associated activation of catabolic 

processes with enhanced glycogenolysis and glycolysis. A shift in brain glucose transport and 

metabolism in Dravet syndrome with Scn1a deficiency has previously been suggested by 

experimental and clinical FDG-PET data (Haginoya et al., 2018; Ricobaraza et al., 2019). As 

intracellular FDG accumulation largely depends on glucose uptake at the blood-brain barrier 

and its metabolism to glucose-6-phosphate by hexokinase, it is of interest that we observed a 

lowered expression of glucose-1 transporter responsible for astrocytic uptake of glucose and an 

increased expression of hexokinase in the proteomic analysis (Table S1).     

While we obtained evidence for an enhanced supply of pyruvate and increased expression of 

several enzymes contributing to TCA cycle activity, reduced concentrations of lactate and of 

the TCA cycle intermediates malate and citrate indicate that there might be a failure to 

adequately fulfil increased neuronal energy demands related to enhanced synaptic activity. 

Along this line, the up-regulation of glycogenolysis and glycolysis might reflect the cellular 

attempt to compensate for energetic failure. In this context, it is of particular interest that the 

neuronal transporter, glucose transporter 3 and the lactate transporter monocarboxylate 

transporter 1, are up-regulated in Dravet mice (Table S1). Thus, the metabolic coupling between 

astrocytes and neurons, with predominant regulation of glycolysis in astrocytes, shuttling of 

lactate to neurons, and predominant regulation of the TCA cycle in neurons (Turner and 
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Adamson, 2011), seems to be significantly altered in Dravet mice with genetic deficiency (Fig. 

6).  

Fig. 6 Hippocampal glucose metabolism in Dravet mice. This sketch illustrates detected 

metabolites (presented with text) and proteins detected in the previous study (enzymes, 

receptors and transporters; Miljanovic et al., under revision). Changes in metabolite or protein 

abundance in Dravet mice are indicated by text color (blue = up-regulation, red = down-

regulation). Glu – glutamate, Gln – glutamine, α-KG - α-ketoglutarate, G-6-P – glucose-6-

phosphate, G-1-P – glucose-1-phosphate, KB – ketone bodies, GLUT – glucose transporter, 

VGLUT - vesicular glutamate transporter, MCT1 - monocarboxylate transporter 1, EAAT – 

excitatory amino acid transporter, GS - glutamine synthetase, HX – hexokinase, LDH – lactate 

dehydrogenase, GP3 - glycogen phosphorylase 3a., PPP – pentose phosphate pathway, TCA - 

tricarboxylic acid cycle. 

 

In the epileptic brain, energy depletion occurring during seizures is considered an important 

contributor to seizure termination (Yang et al., 2013b). In the interictal phase, enhanced spiking 

activity of neurons is associated with enhanced energy consumption related to ion channel 

activity as well as synaptic neurotransmitter processing (Ivanov et al., 2015). Our present 

findings provide evidence that Dravet syndrome can also be associated with a significantly 

altered energy metabolism. This finding might at least partly be related to enhanced interictal 

activity and associated increases in neuronal energy demand. In this context, it needs to be taken 
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into account that alterations in glucose metabolism and TCA cycle activity should not only be 

considered as a consequence of seizures and interictal activity, but can also contribute to an 

enhanced seizure susceptibility and ictogenesis. The pathophysiological relevance has been 

convincingly demonstrated by the characterization of genetic epilepsies with primary failure of 

energy supply related to a genetic deficiency of glucose transporter 1 or the sodium-dependent 

citrate transporter NaCT encoded by the SLC13A5 gene (Henke et al., 2020; Pong et al., 2012). 

In the context of SLC13A5 deficiency the interneuron energy hypothesis has been formulated 

(Bhutia et al., 2017), which is based on the fact that inhibitory interneurons are characterized 

by a higher energy consumption than excitatory principal neurons (Kann, 2016). As discussed 

previously (Henke et al., 2020), energy deficits in inhibitory interneurons may result in 

disinhibition of excitatory neurons causing hyperexcitability. Thus, cumulative neuronal energy 

depletion as a consequence of increased interictal spiking may actually pave the way for a 

continuous lowering of the seizure threshold and generation of the next seizure event. Along 

this line, changes in TCA cycle activity can reduce ATP and adenosine concentrations with an 

impact on adenosine A1 receptors subsequently affecting inwardly-rectifying potassium 

channels and neuronal excitability (Boison, 2017; Boison and Steinhäuser, 2018; Henke et al., 

2020; Masino and Rho, 2019). Our data therefore suggest that the complex alterations in energy 

metabolism may contribute to the high seizure frequency often characterizing the clinical 

phenotype of Dravet syndrome. This conclusion received further confirmation by the fact that 

we identified a correlation between seizure duration and frequency, and glucose metabolism 

and TCA cycle intermediates. 

Another key finding of the broad-scale metabolic analysis was the down-regulation of the entire 

glutamate/GABA-glutamine cycle. Considering that TCA cycle activity is linked to glutamate 

formation via its intermediate α-ketoglutarate (Wu et al., 2016; Youngson et al., 2017), lowered 

concentrations of glutamate, GABA, and glutamine might be related to decreased TCA cycle-

mediated supply of the glutamate precursor α-ketoglutarate. Alterations in the concentrations 
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of the major excitatory and inhibitory neurotransmitters glutamate and GABA will likely affect 

neuronal excitability. Thereby, the increased GABA:glutamate ratio indicates a shift favoring 

GABA synthesis from glutamate. Thus, the alterations affecting the glutamate/GABA-

glutamine cycle may actually reflect a mechanism that may partially compensate the Scn1a-

deficiency related limitations in GABAergic interneuron function that seems to drive network 

hyperexcitability in Dravet syndrome according to experimental findings in different mouse 

models (Dutton et al., 2013; Oakley et al., 2011; Tran et al., 2020; Yu et al., 2006). However, 

it needs to be considered that proteomic analysis revealed a down-regulation of excitatory 

amino acid transporters and of glutamine synthetase responsible for astrocytic uptake of 

glutamate and its conversion of glutamine (Table 1). Thus, it is possible that an accumulation 

of extracellular glutamate concentrations triggering neuronal hyperexcitability might occur 

despite an overall decrease of the total glutamate concentration (Fig. 6). However, this greater 

decrease in glutamate may also be related to the age of animals, which is why it would be of 

interest to assess GABA and glutamate levels in younger mice.  

Interestingly, further neurotransmitters comprising aspartate and noradrenaline exhibited 

lowered concentrations in hippocampal samples from Dravet mice. Considering their role in 

neuronal excitability (Dingledine and McBain, 1999; Giorgi et al., 2004; O'Donnell et al., 2012; 

Patri, 2019), these changes might additionally affect seizure susceptibility. However, further 

studies would be necessary to explore a potential functional relevance.  

While it is common knowledge that highly increased levels of bile acids can exert toxic effects 

on neuronal function, we just more recently started to develop a more differentiated perspective 

about the impact of bile acids in the healthy and diseased brain (Grant and DeMorrow, 2020; 

Kiriyama and Nochi, 2019; McMillin and DeMorrow, 2016). This resulted in a discussion about 

the potential of bile-acid mediated therapies in neurodegenerative disorders(Grant and 

DeMorrow, 2020). Along this line, reduced levels of two bile acids in Dravet mice suggest that 

future studies should further explore the disease-associated regulation of bile acids and its 
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consequences in order to provide information about a potential pathophysiological role and 

possible basis for therapeutic intervention.   

Despite ongoing research efforts, the mechanisms of the KD diet still remain to be incompletely 

understood at this point of time. Among other mechanisms, a shift in energy supply and in 

catabolic pathway activities, with a reduction of glycolysis and an enhanced oxidation of fatty 

acids and ketone bodies, may represent one key mechanism. This shift might help to provide 

more ATP resulting in adenosine increases, and related to alternate fueling of the TCA cycle 

might provide more α-ketoglutarate as a precursor for glutamate and subsequent GABA 

synthesis (Youngson et al., 2017). Interestingly, the fact that the level of ketosis in wildtype 

mice exceeded that in Dravet mice, provides evidence that related to a different metabolic 

baseline situation, it can be more difficult to increase ketone body levels in individuals with 

Dravet syndrome.  

Despite the confirmation of ketosis, the alterations in energy metabolism were rather limited. 

While we observed an increase of different glycolysis intermediates, we failed to confirm a 

direct effect on TCA cycle activity in both genotypes. Thus, our data do not confirm the energy 

shift with a down-regulation of glycolytic activity and enhanced TCA cycle activity suggested 

by previous studies (D'Andrea Meira et al., 2019; Puchalska and Crawford, 2017; Youngson et 

al., 2017). However, in clinical practice KD is in the majority of patients applied as an 

adjunctive therapy in combination with antiseizure drugs (Cross et al., 2019). Therefore, we 

cannot exclude that additional therapy with antiseizure drugs results in an at least partial control 

of interictal neuronal activity resulting in a better metabolic initial situation, which is then easier 

to influence by a dietary approach. This assumption is further confirmed by the failure to control 

seizure activity by the exposure to KD as a monotherapy in the present study. Considering these 

findings, it would be of interest to assess the impact of different antiseizure drugs on the 

metabolomic signature of Dravet syndrome. In this context, it is of particular interest that 

stiripentol, an orphan drug licensed for therapy of Dravet syndrome, can exert direct effects on 
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metabolism based on an inhibition of lactate dehydrogenase (Sada et al., 2015). Lastly, we 

cannot exclude the possibility that it might be easier to demonstrate an effect of KD in a mouse 

model with a more severe seizure phenotype. 

The clinical manifestation of Dravet syndrome is also characterized by the development of 

ataxia, motor deficits and gait disturbance (Gataullina and Dulac, 2017). The latter is partly 

explained by the fact that Nav1.1 encoded by the SCN1A gene is also expressed in cerebellar 

Purkinje cells and in nodes of Ranvier of motor neurons (Duflocq et al., 2008; Gataullina and 

Dulac, 2017). KD exposure in Dravet mice resulted in partial normalization of one of the main 

outread parameters of gait assessment. This finding demonstrates that the metabolic 

consequences of KD were sufficient to affect the clinical phenotype and that glucose, glucose-

6-phosphate, acetylcholine and β-alanine may be relevant markers for gait improvement. 

Moreover, this result draws attention to a potential beneficial impact of dietary approaches such 

as the KD on motor dysfunction. So far, there is only very limited clinical information providing 

first evidence that KD can improve coordination and gait in patients with Dravet syndrome 

(Tian et al., 2019). Concerning the beneficial effect on gait disturbance, it is recommended to 

additionally assess the impact of KD on metabolomics in the cerebellum and in peripheral motor 

neurons.  

In conclusion, the comprehensive metabolomic analysis revealed substantial alterations in 

energy metabolism in mice with the Scn1a genetic deficiency. These complex changes might 

contribute to seizure susceptibility and ictogenesis. In response to KD exposure a beneficial 

effect on motor dysfunction became evident suggesting that metabolic changes contribute to 

ataxia and gait disturbances developing during the course of Dravet syndrome.  

Interestingly, we also demonstrated alterations in the glutamate/GABA-glutamine cycle, which 

might serve as an endogenous compensatory mechanism, which can be further supported by 

GABAergic drugs recommended for management of Dravet syndrome.   
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Supporting information 

Methods 

Housing of animals 

From birth until weaning time (P19-21), each litter was housed in individually ventilated cages 

(Tecniplast, Hohenpeißenberg, Germany). Following weaning, animals were kept in groups of 

3-5 animals per standard Makrolon type III cage (Ehret, Emmendingen, Germany). Following 

surgery, mice were kept single-housed.  

Once per week, each cage was provided with fresh sawdust as a bedding material (Lignocel, 

Rosenberg, Germany), one animal house (Tecniplast, Hohenpeißenberg, Germany; Zoonlab 

GmbH, Castrop-Rauxel, Germany), and 7 g of Enviro-dri® nest material (Claus GmbH, 

Neuwied Germany). Animal housing was maintained under standard conditions (temperature 

22 ± 2 ̊ C, humidity 40-60 %, regular 12-hour light/dark cycle).  

All animals received ad libitum tap water and food (ssniff® R/M-H, Sniff, Soest, Germany). 

Between postnatal day P14 and P26 animals had additional access to a Dietgel76A as a 

supplement (Sniff, Soest, Germany).  

Following group allocation, animals were provided either with 6:1 fat:protein ketogenic diet 

(KD; #TD07797, Envigo, Italy), or a vitamin and mineral balanced control diet (CD; 

#TD150300, Envigo, Italy). CD or KD were provided to animals over a period of 41-42 days 

(depending on the day of sacrifice). The amount of consumed food was measured daily. Since 

the food had a consistency of paste, animals were provided with wooden popsicles as an 

enrichment (Pura Sticks, Labodia AG, Niederglatt, Switzerland). 

 

Ketosis confirmation 

A pilot study with five wildtype and five Dravet mice was conducted in order to determine the 

duration of KD exposure sufficient to guarantee development of ketosis in all animals. A drop 
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of blood was sampled from the facial vein with a lancet (Cat# GR-5MM, BioSebLab, Vitrolles, 

France), and beta-hydroxybutyrate (BHB) was measured with ß-ketone test stripes and 

Glucomen Areo 2K device (GlucoMen® Areo, Berlin, Germany. Due to the circadian nature 

of BHB concentrations, onset and end of the light phase (6 a.m. and 6 p.m.) were chosen as the 

two time points for measurement. Before the exposure to KD, mice were fed a standard chow 

and baseline blood BHB was measured. Then, mice were fed KD for 3 weeks and blood BHB 

was measured weekly. Blood BHB from three wildtype and three Dravet mice was not 

measured at 6 a.m. for the baseline and 1 week after the initiation of KD. One wildtype female 

mouse died in the context of blood sampling after one-week exposure to the KD. Once ketosis 

was confirmed, KD was replaced with standard chow and animals were euthanized with 600 

mg/kg pentobarbital.  

 

Surgery and video-EEG recordings 

Twelve-week-old wildtype and Dravet mice underwent a survival surgery for telemetric 

transmitter (HD-X02, DSI, St. Paul, USA) and electrode implantation preparing the animals for 

EEG-ECG recordings. Wildtype mice were used as controls and were therefore implanted with 

a dummy transmitter with no recording opportunity. Each cohort was implanted within 1 week, 

and the order of animals during the day was randomized (R software).  

Mice received 1 mg/kg meloxicam s.c. (Metacam®, Boehringer Ingelheim, Germany) for 

analgesia 30 minutes before the anesthesia induction and 24 hours afterwards. Isoflurane 

(Isofluran CP®, Henry Schein Vet, Hamburg, Germany) was used as a general anesthetic: 4 % 

for induction and 1.5 % for maintenance of anesthesia. Bupivacaine was applied subcutaneously 

as a local anesthetic: 0.25 % (Jenapharm®, Mibe GmbH, Brehna, Germany) to surgical areas 

affected by transmitter implant and placement of leads; and 0.5 % + 0.0005 % epinephrine 

(Jenapharm®, Mibe GmbH, Brehna, Germany) for intracranial electrode placement.  
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For the subcutaneous placement of telemetric transmitter, the skin was opened in the 

dorsocaudal part of the scapula region. ECG leads were fixed intramuscularly: negative lead to 

the right pectoral muscle, and positive lead to xyphoid. Skin was closed over the ECG lead with 

absorbable sutures (Smi AG, St. Vith, Belgium) and animals were fixed in the stereotactic 

surgical frame. Three screws were fixed into the scull and the negative EEG lead was connected 

to the screw placed over the cerebellum. The positive EEG lead was connected to a bipolar 

Teflon-isolated stainless-steel electrode, before implanting it in the hippocampal CA1 region 

(ap: - 2.00; lat: + 1.3; dv: - 1.6). 

Paladur (Heraeus®, Hanau, Germany) was used for fixation of the electrode and absorbable 

sutures for closing the skin around the skull. A tissue adhesive (Surgibond®, Henry Schein Vet, 

Hamburg, Germany) was applied to close the initial cut for placing the transmitter.  

Mice were provided with oxygen (Oxyboy oxygen generator, Hugo Sacks Electronic, March-

Hugstetten, Germany) until regaining consciousness. Following a recovery time of 2 weeks, a 

one-week continuous video-EEG-ECG baseline recordings was completed using Ponemah 

software (Ponemah R, v. 5.2.0, DSI, St. Paul, USA). Spontaneous seizure activity was detected 

automatically (NeuroscoreTM v. 3.0, DSI, St. Paul, USA) and further confirmed and analyzed 

using acquired videos (Axis communications, Lund, Sweden). The amplitude threshold for 

seizure spikes was set to 500 µV. Seizure duration, frequency, severity, and number of days 

with seizures within a week were evaluated. Seizure severity was scored based on the adapted 

Racine scoring system: (Dutton et al., 2017; Racine, 1972): I (orofacial movements), II (head 

nodding), III (forelimb myoclonus), IV (forelimb clonic convulsions with rearing), V 

(generalized motor convulsions followed by rearing and falling) and score VI (generalized 

motor convulsions followed by running and bouncing).  
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Behavioral assessment 

Behavior tests were completed in morning hours starting from 8 a.m. Nest-building activity and 

saccharin preference were conducted in the home cage during the first week of behavior tests. 

In the second week of behavioral testing, the open field test, the novel object recognition test 

and gait assessment were completed and video documented in a test room under standard 

conditions (temperature 22 ± 2 ̊ C, humidity 40-60 %, lighting 15-20 lx).  

 

Nest-building activity  

Following the second week of continuous video-EEG recording, nest building activity was 

assessed. For seven consecutive days, nests were photographed each morning. The images were 

used for nest complexity scoring by an investigator blinded to animals’ genotype and treatment. 

Nest complexity was scored based on a scoring system adapted from Jirkof and colleagues 

(Jirkof et al., 2013): score 0 = nesting material is intact; score 1 = nesting material is noticeably 

manipulated and possibly spread around the cage; score 2 = nest site is evident with over 50 % 

of nesting material at nest site or animals starting to build walls (one to two sides) and nest is 

hollow in bedding; score 3 = a flat nest with visible walls, can be hollow in bedding; score 4 = 

a complex, bowl-shaped nest with walls higher than mice, surrounding the nest in more than 50 

%.  

 

Saccharin Preference Test  

In parallel with the nest building assessment, the saccharin preference test was completed. The 

aim of the test is to assess anhedonia-associated behavior used for detection of depressive-like 

behavior in mice (Klein et al., 2015). The test was carried out at four consecutive days (24-hour 

periods). On each day, mice were provided with two water bottles and liquid consumption was 

measured at the end of each period. On the first day, animals were provided two bottles of water 

in order to determine baseline water intake. On the following day, the right bottle was replaced 
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with 0.1 % saccharin solution to assess preference for sweet solution. On the third day, both 

bottles were filled with water. During the last period, the left bottle was filled with 0.1 % 

saccharin solution, aiming to check for possible side preference. Saccharin is an artificial 

sweetener with no effective calories, meaning it could not interfere with the composition of 

provided diet. 

 

Open Field Test 

The open field test is frequently used to examine locomotion and exploratory behavior in an 

unfamiliar surrounding (Carola et al., 2002). One hour prior to testing, mice were placed in the 

test room to habituate. The order of animals was randomized. Two white cylinders (diameter 

61 cm, height 40 cm) were used simultaneously, in order to test two mice in parallel. Mice were 

placed individually into the cylinder, facing the wall at a distance of 10 cm from the wall. Ten-

minute-long trials were recorded with Ethovision 8.5 Software (EthoVision XT, Noldus, 

Wageningen, The Netherlands). The software was used for automatic analysis of locomotion 

and time spent in different zones (wall, middle, center). Rearing behavior was scored manually 

by an observer unaware of animals’ group allocation. Following the end of the trial, mice were 

returned to their home cage. Cylinders were cleaned with 0.1 % acetic acid between trials. 

 

Novel Object Recognition 

Novel object recognition test is a common test for assessing learning and memory in mice, 

performed over three consecutive days (Lueptow, 2017). The open field test was used as the 

first test day (habituation phase). On the second and third day of testing, all conditions were 

replicated with the exception of providing two objects in the open field arena. On the second 

day (training phase), mice were introduced to two identical objects (grey, textured pyramid or 

white, smooth cylinder; diameter 4 cm, height 10 cm) placed 15 cm apart and 12 cm from the 

wall, with the same lighting conditions. On the next day (test phase), one of the objects was 
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replaced with an unfamiliar object. The order of the animals, the object for the training phase 

(pyramid or cylinder) and the position of the novel object in the test phase were randomized. 

Over the 10-minute session, the time sniffing at and exploring the familiar (TF) and novel object 

(TN) was automatically measured with Ethovision 8.5 Software and the nose point tracking 

tool. Mice were considered to sniff an object once their nose point was up to 2 cm away from 

the object and/or mice were touching the object with the nose or forepaws. Sitting on the object 

was not counted as active object exploration. Discrimination index was calculated using 

following formula: TN/(TN+TF) x100 %. 

 

Gait analysis 

A transparent plexiglas runway (length 100 cm, width 10 cm) surrounded by white walls (height 

10 cm), was placed 1 m over the ground and used for gait assessment. An entrance to a covered 

black box (15x15 cm), a dark shelter, was placed at the end of the runway. Each animal was 

placed on the runway, 80 cm from the black-box entrance, and their gait was recorded with a 

camera (Bastler acA1300-60gm, Noldus, Wageningen, The Netherlands) positioned under the 

runway and Ethovision 12.0 Software (Ethovision XT, Noldus, Wageningen, The Netherlands). 

The lighting from the ground was adjusted to ensure sufficient lighting for camera and was 

around 20 lx on the runway surface. For each animal, five trials were completed. Only a straight 

walk without any interruptions was considered for gait analysis. Thus, the second trial was 

chosen for analysis, excluding the first and last 10 cm of the walk. Video frames (60/s) were 

extracted using VLC 2.2.4. “Weatherwax” media player (VideoLan Organization) and merged 

for analysis with GIMP 2.10.14 software. The two consecutive strides per animal were selected 

and the following parameters were measured: stride length, forelimb and hindlimb base of 

support (horizontal stride width), and the angle between forelimb paw and body direction (Fig. 

S1B). 
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Euthanasia, plasma and hippocampus sampling 

Prior to sacrifice, all mice were fasted for 6 hours during the light cycle phase in order to 

eliminate direct effects of diet consumption. Mice were euthanized between 12 and 3:30 p.m. 

with 600 mg/kg Pentobarbital i.p. in 10 ml/kg injection volume. In order to minimize circadian 

effects on metabolites, animals were randomly divided into groups euthanized at two separate 

days.  

Following the stop of breathing, the thorax was opened and blood was collected from the heart 

into 1.3 ml K3 EDTA micro tubes (SARSTEDT AG & Co. KG, Nümbrecht, Germany). The 

tubes were gently shaken and then centrifuged on 3500 rpm (Hettich® MIKRO 200/200R, 

Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany) for 10 minutes at room temperature. 

Plasma was pipetted into 1.5 ml Protein LoBind Tubes (Eppendorf, Wesseling-Berzdorf, 

Germany) and fresh frozen in liquid nitrogen (Besamungsstation München-Grub, Poing, 

Germany). Hippocampal tissue was dissected from both hemispheres, fresh frozen in liquid 

nitrogen using 1.5 ml Protein LoBind Tubes and stored at -80 °C until analysis. Tail samples 

were collected for PCR genotype confirmation. Plasma and hippocampus samples were sent to 

metaSysX GmbH for analysis. Firstly, all samples were prepared in line with metaSysX 

standard procedure. Metabolites were extracted from the whole grounded hippocampus samples 

and 100 µl of the plasma samples. Polar and semi-polar primary and secondary metabolites 

were measured with a Waters ACQUITY Reversed Phase Ultra Performance Liquid 

Chromatography (RP-UPLC; C18 column) coupled to a Thermo-Fisher Exactive mass 

spectrometer which consists of an ElectroSpray Ionization source (ESI) and an Orbitrap mass 

analyzer. Extraction of the data was accomplished with the software REFINER MS® 11.1 

(GeneData, http://www.genedata.com), after which it was annotated using the in-house 

metaSysX database of chemical compounds (database query of m/z and the retention time). 

In addition, primary metabolites were measured on an Agilent Technologies Gas 

Chromatography (column: 30 m, DB-35; starting temperature 85 °C for 2 minutes; gradient: 15 



MANUSCRIPTS 

139 
 

°C/minute up to 360 °C) coupled to a Leco Pegasus High Throughput mass spectrometer, which 

consists of an electron ionization source and a time-of-flight mass analyzer. Samples were 

measured in splitless (injection of full volume) and split mode (injection of 1/5 of full volume) 

to allow the selection of the proper mode for the compounds of interest. The compound 

annotation was done by comparing the spectra and the retention index to the Fiehn Library and 

to a user created library. Lastly, the hippocampal data were normalized first to the weight of 

the samples and then to the median of intensities of each sample and plasma data were 

normalized to the median of intensities of each sample. 

 

Data availability 

The raw data of this study are available from the corresponding author, upon reasonable request. 
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Results 

Ketosis confirmation 

A pilot study has been completed to determine the duration of KD exposure sufficient to ensure 

ketosis in the majority of animals. The blood level of BHB increased over the time of exposure 

to KD. In the evening samples one, 2 and 3 weeks following KD onset, BHB blood levels were 

significantly higher as compared to baseline (Fig. S6). In contrast, there was no significant 

change in BHB levels in the morning samples, when compared to baseline. However, at 2 and 

3 weeks following KD introduction, BHB levels in blood were higher in the morning than in 

the evening, implying a pronounced effect of nocturnal feeding. Based on the pilot data 3 weeks 

were selected as a sufficient duration for KD exposure. 

 

Genotype and diet effect on behavioral parameters 

The open field paradigm revealed a pronounced hyperlocomotion with total distance moved 

and mean velocity significantly increased in Dravet mice, regardless of the diet (Fig. S8A-B). 

Immobility time was significantly reduced in all Dravet animals (Fig. S8C). Rearing behavior 

and jumping on the walls proved to be significantly increased in all Dravet mice (Fig. S8D-E). 

An impact of the diet on rearing behavior became evident with Dravet mice fed KD exhibiting 

more rearing behavior as compared to Dravet mice fed CD. Thigmotaxis was evident in all 

Dravet mice regardless of the diet, with an increase in time spent in wall zone and decrease in 

time spent in middle and center zones as compared to wildtype mice (Fig. S8F). Sex differences 

were not observed. 

Assessment of novel object recognition test did not show any effect of genotype or diet on 

cognitive performance in mice (Fig. S8H).   

Wildtype mice consuming CD or KD, and Dravet mice consuming CD showed a preference of 

saccharin solution over water. However, the amount of consumed saccharin was significantly 
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reduced in Dravet mice, when compared to wildtypes. Moreover, KD reduced the preference 

for saccharin in both genotypes (Fig. S8G). Findings proved to be comparable in males and 

females.  

Nest-building activity assessment revealed a strong genotype effect, with a significantly poorer 

performance in Dravet mice when compared to wildtype mice fed CD (Fig. S8I). Diet and sex 

effects were not observed.  
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Tables and figures: 

Table S1. Abundances of selected proteins detected in the hippocampus of Dravet mice 

following the disease manifestation. The fold change is provided in relation to wildtype controls 

along with the level of significance (p). Please note that the data are from a study focused on a 

broad scale proteomic analysis presented in a manuscript by Miljanovic et al., under revision. 

 

Genes Protein names 

fold  change 

Dravet/ WT p-value 

Hk3 Hexokinase-3 1.34 0.1155 

Ldha L-lactate dehydrogenase A chain 1.00 0.8912 

Ldhb L-lactate dehydrogenase B chain 0.87 0.0008 

Pdha1 

Pyruvate dehydrogenase E1 component subunit alpha, 

somatic form, mitochondrial 1.04 0.0006 

Pdhb 

Pyruvate dehydrogenase E1 component subunit beta, 

mitochondrial 1.04 0.1901 

Pdhb 

Pyruvate dehydrogenase E1 component subunit beta, 

mitochondrial 1.04 0.1901 

Slc2a1 

Solute carrier family 2, facilitated glucose transporter 

member 1 0.93 0.0601 

Slc2a3 

Solute carrier family 2, facilitated glucose transporter 

member 3 1.13 0.0009 

Slc16a1 Monocarboxylate transporter 1 1.20 0.0150 

Gpi Glucose-6-phosphate isomerase 1.04 0.0209 

Taldo1 Transaldolase 0.98 0.4335 

Tkt Transketolase 0.99 0.4577 

Aldoa Fructose-bisphosphate aldolase A 1.05 0.0697 

Aldoc Fructose-bisphosphate aldolase C 0.92 0.0854 

Gapdh Glyceraldehyde-3-phosphate dehydrogenase 0.95 0.4178 

Tpi1 Triosephosphate isomerase 1.03 0.6351 

Pgk1 Phosphoglycerate kinase 1 1.01 0.7376 

Pgam2 Phosphoglycerate mutase 2 1.04 0.5814 

Pgam1 Phosphoglycerate mutase 1 1.03 0.1903 

Eno1 Alpha-enolase 0.97 0.3230 

Eno3 Beta-enolase 0.93 0.1477 

Eno2 Gamma-enolase 0.99 0.8365 

Pkm Pyruvate kinase PKM 1.00 0.9063 

Aldh5a1 Succinate-semialdehyde dehydrogenase, mitochondrial 0.96 0.0769 

Idh2 Isocitrate dehydrogenase [NADP], mitochondrial 1.07 0.1822 

Idh1 Isocitrate dehydrogenase [NADP] cytoplasmic 1.05 0.0571 

Idh3a 

Isocitrate dehydrogenase [NAD] subunit alpha, 

mitochondrial 1.06 0.0279 

Idh3g 

Isocitrate dehydrogenase [NAD] subunit gamma 1, 

mitochondrial 1.03 0.0773 

Cs Citrate synthase, mitochondrial 1.03 0.0899 

Acly ATP-citrate synthase 1.06 0.0099 

Aco2 Aconitate hydratase, mitochondrial 1.00 0.9506 
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Aco1 Cytoplasmic aconitate hydratase 0.98 0.0842 

Sdhd 

Succinate dehydrogenase [ubiquinone] cytochrome b 

small subunit, mitochondrial 1.04 0.2673 

Sdha 

Succinate dehydrogenase [ubiquinone] flavoprotein 

subunit, mitochondrial 1.04 0.0072 

Sdhc 

Succinate dehydrogenase cytochrome b560 subunit, 

mitochondrial 0.98 0.6248 

Sdhb 

Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, 

mitochondrial 1.03 0.0343 

Ogdh 2-oxoglutarate dehydrogenase, mitochondrial 1.05 0.0032 

Sucla2 

Succinate--CoA ligase [ADP-forming] subunit beta, 

mitochondrial 1.06 0.0046 

Suclg1 

Succinate--CoA ligase [ADP/GDP-forming] subunit 

alpha, mitochondrial 1.10 0.0037 

Suclg2 

Succinate--CoA ligase [GDP-forming] subunit beta, 

mitochondrial 1.06 0.0189 

Fh Fumarate hydratase, mitochondrial 1.01 0.4623 

Mdh1 Malate dehydrogenase, cytoplasmic 0.96 0.1202 

Mdh2 Malate dehydrogenase, mitochondrial 1.08 0.0073 

Asns Asparagine synthetase [glutamine-hydrolyzing] 0.85 0.1247 

Pc Pyruvate carboxylase, mitochondrial 1.00 0.8830 

Glud1 Glutamate dehydrogenase 1, mitochondrial 1.03 0.2844 

Glul Glutamine synthetase 0.86 0.0062 

Gad1 Glutamate decarboxylase 1 1.00 0.9607 

Gad2 Glutamate decarboxylase 2 1.15 0.0807 

Slc17a7 Vesicular glutamate transporter 1 1.06 0.0547 

EAAT1 Excitatory amino acid transporter 1 0.91 0.0100 

EAAT2 Excitatory amino acid transporter 2 0.95 0.0440 

Glul Glutamine synthetase 0.86 0.0062 
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Table S2. Parameters of generalized tonic-clonic seizures during baseline (n=19) and during 

exposure to CD (n=8) or KD (n=10) in Dravet mice. Total seizure duration, seizure frequency, 

the number of days with seizures/week and seizure severity (mean±SEM) were evaluated.  

Group Total seizure 

duration [s] 

Seizure frequency 

(seizures/week) 

Number of days with 

seizures/week 

Racine score 

Dra baseline 340.7 ± 43.68 6.79 ± 0.86 2.21 ± 0.22 5.69 ± 0.07 

Dra CD 289.4 ± 40.46 6.38 ± 0.94 2.75 ± 0.49 5.7 ± 0.12 

Dra KD 259.5 ± 34.35 5.3 ± 0.72 2.1 ± 0.28 5.46 ± 0.19 
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Fig. S1 A Experimental timeline. B This sketch illustrates chosen parameters for gait 

assessment in mice including stride length, angle between forelimb paw and body direction, 

forelimb and hindlimb base of support (BOS). 
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Fig. S2 The abundance of glucose and its phosphorylated forms in hippocampal tissue. A 

The glucose abundance in the hippocampus. Dravet mice fed CD had a lower abundance of 

glucose as compared to wildtype mice fed CD. B-C The level of α-D-glucose-6-phosphate (B) 

and D-glucose-6-phosphate (C) in hippocampal tissue. Both metabolites were up-regulated in 

Dravet mice when compared to wildtype mice. In addition, KD further increased metabolite 

abundance only in Dravet mice. D The hippocampal abundance of α-D-glucose-1-phosphate. 

This metabolite was up-regulated in Dravet mice fed CD, when compared to wildtype mice. 

Data shown are from 20 wildtype mice (10 CD, 10 KD) and 21 Dravet mice (10 CD, 11 KD). 

(Two-way ANOVA, FDR correction, Bonferroni post-hoc test, * = p<0.05, mean±SEM). 
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Fig. S3 Intermediate metabolites of glycolysis in hippocampal tissue. The abundance of D-

fructose-6-phosphate (A) and D-fructose-1,6-biphosphate (B) in the hippocampus. Both 

metabolites were up-regulated in Dravet mice when compared to wildtype mice, regardless of 

the consumed diet. C The abundance of D-fructose-1-phosphate in the hippocampus. The 

metabolite level was increased in mice with the Dravet genotype when compared to wildtype 

mice. KD further increased metabolite levels only in wildtype mice. D The level of 

dihydroxyacetone-phosphate in the hippocampus. Dravet mice consuming KD had a 

significantly higher metabolite level than mice in the other three groups. E 

Phosphoenolpyruvate level in the hippocampus. No changes in the metabolite abundance were 

noted between the four groups. F Pyruvate abundance in the hippocampus. When consuming 

CD, Dravet mice showed an increased metabolite abundance as compared to wildtype mice. 

Data shown are from 20 wildtype mice (10 CD, 10 KD) and 21 Dravet mice (10 CD, 11 KD). 

(Two-way ANOVA, FDR correction, Bonferroni post-hoc test, * = p<0.05, mean±SEM). 
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Fig. S4 Intermediate metabolites of tricarboxylic acid cycle and the pentose phosphate 

pathway in hippocampal tissue. Hippocampal abundance of α-ketoglutarate (A), malic acid 

(B), citric acid (C), succinic acid (D), fumaric acid (E), lactate (F), 6-phosphogluconic acid (G) 

and ribose-5-phosphate (H). A, D The levels of α-ketoglutarate and succinic acid were reduced 

in Dravet mice fed KD when compared to wildtype mice fed KD. B-C Dravet mice had a 

significantly lower level of malic and citric acid in hippocampal tissue than wildtype mice. E 

No change in the hippocampal level of fumaric acid was noted. F The hippocampal lactate 

abundance was significantly lower in Dravet mice, than in wildtype mice. G Dravet mice 

showed a significant increase in hippocampal 6-phosphogluconic acid abundance as compared 
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to wildtype mice. In addition, KD further increased metabolite levels only in Dravet mice. H 

The level of hippocampal D-ribose-5-phosphate was comparable between all groups. Data 

shown are from 20 wildtype mice (10 CD, 10 KD) and 21 Dravet mice (10 CD, 11 KD). (Two-

way ANOVA, FDR correction, Bonferroni post-hoc test, * = p<0.05, mean±SEM). 
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Fig. S5 Neurotransmitters in the hippocampus. Hippocampal level of noradrenaline (A), β-

alanine (B), serotonin (C), acetylcholine (D), histamine (E) and glycine (F). A-B Dravet mice 

showed a reduced level of noradrenaline and an increased level of β-alanine in hippocampal 

tissue when compared to wildtypes. KD reduced neurotransmitter abundance in both wildtype 

and Dravet mice. C-E No differences in hippocampal abundance of serotonin, acetylcholine 

and histamine were noted between all four groups. F KD increased hippocampal levels of 

glycine only in mice with the wildtype genotype. Data shown are from 20 wildtype mice (10 

CD, 10 KD) and 21 Dravet mice (10 CD, 11 KD). (Two-way ANOVA, FDR correction, 

Bonferroni post-hoc test, * = p<0.05, mean±SEM). 
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Fig. S6 Ketosis confirmation. Results of a pilot study showing the blood level of β-

hydroxybutyrate (BHB) over 3 weeks of KD consumption. Ketosis was checked twice per day. 

Over time, the number of animals reaching ketosis state increased. Evening BHB levels at one, 

2 and 3 weeks following the KD introduction were significantly increased when compared to 

the baseline (paired t-test, * p<0.05). Two and three weeks following KD onset, blood BHB 

levels were significantly higher in the morning measurement. The morning BHB level 

measured at 3 weeks post KD introduction, exceeded the BHB level measured at 2 weeks 

following KD onset. 
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Fig. S7 Food intake and body weight gain. A The amount of CD or KD consumed over the 

course of the experiment. Wildtype and Dravet mice consumed more CD than KD. The amount 

of KD consumed by Dravet mice exceeded the amount consumed by wildtypes. B Calorie 

intake. Dravet mice consuming KD had an increased overall calorie intake as compared to the 

remaining three groups. (mean±SEM). C Body weight development following the onset of CD 

or KD exposure. All four groups gained body weight over the course of the experiment. 

However, weight gain in both male and female Dravet mice fed KD was significantly exceeding 

that in the remaining three groups. Data shown are from 20 wildtype mice (10 CD, 10 KD) and 

21 Dravet mice (10 CD, 11 KD). (Two-way ANOVA, Bonferroni post hoc test). 
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Fig. S8 Open field test, novel object recognition, saccharin preference and nest complexity 

score. A Distance moved in the open field paradigm over 10 minutes. The total distance moved 

was significantly greater in mice with the Dravet genotype as compared to wildtype mice. B 

Average velocity over 10 minutes. The average velocity of Dravet mice proved to be higher 

than that of wildtype mice. C Immobility time. Dravet mice spent significantly less time 

immobile when compared to wildtypes. D Rearing frequency. Rearing frequency in Dravet mice 

exceeded the frequency observed in wildtype mice. E Jumping on the walls of the open field 

paradigm. Dravet mice showed an increased jumping behavior when compared to wildtypes. F 

Time spent in wall, middle and center zones of the open field paradigm. Dravet mice showed 

thigmotaxic behavior by spending more time in the wall zone compared to the wildtypes and 

less time in both the middle and center zones of open field. G Total consumption of saccharin 

solution. Mice with the Dravet genotype consumed significantly less saccharin solution when 

compared to wildtypes. KD significantly reduced the preference for saccharin in wildtype and 

Dravet mice. (Data shown are from 20 wildtype mice (10 CD, 10 KD) and 21 Dravet mice (10 

CD, 11 KD)). H Discrimination index in novel object recognition test. All four groups showed 

no difference in cognitive performance. Data shown are from 19 wildtype mice (9 CD, 10 KD) 

and 19 Dravet mice (10 CD, 9 KD) (Two-way ANOVA, Bonferroni post hoc test, * = p<0.05, 

mean±SEM). I Nest complexity score over seven consecutive days. Dravet mice showed poorer 

performance in building complex nests. (Friedman test, Dunn's Multiple Comparison Test, * = 

p<0.05 compared to wildtype groups, median). Data shown are from 20 wildtype mice (10 CD, 

10 KD) and 21 Dravet mice (10 CD, 11 KD). 

  



DISCUSSION 

155 
 

DISCUSSION 

1. Face validity of the model 

The validity of a novel animal model should be determined to provide evidence about how 

suitable the model is for investigating the disease it attempts to recapitulate. Thus, the first aim 

of this study was to characterize the phenotype of this conditional mouse model carrying the 

Dravet syndrome mutation A1783V and compare it with symptoms observed in patients with 

Dravet syndrome. The first manuscript provided valuable data about model characteristics 

including thermally provoked seizures, spontaneous seizures, a high mortality rate and 

behavioral alterations including hyperactivity and attention deficits. In addition, the second 

manuscript confirmed the presence of motor deficits, which are common symptoms of Dravet 

syndrome. Therefore, the findings from both manuscripts provide a valuable basis for 

conclusions about face validity of the model. Further in the text, different phenotype 

characteristics are compared between mice and patients with Dravet syndrome in order to 

determine the translational significance of the model. 

1.1. Sudden unexpected death in epilepsy 

Unfortunately, SUDEP rates are high in patients with Dravet syndrome (Shmuely et al., 2016). 

The reasons for the particularly high SUDEP risk in this epileptic encephalopathy have not yet 

been completely elucidated (Kalume, 2013; Shmuely et al., 2016). However, SUDEP is often 

attributed to frequent convulsive seizures (Harden et al., 2017) and the following postictal 

immobility, linked to peri-ictal respiratory dysfunction (Kuo et al., 2016). In another Dravet 

mouse model, sudden unexpected death has shown to be related to a high frequency of Racine 

V stage seizures (Kalume, 2013), which was also observed in this animal model. Taken 

together, the cause of death in these animals can be considered as probable SUDEP (Devinsky 

et al., 2018a). In the Scn1a-A1783V mice, mortality rates were high in the affected animals. 

This might be because the affected offspring had a 50:50 mixed C57BL/6J and 129S1 
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background. It has previously been described that C57BL/6 mice develop a severe phenotype 

upon the introduction of Dravet syndrome Scn1a mutations (Cheah et al., 2012; Kalume, 2013). 

In comparison to previously characterized Dravet mouse models with this mutation (Kuo et al., 

2019; Ricobaraza et al., 2019), the model studied here exhibits a milder phenotype and a lower 

mortality rate, rendering it more preferable for further biomedical and pharmacological 

investigation.  

The fact that an obvious peak became evident with most animals dying between P20 and 23, 

implies that the model is very well suited for studies analyzing the pathophysiological factors 

contributing to SUDEP and for studies assessing the impact of drug candidates on SUDEP rates. 

Decreasing SUDEP rates is one of the declared aims of future drug development for the 

management of Dravet syndrome (Genton et al., 2011). Thus, the commercial availability of an 

animal model for respective studies is of the utmost relevance. 

1.2. Hyperthermia-induced seizures 

Hyperthermia-induced seizures are one of the hallmarks of epilepsy manifestation in patients 

with Dravet syndrome (Dravet, 2011). Thus, we aimed to check if mice with a Dravet genotype 

are prone to exhibit a seizure with exposure to hyperthermia. Interestingly, an increased 

susceptibility to hyperthermia-induced seizures with low thresholds was evident on all three 

test days: P23, P25 and P32. In addition, mean thresholds were rather comparable between P23 

and P25 indicating that repeatedly using the animals may be possible. However, the level of 

intraindividual variation in thresholds between stimulation days must be taken into account for 

repeated drug testing.  

With the subsequent testing 1 week later (P32), a reduction in the threshold became evident in 

comparison to P23 and P25 thresholds in both sexes. The lowered threshold at P32 might reflect 
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a progression of the disease with steadily increasing seizure susceptibility. However, a kindling 

phenomenon based on the previous induction of seizures might also have contributed.  

1.3. Spontaneous seizures 

With progression of the disease, patients with Dravet syndrome develop further seizures, which 

then also occur without any thermal trigger (Dravet, 2011). In the first study, we obtained the 

first pilot information about spontaneous seizure activity in the novel Dravet mouse model. The 

information was based on video monitoring as continuous recordings are impossible in the very 

young animals. However, further electroencephalographic recordings in adult mice (manuscript 

I and II) confirmed the presence of seizure activity. Spontaneous motor seizures started at P16 

with seizures recapitulating the convulsive generalized seizures observed in patients. Seizures 

often progressed with running and bouncing phases indicating spread of seizure activity to the 

brain stem. Considering the fact that discharges affecting the brain stem are considered a critical 

factor contributing to SUDEP (Aiba and Noebels, 2015), it will be of particular interest to 

perform electrophysiological studies in the model studying the cellular mechanisms of 

propagation to the brain stem in more detail. In addition to behavioral motor seizures, we 

repeatedly observed episodes with behavioral arrest and non-responsiveness to external stimuli. 

These episodes might reflect atypical absence seizures, which can occur in patients with Dravet 

syndrome with an onset at different ages between 4 months and 6 years (Ohki et al., 1997). 

However, further electrographic recordings will be essential to confirm seizure activity during 

these episodes.  

1.4. Behavioral alterations 

Behavioral alterations contribute to the burden in Dravet patients (Besag, 2004; Dravet, 2011; 

Genton et al., 2011). As such, we gathered comprehensive behavioral information from the 
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same animals to form a better basis for drawing conclusions about altered behaviors. In 

addition, a battery of behavioral tests can help to identify factors of bias.   

Lack of attention related to hyperactivity constitutes one of the common behavioral 

disturbances in Dravet patients (Battaglia et al., 2016; Besag, 2004; Dravet, 2011). In line with 

this clinical trait, we observed a pronounced increase in activity in the open field as well as in 

the elevated plus maze paradigm. In other Dravet mouse models including a knock-in model 

with a nonsense R1407X mutation and other knockout models, hyperactivity has become 

evident (Dutton et al., 2013; Han et al., 2012; Ito et al., 2013; Rubinstein et al., 2015a). While 

anxiety has not been reported in Dravet patients (Sinoo et al., 2019), our data showed a lower 

level of anxiety in Dravet mice observed in the elevated plus maze paradigm. However, when 

assessing anxiety-like behavior in these mice, the impact of evident hyperactivity on the test 

should also be considered as it may impact the time spent in different zones.  

Development of motor abnormalities with features of cerebellar symptoms typically occur with 

disease progression in Dravet patients (Genton et al., 2011). While the rotarod test failed to 

demonstrate any motor disturbances in Dravet mice, the analysis of their gait proved to be a 

more sensitive approach and revealed alterations in body posture and motor coordination. 

Dravet mice had a different body posture in comparison to wildtype mice as a result of a 

significantly smaller distance between the hindlimbs. External torsion of the forelimbs may 

represent an attempt to regain stability. Considering great differences between the quadruped 

and biped gait, it is hard to say whether these changes mimic symptoms in humans. 

Nevertheless, these data certainly provide valuable information about how Scn1a deficiency in 

this mouse model results not only in seizure and behavioral alterations, but also in motor 

disturbances due to its expression in cerebellar Purkinje cells and in the nodes of Ranvier of 

motor neurons (Duflocq et al., 2008; Gataullina and Dulac, 2017). 
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Autistic features have been reported in subgroups of Dravet patients (Berkvens et al., 2015; 

Besag, 2004; Genton et al., 2011). With an increased level of active social interaction, Dravet 

mice did not show autistic-like behavior when compared to wildtype littermates. However, we 

must take into account that here we examined the social interaction between affected animals, 

and that respective data for an interaction between patients with Dravet syndrome have not been 

reported yet. In addition, it might be of interest to further study the development of social 

interaction at different ages and to perform another test where a novel stimulus animal is 

introduced.  

Analyzing saccharine preference revealed prominent alterations as a consequence of the genetic 

deficiency. This finding might point to a slight increase in anhedonia-associated behavioral 

patterns. At the moment, there is a lack of clinical reports about anhedonia and depression in 

Dravet patients, perhaps attributable to the fact that depression is difficult to assess in patients 

with mental retardation and prominent behavioral disturbances. 

Nest-building represents a behavioral pattern that is considered non-essential under laboratory 

conditions (Jirkof, 2014). Dravet mice, especially the females, proved to be less motivated to 

engage in nest-building activity as compared to their wildtype littermates. We obtained no 

evidence that nest complexity was compromised by spontaneous seizure activity in the home 

cage, thus, the data indicate that Dravet mice might not enjoy in this type of “luxury” behavior. 

The poor performance in nest-building might also reflect a failure to focus on a specific task 

thereby reflecting a hyperactivity-attention deficit syndrome, which is characteristic of Dravet 

patients (Berkvens et al., 2015). For instance, it has been described that children are restless 

and do not show an interest in playing with toys or in the other usual activities for their age 

group (Dravet, 2011). 
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Considering that the analyses were performed sequentially in the same animals, we cannot 

exclude an influence of the sequence of the testing. However, the additional information gained 

from individual animals allows better characterization of the animal model, with a possibility 

to find correlations between data from individual animals. For instance, the correlation between 

total distance moved as the main locomotion parameter and social interaction, elevated plus 

maze parameters and nest complexity score, indicates that hyperactivity may contribute to some 

of the behavioral results. 
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2. Comparison to other mouse models of Dravet syndrome 

The comprehensive characterization of this mouse model provided valuable information about 

the model´s similarity to the clinical symptoms of Dravet syndrome and its value for further 

scientific research. The model is also the first animal model of Dravet syndrome commercially 

available to a broad scientific audience. In addition, it is a conditional knock-in mouse model 

that avoids the breeding of affected animals. Besides these advantages, it is of particular 

relevance to compare this model to other available models (Table T1) to conclude about its 

value for the scientific community.  

Interestingly, the time of spontaneous seizure onset in our model was on the identical day of 

postnatal brain development as another model with heterozygous conditional deletion of exon 

7 (Ogiwara et al., 2013). In other Scn1a knockout models, later seizure onsets were reported 

including P18 (Cheah et al., 2012; Ogiwara et al., 2007), P20 (Miller et al., 2014; Tsai et al., 

2015), P21(Dutton et al., 2013; Yu et al., 2006) and the third postnatal week (Ricobaraza et al., 

2019). 

As in most other models, we confirmed an increased susceptibility to hyperthermia. 

Furthermore, we confirmed a reduced seizure threshold following weaning but at a later time 

point. Moreover, we demonstrated a decrease in seizure threshold over time. Similar findings 

were reported only in one other mouse model, with no seizures occurring up to 42°C at P21, 

but apparent seizures in 50% of mice at P35 (Rubinstein et al., 2015a). 

Besides the seizure phenotype, behavioral alterations are highly relevant for studies focusing 

on the pathophysiology and pharmacology of Dravet syndrome. While we failed to detect any 

social and cognitive deficits as in other models, we observed impaired motor coordination in 

Dravet mice so far reported only in a few mouse models (Ogiwara et al., 2007; Ricobaraza et 

al., 2019; Yu et al., 2006). Interestingly, cognitive decline was reported in a mouse model with 

the same mutation (Ricobaraza et al., 2019) thereby implying that a different battery of tests 
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may reveal the mutation´s impact on cognition. Furthermore, we also demonstrated poor nest 

building performance which, together with hyperactivity in these mice, may mimic attention 

deficits in humans. Interestingly, increased activity was reported in most of the other animal 

models. In contrast, the impact of hyperactivity on other behavioral tests was usually not 

assessed (Table T1). Here, we showed that hyperactivity in Dravet mice directly correlated with 

anxiety-like behavior, nest complexity score and social interaction. This suggests that 

hyperactivity impacts these other phenotypic features in Dravet mice.  

Lastly, we also described an anhedonia-associated behavior in Dravet mice, a core symptom of 

depression in patients. It is possible that depression in patients with Dravet syndrome has been 

overlooked due to the often severe language and intellectual disabilities.  

Besides excellent face validity for the investigation of Dravet syndrome, the Scn1a-A1873V 

mouse model showed several advantages over the other currently available models. Among 

these, the relatively low mortality rate and low threshold for hyperthermia-induced seizures are 

the model’s main advantages when compared to other mouse models. These render it more 

favorable for the pharmacological assessment of different drug candidates.  
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Table T1. A comparison between the Scn1a-A1783V mouse model of Dravet syndrome, other 

available mouse models with a heterozygous Scn1a mutation and a clinical manifestation of 

Dravet syndrome (the first row). The arrow indicates an increased or a reduced phenotype 

characteristic. Minus (-) indicates no significant change in the evaluated parameter. P – 

postnatal day, PW – postnatal week, M – months, n.a. - not available, HIS – hyperthermia-

induced seizure. 1(Ricobaraza et al., 2019); 2(Kuo et al., 2019); 3(Ogiwara et al., 2007); 4(Ito et 

al., 2013); 5(Dutton et al., 2013); 6(Han et al., 2012; Kalume, 2013; Oakley et al., 2009); 7(Yu 

et al., 2006); 8(Cheah et al., 2012); 9(Ogiwara et al., 2013); 10(Miller et al., 2014); 11(Mistry et 

al., 2014); 12(Tsai et al., 2015); 13(Dutton et al., 2017; Sawyer et al., 2016); 14(Martin et al., 

2010); 15(Cooper et al., 2016). The table is adapted from manuscript I. 
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Clinical picture of 

Dravet syndrome 

n.a. 1615 5-8 

M 

/ ↑ - ↓ ↓ n.a. ↓ n.a. 

Scn1a-A1783V  50:50 40 P16 39.4  

(P23) 

↑ ↓ ↑ - ↑ ↓ ↓ 

1Scn1aWT/A1783V 100:0 75 PW3 38.2 
(1-6 M) 

↑ ↑ - ↓ n.a. ↓ ↓ 

2Scn1a∆E26 90:10 100 P14 41.1 

(P12-14) 

n.a n.a. n.a. n.a. n.a. n.a. - 

3 Scn1aRX/+ 

 

75:25 40 P18 n.a. n.a. n.a. n.a. n.a. n.a. - - 

4Scn1aRX/+ 

 

100:0 40 P18 n.a. ↑ ↓ ↓ ↓ n.a. - - 

5Scn1aFlox/+Cre+/- 100:0 100 P21 40.7  

(P22) 

↑ ↑ ↓ ↓ n.a. n.a. n.a. 

6Scn1a+/- 

 

99.9: 

0.1 

40 P21 39.5  

(P20-46) 

↑ ↑ ↓ ↓ n.a. ↓ n.a. 

7Scn1a+/- 
 

0:100 10 P21 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

7Scn1a+/- 
 

100:0 80 P21 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

8Scn1afl/+  

 

100:0 70 P18 39  

(P35) 

↑ n.a. ↓ ↓ n.a. n.a. n.a. 

9Scn1ad/+  

 

97:3 25 PW3 n.a. 

 

n.a. n.a. n.a. n.a. n.a. - n.a. 

10Scn1atm1Kea  

 

75:25 54 P24 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

11Scn1atm1Kea 50:50 50 P18 n.a. 

 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

12Scn1aE1099X/+  75:25 46 P20 40.2  

(PW3-5) 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

13Scn1aRH/+ 

 

100:0 5 n.a. 41.3 

(P14-15) 

↑ - ↓ ↓ n.a. ↓ - 

14Scn1aRH/+ 
 

mix 5 n.a. 43.1 

(P14-15) 

n.a. n.a. n.a. n.a. n.a. n.a. - 
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3. Molecular and metabolic consequences of Scn1a genetic 

deficiency 

In the first manuscript, we provided relevant information about alterations in the hippocampal 

proteome of Dravet mice prior to and following epilepsy manifestation. The focus of research 

in the second manuscript was the investigation of the metabolome in the plasma and 

hippocampal tissue of Dravet mice. This approach might identify potential candidate 

mechanisms contributing to the course of Dravet Syndrome.  

Dravet syndrome is closely related to SCN1A deficiency and the loss of function of sodium 

channels on GABAergic interneurons, leading to overall hyperexcitability and ictogenesis 

(Catterall, 2018). In 2006, this was demonstrated for the first time in an animal model of Dravet 

syndrome (Yu et al., 2006). Further electrophysiological studies confirmed this finding but also 

pointed towards other processes contributing to disease development such as excitability of 

hippocampal excitatory neurons (Almog et al., 2019; Mistry et al., 2014; Ogiwara et al., 2013; 

Tsai et al., 2015). In line with that, data from proteomic and metabolomic studies demonstrated 

significant alterations in inhibitory and excitatory signaling in the hippocampus of Dravet mice 

following the onset of spontaneous seizures.   

Significant changes in the expression of several GABAA and GABAB receptor proteins, as well 

as a lower level of GABA in the hippocampus of Dravet mice, indicated disrupted GABAergic 

signaling which may contribute to ictogenesis in Dravet mice.  

Interestingly, both studies also pointed towards a strong regulation of glutamatergic signaling 

in the hippocampus of Dravet mice. These changes might reflect compensatory mechanisms 

occurring as a consequence of hyperexcitability in Dravet mice. Whilst some of these aspects 

have already been discussed in the second manuscript, due to space limitations and the focus of 

the manuscript, some were shortened or excluded. Therefore, they are discussed in detail here. 
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In the second manuscript, we showed that glutamate, the main excitatory neurotransmitter in 

the brain, was down-regulated in the hippocampus of Dravet mice. Even though glutamate 

levels were reduced in the hippocampus, its distribution within synapses may be changed, as 

indicated by our proteomics data. Dravet mice showed a trend for the up-regulation of the 

vesicular glutamate transporter 1 (VGLUT1), leading to increased presynaptic vesicle filling 

and presynaptic glutamate release (Du et al., 2020). Once released into the synaptic cleft, the 

majority of glutamate is taken up by astrocytes via the excitatory amino acid transporters 1 and 

2 (EAAT1, EAAT2) and converted into glutamine via glutamine synthetase. In manuscript I 

we reported a down-regulation of respective proteins, which, combined with a strong up-

regulation of GFAP (glial fibrillary acidic protein), may imply reactive astrogliosis in Dravet 

mice. Altogether, this can result in glutamate accumulation in the synaptic cleft and astrocytes, 

thus contributing to neuronal hyperexcitability. Moreover, once taken up by astrocytes, 

glutamate conversion to glutamine in Dravet mice is reduced, possibly leading to glutamate 

accumulation in astrocytes and further increasing plasma membrane thresholds for its uptake 

by excitatory amino acid transporters (Mahmoud et al., 2019). This could explain why even 

with reduced hippocampal glutamate levels, its distribution within synapses could still lead to 

excitotoxicity and promote seizures in these animals.  

Interestingly, both GABA and glutamate were down-regulated in Dravet mice hippocampus. 

Yet, GABA levels were reduced to a lesser extent, resulting in an increased GABA:glutamate 

ratio in Dravet mice. This could be a compensatory mechanism to the overall lack of glutamate, 

which is known to convert to both GABA and α-ketoglutarate in cells. As already mentioned 

in the second manuscript, lower glutamate levels and alterations in the glutamate/GABA-

glutamine cycle, may also be a consequence of a decreased TCA cycle-mediated supply of the 

glutamate precursor α-ketoglutarate. However, the enzyme directing conversion of glutamate 

to α-ketoglutarate and vice versa (glutamate dehydrogenase), showed no changes in expression. 
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On the contrary, glutamic acid decarboxylase 2 is one of the two key enzymes for GABA 

formation from glutamate (Erlander et al., 1991) that showed a trend towards an up-regulation 

in four-week-old Dravet mice. This may suggest altered glutamate fueling of GABA, which 

can further contribute to the disrupted balance between GABA and glutamate observed in these 

animals. However, further studies exploring the alterations in the glutamate/GABA-glutamine 

cycle in different disease phases of Dravet syndrome are needed to confirm this concept.  

Ionotropic glutamatergic receptors, NMDA or AMPA, are frequently linked to epilepsy in 

patients and animals, as are mutations in NMDA receptor genes (Xu and Luo, 2018). Agonists 

of these receptors can provoke seizures in animals or humans while their antagonists can inhibit 

seizures in animal models, listing them as potential anti-seizure medications (Hanada, 2020). 

However, to date, perampanel is the only glutamatergic receptor antagonist that has proved 

efficacious in the treatment of focal and generalized tonic-clonic seizures (French et al., 2012; 

French et al., 2013; French et al., 2015; Krauss et al., 2012; Nishida et al., 2018). 

Aside from low glutamate levels in the hippocampus, we also noted a strong down-regulation 

of both ionotropic and metabotropic glutamatergic receptors, predominantly expressed on the 

postsynaptic neuronal and glial membranes (Hanada, 2020). These changes may be a result of 

glutamate excitotoxicity and consequential receptor internalization or apoptosis (Scott et al., 

2004).  

In addition to changes in GABAergic and glutamatergic signaling, alterations in other 

neurotransmitters systems and signaling molecules became evident in the hippocampus of 

Dravet mice. For instance, the abundance of several proteins involved in dopaminergic 

signaling was altered in Dravet mice. In addition, an interesting finding was an overall down-

regulation of calcium and potassium channel subunits with possibly contrasting consequences. 

However, the actual consequences of these changes, such as dopaminergic signaling and the 

function of channels in the hippocampus, remain to be further examined. 
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Next, the nitric oxide signaling pathway, dominated by the up-regulation of neuronal nitric 

oxide synthetase (nNOS), was significantly regulated in Dravet mice. As a result of NMDA 

overstimulation, calcium entry through cation channels triggers nNOS, which induces the 

synthesis of nitric oxide (Lipton et al., 1993; Mahmoud et al., 2019; Yamauchi et al., 1998). 

Nitric oxide is known to further mediate oxidative stress, reactive glial cell proliferation and 

promote angiogenesis, all of which have been discussed as potential contributors to 

epileptogenesis and overall hyperexcitability in the epileptic brain (Arhan et al., 2011; 

Mahmoud et al., 2019; Morbidelli et al., 2004). In line with this, we have reported reactive 

astrogliosis and increased angiogenesis in the hippocampus of Dravet mice. However, follow 

up studies addressing the functional consequences of these alterations would be essential to 

confirm our findings. 

In addition, recent findings also proposed a link between excessive central nitric oxide 

production and hypothalamic-pituitary-adrenocortical (HPA) axis dysregulation (Bruenig et al., 

2017; Chen et al., 2015a). Interestingly, investigation of the Dravet mice metabolome revealed 

plasma depletion of corticosterone, the main glucocorticoid in rodents. Corticosterone is 

released by the adrenal glands as a result of HPA axis activation in response to stress or other 

triggers (Herman et al., 2016). While the activation of the HPA axis serves as an important 

adaptive function preparing the body for increased demands, long-term activation by chronic 

stressors can be associated with detrimental effects and, in particular, with epileptic activity 

(Castro et al., 2012; Herman et al., 2016). The lower corticosterone levels in Dravet mice are 

rather unexpected, considering its direct role in promoting seizures (Joëls, 2009). However, a 

down-regulation of HPA axis activity and reduced plasma corticosterone may represent a 

compensatory mechanism to the long-term overstimulation. Therefore, it would be of interest 

to check corticosterone levels in younger animals following the highest incidence of seizures 

and SUDEP and thus inspect when negative feedback of the HPA axis occurs.   
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One of the main findings in this study were pronounced alterations in bioenergetics in the 

hippocampus of Dravet mice, specifically in glucose metabolism and TCA cycle activity. These 

metabolic changes may be associated with increased interictal activity and a failure to fulfill 

higher energy demands. Furthermore, these alterations may not only represent a consequence 

of seizure activity, but can also contribute to an increased susceptibility to seizures and 

ictogenesis. This has also been observed in metabolic epilepsies, which in many cases also have 

a genetic cause (Scheffer et al., 2016).  

As mentioned above, the interneuron energy hypothesis may further explain the particularly 

high seizure incidence, one of the clinical manifestations of Dravet syndrome. The hypothesis 

is based on evidence that inhibitory interneurons require a higher amount of energy (Kann, 

2016). This may in turn result in excitatory neuron disinhibition and hyperexcitability, as 

previously discussed (Henke et al., 2020). This could explain how energy depletion in neurons 

caused by an increased interictal spiking may further contribute to lowering of seizure threshold 

and ictogenesis. In line with this hypothesis, intermediates of glucose metabolism and the TCA 

cycle significantly correlated with the severity of spontaneous motor seizures in Dravet mice.  

Lastly, we have also observed some possible compensatory changes to energy deficits, 

including increased glycolysis and glycogenogenesis. Particularly interesting were alterations 

pointing towards a dysregulation in the metabolic coupling between neurons and astrocytes in 

Dravet mice. These changes could affect glycolysis in astrocytes, lactate shuttle to neurons and 

TCA cycle regulation in neurons (Turner and Adamson, 2011), altogether affecting the brain’s 

energetic state. 
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4. The impact of the ketogenic diet on the phenotype and 

metabolome of Dravet mice 

A ketogenic diet has been recommended as a second-line therapy in Dravet syndrome (Cross 

et al., 2019). The diet is known to shift energy metabolism towards a more fat-based energy 

supply, thus providing indirect evidence for metabolic and bioenergetic alterations in patients 

with Dravet syndrome. In the second manuscript, we aimed to identify metabolic changes in 

the hippocampus and plasma samples of Dravet mice. In addition, we aimed to investigate the 

impact of a ketogenic diet on these alterations and its therapeutic potential in the mouse model 

of Dravet syndrome here evaluated.  

The ketogenic diet failed to improve the seizure and behavioral phenotype in Dravet mice. 

However, the diet succeeded to partially improve their impaired gait. This might be related to 

an increase in intracellular forms of glucose in the hippocampus. In line with this assumption, 

this improvement in gait positively correlated with hippocampal levels of glucose and glucose-

6-phosphate. Therefore, replacing glucose utilization by ketone bodies, may be sufficient to 

improve the gait in Dravet animals. Importantly, the level of ketosis did not show a significant 

correlation with this improvement. Altogether, these findings trigger an interest to further 

investigate the therapeutic potential of the ketogenic diet in the treatment of gait abnormalities 

in patients with Dravet syndrome, so far shown in only one clinical study (Tian et al., 2019).  

Due to word count limitations and the focus of the manuscript, some interesting aspects 

regarding the application of the ketogenic diet and its metabolic consequences in Dravet mice 

were not discussed in the manuscript. Therefore, they are discussed here. A lower intake of 

ketogenic diet than the control diet was expected, considering that its caloric value is almost 

twice as high as the control diet. However, an interesting finding was that mutant mice 

consumed significantly higher amounts of the ketogenic diet than wildtype mice, which resulted 

in a much steeper body weight curve as compared to the remaining three groups. This 

phenomenon could be a consequence of an increased appetite in Dravet mice on the high-fat 
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diet. In patients with epilepsy, an increase of appetite and body weight is frequently observed 

especially when taking antiseizure drugs (Ben-Menachem, 2007). Seizures are high-energy 

events for the brain (Yang et al., 2013a), which could promote appetite in Dravet animals, the 

results of which would be much more pronounced on a high-energy diet, such as the ketogenic 

diet. However, this behavior has not been observed in Dravet patients. Conversely, in some 

patients with Dravet syndrome, loss of appetite has been described, particularly when taking 

stiripentol, topiramate and zonisamide as antiseizure drugs (Knupp and Wirrell, 2018). Since 

we did not detect any differences between Dravet and wildtype mice on the control diet, the 

change in appetite may also be triggered by the lower glucose intake and an attempt to 

compensate for the already depleted glucose levels.  

Even though mutant mice consumed a higher amount of ketogenic diet, they still exhibited a 

lower level of ketosis in the hippocampus and plasma, when compared to wildtype controls. 

This may explain a failure to refill reduced TCA cycle intermediates from ketone bodies, 

compensate energy deficiency and reduce seizures in these mice. Consistent with this, we have 

observed a negative correlation between intracellular phosphorylated glucose forms, lactate, 

glutamate precursors (α-ketoglutarate, L-glutamine, L-asparagine and L-aspartic acid) and the 

GABA:glutamate ratio, the main representation of inhibitory/excitatory balance in the brain 

postulated as one mechanism of epileptogenesis and seizure generation (Fritschy, 2008). Except 

for an increased abundance of phosphorylated glucose in Dravet mice, all other metabolites 

directly or indirectly fueling the TCA cycle, were down-regulated in Dravet mice and the 

ketogenic diet failed to restore wildtype levels, thus confirming our hypothesis. On the other 

hand, reduced free glucose import, glucose concentration in cells and up-regulated glucose-6-

phosphate in the hippocampus of Dravet mice might point towards a mechanism compensating 

for energy deficiency and an attempt of cells to shift glucose metabolism towards glycolysis. 

Furthermore, an increased level of glucose-1-phosphate may indicate a higher degradation or 

lower synthesis of glycogen reserves (Obel et al., 2012). An introduction of the ketogenic diet 
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seemed to further increase glucose-6-phosphate forms in the hippocampus. This could be 

explained by the dominant use of ketone bodies for energetic needs and saving glucose for other 

relevant processes such as the pentose phosphate pathway, a non-oxidative metabolic pathway 

for the synthesis of nucleotides (Soty et al., 2017). An observed increase of 6-phosphogluconic 

acid, an intermediate in the pentose phosphate pathway, further supported this claim. 
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5. Study limitations 

As mentioned above, “Omics” studies are a useful approach for the broad screening of data and 

obtaining the first information about disease-associated molecular alterations. Similarly, here 

we managed to demonstrate overall information about neuronal signaling in the brain of Dravet 

mice. However, we must not overlook some of the inevitable study limitations.  

Firstly, proteomic data can only provide information about protein abundance but not about the 

functional relevance of this molecular change. Therefore, future studies will be essential to 

provide further information, thus confirming or opposing our hypotheses.  

Secondly, proteomic and metabolic screening of hippocampal tissue cannot provide 

information about protein or metabolite distribution within hippocampal cell structures, 

neuronal or glial cells or the intra- or extracellular space. Respective data may provide crucial 

information about the functional relevance of proteome and metabolome alterations and help 

the interpretation of our results. Immunohistochemical studies could provide information about 

the localization and distribution of selected proteins in the hippocampus and are thus of 

particular interest for the future. 

Moreover, we should also consider the difference in age of mice sampled in these two studies. 

Four-week-old mice in manuscript I are considered early adolescent mice, while mice in 

manuscript II are fully adult (Brust et al., 2015). Considering that the adolescent brain still 

undergoes intense developmental changes, this may result in differences in the expression of 

certain proteins which were compared to metabolites of adult mice in the second study. 

However, we must state that the different sampling time in the two studies was due to the 

different study aims. The proteomics study focused on molecular alterations at the early 

developmental age in order to capture all changes before and shorty following epilepsy 

manifestation. The later time point was chosen in order to pass the period with the highest 

seizure frequency thus aiming to limit the direct impact of seizures on the proteome. On the 
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other hand, the metabolomics study aimed to assess which metabolic changes are linked to 

Dravet syndrome and the use of the ketogenic diet. In order to capture the impact of these 

alterations on both seizures and the behavioral phenotype of Dravet mice, we needed to conduct 

experiments in adult animals. In addition, the minimum duration of ketogenic diet application 

to induce ketosis is 3 weeks, which also influenced the time point of sampling. 

Lastly, four-week-old Dravet mice still exhibited lowered body weight as compared to wildtype 

littermates, an observation that disappeared by adulthood. Therefore, certain proteome changes 

may also result from poor brain and body weight development, which by themselves are known 

to deteriorate disease pathology in both animal models and humans (Crepin et al., 2009). Still, 

body weight loss is part of the phenotype of Dravet mice and should therefore be considered 

when investigating Dravet syndrome pathology in these mice.  
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CLOSING REMARKS 

Taken together, our findings revealed excellent face validity of the conditional, heterozygous 

Scn1a-A1783V Dravet mouse model bred on a mixed (50:50) C57BL/6J and 129S1 background 

with Hprt promotor-mediated neuronal knock-in. The model accurately replicates the clinical 

syndrome in patients with Dravet syndrome with an increased susceptibility to hyperthermia-

induced seizures, development of spontaneous seizures, a relatively high incidence of SUDEP, 

hyperactivity and motor deficits. The model is therefore highly valuable for the evaluation of 

pharmacological strategies in Dravet syndrome and emerging novel “personalized” treatment 

options. In addition, the rate of mortality within a narrow time frame makes this model highly 

suitable for studies investigating mechanisms of SUDEP and approaches for its prevention.    

The untargeted proteomic profiling in Dravet mice revealed significant proteome differences 

and molecular alterations in hippocampal tissue both before and following disease 

manifestation. Several proteins involved in synaptic plasticity were affected before epilepsy 

manifestation. Thus, it would be of relevance for future studies to investigate if these molecular 

alterations represent early consequences of Scn1a genetic deficiency or can contribute to 

disease onset. Following epilepsy manifestation, molecular alterations beyond GABAergic 

interneuron dysfunction became evident. More complex pathophysiological mechanisms 

underlying the disease’s pathology should be considered in the future development of treatment 

strategies. Among those, glutamatergic synaptic transmission stood out as the most affected 

molecular mechanism in the hippocampus, later confirmed by the metabolome analysis in 

Dravet mice. The findings also indicated further alterations of components of the 

glutamate/GABA-glutamine cycle. These may serve as an endogenous compensatory 

mechanism, which can be supported by GABAergic drugs, already recommended as first line 

drugs for the treatment of Dravet syndrome.   
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The extensive metabolomic screening revealed prominent alterations in energy metabolism in 

the hippocampus of Dravet mice. Interestingly, some of these metabolites directly correlated 

with the severity of motor seizures observed in Dravet mice, including the hippocampal level 

of glucose-6-phosphate, TCA cycle intermediates and several amino acids. Their potential as 

target candidates for the treatment of Dravet syndrome should be explored in future studies. 

The ketogenic diet improved the motor deficits observed in Dravet mice, thus pointing to a 

potential role of metabolic alterations in ataxia and gait disturbances in Dravet syndrome. The 

development of therapeutic modulating concentrations of glucose and glucose-6-phosphate 

may be considered in the future for the treatment of Dravet syndrome and associated gait 

disturbances. Lastly, the ketosis state in Dravet and wildtype mice differed. This might explain 

why the diet failed to improve seizure susceptibility. In line with this, the diet is frequently 

prescribed in combination with other antiseizure drugs for therapeutic management of Dravet 

syndrome.  

Altogether, our findings revealed several molecular alterations beyond SCN1A deficiency that 

might contribute to the pathophysiology of Dravet syndrome. Their role as possible candidates 

for novel pharmacological treatments should be explored in future studies. However, further 

research addressing the functional consequences of these molecular alterations in different 

disease states of Dravet syndrome will be essential to validate our findings.  
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