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Nothing in life is to be feared, it is only to be understood. Now is the time to understand 

more, so that we fear less. 

Marie Curie 
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1 Summary 
Differentiating between self and non-self is the major task of the innate immune system. 

Therefore, misregulation of the finely orchestrated underlying mechanisms is linked to 

pathogenic malfunctions of the innate immune system. The major part of this thesis 

investigates the mode of autoimmunity prevention of the pathogen recognition receptor 

cyclic GMP-AMP synthase (cGAS). cGAS senses double-stranded DNA (dsDNA) in a sequence-

unspecific manner, evoking an innate immune response via its downstream adaptor 

stimulator of interferon genes (STING). The role of the cGAS-STING axis is well established in 

sensing pathogenic cytosolic DNA emerging from bacterial or viral sources. Growing evidence 

also links cGAS to sensing of mislocalized or structurally altered self-DNA. For long time cGAS 

was thought to be a strictly cytosolic protein, relying on this compartmentalization for 

differentiation between self and non-self-DNA. This view is nowadays challenged by multiple 

observations of cGAS colocalizing with nuclear or nuclear-like self-DNA species. Especially, the 

sequence-unspecific dsDNA sensing of cGAS was intriguing in the case of nuclear envelope 

breakdown during mitosis, as healthy cells do not elicit an immune response during cell 

division. This work aims to uncover the mechanism and structural basis for autoimmunity 

prevention of the cGAS-chromatin interaction. Canonical nucleosomes were found to be a 

potent inhibitor of cGAS activity, showing magnitudes higher cGAS affinity than the activating 

ligand double-stranded DNA. The first 3.3 Å cryo-EM structure of the cGAS-Nucleosome 

complex revealed a conserved unexpected protein-protein interaction of cGAS with the 

nucleosome core. cGAS was tightly anchored via an invariant `arginine anchor´ to the acidic 

patch formed at the interface between histone H2A and H2B. This sequestration covered a 

DNA binding site needed for active cGAS complex formation, thereby keeping cGAS in check 

at self-DNA encounter. Extensive mutagenic analyses confirmed the specificity of this 

inhibition mechanism in vitro and in cellulo. As histone-proteins are among the most 

conserved proteins found in eukaryotes this detection pattern serves as bona fide marker of 

self. This tight interaction of cGAS with nucleosomes and differences in cGAS activity 

depending on the compaction level of nucleosome arrays opens a whole new field of nuclear 

cGAS studies. 
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Another part of this thesis aims to understand the constant activity of the retinoic acid-

inducible gene I (RIG-I) Singleton-Merten-Sydrome (SMS) variant C268F. RIG-I can be seen as 

the RNA-sensing counterpart to the cGAS-STING axis, leading to an immune response after 

sensing of specific pathogenic RNA species. Defects in RIG-I regulation are linked to rare 

autoimmune diseases like Singleton-Merten- or Aicardi-Goutières-Syndrome (AGS). Similar to 

how cGAS is tethered to chromatin for inhibition also RIG-I developed mechanisms to prevent 

activation against self-ligands. As RIG-I structurally belongs to the superfamily 2 (SF2)-helicase 

family, it harbors an ATPase domain that is not needed for helicase activity, but instead is 

required for dissociating from self-ligands by ATP-hydrolysis driven translocation. How the 

RIG-I SMS variant C268F bypasses this regulation leading to constant activation was not 

known. RIG-I C268F was shown to have higher affinity towards self-like RNA species 

independent of ATP. Furthermore, the affinity towards ATP was lower compared to the wild-

type (WT) protein and the catalytic activity was reduced. These biochemical data suggested a 

signaling-mode independent of ATP. Indeed, the solved crystal structure of RIG-I C268F in 

complex with RNA revealed a reorganization of the active site introduced by the bulky 

phenylalanine residue that mimics an ATP bound state without nucleotide bound. Due to this 

pseudo-ATP bound state RIG-I C268F lacks the needed regulation and shows constant activity 

leading to autoimmunity. 

 

Combined, both works in this thesis underline the sophisticated mechanisms that have 

evolved in innate immunity sensing to efficiently prevent autoimmunity and how small 

changes can disrupt the tightly regulated differentiation apparatus. 
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2 Introduction 

2.1 Eukaryotic nucleic acid organization 

2.1.1 Chromatin – structuring the basis for all self-molecules 

Nowadays the central dogma of molecular biology: sequential irreversible information flow 

by DNA transcribed into RNA that is then translated to proteins is unquestionable (often 

referred to as `DNA makes RNA makes protein´)1. DNA serves as the fundamental information 

storage found in all cells. In eukaryotic cells DNA is only stored in two places: (1) as dynamic 

compaction structure called chromatin in the nucleus and as (2) mitochondrial DNA, that can 

be seen as evolutionary remnant resulting from the switch towards eukaryotic systems2 (plus 

chloroplast DNA in plants). The first description of a phosphorus substance within the cell, 

termed nuclein at this point but later known as DNA, was done by the fundamental work of 

Miescher in 18713. During his research on cell division, thereby also creating the concept of 

mitosis, Flemming recognized a readily stainable substance within the nucleus, he therefore 

named chromatin4. The discovery of the protein part of chromatin in 1884, the so-called 

histones, completed the main ingredients of the eukaryotic genomic organization5. 

Nevertheless, there was no indication of the function of this structure at this point. With the 

years it became clear, that indeed nuclein or rather DNA, is the carrier of genetic information6. 

The structure of the DNA double-helix obtained by X-ray diffraction might be one of the most 

well-known scientific achievements in the public perception7 and many hints towards the 

functionality of chromatin were made at this time (protein-free regions on chromatin, histone 

isolation, histone modifications linked to gene expression)8–10. The structural role of the 

protein part became clear, with the first electron microscopic images of chromatin. The DNA 

is wrapped around the histones in a repetitive manner forming a 10 nm diameter `beads on a 

string´ like structure11 (see Fig. 1). Finally, Kornberg published the first structure of the basic 

repetitive unit of chromatin: around 200 base pairs (bp) of DNA are wrapped around a central 

octameric unit comprised of four histone dimers building the central repetitive element – the 

nucleosome12,13. 
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Figure 1: Eukaryotic genome organization. As the first layer of compaction 147 bp of double-stranded DNA is 
wrapped around the histone octamer, creating the nucleosome core particle. The canonical histone octamer 
consists of two sets of H2A, H2B, H3 and H4. Next, multiple nucleosomes are linked in a linear fashion creating 
the 10 nm fiber. The micrograph shows the individual nucleosomes spaced by linker-DNA. In higher order 
chromatin, the canonical histone subset can be exchanged with histone variants, altering the function and 
topology of chromatin. In vitro the higher order 30 nm fiber is observed (see micrograph on the right). The 
occurrence of this species in vivo is still under debate. Further compaction with the help of architectural 
chromatin proteins, may end up in the most condensed DNA form – mitotic chromosomes. |micrographs from 
Olins et al. (2003); nucleosome core particle structure from PDB:1AOI 



Introduction 

|5| 

2.1.2 The nucleosome core particle – structural insights 

The wrapping of DNA around histone proteins fulfills multiple functions in eukaryotic genome 

organization. Because the genomic DNA is compacted 7-fold by wrapping around the histones, 

changes in local compaction levels directly influence gene transcription, DNA replication and 

repair by altering accessibility of the DNA. Chromatin shows multiple levels of compaction and 

organization with the nucleosome core particle (NCP) as the primary step (see Fig. 1). 

 

Insight into the exact architecture of the NCP was achieved by a crystal structure of the protein 

core without DNA, that was later on completed by a first high resolution structure together 

with DNA by Luger et al.14,15. Already from the structure without DNA it became clear that the 

canonical histone octamer core is formed by two copies of each of the so-called core histones 

(H2A, H2B, H3 and H4). 145 to 147 bp of DNA are wrapped around in 1.65 lefthanded super 

helical turns, leading to a disc-like structure with a diameter of 11 nm and a height of 5.5 nm15 

(see Fig. 2).  

 

As the compaction of genomic DNA is the basic principle of eukaryotic genome organization 

the histone core proteins are among the most conserved proteins in eukaryotes16. All of them 

are highly basic proteins with a mostly α-helical C-terminal domain for histone-histone 

interactions and an N-terminal tail, that is unstructured, when no DNA or other co-factor is 

bound to the histone octamer14. The C-terminal domain harbors the histone-fold – a motif 

where a central long α-helix (α2) is sandwiched by two shorter α-helices (α1 and α3) 

connected by short β-sheet containing loops (L1 and L2). Heterotypic interactions between 

H2A/H2B and H3/H4 are formed by their respective histone-fold motifs known as the 

`handshake’ interaction17 (see Fig. 2B). A stable (H3/H4)2 tetramer is formed by hydrophobic 

packing of a four-helix bundle between the two H3 molecules of two H3/H4 dimers. The 

octamer is completed by two H2A/H2B dimers interacting with a similar four-helix bundle 

between the H4s of the tetramer with H2B and additional interactions of the docking domain 

of the H2As with H3.  
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Figure 2: Structural overview of nucleosome core particle and `handshake´ interaction. A The canonical histone 
octamer subset colored according to the picture. 147 bp of dsDNA (blue) are wrapped around the central 
octamer. The created disc-like structure is 11 nm in diameter and 5.5 nm in height. B specific handshake motif 
of the individual histone folds, showing the interaction between H2A/H2B and H3/H4. |based on PDB:1AOI 

 

The created disc shows distinct DNA binding sites on its outer vertical surface, created by 

paired elements (paired β-loops or paired α-helices) from two neighboring dimers, thereby 

interacting with the DNA backbone where the minor groove faces the octamer15,17 (see Fig. 3). 

Many of these interactions are facilitated by highly conserved arginine residues located in the 

histone-fold domains sticking into the minor grooves and forming hydrogen-bonds with 

desoxyriboses18. The relative position of these interacting residues is fixed in different species, 

leading to specific DNA localization on the protein core19. The combined histone-fold motifs 

of all histones account for about 120 bp DNA binding surface (of total 147 bp). The residual 

contacts are made by the non-histone fold α-helix of H3 and the start of its N-terminal tail 

domain15. 
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Figure 3: Surface charge of octamer core. Surface charge of the histone octamer core displayed from positive 
(blue) to negative (red). The outer surface of the disc is highly positively charged, explaining the binding of DNA 
around that area, whereas the top and bottom the disc do not show positive charges. |based on PDB:1AOI 

 

This alignment of the DNA leads to a single base pair located at the particle´s pseudo two-fold 

axis, called the dyad. For non-palindromic sequences this splits the DNA in two halves of 73 

and 72 bp. That point defines the relative rotation of the DNA superhelix and is referred to as 

superhelix location 0 (SHL0). The residual outward facing minor grooves of the superhelix are 

therefore denoted as SHL ± 1-7 depending on the direction relative to SHL0 (see Fig. 4). Normal 

B-form DNA has a persistence length of around 150 bp (~50 nm) but is bent into a 1.65 turns 

lefthanded superhelix with 80 bp/turn when loaded onto a nucleosome. This large distortion 

is mostly accommodated by base-pair rolling into the minor and major grooves where they 

face the histone octamer surface20,21. The resulting superhelix shows low rise (30 Å rise per 80 

bp) with a diameter of around 42 Å and non-uniform bending (highest local curvature at 

SHL1.5 and SHL 4.5)15. Specific local histone-DNA interactions decrease the number of bp per 

helical turn from 10.5 to 10.2 bp/turn leading to a `twist defect´20,22. That was already noticed 

in the first crystal structure by Luger et al., where the asymmetric splitting of the DNA leads 

to an overwinding of the DNA by one bp. Nowadays it is known, that this `defect´ is rather a 

feature needed for chromatin remodeling23. 
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Figure 4: Nomenclature of superhelix locations. The pseudo two-fold axis of the nucleosome is called the `dyad´ 
or superhelix location 0 (SHL0). Depending on the location relative to this axis the outward facing minor grooves 
of the superhelix are denoted with SHL ± 1-7. From the side view, the visible strands of the superhelix are denoted 
as gyres. |based on PDB:1AOI 

Not all DNA sequences can accommodate these constraints equally well, inducing rotational 

shifting of the DNA relative to the central axis. The optimal nucleosome positioning sequence 

was found by systematic evolution of ligands by exponential enrichment (SELEX) and is well-

known as the `Widom-601 sequence’24. This sequence shows high TA periodicity in one gyre 

and low periodicity in the other one, separated by the dyad axis, leading to strong 

positioning25. 

 

Beyond the formation of the rigid spool-like core structure, all histones have more flexible but 

yet conserved tail regions. These initially unstructured parts originate from the N-terminal 

regions of all histones and an additional tail at the C-terminus of H2A. When DNA is bound to 

the octamer, all tails follow a channel formed by two stacked minor grooves of the DNA 

superhelix, thereby facing outwards beyond the DNA and making them accessible. Different 

exit channels are observed for the respective tail-domains, with slight differences found 

depending on the crystal structure taken as reference. Despite not contributing much to the 

overall stability of the NCP26, tail-removal leads to increased DNA release of the nucleosome27. 

Furthermore, it appears that the tail-domains gain more structure in higher order chromatin 

under physiological conditions28,29. Not playing a huge role for the NCP itself, the tail domains 

are crucial for epigenetic modifications and formation of higher order chromatin structures by 

facilitating inter-nucleosomal contacts30,31. 
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2.1.3 Higher order chromatin – dynamic multilayer architecture 

The organization of DNA wrapped around nucleosomes creating the `beads on a string´ 

structure can be seen as the primary structure of chromatin. Thinking of mitotic chromosomes 

as the terminal superstructure, multiple organizational sublevels occur depending on histone 

modifications and interplay, architectural chromatin proteins (ACPs) and ATP-dependent 

chromatin remodelers32. The first addition to the repeating nucleosome array is binding of a 

linker histone (H1) to extra-nucleosomal DNA at the dyad axis, creating the chromatosome 

now covering an extra 20 bp of DNA33. Metazoan linker histones have a tripartite structure 

consisting of a flexible N-terminal tail, a central globular domain with winged-helix fold and a 

highly basic intrinsically unordered C-terminal tail34. The globular domain interacts with one 

or two DNA strands at the dyad, whereas the N-terminal domain is needed for further higher 

order compaction31,35.The next architectural layer of chromatin packing is the short-range 

interaction between neighboring nucleosome arrays forming some kind of higher-order fiber. 

The oldest concept is the solenoid superhelix with 5-6 nucleosomes/turn creating a 30 nm 

thick fiber36. This view is challenged by the two-point start helix Zig-Zag model37. To date, the 

existence of the so-called `30-nm fiber´ in vivo is still controversially discussed in the field. Due 

to the compactness and electron density of condensed in vivo chromatin, there is still no high 

resolution electron microscopy structure available38.  

 

All structural data on the three-dimensional arrangement are based on in vitro reconstituted 

systems, leading to different outcomes. The crystal structure of a short-linker length 

tetranucleosome array without H1 promote the Zig-Zag model39, whereas EM studies with 

incorporation of H1 propose a interdigitated solenoid model38. Electron microscopy-assisted 

nucleosome capture (EMANIC) shows a mixture of both types creating a heteromorphic 

fiber40, which is also supported by mesoscopic modelling41. Most probably there is not a 

universal model, but different structures can be found depending on DNA sequence, histone 

variants, and cell type and its cell cycle stage32,42. Howsoever the intermediate fiber is formed, 

these fibers can further fold into larger three-dimensional structures, that end up in 

condensed chromosomes at metaphase. 
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This classical view of hierarchal chromosome compaction is increasingly challenged by a liquid-

liquid phase separation (LLPS) model, that would favor long distance interactions43. LLPS 

recently has emerged as an important cellular compartmentalization mechanism for non-

membranous structures. Especially proteins with intrinsically disordered regions (as found in 

the histone-tails) are prone to phase separation44. Chromatin LLPS was shown to be 

dependent on the architectural protein heterochromatin protein 1 (HP1)45 and different 

properties of the primary structure like array length, histone modifications, and histone H1 

(and therefore also salt concentration)46.  

 

2.1.4 Histone modifications and variants – regulators of the dynamic network 

Generally, chromatin can be separated into two subtypes depending on transcriptional 

activity. Active and therefore less compacted euchromatin and dense but inactive 

heterochromatin. Modulation of these regions within the three-dimensional structure is 

achieved by post-translational modifications (PTMs) of the histone cores and exchanging the 

canonical histone octamer set to alter its interaction with the DNA. All kinds of modifications 

found on other proteins are also found on histones47. The longest known modification is 

acetylation at lysine residues, mostly in the tail regions (with few exceptions of core 

acetylation)8. Together with phosphorylation at serines, threonines and tyrosines of the tails, 

these modifications alter the charge of the respective residues, weakening the association 

with DNA48. In contrast, methylation at arginines and lysines does not influence the charge of 

the histones but adds another layer of regulation by the possibility of multiple modifications 

on a single amino acid residue. Adding to these most common modifications also 

ubiquitylation, sumolyation, ADP-ribosylation and β-N-acetylglucosamine can be found49. For 

all modifications specific addition and removal enzymes are available to achieve the dynamic 

environment found in chromatin. In general histone acetylation is correlated with increased 

gene expression, whereas the regulation by methylation is more complex. H3K4me and 

H3K36me are associated with activation whereas H3K9 and H3K27 methylation leads to 

repression50. Opening the chromatin structure by charge repulsion after phosphorylation 

enables increased accessibility for remodeling and exchange of histone variants51.  
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Another perturbation from the canonical nucleosome structure is accomplished by 

replacement of the core histones with specific histone variants. The expression of the four 

core histones is strictly coupled to replication, thereby only occurring in S-Phase52.  

 

In contrast histone variants  show a cell type and species specific dynamic expression pattern 

independent of the cell cycle, thereby acting as a regulatory module53. All human core histones 

have at least one modified counterpart, with H2A and H3 showing the most variations54. The 

best studied and universal histone variants are CenP-A (a H3 variant), H3.3, H2AX and H2AZ. 

CenP-A is exclusively found at nucleosomes at the centromere region during G1-phase55. H3.3 

is a hallmark of euchromatin, found in active genomic regions56. H2AX shows an additional C-

terminal phosphorylation site, implicated in dsDNA repair after activation (g-H2AX)57. H2AZ 

leads to nucleosome destabilization and is characterized by an increased interaction surface 

formed between H2A and H2B known as the acidic patch58. 

 

2.1.5 The acidic patch – most prominent docking site of the nucleosome core 

Most interactions with the nucleosome are facilitated via interactions or modifications of the 

protruding histone-tails, as only 40% of the core surface is solvent accessible. Nevertheless, a 

specific region formed by the interface between H2A and H2B, called the acidic patch, serves 

as docking platform for multiple proteins. Six amino acid residues of H2A (human H2A, E56, 

E61, E64, D90, D91 and E92) and two residues of H2B (human H2B, E105 and E113) create this 

strongly-negative charged groove, that can coordinate an arginine residue from the 

interacting protein59. Due to the tight binding this specific arginine is referred to as `arginine 

anchor´60. Latency-associated nuclear antigen (LANA)-peptide of Kaposi’s sarcoma–associated 

herpesvirus (KSHV), nucleosome-binding domain of the human cytomegalovirus (CMV) 

immediate early 1 (IE1) protein and the C-terminal sequence of the chromatin-binding 

sequence (CBS) motif of the prototype foamy virus (PFV) structural protein GAG, all show 

binding to the acidic patch via an `arginine anchor´60–62 (see Fig. 5). Probably these viral 

proteins interact with the nucleosomes to alter chromatin architecture in their favor regarding 

self-replication61. Other acidic patch binders like regulator of chromosome condensation 1 

(RCC1) and silent information regulator (Sir3) bromoassociated homology (BAH) domain show 

additional binding to other regions of the nucleosome in addition to the `arginine anchor´63,64. 

Beside heterotypic interactions the acidic patch was shown to be relevant for general 
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chromatin organization. Neutralizing the acidic patch leads to loss of secondary structure 

formation in vitro65. The N-terminal tail of H4 interacts in-trans with the acidic patch of an 

adjacent nucleosome (and an additional site in H2B)66, mediated by H4K16 acetylation67. 

Further in-cis interaction of the H4 N-terminal tail with the nucleosome´s own acidic patch 

indirectly stabilizes the DNA at the dyad68. 

 

 
Figure 5: Acidic patch of the nucleosome. A Overview and magnified view of the acidic patch binding pocket of 
the histone octamer formed between histone H2A and H2B and the LANA peptide specifically binding to this 
region. Surface potential plot shows the strong negative (red) cavity formed. B Close up of the acidic patch region 
with the relevant residues shown in dark grey. Label color of the respective residues corresponds to the histone´s 
color code. The LANA peptide is colored according to its charge. The prominent dark blue arginine is shown in 
the center coordinated by the residues forming the acidic patch. |based on PDB: 1ZLA 
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2.2 The innate immune system – self vs. non-self 

Invasion of pathogens and mislocalization of components also found in the host organism 

represent a major threat for cellular survival. Therefore, mechanisms against pathogenic 

invasion can be found even in the most basic forms of life with prokaryotes using restriction 

enzymes and the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas 

system to protect themselves from pathogenic invasion69. The innate immune system displays 

the first line of evolutionary conserved eukaryotic host-defense mechanisms, found in all 

branches of eukaryotic life with increasing functionality70. Despite its ancient origin it is now 

well established, that the innate immune system in vertebrates is not simply an evolutionary 

remnant but a prerequisite for the functionality of the adaptive immune system 

complementing it at the initial response71. As a requirement for innate immunity to work as a 

defense system, mechanisms had to evolve to distinguish between self and non-self antigens. 

For this purpose a set of non-clonal germline encoded receptors, the so called pattern 

recognition receptors (PRRs), emerged72. These types of receptors recognize either antigens 

found in different microbial pathogens, so called Pathogen Associated Molecular Patterns 

(PAMPs), or antigens produced by the host cell as a result of pathogen invasion, so called 

Damage Associated Molecular Patterns (DAMPs)73. PAMPs are common features of many 

pathogens, often associated with viability, impeding loss of recognition by the PRRs in an 

evolutionary time scale74,75. In contrast, DAMPs serve distinct functions in the healthy cell but 

act as an antigen when mislocalized during infection. Binding of any molecular pattern type to 

PRRs will elicit an innate immune response ultimately leading to inflammation or cell death; 

directly or via activation of the adaptive immune system76. 
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2.3 Pattern recognition receptors 

The concept of universal pathogen detection receptors was introduced by Janeway in 1989 

and is considered to be the foundation for the understanding of the innate immune system77. 

In contrast to the somatic rearrangement mechanisms used for antigen detection in the 

adaptive immune system, only found in vertebrates, PRRs are germline encoded. This assumes 

a limited number of receptor families for common immunogenic targets (see Fig. 6). 

 

The PRRs can be split into different groups by their specific domain architecture, with the 

major groups being Toll-like receptors (TLRs), C-type lectin receptors (CLRs), nucleotide- 

binding domain, leucine-rich repeat (LRR)-containing (or NOD-like) receptors (NLRs), RIG-I- like 

receptors (RLRs), AIM2-like receptors (ALRs) and the cGAS-STING pathway. Further 

classification can be done based on their cellular localization. TLRs and CLRs are mostly 

membrane bound proteins detecting extracellular or endocytic pathogens. In contrast NLRs, 

RLRs, ALRs and cGAS are not membrane bound thereby detecting cytosolic pathogens78. 

Binding to any of these receptors activates specific signaling cascades leading to 

transcriptional upregulation of pro-inflammatory cytokines and interferons (IFNs) that 

orchestrate subsequent innate and adaptive immune responses or have direct effects like 

opsonization, phagocytosis, autophagy or even cell death79,80. A common feature of PRRs is 

the need of downstream adaptor molecules, integrating the signal from different homo- or 

heterotypic receptors and linking them to enzymatic activity78. 

 

The most well studied class of PRRs are the TLRs. The Toll receptor from Drosophila was the 

first discovered and eponymous member of this family. Known to be needed for dorsoventral 

polarity during embryogenesis in Drosophila, it was later shown to play a role in antifungal 

response in insects81,82. To date 13 members of the TLR family have been found in mammals, 

with TLR 1 to 10 found in human and TLR 1-13 (lacking TLR 10) in mice. Members of this large 

group show a broad ligand diversity against PAMPs originating from bacteria, viruses or fungi. 

For example, different components of the bacterial cell wall like lipopolysaccharides, 

lipoproteins or other features like flagellin bind to TLRs83,84. Besides, some viral proteins, 

bacterial and viral nucleic acids or fungal zymosan are also ligands for members of this 

family85–87. Heat-shock-proteins or fibrinogen from the host cell can serve as DAMPs88,89. 
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CLRs were originally named after Ca2+-dependent binding to glycan structures often found on 

microorganisms, but now compose of a large group of soluble and membrane bound proteins 

with a plethora of cellular functions ranging from development to immunity90. The first 

members of this family were characterized by binding to mannose and galactose often found 

on the outer surface of bacteria and fungi, leading to an innate immune response. In recent 

times it became clear, that also other ligands like proteins and lipids may serve as a ligand for 

the CLR family91,92.  

 

NLRs can be seen as the intracellular counterpart to TLRs also detecting many structural 

elements of bacteria like components of the cell wall or flagellin but also toxins. Beside these 

PAMPs many host-derived DAMPs like uric acid, ATP or damaged membranes can serve as 

ligand93. Many members of the NLR family will oligomerize forming the starting point of 

inflammasome formation with three out of the four inflammasomes corresponding to 

members of this family (NLRP1, NLRP3 and NLRC4)94. 

 

RLRs, ALRs and cGAS serve as cytosolic sensors for non-self or mislocalized host nucleic acids 

and will be extensively discussed later on95. 
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Figure 6: Simplified overview of pattern recognition receptor signaling. Different classes of PRRs are shown 
regarding their cellular location and their specific ligands (shown in fat letters). The membrane bound subset of 
TLRs and the CLRs bind to common pathogenic substances or PAMPs available if the pathogen has not entered 
the cell yet. Examples of these ligands are molecules often found on the cell wall of pathogens like bacterial cell 
wall components or different sugars. Endosomal membrane bound TLRs can sense many kinds of intracellular 
nucleic acids that emerge from pathogenic invasion. The intracellular NLRs can sense pathogenic components 
like flagellin or toxins derived from pathogens, when they already entered the cell. NLR sensing will lead to the 
formation of the inflammasome singaling complex. NOD1/2 also sense bacterial components like peptidoglycan. 
cGAS and IFI16 sense intracellular dsDNA, whereas RLRs (RIG-I, MDA-5) are sensors for cytosolic RNAs. All these 
PRRs will lead to further downstream signaling via adaptor molecules, that will ultimatively end up in an immune 
response, like the induction of different interferons, cytokines or interleukins. 
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2.4 Nucleic acid sensing by pattern recognition receptors 

2.4.1 Nucleic acid sensing TLRs 

All members of the TLR group are type I transmembrane proteins of the Interleukin-I receptor 

(IL-1R) family. Their shared architecture consists of a horseshoe-shaped N-terminal leucine-

rich-repeat (LRR) ligand binding domain, a transmembrane domain and the cytosolic Toll/IL-1 

(TIR) domain for signal transduction96. 

 

As mentioned before there are 13 TLRs known in mammals, with TLR 11 to 13 being specific 

to mice. Within this group TLR 1, 2, 4, 5 and 6 reside on the cell surface detecting extracellular 

pathogens, whereas the others are bound to endosomal membranes facing the lumen sensing 

nucleic acids after pathogen uptake and acidic lysis97. TLR 3 is activated by double-stranded 

RNA (dsRNA); TLR 7, human TLR 8 and murine TLR 13 detect single-stranded RNA (ssRNA) and 

TLR 9 binds CpG-rich single-stranded DNA (ssDNA)98–103. TLR 7 and 8 can also detect 

nucleobase related compounds104,105. Although the structural basis for ligand binding differs 

for different TLR ectodomains (ECDs), all TLRs will form a m-shaped dimer by pairing the C-

terminal ECDs. This induces a conformational change leading to dimerization of the cytosolic 

TIR domains, priming them for adaptor molecule binding96. The linkage to several signaling 

cascades is modulated by binding of different adaptor molecules. Most nucleic acid sensing 

TLRs use myeloid differentiation primary-response protein 88 (MyD88) as adaptor molecule. 

In this pathway MyD88 activates IRAK (IL-1-receptor-associated kinases) and TRAF6 (tumor-

necrosis-factor-receptor-associated factor 6), leading to release of nuclear factor-kB (NF-kB) 

from the inhibitor of nuclear factor-kB (IkB)-kinase complex (IKK-complex), its nuclear 

translocation and expression of inflammatory cytokines. In contrast TLR 3 uses TIR-domain-

containing adaptor protein inducing interferon (IFN)-β (TRIF) to activate interferon-regulatory 

factor 3 (IRF3) to activate NF-kB106. 
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2.4.2 NLRs and ALRs – the inflammasome forming nucleic acid PRRs 

Other groups of PRRs able to sense cytosolic DNAs are the NLRs and ALRs, which are known 

to assemble into the large signaling complex known as the inflammasome. Due to shared 

domains these two groups can work together. 

 

In contrast to TLRs these receptors are not membrane bound and were found to recognize 

cytosolic nucleic acids. Proteins of the NLR family share a domain architecture composed of 

three features: (1) a N-terminal protein-protein interaction domain, which can be a caspase 

recruitment domain (CARD), a pyrin domain (PYD), or baculovirus inhibitor domain (BIR); (2) a 

nucleotide-binding and oligomerization domain (NOD/NACHT) for self-oligomerization and (3) 

a C-terminal leucine-rich repeat (LRR) for ligand binding107. While members of the ALR family 

also have an N-terminal pyrin domain for adapter molecule binding, their dsDNA binding 

ability is facilitated by hematopoietic expression, interferon-inducible nature, and nuclear 

localization (HIN) domains108. Most of the 23 known human NLRs detect structural 

components, toxins from microorganism or DAMPs like extracellular ATP or uric acid crystals 

(detection pattern comparable to intracellular TLRs)109. Especially NLRP3 was shown to act as 

a cytosolic nucleic acid sensor by detecting viral RNA and oxidized mitochondrial DNA (ox-

mtDNA)110,111. NLRP3 binds its ligand via the LRR-domain, leading to a homotypic 

oligomerization allowing binding of the adaptor protein Apoptosis-associated speck-like 

protein containing a CARD (ASC) serving as nucleation point for subsequent helical ASC-

filament formation. ASC harbors an N-terminal PYD and a C-terminal CARD domain, linking 

caspase-1 to the complex via homotypic CARD interactions, thereby cleaving and activating 

caspase-1112. Cleaved caspase-1 activates IL-1b and IL-18 leading to inflammatory cytokine 

release or directly cleaves gasdermin D inducing pyroptotic cell death113,114. 

 

The same pathway can be activated by members of the ALR family. Absent in melanoma 2 

(AIM2) and g-interferon inducible gene 16 (IFI16) directly bind dsDNAs via their HIN domains 

(two in case of IFI16), thereby oligomerizing on the DNA strand to provide the filamentous 

ASC a binding platform via their PYD domains115,116. Additionally, IFI16 can also directly 

activate STING leading to an IFN-response117. Despite first being recognized as cytosolic DNA 

sensor, a nuclear localization of IFI16 was also shown, facilitating activation upon nuclear non-

self-DNA encounter.  
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Therefore viruses that rely on nuclear replication as herpes simplex virus (HSV), KSHV, CMV, 

and human immunodeficiency virus (HIV) can be detected by nuclear IFI16118,119. Even with 

the sensing of pathogenic DNA happening in the nucleus activation of the downstream 

signaling cascade still occurs in the cytoplasm. 

 

2.4.3 RIG-I like receptors – cytosolic RNA sensors 

The RIG-I like receptor (RLR) family of cytosolic RNA sensors encompasses three members: (1) 

Retinoic acid-inducible gene I (RIG-I), (2) melanoma differentiation-associated protein 5 

(MDA5) and (3) laboratory of genetics and physiology 2 (LGP2)120. RIG-I and MDA5 were found 

in screenings for type I interferon inducing genes121,122 and were quickly recognized as the 

major sensor for viral RNAs123. Structurally all members of this family have a central DExD/H-

box helicase core (as found for superfamily 2 RNA helicase members). This core is composed 

of two helicase domains HEL1 and HEL2, with the latter one containing a helicase insertion 

domain (HEL2i). In addition, all members show a C-terminal RNA binding domain (CTD), also 

known as repressor domain (RD). The CTD is linked to HEL2 via a helix extension pincer 

domain. N-terminal double CARD-domains for signal transduction are just found for RIG-I and 

MDA-5124. Apo-RIG-I adopts an inactive conformation with the CARDs being sequestered by 

interaction with HEL2i. RNA binding releases the CARDs facilitating downstream 

signaling125,126. The released CARDs of RIG-I interact homotypically with mitochondrial 

antiviral-signaling protein (MAVS) leading to oligomerization127. Unlike RIG-I, MDA5 is not kept 

in check by autoinhibition but oligomerization on long dsRNA is needed for activation128. 

MAVS subsequently activates TANK-binding kinase 1 (TBK1) and IkB kinase-ε (IKKε), which in 

turn will lead to IRF3/IRF7 and NF-kB activation, driving an IFN and antiviral response (see 

Fig. 7). 
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Despite their structural similarity, members of this class detect different specific RNA 

substrates. RIG-I detects features at the 5´- end of RNAs that are common for viral RNAs but 

missing in host RNAs. These RNAs need to have a triphosphate or uncapped diphosphate at 

the 5´-end129–131, base-pairing at the 5´-end132 and the 5ʹ-terminal nucleotide needs to be 

unmethylated at its 2ʹ-O133. This specificity enables differentiation between host RNAs and 

viral RNAs. Negative-sense RNA viruses, contain so called `pan-handles´, 5´-duplex structures 

that are recognized132. The genome of Influenza Virus A and its replication intermediates 

activate RIG-I134,135. Some positive-sense RNA viruses like Dengue and Zika virus are also 

recognized by RIG-I (uncapped 5´-PPP intermediate)136. Less is known about the exact ligand 

of MDA5. MDA5 needs higher order RNA substrates for sufficient oligomerization137. While it 

is essential for sensing picornaviridae138, it is dispensable for the recognition of most other 

virus families139. 

 

 

 

 

Figure 7: RLR signaling. Exemplary overview of RLR signaling shown for RIG-I. Apo-RIG-I exists in an autoinhibited 
state with its CARD-domains sequestered. Upon binding of non-self RNAs the CARDs get released and are free 
for interaction with MAVS. K63-ubiquitylation of this complex further stabilizes it. MAVS oligomerization at the 
mitochondria serves as a binding platform of TRAFs which will lead to IFN induction or NF-kB activation. 



Introduction 

|21| 

2.4.4 cGAS-STING axis 

Many of the introduced nucleic acid sensors like TLRs or RLRs still rely on specific structural or 

chemical features of the nucleic acids for recognition. Although the ALR family can detect 

canonical B-form DNA, their presence alone is not sufficient for a full IFN-response140. At this 

stage cGAS, the main cytosolic DNA sensor in most cell types comes into play141. cGAS does 

not only detect viral DNA (HSV-1, vaccinia virus, HIV, CMV)141–143, and intracellular bacterial 

DNA (Chlamydia trachomatis, Mycobacterium tuberculosis, Francisella novicida, Listeria 

monocytogenes, Neisseria gonorrhoea)144–147, but also mislocalized self-DNA from different 

sources. 

 

Prior to the discovery of cGAS as the main cytosolic DNA sensor, its `adaptor´ STING (other 

names MITA, MPYS or ERIS) was already known to be involved in antiviral DNA sensing. STING 

was found to be an ER-membrane bound protein with its CTD facing the cytosol, eliciting an 

IRF3 related IFN response upon viral encounter148–150. Initially thought to directly bind DNA, 

STING turned out to be a receptor for cyclic dinucleotides151,152. With the discovery of cGAS´ 

DNA sensing ability and its catalytic mechanism the cGAS-STING pathway was established. 

Upon DNA binding cGAS will produce the second messenger cyclic GMP–AMP (cGAMP). 

cGAMP binds to STING, promoting its translocation to the Golgi apparatus and activation of 

TBK-1. The latter will phosphorylate IRF-3, leading to its dimerization and nuclear 

translocation, triggering a type I IFN response and expression of interferon-stimulated genes 

(ISGs) 153. Although STING can also be directly activated by bacterial cyclic dinucleotides152, it 

shows enhanced binding affinity to cGAMP produced by cGAS. Eukaryotic cGAMP is 

characterized by an 2´–5´-phosphodiester bond between the 2´O of guanosine and the 5´O of 

adenosine instead of the bacterial 3´-5´-linkage154. Activated STING can also activate NF-kb via 

IKK and induce signal transducer and activator of transcription 6 (STAT6) signaling155,156. 

Classical induction of ISG expression by cGAS-STING results in an IFN-mediated positive 

feedback-loop157 (see Fig. 8). 
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Figure 8: cGAS signaling. cGAS binds sequence unspecifically to dsDNA from different sources occurring in the 
cytosol. Upon dsDNA binding cGAS will form an active complex. The minimal active complex is a cGAS/DNA 2:2 
complex. In this conformation cGAS will produce the second messenger 2´,3´- cGAMP from ATP and GTP. This 
second messenger can spread to neighboring cells via gap junctional transport. 2´,3´- cGAMP is the ligand for 
STING, leading to its translocation, oligomerization and activation of TBK-1, that in turn will phosphorylate IRF-
3. Phosphorylated IRF-3 can travel to the nucleus and induce the transcription of type I interferons. Another IRF-
3 independent mode of STING action is the activation of NF-kB after cGAMP binding. 
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2.4.5 Other DNA sensors 

Prior to the recognition of cGAS as the primary cytosolic DNA sensor other candidates have 

been discussed. As the name implies DNA-dependent activator of IFN-regulatory factors (DAI) 

was shown to bind DNA and upregulate IFN-I response via NF-kB and IRF3158. While effects on 

the immune response by this sensor were observed for specific cell types and viral 

infections159–161, the underlying sensing was not universal162,163. This fact suggested the need 

of another universal sensor, that was found with cGAS.  

 

RNA Polymerase III was shown to transcribe AT-rich dsDNA, such as poly(dA:dT), into an RNA-

containing 5ʹ-triphosphate ligand for RIG-I leading to IFN-β response by indirect DNA 

sensing164. 

 

DExD/H box helicase 41 (DDX41), despite having a SF2-helicase domain like RIG-I, was shown 

to bind to dsDNA but not RNA, acting on the STING-TBK1 pathway. Knockdown of DDX41 leads 

to compromised response to HSV-1 infection165,166. Furthermore, it was described to directly 

sense bacterial CDNs leading to STING activation167. 

 

DNA dependent protein kinase (DNA-PK), a heterotrimeric protein complex consisting of Ku70, 

Ku80 and the catalytic subunit DNA-PKcs known for its function in DNA repair, was shown to 

sense DNA over 500 bp length leading to IFN-3 response via IRF1 and IRF7168. Especially in 

fibroblasts, it was shown to colocalize with cytosolic DNA leading to IFN-1 induction via STING-

TBK-1169. 

 

Another protein involved in DNA repair, MRE11, was shown to be involved in the cytosolic 

DNA response, but not to viral DNA170. Rad50 as part of the MRE11 complex was shown to 

translocate to the cytosol upon viral DNA infection, inducing STING-independent NF-kB 

activation 171. 
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2.5 Many ways to die – cellular consequences of DNA sensing 

The best studied cellular response of nucleic acid sensing is the induction of cytokines, that 

can be found for all previously described sensors172. Regarding DNA-sensing, type I interferons 

(IFNs) are the most important. IFNs produced after the activation of IFN-genes by DNA sensing 

pathways will lead to the induction of IFN-stimulated genes (ISGs) via JAK-STAT signaling. ISGs 

encode for a plethora of immunogenic proteins, can activate positive feedback loops and link 

DNA sensing to adaptive immunity. Major histocompatibility complex (MHC) and other 

costimulatory molecules needed for the adaptive immune response are ISGs173,174. 

Additionally, the induction of multiple programmed cell death pathways as ultima ratio is 

linked to nucleic acid sensing. The known death pathways orchestrated by nucleic acid sensing 

are apoptosis, necroptosis and pyroptosis175. Cell death can either be non-lytic and therefore 

immunogenically silent like apoptosis, or lytic and highly inflammatory like necroptosis and 

pyroptosis176. Hallmarks of apoptosis are cell shrinkage and DNA fragmentation with 

formation of apoptotic bodies, whereas the other two pathways are characterized by pore 

formation and therefore loss of membrane integrity, explaining their inflammatory 

potential177. Inducing cell death may have multiple beneficial effects for the host. Additional 

to the secretion of cytokines found in lytic cell death, intracellular pathogens can directly be 

cleared, and many DAMPs get released amplifying the immune response178,179. Besides, cell 

death leads to antigen uptake by professional antigen presenting cells linking the innate 

immune response to adaptive immunity180. IFI16 and AIM2 lead to pyroptosis via 

inflammasome mediated gasdermin D activation. Many studies link the cGAS-STING pathway 

to the induction of apoptosis, maybe even omitting the need of DNA sensing by cGAS. 

Apoptosis dependent on STING was observed in malignant B-cells and T-cells181,182, and upon 

viral encounter in some other cell types182,183. Also necroptosis was observed via the cGAS-

STING pathway in bone marrow–derived macrophages after DNA sensing184. RNA recognition 

by RIG-I leads to the `RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis´ (RIPA) 

needing MAVS and IRF3 activation185 or also necroptosis via the same pathway as cGAS-

STING184. Also, nucleic acid sensors of the TLR family are able to induce different types of cell 

death depending on cell type and stimulus. In summary, any activation of a DNA sensing 

pathway may ultimately lead to cell death but the exact route will rely on the exact stimulus 

and cell type, underlining the fine-tuned innate immune response175. 
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2.6 cGAS – the most powerful sensor for mislocalized self-DNA 

2.6.1 cGAS – the question of cellular location 

When cGAS was discovered as the missing link for cytosolic DNA sensing it seemed clear, that 

it is a predominantly cytosolic protein, relying on this compartmentalization for discrimination 

between self and non-self. As the sensing is sequence unspecific it would just detect any type 

of dsDNA not residing in the correct location. Unfortunately, this concept already fails 

considering healthy cells at the stage of cell division, where the lack of clear distinction 

between cytosol and nucleus does not result in extensive autoimmunity. 

 

Now growing evidence suggests that cGAS is at least also a nuclear, maybe even 

predominantly a nuclear protein. cGAS was shown to interact with IFI16 in the nucleus of 

fibroblasts during HSV-1 sensing186, entering the nucleus in mitotic-cells during proliferation187 

and being recruited to DNA damage sites188. At this stage only the nuclear localization of cGAS 

was shown, still evoking the question how autoimmunity is prevented. This timepoint 

represents the knowledge-basis at the start of this work. During this work it became more and 

more clear, that cGAS also interacts with chromatin directly, especially with nucleosomes. 

Chromatin was shown as an activator of cGAS, with mononucleosomes being high affinity 

ligands for cGAS without activating it189. Later it was shown, that cGAS is kept in an inactive 

state by being tethered to chromatin via the conserved acidic patch190. The specific interaction 

between cGAS and nucleosomes is the major finding of this thesis and will be discussed in 

detail later. 
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2.6.2 DNA ligands for cGAS 

2.6.2.1 Non-self-DNA 

The most well established cGAS DNA ligands are of viral or bacterial origin, with many 

examples already mentioned (1.4.4). The sensing of cytosolic DNAs of these sources is 

assumed to happen after breakage of viral particles or bacterial cell walls, exposing the DNA 

to cGAS. With the increasing evidence of nuclear cGAS, DNA sensing of nuclear replicating 

viruses (as seen for IFI16) may be considered as an additional task of cGAS. This is supported 

by the fact, that cGAS and IFI16 work together in HSV-1 sensing117. In fact, HIV-2 sensing by 

cGAS happens in the nucleus with the help of non-POU domain-containing octamer binding 

protein (NONO), linking HIV-capsids to DNA191. 

 

2.6.2.2 Self-DNA 

The major benefit of cGAS´ DNA sensing capabilities compared to other PRRs is the recognition 

of multiple self-DNA species not related to pathogens but cellular malfunctions like mtDNA 

leakage, tumor DNA, DNA damage, or occurrence of micronuclei 188,192–194. Recent work has 

shown the interaction of cGAS with healthy nuclear DNA suggesting an inactive conformation. 

In contrast to this, micronuclei or other chromatin intermediates resulting from replication 

errors, DNA damage or malfunctioning mitosis serve as activators for cGAS. Micronuclei occur 

after chromosomal mis-segregation due to exogenous DNA damage or spontaneously in 

human cancer cells, and display chromatin fragments surrounded by components of the 

nuclear envelope in a composition more prone to membrane rupture195. cGAS was shown to 

colocalize with micronuclear DNA leading to an immune response196. The senescence-

associated secretory phenotype (SASP), secretion of a specific cytokine pattern as a result of 

a permanent cell cycle arrest, is associated with cGAS activated by cytosolic chromatin 

fragments197–199 (CCFs). Another important self-DNA pattern recognized by cGAS are 

extrachromosomal telomere repeats (ECTR), a unique feature of cancer cells, produced via the 

alternative lengthening of telomeres pathway (ALT-pathway). ECTR created in normal 

fibroblasts lead to a cGAS-STING related type I IFN response and IFN-β production, whereas 

cancer cells relying on the ALT-pathway are deficient of cGAS-STING signaling200,201. 
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Concluding, most alterations of the normal chromosomal structure will lead to detection by 

cGAS. This is supported by the fact that mutating proteins needed for proper genome 

integrity, like helicases, topoisomerases or proteins involved in DNA repair, will all lead to 

activation of the cGAS-STING pathway202–204. Still, it is debatable whether the observed effects 

can be explained just by cGAS´ DNA binding or additional regulatory factors that will recruit 

cGAS to these specific targets. 

 

Mitochondria are the only other place besides the nucleus in the eukaryotic cell, where DNA 

should occur under healthy conditions. Mitochondrial stress, leading to aberrant packing of 

mtDNA by depleting TFAM (transcription factor A, mitochondrial), can lead to cytosolic 

leakage of mtDNA serving as a ligand for cGAS192. Also, some viruses, like HSV or Dengue virus 

will lead to mtDNA release. This mechanism is especially useful as it enables the detection of 

the single-stranded RNA Dengue virus via cGAS205,206. Interestingly, the well-established 

mitochondrial DNA and cytochrome C release during apoptosis does not result in cGAS 

activation, as the involved effector caspases cleave and thereby inactivate cGAS207. 
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2.6.3 cGAS structure and active complexes 

cGAS is an ~60 kDa sized protein consisting of a ~160 amino acids long, non-structured, 

positively charged N-terminal tail, and a male abnormal 21 (MAB21)-domain containing, 

catalytic globular domain (see Fig. 9A). Since cGAS´ discovery many structures of the catalytic 

domain from multiple species with different ligands have been published, even recently 

revealing additional features in the human protein. Howsoever the exact structure and 

function of the N-terminal tail is still puzzling208–213. Despite the lack of detailed structural 

information, the N-terminal part of cGAS can bind DNA on its own, increases the affinity 

towards DNA, and elevates cGAS activity214,215. This increased activity is probably due to the 

formation of higher order condensation with higher local concentration, mediated by the N-

terminus216. By its MAB21 domain cGAS is counted as member of the nucleotidyltransferase 

(NTase) family, all catalyzing phosphodiester bond formations. Despite their low sequence 

homology (due to diverse cellular functions) members of this family share a common NTase 

core structure with an α/β-fold composed of β-strands flanked by α-helices and frequent 

motifs for catalytic activity217. The globular domain of cGAS shows a bilobal structure, with the 

two lobes being connected by a `spine´ α-helix (α1), forming a cleft between them. The N-

terminal lobe 1 harbors the NTase-like mixed α/β-fold with an eight-stranded central β-sheet 

(β1-β8) flanked by two α-helices, and the conserved catalytic triad (hcGAS E225, D227 and 

D319; mcGAS E211, D213, D307) coordinating two Mg2+ ions for subsequent nucleotide 

alignment (located on β1 and β6). An NTase like hG(GS)-motif (h for hydrophobic) can be 

found in the `activation loop´ connecting αA and β1 (hcGAS G212/S213; mcGAS G198/S199). 

The C-terminal lobe 2 consists of a four-helix bundle (αE-αH) stabilized by the spine (α1). The 

loop connecting αC and αD contains conserved histidine and cysteine residues needed for Zn2+ 

coordination and is therefore referred to as the Zn-Thumb (hcGAS H390, C396, C397 and C404; 

mcGAS H378, C384, C385 and C392)208,218,219. Apo-cGAS shows a rather unstructured 

activation loop unsuitable for correct nucleotide binding208,210,212 (see Fig. 9B). It is noteworthy 

that all structural work on cGAS was performed using only the catalytic domain lacking the N-

terminal tail. In this setup all apo-cGAS (no DNA bound) variants appeared as inactive 

monomers, whereas recently the existence of a dimeric full-length apo-form was identified by 

size-exclusion chromatography coupled with in-line multiangle light-scattering analysis (SEC-

MALS)211. 
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The molecular surface opposing the cleft serves as distinctly positively charged platform for 

DNA binding. Crystal structures of cGAS bound to DNA show sequence independent 

recognition by relying on extensive electrostatic interactions and hydrogen-bond formation 

with the phosphate backbone of the DNA. Further, two residues (one arginine finger for the 

human protein) reach into the minor groove of the DNA (hcGAS R176/H217; mcGAS 

R161/H203). The Zn-Thumb allows differentiation between A- and B-form DNA, by functioning 

as molecular ruler (see Fig. 9C). 

 

Binding of B-form dsDNA will introduce a helix break in the spine, closing the cleft between 

lobe 1 and 2, structuring the activation loop for the catalytically efficient orientation of ATP 

and GTP coordinated by two Mg2+ ions (see Fig. 9D). This first discovered DNA binding site of 

cGAS is also called site A.  
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Figure 9: cGAS structure overview and rearrangement upon activation. A Overview of cGAS domain 
architecture. cGAS consists of a flexible N-terminal tail without structural knowledge to date (grey), that is 
followed by the Mab21 domain (blue) harboring the NTase core (red). These domains are relevant for ligand 
binding and formation of cGAMP. Additionally the Zn-Thumb is denoted in orange. B Overview of the apo-cGAS 
structure. Apo-cGAS adopts a bilobal structure, with the NTase fold shown in red. The two lobes are connected 
by a long spine-helix. In apo-form the activation loop, needed for cGAMP production is unstructured, missing 
the correct coordinaton of ATP and GTP. C DNA binding to cGAS introduces a break in the spine helix, and leads 
to restructuring of the activation loop. In side view, the platform for DNA binding can be observed. D Overlay of 
apo- and DNA-bound cGAS crystal structure. Upon DNA binding the activation loop in the NTase domain 
rearranges. The apo-loop is shown in light blue, whereas the rearranged loop is shown in red. The rearranged 
loop facilitates correct alignment of the catalytic triad leading to proper binding of two Mg2+ ions (dark grey) 
needed for ATP and GTP positioning. The displayed crystal structure shows binding of the first formed linear 
intermediate pppGp(2 ́-5 ́)A. |based on PDB apo cGAS: 4K8V; PDB DNA bound cGAS: 4K98 
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cGAS bound to DNA does not occur as active 1:1 complex in solution, but needs at least the 

formation of a 2:2 cGAS/DNA complex for further stabilization, as shown by analytical 

ultracentrifugation and small angle X-ray scattering 220. In this complex two dsDNA strands get 

sandwiched between two cGAS monomers221. The dsDNA strand that is bound via site A to 

one cGAS protomer binds to the second cGAS protomer by an additional cGAS DNA binding 

site, called site B, and vice-versa. Site B consists of two salt-bridges formed with the DNA 

backbone (hcGAS R236/K347; mcGAS R222/K335) and a specific residue inserted in the minor 

groove of the DNA (hcGAS L354; mcGAS R342). Additional protein-protein interaction 

between residues located in the Zn-Thumbs of the monomers stabilize the complex (hcGAS 

K394/E398; mcGAS K382/E386)214,221 (see Fig. 10A and 10B). 

 

The minimal DNA length bound by one cGAS protomer is 16 to 18 bp, which is not sufficient 

for activation in vivo. cGAS shows DNA length depend activation, with dimer- and therefore 

active complex-formation allosterically favored by longer DNA substrates214,222 (see Fig. 10C). 

 

As cGAS does not lead to the common adaptor molecule mediated filament formation, local 

concentration increase is achieved by liquid-phase condensation presumably forming a mesh-

like structure.  

 

This super-structure is mediated by Zn2+-depended interaction of the positively charged N-

terminal tail with DNA and the involvement of an additional DNA binding site C211,223. DNA 

binding site C is most relevant for the human protein, as the interaction surface area of this 

site decreases when comparing with less evolved organisms (area of site C interaction: 

human>pig>mouse). In hcGAS site C has a 663 Å2 interaction surface composed of three main 

elements, namely the α-region (hcGAS 261–286), the KRKR-loop (hcGAS  299–302), and the 

KKH-loop (hcGAS  427–432). Q264, K275, K279, K282, and K285 from the α-region; K299, R300, 

K301 and R302 from the KRKR loop and K427, K428, and K432 from the KKH-loop (numbering 

for hcGAS) facilitate non-specific electrostatic interactions with the DNA backbone. 

Additionally, an arginine finger (hcGAS R300) inserts into the minor groove of the DNA211 (see 

Fig. 10D). 
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The main structural features of cGAS can also be found in another phylogenetically unrelated 

protein family224. The oligoadenylatsynthase (OAS) family shows high structural similarity, 

sharing the bilobal architecture, the conserved catalytic triad as well as the spine helix. In 

contrast to cGAS, OAS1 is a sensor for dsRNA. While it also forms a 2´–5´-phosphodiester bond, 

its catalytic product is not cyclic but linear oligoadenylate chains. Due to their structural 

similarities this group of nucleotidyltransferases is often referred to as the cGAS-OAS family225. 

Oligoadenylates will lead to RNAse L activation and thereby RNA degradation as a clearance 

mechanism. 

 

 

 

Figure 10: Different DNA binding sites of cGAS and their relevance for complex formation. A Minimal active 
unit represented by cGAS/DNA 2:2 complex. Individual cGAS monomers are depicted in different shades of blue. 
DNA binding sites are shown in different colours in their surface representation. cGAS shows three distinct DNA  
binding sites: A, B and C. Site A (salmon) is the first discovered DNA binding site found on the platform described 
in Fig. 9. Site B (yellow) is located at the opposing surface and is needed for active complex formation. Site B will 
bind to the DNA, that is bound by site A of the corresponding cGAS monomer. An additonal DNA binding site C 
(green) is needed for higher order complexes or phase-seperation. B Representation of two times 2:2 complex 
leading to a 4:4 complex. C Ladder-like cooperative assembly of cGAS on longer DNA substrates. When cGAS is 
binding to longer DNA, than depicted in A, B, and D, longer filament-like structures can be formed. D Three DNA 
strands bound to cGAS with an additonal DNA strand bound at site C. With all three strands bound to the cGAS 
protomer, formation of a higher order mesh-like active conformation is possible.| PDB A,B: 4LEY; C:5N6I; D: 
superimposition of 4LEY and 6EDB 
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2.6.4 cGAS – catalytic mechanism 

Prior to their discovery in eukaryotes, cyclic dinucleotides have been known as signaling 

molecules in bacteria for over 30 years226, being involved in functions like biofilm formation 

or different stress responses227. However, most bacterial CDNs are defined by two 3´–5´-

phosphodiester bonds between the 3´O of one nucleotide and the 5´O of the second one (and 

vice-versa for cyclization). A hallmark of eukaryotic CDN signaling is the creation of mixed-

linkage CDNs, as formed by cGAS and OAS proteins228. cGAS produces the mixed-based, and 

mixed-linked second messenger G(2 -́5 )́pA(3 -́5 )́p (also known as 2´-3´cGAMP or just cGAMP) 

from ATP and GTP, harboring one unusual 2´–5´-phosphodiester bond between the 2´O of 

guanosine and the 5´O of adenosine210. 

 

cGAMP production by cGAS is a two-step process with the linear intermediate pppGp(2 -́5 )́A 

formed first. After restructuring of the activation loop due to the DNA binding induced 

conformational switch, two Mg2+ ions bind to the catalytic triad (hcGAS E225/D227/D319; 

mcGAS E211/D213/D307) aligning ATP´s triphosphate. Further ATP triphosphate stabilization 

is achieved by hydrogen-bonds (hcGAS S213/S452; mcGAS S199/S420). Additional interactions 

consist of base-stacking of the adenine with tyrosine (hcGAS Y436; mcGAS Y421) and a 

hydrogen bond with ATP´s ribose (hcGAS E383; mcGAS E371). GTP is sandwiched in a 90° angle 

base-stacking with adenine on one side and a residue from the protein on the other side 

(hcGAS T321; mcGAS I309). Hydrogen-bonds specific for GTP guarantee selectivity for the 

mixed nucleotide linkage (hcGAS S378/S380/T211/R376; mcGAS S366/S368/T197/R364). 

Correct alignment of ATP and GTP results in efficient localization of ATP´s α-phosphate for 

nucleophilic attack of GTP´s 2´OH-group. Polarization of the attacking group by aspartate 

(hcGAS D319; mcGAS D307) enhances the reaction leading to the formation of the linear 

intermediate pppGp(2 -́5 )́A208,210. 

 

For cyclization to occur the intermediate has to bind donor and acceptor pockets in reverse 

order. GTP still bearing a triphosphate binds to the moiety that was occupied before by ATP 

using the same residues for triphosphate alignment. The steric constraints introduced by 

flipping the intermediate in the non-symmetrical binding pockets will lead to the nucleophilic 

attack of the 3´OH on the α-phosphate of GTP and cyclization219 (see Fig. 11). 
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As the recognition site for ATP does not employ the multitude of interactions shown for the 

GTP binding site, also other linear intermediates like pppG(2ʹ– 5ʹ)pG and even pppA(3ʹ–5ʹ)pA 

may occur, but seem not relevant for full cyclization under physiological conditions229. Work 

on the catalytic mechanism revealed that most of the linear intermediate formed is released 

by cGAS in the first place, to be bound again for full cyclization230. Therefore, the increased 

local concentration of active cGAS complexes in multimeric assemblies may favor the two-

step reaction, by providing high local concentrations of intermediate compared to the in 

general much more frequent ATP and GTP, and omitting linear intermediate accumulation. 

 

Correctly assembled cGAMP will activate the downstream receptor STING in the same cell but 

can also horizontally spread to neighboring cells via gap-junctional transport of the signaling 

molecule231. Recently, transfer of cGAMP to other cells via the volume-regulated anion 

channel LRRC8 was shown to be crucial for defense against DNA viruses232. 

 

Beside producing a CDN by itself cGAS may also bind bacterial CDNs directly, promoting active 

complex formation and direct association with STING, skipping cGAMP production233. 

 

 

 
Figure 11: Catalytic mechanism of cGAS. In the first step ATP´s triphosphate is aligned by the catalytic triad 
D225/D227 and D319 (hcGAS) coordinating two Mg2+ ions. At this step Y436 base-stacks with adenine. 
Polarization of D319 facilitates the nucleophilic attack of GTP´s 2´-OH group leading to the linear intermediate 
5´-pppGpA. For full cyclization the linear intermediate has to flip in the binding pocket. Now Y436 does not base-
stack with the adenine-base but the guanosine-base. In that coordination the 3´-OH of the adenine base in the 
linear intermediate can attack the α-phosphate of the guanosine-base forming an unusual 3´-5´linkage and ring-
closure. |PDB: 4KB6, 4K98,4K9A, 4K9B 
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2.7 STING – the downstream adaptor for cGAS 

2.7.1 STING structure and IRF3-activation  

STING is a ~42 kDa transmembrane protein residing in the membrane of the endoplasmic 

reticulum but translocating to the Golgi apparatus upon activation. Binding of its ligand 

cGAMP will ultimately lead to different immune responses with IRF3 activation being the best 

studied. Furthermore, NF-kB activation, autophagy and lysosomal cell death are possible 

outcomes of STING activation234. 

 

STING has four N-terminal transmembrane domains (TM1-TM4), that are connected to the C-

terminal cytosolic part via a connection helix. The part facing the cytosol harbors the ligand 

binding domain (LBD) and the C-terminal tail (CTT) (see Fig. 12A). Whereas multiple crystal 

structures of the cytosolic part already exist since 2012235–238, structures of the human and 

chicken full-length protein were just recently resolved using cryo-EM239. Already from the 

crystal structures one can tell that apo-STING forms a butterfly-shaped dimer creating a V-

shaped pocket for binding of a single CDN. Added insights from the cryo-EM structure show 

packing of TM1 of one monomer with TM3 to TM4 of the other leading to a domain-swapped 

architecture of the dimer. The two connector helices (one of each monomer) link TM4 to the 

LBD with the linker loops between connector helices and LBDs crossing and forming a tight 

interaction (see Fig. 12B). Upon cGAMP binding the LBDs will rotate 180° clockwise (to resolve 

the right-handed crossing), leading to a parallel orientation of the connector loops239. The 

induced conformational change will lead to coverage of the CDN binding pocket by two β-

strands forming a lid preventing cGAMP release (see Fig. 12C). This lid closure is seen in the 

crystal and also in the cryo-EM structure238,239. For subsequent signal transduction STING has 

conserved TBK1 binding and pLxIS motifs needed for IRF3 activation240,241. As found for most 

innate immunity proteins, STING needs oligomerization for downstream signaling to occur. 

Oligomerization is needed for in-trans TBK-1 phosphorlyation242 and translocation to the ER-

Golgi intermediate compartment (ERGIC) only occurs after correct oligomerization243. 

According to the cryo-EM structures STING oligomerization occurs as lateral stacking of dimers 

promoted by a platform formed by the conformational change induced by cGAMP binding239 

(see Fig. 12D). Phosphorylated and thereby activated TBK-1 will phosphorylate the conserved 

serine residue in the pLxIS motif, serving as a binding site for IRF3.  
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Binding of IRF3 to the pLxIS motif brings it into close proximity with TBK-1, allowing TBK-1 to 

activate IRF3 by phosphorylation240. The activated IRF3 will then dimerize, enter the nucleus, 

and induce transcription of type I interferons. 

 

 
Figure 12: Structural overview of STING activation. A Domain architecture of STING. STING harbors fours 
transmembrane domains TM 1-4, that are followed by the cytosolic C-terminal domain (CTD) needed for ligand 
binding and downstream signaling. B STING occurs as membrane-bound dimer (red and orange), with the apo-
state forming a V-shaped cytosolic pocket for cGAMP binding. The transmembrane domains interact in a domains 
swapped manner. C Upon ligand binding the CTD rearranges and closes a lid over a bound cGAMP molecule. The 
ligand bound form enables the binding of a TBK-1 dimer (cyan). The residual interaction sites of STINGs CTT are 
shown in red and orange at the bottom of TBK-1. D TBK-1 bound STING oligomerizes facilitating trans-
phosphorylation of TBK-1 dimers that in turn will lead to IRF-3 phosphorylation and downstream signaling. |PDB 
for B: 6NT6; C: overlay of 6NT6 and 4SYK plus 6NT9 

 

 

 

 

 

 



Introduction 

|37| 

2.7.2 NF-kB activation via STING 

Supplementing the well-known mechanism of IRF3 activation, NF-kB activation by STING was 

shown in human and mice to a comparably lower extent. Due to conflicting results the exact 

mechanism of this activation is still puzzling. Especially as the need for STING´s CTT to elicit a 

NF-kB activation seems conflicting. While it is shown that the NF-kB response can also be 

found for invertebrate STING without a CTT, studies in human suggest dependence on TBK-1 

which binds at this region244–246. Another pathway omitting cGAS activation is STING-mediated 

NF-kB induction via TRAF6247. 

  

2.7.3 STING mediated autophagy 

STING´s ability to bind CDN is an ancient feature, that can already be found in the homologue 

of the unicellular eukaryote choanoflagellate M. brevicollis, the closest living relative of the 

animal kingdom (no homologues in other kingdoms of life are found)248. Nevertheless, the 

ability of STING to elicit an IFN response only emerged with introduction of the IFN-system 

solely found in vertebrates. This fact suggests that STING also has a more ancient function249. 

 

Data from the sea anemone Nematostella vectensis indicate autophagy induction as the 

primordial function of STING. This pathway being independent from IKK or TBK-1 activation 

excludes the need of upstream cGAS. ERGIC residing STING serves as a membrane donor for 

LC3 lipidation, critical for autophagosome formation250. This autophagy inducing role of STING 

was also shown in mammals strengthening the immune response against some Gram-positive 

bacteria, upon poly(dA:dT) encounter or HSV-1 encounter251–253. 

 

2.7.4 STING induced lysosomal cell death 

Common types of IFN or NF-kB related cell death have been already discussed (2.5) and 

display the main outcome of STING activation in most cell types. Primarily in human myeloid 

cells STING can also induce lytic cell death (LCD). In this pathway STING has to translocate to 

the lysosomal membrane, leading to its rupture and cell death upon the release of lysosomal 

hydrolases254. As STING degradation also mainly happens in the lysosome it has to be clarified 

how activation of LCD versus shut-down of STING activity is regulated255. 
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2.8 Post-translational modifications of the cGAS-STING pathway 

Although an interferon regulated feedback loop of cGAS activity exists, cGAS is constitutively 

expressed in most cell types256. Therefore, many post-translational modifications have been 

shown to mediate cGAS activity. Modifications at the active site directly inhibit its activity by 

preventing cGAMP production (hcGAS S305-P257, cleavage at D319258, L414-Ubi259). Active 

dimer formation is prevented by different modifications at the interaction interface (hcGAS 

L384-Ac/K394-Ac259, K231-Sumo/K347-Sumo, K384-Sumo/K394-Sumo260,261, K173-Ubi/K384-

Ubi262). The N-terminal part is cleaved off by caspase 1 in apoptosis, rendering cGAS 

inactive263. Caspase 3 cleavage at D319 (for hcGAS) is inactivating in the same context264. The 

sumoylation site K479 (for hcGAS) is not located in any known functional motif260. 

Glutamylation at E302 (for hcGAS) blocks cGAS activity265. Just recently multiple 

phosphorylation sites at the N-terminus have been shown to prevent cGAS autoimmunity on 

chromatin during mitosis266 (see Fig. 13 top). 

 

As STING has multiple functions depending on localization and downstream interactors, all 

proteins involved are targets for modifications to orchestrate the signaling. The most obvious 

modification is the already described phosphorylation of S366 (for hSTING) by TBK-1 needed 

for IRF-3 signaling267. Another important site for STING regulation is K150 (for hSTING). 

Depending on the exact type of ubiquitylation status of this residue different effects are 

observed. In general, K48-linked ubiquitylation is associated with proteasomal degradation, 

whereas K63-linked ubiquitylation promotes signaling. Both types of modification can be 

found at K150, either regulating degradation268,269 or promoting multimerization and 

therefore activity270,271. K63 and K27 ubiquitylation at K224 (for hSTING) promote interaction 

and phosphorylation by TBK-1272,273. Disulfide bridge formation at C148 (for hSTING)243 and 

palmitoylation at C88 and C91 (for hSTING) facilitate multimerization 274 (see Fig. 13 bottom). 
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Figure 13: Modifications of cGAS and STING. All modifications of cGAS and STING according to PhosphoSite. 
Phosphorylation shown with blue dots, acetylation with green dots, ubiquitylation with orange dots and others 
including cleavage with grey dots. cGAS is heavily modified on all parts of the protein. Especially, the areas 
needed for cGAMP production (S305-P, cleavage at D319, L414-Ubi) or active dimer formation (L384-Ac/K394-
Ac, K231-Sumo/K347-Sumo, K384-Sumo/K394-Sumo, K173-Ubi/K384-Ubi) are modified. Additionally, the NTD 
can be cleaved off or phosphorylated multiple times during mitosis. In comparison STING does not show that 
many modifications. Most obviously needed is the phosphorylation at S366 for further downstream signaling. 
Another noteworthy residue is K150, that can have multiple types of ubiquitylation leading to either impaired or 
amplified activity. | Phosphosite Plus V.6.5.9.3, www.phosphosite.org, accessed 14.05.2021 
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2.9 RIG-I the main cytosolic RNA sensor – structure and activation 

2.9.1 Inactive open state 

As cGAS was introduced as the main sensor for cytosolic dsDNA, RIG-I is the counterpart for 

dsRNAs. As already discussed before RIG-I does not recognize any kind of RNA nonspecifically 

(as cGAS does for dsDNA) but needs special recognition motifs. The RNA to be bound by RIG-

I leading to activation needs a triphosphate or uncapped diphosphate at the 5´-end129–131, 

base-pairing at the 5´-end132 and the 5ʹ-terminal nucleotide has to be unmethylated at its  

2ʹ-O133. 

 

RIG-I has a highly helical structure with two CARD (CARD1 and CARD2) domains of ~85 amino 

acids each at the N-terminus followed by a RecA-like helicase domain (Hel1 and Hel2), that is 

connected via a flexible linker (Hel1i). Hel1 and Hel2 form an ATP binding and hydrolyzing 

domain at their interface275. Another flexible linker (Hel2i) connects the C-terminal RNA 

binding domain (CTD) to the RecA domain122. The CTD harbors a Zn2+-binding domain and 

forms a positively charged groove for RNA binding276. Additional RNA contact is made by the 

helicase domain. A specific feature of RIG-I compared to other helicases is the so called 

`pincer-helix´. This long α-helix emerges from Hel2 and bridges back to Hel1, with the 

interactions between the helix and Hel1 being conserved in different species supporting ATP 

binding125 (see Fig. 14A). 

 

Inactive RIG-I occurs in an autoinhibited state with the CARD2 domain sequestered by Hel2 

forming a rigid head-to-tail unit125,277. The resulting steric constraints prevent MAVSs and 

polyubiquitin binding, which is needed for downstream signaling. Furthermore, this 

conformation shields the RNA binding site of Hel2 by CARD2. Due to this, only high affinity 

ligands bound to the CTD can disrupt this interaction making the full RNA binding site 

available278. Apo-RIG-I adopts an open conformation with Hel1 and Hel2 not in direct contact 

and Hel2 forming a rigid body with Hel2i (Hel2i-Hel2 module)125. As a result, the ATP-binding 

interface between these domains is not formed correctly disabling ATP hydrolysis when no 

RNA is bound279. The CTD is flexibly linked and available for binding to RNA125 (see Fig. 14B). 
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2.9.2 Active closed state 

The formation of the active conformation of RIG-I is a sequential process. First, binding of a 

high affinity RNA will lead to the formation of the functional ATP binding interface between 

Hel1 and Hel2277. Second, ATP binding will introduce a further conformational change 

compacting the SF2 domain and leading to a ring-like closure of the helicase and CTD domains 

around the RNA126. Hel1 will rotate 60° and Hel2i 23° relative to Hel2, creating a positively 

charged channel for RNA binding125. The pincer-helix adopts a V-shaped conformation 

protruding in a proline-rich loop, strengthening the closed ring structure. All four domains that 

participate in RNA binding cover a total area of around 1500 Å2, binding to about 8-10 bps of 

RNA125,126. Most contacts are established with the sugar-phosphate backbone of the RNA, with 

a few exceptions in the CTD needed for specific ligand recognition. Nevertheless, most of 

these interacting residues are the same as in the CTD alone280. As the RNAs trajectory is slightly 

changed in the full-length structure to prevent steric clashes additional contacts between the 

CTD and RNA can be found. The 3´-terminus is exposed in a highly basic channel, whereas the 

5´-end is capped by the CTD. F853 stacks with the terminal base-pair, explaining the 

preference for dsRNA. S854 binds to the sugar´s hydroxyl group, favoring RNA over DNA as 

ligand. H830 blocks binding of 2´-OH-Me RNA280,281. The only contact of the 3´ RNA strand with 

the CTD is made at its 5´-end with S906 (numbering for hRIG-I). Multiple motifs within Hel1 

and Hel2 facilitate binding to the RNA. Hel1 motif 1a, 1b and 1c, Hel 2 motif IV, IVa, IVb and 

Hel2i interact with the 3´-RNA strand´s backbone not covered by the CTD. The residual non-

capped region of the 5´-strand is recognized by Hel1 motif IIa and Hel2 motif Vc (see Fig. 14C). 

 

The structural change induced by RNA binding separates the interaction of CARD2 with Hel2i, 

making them accessible for downstream signaling via MAVS277. The CARD domains of four  

RIG-I molecules oligomerize into a tetramer serving as nucleation point for further filament 

assembly. Addition of ubiquitin chains to the complex stabilizes the formed tetramer. From 

there on further MAVS can attach via homotypic CARD interactions creating larger filamentous 

assemblies282,283. 
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Figure 14: RIG-I structural overview and rearrangement upon activation. A Domain architecture of RIG-I. RIG-I 
consits of two N-terminal CARDs (red), that are shielded in the apo-state, followed by the SF2-like helicase and 
the C-terminal domain for RNA binding (light blue). The SF-helicase consists of the Hel1 (grey), Hel2 (salmon) and 
the Hel2i insertion domain (yellow). The pincer-helix is denoted in dark-grey. B Structure of apo-RIG-I. Colouring 
of the domain is depicted in A. In the apo-state the CARDs (red) are sequestered by binding to Hel2i (yellow). The 
CTD (light blue) is flexibly attached and available for RNA binding.C When bound to RNA, RIG-I adopts a ring-like 
structure around the RNA molecule. The CARDs are not part of this ring closure and get released. No longer 
sequestered, the CARDs are availabe for downstream signaling. |PDB for B:4A2W+2QFB; C: 5EH3+2QFB 
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2.9.3 RIG-I ATPase domain – a closer look and implications for autoimmunity 

Structurally RLRs belong to the class of SF2 helicases due to their helicase core. Strikingly the 

helicase domain of RLRs (and its relative Dicer284) have evolved to be activated by double-

stranded substrates instead of single-stranded ones as for other members of the SF2-family 

like SWI/SNF-proteins285,286. This subgroup does not even unwind dsRNA robustly and is 

therefore referred to as `Duplex RNA-activated ATPases´ (DRHs)284. The specific ATP binding 

interface formed between Hel1 and Hel2 after activation is composed of different motifs also 

found in other SF2-type helicases. Motifs Q, I (a.k.a. `Walker A motif´), II (a.k.a. `Walker B 

motif´), III, V, and VI at the interface are involved in ATP binding and hydrolysis. Motif I 

contacts the ATPs phosphates in a typical SF2 helicase manner. Motif II coordinates Mg2+ for 

ATP positioning, with additional interactions of motifs Va and VI contacting the ribose and 

phosphates of ATP. Finally motif Q enables ATP specificity by selective contacts to adenine281. 

 

Mutations of the conserved lysine in the Walker A motif (motif I) or the conserved glutamate 

and aspartate residues in the Walker B motif (motif II) reduce signaling capabilities of RIG-I, 

whereas mutations in motif III interrupting ATP hydrolysis do not have an effect on signaling 
287. While ATP hydrolysis was implicated to have a role in filament formation285, it is negligible 

for signaling120. This discrepancy was resolved when ATP was shown to be needed for proper 

discrimination between self and non-self RNAs275,288. ATP hydrolysis leads to faster 

dissociation of bound self-RNAs compared to the high affinity ligands described before288,289. 

Thereby mutations in the ATP binding and hydrolysis interface show a role in multiple 

autoimmune diseases, like Aicardi-Goutières syndrome (AGS)290, Singleton-Merten syndrome 

(SMS) 291, systemic lupus erythematosus (SLE)292 or type 1 diabetes293. 

 

Common residues mutated in the SF2 domain in SMS are C268F and E372A. E372A is located 

in motif II, where the replacement of glutamate with alanine disables the proper polarization 

of the water molecule needed for hydrolysis, thereby increasing autoimmune activity288.This 

work will cover the influence of a common RIG-I SMS mutation C268F, where the structural 

basis of constitutive activation was lacking (see Fig. 15). 
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Figure 15: RIG-I SMS variants. RIG-I helicase domain shown in complex with ADP-BeFx with the relevant ATPase 
motifs. Magnification shows the pathogenic residues in purple. In case of the substitution E373I the needed 
polarization of a water molecule for ATP hydrolysis is not possible anymore, thereby shutting down the ATP-
hydrolysis driven proof-reading mechanism. The constant activation of the C268F mutation is not explainable 
from this structure. |PDB:5E3H 
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3 Publications 

3.1 Structural basis for sequestration and autoinhibition of cGAS by 

chromatin 

 

Michalski, S.*, de Oliveira Mann*, C.C., Stafford, C., Witte, G., Bartho, J., Lammens, K., 

Hornung, V., Hopfner, K-P. Nature 587, 678–682 (2020). https://doi.org/10.1038/s41586-020-

2748-0 

 

*: equal contribution 

 

This work shows the first cryo-EM structure of the innate immune DNA sensor cGAS bound to 

the canonical nucleosome core particle. The resulting autoinhibition explains the mechanism 

of autoimmunity prevention against self-DNA in the nucleus. Despite the nuclear localization 

of cGAS being shown before, the prevention of constant autoimmunity by the sequence-

unspecific dsDNA sensing of cGAS was puzzling. Our high-resolution cryo-EM structure 

revealed that cGAS is tightly anchored via a conserved arginine residue to the acidic patch 

formed at the interface of histone H2A and H2B. This sequestration prevents active cGAS-

dimer formation by covering cGAS´ DNA binding site B, keeping it in an inactive monomeric 

conformation. Extensive mutagenic analysis of the interface of both interaction partners 

verified the interaction biochemically using electromobility shift assays and surface-plasmon-

resonance. The observed affinity for cGAS towards nucleosomes was magnitudes higher 

compared to dsDNA. Additionally, the tethering of cGAS to nuclear chromatin was confirmed 

by nuclear fractionation assays in THP-1 cells. The inhibitory effect of cGAS-nucleosome 

tethering was shown for different nucleosome species and nucleosome arrays. Detecting the 

production of radioactive-labelled 2´-3´cGAMP by cGAS, nucleosomes without overhang-DNA 

(ONO) were identified as potent inhibitors of cGAS activity. This inhibition could not be 

resolved by the addition of competing dsDNA, but active dsDNA-bound cGAS was inhibited by 

NCP addition. NCP with extra-nucleosomal DNA can be activating, when the amount of cGAS 

exceeds the number of inhibitory acidic patches.  
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For longer nucleosome array constructs, we observed activity depending on the compaction 

state of the array. Open arrays with accessible acidic patches still inhibited cGAS activity, 

whereas compact arrays yielded cGAS activation. Again, the observed effects were confirmed 

by reverse observations using mutated interfaces of cGAS and the nucleosome´s acidic patch 

vice-versa. The higher activity of tethering defective mutants was confirmed in THP-1 cells 

measuring cytokine IP-10 levels after HT-DNA infection. 

 

Author contribution: 

The author cloned some of the initial cGAS constructs and purified all recombinant cGAS 

proteins used in the study. He established the production of differently functionalized 

nucleosomes and nucleosomal arrays to manifest cGAS-nucleosome binding. All nucleosome-

related complexes in this study were purified, reconstituted and assembled by the author. He 

performed the electromobility shifts assays and some of the surface-plasmon-resonance 

measurements with the help of G.Witte. Besides, the author optimized plunging conditions 

with the help of C.C de Oliveira Mann and J. Bartho. Furthermore, the author collected the 

data together with C.C de Oliveira Mann, J. Bartho and K.Lammens. Finally, he participated in 

manuscript preparation. 
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Article

Structural basis for sequestration and 
autoinhibition of cGAS by chromatin

Sebastian Michalski1,2,3, Carina C. de Oliveira Mann1,2,3, Che A. Stafford1,2, Gregor Witte1,2, 
Joseph Bartho1,2, Katja Lammens1,2, Veit Hornung1,2 & Karl-Peter Hopfner1,2 ✉

Cyclic GMP–AMP synthase (cGAS) is an innate immune sensor for cytosolic microbial 
DNA1. After binding DNA, cGAS synthesizes the messenger 2′3′-cyclic GMP–AMP 
(cGAMP)2–4, which triggers cell-autonomous defence and the production of type I 
interferons and pro-in"ammatory cytokines via the activation of STING5. In addition to 
responding to cytosolic microbial DNA, cGAS also recognizes mislocalized cytosolic 
self-DNA and has been implicated in autoimmunity and sterile in"ammation6,7. 
Speci#city towards pathogen- or damage-associated DNA was thought to be caused by 
cytosolic con#nement. However, recent #ndings place cGAS robustly in the nucleus8–10, 
where tight tethering of chromatin is important to prevent autoreactivity to self-DNA8. 
Here we show how cGAS is sequestered and inhibited by chromatin. We provide a 
cryo-electron microscopy structure of the cGAS catalytic domain bound to a 
nucleosome, which shows that cGAS does not interact with the nucleosomal DNA, but 
instead interacts with histone 2A–histone 2B, and is tightly anchored to the ‘acidic 
patch’. The interaction buries the cGAS DNA-binding site B, and blocks the formation of 
active cGAS dimers. The acidic patch robustly outcompetes agonistic DNA for binding 
to cGAS, which suggests that nucleosome sequestration can e%ciently inhibit cGAS, 
even when accessible DNA is nearby, such as in actively transcribed genomic regions. 
Our results show how nuclear cGAS is sequestered by chromatin and provides a 
mechanism for preventing autoreactivity to nuclear self-DNA.

cGAS possesses an approximately 360-amino-acid long cGAS/
DncV-like (CD)11 nucleotidyltransferase domain (cGAScat) that has 
three DNA-binding sites (A, B and C) and a predicted unstructured 
160-amino-acid long N-terminal domain. DNA binding to cGAScat via 
sites A and B and subsequent dimerization induces a conformational 
change that structures the active site3,12–14. cGAS dimers are unstable 
but clustering along longer DNA and the formation of liquid–liquid 
phase-separated condensates involving site C concentrate and coop-
eratively stabilize active dimers15–18.

In addition to sensing a wide range of cytosolic non-self DNA19, cGAS 
detects self-DNA and chromatin from nuclear and mitochondrial origin 
that is misplaced in the cytosol or in cytosolic micronuclei, leading to 
sterile inflammation in cellular senescence or cancer6,20. Given this 
wide range of agonistic ligands, it was surprising that cGAS enters the 
nucleus during mitosis or after DNA damage21,22, that it is constitutively 
localized in the nucleus8–10 and that tethering to chromatin is even 
necessary to prevent autoreactivity8. cGAS is inhibited by nucleosome 
core particles (NCPs)22 but activated by chromatin extracted from cells 
or synthetic nucleosome arrays20.

Therefore, to understand how nuclear cGAS as well as cGAS–STING 
signalling influence inflammation and autoimmunity, we set out 
to determine how cGAS interacts with chromatin. Both human and 
mouse cGAS and cGAScat bind NCPs with high affinity (Extended Data 
Fig. 1a). Surface plasmon resonance (SPR) experiments with mouse 

cGAScat showed reproducible binding to immobilized nucleosomes 
at concentrations down to 1 nM, which indicates an affinity in the low 
nanomolar range (Fig. 1a). Human cGAScat binds nucleosomes in the 
range of mouse GAScat, but owing to high bulk contribution the data 
did not allow an unbiased determination of kinetic parameters (Fig. 1a). 
The low nanomolar affinity of cGAScat for nucleosomes is considerably 
stronger than the affinity for 20-bp double-stranded DNA (dsDNA)  
(in the micromolar range) and strongly agonistic 80-mer dsDNA  
(in the 100-nM range)15.

To test how different nucleosomes can activate or inhibit cGAS, we 
monitored cGAMP production in vitro. Nucleosomes with 40-bp-long 
linker dsDNA (‘40N40’) as well as 147-bp dsDNA (the DNA used to assem-
ble NCPs) activate human cGAS under conditions in which human cGAS 
is in excess (Fig. 1b). However, NCPs without linker DNA (‘0N0’) were 
unable to activate human cGAS (Fig. 1b), although cGAS binds under 
these conditions (Extended Data Fig. 1a). Here and in published work20, 
the amount of cGAS exceeds that of nucleosomes, so it is conceivable 
that surplus human cGAS is activated by linker DNA. Thus, we per-
formed activity assays with more stoichiometric amounts of human 
cGAS and NCPs and challenged activation by the addition of 147-bp 
dsDNA (Fig. 1c). By contrast, we titrated 0N0 to cGAS pre-incubated with 
147-bp dsDNA (Extended Data Fig. 1b). In both cases, 0N0 nucleosomes 
fully prevented the activation of cGAS by the 147-bp dsDNA. Together, 
cGAScat binds NCPs with nanomolar affinity and this interaction 
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sequesters cGAS in an inactive state under conditions in which there 
are more NCPs than cGAS molecules, a situation likely to be present 
in the nucleus.

To derive a structural basis of cGAS–nucleosome interactions, we 
used cryo-electron microscopy. Mixing approximately equal amounts 
of mouse cGAScat with NCPs, we could obtain electron micrographs 
that showed homogenous, non-aggregated particles. However, human 
cGAScat was more prone to aggregation. Two-dimensional (2D) classi-
fication and three-dimensional (3D) reconstruction resulted in a map 
with an overall resolution of 3.3 Å, showing a single cGAS bound to the 
NCP (Fig. 2a, Extended Data Figs. 2, 3). Focused refinement improved 
the resolution of the NCP and the histone-binding region of cGAS to 
3.1 Å (Extended Data Figs. 2, 3), allowing building of a model with good 
overall stereochemistry (Extended Data Table 1).

Notably, cGAScat binds to the folded parts of the histone 2A–histone  
2B (H2A–H2B) dimer via an approximately 880 Å2 large, bipartite 
interface (interfaces I and II), but has almost no contacts with nucleo-
somal DNA (Fig. 2a, Extended Data Fig. 4a). The interaction is medi-
ated by DNA-binding site B of cGAS, which becomes blocked by the 
NCP, whereas sites A and C are partially (A) or fully (C) exposed. The 
interaction places cGAS to the lateral face of the nucleosome, between 
superhelix locations 5 and 6 of the nucleosome (Fig. 2b). Interface I is 
formed by ‘tethering’ loops 1 and 2, and the ‘acidic patch’ of the nucleo-
some, a prominent docking site for numerous nucleosome-binding fac-
tors23 (Fig. 2c, d). Tethering loops 1 and 2 contain several evolutionary 
conserved residues that interact with the acidic patch, which indicates 
that histone binding is a conserved feature of cGAS (Fig. 2c, e). R241 of 
mouse cGAS binds to residues E61, D90 and E92 of H2A of the acidic 

patch, with additional contacts formed between R222 of mouse cGAS 
and E61 of H2A, and between K240 of mouse cGAS and E64 of H2A. 
These residues have been identified as responsible for tight chromatin 
tethering in living cells, with mutations at R241 and R255 in mouse and 
human cGAS, respectively, having the most marked effects on gain of 
autoreactivity8. The strong effect of R241 is explained by the unusual 
interaction with several acidic patch carboxylates in the cavity (Fig. 2d, 
Extended Data Fig. 4a). R241 adopts the role of the characteristic ‘argi-
nine anchor’ of many other nucleosome-binding factors23 (Fig. 2d).

Interface II is formed between histone loops H2A-L2 and H2B-L1 and 
the core of DNA-binding site B of cGAS (Fig. 2c). In particular, central site 
B DNA-binding residues R341 and R342 directly bind H2A-L2 and H2B-L1. 
R341, for example, forms a salt bridge to D51 in H2B. The interactions 
at interface II lock cGAS into a rigid, homogenous complex that closely 
matches that of regulator of chromatin condensation 1 (RCC1) (Fig. 2d).

A notable observation is that DNA-binding site B of cGAS recog-
nizes the H2A–H2B dimer via proteinaceous interactions (Fig. 3a). 
To validate these interactions, we mutated sites A, B and C, and the 
zinc-thumb cGAS dimerization element, and measured nucleosome 
interactions. The expression of the mutant proteins did not differ 
from that of wild-type protein, and, with the notable exception of 
the zinc-binding site mutants, have wild-type-like thermal stability, 
indicating correctly folded proteins (Extended Data Fig. 4b, c). Site B 
mutations in interface I strongly reduce binding to the NCP for argi-
nine anchor mouse cGAS(R241E) and human cGAS(R255E) mutations, 
or robustly reduce binding to the NCP for mouse cGAS(R222E) and 
cGAS(K240E) mutations (Fig. 3b, Extended Data Fig. 4d), but leave 
DNA binding through site A intact (Extended Data Fig. 4e). Similarly, 
site B mutations in interface II (mouse cGAS(R341E), cGAS(R337E) and 
to a lesser extent cGAS(R342E)) robustly reduce NCP binding in vitro. 
Double mutants abolished binding. By contrast, mutations in sites 
A and the zinc-thumb in human cGAS do not reduce nucleosome 
binding, which shows that these sites are not involved in NCP bind-
ing (Extended Data Fig. 4f). Site C mutants in human cGAScat lead to 
more defined species in electrophoretic mobility shift assays (EMSAs), 
rather than a high molecular mass species, which could be caused if 
site C of cGAS bound to one nucleosome binds to the DNA of a second 
nucleosome. To rule out that the loss of NCP binding is caused by loss 
of histone and not (hypothetical) DNA interactions (Extended Data 
Fig. 4e), we prepared variant NCPs that contain mutations in the acidic 
patch (0N0apI: H2A(E61A), H2A(E64A), H2A(D90A) and H2A(E92A)) 
and the H2A-L2–H2B-L1 regions (0N0apII: H2A(R71A), H2B(H49A) and 
H2B(D51A)), or both. Both 0N0apI and 0N0apII had strongly reduced 
interactions, whereas the double mutant had abolished interactions 
to mouse cGAS in electrophoretic mobility shift (Fig. 3c, Extended Data 
Fig. 4g) or SPR experiments (Extended Data Fig. 5a, b). Together, these 
data validate the structural observations that cGAS DNA-binding site 
B is a high-affinity binder of the H2A–H2B dimer.

Because NCPs are a dominating competitor to DNA in vitro, we 
investigated the activation of mouse cGAS by 147-bp DNA or plasmid 
DNA under conditions in which either cGAS site B or the nucleosome 
are mutated (Fig. 3d, Extended Data Fig. 5c–k). Mutations in the teth-
ering loop (mouse cGAS mutants R222E, K240E and R241E) led to 
DNA-dependent activation of cGAS both in the presence and absence 
of NCPs (Fig. 3d). A similar loss of inhibition by NCPs is observed 
for human cGAS(R236E) (corresponding to mouse cGAS(R222E)) 
(Extended Data Fig. 5c, d). Mouse cGAS(G316A/S317A), containing 
more conservative mutations in interface II, lead to active cGAS that 
is less inhibited by NCPs (Fig. 3d). By contrast, mutations R341E, R337E 
and R342E in mouse cGAS resulted in inactive or strongly compromised 
mouse cGAS irrespective of the presence and absence of NCP, con-
sistent with their important role in dsDNA binding in the active cGAS 
dimer state13,14 (Extended Data Fig. 4e, f). None of the tethering mutants 
displayed activity without DNA (Extended Data Fig. 5g, h), and mutat-
ing site A abolishes activity in the tethering mutants as well, showing 
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that autoreactivity requires DNA interactions at site A (Extended Data 
Fig. 5i). Finally, we find that 0N0apI has a markedly reduced ability to 
inhibit human cGAS in the presence of dsDNA (Extended Data Fig. 5j), 
and that human cGAS(R236E) is much more robustly activated by 
40N40 than wild-type cGAS (Extended Data Fig. 5k). Fluorescence 
polarization anisotropy studies showed dsDNA binding to human  
cGAScat in the absence of 0N0 but not in the presence of 0N0 (Extended 
Data Fig. 5l). Site A mutants K407E and K411E rendered human cGAS 
inactive in vitro and in living cells12 but had little effect in these titration 
assays. Together, these data validate that nucleosome tethering blocks 
DNA binding to site B (Extended Data Fig. 4d).

Because nucleosomal arrays have been shown to activate cGAS 
in vitro and chromatin in cytosolic micronuclei is linked to cGAS acti-
vation20, we tested cGAS activation using an array with 12 nucleosomes 
positioned by Widom-601 sequences spaced by 53-bp linkers (Fig. 3e, 
Extended Data Fig. 5m). Using the conditions previously described20, 
we find robust activation of cGAS by DNA and the 12-mer array. How-
ever, these conditions favour highly compact chromatin through 

interactions of the H4 tail with acidic patches24, which could prevent 
cGAS sequestration and allow its activation by linker DNA. Under con-
ditions that reduce array compaction, we do not observe cGAS activa-
tion at low cGAS concentrations, whereas free DNA is still activating. 
Higher cGAS concentrations lead to activation by the arrays, but this 
activation can be inhibited by adding free NCPs for wild-type but not 
R241E mutant mouse cGAS. Therefore, compact arrays activate cGAS, 
at least in the absence of other chromatin factors, but that activation 
is inhibited by nearby accessible acidic patch.

To complement our biochemistry data, we studied human THP-1 cells, 
in which cGAS stimulation by long herring testis DNA (HT-DNA) leads to 
a potent interferon-stimulated gene (ISG) response. Wild-type, but not 
CGAS−/−, THP-1 cells stimulated with HT-DNA exhibited potent upregula-
tion of the two well-known ISGs viperin and OAS1 (2'-5′-oligoadenylate 
synthetase 1) (Fig. 3f, Extended Data Fig. 6a). We next complemented 
CGAS−/− THP-1 cells to express wild-type or mutated human cGAS 
variants under a doxycycline-inducible promotor and monitored the 
expression of viperin and OAS1 in dependence of DNA stimulation. 
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Fig. 2 | Structure of the cGAS catalytic domain–nucleosome complex.  
a, A 3.3-Å resolution cryo-EM map showing density for mouse cGAS (light blue) 
bound to the acidic patch of the nucleosome (dark grey, DNA; yellow, H2A; red, 
H2B; light grey, H3.3 and H4). b, Gyre and disc views of the cGAS–nucleosome 
structure. cGAS catalytic domain shows no interactions with nucleosomal DNA 
and interacts with the H2A–H2B acidic patch via a conserved loop. c, Close-up 
view for interface I and interface II. Interacting amino acid residues are 
depicted (blue, cGAS; yellow, H2A; red, H2B). cGAS conserved loop and key 
interacting residues R222 and R241 are depicted. d, Structures of cGAS–
nucleosome, RCC1–nucleosome (PDB code 3MVD) and Kaposi’s sarcoma- 

associated herpesvirus latency-associated nuclear antigen (LANA)–
nucleosome (PDB code 1ZLA) complexes. Close-up views depicting arginine 
anchors from cGAS R241, RCC1 R223 and LANA R9 and key interacting residues 
from the nucleosome acidic patch. e. Alignment of representative cGAS 
proteins from different vertebrate species. Darker shadings indicate higher 
physiochemical conservation according to BLOSUM62 score using Jalview. 
Amino acids involved in cGAS–nucleosome interactions mutated in this study 
are depicted. Amino acids marked in red are highly conserved and required for 
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CGAS−/− THP-1 cells reconstituted with wild-type cGAS upregulated 
viperin and OAS1 after HT-DNA stimulation. Moreover, consistent with 
previous work8 and our in vitro analysis, human cGAS mutants R236E 
and R255E (equivalent to mouse R222E and R241E), led to robust pro-
duction of viperin and OAS1 even in the absence of HT-DNA, and further 
increased activity above the wild-type cGAS response in the presence of 
HT-DNA (Fig. 3f). By contrast, R349E and R353E (equivalent to mouse 
R337E and R341E) led to inactive human cGAS irrespective of HT-DNA 
transfection. The more conservative mutations S328A and S329A did 
not result in a markedly increased ISG response compared to wild-type 
cGAS; presumably the strength of nucleosome interactions remained 
sufficient. Analogous data were obtained when we monitored the pro-
duction of IP-10, an antiviral chemokine (Extended Data Fig. 6b).

We interrogated whether acidic patch interactions regulate human 
cGAS localization by cell fractionation experiments under different 
conditions (Fig. 3g). Using a gentle lysis protocol, we separated the 
cytoplasmic from the nuclear fraction. The nuclear fraction was also 
separated into a 420-mM KCl soluble and insoluble fraction. In agree-
ment with previous reports8, we observed endogenous and overex-
pressed wild-type cGAS in the high-salt insoluble fraction. HT-DNA 

treatment reduced endogenous human cGAS in this fraction, coupled 
with increased levels in the high-salt soluble nuclear fraction and the 
cytoplasmic fraction. cGAS(R255E) displayed increased cytosolic lev-
els, although most was still nuclear. However, unlike endogenous and 
overexpressed wild-type human cGAS, the R255E mutant was predomi-
nantly found in the high-salt soluble nuclear fraction, rather than in the 
high-salt insoluble fraction. Thus, nuclear and cytosolic distribution 
is not, by and large, regulated by acidic patch tethering, but by other 
mechanisms that need to be addressed in future studies. Once in the 
nucleus, tethering of cGAS to nucleosomes and prevention of autore-
activity is governed by the acidic patch anchor R255.

Our data reveal how cGAS is tethered to nucleosomes and how this 
sequestration keeps cGAS inactive (Fig. 4). The interaction is similar to 
the binding of the mitochondrial dynamics protein of 49 kDa (MID49) 
to dynamin related protein 1 (DRP1)25 (Extended Data Fig. 7), suggest-
ing that the tethering loops are more widely used macromolecular 
anchors of CD nucleotidyltransferases11. However, it is possible that 
other elements besides acidic patch binding affect the subcellular 
distribution of cGAS because the N-terminal domain has been shown 
to preferentially localize cGAS to centromeric satellite DNA10.
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Fig. 3 | cGAS is sequestered by the acidic patch of the nucleosome. a, Left, 
cGAS bound to DNA and cGAMP (PDB code 4LEZ) in an active state. Site B 
residues are highlighted (yellow, DNA binding; magenta, DNA and histone 
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Data are mean and s.d., n = 3 biological replicates. Samples are derived from the 
same experiment and gels were processed in parallel. c, EMSA of mouse cGAS 
and nucleosome acidic patch mutants I, II and I + II. Data are mean and s.d. n = 3 
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were processed in parallel. d, Activation of mouse cGAS (mcGAS) mutations 
affecting cGAS–nucleosome interactions by plasmid DNA in the presence and 
absence of 0N0 nucleosomes. cGAMP production was assayed by thin-layer 

chromatography. Data are representative of two biological replicates.  
e, Activation of wild-type and R241E mutant mouse cGAS by 12× nucleosomal 
arrays under low- or high-ionic strength conditions. Data are representative of 
two biological replicates. f, Phorbol 12-myristate 13-acetate (PMA)-differentiated 
human CGAS−/− knockout THP-1 cells reconstituted with wild-type human cGAS 
or indicated mutants were treated with doxycycline (1 µg ml−1) overnight and 
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lysates were separated on SDS–PAGE gels, analysed by western blot (WB) and 
probed with the indicated antibodies. Data are representative of three biological 
replicates. g, Nuclear and cytosolic fractionation of wild-type and CGAS−/− 
knockout human THP-1 cells reconstituted with wild-type or R255E mutant 
human cGAS. High-salt insoluble nuclear (tight chromatin tethering), high-salt 
soluble nuclear and cytoplasmic fractions were separated on SDS–PAGE gels, 
analysed by western blot and probed with the indicated antibodies. Data are 
representative of two biological replicates.
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Comparison of the structure of monomeric cGAS bound to the 
nucleosome with that of active cGAS dimer bound to DNA13,14 reveals 
two elements of inactivation. First, cGAS binding to the H2A–H2B dimer 
blocks DNA access to site B. Second, nucleosomal DNA at superhelix 
location 6/7 occupies the region of the second cGAS molecule in the 
cGAS dimer. Thus, nucleosome binding also sterically blocks cGAS 
dimer formation even when DNA is bound to sites A and C. Because 
DNA binding to both sites A and B and subsequent cGAS dimerization 
is required to induce a conformation in which active site elements are 
properly ordered12–14, our data explain how nucleosomes keep cGAS 
in an inactive state that is robust enough to prevent activation even 
in the case of nearby accessible DNA.

The binding of cGAS to the nucleosome acidic patch could be sen-
sitive to the chromatin state and the availability of accessible nucle-
osomes, and perhaps has evolved to sequester cGAS away from free 
DNA at sites of transcription or accessible linker DNA. Although nuclear 
chromatin is inhibitory at physiological cGAS levels8, chromatin in 
cytosolic micronuclei, which activate cGAS20,26,27, might simply not have 
enough accessible nucleosomes to fully sequester the cytosolic pool of 
cGAS upon membrane rupture. In future studies, it will be important to 
investigate the mechanisms by which cytosolic and nuclear distribu-
tion of cGAS is regulated, for example, during infections. For instance, 
activation of THP-1 cells8 and HT-DNA stimulation (Fig. 3g) lead to par-
tial redistribution of nuclear cGAS to the cytosol. Post-translational 
modifications of either cGAS or histones, or through cofactors, could 
be important regulators, and a role of histone tails needs to be clarified. 
Alternatively, ubiquitination of histones or of human cGAS28 could 

modulate cGAS and nucleosome interactions. Notably, a portion of 
nuclear cGAS appears to be modified and this modification disappears 
upon DNA stimulation (Fig. 3g).

In summary, we demonstrate the tethering mechanism and com-
petitive inhibition of cGAS by nucleosomes and provide a framework 
for the interaction of cGAS with chromatin that explains how nuclear 
chromatin prevents autoreactivity against self-DNA.
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Fig. 4 | Nucleosome sequestration sterically blocks cGAS activation. a, Left, 
structure of cGAS bound to nucleosome histones H2A–H2B via site B (green) 
interactions. DNA-binding site A (red) and site C (blue) are depicted. Right, 
structure of cGAS–DNA complex (PDB code 4LEZ) bound via DNA-binding site 
A (red) and site B (green). dsDNA (red) binding to site B of cGAS is displaced by 
the nucleosome. cGAS site B is shared for DNA and nucleosome interactions.  
b, Schematics of cGAS in cytoplasmic active state bound to DNA and in nuclear 
inactive state bound to histones H2A–H2B of the nucleosome core particle.
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Methods
Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized, and investigators were not blinded 
to allocation during experiments and outcome assessment.

Protein production and purification
Human cGAS full-length and cGAS catalytic domain (155–522) genes 
were purchased from Genescript codon optimized for expression 
in Escherichia coli and cloned into a modified pET28 vector with an 
N-terminal His-SUMO1-tag. Mouse cGAS full-length and the cGAS 
catalytic domain (141–507) were cloned in a modified pET21 with an 
N-terminal His-MBP-tag as previously described12. E. coli BL21 Rosetta 
(DE3) cells were cultured in 2× 3-l TB medium until reaching an opti-
cal density at 600 nm (OD600) of 1.0–2.0, and protein expression was 
induced at 18 °C with 0.4 mM IPTG for 16 h. Cell pellets were resus-
pended in lysis buffer (20 mM HEPES pH 7.5, 400 mM NaCl, 30 mM  
imidazole, 10% glycerol, 1 mM β-mercaptoethanol) and disrupted 
by sonication. Recombinant cGAS proteins and mutants were puri-
fied over Ni-NTA affinity chromatography and the His-SUMO1 and 
His-MBP tags were subsequently removed by SENP2 protease or TEV 
protease cleavage respectively at 4 °C, overnight dialysis in buffer 
A (20 mM HEPES pH 7.5, 300 mM NaCl, 1 mM DTT). Proteins were 
further purified over HiTrap heparin column (GE Healthcare) and 
eluted with a linear gradient of buffer B (20 mM HEPES pH 7.5, 1 M 
NaCl, 1 mM DTT). For a final purification step, fractions containing 
cGAS protein were loaded on a Superdex 16/60 S75 size exclusion 
chromatography column (GE Healthcare) in 20 mM HEPES pH 7.5, 
250 mM NaCl, 1 mM TCEP. Protein samples were concentrated up 
to 5–10 mg ml−1 and 10% glycerol was added before flash freezing in 
liquid nitrogen and storage at −80 °C.

Purification of histone acidic patch mutants
Canonical human histones H2A (00120), H2B (00101), H3.3 (00102) 
and H4 (00103) were purchased from The Histone Source–Protein 
Expression and Purification (PEP) Facility. Human histone H2A (E61A, 
E64A, D90A and E92A), H2A (R71A) and H2B (H49A, D51A) acidic patch 
mutants were cloned into pET21 vector and purified as previously 
described29. In brief, histone acidic patch mutants were expressed in 
E. coli BL 21 (DE3) cells (Novagen) for 3 h at 37 °C after induction at 
OD600 0.6. Pelleted cells were disrupted by resuspension in wash buffer 
(50 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM DTT) supplemented with 
1 mg ml−1 lysozyme (Carl Roth, 8259), 1× protease inhibitor and 250 U  
benzonase (Merck Millipore, E1014) via three rounds of sonication. 
Inclusion bodies were washed two times with wash buffer supplemented 
with 1% Triton X-100 followed by two washes with standard wash buffer. 
Washed inclusion bodies were incubated with 1 ml DMSO for 30 min  
at room temperature followed by homogenization in resuspension 
buffer (7 M GdmCl, 20 mM sodium acetate pH 5.2, 1 mM EDTA) and 1 h 
incubation at room temperature. The supernatant was dialysed two 
times for 1.5 h against SAU 50 buffer (8 M urea; 20 mM sodium acetate, 
pH 5.2, 50 mM NaCl; 1 mM EDTA, 10 mM lysine). As first step of purifica-
tion histones were separated by cation exchange chromatography (GE 
Healthcare HiTrap S HP) by applying a salt gradient. Histone-containing 
fractions were dialysed three times against refolding buffer (15 mM 
Tris-HCl, pH 8.0) of which one step needs to be over night to ensure 
proper refolding. Correct folded histones were finally separated by 
anion exchange chromatography (GE Healthcare HiTrap Q HP) using a 
salt gradient. Histone containing fractions were shock frozen in liquid 
nitrogen and lyophilized.

Preparation of mononucleosomes
Histone octamers were assembled by resuspending and mixing lyo-
philized human H2A (The Histone Source; 00120); H2B (The Histone 

Source; 00101), H3.3 (The Histone Source; 00102) and H4 (The Histone 
Source; 00103) or corresponding H2A–H2B acidic patch mutants in 
1.2:1.2:1:1 molar ratio in octamer unfolding buffer (25 mM Tris-HCl,  
pH 7.5; 7 M GdmCl; 1 mM DTT). Refolding into correct octamer was achieved 
by dialyzing against octamer refolding buffer (25 mM Tris-HCl, pH 7.5,  
2 M NaCl, 1 mM DTT). Assembled octamer was purified by size exclusion 
chromatography. Octamer containing fractions were concentrated 
and stored at -20 °C in 50% glycerol.

Widom 601 DNA sequence was used for the PCR amplification of 
nucleosomal DNA. Depending on the needed functionality of the nucle-
osome to be made, non-fluorescent primers, 5′-FAM-labelled primers 
or 5′-biotin-labelled primers were used (Metabion, Martinsried). The 
large-scale PCR amplified product was purified using salt-gradient 
anion-exchange chromatography (GE Healthcare HiTrap DEAE FF). 
Nucleosomal DNA containing fractions were dialysed overnight against 
water to remove salt and concentrated under vacuum.

For reconstitution of functional nucleosomes canonical human 
octamer or acidic patch mutants were mixed with non-fluorescent, 
double 6-FAM-labelled or biotin-labelled DNA in a 1:1.1 ratio in high-salt 
buffer (25 mM Tris-HCl, pH 7.5, 2 M NaCl, 0.25 mM DTT). For nucleo-
some assembly tenfold volume of low-salt buffer (25 mM Tris-HCl, 
pH 7.5, 50 mM NaCl, 0.25 mM DTT) was added over 24 h at 4 °C. Final 
assembly took place by dialyzing against fresh low-salt buffer for at 
least 3 h. Reconstituted nucleosomes were purified by salt-gradient 
separation via anion-exchange chromatography (GE Healthcare Source 
Q). Nucleosome containing fractions, were pooled, dialysed against 
low-salt buffer overnight and stored at 4 °C.

Preparation of nucleosome arrays
For preparation of nucleosome arrays a pUC18-12x601-200 plas-
mid originating from the Rhodes lab was used as DNA template30. 
Large amounts of plasmid were prepared using a Macherey-Nagel 
PC-10000 Giga kit (740548), following the manufacturer’s instruc-
tions. The desired 12× positioning sequence was cut out by an EcoRI 
(NEB, R3101T) and HindIII (NEB, R3104T) restriction digest. The rest 
of the vector was fragmented using restriction enzymes DraI (NEB, 
R0129L) and HaeII (NEB, R0107L). The 12× nucleosomal array DNA was 
isolated by size-exclusion chromatography using a Sephacryl-S500 
16/60 column (GE Healthcare). Reconstitution into nucleosome 
arrays was performed by mixing array DNA at a final concentration of  
0.3 µg µl−1 with 1.3 times molar excess histone octamer (in proportion 
to available binding sites) and 0.1 mg ml−1 BSA (Carl Roth, 8076) in the 
previously described high-salt buffer31. Dialysis into low-salt buffer 
was performed as previously described in this study for mononucle-
osomes. Correct nucleosomal array reconstitution was assessed by  
performing a MNase digest. Here, 1 µg of array was digested with 0.005 U  
MNase (Sigma-Aldrich, 3755) in buffer containing 1.5 µM CaCl2. The 
reaction was stopped using STOP-buffer (50 mM Tris pH 7.5, 4% SDS, 
100 mM EDTA, pH 8.0) at different incubation time points. Afterward 
samples were incubated for 1 h at 37 °C with Proteinase K (Thermo 
Fisher Scientific, EO0491) and digested DNA was isolated using the 
NEB Monarch PCR & DNA Cleanup Kit (NEB, T1030S). The isolated DNA 
fragments were separated using 1.5% (Biozym, 840004) agarose gel 
electrophoresis with 1×TAE as running buffer (100 V, 2.5 h) and stained 
with GelRed (Biotium, 41003). Gels were imaged using a GE Healthcare 
Typhoon FLA9000 imager.

EMSAs
For EMSAs of cGAS with nucleosomes serial dilutions of cGAS protein 
(different organisms or mutants) were mixed with double fluorescently 
labelled canonical or acidic patch mutated nucleosomes. In brief, cGAS 
protein 0 to 8 times molar excess in twofold dilution, was added to 
provided 25 nM nucleosome EMSA master mix (25 mM HEPES pH 7.5, 
150 mM NaCl, 1 mM TCEP) and incubated for 30 min on ice. The formed 
complex was separated on 7% TA-Nu Page gels (Invitrogen, EA0358) 
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using 1× TG-buffer (25 mM Tris, 192 mM glycine, pH 8.3) under native 
conditions at 4 °C (100 V const., 105 min). For testing binding to DNA, 
147-bp long nucleosomal double fluorescently labelled dsDNA was 
used. Here, mouse cGAS protein 0 to 16 times molar excess in two-
fold dilution, was added to provided 25 nM dsDNA master mix (25 mM 
HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP) and incubated for 30 min on 
ice. Separation of the complex was performed using a 1% agarose gel 
using 40 mM Tris pH 9.2 as running buffer (4 °C, 100 V const., 90 min). 
Gels were imaged using a GE Healthcare Typhoon FLA9000 imager. 
Quantification of the band intensities was performed using ImageJ32 
gel analysis by measuring the decline in intensity of free nucleosomes 
with increasing cGAS concentrations.

SPR
SPR experiments were performed using a Biacore X100+ (GE Healthcare 
Biacore) instrument with HSB-P+ and 1 mM TCEP (Cytiva, BR100827) at a 
flow rate of 10 µl min−1. A CM5 sensor chip was coupled with neutravidin 
(Thermo Fisher Scientific, 31055) via amino reactive chemistry (EDC/
NHS) to both flow cells (FC1, FC2). Nucleosomes with biotinylated DNA 
were coupled to FC2 (200 RU), FC1 served as a reference cell to correct 
for unspecific binding to the surface of the chip. We observed some 
background binding but assume that this is identical for FC2 and FC1. 
All sensorgrams show reference-subtracted data—that is, response 
units of FC2–FC1. Data were evaluated using a 1:1 binding model in the 
Biacore X100 Evaluation Software.

Thermal shift assay
Thermal stability of different protein mutants was examined using 
Nanotemper Tycho NT.6 by performing thermal shift assays. cGAS 
proteins (2 mg ml−1) incubated in 20 mM HEPES pH 7.5, 250 mM NaCl,  
1 mM TCEP were measured. Change in intrinsic fluorescence of aro-
matic amino acids was measured at wavelengths of 330 nm and 350 nm f 
rom 35 °C to 95 °C (rate 3 °C min−1). The deflection point of the curve  
and first derivative was calculated by the Tycho NT.6 software 
(v.1.3.1.868).

Fluorescence anisotropy measurement
Fluorescence anisotropy measurements were carried out using a Tecan 
Infinite M1000 plate reader. For testing of cGAS binding to small DNA 
serial dilutions of hcGAScat or hcGAScat site A mutant were mixed with 
100 nM (final concentration) of 5´-FAM-labelled 20-bp dsDNA in 
anisotropy buffer (50 mM NaCl, 25 mM HEPES pH 7.5, 1 mM TCEP) in 
GRE96fb_chimney plates (Greiner BioOne) and incubated for 30 min at 
room temperature. The maximum amount of cGAS used was limited by 
the amount of recombinantly produced nucleosome. To test the bind-
ing of small DNA to pre-formed cGAS-0N0 complexes the same con-
centrations of hcGAScat or hcGAScat site A mutant as described before 
were incubated with 0.5 times molar ratio 0N0 for 20 min at room 
temperature before addition of the 5´-FAM-labelled 20-bp dsDNA. 
Measurements were performed using the Tecan i-control software in flu-
orescence polarization mode using the following settings: λex=470 nm  
(bandwidth = 5 nm), λemission = 520 nm (bandwidth = 10 nm), gain optimal,  
number of flashes = 10, settle time = 0, z-pos = 20,000, G-factor = 1. 
Values for anisotropy were calculated by Tecan i-control software and 
corrected for blank and DNA-only control. Owing to the limited amount 
of 0N0 the curves were not fitted, as saturation is not reached, but show 
only qualitative comparison.

In vitro cGAS 2′3′ cGAMP synthesis assay
Radiolabelled cGAS activity assays were performed as previously 
described12. Unless otherwise stated, pre-incubated samples contain-
ing different amounts of cGAS, DNA and/ or nucleosomes were mixed 
with 25 µM ATP, 25 µM GTP and trace amounts of [α32P]ATP (Hartman 
Analytic, SRP-207) in reaction buffer (50 mM HEPES pH 7.5, 5 mM MgCl2, 
100 mM NaCl, 1 mM TCEP). Reactions were incubated for 45 min at 37 °C 

and reaction products were spotted on thin-layer chromatography 
(PEI-Cellulose F plates; Merck, Z122882). 1 M (NH4)2SO4/1.5 M KH2PO4 
pH 3.8 was used as running buffer and TLC plates were analysed by 
phosphor imaging (Typhoon FLA 9000, GE Healthcare). In Fig. 1b, 
1 µM human cGAS full-length protein was incubated with 0.05, 0.1, 0.2 
0.4 and 0.6 µM dsDNA, 40N40 or 0N0 nucleosomes. In Fig. 1c, 0.5 µM 
human cGAS full-length protein was pre-incubated with 1 µM 0N0 for 
25 min followed by the addition of 0.25, 0.5, 1 and 2 µM 147-bp nucleo-
somal DNA. In Extended Data Fig. 1b, 0.5 µM human cGAS full-length 
protein was pre-incubated with 0.5 µM 147-bp nucleosomal DNA for  
25 min followed by the addition of 0.25, 0.5, 1 and 2 µM 0N0 nucleosome. 
In Fig. 3d, 0.5 µM mouse cGAS full-length protein wild type and differ-
ent cGAS mutants were incubated for 2 h at 37 °C with 50 ng plasmid 
DNA and 1 µM 0N0 nucleosome. In Fig. 3e, 0.3 µM or 3 µM mouse cGAS 
protein were incubated with 0.12 µM 12× nucleosome array in different 
buffer conditions. 1.5 µM 0N0 mononucleosomes were added after  
5 min pre-incubation with nucleosomal array. In Extended Data Fig. 5j, 
0.5 µM of human cGAS full-length protein were pre-incubated with 
0, 0.125, 0.25, 0.5 and 1 µM 0N0 wild-type nucleosome or 0N0 acidic 
patch mutant nucleosome followed by the addition of 0.5 µM 147-bp 
nucleosomal DNA. In Extended Data Fig. 5k, 0.5 µM 40N40 nucleo-
some were incubated with 0.125, 0.25, 0.5, 1 and 2 µM human cGAS 
full-length protein.

Electron microscopy and data collection
Quantifoil Cu 200, R 2/1 grids were plasma cleaned 7 s at 20 mA (Glo-
Qube, Quorum). Grids were prepared with a Leica EM GP plunge freezer 
(Leica), at 10 °C and 95% humidity. Then, 2.8 µM 0N0 nucleosome in 
low-salt buffer (25 mM Tris-HCl, pH 7.5, 50 mM NaCl, 0.25 mM DTT) 
were mixed in a 1:1 ratio with mouse cGAS catalytic domain, and 
octyl-β-glucoside was added to a final concentration of 0.05%. Next, 
4.5 µl of sample was immediately applied to grids and blotted 2.0 s 
before vitrification in liquid ethane. Data were collected on a Titan 
Krios G3 transmission electron microscope (Thermo Fisher Scientific) 
operated at 300 kV with a K2 Summit direct electron detector (Gatan) 
operated in counting mode, and GIF energy filter with a slit width of 
20 eV (Gatan). Two datasets (1,211 and 3,050 movies) were collected 
with the EPU software package (TFS), with a defocus range of −2.8 to 
−1.0 µm, total dose of 44.8 e− Å−2 over 40 frames, and magnified pixel 
size of 1.059 Å.

Electron microscopy data processing
Micrograph movies were motion corrected and dose-weighted with 
MotionCor233, and CTF parameters were estimated with CTFFIND434. 
All further cryo-EM data processing steps were conducted using 
RELION v.3.0.735 unless stated otherwise and resolutions reported 
are based on the gold standard FSC 0.143 criterion (Extended Data 
Fig. 2). Five-hundred particles were manually picked from the initial 
test data set of 1,211 micrographs and extracted using a 200 pixel box 
size. 2D class averages were calculated and the three best classes 
were low pass filtered to 20 Å and used for automated template pick-
ing of 680,000 particles from the initial data set. These particles 
were subjected to 2D classification, and 590,000 particles in the 
selected classes were imported to cryoSPARC v.2.1136 and used to 
generate an 3D ab-initio reconstruction. From the second dataset 
with 3,050 micrographs, 1,650,000 additional particles were picked 
using the previous 2D classes for automated template picking. The 
ab initio model from cryoSPARC was used as a reference for the first 
round of 3D classification containing a total of 2,100,000 particles. 
Then, 1,380,000 particles were then selected for a second round of 
3D classification performing local angular searches. The selected 
173,000 particles yielded a cryo-EM map of the cGAS–nucleosome 
complex at 3.36 Å and subsequent RELION refinement and solvent 
mask post-processing yielded a cryo-EM map of the complex at 3.1 
Å resolution. Directional FSC plot for the final 3D reconstitution 
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of the cGAS-nucleosome complex was performed using the 3DFSC 
software37.

Model building
We performed rigid docking in UCSF Chimera38 using available crys-
tal structures of mouse cGAS catalytic domain (PDB code 4LEZ) and 
nucleosome (PDB code 3LZ0). Model building was performed manually 
in COOT39 using secondary structure restraints for protein and libg 
restraints for DNA and final real-space refinement was performed in 
PHENIX 1.17.

Figure preparation
Figures were prepared using UCSF ChimeraX40, PyMOL (The PyMOL 
Molecular Graphics System, version 1.7.4.4 Schrödinger, LLC) and Prism 
v.8.0 (GraphPad Software).

Generation of cGAS THP-1 knockouts
THP-1 cells were obtained from ATCC and early passages of these cells 
were used for the experiments. No further authentication was done. 
CRISRP–Cas9 RNPs were assembled by annealing synthetic, chemically 
stabilized crRNA:tracrRNA pairs (IDT) at 95 °C for 5 min and incuba-
tion at room temperature for 30 min. gRNAs were then mixed with 
recombinant NLS-Cas9 protein for 20 min at room temperature. Cas9 
(40 pmol) was added for each 100 pmol of cGAS gRNA. RNPs were 
then mixed with the cell suspension and nucleofection was conducted 
using the SG Cell Line 4D-Nucleofector X Kit S (Lonza) on the X-unit 
of a 4D-nucleofector (Lonza) (program FF-100). After nucleofection, 
cells were collected from the nucleofection cuvettes and transferred 
into a 96-well plate. Cells were allowed to recover for 48 h at 37 °C, 5% 
CO2. THP-1 cells were then subject to single cell dilution cloning on in a 
round-bottom 96-well plate in culture. When colonies became visible 
after approximately 3 weeks, clones were collected and subjected to 
MiSeq analysis as previously described41. All cell lines were regularly 
tested for mycoplasma contamination. gRNA1: CAAAACCGCCCGG 
AGCTTCG; gRNA2: CGCATCCCTCCGTACGAGAA.

Cell culture
THP-1 cells were cultured in RPMI Medium 1640, supplemented with 
10% (v/v) FCS, L-glutamine and 100 U ml−1 penicillin-streptomycin. 
For differentiation, cells were incubated with 300 ng ml−1 PMA for 3 h.  
Afterwards, cells were washed twice with PBS and 50,000 cells were 
seeded into a 96-well tissue culture plate (for ELISA), 500,000 cells into 
a 24-well tissue culture plate (for ISG immunoblots), or 5 million cells 
into a 10 cm tissue culture plate (for fractionation) containing culture 
medium. After 24 h of resting, cells were used for experimentation.

Cell stimulation
THP-1 cells were simulated after a resting phase of one day and an over-
night treatment with Doxycycline (1 µg ml−1). For stimulation, HT-DNA 
(200 ng per 96-well) or (975 ng per 24-well) was incubated for 5 min at 
room temperature in Opti-MEM (Gibco), complexed with (0.25 µl per 
96-well) (1.3 µl per 24 well) of Lipofectamine 2000 per well (Thermo, 
11668019) in Opti-MEM, which was also incubated separately for  
5 min at room temperature. Afterwards the two reagents were mixed 
and incubated another 5 min at room temperature. The transfection 
mix was then applied to each well, totalling 100 µl (96-well) or 550 µl 
(24-well). Stimulation occurred for 8 h at 37 °C. For ELISA, supernatants 
were harvested, and IP-10 cytokines were measured at 1:100 dilution 
using a human IP-10 ELISA (BD Biosciences). For immunoblot, cells 
were washed twice in PBS, then lysed directly in 1× Laemmli. For THP-1 
stimulations in 10 cm plates, 20 µg of HT-DNA was incubated for 5 min 
room temperature. Polyethylenimine (50 µl) was incubated separately 
on ice for 5 min. Afterwards, the two reagents were mixed and incubated 
for 30 min room temperature. The transfection mix was then applied 
to each plate, totalling 7.5 ml.

Cytoplasmic or nuclear fractionation
After overnight doxycycline treatment and 8 h HT-DNA stimulation, 
cells were trypsinized for 10 min at 37 °C and lifted with medium. Cells 
were then washed twice with ice-cold PBS and counted. 2.2 million 
THP-1 cells were then washed twice with buffer A (10 mM HEPES pH 
7.9, 1.5 mM MgCl2, 10 mM KCL, 1 mM DTT supplemented with protease 
inhibitors), and lysed using 50 µl of buffer A supplemented with 0.01% 
NP-40 for 15 min on ice, vortexing every 5 min. Lysate was centrifuged 
at 20,817g for 10 min 4 °C and supernatant was collected (cytoplasmic 
fraction). Pellet was washed three times in buffer A without detergent. 
Pellet was then lysed in 20 µl of buffer B (20 mM HEPES pH 7.9, 420 mM 
MgCl2, 1.5 mM KCl, 1 mM DTT, 25% glycerol, supplemented with protease 
inhibitors) for 10 min on ice, then subject to 2,000 rpm shaking at 4 °C 
for 15 min. Nuclear lysate was then centrifuged for 15 min 20,817g and 
supernatant was collected (420 mM KCl soluble nuclear fraction). Pellet 
was washed twice in buffer A then lysed directly in 20 µl of 1× Laemmli 
buffer (Laemmli soluble nuclear fraction). Equal amounts of each frac-
tion were then subject to repeated freeze/boil cycles to destroy DNA 
and loaded onto SDS–PAGE gels.

Antibodies
Western blots were probed with following primary antibodies: 
anti-lamin A (Abcam, Ab26300), anti-cGAS (CST, 15102), anti-Viperin 
(Merck, MABF106), anti-OAS1 (Santa Cruz, SC374656), anti-actin 
HRP-conjugated (Santa Cruz, SC47778) and secondary antibodies 
anti-mouse IgG HRP-linked (CST, 7076S) and anti-rabbit IgG HRP-linked 
(CST, 7074S).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The electron density reconstruction and final model were deposited 
at the Electron Microscopy Data Bank (EMDB) with accession code 
EMD-11601, and the Protein Data Bank (PDB) with accession code 
7A08. Source data are provided with this paper.
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Extended Data Fig. 1 | cGAS binds nucleosomes even in the presence of free 
DNA. a, Gel-mobility shift binding analysis of purified cGAS and nucleosomes. 
Nucleosomes without linker DNA (0N0) were tested for binding to purified 
human (h) and mouse (m) full-length cGAS and cGAScat. Data are representative 

of two biological replicates. b, Human cGAS activity assay preincubated with 
dsDNA followed by titration of 0N0 nucleosomes. Data are representative of 
two biological replicates.
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Extended Data Fig. 2 | Cryo-EM data processing for cGAS–nucleosome 
structure. a, Representative micrograph of the dataset used to determine  
the cGAS–nucleosome complex structure. b, Left, final reconstruction of  
the cGAS–nucleosome complex coloured by local resolution. Right, 
representation of angular distribution of particles contributing to the final 
map. c, Histogram and directional Fourier shell correlation (FSC) plot for the 

final 3D reconstitution of the cGAS–nucleosome complex (3.11 Å). A sphericity 
of 0.9 was determined indicating very isotropic angular distribution (a value of 
1 stands for completely isotropic angular distribution). The global resolution 
was determined to 3.11 Å (0.143 criterion). Directional FSC determination was 
performed with the 3DFSC software. d, Flow chart for image processing using 
RELION and cryoSPARC.
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Extended Data Fig. 3 | Sample density maps for cGAS–nucleosome 
structure. a, Representative examples of cryo-EM map areas of cGAS, 
nucleosomal DNA and histones used for model building. b, Electron density for 
cGAS (blue) and H2A–H2B (yellow, red) interacting residues in interface I and 

interface II. cGAS tethering loops 1 and 2 with key interacting residues R222 and 
R241 are depicted as well as DNA-binding site B residues. Dashed lines 
represent hydrogen bonds.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Mutational analysis of binding interface between 
cGAS and the nucleosome. a, Protein–protein residue interactions across the 
interface of cGAS with histone H2A and cGAS with histone H2B. Interacting 
amino acids are joined by coloured lines, each representing a different type of 
interaction, as per the key below. Interaction maps for the cGAS–nucleosome 
complex were generated using PDBsum. b, Thermal shift assay derivative melt 
curve plots of human cGAScat mutants. Respective inflection temperatures are: 
cGAScat 61.8 °C; cGAScat(K407E/K411E) 61.3 °C; cGAScat(C396A/C397A (55.5 °C; 
cGAScat(R236E) 61.9 °C, cGAScat(R300E/K301E) 62.5 °C. Data are representative 
of two biological replicates. c, Coomassie stained SDS–PAGE gels of purified 
recombinant human and mouse cGAS (7 µg each) constructs used in this study. 
Gels are representative of one replicate. d, Representative EMSAs for mouse 
cGAS–nucleosome interface I and interface II mutants binding to fluorescently 

labelled nucleosomes. Data are representative of three biological replicates.  
e, EMSAs for mouse cGAS mutants in tethering loops 1 and 2 (R222E, R241E)  
and DNA-binding site B (R337E, R341E) binding to fluorescently labelled 
nucleosomal DNA. Data are representative of two biological replicates.  
f, EMSAs for human cGAS full-length and catalytic domain, DNA-binding site A 
(K407E/K411E), Zn-thumb (C396A/C397A), site B (R236E) and site C (R300E/
K301E) mutants binding to fluorescently labelled nucleosomes. Data are 
representative of two biological replicates. g, Representative EMSAs for mouse 
cGAS full-length binding to fluorescently labelled acidic patch mutant 
nucleosomes apI (H2A(E61A/E64A/D90A)) and apII (H2A(R71A), H2B(H49A/
D51A)) and apI + apII (H2A(E61A/E64A/R71A/D90A/E92A), H2B(H49A/D51A)). 
Data are representative of three biological replicates.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | cGAS DNA-binding site B is required for cGAS 
tethering by the nucleosome. a, SPR analysis of single-cycle-kinetics 
experiment with immobilized nucleosomes via biotinylated DNA and mouse 
cGAScat and cGAScat(R241E) mutant as analytes. Shown are injections of 1.1, 3.3, 
9, 10, 30 and 90 nM mouse cGAScat and cGAScat(R241E). Data are representative 
of two biological replicates. b, SPR analysis with acidic patch mutant 
nucleosomes (H2A(E61A/E64A/D90A)) immobilized via biotinylated DNA and 
cGAScat as analyte. Shown are buffer injections, injections of 1.1, 3.3, 9, 10, 30 
and 90 nM mouse cGAScat and the cGAScat background-corrected data.  
Mouse cGAScat has orders of magnitude lower affinity to acidic patch mutant 
nucleosomes than wild-type nucleosomes. Data are representative of  
two biological replicates. c, Human cGAS(R236E) mutant activity assay 
preincubated with dsDNA followed by titration of 0N0 nucleosome. Data are 
representative of two biological replicates. d, Human cGAS(R236E) mutant 
activity assay pre-incubated with 0N0 nucleosome followed by titration of 
dsDNA. Data are representative of two biological replicates. e, Mouse cGAS 
mutations tested affecting cGAS–nucleosome interactions were tested  
for DNA-dependent activation with plasmid DNA in the presence of 0N0 
nucleosomes. cGAMP production was assayed by thin-layer chromatography. 
Data are representative of two biological replicates. f, Mouse cGAS mutations 
affecting cGAS–nucleosome interactions were tested for DNA-dependent 

activation with 147-bp nucleosomal DNA in the presence of 0N0 nucleosomes. 
Data are representative of two biological replicates. g, Mouse cGAS single and 
double mutations of tethering loop and DNA-binding site B were tested for 
cGAMP production in the presence of plasmid DNA alone or plasmid DNA  
and 0N0 nucleosome. Data are representative of two biological replicates.  
h, Mouse cGAS mutants R222E, K240E and R241E require plasmid DNA for 
activation. Data are representative of two biological replicates. i, Mouse cGAS 
mutants R222E, K240E and R241E were tested for DNA-dependent activation 
with plasmid DNA in the presence of 0N0 nucleosomes. Mutation of DNA-
binding site A abolishes activation by plasmid DNA. Data are representative of 
two biological replicates. j, Human cGAS activity assay in the presence of 
dsDNA, followed by titration of 0N0 and 0N0 acidic patch mutant I (apI; 
H2A(E61A/E64A/D90A)). Data are representative of two biological replicates. 
k, Wild-type and R236E mutant cGAS activity assays with 40N40 nucleosomes 
(40-bp linker DNA on each side). Data are representative of two biological 
replicates. l, Fluorescence anisotropy analysis of human cGAScat human cGAScat 
site A mutant (K407E/K411E) binding to fluorescently labelled 20-bp dsDNA 
and in the presence of 0N0 nucleosomes. Data are representative of two 
biological replicates. m, Agarose gel of micrococcal nuclease (MNase)-
digested synthetic 601 chromatin indicating a regular nucleosomal structure. 
Data are representative of two biological replicates.
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Extended Data Fig. 6 | IP-10 cytokine and ISG production upon self and 
non-self DNA recognition. a, PMA-differentiated wild-type or knockout 
human CGAS−/− THP-1 cells were treated with doxycycline (1 µg ml−1) overnight 
and either left untreated or treated with HT-DNA (975 ng per 550 µl) for 8 h. Cell 
lysates were separated on SDS–PAGE gels, western blotted and probed with the 
indicated antibodies. Data are representative of three biological replicates.  
b, PMA-differentiated THP-1 cells were left untreated or treated with 

doxycycline overnight to express the indicated human cGAS mutants, followed 
by stimulation using HT-DNA (200 ng per well) for 8 h. Supernatant was 
collected and IP-10 cytokines were measured from supernatant using ELISA. 
Data are mean and s.e.m. of four biological replicates. ***P < 0.001, **P < 0.01, 
two-way ANOVA. ns, not significant. Doxycycline R236E P < 0.001; doxycycline 
R255E P < 0.001; doxycycline + HT-DNA R236E P = 0.002; doxycycline + HT-DNA 
R255E P < 0.001.
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Extended Data Fig. 7 | Structurally conserved loop for protein–protein 
interactions in MAB21 family nucleotidyltransferases. Structures of cGAS–
nucleosome (blue) and MID49–DRP1 (red, PDB code 5WP9). The structurally 
conserved loop is depicted in green, showing interacting residues. Dashed 

lines represent hydrogen bonds. Positively charged, basic amino acids on the 
nucleotidyltransferase loop interact with the acidic patch of the nucleosome or 
with the protein DRP1, respectively.
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Extended Data Table 1 | Cryo-EM data collection, refinement and validation statistics
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3.2 Unified mechanisms for self-RNA recognition by RIG-I Singleton-

Merten-syndrome variants 

 

Lässig, C., Lammens K., Gorenflos López, J-L., Michalski, S., Fettscher, O., Hopfner, K-P. eLife 

(2018);7:e38958. https://doi.org/10.7554/eLife.38958 

 
This work explains the constant activation of the pathogenic RIG-I Singleton-Merten-

Syndrome (SMS) variant C268F using a combination of biochemical assays and X-ray 

crystallography. Two common mutations of RIG-I in SMS are E373Q and C268F. Whereas, the 

mechanism of increased autoimmunity of the E373Q variant was investigated before in this 

group, the mechanism of C268F was still elusive. Especially, the constant activation of this 

variant compared to the spatially close but catalytically dead K270I variant was intriguing. 

 

Using fluorescence anisotropy measurements, we showed that the affinity towards self-like 

RNA ligands is higher for RIG-I C268F compared to RIG-I WT and even more interesting 

independent of ATP. Additionally, reduced catalytic activity was observed for this variant in 

radioactive ATP-hydrolysis assays. Also, the affinity towards ATP was lower for RIG-I C268F 

than WT in tryptophan-fluorescence based MANT-ATP FRET assays. This ATP-insensitivity 

suggested a pseudo-ATP bound state for RIG-I C268F. We confirmed the biochemical 

observations by solving the structure of RIG-I C268F using X-ray crystallography. The RIG-I 

C268F mutant in complex with RNA lacked incorporation of any nucleotide. To compensate, 

the bulky phenylalanine displaces the conserved K270 residue, resulting in salt-bridge 

formation with E702 creating a pseudo-ATP bound state without actual nucleotide bound. 

 

Concluding, this work shows the constant activation of RIG-I C268F by mimicking an ATP-

bound state, thereby bypassing the needed regulation to prevent autoimmunity. 

 

Author contribution:  

The author did purify recombinant RIG-I C268F protein and screened a multitude of different 

novel crystallization conditions. He grew crystals, that were measured with the help of  

K. Lammens and participated in manuscript preparation. 
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Unified mechanisms for self-RNA
recognition by RIG-I Singleton-Merten
syndrome variants
Charlotte Lässig1,2, Katja Lammens1,2, Jacob Lucián Gorenflos López1,2,
Sebastian Michalski1,2, Olga Fettscher1,2, Karl-Peter Hopfner1,2,3*

1Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich,
Germany; 2Gene Center, Ludwig-Maximilians-Universität München, Munich,
Germany; 3Center for Integrated Protein Science Munich, Munich, Germany

Abstract The innate immune sensor retinoic acid-inducible gene I (RIG-I) detects cytosolic viral
RNA and requires a conformational change caused by both ATP and RNA binding to induce an
active signaling state and to trigger an immune response. Previously, we showed that ATP
hydrolysis removes RIG-I from lower-affinity self-RNAs (Lässig et al., 2015), revealing how ATP
turnover helps RIG-I distinguish viral from self-RNA and explaining why a mutation in a motif that
slows down ATP hydrolysis causes the autoimmune disease Singleton-Merten syndrome (SMS).
Here we show that a different, mechanistically unexplained SMS variant, C268F, which is localized
in the ATP-binding P-loop, can signal independently of ATP but is still dependent on RNA. The
structure of RIG-I C268F in complex with double-stranded RNA reveals that C268F helps induce a
structural conformation in RIG-I that is similar to that induced by ATP. Our results uncover an
unexpected mechanism to explain how a mutation in a P-loop ATPase can induce a gain-of-function
ATP state in the absence of ATP.
DOI: https://doi.org/10.7554/eLife.38958.001

Introduction
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are cytosolic innate immune sensors that

recognize viral double-stranded (ds)RNAs. RLRs (RIG-I, MDA5 and LGP2) are members of the so-

called Superfamily II (SF2) helicases/translocases. They share a multi-domain architecture that con-

sists of a central SF2 ATPase domain accompanied by two N-terminal tandem caspase activation

and recruitment domains (2CARD, only in RIG-I and MDA5) and a C-terminal regulatory domain

(CTD or RD) (Rawling and Pyle, 2014). The SF2 domain itself is built out of an N-terminal RecA-like

domain (1A) and a C-terminal RecA-like domain (2A) that together form an ATP-binding pocket, as

well as an insertion domain (domain 2B). SF2 and RD are crucial for RNA-recognition of RLRs,

whereas 2CARD communicates successful RNA-binding events to downstream signaling factors

(Jiang et al., 2011; Kowalinski et al., 2011; Luo et al., 2011). Specifically, RIG-I detects dsRNA

ends harbouring 5’ tri- or diphosphates (Goubau et al., 2014; Schlee et al., 2009; Schmidt et al.,

2009). Simultaneous binding of an RNA ligand and ATP to RIG-I switches the protein into an active

state in which the otherwise shielded 2CARD is released (Zheng et al., 2015). Activated RIG-I

homo-tetramerizes via 2CARD (Jiang et al., 2012) and nucleates the polymerisation of its adapter

protein, mitochondrial antiviral-signaling (MAVS), to elicit the innate immune signaling cascade

(Peisley et al., 2014; Wu et al., 2014).
The similarity of epitopes of viral RNA recognized by RLRs, in particular dsRNA stems, to some

endogenous ribonucleic acids has required the immune system to develop mechanisms besides

merely recognizing 5’-di/triphosphate-containing RNA ends to discriminate self from non-self. Self-

Lässig et al. eLife 2018;7:e38958. DOI: https://doi.org/10.7554/eLife.38958 1 of 17
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ribonucleic acids for instance are shielded from RLRs by introducing 2’O-methylations or by destabi-
lizing double-stranded parts through A-to-I editing (Chung et al., 2018; Devarkar et al., 2016;
Liddicoat et al., 2015; Schuberth-Wagner et al., 2015). In addition, we and others have been able
to show that the SF2 domain of RLRs itself confers a proof-reading activity by removing RIG-I from
self-RNA so as to avoid autoimmunity (Anchisi et al., 2015; Lässig et al., 2015; Louber et al.,
2015; Rawling et al., 2015). In particular, ATP turnover can lead to translocation on dsRNA stems
that could remove the protein from the RNA and reinstall the inactivated state (Myong et al., 2009;
Yao et al., 2015).

Deficiencies in any of these mechanisms can lead to immune recognition of self-RNAs
(Ahmad et al., 2018; Chiang et al., 2018). For instance, single-nucleotide polymorphisms (SNPs) in
RLR genes are known to cause system-wide autoimmune diseases such as Aicardi-Goutière syn-
drome (AGS) (Oda et al., 2014; Rice et al., 2014), Singleton-Merten syndrome (SMS) (Jang et al.,
2015; Rutsch et al., 2015), systemic lupus erythematosus (SLE) (Cunninghame Graham et al.,
2011; Pettersson et al., 2017; Van Eyck et al., 2015) or type 1 diabetes (Liu et al., 2009;
Smyth et al., 2006). The molecular basis for the development of these diseases is in many cases not
understood, because structural data on these RLR variants have been missing.

In this work, we present the biochemical and structural analysis of the RIG-I SMS variant C268F
and unveil an ATP-independent signaling mechanism. We show that active site rearrangements of
several amino acid side chains in RIG-I C268F mimic an ATP-bound state and activate the protein for
signaling upon recognition of RNA ligands in the absence of ATP.

Results and discussion
The RIG-I SMS variants C268F and E373A are located within SF2 ATP binding and hydrolysis motifs I
and II, respectively, (Fairman-Williams et al., 2010) (Figure 1—figure supplement 1) and were pre-
viously shown to be constitutively active in reporter cells without any external dsRNA trigger
(Jang et al., 2015; Lässig et al., 2015) (Figure 1—figure supplement 2A). RIG-I E373A’s enhanced
immune signaling ability can be explained by proficient ATP binding but reduced ATP hydrolysis,
since the motif II glutamate is implicated in positioning and polarizing the attacking water molecule
in the hydrolysis reaction. The stabilized ATP state leads to increased binding of and activation by
endogenous dsRNA (Lässig et al., 2015; Louber et al., 2015). By contrast, the molecular basis for
activation of RIG-I C268F is still unknown as this mutation is located in motif I, which is normally asso-
ciated with ATP binding and which is critical for RIG-I activation. For instance, a designed and widely
used mutant with a defect in the invariant ATP phosphate-binding motif I lysine, K270A, possesses
reduced ATP binding properties (Rawling et al., 2015) and the RIG-I K270A/I mutant is deficient in
inducing an immune response (Lässig et al., 2015; Yoneyama et al., 2005). By contrast, the RIG-I
SMS variant C268F shows the opposite effect and is constitutively active, although this mutation is
only two amino acids away from K270A in the same ATP phosphate-binding ‘P-loop’ in motif I (Fig-
ure 1—figure supplement 2A).

To analyze whether the autoimmune activity of the SMS variant RIG-I C268F is RNA-dependent,
we designed a double-mutant that is defective in RNA-binding and carried out interferon (IFN)-b-
promoter-driven luciferase reporter assays with overexpressed proteins in HEK293T RIG-I KO cells
(Figure 1A). In particular, we used a previously described T347A point mutation in the RNA-binding
interface of the N-terminal RecA-like domain (1A) (Figure 1—figure supplement 1), that abrogates
the signaling of wild type (wt) RIG-I in infected cells and decreases the affinity for dsRNA in vitro
(Lässig et al., 2015). Our assays show, that RIG-I C268F, T347A fails to induce the IFN-b promoter
in uninfected as well as in 19mer 5’-triphosphate (ppp)-dsRNA-stimulated cells, indicating that the
RIG-I SMS single-mutant C268F induces immune signaling only if bound to endogenous or trans-
fected RNA. In addition, competition assays of RIG-I C268F titrated with signaling-deficient RIG-I
lacking the 2CARD domain (RIG-I D2CARD) or with RIG-I D2CARD E373Q also gradually decreased
the IFN-b promoter-driven luciferase activity (Figure 1—figure supplement 2B). Thus, RIG-I C268F
as well as RIG-I D2CARD (E373Q) seem to recognize identical RNA substrates which are, however,
saturated with signaling-deficient RIG-I D2CARD (E373Q) at higher transfected DNA concentrations
thus preventing an immune response. Furthermore, we can exclude the possibility that the RIG-I
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Figure 1. The RIG-I Singleton-Merten syndrome variant C268F signals in response to endogenous dsRNA. (A) Fold
change of interferon (IFN)-b promoter-driven luciferase activity in uninfected HEK293T RIG-I KO cells or in cells

stimulated with a 19mer 5’-triphosphate (ppp)-dsRNA upon overexpression of different RIG-I mutants. Cells were

co-transfected with RIG-I expression vectors and p-125luc/pGL4.74 reporter plasmids, and stimulated with ppp-

dsRNA 6 hr post transfection. Firefly luciferase activities were determined in respect to Renilla luciferase activities

16 hr after RNA stimulation. All ratios were normalized to an empty vector control. n = 4–12, error bars represent

mean values + standard error of the mean (SEM). (B) Fluorescence anisotropy changes measured after titrating

RIG-I or RIG-I C268F in the presence or absence of ATP into solutions containing a fluorescently labeled 14mer

dsRNA. All binding curves were fit to a one-site binding equation using R. n = 4, error bars represent mean values

± standard deviation (SD).

DOI: https://doi.org/10.7554/eLife.38958.002

The following figure supplements are available for figure 1:

Figure supplement 1. Location of RIG-I amino acid substitutions used in Figure 1.

DOI: https://doi.org/10.7554/eLife.38958.003

Figure supplement 2. Comparison of the autoimmune signaling activity of RIG-I Singleton-Merten syndrome

variants.

DOI: https://doi.org/10.7554/eLife.38958.004
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C268F SMS mutation leads to a liberation of the 2CARD signaling module in the absence of RNA,

for example by unfolding SF2. Instead, signaling by the RIG-I C268F SMS variant is dependent on
2CARD release triggered by binding to RNA molecules, as it is in wild type RIG-I.

To validate the intact RNA-binding properties of RIG-I C268F, we performed in vitro fluorescence
anisotropy assays of purified proteins with a labeled hairpin (hp) RNA containing non-base-paired

RNA ends (Figure 1B). We chose to use a double-stranded RNA ligand without blunt ends to sup-
press the dominant binding of RIG-I’s RD to terminal RNA base pairs and to simulate recognition of

endogenous-like RNA species that could be present within the cytosol. As expected, wild type RIG-I
shows a moderate binding affinity to this ligand that is further decreased in the presence of ATP. By

contrast, RIG-I C268F displays an already increased affinity to the hpRNA that is even enhanced

in the presence of ATP. This confirms the previous results for RIG-I C268F showing an increased co-
purification with endogenous RNA molecules (Lässig et al., 2015) and indicates that RIG-I C268F

has two conformations (apo and ATP-bound) that have increased dsRNA affinity.
Since an intact SF2 ATPase domain of RIG-I is needed so that signaling only occurs when foreign

RNA molecules are recognized (Louber et al., 2015; Rawling et al., 2015), we further analyzed the
ATP binding and hydrolysis properties of RIG-I C268F in vitro. The ATP-binding-deficient and hydro-

lysis-deficient motif I mutant RIG-I K270I and the hydrolysis-deficient motif II mutant RIG-I E373Q
both served as references. ATP hydrolysis assays with 32P-labeled ATP confirmed a loss of catalytic

activity of RIG-I C268F and of both motif I and II mutants in the presence of dsRNA (Figure 2A). In

accordance with our RNA-binding experiments, this evidence supports a model in which RIG-I
C268F has defects in dissociating from endogenous RNA, because it lacks the capability for ATP

turnover and hence translocation. To further analyze the ATP-binding properties of the RIG-I SMS
variant, we conducted a tryptophan fluorescence-based FRET assay with MANT-ATP (Rawling et al.,

2015) (Figure 2B). In the absence of any RNA ligand, both wild type RIG-I and ATP-hydrolysis-defi-

cient RIG-I E373Q show comparable affinities for MANT-ATP and MANT-ATPgS in the low mM range
(Table 1). As expected, ATP-binding-deficient RIG-I K270I has a reduced affinity for ATP (in the

medium mM range). In accordance with previous data (Kohlway et al., 2013), the presence of RNA
increases the affinity of wtRIG-I and RIG-I E373Q, but not of RIG-I K270I for MANT-ATP or MANT-

ATPgS. Interestingly, like RIG-I K270I, the RIG-I SMS variant C268F displays reduced ATP-binding

affinities compared to that of wtRIG-I or RIG-I E373Q independently of the availability of an RNA
ligand (Figure 2B, Table 1). This is puzzling as both RNA and ATP binding are normally needed to

induce a molecular switch within RIG-I in order to release the 2CARD module and to activate an
immune response (Shah et al., 2018; Zheng et al., 2015). RIG-I C268F might thus be able to signal

even in the absence of a bound ATP molecule. However, even though it is possible that under cellu-

lar conditions of 1 mM ATP or even higher, ATP is still bound by both motif I mutants, the molecular
switch to release 2CARD is only triggered in RIG-I C268F but not in RIG-I K270I (Figure 1—figure

supplement 2A). These peculiarities of the ATP-bound states of the motif I mutants need to be

addressed in future studies.
To further investigate the influence of ATP binding to RIG-I C268F, we mutated two

residues that are implicated in ATP adenine recognition, R244A and Q247A (Figure 2—figure sup-

plement 1), thereby further lowering the ATP-binding affinity of the SMS mutant, and tested the
ability of the resulting triple-mutant to induce an immune response (Figure 2C). We expected to see

no decrease in the autoimmune signaling activity of the triple-mutant compared to that of the RIG-I

SMS single-mutant if the single mutant was not able to bind ATP under cellular conditions. However,
compared to the SMS variant itself, the IFN-b promoter activity of the ATP-binding mutant RIG-I

R244A, Q247A, C268F was reduced, albeit still significantly higher than that of wild type RIG-I.
Hence, these data support a model in which RIG-I C268F is able to release its 2CARD domain and

start a signaling cascade by a process that is at least partly independent of ATP.
In order to elucidate the molecular basis of autoimmune signaling by RIG-I C268F, we went on to

crystalize RIG-I D2CARD C268F in the presence of a 14mer dsRNA and ADP!BeFx or ATP and deter-
mined the corresponding structures (Figure 3—figure supplement 1A). Intriguingly, despite an

overall high structural similarity to wtRIG-I D2CARD bound to dsRNA (Jiang et al., 2011), the SMS

mutant shows crucial amino acid side chain rearrangements in the active site that stabilize the pro-
tein in an activated state but prevent binding and co-crystalization of a nucleotide (Figure 3A, Fig-

ure 3—figure supplement 1B). In particular, the bulky F268 side chain displaces the evolutionary
invariant motif I K270 from its central ATP phosphate-binding position in the P-loop, into a position
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Figure 2. The RIG-I Singleton-Merten syndrome variant C268F is catalytically dead and has reduced ATP-binding-properties. (A) ATP hydrolysis activity

of RIG-I, the RIG-I Singleton-Merten syndrome (SMS) variant C268F and the RIG-I motif I and II mutants K270I and E373Q. RIG-I proteins were

incubated with [g-32P]-ATP in the presence or absence of a 12mer dsRNA for 15 min at room temperature and free phosphate was separated from ATP

by thin layer chromatography. (B) Affinity of RIG-I, RIG-I C268F and the RIG-I motif I and II mutants to MANT-ATP or MANT-ATPgS measured by

tryptophan fluorescence Förster resonance energy transfer to the MANT-nucleotide. Proteins were incubated with increasing amounts of nucleotides in

the presence or absence of a 14mer dsRNA. MANT fluorescence was recorded minus a MANT-nucleotide-only control. n = 4, error bars represent

mean values ± SD. (C) Fold change of interferon (IFN)-b promoter-driven luciferase activity in uninfected HEK293T RIG-I KO cells or in cells stimulated

with a 19mer 5’-triphosphate (ppp)-dsRNA upon overexpression of different RIG-I mutants. Cells were co-transfected with RIG-I expression vectors and

p-125luc/pGL4.74 reporter plasmids, and stimulated with ppp-dsRNA 6 hr post transfection. Firefly luciferase activities were determined in respect to

Renilla luciferase activities 16 hr after RNA stimulation. All ratios were normalized to an empty vector control. n = 4–12, error bars represent mean

values + SEM.

DOI: https://doi.org/10.7554/eLife.38958.005

The following figure supplement is available for figure 2:

Figure supplement 1. Location of RIG-I amino-acid substitutions used in Figure 2.

DOI: https://doi.org/10.7554/eLife.38958.006
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where the Ne of K270 is situated at a site normally occupied by the Mg2+ ion (Video 1). As a result,

K270 now forms a salt bridge with E702 from the C-terminal RecA-like domain 2A, which in turn

occupies the ATP g-phosphate binding site. The resulting overall conformation resembles the ATP-

bound state of RIG-I, but without ATP, and could thus explain how C268F is able to signal indepen-

dently of any nucleotide. In order to clarify the impact of the salt bridge, we mutated both side

chains in RIG-I C268F and analyzed the resulting double-mutants in our IFN-b promoter activity assay

(Figure 3B). We expected that a disturbance of the salt-bridge formation in RIG-I C268F would lead

to a loss of autoimmune signaling. Indeed, mutation of K270 in RecA-like domain A1 renders RIG-I

C268F inactive, probably as the result of a mixture of (i) prevention of the activation of RIG-I C268F

in the absence of ATP by disrupting the salt bridge, and/or (ii) the failure to bind ATP altogether

through impaired ATP phosphate coordination and thus an impaired 2CARD release. In contrast to

our ATP-binding triple mutant R244A, Q247A, C268F, which still allows formation of the salt bridge

in the absence of ATP, mutation of motif I K270 in RIG-I C268F thus renders the protein inactive.

Mutation of E702 in the RecA-like domain 2A of RIG-I C268F, by contrast, does not disrupt constitu-

tive signaling of the protein, although this activity is at a reduced level compared to that of RIG-I

C268F. An explanation for this might be E702’s

localization within the SF2 helicase motif

V, which couples RNA-binding-induced ATP

hydrolysis with movement on dsRNA. Similar to

our previously described V699A mutant in the

same motif (Lässig et al., 2015), E702A alone

already induces an autoimmune phenotype simi-

lar to that induced by RIG-I C268F, E702A. The

most plausible explanation for these data is that

RIG-I C268F stabilizes an ATP-like state in the

absence of ATP, but still allows formation of a

proper ATP-bound state. Although E702A could

reduce the former (by disrupting the salt bridge),

it might stabilize the latter by sterically allowing

ATP binding or by increasing the interaction with

RNA.
In summary, our data suggest that the RIG-I

C268F SMS mutation stabilizes the signal-on

state of RIG-I in the presence of RNA but

absence of ATP through a salt bridge between

K270 from domain 1A and E702 from 2A. Unlike

wild type RIG-I, which requires both RNA and

ATP bound in order to be activated for down-

stream signaling, RIG-I C268F can signal indepen-

dently of ATP (Figure 2C) in the presence of

Table 1. Affinities of different RIG-I mutants to MANT-ATP or MANT-ATPgS in the presence or
absence of a 14mer dsRNA. n.d., not determined, n.f., no fit possible as no saturation was reached.
Protein MANT-ATP MANT-ATPgS

RIG-I 72 ± 13 mM 58 ± 7 mM

RIG-I + RNA n.d. 11 ± 1 mM

RIG-I E373Q 72 ± 13 mM n.d

RIG-I E373Q + RNA 28 ± 5 mM n.d

RIG-I K270I 298 ± 81 mM n.d

RIG-I K270I + RNA n.f. n.d

RIG-I C268F 166 ± 34 mM 116 ± 13 mM

RIG-I C268F + RNA n.f. 147 ± 55 mM

DOI: https://doi.org/10.7554/eLife.38958.007

Video 1. Crystal structure of RIG-I D2CARD C268F and

close-up of the active site. The Singleton-Merten

syndrome (SMS) mutation F268, as well as K270 and

E702, are represented by a stick model. Theoretic

locations of ADP!BeF3 and Mg2+ are indicated in faint

sticks and spheres, respectively, according to a

superposition with RIG-I D2CARD in complex with RNA

and nucleotide analogue (PDB 5E3H). K270 is located

at the Mg2+-binding site, whereas E702 occupies the

BeF3 (ATP g-phosphate) position.

DOI: https://doi.org/10.7554/eLife.38958.010
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Figure 3. The RIG-I Singleton-Merten syndrome variant C268F induces amino acid side chain rearrangements within the active site that interfere with

nucleotide binding. (A) ATP-binding pockets of the RIG-I Singleton-Merten syndrome (SMS) variant C268F (left and middle panels) and the RIG-I wild

type (right panel) bound to a 14mer dsRNA. The RIG-I SF2 sub-domains are colored in light gray or light blue (1A and 2A) and dark blue (2B). The RD is

depicted in cyan and 2CARD is indicated in yellow. (B) Fold change of interferon (IFN)-b promoter-driven luciferase activity in uninfected HEK293T RIG-I

KO cells or in cells stimulated with a 19mer 5’-triphosphate (ppp)-dsRNA upon overexpression of different RIG-I mutants. Cells were co-transfected with

RIG-I expression vectors and p-125luc/pGL4.74 reporter plasmids, and stimulated with ppp-dsRNA 6 hr post transfection. Firefly luciferase activities

were determined in respect to Renilla luciferase activities 16 hr after RNA stimulation. All ratios were normalized to an empty vector control. n = 4–12,

error bars represent mean values + SEM.

DOI: https://doi.org/10.7554/eLife.38958.008

The following figure supplement is available for figure 3:

Figure supplement 1. Structural comparison of the RIG-I Singleton-Merten syndrome variant C268F with wild type RIG-I.

DOI: https://doi.org/10.7554/eLife.38958.009
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RNA (Figure 1A). However, our data also show that ATP further increases the binding of RIG-I

C268F to internal dsRNA stems (Figure 1B) and that the engineering of ATP-binding mutations

R244A, Q247A into RIG-I C268F at least partly reduces its signaling activity in response to endoge-

nous or ppp-dsRNA RNA (Figure 2C). Even though we were not able to co-crystalize RIG-I C268F in

the presence of a nucleotide, it is very possible that binding of ATP at high molecular

concentrations, such as those present in a cellular context, further contributes to the pathogenic sig-

naling activity of the protein. In principle, ATP binding would be sterically allowed if the salt-bridge-

forming residue E702 occupies a site as in wtRIG-I. It is not yet clear what happens at the Mg2+-bind-

ing site, as sterically F268 would not allow a canonical positioning of motif I K270 and might thus

prevent binding of Mg2+. Perhaps K270 remains at the displaced site even in the presence of ATP

and simply ‘mimics’ Mg2+. Such a scenario could still lead to reduced binding of ATP but would pre-

vent ATP hydrolysis, as observed, because of a substantially altered charge distribution. This mecha-

nism unifies the molecular basis for the development of SMS by both RIG-I variants (Figure 4).

Unlike wtRIG-I, which consumes ATP and uses ATP turnover to decrease its affinity to self-RNA

(Figure 4A), both motif I and II SMS mutations either mimic or freeze RIG-I in an ATP-bound state

(Figure 4B). As a consequence, the inability to hydrolyze ATP and thus to dissociate actively from

ATP turnover,
translocation
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Figure 4. Model for the impact of Singleton-Merten syndrome mutations on self-RNA-induced RIG-I signaling. (A) In healthy cells, wild type RIG-I

occurs in a signal-off state in which 2CARD is shielded by binding to the insertion domain of SF2. Binding of RIG-I to self-RNAs is efficiently prevented

through ATP-turnover-induced dissociation (for a detailed model on self- vs non-self RNA discrimination see also Lässig et al. (2015). (B) RIG-I

Singleton-Merten syndrome (SMS) mutations either slow down ATP hydrolysis and stabilize the ATP-state (E373A, left side) or mimic the ATP-bound

state (C268F, right side), and thus allow formation of the RIG-I signal-on state. In both cases, loss of ATP hydrolysis enhances the interaction with self-

RNA and therefore results in pathogenic signaling. SMS mutations are indicated with a yellow or orange star.

DOI: https://doi.org/10.7554/eLife.38958.011
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RNA (Figure 1B, Figure 2A) traps the protein in an activated state and thus explains autoimmune
signaling in response to self-RNA.

In conclusion, we provide for the first time a detailed biochemical and structural analysis of an
RLR autoimmune disease variant. Slight intramolecular rearrangements within the RIG-I C268F ATP-
binding pocket appear to compensate for ATP binding and render the protein active in the presence
of dsRNA only. At the same time, loss of proof-reading activity leads to increased activation by
endogenous RNA. This unusual gain-of-function mutation reveals, for the first time to our knowl-
edge, that a P-loop mutation can mimic the effects of ATP binding.

Materials and methods

Key resources table

Reagent type (species)
or source Designation Source or reference Identifiers Additional information

Cell line (human) HEK293T RIG-I KO Zhu et al. (2014) Growth in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with
10% fetal bovine serum (FBS) as
monolayer

Strain, strain
background
(Escherichia coli)

BL21 (DE3) Rosetta Novagene

Strain, strain
background
(Escherichia coli)

DH10multiBac GenevaBiotech

Strain, strain
background
(Spodoptera frugipeda)

Sf21 insect cells Thermo Fisher
Scientific

11497013 Growth in SF-900 III
serum-free medium

Strain, strain
background
(Trichoplusia ni)

High Five insect cells Thermo Fisher
Scientific

B85502 Growth in Express Five serum-free
medium supplemented with
10 mM L-glutamine

Recombinant
DNA reagent

pcDNA5/FRT/TO Thermo Fisher
Scientific

V652020

Recombinant
DNA reagent

pcDNA5/FRT/TO-FLAG/
HA-RIG-I and various
mutants of the same
construct

Lässig et al. (2015)
and this paper

Progenitors: PCR, DDX58
(cDNA) and pcDNA5/FRT/TO

Recombinant
DNA reagent

p-125luc Yoneyama et al. (1996) Firefly luciferase controlled
by an interferon-b promoter

Recombinant
DNA reagent

pGL4.74 Promega E6921 Constitutive expression of a
Renilla luciferase

Recombinant
DNA reagent

pFBDM Berger et al. (2004)

Recombinant
DNA reagent

pFBDM-His-RIG-I
and various mutants of
the same construct

Lässig et al. (2015)
and this paper

Progenitors: PCR, DDX58 (cDNA)
and pFBDM

Recombinant
DNA reagent

pETM11-SUMO3GFP EMBL Heidelberg,
H. Besir

https://www.embl.de/pepcore/
pepcore_services/cloning/sumo/

Recombinant
DNA reagent

pETM11-SUMO3-RIG-I-
D2CARD-C268F

This paper Progenitors: PCR, DDX58
(cDNA) and pETM11-SUMO3GFP

Sequence-based
reagent

19mer 5’ triphosphate
dsRNA

InvivoGen tlrl-3prna 1 mg/mL, 5’-pppGCAUGC
GACCUCUGUUUGA-3

Sequence-based
reagent

14mer dsRNA Dharmacon 5’-CGACGCUAGCGUCG-3’

Sequence-based
reagent

Cy3-hpRNA Biomers 5’-Cy3-CCACCCGCCCCCCUAGU
GAGGGGGGCGGGCC-3’

Chemical
compound, drug

Lipofectamine 2000 Thermo Fisher
Scientific

11668019 Used at 2.5x excess compared
to RNA/DNA mass

Continued on next page
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Continued

Reagent type (species)
or source Designation Source or reference Identifiers Additional information

Chemical
compound, drug

MANT-ATP Jena Bioscience NU-202

Chemical
compound, drug

MANT-ATPgS Jena Bioscience NU-232

Chemical
compound, drug

[g-32P]ATP Hartmann Analytic SRP-301 10 nM spiked with
3 mM unlabeled ATP

Commercial
assay or kit

Dual-Luciferase
Reporter Assay
System

Promega E1910

Software,
algorithm

XDS, XSCALE Kabsch (2010) http://xds.mpimf-heidelberg.
mpg.de/

Software,
algorithm

PHASER McCoy et al. (2007);
Winn et al. (2011)

http://www.ccp4.ac.uk/

Software,
algorithm

Coot Emsley et al. (2010) https://www2.mrc-lmb.cam
.ac.uk/personal/pemsley/coot/

Software,
algorithm

PHENIX Afonine et al. (2012) https://www.phenix-online.org/

Software,
algorithm

Pymol Schrödinger https://pymol.org/2/

Software,
algorithm

R R Development
Core Team (2013)

https://www.r-project.org/

Vectors and cell lines
Sequences encoding full-length (1-925) or N-terminal truncated (230–925 or 232–925) human RIG-I

were cloned into either pcDNA5/FRT/TO (purchased from Thermo Fisher Scientific, Waltham, MA;

for expression in human cells), pFBDM (for expression in insect cells) (Berger et al., 2004) or

pETM11-SUMO3 (EMBL, Heidelberg, Germany; for expression in E. coli). All proteins

that were overexpressed in human cells contained an N-terminal FLAG/HA-tag, whereas proteins

purified from insect cells contained an N-terminal His-tag.
Mutants were generated by site-directed mutagenesis using the QuikChange protocol and PfuUl-

tra polymerase (Agilent, Santa Clara, CA).
HEK293T RIG-I KO cells (Zhu et al., 2014) were maintained in high glucose Dulbecco’s Modified

Eagle Medium (DMEM) supplemented with GlutaMAX, pyruvate and 10% fetal bovine serum (FBS)

(all purchased from Thermo Fisher Scientific, Waltham, MA) at 37˚C/ 5% CO2 and were regularly

tested by PCR for potential mycoplasma contaminations. Spodoptera frugipeda Sf21 and Trichoplu-

sia ni High Five insect cells were maintained at 27˚C/ 150 rpm in SF-900 III serum-free medium and

High Five serum-free medium supplemented with 10 mM L-glutamine, respectively (both purchased

from Thermo Fisher Scientific, Waltham, MA).

Luciferase reporter-gene assays
Transfection-based reporter gene assays in HEK293T RIG-I KO cells were carried out in 96-well tissue

culture plates seeded with 0.2 ! 105 cells one day prior to transfection. Cells were transfected with

25 ng p-125Luc (inducible-expression of a Firefly luciferase controlled by an interferon-b promoter)

(Yoneyama et al., 1996), 5 ng pGL4.74 (constitutive-expression of Renilla luciferase, Promega, Mad-

ison, WI) and varying concentrations of FLAG/HA-RIG-I plasmids (1–200 ng) in a total amount of 300

ng DNA per well (filled up with empty pcDNA5 FRT/TO) using OptiMEM and Lipofectamine 2000

(both Thermo Fisher Scientific, Waltham, MA) according to the vendor’s protocol. After 6 hr, cells

were either stimulated by transfection of 1 mg/mL 19mer 5’triphosphate-dsRNA (InvivoGen, San

Diego, CA) in OptiMEM using Lipofectamine 2000 or the respective amount of OptiMEM alone was

added. Cells were harvested 16 hr after RNA stimulation in 50 mL passive lysis buffer (Promega,

Madison, WI) and frozen at "20˚C until they were used. Luciferase activities were determined with a

Berthold Luminometer in black 96-well plates using 20 mL cell lysate and the Dual-Luciferase

Reporter Assay System (Promega, Madison, WI).
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For competition assays of FLAG/HA-RIG-I C268F with N-terminally shortened FLAG/HA-RIG-I
D2CARD (230-925), cells were seeded as described above. Cells were transfected with 25 ng

p-125Luc, 5 ng pGL4.74, 75 ng FLAG/HA-RIG-I C268F plasmid and varying concentrations (1–195

ng) of competitor plasmids containing N-terminal truncated RIG-I in a total of 300 ng DNA per well

(filled up with empty pcDNA5 FRT/TO) using OptiMEM and Lipofectamine 2000 as transfection

reagent according to the vendor’s protocol. Cells were harvested 16 hr after transfection in 50 mL

passive lysis buffer and frozen at !20˚C. Luciferase activities were determined as described above.
All cell-based assays were performed at least four times in independent experiments and are rep-

resented as mean values + SEM.

Protein expression and purification
Recombinant full-length human RIG-I or RIG-I single amino acid mutants (1–925, N-terminal His-tag)

were produced in and purified from High Five insect cells as described before (Cui et al., 2008;

Lässig et al., 2015; Rawling et al., 2015). Briefly, the open reading frame for human RIG-I was

cloned into the pFBDM vector, transformed into E. coli DH10MultiBac, and extracted Baculovirus

DNA was then transfected into SF21 insect cells. Baculoviruses were propagated twice in SF21 insect

cells and subsequently used for infection of High Five insect cells. Expression was carried out for 3

days at 27˚C. Harvested cells were shock frozen in liquid nitrogen and stored at !20˚C until

they were used. For purification, cells were resuspended in lysis buffer (25 mM HEPES, 500 mM

NaCl, 10 mM imidazole, 10% glycerol, 5 mM b-mercaptoethanol, pH 7) and lyzed by sonication.

Cleared lysate was loaded onto Ni-NTA agarose resin (Qiagan, Hilden, Germany), washed with lysis

buffer containing 300 mM NaCl and eluted in elution buffer (25 mM HEPES, 100 mM NaCl, 200 mM

imidazole, 10% glycerol, 5 mM b-mercaptoethanol, pH 7). Proteins were further purified on a HiTrap

Heparin HP column (GE Healthcare, Little Chalfont, UK) in 25 mM HEPES, 10% glycerol, 5 mM b-

mercaptoethanol, pH 7 using a linear salt gradient ranging from 100 mM to 1 M NaCl. Finally, frac-

tions containing RIG-I were pooled and loaded onto a HiLoad Superdex 200 16/60 size exclusion col-

umn (GE Healthcare, Little Chalfont, UK) using gel filtration buffer (25 mM HEPES, 150 mM NaCl, 5

mM MgCl2, 5% glycerol, 5 mM b-mercaptoethanol, pH 7). Monomeric RIG-I was concentrated to ~6

mg/mL, flash frozen in liquid nitrogen and stored at !80˚C. N-terminally truncated RIG-I D2CARD

C268F (232–925, N-terminal His-tag) expressed in High Five cells was purified as described above.
In addition, N-terminally truncated RIG-I D2CARD C268F (232–925, N-terminal His-Sumo3-tag)

was produced in and purified from E. coli Rosetta (DE3). Cells were induced with 0.2 mM DTT at an

OD600 of 0.6–0.8 and protein was expressed at 18˚C overnight. Harvested cells were shock frozen in

liquid nitrogen and stored at !20˚C. Protein was purified as described above, except that after

metal affinity chromatography, the His-SUMO-tag was cleaved off by adding SenP2 protease (mass

ratio 1:500) to pooled eluate fractions during a dialysis step against elution buffer without imidazole

(25 mM HEPES, 100 mM NaCl, 10% glycerol, 5 mM b-mercaptoethanol, pH 7) that was carried out

overnight at 4˚C. Cleaved protein was separated from the tag during a second metal-affinity chro-

matography by step-wise elution with elution buffers containing 20 mM and 40 mM imidazole, and

subjected to heparin-affinity and gel-filtration chromatography as described above.
For crystalization, N-terminally truncated RIG-I D2CARD C268F (purified either from insect cells or

from E. coli) was concentrated to ~25 mg/mL.

Protein crystalization
Co-crystalization of RIG-I D2CARD C268F (170 mM) with equimolar concentrations of 14mer dsRNA

(5’-CGACGCUAGCGUCG-3’, palindromic RNA, purchased from Dharmacon, Lafayette, CO) was

done either in the presence of 2 mM ADP, 2 mM BeCl2 and 10 mM NaF to reconstitute ADP"BeFx
(crystal 1) or with 2 mM ATP (crystal 2) by hanging-drop vapor diffusion at 20˚C. In each case, 2.5 mL

protein/RNA/nucleotide mix was added to 2.5 mL reservoir solution from a total reservoir volume of

400 mL per well. Crystal 1 was raised in wells containing 0.1 M MOPS pH 7.5, 15% (w/v) PEG 3350,

0.125 M NaSCN and 3% (v/v) 2,2,2-trifluoroethanol as reservoir solution. The reservoir of crystal 2

contained 0.1 M MOPS pH 7.5, 17.5% (w/v) PEG 3350, 0.25 M NaSCN and 3% (v/v) 2,2,2-trifluoroe-

thanol. Crystals appeared after 1–2 days and were transferred into the respective reservoir solutions

containing 10% (v/v) 2,3-butanediol as cryoprotectant, flash-frozen and stored in liquid nitrogen.
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Data collection and structure determination
X-ray diffraction data were collected at the SLS X06SA beamline (Swiss Light Source, Villigen, Swit-

zerland). Diffraction datasets from both crystals were indexed and integrated using XDS and scaled

with XSCALE (Kabsch, 2010). Crystal 1 had space group P212121 and diffracted to 3.3 Å, crystal 2

had space group P6522 and diffracted until 2.9 Å (Table 2). Diffraction data from crystal 1 were used

to determine an initial structure of RIG-I D2CARD C268F by molecular replacement using PHASER

(McCoy et al., 2007; Winn et al., 2011) and a search model based on a published structure of RIG-I

D2CARD (PDB entry 5E3H) (Jiang et al., 2011). The initial model was created in two iterative rounds

of manual model building and refinement using Coot and PHENIX (Afonine et al., 2012;

Emsley et al., 2010). This model was used to phase the second, better-diffracting dataset from crys-

tal 2 using PHASER. The final structure was built and refined in several iterative rounds using Coot

and PHENIX. The statistics describing both structures are shown in (Table 2). We did not detect any

density for a bound nucleotide in either structure.

Table 2. Data collection and refinement statistics.
Values in parentheses are for the highest resolution shell.

Crystal 1 Crystal 2

PDB code 6GPG

Data collection

Space group P212121 P6522

Wavelength (Å) 1.00 1.00

Cell dimensions

a, b, c (Å) 112.1, 177.1, 314.8 175.6, 175.6, 109.5

a, b, g (˚) 90, 90, 90 90, 90, 120

Resolution range (Å) 47.2–3.3 (3.42–3.30) 46.4–2.9 (3.00–2.89)

Rmerge (%) 14.3 (112) 7.6 (206)

I/sI 8.45 (1.28) 19.72 (1.15)

CC1/2 99.8 (67.6) 99.9 (99.7)

Completeness (%) 95.3 (79.7) 99.7 (97.4)

Redundancy 3.38 (2.91) 13.09 (13.21)

Refinement

Resolution (Å) 3.3 2.9

No. reflections 90,121 22,649

Rwork/ Rfree 22.8/28.3 21.4/25.9

No. atoms

Macromolecules 35,730 5,810

Ions 10 2

Ramachandran statistics

Favoured (%) 92.78 92.71

Allowed (%) 6.39 6.98

Outliers (%) 0.83 0.31

R.M.S deviations

Bond lengths (Å) 0.011 0.009

Angles (˚) 1.48 1.43

B-factors

Macromolecules 109.98 139.89

Ions 105.23 121.74

DOI: https://doi.org/10.7554/eLife.38958.012
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Figures and movies were created with PyMOL (Schrödinger, 2015).

ATP hydrolysis assays
ATP hydrolysis activities of different full-length His-RIG-I constructs were determined using [g-32P]

ATP (Hartmann Analytic, Braunschweig, Germany). 100 nM protein was pre-incubated with 100 nM

12mer 5’triphosphate-dsRNA for 10 min at room temperature in hydrolysis buffer (25 mM HEPES,

50 mM KCl, 5 mM MgCl2, 5 mM TCEP, pH 7.5). The reaction was initiated by the addition of 3 mM

unlabeled and 10 nM [g-32P]ATP and incubated for 15 min at 37˚C. Free phosphate was separated

from ATP by thin layer chromatography (TLC) in TLC running buffer (1 M formic acid, 0.5 M LiCl) on

polyethyleneimine cellulose TLC plates (Sigma-Aldrich, St. Louis, MO). [g-32P]Pi and [g-32P]ATP were

detected using the TyphoonTM FLA 9500 phosphor-imaging system (GE Healthcare, Little Chalfont,

UK).

Fluorescence anisotropy
Affinities of full-length RIG-I or RIG-I C268F (1–925, N-terminal His-tag) to a Cy3-labeled hpRNA (5’-

Cy3-CCACCCGCCCCCCUAGUGAGGGGGGCGGGCC-3’, purchased from Biomers, Ulm, Germany)

were determined using fluorescence anisotropy. All samples were prepared in 96-well black chimney

microplates (Greiner Bio-One, Kremsmünster, Austria). 10 nM RNA was pre-incubated with different

protein concentrations (2.4 nM – 5 mM) for 15 min at room temperature in assay buffer (25 mM

HEPES, 50 mM KCl, 5 mM MgCl2, 1 mM DTT, pH 7). Fluorescence anisotropy was measured after

the addition of 5 mM ATP using a TECAN M1000 microplate reader (Tecan, Männedorf, Switzerland)

at lex/em = 530/570 nm and gain = 130 during a time course of 25 min in 1 min intervals. Assays

were performed four times in independent experiments using the same protein purification batch.

For determination of affinities, anisotropy values between 15 and 20 min measuring time were aver-

aged and fit to the following single-site binding model using R (R Development Core Team, 2013):

y¼ Bmax

P½ #

P½ # þKD

(1)

where y is the observed anisotropy, [P] is the protein concentration, Bmax is the maximal anisotropy
and KD is the dissociation constant. Fitting was performed globally on all available datasets. Repre-

sentative values in figures are mean values ± SD.

MANT-ATP binding
Binding of MANT-ATP and MANT-ATPgS to different full-length RIG-I mutants (1–925, N-terminal

His-tag) was determined via Förster resonance energy transfer from RIG-I to MANT-ATP (Jena Bio-

science, Jena, Germany). All samples were prepared in 96-well black chimney microplates. 2.2 mM

protein and equimolar concentrations of a 14mer dsRNA (5’-CGACGCUAGCGUCG-3’, see ’Protein

crystalization’) were pre-incubated with different MANT-ATP concentrations (0.2 mM – 200 mM) for

15 min at room temperature in assay buffer (25 mM HEPES, 50 mM NaCl, 5 mM MgCl2, 1 mM DTT,

pH 7). Fluorescence of MANT-ATP was measured in a TECAN M1000 microplate reader at lex/em =

290/448 nm, gain = 170 using an average of five reads per well. Assays were performed four times

in independent experiments using the same protein purification batch. For determination of affinities

fluorescence values were fitted to Equation (1) using R, where y is the fluorescence, [P] is the protein

concentration, Bmax is the maximal fluorescence and KD is the dissociation constant. Fitting was per-

formed globally on all available datasets. Representative values in figures are mean values ± SD.
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4 Discussion 

4.1 cGAS as nuclear protein 

Since cGAS´ discovery as a cytosolic DNA sensor, its localization was proposed to be exclusively 

cytosolic, with this strict compartmentalization leading to the prevention of autoimmunity294. 

In recent times a growing number of studies, describe cGAS as a predominantly nuclear 

protein that shows its main catalytic function when located in the cytosol190,191,194,198,266,295–

297. A nuclear localization must already be assumed, based on the need of cGAS for sensing 

internuclear replicating viruses such as herpesviruses298 or retroviruses (like HIV), that shield 

their DNA during reverse transcription in the cytosol299,300 or simply during mitosis in healthy 

cells. 

 

4.1.1 Nuclear cGAS localization – tethered to nucleosomes 

Although the exact interaction of cGAS with nuclear DNA was unclear prior to the findings 

described in this work, several interactions with chromatin-related structures have been 

described. Overexpressed cGAS was shown to colocalize with chromatin in mouse embryonic 

fibroblasts (MEFs) during mitosis187 and to bind to heterochromatin marker-positive 

cytoplasmic chromatin fragments in senescent cells199. The same association with chromatin 

fragments, upon nuclear membrane rupture can be seen with the colocalization of cGAS with 

micronuclei301. All of these data already indicated that an association with nuclear self-DNA 

can at least occur in a pathogenic setting. While most of these studies used overexpressed 

cGAS for their experiments, also endogenous levels of cGAS have now been shown to 

colocalize with chromatin. In fact, most endogenous cGAS was found in the nucleus and will 

only enter the cytosol upon cytosolic DNA infection. Additionally, its nuclear localization was 

cell cycle unspecific. Strikingly, in this study cGAS was tethered very tightly to chromatin, 

suggesting that due to the relatively low affinity to DNA, the DNA itself cannot be the site of 

interaction190. It was shown, that cGAS is binding to nucleosomes rendering it inactive189. The 

interaction site, was identified to be within the catalytic domain of cGAS where arginine 241 

(for mcGAS) was especially needed for chromatin tethering190 and nucleosome binding was 

dependent on the existence of the acidic patch of the nucleosome189. Our findings combine 

the observed effects and structurally explain the exact mechanism of cGAS tethering to 

chromatin and thereby its inhibition preventing autoimmunity. 
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We could show that cGAS is tightly bound to the nucleosome´s acidic patch formed between 

histone H2A and H2B. The affinity of this interaction is manifolds higher (low nM range) than 

the described affinity towards DNA (1-2 µM208), explaining the previously described salt-

resistance of the interaction. We confirmed the nuclear localization of cGAS and salt-resistant 

chromatin tethering in human cells (THP-1), mediated by its `arginine anchor´ (hcGAS K255; 

mcGAS R241). We could show that indeed nucleosomes without overhangs (ONO) are potent 

inhibitors of cGAS activity. This fact is explained by the binding-mode of cGAS to the 

nucleosome core. When bound to the nucleosome core, cGAS´ DNA-binding site B (see Fig. 16) 

is covered, preventing formation of an active complex. We tested the influence of mutations 

in the other DNA binding sites (site A and site C) but did not observe an effect for nucleosome 

binding. The acidic patches of the nucleosomes need to be accessible for cGAS to bind and act 

in an inhibitory manner. For a monomeric nucleosome core particle, two acidic patch 

interfaces are easily accessible. As we used equimolar amounts of cGAS in our structural 

studies we could observe a 1:1 cGAS/Nucleosome complex. Nevertheless, we observed a 2:1 

complex in electromobility shift assays302. Several other groups that published structures 

related to ours also observed higher order complexes303–307. For all structures the tight binding 

of cGAS via its `arginine anchor´ to the acidic patch is the same. 

 

 
Figure 16: Overview of different cGAS-NCP complexes. Regardless of the exact stoichiometry cGAS binds to the 
acidic patch formed between histone H2A and H2B via its conserved `arginine anchor´. By this tethering DNA 
binding site B is blocked, preventing association of the active complex. As we used equimolar ratios of cGAS and 
NCP in our study, we observed only the 1:1 complex. As the nucleosome is symmetrical also a 2:1 complex can 
be obtained. For the human protein, harboring the largest site C surface area, a 2:2 complex can be observed in 
cryo-EM. Site C of cGAS binds to the nucleosomal DNA of a second nucleosome in this scenario. |PDB 
cGAS/Nucleosome 1:1: 7A08; 2:1: 6xjd; 2:2: 7C0M 
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Structures emerging from the human cGAS construct, showed some additional distal 

nucleosome linkage via cGAS´ site C189,308. This interaction is likely not seen in our data, as the 

area of site C is smaller for the mouse protein commonly used. This distal nucleosome 

interaction is mainly mediated via protein-DNA interactions (hcGAS K285/K299-302), that 

show a lower binding strength compared to the anchoring at the acidic patch. Additional 

contacts are made by a β-hairpin loop of cGAS with histone H2A´s C-terminal tail and the N-

terminal tails of histone H4 of each nucleosome interacting with one another308. As no group 

used the full-length protein for their structural studies, the N-terminal flexible domain was not 

resolved in any of these structures. Therefore, it cannot be ruled out, that the NTD, which has 

DNA binding capabilities on its own can bind to linker DNA or in-trans to nucleosomal DNA in 

a nucleosome array setup. The existence of the 2:2 complex has to be verified in vivo, as this 

configuration would lead to changes in chromatin structure introduced by cGAS. In theory this 

clustering of nucleosomes would result in a less open, more heterochromatin-like structure. 

Whether cGAS has a role in modulating the dynamic chromatin topology is questionable, as 

this intrinsic autoimmunity preventing mechanism might not influence global gene regulation. 
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4.1.2 Chromatin topology and implications for cGAS activity 

Interestingly, we could show that nucleosome arrays (multiple nucleosome core particles 

linked by spacer DNA) can inhibit cGAS activity when they adopt a linear and open form, 

whereas more compact arrays still activate cGAS. This behavior has implications for cGAS 

activity on chromatin in vivo, as open euchromatin likely efficiently blocks cGAS activity 

whereas more compact chromatin regions will not. Whether the higher order cGAS-

nucleosome complexes still occur on higher order chromatin substrates remains elusive and 

needs to be addressed in the future. The activity of cGAS on compact chromatin prerequisites 

either lower concentrations of nuclear cGAS than accessible nucleosomes available or 

additional layers of regulation. Just recently hyperphosphorylation of the N-terminal part of 

cGAS during mitosis was described. Mitotic kinase Aurora B (AurKB) phosphorylates the N-

terminal tail disrupting the interaction with mitotic chromatin and preventing active complex 

formation266. Additional transient phosphorylation is performed by the mitotic kinase cyclin-

dependent kinase 1-cyclin B (CDK1) complex during mitosis. Another factor for inhibition of 

nuclear cGAS is barrier-to-autointegration factor 1 (BAF). BAF competes with cGAS for binding 

to exposed DNA, thereby preventing active complex formation. A combination of all these 

inhibiting mechanisms keeps cGAS efficiently in check, regardless of the chromatin state. If 

the number of accessible acidic patches is lower than the amount of cGAS, all cGAS is 

sequestered by them due to the higher affinity for these sites. In the case of free DNA regions 

and an excess of cGAS, BAF will compete with cGAS´ DNA binding and prevent autoimmunity. 

Additionally, phosphorylation of cGAS prevents binding and activation by chromatin during 

mitosis (see Fig. 17). 

 

Contrary to these inhibition mechanisms, the first examples of cGAS/chromatin colocalization 

were observed by activating effects with chromatin-like but pathogenic substrates. Thereby 

the shown inhibition mechanism probably represents the most basic discrimination between 

self vs. non-self or healthy vs. non-healthy respectively. The canonical histone subset 

represents one of the most conserved, constitutively expressed proteins in eukaryotes. 

Thereby detection of the canonical NCP can be seen as the ultimate pattern of self. 
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Figure 17: Influence of chromatin topology on cGAS activity. At the level of the NCP cGAS activity is inhibited 
by binding to the nucleosome´s acidic patch. Due to this tethering cGAS´ DNA binding site B is blocked, 
preventing the formation of the active complex. At free DNA regions, BAF competes with cGAS for DNA binding, 
again preventing active complex formation. As long as inhibitory acidic patches are accessible, nucleosomes can 
still act in an inhibitory manner, even in array configuration. Higher order chromatin, with different histone 
subsets and higher orders of compaction seems to be activating in vitro. The exact mechanism of cGAS inhibition 
has to be shown. Multiple phoshorylations of cGAS have been shown to prevent activity against mitotic 
chromatin. 
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The importance of correct assembled nucleosomes for efficient cGAS inhibition is shown by 

mutations in the replication-dependent histone (RDH) pre-mRNA-processing complex. 

Patients suffering from the autoimmune disease AGS can show biallelic mutations in LSM11 

and RNU7-1. Mutations in these genes lead to failures in histone RNA processing and thereby 

change in histone protein composition. Due to this miscomposition they cannot efficiently 

inhibit cGAS activity anymore, leading to the induction of autoimmunity. Interestingly, lower 

levels of Histone H1.4 are observed in these patients. In theory, less H1.4 would lead to a more 

open chromatin form, that would still act as inhibitory in our setup. Possibly a lack of H1.4 in 

combination with a histone octamer without a correct inhibitory acidic patch lacks the mode 

of inhibition and adds more areas of free DNA to bind, leading to the observed phenotype. 

 

In conclusion, alterations to the canonical genome organization pattern may still lead to cGAS 

activity even in a chromatin setup. Many studies show cGAS colocalization with micronuclei 
194,301,309. These small additional nuclei emerge during cancer or cellular mis-segregation and 

show a different nuclear membrane and histone subset composition310. First of all, it must be 

assumed that the total number of inhibitory nucleosomes is smaller in micronuclei than in the 

main nucleus. g-H2AX is a hallmark of DNA damage and is associated with micronuclei´s 

chromatin fragments. Most studies show colocalization of cGAS with this specific histone. 

Perhaps this variant shows a different interaction with cGAS as compared to the canonical 

one, despite there being no relevant structural differences at cGAS´ interaction site  

(see Fig. 18). 
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Additionally, CCFs and micronuclei show distinct markers of heterochromatin like H3K9(me3) 

and lack euchromatin markers like H3K9ac. These data would support the activity observed 

with nucleosome arrays. Open euchromatin, with accessible acidic patches, is inhibitory, 

whereas closed heterochromatin can still activate cGAS. Recently, it was proposed, that it is 

not the micronuclear chromatin fragments themselves, but rather chromatin bridges formed 

in this setup that are the actual activator of cGAS311. As these bridges have no occupancy with 

histones no inhibition can take place, supporting our shown data. Chromatin bridges occur 

more frequently when AurKB is knocked-out. Taken together, the need of AurKB for cGAS-

NTD phosphorylation and inhibition, plus its role in chromatin bridge formation, explains the 

activity of cGAS towards this self-substrate. cGAS colocalization with g-H2AX was often shown 

by fluorescent microscopy, but ultimately lacked the resolution to show the direct site of 

interaction. Therefore, the colocalization seen in other studies might also be rather at histone 

free regions. Still, cGAS was shown to directly interact with a H2AX peptide in a label-free 

biomolecular interaction assay with a high affinity of 176.8 nM (compared to dsDNA).  

Figure 18: Structural comparison of main cGAS-nucleosome interaction site for the canonical histone octamer 
and g-H2AX. Overlay of the g-H2AX structure (red) with the canonical octamer (grey) bound to cGAS (blue). The 
most promiment acidic patch interacting residues of cGAS R222 and R241 are shown with the most relevant 
interacting residues of the acidic patch. No obvious structural differences can be observed that would account 
for an activating role of cGAS when bound to g-H2AX. |PDB cGAS-Nucleosome: 7A08, g-H2AX nucleosome: 6KLI 
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Even if this affinity is lower than the affinity we observed for binding to canonical 

nucleosomes, it is still higher than the affinity to free DNA188. This study also showed 

interaction with H2AX being dependent on the phosphorylation state of S139 (the residue 

phosphorylated in g-H2AX), suggesting a role of this modification for cGAS binding.  

 

Chromatin immunoprecipitation–Sequencing (ChIP-Seq) experiments found nuclear cGAS 

mostly localized on satellite centromeric DNA and LINE-elements295. Again, the same histone 

pattern can be observed in this case. Pericentromeric chromatin also shows higher levels of 

H3K9(me3) and lower levels of H3K9ac, as seen for CCFs and micronuclei312. The functional 

role of cGAS preferentially binding to centromere regions is unclear and might just rely solely 

on the altered chromatin topology in this region. An explanation of cGAS binding to 

centromeric regions during mitosis is the spatial accumulation of mitotic kinases. As compact 

chromatin seems to be a good activator of cGAS activity, bringing cGAS in close proximity to 

the mitotic kinases that phosphorylate and ultimately inactive it might further prevent 

autoimmunity. This mechanism would facilitate the different outcome of normal mitotic cGAS 

and the immunogenic sensing of e.g. CCFs. 

 

This influence of chromatin topology might also be used by viruses to prevent recognition by 

cGAS. Papilloma viruses pack their genome into minichromosomes using cellular histones, 

that in turn are epigenetically modified similarly to the host-chromatin313,314. Especially 

minichromosomes of papilloma viruses show distinct markers of open chromatin and a lack of 

histone H1, suggesting a conformation comparable to the linear arrays shown in our study. 

This packing of viral DNA might inhibit cGAS sensing, by promoting the occurrence of 

accessible acidic patches315. Particularly the existence of higher linked cGAS-nucleosome 

complexes must be taken with precaution. During homologous recombination (HR) DNA 

repair cGAS was shown to bind to the damaged genomic region and self-oligomerize. These 

already described higher order complexes of cGAS, facilitated by its NTD and site C, lead to a 

DNA compaction that prevents strand invasion by RAD51 needed for HR316. Therefore, DNA 

damage does not get repaired and will lead the cell into the formation of micronuclei, CCFs or 

senescence. Clustering of nucleosomes via cGAS would lead to a compaction even if no DNA 

damage has occurred. 
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4.1.3 Pathogenic effects of altered chromatin structure sensing via cGAS 

This work and other studies demonstrate multiple inhibition mechanisms used to keep cGAS 

in check against non-pathogenic self-DNA. Still, changes in the healthy genomic state are 

linked to cGAS activity. Thereby the tight regulation of cGAS activity is underlined, as multiple 

contrary effects can be observed. In general, it can be manifested that cGAS might sense 

substrates that differ from the canonical one. Accumulation of DNA damage is a major reason 

for the development of cancer317. As a consequence defects in the cGAS-STING axis are linked 

to cancer development318,319. Usually, a set of DNA damage repair mechanisms correct the 

error before it can multiply in cell division. Multiple studies connect the occurrence of DNA 

damage with the induction of an interferon-response320–322. Damage repair by homologous 

recombination is inhibited by overexpression of cGAS via its interaction with PARP1323. Non-

homologous end joining is inhibited by cGAS condensation which prevents strand-invasion 

needed for Rad51 activity316. Another possible interference of cGAS with DNA damage repair 

(DDR) might be by its occupancy of the acidic patch of nucleosomes. Ubiquitylation of 

H2A/H2AX serves as signal for activation of the DNA damage response. Blocking the acid patch 

by the LANA peptide, which occupies the same binding pocket as cGAS (see Fig. 5), impedes 

ubiquitylation and subsequent recruitment of proteins involved in DDR324. As a consequence, 

cells with damaged genomic DNA will form altered, previously described chromosomal 

structures and may end up in senescence198, undergoing autophagic clearance325 or even 

apoptosis326, thereby preventing tumor progression. Yet, cGAS should only inhibit the DNA 

repair if successful repair cannot be achieved anymore. The exact mechanisms governing the 

cell´s fate need to be investigated. 

 

 

 

 

 

 

 

 

 



Discussion 

|95| 

4.1.4 Nuclear tethering vs. cytosolic sensing of cGAS 

Even if multiple studies show that cGAS is also a nuclear protein, the cytosolic DNA sensing is 

still essential. In order to tie the tight nuclear tethering with the availability in the cytosol 

multiple prerequisites are needed. First and foremost, cGAS needs to detach from the 

nucleosome. Our surface-plasmon-resonance studies showed higher affinity to nucleosomes 

as compared to free DNA. Still the observed half-time of the cGAS-Nucleosome complex 

suggests that dissociation without additional factors is at least possible. Nevertheless, most 

likely, post-translational modifications of cGAS and/or the histones is needed for sufficient 

release. The acidic patch is a prominent docking site for a plethora of other nuclear proteins, 

so it cannot be excluded that a specific cofactor might compete with cGAS for nucleosome 

binding thereby leading to its release. In our nuclear fractionating studies, where we observed 

the tight nuclear tethering for endogenous and overexpressed cGAS, a modification of cGAS 

was observed prior to transfection with DNA. This modification disappears after transfection 

with DNA and might play a role in cytosolic relocalization of cGAS. The exact nature of this 

modification has to be addressed in further studies. Interestingly, the known modifications of 

cGAS (see Fig. 13) are well distributed over the whole protein sequence but show no 

modifications where the interaction with the acidic patch takes place. As most modifications 

of the histone proteins take place on the histone-tails, their influence on cGAS binding is also 

unclear to date. At least the formation of higher order cGAS complexes that also show 

involvement of the histone-tails, might be affected by histone-tail PTMs. Most cancer cell lines 

have no functional cGAS-STING axis to evade cGAS mediated immunity. Treating colorectal 

cancer cell lines with histone-deacetylase or histone-demethylase inhibitors restores cGAS 

expression partially, suggesting an influence of these modifications on cGAS availability318. 

Even for the sensing of nuclear replicating DNA viruses cGAS has to detach from the 

nucleosomes. Protein arginine methyltransferase 5 (PRMT5) was shown to interact with cGAS 

in the nucleus thus facilitating non-canonical anti-viral immunity327. PRMT5 promotes 

transcriptional activation by dimethylation of histone H3R2328. In the cGAS setting this leads 

to activation of IFN-genes not related to IRF3 signaling. The site of direct interaction of cGAS 

with PMRT5 was shown to be located from residue 241 to 380327. As this contains the main 

region of the acidic patch interaction, binding to PMRT5 might prevent nucleosome tethering.  

 



Discussion 

|96| 

cGAS is also able to sense HIV infection in the nucleus142. Immunoprecipitation assays show a 

direct protein-protein interaction of cGAS with the protein NONO. NONO usually has multiple 

nuclear functions in all steps of gene regulation. In the case of HIV infection (especially HIV-2) 

NONO binds to the viral capsid and activates cGAS by direct binding. The exact mode of 

activation is still unclear, and nothing is known about the exact site of interaction of cGAS with 

NONO.  

 

Regardless of the actual mechanism of cGAS detachment from the nucleosome, which must 

be addressed in further studies, cGAS needs to be exported into the cytosol upon cytosolic 

DNA infection. Like all proteins cGAS is synthesized in the cytosol but will end up in the nucleus 

at the latest after the first nuclear envelope break down during cell division. Additionally, two 

nuclear localization signals were discovered at the N-terminal tail of cGAS (NLS1: hcGAS 21-

51) and in its CTD (NLS2: hcGAS 295-305). As cGAS interacts with proteins of the importin-α-

family, a classical importin-mediated import was proposed323. Conversely, a conserved nuclear 

export signal (hcGAS 169-174) may lead to relocalization to the cytosol, when cGAS is no 

longer bound to chromatin. The shuttling of cGAS is proposed to be mediated by the main 

nuclear export receptor chromosomal maintenance 1 (CRM1). Blocking CRM1 by the fungicide 

LMB disrupts nuclear cGAS translocation upon cytosolic DNA infection329. Once located in the 

cytosol phosphorylation at Y215 (for hcGAS) by B-lymphocyte kinase (BLK) acts as signal for 

cytosolic cGAS retention. The corresponding phosphatase is not known to date323. Disturbing 

this phosphorylation by knocking-down BLK leads to higher nuclear localization of cGAS. 

Whether cGAS that has exited the nucleus is recycled by dephosphorylation and nuclear re-

entry or is degraded remains to be clarified (see Fig. 19). 

 

In general, the nuclear localization of cGAS assumes a role beyond storage and recognizing a 

pattern of self for autoinhibition. Most PRRs are interferon-stimulated genes and only occur 

in low numbers prior to infection. Even if an IFN-mediated positive feedback loop is observed 

for cGAS in some cell types, nuclear cGAS seems to be present in most cell types. Taking into 

account the role of cGAS in DDR, senescence and tumorigenesis, a non-canonical role for 

nuclear cGAS beyond DNA-sensing seems to be likely. 
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Figure 19: Proposed mechanism of cGAS shuttling. cGAS (blue) is tethered to canonical nucleosomes therby 
inhibiting its activity (all grey NCP). In the case of DNA damage, often associated with the enrichment of g-H2AX 
nucleosomes next to the damage, cGAS seems to colocalize with the site of DNA damage and is active, even 
inhibiting DNA damage repair. The non-repaired lesions can lead to the formation of abberant chromatin species, 
like micronuclei or cytosolic chromatin fragments that again can active cGAS. The exact mechanism of cGAS 
detachement from the nucleosome is not understood, but cGAS seems to be exported via its nuclear export 
signal by the transporter CRM1. In the cytosol cGAS can also sense free DNA from different sources. 
Phosphorylation of cGAS at Y215 was shown to inhibit relocalization into the nucleus, relying on a classical 
nuclear localization signal-dependent importin mediated pathway. 
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4.2  RIG-I ATPase activity and autoimmunity 

The tethering of cGAS to nucleosomes displays a strong discrimination between self and non-

self-DNA in innate immune sensing. The functional counterpart of dsDNA sensing by cGAS is 

RNA sensing by RIG-I. As seen for cGAS, mechanisms have evolved in RNA sensing to 

differentiate between self and non-self. Failures in this regulation are linked to multiple 

interferonopathies like SLS and AGS. First of all, the CTD of RIG-I screens the 5´-end of the RNA 

for specific features solely found in pathogens. A suitable RNA-ligand for RIG-I has three 

features: (1) a triphosphate at the 5´330, with base pairing at the 5´(blunt end representing the 

most potent form)331 or (2) 5´-diphosphate RNA with uncapped ends131 and (3) the 5´-terminal 

nucleotide needs to be unmethylated at its 2´-O133. A second layer of regulation is achieved 

by ATP hydrolysis. As RIG-I structurally belongs to the family of SF2-ATPases it also shows ATP 

binding and hydrolysis, but the role of the actual helicase activity of this protein family is 

questionable for RIG-I281,332. Many studies show that at least ATP binding is needed in addition 

to RNA binding for sufficient activation, as the full ring-like active conformation is only 

achieved after ATP binding to the binding pocket created by initial RNA binding288,333. Former 

work of this group showed that ATP hydrolysis leads to dissociation of RIG-I from low-affinity 

ligands, like self-RNA, thus preventing autoimmunity288. ATP hydrolysis can lead to 

translocation on dsRNA stems, omitting RNA binding and restoring the inactive CARD-

sequestered conformation334. Two common mutations in the ATPase domain are found in the 

context of SLS. E373Q, located in motif II, prevents proper polarization of the water molecule 

needed for ATP hydrolysis and thereby impairs the connected proof-reading mechanism, 

leading to increased autoimmunity. The other common mutation C268F is located in motif I 

of the ATPase motif needed for ATP binding. Strikingly, this mutation leads to an increased 

RIG-I activity, whereas K270A/I renders RIG-I inactive by omitting ATP binding288. We could 

show how these different outcomes are achieved despite the close spatial localization of these 

mutations. 
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Fluorescence anisotropy measurements revealed that RIG-I C268F shows increased affinity to 

hairpin-RNA (hp-RNA) with unpaired ends (a substrate to simulate an endogenous ligand) 

compared to the WT, and that is even increased in the presence of ATP. Contrary, the affinity 

of RIG-I WT to hp-RNA is decreased in the presence of ATP underlining the proof-reading 

activity and preventing association with suboptimal ligands. The lack of ATP-dependent 

discrimination already suggests a higher auto-activity. This model is supported by the reduced 

catalytic activity found for the C268F mutant compared to the WT protein observed in 

radioactive ATP hydrolysis assays. The affinity of RIG-I C268F towards ATP (measured by a 

tryptophan-fluorescence based MANT-ATP FRET assay) was lower compared to WT-RIG-I or 

RIG-I E373Q and similar to the catalytically dead mutant K270I. Interestingly, this affinity did 

not change for RIG-I C268F after addition of RNA, in contrast to the other described mutants. 

This is particularly interesting as both ATP and RNA binding are thought to be needed for the 

formation of the ring-link active conformation. Further prevention of ATP recognition by 

creating a triple mutant not able to recognize ATP´s adenine (R244A/Q247A/C268F) still led to 

a significantly higher IFN-β promotor activity compared to the WT. Taken together these data 

suggest a CARD release of RIG-I C268F, that is at least partially independent of ATP binding. 

 

Indeed, our crystallization approaches did not yield a nucleotide bound structure regardless 

of the crystallization conditions used. Adversely, the bulky F268 residue shifts the location of 

the conserved residue K270 from its expected phosphate coordination position towards the 

space that is usually occupied by the coordinated Mg2+. The displaced K270 forms a salt-bridge 

with E702 leading to an ATP-bound-like conformation without actual nucleotide bound. As 

disrupting the salt-bridge by mutating E702 did not completely prevent constant activity, ATP 

binding might still be possible in vivo at higher ATP concentrations. Most likely, RIG-I C268F 

already allows signaling without ATP, but can show ATP-dependent signaling lacking a proof-

reading mechanism at higher ATP concentrations, leading to the observed constantly active 

phenotype. How Mg2+ coordination in the latter setting can be achieved, as its binding site is 

occupied by K270, is still puzzling. Perhaps K270 fulfills the coordinating function usually 

achieved by Mg2+. 
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Our structural and biochemical data is supported by hydrogen deuterium exchange mass 

spectrometry data (HDX-MS). RIG-I C268F was shown to have a more ring-like structure not 

dependent on the 5´-modification of the RNA ligand, supporting the activation by endogenous 

and exogenous RNA ligands. The kinetics for CARD release were shown not to be influenced 

by RNA modification or external ATP addition (unlike the observed effects for RIG-I WT and 

RIG-I E373A). These data support our model of RIG-I C268F mimicking the ATP-bound state 

that disrupts regulation335. 

 

Still, there is some controversy in the field, whether ATP binding is needed for CARDs release 

in vivo. Already the data of our triple mutant that still shows residual constant activity 

implicates that the situation in vivo might be more complex. Additionally, some RNAs that bind 

to RIG-I in vitro and stimulate ATP hydrolysis do not lead to signaling in cells336,337. A newly 

developed FRET-reporter assay to measure CARDs release directly and not the production of 

IFN-β (a downstream event) indicates that RNA binding alone is sufficient for CARD 

presentation and thereby downstream signaling338. This work sees the role of ATP in displacing 

competing proteins from the RNA to facilitate RIG-I activation. The HDX-MS spectra of RIG-I 

C268F also show increased exposure of the CARDs after RNA binding, but the authors credit 

the pseudo-ATP-bound state for the drastic change335. Even if ATP is not needed to release 

the CARDs, the pseudo-ATP-bound state will still lead to constant activation of the C268F 

mutant if the ATP-bound state has a different function. 

 

Transient-state stopped-flow kinetics have been used to analyze the role of ATP binding and 

hydrolysis on RIG-I activity. This study suggests a kinetic proofreading mechanism by RIG-I 

using faster off-rates of non-optimal ligands for discrimination339. In this model ATP binding 

alone does not have a proof-reading function, but rather leads to less selective RNA binding, 

that we also observed in our fluorescence anisotropy measurement with hp-RNA. ATP 

hydrolysis on the other hand dislocates RIG-I from RNA by translocation. Kinetic 

measurements of RIG-I C268F showed long-living complexes even in the absence of ATP, 

representing the same pseudo-ATP-bound state observed in our crystal structure. 
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In conclusion the ATP-bound-like state of the pathogenic RIG-I C268F variant explains the 

constant activation and cause of autoimmunity. Even if the exact role of ATP in further 

downstream signaling is under debate, mimicking ATP binding without hydrolysis will lead to 

higher activity in any scenario (see Fig. 20). 

 

 

 

 

 

 

 

 

 

 

Figure 20: Constant activation by RIG-I C268F. A When RIG-I encounters a suboptimal ligand like self-RNA ATP 
hydrolysis driven translocation dissociates RIG-I from the RNA, thereby failing to activate signaling. B In the case 
of the RIG-I SMS variant C268F an ATP-bound like state is found. This conformation without actual nucleotide 
bound bypasses the regulation mechanism and leads to constant activity. Whether any ATP binding is possible 
in vivo is not clear. |PDB for A: 4A2W+2QFB; B: 5EH3+2QFB  
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6 List of abbreviations 
Å Ångström 
ac acetylation 
ACP architectural chromatin protein 
ADP adenosine-diphosphate 
AGS Aicardi-Goutières-Syndrome  
AIM2 absent in melanoma 2 
ALR AIM2-like-receptors 
AMP adenosine-monophosphate 
ASC associated speck-like protein containing a CARD 
ATP adenosine-triphosphate 
AurKB Aurora Kinase B 
BAF barrier-to-autointegration factor 
BAH bromoassociated homology  
BLK B-lymphocyte kinase 
bp base pairs 
CARD caspase activation and recruitment domain 
CCFs cytosolic chromatin fragments 
CDN cyclic dinucleotides 
cGAMP cyclic GMP–AMP 
cGAS 
ChIP-seq 

cyclic GMP-AMP synthase 
chromatin immunoprecipitation coupled with sequencing 

CLR c-type lectin receptors 
CRM1 chromosomal region maintenance 1 
cryo-EM cryo-electron microscopy 
CTD C-terminal domain 
CTT C-terminal tail 
DAMP damage associated molecular pattern 
DDR DNA damage repair 
DNA desoxyribonucleic acid 
DNA-PK DNA dependent protein kinase 
dsDNA double-stranded DNA 
ECD ectodomain 
ECTR extrachromosomal telomere repeats  
EMANIC Electron microscopy-assisted nucleosome capture 
ERGIC ER-Golgi intermediate compartment  
GMP guanosine-monophosphate 
H2A histone variant 2A (different variants with same nomenclature) 
hcGAS human cGAS 
Hel helicase domain 
HIV human immunodeficiency virus 
hp-RNA hairpin RNA 
HR homologous recombination 
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HSV herpes simplex virus 
IE1 immediate early 1 
IFI16 interferon inducible protein 16 
IFN interferon  
IKK IkB kinase 
IL interleukin (different variants) 
IRAK IL-1-receptor-associated kinases 
IRF interferon-regulatory factor  
ISG interferon-stimulated gene 
kDa kilo Dalton 
KSHV Kaposi´s sarcoma-associated herpesvirus 
LANA Latency-associated nuclear antigen  
LBD ligand binding domain 
LGP2 laboratory of genetics and physiology 2  
LLPS liquid-liquid phase separation 
LRR leucin rich repeat 
MAB21 male abnormal 21 
MAVS mitochondrial antiviral-signaling protein  
mcGAS mouse cGAS 
MDA5 melanoma differentiation-associated protein 5 
Me 
MEFs 

methylation 
mouse embryonic fibroblasts 

MHC major histocompatibility complex 
mtDNA mitochondrial DNA 
MyD88 myeloid differentiation primary-response protein 88  
NCP nucleosome core particle 
NF-kB nuclear factor kB 
nM nanomolar 
NOD nucleotide binding domain 
NONO non-POU domain-containing octamer binding protein  
NTD N-terminal domain 
OAS oligoadenylatsynthase 
ox oxidized 
PAMP 
PFV 

pathogen associated molecular pattern 
prototype foamy virus 

PMRT5 Protein Arginine Methyltransferase 5 
PRR pattern recognition receptor 
PTM post-translational modification 
PYD pyrin-domain 
RCC1 regulator of chromatin condensation 1 
RD regulatory domain 
RDH replication-dependent histone  
RIG-I retinoic acid inducible gene I 
RIPA RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis 
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RNA ribonucleic acid 
SASP senescence-associated secretory phenotype 
SEC-MALS 
 
SELEX 

size exclusion chromatography coupled with in-line multiangle 
light scattering 
systematic evolution of ligands by exponential enrichment 

SF2 superfamily 2 
SHL superhelix location 
Sir3 
SMS 
STAT 
WT 

silent information regulator 3 
Singleton-Merten-Syndrome 
signal transducer and activator of transcription 
wild-type 
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