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Zusammenfassung (Synopsis in German)

Zellmigration ist ein Kernelement vieler physiologischer Phänomene wie der Embryogenese,
dem Immunsystem und der Krebsmetastase. In all diesen Prozessen stehen Zellen vor einer
physikalischen Herausforderung: Sie bewegen sich in beengten Umgebungen, in denen sie
Engstellen passieren müssen. Die Zellbewegung wird von einer komplexen Maschinerie an-
getrieben, deren molekulare Komponenten immer besser verstanden werden. Demgegenüber
fehlt ein quantitatives Verständnis des funktionalen Migrationsverhaltens der Zelle als Ganzes.
Die verbindende Fragestellung der Projekte in dieser Arbeit lautet daher: gibt es emergente
dynamische ‘Gesetze’, die die Verhaltensdynamik migrierender Zellen in beengten Umgebun-
gen beschreiben?

Um dieser Frage nachzugehen, entwickeln wir datengetriebene Ansätze, die es uns erlau-
ben, die Dynamik migrierender Zellen direkt aus experimentellen Daten zu inferieren. Wir
untersuchen Zellmigration in künstlichen Systemen, in denen Zellen Engstellen wiederholt
passieren müssen. Aus den experimentellen Zelltrajektorien inferieren wir eine Bewegungs-
gleichung, die die Dynamik in deterministische und stochastische Komponenten trennt. Diese
Methode zeigt, dass sich Zellen deterministisch ‘aktiv’ in die Engstellen hineinbewegen, ganz
entgegen der intuitiven Erwartung, dass Engstellen als Hindernis fungieren könnten. Dieser
aktive Antrieb führt zu einer komplexen nichtlinearen Dynamik im Übergangsbereich zwischen
einem bistabilen System und einem Grenzzyklus-Oszillator. Wir verallgemeinern diesen da-
tenbasierten Ansatz, um die Varianz des Migrationsverhaltens innerhalb einer Zellpopulation
zu quantifizieren, und analysieren, wie Zellen auf die Größe, Form und Orientierung ihrer
Umgebung reagieren.

Darauf aufbauend untersuchen wir die zugrundeliegenden Mechanismen dieser Dynamik.
Zellmigration basiert auf verschiedenen zellulären Komponenten, wie unter Anderem den
Zellprotrusionen und der Adhäsion mit der Umgebung. Auf Basis der experimentellen Daten
entwickeln wir ein mechanistisches Modell für Zellmigration in beengten Systemen, welches
zeigt, dass der beobachtete aktive Antrieb eine Konsequenz zweier Effekte ist: Einer vari-
ierenden Adhäsion mit der Umgebung und einer Zellpolarität, die sich in Engstellen selbst
verstärkt. Diese Ergebnisse deuten darauf hin, dass die Anpassung der Zellpolarität an die
lokale Geometrie ein Schlüsselmechanismus in beengter Zellmigration ist.

Schließlich analysieren wir die Dynamik interagierender Zellen. Um Zell-Zell Interaktio-
nen zu inferieren, entwickeln wir die Underdamped Langevin Inference, eine Inferenzmethode
für stochastische hochdimensionale und interagierende Systeme. Wir wenden diese Methode
auf Daten von eingeschlossenen Zellpaaren an, welche wiederholt miteinander kollidieren.
Dies zeigt, dass gesunde (MCF10A) und krebsartige (MDA-MB-231) Zellen unterschiedliche
Interaktionen aufweisen: Während gesunde Zellen mit Abstoßung und effektiver Reibung
interagieren, zeigen Krebszellen Anziehung und eine überraschende ‘Anti-Reibung’. Diese
Interaktionen führen dazu, dass gesunde Zellen nach Kollisionen primär umkehren, während
Krebszellen effizient aneinander vorbeigleiten. Darüberhinaus analysieren wir die Effekte von
Cadherin-basierten Molekularkontakten auf Zell-Zell Interaktionen in kollektiver Migration.

Zusammenfassend könnten die in dieser Arbeit präsentierten datengetriebenen Ansätze
dabei helfen, ein besseres Verständnis der emergenten stochastischen Dynamik migrierender
Zellen zu erlangen. Wir zeigen, wie diese Methoden wichtige Erkenntnisse sowohl über die
zugrundeliegenden Mechanismen als auch über das emergente Zellverhalten liefern können.





Synopsis

Cell migration is critical in many physiological phenomena, including embryogenesis, immune
response, and cancer. In all these processes, cells face a common physical challenge: they nav-
igate confining extra-cellular environments, in which they squeeze through thin constrictions.
The motion of cells is powered by a complex machinery whose molecular basis is increasingly
well understood. However, a quantitative understanding of the functional cell behaviours that
emerge at the cellular scale remains elusive. This raises a central question, which acts as a
common thread throughout the projects in this thesis: do migrating cells exhibit emergent
dynamical ‘laws’ that describe their behavioural dynamics in confining environments?

To address this question, we develop data-driven approaches to infer the dynamics of
migrating cells directly from experimental data. We study the migration of cells in artifi-
cial confinements featuring a thin constriction across which cells repeatedly squeeze. From
the experimental cell trajectories, we infer an equation of cell motion, which decomposes the
dynamics into deterministic and stochastic contributions. This approach reveals that cells de-
terministically drive themselves into the thin constriction, which is in contrast to the intuition
that constrictions act as effective barriers. This active driving leads to intricate non-linear
dynamics that are poised close to a bifurcation between a bistable system and a limit cycle
oscillator. We further generalize this data-driven framework to detect and characterize the
variance of migration behaviour within a cell population and to investigate how cells respond
to varying confinement size, shape, and orientation.

We next investigate the mechanistic basis of these dynamics. Cell migration relies on the
concerted dynamics of several cellular components, including cell protrusions and adhesive
connections to the environment. Based on the experimental data, we systematically constrain
a mechanistic model for confined cell migration. This model indicates that the observed de-
terministic driving is a consequence of the combined effects of the variable adhesiveness of the
environment and a self-reinforcement of cell polarity in response to thin constrictions. These
results suggest polarity feedback adaptation as a key mechanism in confined cell migration.

Finally, we investigate the dynamics of interacting cells. To enable inference of cell-cell
interactions, we develop Underdamped Langevin Inference, an inference method for stochastic
high-dimensional and interacting systems. We apply this method to experiments of confined
pairs of cells, which repeatedly collide with one another. This reveals that non-cancerous
(MCF10A) and cancerous (MDA-MB-231) cells exhibit distinct interactions: while the non-
cancerous cells exhibit repulsion and effective friction, the cancerous cells exhibit attraction
and a surprising ‘anti-friction’ interaction. These interactions lead to non-cancerous cells
predominantly reversing upon collision, while the cancer cells are able to efficiently move past
one another by relative sliding. Furthermore, we investigate the effects of cadherin-mediated
molecular contacts on cell-cell interactions in collective migration.

Taken together, the data-driven approaches presented in this thesis may help to provide
a new avenue to uncover the emergent laws governing the stochastic dynamics of migrating
cells. We demonstrate how these approaches can provide key insights both into underlying
mechanisms as well as emergent cell behaviours at larger scales.
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Chapter 1

Introduction

Cell migration has rapidly become one of the most exciting fields in biophysics. The migration
of cells is multi-faceted and deeply intertwined with diverse biological processes and signalling
pathways. During development, migrating cells play an important role in ensuring that the
correct tissue organization is achieved [9, 10]. In adult tissue, most cells adopt a stationary
fate. Yet, some cells retain the ability to migrate, which allows immune cells to track down
pathogens [11] and fibroblasts to close wounds [12–14]. Even seemingly non-migratory ep-
ithelial tissues have recently been shown to actively migrate, which drives epithelial turnover
in the intestine [15]. On the flipside, the switch to a migratory phenotype is also exploited by
cancer cells when they leave a tumor to invade surrounding tissue during metastasis [16–18].
All of these migratory processes involve a diverse variety of complex signalling pathways, al-
lowing cells to respond to sensory inputs and adapt their migration behaviour [19–21]. These
inputs can be of biochemical or mechanical nature, and provide cross-talk between cells and
their extra-cellular environment, as well as from cell to cell. Yet, much of this machinery is
also universal: the migration strategy of eukaryotic cells relies on actin flows, myosin contrac-
tion, and biochemical polarity cues [22, 23]. While the integration of these building blocks
into the biological system at hand may be complex, they fulfil common functions and are
highly conserved across organisms and tissues [24]. This apparent universality has caught the
attention of physicists attempting to develop quantitative theoretical approaches to elucidate
the principles governing cell migration.

Physics approaches to cell biology traditionally focus on those system properties that are
clearly physical. Mechanics has been used to quantify and understand the material properties
of the cellular cytoskeleton [25–27]; the theory of active hydrodynamics has been applied to
the cytoskeletal dynamics of the actomyosin cortex [28–30]; reaction-diffusion frameworks
have revealed the physical basis of protein pattern formation [31]; and statistical physics
and stochastic thermodynamics have elucidated how molecular motors operate [32] and drive
biological systems out of equilibrium at the cellular scale [33, 34]. In all of these examples,
physics has had remarkable success in uncovering the rules governing biological machineries.
However, at the cellular scale, the collective operation of these machineries gives rise to
emergent, functional cell behaviours. An exciting perspective is therefore whether physics can
go beyond explaining the physical components of cellular systems and provide frameworks
to describe the emergent behaviour of cells as a whole. This raises a central question: are
there simple, physical ‘laws’ that describe the behavioural dynamics of cells, and how do these
behaviours adapt to external stimuli placed by their environments?

In the last two decades, tremendous progress has been made in this respect in the con-
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text of collective cell migration comprising hundreds or thousands of cells. These systems
operate on length scales that allow coarse-graining of the precise single-cell dynamics. This
has allowed the application of hydrodynamic models [35, 36], active particle models with
effective self-propulsion and interactions [37], and continuum mechanics models [38, 39] to
collective cell migration. A key challenge in applying these approaches at the single-cell scale
is that the length- and time-scales of interest are comparable to the length- and time-scales of
the complex intra-cellular polarity-forming processes. This complicates the search for simple
physical laws governing these behaviours due to two main reasons. Firstly, these intra-cellular
processes are subject to intrinsic noise, meaning that behaviours at the single-cell level are
inherently stochastic. This means that to identify simple laws governing cell behaviour, we
must find ways to disentangle the deterministic (i.e. average or stereotypical) and stochas-
tic (i.e. random) components of the dynamics. Secondly, these processes are subject to
sensory inputs, causing cells to respond to their environment through complex regulatory
networks [19–21]. As a consequence, cells may adapt their behaviours in different environ-
ments. Thus, to describe the behaviour of single cells, we need to go beyond soft matter,
hydrodynamical, and mechanical models of cell migration. We need a ‘Physics of Cell Be-
haviour’, to provide principled system-level quantitative frameworks describing the stochastic
dynamics of cellular behaviours.

The development of such quantitative frameworks for cell behaviour may help elucidate
a number of critical open problems in the cell migration field: When cells navigate com-
plex and confining environments, how does their dynamics adapt to the local surroundings?
More specifically, how do cellular dynamics change when they are confined within a defined
geometry? These emergent long time-scale behaviours of cells rely on underlying migratory
mechanisms − so how can we connect these different levels of description quantitatively?
How variable are migration behaviours within a population of cells, and what is the func-
tional relevance of such variability? Going up from the single-cell level, how can we describe
the stochastic interacting dynamics of colliding cell pairs? How do cell-cell adhesions and
signalling molecules control the stereotypical collision behaviours exhibited by interacting
cells? Can the collective dynamics of large groups of cells be described by the sum of all these
interactions, or is there more to it?

In recent years, a number of studies have started applying ideas from the theory of stochas-
tic processes, dynamical systems theory and statistical inference methods to answer some of
these questions. A common theme across many of these works is a data-driven approach,
where experimental data is used to rigorously constrain possible model candidates. However,
a comprehensive overview over this emerging field is thus far lacking. In this introductory
section, we will review recent developments of quantitative dynamical frameworks for the
stochastic behaviour of single cell migration as well as interacting cells, and highlight how the
work presented in this thesis connects to these approaches.

First, we will define what we mean by cell behaviour, and how we envision cell behaviour
frameworks could be constructed in general (section 1.1). In section 1.2, we will review data-
driven approaches to describe the simplest, archetypal migration problem: the stochastic
dynamics of freely migrating cells on 2D substrates. Next, we will discuss how such approaches
could be generalized to cell migration in structured extra-cellular environments (section 1.3),
and systems exhibiting cell-to-cell variability (section 1.4). In section 1.5, we will provide
a perspective on how data-driven approaches to emergent cell dynamics can be connected
to underlying molecular mechanisms. Zooming out from the single cell level, we will then



1.1 Cell migration at the behavioural level 5

review data-driven approaches to describe the interactions between cells. Finally, we provide
an outlook on the open questions in the field and how data-driven methods could be used to
address them.

1.1 Cell migration at the behavioural level

In multi-cellular organisms, individual cells migrate to execute functional tasks. Thus, cells
are programmed to perform certain behaviours, which include net motion (migration), changes
in cell shape (morphodynamics), exerting forces on the extra-cellular environment (traction
forces), adaptation to external signals (stimulus response), or the degradation of surrounding
matrix polymers (proteolysis). What all these examples have in common is that they are
performed at the scale of the whole cell and often take place on long time-scales. Here, we
refer to ‘long time-scales’ as those time intervals which are long compared to typical time-scales
of molecular processes, for example the diffusion of signalling molecules across the cell. On
these time- and length-scales, cellular behaviour emerges as a consequence of a large number
of intra-cellular processes happening instantaneously. Therefore, a completely molecularly
reductionistic approach may not be able to capture cell behaviours: precise knowledge of one
particular signalling process and all its associated parameters may not be predictive for the
emergent behaviour, as it integrates many processes, knowing all of which becomes unfeasible.

To circumvent this problem, minimal mechanistic models are often employed, which seek
to identify the key mechanisms at play, and integrate them into a physical model. Such
approaches typically postulate specific mechanisms and explore their implications, and we
refer to them as bottom-up or mechanistic models in this review. Examples are computational
models, including phase-field [40–42] and Cellular Potts models [8, 43, 44]. More minimal
models include molecular clutch models [45, 46], which account for the coupling of adhesions
to substrate mechanics, as well as active gel theories [47, 48] and models coupling actin flow,
polarity cues, and focal adhesion dynamics [22, 23, 49–52]. However, these approaches suffer
from two key limitations: computational models have many parameters that are difficult to
constrain based on experimental data, and thus testing their predictive power for particular
experiments remains challenging. The more minimal models are frequently tayloured to
capture a particular aspect of the data, but it has often remained difficult to capture the full
long time-scale dynamics of the cells, or how these dynamics adapt to external inputs.

An alternative to the mechanistic approach are data-driven top-down approaches, which
systematically constrain model candidates using experimental data. These approaches pro-
vide a phenomenological description at the system-level, which allows coarse-graining over the
molecular detail. In physics, phenomenological theories can often be constrained by known
symmetries and conservation laws. These system-level descriptions of emergent phenomena
can generate conceptual understanding that remains elusive in the reductionist approach, an
idea that was famously articulated by Phil Anderson in his essay ‘More is different’ [53]. Phe-
nomenological approaches are thus a promising avenue to develop quantitative frameworks
for cell behaviour. We argue that these approaches should have the following properties:

• Data-driven: Fundamental principles that could be used to constrain theories of cell
behaviour still remain elusive. Thus, for these frameworks to be viable, they need to
directly connect to experimental data. This can be achieved by employing data-driven
inference techniques, which rigorously constrain postulated models using input data.
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• Unbiased: A central idea in data-driven approaches is that they should be agnostic
with respect to the underlying molecular or mechanistic basis of the behaviour. Thus, a
general model class is proposed, based e.g. on symmetry or causality arguments, but it
should be constrained by experimental data in a principled manner, rather than using
pre-conceived intuition. The hope is that an unbiased approach can yield a more general
description of cell behaviours, which could then be used to systematically constrain
mechanistic, bottom-up frameworks.

• Predictive: While a given model may be constrained using data, it should then also
be able to predict new observations beyond the data that were used to constrain it.
Tests of predictive power have two distinct roles: firstly, making predictions for the
same experimental data set used to constrain the model, but for statistics that were not
explicitly used in the inference, allows testing whether the model provides a meaningful
representation of the cellular behaviour. Secondly, performing predictions for new ex-
periments tests the usefulness of the model to provide a generalizable substrate for new
systems.

Data-driven, unbiased approaches have a long history in biological systems at larger scales,
where the separation between mechanism and phenomenology is much larger than in cell mi-
gration, for instance animal behaviour [54–57] or neural systems [58–61]. In recent years, due
to advances in tracking and imaging technology, the diversity, accuracy, dimensionality, and
size of these behavioural data-sets across the disciplines is rapidly increasing. This has led
to the development of data-driven methods to rigorously infer the underlying dynamics of
complex systems directly from experimental data, including stochastic trajectories [4, 57, 62–
67], spatially extended fields [68, 69], and morphological dynamics [54–56]. We argue that
applying principled inference approaches in the field of cell behaviour can make important
contributions in answering key open questions in several ways:

• Owing to the intrinsic stochasticity and variability of cell behaviours, another key chal-
lenge is to identify what constitutes a ‘typical’ behaviour. Data-driven approaches could
provide analysis tools for unbiased, quantitative characterization, classification, and
observation of cellular behaviours. Examples for cellular readouts are cell persistence
in 2D migration [22, 70], transition times and occupancy probabilities in confined mi-
gration [1, 2], movement biases in directional migration [71], and collision outcomes in
cell-cell interactions [5, 72, 73].

• Due to the emergent nature and underlying complexity of cell behaviours, it is often
unclear what the right quantitative concepts are to describe a particular observed be-
haviour. Data-driven approaches could yield conceptual frameworks to think about
cell behaviours by identifying underlying quantitative concepts that can be used to de-
scribe cell dynamics. Examples for such concepts in the context of freely migrating cells
on 2D substrates are the persistent random motion model [70, 74, 75], Lévy flights [76],
and intermittent dynamics [22]. We will review these models, how to constrain them,
and their biological implications, in section 1.2.

• Phenomenological models which are constrained in an unbiased and data-driven manner
could furthermore yield strong constraints for bottom-up models for the underlying
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mechanistic basis of the behaviour. These mechanistic models come in different flavours,
from minimal mechanical models to active polar gel theories and complex computational
implementations. A central difficulty in connecting these models to experiments is
that they are frequently under-constrained and over-parameterized. Phenomenological
descriptions could provide much more precise ‘targets’ for mechanistic approaches by
introducing stronger constraints. Furthermore, they could be used to test conceptual
modelling assumptions or approximations, and thus give insight into the key biological
processes in a given system. We will discuss this connection in section 1.5.

• Finally, data-driven frameworks may provide a generalizable substrate to develop
theories for new systems. For example, to describe the dynamics of interacting cells,
it may be useful to have a theory for the dynamics of single migration cells. Can the
interacting dynamics then be described by simply adding interaction terms to the single
cell model? And can the dynamics of large groups of cells be captured by simply taking
into account two-body interactions of pair-wise cell collisions? We will discuss these
questions in section 1.6.

1.2 Learning equations of cell motion from data

The simplest possible experiment that could teach us something about cell migration be-
haviour is the motion of isolated single cells on a uniform two-dimensional (2D) substrate.
This is of course not a common setting in physiological processes, in which cells encounter
heterogeneous, confining three-dimensional (3D) environments − yet it is the archetypal cell
migration experiment that has taught us much of what we know about migrating cells. We
will turn our attention towards the description of systems that include spatial structures in
the next section. Here, we will review what we have learnt from 2D cell migration, and how
this may provide a generalizable basis to describe more complex systems.

Even in the a simple environment of a uniform 2D substrate, the migration of single cells
is powered by a complex cytoskeletal machinery. A simple way to quantify the dynamics
of this process is a reduction to a single degree of freedom: the position of the cell as a
function of time, i.e. its trajectory x(t). The first cell tracking experiments were performed
over a century ago [77, 78] (see ref. [75] for an excellent historical review). At this level,
all other degrees of freedom, such as the cell shape, cytoskeletal organization, and traction
forces, remain unobserved. The trajectory of the cell is thus a minimal representation of
a behaviour: it is observed at the cellular scale, and over long times-periods compared to
the time-scales of the internal dynamics. The underlying migratory processes give rise to a
mix of deterministic trends, visible as persistent segments, and seemingly random, stochastic
components. Accordingly, the mean-square-displacement (MSD) exhibits the signatures of
ballistic motion at short time-scales and diffusive motion at long time-scales, and is well
described by the formula [74, 78]

〈[x(t)− x(0)]2〉 = A(t/τp + e−t/τp − 1) (1.1)

By measuring the MSD, one can therefore recover two key parameters that characterize the
behaviour: the persistence time τp, which quantifies the time over which correlations in the
cell velocity decay, and the diffusion coefficient D = A/2dτp, where d is the dimensionality.
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These parameters are frequently used to quantify cell migration, for example to determine
the effect of pharmacological treatments of cells, or to contrast different cell types.

Yet, the trajectories x(t) give access to so much more information than just the MSD.
Specifically, based on the cell trajectories, we can estimate the increments ∆x = x(t1)−x(t2)
at various time-scales, including the instantaneous velocities and accelerations of the cell. How
can we think about the statistics provided by this additional short time-scale information?

A natural way to think about cell trajectories from a mathematical perspective is the
framework of stochastic equations of motion, an idea that was pioneered in ref. [70]. A simple
model that predicts an MSD of the form of Eq. (1.1) is an equation of motion for the cell
velocity v = dx/dt:

dv

dt
= − 1

τp
v + ση(t) (1.2)

This equation of motion thus predicts the cell acceleration as a function of its velocity. It
consists of two components: a deterministic contribution (first term on the right-hand side),
which accounts for the cell persistestence, and a Gaussian white noise term (second term on the
right-hand side), which accounts for the stochasticity of the motion. This equation predicts the
MSD in Eq. (1.1) with A = 2σ2τ2

p . However, Eq. (1.2) also predicts many other features of the
trajectory dynamics. Specifically, it predicts a Gaussian steady state probability distribution
of velocities p(v) with a variance τpσ

2/2, and a velocity auto-correlation function 〈v(t)v(t′)〉
which decays as a single exponential with a time-scale τp. Furthermore, it makes a specific
prediction about the conditional average of the observed cellular accelerations:

〈
∆v

∆t

∣∣∣∣v
〉
∼ − 1

τp
v. (1.3)

This conditional average corresponds to the average of the instantaneous acceleration for each
observed instantaneous velocity.1 These additional statistics beyond the MSD can thus be
used to systematically constrain models for 2D cell migration in a data-driven manner. For
example, calculating the conditional average on the left-hand side in Eq. (1.3) can constrain
the deterministic term of the description: in principle, the dependence of acceleration on
velocity could be non-linear, and this analysis would reveal this effect in a model-independent
manner. Similarly, the magnitude of the stochastic noise term σ can be inferred from the
fluctuations in the trajectories.

Such a data-driven approach was performed by Selmeczi et al. [70], and crucial differ-
ences to the standard persistent random motion framework (Eq. (1.2)) were identified: both
keratinocytes and fibroblasts exhibit a double-exponential velocity auto-correlation function.
Using the conditional average of the acceleration as a constraint, Selmeczi et al. determined
the simplest model consistent with all the observed statistics, which exhibits an additional
memory term in the velocities and a noise amplitude that grows with increasing speeds. Simi-
lar results were subsequently also found in 2D migration of the amoeba Dictyostelium [80–82]
and breast cancer cells [1]. Alternatives to this persistent random motion framework also
exist in the literature, including Lévy walk models [76], fractional diffusion equations [83],
and switching between modes of movement [22, 84].

1Note that we do not write an exact equality as the conditional average gives rise to a bias term if discrete
estimators are used for acceleration and velocities [79], as is the case when using discretely sampled experimental
trajectories. This bias can be avoided by using the more rigorous inference techniques developed in refs. [4, 67]
(see chapter 7 of this thesis).
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The most remarkable feature of the persistent random motion model and other equations of
cell motion is the drastic reduction in complexity achieved. Small and fast dynamics of the cell
membrane appear as noise, and only a small number of parameters are necessary to accurately
capture cell motion at the level of trajectories. Rigorously constraining these models based
on experimental trajectories has also helped to turn persistent random cell motion from a
concept into a theory. This provides a basis for connecting the terms of Eq. (1.2) to biological
processes, which we will discuss in section 1.5. The data-driven inference of the simple 2D
equation of cell motion (formulated Eq. (1.3)) may seem unimpressive. Yet, we argue that
conditional averaging is a key technique whose full power is unleashed when used with rigorous
inference methods [4, 64–67] and on complex data sets. We are by no means constrained to
condition cell accelerations on velocities: what if the migration takes place in a complex
structured environment? Suddenly, other degrees of freedom can be used as conditioning
variables, such as the cell position. We can therefore infer how cellular responses (measured in
accelerations) depend upon the local geometry or structure of the environment (measured by
position). We will discuss such an approach in the next section. Furthermore, we can imagine
tracking other degrees of freedom of the cell than just its position, for example protrusions and
retractions, or even spatially extended variables such as shape or internal concentration fields.
Rigorously deriving the equations of motion of these degrees of freedom, and their coupling to
each other and to the environment could yield key insights into cell behaviour. This approach
could provide more direct connections with mechanistic models, an idea which we discuss in
section 1.5 of the introduction. Finally, new inference techniques allow inference also in high-
dimensional and interacting systems [4, 66], which could be used to learn the dynamics of
interacting cells in collective migration. We discuss this idea in section 1.6 of the introduction.
The data-driven persistent random motion framework introduced in this section establishes
a conceptual basis to understand these other approaches.

1.3 Cell migration in structured environments

Cell migration on unstructured 2D substrates provides an important benchmark for how to
think about cell migration dynamics, and its simplicity has allowed significant theoretical
progress. However, in physiological processes, cells do not encounter such artificial environ-
ments: the navigate complex, structured, and confining extra-cellular environments, including
collagen matrices, bone marrow, or blood vessel linings [16]. Thus, if we want to under-
stand cellular dynamics in physiological processes, we need to study confined cell migration.
Restricting ourselves to free 2D migration risks studying cell behaviour in an artificial en-
vironment to which it has not adapted, and thus potentially missing key insights into how
cells orchestrate their motion. To understand how cell behaviours respond to their external
surroundings in a quantitative manner, it is therefore important to develop a data-driven
quantitative framework for confined cell migration.

Cell migration in 3D extra-cellular matrices has been studied extensively (see reviews in
refs. [85–87]). These matrices are spatially heterogeneous, and therefore single cells will only
rarely encounter the same obstacle twice. Consequently, it is difficult to gather statistics
on cellular interactions with their local microenvironment. Data-driven approaches how-
ever require large data sets to constrain model candidates, owing to the large variabil-
ity in behaviours. To overcome the limitations of 3D matrices, cell migration is there-
fore frequently studied in standardized micro-fabricated environments. These include 2D
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micropatterns [88, 89], microfluidic devices [90], 3D confinements [91–93], and suspended
nanofibers [94–96]. These systems allow monitoring of large numbers of cells migrating in
identical, standardized structured environments, yielding unprecedentedly large data sets on
cell behaviour.

Micropatterns provide a simple way to confine cells, using differential surface coatings that
define areas to which cells can adhere, surrounded by cell-repellent regions. With this tech-
nique, confinement regions with arbitrary geometrical shapes can be produced, giving access
to a wide variety of systems. One of the simplest migration experiments using micropatterns
is confinement to narrow lines [97]. In such effective one-dimensional confinements, cells typ-
ically perform persistent random motion in one dimension [98]. This one-dimensional mode
of migration has been proposed as a good model for aspects of cell migration in 3D extra-
cellular matrices: in 3D matrices, cells frequently encounter narrow channels through which
they migrate, reminiscent of an effective one-dimensional (1D) confinement [95, 98, 99]. In-
deed, the morphology of cells on narrow 1D lines is highly stretched, similar to morphologies
observed in 3D, which do not feature the broad fan-like lamellipodia observed on 2D sub-
strates [95, 99, 100]. However, physiological extra-cellular environments are also structured,
meaning that studies using straight 1D lines may be missing important aspects of cell motil-
ity. An important feature of 3D matrices is the presence of thin constrictions through which
cells need to squeeze during migration [18, 101–103]. Thus, studying migration in structured
micro-confinements may give insights into how cells respond to such obstacles, which could
relate to migration in 3D matrices, but also reveal important features of the intra-cellular
processes driving migration.

A first step from straight 1D lines to structured environments is a line with periodic
modulations, or gaps which cells need to overcome. In this spirit, ratchet-like confinement
geometries were designed which were found to rectify the direction of motion of cells [71,
104–106], a process termed ratchetaxis (see ref. [107] for a review). Using a microfluidic
confinement with walls featuring similar modulations, a novel mode of migration relying on
friction with the local topography of the walls was revealed [93]. Another approach has been
to study how cells make decisions at junctions featuring several thin constrictions of varying
widths, which revealed the intra-cellular processes involved in cellular decision making in such
systems [91, 92]. These experimental approaches using standardized confinements have given
insight into intra-cellular processes [91, 92] and have yielded quantitative cellular readouts,
for example the degree of directionality in ratchetaxis [71], or switching rates between run
and rest states on 1D lines [108]. However, a dynamical theory for the stochastic dynamics
of migrating cells in confining environments, akin to the persistent random motion model in
2D, has remained elusive. In chapter 3 of this thesis, we report on first steps we have made
towards the development of such a framework, which we will put into context in the following
subsection.

1.3.1 Dynamical systems frameworks for confined cell migration

As a minimal system to study how cells overcome thin constrictions in confining environments,
we investigated cell migration in two-state micropatterns. These micropatterns consist of two
square adhesive islands connected by a thin adhesive bridge. We find that migrating cells
perform repeated stochastic transitions between these two islands, with large variability both
over time but also between individual cells (Fig. 1.1a). By monitoring hundreds of cells
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migrating in these patterns for up to 50 hours, we generated a large data set of confined cell
migration trajectories.

Based on these trajectories, we then developed a generalization of the persistent random
motion model (Eq. (1.2)) to the problem of confined migration. An important assumption in
the persistent random motion model is the uniformity and isotropicity of space: the cellular
dynamics are assumed to be independent of position, and the same in all directions. Clearly,
these assumptions are no longer valid in structured systems. We therefore postulate a general
formulation of an equation of cell motion for confined migration, in which the dynamics may
also depend on the absolute position x of the cell:

dv

dt
= F (x, v) + σ(x, v)η(t) (1.4)

In the case of 2D migration, the form of the dynamical terms in Eq. (1.2) could be hypothesized
based on the observed MSD, which coincides with the prediction of the canonical Ornstein-
Uhlenbeck process.2 In contrast, there is no a priori physical framework from which we
could derive the structure of the dynamical terms in the equation for confined cell migration
(Eq. (1.4)). We therefore employed a data-driven method to constrain these terms using the
experimental trajectories. Specifically, to a first approximation, the deterministic term of this
equation can be inferred using a conditional average of the observed cellular accelerations:

F (x, v) ∼
〈

∆v

∆t

∣∣∣∣x, v
〉

(1.5)

which is the generalized formulation of Eq. (1.3) for an equation of motion with positional
dependence. Thus, by inferring F (x, v) from the data, we could determine the average accel-
eration of the cell as a function of its position x within the structured micropattern and its
velocity v (Fig. 1.1b). Developing such an equation of motion model from experimental data
in general involves four key steps, which we demonstrate using the example of the confined
cell migration problem (Fig. 1.1):

1. Observation: in the first step, the important degrees of freedom (DOF) of the system
have to be identified and observed. An equation of motion is a mathematical construct
which predicts the future state of the system based on its current state, through a
differential equation for the relevant DOF. To enable inference and interpretation of
the model, this set of DOFs should ideally be low-dimensional and therefore provide a
minimal representation of the system. For example, in the case of the confined migrating
cells, we first restricted the analysis to the one-dimensional trajectories of the cell nucleus
(Fig. 1.1a).

2. Inference: the second step in the development of data-driven cell migration models
is the model inference. In this step, a general, unbiased formulation of a stochastic
dynamical system for the tracked DOFs should be postulated, which can then be sys-
tematically constrained using the data. In the case of the confined migrating cell, a
general, unbiased approach was to generalize the persistent random motion observed
on unconfined substrates by postulating the general equation Eq. (1.4). We therefore
make no a priori assumptions of what the dynamics of the system, given by F (x, v) and
σ(x, v), should look like. Instead, we use the experimental trajectories to infer this term

2Note, however, that corrections to this simple form were derived in ref. [70], as described in section 1.2.
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directly from the data. See Box 1 for a summary how stochastic inference approaches
can be executed in practise.

3. Prediction: while we use the experimental data to constrain the shape and parameters
of the deterministic dynamics F (x, v), there is no guarantee that this approach yields an
insightful representation of the dynamics of the system: the inference approach relies
on the assumption that the dynamics of the system can in fact be described by the
equation of motion Eq. (1.4). This assumption could fail in many ways: the dynamics
could require additional memory terms [70], a time-dependent description [109], or an
explicit description of the cell-to-cell variability [110]. Thus, to test the validity of
this decription, we need to perform a test of predictive power. Specifically, to perform
the inference, we constrained the equation of motion solely based on the short time-
scale information provided by the experimental trajectories, including the velocities and
accelerations of the cell. Thus, as an independent test of the model [1, 70], we predict
statistics quantifying the cell behaviour on long time-scales, for example the distribution
of transition times or the velocity auto-correlation function (Fig. 1.1c).

4. Interpretation: having determined a valid model for the observed dynamics, this
model can be interpreted to gain insight into the system. This last step is of course very
much system-dependent. An important aspect of the stochastic inference approach is
the decomposition of the dynamics into deterministic and stochastic components, i.e. F
and σ. Based on this decomposition, these components can be interpreted separately,
and their respective contributions to the dynamics can be conceptualized. We will
briefly summarize below how this approach provided a conceptual framework for the
confined cell migration problem.

Figure 1.1: Data-driven approach for confined migration. a. Example data set of trajectories of the cell nucleus
position of MDA-MB-231 cells migrating in a two-state micropattern (sketched). Trajectories are plotted as a function
of time up to 50h. b. Top: sketch of a trajectory in xv-phase space with grid-based binning (dotted lines). Bottom:
inferred deterministic term F (x, v). c. Experimental (blue) and predicted (red) statistics, from top to bottom: survival
probability distribution of states S(t), defined as the probability that a cells has not made a transition after time t;
velocity auto-correlation function; probability distribution of positions. d. Phase portraits obtained for various systems,
from top to bottom: MDA-MB-231 cells migrating in a two-state pattern; MCF10A cells migrating in a two-state pattern;
MDA-MB-231 cells migrating on confining strips with no constriction. Arrows show flow fields, including accelerating
(orange) and decelerating (blue) components. Green lines are deterministic trajectories of the system.
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In the example of the confined cell problem, we found that an insightful representation
of the system can be achieved by examining the deterministic dynamics of the system in
a phase-portrait of position and velocity. Intuitively, one might expect that the hopping
behaviour across the thin constriction placed by the micropattern might be generated by a
noisy cellular activity competing with an effective energy barrier placed by the constriction.
Strikingly, however, the inferred map of the deterministic accelerations (Fig. 1.1b) reveals
that cells have a tendency to deterministically accelerate into the constriction. In fact, the
flow field of the deterministic dynamics exhibits an excitable flow, where a small noise-driven
perturbation leads to a large excursion in the phase space due to a deterministic amplification
of the cell speed (Fig. 1.1d). This amplification is observed in both cancerous (MDA-MB-231)
and non-cancerous (MCF10A) cells, suggesting that it may be a generic cellular response to
thin constrictions. Indeed, in systems in which the constriction is removed, the amplification
vanishes (Fig. 1.1d). This approach also reveals that the non-linear dynamics are poised close
to a bifurcation between a limit cycle and a bistable system. Interestingly, different cell lines
exhibit behaviours on both sides of this transition: MDA-MB-231 cells exhibit a limit cycle,
while MCF10A cells show excitable bistable dynamics. Thus, the deterministic phase-portrait
implies that the cancerous cells have a stronger tendency to overcome the constriction, while
the non-cancerous cells rely on stochastic fluctuations to perform transitions. In summary,
this data-driven approach to confined cell migration provides a novel dynamical systems per-
spective on cell migration dynamics. In the next section, we will discuss how we can use these
insights to quantify and characterize the striking variability in the observed cell behaviours,
which are already apparent at the level of the cell trajectories (Fig. 1.1a). Moreover, this
approach could help advance our understanding of locomotion at the molecular level by pro-
viding constraints for bottom-up models that connect microscopic rules to the system-level
dynamics of cells. Finally, the insights gained based on this framework could provide a gen-
eralizable substrate to investigate the dynamics of assemblies of interacting cells. We will
discuss both of these aspects in the following sections.
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Box 1: Inference from stochastic trajectories

Here, we follow the general formalism proposed by Frishman and Ronceray [66]. Suppose we have
tracked a set of N cellular DOFs, such as the position of the nucleus, which we denote by q(t) = {qµ(t)}
where µ = 1...N . Then a general dynamical system that could govern the dynamics of these DOFs is
given by the stochastic equations of motion

q̇µ = Fµ(q) + σµν(q)ην(t) (1.6)

where ην(t) is Gaussian white noise with 〈ηµ(t)〉 = 0, 〈ηµ(t)ην(t′)〉 = δµνδ(t− t′). Our aim is to infer
the terms of this equation, F and σ, based on a set of observed experimental trajectories q(t). To
break down this problem, one can express the dynamical terms as a truncated basis expansion

Fµ(q) ≈
Nb∑
α=0

Fµαcα(q) (1.7)

where cα(q) are the basis functions used to represent the dynamics. A similar expression can be
written for the stochastic term σ. Thus, the problem of inferring the equation of motion has reduced to
estimating the parameters Fµα. This can be done by projecting the dynamics onto the basis functions:

Fµα = 〈q̇µcα(q)〉 (1.8)

The simplest approach to such an inference problem is to perform a grid-based binning approach where
the phase-space is divided into a regular grid of tiles (Fig. 1.1b). In this case, the basis functions cα(q)
become top-hat functions at regularly spaced locations in the phase-space. The parameters Fµα then
correspond to the average velocities of the DOFs, q̇µ, at that location in phase-space. However, this
approach requires a large number of fitting parameters Nb and therefore suffers limitations in high-
dimensional systems or experimental data sets with low statistics. Specifically, the inference error
grows linearly with the number of parameters Nb [66]:

inference error ∝ Nb/τ (1.9)

where τ is the total length of the trajectory. In the development of the equation of confined cell motion,
we had access to a large data set of 1D nucleus trajectories (Fig. 1.1a), and thus the binning approach
was feasible in this case. A data-efficient alternative to binning is projection onto a set of smooth basis
functions, such as polynomials. In this case, fewer parameters are required and additional constraints
such as symmetries of the system can be taken into account to further restrict the choice of basis
functions. This also allows inference from interacting systems (section 1.6), which are inaccessible to
binning approaches.
In addition to finite data, inference from experimental trajectories suffers from two key problems:

1. Measurement errors: Experimental trajectories are inevitably subject to random localiza-
tion errors. Since stochastic inference relies on estimating the derivatives {q̇µ}, this can lead
to significant inference errors. To overcome this problem, error-corrected estimators can be
derived [4, 66]. We develop such estimators in chapter 7 of this thesis.

2. Discrete observations: Tracking methods operate at a finite frequency, meaning that observed
trajectories are sampled at a finite time interval ∆t. This leads to inference errors when the
dynamical system at hand is underdamped [4, 67, 79], meaning that the relevant DOFs to
describe the system include time-derivatives, such as the velocity of the cell nucleus. This is
the case in the typical cell migration models, including the persistent random motion model
(Eq. (1.2)), and in confined cell motion (Eq. (1.4)). In chapter 7, we will introduce a way to
circumvent this problem.

In summary, the presented stochastic inference approach allows us to infer the governing dynamical
systems from observed experimental trajectories in an unbiased manner, and in a way that is robust
to finite data limitations, measurement noise, and discretization errors.
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1.4 Variability in cell behaviour

A key feature of migrating cells is the large variability of the observed behaviours within a
cell population. A typical set of cell migration trajectories exhibits large variations between
different individual trajectories, but also over time within a single trajectory. Tracing the
origins of such variability is an open challenge that can be ideally addressed by data-driven
approaches, since it naturally relies on the analysis of large ensembles of observations [111]. In
this review, we propose to distinguish four distinct contributions to the behavioural variability
of migrating cells:

• Intrinsic stochasticity: the intra-cellular machineries driving cell behaviours operate
at the molecular level, and are thus subject to intrinsic noise. At larger scales, where
these molecular degrees of freedom remain unobserved, this intrinsic noise leads to
seemingly random patterns in behaviour, which we refer to as the intrinsic variability
of cell behaviour.

• Cell-to-cell variability: even in populations of cells with identical genomes, the
stochasticity of intra-cellular processes such as gene expression, cytoskeletal rearrange-
ment and protein localization can lead to large differences in the proteomes of individ-
ual cells [112–116]. At the cellular scale, this diversity can lead to variations in cell
behaviour, which is also referred to as phenotypic or population heterogeneity. The
connection from molecular to behavioural heterogeneity has been demonstrated in cel-
lular processes ranging from growth rate and drug response to morphology [117–120],
and has been suggested to play an important role in collective cell migration [121, 122].

• Temporal variability: the behaviour of cells may also exhibit variations over time: as
cells undergo the cell cycle, they grow, which may also affect other behaviours, including
cell migration [123].

• Extrinsic variability: potentially unobserved changes in the extra-cellular environ-
ment may cause changes in behaviour, which could be mistaken for other types of vari-
ability. This can occur for example in cell migration in environments with unobserved
structures, including porous 3D matrices [110].

Gaining insights into how these distinct contributions determine the overall variability of cell
migration could be important for understanding physiological migration processes, as well as
the mechanistic basis of the behaviour. However, disentangling these different contributions to
the behavioural variability based on an observed data set can pose a formidable challenge. To
this end, several data-driven approaches have been developed in the context of cell migration,
which we will discuss here.

1.4.1 Detecting cell-to-cell variability in behaviour

Models for cell migration are typically formulated as stochastic processes, which is a natural
way to capture processes exhibiting fluctuations. In the equations of cell motion introduced
in previous sections (Eqs. (1.2) and (1.4)), the stochastic white noise term ensures that no
two trajectories look alike. This is a model for the intrinsic stochasticity of the migration pro-
cess. To determine the structure and parameters of cell migration models, the dynamics are
typically averaged across different cells and over time, yielding ensemble- and time-averaged
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stochastic models that describe the average member of a cell population. Therefore, these
approaches fail to capture cell-to-cell and temporal variability. Similarly, bottom-up models
for cell motility typically assume that all cells in a population can be described by a common
set of parameters [39].

To develop a framework which can account for temporal and cell-to-cell variability in cell
migration, Metzner et al. [109] developed a generalization of the persistent random motion
framework (Eq. (1.2)) which allows for variations in the migration parameters. Indeed, pre-
vious work has suggested that to fully account for the statistics of cells migrating on 2D
substrates, cell-to-cell variability has to be taken into account [110]. In the ‘super-statistical’
framework introduced by Metzner et al., both the persistence τp and the noise amplitude σ
become functions of time which differ for each individual cell. The values of the parameters
are inferred from experimental trajectories using a Bayesian maximum likelihood approach.
With this method, ‘run’ and ‘rest’ states of migrating cells, which have been suggested to be
due to distinct transient intra-cellular organizations [22], would be rigorously identified.

A second quantitative framework for migration variability was developed by Jordan et
al. [124]. This approach is based on determining a characterization of the instantaneous mo-
tion, using the joint probability distribution of speed and turning moment, and then quan-
tifying the change in this distribution over time and between individuals. Using clustering
and dimensional reduction, this method leads to a low-dimensional behaviour space revealing
which components of the cell motion contribute most to the variability. While this frame-
work was thus far only applied to swimming protozoa, it has potential also for cell migration,
provided that a sufficient time-resolution can be achieved experimentally. In summary, these
works provide computational tools to rigorously characterize cell-to-cell and temporal vari-
ability in migration behaviours from trajectories alone.

While these frameworks provide a way to quantify and characterize cell migration variabil-
ity over time and between individuals, they do not provide a method to determine whether
such variability exists in the first place. Indeed, if the observed trajectories are short, as is
often the case in cell migration experiments, they may appear variable simply due to the
randomness introduced by intrinsic stochasticity. How then can real variability be distin-
guished from apparent variability due to the intrinsic stochasticity? In other words, how can
we test if the data is consistent with ergodicity? This question has previously been raised
in the context of collective cell migration [125], where it was suggested to compare the ob-
served variability to an appropriate ‘null-model’. Specifically, this means performing a direct
comparison of variability-sensitive experimental observables, such as population variances,
to the predictions by a parameter-optimized model without variability. Deviations from the
variability-free model can then provide an indicator for real variability. A difficulty in ap-
plying this approach is that it requires both a large ensemble of migration trajectories in a
standardized setting, and an appropriate theoretical framework to provide a null-model.

We have addressed this open problem for the case of confined migrating cells in mi-
cropatterns, which is presented in chapter 4. Specifically, we studied the trajectories of cells
migrating in two-state micropatterns (Fig. 1.1a). For this system, we established that the
ensemble- and time-averaged (ETA) statistics are well captured by an ETA equation of motion
model (Eq. (1.4)). Thus, this equation of motion provides a null-model to which we can com-
pare the experiment. We found that the variance in behaviour between individual cells was
larger in the experiment than that measured in an ensemble of trajectories of similar length
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predicted by the null-model. This indicated that there is real cell-to-cell variability in the
system, beyond the random variations expected from a single, ergodic process. Interestingly,
our analysis further revealed that within the cell population, there are qualitative differences
in the class of dynamical systems describing the migration of individual cells. Specifically,
larger cells exhibited limit-cycle dynamics, while slower cells exhibited bistability, with two
stable fixed points. The emergence of distinct dynamical systems describing the migration
within a population of cells has been rationalized to originate from a heterogeneity in micro-
scopic migration parameters [49]. Specifically, it was suggested that tuning the elasticity and
adhesiveness of cells could lead to distinct dynamical behaviours, including smooth migration,
stick-slip migration, and bistability between these two modes.

Taken together, these results demonstrate that combining systematic inference tools that
account for cell-to-cell variability with mechanistic models could in the future lead to novel
insights into the behavioural variability of cell populations. An exciting approach in this
respect would be to correlate variability at the molecular scale with variability at the be-
havioural scale, which could give insight into how molecular organization correlates with
behaviour without relying on artificial perturbations of the system [126–129].

1.4.2 Extrinsic heterogeneity

In addition to cell-to-cell variability, migrating cells also encounter variability in their envi-
ronment including heterogeneous extra-cellular matrices or contact with other cells. Indeed,
apparent cell-to-cell variability in collective systems has in many cases been shown to be
caused by environmental factors, including local cell density, cell-cell contacts and relative lo-
cation in a cell cluster [117, 130–132]. An interesting special case of such extrinsic variability is
self-induced extrinsic variability, where the cell itself causes changes to its environment which
in turn affect its behaviour. Here, we discuss two examples of this case in which quantitative
frameworks for the migration were developed.

First, in 3D migration through a matrix, some cells perform proteolysis, which is a mech-
anism that allows cells to locally digest the surrounding matrix to create a migration path.
This behaviour was shown to lead to asymmetries in the preferred direction of motion of
cells: cells were more likely to turn around by 180◦ than expected based on persistent ran-
dom motion, thus backtracking on their previous path [110]. As a model for this process, the
anisotropic persistent random walk model was proposed, which includes parameters that are
non-isotropic in space and thereby account for this effect.

In the second example, it was found that migrating cells deposit material on the surface
on which they migrate, causing them to behave differently when they return to a location
that they previously visited [133]. Specifically, cells were observed to preferentially occupy
previously visited areas. In this work, data-driven inference was used to generalize the phase-
space analysis introduced in section 1.3.1 to the problem of self-attracting migration on a 1D
line. This approach revealed that cells deterministically accelerate away from the boundaries
of previously explored space. This observation motivated a quantitative description using
a persistent self-attracting walk model, which quantifies the relative probabilities of turning
back vs. exploring new areas. This effect leads to long-lived spatial memory in the migration,
which can have dramatic consequences for the ways in which cells search and explore space.

In summary, these approaches identified important cell migration mechanisms using data-
driven analysis of the migration trajectories which exhibited striking variability. The analysis
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revealed that the observed variability is in fact due to extrinsic effects, albeit regulated by
the cell itself. These findings are particularly interesting in the broader picture of regulated
cell-to-cell variability proposed in [132], where it was suggested that deterministic, regulated
variability could have functional importance in cell population, which is in contrast to cell-
to-cell variability caused by random fluctuations of intra-cellular processes.

1.5 Connecting dynamics to mechanisms

In the previous sections, we have demonstrated how quantitative frameworks for cell migration
can provide data analysis tools and yield conceptual frameworks to think about cell behaviour.
A third important contribution such frameworks could make to the field is by providing
constraints for mechanistic cell migration models. We refer to models as ‘mechanistic’ if they
are based on a bottom-up approach in which model ingredients are postulated motivated by
known cellular processes or physical intuition. This is in contrast to the data-driven, top-down
approaches that we have focussed on so far in this review.

There is a long history of mechanistic biophysical modelling of cell migration (see e.g. [134]
for a review). Here, we do not aim to provide a complete review of this broad field, but rather
aim to highlight how mechanistic approaches could in the future be combined with top-
down frameworks. First, we will discuss in more detail how the structure of the equation
of cell motion models introduced in the previous sections can be understood in terms of the
underlying cellular mechanisms. Secondly, we will summarize specific examples of bottom-up
models which bridge the gap between underlying mechanisms and whole-cell behaviours.

1.5.1 Accelerations without force and mass

The equation for 2D persistent random motion (Eq. (1.2)) and the equation of motion for con-
fined cell migration (Eq. (1.4)) share a key feature: both are stochastic differential equations
that are second-order in time, and therefore a manifestation of the underdamped Langevin
equation. Specifically, these equations predict the acceleration as a function of position and
velocity. This is in contrast to first-order stochastic equations of motion which are frequently
used to describe the motion of Brownian systems subject to thermal noise [135]. For Brow-
nian systems, the effects of inertia can be neglected at time-scales larger than the relaxation
time

√
ζ/m, where ζ is the friction coefficient and m is the mass of the particle. Therefore,

friction is directly equated with the sum of thermal and external forces, yielding a first-order,
overdamped Langevin equation. A similar argument applies to cells: their mass is negligible to
the friction − but still, we describe their dynamics with an underdamped equation of motion.
Why? In other words: should we think of F (x, v) in Eq. (1.4) as a ‘force field’?

The answer is of course no: it is an acceleration field, if it is to match the left-hand side
of the equation in dimension. Yet, Eq. (1.4) still has the same overall structure as Newton’s
second law, where accelerations are equated to forces. And indeed the answer goes deeper than
this, as Eq. (1.4) is different to Newton’s second law at a more fundamental level. Specifically,
Newton’s law posits mv̇ =

∑
i Fi where

∑
i Fi is the sum of all forces acting on the cell, and

m is the inertial mass of the cell. However, in the case of a cell, this equation essentially
reduces to 0 = 0: the inertial mass of the cell is negligible compared to all other factors in
the dynamics. Conversely, there is also no total force acting on the cell,

∑
i Fi = 0, as the

traction forces cells exert on their substrate all balance each other. Therefore, its motion is
quasi-stationary when compared to the scale of the traction forces.



1.5 Connecting dynamics to mechanisms 19

Why then do cells accelerate if they have negligible mass and there are no total forces
acting on them? These accelerations can be understood as a consequence of the joint action
of the intra-cellular migration mechanisms that orchestrate correlations in the cell movement
that extend to far longer time-scales than expected for a Brownian particle with comparable
mass and friction. The speed of a migrating cell is to a good approximation proportional to the
internal flow of actin [22], which is being polymerized at the leading edge, and depolymerized
at the trailing edge [136]. The directionality of this actin flow is in turn determined by the
concentration profiles of internal signalling cues within the cell, which reorient on long time-
scales [23]. Reorientations of these polarity fields lead to changes of the cell velocity, and thus
to accelerations. Therefore, cellular accelerations are changes of velocity that are determined
by intra-cellular dynamics, and not by a net force acting on the cell. Consequently, the term
F (x, v) should not be interpreted as a force term, but as the deterministic contribution to
the effective underdamped dynamics of the cell. Therefore, to understand the origin of the
emergent cell migration dynamics, quantified by F (x, v), we should consider how internal
degrees of freedom of the cell, including the cell shape, protrusion formation and polarity
determine the net movement of the cell, and how these degrees of freedom couple to the
external environment.

1.5.2 Combining bottom-up and top-down approaches

Having understood the conceptual mechanistic basis of the emergent migratory dynamics of
cells, we will discuss in more detail how these dynamics can be connected to mechanisms.
Bottom-up biophysical models for cell migration traditionally focussed on particular aspects
of the motility machinery, such the ratchet model for force generation by actin polymeriza-
tion [137, 138], actin branching [139], and the molecular clutch model for adhesion dynam-
ics [45]. However, to describe cell motility at the behavioural level, integrated models which
connect the underlying mechanisms of actin flow and polarity dynamics are required. This is
the philosophy behind complex computational models, such as Cellular Potts Model imple-
mentations that account for cell polarity [44, 140], as well as phase-field models [141, 142].
However, these computational models have many parameters that are difficult to constrain
based on experimental data, and thus testing their predictive power and leveraging them for
conceptual insight for particular experiments remains challenging. Indeed, ref. [143] showed
that several conceptually different computational models with a distinct mechanistic basis are
able to faithfully capture the migration of keratocytes. This apparent degeneracy of possible
mechanisms may be a consequence of real degeneracy in biological mechanisms responsible
for a given behaviour. However, this observation also points to a bigger problem with using
complex bottom-up approaches whose parameters remain under-constrained for conceptual
insight. In contrast, minimal models have frequently remained simplistic, and unable to cap-
ture the emergent stochastic behaviour of cells on long time-scales.

A breakthrough in this regard was made in a landmark study by Maiuri et al. [22], who
proposed a mechanism for how the instantaneous actin flow speed determines the speed and
persistence of migrating cells. Specifically, for a large number of cell types, it was shown
empirically that their persistence is exponentially correlated with their speed, τp ∝ eλ〈|v|〉,
termed the universal coupling of cell speed and persistence (UCSP) law. Using a clever ex-
perimental approach, the authors then de-coupled the speeds of cell migration and actin flow
speed, which are typically proportional to one another, and demonstrated that the persis-
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tence is in fact proportional to the actin flow speed itself. This suggests that higher actin
flow speed has a stabilizing effect on the motion, thus leading to more persistent trajectories.
Using a minimal model coupling actin flow and polarity cue advection-diffusion, this rela-
tionship could be theoretically predicted. Importantly, this theoretical approach furthermore
made predictions for the complete stochastic trajectory dynamics of freely migrating cells in
terms of the microscopic actin-polarity parameters. This approach predicted that depending
on cell parameters, migrating cells could exhibit three distinct behavioural regimes: random
motion, highly persistent motion, and an intermittent mode exhibiting bistability between
the two other regimes. This framework was later extended in refs. [49, 50] to account for the
mechano-sensitive binding dynamics of focal adhesions at the trailing edge of cells. This exten-
sion predicts additional types of motility featuring periodic extension-retraction cycles, that
have been observed as so-called ‘stick-slip processes’ in the biological literature [51, 144]. In
summary, these studies have developed quantitative connection of underlying cellular mecha-
nisms to the emergent cellular behaviours, and given key insights by revealing the mechanistic
basis of important migration behaviours.

While these approaches have provided a quantitative connection from the mechanistic
to the behavioural level, they have focussed on the dynamics of freely migrating cells on
2D substrates and unstructured 1D lines. Thus, it remained unclear how to describe the
coupling of the intra-cellular mechanisms to external environments. In the context of immune
cell migration in confinements featuring structured walls, an active gel theory approach has
been developed, which relates the friction with the wall to the cell migration speed [93, 145].
However, this mechanism is specific to the amoeboid mode of migration displayed by immune
cells.

In chapter 6 of this thesis, we develop an approach to connect a general mechanistic model
to the long time-scale stochastic dynamics of confined migrating cells. To elucidate the dy-
namic interplay of the key cellular components that determine confined migration, including
the formation of cell protrusions, adhesive connections to the environment and the positioning
of the cell nucleus, we develop a hybrid mechanistic and data-driven theoretical approach.
Specifically, we use a large data set of coupled protrusion and nucleus trajectories to sys-
tematically constrain a mechanistic model for confined cell migration. Interestingly, we find
that cells confined to two-state micropatterns exhibit a stereotypical migration pattern, with
protrusions growing to precede the transmigration of the cell nucleus across the constriction,
which we term ‘protrusion-nucleus cycling’. Interestinlgy, we find that the average dynam-
ics of the cell nucleus in this system are determined by the locally available adhesive area.
Furthermore, our model indicates that the protrusion dynamics are driven by a stochastic
cell polarity that is sensitive to the local geometry. Specifically, under strong confinement,
the polarity dynamics switches from a negative to a positive, self-reinforcing feedback loop.
Strikingly, this model predicts, in agreement with experiments, that the protrusion-nucleus
cycling disappears when the constriction is removed. This suggests that the positive polarity
feedback loop emerges as a consequence of an adaptation of the cellular dynamics to the pres-
ence of the thin constriction. Our theoretical approach therefore suggests polarity feedback
adaptation as a key mechanism in confined cell migration. Furthermore, we find that this
mechanistic model fully captures the emergent dynamics of the nucleus trajectories alone, de-
scribed by Eq. (1.4). This model further reveals that the observed excitable flow (Fig. 1.1) is
a consequence of two combined effects: lower adhesiveness and enhanced polarity persistence
in the constriction.
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Taken together, these approaches demonstrate how combining bottom-up mechanistic
modelling and top-down inference can advance our understanding of cell migration processes,
and allow bridging the gap from mechanism to behaviour.

1.6 From the two-body to the many-body problem

In the previous sections, we focused on cell migration experiments where single cells are
isolated and only interact with their environment but not with one another. While such
simplified experimental systems can teach us much about the mechanistic basis of single cell
motility, studying how cells interact with one another is crucial to understand migration in
physiological settings. Indeed, in many of the physiological processes in which cell migration
is important, cells constantly interact with one another to organize their behaviour [16, 146–
148]. Cellular interactions depend on complex molecular mechanisms, including cadherin-
dependent pathways and receptor-mediated cell-cell recognition [149–155]. These mechanisms
lead to well-defined, stereotypical cell behaviours upon collision. The most prominent type of
collision behaviour was discovered in the 1950s by Abercrombie and coworkers [156], and was
termed Contact Inhibition of Locomotion (CIL). CIL refers to the tendency of cells to retract
their lamellipodia, repolarize, and migrate apart upon contact. While these observations
were made in a simple cell culture on 2D substrates, the relevance of CIL for physiological
processes was later demonstrated in the development of the neural crest [149] (see [150, 157]
for reviews).

At larger scales, these two-body interactions of cells lead to coordinated collective migra-
tion. At the collective level, the dynamics of groups of cells comprising tens, hundreds or
thousands of individuals has been described with a variety of physical modelling approaches.
These include active hydrodynamic theories [158], vertex [159, 160], mechanical [38], and
mechano-chemical [161] models, cellular automata [44, 162], phase-field models [141, 142],
as well as active particle models [163–168] (see [39] for an excellent review contrasting these
different types of models). While all these modelling approaches are mechanistically distinct,
they share two important features:

• With the exception of hydrodynamic approaches, which constrain models based on
generic symmetry arguments, the modelling avenues highlighted above typically make a
priori assumptions on the types of interactions between individual cells, and therefore
classify as bottom-up approaches. Cell-cell interactions are frequently modelled using
repulsive potentials as an implementation of excluded volume interactions, alignment
terms [164–167], or explicit implementations of CIL-like reorientation events upon col-
lision [163, 168]. However, the structure and parameters of these interactions is usually
not derived directly from experimental data.

• These approaches have advanced our understanding at the collective level comprising
many cells, which allows coarse-graining over the microscopic features of the
system. Thus, an approximate implementation of the cell-cell interactions is sufficient
to capture the key features of the system. For example, alignment interactions in
active particle models subsume a number of underlying cellular processes which yield
alignment between cells as an effective outcome. Thus, it is a challenge to connect these
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approaches all the way from Abercrombie’s archetypal two-body problem, with only
two cells colliding, to the collective behaviour.

There are two key hurdles that have made the development of data-driven approaches for
cell-cell interactions difficult until recently:

• The complexity of the biological settings in which cell-cell interactions take place make
it difficult to disentangle the distinct contributions of single-cell behaviour,
interaction with the local micro-environment, cell proliferation, and cell-cell
interactions. To overcome this problem, simplified assays have been developed where
small groups of cells are confined to micro-patterned patches [44, 169] or tracks [72, 73,
170–172], microfluidics [90], and suspended fibers [173].

• The difficulty of the inference problem itself : treating interacting systems us-
ing classical approaches based on grid-based binning of the phase space is unfeasi-
ble due to the prohibitively large data sets that would be required to constrain the
high-dimensional phase space of the system. In the last few years, interaction infer-
ence methods which overcome these problems have been developed for deterministic
systems [174, 175] and in the context of collective animal behaviour [176–178]. For
stochastic systems, the general approach presented in Box 1 (developed in ref. [66] and
chapter 7 of this thesis) can be extended to treat interacting systems by employing basis
functions which exploit the (approximate) symmetries of the system, such as particle
exchange symmetry or radial symmetry of the interactions. The recent development
of these inference methods opens up new avenues to learn the dynamics of cell-cell
interactions directly from observed data.

In chapter 8 of this thesis, we develop an approach for interacting cell dynamics which
is fully data-driven and describes a system at the level to pair-wise cell interactions. To
standardize the micro-environment of the cells, we developed a minimal ‘cell collider’, which
ensures that pairs of cells repeatedly collide with one another. Based on the joint trajectories
of the two cells, we sought to develop an interacting equation of motion for the system.
Specifically, we postulate that the dynamics of the system can be described by a generalization
of the equation of confined cell motion (Eq. 1.4):

dv

dt
= F (x, v) + f(|∆x|)∆x+ γ(|∆x|)∆v + ση(t) (1.10)

where η(t) is Gaussian white noise as before. Thus, we propose that the deterministic dy-
namics of the system can be decomposed into two separate components: a single-cell term
F (x, v), similar to that inferred from single-cell experiments, and interactive components,
which depend on the relative position ∆x and the relative velocity ∆v of the cells. The term
f(|∆x|) thus represents positional cell-cell interactions such as repulsion and attraction. In
contrast, γ(|∆x|)∆v depends on the relative motion of the cells, and has the mathematical
form of an effective frictional interaction. For γ < 0, this interaction accounts for alignment
between cells, as it seeks to minimize differences in relative velocity [164, 165].

An interesting problem to consider with this data-driven approach is to ask which types
of interacting dynamics are required to describe the distinct types of collision behaviours
of various cell types. Specifically, normal tissue cells typically undergo CIL upon collision,
meaning that they typically reverse upon collision in a 1D confinement [72, 171]. CIL is
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known to be suppressed in cancer cells [151, 179, 180], and therefore, these cells can migrate
past each other more easily [73]. Furthermore, some cell types have also been observed
to predominantly attach and follow each other upon contact, which was termed Contact
Following Locomotion [170, 181–183].

In our experiments, we contrasted a non-cancerous (MCF10A) and a cancerous (MDA-
MB-231) breast tissue cell line, and found that these cell lines indeed exhibit distinct collision
phenotypes: while the non-cancerous cells predominantly reverse upon collision, the cancerous
cells tend to slide past one another. Based on the recorded trajectories, we inferred the terms
of the interacting equation of motion (Eq. (1.10)). We demonstrated that this inferred model
is able to capture the experimentally observed statistics, suggesting that this framework pro-
vides an accurate representation of the system’s behavioural dynamics. Strikingly, we found
that the two cell types are described by distinct types of interactions: while the MCF10A
cells exhibit repulsive and regular frictional interactions, the MDA-MB-231 attract at short
distances and exhibit a positive friction term (γ > 0). This ‘anti-friction’ interaction ensures
that rather than slowing down upon collision, cells deterministically accelerate, leading to the
characteristic sliding events observed for this cell line. We generalized this inferred theoretical
framework by predicting an ‘interaction behaviour space’, which relates the physical interac-
tion terms to the emergent long-time behaviour of the system. This approach shows that the
interactions we have inferred from our experiments can describe various cell-cell interaction
modes known in the biological literature [73, 150, 170, 179, 182], including reversing, sliding
and following interactions.

Applying a data-driven inference framework to interacting cells has therefore revealed
novel, unexpected interactive dynamics and provided a unifying, quantitative framework to
describe the various interaction phenotypes of cell pairs of different type. This work was made
possible by previous progress on single confined cell migration, which provided a generalizable
substrate for the interacting case. In the future, cell-cell interaction inference could provide
a tool to assess the effect of pharmacological perturbations of the interacting cells. In this
case, the inference methods could reveal how the interactions derived from unperturbed cells
rely on particular molecular components of the cell-cell contacts.

The interaction behaviour space could furthermore provide a conceptual way to relate
dynamics and behaviour also in more complex, collective settings, such as small clusters of
cells [44, 166, 168], epithelial sheets [167, 184], or 3D organoids [185, 186]. Physical approaches
to such multi-cellular systems thus far rely on modelling approaches where plausible types of
interactions are assumed a priori. This is also the approach we follow in chapter 9, where we
study the effect of cadherin-mediated cell-cell junctions on the collective spreading dynamics
of cancer cell colonies. In this case, we use an indirect route to constrain the change in
interactions upon disruption of the junctions by comparing experimental and theoretically
predicted statistics. Being able to infer these interactions directly from the observed data
could provide a much more direct route in the future, and might reveal unexpected types of
interactions that would otherwise have gone unnoticed.
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1.7 Outlook

In this introductory review, our aim was to introduce the relevant literature for the data-
driven approach to cell migration pursued in this thesis, and to place the work presented in
this thesis into context. In this last section, we aim to provide a brief outlook on how the
data-driven approaches developed in this thesis could help answer open questions in the cell
migration field in the future.

The first part of this review on single-cell dynamics contained two main themes: how to
quantify and conceptualize the adaptation of cell behaviour to external confinements; and
how to relate these behaviours to underlying molecular mechanisms. While we make first
steps in this thesis to address these problems, much remains unknown. The basic molecular
mechanisms that drive migration are increasingly well understood, but an integrated under-
standing of how these mechanisms interplay to set the emergent stochastic behaviours of cells
at long time-scales still remains elusive. Furthermore, it remains unclear how cells respond to
external confinements at the molecular level, and how these responses determine the emergent
behaviour.

So far, data-driven cell migration models, from persistent random motion, confined cell
migration, and interacting cells, have been limited to the treatment of low-dimensional sets of
cellular degrees of freedom (DOFs), for example the trajectories of the cell nucleus. Clearly,
the search for the principles governing the coupling from the molecular to the behavioural
level calls for a description at a more microscopic level, which necessarily requires the tracking
and analysis of further DOFs. A first step in this direction is made in chapter 6, where the
effective protrusion position and the cell polarity are treated as additional DOFs. This min-
imal approach has yielded considerable additional insight compared to the treatment based
on just the nucleus trajectories, highlighting how much more could be achieved by tracking
further sub-cellular DOFs.

First steps towards descriptions of more complex cellular DOFs could be made based on
analysis of the complete cell shape, rather than just the protrusions: shapes are easy to ob-
serve experimentally, and contain information about the overall state of the cell. For example,
extending the approach of defining an effective protrusion position to the treatment of the
complete protrusion-retraction shape components of the cell could give access to much more
high-resolution information about how the cell reacts to its environment. These components
corresponds to a ‘ribbon’ of alternating protrusion and retraction areas around the cell, quan-
tifying the shape velocity at each moment in time. First approaches in this direction have
been made in refs. [187, 188] where the temporal spectra of protrusions of freely migrating
cells were quantified. In this case, it will likely be important to monitor the cellular dynamics
at much higher time-resolution than in this thesis. Large time-intervals average out much of
the short time-scale protrusive dynamics which could be required to understand this process.
Applying a higher resolution approach to protrusion dynamics in confined geometries could
provide additional insights into how these dynamics adapt to their environment.

A second approach to reveal the principles governing the interplay of cell shape and mi-
gration is to not only focus on the shape velocities, but to account for the entire shape as
a function of time. The step from one-dimensional cell trajectories to the complete shape
is a large jump in complexity. Thus, to determine the dominant contributions to the cell
morphology, dimension reduction techniques may be required. By identifying the principle
components of the cell shape, the morphodynamics could be studied in a low dimensional
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space, similar to previous approaches in quantitative animal ethology [55, 56, 189]. A first
step in this direction was made in ref. [190], where the application of different dimension
reduction techniques to cell shapes were contrasted. This analysis revealed that cell shape
alone is insufficient to predict the instantaneous velocity of the cell, suggesting that addi-
tional information beyond the shape is required to capture cell polarization. This observation
furthermore suggests that cell shape may be thought of as a nematic DOF, which contains
orientational information rather than polar information. Thus, to fully resolve cellular dy-
namics at the level of cell shapes will require the addition of further DOFs containing polar
information, for instance shape velocities or information about the intra-cellular organization,
such as the relative position of the cell nucleus or the traction forces. Determining a minimal
set of DOFs required to predict cell polarization is an interesting problem on its own. Solving
this puzzle may furthermore allow us to construct a morphodynamic space in which migration
can be predicted based on a low-dimensional ‘morphodynamic feature-vector’. Having a way
to predict migration based on morphological features could then allow a more mechanistic
understanding of cellular adaptation to external cues.

Changes in cell shape are driven by the polymerization and depolymerization of the actin
network at the leading and trailing edges, respectively. The polymerization machinery in turn
is controlled by a complex network of polarity cues, including Rac and Rho GTPases [191].
The local concentration of these cues determines the recruitment of actin regulators. Thus,
the dynamics of the polarity cue concentration fields is a critical cellular DOF to under-
stand migration and adaptation to geometries. While the general structure of the interaction
network of polarity cues and actin regulators is increasingly well studied, the stochastic spa-
tiotemporal dynamics of the polarity fields is not well understood. Furthermore, it remains
unclear how these fields determine the overall migration behaviour on longer time-scales.

We argue that to address these open problems, data-driven inference tools can play a
key role. How can we think about this problem mathematically? So far, we have used this
type of approach to develop theories of the dynamics of the trajectory of net cell motion
xc(t). This trajectory in turn is determined by the dynamics of the cell shape, which can be
represented as a discrete two-dimensional field S(x, t), which takes values 1 inside the cell,
and 0 outside. The underlying intra-cellular concentration fields in turn are continuous fields
{Φi(x, t)}, where the index i = 1...N refers to the different intra-cellular components such as
the intensities of actin, myosin, Rac, Rho, CDC42, etc. These intensity fields could be ob-
tained experimentally by staining particular components and tracking their spatiotemporal
dynamics. Describing how these concentration fields couple to one another and to the cell
shape would then required a formulation in terms of a stochastic field theory. Inferring field
theories from observed data is currently an open theoretical problem, which would have to be
addressed first. Methods to infer coupled partial differential equations have been developed
for deterministic systems [68, 69], but no method for stochastic field inference exists thus far.
Even if this method is developed, the problem has daunting complexity, and thus dimensional
reduction of the relevant fields may be required to make it tractable. An approach in this
direction has been developed in pioneering work by Danuser and coworkers [192–194], who
measured the temporal correlations of signalling molecule recruitment and actin polymeriza-
tion within cell protrusions. Such an approach has the potential to reveal causal relationships
in the regulatory network in a perturbation-free manner. Extending these ideas to confined
systems where cells are monitored on long time-scales, and combining it with stochastic infer-
ence methods, could yield key insights into the mechanistic basis of stochastic cell behaviours
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and their adaptation to the environment.
Beyond actin polymerization and polarity cues, key players in confined migration are focal

adhesions [71] and the cell nucleus [195–198]. These components are particularly important in
3D confined migration, where adhesions can be made at all sides of the cell, and the nucleus
has to physically deform to overcome constrictions. Regarding cell adhesions, it would be
particularly interesting to investigate how the adhesion-limited nucleus dynamics discovered
in our mechanistic approach for 2D confined migration might change in 3D confinements.
The switch from 2D to 3D could also have important consequences for the dynamics of cell
protrusions and retractions, and the cell shape as a whole. While important progress has
been made on how the nucleus can act as a sensor for external confinement [91, 197], it still
remains unclear how nucleus deformations couple to the stochastic long time-scale dynamics
of cell protrusions and polarity in 3D confinements. Thus, tracking the joint dynamics of
nucleus deformation, protrusion formation, and cell migration could provide the basis for a
data-driven approach to 3D confined migration.

In a similar way, data-driven approaches for cell-cell interactions could provide an avenue
to better understand how molecular processes control interacting behaviours. One possible
approach is to pharmacologically target molecular components that are known to be important
in controlling cell-cell interactions, and then inferring the resulting change in dynamics. This
may provide a way to identify the link between individual components with their role in
the emergent behaviour. For example, a key question raised by the inference on two-cell
collisions is how the separate positional and effective frictional components are controlled by
molecular components. In particular, it is unclear what underlying mechanism controls the
switch from friction or anti-friction interactions observed in non-cancerous and cancerous cells,
respectively. Candidates are E-cadherin mediated cell-cell junctions, which are downregulated
in cancer cells [73], or ephrins, which play a key role in cell-cell recognition [157]. Furthermore,
to understand the emergence of the repulsive interaction between cells, which is responsible for
Contact Inhibition of Locomotion, polarity cues, such as Rho GTPases, could be perturbed.
These components are likely important in how cells change their direction of motion, an
important process in the reversal events associated with CIL [72]. Thus, combining interaction
inference with molecular perturbation in cell pair collision experiments could provide an
avenue to link mechanisms and behaviour in interacting cellular systems.

Another interesting puzzle is how to describe the joint action of direct, contact-mediated
cell-cell interactions, and indirect, substrate-mediated interactions. When cells migrate on
mechanically soft, deformable substrates, their traction forces generate strain fields that can
be sensed by other cells [199, 200]. By combining traction force microscopy [201] with trajec-
tory inference in cell-cell interaction experiments on soft substrates could yield insight into
how these two modes of communication interplay in cell collision events.

An exciting perspective is to take interaction inference beyond the level of the two-body
problem. A key question that could be addressed this way is whether two-body interactions
are sufficient to describe the dynamics of multi-body systems. For instance, can the dynamics
of three confined and colliding cells be predicted purely based on the two-body interactions
inferred from pairwise collisions? Or is an additional three-body interaction term required?
Such higher order interaction types can be addressed with existing inference approaches [4,
66], and have been inferred from data in studies of animal behaviour, including interacting
fish [177]. If three-body cell-cell interactions are discovered, this would raise the question
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how it is mediated at the molecular level, for which currently no clear candidate mechanism
exists.

Interaction inference could also help in understanding the dynamics of larger cell assem-
blies. In many cases, active particle models which employ commonly observed types of inter-
actions, such as repulsion and alignment, have been very successful at capturing the behaviour
of collective cell migration [163–168]. However, there may be systems in which non-trivial
types of interactions are at play. For example, cancerous tissue undergoes dramatic changes
during metastasis, a process that can be recapitulated in in vitro cancer organoids [186, 202].
These changes happen simultaneously at the molecular, morphological, migratory, and me-
chanical level. A hallmark of this transition is the development of invasive branches along
which cells migrate into the surrounding extra-cellular matrix [186, 202]. To understand this
switch in migration behaviour, it would be interesting to disentangle the separate contribu-
tions of single-cell motility, cell-cell interactions, and the role of the overall morphology of the
tumour, which acts as an effective confinement. To this end, an inference approach that can
decompose the observed dynamics into these separate components could provide an impor-
tant tool.

Taken together, these perspectives demonstrate how data-driven approaches have the
potential to address key open questions in single and collective cell migration. A common
thread in these ideas is that based on observed experimental trajectories, we no longer have
to guess models, but we can infer them directly from data. Based on these inferred dynamics,
we can then attempt to constrain underlying mechanisms, and predict emergent behaviours
of the system. Our hope is that this philosophy could provide a basis for the development of
a ‘Physics of Cell Behaviour’.
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Chapter 2

Outline of this thesis

The core of this thesis are self-contained manuscripts either prepared for a publication or
already published in a peer-reviewed journal, which are presented in separate chapters (chap-
ters 3-9). Here, I briefly summarize the open problem, the general approach, and key results
of each manuscript.

Graphical Abstract. The projects in this thesis are presented roughly in order of increasing length scale
and level of the description. In chapter 3, we develop a conceptual framework to analyze and interpret the
dynamics of confined migrating cells. We then generalize this approach to account for the temporal and
inter-individual variability in migratory behaviour (chapter 4) and to investigate how confined cells respond
to adhesive geometries of different size, shape, and orientation (chapter 5). To gain insight into the underlying
migratory mechanisms that control confined cell migration, we provide a theory for the protrusion and polarity
dynamics of cell in chapter 6. In chapter 7, we develop a method to infer the dynamics of stochastic interacting
systems from data, which we use in chapter 8 to make the first step from the single-cell level to interacting
systems, by providing a direct inference of cell-cell interactions from trajectories of colliding cell pairs. Finally,
in chapter 9, we investigate how the collective migration of cell clusters is controlled by cell-cell interactions.
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Stochastic nonlinear dynamics of confined cell migration

In chapter 3, we introduce a combined experimental and theoretical approach to study the
stochastic migration dynamics of cells in response to thin constrictions.

Reference
Stochastic nonlinear dynamics of confined cell migration in two-state systems
D. B. Brückner?, A. Fink?, C. Schreiber, P. J. F. Röttgermann, J. O. Rädler and C. P.
Broedersz
Nature Physics 15, 595-601 (2019) [1]
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A.F., C.S., P.J.F.R. and J.O.R designed experiments; A.F. and C.S. performed experiments;
D.B.B., A.F. and C.S. analysed data. D.B.B. and C.P.B. developed the theoretical model.
D.B.B., A.F., C.S., J.O.R. and C.P.B. wrote the manuscript.
This manuscript is also part of the PhD thesis of Alexandra Fink.
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• Featured on the cover of Nature Physics in June 2019
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• Featured as a Nature Reviews Materials Research Highlight [204].
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As of 12 February 2021, this article is the most tweeted article of all Nature Physics articles
of a similar age (86 articles). It was tweeted 545 times. Among tracked articles of similar
age in all scientific journals, it is in the 99th percentile (ranked 1,246th of 273,375 articles).
Source: Altmetric via Nature Physics evaluated on 12 February 2021.

Abstract

Migrating cells in physiological processes, including development, homeostasis and cancer,
encounter structured environments and are forced to overcome physical obstacles. Yet, the
dynamics of confined cell migration remains poorly understood, and thus there is a need
to study the complex motility of cells in controlled confining micro-environments. Here, we
develop two-state micropatterns, consisting of two adhesive sites connected by a thin con-
striction, in which migrating cells perform repeated stochastic transitions. This minimal
system enables us to obtain a large ensemble of single cell trajectories. From these trajecto-
ries, we infer an equation of cell motion, which decomposes the dynamics into deterministic
and stochastic contributions in position-velocity phase space. Our results reveal that cells in
two-state micropatterns exhibit intricate non-linear migratory dynamics, with qualitatively
similar features for a cancerous (MDA-MB-231) and non-cancerous (MCF10A) cell line. In
both cases, the cells drive themselves deterministically into the thin constriction; a process
that is sped up by noise. Interestingly however, these two cell lines have distinct determin-

https://www.nature.com/articles/s41567-019-0445-4
https://www.nature.com/articles/s41567-019-0445-4/metrics
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istic dynamics: MDA-MB-231 cells exhibit a limit cycle, while MCF10A cells show excitable
bistable dynamics. Our approach yields a conceptual framework that may be extended to
understand cell migration in more complex confining environments.

Key results

• In many cellular processes, the complex motility machinery of migrating cells reliably
performs migration tasks, taking place in both 2D and 3D tissue [14, 16, 85, 101, 110].
In both cases, cells face a highly structured confining environment. To navigate such an
environment, a migrating cell must overcome physical obstacles by squeezing through
thin pores [18, 101–103]. While the dynamics of freely migrating cells is well understood
in terms of persistent random walks [70, 74, 109, 110], a system-level understanding of
the stochastic dynamics of cell migration in confined environments has remained elusive.
• To investigate the dynamics of confined migrating cells, we challenged cells with a

minimal experimental migration problem: two adhesive islands on which the cell can
rest, connected by a thin constriction. We observe that the cells repeatedly migrate
between the islands, allowing us to characterize the statistics of this hopping process.
Interestingly, we find that the migratory behaviour of the cells is highly variable, raising
the question which aspects of the behaviour are deterministic, and which are stochastic.
• We disentangle the deterministic and stochastic components of the behaviour by infer-

ring an equation of cell motion from the observed trajectories. While this approach is
fully constrained by the short time-scale information of the trajectories, we find that the
equation of motion accurately captures the key experimental long time-scale statistics,
such as the steady-state probability distributions of position and velocity, the velocity
correlation function, and the probability distribution of transition times.
• Our approach reveals that the cells have a deterministic tendency to overcome the

thin constriction. In fact, the deterministic component of the migration is governed
by intricate non-linear dynamics that are poised close to a bifurcation between a limit
cycle and a bistable system: while MDA-MB-231 cells exhibit a limit cycle, MCF10A
cells show excitable bistable dynamics.
• These results are in contrast with the intuitive expectation that the hopping behaviour

might be generated by a noisy cellular activity competing with an effective energy barrier
placed by the bridge. Instead, this framework suggests that the dynamics of confined cell
migration are better understood as a non-linear dynamical system in position-velocity
phase space.
• This approach could help advance our understanding of locomotion at the molecular

level, as it provides strong constraints for bottom-up models that connect microscopic
rules to the system-level dynamics of cells [22, 23, 134], and could provide a generalizable
substrate to think about the dynamics of assemblies of interacting cells [39].
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Quantifying the variability of cell migration behaviours

In chapter 4, we examine the variability in the behaviour of migrating cells both between
individual cells and over time.

Reference
Disentangling the behavioral variability of confined cell migration
D. B. Brückner, A. Fink, J. O. Rädler and C. P. Broedersz
Journal of the Royal Society Interface 17, 20190689 (2020) [3]

Author contributions
D.B.B. and C.P.B. conceived the project; A.F. performed experiments; D.B.B. analysed data.
D.B.B. and C.P.B. developed the theoretical model. D.B.B. and C.P.B. wrote the manuscript
with input from all authors.

Abstract

Cell-to-cell variability is inherent to numerous biological processes, including cell migration.
Quantifying and characterizing the variability of migrating cells is challenging, as it requires
monitoring many cells for long time windows under identical conditions. Here, we observe
the migration of single human breast cancer cells (MDA-MB-231) in confining two-state mi-
cropatterns. To describe the stochastic dynamics of this confined migration, we employ a
dynamical systems approach. We identify statistics to measure the behavioural variance of
the migration, which significantly exceed those predicted by a population-averaged stochastic
model. This additional variance can be explained by the combination of an ’aging’ process
and population heterogeneity. To quantify population heterogeneity, we decompose the cells
into subpopulations of slow and fast cells, revealing the presence of distinct classes of dynam-
ical systems describing the migration, ranging from bistable to limit cycle behaviour. Our
findings highlight the breadth of migration behaviours present in cell populations.

Key results

• Cell-to-cell variability is a key aspect of biological ensembles and has important im-
plications for physiological processes such as collective migration of cell clusters, drug
response, and cancer progression [117–121]. Numerous previous studies have provided
quantitative methods for measuring variability of intra-cellular processes such as gene
expression and protein translation [112–116]. Such cell-to-cell variability may in general
propagate to the level of whole-cell behaviors − yet, it remains a key open question how
to characterize and classify the diversity of phenotypes in complex migration dynamics
from experimental data.
• A key challenge for such a characterization is that it requires both an appropriate

theoretical framework as well as data sets where large numbers of migrating cells are
monitored over long times under identical conditions. Here, we analyze the trajectories
of hundreds of migrating cells confined in standardized micro-environments. Using these
experimental cell trajectories, we develop a rigorous quantitative approach to show that
the variance in behaviors between cells significantly exceeds that predicted by a single

https://royalsocietypublishing.org/doi/10.1098/rsif.2019.0689
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stochastic process.
• We employ a dynamical systems approach, which we generalize for the case of hetero-

geneous ensembles and time-dependent ‘aging’ dynamics. While the ensemble-averaged
statistics of confined cell migration are well captured by a stochastic equation of cell
motion, described in chapter 3, this approach ignores cell-to-cell variability. We deter-
mine a simple way of capturing phenotypic diversity in this system, by optimizing the
predictive power of the generalized model with respect to the observed variances.
• This procedure reveals the presence of distinct dynamical classes in the population,

including stochastic bistability and limit cycle oscillations. We further account for a
time-dependent effect in the form of a gradual deceleration of the cells over time. By
combining these two effects, we obtain a quantitative model that can accurately predict
the overall behavioral variability of migrating cells. This provides a simple and insightful
way to quantitatively characterize heterogeneity in this system.
• These findings suggest that within a cell population, there are qualitative differences

in the class of dynamical systems describing the migration of individual cells. These
results provide a new way to characterize cell-to-cell variability in cell migration and
give insights into the breadth of phenotypic diversity in how cells perform complex cell
migration tasks.
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Cellular responses to varying confinement size, shape and ori-
entation

In chapter 5, we investigate how the migration dynamics of cells respond to variations in size,
shape, and orientation of the local confining micro-environment.

Reference
Area and geometry dependence of cell migration in asymmetric two-state micropatterns
A. Fink, D. B. Brückner, C. Schreiber, P. J. F. Röttgermann, C. P. Broedersz and J. O.
Rädler
Biophysical Journal 110, 1886-1895 (2020) [2]

Author contributions
A.F., C.S., P.J.F.R. and J.O.R designed experiments; A.F. performed experiments; A.F. and
D.B.B. analyzed data. A.F., D.B.B., C.S., C.P.B. and J.O.R. interpreted the experiments
and wrote the manuscript.
This manuscript is also part of the PhD thesis of Alexandra Fink.

Features

• Featured in Biophysical Journal New and Notable [205]

Abstract

Micro-structured surfaces provide a unique framework to probe cell migration and cytoskeletal
dynamics in a standardized manner. Here, we report on the steady-state occupancy proba-
bility of cells in asymmetric two-state microstructures that consist of two fibronectin-coated
adhesion sites connected by a thin guidance cue. In these dumbbell-like structures, cells tran-
sition between the two sites in a repeated and stochastic manner and average dwell times
in the respective microenvironments are determined from the cell trajectories. We study
the dynamics of human breast carcinoma cells (MDA-MB-231) in these microstructures as
a function of area, shape and orientation of the adhesion sites. On square adhesive sites
with different areas, we find that the occupancy probability ratio is directly proportional to
the ratio of corresponding adhesion site areas. These asymmetries are well captured by a
simple model for the stochastic nonlinear dynamics of the cells which reveals generic features
of the motion. Sites of equal area but different shape lead to equal occupancy, if shapes are
isotropic, e.g. squared or circular. In contrast, an asymmetry in the occupancy is induced
by anisotropic shapes like rhombi, triangles or rectangles that enable motion in the direc-
tion perpendicular to the transition axis. Analysis of the 2D motion of cells between two
rectangles with orthogonal orientation suggests that cellular transition rates depend on the
cell polarisation induced by anisotropic micropatterns. Taken together, our results illustrate
how two-state-micropatterns provide a dynamic migration assay with distinct dwell times
and relative cell occupancy as readouts, which may be useful to probe cell-microenvironment
interactions.

https://www.cell.com/biophysj/fulltext/S0006-3495(19)34347-4
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Key results

• Determining the factors and mechanisms that steer migrating cells in tissue and in the
extracellular matrix is still an important open biophysical challenge. Cells can be guided
by external cues, such as gradients in chemokine or ligand concentrations [90, 206, 207],
stiffness [208–211], or through geometrical constraints [106, 107, 212]. However, it re-
mains unclear how migrating cell respond to local geometrical cues through changes
in cytoskeletal organization and migratory activity. Micropatterns offer highly repro-
ducible microenvironments, allowing the extraction of extensive single cell statistics and
are therefore well suited to reveal subtle changes in a quantifiable manner.
• Here, we extend the study of confined cell migration on micropatterned two-state sys-

tems presented in chapter 3 with new experiments assessing the relative dwell times in
asymmetric patterns, in which cells probe adhesive patches with different geometrical
properties, including size, shape and orientation. An advantage of this experimental
approach is that by migrating repeatedly between the two sites, cells probe two mi-
croenvironments relative to each other, giving access to an occupation probability ratio,
which could be used to quantify cellular preferences for local environments.
• In these asymmetric two-state systems, cells transition back- and forth between the

two sites in a repeated and stochastic manner. We measured the mean dwell times,
defined as the time between transitions, and the occupation probabilities, allowing us
to quantify the cellular response to the distinct geometric aspects of the adhesion sites.
• We find that the dwell times are directly proportional to the adhesion site areas. Fur-

thermore, in the case of isotropic confining shapes, with no difference in the x- and
y-directions such as square or circular islands, sites of equal area but different shape
lead to equal occupancy.
• Surprisingly, in anisotropic shapes such as rectangles arranged in orthogonal orienta-

tions, the occupancy is asymmetric. Using fluorescent staining of the cytoskeletal orga-
nization and focal adhesions, we find that this effect is likely related to cells polarizing
in different directions on differently oriented sites.
• In the future, this assay could potentially be used for phenotyping behaviours of different

cell types and to study cellular responses to other environmental cues such as cell-surface
interactions.
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Protrusion dynamics in confined cell migration

In chapter 6, we develop a theoretical framework for the joint dynamics of cell protrusions,
polarity, and nucleus motion in confining micro-environments.

Reference
Theory of protrusion and polarity dynamics in confined cell migration
D. B. Brückner, M. Schmitt, A. Fink, J. Flommersfeld, N. Arlt, E. Hannezo, J. O. Rädler
and C. P. Broedersz
manuscript in preparation for publication.

Author contributions
D.B.B., E.H. and C.P.B. conceived the project; A.F. performed experiments, with supervision
by J.R.; M.S., J.F. and N.A. performed tracking and image segmentation; D.B.B. and M.S.
analysed data. D.B.B., M.S. and C.P.B. developed the theory. D.B.B. and C.P.B. wrote the
manuscript with input from all authors.
This project originated from preliminary work presented in the Master thesis by M. Schmitt,
supervised by C. Broedersz and co-supervised by D. Brückner.

Abstract

Cell migration in many physiological processes relies on the concerted dynamics of several
cellular components, including the formation of cell protrusions, adhesive connections to the
environment, and the positioning of the cell nucleus. These components are coupled by the
polarizable active cytoskeleton, and together play the dual role of driving net motion of the
cell and sensing its local microenvironment. However, it remains poorly understood how the
dynamic interplay of these components determines the emergent migration behavior at the
cellular scale, and how these dynamics adapt to confining environments. Here, we develop
a hybrid mechanistic and data-driven theoretical approach, where we use experimental data
to systematically constrain a mechanistic model for confined cell migration. We measure a
large data set of joint protrusion and nucleus trajectories of cells migrating in standardized
micropatterned confinements featuring a thin constriction. Interestingly, we find that cells
exhibit a stereotypical migration pattern, with protrusions growing to precede the transmi-
gration of the cell nucleus across the constriction, which we term ‘protrusion-nucleus cycling’.
Based on a data-driven approach, we reveal that the average dynamics of the cell nucleus
are determined by the locally available adhesive area. Furthermore, our model indicates
that the protrusion dynamics are driven by a cell polarity that couples to the local geom-
etry by switching from a negative to a positive, self-reinforcing feedback loop under strong
confinement. Strikingly, this model predicts, in agreement with the experiment, that the
protrusion-nucleus cycling disappears when the constriction is removed. This implies that
the self-reinforcing polarity feedback loop emerges as a consequence of an adaptation of the
cellular dynamics to the presence of the thin constriction. Our theoretical approach therefore
suggests polarity feedback adaptation as a key mechanism in confined cell migration.
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Key results

• The migration of cells in confining environments is intimately linked to changes of their
shape: migrating cells generate protrusions which drive migration [136, 213], and help
navigate complex, structured extracellular environments [213, 214]. However, it remains
unclear how the underlying protrusion and polarity dynamics determine the emergent
migration dynamics of cells in structured environments on long time-scales.
• Here, we develop a hybrid data-driven and mechanistic approach, where we use exper-

imental data to rigorously constrain a mechanistic model for confined cell migration
postulated on the basis of physical intuition and known cellular processes. Specifically,
we measure a large data set of joint nucleus and protrusion trajectories of cells migrating
in the two-state micropatterns introduced in chapter 3.
• The cell protrusions exhibit a stereotypical pattern of growing to precede the transmi-

gration of the cell nucleus across the constriction, which we term ‘protrusion-nucleus
cycling’.
• To disentangle the distinct contributions to these dynamics, we follow an approach

where we separately constrain the dynamics of the cell nucleus and the cell protrusion,
which we postulate to be driven by a stochastic polarity force. This approach reveals
two key contributions to the cellular dynamics:

– We find that the dynamics of the cell nucleus are determined by the locally available
adhesive area, which is modelled as a spatially variable friction coefficient.

– Our model suggests that the protrusion dynamics are driven by a cell polarity which
couples to the geometry of the local confinement by switching from a negative to a
positive, self-reinforcing feedback loop, leading to strong polarities and persistent
protrusion growth in the constriction.

• Together with a linear coupling between protrusion and nucleus, these two components
of the system are key in generating the observed stereotypical protrusion-nucleus cycling.
• Strikingly, our model predicts, in agreement with experiments, that the protrusion-

nucleus cycling disappears when the constriction is removed. This suggests that the
self-reinforcing polarity feedback loop emerges as a consequence of an adaptation of the
cellular dynamics to the presence of the thin constriction.
• A central challenge for our mechanistic theoretical approach is to capture the emergent

stochastic nonlinear dynamics of the system that we discovered in chapter 3. Inter-
estingly, we can directly map the equations of motion of the mechanistic model to the
effective underdamped nucleus dynamics, revealing that the amplification behavior ob-
served in chapter 3 is a consequence of two combined effects: lower adhesiveness and
enhanced polarity persistence in the constriction.
• Taken together, these insights reveal the key mechanisms that give rise to the stochastic

nonlinear dynamics introduce in chapter 3, and suggest polarity feedback adaptation as
a key mechanism in confined cell migration.
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Inferring the dynamics of underdamped stochastic systems

In chapter 7, we develop an inference method, Underdamped Langevin Inference, to infer
the underlying dynamics of underdamped stochastic systems from observed experimental tra-
jectories. We develop a rigorous way to deal with finite data, discrete observations, and
experimental measurement noise. This method allows us to perform inference also for inter-
acting and high-dimensional systems, which we will make use of in chapter 8.

Reference
Inferring the dynamics of underdamped stochastic systems
D. B. Brückner?, P. Ronceray? and C. P. Broedersz
Physical Review Letters 125, 058103 (2020) [4]

Author contributions
D.B.B., P.R. and C.P.B. conceived the project. D.B.B. and P.R. performed calculations,
performed simulations and analysed data. D.B.B., P.R. and C.P.B. wrote the paper.

Features and Prizes

• Featured as PRL Editor’s suggestion.
• Awarded with the LMU Center for NanoScience ‘Scientific Breakthrough Award’ 2020

Abstract

Many complex systems, ranging from migrating cells to animal groups, exhibit stochastic
dynamics described by the underdamped Langevin equation. Inferring such an equation of
motion from experimental data can provide profound insight into the physical laws governing
the system. Here, we derive a principled framework to infer the dynamics of underdamped
stochastic systems from realistic experimental trajectories, sampled at discrete times and
subject to measurement errors. This framework yields an operational method, Underdamped
Langevin Inference (ULI), which performs well on experimental trajectories of single migrating
cells and in complex high-dimensional systems, including flocks with Viscek-like alignment
interactions. Our method is robust to experimental measurement errors, and includes a self-
consistent estimate of the inference error.

Key results

• Many complex systems, from migrating cells to interacting animal swarms, exhibit ef-
fective inertial dynamics described by second-order stochastic differential equations [1,
55, 56, 70, 82, 164, 168, 177, 215–220]. In recent years, experimental trajectory data on
such systems have become readily available. By performing inference on such trajec-
tories, one could recover the underlying equations of motion, yielding profound insight
into the physical laws governing such systems. However, reliable inference from experi-
mental data is hampered by two key problems: experimental data is inevitably discrete
and subject to measurement noise. We show that a straightforward generalization of
conventional inference methods for first-order systems [62–66] results in divergent sys-
tematic biases in second-order systems, which cannot be overcome by simply recording

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.058103
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more or better data.
• We provide a solution to this problem by deriving estimators for the deterministic and

stochastic terms of the underlying dynamics, which are robust against discretization
effects and measurement noise.
• Conceptually, we find that projecting the dynamics onto a smooth set of basis functions

is key to construct unbiased estimators for second-order systems, as opposed to grid-
based coarse-graining approaches typically employed in first-order inference [62–65].
• This method is valid for general non-linear inertial stochastic processes, including mul-

tiplicative stochastic terms, making it broadly applicable to complex experimental sys-
tems.
• We show that this approach is practical and data-efficient by applying it to short noisy

experimental trajectories of single migrating cells.
• We test ULI on simulated trajectory data of flocks of active particles with Vicsek-like

alignment interactions. We show that our approach reliably recovers the spatial struc-
ture of pairwise-interactions, and can disentangle alignment and central-force contribu-
tions to these interactions. Thus, ULI provides a tool to gain insight into the governing
collective dynamics of many-body systems, ranging from clusters of migrating cells to
flocks of birds.

Relation to other manuscripts

In chapters 3-5, we apply a simpler inference method, using a grid-based coarse-graining
approach. In this case, we are performing inference on a very large set of trajectories in a
low dimensional system, which makes the grid-based approach feasible. In contrast, as we
show in chapter 7, to perform inference on a single-cell basis, the more data-efficient ULI
method is required. To account for the bias due to discretization discussed in chapter 7, we
perform an a posteriori empirical iterative scheme in chapter 3. Finally, ULI allows us to
perform inference in interacting systems, which we make use of in chapter 8, where we infer
the interactions of confined pairs of migrating cells.
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Learning cell-cell interactions from pair-wise collisions

In chapter 8, we introduce a theoretical framework for the stochastic dynamics of interacting
pairs of cells.

Reference
Learning the dynamics of cell-cell interactions in confined cell migration
D. B. Brückner, N. Arlt, A. Fink, P. Ronceray, J. O. Rädler and C. P. Broedersz
Proceedings of the National Academy of Sciences 118, e2016602118 (2021) [5]

Author contributions
D.B.B., J.R., and C.P.B. conceived the project. A.F. performed experiments and N.A. ex-
ecuted the tracking. D.B.B. and N.A. analyzed the experimental data. D.B.B., N.A. and
C.P.B. developed the theoretical model. P.R. contributed code to perform Underdamped
Langevin Inference. D.B.B. and C.P.B. wrote the paper with input from all authors.
This project originated from preliminary work presented in the Master thesis by N. Arlt,
supervised by C. Broedersz and co-supervised by D. Brückner.

Abstract

The migratory dynamics of cells in physiological processes, ranging from wound healing to
cancer metastasis, rely on contact-mediated cell-cell interactions. These interactions play a
key role in shaping the stochastic trajectories of migrating cells. While data-driven physical
formalisms for the stochastic migration dynamics of single cells have been developed, such
a framework for the behavioral dynamics of interacting cells still remains elusive. Here, we
monitor stochastic cell trajectories in a minimal experimental cell collider: a dumbbell-shaped
micropattern on which pairs of cells perform repeated cellular collisions. We observe different
characteristic behaviors, including cells reversing, following and sliding past each other upon
collision. Capitalizing on this large experimental data set of coupled cell trajectories, we infer
an interacting stochastic equation of motion that accurately predicts the observed interac-
tion behaviors. Our approach reveals that interacting non-cancerous MCF10A cells can be
described by repulsion and friction interactions. In contrast, cancerous MDA-MB-231 cells
exhibit attraction and anti-friction interactions, promoting the predominant relative sliding
behavior observed for these cells. Based on these experimentally inferred interactions, we
show how this framework may generalize to provide a unifying theoretical description of the
diverse cellular interaction behaviors of distinct cell types.

Key results

• In various physiological processes, cell-cell interactions manifest in the collision behav-
ior of cells, taking distinct forms in various contexts: different types of cells are known
to exhibit a variety of collision outcomes, from reversal and following to sliding behav-
iors [39, 73, 149–151, 156, 170, 179, 181, 182]. However, there is currently no theoretical
framework that allows a direct inference of the underlying interactive dynamics of such
cells from experimental data.

https://www.pnas.org/content/118/7/e2016602118
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• To establish such a framework, we design a minimal ‘cell collider’: a controlled confining
microenvironment in which two cells constantly collide into each other. Interestingly, we
find that different cell types exhibit distinct collision behaviours: while non-cancerous
(MCF10A) cells predominantly reverse upon collision, cancerous (MDA-MB-231) cells
frequently slide past one another. This raises the question: can these distinct collision
dynamics be described in a unified quantitative framework?
• To answer this question, we use the large trajectory data set provided by our cell

collider experiments. Using Underdamped Langevin Inference, an inference method
introduced in chapter 7, we infer the stochastic equation of motion that governs the
two-body dynamics of interacting cells. This approach gives interesting insights into
these dynamics:

– First, we find that the dynamics of single-cell motility and cell-cell interactions can
be decoupled in a simple way, by describing them as two separate terms: a one-
body motility term and a two-body interaction term. Interestingly, the one-body
term qualitatively matches that observed in single cell experiments [1].

– Second, we find that this interaction term takes qualitatively different forms for
non-cancerous (MCF10A) and cancerous (MDA-MB-231) cells: while non-cancerous
cells exhibit simple repulsion and friction, the cancerous cells interact through an
effective ‘anti-friction’.

• We then generalize the inferred theoretical framework by predicting an ’interaction
behavior space’, which relates the physical interaction terms to the emergent long-time
behavior of the system. This approach shows that the interactions we have inferred
from our experiments can describe various cell-cell interaction modes known in the
biological literature [73, 150, 170, 179, 182], including reversing, sliding and following
interactions. This shows how this framework may generalize to describe the diverse
cellular interaction behaviors of distinct cell types.
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Cell-cell interactions in collective cell spreading

In chapter 9, we investigate the collective dynamics of spreading cell clusters, and how these
dynamics are affected by the cadherin-mediated cell-cell adhesions.

Reference
Disentangling cadherin-mediated cell-cell interactions in collective cancer cell migration
T. Zisis?, D. B. Brückner?, T. Brandstätter, J. d’Alessandro, A. Vollmar, C. P. Broedersz, S.
Zahler
submitted for publication.

Author contributions
T.Z., D.B.B., C.P.B. and S.Z. designed the study. T.Z. performed all experiments. J.A.
contributed tracking software. D.B.B. and T.Z. analyzed data. D.B.B. and T.B. developed
the theoretical model. T.Z. and D.B.B. wrote the paper with input from all authors.

Abstract

Cell dispersion from a confined area is fundamental in a number of biological processes, in-
cluding cancer metastasis. To date, a quantitative understanding of the interplay of single cell
motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of
E- and N-Cadherin junctions, central components of intercellular contacts, is still controver-
sial. Combining theoretical modeling with in vitro observations, we investigate the collective
spreading behavior of colonies of human cancer cells (T24). Inhibition of E- and N-Cadherin
junctions decreases colony spreading and average spreading velocities, without affecting the
strength of correlations in spreading velocities of neighboring cells. Based on a biophysical
simulation model for cell migration, we show that the behavioral changes upon disruption of
these junctions can be explained by reduced repulsive excluded volume interactions between
cells. This suggests that cadherin-based intercellular contacts sharpen cell boundaries leading
to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell
spreading during collective migration.

Key results

• E- and N-Cadherins are central components of cell-cell adhesions, which play a critical
role in cell migration during cancer metastasis [36, 221–223]. However, their distinct
contribution to collective cell migration remains poorly understood, and quantitative
frameworks to rigorously determine their impact on migration are currently lacking [39].
• To study the impact of cadherin junctions on collective migration, we develop an experi-

mental system in which a cluster of cells is initially confined to a circular micropatterned
region. By chemically activating the surrounding surface, the confinement is lifted, ini-
tiating collective spreading of the cluster in a standardized manner. This allows us to
gather large data sets of many collective cell spreading events.
• By disrupting E- or N-Cadherin in collectively migrating T24 cancer cells through an-

tibody blocking, we show that the absence of Cadherin-mediated contacts significantly
reduces their spreading efficiency. Surprisingly however, the correlations in the velocity
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fields of the cell sheet remain unaffected.
• To elucidate these findings, we develop a minimal active particle model for the collec-

tive migration dynamics. Our model shows that cell proliferation as well as repulsive
excluded volume and Contact Inhibition of Locomotion interactions between cells drive
tissue spreading.
• We systematically vary the types of cell-cell interactions included, and find that block-

ing either of the Cadherins has an effect akin to reducing repulsive excluded volume
interactions in the model. In contrast, polarity interactions such as contact inhibition
of locomotion, which control the velocity correlations, remain unaffected.
• Thus, our findings indicate that E- and N-Cadherins promote cell-cell repulsion by

sharpening cellular boundaries rather than increasing cohesion, as one might intuitively
expect. Our results thus suggest cell-cell repulsion as a decisive control parameter of
collective cell migration.
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[3] D. B. Brückner, A. Fink, J. O. Rädler, and C. P. Broedersz. Disentangling the Behavioural Variability
of Confined Cell Migration. J. R. Soc. Interface, 17:20190689, 2020.

[4] D. B. Brückner, P. Ronceray, and C. P. Broedersz. Inferring the dynamics of underdamped stochastic
systems. Physical Review Letters, 125(5):58103, 2020.

[5] D. B. Brückner, N. Arlt, A. Fink, P. Ronceray, J. O. Rädler, and C. P. Broedersz. Learning the dynamics
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Migrating cells in physiological processes, including development, homeostasis and 
cancer, encounter structured environments and are forced to overcome physical 
obstacles. Yet, the dynamics of confined cell migration remains poorly understood, 
and thus there is a need to study the complex motility of cells in controlled confining 
micro-environments. Here, we develop two-state micropatterns, consisting of two 
adhesive sites connected by a thin constriction, in which migrating cells perform 
repeated stochastic transitions. This minimal system enables us to obtain a large 
ensemble of single cell trajectories. From these trajectories, we infer an equation of 
cell motion, which decomposes the dynamics into deterministic and stochastic 
contributions in position-velocity phase space. Our results reveal that cells in two-
state micropatterns exhibit intricate non-linear migratory dynamics, with qualitatively 
similar features for a cancerous (MDA-MB-231) and non-cancerous (MCF10A) cell line. 
In both cases, the cells drive themselves deterministically into the thin constriction; a 
process that is sped up by noise. Interestingly however, these two cell lines have 
distinct deterministic dynamics: MDA-MB-231 cells exhibit a limit cycle, while MCF10A 
cells show excitable bistable dynamics. Our approach yields a conceptual framework 
that may be extended to understand cell migration in more complex confining 
environments. 

 
 
In all stages of life and death, from embryogenesis and immune response to cancer, migrating 
cells are key players1–3. Single cells in these systems face a common physical challenge: Both 
in two- and three-dimensional systems, such as epithelial sheets2,4 or extra-cellular 
matrices5,6, cells migrate through complex confining environments, shaped by the 
surrounding tissue. Navigating such environments requires the cell to overcome physical 
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obstacles such as squeezing through thin pores4,7–9. Cell motility is powered by a complex 
cytoskeletal machinery containing a vast number of interacting molecular constituents that 
are subject to intrinsic noise. Nonetheless, at a larger scale, cells reliably perform vital motility 
functions. However, a system-level understanding of the emerging migratory behaviour in 
response to defined spatially structured environments has not yet been achieved. Thus, a 
fundamental question arises: Does cell migration, when confined to a well-defined geometry, 
exhibit emergent dynamical ‘laws’, and what are the roles of deterministic and stochastic 
contributions to these dynamics?  
 
For over a century, the trajectories of migrating cells have been analysed quantitatively10,11. 
Such studies have led to the conceptual picture that on uniform two-dimensional surfaces, 
cells perform persistent random motion5,12–14. In recent years, micropatterning techniques 
have been developed15–17, which confine cells to areas of a well-defined shape. By monitoring 
cells migrating on one-dimensional tracks18–20, microratchets21,22, and other geometries23,24, 
useful measures such as cell speed and persistence have been established and used to 
quantify cell behaviour. In this context, confined cell migration has been considered a 
biophysical analogue of a particle bound to a confining potential25–27. However, it is unclear 
whether a potential landscape picture is adequate to describe a confined migrating cell. The 
search for simple laws that underlie cell migration is exacerbated by the intrinsically variable 
nature of living cells. Thus, to achieve a system-level understanding of confined cell migration, 
we need an approach that can disentangle the deterministic and stochastic contributions to 
the dynamics. 
   
Here, we develop a theoretical framework that describes the stochastic migration of cells in 
structured environments. To this end, we designed a micropattern with two square adhesive 
islands connected by a thin bridge, yielding a minimal two-state system to investigate 
confined cell migration. We find that for all cell lines studied, in particular cancerous (MDA-
MB-231) and non-cancerous (MCF10A) cells, this microenvironment leads to the emergence 
of a distinct migratory behaviour in the form of frequent stochastic transitions between the 
two islands. By inferring a stochastic equation of motion from the recorded short time-scale 
dynamics, we decompose the motion into deterministic and stochastic contributions. The 
resulting equation quantitatively captures various statistics of the cellular dynamics. Our 
analysis reveals that the cells generate a deterministic driving into the narrow connecting 
bridge. This driving emerges from intricate non-linear deterministic dynamics poised near the 
cross-over between a limit cycle and a bistable system. The intrinsic stochasticity of the 
system accelerates the transitions. Our approach yields an insightful representation of the 
system’s behavioural dynamics, which may provide a basis for the understanding of the 
microscopic processes driving cell migration as well as the dynamics of cells in more complex 
environments. 
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Figure 1 | Experimental setup of two-state micropatterns with MDA-MB-231 cells. a, Overview of 
single cells on a microstructured surface. The image is de-noised and the micropattern outline is 
shown in grey. The fibronectin-coated micropatterns consist of two square islands (37 µm x 37 µm), 
which are connected by bridges of varying lengths (L = 6-56 µm) (scale bar: 50 µm). b, Exemplary  
trajectories (along the long axis of the micropattern) of the nucleus’ position plotted against time. c, 
Exemplary time series of a single cell track on a micropattern with bridge length L = 35 µm, 
corresponding to the section highlighted in grey in b (scale bar: 25 µm; time between images: 10 min). 
Key stages of the transition process are shown in the zoom in, with white arrows indicating regions of 
pronounced actin activity. d, Probability distribution of the dwell times 𝜏 (defined as the time between 
subsequent transitions of the cell nucleus across the bridge centre) of 149 cells (bin size 0.34 h). 
 
Cells perform stochastic transitions on two-state micropatterns 
We use time-lapse phase contrast microscopy to study confined migration of human 
metastatic breast cancer cells (MDA-MB-231) on two-state micropatterns (Fig. 1c, 
Supplementary Movies S1-S4). These micropatterns consist of two square adhesive islands 
connected by a thin bridge that are fibronectin-coated to promote cell adhesion, while the 
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surrounding area is passivated with cell-repellent PEG-PLL (Fig. 1a). Initially, single cells 
adhere to the micropattern and spread on one of the adhesive islands. However, cells remain 
highly motile within this confinement: Exploratory lamellipodia-like protrusions repeatedly 
form along the cell periphery, appearing as actin-driven activity in Lifeact-GFP transfected 
cells (see Supplementary Movies S5, 6) and dark regions in phase contrast imaging (Figure 
1c). These short-lived protrusions form most frequently at the island corners. In contrast, 
lamellipodia appearing at the bridge entrance can grow into sustained protrusions: while 
some quickly retract, others reach the opposite, unoccupied island. Here, the protrusion 
broadens into a fan-like shape, followed by the transitioning of the cell body. After fully 
transitioning, the actin cytoskeleton appears to reorganise and the migration pattern repeats 
in the reverse direction, but with a large variability in time (Fig. 1c). The dwell time – the time 
between subsequent transitions of the cell nucleus across the bridge centre – displays a broad 
distribution (Fig. 1d). While the width of this distribution is partially due to the intrinsic cell-
to-cell heterogeneity, we find that even for a single cell, the dwell times exhibit a large 
variability over time (Fig. 1b, Supplementary Section S2.5). The cellular 'hopping' behaviour 
therefore constitutes a stochastic process, which appears to be a generic migratory pattern 
also observed for various other cell lines (Supplementary Section 2.2). 
 
An intuitive measure of the stochasticity is given by the survival probability: the probability 
that the cell has not transited after a given time. The survival probability decreases 
monotonically with time, as it becomes increasingly unlikely that a cell remains on the same 
island (Fig. 2a). For a Poisson process, the survival probability decays exponentially. By 
contrast, here we observe a prominent plateau at small times indicating that cells are less 
likely to immediately reverse after a transition, followed by a tail in the distribution that also 
exhibits non-exponential features (see Supplementary Fig. S7).  
 
To explore the universal properties of the hopping process, we vary the length of the 
connecting bridge. We find that the survival probability function broadens with increasing 
length, indicating longer dwell times on the islands (Fig. 2a). Remarkably, when we rescale 
time by the average dwell time 〈𝜏〉, all survival distributions approximately collapse onto a 
master curve (Inset Fig. 2a). This collapse suggests that, as we vary the micropattern 
dimensions, the cell migration remains to be governed by similar stochastic dynamics, with a 
characteristic timescale 〈𝜏〉 set by the bridge length. 
  
This timescale 〈𝜏〉 varies linearly with the length of the connecting bridge (Fig. 2b). One might 
intuitively expect such a linear dependence, since the cells tend to migrate across the thin 
bridge nearly ballistically, so that the traversal time increases linearly with distance. However, 
the nucleus traversing the bridge is not the main time-limiting process and can only account 
for approximately 30% of the increase in dwell time (Supplementary Fig. S4). Thus, cells on 
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micropatterns with longer bridges also spend more time on the adhesive islands before 
performing transitions. These results indicate that there is an intricate stochastic process 
governing the hopping behaviour.  
 
Having established the key observables of the hopping process, we next consider the 
properties of the cell trajectories themselves. The joint probability distribution 𝑝(𝑥, 𝑣) of 
position 𝑥 and velocity 𝑣 exhibits a double peaked structure in phase space, with highest 
occupation and lower speeds on the adhesive islands (Fig. 2c, i, ii). The marginal velocity 
probability distribution 𝑝(𝑣) further has a markedly non-Gaussian shape (Fig. 2c,iii), as 
observed in prior studies on various cell types5,28–30. These qualitative features emerge 
robustly on all bridge lengths that we have investigated (Supplementary Section S6). 

 

 
Figure 2 | Statistics of the hopping process (MDA-MB-231).  a, Survival probability as a function of 
time for each bridge length (listed in units of µm). Inset: Distributions collapse on a master curve when 
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time is rescaled by the average dwell time 〈𝜏〉. b, Average dwell time as a function of bridge length. 
Blue dots are averages calculated from 50% of the experimental data, while red squares correspond 
to predictions of the model trained on the excluded 50% of data. Error bars denote errors of the mean, 
obtained by bootstrapping. c,i, Joint probability density of position and velocity of cells on patterns 
with bridge length L = 35 µm, plotted logarithmically. Experimental (blue) and predicted (red) 
probability distributions of position (ii) and velocity (iii, plotted semi-logarithmically). As in b, 
experimental and predicted data are based on either half of the split data. 
 
Confined cell migration is governed by a nonlinear stochastic equation of motion 
The experimentally recorded statistics enable us to develop a quantitative framework for 
stochastic cell migration in structured environments. To this end, we generalize the equation 
of persistent random motion often used to describe 2D cell migration5,12,13. In particular, we 
postulate that the dynamics of the cell position 𝑥 and velocity 𝑣 = d𝑥 d𝑡⁄  can be described 
by the stochastic equation of motion 
 

𝑑𝑣
𝑑𝑡 	= 	𝐹(𝑥, 𝑣) + 𝜎(𝑥, 𝑣)𝜂(𝑡) (1) 

 
where 𝜂(𝑡) represents Gaussian white noise with 〈𝜂(𝑡)〉 = 0 and 〈𝜂(𝑡)𝜂(𝑡′)〉 = 𝛿(𝑡 − 𝑡′). 
Note that, unlike in persistent random motion, we also allow the noise strength 𝜎(𝑥, 𝑣) to 
depend on the state of the system. A priori, there is no fundamental reason why this approach 
should succeed, since the dynamics of a cell in a structured environment might require a 
dynamical description more complex than that given by equation (1), including a memory 
kernel formulation as for free 2D migration13,29,30 (Supplementary Section S4).  
 
To investigate if the cell migration on our micropatterns can be captured by the basic 
stochastic dynamics in equation (1), we infer the terms in this equation for each bridge length. 
Thus, we adopt a data-driven approach, where we reconstruct the deterministic driving 

𝐹(𝑥, 𝑣) = 〈�̇�|𝑥, 𝑣〉 (Fig. 3a) and the noise strength 𝜎(𝑥, 𝑣) = ;∆𝑡〈[�̇� − 𝐹(𝑥, 𝑣)]?|𝑥, 𝑣〉 (Fig. 
3d) from measured trajectories (see Methods). Importantly, in this approach, we do not 
directly use any information about processes at long time-scales such as the transitions 
between sites; the deterministic and stochastic contributions to the equation of motion are 
completely constrained by the short-time scale behaviour of the measured trajectories. As a 
self-consistency test, we calculate the correlation function 〈∆𝑊(𝑡 + 𝜃)∆𝑊(𝑡)〉 of the 

inferred noise ∆𝑊(𝑡) = ∫ 𝜂(𝑡)	d𝑡CD∆C
C . The correlation indeed decays within the experimental 

temporal resolution ∆𝑡 = 10	min, confirming our initial white noise assumption on this 
timescale (Fig. 3g). Note, 𝐹 and 𝜎 are derived from discrete-time data and should thus be 
interpreted within a finite difference form of equation (1), although the estimated 
continuous-time deterministic term31 is very similar (Supplementary Section S3.6). 
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Next, we test the predictive capability of our model by generating trajectories from the 
inferred equation of motion (Fig. 3h). Remarkably, we find very good quantitative agreement 
of the dwell times that characterize cell hopping (Fig. 2b). Note that the model is trained on 
a random sample of 50% of the data, which is excluded from the experimental data shown in 
the graph. Similarly, we find good agreement in the steady-state probability distributions of 
position and velocity (Fig. 2c, ii, iii), the velocity correlation function (Fig. 3g), and the survival 
probability distributions (Supplementary Fig. S32). These observations hold similarly for all 
other bridge lengths as well as for asymmetric two-state systems (Supplementary Section S6), 
confirming that our model (equation (1)) reproduces the key statistical observables of 
confined cell migration in this setup. 
 

 
Figure 3 | Deterministic and stochastic contributions to the equation of motion for three systems: 
MDA-MB-231 cells with and without constriction, and MCF10A cells with constriction (L = 35 µm). 
a, b, c, The deterministic component 𝐹(𝑥, 𝑣) in units of µm/h2. Insets show a phase contrast image of 
a cell in the micropattern geometry, with the pattern outlined in white. d, e, f, The noise strength 

66 3. Stochastic nonlinear dynamics of confined cell migration



 

𝜎(𝑥, 𝑣) in units of µm/h3/2. Dashed black lines correspond to the positions 𝑥 = ±𝐿/2. Both 𝐹 and 𝜎 
are shown here as a linear interpolation. g, The correlation function of the inferred noise ∆𝑊(𝑡) =

∫ 𝜂(𝑡)	d𝑡CD∆C
C  (dotted blue line) together with the experimental velocity correlation function (solid 

blue line) and the associated model prediction (red line) for MDA-MB-231 cells. The experimental 
sampling interval is ∆𝑡 = 10 min. h, Sample trajectories generated by the MDA-MB-231 model. 
 
 
Cell dynamics in a two-state system resembles a non-linear oscillator 
Our stochastic model gives unique insight into the system-level dynamics that govern the 
migration of MDA-MB-231 cells. The inferred deterministic term 𝐹(𝑥, 𝑣) has an intricate 
dependence that is additively non-separable in position and velocity (Fig. 3a). This 
observation excludes a dynamical picture in which the cells move in a potential landscape, 
which also provides predictions inconsistent with experiments (Supplementary Section S5). 
As expected, the symmetry of the confining microenvironment is reflected by the symmetry 
of the dynamical terms, 𝐹(𝑥, 𝑣) = −𝐹(−𝑥, −𝑣) and 𝜎(𝑥, 𝑣) = 𝜎(−𝑥, −𝑣). The noise strength 
𝜎(𝑥, 𝑣) appears approximately constant except for two regions of elevated noise amplitude 
in the upper left and lower right quadrants of phase space (Fig. 3d). These regions correspond 
to states where the cell appears to initiate a transition across the bridge by developing a 
lamellipodium (Fig. 1c, Supplementary Movies S5, 6), suggesting increased fluctuations 
associated with these cellular dynamics.   
 
The deterministic contribution of the equation of motion, defined by �̇� = 𝐹(𝑥, 𝑣), provides a 
conceptual understanding of the dynamics of confined cell migration. Remarkably, we find 
that even without noise, the inferred dynamical system exhibits regular transitions (Fig. 4a), 
implying that the transition behaviour is driven deterministically. Interestingly, if the 
deterministic system is initialised at different points in phase space, the trajectories always 
approach the same stable limit cycle; the deterministic dynamics encodes a self-sustained 
oscillation with a characteristic amplitude, period and waveform, independent of initial 
conditions. To contrast these findings, we perform experiments with patterns without the 
thin constriction (Supplementary Movie S7, Fig. 3b, e). In this case, the deterministic dynamics 
always relaxes to 𝑣 = 0, constituting a line of stable fixed points (Fig. 4b).  
 
To further understand these dynamics, we consider a cut through the deterministic 
contribution at 𝑥 = 0. As a function of velocity, the deterministic term represents an effective 
frictional contribution (Fig. 4d). For cells migrating in confinement without constriction, this 
dependence is non-linear, and coincides with that of free 2D migration. This is in contrast to 
the case of simple persistent random motion (Ornstein-Uhlenbeck process), where this 
dependence is linear, 𝐹 ∝ −𝑣. Strikingly, the presence of the constriction leads to a sign 
switch of 𝐹 at low speeds |𝑣| < 50	𝜇m/h, giving rise to 'negative friction'. This phenomenon 
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is similar to the classic example of the van der Pol oscillator32, but with important differences: 
In the van der Pol system, the sign and magnitude of the friction are controlled by position 
(Supplementary Section S5.4). By contrast, in our system, the onset of negative friction is 
dictated by velocity. 
 
The qualitative structure of the cell’s deterministic dynamics is characterised by the nullclines, 
corresponding to purely vertical (�̇� = 0) or horizontal flow (�̇� = 0) in phase space (Fig. 4e). 
The 𝑣-nullcline exhibits an intricate, non-linear shape: It intersects the 𝑥-nullcline at the 
origin, giving rise to an unstable fixed point, and partitions the upper half of phase space (𝑣 >
0) into distinct regions with different flow directions (arrows in Fig. 4e). Interestingly, the 𝑣-
nullcline almost intersects the 𝑥-axis at the positions corresponding to the adhesive islands, 
suggesting that the system is poised close to a transition towards bistability. These results 
emerge robustly on all bridge lengths and are independent of the details of the inference 
procedure (Supplementary Sections S3, S6). Taken together, our results reveal that MDA-MB-
231 cells exhibit dynamics analogous to a non-linear oscillator that generates deterministic 
forces to migrate across the “hurdle” imposed by the bridge. 
 
Non-cancerous (MCF10A) cells exhibit excitable bistable dynamics 
To explore the generality of these results, we also analysed the behaviour of non-cancerous 
breast cells (MCF10A). The deterministic and stochastic terms of the equation of motion 
exhibit similar qualitative features as for MDA-MB-231 cells (Fig. 3c, f, 4d). Interestingly 
however, the inferred MCF10A model does not exhibit a limit cycle, but two stable fixed 
points on either side of the bridge (Fig. 4c). The basins of attraction of these fixed points 
extend all the way to the other side of the micropattern, indicating that the bistable dynamics 
of MCF10A cells is excitable: a small noise-induced perturbation can result in a rapid 
deterministic excursion to the other side of the system. 
 
Noise-induced excitation and deterministic amplification drive cellular transitions 
The common features of the cellular response to thin constrictions are revealed by the 
deterministic flow in phase space: Both MDA-MB-231 and MCF10A cells exhibit a 
deterministic driving that controls the traversal of the thin constriction (orange arrows in Fig. 
4a, c). In contrast, in the region of phase space where the cell reverses, the noise is much 
larger than the deterministic acceleration (marked in green in Fig. 4e, Supplementary Fig. 
S18). Beyond this noise-dominated region, the deterministic driving leads to an amplification 
of velocity, ensuring a rapid transition to the other side of the micropattern. For MDA-MB-
231 cells migrating in confinement without constriction, there is no amplification of velocity, 
indicating that this may be a cellular response to the presence of the constriction (Fig. 4b). 
Beyond the centre of the constriction, the cell deterministically decelerates (relaxation) and 
reaches the other adhesive island. 
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The noise in the model plays a crucial role in speeding up the slow dynamics of reversals on 
the islands in the limit cycle dynamics of MDA-MB-231 cells and enables MCF10A cells to 
escape the stable fixed points. Thus, beyond abrogating long-time correlations 
(Supplementary Section 3.9), the noise reduces the key time-scale of the system: the average 
dwell time (Fig. 2b). 
 

 
Figure 4 | Nonlinear deterministic dynamics of the cell migration (L = 35 µm). a, Trajectories (green) 
of the deterministic dynamics for a number of different initial conditions (MDA-MB-231). The flow 
field is shown by arrows, where accelation is orange and deceleration is blue. b, The same plot for 
MDA-MB-231 cells migrating in a system without constriction (See Fig. 3b). c, Deterministic 
trajectories and flow field of MCF10A cells. The black line indicates the divide between the basins of 
attraction of the two fixed points. d, The frictional component 𝐹(𝑥 → 0, 𝑣)	is a non-linear function of 
velocity, here determined at the center of the system in a small interval around 𝑥 = 0, for the three 
cases in a-c. Black diamonds show the velocity-dependent acceleration 𝐹(𝑣) = 〈�̇�|𝑣〉 of MDA-MB-231 
cells migrating freely in 2D. e, The nullclines �̇� = 0 (red line) and �̇� = 0 (blue dots) for MDA-MB-231. 
The blue line is a guide to the eye for the 𝑣-nullcline. Red and blue arrows indicate the local direction 
of the flow, corresponding to the signs of �̇� and �̇�, respectively. The flow gives rise to three distinct 
dynamical regimes: First, cells exit the slow, noise-dominated region on the adhesive island (blue 
area). This process is accelerated by noise-induced excitations. Subsequently, the velocity is 
deterministically amplified (green area) and finally the system deterministically relaxes (red area) onto 
the slow region on the other adhesive island. The results in d, e are obtained from a symmetrised 
version of the deterministic term (Supplementary sections S3.4 and S6). 
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A data-driven dynamical systems analysis of confined cell migration 
We employed a high-throughput approach using arrays of two-state micropatterns to 
measure a large set of cell trajectories in a standardised confining environment. This approach 
enabled us to infer an equation of motion with deterministic and stochastic contributions that 
reproduces the observed migration statistics. Previous studies have argued that the accurate 
description of cell migration on two-dimensional surfaces requires complex equations of 
motion, including a memory kernel13,29,30, time-dependent terms14, fractional diffusion 
equations33, or switching between modes of movement34. Here, we find that the migration 
of a confined cell is captured by a relatively simple second order Langevin equation with a 
two-dimensional non-linear deterministic term 𝐹(𝑥, 𝑣). We specifically ruled out simpler 
models, such as a first order equation of motion with white noise (Supplementary Section 
S5.1). Furthermore, we introduced a state-dependent noise 𝜎(𝑥, 𝑣), because a constant noise 
amplitude does not quantitatively capture the statistics (Supplementary Section S5.3).  
 
The deterministic and stochastic components of cell motion we extract may serve as a 
phenotypic characterisation of cell dynamics in confinement. The non-linear deterministic 
dynamics constitute novel cell behaviour, which emerges in response to the thin constriction 
in the two-state micropattern: we find limit cycle oscillations for MDA-MB-231 cells and 
excitable bistable dynamics for MCF10A cells, which are known to be less invasive35,36. In both 
cases, there is a deterministic tendency to invade the thin bridge of the micropattern, 
suggesting that such constrictions can provide guidance cues to cells37,38. For MDA-MB-231 
cells, we find that the non-linear deterministic dynamics leads to self-sustained oscillations 
across the narrow constriction of the micropattern. This is in contrast with the intuitive 
expectation that the hopping behaviour might be generated by a noisy cellular activity 
competing with an effective energy barrier placed by the bridge. The transition dynamics we 
observe on the two-state pattern may relate to cellular transitions in more complex confining 
environments, such as cells squeezing through pores of a biopolymer meshwork3 or the 
characteristic T1 transitions in jammed cell sheets27,39,40. Models of such processes frequently 
employ the language of energy potentials26,27,40,41, which we quantitatively ruled out for 
models of the form of equation (1) in our system (Supplementary Section S5). 
 
Our theoretical framework quantitatively captures distinct dynamical features of cell 
locomotion, and reveals how cellular dynamics adapts in response to physical obstacles. The 
characteristic dynamics of cells on two-state patterns may also provide an alternative 
approach to quantifying the migration of different cancer cell lines42. Finally, our top-down 
approach could help advance our understanding of locomotion at the molecular level, as it 
provides strong constraints for bottom-up models25,43,44 that connect microscopic rules to the 
system-level dynamics of cells. 
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Methods 
 
Micropatterning and sample preparation 
For micropatterning, we employ microscale plasma-induced protein patterning45. Using 
photolithography, silicon masters bearing the desired shapes are prepared. Polydimethylsiloxane 
(Sylgard 184 1:10, Dow Corning) stamps are cast from these masters, placed in an ibidi µ-dish (ibidi 
GmbH) and exposed to oxygen plasma. For subsequent background passivation, a drop of 2 mg ml-1 
PLL(20)-g[3.5]-PEG(2) (SuSoS) solution is added for 25 min. Afterwards, the sample is rinsed, the 
stamps removed, and the sample incubated with a 50 µg ml-1 human fibronectin (YO Proteins) solution 
for 50 min. Samples are stored in PBS at 4°C until cell seeding. 
 
Cell culture 
MDA-MB-231 human breast carcinoma epithelial cells (DSMZ) are cultured in Minimum Essential 
Medium (MEM, c.c. pro), supplemented with 10% FBS (Gibco) and 2mM L-Glutamine (c.c. pro). Cells 
are grown at 37°C up to 70-90% confluence, in an atmosphere with 5% CO2, before being washed and 
trypsinised for 3 min. For experiments, the cell solution is centrifuged at 1000 rcf for 3 min, and then 
cells are re-suspended in MEM. Approximately 10,000 cells are added per µ-dish and left to adhere in 
the incubator. After 4h, the medium is exchanged to L-15 medium with L-glutamine (Gibco, 
supplemented with 10% FCS) which contains 25 nM Hoechst 33342 (Invitrogen) for staining of cell 
nuclei. 
 
MCF10A cells (ATCC) are cultured at 5% CO2 and at 37°C in DMEM/F-12 medium including Glutamax 
(Gibco) supplemented with 5% Horse Serum (Thermo Fisher), 20 ng/ml hEGF (Sigma), 500ng/ml 
Hydrocortisone (Sigma), 100ng/ml Cholera Toxin (Sigma) and 10 µg/ml Insulin (Sigma). For passaging, 
the supernatant is aspirated and centrifuged at 300rcf for 8 minutes.  Cells are washed with PBS and 
detached by incubation with Accutase for 12 minutes at 37°C. After re-suspension with medium, the 
cell solution is centrifuged at 500rcf for 6 minutes. Cell pellets are resuspended in medium. For 
experiments, 10000 cells are seeded per µ-dish and left to adhere for at least 4h. Then, the medium 
is exchanged to culture medium with all supplements without phenol red. For nuclear staining, 15 nM 
Hoechst 33342 are added. During experiments, cells are kept in a 5% CO2-atmosphere and at 37°C. 
 
Microscopy and Cell Tracking 
Measurements are performed in time-lapse mode for up to 50 h on an IMIC digital microscope (TILL 
Photonics) or on a Nikon Eclipse Ti microscope. The samples are placed in a heated chamber (ibidi 
GmbH or Okolab) and kept at 37°C throughout the measurements. Brightfield and fluorescence 
images of the stained nuclei are acquired every 10 min. A band pass filter is applied to the images of 
the nuclei, then images are binarised and centre-of-mass positions are determined with ImageJ’s 
Analyze Particles plugin46. Due to the plasma treatment the two-state patterns are visible in the 
brightfield images and are thus used to manually determine the reference boundary of a pattern. For 
further details, please refer to Supplementary Section S1. 
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Theoretical Analysis 
The position of the cell nucleus 𝑥(𝑡) is recorded at a time interval ∆𝑡 = 10 min in the experiment. 
Velocity and acceleration are directly calculated as numerical derivatives. The terms 𝐹(𝑥, 𝑣) and 
𝜎(𝑥, 𝑣) of equation (1) are inferred by conditional averaging of the experimental trajectories47–49. By 
construction, the noise term averages to zero, 〈𝜎(𝑥, 𝑣)𝜂(𝑡)〉 = 0, and therefore the deterministic 
term is given by 𝐹(𝑥, 𝑣) 	=	 〈�̇�|𝑥, 𝑣〉. The stochastic term is then estimated using 𝜎?(𝑥, 𝑣) = 
∆𝑡〈[�̇� − 𝐹(𝑥, 𝑣)]?|𝑥, 𝑣〉. The inferred model is subsequently integrated numerically with a time step 
∆𝑡 equal to the experimental sampling interval. To compare data from model and experiment, we use 
a hold-out method where we train the model on 50% of the recorded cell trajectories, which is then 
compared to the other 50% of the data. Both the training and validation set are randomly sampled. 
For more details, see Supplementary Section S3. 
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0. Movie descriptions 
 
Supplementary Movies 1-3 
Single MDA-MB-231 cells transitioning repeatedly between the square adhesion sites of the 
two-state micropattern. Transitions are usually preceded by the formation of a protrusion 
along the bridge. The cell nucleus is fluorescently labelled to allow automated tracking of 
cell positions. The bridge lengths shown in movies 1-3 are L = 16, 35, 56 µm, respectively. 
Scale bar: 25 µm. 
 
Supplementary Movie 4 
Exemplary field of view of MDA-MB-231 cells migrating on two-state micropatterns of the 
same bridge length (L = 35 µm). All cells perform transitions between the square adhesion 
sites. Not all micropatterns are occupied, which is due to the low cell seeding density used 
to ensure single-cell occupancy. Cell nuclei are labelled for semi-automated detection of cell 
positions. Scale bar: 25 µm. 
 
Supplementary Movies 5&6 
Single MDA-MB-231 cells transfected with LifeAct-GFP to visualize actin on two-state 
micropatterns of bridge length L = 35 µm. The outline of the underlying micropattern is 
drawn as a reference up to scale. Actin hotspots are visible at the tip of the transition-
mediating lamellipodium, as well as during the dynamic exploration of the square adhesion 
sites. Actin fibres reorganise dynamically.  
 
Supplementary Movie 7 
Single MDA-MB-231 cell on a stripe micropattern without constriction of total length 103 
µm. The cell moves back and forth, repolarising upon contact with the pattern’s borders. 
When the cell is positioned in the middle of the pattern, quick changes in the direction of 
lamellipodia formation can be seen. The cell nucleus is fluorescently labelled to allow 
automated tracking of cell positions.  
 
Supplementary Movie 8  
Sparsely seeded MDA-MB-231 cells freely migrating on a homogeneous fibronectin-coated 
2D surface. Cells move randomly on the surface. Cell nuclei are fluorescently labelled for 
automated cell tracking. Scale bar: 100 µm. 
 
Supplementary Movie 9  
Single MCF10A cell transitioning repeatedly between the square adhesion sites of the two-
state micropattern. Transitions are usually preceded by the formation of a protrusion along 
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the bridge. Several times, protrusions along the bridge are formed which do not lead to a 
transition. The cell nucleus is fluorescently labelled to allow automated tracking of cell 
positions. Bridge length L = 35 µm. 
 
Supplementary Movies 10-13  
Single cells of various cell lines (MDA-MB-436, MDCK, HuH7, A549) transitioning between 
the square adhesion sites of the two-state micropattern. The cell nucleus is fluorescently 
labelled to allow automated tracking of cell positions. Bridge length L = 35 µm. 
 

1. Further experimental details 
 

1.1. Photolithography 
Silicon wafers are pre-treated with a solution of hydrofluoric acid (TECNIC). Then the wafer 
is spin-coated with photoresist AZ40XT (AZ Electronic Materials) and subsequently soft-
baked. 
The desired geometries are patterned into the photoresist by laser direct imaging 
(Protolaser, LPKF). After a post-exposure bake, the wafer is developed with AZ 726 MIF (AZ 
Electronic Materials). In the last step, the wafer is silanized with (Trichloro(1H,1H,2H,2H-
perfluoro-octyl)silane (Sigma-Aldrich). 
 

1.2. Stamp preparation 
Stamps are created by mixing polydimethylsiloxane (PDMS) monomer and cross-linker (DC 
184 elastomer kit, Dow Corning) in a 10:1 ratio. The polymer is then poured onto the silicon 
wafer bearing the desired geometries. After degassing the PDMS, it is cured overnight at 
50 °C. 
 

1.3. Micropattern design 
All two-state micropatterns are designed to have equal square dimensions ((36.7 ± 0.6)2 
µm2) and for the bridge to have the same width ((6.9 ± 0.6) µm). The measured bridge 
lengths L as well as the number of cell trajectories for each L are shown in table S1. The 
micropattern without constriction is designed to have a similar width and total length as the 
two-state pattern with L = 35 µm, and thus has dimensions ((103.4 ± 0.3) µm) x ((34.8 ± 0.2) 
µm). 
  

77



 4 

Cell line L / µm Cells Transitions Time-points 

MDA-MB-231 

6.4 ± 0.3 98 1422 20955 
9.2 ± 0.3 101 1399 21044 

15.7 ± 0.3 169 1917 38538 
23.7 ± 0.4 216 2060 45639 
35.3 ± 0.5 149 1293 35103 
46.2 ± 0.4 127 947 26805 
56.0 ± 0.3 74 508 18190 

no constriction 212 - 42723 
2D 728 - 71341 

MCF10A 35.3 ± 0.5 219 1125 46744 
Table S1 | Bridge lengths L of the micropatterns and amount of statistics collected: number of cell 
trajectories, number of transitions for two-state systems, and total number of time-points 
recorded. 
 
The quoted errors in L correspond to deviations in the dimensions of final protein patterns 
that are due to the intrinsic variance of the manual stamping process and the measurement 
uncertainty associated with the limited resolution of the brightfield images. Throughout the 
manuscript, we refer to the rounded values of the bridge lengths for simplicity. 
 

1.4. Cell exclusion criteria 
We track the positions of a large number of cells to determine the transition statistics of 
cells migrating on micropatterns. To limit the effects of ambiguous or abnormal migration 
behaviour we apply the following inclusion criteria in our analysis of migration in two-state 
micropatterns: 

1. Only a single cell occupies the micropattern. Trajectories are cut when the cell 
rounds up for division. 

2. The cell and its protrusions are entirely confined within the borders of the 
micropattern. 

3. The cell shows no abnormalities such as multiple nuclei or the occurrence of cell 
death or detachment from the substrate at any time during the whole experiment. 

4. Transition statistics are only included after the first and until the last observed bridge 
transition.  

5. In the vast majority of cases the cell performs complete transitions. A complete 
transition requires that no parts of the cell adhere to the previous adhesion site once 
the nucleus has entered the new adhesion site. 

 
Criteria 1-3 are basic conditions for single cell experiments on micropatterns, and only these 
three criteria are applied to cells migrating on the patterns without constriction. Criterion 4 
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ensures that start- and end-of-measurement artefacts in determining dwell times are 
avoided. Criterion 5 is specific to our two-state system and its importance may depend on 
the cell type. We therefore investigate the impact of condition 5 on a sample data set. We 
find that the experimental trend in dwell times is unaffected by condition 5 to within error 
(Fig. S1). Furthermore, the experiment-to-model agreement appears unaffected by this 
condition. We therefore conclude that applying condition 5 does not change our 
conclusions. 

 
Figure S1 | Average dwell time as a function of bridge length (MDA-MB-231). Solid blue points 
correspond to trajectories that fulfil criteria #1-5 while solid orange points correspond to exclusion 
based on criteria #1-4. The corresponding model predictions are shown by empty square symbols in 
the respective colours. Error bars correspond to bootstrap errors. 
 

1.5. Cell transfections 
For life cell imaging of actin, approximately 10,000 MDA-MB-231 cells are seeded in 
patterned µ-dishes and left to adhere overnight. As a cell culturing medium, we use MEM 
including Glutamax (Gibco) supplemented with 10% FCS. 500ng LiveAct-GFP mRNA (in-
house prepared) is resuspended in OptiMEM (Gibco) to a final volume of 150µl. This 
solution is then added to a mix of 1.25 µl Lipofectamine 2000 (Invitrogen) and 123.75 µl 
OptiMEM, and left to incubate for 20 minutes at room temperature. Subsequently, cells are 
rinsed once with PBS and the transfection mix is added and left on the cells for at least 5h, 
before being replaced by L-15 medium. Cells are imaged every 10 minutes on the Nikon Ti 
Eclipse microscope using a 60x oil-immersion objective. 
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1.6. Cell culture of additional cell lines 
MDA-MB-436 human breast carcinoma cells (ATCC), MDCK-II dog kidney cells (ATTC), HuH7 
human liver carcinoma cells (I.A.Z. Munich) and A549 human lung carcinoma cells (ATCC) 
are cultured at 37°C in an atmosphere with 5% CO2. For MDA-MB-436 cells, DMEM-F12 
medium including Glutamax (Gibco) supplemented with 10% FBS (Gibco) is used. MDCK 
cells, as well as A549 cells, are cultured in MEM medium including Glutamax (Gibco) and 
supplemented with 10% FBS. HuH7 cells are cultured in RPMI 1640 medium containing 
Glutamax (Gibco) supplemented with 10% FBS, 5mM HEPES (Gibco) and 1mM 
Sodiumpyrovate (Gibco). 
 

1.7. Cell migration on homogeneous 2D substrates 
For a characterisation of the free migration behaviour of MDA-MB-231 cells (Section S4), we 
performed experiments on uniform 2D surfaces that are prepared similarly to the 
micropatterned surfaces for comparability. First, a µ-dish (ibidi GmbH) is incubated with a 
50 µg ml-1 human fibronectin (YO Proteins) solution for 50 min and subsequently rinsed with 
PBS. Approximately 1000-5000 MDA-MB-231 cells are seeded and left to adhere for 4h. For 
time-lapse measurements, the medium is exchanged to L-15 medium with L-glutamine 
(Gibco, supplemented with 10% FCS) containing 25 nM Hoechst 33342 (Invitrogen). Phase 
contrast and fluorescence images are acquired every 10 min for up to 48 h. To maximise the 
field of view and thereby allow cell tracking over larger distances, 4 images are acquired 
with 5% overlap are subsequently combined into a single image. All further analysis is 
performed in MATLAB (Mathworks). First, a blurred image is subtracted from the 
fluorescent images of the nuclei to correct for uneven illumination. Next, in analogy to data 
analysis on micropatterns, a band pass filter is applied and the resulting images are 
thresholded to achieve an adequate binary version of the fluorescence images. This enables 
an automated detection of cell nuclei and the localisation of the centres of the cell nuclei. 
Cells are tracked using an adaption of the IDL particle tracking software1. 
 
To minimise the influence of cell-cell interactions, only time points of each track with a 
minimum distance of 132 µm between neighbouring nuclei are considered. In accordance 
with previous work2, we exclude obviously non-moving cells, defined as cells whose root 
mean square displacement never exceeds 25 µm. Furthermore, cells are checked manually 
to comply with cell exclusion criterion 3 (Section S1.4). To ensure comparability between 
experiments of freely migrating cells and confined cells, we only analyse trajectories with a 
minimum duration of 500 min. We analysed a total of 728 cell trajectories. 
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2. Analysis of the hopping process 
 

2.1. Actin staining 
To gain additional insight into the dynamics of the cytoskeletal activity and the 
morphological changes during the cellular 'hopping' process, we performed experiments 
with Lifeact-GFP transfected cells (see Section S1.5), which are included in Supplementary 
Movies S5&6 and Fig. S2. In addition to the actin hotspots at the leading cell edges, we 
sometimes observe the extension of filopodia at the cell periphery. Furthermore, retraction 
fibres appear to tail the cell body during transitions. 
 

 
Figure S2 | Time-Series of an MDA-MB-231 cell on a two-state micropattern with LifeAct stain (L = 
35 µm). Actin hotspots are visible at the lamellipodial tip, as well as at the leading edge of the cell 
during dynamic exploration of the square adhesion site, marked with white arrows. Corresponds to 
Supplementary Movie S5. Scale bars: 25 µm.  
 

2.2. Generality of the hopping process for different cell lines 
To investigate the generality of the hopping process that we observe for cancerous (MDA-
MB-231) and non-cancerous (MCF10A) human breast cells, we also tested several other cell 
lines. Specifically, we tested MDA-MB-436 human breast cancer cells, Madin-Derby Canine 
Kidney cells (MDCK), human liver carcinoma cells (HuH7), and human lung carcinoma cells 
(A549) on two-state micropatterns with a bridge length L = 35 µm. In all cases, we found 
that the cells perform stochastic transitions between the two sites (Fig. S3), indicating that 
the hopping behaviour is a general migration pattern in motile cells. However, different cell 
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lines do not exhibit the same morphology during the transition phase (Fig. S3). Some cell 
types are less motile and thus limit the statistics generated per experiment. Not all cell lines 
have the same size, indicating that pattern size may need to be adjusted for optimal 
confinement. However, while some cell line-specific optimisation needs to be performed, 
the assay has a broad general applicability. The experimental details for this part are 
summarised in section 1.7. 
 

 
 
Figure S3 | Time-Series of different cell lines migrating on two-state micropatterns (L = 35 µm). 
Time series of phase contrast images and labelled nuclei (blue). a, Madin-Derby Canine Cells (MDCK). 
b, Human lung carcinoma cells (A549). c, Human liver carcinoma cells (HuH7). d, Human breast 
cancer cells (MDA-MB-436). 
 

82 3. Stochastic nonlinear dynamics of confined cell migration



 9 

2.3. Calculation of the dwell times 
To calculate the dwell times, the trajectories are binarised into two states, left and right of 
the centre of the connecting bridge. The centre of the bridge is determined by manually 
identifying the left border of each individual pattern, and then adding the sum of the mean 
left adhesion site edge length and half of the mean bridge length for each experiment. We 
subsequently calculate the time spent in either state between the transitions, yielding the 
dwell time τ. 
 
Given the particular geometry of our system, there are two obvious choices of how to 
define the states 'left' and 'right': (i) treating the centre of the connecting bridge as the 
boundary or (ii) excluding any time spent on the bridge and simply measuring the time 
spent on the square adhesion sites. We find that both definitions yield a linear trend in 
average dwell time (Fig. S4). The slope of this linear dependence is smaller when using 
island boundaries, since this choice excludes the time it takes for the cells to traverse a 
longer bridge. We adopt the convention of the centre boundaries throughout, noting that 
this choice does not qualitatively affect any of our conclusions. 
 

 
Figure S4 | Alternative definitions of the dwell time. Average dwell time of MDA-MB-231 cells as a 
function of bridge length, for two choices of defining the dwell time, sketched on the left.  Error bars 
correspond to bootstrap errors. 
 

2.4. Error analysis 
To calculate the errors in the dwell times, we employ a bootstrapping procedure. The 
recorded cell trajectories are stochastic and contain long-time correlations. Subsequent 
dwell times may therefore also be correlated. A simple error calculation by determining the 
standard error of the dwell times will thus underestimate the error, since this procedure 
assumes that the measurements are independent. Therefore, we use a bootstrapping 
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procedure which estimates the errors including the correlations. An alternative related 
method for estimating averages of correlated data is the "blocking" method3. 
 
In general, the bootstrapping procedure to measure the error in the mean 〈𝑋〉 of a dataset 
works as follows4: For a dataset 𝐷 = {𝑋(, . . . , 𝑋+} with 𝑁 entries, a large number of 
realisations of the dataset is generated by randomly sampling its entries, with replacement. 
A given realisation is thus produced by picking 𝑁 randomly selected entries from the data 
set, and a given entry may be picked multiple times. This procedure is repeated many times, 
producing many realisations. For each realisation, the mean 〈𝑋〉./012304256  is calculated. The 
estimated error in the mean is then given by the standard deviation of the means of the 
realisations. 
 
To take correlations into account, the same procedure is carried out for small groups of 
subsequent entries (windows) from the dataset. The window size 𝑤, i.e. the number of 
subsequent entries per group, must be much smaller than the total number of entries, 𝑁 ≫
𝑤. We can then plot the standard deviation as a function of window size. The standard 
deviation will saturate as a function of 𝑤, and approximately reach a constant value 𝜎:0;  
when 𝑤 exceeds the scale over which subsequent entries are correlated. This value 𝜎:0;  is 
our final estimate of the error in the mean. 
 
This procedure is illustrated in Fig. S5, using the example of our array of dwell times. For a 
particular bridge length, we generate the list 𝐷 = {𝜏(, . . . , 𝜏+} containing 𝑁 dwell times. 
Given a window size 𝑤, we then pick groups of 𝑤 subsequent dwell times until we have 
picked 𝑁 dwell times, giving one realisation. For each window size, we generate 105 
realisations. For each realisation 𝑖, we thus obtain an average dwell time 〈𝜏〉>.  
 
As expected, the distribution of realisation averages 〈𝜏〉>  exhibits a Gaussian shape (Fig. 
S5a). As we change the window sizes, the mean of each distribution 〈〈𝜏〉>〉  should remain 
constant at the experimentally observed average dwell time 〈𝜏〉/;?4, while the variance 
increases. The double bracket notation corresponds to taking the average of averages, as 
the distribution mean is given by the average of the realisation averages. Plotting the 
distribution mean and variance against window size, we indeed find very good agreement of 
the distribution averages 〈〈𝜏〉>〉 with 〈𝜏〉/;?4 (Fig. S5b), as well as the expected saturating 
curve for the variance (Fig. S5c). As we monitor on the order of 103 transitions for each 
bridge length, we limit the window size to a maximum value of 60 in order to fulfil the 
criterion 𝑁 ≫ 𝑤. We then take the maximum value of the distribution variance as our final 
bootstrap error. 
 

84 3. Stochastic nonlinear dynamics of confined cell migration



 11 

 
Figure S5 | Distributions of realisation averages 〈𝝉〉𝒊 as a function of window size (L = 35 µm, MDA-
MB-231). a, Probability distributions of the realisation averages 〈𝜏〉> for different window sizes 
(indicated by colours as shown in the figure legend). b, Distribution averages 〈〈𝜏〉>〉. In a and b, the 
average dwell time found experimentally, 〈𝜏〉/;?4, is indicated by a blue line. c, Distribution variances 
𝜎BC as a function of window size. The dashed line indicates the maximum variance 𝜎:0;C that gives the 
estimate taken for the final error. 
 

2.5. Stochasticity analysis 
To investigate whether the width of the dwell time distribution 𝑝(𝜏) (Fig. 1d) is set by the 
cell-to-cell variability or the single cell stochasticity, we quantify the single-cell and the 
population variability. 
 
For each bridge length, we obtain a set of dwell times {𝜏} which consists of smaller sets of 
dwell times {𝜏}G  generated by each cell 𝑗: 
 

{𝜏} = I{𝜏}(, . . . , {𝜏}G, . . . , {𝜏}+J (𝑆1) 
 
We can therefore quantify the average single cell variance 
 

〈𝜎MNC 〉 	= 〈𝑉𝑎𝑟S{𝜏}GT〉 (𝑆2) 
 
where the average is taken over different cells. This is a measure of the average variation of 
the hopping behaviour within the lifetime of single cells. To quantify the variation of dwell 
times across different cells, we can measure the cell-to-cell variance  
 

𝜎NNC = 𝑉𝑎𝑟S〈{𝜏}G〉T (𝑆3) 
 
where the average is taken over all transitions of each cell 𝑗. As a reference, we also 
calculate the overall 'pooled' variance of all dwell times {𝜏} of all transitions of all cells: 
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𝜎WXXYC = 𝑉𝑎𝑟({𝜏}) (𝑆4) 

 
If there was no stochasticity at the single-cell level, but each cell had a different typical 
dwell time, we would expect that 
 

𝜎MNC = 0, 𝜎NNC ≈ 𝜎WXXYC (𝑆5) 
 
Note that if all trajectories had the same length, then 𝜎NNC  would exactly equal 𝜎WXXYC . As 
different cells have different lifetimes, this is not the case here and we therefore only 
expect the two values to have a similar order of magnitude.  
 
However, if each single cell performs stochastic transitions that give rise to the overall 
spread in dwell times, then we expect  
 

𝜎MNC ≈ 𝜎NNC ≈ 𝜎WXXYC (𝑆6) 
 
Indeed, here we observe that all three variances have similar order of magnitudes, with a 
single-cell variance that exceeds both cell-to-cell and pooled variances on most of the tested 
bridge lengths (Fig. S6). We therefore conclude that there is an underlying stochasticity that 
is also relevant at the single-cell level, and not just at the population level.  

 
Figure S6 | Single-cell and cell-to-cell variability. Comparison of the dwell time variances at the 
single-cell level (blue), the cell-to-cell level (green) and the population level (red) for the different 
bridge lengths (MDA-MB-231). 
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2.6. Survival probability functions 
Combining the dwell times from many cells, we obtain the probability distribution 𝑝(τ). The 
survival probability distribution is then calculated using 
 

𝑆(𝑡) = 1 −	a 𝑝(τ)dτ
c

d
(𝑆7) 

 
Plotting the survival probability function in log-linear and log-log axes, we find that it follows 
neither a simple exponential decay nor a power law (Fig. S7). 
 

 
 
Figure S7 | Survival probability distributions normalised by average dwell time. a, Plotted in log-
linear axes. As a guide to the eye, a black line with slope -1, corresponding to a single exponential, 
𝑆(𝑡) = 𝑒gc/〈B〉, is shown.  b, Plotted in log-log axes. 
 
The survival probability function 𝑆(𝑡) allows an insightful approximate interpretation of the 
cellular transition behaviour. For example, the initial plateau corresponds to a time-scale on 
which there are no transitions. An alternative way of analysing the hopping process is a two-
step process of cell spreading and protrusion formation. After crossing the bridge, the cell 
spreads on the adhesion site and subsequently repolarises. During this time, the cell cannot 
perform another transition. The second decay time-scale is then likely related to the 
dynamics of the attempt and transition process. We therefore compare the experimental 
survival probability function to two different plausible types of processes governed by two 
timescales: 
 
i. Plateau-and-decay Model: In this scenario, the spreading process occurs right after a 
transition, when the cell conforms to the geometry of the adhesive island and repolarises. 
During this process, which has a typical time-scale 𝑡d, the cell cannot perform another 
transition, implying that the survival probability function should exhibit a flat plateau for 
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𝑡 < 𝑡d. If the subsequent invasion is also governed by a single timescale, this implies a time-
invariant probability of transitioning, resulting in an exponential decay of 𝑆(𝑡) for 𝑡 ≥ 𝑡d: 
 

𝑆(𝑡) = 	 k
1 𝑡 < 𝑡d

exp(−𝑘[𝑡 − 𝑡d]) 𝑡 ≥ 𝑡d
(𝑆8) 

 
By fitting this function to our experimental data, with 𝑘 and 𝑡d as free parameters, we find 
that this functional form provides a reasonable approximation to the data (Fig. S8a). 
However, this approximation fails in the tail of the distribution. 
 
ii. Multiple-timescale Poisson process: Cell spreading might also give rise to a probabilistic 
process. This would imply that the transition behaviour is governed by a two-step Poisson 
process, with the following survival probability function: 
 

𝑆(𝑡) = 	
𝑘C

𝑘( − 𝑘C
𝑒gstc +

𝑘(
𝑘C − 𝑘(

𝑒gsvc (𝑆9) 

 
where 𝑘(, 𝑘C > 0. However, both single- and two-step Poisson processes do not provide 
good fits (Fig. S8b). Certainly, including more time-scales will eventually result in a better fit, 
but may not allow a simple interpretation of these timescales. 
 

 
Figure S8 | Fits to the survival probability function (L = 35 µm, MDA-MB-231). a, Experimental 
survival probability function with the fitted plateau-and-decay model expression given by equation 
(S8). Inset: Corresponding log-linear plot. b, Single and double exponential decay functions fitted to 
the experimental survival probability function (L = 35 µm). 
 
2.7. Importance of the bridge length 
For all bridge lengths that we tested (6 - 56 µm), we found similar qualitative deterministic 
and stochastic contributions to the dynamics (Supplementary Figs. S28 and 29). Here, the 
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lamellipodium of the cell is able to reach the adhesive island the cell is migrating towards, 
while the nucleus still resides on the other island. For larger L, this may no longer be 
possible, implying that if the cell is still able to migrate across the thin constriction, it will do 
so by employing a different migration mechanism. Indeed, previous studies have shown that 
even on micropatterned stripes as thin as 1 µm cells are still able to migrate5, implying that 
even on very long bridges, cells can in principle perform transitions. However, we expect 
these transitions to follow different dynamics on these length-scales. 
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3. Inference and analysis of the stochastic model 
 

3.1. Inference procedure 
The position of the cell nucleus is recorded with a time interval ∆𝑡 = 10 min in the 
experiment, and velocity and acceleration are directly calculated as numerical derivatives: 
 

𝑣(𝑡) =
𝑥(𝑡) − 	𝑥(𝑡 − ∆𝑡)

∆𝑡
(𝑆10) 

 

𝑎(𝑡) =
𝑣(𝑡 + ∆𝑡) − 	𝑣(𝑡)

∆𝑡 =
𝑥(𝑡 + ∆𝑡) − 	2𝑥(𝑡) + 𝑥(𝑡 − ∆𝑡)

(∆𝑡)C
(𝑆11) 

 
Note that we employ the symmetric numerical derivative, where 𝑎(𝑡) is a linear 
combination of 𝑥(𝑡 + ∆𝑡), 𝑥(𝑡), and 𝑥(𝑡 − ∆𝑡). Our proposed model has the form 
 

𝑑𝑣
𝑑𝑡 	= 	𝐹(𝑥, 𝑣) + 𝜎(𝑥, 𝑣)𝜂(𝑡) (𝑆12) 

 
where 𝜂(𝑡) represents a Gaussian white noise with zero mean and correlation 〈𝜂(𝑡)𝜂(𝑡′)〉 =
𝛿(𝑡 − 𝑡�). Interpreting the stochastic differential equation in the Itô-sense, a discrete Euler 
integration at time step 𝛿𝑡 yields 

𝑣(𝑡 + 𝛿𝑡) − 𝑣(𝑡) = 	𝐹S𝑥(𝑡), 𝑣(𝑡)T𝛿𝑡 + 𝜎S𝑥(𝑡), 𝑣(𝑡)Ta 𝜂(𝑠)d𝑠
c��c

c
 

= 	𝐹S𝑥(𝑡), 𝑣(𝑡)T𝛿𝑡 + 𝜎S𝑥(𝑡), 𝑣(𝑡)T𝛿𝑊(𝑡) (𝑆13) 
 
where 

𝛿𝑊(𝑡) = 	a 𝜂(𝑠)d𝑠
c��c

c
(𝑆14) 

 
The separation of the noise magnitude from the integral in the first equality of equation 
(S13) is valid in the Itô-picture. Conditional averaging then gives the deterministic and 
stochastic terms in the Itô-picture6–8, which coincide with the drift and diffusion terms of 
the corresponding Fokker-Planck equation for the system: 
 

𝐹(𝑥, 𝑣) = �	𝑣(𝑡 + 𝛿𝑡) − 𝑣(𝑡)𝛿𝑡 �	𝑥 = 𝑥(𝑡), 𝑣 = 𝑣(𝑡)� (𝑆15) 

and 

𝜎C(𝑥, 𝑣) = 𝛿𝑡 �	�	𝑣(𝑡 + 𝛿𝑡) − 𝑣(𝑡)𝛿𝑡 − 𝐹(𝑥, 𝑣)�
C
�	𝑥 = 𝑥(𝑡), 𝑣 = 𝑣(𝑡)� (𝑆16) 
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and 

𝛿𝑊(𝑡) =
𝛿𝑡

𝜎(𝑥, 𝑣) �	�	
𝑣(𝑡 + 𝛿𝑡) − 𝑣(𝑡)

𝛿𝑡 − 𝐹(𝑥, 𝑣)� �	𝑥 = 𝑥(𝑡), 𝑣 = 𝑣(𝑡)� (𝑆17) 

 
The conditional averaging requires a discrete binning of the phase space. Here, we use a 
uniform binning of 30x30 bins throughout. The binning structure is shown explicitly in 
Supplementary Figs. S28 and S29. None of our conclusions depend sensitively on the 
number of bins used. Furthermore, we set 𝛿𝑡 = ∆𝑡 throughout. From the trajectories of the 
inferred noise ∆𝑊(𝑡) = 𝛿𝑊(𝑡) with 𝛿𝑡 = ∆𝑡, we can directly calculate the noise correlation 
function. As a self-consistency check, we verify that this correlation function decays within a 
time scale less than ∆𝑡. This is indeed what we find for this system (See Fig. S9). The small 
negative correlation that we detect for time-separations equal to the sampling interval (𝑡 =
𝜃) can be accounted for by localisation errors in the positions (see Section 3.7 and ref. 9). 

 
Figure S9 | Correlation functions of the inferred noise. See also Fig. S31. 
 
Throughout this work, we interpret the stochastic differential equation (1) in the Itô-picture. 
This has several advantages. Firstly, to integrate the dynamics in a step-wise manner 
(equation S19), it is convenient to employ the Itô formulation, as the noise in the step-wise 
simulation can only depend on the current, known state of the system.  
 
Secondly, in the Itô-picture, we can recover the deterministic dynamics of the system by 
simply setting the noise to zero: 
 

𝑑〈𝑣〉
𝑑𝑡 	= 	 〈𝐹(𝑥, 𝑣)〉 + 〈𝜎(𝑥, 𝑣)𝜂(𝑡)〉 = 𝐹(𝑥, 𝑣) (𝑆18) 
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where 〈. . . 〉 corresponds to an ensemble average. If we used the alternative Stratonovich 
interpretation, then 〈𝜎(𝑥, 𝑣)𝜂(𝑡)〉 ≠ 0 and we would have to deduct an additional noise-
induced drift10. The consistent use of the Itô-interpretation of equation (1) avoids these 
issues. 

3.2. Integration of the stochastic model 
The inferred model is subsequently integrated numerically with a time step ∆𝑡 equal to the 
experimental sampling interval, using a standard Euler scheme: 
 

𝑥> 	= 	 𝑥>g( 	+ 	𝑣>∆𝑡 
𝑣>�( 	= 	 𝑣> + 𝐹(𝑥>, 𝑣>)∆𝑡 + 𝜎(𝑥>, 𝑣>)𝑟>√∆𝑡 (𝑆19) 

 
where 𝑟> is a random number drawn from a Gaussian distribution with mean 0 and variance 
1. To determine the values 𝐹(𝑥>, 𝑣>) and 𝜎(𝑥>, 𝑣>), we bin the simulated phase space using 
the same grid as in the inference scheme and take the inferred raw values for 𝐹 and 𝜎 in 
each bin. If a particle leaves the phase space sampled in the experiment, the simulation 
terminates.  
 
For the comparison between experiment and model, we employ the hold-out method. The 
terms 𝐹(𝑥, 𝑣) and 𝜎(𝑥, 𝑣) are inferred by conditional averaging of 50% of the cell 
trajectories recorded in experiment, forming the training data set. The cells included in this 
set are randomly sampled from the entire data set. The model prediction is then compared 
to the remaining 50% of the experimental results that were excluded from the model 
inference (validation data set). This comparison gives similar results if the training and 
validation sets are interchanged.  
 

3.3. Integration of the deterministic dynamics 
The deterministic dynamics is more sensitive to the binning of phase space than the 
stochastic model. Since the binned function 𝐹(𝑥, 𝑣) is not differentiable, trajectories can 
intersect in phase space. To avoid these artefacts, we use a cubic interpolation of 𝐹(𝑥, 𝑣) for 
the integration of the purely deterministic dynamics. However, the same deterministic 
dynamics still emerges robustly if a non-interpolated deterministic term is used (Fig. S10). 
For the integration of the deterministic dynamics, a simulation time interval of 0.01 h is 
used. 
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Figure S10 | Deterministic dynamics in coarse-grained phase space (L = 35 µm). Trajectories in 𝑥𝑣-
space for a number of different initial conditions, integrated using the raw binned values of 𝐹(𝑥, 𝑣). 
a, MDA-MB-231. b, MCF10A. 
 

3.4. Symmetrisation procedure for the detection of the nullclines 
The nullcline �̇� = 0 is given by the set of points where 𝐹(𝑥, 𝑣) = 0. Since only a discrete 
sampling of 𝐹	is accessible, we find the intersections of 𝐹(𝑥, 𝑣) with the zero-plane by 
finding all points of 𝐹(𝑥, 𝑣) that satisfy the condition −𝑏	 < 𝐹(𝑥, 𝑣) < 𝑏. Here, we set 𝑏 = 4 
µm/h2. 
 
This procedure is rather sensitive to the measurement noise in 𝐹(𝑥, 𝑣). To improve the 
statistics, we therefore exploit the inversion symmetry of the system. By construction, our 
micropatterns are symmetric under the operation 𝑥 → −𝑥. This means that our model must 
have the following properties: 
 

𝐹(𝑥, 𝑣) = −𝐹(−𝑥, −𝑣)
𝜎(𝑥, 𝑣) = 𝜎(−𝑥, −𝑣) (𝑆20) 

 
To test whether this symmetry is indeed present in our data, we first verify that both the 
dynamical properties, i.e. the dwell times on the right and left sides, and the static 
probability distribution are symmetric (Fig. S11a, b). Next, to verify the inversion symmetry 
of the deterministic and stochastic terms (equation (S20)), we define the relative symmetry 
deviations in each case: 
 

𝛿�(𝑥, 𝑣) =
𝐹(−𝑥, −𝑣) + 𝐹(𝑥, 𝑣)

𝐹(𝑥, 𝑣)
(𝑆21) 

 

𝛿�(𝑥, 𝑣) =
𝜎(−𝑥, −𝑣) − 𝜎(𝑥, 𝑣)

𝜎(𝑥, 𝑣)
(𝑆22) 
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These fractional deviations are shown as a function of 𝑥 and 𝑣 in Fig. S11c, d. We find that 
there are no systematic deviations from the postulated symmetries. The only significant 
deviations are in the deterministic term close to the nullclines, which may be due to random 
measurement noise which is larger in this region. We thus use this symmetry by inferring 
only the top half of phase space (𝑣 > 0) using both the left-right (𝑣 > 0) and the right-left 
(𝑣 < 0) transitions. The bottom half is then given by a point reflection of the top half around 
the origin. We found similar results for the other bridge lengths as well as with MCF10A 
cells. 
 

 
Figure S11 | Test of the inversion symmetry (MDA-MB-231). a, The ratio of average dwell times on 
the right and left side of the micropattern as a function of bridge length. Error bars denote bootstrap 
errors. b, The position probability distribution 𝑝(𝑥) as a function of |𝑥|, shown for both 𝑥 > 0 and 
𝑥 < 0. c, The relative symmetry deviation 𝛿�(𝑥, 𝑣) of the deterministic term. d, The relative 
symmetry deviation 𝛿�(𝑥, 𝑣) of the noise strength. b, c, d correspond to data from L = 35 µm. 
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3.5. Comparison to a global inference of the deterministic term 
To test the robustness of our results, we also employ an alternative method to estimate the 
deterministic term from the trajectories11,12, which does not require a discrete binning of 
the phase space. Specifically, we define the quantity 
 

𝜖C = 〈〈	�
𝑣(𝑡 + 𝛿𝑡) − 𝑣(𝑡)

𝛿𝑡 − 𝐺(𝑥, 𝑣; {𝑝})�
C

	〉c〉�/113 (𝑆23) 

 
As the averages run over both time and cells, 𝜖C is a sum of the square deviation of the 
fitting function from all individual observations. By minimising 𝜖C with respect to the 
parameters {𝑝} of the fitting function 𝐺(𝑥, 𝑣; {𝑝}), we perform a global fit across the whole 
sampled phase space. This different from the binning procedure outlined previously, which 
gives local best estimates at each phase space position (𝑥, 𝑣). 
 
Next, we show explicitly that 𝐺(𝑥, 𝑣; {𝑝}) converges to 𝐹(𝑥, 𝑣) by substituting the discrete 
Itô-differential equation (S11): 
 

𝜖C = 〈〈	�𝐹S𝑥(𝑡), 𝑣(𝑡)T +
𝜎S𝑥(𝑡), 𝑣(𝑡)TΔ𝑊(𝑡)

Δ𝑡 − 𝐺(𝑥, 𝑣; {𝑝})�
C

	〉c〉�/113 (𝑆24) 

 
The minimisation procedure then implies that for each parameter 𝑝, 
 

𝜕𝜖C

𝜕𝑝 = 〈〈	2�𝐹S𝑥(𝑡), 𝑣(𝑡)T − 𝐺(𝑥, 𝑣; {𝑝}) 	〉c〉�/113 = 0 (𝑆25) 

 
since 〈〈	𝜎(𝑥(𝑡), 𝑣(𝑡))Δ𝑊(𝑡)/Δ𝑡	〉c〉�/113 = 0. The stochastic term therefore does not affect 
the minimisation procedure. Since our system is bounded, we use a Fourier expansion of 
the form 
 

𝐺(𝑥, 𝑣; {𝑝}) = ¡ ¡�𝑝(,¢sin(𝑛𝑘§𝑥) + 𝑝C,¢cos(𝑛𝑘§𝑥) �𝑝ª,«sin(𝑚𝑘𝑣) + 𝑝®,«cos(𝑚𝑘𝑣) 
¯

«°d

+

¢°d

(𝑆26) 

 
where 𝑘§, = 𝜋/Ω§,. Ω§, are typical system sizes in 𝑥 and 𝑣 that define the resolution of 
the expansion. Here, we use Ω§	= 100 µm and Ω	= 250 µm/h as typical system sizes. To 
limit the number of terms in the expansion, we again enforce the symmetry constraint of 
the system (equation (S20)).  
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This leads to the symmetrised fit function 
 

𝐺3³:(𝑥, 𝑣; {𝛼, 𝛽}) = ¡ ¡[𝛼¢«sin(𝑛𝑘§𝑥) cos(𝑚𝑘𝑣) + 𝛽¢«cos(𝑛𝑘§𝑥) sin(𝑚𝑘𝑣)]
¯

«°d

+

¢°d

(𝑆27) 

 
Importantly, we find that this alternative inference procedure reproduces all of the key 
qualitative features of the deterministic dynamics that we determined using the binning 
procedure. Indeed, the qualitative features of 𝐹(𝑥, 𝑣) are well captured by the expansion, 
for all tested hyperparameters N and M (Fig. S12). Similarly, the nullclines of the function 
show similar features to the binned results within the sampled phase space, including the 
characteristic proximity of the �̇� and �̇� nullcline at the positions corresponding to the 
adhesive islands, indicating that the inferred dynamics is close to a transition between limit 
cycle and bistable dynamics (Fig. S13). In agreement with the binned dynamics, the 
deterministic trajectories also perform limit cycle oscillations in the case of MDA-MB-231 
cells, while we find two stable fixed points in the dynamics of MCF10A. 
 

 
Figure S12 | Inferred deterministic term using different procedures (L = 35 µm). a, e, The result the 
binning procedure, shown as a linear interpolation. b-d, f-h, Results from the Fourier expansion of 
the deterministic dynamics up to orders N, M = 2, 3, 4 respectively. All panels are in units of µm/h2. 
Panels a-d correspond to MDA-MB-231, and panels e-h to MCF10A data. For the Fourier expansion, 
we show only those regions of  the phase space that are sampled in experiment, to avoid 
extrapolation and to allow a direct comparison to the results obtained by binning. 
 
  

96 3. Stochastic nonlinear dynamics of confined cell migration



 23 

 
Figure S13 | Nullclines and sample trajectories of the deterministic term inferred using different 
procedures (L = 35 µm). a, e, The nullclines (blue, red) of the deterministic term obtained using the 
binning approach which has been interpolated as outlined in section S3.3. b-d, f-h, Nullclines of the 
Fourier expansion of the deterministic dynamics up to orders N, M = 2, 3, 4 respectively. The 
deterministic trajectories (green) have been calculated as specified in section S3.3. Panels a-d 
correspond to MDA-MB-231, and panels e-h to MCF10A data. 
 

3.6. Consequences of the finite sampling rate 
Throughout this work, cell trajectories are sampled at a time interval ∆𝑡 = 10 min. In 
general, the parameters of inferred stochastic equations of motion may depend on the 
value of ∆𝑡, which was shown previously for the Ornstein-Uhlenbeck process9. Here, we 
derive numerical finite-time corrections for the deterministic term, to show that our 
qualitative conclusions are not affected by the discretisation effects.  
 
Suppose the deterministic term of the "true" stochastic process, that occurs in continuous 

time, is given by	𝐹 ¶·𝑝>
(4.¸/)¹º, with 𝑁 parameters ·𝑝>

(4.¸/)¹, 𝑖 = 1. . . 𝑁. Then we assume 

that the model that is inferred from experimental data taken at a finite time interval ∆𝑡 
takes the form 
 

𝐹/;?4 = 𝐹 ¶·𝑝>
(/;?4)¹º = 𝐹 ¶·𝛼>

(4.¸/)(∆𝑡)𝑝>
(4.¸/)¹º (𝑆28) 

 

where the parameter-specific rescaling factor 𝛼>
(4.¸/) in general depends on both the time 

interval ∆𝑡 and the value of the true parameter 𝑝>
(4.¸/). For the Ornstein-Uhlenbeck process, 

an analytical treatment is possible, and the rescaling factor 𝛼»
(4.¸/) for the inverse 
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persistence time 𝛾 can be found9. For more complex, numerical models this exact treatment 
is not feasible. To estimate the finite-time corrections for our model, we therefore develop 

a numerical iterative three-step scheme to estimate ·𝛼>
(4.¸/)¹. 

 

Specifically, in step 1, we simulate 𝐹 ¶·𝑝>
(/;?4)¹º with a small time interval 𝑑𝑡 = 0.001h, 

then sample the simulated trajectories at a finite time interval ∆𝑡 = 0.16h ≈ 10min, and 

then infer a new model 𝐹 ¶·𝑝¿>
(()(∆𝑡)¹º. We denote this sequence of steps as SSI, for 

Simulate-Sample-Infer. The resulting relation between 𝑝¿>
(()(∆𝑡) and 𝑝>

(/;?4) then gives us a 

first estimate of the finite-time correction factor for each parameter 𝛼>
(d)(∆𝑡) (step 2). We 

then obtain a first estimate for the corrected model parameters ·𝑝>
(()¹ in step 3, which we 

then use in the next iteration as input parameters in step 1  
 

𝐹 ¶·𝑝>
(¢g()¹º 		

		ÂÂÃ		
Ä⎯Æ 		𝐹 ¶·𝑝¿>

(¢)(∆𝑡)¹º = 𝐹 ¶·𝛼>
(¢g()(∆𝑡)𝑝>

(¢g()¹º (Step	1) 

 
Then, for each 𝑖, 

𝛼>
(¢g()(∆𝑡) 	=

𝑝¿>
(¢)(∆𝑡)

𝑝>
(¢g() 	 (Step	2) 

 

𝑝>
(¢) 	=

𝑝>
(¢g()

𝛼>
(¢g()(∆𝑡)

	 (Step	3) 

 

where 𝑝>
(d) = 𝑝>

(/;?4). If enough iterations are performed, we should find that 𝛼>
(È) =

𝛼>
(4.¸/) and 𝑝>

(È) = 𝑝>
(4.¸/). 

 
To test our iterative scheme, we first verify that it matches the analytical result for the 
Ornstein-Uhlenbeck process9 (Fig. S14). If this procedure is performed using conditional 
averaging for processes with two-dimensional phase space, like our model (equation 1), the 
results are highly sensitive to the measurement noise present in the initial experimental 
parameters. We therefore employ the functional expansion introduced in section S3.5. We 
verified numerically that the discretisation effects in the functional expansion and the 
conditional averaging are identical for the Ornstein-Uhlenbeck process (Fig. S14). 
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Figure S14 | Finite-time correction factor for the Ornstein-Uhlenbeck (OU) process. We infer the 
correction factor 𝛼»(Δ𝑡) for the frictional component 𝛾 of the OU process �̇� = −𝛾𝑣 + 𝜎𝜂(𝑡) (here 
𝛾 = 𝜎 = 1) using the iterative scheme with two inference methods: conditional averaging (equation 
S15) and a functional expansion (equation S23) with a polynomial basis. Both results coincide with 
the theoretical prediction9. 
 
Next, we simulated a process given by the functional expansion with the same terms as in 
our experimental system, but with known parameters and linear noise. To keep the number 
of fitting parameters at a minimum, we use the Fourier expansion (equation S27) with 
hyperparameters 𝑀,𝑁 = 1: 
 
𝐹(𝑥, 𝑣) = 𝑝( sin(𝑘§𝑥) + 𝑝C sin(𝑘𝑣) + 𝑝ª sin(𝑘§𝑥) cos(𝑘𝑣) + 𝑝® cos(𝑘§𝑥) sin(𝑘𝑣) (𝑆29) 
 
To test our iterative scheme for this model, we simulate this model with known parameters 

𝑝>
(4.¸/), sample the trajectories and infer "experimental" parameters 𝑝>

(/;?4). By applying our 
iterative scheme, we verify that the corrected parameters converge to the known true 
parameters after just a few iterations (Fig. S15a). 
 
Finally, we derive the finite-time correction for the experimentally inferred model, which 
converges similarly to the previous example, and thus yields the correction of the 
deterministic term (Fig. S15d). Note, the corrected dynamics is qualitatively very similar to 
the experimentally inferred dynamics, with only a small shift in parameters. Applying the 
same iterative scheme to the multiplicative noise appears to be technically more involved, 
and we therefore restrict our analysis here to the deterministic term. However, we note 
that sampling tends to lead to an underestimation of the noise strength9 and we thus expect 
the magnitude of 𝜎(𝑥, 𝑣) to be increased by a similar finite-time correction. Throughout the 
manuscript, we show the non-corrected terms obtained directly from conditional averaging, 

99



 26 

which should therefore be interpreted as the terms of the finite-difference version of 
equation (1). The resulting finite-time effects in the integrated dynamics predicted by this 
equation may also explain the small mismatch seen in the velocity correlation function (Fig. 
3g, S31).  
 

 
Figure S15 | Finite-time corrections for the deterministic term. a, First, we verify that for known 
model parameters in a Fourier expansion (equation S29), we can recover the correct parameters 
after iterating. b, For the experimental data (MDA-MB-231, L = 35 µm), the parameters similarly 
approach a steady value after within a few iterations, indicating that the iterative scheme has 
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converged. c, Experimentally measured deterministic term 𝐹 ¶·𝑝>
(/;?4)¹º	in units of µm/h2. d, Similar 

plot for the corrected term 𝐹 ¶·𝑝>
(Cd)¹º. e, f, Trajectories (green) and nullclines (red, blue) of the 

deterministic dynamics shown in c and d respectively. 
 
To show explicitly by how much the corrected term varies from the finite-time version, we 
calculate the relative difference 
 

𝛿(𝑥, 𝑣) =
𝐹 ¶𝑥, 𝑣; ·𝑝>

(/;?4)¹º − 𝐹 ¶𝑥, 𝑣; ·𝑝>
(Cd)¹º

𝐹 ¶𝑥, 𝑣; ·𝑝>
(Cd)¹º

(𝑆30) 

 
This measure shows in large regions of the sampled phase space, the relative deviation is 

small, while there is a large fractional variation around the nullclines where 𝐹 ¶·𝑝>
(Cd)¹º = 0 

and 𝛿(𝑥, 𝑣) thus diverges (Fig. S16). To quantify the average deviation, we calculate 
 

〈𝛿(𝑥, 𝑣)〉§, =
〈Ê𝐹 ¶𝑥, 𝑣; ·𝑝>

(/;?4)¹º − 𝐹 ¶𝑥, 𝑣; ·𝑝>
(Cd)¹ºÊ〉§.

〈Ê𝐹 ¶𝑥, 𝑣; ·𝑝>
(Cd)¹ºÊ〉§,

≈ 0.39 

 
where we only included the region of phase space that are sampled in the experiment (Fig. 
S16). Thus, we conclude that average deviation in magnitude of the deterministic term due 
to finite time effects is of the order of 40%. However, we also note that the finite time 
effects appear to mainly constitute a small shift in the positions of the nullclines (Fig. S15e, 
f), and the average fractional change thus arguably gives an overestimate of "how different" 
the finite time and continuous time terms are in most of phase space. 
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Figure S16 | Relative finite time effects in the deterministic term a, The relative deviation 𝛿(𝑥, 𝑣) 
calculated using equation (S30), and shown for the region of phase space that is sampled in 
experiment. b, The nullclines of the inferred (blue) and corrected (purple) deterministic term. 
 
3.7. Consequences of localisation errors  
We define the cell position as the position of the centre of the nucleus, which is recorded 
using automated tracking of the fluorescence signal. The detection of the position of the 
nucleus centre is subject to detection errors. We estimate an upper bound of 𝜎?53 = 2𝜇m 
for this error. To investigate whether this localisation error affects the inference of the 
stochastic model, we perform a simulation of the inferred model with an added stochastic 
localisation error:  
 

𝑥>�( 	= 	 𝑥> 	+ 	𝑣>∆𝑡 + 𝜎?53𝑤>  
𝑣>�( 	= 	 𝑣> + 𝐹(𝑥>, 𝑣>)∆𝑡 + 𝜎(𝑥>, 𝑣>)𝑟>√∆𝑡 (𝑆31) 

 
where we model the localisation error as a Gaussian random variable 𝑤>  with mean 0 and 
variance 1 that is added to the positions. None of the central migration statistics which 
depend directly on the recorded positions are affected by localisation errors of this 
magnitude (Fig. S17 a, b, d). The correlation function of the inferred noise exhibits a small 
negative correlation for time-separations equal to the sampling interval (𝑡 = 𝜃), which is not 
present in the simulation without localisation errors. For a thorough discussion of this 
effect, we refer the reader to ref. 9.  

 
Figure S17 | Comparison of simulated statistics with and without localisation errors (L = 35 µm, 
MDA-MB-231). a, The position probability distribution 𝑝(𝑥). The red curves in all panels correspond 
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to the standard model simulation (equation (S19)), while the green curves correspond to a 
simulation including localisation errors (equation (S31)). b, The velocity probability distribution 𝑝(𝑣), 
plotted semi-logarithmically. c, The correlation function of the inferred noise from each model 
simulation. d, The velocity correlation function. 
 

3.8. Relative magnitude of deterministic and stochastic terms 
To quantify the relative magnitudes of deterministic and stochastic contributions, we define 
the root-mean-square ratio 𝑟(𝑥, 𝑣) as the ratio of the deterministic and stochastic terms of 
the discrete equation of motion (equation S13): 
 

𝑟(𝑥, 𝑣) =
Ì〈𝐹S𝑥(𝑡), 𝑣(𝑡)T∆𝑡〉C

Ì〈𝜎CS𝑥(𝑡), 𝑣(𝑡)T∆𝑊C(𝑡)〉
=
|𝐹(𝑥, 𝑣)|√∆𝑡
𝜎(𝑥, 𝑣)

(𝑆32) 

 
where we have used Ito's lemma 〈∆𝑊(𝑡)C〉 = ∆𝑡. We find that the noise dominates in the 
regions corresponding to the adhesive islands (Fig. S18), as indicated schematically in Fig. 
4e.  

 

 
Figure S18 | Ratio of deterministic and stochastic contributions (L = 35 µm). Derived from the 
symmetrised functions 𝐹 and 𝜎. To clearly show the regions where the noise dominates, the 
colourscheme has a cutoff at 𝑟 = 1. a, MDA-MB-231. The limit cycle is indicated by the white line. b, 
MCF10A. The two stable fixed points are marked by white crosses. The colour scale applies to both 
panels. 
 
  

103



 30 

3.9. Role of the noise  
For MCF10A cells, the role of the stochastic term is self-evident: without noise, the system 
relaxes to the stable fixed points, and there are no transitions. 
 
In contrast, for MDA-MB-231, the deterministic dynamics still leads to oscillations even in 
the absence of noise. To investigate the role of stochasticity in this system, we therefore 
scale the stochastic term 𝜎(𝑥, 𝑣) by a pre-factor 𝜆 in the range from 𝜆 = 0 (deterministic 
motion) to 𝜆 = 1 (fully stochastic system) (Fig. S19).  In the purely deterministic system, the 
limit cycle dynamics leads to repeated oscillations of the velocity correlation. As we increase 
𝜆, the complex oscillatory velocity correlation of the deterministic dynamics is smoothly 
deformed into the highly damped correlation function observed experimentally. At 
intermediate 𝜆, we find that the correlation function performs decaying oscillations. While 
there likely is no experimental procedure to tune 𝜆, this theoretical analysis allows us to 
compare the role of the stochastic contributions in the oscillatory MDA-MB-231 dynamics. 
Specifically, these findings reveal that the noise abrogates the long-time correlations 
encoded in the deterministic contribution beyond a single oscillation. In addition, the noise 
plays a crucial role by speeding up the slow dynamics of reversals on the islands in MDA-
MB-231, and by providing excitations out of the basins of attraction of the fixed points in 
MCF10A. In both cases, the noise thus contributes to setting the key time-scale of the 
system – the average dwell time (Fig. 2b). 
 

 
Figure S19 | Velocity correlation functions of the dynamics with different noise strengths (MDA-
MB-231). The magnitude of the stochastic term 𝜎(𝑥, 𝑣) is scaled by a prefactor 𝜆 in the range from 
𝜆 = 0, corresponding to purely deterministic dynamics (green), to 𝜆 = 1, corresponding to the full 
stochastic system (equation (1)) (red). The deterministic correlation function is obtained from the 
symmetrised results (Section 3.4) 
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4. Characterisation of free 2D cell migration 
 
Cell migration is often studied on unconfined 2D surfaces. The migration behaviour in such 
an unstructured environment can therefore serve as a motility benchmark for a given cell 
type. To characterise the free migration behaviour of our standard cell type (MDA-MB-231) 
on a 2D surface, we analyse the trajectories of cells migrating on isotropic 2D surfaces with 
the same surface properties as in the case of the two-state confinement (Supplementary 
Movie S8; for experimental details see Section 1.7). 
 
Here, we again adopt a data-driven approach to find a stochastic equation of motion that 
describes the migration, and we follow the method first proposed by Selmeczi et al.2 First, 
we verify that the experimental data fulfils rotational as well as space- and time-
translational symmetry (Fig. S20a-c). Therefore, we can average any observations over 
orientation, space, and time, and any model describing the data should also possess these 
symmetries. Next, we find that the velocity correlation of the migration follows a bi-
exponential decay, which was previously found in both keratinocytes (HaCaT) and 
fibroblasts (NHDF)2 (Fig. S20d). In contrast to HaCaT and NHDF cells, however, velocities are 
much more broadly distributed here, up to speeds of 150 µm h-1 (Fig. S20e). Measuring the 
average acceleration as a function of speed 〈�̇�|𝑣〉 in the reference frame of the cell, we find 
that the acceleration along the direction perpendicular to the direction of motion vanishes, 
while the acceleration along the direction of motion takes a non-linear form that is well 
fitted by a third-order polynomial (Fig. S20f). We also measure the noise strength of 

fluctuations around the deterministic trajectories, defined as 𝜎(𝑣) = Î∆𝑡〈[�̇� − 〈�̇�|𝑣〉]C|𝑣〉. 
We find that the parallel and perpendicular components of the noise collapse onto a single 
curve, which is well described by a fit function of the form 
 

𝜎(𝑣) = 	 k
𝜎d + 𝜎(𝑣 𝑣 < 𝑣?104/0¸
𝜎?104/0¸ 𝑣 ≥ 𝑣?104/0¸

(𝑆34) 
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Figure S20 | Experimental characterisation of free cell migration. a, Probability distribution of 
angles in which the cells move in the laboratory frame of reference (lab frame). Here, the angles in 
which cells have moved (angle of the vector connecting initial and final position) for N = 728 cells are 
shown together with the average and standard deviations from the average of the numbers shown 
by the columns (red lines). b, Probability distributions of speeds in the lab frame measured in four 
different regions of the substrate (corresponding to the four colours). Plotted semi-logarithmically 
against the square of the speed. c, Average migration speed as a function of time. Red lines indicate 
the average and standard deviation of the speed. Together, a-c indicate that the migration statistics 
are isotropic and uniform in space and time. d, Velocity correlation function 𝜙(𝑡) = 〈𝑣(𝑠 +
𝑡)𝑣(𝑠)〉M. The black dashed line indicates a bi-exponential fit, 𝜙Ð24(𝑡) = 𝜙(𝑒gc/Ñt + 𝜙C𝑒gc/Ñv . Inset: 
semi-logarithmic plot of the same quantities. e, Marginal probability distribution 𝑝(𝑣>) =
∫ 𝑝(𝑣>, 𝑣G)d𝑣G of velocities 𝑣> in both the 𝑥- and 𝑦-directions (𝑖 = 𝑥, 𝑦). Inset: Probability 
distribution of speeds, plotted semi-logarithmically against the square of the speed. f, Average 
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acceleration as a function of speed in the frame of reference of the moving cell. The parallel and 
perpendicular directions are defined by the velocity of the cell. The solid lines are fits of the form 

𝐹∥ = 𝑝d and 𝐹Õ = 𝑝(𝑣 + 𝑝C𝑣C + 𝑝ª𝑣ª. g, Noise component 𝜎(𝑣) = Î∆𝑡〈[�̇� − 〈�̇�|𝑣〉]C|𝑣〉 as a 
function of speed in the two directions. The black line is a fit of equation (S34) to the average of the 
parallel and perpendicular components. 
 
The experimental data in Fig. S20 allows us to constrain the equation of motion that 
describes the migration. To do so, we systematically increase the complexity of models 
fitted to the dynamics. We start with a Langevin equation with velocity dependent noise, 
 

d𝑣
d𝑡 = �⃗�(𝑣) + 	𝜎(𝑣)𝜂(𝑡) (Model	A) 

 

Using the empirical fits of �⃗�(𝑣) and 𝜎(𝑣), a simulation of this model shows that it is not able 
to capture the bi-exponential correlation function, as it only captures the first time-scale of 
the correlation (Fig. S21a). We therefore increase the model complexity to a non-Markovian 
model that includes a memory kernel. A relatively simple memory kernel with a bi-
exponential velocity correlation function that was found to describe the dynamics of HaCaT 
cells2 is: 
 

d𝑣
d𝑡 = −𝛽𝑣 + 𝛼Ca 𝑒g»(cgM)𝑣(𝑠)d𝑠

c

gÈ
+ 	𝜎(𝑣)𝜂(𝑡) (Model	B) 

 
However, this model has a strictly linear dependence of the average acceleration on speed2. 
In our case, this dependence is non-linear, as was previously found for NHDF2 and 
Dictyostelium discoideum13 cells. To accommodate this non-linearity, we follow previous 
work2,13 by introducing a speed-dependent 𝛽(𝑣) = 𝛽d + 𝛽(𝑣, which we call Model C. This 
model reasonably fits all the observables (Fig. S21). 
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Figure S21 | Experimental-to-model comparison for various model candidates for a freely 
migrating cell in 2D. a, Velocity correlation function on a semi-logarthmic plot. b, Probability 
distribution of velocities. c, Average acceleration as a function of speed. d, Noise strength as a 
function of speed. 
 
In table S2, we summarise the parameters of Model C for MDA-MB-231 cells and also 
compare them to the parameters found previously for HaCaT and NHDF cells that are 
described by a similar memory kernel model2. 
 

Cell line MDA-MB-231 HaCaT2 NHDF2 
𝛼	(hg() 2.2 1.5 2.9 

𝛽(𝑣) (hg() 0.8	 + 	0.07𝑣 4.1 2.1	 + 	0.06𝑣 
𝛾 (hg() 2.2 1.0 2.1 
𝜎(𝑣) 

(µm	hgª/C) 
k42 + 1.8𝑣 𝑣 < 100	µm	hg(

350 𝑣 ≥ 100	µm	hg(
 

11 + 1.3𝑣 𝜎∥(𝑣) 	= 7.3 + 2.8𝑣 
𝜎Õ(𝑣) 	= 7.3 + 0.9𝑣 

Table S2 | Model parameters for Model C of our cancer cell line compared to those of 
keratinocytes (HaCaT) and fibroblasts (NHDF) from the literature2. These model parameters are 
corrected for finite-time effects, since they are obtained by parameter sweeps of the model 
equation, integrated with a small time step, and subsequently sampled at ∆𝑡 = 10min2,9. 
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5. Comparison to other models 
 
To arrive at the general form of our model (equation (1)), we aim to systematically increase 
the model complexity until we reach a model that describes the experimental statistics well. 
In particular, we test the applicability of stochastic equations of motion in the following 
order: 

i. First order equations of motion 
ii. Second order model with a deterministic term separable in position and velocity 
iii. Second order model with constant noise strength 

In the next three subsections, we show that none of these models are able to describe the 
data well. Within this scheme, we view equation (1) as the next-simplest stochastic equation 
of motion. However, alternative descriptions of the data may be possible, such as a 
generalisation of the description for 2D motility in the form of a memory kernel with 
position-dependent parameters. In the last subsection, we also discuss a comparison of the 
deterministic term of equation (1) to the van der Pol oscillator, which is the classic textbook 
example of a limit cycle oscillator. 
 

5.1. First order equations of motion 
An alternative theoretical ansatz to equation (1) would be to consider a first order equation 
of motion, in analogy to the description of overdamped systems such as Brownian particles. 
As a simple, intuitive model, one might think that the cell behaves like a Brownian particle 
diffusing in an external potential set by the geometry of the micropattern, with an equation 
of motion for each bridge length 𝐿 
 

�̇� = −𝜕§𝑉Ý(𝑥) + 𝜎𝜂(𝑡) (𝑆35) 
 
where 〈𝜂(𝑡)〉 = 0. The hopping process would then correspond to stochastic transitions in 
this energy landscape (Fig. S22a). A physical interpretation of this effective potential could 
be elastic energy constraints placed by the membrane deformations that occur during the 
transition, while the noise would be generated by the motility machinery of the cell14,15. 
 
To make progress analytically, we assume that the noise is uncorrelated: 〈𝜂(𝑡)𝜂(𝑡′)〉 =
𝛿(𝑡 − 𝑡′). The steady state probability distribution 𝑝Ý(𝑥)	is then given by the Boltzmann 
distribution. Since we have measured the probability distribution, we can invert the usual 
Boltzmann expression to yield an inferred potential 
 

𝑉Ý(𝑥) 𝜎⁄ = − ln 𝑝Ý(𝑥) 	+ 𝐶 (𝑆36) 
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The resulting potentials (Fig. S22b) do indeed have the qualitative features one would 
expect in a typical escape problem in a double-well potential. However, we observe that the 
effective activation energies of the escape do not satisfy the condition 𝑄Ý 𝜎⁄ ≫ 1. The 
standard Kramers expression for the transition rates in terms of potential curvatures is 
therefore invalid in this case16. We can, however, make progress by integrating the 
corresponding Fokker-Planck equation, which yields the mean-first passage time over the 
barrier10,17 
 

〈𝜏Ý〉 =
1
𝜎
a d𝑦	exp á

𝑉Ý(𝑦)
𝜎 âa d𝑧	exp á−

𝑉Ý(𝑧)
𝜎 â

ä

§å

§æ

§ç
(𝑆37) 

 
where 𝑥d is the starting position of the cell, and 𝑥Y and 𝑥è are reflecting and absorbing 
boundaries respectively, with 𝑥Y < 𝑥d < 𝑥è. We take 𝑥Y as the boundary of the left adhesive 
island, and 𝑥è = 0. To estimate the dwell times, we use quartic fits to the inferred potentials 
and subsequently use numerical integration to evaluate equation (S37). 
 
Since we are directly comparing dynamical with steady-state quantities, this yields an 
independent consistency check of the potential landscape model (equation (S35)). However, 
the model fails dramatically (Fig. S23), both quantitatively in terms of the relative change of 
dwell times with changing bridge length, as well as qualitatively. The theoretical model 
predicts an exponential increase of dwell times while the experimental data follows a linear 
trend. 
 

 
 
Figure S22 | Effective potential model (MDA-MB-231). a, Scheme of the effective potential model. 
The process is interpreted as an escape problem over a barrier of height 𝑄. b, Effective potentials 
calculated from the experimental steady state probability distribution. For presentation purposes, 
the 𝑥-axis is normalised by 𝑥d = (𝐿 + 𝑎)/2, where  𝑎 = (36.7	 ± 	0.6)	𝜇m is the side length of the 
adhesive square of the micropattern. 
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Figure S23 | Experimental dwell times compared to the prediction from the effective potential 
model (MDA-MB-231). Note that the overall magnitude of the predicted rates is not determined, as 
the noise strength 𝜎 is unknown within this model. Here, we arbitrarily rescale the dwell times using 
𝜎 = 450	𝜇m	hg(/C	to match the order of magnitude of the observed rates. 
 
Next, we relax some of the assumptions of the model and write down a more general first 
order equation of motion: 
 

�̇� = 𝐹Ý(𝑥) + 𝜎Ý(𝑥)𝜂(𝑡) (𝑆38) 
 
where again 〈𝜂(𝑡)〉 = 0 and 〈𝜂(𝑡)𝜂(𝑡′)〉 = 𝛿(𝑡 − 𝑡′). To infer the terms of this equation, we 
take conditional averages: 𝐹Ý(𝑥) 	=	 〈�̇�	|	𝑥〉 and 𝜎ÝC(𝑥) = ∆𝑡〈[�̇� − 𝐹(𝑥)]C	|	𝑥〉. We are 
indeed able to find these terms (Fig. S24a). However, we find that the inferred noise is 
correlated over timescales comparable to the correlation timescale of the system (Fig. 
S24b), given by the correlation time of the velocity correlation function (Fig. 3g). This implies 
that the white noise assumption of the inference scheme is violated and it is therefore not 
valid. We therefore conclude that a first order model with white noise is inconsistent with 
the experimentally observed dynamics.  
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Figure S24 | Inferred first order model (MDA-MB-231). a, Deterministic term (blue dots) and noise 
strength (red squares) as a function of position for a bridge length of L = 35 µm. b, Correlation 
functions of the inferred noise. 
 

5.2. Second order model with an additively separable deterministic term 
In the main text, we state that the deterministic term 𝐹(𝑥, 𝑣) has a non-separable 
dependence upon position and velocity. Here, we demonstrate this by showing that an 
additively separable deterministic term deviates from our inferred function, and that it 
provides predictions inconsistent with experiment. 
 
An additively separable deterministic term can be expressed as  
 

𝐹3/?(𝑥, 𝑣) = 𝐹§(𝑥) + 𝐹(𝑣) (𝑆39) 
 
From the symmetry of the system, 𝐹3/?(𝑥, 𝑣) = −𝐹3/?(−𝑥,−𝑣), and thus 𝐹§(𝑥) = −𝐹§(−𝑥) 
and similarly 𝐹(𝑣) = −𝐹(−𝑣). This implies that 𝐹§(0) = 𝐹(0) = 0 and therefore 𝐹§(𝑥) =
𝐹(𝑥, 𝑣 = 0) and 𝐹(𝑣) = 𝐹(𝑥 = 0, 𝑣). We can therefore directly reconstruct from 
𝐹(𝑥, 𝑣)	what 𝐹3/? should be, if the deterministic term has the separable form of equation 
(S30): 
 

𝐹3/?(𝑥, 𝑣) = 𝐹(𝑥, 𝑣 = 0) + 𝐹(𝑥 = 0, 𝑣) (𝑆40) 
 
This separable model exhibits deterministic dynamics that is qualitatively different to the 
dynamics of 𝐹(𝑥, 𝑣) (Fig. S25), and predicts stochastic dynamics inconsistent with 
experiment, as the simulated trajectories rapidly exit the sampled phase space. 
 
We thus conclude that the inferred deterministic dynamics cannot be captured by a model 
of this form with a deterministic term that is additively separable in position and velocity. In 
Supplementary Section S5.1, we ruled out an energy potential formulation based on a first 
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order equation of motion. Here, we also show that the confined cell migration we observe is 
incompatible with a second order model which includes an energy potential, as such a 
model would have to be separable in position and velocity. Our theory therefore rather 
belongs to the class of non-linear limit cycle oscillators, such as the classic van der Pol 
oscillator (See section 5.4), which is also not additively separable.  
 

 
Figure S25 | Inferred dynamics of a model with an additively separable deterministic term. a, The 
reconstructed separable deterministic term 𝐹3/?(𝑥, 𝑣) = 𝐹§(𝑥) + 𝐹(𝑣) in units of µm/h2. b, The 
corresponding 𝑥- (red line) and 𝑣-nullclines (blue dots) together with the deterministic trajectories 
(green lines). 
 

5.3. Second order model with constant noise strength 
Within the framework of the second order model (equation (1)), we consider an 
approximation of the noise, where we replace the function 𝜎(𝑥, 𝑣) by simple additive noise 
with strength 𝜎d: 
 

𝑑𝑣
𝑑𝑡 	= 	𝐹(𝑥, 𝑣) + 𝜎d𝜂(𝑡) (𝑆41) 

 
We therefore infer the constant noise amplitude 	𝜎d from the experimental data and 
subsequently compare the model predictions with the experimental observations. We find 
that 𝑝(𝑥) is qualitatively reproduced, but that the time spent on the bridge is 
overestimated, as we overestimate the probability in the centre of the system but 
underestimate the probabilities on the adhesive islands (Fig. S26a). The velocity distribution 
also exhibits slight discrepancies (Fig. S26b). 
 
The qualitative functional form of 𝑆(𝑡) is also captured (Fig. S26c), but the tail of the 
distributions is underestimated, leading to an underestimation of the average dwell time 
(Fig. S26d). These trends are reproduced on all bridge lengths as well as for the case of 
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MCF10A cells. Taken together, these results show that a model with linear noise captures 
the qualitative but not the quantitative features of the dynamics. To fully capture the cell 
migration on the two-state micropatterns, we thus need a multiplicative noise term.  
 

 
Figure S26 | Statistics of the constant noise strength model (L = 35 µm, MDA-MB-231). a, Position 
probability distribution. b, Velocity probability distribution, plotted semi-logarithmically. c, Survival 
probability distribution. d, Average dwell times as a function of bridge length. Error bars denote 
bootstrap errors. 
 

5.4. The van der Pol oscillator 
The textbook example for a non-linear oscillator that exhibits a limit cycle is the van der Pol 
oscillator18. In the deterministic case, �̇� = 𝐹êëì(𝑥, 𝑣), where 
 

𝐹êëì(𝑥, 𝑣) = 𝜇(1 − 𝑎C𝑥C)𝑣	 − 	𝑥 (𝑆42) 
 
To compare our inferred deterministic term to this well-known example, we show the 
deterministic map as well as the nullclines and deterministic trajectories of equation (S30) 
with parameters 𝜇 and 𝑎 chosen such that the oscillator has a similar period and amplitude 
as our inferred dynamics for L = 35 µm (Fig. S27). 
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Similar to the deterministic term of the hopping cells, the 𝑣-nullcline of the van der Pol 
oscillator,  
 

𝑣 = 	
𝑥

𝜇(1 − 𝑎C𝑥C)
(𝑆43) 

 
gives rise to an unstable fixed point at 𝑥 = 0, and closely approaches the 𝑥-nullcline at the 
maximum of the oscillation, giving rise to the slow dynamics that is characteristic in 
relaxation oscillators. 
 
As we discuss in the main text, the way the effective friction is controlled in our system is 
qualitatively different to the van der Pol oscillator. Specifically, 𝐹êëì(𝑥, 𝑣) is always a linear 
function of 𝑣, and the constant of proportionality and is determined by the position 𝑥. Thus, 
𝐹êëì(𝑥 → 0, 𝑣) = 𝜇𝑣, corresponding to 'negative' friction for all speeds. In contrast, the 
cellular oscillator exhibits a non-linear dependence upon 𝑣 when 𝑥 → 0, with 'negative' 
friction only occurring at small speeds. 

 
Figure S27 | Comparison of 𝑭(𝒙,𝒗) to the van der Pol osillator equation of motion. a, b, the van 
der Pol dynamics 𝐹êëì(𝑥, 𝑣) given by equation (S42). c, d, The inferred deterministic dynamics 
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𝐹(𝑥, 𝑣) of the confined cells (MDA-MB-231, L = 35 µm), calculated by fitting to a Fourier expansion 
as described in section S3.5 (M, N = 2). In a, c, we show the deterministic acceleration as a function 
of 𝑥 and 𝑣 in units of µm/h2. b, d show the nullclines �̇� = 0 (red) and �̇� = 0 (blue) together with the 
deterministic trajectories starting from a range of initial conditions. In 𝐹êëì(𝑥, 𝑣), the parameters 
are 𝜇 = 1.86 and 𝑎 = 0.07. 
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6. Supplementary Results 
 
To evaluate the agreement between experiment and model (equation (1)), we compare the 
survival probability distributions (Fig. S15). In the main text, a number of plots (Figures 2c; 
3a, c, e; 4a, d, e) are shown for a single bridge length. Here, we show the same plots for all 
bridge lengths (Figs. S16-S22). 
 

 
Figure S28 | Deterministic contributions 𝑭(𝒙, 𝒗) in units of µm/h2. In the main text, a linearly 
interpolated version is shown for presentation purposes. Here we show the raw data as obtained 
from the inference procedure. Dashed black lines correspond to the positions 𝑥 = ±𝐿/2. 
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Figure S29 | The noise strength 𝝈(𝒙,𝒗) in units of µm/h3/2. In the main text, a linearly interpolated 
version is shown for presentation purposes. Here we show the raw data as obtained from the 
inference procedure. Dashed black lines correspond to the positions 𝑥 = ±𝐿/2. 
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Figure S30 | Probability distributions of position and velocity. Shown here for each of the six bridge 
lengths not shown in the main text, the MCF10A data, and the system without constriction. Each 
subfigure shows the the joint probability distribution of position and velocity 𝑝(𝑥, 𝑣) (colorplot, 
plotted logarithmically). The line plots display the marginal probability distributions of position 𝑝(𝑥) 
and velocity 𝑝(𝑣) (semi-logarithmically) given by the experiment (blue) and the model (red). 
 
 

 
Figure S31 | The correlation functions of velocity and inferred noise. The correlation function of the 

inferred noise ∆𝑊(𝑡) = ∫ 𝜂(𝑡)	d𝑡c�∆c
c  is shown by the dotted blue line. The velocity correlation 

functions from experiment (solid blue line), and the associated model prediction (red line) are each 
based on one of two halves of the entire data set. ∆𝑡 = 10 min is the experimental sampling 
interval. 
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Figure S32 | Survival probability distributions. Comparison of the experimental observation (blue) 
and the model prediction (red) for all two-state systems. Experimental data and model prediction 
are based on mutually exclusive halves of the recorded data, as explained in Supplementary Section 
S3. 
 

 
Figure S33 | Trajectories and flow fields of the deterministic term. Shown for the bridge lengths not 
shown in the main text. Arrows indicate the local direction of flow, where accelation is orange and 
deceleration is blue, and green lines correspond to trajectories of the deterministic dynamics. 
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Figure S34 | Nullclines of the deterministic dynamics. The nullclines �̇� = 0 and �̇� = 0 are shown by 
the red line and blue dots respectively. They are obtained from the symmetrised version of the 
deterministic term (see Section S3.4). For MDA-MB-231 (a-e, h, i), the green lines indicate the stable 
limit cycle attractor, while green crosses show the locations of the stable fixed points for MCF10A 
(g). The result for L = 35 µm is shown in Fig. 4e in the main text.  
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Figure S35 | The frictional component 𝑭(𝒙 → 𝟎, 𝒗). In the main text, the frictional component of 
the symmetrised dynamics is shown. Here we shown the non-symmetrised versions, which show the 
same qualitative features. a, Here shown for all seven bridge lengths used for MDA-MB-231 cells. b, 
Equivalent to Fig. 4d, but with non-symmetrised data. 
 

 
Figure S36 | Cell dynamics in an asymmetric two-state system with square edge lengths 42 µm and 
27 µm (MDA-MB-231). a, The deterministic component 𝐹(𝑥, 𝑣) in units of µm/h2. b, The noise 
strength 𝜎(𝑥, 𝑣) in units of µm/h3/2. Dashed black lines correspond to the positions 𝑥 = ±𝐿/2. Both 
𝐹 and 𝜎 are shown here as a linear interpolation. c, d, Experimental (blue) and predicted (red) 
probability distributions of position (c) and velocity (d, plotted semi-logarithmically). e, Velocity 
correlation function. 
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† corresponding author

Journal of the Royal Society Interface 17, 20190689 (2020)

https://royalsocietypublishing.org/doi/10.1098/rsif.2019.0689


 

Disentangling the Behavioural Variability of Confined Cell Migration 
 
David B. Brückner1, Alexandra Fink2, Joachim O. Rädler2, Chase P. Broedersz1+ 
 
1 Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig- 
Maximilians-Universität, München 
2 Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München  
 
+ corresponding author (c.broedersz@lmu.de) 
 
 
 

Cell-to-cell variability is inherent to numerous biological processes, including cell 
migration. Quantifying and characterizing the variability of migrating cells is 
challenging, as it requires monitoring many cells for long time windows under identical 
conditions. Here, we observe the migration of single human breast cancer cells (MDA-
MB-231) in confining two-state micropatterns. To describe the stochastic dynamics of 
this confined migration, we employ a dynamical systems approach. We identify 
statistics to measure the behavioural variance of the migration, which significantly 
exceed those predicted by a population-averaged stochastic model. This additional 
variance can be explained by the combination of an 'aging' process and population 
heterogeneity. To quantify population heterogeneity, we decompose the cells into 
subpopulations of slow and fast cells, revealing the presence of distinct classes of 
dynamical systems describing the migration, ranging from bistable to limit cycle 
behaviour. Our findings highlight the breadth of migration behaviours present in cell 
populations. 

 
 
On all scales of life, the behaviour of single organisms is intrinsically variable, both as a 
function of time and between individuals. A number of studies have quantified the inter-
individual variations in behaviour in a broad range of systems, from bacteria [1–4] to 
protozoans [5,6], fruit flies [7], mice [8], and humans [9,10]. However, even in populations of 
single mammalian cells with identical genomes, the intrinsic stochasticity of intra-cellular 
processes such as gene expression, cytoskeletal rearrangement and protein localization can 
lead to large differences in the proteomes of individual cells [11–15]. Further downstream, 
this diversity leads to cell-to-cell variability (CCV), i.e. phenotypic or population 
heterogeneity, at the level of whole-cell behaviours, such as growth rate, drug response, 
morphology, and migration [16–20]. In the case of migrating cells, CCV has profound 
implications at larger scales for the behaviour of cell clusters, such as their ability to chemotax 
[21], invade surrounding tissue [22] and perform collective motion [23,24]. Thus, CCV is 
increasingly well understood at the molecular level, and its implications for collective 
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behaviour are becoming clearer. However, the detection and quantitative characterization of 
this variability in ensembles of individual migrating cells remains challenging; such a 
characterization requires both an appropriate theoretical framework and data sets where 
migrating cells are monitored over a sufficiently long time under identical conditions. 
 
Cell migration is a key feature of many cell types, including immune, epithelial and cancer 
cells. The movement of such cells is powered by an intricate machinery that relies on the 
coordination of vast numbers of molecular constituents, whose collective dynamics are key 
in generating the persistent motion of cells [25,26]. Despite this underlying complexity, a 
number of studies have shown that the emergent migratory dynamics at the cellular scale can 
be quantitatively captured by relatively simple stochastic equations of motion [6,27–34]. This 
approach has been successfully applied to migration on uniform, two-dimensional surfaces 
[6,27–30,35], and recently to cells migrating in confinement [32,33]. However, to determine 
the structure and parameters of such stochastic models, the dynamics are typically averaged 
across different cells and over time, yielding ensemble- and time-averaged (ETA) models that 
describe the average member of a cell population, and thus fail to capture phenotypic 
heterogeneity [15,36]. Similarly, bottom-up models for cell motility typically assume that all 
cells in a population can be described by a common set of parameters [37–45]. 
 
To characterize heterogeneity in cell migration, a super-statistical framework was previously  
applied to cell migration [46]. By fitting a persistent random motion model with time-
dependent parameters to migration in a variety of environments, large variations in cell 
behaviour were revealed both in time and between individuals. Another approach has been 
to construct a phenotypic space through dimensional reduction, which identifies the aspects 
of behaviour that vary most between individuals [5]. However, in both approaches, the 
presence of time- and population-heterogeneity is assumed from the start. It thus remains 
unclear how much of the observed variability is due to real heterogeneity, and how much is 
due to the intrinsic stochasticity of the migration process. A central difficulty in detecting 
phenotypic heterogeneity in cell migration is the short time window of a trajectory of an 
individual cell, which is limited by cell division. Thus, even for a hypothetical population of 
identical cells whose migration can be described by a single equation of motion, one would 
expect to observe statistical differences between individual trajectories due to the limited 
observation time of the experiment. A key challenge is therefore to distinguish such apparent 
variability in short trajectories from real inter-individual variability. To detect and characterize 
CCV in behaviour, it would therefore be helpful to have a model system for which a 
quantitative theory for the ensemble-averaged behaviour of the cells has been developed. 
Such an ETA model can then provide a reference to identify observables that are sensitive to 
potential phenotypic heterogeneity in the population.  
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In previous work [32,33], we analyzed the time-trajectories of single breast cancer cells (MDA-
MB-231) confined to two-state micropatterns, in which these cells repeatedly transit across 
a thin constriction. This system mimics the extra-cellular environment cells face in 
physiological settings, in which they navigate confining structures and squeeze through thin 
channels and constrictions [47–59]. An important advantage of this setup is that it allows us 
to quantitatively monitor the behaviour of a large population of cells in identical, standardized 
surroundings, suppressing extrinsic sources of heterogeneity in the trajectories. The overall 
dynamics of this two-state migration are well described by a stochastic equation of cell 
motion, with a deterministic and stochastic contribution that can be inferred from the short 
time-scale data observed experimentally. This model accurately reproduces the ensemble- 
and time-averaged statistics including the dwell time distribution, the distributions of position 
and velocity, and the velocity autocorrelation function. 
 
Here, we develop a theoretical approach to address the behavioural variability of confined 
cell migration arising through phenotypic heterogeneity and time-dependent dynamics. To 
this end, we identify a statistic that reveals the intrinsic variability of the migration in two-
state micropatterns: the variance in the number of transitions a single cell performs in a given 
time. The sensitivity of this statistic to variability arises because it measures single-cell 
behaviour accumulated over long periods of time, beyond the time-scale of a single transition, 
and compares this to the population average. Indeed, we find that this variance significantly 
supersedes the prediction of the ensemble-averaged model. We account for this observation 
by two effects: a time-dependent 'aging' effect and phenotypic heterogeneity. From the 
trajectory data, we show that the average acceleration of the cells gradually decreases over 
time, leading to a decrease in hopping activity. Furthermore, we propose to capture 
phenotypic heterogeneity by inferring migration behaviour for subpopulations of cells. 
Specifically, we find that by splitting the cell population by transition time into only two 
subpopulations, we can capture most of the inter-cell variance. These subpopulations are 
described by distinct classes of dynamical systems, with fast cells performing limit cycle 
oscillations while slow cells exhibit excitable bistability. Thus, our approach reveals a striking 
breadth of migratory behaviours within a cell population, paving the way to investigate the 
origins and functional implications of such variability. 
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Fig 1. Equation of motion for an ensemble of cells migrating on two-state micropatterns (L = 16 µm).  
(a) Time series of a single cell migrating on a two-state micropattern with bridge length L = 16 µm 
(scale bar: 20 µm). (b) Trajectories of the cell nucleus as a function of time, plotted from t = 0 to t = 50 
h, for a collection of cells. The two trajectories shaded in grey correspond to supplementary videos S1 
and S2, providing examples of a 'slow' and 'fast' cell, respectively. (c) Distribution of dwell times 
observed experimentally (blue) and predicted by an ensemble-averaged equation of motion (red). The 
dashed line indicates the probability distribution of a Poisson process with the same mean dwell time, 
defined by 𝑝(𝜏) = 𝜐𝑒()*, with 𝜐 = 1/〈𝜏〉/,1. Inset: inter-cellular variance 𝜎(〈𝜏(𝑗)〉/) observed in 
experiment, plotted against the prediction by the ETA model. (d) The deterministic term 𝐹(𝑥, 𝑣) of 
the ETA model in units of µm/h2. (e) The ETA model noise strength 𝜎(𝑥, 𝑣) in units of µm/h3/2. 
 
 
Cells perform non-Poissonian transitions on two-state micropatterns 
 
To develop a quantitative framework for the variability of migrating cells, we employ two-
state micropatterns, in which cells are confined to a standardized geometry consisting of two 
square adhesive sites connected by a bridge of length 𝐿 (Fig. 1a). In this environment, we 
previously found that MDA-MB-231 breast cancer cells perform repeated transitions between 
the adhesive sites [32]. This setup provides a minimal system to study how cells respond to 
the presence of thin constrictions and ensures that all cells in the population interact with an 
identical micro-environment. 
 
Interestingly, the trajectories of the cells, which we define by the position of the nucleus 
center, exhibit large variations both in time and across individuals in the population (Fig. 1b; 
supplementary movies S1 and S2). Accordingly, the probability distribution of dwell times 
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exhibits a large spread (Fig. 1c). This raises a key question: Can the experimentally observed 
variation be explained by a single stationary stochastic process with time-independent 
parameters identical for all individuals?  
 
The two-state migration assay provides an ideal platform to address this question. Previously,  
we have identified a stochastic equation of cell motion that captures the ensemble- and time-
averaged behaviour of cells on this micropattern [32]. This equation takes the form 
 

𝑑𝑣
𝑑𝑡 	= 	𝐹(𝑥, 𝑣) + 𝜎(𝑥, 𝑣)𝜂(𝑡) (1) 

 
where 𝜂(𝑡) represents Gaussian white noise with 〈𝜂(𝑡)〉 = 0 and 〈𝜂(𝑡)𝜂(𝑡′)〉 = 𝛿(𝑡 − 𝑡′). 
Here, the deterministic term 𝐹(𝑥, 𝑣) = 〈�̇�|𝑥, 𝑣〉/,1 (Fig. 1d) and the noise strength 𝜎D(𝑥, 𝑣) =
∆𝑡〈[�̇� − 𝐹(𝑥, 𝑣)]D|𝑥, 𝑣〉/,1 (Fig. 1e) are inferred from the short time-scale cell dynamics 
measured experimentally [60–62], where 〈Θ〉/,1 indicates time- and ensemble-averaging of 
the observable Θ (see Methods). The terms 𝐹(𝑥, 𝑣) and 𝜎(𝑥, 𝑣) thus show the average 
acceleration of the cell as a function of its position in 𝑥𝑣-phase space, and the magnitude of 
stochastic fluctuations, respectively. In the case of the MDA-MB-231 cell line considered here, 
the deterministic term exhibits non-linear dynamics in the form of a limit cycle, indicating that 
the cellular transitions can be interpreted as noisy non-linear oscillations (Fig. 1d). We have 
shown that this model accurately captures the key statistics of the cell migration, including 
the dwell time distribution (Fig. 1c), as well as the distributions of position and velocity and 
the velocity correlation function [32].  
 
To probe the limits of the ETA approach, we first test whether it also quantitatively predicts 
the dwell time distributions at the single-cell level. To do so, we simulate the model with the 
same observation time per cell as recorded experimentally. To measure cell-to-cell variability, 
we obtain the average dwell time 〈𝜏(𝑗)〉/  for each single cell j and then determine the 
standard deviation 𝜎(〈𝜏(𝑗)〉/) of these single-cell averages, giving a measure of the inter-cell 
variance. Clearly, in the limit of infinitely long trajectories, the inter-cell variance in the 
ensemble-averaged model should vanish; therefore, the finite variance we find here for 
simulated trajectories is simply due to finite trajectory length. Interestingly, however, we find 
that the experimental inter-cell variance significantly exceeds that predicted by the ETA 
model for this trajectory length (inset Fig. 1c). This suggests that there are significant 
variations from cell to cell, which cannot be accounted for by the ETA model.  We therefore 
hypothesize that the cell population exhibits phenotypic heterogeneity detectable at the level 
of cell trajectories. 
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The presence of phenotypic heterogeneity could lead to apparent temporal correlations in 
behaviour that persist for the whole life of a cell, up to division. To further quantify the overall 
variability in the transition behaviour, we thus need to consider statistics that could be 
sensitive to correlations over a range of time-scales, spanning from a single transition time 
up to the division time. A common way to quantify the overall variability of transition 
processes is to determine the ratio between mean and variance in the number of transitions 
within a given time interval. Thus, we measure the distribution function of the hopping 
statistics, which is given by the probability distribution 𝑝(𝑁, 𝑇) to observe 𝑁 transitions of a 
cell in a given time interval 𝑇 (Fig. 2a). Importantly, to determine the statistics of the 
observable 𝑁, we monitor the behaviour of a single cell over a wide range of time-scales, 
extending well beyond the average transition time. We therefore expect this statistic to be 
particularly sensitive to behavioural heterogeneity in a population, where some cells might 
have the tendency to consistently perform slower- or faster-than-average transitions.  
 
As the observation time interval is increased, both the mean 𝜇(𝑇) and variance ΣD(𝑇) of these 
distributions increase (inset Fig. 2a). The simplest 'hopping' process with such a distribution 
is the Poisson process, for which 𝜇 = ΣD. Interestingly, this is not the case here (Fig. 2b). 
Instead, at short time-scales, the transitions are sub-Poissonian with a mean that exceeds the 
variance (𝜇 > ΣD), while beyond a cross-over time-scale 𝑇∗, the variance exceeds the mean, 
𝜇 < ΣD, indicating a super-Poissonian regime. In fact, as we vary the length 𝐿 of the 
connecting bridge, this behaviour is qualitatively reproduced in all cases (Fig. 2b). The cross-
over time-scale 𝑇∗ scales linearly with the average dwell time 〈𝜏〉/,1, and typically exceeds it 
by a factor of approximately 4 (inset Fig. 2b).  
 
These results show that the ratio between mean and variance in this transition process 
exhibits a subtle dependence on the time-scale on which the system is observed. At short 
time-scales, up to a few times the average dwell time, we observe a smaller variance than in 
a Poisson process, which is defined by a transition probability that is constant in time. Similar 
sub-Poissonian behaviour is found, for instance, in the stepping behaviour of molecular 
motors, where it was rationalized as a consequence of an underlying multi-step scheme that 
has to be executed before a large step can be made [63]. Analogously, here we might argue 
that during the cellular transitions in the two-state confinement, a number of cytoskeletal 
and shape rearrangements have to occur between transitions, which leads to fewer short 
dwell times than would be expected from a Poisson process (Fig. 1c). On long time-scales, 
however, the transition variance starts to significantly exceed the mean. Such super-
Poissonian statistics have previously been observed, e.g. in RNA-transcription [64], and were 
attributed to cell-to-cell variations in the transcription rates [65]. 
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Fig 2. Transition number statistics of hopping cells. (a) Probability distributions of the number of 
transitions 𝑁 of a single cell in a given time interval 𝑇, indicated by the colours. Inset: Variance ΣD and 
mean 𝜇 of the number of transitions as a function of the time interval 𝑇. The grey vertical bar indicates 
the cross-over time-scale 𝑇∗. (b) Variance plotted against the mean for all bridge lengths. The dashed 
line corresponds to the Poisson behaviour 𝜇 = ΣD. Inset: Cross-over time-scale 𝑇∗ plotted as a 
function of 〈𝜏〉/,1. Black line corresponds to a linear fit. (c) Mean-variance curve observed 
experimentally (blue) compared to the prediction by the stochastic model (red) and the expectation 
from random sampling of the experimental dwell time distribution (open symbols). In green, orange 
and yellow, we show predictions of the model with a noise amplitude scaled by factors 𝜆 =
0.1, 0.4, 0.7. (d) Mean and variance predicted by the model plotted against experimental values. 
Panels (a), (c), (d) correspond to bridge length L = 16 µm. 
 
 
Observed variability exceeds that of a single stochastic process 
 
The observation of non-Poissonian statistics does not necessarily indicate cell-to-cell 
variability. To investigate the origin of the non-Poissonian statistics in the hopping behaviour 
of cells, we test our inferred ETA model (Eq. (1)) by comparing the predicted mean-variance 
curve to that measured experimentally. Strikingly, the ETA model predicts a qualitatively 
different, purely sub-Poissonian trend (Fig. 2c). While this model accurately predicts the 
average dwell time 〈𝜏〉/,1, and thus also the mean of the hopping distribution 𝜇, it 
underestimates the variance (Fig. 2d). 
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The behaviour of the statistics predicted by the ETA model can be understood intuitively: in 
a system with no noise (𝜎(𝑥, 𝑣) = 0), we observe regular limit cycle oscillations, with zero 
variance. To investigate how different noise levels theoretically affect the hopping variance, 
we introduce an artificial prefactor 𝜆 to scale the noise: �̇� = 𝐹(𝑥, 𝑣) 	+ 	𝜆𝜎(𝑥, 𝑣)𝜂(𝑡). As 𝜆 is 
increased from 0 to 1, we find that the variance gradually increases (Fig. 2c). At the 
experimentally inferred noise level 𝜆 = 1, the system still appears to be dominated by the 
underlying deterministic oscillation period, giving rise to a sub-Poissonian process at all time-
scales. Thus, while the ETA model predicts many statistics of the motion correctly, including 
the short time-scale variability, it falls short of capturing variability in the hopping behaviour 
on longer time-scales. 
  
Next, we investigate the origin of the super-Poissonian regime directly from experimental 
data. If we assume that all cells follow the same equation of motion with identical parameters, 
and that these parameters do not vary in time, then each cell can be described by the same 
time-independent dwell time distribution 𝑝(𝜏). In other words, the hopping distribution 
𝑝(𝑁, 𝑇) should be fully constrained by 𝑝(𝜏) and the stationary correlations between hops 
[63]. Interestingly, if we generate a trajectory of 'hops' by random independent sampling from 
the population dwell time distribution, we recover the same sub-Poissonian mean-variance 
relation as predicted by the inferred ETA model (Fig. 2c). This indicates that the transition 
time of subsequent hops in the ETA model have negligible correlations, while the 
experimental data may exhibit correlations extending over multiple hops.  
 
By time- and ensemble-averaging, we miss this aspect that influences the long time-scale 
variability of the motion. In the next sections, we therefore carefully assess the validity of our 
assumptions of time-invariance and population homogeneity. 
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Fig 3. Testing time-invariance. (a) Hopping rates 1/〈𝜏(𝑡)〉1 as a function of time for all bridge lengths. 
Here, for a stay from 𝑡S to 𝑡D, with 𝜏 = 𝑡D − 𝑡S, we define the time at which the stay occurred as 
𝑡TUVW = (𝑡S + 𝑡D)/2. The quantity 〈𝜏(𝑡)〉1 is then averaged over the cell population and in time 
windows of width 5 h (Supplementary Section S5). Shaded intervals correspond to standard error in 
the mean. Note that we cannot extrapolate this trend beyond 𝑡 ≈ 40h, as this is the time-scale of cell 
division. (b) Root-mean-square acceleration of the cells as a function of time, averaged across the 
ensemble in each time frame (L = 16 µm). Black line corresponds to a linear fit. Inset: Hopping rates 
as a function of time predicted by the aging model compared to the experimental observation (L = 16 
µm). 
 
Attenuation of cell dynamics enhances transition variability 
 
To investigate if the cellular hopping process indeed violates time-invariance, we measure the 
hopping rates 1/〈𝜏(𝑡)〉1 as a function of time. The rate slowly decreases with time, indicating 
that the cell migration is slowing down over time (Fig. 3a). Similarly, the root-mean-square 
(r.m.s.) acceleration decreases roughly linearly as a function of time, by almost a factor of two 
(Fig. 3b). Note, however, that the cell population in this experiment is not cell-cycle-
synchronized, such that t = 0 does not necessarily correspond to the same moment in the cell 
cycle for all cells. The decrease in acceleration we identify thus simply indicates the 
approximate trend observed in this experiment, giving the average behaviour of an aging 
population. 
 
Clearly, the average acceleration is changing significantly over time. To incorporate this into 
the model, we postulate that most of the time-dependence can be accounted for by 
introducing an overall time-dependent pre-factor into the equation of motion, which we term 
the aging model: 
 

𝑑𝑣
𝑑𝑡 	= 	𝛼(𝑡)[𝐹(𝑥, 𝑣) + 𝜎(𝑥, 𝑣)𝜂(𝑡)] (2) 

 

where 𝛼(𝑡) = \〈�̇�D(𝑡)〉1/\〈�̇�D〉/,1. Here, \〈�̇�D(𝑡)〉1 is the ensemble averaged r.m.s. 
acceleration as a function of time which is determined in every time frame, and is normalized 
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by  \〈�̇�D〉/,1, the r.m.s. acceleration averaged over all time and cells. This implementation 
accurately reproduces the time-dependence of the hopping rates (inset Fig. 3b). Remarkably, 
this simple approach also significantly improves our estimate of the hopping variance ΣD (Fig. 
4e). An alternative approach to incorporate time-dependence into our model would be to 
infer, for example, separate early- and late-stage models, corresponding to the first and 
second half of the experiment. We tested such an approach and found that the resulting 
predictions did not improve the estimate of the transition variability (Supplementary Section 
S1). However, even the more successful pre-factor aging approach underestimates the 
experimentally observed variance, suggesting that another effect needs to be accounted for. 
 
 

 
Fig 4. Detection and characterization of cell-to-cell variability. (a) All cell trajectories 𝑥(𝑡) plotted as 
a function of time, from t = 0 to t = 50 h. The cells are ranked by their average single-cell dwell time 
〈𝜏(𝑗)〉/, with the fastest cells at the top and the slowest at the bottom. The blacked dashed line 
indicates the 50:50 subpopulation split. Note, we exclude the first and last stay of each trajectory from 
the analysis throughout, as they are defined by the start and end of measurement, respectively, or by 
cell division, and are therefore not part of the hopping process. (b) Experimental observations plotted 
against ETA model predictions for various variance measures for all six bridge lengths: the population 
variance of all dwell times 𝜎(𝜏), the inter-cell variance 𝜎(〈𝜏(𝑗)〉/), and the intra-cell variance 
〈𝜎(𝜏(𝑗))〉1. All variances are plotted as standard deviations. The green line indicates a linear fit to the 
inter-cell variance points, which has a slope of 2. (c) Fractional error in the prediction of various 
quantities as a function of the number of subpopulation models. In each case, the population is 
divided evenly into subpopulations of equal size. (d) Fractional error in various quantities as a function 
of the location of the subpopulation split, defined as the number of fast cells in the two-type 
subpopulation model. Symbols are defined in the legend of panel (c). (e) Mean-variance curves of the 
ETA model (Eq. (1); red dots), the aging model (Eq. (2); open dots) and the aging subpopulation model 
(open diamonds) in which two subpopulation models are combined with the time-dependent 
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prefactor. Experimental data is shown by blue dots. Panels (a), (c)-(e) correspond to bridge length L = 
16 µm. 
 
 
Population heterogeneity is captured by a decomposition into subpopulations 
 
In the previous section, we showed that by time averaging, we miss an important contribution 
to the hopping variance caused by the gradual decrease in the acceleration of the cells. 
Similarly, in the inference of the ETA model, we have employed ensemble averaging, and have 
thus assumed that all cells follow the same equation of motion with identical parameters. 
However, individual cells of the same cell line may have variations in their genome [66], but 
even in an isogenic population of cells, we expect there to be phenotypic differences between 
cells [11,12,17,67]. Thus, we next consider the impact of phenotypic heterogeneity on our 
model. 
The ETA model performs well in predicting the variance of the population distribution 𝜎(𝜏) 
(Fig. 4b). Moreover, the ETA model gives a good estimate of the intra-cellular variance, 
defined as the average variance of dwell times within the life time of a single cell 〈𝜎(𝜏(𝑗))〉1. 
This suggests that the ETA model accurately captures the variance of behaviour within the life 
time of a single cell. We therefore do not consider switching between different 'modes' of 
movement [35,46,68]. However, we found that the inter-cellular variance 𝜎(〈𝜏(𝑗)〉/)  is larger 
in experiment than predicted by the ETA model (inset Fig. 1c), indicating that the cell 
population may exhibit phenotypic heterogeneity. 
 
In principle, a natural approach to tackle inter-cellular variability within the framework of our 
stochastic nonlinear model would be to infer single-cells models. For a population of n cells, 
we would then infer n models, and we could investigate how these would distribute over 
model space. However, due to the finite division time of the cells, reliably inferring the 
deterministic and stochastic components for a single cell is challenging. Instead, we therefore 
propose to rank the population of cells by their average dwell time 〈𝜏(𝑗)〉/, and then split the 
population into subpopulations of cells with similar average hopping rates (Fig. 4a). 
Importantly, the ranking of the cells is uncorrelated with the trajectory length, suggesting that 
it is not determined by the cell cycle stage of the cell. We then infer separate stochastic 
nonlinear models for each of the subpopulations, generate trajectories for each model, and 
finally analyze a population of trajectories made up of these subpopulation-trajectories.  
 
Interestingly, performing this procedure for only two subpopulations already significantly 
improves our estimate of the inter-cellular variance (reducing the relative error by more than 
a factor of 2), while not significantly affecting the prediction of other quantities such as the 
population mean and variance (Fig. 4c). However, further increasing the number of 
subpopulations does not appear to significantly improve predictions, suggesting that the 
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dominant contribution to this heterogeneity can be captured by two phenotypes. These 
results indicate that CCV in this system is well approximated by a decomposition into two 
subpopulations.  
 
As an alternative approach to subpopulation models, we tested a model in which we 
measured an overall rescaling prefactor for each single cell, in a similar spirit to our approach 
to the 'aging' effect. However, this approach does not predict the correct population averaged 
dwell time 〈𝜏〉/,1 and furthermore does not lead to an improvement in the estimate of the 
transition variance (Supplementary Section S3). 
 
Given that a splitting into two subpopulations appears to be the simplest effective approach, 
we next asked whether there is an optimal way of doing so. To answer this question, we vary 
the fraction of cells included in the fast model. Interestingly, we find that the model performs 
optimally for a 50:50 split of the cell population (Fig. 4d). Thus, through the quantitative 
nature of our approach, we are able to identify the most natural way of decomposing the cell 
population into subpopulations, by optimizing the predictive power of the model. In general, 
one could imagine other scenarios than a predictive optimum at 50:50, for example, if there 
are two clearly distinct phenotypes in the population with an uneven distribution. In contrast, 
the actual variation of cellular identities in the experimental data appears to be continuous 
from very slow to very fast cells (Fig. 4a). This is further supported by the observation that 
the distributions of single cell observables, such as dwell times and speeds, exhibit unimodal 
distributions, with no clear peak structure that would indicate subpopulations 
(Supplementary Section S2). However, while the ETA model cannot capture the width of these 
unimodal distributions, the subpopulation model captures it well (Supplementary Section S2). 
The 50:50 decomposition into subpopulations therefore represents a first approximation to 
characterize the continuous variability in the ensemble, which we will thus use in the 
remainder of the paper. 
 
To put the two-type decomposition to a test, we construct a model that accounts for both 
CCV and aging by using the slow and fast models, both including the same time-dependent 
prefactor 𝛼(𝑡). Strikingly, this aging subpopulation model can accurately predict the mean-
variance curve observed experimentally, indicating that both effects need to be accounted 
for to capture the behavioural variability of confined cell migration (Fig. 4e). As expected, the 
mean-variance curves of the subpopulations are thus also accurately predicted by the 
subpopulation models when aging is included (Supplementary Section S4). Furthermore, the 
aging subpopulation model accurately captures the other statistics that were already well-
predicted by the ETA model, such as the dwell time, the position and velocity distribution and 
the velocity auto-correlation function (Supplementary Section S4). Taken together, these 
results indicate that the cell migration in this system exhibits phenotypic heterogeneity 
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detectable at the level of cell trajectories that can be captured by an equation of motion with 
two sets of parameters, for a 'fast' and a 'slow' subpopulation of approximately equal sizes; 
on top of this, the subpopulations homogenously age over time, in the form of a gradual 
slowing down which is similar for all cells.  
 

 
Fig 5. Subpopulation models (L = 16 µm). (a), (d) Deterministic terms 𝐹(𝑥, 𝑣) in units of µm/h2. (b), 
(e) The noise strengths 𝜎(𝑥, 𝑣) in units of µm/h3/2. (c), (f) Deterministic flow fields and trajectories. (g) 
Local deterministic accelerations in the slow model plotted against those in the fast model. (h) The 
difference between the slow and fast deterministic terms as a function of position in phase space. 
Panels (a)-(c) correspond to the fast subpopulation, while panels (d)-(f) correspond to the slow 
subpopulation. 
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Subpopulations exhibit distinct non-linear dynamics 
 
Our theoretical framework allows us to pinpoint the key aspects of the cellular dynamics that 
are sensitive to population heterogeneity. To conceptualize the deterministic dynamics, we 
plot the flow fields in 𝑥𝑣-phase space that describe how the purely deterministic system 
evolves in time (Fig. 5c, f). Here, the region of phase space in which the cell is deterministically 
accelerating is coloured in orange. This shows that the cells exhibit a deterministic 
amplification that drives the transitions across the constriction, as we observe deterministic 
acceleration just before the cell enters the thin constriction. Interestingly, we find that both 
subpopulation models exhibit similar qualitative features as the ETA model, including this 
characteristic amplification stage (Fig. 5a, c, d, f). Moreover, the dynamics exhibit similar noise 
hotspots as in the ETA model (Fig. 5b, e) in states where the cells initiate transition attempts. 
However, we find that the deterministic acceleration in the amplification phase is larger in 
the fast model, and similarly the noise hotspot is more pronounced in this case. Interestingly, 
the differences between the fast and slow models cannot be explained by an overall rescaling 
factor (Fig. 5g), but rather manifest as local deviations in the phase space, which are largest 
in the regions of phase space corresponding to states where the cells initiate the transition 
(Fig. 5h). 
 
The two subpopulation models furthermore exhibit distinct non-linear dynamics: while the 
fast model exhibits a limit cycle, the slow model is bistable (Fig. 5c, f). These bistable dynamics 
are however highly excitable, as the amplification region extends nearly all the way to the 
stable fixed points, meaning that a small perturbation suffices for the system to perform a 
large deterministic excursion to the other fixed point. The transition from limit cycle to 
bistable dynamics is therefore the consequence of a relatively small shift in parameters, 
where only a subtle change in flow is required to modify the system from bistable to limit 
cycle dynamics. Interestingly, while the subpopulations exhibit distinct deterministic 
dynamics, the ETA model is dominated by the limit cycle behaviour of the fastest cells (Fig. 
1d). This appears to be a robust result, as both the early- and late-stage models inferred 
separately for the first and second half of the experiment exhibit limit cycle dynamics, despite 
the slowing down of the average dynamics (Supplementary Section 1).   
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Discussion 
 
In this work, we have developed a quantitative approach for detecting and characterizing 
temporal and inter-individual variability in the behaviour of migrating cells. To detect cell-to-
cell variability (CCV), we used an ensemble-averaged stochastic equation of cell motion as a 
reference to determine the inherent variability of single cells migrating within a confining 
two-state micropattern. This ensemble-based approach successfully captures the key 
statistics of the cell trajectories, such as the dwell time distribution, the distributions of 
position and velocity and the velocity correlations. However, here we identify statistics aimed 
at quantifying the variability of behaviour between cells in the population, and show that they 
are underestimated by the ensemble-averaged model. We extend our framework to capture 
this variability, by performing a decomposition of the cell population into subpopulations of 
similarly behaving cells. This approach then captures the overall variability of the motion and 
reveals that the subpopulations exhibit distinct deterministic nonlinear dynamics. Taken 
together, our results show which statistics of the migration are sensitive to time- and 
population-heterogeneity, and which are well explained by an ensemble-averaged approach. 
 
Using the variance of transition times as a marker for CCV, we found that the experimentally 
observed variability significantly exceeds that predicted by a single stochastic process. This 
indicates that migrating cells exhibit CCV that affects the behaviour at the level of cell 
trajectories. Previous studies have shown that the proteome of single human cells in a 
population exhibits a broad distribution [12], and this variability is frequently interpreted as 
a consequence of the inherent stochasticity of various intra-cellular processes [11]. However, 
CCV at the level of cell behaviour in a population context have in many cases been shown to 
be determined by environmental factors [17,67,69,70], such as external cues like local cell 
density, cell-cell contacts and relative location in a cell cluster. Moreover, previous 
measurements of the phenotypic variability of single cells on micropatterns have shown that 
the distributions of subcellular organelles are remarkably constant [71], a finding that has 
been interpreted to indicate that there is little intrinsic variability in isolated cells [67]. In 
contrast, here we show that isolated migrating cells in identical confining micro-environments 
do exhibit significant variability that is detectable at the behavioural level. 
 
The CCV-sensitive predictions of our model are improved significantly by decomposing the 
cell population into subpopulations. Interestingly, evenly dividing cells into two 
subpopulations of slow and fast cells leads to a model that performs well in predicting inter-
cellular variance. This decomposition reveals subtle differences in the system-level dynamics 
of the subpopulations: the deterministic dynamics of the fast cells exhibit a limit cycle, while 
those of the slow cells are an excitable bistable system. However, an inspection of our data 
does not indicate that there are two discrete types of cell behaviour, but rather suggest a 
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continuum of variation to which a two-type decomposition is a reasonable coarse-grained 
approximation (Supplementary Section S2). At the single-cell level, we would thus expect a 
continuous spread of the population over the parameter space. However, this spread spans 
across the transition line from limit cycle to bistable behaviour, and thus separates the 
population into distinct subpopulations with different non-linear dynamics. This distinction is 
similar to our previous finding that two different cell lines exhibit these two classes of non-
linear dynamics [32]. Specifically, we found that the dynamics of the non-cancerous and less 
invasive [72,73] MCF10A cell line can be described as a bistable system, which is in contrast 
to the limit cycle behaviour of the cancerous MDA-MB-231 cell line that we consider here 
(Fig. 1d). The presence of these two distinct behaviours thus appears to be a more common 
feature of confined two-state cell migration. Our observation here that both behaviours are 
represented among cells of a single cell line highlights the breadth of phenotypic diversity 
present in this population. 
 
Furthermore, we showed that cells gradually slow down over their life-time, an effect that 
can be captured by an overall rescaling factor of the equation of motion. The observed time-
dependence could be related to the fact that cells grow in size over time [74,75] or could 
reflect a mechano-sensitive adaption of cells to their confining environment [76]. Similar 
'aging' effects have been observed in cell populations [77], due to the gradual 'jamming' of 
the growing cell sheet. Our results show that there may be an additional contribution at the 
single-cell level to such observations. Together, the 'aging' effect and the two-type CCV 
implementation lead to a model that quantitatively captures the long time-scale transition 
distribution which characterizes the migratory behaviour of cells in the two-state 
micropattern. 
 
In summary, our work provides a quantitative assessment of the diversity of behavioural 
phenotypes in a cell population. The unique geometry of the two-state micropattern allows 
a natural definition of variability in terms of the variances of the transition behaviour, which 
can be compared to a reference theory for this system. Our quantitative framework may help 
our understanding of cell-to-cell variability in collective systems [21–24,67,77] and provide 
useful tools for inverse approaches that attempt to correlate heterogeneity in behaviour to 
differences in the proteomes of single cells [67,78–81].  
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Methods 
 
Experiments 
We use microscale plasma-induced protein patterning [82] to create standardized cell micro-
environments for MDA-MB-231 human breast carcinoma epithelial cells (DSMZ). The cells are cultured 
in Minimum Essential Medium (MEM, c.c. pro), which is supplemented with 10% FBS (Gibco) and 2mM 
L-Glutamine (c.c. pro). Cells are grown at 37°C in an atmosphere with 5% CO2. For passaging, cells are 
washed and trypsinized for 3 min. This cell solution is centrifuged for 3 min at 1000 rcf, and then cells 
are re-suspended in MEM. Approximately 10,000 cells are added per µ-dish (ibidi GmbH) and left to 
adhere for 4h in the incubator. Subsequently, the medium is exchanged to L-15 medium containing L-
glutamine (Gibco, supplemented with 10% FCS) and 25 nM Hoechst 33342 (Invitrogen) for fluorescent 
staining of cell nuclei. Time-lapse measurements are performed in on an IMIC digital microscope (TILL 
Photonics) or on a Nikon Eclipse Ti microscope. Images in brightfield and fluorescent mode are 
acquired every 10 min for up to 50 h. The samples kept at 37°C in a heated chamber (ibidi GmbH or 
Okolab) throughout the measurements. To extract cell trajectories, first a band pass filter is applied 
to the images of the nuclei. Then images are binarized and ImageJ’s Analyze Particles plugin [83] is 
used to determine the center of the nuclei. A reference boundary of the micropattern is extracted 
from the brightfield images to yield absolute cell positions. Further details can be found in ref. [32]. 
 
Inference of the equation of motion 
The position of the cell nucleus 𝑥(𝑡) is recorded at a time interval ∆𝑡 = 10 min in the experiment. 
Velocity and acceleration are directly calculated as numerical derivatives, given by 𝑣(𝑡) = (𝑥(𝑡) −
	𝑥(𝑡 − ∆𝑡))/∆𝑡 and 𝑎(𝑡) = (𝑣(𝑡 + ∆𝑡) − 	𝑣(𝑡))/∆𝑡, respectively. We interpret equation (1) in the Itô-
sense throughout, and infer 𝐹(𝑥, 𝑣) 	=	 〈�̇�|𝑥, 𝑣〉 and 𝜎D(𝑥, 𝑣) = ∆𝑡〈[�̇� − 𝐹(𝑥, 𝑣)]D|𝑥, 𝑣〉 by conditional 
averaging [61,62,84] in a coarse-grained grid of 30x30 bins. To make optimal use of the available data, 
we exploit the inversion symmetry of the micropattern, which renders the dynamical terms (anti-) 
symmetric: 𝐹(𝑥, 𝑣) = −𝐹(−𝑥,−𝑣) and 𝜎(𝑥, 𝑣) = 𝜎(−𝑥,−𝑣). More details can be found in [32]. 
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0. Movie and data descriptions 
 
Supplementary Movies S1 and S2. Single MDA-MB-231 cells transitioning repeatedly 
between the square adhesion sites of the two-state micropattern. The cell nucleus is 
fluorescently labelled to allow automated tracking of cell positions. The corresponding 
trajectories are shown in Fig. 1b, highlighted by grey shading. Movie S1 corresponds to the 
trajectory in row 3, column 3, while movie S2 corresponds to row 7, column 3. The bridge 
length is L = 16 µm. Scale bar: 20 µm. 
 
Supplementary Data Sets S1 to S6. The data sets S1 - 6 include the trajectories of nuclear 
positions 𝑥(𝑡) for all six bridge lengths L = 6 - 46 µm. In each file, different rows correspond 
to different cells. As trajectories have different lengths, they are padded with NaN entries at 
the end. The time interval is ∆𝑡 = 10 min. 
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1. Description of time-variability with early and late stage models 
 
In the main text, we incorporated the time variability of the cell migration as an overall time-
dependent prefactor to the equation of motion, which we measured from the trajectories. 
An alternative approach to this procedure would be to decompose the temporal dynamics 
into separate stages. The simplest decomposition is a two-stage model, with separate 
parameter sets for the first and second half of the experiment. Inferring these two models, 
we find that they exhibit similar dynamics and that in both cases the deterministic dynamics 
exhibits a limit cycle. However, our simulation of this two-stage model did not improve the 
prediction of the transition variability beyond that of the time- and ensemble-averaged 
model. More fine-grained decompositions, starting with a three-stage decomposition, turned 
out to be problematic as there was then not enough data to accurately infer the latest stage, 
due to the variable length of cell trajectories. We thus do not rule out this approach, but find 
that its execution is hindered by the amount of data available.  

 
Fig S1. Early- and late-stage models (L = 16 µm). (a), (d) Deterministic terms 𝐹(𝑥, 𝑣) in units of µm/h2. 
(b), (e) The noise strengths 𝜎(𝑥, 𝑣) in units of µm/h3/2. (c), (f) Deterministic flow fields and trajectories. 
(g) Mean-variance curves of the ensemble model (red dots) and the 2-stage aging model (open 
triangles) compared to experiment (blue dots). 
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2. Distributions of single cell observables 
 
As we discuss in the main text, the distribution of single cell behaviours appears continuous 
across the population (Fig. 4a). To further quantify this finding, we plot the probability 
distributions of single cell parameters, namely the single cell average dwell times and the 
single cell average speeds (Fig. S2a, b). Indeed, both of these distributions exhibit a unimodal 
structure, with no clear peaks that would indicate subpopulations. However, the ETA model 
significantly underestimates the spread of this peak (Fig. S2c), while our approach of inferring 
two subpopulation models significantly improves the prediction of this distribution. Indeed, 
as shown in Fig. S2d, the decomposition of the dynamics into a slow and fast subpopulation 
gives rise to two significantly distinct subpopulation distributions with distinct peaks, which 
combined give the population distribution (Fig. S2a).  

 
Fig S2. Distributions of single cell observables (L = 16 µm). (a) Probability distribution of single cell 
average dwell times 〈𝜏(𝑗)〉.. (b) Probability distribution of single cell average speeds 〈|𝑣|0〉.. (c) 
Probability distributions of single cell average dwell times 〈𝜏(𝑗)〉.  compared between experiment 
(blue), ETA model (black outline), and the aging subpopulation model (red). (d) Probability 
distributions of the experimentally observed single cell average dwell times 〈𝜏(𝑗)〉. in the slow (light 
blue) and fast (orange) subpopulations. 
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3. Fitting single-cell prefactors 
 
As an alternative approach to inferring subpopulation models to capture CCV with little data, 
we tested a model where we measure a single-cell prefactor, in a similar spirit to the prefactor 
that accounts for the 'aging' effect. Specifically, we postulate that the equation of motion for 
each cell j takes the form 
 

𝑑𝑣
𝑑𝑡 	= 	𝛾(𝑗)[𝐹(𝑥, 𝑣) + 𝜎(𝑥, 𝑣)𝜂(𝑡)] (𝑆1) 

 
where we estimate 𝛾 using 𝛾(𝑗) = ;〈�̇�=(𝑗)〉/;〈�̇�=〉. The experimental data exhibits a broad 
distribution of 𝛾's, significantly broader than that found for a simulation of the ensemble-
averaged model (Fig. S3a). This suggests that the prefactor 𝛾 is able to detect CCV. However, 
it does not correlate strongly with the average dwell time of each cell (Fig. S3b), and a model 
with a combination of the aging prefactor and the single cell prefactor does not predict the 
transition variance well (Fig. S3c) and leads to significant systematic errors in ensemble 
averaged quantities such as the average dwell time (Fig. S3d). We therefore conclude that 
fitting such single-cell prefactors does not provide a quantitatively accurate description of 
CCV in this system. This also makes sense in light of the fact that the key differences in the 
fast and slow subpopulation models are local features in phase space rather than an overall 
rescaling of the whole dynamical landscape (Fig. 5g,h). 
 

 
Fig S3. Single-cell prefactor model.  (a) Probability distributions of single-cell prefactors in experiment 
(blue) and the ensemble-averaged model, simulated with the same amount of statistics as in the 
experiment (red). (b) Correlation plot of the single-cell prefactor with the single-cell average dwell 
time. Each dot represents a single cell. Black line is a linear fit to the data. (c) Mean-variance curves of 
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the ensemble model (red dots), the single-cell prefactor model (open squares) and the single-cell 
prefactor model combined with the prefactor aging model (open pentagons), compared to 
experiment (blue dots). (d) Ensemble-averaged dwell time as a function of the length of the 
connecting bridge, for experiment (blue dots) and the single-cell prefactor model combined with the 
prefactor aging model (open pentagons). Lines correspond to linear fits. Panels (a)-(c) correspond to 
bridge length L = 16 µm. 
 
 
4. Testing the aging subpopulation model 
 
By calculating the mean-variance curves for each subpopulation, we find that neither reaches 
the cross-over to super-Poissonian behaviour in the experimentally accessible time-scales. 
However, both exhibit a qualitatively similar non-linear trend as the population averaged 
result (Fig. 2c). The subpopulation curves are not captured by non-aging models for each 
subpopulation (Fig. S4a,b), but if aging is taken into account, the curves are well predicted 
(Fig. S4c,d). 
 
As a consistency check, we further validate the aging subpopulation model by showing that it 
correctly predicts the time- and ensemble-averaged statistics that were already well 
predicted by the ETA model (Fig. S5). 
 

 
 

Fig S4. Mean-variance curves of the subpopulations (L = 16 µm). (a) Fast subpopulation compared to 
the non-aging fast model. (b) Slow subpopulation compared to the non-aging slow model. (c) Fast 
subpopulation compared to the aging fast model. (d) Slow subpopulation compared to the non-aging 
slow model. 
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Fig S5. Prediction of time- and ensemble averaged statistics by the aging subpopulation model. (a) 
Average dwell time as a function of bridge length. (b) Velocity auto-correlation. (c) Probability 
distribution of cell positions. (d) Probability distribution of cell velocity, plotted on log-linear axes. 
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5. Choice of time window for time-dependence of the dwell times 
 
In Fig. 3a, we show the average dwell time plotted as a function of time. While the root-mean-
square acceleration (Fig. 3b) can be determined in every time frame, we employ averaging 
over a finite time window for the dwell times. This is because the average dwell time is of the 
order of hours, and there is therefore no well-defined measure of an instantaneous dwell 
time. In Fig. S1, we show that our results are not sensitive to the choice of the time window 
used for the averaging. 
 

 
Fig S6. Inverse dwell times as a function of time for different time window averages. Panel (b) is 
shown in the main text. 
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Chapter 5

Cellular responses to varying confinement
size, shape and orientation

This chapter is based on the following publication:

Area and geometry dependence of cell migration in asymmetric two-state
micropatterns

Alexandra Fink, David B. Brückner, Christoph Schreiber, Peter J. F. Röttgermann, Chase
P. Broedersz, Joachim O. Rädler†

† corresponding author

Biophysical Journal 110, 1886-1895 (2020)

https://www.cell.com/biophysj/fulltext/S0006-3495(19)34347-4


 

Area and Geometry Dependence of Cell Migration  
in Asymmetric Two-State Micropatterns 
 

Alexandra Fink1, David B. Brückner2, Christoph Schreiber1, Peter J. F. Röttgermann1, 
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1 Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München  
2 Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig- 

Maximilians-Universität, München 

 
+ corresponding author 

 

 

Micro-structured surfaces provide a unique framework to probe cell migration and 

cytoskeletal dynamics in a standardized manner. Here, we report on the steady-state 

occupancy probability of cells in asymmetric two-state microstructures that consist of 

two fibronectin-coated adhesion sites connected by a thin guidance cue. In these 

dumbbell-like structures, cells transition between the two sites in a repeated and 

stochastic manner and average dwell times in the respective microenvironments are 

determined from the cell trajectories. We study the dynamics of human breast 

carcinoma cells (MDA-MB-231) in these microstructures as a function of area, shape 

and orientation of the adhesion sites. On square adhesive sites with different areas, 

we find that the occupancy probability ratio is directly proportional to the ratio of 

corresponding adhesion site areas. These asymmetries are well captured by a simple 

model for the stochastic nonlinear dynamics of the cells which reveals generic features 

of the motion. Sites of equal area but different shape lead to equal occupancy, if 

shapes are isotropic, e.g. squared or circular. In contrast, an asymmetry in the 

occupancy is induced by anisotropic shapes like rhombi, triangles or rectangles that 

enable motion in the direction perpendicular to the transition axis. Analysis of the 2D 

motion of cells between two rectangles with orthogonal orientation suggests that 

cellular transition rates depend on the cell polarisation induced by anisotropic 

micropatterns. Taken together, our results illustrate how two-state-micropatterns 

provide a dynamic migration assay with distinct dwell times and relative cell 

occupancy as readouts, which may be useful to probe cell-microenvironment 

interactions. 

 

 
 

 

156 5. Cellular responses to varying confinement size, shape and orientation



 

 

Significance — Disentangling the determinants driving cell migration is ultimately important for 
understanding cell migration in cancer, development and inflammation. To investigate the role of 
cellular microenvironments, we use novel two-state micropatterns consisting of two adhesion sites 
connected by a thin stripe. These dumbbell-like micropatterns form a unique framework on which 
cells are found to repeatedly migrate between the two sites. The assay thus provides numerous 
time-resolved readouts from single-cell transitions and yields a population-averaged steady-state 
distribution cellular dwell times in each site. The dwell times depend on the area, shape and 
orientation of the adhesion sites. We quantify relative cellular preferences and rank absolute 
escape rates, paving the way for applications such as cell-based choice assays for biophysical 
studies.  
 

 

In many fundamental biological processes like early development, cancer metastasis and 

inflammation, cells are guided by external cues. Understanding the factors and mechanisms 

that steer cells in tissue and in the extracellular matrix is still an important open biophysical 

challenge. Many cell-based assays provide platforms to quantify cell behaviour in 

purposefully designed settings. Well studied are the mechanisms of cell guidance by external 

cues, for example chemotaxis enabling cells to follow soluble chemical gradients, or durotaxis, 

in which a motile cell is guided by mechanical stiffness gradients in the surrounding matrix (1-

5). Likewise, gradients of surface bound integrin ligands and differences in extracellular matrix 

protein density can guide cell migration in two dimensions (6-8). Cellular preferences or 

decision making is typically probed on the population level. In such experiments, cell-

substrate interactions are tuned over a large surface area and the distribution of cells is 

measured as endpoint readout rather than in a time-resolved manner (9-15). A more direct 

way to probe cell decision making in the presence of guidance cues is to provide assays where 

single cells are given the choice to spread on one of two different kinds of surfaces. In 

neuronal research, biochemical assays comprising adjacent lines of different proteins are 

known to study the preferential alignment and adhesion of neurons (16, 17). Also, the 

response of sensory neurites and growth cones to different substrates and patterns of 

different proteins has been studied (18, 19). Thus, micropatterning has advanced as a tool for 

single cell adhesion and migration studies providing standardized microenvironments. 
 

Various micro-structuring techniques enable the spatially controlled deposition of proteins in 

defined areas (20-23). Cells seeded on micropatterns spread and adapt to the shape and size 

of the adhesive area (24). Regular lattices of micropatterns have been used to capture and 

strain single cells for a multitude of studies, including spindle-orientation (25, 26), the 

influence of cell shape on cell polarization (27-31), and to monitor cell responses over time 

(32, 33). For the investigation of cell migration dynamics, micropatterned lanes have proven 

useful as they confine cell motion to one dimension (34-37). Variations of microlanes with 

symmetry-breaking triangular or teardrop-shaped patterns demonstrate control over the 

direction of cell migration by geometry (37-44). One key question in these studies of cell 

spreading and migration on micropatterns is how geometry affects the cytoskeletal 

organization, e.g. the distribution of stress fibres and focal adhesions, and consequently how 
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this relates to changes in the migration dynamics. Micropatterns offer highly reproducible 

microenvironments and allow the extraction of extensive single cell statistics and are 

therefore well suited to reveal subtle changes in a quantifiable manner. 
 

Recently, we reported on a novel type of confined migration of cells in two-state 

micropatterns (45). The symmetric micropatterns consist of two approximately cell-sized 

adhesive sites, connected by a thin bridge. On these dumbbell-shaped structures, cells 

transition between the two sites in a repeated and stochastic manner. Using a theoretical 

approach, we decomposed cell motion in this confinement into distinct deterministic and 

stochastic components and demonstrated that different cell lines can exhibit distinct 

nonlinear deterministic dynamics. Furthermore, we showed that these dynamics scale with 

the length of the connecting bridge (45). As cells also adapt their shape to the geometry of 

the adhesion site, it is an open question, whether the geometry of the pattern affects the 

escape rates in a dynamic assay. Two-state micropatterns represent an ideal system to study 

escape dynamics from distinct adhesion sites. However, so far only the dynamics of cells 

transitioning between adhesion sites of the same shape has been studied. 
 

In this study, we explore the dwell times and steady-state distribution of cells on asymmetric 

two-state micropatterns with adhesive sites that feature different geometric properties. This 

system represents a simple implementation of a confining microenvironment, which is 

capable of probing the preference of cells for defined surface geometries. The micropatterns 

consist of two fibronectin-coated adhesion sites that are connected by a thin fibronectin-

coated stripe. In these structures, cells transition repeatedly between the two adhesion sites. 

We monitor the trajectories of the fluorescently labelled nuclei and quantify the occupation 

probabilities on each adhesion site. Instead of primarily focussing on the short time-scale 

dynamics of the migration, here we identify coarse-grained cellular read-outs such as dwell 

times and occupancy probabilities to characterise the migration. First, we investigate how 

adhesion area affects transit rates and show that the relative dwell times between 

subsequent transitions on differently sized square adhesion sites scale approximately linearly 

with the ratio of the adhesion areas. Next, we study pairs of sites with equal area but different 

isotropic geometries, such as squares and circles, result in equal distributions indicating a 

weak effect of site shapes on dwell times. However, patterns that include anisotropic sites, 

e.g. squares versus rhombi or triangles show skewed occupancies. We attribute this effect to 

induced cell polarization, which we quantify by analysing the directional motion and by 

imaging the actin stress fibres and focal adhesions. We also apply this analysis to equally sized 

rectangular adhesion sites arranged in different orientations with respect to the connecting 

bridge. In this case, we observe a preferred occupancy in the rectangle that is oriented 

perpendicular to the direction of transitions. Our observations are consistent with a simple 

kinetic rate model and we discuss possible applications of dynamic assays to measure relative 

affinities of cells in artificially designed asymmetric microenvironments. 
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Figure 1. A: Time series of a single MDA-MB-231 cell transitioning between two differently sized 

square adhesion sites. Time intervals between the snapshots are Δt = 20 min. The dynamic exploration 

of the adhesion sites is visible by the extended lamellipodia seen as dark rims along the cell periphery. 

On the right: Schematic of the probability distribution of the cell nucleus positions along the long axis 

of the dumbbell. Scale bar: 25 µm. B: Overview over experimental setup. Single cells seeded at low 

density adhere to asymmetric dumbbell-shaped micropatterns. Cell nuclei are stained for semi-

automated cell tracking. Scale bar: 25 µm. C: Trajectories, as described by the centre-of-mass of the 

stained cell nucleus, are plotted for several cells on dumbbell patterns of the shown geometry. The 

definition of dwell times (!", !#) is shown. Dwell times allow for absolute quantification of cell 

response. 

 

Cells Repeatedly Transition Between Adhesion Sites on Asymmetric Two-State 
Micropatterns 

To study how the shape of microenvironments affects the migration of single cells, we 

designed artificial two-state micropatterns consisting of two adhesion sites as previously 

reported (45). In contrast to the previous study, the micropatterns used here consist of two 

sites with different geometries, which are connected by a thin bridge of a constant length. 

The surface of the micropatterns is coated with fibronectin, while the surrounding space is 
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passivated using PLL-PEG. As a result, cells only spread within the fibronectin-coated area and 

remain effectively confined in the micropatterns. We seed MDA-MB-231 human breast 

carcinoma cells at a concentration low enough to ensure sparse filling of the surface with an 

average occupancy of one cell per micropattern (Fig. 1B) (for further details, see Material and 

Methods). After seeding, the cells settle and spread on one of the two square adhesion sites 

in each pattern. Due to their intrinsic motility, cells then repeatedly transition between the 

two connected sites in a stochastic manner (Fig. 1A and 1C and Supplementary Movie M1).  

 

Transitions between adhesion sites are characterised by a typical order of morphological 

sequences: Cells that are positioned on one of the two sites exhibit dynamic ruffling of the 

cell contour and form filopodia which primarily explore the cell-repellent regions surrounding 

the micropatterns (see LifeAct staining and high time-resolution phase-contrast images in Fig. 

5, Fig. S1, Supplementary Movies M8, M9 and M10). Interestingly, short-lived unsuccessful 

attempts to push lamellipodia beyond the boundaries of the micropattern are clearly visible 

at the periphery of the cell (black regions in phase contrast images Fig. 1A), likely in 

conjunction with filopodia extension (Supplementary Section 2). On the fibronectin-coated 

micropatterns, however, cell motion seems to be dominated by lamellipodia. At the entrance 

to the bridge, stable lamellipodia form that can proceed to grow across the bridge, which acts 

as a guidance cue for cell transitions towards the other site. Once a lamellipodium reaches 

the opposite adhesion site, a fan-like broadening of the lamellipodial tip is observed, which is 

usually followed by the cell body transitioning across the bridge to the other side (Fig. 1A). 

Retraction fibres can be seen along the cellular track (movie S10). On the opposite site, the 

cell spreads into the available adhesion site area and the process repeats. All these behaviours 

have been previously observed on symmetric two-state micropatterns (45). 

 

This cellular hopping process is well captured by the trajectories of the fluorescently-labelled 

cell nuclei (45). The trajectories span time intervals of up to 50h – their length is limited by 

cell division or the end of a measurement. Within this time interval, the transition process is 

stochastic and individual tracks vary from each other. While the cells spend a significant 

amount of time on the adhesive islands, the transitions themselves occur abruptly (Fig. 1C). 

These distinct transitions allow an effective reduction of cell positions to two states, 

separated by the centre of the connecting bridge. A 'stay' is defined as the total amount of 

time the nucleus spends on one side between two crossings of the middle of the bridge. Each 

of these stays yields a corresponding dwell time, τ. 
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Figure 2. A: Occupancies of cells on square adhesion sites with different area. Adhesion sites are 

depicted in grey shades, same tones denoting the same area. The dotted line represents the middle 

of the bridge. The occupancies reflect the asymmetry of the underlying micropattern. Third in row (iii) 

is the symmetric case. (i) and (iii) are adapted from (45). B: Mean dwell times, 〈!〉, of cells as a function 

of square area, A. Dwell times increase with adhesion site area. The dotted line is a guide to the eye. 

Same colours denote the same two-state geometry, colours correspond to the colours of occupation 

probability distributions in A. Blue circles and squares correspond to dwell times on square-circle 

micropatterns. Y-Errors are bootstrapping errors, x-errors are standard deviations of weighted area 

means. C: The ratio of mean dwell times plotted against adhesion site area ratio. The dashed line 

indicates equality. Blue circles correspond to data from square-and circle micropatterns. Y-Errors are 

bootstrapping errors. 

Micropatterns with Unequally Sized Adhesion Sites Exhibit Asymmetric Occupation 
Probabilities 

First, we ask the question how adhesion site area influences the transition statistics. To this 

end, we perform experiments with square adhesion sites of different edge lengths in the 

range of 27.2 to 42.3 µm. The connecting bridge has a fixed length of about 16 µm. To 

characterise cellular response to the imposed geometries we use an easily accessible and 

intuitive read-out: We determine the occupancy probabilities as a function of position along 
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the main axis of the micropattern with the centre of the bridge defined as	' = 0. Here, we 

include all time-scales of the migration into the data analysis rather than mainly utilising the 

short timescale dynamics (45). As expected from symmetry arguments, on equally sized 

adhesion sites, the occupation probabilities are symmetric (Fig. 2A (iii)). In contrast, the 

probability distributions corresponding to asymmetric two-state patterns are asymmetric 

with a clear shift towards higher occupation probabilities on larger adhesion sites (Fig. 2A). 

  

To quantify the dependence of the transition dynamics on the adhesion site area, we plot the 

mean dwell times	〈!〉, averaged over all time traces of the entire ensemble of single cell 

trajectories, against the corresponding adhesion site areas. We find an almost linear increase 

of dwell times with indications for a saturation effect for areas larger than approximately 

1500 µm2. It appears that the dwell times are largely determined by the area of the confining 

adhesion site. Dwell times are also independent of the size of the opposite adhesion area (Fig. 

2B). In Fig. 2C, the ratio of mean dwell times is plotted against the ratio of adhesion site areas 

and compared to the direct proportionality relationship between dwell times and adhesion 

site area (dotted line). 

 

    〈!*〉 〈!+〉⁄ = -* -+⁄       (Eq. 2)  

where 〈!*〉, 〈!+〉 denote the mean dwell times and As, Al the area of the small and large 

adhesion sites, respectively. For area ratios smaller than 0.5, the data slightly deviate from 

the linear relation. In particular, the two data points with the largest tested adhesion site (Al 

≈ 1780 µm2) deviate most from linearity (the corresponding dumbbells are shown as inserts 

with black areas in the left upper part of Fig. 2C). The mean cell area of unconfined cells at 

the start of a measurement is about 940 ± 37 µm2 and hence slightly smaller than the majority 

of adhesion sites. Therefore, cells only cover the entire adhesion site on average, through 

dynamic exploration as well as after growth (Supplementary Section 3 and Fig. S2). Thus, the 

linear relation between dwell times and area appears to be a consequence of the confinement 

imposed by the adhesion sites on cell spreading and motion.  

It is also noteworthy that, for the consideration described above, we can either use the mean 

values of dwell times or occupation probabilities. We determined the occupancy probabilities 

as a function of position along the long axis of the dumbbell (Fig. 2A). The integral of the 

occupancy probability densities on the left and right sides yield a left versus right occupation 

ratio, which is equivalent to the ratio of left/right mean dwell times in the limit of long time 

traces with an equal number of left and right stays. As further detailed in Material and 

Methods, in a steady-state situation and for sufficiently large statistics, we can equate 

without further assumptions: 

 

   .+/01 	.23451⁄ = 〈!+〉 〈!2〉⁄      (Eq. 3) 
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This relation provides a link between dynamic and static readouts. Also, while occupation 

probabilities present a relative measure of preferential cell localisation, the mean dwell times 

are absolute quantities, which provide a time-scale of the transition dynamics. In the 

following analysis, we will mostly discuss mean dwell times, which may also be considered as 

reverse escape rates, 〈!〉+,2 = 7+,2
8"	, yet without making a statement on the detailed dynamics 

and nature of the transition mechanism. Taken together, the results so far show that cell 

occupancies are related to the adhesive area through an approximately linear proportionality 

relation, and that the adhesion site area can act as a key control parameter for confined cell 

dynamics. 

 

Figure 3. A: The deterministic component F(',v) in units of μm/h2 of cell dynamics in a two-state 

system with square edge lengths 42 μm and 27 μm.  B: The corresponding noise strength =(',v) in 

units of μm/h3/2. The dashed black mark both ends of the bridge. Both >	and =	are shown here as a 

linear interpolation. C, D, E: Experimental (blue) and predicted (red) probability distributions of 

position (c), velocity (d, plotted semi-logarithmically) and e, velocity correlation function for all 

asymmetric two-state micropatterns presented in Fig. 2. For a comparison between model predictions 

and experimental data for the other two-state system geometries see Supplementary Section S4. 
 

A Stochastic Nonlinear Equation of Motion Captures the Asymmetries 

To investigate if we can find a simple quantitative description of the stochastic dynamics of 

the cell trajectories in this confinement, we infer an equation of motion from the 
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experimentally recorded dynamics. This provides a connection between the short time-scale 

dynamics of the cell trajectories and the long time-scale cellular readouts, such as dwell times 

and occupation asymmetries. In previous work (45), we showed that the dynamics of cells 

migrating on symmetric two-state micropatterns can be described by an equation of motion 

(Eq. 1) which disentangles the deterministic and stochastic contributions of the motion. 

Specifically, the deterministic term F(x,v) gives the average acceleration of the cell nucleus 

when at position x, and moving with a velocity v (Fig. 3A). Similarly, the noise strength σ(x,v) 

indicates the strength of the stochastic fluctuations of the motion (Fig. 3B). Interestingly, we 

find that in asymmetric patterns, both functions share many qualitative features with those 

observed for symmetric systems. Importantly, similar to symmetric systems, the deterministic 

function shows that the cell deterministically accelerates into the thin constriction before 

transitions (Fig. 3A). Furthermore, we find that the equation of motion approach yields 

accurate predictions for the experimentally observed statistics, such as occupation 

probabilities, velocities and velocity correlation functions (Fig. 3 C-E and Fig. S3). These results 

indicate that the stochastic equation of motion approach is generalizable to asymmetric 

patterns, highlighting the generic features of cell migration in two-state micropatterns. 

 

Figure 4. A: Snapshots of single MDA-MB-231 cells migrating on two-state patterns with adhesion sites 

of different geometries and approximately equal area. B: Probability distributions of cell positions 

along the x-axis of the two-state patterns and the corresponding left-right occupation probabilities 

normalised by the corresponding adhesion site area. An occupation asymmetry is detectable for the 

square versus rhombus pattern and clearly visible for square versus triangle. Errors are bootstrapping 

errors. C: Two-dimensional probability maps of cell positions with the corresponding micropatterns 

drawn to scale.  
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Anisotropic Adhesion Site Shapes Bias Occupancies  

We next investigate how the geometrical shape of adhesion sites affects cell migration. To 

this end, we designed asymmetric two-state micropatterns that connect a square adhesion 

site to sites with the same area, but of different shape, including circular, rhombical, and 

triangular sites (Fig. 4). In all cases, the cells perform repeated stochastic transitions, adapt to 

the shape of the underlying adhesion site and dynamically explore the available area (Fig. 4A 

and Supplementary Movies M2-M4). To correct for differences in adhesion site areas 

introduced in the production process, occupation probabilities are normalised by adhesion 

site areas for square-circle, square-rhombus and square-triangle micropatterns. 

 

Using circles, we can test the dependence of dwell times on area or perimeter while keeping 

the other respective parameter constant. On square-circle micropatterns with equal areas, 

we observe a symmetric occupation probability distribution (Fig. 4B), and both types of 

square-circle patterns follow the general trend (blue circles in Fig. 2B, 2C, Fig. S4 and 

Supplementary Section 5). To relate this finding to the underlying cytoskeletal dynamics 

driving the migration, we observe LifeAct-GFP transfected cells. Visible as actin hotspots along 

the cell periphery, a dynamic exploratory motion of the cell within the adhesion sites is 

apparent. While the distribution of actin appears to be homogenous along the periphery of 

circular adhesive sites, on square adhesion sites, protrusions form preferentially at the 

corners. However, overall, very few differences are visible in the actin dynamics, in the type 

and localisation of actin fibres and locations of protrusion activity between cells adhering to 

the square and circular adhesion sites (Fig. 5 (i) and (ii) and Supplementary Movie M8). Cells 

migrating onto the adhesion sites and exploring them adopt a variety of shapes. Where the 

adhesive shapes impose their shape onto the cells, differences in actin and paxillin localisation 

in fixed cells become apparent. Thus, on squares, paxillin is mainly accumulated in the square 

corners, whereas on circles, focal adhesions are more evenly distributed along the cell edge. 

Rhombical adhesion sites, specifically squares rotated by 45°, allow us to investigate the 

question whether the corner facing the bridge entrance is able to bias the cell occupancies 

towards the square site as suggested by previous research (38, 54, 55). Interestingly, the 

occupation probabilities on square-rhombus patterns show a small bias towards stays on the 

rhombus (Fig. 4B).  
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Figure 5. Typical morphological sequences of LifeAct-GFP stained single cells for the asymmetric 

dumbbells shown in Fig. 4. The distribution of protrusions is seen as bright spots of localized actin 

along the cell periphery. Actin activity appears more pronounced at adhesion sites’ corners. For 

improved visibility, cell outlines were selected with the wand tool in Photoshop, and the background 

colours inverted. Pattern outlines are drawn up to scale. Scale bars: 25 µm. 

 

To challenge this unexpected finding, we designed dumbbells consisting of a square paired 

with a right-angled triangle. Two-state systems of this kind show a bias towards increased 

dwell times on the triangular site (Fig. 4B). This finding coincides with the observation that 

the 2D occupancy distribution on the triangle exhibits a larger spread in the vertical direction, 

while the spatial distributions on the square, circular and rhombical shapes are very similar 

(Fig. 4C). In addition, cells on the triangular shape exhibit pronounced protrusion formation 

at the triangle’s corners (Fig. 4A, Fig. 5 (iii), and Supplementary Movie M9). 

 

Hence, we recapitulate that for sites that are isotropic in the x- and y-directions (square and 

circle), only adhesive area and not the geometrical shape determines the relative cell 

occupancy. In contrast, we found that cells take a longer time to escape from rhombical and 

triangular patterns. Clearly, the triangle has a lower symmetry than the square and circular 

structures and the protrusions appear to be biased in the vertical direction towards the 

pointed corners. Also, as this triangle’s base extends considerably in the y-direction, cell 

motion is slightly more pronounced orthogonally to the direction of transitions, thus leading 

to longer dwell times (Fig. 4C (ii) and Fig. S6). The rhombus seems to represent an 

intermediate case, as only a small bias is observed (see also Fig. S5) and the angular 

distribution of cell velocities looks very similar to that on square adhesion sites (Fig. S6).  
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Figure 6. A: Time series of a single cell on a rectangular micropattern of orthogonal orientation. The 

cell preferentially polarizes along the long axes of the rectangles as seen by the formation of 

lamellipodia in these directions. Scale bar: 25 µm. B: The cell probability distribution and left-right 

occupancies on two-state patterns with equally sized but differently oriented rectangles. The 

distribution is biased in the case of orthogonal orientation (i). Errors given are bootstrapping errors. 

C: Two-dimensional probability maps of cell positions. A clear difference in the extent of localisation 

along the y-axis is visible between horizontal and vertical rectangles. D: Survival probability functions 

S(t) of stays in the horizontal and vertical site respectively as indicated in the schematic drawing. Errors 

are shown as lightly coloured lines. A significant difference in decay behaviour of S(t) is visible for 

times > 4h.  

Different Orientations of Rectangular Adhesion Sites Result in Biased Occupancies  

The observed asymmetry on rhombical and triangular adhesive sites leads to the question of 

whether adhesion site orientation can determine dwell times. To resolve this question, we 

designed patterns of equal shape and area but of different orientation. These systems consist 

of rectangular sites with an aspect ratio of 2:1 in three arrangements: two horizontal 

rectangles, i.e. with their long axes parallel to the direction of the connecting bridge; two 

vertical rectangles, i.e. with their long axes perpendicular to the connecting bridge; and a 

mixed, asymmetric configuration with a horizontal and a vertical rectangle. For the two 
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symmetric arrangements of the rectangular adhesion sites, the observed occupancies are 

symmetric as expected (Fig. 6B (ii) and (iii)). In contrast, in the case of the asymmetric 

combination, we find a significant bias towards stays on the upright site (Fig. 6B (i)), 

supporting our previous assumption that adhesion site anisotropy biases occupancies. 

 

The observed occupancy asymmetries on the mixed-configuration micropattern can be 

explained in terms of the steady-state equation Eq. 3, which relates the relative occupancies 

to the dwell time ratio or, in other words, the ratio of the dynamical escape rates from a 

horizontal and a vertical state. We observe that on rectangular adhesion sites cells tend to 

polarize along the long axis of the rectangle, which is visible as pronounced lamellipodia 

activity in the direction of the rectangle’s long axis indicated by the black regions in brightfield 

images (Fig. 6A, 0-10 minutes and 220-230 minutes, Fig. S8 in the Supporting Material and 

Supplementary Movies M5-M7), biases the direction of cell motion on the adhesion sites and 

is also confirmed by the orientation of stress fibres in fixed cells (Fig. 7 and Fig. S12). Thus, 

one may expect that the escape rate along the long axis is faster than along the short axis, 

resulting in a biased steady-state distribution. 

 

The relation of cell polarization and transition rates is also demonstrated in a more detailed 

analysis of the two-dimensional cell trajectories. Specifically, we observe a more pronounced 

motion in the y-direction on vertical rectangles than on horizontal rectangles (Fig. 6C, Fig. S9, 

Fig. S11A) which occurs more frequently than on squares or circles (Fig. S6). The distribution 

of velocities in the y-direction is broader on vertical states, indicating that the cells polarize 

and accelerate along the long axis of the rectangle, orthogonal to the axis of the micropattern 

(see also Supplementary Section 8, Fig. S10). Moreover, we find that whenever there is 

pronounced displacement in the y-direction, the extent of motion in the x-direction decreases 

(Fig. S11B). This suggests that the cell polarization in one direction suppresses motion in the 

orthogonal direction. Thus, escape rates from vertical rectangles are reduced by the induced 

polarization orthogonal to the direction of the transitions. For a more detailed discussion of 

escape times on rectangular dumbbell micropatterns we refer to the Supplementary Section 

8.  

 

The full dynamical dependence of the escape process is best represented by the survival 

probability distribution S(t) which gives the probability that a transition has not occurred after 

time t (Fig. 6D). Initially, S(t) for upright rectangles (blue curve) decays faster than S(t) for 

horizontal rectangles (red curve). However, for stay times longer than 4h, the trend reverses 

and the blue curve decays significantly slower. This suggests that when transitioning onto the 

upright rectangle, cells either quickly repolarise or become trapped. The former is possible 

when cells are reflected by the edge of the micropattern and thus have to turn by 180°. 

Trapping happens when lamellipodia form along the long axis of the rectangle, making the 
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formation of a lamellipodium along the bridge, a pre-requisite for escape, less likely because 

the cell is polarized orthogonally to the bridge. In summary, we found that the orientation of 

anisotropic adhesion sites can bias cell occupancies since migrating cells tend to polarise 

along the long axis of these sites, leading to a reduced escape rate when this axis is orthogonal 

to the transition axis. 

 

 
 
Figure 7. Images of fixed cells on mixed-orientation rectangle micropatterns stained for actin and 

paxillin (for (ii) and (iii) see Fig. S12). Actin fibres are mostly oriented along the long axis of the 

rectangular adhesion sites, indicating cell polarisation along that axis. Below, angular probability 

distributions of the directions of cell velocities on rectangular adhesion sites are plotted. The 

corresponding micropatterns are shown in the middle. The directions are stated with respect to the 

long axis of the micropattern (i.e. the axis of transitions). Each bin contains the counts for the shown 

angle and for motion in angle+180°. Only cell motion within adhesion sites is included in the analysis.  

169



 

Discussion 

In this work, we studied cell migration on artificial two-state micropatterns, which allow for a 

statistical analysis of the relative preference of cells for two opposing adhesion sites with 

different geometric properties. Occupancies are described in terms of relative occupation 

probabilities or absolute mean dwell times. We observed a preferred occupancy with 

increasing adhesion site area in the case of two square adhesion sites. The finding is in 

agreement with previously reported ‘dimension sensing’ of cells on thin 1D lines interspersed 

with wider rectangles (36). Larger adhesive areas induce longer dwell times, which is in 

qualitative agreement with the observation that freely moving cells exhibit reduced cell 

motility with larger spreading area (56, 57). Also, recently, Guo et al. reported that a large cell 

adhesion area is linked to smaller cell volume and an increase in cell stiffness due to water 

efflux in a spread out state (58). That cell stiffening corresponds to cell spreading has also 

been reported for endothelial cells (47). While in a confluent cell layer, MDCK II cells follow 

the same trend. Interestingly, no linear dependence of cell size and stiffness has been found 

for individual cells on micropatterns (59). A stiffer cell cortex is likely associated with slower 

migration (60). Thus, a potential explanation for the area dependence of escape dynamics 

(Fig. 2B and 2C) might be a transient stiffening of the cell cortex on sites with larger adhesion 

area. Also, larger adhesive areas provide more adhesion ligands, and it was observed that 

high levels of cell-substrate adhesiveness reduce cell migration speed (61). Furthermore, we 

found that a stochastic equation of motion framework, developed in previous work for 

symmetric two-state patterns (45), can be generalised to quantitatively capture the statistics 

of cell motion also in asymmetric systems. Interestingly, the qualitative features of the 

deterministic and stochastic contributions to the cell dynamics exhibit similar features to 

symmetric systems, indicating that these dynamics include generic features insensitive to the 

sizes of the adhesive islands. 

 

We found only a weak dependence of occupation probabilities on shape in sites that are 

symmetric under 90 degree rotations. In particular, cells on circular, square and rhombical 

adhesion sites exhibit very similar transition behaviour (Fig. 2B, 2C, Supplementary Section 6, 

Fig. S5, Fig. S6). This is remarkable since some of these sites have different perimeters. The 

cell perimeter is a parameter that frequently enters elastic cell models which assume a global 

line tension (62-64). While previous studies suggest a difference in the localized distribution 

of cellular protrusions on square and circular micropatterns (28, 65), for the geometries we 

tested, we did not observe any influence of square or circular shape on occupancies, which 

should be sensitive to the likelihood of directional protrusions. This finding, however, is 

consistent with the reported lack of cell polarity on square and circle micropatterns (28). 

While cells may transiently polarise even on squares and circles, the absence of induced cell 

polarisation, defined as pre-requisite for cell displacement, is also demonstrated in 

experiments where cells showed no preferred direction of motion when released from 
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squares or circular micropatterns by removal of a micropatterned frame (29). Mechanical 

parameters like stiffness and contractility were previously found to be the same for 

endothelial cells patterned on squares and circles (47). 

 

The role of acute corners and stress fibres on the transition dynamics needs further 

inspection. It was reported that stress fibres running along straight edges impede protrusion 

formation, while stress fibres meeting in corners are easier to penetrate (38, 54, 55). 

Intriguingly, in the presence of other guidance cues such as corners located orthogonally to 

the axis of transitions, we did not observe increased transition rates where corners were 

pointed towards the connecting bridge. However, this is in line with by Caballero et al. (42, 

43) reporting more protrusions forming on the base of the triangle. Specifically, the presence 

of acute angles in triangles seems to stretch and orient cells in a direction perpendicular to 

the transition axis (Supplementary Section S7 and Fig. S6), a phenomenon which has been 

previously suggested to increase friction during cell migration (43). This could also be related 

to the increased likelihood of cells to extend lamellipodia from acute angles (30).  

 

Dwell times on triangles and on vertical rectangles deviate strongest from the linear area 

dependence observed for more isotropic adhesion sites (Fig. S13 and Supplementary Section 

S9). Specifically, in the rectangular system, the importance of pattern orientation became 

clear where a directed formation of lamellipodia orthogonal to the direction of transitions 

between the adhesion sites is achieved, and therefore the motion becomes anisotropic (28, 

29, 40). Cells appear to be polarised along the long axes of the rectangles as evidenced by the 

mean orientation of stress fibres in fixed cells (Fig. 7 and Fig. S12). The orientation of long 

stress fibres and cell elongation are considered an indicator for cell polarity (35, 66). Actual 

quantification of stress fibre orientation is possible in (semi-)automated ways (67-69). The 

rectangles act in the same way as one-dimensional stripe patterns: the persistence of cells in 

the direction of the stripes is increased (37) and polarity can be established (35, 70). 

 

Interestingly, the escape rates in rectangular systems in particular cannot be explained by 

geometrical considerations with respect to the ratio of the bridge width and the adhesion site 

edge length (Fig. S14). Another intriguing feature of the rectangle system is that the escape 

rates from the vertical rectangle in the mixed system differ from those in the symmetric setup. 

While internal cell organisation in fixed cells (Fig. 7 and Fig. S12) and the distributions of cell 

velocities in equally oriented rectangles look similar, the difference in escape rates could 

indicate the presence of memory effects. Such memory effects have been reported previously 

for migration on topological ratchet patterns (71), cell spreading on fibronectin micropatterns 

(64) and cell migration in the presence of chemoattractants (72). For all other micropatterns, 

we do not observe similar effects as dwell times for adhesion sites of similar areas but from 

different two-state systems are equal within errors (Fig. 2B, Fig. S13).  
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Conclusion 

In summary, we created asymmetric two-state micropatterns, which allow for a quantitative 

assessment of geometric determinants in confined cell migration. The comparison of mean 

dwell times and steady-state occupancy probabilities in different adhesive geometries 

identifies relevant factors, such as adhesion site area and geometry, and quantifies their 

effect on cell migration. The statistics of individual trajectories and transition rates also 

suggest that escape rates could be an indirect measure of protrusion dynamics and cell 

polarisation in confining microenvironments. In general, single-cell microarrays enable a 

highly parallel assessment of individual trajectories of an ensemble of cells in defined 

boundaries. This is all the more important as cellular heterogeneity is understood to be an 

intrinsic property of cell cultures (73, 74). Two-state microarrays could also be extended to 

probe cellular affinities for protein-coated surfaces by creating patterns with different 

chemical functionalities. In addition, as the two-state micropatterns allow for repeated 

observation of transition events of individual cells, the leading-edge dynamics could be 

studied under defined boundary conditions and with high statistical certitude. The forced 

transitions in artificial microenvironments could also, in future work, be related to relevant, 

disease-related states of cells like deformability (75) and, for example, serve to characterize 

migratory phenotypes such as invasiveness (76). Hence, two-state micropatterns represent a 

unique single-cell migration assay with the capacity to assess relative preferences of cells for 

microenvironments and to define novel metrics for cell-migration phenotypes. 

 

Materials and Methods 

Micropatterning and Sample Preparation 

We use microscale plasma-induced protein patterning (46). Briefly, silicon masters with the desired 

shapes are prepared using photolithography. Polydimethylsiloxane (PDMS) monomer and crosslinker 

(DC 184 elastomer kit, Dow Corning, Midland, Michigan) are mixed in a 10:1 ratio and subsequently 

poured onto the silicon wafer. After degassing the PDMS, it is cured overnight at 50 °C. 

PDMS stamps are placed, with the features facing down, in an ibidi µ-dish (ibidi GmbH, Martinsried, 

Germany): The dish with the stamps is then exposed to oxygen plasma. For background passivation, a 

drop of 2 mg ml-1 PLL(20)-g[3.5]-PEG(2) (SuSoS AG, Dübendorf, Switzerland) solution is added and left 

to incubate for 25 minutes. After rinsing the sample, the stamps are removed, and the sample is 

incubated with a 50 µg ml-1 human fibronectin (YO Proteins, Ronninge, Sweden) solution for 50 

minutes. After final rinsing, samples are stored in PBS at 4°C. 

Micropattern Design 

The two-state micropatterns have square adhesion sites of edge lengths between 27.3 ± 0.4 µm to 

42.2 ± 0.5 µm. Adhesive area dimensions were chosen such as to provide enough adhesive area for 

cells to be able to fully occupy them. A limit was found for adhesion sites smaller than approximately 
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25 µm, where cells would still transition between adhesion sites but partially remain on the bridge 

and the larger adhesion site. No adhesion sites with edge lengths larger than 42.2 µm were used.  

Square-circle micropatterns were designed to have the circular sites either probe a same-area or a 

same-perimeter case with respect to the square adhesion sites. Micropatterns with triangles are 

designed to offer adhesion sites of equal areas and also to both have a right angle pointing towards 

the bridge to test the influence of shape while keeping the funnelling angle constant. Rectangular 

adhesion sites have equal areas and were designed to offer similar adhesion site areas to the 

symmetric square-square setup. The aspect ratio of rectangles was chosen to be 2:1, with the small 

side to be longer than the minimum edge length determined for squares.  

For all geometries, a similar bridge length was used. The length of the bridge was chosen such that 

cells would transition frequently between adhesion sites to ensure sufficient statistics while being 

separated far enough to ensure cells mainly occupied a single adhesion site at any time (see exclusion 

criterion 5, Supplementary Section 1.2.). The influence of bridge length was also tested for rectangular 

patterns (see Supplementary Figure S7). Details of that and exact measures for all patterns, as well as 

cell statistics, can be found in the Supplementary Sections 1 and 8.  

Errors given for the pattern dimensions are weighted standard deviations to account for the variation 

in statistics gained in different experiments. The dimensions of final protein patterns are subject to 

experiment-to-experiment and wafer-to-wafer variations. Experiment-to-experiment variability is 

mainly due to the intrinsic variance of the manual stamping process. Also, measurement uncertainty 

is added due to the limited resolution of images.  

Cell Culture 

MDA-MB-231 human breast carcinoma epithelial cells (DSMZ, Braunschweig, Germany) are cultured 

in Minimum Essential Medium (MEM, c.c. pro, Oberdorla, Germany) with 10% FBS (Gibco, Paisley, 

United Kingdom) and 2mM L-Glutamine (c.c. pro). Cells are grown in an atmosphere with 5% CO2 and 

at 37°C up to 70-90% confluence. For splitting, cells are rinsed with PBS and subsequently trypsinised 

for 3 minutes. For experiments, the trypsinised cell solution is centrifuged at 1000 rcf for 3 minutes, 

the cell pellet is resuspended in MEM and approximately 10,000 cells are seeded per µ-dish. Cells are 

left to adhere for 4h in the incubator, before the medium is exchanged to L-15 medium (containing L-

Glutamine (Gibco, Grand Island, New York), and supplemented with 10% FCS). The L-15 also contains 

25 nM Hoechst 33342 (Invitrogen, Eugene, Oregon) for the staining of cell nuclei.  

Microscopy and Cell Tracking 

Measurements of up to 50h are performed in time-lapse mode, either on an IMIC digital microscope 

(TILL Photonics, Kaufbeuren, Germany) or on a Nikon Eclipse Ti microscope using a 10x objective. To 

keep samples at 37°C throughout the measurement, dishes are placed in a heated chamber (ibidi 

GmbH or Okolab, Pazzuoli, Italy). Brightfield and DAPI-images are acquired every 10 minutes. It is 

interesting to note, that under these experimental conditions we observe that the doubling time of 

cells is slightly larger than in cell culture. The influence of micropattern size and geometry on cell 

proliferation has been reported before (24, 47, 48). 
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For analysis, a band pass filter is applied to the fluorescence images and a threshold is used to binarise 

the images using ImageJ (49). This allows subsequent automated tracking of the centre-of-mass of the 

cell nuclei by ImageJ’s Analyze Particles plugin. The two-state patterns are visible in the brightfield 

images and are used to manually determine the reference boundary of a pattern, defined as edge of 

the left adhesive island, for each single cell. Using this value it is possible to convert nuclear 

coordinates to absolute positions. All further analysis is performed in MATLAB (The MathWorks, 

Natick, Massachusetts). 

For every geometry, at least 46 cells, chosen from a minimum of three experiments, were analysed. 

The criteria for the determination of suitable cells, as well as the number of analysed cells per 

geometry, are detailed in Supplementary Section S1. Specifically, to probe the response to each 

adhesion site separately, we only included cells which, in most cases, made complete transitions 

between adhesion sites. A complete transition is characterised by all parts of the cell being confined 

to one adhesion site before the next transition is initiated. Also, to limit abnormal migration 

behaviour, we excluded all cells which underwent cell death at any time during the experiment. 

Cell Fixation and Immunostaining 

Cells are cultured and seeded as described above. 16-24h after seeding, cells are rinsed once with 

warm PBS and fixed in warm 3.8% formaldehyde in PBS (Sigma, Saint Louis, Missouri) for 15 minutes 

at room temperature. Cells are permeabilised with 0.5% Triton X-100 (Roth, Karlsruhe, Germany) for 

5 minutes and then incubated in a blocking solution consisting of 10% normal goat serum, 0.2% Triton 

X-100 and PBS. The primary antibody (5 µg/ml anti-paxillin, Invitrogen, Rockford, Illinois) is added in 

the same blocking solution for 1h at room temperature. After washing, 5 µg/ml of the secondary 

antibody (goat anti-mouse conjugated with Alexa Fluor 488, Abcam, Cambridge, United Kingdom) and 

100 nM rhodamine phalloidin (Molecular Probes, Eugene, Oregon) are added and left to incubate for 

30 minutes at room temperature. The cells are then washed, 0.5 µg/ml DAPI (Sigma) is added for 5 

minutes and after a last wash, cells are stored in PBS for imaging on the same day. Imaging is 

performed on the Nikon Ti Eclipse microscope, using a 60x oil-immersion objective in both, 

epifluorescence and TIRF mode. 

LifeAct-GFP Transfection 

Approximately 12,500 MDA-MB-231 cells are seeded in patterned µ-dishes and left to adhere 

overnight. Cells are cultured in MEM including Glutamax (Gibco, Paisley, United Kingdom) 

supplemented with 10% FCS. 

For life-cell actin imaging, 500ng LifeAct-GFP mRNA (in-house prepared) is resuspended in OptiMEM 

(Gibco, Grand Island, New York) to a final volume of 150 µl. In parallel, a mix of 1.25 µl Lipofectamine 

2000 (Invitrogen, Carlsbad, California) and 123.75 µl OptiMEM is prepared. Then, the mRNA solution 

is added to the Lipofectamine-mix, and left to incubate for 20 minutes at room temperature. Before 

adding the transfection mix, cells are rinsed once with PBS. Cells are incubated with the transfection 

mix for at least 3h, before the mix is replaced by L-15 medium. Cells are imaged every 10 minutes on 

the Nikon Ti Eclipse microscope using a 60x oil-immersion objective. 
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Dwell Times and Occupation Probabilities 

For dwell time calculation, the trajectories of the nuclei are binarised into two states, left and right of 

the middle of the connecting bridge. Furthermore, in order to avoid effects of a finite observation 

time window, all analysis is performed on cropped trajectories, starting from the time point of the 

first transition and ending after the last fully observed dwell time. The middle of the bridge is 

determined by adding the sum of the mean left adhesion site edge length and half of the mean bridge 

length for each experiment to the individually determined left border reference points. The time spent 

in either state in between transitions over the middle of the bridge, is the dwell time τ. 

To assess the relative occupation probabilities, we calculate the sum of dwell times, !3, on adhesion 

site i divided by the total observation time, Ttot of all trajectories, which can also be expressed by the 

number of stays Ni and the mean stay time, 〈!3〉, divided by total time: 

?3 =
∑ !3

A1B1
=
C3〈!3〉

A1B1
 

The ratio of the observed left/right mean dwell times 〈!+/01〉 〈!23451〉⁄  thus converges to the ratio of 

probabilities pleft/pright, if the number of total stays is large, and thus Nleft » Nright. 

To correct for unequal adhesion site areas in the cases where adhesion sites were designed to have 

the same area but were found to deviate from the expected areas, we normalise the occupation 

probabilities by adhesion site areas A: 

?" =

∑!
"

-"
∑ !

"

-"
+
∑!

#
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Survival Probability Functions 

The survival probability distribution S(t) is defined as 

E(F) = 1 −	∫ ?(τ)dτ
1

L

where p(τ) is the probability distribution of dwell times for all cells evaluated on a certain adhesion 

site. 

Theoretical Analysis 

To obtain a simple equation of motion model for the system, the experimental trajectories of the 

nucleus position x(t), recorded at a time interval Δt = 10 min, are analysed using a data-driven 

inference method. Velocity v and acceleration a are directly calculated as numerical derivatives. We 

postulate that the dynamics can be described by a stochastic differential equation of the form 

 
MN

M1
	= 	>(', O) + =(', O)P(F)  (Eq. 1) 

 

Here, η(t) represents a Gaussian white noise process with zero mean and no correlation. The terms 

F(x,v) and σ(x,v) are inferred by conditional averaging of the experimental trajectories (50-52). Since 

the noise term averages to zero, ⟨σ(x,v)η(t)⟩=0, the deterministic term is given by F(x,v)=⟨a|x,v⟩. The 
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strength of the noise is then estimated using σ2(x,v)=Δt⟨[a−F(x,v)]2|x,v⟩. To test the model predictions, 

the equation is integrated numerically with a time step Δt equal to the experimental sampling interval. 

For more details, see (45). 

 

Direction of Cell Motion 

To analyse the direction of cell motion cellular trajectories are analysed during each stay: Once the 

centre of the cell nucleus has crossed the inner edge of an adhesion site, and until it does so again to 

leave the adhesion site, the difference in x and y-location between two subsequent time points (Δt = 

10 min) is calculated. For each velocity vector, the angle with the x-axis is determined using the 

following relation: 

S	 =	 cos8" W
O⃗ ∙ '⃗

|O⃗||'⃗|
[ 

with O⃗ the velocity vector, '⃗ the unit vector in x-direction. 

 

Error Analysis 

We employ a bootstrapping procedure to estimate errors (45, 53). We generate a large number of 

realisations of a given dataset \ = {^", . . . , ^`} with C entries by randomly sampling the dataset’s 

entries with replacement. The mean 〈^〉bcdefgdhfij  is calculated for each realisation. The standard 

deviation of all 〈^〉bcdefgdhfij gives the estimated error in the mean.  

The same procedure is carried out for small groups of subsequent entries of the dataset to account 

for correlations. For each window size, 50000 realisations are generated. We limit the window size to 

a maximum value of 60. The maximum value of the standard deviation calculated for each window 

size is our final bootstrap error. 
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0. Movie Description 
 
Supplementary Movie M1: 
Single MDA-MB-231 cell migrating repeatedly back and forth between two square adhesion 
sites of different areas (Aleft = 1405 µm2 and Aright = 755 µm2). The nucleus is stained with 
Hoechst 33342 to allow semi-automated cell tracking. 
 
Supplementary Movies M2-M4: 
Single MDA-MB-231 cells migrating repeatedly back and forth between two adhesion sites 
of comparable areas but of different shapes: square and circle, square and rhombus and 
square and triangle. 
 
Supplementary Movies M5-M7: 
Single MDA-MB-231 cells migrating on rectangle micropatterns of different orientations. It is 
visible how the cells polarize along the long axes of the rectangles. Bridge length = 16.2 µm. 
 
Supplementary Movies M8-M9 
LifeAct-GFP stained single MDA-MB-231 cells migrating on square-circle (equal areas) or 
square-triangle micropatterns. Actin hotspots along the cell periphery are visible which are 
preferentially localized in the patterns’ corners. 
 
Supplementary Movie M10 
Single MDA-MB-231 cell migrating on square-circle micropattern with adhesion sites of 
equal area. This movie was acquired at high magnification (60x) and with a time resolution 
of 30s to visualise filopodia dynamics. 
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1.  Additional Materials and Methods 
 
1.1. Detailed Micropattern Dimensions 
 
x-
dimensions 
left site 
[µm]* 

x-
dimensions 
right site 
[µm]* 

Area left 
[µm2] 

Area right 
[µm2] 

Further 
information 

Number of 
cells 
analysed 

Bridge 
length x 
width [µm] 

37.5 ± 0.3 27.5 ± 0.2 1405 ± 
22.5 

754.7 ± 
11.0 

Square-
square 

47 (16.0 ± 
0.3) x (7.8 
± 0.3) 37.6 ± 0.6 32.4 ± 0.7 1410.6 ± 

45.1 
1052 ± 
45.4 

Square-
square 

68 

37.2 ± 0.8 37.4 ± 0.6 1385.1 ± 
59.5 

1397.3 ± 
44.9 

Square- 
square 
(symmetric) 

169 

42. 1 ± 0.3 27.3 ± 0.4 1776.2 ± 
25.3 

743.1 ± 
21.8 

Square-
square 

58 

42.2 ± 0.5 32.1 ± 0.6 1782.1 ± 
42.2 

1028.8 ± 
38.5 

Square-
square 

74 

36.5 ± 0.4 40.3 ± 0.6 1329.7 ± 
29.2 

1275 ± 
38.0 

Square-
circle 
(equal 
area) 

67 (14.5 ± 
0.2) x (6.1 
± 0.1) 

35.9 ± 0.2 44.6 ± 0.3 1291.9 ± 
14.4 

1580.2 ± 
21.0 

Square-
circle 
(equal 
perimeter) 

98 

37.6 ± 0.2 46.7 ± 0.5 
49.6 ± 0.6 

1413.8 ± 
14.3 

1243.2 ± 
24.7 

Square-
rhombus 

63 (17.7 ± 
0.1) x (7.7 
± 0.1) 37.8 ± 0.2 33.5 ± 0.3 

67.7 ± 0.7 
1428.8 ± 
17.3 

1263.8 ± 
16.5 

Square-
triangle 

82 

48.9 ± 0.7  
24.9 ± 0.4 

48.9 ± 0.8 
24.9 ± 0.3 

1217.6 ± 
26.2 

1217.6 ± 
24.6 

Lying 
rectangles 

78 (16.2 ± 
0.1) x (5.0 
± 0.2) 24.9 ± 0.4  

47.9 ± 0.5 
24.8 ± 0.3 
47.8 ± 0.4 

1192.7 ± 
22.1 

1185.4 ± 
15.3 

Upright 
rectangles 

65 

48.2 ± 0.7  
24.3 ± 0.4 

25.2 ± 0.2 
47.8 ± 0.5 

1171.3 ± 
24.0 

1204.6 ± 
16.9 

Mixed 
rectangles 

59 

 
Table S1. Measures of all used dumbbell geometries, calculated adhesion site areas and numbers of 
cells analysed for each geometry. Orange shading denotes adhesion sites designed to have 
comparable areas.  Errors are weighted standard deviations as different statistics were gathered 
from each experiment and an experiment-to-experiment variation between pattern dimensions is 
unavoidable. * Y-dimensions of longest axis are given for anisotropic shapes (bottom numbers). 
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The following channel lengths were probed with different rectangle orientations: 8.2 ± 0.3 
µm, 16.2 ± 0.1 µm (as presented in the main text), 24.8 ± 0.2 µm, and 34.7 ± 0.1 µm. 
 
1.2. Cell Exclusion Criteria 
To limit the effects of abnormal migration behaviour, we deem cells suitable for further 
analysis if they comply with the following criteria (1): 

1. Only a single cell occupies the micropattern. Observations are stopped when the cell 
rounds up for division. 

2. We only include trajectories of cells which, including their protrusions, are entirely 
confined within the borders of the micropattern. 

3. Transition statistics are only included after the first and last observed transition. This 
avoids start- and end-of-measurement artefacts in determining dwell times. 

4. The cell shows no abnormalities such as multiple nuclei or the occurrence of cell 
death at any time during the whole experiment. 

5. In the vast majority of cases the cell performs complete transitions. A complete 
transition is defined by the fact that no parts of the cell adhere to the previous 
adhesion site once the nucleus has entered the new adhesion site. 

 
Criteria 1-4 are basic requirements for single cell studies on micropatterns. We try to limit 
the influence of abnormal migration behaviour by applying criterion 4, as it would be 
expected that dying cells, in contrast to healthy cells, respond differently to external cues. 
Criterion 5 is specific to our dumbbell setup and, depending on the cell type, may be a 
rather strong constraint. We previously found that criterion 5 can be relaxed without 
affecting general conclusions on cell dynamics (1). We have decided to apply criterion 5 to 
the data presented in this work as we intend to probe cellular response to either of two 
geometries separately.  
 
1.3. Filopodia Movies 
For filopodia movies, images in the brightfield channel were taken every 30s and, to keep 
experimental conditions as similar as possible to other experiments, every 10 minutes an 
image in the DAPI channel was acquired. 
 
1.4. Cell Area Determination 
Cell areas were determined manually with ImageJ’s Ivussnakes Plugin (2) by tracing the cell 
outlines visible in the phase contrast images. Cell areas were determined for cells complying 
with the above exclusion criteria and only at times where the cell was fully confined (i.e. 
where there were no protrusions inside the channel). As this approach overestimates the 
influence of smaller cells, which are naturally better confined, a mean cell area was 
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calculated for every stay (in contrast to calculating a mean over all frames used) and an 
average of these areas was taken as final cell area.  
 

2. Filopodia 
To investigate filopodia dynamics in our setup, we acquired images of cells migrating on the 
two-state system every 30s with high magnification (60x). Filopodia are mainly visible 
exploring the passivated area surrounding the micropatterns. Sometimes, their exploratory 
motion is followed by a lamellipodium spreading in the same direction (cf. time series Fig. 
S1). Filopodia were only rarely observed on the fibronectin-coated areas of the 
micropatterns, indicating that cell motion in our system is dominated by lamellipodia. 
 

 
Figure S1. Time series of a single cell on a circular adhesion site highlighting filopodia activity. 
Typically, filopodia can be seen vividly exploring the passivated surroundings of micropatterns. The 
white arrows indicate some of the filopodia visible. 

 
  

185



 5 

3. Cell Areas on Square Adhesion Sites 
To test the influence of cell area on the mean dwell times, we measure the average cell 
areas that cells actually cover on the differently sized square adhesion sites. In Fig. S2, the 
dependence of cell area on available adhesion site area is shown. It is clearly visible that 
only for the two smallest adhesion sites cells fully occupy the adhesion site, and thereby 
reflect in their area the area of the adhesion sites. For larger adhesion sites, the cell area 
still increases but does so more slowly. This means that on large adhesion sites, cells 
frequently do not fully fill all available area of the confining site.  
 

 
Figure S2. Cell areas Ac on adhesion sites of different areas Aad. The cell area increases with 
provided adhesion area. The increase in cell area is not equal to the increase of provided 
adhesion areas. The dashed line is a guide to the eye corresponding to Ac = Aad. Same 
colours denote cell areas taken from the same dumbbell geometry. Error bars of the cell 
area are obtained by bootstrapping.  
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4. Comparison between Model and Experiment for Square Adhesion Sites 
The comparison between model predictions and experimental data using the predictions by 
our model based on the short timescale dynamics of the cells (1) is shown in Fig. S3. 
 

  
Figure S3. Experimental (blue) and predicted (red) probability distributions of position (A), velocity 
(B) plotted semi-logarithmically) and (C) velocity correlation function for all asymmetric two-state 
micropatterns presented in Fig. 2 except (iv). 
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5. Square-Circle Pattern of Equal Perimeter 
To probe the influence of shape on cellular dwell times, we have created square-circle 
micropatterns with adhesion sites of either equal area (data shown in main text) or the 
same perimeter (Fig. S4). We find that occupation probabilities on square-circle patterns are 
biased towards the circle if the square and circular adhesion sites have the same 
perimeters. When the corresponding mean dwell times are added to the plot of mean dwell 
times against adhesion site areas, the data points follow the same linear dependence on 
area as seen for square-only micropatterns (Fig. 2B and 2C). 
 

 
Figure S4. A: Probability distribution in x-direction of cell positions on square-circle micropattern 
with adhesion sites of equal perimeter. A significant asymmetry of stay probabilities is visible, with 
stays biased towards the circular adhesion site. Cells spend (46 ± 1) % of their stays on the left side, 
and (54 ± 1) % of their stays on the right side. B: 2D probability distribution of cell positions on the 
same geometry. A broader spread of positions is visible on the circular site. 
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6. Survival Functions on Adhesion Sites of Different Shapes 
We measured the dwell times in repeated experiments for square, circular, rhombical and 
triangular adhesion sites of similar areas. While for the circle the survival function of stay 
times, S(t), does not differ from those measured on square adhesion sites, a gradual 
broadening of S(t) is visible for the rhombical and triangular geometry (Fig. S5).  
  

 
Figure S5. Variability of survival functions S(t) for adhesion sites of approximately the same area. S(t) 
for stays on square adhesion sites are plotted in black. In blue, the survival function for stays on 
circular adhesion sites with the same area is shown. The red curve shows S(t) for the rotated square 
(rhombus), the green curve shows S(t) for triangular adhesion sites. Bootstrapping errors are plotted 
in light colours. 
 
 
7. Cell Organisation and Polarisation on Differently Shaped Adhesion Sites 
To study cell organisation on a range of adhesion site shapes, we have fixed cells and 
stained their actin cytoskeleton and focal adhesions. Focal adhesions are mainly localised 
under lamellipodia or in cell corners. If cells are migrating within adhesion sites, actin stress 
fibres organise along the direction of motion and indicate cell polarisation. 
To test whether cells polarise on the adhesion sites provided, we plot a histogram of the 
direction of the cell velocity between two subsequent time points of each stay. Between 
squares of different areas, a circle and a rhombus of similar areas very few differences in the 
preferential direction of nuclear displacement on the adhesion site are visible. Only for the 
triangle, which is anisotropic under rotations of 90°, is elongated in y-direction and sports 
acute angles located orthogonally to the axis of transitions, the angular distributions looks 
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different (lowest polar plot, Fig. S6). The extent of cell motion, and interrelatedly, cell 
polarisation in y-direction is increased compared to the other studied adhesion site 
geometries presented in Fig. S6. 
 

 
Figure S6. Angular probability distributions of the directions of cell velocities on adhesion sites only. 
The corresponding micropatterns are detailed on the left and shown as overlays on the right. The 
directions are stated with respect to the long axis of the micropattern (i.e. the axis of transitions). 
Each bin contains the counts for the shown angle and for motion in angle+180°, as the angles are 
calculated using the scalar product. Only cell motion within adhesion sites is included in the analysis. 
Also, images of fixed cells on the respective micropatterns stained for actin and paxillin (merged) are 
shown.  
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8. Rectangle Micropatterns 

 
8.1. Survival Functions as a Function of Bridge Length 
To further explore the migration of cells between anisotropic states, we also vary the length 
of the connecting bridge between the two rectangles. Due to their identical orientation, we 
expect the survival probability functions on the symmetric upright rectangle dumbbell and 
on the upright rectangle from the mixed orientation setup to be identical. The same should 
be true for horizontal rectangles. From Fig. S7A, where survival probability functions for 
corresponding rectangle orientations are shown in the same plot and for different channel 
lengths, it is evident that cells behave differently for the same rectangle orientations, 
depending on the overall composition of the two-state system. This could be related to 
memory effects such as have previously been suggested in ratchetaxis (3). Interestingly, the 
time-scales of dwell times in the rectangles are longer than the 50 minutes reported as 
stress fibre orientation memory (4), possibly indicating more determinants for cellular 
memory. However, when fixed cells are stained for their actin cytoskeleton and focal 
adhesions, no obvious differences are visible between cells in the mixed orientation and 
symmetric setups (Fig. 7 and Fig. S12). 
Furthermore, we observe an increase of the mean dwell times with channel length for all 
rectangle orientations and setups. This behaviour is in qualitative agreement with our 
observations on symmetric square systems (1). Strikingly, also the dwell times on upright 
rectangles in the mixed setup are generally longer than the corresponding stay times on 
upright rectangles in the symmetric setup. Furthermore, there is no significant difference in 
stay times between the horizontal rectangles and the upright rectangles from the mixed 
orientation setup (Fig. S7B). 
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Figure S7. A: Survival functions S(t) for different channel lengths. In each plot, the survival function is 
shown for rectangles of the same orientation but from different setups, the black line always 
corresponding to mixed-orientation dumbbells. Despite the rectangles having the same orientation, 
deviations in the decay behaviour of S(t) are visible for longer times (t>3h) for upright rectangles 
connected by channels of medium lengths. In contrast, some differences in S(t) are visible for 
horizontally-oriented rectangles (lower plots) for short stay times.  B: Mean stay time 〈𝜏〉 plotted 
against channel length for all tested rectangle orientations. An approximately linear increase of 
mean dwell times with increasing channel length is visible for all orientations. The blue cross 
datapoints correspond to stay times measured on the upright rectangle, in the mixed orientation 
setup, the solid blue circle data correspond to the symmetric setup of upright rectangles, the red 
crosses corresponds to data from the lying rectangle of a mixed-orientation setup and the solid red 
circles correspond to stay times measured on dumbbells with equally oriented, horizontal 
rectangular adhesion sites. 
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8.2. Migration Behaviour on Rectangle Micropatterns 
In all rectangle orientations, cells are observed to form protrusions along the long axis of the 
rectangle (Fig. S8). This results in a broadening of the probability distribution of y-positions 
on the vertical rectangles relative to the horizontal case (Fig. S9). This is the case in all 
vertical rectangles, both in the symmetric and the mixed setup. The anisotropies also 
significantly affect the probability distributions of velocities, which are always broader along 
the long axis of each rectangle (Fig. S10). Taken together, these results show that there is a 
significant difference in migratory activity along the long and short axes of the rectangles. 
 

 
Figure S8. A: Time series of a single cell migrating on a dumbbell made of vertical rectangles (bridge 
length L = 16.2 µm). It can be seen how lamellipodia are formed along the long axis of the rectangle. 
Scale bar: 25 µm. B: Time series of a single cell transitioning on horizontal rectangles. The cell is seen 
to migrate within each rectangle until it meets the dumbbell border. Scale bar: 25 µm. 
 
Furthermore, when inspecting cellular trajectories in x- and y-directions, it becomes 
apparent that x- and y-motion are often mutually exclusive (Fig. S11A-B). Thus, y-motion is 
pretty much suppressed on horizontal rectangles, and if the extent of motion in y-direction 
is large on vertical rectangles, transitions along the bridge seem to be less frequent (cf. Fig. 
S11A). Obviously, this is a consequence of the adhesion sites extending very little along the 
short axis of the rectangle but it also agrees well with the observation of stress fibre 
orientation and directionality of cell motion as indicators of polarisation (Fig. 7, Fig. S12). 
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Figure S9. Probability distributions of positions in the vertical direction on rectangle micropatterns 
with bridge length L=16.2 µm. The cartoons serve as a legend to the four distributions. 
 

 
Figure S10. Probability distributions of velocities in horizontal and vertical directions (bridge length L 
= 16.2 µm). A: Distribution of velocities along the micropattern’s main direction (x-direction). B: 
Distribution of velocities in the direction orthogonal to the main axis of the micropattern (y-
direction). The colour code is indicated by the cartoons.  
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Figure S11. A: Comparison between x- and y-motion: Exemplary single-cell trajectories in x- and y- 
direction for each of the three rectangle setups. The displacement fluctuations along the y-axis are 
larger for vertical rectangles than for horizontal rectangles. B: Displacements in x- and y-direction 
with respect to the centres of the rectangles. The colours of the dots correspond to the left or right 
adhesion site, as indicated in the schematic drawings. It is clearly visible that where the extent of x-
motion is large, motion in the y-direction is limited, and vice versa.  
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Figure S12. Images of fixed cells on rectangular adhesion sites stained for actin (yellow) and paxillin 
(blue). The underlying micropatterned adhesion sites are superimposed as a reference. 

 

196 5. Cellular responses to varying confinement size, shape and orientation



 16 

9. All Dwell Times 
When all dwell times measured on the two-state systems are put into perspective, it is 
visible that the vertical rectangle and triangle data points deviate from the rest of the data, 
indicating that determinants other than area affect dwell times. For all other adhesion site 
geometries, the mean dwell times for differently shaped motifs and equally sized adhesion 
sites from different micropatterns agree within error, suggesting that there are no memory 
effects (Fig. S13). Memory effects in the rectangular system are discussed in section S8. 
We can also test the dependence of escape rates, i.e. inverse mean dwell times, on the ratio 
of bridge width and adhesion site edge length. Intuitively, one would expect a correlation 
between the likelihood of escape and the relative size of an opening providing an exit from 
confinement. When plotting escape rates against the bridge width/edge length ratio, 
correlated and uncorrelated regions in the data are visible (Fig. S10) 
  

 
Figure S13: Mean dwell times plotted against adhesion site area for all tested adhesion sites. Both, 
the vertical rectangle from the mixed setup (topmost grey square) and the triangle (blue triangular 
data point) clearly deviate from the linear trend observed for square, circular and rhombical 
adhesion sites.  
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Figure S14: Plot of escape rates (inverse mean dwell times) against the ratio of bridge width and 
adhesion site edge length. Pink data points correspond to square-square micropatterns, blue data 
points correspond to square-circle micropatterns with the symbol shape depicting the particular 
adhesion site shape, and grey data points correspond to rectangular systems of all reported 
orientations. 
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Cell migration in many physiological processes relies on the concerted dy-
namics of several cellular components, including the formation of cell pro-
trusions, adhesive connections to the environment, and the positioning of
the cell nucleus. These components are coupled by the polarizable active
cytoskeleton, and together play the dual role of driving net motion of the
cell and sensing its local microenvironment. However, it remains poorly
understood how the dynamic interplay of these components determines the
emergent migration behavior at the cellular scale, and how these dynamics
adapt to confining environments. Here, we develop a hybrid mechanistic
and data-driven theoretical approach, where we use experimental data to
systematically constrain a mechanistic model for confined cell migration.
We measure a large data set of joint protrusion and nucleus trajectories of
cells migrating in standardized micropatterned confinements featuring a
thin constriction. Interestingly, we find that cells exhibit a stereotypical mi-
gration pattern, with protrusions growing to precede the transmigration of
the cell nucleus across the constriction, which we term ‘protrusion-nucleus
cycling’. Based on a data-driven approach, we reveal that the average dy-
namics of the cell nucleus are determined by the locally available adhesive
area. Furthermore, our model indicates that the protrusion dynamics are
driven by a cell polarity that couples to the local geometry by switching
from a negative to a positive, self-reinforcing feedback loop under strong
confinement. Strikingly, this model predicts, in agreement with the experi-
ment, that the protrusion-nucleus cycling disappears when the constriction
is removed. This implies that the self-reinforcing polarity feedback loop
emerges as a consequence of an adaptation of the cellular dynamics to the
presence of the thin constriction. Our theoretical approach therefore sug-
gests polarity feedback adaptation as a key mechanism in confined cell mi-
gration.

The ability of cells to migrate is essential for many physiological processes, including embryo-
genesis, immune response, and cancer [1–4]. The migration of cells is intimately linked to
changes of their shape: migrating cells generate protrusions that drive migration [5, 6]. Pro-
trusion formation is the result of complex molecular processes, including the polymerization
of actin which in turn is regulated by an interconnected network of diffusible polarity cues
and actin regulators [5, 7–9]. At the cellular scale, this molecular machinery leads to coordi-
nated, functional migration, which manifests as persistent random motion on uniform two-
dimensional substrates [10, 11]. However, in physiologically relevant environments, cells must
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navigate complex, structured extracellular environments [6,12], featuring obstacles such as thin
constrictions [4,13]. Thus, migrating cells need to adapt their migration strategy by responding
to the structure of their local micro-environment. However, it remains unclear how the under-
lying protrusion and polarity dynamics determine the emergent migration dynamics of cells in
structured environments on long time-scales.

Achieving a quantitative understanding of how the dynamics of protrusions and polarity con-
trol migration in structured environments could yield key insights into both the underlying
molecular mechanisms, and the adaptive system-level behaviors. Previous biophysical ap-
proaches to develop quantitative cell migration models can be broadly classified into two cate-
gories: top-down inference approaches, which systematically constrain model candidates using
experimental data; and bottom-up mechanistic models, which postulate specific mechanisms
and explore their implications. Top-down approaches have been used to describe the dynamics
of migrating cells at the level of cell trajectories using equations of cell motion. This has been
successfully applied to quantify the persistent random motion of freely migrating cells [11], mi-
gration in structured confinements [14–17] and 3D matrices [14,18], as well as pair-wise interac-
tions of cells [19]. At the mechanistic level, complex computational models that include polar-
ity processes and protrusion formation have been developed, including phase-field [20–22] and
Cellular Potts models [23–25]. More minimal models include molecular clutch models [26, 27],
which account for the coupling of adhesions to substrate mechanics, as well as active gel theo-
ries [28,29] and models coupling actin flow, polarity cues, and focal adhesion dynamics [30–35].
However, these approaches suffer from two key limitations: computational models have many
parameters that are difficult to constrain based on experimental data, and thus testing their pre-
dictive power for particular experiments remains challenging. The more minimal models are
frequently taylored to capture a particular aspect of the data, but it has often remained diffi-
cult to capture the full long time-scale dynamics of the cells, or how these dynamics adapt to
external inputs. A key difficulty in connecting such approaches to experimentally observed mi-
gration dynamics is the intrinsic stochasticity of migrating cells, which results in highly variable
behaviors. Thus, there is currently a fundamental divide in the field that has yet to be bridged:
how to connect mechanistic approaches to the underlying protrusion and polarity dynamics of
confined migrating cells with their emergent, stochastic long time-scale motion.

Here, we develop a hybrid data-driven and mechanistic approach, where we use experimental
data to rigorously constrain a mechanistic model for confined cell migration postulated on the
basis of physical intuition and known cellular processes. Specifically, we measure a large data
set of joint nucleus and protrusion trajectories of cells migrating in a standardized micropat-
terned confinement. We find that the stochastic dynamics of protrusions are a key driver of
migration across thin constrictions imposed by the micropattern. Specifically, we find a stereo-
typical pattern of ‘protrusion-nucleus cycling’, where protrusions grow to precede the trans-
migration of the cell nucleus across the constriction. To account for these intricate coupled
protrusion-nucleus dynamics, we use a systematic approach to determine a mechanistic model
which connects all the way from the short time-scale protrusion dynamics to the long time-
scale stochastic cell behavior. Remarkably, we find that this model is able to capture cellular
dynamics in systems with varying constriction width and length, indicating that the model has
predictive power beyond the specific confinement geometry used to constrain it. This approach
reveals two key insights: first, we find that the dynamics of the cell nucleus in the confinement
is determined by a spatially variable friction coefficient determined by the adhesive area locally
available to the cell. Second, in response to thin constrictions, the polarity dynamics switch
from a negative to a positive feedback loop, leading to strong polarities and persistent protru-
sion growth in the constriction. Our model therefore reveals that cellular protrusion dynamics
adapt to the local confinement geometry, leading to the emergence of stereotypical protrusion-
nucleus migration cycles in response to thin constrictions.
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Protrusion dynamics drive confined cell migration

To investigate the dynamics of cell shapes and protrusions in confined migration, we study
the migration dynamics of single MDA-MB-231 breast carcinoma cells confined to two-state
micropatterns (Fig. 1a). These patterns consist of two adhesive islands connected by a thin
adhesive bridge, which acts as a constriction, allowing us to study how migrating cells respond
to constraints in the extra-cellular environment. A minimal description of these dynamics is
provided by the trajectories of the cell nuclei. In previous work [15], we found that these nucleus
trajectories exhibit intricate stochastic non-linear dynamics in position-velocity phase space.
This is a generalization of the persistent random motion framework previously applied to cells
freely migrating on 2D substrates [10, 11]. However, it remains unclear how the underlying
shape changes control the overall migration dynamics of confined cells. Here, we use time-lapse
phase-contrast microscopy and fluorescent staining of the cell nuclei to investigate the joint
dynamics of cell shape and nucleus motion. Interestingly, we find that the motion of the cell
nucleus is correlated with the growth of a cell protrusion across the constriction of the pattern
(Fig. 1a), suggesting that the protrusion dynamics of these cells are key to understanding cell
migration dynamics.

To quantify these protrusive dynamics, we first isolate cell shapes from bright-field microscopy
image stacks using a convolutional neural network with a U-Net architecture [36] (Methods).
This segmentation procedure allows us to accurately determine the 2D shape of the cells as
a function of time (Fig. 1a). To identify protrusions, we classify those components of the cell
shape added in each time step as protrusive areas (Fig. 1b,c, Methods, Supplementary Movie
S3) [37]. As expected, we find that during the transmigration of cells across the constriction,
protrusive areas are located at the growing tip of the cell. Importantly, due to the geometry
of the micropattern, we find that most of the protrusive activity is captured by the x-direction
along the long axis of the pattern (Supplementary Section S2). To provide a low-dimensional
representation of the protrusion dynamics, we therefore define the effective protrusion position
xp(t) as the geometric center of protrusive area (Fig. 1c), which we refer to as the protrusion
from here on. The trajectories of the protrusion serve as an indicator of the protrusive dynamics
of the cells, as shown by an overlay with the kymograph of the microscopy images (Fig. 1d,
Supplementary Movie S3). Thus, our analysis pipeline gives access to a large data set of low-
dimensional trajectories of cell nucleus and protrusion dynamics, allowing in-depth statistical
analysis of the cellular dynamics.

The joint nucleus and protrusion trajectories reveal that these cells migrate across the constric-
tion in a stereotypical manner: first, the protrusion grows slowly across the constriction, after
which the nucleus rapidly follows (Fig. 1e). Interestingly, the nucleus motion is less stochas-
tic than the protrusions. The nucleus trajectory xn(t) furthermore appears to be a time-lagged
version of the protrusion trajectory xp(t). This feature is also represented in the joint probabil-
ity distribution of nucleus and protrusion positions, p(xn, xp), which exhibits a characteristic
ring-like structure (Fig. 1f). While the most likely states are where both nucleus and protrusion
occupy one adhesive island, there is significant probability along the path where the protru-
sion first crosses the constriction and reaches the other island, followed by the traversal of the
nucleus. In contrast, there is very low probability of observing both protrusion and nucleus in
the constriction. To further quantify these time-lag dynamics, we calculate the cross-correlation
function 〈xn(t)xp(t + T) which exhibits a peak at negative time shifts, indicating that the pro-
trusion leads the nucleus by a typical time-shift Tnp ≈ 0.6 h (Fig. 1g). While the cells also
perform retractions, we find that these are strongly correlated with the motion of the nucleus
with near-zero time-lag, and therefore do not contain significant additional information (Fig. 1g,
Supplementary Section S2). Thus, we here restrict our analysis to the protrusion dynamics. To-
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Figure 1: Protrusion-nucleus cycling in confined migration. a. Exemplary brightfield microscopy image series of an
MDA-MB-231 breast cancer cell migrating in a two-state micropattern with constriction width W = 7 µm and length
L = 35 µm, indicated by arrows. Images are inverted for better visibility of cell shapes. Tracked cells shapes are shown
as pink outlines. Blue dots indicate tracked nucleus position xn. b. Same time-series as in a, with protrusive areas
marked in green, blue dot indicates the nucleus position xn, green dot effective protrusion position xp. c. Example
image showing how protrusion areas are calculated and projection of nucleus and protrusion positions on the x-axis at
time t. The solid pink line shows the current boundary of the cell area at time t, and the dashed line is the boundary
at t + ∆t. d. Kymograph of the brightfield microscopy images, with superimposed protrusion trajectory xp(t) in green.
e. Joint trajectory of nucleus xn(t) (blue) and protrusion xp(t) (green). f. Joint probability distribution p(xn, xp) of the
x-positions of nucleus and protrusion, plotted logarithmically and interpolated. Dotted lines indicate the boundaries
of the adhesive islands. g. Position cross-correlations between nucleus and protrusion 〈xn(t)xp(t + T)〉 (green), and
nucleus and retraction 〈xn(t)xr(t + T)〉 (red). The retraction position xr is determined in a similar way to the protrusion
(Supplementary Section S2). Blue line shows the nucleus position auto-correlation, 〈xn(t)xn(t + T)〉. All scale bars:
25 µm.

gether, these results indicate that the cellular dynamics in this system exhibit a stereotypical
‘protrusion-nucleus cycling’ which can be represented as paths in xnxp-space. This data set
could thus allow insight into the crosstalk between protrusion-nucleus coupling and the feed-
back between geometry and polarity dynamics. To elucidate these features, we aim to develop
a mechanistic physical model for the stochastic dynamics of cell protrusions and polarity and
their coupling to the nucleus dynamics.

Confined cells migrate in an adhesiveness landscape

We aim to develop a mechanistic theory to describe how the coupled stochastic dynamics of cell
nucleus and protrusion determine the confined migration of cells. To this end, we start with a
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Figure 2: Nuclear velocity maps constrain model candidates. a. Schematic of the model. Arrows indicate the forces
acting on the cell at positions xn and ẋp. b. Experimental nuclear velocity map (NVM), calculated as the conditional
average of the nucleus velocity as a function of nucleus and protrusion positions, 〈ẋn|xn, xp〉, shown with interpolation.
c. Double-well potential W(xn) = Q(1− (xn/x0)

2)2 used in the deformation model, where Q determines the height of
the energy barrier, and x0 the positions of the minima. Image indicates the dimensions of the micropattern, and shows
a fluorescence microscopy image of a LifeAct-stained cell in the pattern. d. NVM predicted by the deformation model.
Parameters are determined by a best fit to the experimental NVM (Supplementary Section S4). e. Cuts of the NVM
along the horizontal lines indicated in panel d, showing ẋp as a function of xn for different xp. Dots: Experiment, solid
lines: deformation model prediction. f. Spatially variable friction γ(xn) = γmin + 1

2 (1− γmin)
(
1− cos

(
xnπ/Lsystem

))

used in the adhesion model, where γmin is the friction at the center of the constriction, and Lsystem is the total length of
the micropattern. g. NVM predicted by the adhesion model. Parameters are determined by a best fit to the experimental
NVM (Supplementary Section S4). h. Same plot as in panel d for the adhesion model.

general set of equations of motion for the nucleus and protrusion dynamics, which we system-
atically constrain using the experimental data. Our strategy will be to postulate simple model
candidates based on known cellular processes, physical intuition, and symmetry arguments,
whose predictions we will test against data.

Forces on the nucleus can arise due to two main contributions: coupling to the cell protru-
sion [6, 38–40], and the effect of the confining micropattern. Similarly, protrusions couple to the
cell nucleus [6], and may be sensitive to the external environment. Additionally, we assume the
protrusion to be driven by a stochastic active force P(t), which serves as a minimal implementa-
tion of the time-dependent forces driving protrusion formation, such as the active pushing force
due to actin polymerization [5, 31]. This active force determines the instantaneous direction of
polarization in which protrusions are generated, and we therefore refer to it as the cell polarity.
Thus, considering force balance at xn and xp (Fig. 2a), we obtain the general equations

ζn ẋn = fn(xn, xp) (1)

ζp ẋp = fp(xn, xp) + P(t) (2)
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where ζn, ζp are the friction coefficients of nucleus and protrusion, respectively. In this model,
we assume the origin of the intrinsic stochasticity of the system to be the polarity dynamics
driving the protrusion. In contrast, the nucleus dynamics are given as a deterministic function
of xn and xp. These assumptions are supported by the experimental data: we find that the
nucleus velocities ẋn have a signal-to-noise ratio > 1, indicating that deterministic components
dominate over stochastic components. In contrast, the stochastic contribution to the protrusion
velocities ẋp is much larger than that of the nucleus, and the protrusion velocities have a signal-
to-noise ratio < 1 (Supplementary Section S3).

To constrain our model step-by-step, we start with the dynamics of the cell nucleus given by
fn(xn, xp). In migrating cells, the motion of the nucleus is coupled to the dynamics of the lead-
ing edge, for example through elastic stresses in the cytoskeleton which connects protrusion
and nucleus [6, 38, 39, 41], or through active processes coupling the leading and trailing edge of
the cell [42]. As a minimal model for this coupling, we consider a linear elastic spring, similar
to previous work [32, 33].

It is less clear however, how to incorporate the effect the confining micropattern might have on
the dynamics. A key step in the migration across the constriction is the deformation of the cell
body near the nucleus (Fig. 1a, Supplementary Movie S2). Such deformation dynamics of cells
is frequently modelled using elastic Hamiltonians including the surface and line tension of the
cell [24, 25, 43–45], which would suggest that the deformed state of the cell in the constriction
is associated with an increased energy. A simple description for this confinement contribution
is a double-well potential W(xn), where the cell has minimal energy when it is on the adhesive
islands (Fig. 2 c). We therefore postulate the equation of motion for the cell nucleus

ζn ẋn = k(xp − xn)− ∂xnW(xn) (3)

This equation makes a concrete prediction for how the nucleus velocity ẋn varies with the po-
sitions of nucleus and protrusion. To test this prediction directly on the experimental data, we
determine the average velocity of the cell nucleus as a function of xn and xp, 〈ẋn|xn, xp〉, which
we term nuclear velocity maps (NVM) (Fig. 2 b). Strikingly however, we find that the NVM pre-
dicted by this model qualitatively fails to capture the experimental data (Fig. 2 d,e). Notably,
the model (Eq. (3)) predicts that the speed of the nucleus should decrease as it crosses the con-
striction when the protrusion has reached the other side. In contrast, in the experiment we find
that the nucleus accelerates as it crosses the constriction. The model similarly fails for more
general non-linear elastic couplings between nucleus and protrusion (Supplementary Section
S3). Therefore, we conclude that such potential energy models alone are not able to recover the
cellular dynamics in this setup.

A second feature of the confinement that may play a role in the migration dynamics is the dif-
ference in adhesive area available to the cell on the island and in the constriction. Mesenchymal
migration relies on the formation of mature focal adhesions at the cell rear, where the nucleus
typically resides [46, 47]. These adhesions can only form within the micropatterned area, and
we therefore expect the adhesiveness to be largest on the islands and smallest at the center of the
constriction. A simple model for such differential adhesiveness is a spatially variable friction
coefficient (Fig. 2f):

ζnγ(xn)ẋn = k(xp − xn) (4)

Remarkably, this model provides an excellent fit to our data, and captures the characteristic in-
crease in nucleus speeds during transmigration (Fig. 2 g,h). This observation suggests that the
spatially variable adhesiveness plays a dominant role in the confinement dynamics. The accel-
eration of the nucleus could therefore be understood as a consequence of the reduced number
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of adhesions formed by the cell body around the nucleus when it is in the constriction. Impor-
tantly, by constraining our model purely based on the nucleus velocities, we can constrain the
nucleus dynamics (Eq. (1)) without making any assumptions on the protrusion and polarity dy-
namics (Eq. (2)). Taken together, these results indicate that a spatially variable adhesiveness is
a key component of the effect of the thin constriction on migration dynamics, which dominates
over possible contributions due to cellular deformations in our setup.

Figure 3: Adhesion model predicts dynamics with varying constriction width. a. Friction profiles γ(xn) with in-
creasing γmin as a model for increasing bridge width. The value of γmin is fitted for the narrowest bridge (W = 4 µm.
For the widest system without constriction, we take a flat profile and interpolate the profiles of intermediate widths
(Supplementary Section S4). b. Sketch of confinement geometries with increasing bridge widths W = 4, 7, 12, 22, 35 µm
(from left to right); brightfield microscopy images of MDA-MB-231 cells migrating in these geometries with cell outline
in pink and nucleus position in blue, and geometry in white. Scale bar: 25 µm. c. Predicted and experimental nuclear
velocity maps (NVM) 〈ẋn|xn, xp〉. Plotted with the same color axis as shown in Fig. 2. d. Predicted and experimental
cuts of the NVM, showing ẋp as a function of xn for different xp as described in Fig. 2.

Adhesion model captures dependence of nucleus dynamics on varying con-
striction width

Our adhesion model (Eq. (4)) makes a simple, intuitive prediction. As we widen the constricting
bridge of the micropattern, more adhesive area becomes available, and thus the variations in
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the friction profile should become smaller (Fig. 3a). In the extreme limit where the constriction
has the same width as the islands, we expect a uniform adhesiveness profile. Accordingly,
we predict the acceleration of the cell nucleus observed on thin bridges (Fig. 2) to decrease
with the increasing adhesiveness of a wider bridge, and to completely disappear for constant
adhesiveness (Fig. 3c,d). In this case, we expect dynamics that are completely determined by
the linear elastic coupling between nucleus and protrusion (last panel Fig. 3d).

To challenge the predictive power of the adhesion model, we perform experiments with vary-
ing bridge width (Fig. 3b). Remarkably, we find that the nuclear velocity maps inferred from
these experiments exhibit a similar trend as predicted by the adhesion model, with a decreas-
ing maximum nucleus speed in the constriction (Fig. 3c,d). On the rectangular micropattern
without any constriction, we find an almost linear profile of the nucleus speed with position,
as predicted theoretically. This further supports our model of the nucleus-protrusion coupling
as a linear elastic spring. In summary, the adhesion model has predictive power for confining
geometries with varying constriction width.

Figure 4: Dynamics of time-correlated polarities. a. Stochastic trajectory xn(t) (blue), xp(t) (green), and P(t) (pink)
of the white noise model. b. Trajectory of the persistent polarity model (Eq. (7)). c,d. Protrusion velocity maps (PVM)
〈ẋp|xn, xp〉 predicted by the white noise model, and the persistent polarity model. In both models, we use a potential
to enforce the overall system boundaries, V(xp) = (x/xboundary)

8 (see Supplementary Section S4). Inset: polarity
contribution to the PVM, given by 〈P|xn, xp〉. e. PVM inferred from experiments with bridge width W = 7 µm. f. PVMs
predicted by the persistent polarity model for varying polarity persistence time α−1

0 . From left to right, persistence times
α−1

0 = 0.1, 0.2, 0.5, 1, 3 h are shown. g. Joint probability distribution p(xn, xp) predicted by the persistent polarity model,
plotted logarithmically. Dotted lines indicate the boundaries of the adhesive islands. h. Probability distribution of the
dwell times τ, defined as the time between subsequent transitions of the cell nucleus across the bridge centre; observed
experimentally (W = 7 µm, blue), and predicted by the white noise (black dashed line) and the persistent polarity
model (orange).
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Observed protrusion dynamics suggest time-correlated cell polarity

Having determined how the dynamics of the nucleus couples to the confinement and protru-
sion, we next investigate the dynamics of the protrusion itself (Eq. (2)). As a minimal model
for the protrusion dynamics, we postulate a coupling to the cell nucleus which is equal and
opposite to the coupling introduced for the cell nucleus (Eq. (4)). In addition, we enforce a con-
finement to the overall system size, using soft-wall boundary conditions enforced by a potential
V(xp):

ζp ẋp = −k(xp − xn)− ∂xp V(xp) + P(t) (5)

Thus, we assume that the protrusion is insensitive to the presence of the constriction and is able
to move through it unhindered without variable adhesiveness. This is also supported by the
observation that the protrusion, unlike the nucleus, spends significant time in the constriction,
as shown by the probability distribution p(xn, xp) (Fig. 1f). However, we anticipate that the
polarity P may couple to the confinement, as it models the active driving of the protrusion by
the molecular migration machinery, including actin polymerization and the diffusion of polar-
ity cues [5, 31], which may be sensitive to the geometry of the confinement. Furthermore, we
also expect that the polarity may exhibit time-correlations to account for the spatiotemporal
dynamics of the migration machinery.

Similar to our approach to the nucleus dynamics, this model provides a prediction for the aver-
age protrusion velocity as a function of xn and xp, which we term protrusion velocity map (PVM)
〈ẋp|xn, xp〉. According to our general model ansatz (Eq. (2)), unlike the NVM, the PVM consists
of two components, one due to protrusion-nucleus coupling, and the other due to the polarity
dynamics:

〈ẋp|xn, xp〉 = fp(xn, xp) + 〈P|xn, xp〉 (6)

Since the polarity term 〈P|xn, xp〉 does not average to zero for time-correlated polarities, we
cannot in general infer the function fp(xn, xp) directly from the PVM [48]. However, we can
postulate simple models for the polarity dynamics and explore their predictions for the PVM
and other statistics.

We first show that the data cannot be captured by the simplest possible stochastic polarity dy-
namics: a Gaussian white noise process P = σξ(t) with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t− t′)
(Fig. 4a). In this case, the polarity has no time-correlations, and thus 〈P|xn, xp〉 = 0 (Inset
Fig. 4c), and we directly recover the expected contractile elastic coupling (Eq. (5)) in the PVM
(Fig. 4c). In striking contrast, the PVM inferred from experiments shows a non-trivial depen-
dence of the protrusion velocities as a function of xn and xp (Fig. 4d). This dependence cannot
be accounted for by the white noise model. The overall structure of the experimental PVM is in
line with a contractile coupling between nucleus and protrusion: it exhibits negative velocities
in the upper diagonal and positive velocities in the lower diagonal. These features correspond
to the protrusion being pulled back towards the nucleus. Interestingly, however, when the pro-
trusion extends into the bridge, the protrusion velocity takes the opposite sign, corresponding
to an unexpected extensile average driving force, pushing the protrusion away from the nu-
cleus. This ‘polarity driving’ is a striking observation, since it cannot be accounted for even by a
non-linear contractile coupling to the nucleus. These results indicate that the simple white noise
model does not capture our experimental data. In fact, we can rule out a white noise polarity
more generally, using the most general functions fn and fp inferred directly from experiment
under the white noise assumption. This approach similarly fails to capture the experimental
statistics, allowing us to rule out the possibility that the protrusion is driven by a white noise
process (Supplementary Section S3). This suggests that to account for the experimentally ob-
served dynamics, we need to account for time-correlations in the cell polarity.
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To investigate how time-correlated polarity dynamics affect the behavior, we begin with the
simplest choice of an exponentially correlated polarity governed by the equation

Ṗ = −α0P + σξ(t) (7)

which we term the persistent polarity model; with α0 > 0. The polarity evolving according to
Eq. (7) thus experiences negative feedback, Ṗ ∝ −P, and exhibits time-correlations decaying
exponentially on a persistence time-scale α−1

0 . Interestingly, these polarity dynamics have sig-
nificant correlations with the state of the system: the conditional average 〈P|xn, xp〉 no longer
vanishes as in the white noise case (Inset Fig. 4d). Since the PVM is given by the sum of the
polarity and the nucleus-protrusion coupling term (Eq. (6)), these correlations lead to a clear
deviation from the linear elastic coupling in the PVM. Specifically, the predicted PVM exhibits
a polarity driving similar to the experimental PVM (Fig. 4d,e). The correlation time-scale of
the polarity α−1

0 determines the strength of the driving (Fig. 4f). Taken together, these results
indicate that cell protrusions are driven by time-correlated polarity dynamics.

Figure 5: Spatial feedback model. a. Schematic illustration of the polarity models. The persistent polarity model
corresponds to a flat feedback profile, α(xp) = α0, where the polarity is effectively confined to a constant harmonic
potential U(P) (left). In the spatial feedback model (Eq. (8)), αmin controls the sign of the feedback. For αmin > 0,
the feedback is negative and the protrusion confined to harmonic potentials with spatially varying stiffness (left). For
αmin < 0, the feedback locally becomes positive, leading to two stable fixed points (right). b. From left to right, we vary
the value of αmin = {6, 4, 0,−4,−6} h−1. The joint probability distribution of protrusion position and polarity p(xp, P)
is shown. Solid red lines indicate the position of the stable fixed points, dashed red lines indicate unstable fixed points.
c. Joint probability distributions p(xn, xp) predicted by the spatial feedback model with varying αmin. d. Probability
distribution of the dwell times τ predicted by the model (red) and observed experimentally (W = 7 µm, blue).

Constrictions trigger polarity self-reinforcement

While the persistent polarity model (Eq. (7)) captures the qualitative features of the protrusion
velocities (Fig. 4b), it predicts stochastic dynamics that do not capture the key features of the
experiment. Specifically, it fails to capture the stereotypical protrusion-nucleus cycling indi-
cated by the ring structure in the experimental probability distribution p(xn, xp)(Figs. 1f, 4g).
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Furthermore, the model does not capture the distribution of dwell times, defined as the time
between subsequent transitions of the cell nucleus across the bridge centre. In the experiment,
this distribution exhibits a marked peak at finite times, indicating that there is a typical time-
scale for re-orientation on the island and subsequent traversal between transitions. This feature
is not captured by the persistent polarity model (Fig. 4e).

The persistent polarity model relies on several simplifying assumptions. Firstly, we assumed
the polarity to be insensitive to the local confinement, as the polarity dynamics does not explic-
itly depend on the position of the protrusion. Secondly, we assumed negative feedback, Ṗ ∝ −P.
This means that the polarity is effectively confined to a harmonic potential U(P) = α0P/2
(Fig. 5a).

To relax these assumptions, we extend the persistent polarity model with a spatial feedback,
where the strength and sign of the polarity feedback depend on the local geometry of the con-
finement. Thus, we propose that the feedback may vary with the position of the protrusion,
α = α(xp). Physically, we expect that the polarity may become more persistent when the protru-
sion is in the constriction. Such an increase in persistence could be due to increased alignment
of actin fibers [49–52], or more stable polarity cue gradients [31, 53, 54] when the protrusion is
confined to a narrow constriction. To ensure that the polarity remains bounded, we include the
next-order term allowed by symmetry −βP3, with β > 0, and allowing α < 0 locally:

Ṗ = −α(xp)P− βP3 + σξ(t) (8)

To account for larger persistence in the constriction, we choose a feedback function α(xp) which
takes a minimal value αmin in the center of the bridge (Fig. 5a). If αmin > 0, the polarity dy-
namics exhibits a stable fixed point at P = 0 everywhere (Fig. 5a). In contrast, if αmin < 0,
the polarity is still driven back to P = 0 on the islands, but in the constriction, a stable fixed
point P∗ = ±

√
|α|/β emerges. Consequently, when the protrusion is in the constriction and

the polarity is small (P < P∗), a positive feedback mechanism Ṗ ∝ P is activated, which leads to
self-reinforcement of the polarity into the current direction of polarization. Thus, the symmetry
of the system is broken, which then features two preferred states of polarization in opposite
directions.

We now explore the predictions of the spatial feedback model by varying αmin (Fig. 5b). As
expected, for negative polarity feedback (αmin > 0), we find a polarity distribution p(xp, P)
with polarities centered around P = 0 at all positions xp. Similar to the persistent polarity
model, this model predicts a joint position distribution p(xn, xp) with no annular structure,
and no peak in the dwell time distribution. Remarkably however, when the feedback becomes
positive in the constriction, we observe the protrusion-nucleus cycling in the probability dis-
tribution p(xn, xp) and the model predicts a marked peak in the dwell time distribution, both
in line with the experiment. These features emerge in conjunction with a ring-structure in the
polarity distribution p(xp, P), as polarities preferentially take finite values in the constriction.
These findings suggest that to capture the stereotypical protrusion-nucleus cycling, we require
a geometry-sensitive polarity feedback.

Predicting dynamics with varying constriction width

We challenge the predictive power of our model by testing its predictions for the stochastic tra-
jectory dynamics in systems with increasing constriction width. Increasing constriction width
has a clear implication for the spatial feedback model (Eq. (8)): in addition to the adhesive-
ness profile γ(xn) becoming flatter (Fig. 3a), we also expect the positive polarity feedback to
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Figure 6: Model predicts dynamics with varying constriction width. a. Stochastic trajectory xn(t) (blue), xp(t) (green),
and P(t) (pink) predicted by the spatial feedback model (Eq. (8)) with increasing γmin and αmin as a model for increasing
bridge width W (Supplementary Section S4). b. Joint probability distributions p(xn, xp). c. Joint probability distribu-
tions p(xn, vn). d. Predicted (red) and experimental (blue) dwell time distributions p(τ). e. Protrusion velocity maps
(PVM) 〈ẋp|xn, xp〉. f. Flow field (ẋn, v̇n) = (vn, F(xn, vn)) indicated by arrows. Arrow color indicates the direction of the
local flow: acceleration is orange and deceleration is blue. g. Predicted (red) and experimental (blue) effective friction
at the bridge center F(xn → 0, vn). In panels b, c, e, f, the top row corresponds to the spatial feedback model prediction,
the bottom row to experimental observations. Experimental observations correspond to W = 4, 7, 12, 22, 35 µm (from
left to right).

diminish. Remarkably, based on these assumptions, this model predicts that the stereotypical
protrusion-nucleus cycling observed in systems with thin constrictions gradually disappears
with increasing width (Fig. 6b). Specifically, we observe that the ring-structure in the position
probability distribution p(xn, xp) gradually closes, with a uniform distribution in the limiting
case of a flat profile. Simultaneously, the predicted acceleration of the nucleus in the constric-
tion decreases: on narrow constrictions, an annular probability distribution of nucleus position
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and speed p(xn, vn) is predicted, which gradually closes for wider bridges (Fig. 6c). Interest-
ingly, as the stereotypical migration pattern in these probability distributions disappears, we
also predict that the typical transition time-scale, indicated by the peak in the dwell time dis-
tribution, disappears (Fig. 6g). These observations can be understood by examining the pro-
trusion dynamics in the model: we find that the predicted PVM exhibits a polarity driving
of decreasing magnitude with increasing bridge width (Fig. 6d). Notably, the driving disap-
pears in the widest system with no constriction, where the protrusion velocities are thus deter-
mined by the elastic nucleus-protrusion coupling. This coupling pulls nucleus and protrusion
together, inhibiting the stereotypical cycle. In summary, our model suggests that the weaker
polarity self-reinforcement expected for wider constrictions leads to the disappearance of the
protrusion-nucleus cycling. The model therefore suggests that these stereotypical cycles rely
on the adaptation of the cell polarity dynamics to its local environment. Remarkably, we find
that these predicted features of the dynamics are confirmed by the experimental data of cells
migrating in pattern with increasing width (Fig. 6a-d).

We further test the validity of our model by exploring geometries with varying the constriction
length L. We find that our model also captures the changes in dynamics observed in this case
(Supplementary Section S3). Taken together, these results indicate that our model has striking
predictive power beyond the specific confinement geometry which we used to constrain it.

Mechanistic model captures emergent nonlinear dynamics

A central challenge for our mechanistic theoretical approach is to capture the emergent long
time-scale stochastic dynamics of the system. Based on the trajectories of the cell nucleus alone,
we showed in previous work [15], that the dynamics of these trajectories can be described by
an underdamped stochastic equation of motion: v̇n = F(xn, vn) + σ(xn, vn)η(t) where η(t) is
Gaussian white noise. This model represents an effective description of the cellular dynam-
ics, with no direct connection to interpretable cellular degrees of freedom such as the protru-
sion and polarity, which we consider here. The deterministic contribution to these dynamics
F(xn, vn) exhibits intricate non-linear dynamics, which can be represented in a phase-space
portrait (Fig. 6e). This analysis revealed that the nucleus deterministically accelerates into the
thin constriction, and therefore exhibits a deterministic amplification of velocity (orange arrows
Fig. 6e). This effect is driven by the emergence of an effective ‘negative friction’ at the center
of the thin constriction. Specifically, at low speeds, the nucleus accelerates with increasing ve-
locity, such that F(vn) ∝ vn locally (Fig. 6h) [15]. These observations encapsulate the emergent
long time-scale stochastic dynamics of the system, yet a mechanistic model that can capture
these dynamics has thus far remained elusive.

Remarkably, we find that our model predicts a phase-space flow similar to that inferred from
experiments (Fig. 6e). Our mechanistic model for the coupling of the cell nucleus motion to
the cellular protrusion and polarity dynamics (Eqns. (4), (5), (8)) therefore recovers the effective
dynamical description for the stochastic dynamics of the nucleus alone. Interestingly, we can
directly map the equations of motion of the mechanistic model to the effective underdamped
nucleus dynamics, revealing that the observed amplification behavior is a consequence of two
combined effects: lower adhesiveness and enhanced polarity persistence in the constriction
(Supplementary Section S3). Accordingly, our model predicts that when the constriction is
widened, corresponding to higher adhesiveness and lower polarity persistence, the amplifica-
tion of nucleus velocities gradually disappears (Fig. 6e). This is indeed what we observe exper-
imentally. Interestingly, we find that within the experimentally relevant parameter regimes, the
observed effective anti-friction in the constriction only emerges when positive feedback is acti-
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vated, independent of the differential adhesiveness (Supplementary Section S3). Consequently,
we predict that the friction relation changes from effective anti-friction to regular friction with
widening constrictions, which is confirmed by the experiments (Fig. 6f). In summary, we find
that the mechanistic model for the nucleus, protrusion, and polarity degrees of freedom of the
cell gives insights into the origin of the nonlinear dynamics inferred directly from the nuclear
dynamics.

Figure 7: Three stages of protrusion-nucleus cycling. In the joint position probability distribution of nucleus xn and
protrusion xp (left, same color code as in Fig. 1f), we indicate the typical evolution of the system with white arrows, and
identify three distinct stages of the process. Typical brightfield microscopy images with overlayed protrusive areas, and
the positions xn and xp indicated are shown for each of the three stages. Schematics indicate the physical mechanisms
that dominate each phase according to our theoretical framework.

Discussion

In this work, we develop a mechanistic theoretical framework to describe the joint stochas-
tic dynamics of cell nucleus, protrusion, and polarity, and their coupling to the extracellular
microenvironment. Experimentally, we find that cells migrating in confinements with a thin
constriction exhibit a stereotypical protrusion-nucleus cycling, where the protrusion grows to
precede the transition of the nucleus across the bridge. Using a large data set of joint protru-
sion and nucleus trajectories, we systematically constrain a mechanistic model for confined cell
migration. In our model, we identify three distinct stages of the protrusion-nucleus cycling
(Fig. 7). First, we observe an initial exploration phase, where both nucleus and protrusion are
located on the same island (Stage I). At this stage, the polarity is subject to negative feedback,
causing the protrusion to frequently change direction and explore its surroundings. Stochastic
polarity excitations can trigger the protrusion to penetrate the constriction. Within the constric-
tion, the protrusion becomes highly confined, causing the polarity dynamics to switch from a
negative to a positive feedback loop. This positive feedback reinforces the polarity, driving the
protrusion growth into the constriction (Stage II). At the same time, tension builds up due to
the elastic coupling to the nucleus, which is held back on the island due to the enhanced adhe-
sion with the substrate. Once the protrusion reaches the other end of the system, the nucleus
is pulled across the constriction, relaxing the tension in the elastic coupling, reminiscent of a
slingshot (Stage III). The three stages of the transition process emerge as a consequence of the
interplay of the three key physical mechanisms in the system: the adhesiveness landscape, the
nucleus-protrusion coupling, and the polarity self-reinforcement.

To constrain our theoretical approach, we first studied the stochastic dynamics of the cell nu-
cleus. We show that the dynamics of the nucleus are inconsistent with movement in a simple
double-well potential, as might be expected from cellular deformation arguments. The defor-
mation dynamics of cells is frequently modelled using elastic Hamiltonians [24,25,43–45] which
would suggest a higher energy of the cell membrane associated with the stretched shape of the
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cell when it is in the constriction compared to the compact shape on the islands. Indeed, ac-
tive particles confined to double-well potentials can exhibit excitable dynamics similar to those
observed in the experimental trajectories of the nucleus alone [55], making the double well a
promising model candidate. However, based on the observed joint dynamics of nucleus and
protrusion, we find that this energy barrier model is unable to capture the experiment, suggest-
ing that it is not the dominating effect in the dynamics of the cell nucleus.

Instead, our model suggests that the movement of the nucleus is determined by the locally
available adhesive area, which manifest as a spatially variable friction coefficient. We there-
fore interpret the observed speed increase of the nucleus in the constriction as a consequence
of the differential adhesiveness of the pattern. This is in line with experimental observations
showing that in mesenchymal migration, the movement of the cell rear, where the nucleus is
typically located, is limited by the unbinding of mature adhesions [56, 57]. The dependence on
local adhesive area is also consistent with our previous observation that cells spend less time on
smaller adhesive islands [16]. The adhesion-limited nucleus motion is reminiscent of stick-slip
processes that have been observed in cell migration on 1D lines [32, 34, 58], which are a con-
sequence of the mechanosensitive binding and unbinding dynamics of adhesions [32, 33]. Our
analysis suggests that the constriction enforces a ‘spatially structured stick-slip process’, that is
not only driven by the internal dynamics of the cell as is the case in unstructured systems [32],
but has time- and length-scales externally enforced by the confinement. Specifically, as the pro-
trusion grows across the bridge, the back of the cell ‘sticks’ due to the high adhesiveness on
the island. Once the protrusion has crossed the bridge, the elastic coupling to the cell nucleus
causes the ‘slip’, or contraction stage, where the cell quickly contracts and the nucleus moves
across the bridge with high speed. In the model, the tension in the elastic coupling rapidly
relaxes during the slip phase, similar to a slingshot. Such ‘slingshot’ dynamics have also been
observed in confined 3D migration in fibrous matrices [59].

In addition to the spatially variable adhesiveness, we find that a crucial component of the
protrusion-nucleus dynamics is the geometry-dependent dynamics of the cell polarity. Remark-
ably, we find that we can capture all key features of the data by allowing the polarity dynamics
to sense the local geometry by switching from a negative to a positive feedback loop when
the protrusion enters the constriction. Thus, this position-dependent polarity feedback model
posits that the cell polarity dynamics adapts to the presence of the constriction by activating
a self-reinforcing feedback loop. This positive feedback leads to a broken-symmetry state, in
which there is a non-zero preferred polarity. Previous work on unconfined 2D migration has
suggested a similar symmetry breaking mechanism in the cell velocity dynamics [30]. How-
ever, in that case, this state emerged for particular cell parameters, leading to a long-lived state
of spontaneous polarization. In contrast, our work suggests that such states may also emerge
as a consequence of adaptation to an external confinement.

An alternative model to the position-dependent feedback are polarity dynamics which are in-
sensitive to the external geometry, but depend on the extension of the cell. An interesting as-
pect of comparing these two models are their conceptually distinct implications. The position-
dependent feedback implies a direct coupling to the external environment, where the cell may
sense and adapt to the external geometry. In contrast, an extension-dependent feedback is
translationally invariant, meaning that the polarity dynamics do not depend upon the abso-
lute position of the cell within its environment, but only on its internal state. Such a model has
previously been proposed for protrusion formation in keratocytes, where the distance from the
cell center to the protrusion was suggested to be decisive for protrusion growth [60]. Interest-
ingly however, we find that an extension-dependent polarity model robustly fails to account for
the observed changes in the dynamics with widening constrictions (Supplementary Section S3).
In contrast, the spatial feedback model captures the changes in dynamics with both changing
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width and length of the constriction. These results suggest that the positive feedback loop in the
polarity is a response to the geometry of the local microenvironment rather than to the overall
extension of the cell.

There are a number of cellular processes that could contribute to the coupling of polarity to
local geometry. First, based on the physics of active gels, which describe, for example, the ac-
tomyosin cortex in the protrusion, we expect a greater degree of alignment of actin fibers in
a narrow constriction [49, 50]. Increased alignment of actin is associated with higher contrac-
tility [61, 62] and the emergence of spontaneous cell polarization [51, 52, 63–65]. A further key
determinant of cell polarization are diffusable polarity cues [9,31,66], whose spatiotemporal or-
ganization may couple to external geometries, for example through focal adhesions [67], or the
cell shape itself [53,54]. Finally, changes in membrane tension may also provide feedback to the
cell polarity [33, 68]. Our theoretical framework provides a new way to analyze and interpret
the joint nucleus and protrusion dynamics of migrating cells, and to connect observed features
in experimental trajectories to underlying mechanisms. Thus, our work could provide a tool to
analyze the dynamics of cells in experiments where these distinct contributions to the polarity
dynamics are targeted through molecular perturbations.

Based on experiments in which we varied the dimensions of the constriction, we found that
our model has predictive power beyond the specific confinement geometry used to constrain it.
Thus, this model could potentially be used to make predictions for new experiments, such as
cell migration on patterned lines [35,70–72]. Previous work has investigated the effect of differ-
ential protein patterning on 1D lines [35, 70], and the effect of asymmetric periodic patternings,
which led to a rectification of cell migration in one direction [71–73]. This rectification has been
interpreted to be a consequence of the asymmetry in locally available adhesive area [74], con-
sistent with our findings. Our work suggests that the regulation of cell polarity may also play
an important role in such processes. Furthermore, migrating cells face structured surroundings
and thin constrictions in 3D extra-cellular matrices [4, 18, 75], in which potrusion and polarity
dynamics are critical [6]. Finally, protrusion and polarity dynamics are key also to pair-wise
interactions of cells [19, 76, 77], which in turn control the collective dynamics of cells [78]. Our
framework could provide a way to analyze and interpret cellular protrusion and polarity dy-
namics in these more complex systems.
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Methods

Sample preparation
Fibronectin micropatterns are made by microscale plasma-initiated protein patterning as de-
scribed previously [15]. All two-state micropatterns are designed to have adhesive island with
square dimensions ((36.7± 0.6)2 µm2). For patterns with varying bridge width, we use a stan-
dard bridge length L = 35.3 ± 0.5 µm and widths W = 3.9 ± 0.5, 6.9 ± 0.6, 9.5 ± 0.5, 12.4 ±
0.5, 19.1± 0.5, 21.7± 0.5, 34.8± 0.2 µm. For patterns with varying bridge length, we use stan-
dard bridge width W = 6.9± 0.6 and lengths L = 6.4± 0.3, 9.2± 0.3, 15.7± 0.3, 23.7± 0.4, 35.3±
0.5, 46.2± 0.4, 56.0± 0.3 µm. We refer to the rounded values for W and L throughout the text.

Cell culture and microscopy
MDA-MB-231 cells (DSMZ) are cultured in Minimum Essential Medium (MEM, c.c. pro), con-
taining 10% FBS (Gibco) and 2mM L-Glutamine (c.c. pro). Cells are grown in a 5% CO2 atmo-
sphere at 37◦C. For passaging and experiments, cells are washed once with PBS and trypsinised
for 3 min. This cell solution is centrifuged at 1000 rcf for 3 min. The cell pellet is re-suspended
in MEM and 10,000 cells are added per µ-dish and left to adhere in the incubator for 4h. The
medium is then exchanged to L-15 medium containing L-glutamine (Gibco, supplemented with
10% FCS) and 25 nM Hoechst 33342 (Invitrogen) for staining cell nuclei. Experiments are per-
formed at 37◦C without CO2. All measurements are performed in time-lapse mode for up to 50
h on an IMIC digital microscope (TILL Photonics) or on a Nikon Eclipse Ti microscope using
a 10x objective. The samples are kept in a heated chamber (ibidi GmbH or Okolab) at 37◦C
throughout the measurements. Images (brightfield and DAPI) are acquired every 10 mins.

Nucleus tracking and cell segmentation
The trajectories of the cell nuclei are obtained by applying a band pass filter to the images of the
nuclei, binarising, and tracking the binarised images using a Matlab tracking algorithm [79].
For cell segmentation, bright-field images of cells were segmented using a convolutional neu-
ral network with a U-Net architecture [36]. We created a data set of 372 manually segmented
images, and used 80% for training and 20% for validation; both data sets were augmented with
random rotations, shifts, shears, zooms, and reflections. For training, we used the Adam op-
timization algorithm [80] with a learning rate of 10−4. No learning rate scheduling was used.
After training for 20 epochs, we attain a pixel classification accuracy of > 96% on the validation
dataset. Segmented cell images, which take values between 0 and 1, are subsequently binarized
via thresholding. For further details, see Supplementary Section S2.

Protrusion tracking
Our image segmentation pipeline provides the 2D shape of the cells S(t) as a function of
time. To identify protrusions, we classify the positive contributions to the shape velocities
V(t) = S(t + ∆t) − S(t) as protrusive components P(t). To recover a low-dimensional rep-
resentation of the protrusive dynamics from these areas, we define the x-position of the protru-
sion xp as the geometric center of the protrusive shape xp(t) =

∫
xP(t)dx. For further details,

see Supplementary Section S2.
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1 Movie descriptions

Supplementary Movie S1
Single MDA-MB-231 cell migrating in a two-state micropattern with constriction length
L = 35 µm and width W = 7 µm. The cell nucleus is fluorescently labelled to allow
automated tracking of nucleus positions. Scale bar: 25 µm.

Supplementary Movie S2
Cell shape segmentation of the brightfield microscopy images from Supplementary
Movie S1, with the detected cell boundary marked in yellow. Scale bar: 25 µm.

Supplementary Movies S3-S10
Protrusion dynamics of MDA-MB-231 cells in two state micropatterns with widths W =
4, 7, 10, 12, 19, 22, 35 µm respectively. Protrusive areas are marked in green. The blue dot
corresponds to the x-position of the nucleus, and the green dot to the x-position of the
center of protrusive area. Scale bar: 25 µm.

2 Image analysis

2.1 Cell segmentation

In the bright-field images obtained from experiment, attempts to isolate the cell from
its background are easily confounded by the nontrivial structure of the micropatterned
substrate. Additionally, the cell boundary is often difficult to pinpoint by eye. For these
reasons, we found that attempts to segment the cell images using traditional methods
of image binarization failed and thus turned to more advanced machine learning tech-
niques.

To segment our images, we utilized convolutional neural networks, which allow for
high pixel classification accuracy by accounting for local properties of the image. In
particular we use a U-Net architecture, which has been found to be very successful
in image segmentation tasks in biology [1]. In principle, the network combines an
encoder/decoder structure with skip connections across the latent layers. The en-
coder/decoder structure allows for efficient recognition of large-scale features in the
image, while the skip connections effectively propagate local, low-level information
forward in the network. The encoder and decoder branches of our network are three
layers deep, with 64 channels in the first layer which are doubled after every max pool
layer, similar to previous implementations [1].

For training, the network is fed augmented data which has undergone random rota-
tions, shifts, shears, zooms, and reflections. We use 80% of the original labeled data set
of (N = 372) images for training, and withhold 20% for validation. Each epoch then
consists of 2000 steps of batch size 16, and training is stopped after 20 epochs to pre-
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a b

Figure S1: Accuracy and loss curves of the training process for videos with (a) high and (b) low contrast. The
network for high contrast videos was trained with constant α = 1, while the network for low contrast videos was
trained with varying α.

vent overfitting. Gradient updates are performed using the Adam optimizer [2] with
a constant learning rate of 10−4. We used the binary cross-entropy as a loss function
to optimize the pixel classification accuracy. For videos with low contrast between the
cells and the background, resulting from the use of a different microscope, we adjusted
the loss function throughout the training to increase the focus on the cell edges, which
improved the segmentation quality, which has been found to have a similar effect in
previous work [3]. Specifically, we use the total loss function

L = αLBCE + (1− α)LBCE, edge. (S1)

Here, LBCE is the binary cross entropy loss for the entire image, and LBCE, edge is the
binary cross entropy only applied to pixels near the edge of the cell. The factor α is
deterministically reduced in each epoch to force the network to specialize and focus on
the cell boundary in the later phase of the training, which makes up a comparatively
small number of pixels compared to the cell as a whole. The parameter α is initialized
to 1 and then gradually reduced by 0.05 with each epoch, which we found improved
training compared to a fixed alpha.

Training according to the above protocol results in a pixel classification accuracy of
96.5% for videos with high contrast and 96.1% for videos with low contrast on the vali-
dation dataset. We note an apparent slight overfitting, with predictions on the training
set achieving a slightly higher accuracy of 96.6% for both high and low contrast videos
(Fig. S1).

Finally, the predicted segmentations are converted to binary images by applying a
threshold. Consequently, pixels with predicted values above 0.12 are mapped to 1,
else to 0. This pipeline yields an accurate segmentation of the cell shape for the vast
majority of frames (Fig. S2).
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Figure S2: Exemplary brightfield time-series, with segmented cell shapes shown in pink. Each image is a frame from
a video which is sampled every ∆t = 10 min; time flows from the left to the right, and each row is the continuation of
the row above it. Bright-field images are inverted for better visibility. Scale bar: 25 µm.

2.2 Protrusion tracking

To quantify the joint dynamics of nucleus and protrusion motion, we seek a mini-
mal, low-dimensional representation of the cell protrusions. Our image segmentation
pipeline gives access to the 2D shape of the cells S(t) as a function of time. To iden-
tify protrusions, we classify the positive contributions to the shape velocities V(t) =
S(t + ∆t)− S(t) as the shape of the protrusion P(t) (green areas in Fig. S3).

a b

Figure S3: Dynamics of protrusive areas in two frame sequences. The solid pink line shows the current boundary of
the cell area S(t), and the dashed line is the boundary of S(t + ∆t). The protrusive shape (green) is the area which is
added between these two frames, P(t). The geometric center of the protrusive area xp is shown as a green dot. Scale
bars: 25 µm.

As a low-dimensional representation of the protrusive dynamics, we define an effective
position of the protrusion xp as the geometric center of the protrusive shape xp(t) =∫

xP(t)dx (green dot in Fig. S3). The two-state micropattern is designed in such a way
that most of the behavior occurs in the x-direction along the long axis of the micropat-
tern. Indeed, we find that, similar to the nucleus dynamics [4], most of the protrusive
behaviour is captured by the x-component of xp (Fig. S4): the variance in y-motion is
small (Fig. S4a), and the joint probability distribution p(yn, yp) is peaked around (0, 0)
and exhibits no special structure, unlike the probability distribution for x-components
p(xn, xp) (Fig. S4b,c). In the following, we will therefore take the x-component xp as a
minimal representation of the protrusive dynamics in this system.

4

225



a

°60 0 60

xn(µm)

°60

0

60

x
p
(µ

m
)

°20 0 20

yn(µm)

°20

0

20

y p
(µ

m
)

b c

°60 0 60

xn (µm)

°60

0

60

x
p

(µ
m

)

10°4

10°3

10°2

Figure S4: 2D motion of nucleus and protrusions. a. Several examples of 2D trajectories. Left: xy-trajectories plotted
on top of the micropattern dimension (shown in grey). Axis limits are−50 µm < x < 50 µm and−20 µm < y < 20 µm;
(x = 0, y = 0) corresponds to the center of the constriction. Middle: x-trajectories as a function of time t. Axis
limits are −50 µm < x < 50 µm and 0 < t < 30 h. Right: y-trajectories as a function of time t. Axis limits are
−50 µm < y < 50 µm and 0 < t < 30 h, to allow direct comparison with the x-trajectories. Blue: nucleus, green:
protrusion. b. Joint probability distribution p(xn, xp) of the x-positions, plotted logarithmically. Here shown without
the Gaussian interpolation employed in Fig. 1 in the main text. c. Joint probability distribution p(yn, yp) of the y-
positions, plotted logarithmically. Note the smaller axis range compared to panel b.

We find that this definition captures the characteristic features of the protrusive dy-
namics during the cell-hopping process: as the protrusion grows into the constriction,
the effective protrusion position also moves into the channel (Fig. S5 and Fig. 1d in
the main text). Thus, xp typically precedes xn in the constriction, as expected from the
experimental observations (Supplementary Movies S1-3, Fig. 1d in the main text). Fur-
thermore, we find that when protrusions form randomly and uniformly around the cell
boundary, xp is located near the cell centroid (Fig. S3).

Figure S5: Time series of xp dynamics overlaid on images of cells with protrusions. Each image is a frame from a
video which is sampled every 10 minutes; time flows from the left to the right, and each row is the continuation of the
row above it. Time series curve is an interpolation of the circular points to serve as a guide for the eye. Scale bar: 25 µm.

In addition to the protrusive dynamics, the cell also performs retractions, correspond-
ing to the negative components of the shape velocities, R(t) (Fig. S6a). Using a similar
analysis of the retractive dynamics by defining the effective position of the retractions,
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xr(t) =
∫

xR(t)dx, we find however that the retractions are well correlated with the
position of the nucleus, which typically resides at the rear end of the cell (Fig. S6b).
Specifically, the cross-correlation of nucleus and retraction positions exhibits almost no
time-lag, in contrast to the correlation between nucleus and protrusion (Fig. S6c). Fur-
thermore, the cross-correlation between nucleus and retractions is very similar in mag-
nitude and shape to the nucleus position auto-correlation, indicating that the retraction
trajectories do not contain significant additional information to the nucleus trajectories.
Furthermore, the joint probability distribution of nucleus and retraction positions has
maximal probability around the diagonal, with little additional structure, in contrast to
the distribution of nucleus and protrusion positions (Fig. S6d,e). Therefore, to achieve a
minimal, low-dimensional description for the coupled dynamics of shape and nucleus
motion, we restrict our analysis to the protrusions.

a

°5 0 5

T (h)

0

900

hx
n
(t

)x
n
,p

,r
(t

+
T

)i(
µ
m

2
)

xn

xr

xp

°60 0 60

xn (µm)

°60

0

60

x
p

(µ
m

)

10°4

10°3

10°2

0 35

t (h)

°60

0

60

x
(µ

m
)

°60 0 60

xn (µm)

°60

0

60

x
r
(µ

m
)

10°4

10°3

10°2

b c

d e

Figure S6: Dynamics of cell retractions. a. Exemplary brightfield microscopy image series with protrusive shape
velocity components P(t) indicated in green, and retraction components R(t) in red. b. Trajectories of the protrusion
xp(t) =

∫
xP(t)dx (green), retraction xr(t) =

∫
xR(t)dx (red), and the cell nucleus xn(t) (blue). c. Position cross-

correlations between nucleus and protrusion 〈xn(t)xp(t + T)〉 (green), between nucleus and retraction 〈xn(t)xr(t + T)〉
(red), and nucleus position auto-correlation, 〈xn(t)xn(t + T)〉 (blue). d. Joint probability distribution p(xn, xp) of the x-
positions of nucleus and protrusion, plotted logarithmically. Here shown without the Gaussian interpolation employed
in Fig. 1 in the main text. Dashed line indicates the diagonal; dotted lines indicate the boundaries of the adhesive
islands. e. Joint probability distribution p(xn, xr) of the x-positions of nucleus and retraction, plotted logarithmically.
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3 Supplementary results

3.1 Inferred white noise model does not capture experimental dynamics

In this section, we show that a general model with white noise polarity dynamics is
unable to capture the experimental dynamics. Specifically, we consider a model of the
form

ẋn = fn(xn, xp) + σn(xn, xp)ξ(t) (S2)
ẋp = fp(xn, xp) + σp(xn, xp)ξ(t) (S3)

Here, we assume that ξ(t) is a white noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t −
t′). Under this assumption, we can infer the terms fn,p and σn,p directly from the
observed data [5, 6]. Specifically, we use the estimators fn(xn, xp) ≈ 〈ẋn|xn, xp〉 and
σ2

n(xn, xp) ≈ ∆t〈[ẋn − fn(xn, xp)]2|xn, xp〉 and similarly for the protrusion terms. These
inferred terms provide the best fit estimates for a general model inferred under the
white noise assumption. In this case, the inferred functions fn and fp are given by the
NVM and the PVM by definition (Fig. S7a,b).
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Figure S7: Inferred model terms based on white noise assumption. a. Inferred deterministic nucleus term fn(xn, xp) ≈
〈ẋp|xn, xp〉 in units of µm h−1. b. Inferred deterministic protrusion term. c. Inferred multiplicative noise term on the
nucleus σn(xn, xp) ≈ (∆t〈[ẋn − fn(xn, xp)]2|xn, xp〉)1/2 in units of µm h−1/2. d. Inferred multiplicative noise term
on the protrusion. e. Signal-to-noise ratio of the nucleus velocities, for an increment in a time-step ∆t, given by
| fn(xn, xp)|

√
∆t/σn(xn, xp). f. Signal-to-noise ratio of the protrusion velocities.

Interestingly, we find that the noise on the protrusion significantly exceeds that on the
nucleus (Fig. S7c,d). Specifically, the average estimated noise magnitudes are σ̂n ≈
8.4 µm h−1/2 and σ̂p ≈ 33 µm h−1/2. Accordingly, we find that the nucleus dynamics is
dominated by its deterministic component, with a signal-to-noise ratio > 1 everywhere
except where nucleus and protrusion are very close together (Fig. S7e). In contrast, the
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protrusion dynamics is dominated by noise, with at signal-to-noise ratio < 1 in most
regions of phase-space (Fig. S7f). In the mechanistic model introduced in the main text,
we assume that the source of stochasticity in the system acts on the protrusion, which
is further supported by these observations.

Using the inferred terms fn,p and σn,p, we perform simulations to assess the validity
of the model postulated by Eqs. (S2), (S3). However, we find that this model yields
predictions that are inconsistent with our experimental observations. The model does
not recover the ring-structure in the probability distribution p(xn, xp) (Fig. S8a,b). Fur-
thermore, it fails to predicts the peak in the dwell time distribution (Fig. S8e). Taken
together, these results indicate that the model postulated in Eqs. (S2), (S3) does not pro-
vide a good representation of the experimental dynamics, ruling out the white noise
protrusion model for all fn,p.
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Figure S8: Predictions of the inferred white noise model. a. Experimental distribution p(xn, xp). b. Model prediction
for p(xn, xp). c. xnvn phase-space portrait inferred from experiments. d. Phase-space portrait predicted by model. e.
Experimental (blue) and predicted (red) dwell time distribution. f. Experimental (blue) and predicted (red) effective
friction relation F(xn → 0, vn).
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3.2 Non-linear nucleus-protrusion couplings

In the main text, we show that a double-well potential as a model for the effect of
the confinement on the nucleus dynamics provides predictions that are inconsistent
with the experimental data. To test if a possible nonlinearity in the nucleus-protrusion
coupling could provide a better fit, we consider the next order coupling term allowed
by symmetry in the deformation model:

ẋn = k(1)n (xp − xn) + k(2)n (xp − xn)
3 − ∂xnW(xn) (S4)

Fitting this model to the experimental NVM, we find that it does provide a slightly
improved fit to the nucleus velocities as a function of xn compared to the linear defor-
mation presented in the main text (Fig. S9b). Specifically, unlike the linear coupling de-
formation model, the non-linear model (Eq. (S4)) exhibits an acceleration of the nucleus
for large xp. This is because the best fit parameters for the coupling yield a negative

spring constant k(2)n < 0 for the third order term, indicating that for large extensions, the
spring is no longer contractile, but becomes extensile. However, for smaller xp values,
this model still performs a significantly worse fit than the first-order coupling adhesion
model (Eqn. (S10)), which has fewer fitting parameters. Furthermore, this model is un-
able to capture the profiles of the nucleus velocities as a function of xp (Fig. S9c), unlike
the first-order coupling adhesion model (Fig. S17 c).
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Figure S9: Parameter estimation by fitting to the NVM for non-linear nucleus-protrusion coupling models. a. Ex-
perimental NVM for bridge width W = 3 µm. b. Cuts of the NVM along the horizontal lines indicated in panel a, i.e.
ẋp as a function of xn for different xp.. Dots: Experiment, Line: Fitted non-linear coupling model. c. Cuts of the NVM
along the vertical lines indicated in panel d, i.e. ẋp as a function of xp for different xn. Dots: Experiment, Line: Fitted
non-linear coupling model. d. Fitted NVM. Top row: adhesion model. Bottom row: deformation model.

Fig. S9 also demonstrates that adding the third-order coupling term to the adhesion
model does not yield a significant improvement of the fit. This model is defined by the
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equation

ẋn =
[
k(1)n (xp − xn) + k(2)n (xp − xn)

3
]

/γ(xn) (S5)

Fitting this model, we infer coupling constants |k(2)n |/|k(1)n | ≈ 10−6, indicating that the
third order term is negligible compared to the first order term. Thus, we conclude that
the first-order coupling adhesion model (Eqn. (S10)) is the simplest mechanistic model
that captures our data accurately.

3.3 Connecting the mechanistic model to emergent stochastic nonlinear dy-
namics

A central challenge for our mechanistic approach is to capture the emergent long time-
scale stochastic dynamics of the system. In previous work [4], we discovered that the
stochastic dynamics of the nucleus trajectories xn(t) of these cells can be described by
an equation of motion for the velocity of the cell nucleus vn of the form

v̇n = F(xn, vn) + σ(xn, vn)η(t) (S6)

where η(t) is Gaussian white noise, with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′). This is
an effective description of the dynamics of the nucleus alone, with unobserved degrees
of freedom, such as the protrusion and polarity, integrated out. Thus, in contrast to our
mechanistic model (Eqns. 1,2 in the main text), the dynamics of the nucleus alone is
described by an underdamped equation of motion with the velocity vn as an additional
degree of freedom.

Here, we provide a direct mapping between the mechanistic and the effective under-
damped model for this system. Specifically, we recast Eqns. 1,2 in the main text into
a single differential equation for vn. Then, using the definition F(xn, vn) = 〈v̇n|xn, vn〉,
we find

F(xn, vn) = fp
∂ fn

∂xp
+ vn

∂ fn

∂xn︸ ︷︷ ︸
Fcc(xn,vn)

+
∂ fn

∂xp
〈P|xn, vn〉

︸ ︷︷ ︸
Fpol(xn,vn)

(S7)

Thus, we expect the deterministic dynamics of the nucleus to be determined by two
components. A component Fcc(xn, vn) determined by the confinement and coupling
dynamics, and a component Fpol(xn, vn) determined by the polarity dynamics.

For white noise polarities, the second term vanishes, as 〈P|xn, vn〉 = 0 (Insets Fig. S10a),
and thus the phase space flow is due to the combined effects of nucleus-protrusion
coupling and the space-dependent adhesiveness acting on the nucleus. Interestingly,
for the white noise model, we find a small region of deterministic amplification where
the nucleus enters the constriction - however, the amplification only sets in at high
speeds, while there is no amplification for low speeds (Fig. S10a). The amplification
in the flow is due to the differential adhesiveness, as it vanishes for a flat adhesiveness
profile. In contrast, in the experiments, we found that the excitable amplification regime

10

231



°150 0 150

vn (µm h°1)

°200

0

200

F
(0

,v
n
)

(µ
m

h
°

2
)

c

°50 0 50

xn (µm)

°150

150

v n
(µ

m
h
°

1
)

°50 0 50

xn (µm)
°50 0 50

xn (µm)
°50 0 50

xn (µm)

a white noise persistentpolarity positive spatialfeedback

°50 0 50

xn (µm)

°150

150

v n
(µ

m
h
°

1
)

°50 0 50

xn (µm)
°50 0 50

xn (µm)
°50 0 50

xn (µm)

Experimentb

Figure S10: Phase-space portraits of the non-linear dynamics of nucleus trajectories. a. Flow field (ẋn, v̇n) =
(vn, F(xn, vn)) indicated by arrows. Arrow color indicates the direction of the local flow: acceleration is orange and
deceleration is blue. From left to right, the predictions for the white noise model, the persistent polarity model, and
the spatial feedback model (with αmin < 0). Insets: conditional average of the polarity as a function of nucleus position
and velocity, 〈P|xn, vn〉, which determines the polarity component of the phase space flow Fpol(xn, vn) (see Eq. (S7)).
b. Flow field inferred from the experiment for bridge width W = 7 µm (see ref. [4]). b. Effective friction at the bridge
center F(xn → 0, vn) for all three models and the experiment: white noise model (dashed black line), persistent polarity
model (grey), spatial feedback model (red), and experiment (blue).

sets in already at low speeds. Furthermore, the effective friction acting on the nucleus
in the white noise model is a simple linear friction, F(xn → 0, vn) ∝ −vn, in contrast to
the non-linear anti-friction observed experimentally (Fig. S10b).

In contrast, persistent polarities lead to a significant contribution to the determinis-
tic dynamics, with 〈P|xn, vn〉 exhibiting positive values for positive velocities. Conse-
quently, the polarity component of the dynamics Fpol fundamentally changes the phase
space flow, leading to amplification even at small velocities, similar to the experiment
(Fig. S10a). However, while the model predicts a non-linear effective friction relation
F(xn → 0, vn), it does not predict a sign-change, corresponding to anti-friction, in any
parameter regime we investigated (Fig. S10b; see Supplementary Section 4.3.2).

Finally, for the spatial feedback model, we find that the polarity component similarly
leads to an amplification of velocity, and yields excitable dynamics similar to those ob-
served experimentally. However, in contrast to the persistent polarity model, we find
that the spatial feedback model captures the effective anti-friction at the center of the
constriction. In the parameter regime relevant to the experiments (see Supplementary
Section 4), we find that the effective anti-friction emerges for αmin < 0 and γmin . 0.3
(Fig. S11). To model the effects of increasing constriction width, we simultaneously
increase γmin and αmin (red arrow Fig. S11). We observe that this leads to the disappear-
ance of the effective anti-friction, first giving rise to a flat non-linear friction, and finally
an almost linear regular friction (Insets Fig. S11). We observe very similar changes in
the effective friction in the experiment (Supplementary Section 3.4).
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Figure S11: Emergence of effective anti-friction for positive feedback polarities. We vary the parameters γmin and
αmin and determine the effective friction relationship at the center of the constriction F(xn → 0, vn). The gradient of the
effective friction at vn → 0 is indicated by the color. Red arrow corresponds to simultaneously increasing γmin and αmin
which we do as a model of increasing bridge width. Insets: effective friction relationships at the indicated locations.

In summary, we find that the effective non-linear dynamics of the nucleus trajectories
put strong constraints on our mechanistic model, and in contrast to the white noise
and persistent polarity models, the spatial feedback model is able to capture the ex-
perimentally observed dynamics. Our model furthermore gives insight into the origin
of the non-linear dynamics: F(xn, vn) is composed of a confinement-coupling and a
polarity component. The effective anti-friction exhibited by the inferred dynamics is
reproduced for parameters corresponding to positive polarity feedback, indicating that
such a feedback mechanism may be required to explain the emergence of effective anti-
friction in the underdamped nuclear dynamics.
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3.4 Results for all constriction widths

In Fig. S12, the same data as in main text Fig. 6 is shown, but with additional model-
experiment comparisons. Here, we show all seven bridge widths observed experimen-
tally (with additional widths W = 9, 18 µm). Heatmaps are plotted without the in-
terpolation implemented in the main text, and the nucleus velocity auto-correlation is
shown as an additional comparison.

Figure S12: Dynamics for all constriction widths. a. Brightfield microscopy images of MDA-MB-231 cells migrating in
two-state micropatterns with increasing bridge width W with cell outline in pink, nucleus position in blue, and geome-
try in white. b. Stochastic trajectory xn(t) (blue), xp(t) (green), and P(t) (pink) predicted by the spatial feedback model
(Eq. (S14)) with increasing γmin, but constant polarity dynamics, as a model for increasing bridge width (Supplemen-
tary Section S4). c. Joint probability distributions p(xn, xp). d. Joint probability distributions p(xn, vn). e. Protrusion
velocity maps (PVM) 〈ẋp|xn, xp〉. f. Flow field (ẋn, v̇n) = (vn, F(xn, vn)) indicated by arrows. Arrow color indicates
the direction of the local flow: acceleration is orange and deceleration is blue. g. Predicted (red) and experimental
(blue) nucleus velocity auto-correlation function 〈vn(t)vn(t′)〉, plotted as a function of |t− t′|. h. Predicted (red) and
experimental (blue) dwell time distributions p(τ). i. Predicted (red) and experimental (blue) effective friction at the
bridge center F(xn → 0, vn) In panels c-f, the top row corresponds to the spatial feedback model prediction, the bottom
row to experimental observations.
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3.5 Results for varying constriction length

To further test the spatial feedback model, we also change the length L of the constric-
tion (Fig. S13a). To implement this change in the model, we change the total length of
the system, Lsys = 2a + L, where a is the side length of the square islands (see Sup-
plementary Section S4 for exact implementation). We find that the model captures
the main qualitative changes observed in the experiment. Interestingly, we find that
the ‘polarity driving’ becomes more strongly pronounced in the longest constrictions,
which provides additional evidence for this effect.

3.6 Extension-dependent polarity model

In this section, we show that an alternative model in which the polarity feedback is
sensitive to ∆x = |xp − xn| instead of the absolute position of the protrusion xp is
unable to capture our experimental observations. Such a model can be formulated by
using polarity dynamics of the form

Ṗ = −α(∆x)P− βP3 + σξ(t) (S8)

We expect the polarity to become more persistent for stretched states, with a possible
switch to positive feedback at large extensions. As a simple implementation of this
dependence, we take α to be a linear function of ∆x:

α(∆x) = α0 − α1∆x (S9)

A switch to positive feedback therefore occurs at a critical extension ∆xcritical = α0/α1.
Note that since this model does not couple to geometry, α0 and α1 are assumed to
be intrinsic cell parameters, which do not adapt to the environment. Therefore, in
this model, the bridge width is implemented only through the adhesiveness profile.
Of course, we could in principle also consider extension-dependent feedback which
changes for changing bridge widths, e.g. using α1 = α1(xp). This could be imple-
mented such that the critical extension at which positive feedback is activated increases
with increasing bridge width - with similar arguments as those used to motivate the
spatial feedback model. However, the spatial feedback model provides simpler imple-
mentation of such a geometry dependence, with fewer parameters. Thus, by contrast-
ing these models, we do not seek to rule out a dependence of the polarity dynamics on
the extension of the cell, but investigate whether the geometry-sensitive component to
these dynamics dominates over the extension-dependent one.

Interestingly, we find that there are large regions in parameter space in which the exten-
sion feedback model (Eq. (S14)) captures many of the qualitative features of the experi-
ments with thin constrictions (w = 3, 7 µm) (Fig. S14). Specifically, the model exhibits a
ring-structure in p(xn, xp) and p(xn, vn), amplification in the phase space flow with ef-
fective anti-friction, a peaked dwell time distribution, and a matching velocity velocity
auto-correlation function. Based on the trajectories, we observe that spikes in the polar-
ity precede transitions, indicating that the activation of positive feedback in this model
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Figure S13: Model predicts dynamics with varying constriction length. a. Brightfield microscopy images of MDA-
MB-231 cells migrating in two-state micropatterns with increasing bridge length L with cell outline in pink, nucleus
position in blue, and geometry in white. b. Stochastic trajectory xn(t) (blue), xp(t) (green), and P(t) (pink) predicted
by the spatial feedback model (Eq. (S14)) with increasing Lsys as a model for increasing bridge length (Supplementary
Section S4). c. Joint probability distributions p(xn, xp). d. Joint probability distributions p(xn, vn). e. Protrusion
velocity maps (PVM) 〈ẋp|xn, xp〉. f. Flow field (ẋn, v̇n) = (vn, F(xn, vn)) indicated by arrows. Arrow color indicates
the direction of the local flow: acceleration is orange and deceleration is blue. g. Predicted (red) and experimental
(blue) nucleus velocity auto-correlation function 〈vn(t)vn(t′)〉, plotted as a function of |t− t′|. h. Predicted (red) and
experimental (blue) dwell time distributions p(τ). i. Predicted (red) and experimental (blue) effective friction at the
bridge center F(xn → 0, vn) In panels c-f, the top row corresponds to the spatial feedback model prediction, the bottom
row to experimental observations.

is also correlated with the extension preceding bridge entry of the protrusion. Accord-
ingly, the model predicts an extensile pushing effect in the PVM, although, unlike in
the experimental PVM, it is not restricted to positions in the bridge.

Since α0 and α1 do not change with bridge width, even cells in systems without constric-
tions experience positive feedback when they are in a stretched state ∆x > ∆xcritical. Ex-
perimentally, we find that the distribution of cell extensions p(∆x) does not change sig-
nificantly with bridge width, suggesting that based on the extension feedback model,

15

236 6. Protrusion and polarity dynamics in confined cell migration



Figure S14: Extension feedback fails to predict dynamics with varying constriction width. a. Stochastic trajectory
xn(t) (blue), xp(t) (green), and P(t) (pink) predicted by the spatial feedback model (Eq. (S14)) with increasing γmin
and αmin as a model for increasing bridge width W (Supplementary Section S4). b. Joint probability distributions
p(xn, xp). c. Joint probability distributions p(xn, vn). d. Protrusion velocity maps (PVM) 〈ẋp|xn, xp〉. e. Flow field
(ẋn, v̇n) = (vn, F(xn, vn)) indicated by arrows. Arrow color indicates the direction of the local flow: acceleration is
orange and deceleration is blue. f. Predicted (red) and experimental (blue) nucleus velocity auto-correlation function
〈vn(t)vn(t′)〉, plotted as a function of |t− t′|. g. Predicted (red) and experimental (blue) dwell time distributions p(τ).
h. Predicted (red) and experimental (blue) effective friction at the bridge center F(xn → 0, vn). In panels b-e, the top
row corresponds to the spatial feedback model prediction, the bottom row to experimental observations.

we expect similar polarity dynamics, including positive feedback states also on wide
bridges (Fig. S15). This already suggests that this model is unlikely to capture the ob-
served dynamics with increasing bridge width.

To explore the predictions of this model for increasing bridge width directly, we fo-
cus on those parameter regimes of {α0, α1, σ} in which the dynamics on thin bridges
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Figure S15: Experimental probability distributions of protrusion-nucleus extension for all bridge widths

is captured. We find that the predicted dynamics qualitatively fails to capture the ex-
periments with wide bridges (Fig. S14). Specifically, the model predicts a pronounced
ring-like probability distribution even on the rectangular patterns without a constric-
tion, in contrast to the uniform experimental distribution. The model also predicts a
peaked dwell time distribution on the rectangles, in contrast to the decaying distribu-
tion observed in the experiment. Furthermore, the presence of positive feedback makes
a contribution to the polarity component of the phase space flow (see section 3.3), and
thus leads to significant amplification in systems with wide bridges, in contradiction to
the experiments.

To further pinpoint the shortcomings of the model, we investigate the dependence
of the protrusion velocities on the instantaneous protrusion position and protrusion-
nucleus extension, 〈ẋp|xp − xn, xp〉 (Fig. S16). As expected, we observe that in the ex-
tension feedback model, the protrusion velocities are predominantly determined by the
protrusion-nucleus extension xp − xn. This dependence does not change very much
with changing bridge width. In contrast, the spatial feedback model predicts a more
complex dependence of the protrusion velocity on xp − xn, xp: for narrow bridges, for
xp outside of the constriction, the elastic coupling dominates. When xp is inside the
bridge, we observe the pushing effect, whose sign depends on xp − xn, as positive po-
larities, which lead to positive ẋp drive the system towards xp − xn > 0. As the bridge
widens, the pushing contribution disappears. For the rectangular systems without con-
striction, the elastic coupling dominates, and the protrusion velocities are completely
determined by xp − xn. These features are qualitatively very similar to those seen in
the experiments, further supporting the hypothesis that the spatial feedback model is a
better description of the data than the extension feedback model.
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Figure S16: Protrusion velocities as a function of xp and xp − xn for two model candidates. The conditional average
〈ẋp|xp − xn, xp〉 is shown for the spatial feedback model (top row), the extension feedback model (Eq. (S14)) (center
row), and the experiment (bottom row), for all 7 bridge widths (in increasing order from left to right).

4 Model implementation and choice of parameters

4.1 Nucleus dynamics

For the nucleus dynamics, we postulate an equation of motion including a spatially
variable adhesiveness:

ẋn = kn(xp − xn)/γ(xn) (S10)

where kn = k/ζn and the dimensionless adhesiveness profile

γ(xn) =
1− γmin

2

(
1− cos

(
xnπ

Lsystem

))
+ γmin (S11)

Here, γ(xn) varies between γmin at xn = 0 and 1 on the islands. The magnitude of the
adhesiveness is accounted for the by the parameter ζn. Throughout the paper, we use
dimensionful parameters, such that the simulation results can be directly compared
to the experimental statistics on the same axes. However, we reduce the number of
parameters by constructing parameter combinations such as kn. For all length-scale
parameters, we directly use the known dimension of the experimental confinement, i.e.
Lsystem = a + L/2 = 52.5 µm, where a ≈ 35 µm is the side length of the adhesive
islands, L the bridge length; for systems with confinement length L ≈ 35 µm. Thus,
Eqn. (S10) has only two free parameters: kn and γmin. We determine these parameters
by fitting Eqn. (S10) to the experimentally observed NVM (Fig. S17a). In Fig. 2 of
the main text, we show the result for our standard constriction width W = 7 µm. To
constrain the parameters used for all constriction widths throughout, we first fit the
thinnest constriction width W = 3 µm, and obtain kn ≈ 0.6 s−1, γmin ≈ 0.2 (Fig. S17).
We find good agreement for all aspects of the NVM (see Fig. S17 for additional cuts
through the map not shown in the main text). To make predictions for varying bridge
width (Fig. 3 in the main text), we fix kn, and linearly interpolate γmin between 0.2 and
1 according to bridge width, to achieve a flat adhesiveness profile for systems without
constrictions (see plots in Fig. 3a in the main text).
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For the alternative deformation model, we take W(xn) = Q(1− (xn/x0)2)2 with x0 =
(L + a)/2 = 35 µm, such that the potential minimum is located in the center of the
adhesive island. Using best fit parameters for kn and Q, we find that this model robustly
fails to capture the NVM for various constriction widths (Fig. S17).

°50 0 50
xn

°50

0

50

x
p

experiment

°50 0 50
xn

°100

0

100

hẋ
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4.2 Protrusion dynamics

For the protrusion dynamics, we use the equation of motion

ẋp = −kp(xp − xn)− ∂xpV(xp) + P(t) (S12)

where kp = k/ζp and ζp is absorbed into the boundary potential and our definition of
the polarity P. We use soft-wall boundary conditions at the system boundaries, using
the potential V(xp) = (xp/xboundary)

2n. We find that within a reasonable range, the
boundary potential parameters do not strongly affect the results, and take n = 4 and
xboundary = 0.4 ∗ Lsystem throughout. Similarly, we find that the choice of kp does not
strongly affect the results. Physically, we expect the friction on the nucleus to be larger
than on the protrusion, i.e. ζp < ζn, and thus kp > kn. We therefore take kp = 1.2 s−1,
which we also find to accurately capture the PVM inferred from systems without con-
strictions, which is dominated by the elastic coupling.

4.3 Polarity dynamics

Unlike for the nucleus and protrusion dynamics, for the polarity, we do not have access
to experimental trajectories to constrain our choice of parameters. We therefore perform
parameter sweeps over the parameters of the polarity dynamics. Generally, we find that
the model behaviour varies smoothly and as physically expected with the parameters,
and none of our conclusions depend on fine tuning parameters.

4.3.1 White noise polarity

For the white noise polarity model, P = σξ(t), there is only a single free parameter, the
noise strength σ. As expected, the probability distributions broaden with increasing
noise; however they robustly fail to capture the ring structure in p(xn, xp), the peak in
the dwell time-distribution, and the flow field F(xn, vn).

4.3.2 Persistent polarity

The persistent polarity model (with α0 > 0)

Ṗ = −α0P + σξ(t) (S13)

has two parameters: the noise strength σ and the persistence time α−1
0 . Since P is now

an integrated noise, it scales differently with time than the white noise model (leading
order term scales with ∆t3/2, as opposed to ∆t1/2 in the white noise model). Thus, we
take larger noise amplitudes to achieve similar magnitudes of P. Still, we find that this
model does not capture the experimentally observed features irrespective of our choice
of σ and α−1

0 (Fig. S18, S19). In Fig. 4 of the main text, we use σ = 100 and α0 = 1.
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4.3.3 Spatial feedback polarity

For the spatial feedback model, we vary the feedback on the polarity as a function of
the protrusion position:

Ṗ = −α(xp)P− βP3 + σξ(t) (S14)

Here, we use a similar spatial profile as for the adhesiveness of the nuclear dynamics,
with a minimal value αmin at xp = 0 and a maximal value α0 on the adhesive islands:

α(xp) =
α0 − αmin

2
− α0 − αmin

2
cos

(
xpπ

Lsystem

)
(S15)

Thus, this model has 4 parameters: {α0, αmin, β, σ}. Importantly, for positions where
α(xp) < 0 locally, the preferred polarity is P0 = ±

√
|α|/β. Thus, we take values for β

which give a reasonable order of magnitude of the preferred polarity compared to the
typical order of magnitude of the protrusion velocities. Specifically, we take β = 0.0001
throughout. On the islands, we postulate that protrusions move with low persistence,
and therefore take α0 = 10. This choice yields accurate results for the PVM in systems
with no constriction, where we take αmin = α0, corresponding to a flat profile. Taking
much smaller values of α0 leads to a pushing effect in the PVM for the system with
no constriction, which is not observed experimentally. For αmin, we broadly find the
behaviour shown in Fig. 5 of the main text: ring structures for αmin < 0, but not for
αmin > 0. Similarly, we find that we require a negative αmin to capture the effective anti-
friction in the nucleus dynamics (see Supplementary section 3.3 for a parameter sweep).
We find that αmin = −6.5 yields accurate predictions for the thinnest constriction, and
systematically increase αmin for wider bridges, up to αmin = α0 for the system without
constriction. Finally, the model predictions do not sensitively depend on the choice of
the noise amplitude; we take σ = 100 throughout.

4.3.4 Extension feedback polarity

For the extension feedback model, we vary the feedback on the polarity as a function
of the extension of the protrusion away from the nucleus, ∆x = |xp − xn|:

Ṗ = −α(∆x)P− βP3 + σξ(t) (S16)

Physically, we expect the polarity to become more persistent for stretched states, with
a possible switch to positive feedback at large extensions. As a simple implementation
of this dependence, we take α to be a linear function of ∆x:

α(∆x) = α0 − α1∆x (S17)

A switch to positive feedback therefore occurs at a critical extension ∆xcritical = α0/α1.
Thus, this model has 4 parameters: {α0, α1, β, σ}. In section 3.6, we take β = 0.0005, σ =
200, and α0 = 10, to be consistent with the spatial feedback model at small extensions,
and α1 = 1, such that the critical extension is ∆xcritical = 10 µm.
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Chapter 7

Inferring the dynamics of underdamped stochas-
tic systems
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Many complex systems, ranging from migrating cells to animal groups, ex-
hibit stochastic dynamics described by the underdamped Langevin equa-
tion. Inferring such an equation of motion from experimental data can pro-
vide profound insight into the physical laws governing the system. Here,
we derive a principled framework to infer the dynamics of underdamped
stochastic systems from realistic experimental trajectories, sampled at dis-
crete times and subject to measurement errors. This framework yields an
operational method, Underdamped Langevin Inference (ULI), which per-
forms well on experimental trajectories of single migrating cells and in com-
plex high-dimensional systems, including flocks with Viscek-like alignment
interactions. Our method is robust to experimental measurement errors,
and includes a self-consistent estimate of the inference error.

Across the scientific disciplines, data-driven methods are used to unravel the dynamics of com-
plex systems. These approaches often take the form of inverse problems, aiming to infer the
underlying governing equation of motion from observed trajectories. This problem is well un-
derstood for deterministic systems [1–3]. For a broad variety of physical systems, however, a
deterministic description is insufficient: fast, unobserved degrees of freedom act as an effective
dynamical noise on the observable quantities. Such systems are described by Langevin dynam-
ics, and inferring their equation of motion is notoriously harder: one must then disentangle the
stochastic from the deterministic contributions, both of which contribute to shape the trajec-
tory. In molecular-scale systems described by the overdamped Langevin equation, a first-order
stochastic differential equation, recently developed techniques make it possible to efficiently
reconstruct the dynamics from observed trajectories [4–8]. Many complex systems at larger
scales, however, exhibit stochastic dynamics governed by the underdamped Langevin equation,
a second-order stochastic differential equation. Examples include cell motility [9–13], postural
dynamics in animals [14, 15], movement in interacting swarms of fish [16–18], birds [19, 20],
and insects [21, 22], as well as dust particles in a plasma [23]. Due to recent advances in track-
ing technology, the diversity, accuracy, dimensionality, and size of these behavioral data-sets is
rapidly increasing [24], resulting in a growing need for accurate inference approaches for high-
dimensional underdamped stochastic systems. However, there is currently no rigorous method
to infer the dynamics of such underdamped stochastic systems.

Inference from underdamped stochastic systems suffers from a major challenge absent in the
overdamped case. In any realistic application, the accelerations of the degrees of freedom must
be obtained as discrete second derivatives from the observed position trajectories, which are
sampled at discrete intervals ∆t. Consequently, a straightforward generalization of the estima-
tors for the force and noise fields of overdamped systems fails: these estimators do not converge
to the correct values, even in the limit ∆t → 0 [25, 26]. To make matters worse, real data is al-
ways subject to measurement errors, leading to divergent biases in the discrete estimators [27].
These problems have so far precluded reliable inference in underdamped stochastic systems.
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Here, we introduce a general framework, Underdamped Langevin Inference (ULI), that con-
ceptually explains the origin of these biases, and provides an operational scheme to reliably
infer the equation of motion of underdamped stochastic systems governed by non-linear force
fields and multiplicative noise amplitudes. To provide a method that can be robustly applied
to realistic experimental data, we rigorously derive estimators that converge to the correct val-
ues for discrete data subject to measurement errors. We demonstrate the power of our method
by applying it to experimental trajectories of single migrating cells, as well as simulated com-
plex high-dimensional data sets, including flocks of active particles with Viscek-style alignment
interactions.

We consider a general d-dimensional stationary stochastic process x(t) with components
{xµ(t)}16µ6d governed by the underdamped Langevin equation

ẋµ = vµ

v̇µ = Fµ(x, v) + σµν(x, v)ξν(t)
(1)

which we interpret in the Itô-sense. Throughout, we employ the Einstein summation conven-
tion, and ξµ(t) represents a Gaussian white noise with the properties 〈ξµ(t)ξν(t′)〉 = δµνδ(t− t′)
and 〈ξµ(t)〉 = 0. Our aim is to infer the force field Fµ(x, v) and the noise amplitude σµν(x, v)
from an observed finite trajectory of the process 1.
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Figure 1: Inference from discrete time series subject to measurement error. A. Trajectory x(t) of a stochastic damped
harmonic oscillator, F(x, v) = −γv− kx. B. The same trajectory represented in xv-phase space. Color coding indicates
time. C. Force field in xv-space inferred from the trajectory in A using ULI with basis functions b = {1, x, v} (blue
arrows), compared to the exact force field (black arrows). Inset: inferred components of the force along the trajectory
versus the exact values. D. Convergence of the mean squared error of the inferred force field, obtained using ULI
(circles) and with the previous standard approach [13, 14, 25, 27] (squares). Dashed lines indicate the predicted error
δF̂2/F̂2 ∼ Nb/2 Îb. E. Inferred friction coefficient γ divided by the exact one as a function of the sampling time interval
∆t, comparing the previous standard approach to ULI. F. Trajectory y(t) = x(t) + η(t) (blue) corresponding to the
same realization x(t) in A, with additional time-uncorrelated measurement error η(t) (orange) with small amplitude
|η| = 0.02. G,H. Force field inferred from y(t) using estimators without and with measurement error corrections,
respectively. I. Inference convergence for data subject to measurement error using estimators without (circles) and
with (diamonds) measurement error corrections. J. Dependence of the inference error on the noise amplitude |η| (same
symbols as in I).

1Since we interpret eqn. (1) in the Itô-sense, the inferred force field Fµ(x, v) corresponds to this conven-
tion.
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We start by approximating the force field as a linear combination of nb basis functions b =
{bα(x, v)}16α6nb , such as polynomials, Fourier modes, wavelet functions, or Gaussian ker-
nels [14]. From these basis functions, we construct an empirical orthonormal basis ĉα(x, v) =

B̂−1/2
αβ bβ(x, v) such that 〈ĉα ĉβ〉 = δαβ, an approach that was recently proposed for overdamped

systems [8]. Here and throughout, averages correspond to time-averages along the trajectory.
We can then approximate the force field as Fµ(x, v) ≈ Fµα ĉα(x, v). Similarly, we perform a basis
expansion of the noise amplitude σ2

µν(x, v). Thus, the inference problem reduces to estimating
the projection coefficients Fµα and σ2

µνα.

Dealing with discreteness

In practice, only the configurational coordinate x(t) is accessible in experimental data, sampled
at a discrete time-interval ∆t. We therefore only have access to the discrete estimators of the ve-
locity v̂(t) = [x(t)− x(t− ∆t)]/∆t and acceleration â(t) = [x(t + ∆t)− 2x(t) + x(t− ∆t)]/∆t2.
Our goal is to derive an estimator F̂µα, constructed from the discrete velocities and accelerations,
which converges to the exact projections Fµα in the limit ∆t→ 0.

An intuitive approach would be to simply generalize the estimators for overdamped systems [8]
and calculate the projections of the accelerations 〈âµ ĉα(x, v̂)〉. This expression has indeed previ-
ously been used for underdamped systems [13, 14, 25, 27]. We derive the correction term to this
estimator by expanding the basis functions ĉα(x, v̂) = ĉα(x, v) + (∂vµ ĉα)(v̂µ − vµ) + ..., where
the leading order contribution to the second term is a fluctuating (zero average) term of order
∆t1/2. Similarly, we perform a stochastic Itô-Taylor expansion of the discrete acceleration â(t),
which has a leading order fluctuating term of order ∆t−1/2. Thus, while each of these terms
individually averages to zero, their product results in a bias term with non-zero average of
order ∆t0: 〈âµ ĉα(x, v̂)〉 = Fµα +

1
6

〈
σ2

µν∂vν cα(x, v)
〉
+O(∆t) (Supplementary Information). As

expected, this bias vanishes in the limit σ → 0, and therefore does not appear in determinis-
tic systems. However, it poses a problem wherever a second derivative of a stochastic signal
is averaged conditioned on its first derivative. The occurrence of such a bias was observed in
linear systems [25, 26]. Specifically, for a linear viscous force F(v) = −γv, it was found that
〈âc(v̂)〉 = − 2

3 γ +O(∆t), which is recovered by our general expression for the systematic bias
(Supplementary Information).

Previous approaches to correct for this bias rely on a priori knowledge of the observed stochastic
process [25], are limited to simple parametric forms [26], or perform an a posteriori empirical
iterative scheme [13]. In contrast, by simply deducting the general form of the bias, we obtain
our Underdamped Langevin Inference (ULI) estimator (Supplementary Information):

F̂µα = 〈âµ ĉα(x, v̂)〉 − 1
6

〈
σ̂2

µν(x, v̂)∂vν ĉα(x, v̂)
〉

(2)

The presence of the derivative of a basis function in the estimator highlights the importance
of projecting the dynamics of underdamped systems onto a set of smooth basis functions, in
contrast to the traditional approach of taking conditional averages in a discrete set of bins [4,5],
equivalent to a basis of non-differentiable top-hat functions.

Similarly to the force field, we expand the noise amplitude as a sum of basis functions, and
derive an unbiased estimator for the projection coefficients (Supplementary Information)

σ̂2
µνα =

3∆t
2
〈âµ âν ĉα(x, v̂)〉 (3)
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To test our method, we start with a simulated minimal example, the stochastic damped har-
monic oscillator v̇ = −γv − kx + σξ (Fig. 1A-E). Indeed, we find that even for such a simple
system, the intuitive acceleration projections 〈âµ ĉα(x, v̂)〉 yield a biased result (Fig. 1E). In con-
trast, ULI, defined by Eqs. (3) and (2), provides an accurate reconstruction of the force field
(Fig. 1C,E). To test the convergence of these estimators in a quantitative way, we calculate the
expected random error due to the finite length τ of the input trajectory, δF̂2/F̂2 ∼ Nb/2 Îb,
where we define Îb = τ

2 σ̂−2
µν F̂µα F̂να as the empirical estimate of the information contained in the

trajectory, and Nb = dnb is the number of degrees of freedom in the force field [8]. We confirm
that the convergence of our estimators follows this expected trend, in contrast to the biased ac-
celeration projections (Fig. 1D). Therefore, ULI provides an operational method to accurately
infer the dynamical terms of underdamped stochastic trajectories.

Treatment of measurement errors

A key challenge in stochastic inference from real data is the unavoidable presence of time-
uncorrelated random measurement errors η(t), which can be non-Gaussian: the observed sig-
nal in this case is y(t) = x(t) + η(t). This problem is particularly dominant in underdamped
inference, where the signal is differentiated twice, leading to a divergent bias of order ∆t−3

(Supplementary Information). Thus, for small ∆t, even small measurement errors can lead to
prohibitively large systematic inference errors, which cannot be rectified by simply recording
more data.

To overcome this challenge, we derive estimators which are robust against measurement error.
These estimators are constructed such that the leading-order bias terms cancel. For the force
estimator, we find that this is achieved by using the local average position x(t) = 1

3 (x(t− ∆t) +
x(t) + x(t + ∆t)) and the symmetric velocity v̂(t) = [x(t + ∆t)− x(t− ∆t)]/(2∆t) in Eq. (2) 2.
Similarly, we derive an unbiased estimator for the noise term, which is constructed using a
linear combination of four-point increments (Supplementary Information).

Remarkably, these modifications result in a vastly improved inference performance in the pres-
ence of measurement error (Fig. 1F-J). Specifically, while the bias becomes dominant at an error
magnitude |η| ∼ σ∆t3/2 in the standard estimators, the bias-corrected estimators only fail when
the measurement error becomes comparable to the displacement in a single time-step, |η| ∼ v∆t
(Fig. 1J) (Supplementary Information). Thus, our method has a significantly larger range of va-
lidity extending up to the typical displacement in a single time-frame.

Non-linear dynamics

Since our method does not assume linearity, we can expand the projection basis to include
higher order functions to capture the behavior of systems with non-linear dynamics. As a
canonical example, we study the stochastic Van der Pol oscillator v̇ = κ(1 − x2)v − x + σξ,
a common model for a broad range of biological dynamical systems [28]. We simulate a short
trajectory of this process, with added artificial measurement error (Fig. 2A). Indeed, we find
that ULI reliably infers the underlying phase-space flow (Fig. 2B). This is not limited to one-
dimensional systems, as shown by studying convergence of higher-dimensional oscillators (Fig. 2C).

2Note that due to the change of definition of v̂, the prefactor of the correction term in Eq. (2) changes
from 1/6 to 1/2.
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bar: 20µm). Experimental trajectory of the cell nucleus position, recorded at a time-interval ∆t = 10 min (blue), and
simulated trajectory using the inferred model (red). E. Partial information for the experimental trajectory in D, pro-
jected onto a third-order polynomial basis. F. Deterministic flow field inferred from the experimental trajectory in D.
G. Trajectory of a Van der Pol oscillator with multiplicative noise σ2(x, v) = σ0 + σxx2 + σvv2 (colormap). H,I. Inferred
versus exact components of the force and noise term, respectively, for the trajectory in G. J. Inference convergence of the
multiplicative noise amplitude, using Eq. (3) without measurement error (circles), with measurement error (squares),
and using the error-corrected estimator (diamonds). The error saturation at large τ is due to the finite time-step. Dashed
line: predicted error δσ̂2/σ̂2 ∼ √Nb∆t/τ [8].
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Importantly, this good performance does not rely on using a polynomial basis to fit a polyno-
mial field: employing a non-adapted basis, such as Fourier components, yields similarly good
results (Supplementary Information).

To capture the Van der Pol dynamics, only the three basis functions {x, v, x2v} are required.
But can these functions be identified directly from the data without prior knowledge of the un-
derlying force field? To address this question, we introduce the concept of partial information.
We can estimate the information contained in a finite trajectory as Îb(nb) =

τ
2 σ̂−2

µν F̂µα F̂να, where
F̂να are the projection coefficients onto the basis b with nb basis functions [8]. To assess the im-
portance of the nth basis function in the expansion, we calculate the amount of information it
contributes:

Î(partial)
b (n) = Îb(n)− Îb(n− 1) (4)

which we term the partial information contributed by the basis function bn. This approach
successfully recovers the relevant terms in large basis sets (Inset Fig. 2B). Thus, the partial in-
formation provides a useful heuristic for detecting the relevant terms of the force field.

To illustrate that ULI is practical and data-efficient, we apply it to experimental trajectories of
cells migrating in two-state confinements (Fig. 2D). Within their lifetime, these cells perform
several transitions between the two states, resulting in relatively short trajectories. Previously,
we inferred dynamical properties by averaging over a large ensemble of trajectories [13, 29, 30].
In contrast, with ULI, we can reliably infer the governing equation of motion from single cell
trajectories. Here, F(x, v) corresponds to the deterministic dynamics of the system, and not
to a physical force. We employ the partial information to guide our basis selection: indeed, it
recovers the intrinsic symmetry of the system, suggesting a symmetrized third order polyno-
mial expansion is a suitable choice (Fig. 2E). Using this expansion, we infer the deterministic
flow field of the system (Fig. 2F), which predicts trajectories similar to the experimental ones
(Fig. 2D). Importantly, the inferred model is self-consistent: re-inferring from short simulated
trajectories yields a similar model (Supplementary Information). Using ULI, we can thus per-
form inference on small data sets, enabling ”single-cell profiling”, which could provide a useful
tool to characterize cell-to-cell variability [30].

To demonstrate the broad applicability of our approach, we evaluate its performance in the
presence of multiplicative noise amplitudes σµν(x, v), which occur in a range of complex sys-
tems [13, 14, 31]. ULI accurately recovers the space- and velocity-dependence of both the force
and noise field, and the estimators converge to the exact values, even in the presence of mea-
surement errors (Fig. 2G-J). To summarize, we have shown that ULI performs well on short
trajectories of non-linear data sets subject to measurement errors, and can accurately infer the
spatial structure of multiplicative noise terms.

Collective systems

A major challenge in stochastic inference is the treatment of interacting many-body systems. In
recent years, trajectory data on active collective systems, such as collective cell migration [11,12]
and animal groups [19–22,32], have become readily available. Previous approaches to such sys-
tems frequently focus on the study of correlations [19, 33, 34] or collision statistics [12, 17, 32],
but no general method for inferring their underlying dynamics has been proposed. The collec-
tive behavior of these systems, ranging from disordered swarms [22] to ordered flocking [19],
is determined by the interplay of active self-propulsion, cohesive and alignment interactions,
and noise. Thus, disentangling these contributions could provide key insights into the physical
laws governing active collective systems.
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Figure 3: Interacting flocks. A. Trajectory (green) of N = 27 Viscek-like particles (Eq. 5) in the flocking regime (1000
frames). We perform ULI on this trajectory using a translation-invariant basis of pair interaction and alignment terms,
both fitted with n = 8 exponential kernels. B. Exact (blue) and inferred (orange) cohesion r f (r). Exact form includes
short-range repulsion and long-range attraction, f (r) = ε0(1− (r/r0)

3)/((r/r0)
6 + 1). Dotted inference dependence

indicates distances not sampled by the initial data. C. Exact and inferred alignment kernel g(r). Exact form: g(r) =
ε1 exp(−r/r1). D. Inferred versus exact components of the force field. E. Convergence of the inferred force as a function
of trajectory length. Dashed line is the predicted error δF̂2/F̂2 ∼ Nb/2 Îb. F. Simulated trajectory (red) employing the
inferred force and noise, showing qualitatively similar flocking behavior.

We consider a simple model for the dynamics of a 3D flock with Viscek-style alignment interac-
tions [11, 35–37],

v̇i = pi + ∑
j 6=i

[
f (rij)rij + g(rij)vij

]
+ σξi (5)

where vi = ṙi, rij = rj − ri, vij = vj − vi, and pi = γ(v2
0 − |vi|2)vi is a self-propulsion force

acting along the direction of motion of each particle i. Here, f and g denote the strength of
the cohesive and alignment interactions, respectively, as a function of inter-particle distance
rij. This model exhibits a diversity of behaviors, including flocking (Fig. 3A). Intuitively, one
might expect that ULI should fail dramatically in such a system: a 3D swarm of N particles
has 6N degrees of freedom, and “curse of dimensionality” arguments make this problem seem
intractable. However, by exploiting the particle exchange symmetry and radial symmetry of
the interactions (Supplementary Information), we find that ULI accurately recovers the cohe-
sion and alignment terms (Fig. 3B-C), and captures the full force field (Fig. 3D,E). Furthermore,
simulating the inferred model yields trajectories with high similarity to the input data (Fig. 3F).
This example illustrates the potential of ULI for inferring complex interactions from trajectories
of stochastic many-body systems.

In summary, we demonstrate how to reliably infer the force and noise fields in complex under-
damped stochastic systems. We show that the inevitable presence of discreteness and measure-
ment errors result in systematic biases that have so far prohibited accurate inference. To circum-
vent these problems, we have rigorously derived unbiased estimators, providing an operational
framework, Underdamped Langevin Inference, to infer underdamped stochastic dynamics 3.
Our method provides a new avenue to analyzing the dynamics of complex high-dimensional
systems, such as assemblies of motile cells [11, 12], active swarms [19, 21, 22, 32], as well as non-
equilibrium condensed matter systems [23, 28, 38].

3A readily usable PYTHON package to perform Underdamped Langevin Inference is available at
https://github.com/ronceray/UnderdampedLangevinInference.
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Supplementary Material:
Inferring the dynamics of underdamped stochastic systems

David B. Brückner*, Pierre Ronceray* and Chase P. Broedersz

This Supplemental Material contains a detailed definition of the projection formalism
we employ in Underdamped Langevin Inference (ULI) (section 1), derivations of the
unbiased estimators for the force and noise fields for discrete data (section 2) and for
discrete data with random measurement errors (section 3), a criterion to choose the op-
timal basis size nb (section 4), further details on the inference from experimental single
cell trajectories (section 5) and detailed information on the models and parameters used
for the simulation results shown in Figs. 1-3 in the main text (section 6).
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1 Definition of the projection formalism

We consider d-dimensional processes x(t), governed by the underdamped Langevin
equation

ẋµ = vµ

v̇µ = Fµ(x, v) + σµν(x, v)ξν(t)
(S1)

Here, xµ(t) are the components of the vector x(t) and 1 6 µ 6 d. The term Fµ(x, v)
denotes the µ-component of the force field, and σµν(x, v) is the noise strength tensor,
which is multiplicative and can thus depend on the state of the system given by {x, v}.
ξµ(t) represents a Gaussian white noise with the properties 〈ξµ(t)ξν(t′)〉 = δµνδ(t− t′)
and 〈ξµ(t)〉 = 0. Our aim is to infer the force field Fµ(x, v) and the noise amplitude
σµν(x, v) from an observed trajectory of the process. We interpret this stochastic dif-
ferential equation in the Itô-sense, and thus infer the force field Fµ(x, v) corresponding
to this convention, which may include spurious drift terms due to multiplicative noise
amplitudes.

In ULI, we approximate the force field as a linear combination of basis functions b =
{bα(x, v)} where the index α runs over all basis functions in the set, 1 6 α 6 nb.
Here and throughout the main text and supplementary material, we employ the Ein-
stein summation convention. Thus, summations over the basis functions, indexed by
{α, β} run from 1...nb. Summations over the d-dimensional dynamical quantities such
as xµ(t), vµ(t), Fµ(x, v), σµν(x, v), indexed by {µ, ν, ρ, τ, ...}, run from 1...d.

To extract the coefficients of the expansions of the force and noise terms, we can project
the dynamics onto the space spanned by bα(x, v) using the steady-state probability
distribution P(x, v) as a measure [1]. To do so, we define orthonormalized projectors
cα(x, v) = B−1/2

αβ bβ(x, v), such that

〈cαcβ〉 =
∫

cα(x, v)cβ(x, v)P(x, v)dxdv = δαβ (S2)

We then approximate the force field as a linear combination of these basis functions

Fµ(x, v) ≈ Fµαcα(x, v) (S3)

Note that if we use a complete set of basis functions, this becomes an exact equality.
In any real application however, a truncated set of basis functions must be used, in
order to limit the number of parameters (i.e. the coefficients Fµα) to be inferred from a
trajectory of finite length. The projection coefficients Fµα are given by

Fµα =
∫

Fµ(x, v)cα(x, v)P(x, v)dx dv (S4)

These coefficients thus form a (d× nb) matrix, and Fµα gives the projection coefficient
of the µ-component of the force field onto the basis function cα. Similarly, we expand
the noise term

σ2
µν(x, v) ≈ σ2

µναcα(x, v) (S5)

2
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with the projection coefficients

σ2
µνα =

∫
σ2

µν(x, v)cα(x, v)P(x, v)dx dv (S6)

Note that we expand σ2 rather than σ because we can only derive estimators for σ2;
since the noise averages to zero, we must take squares of the increments to extract the
magnitude of the fluctuations.

In practice, we aim to infer the force and noise fields governing the dynamics of a sys-
tem from a single trajectory of finite length τ, sampled at a time interval ∆t. Thus, the
exact probability distribution P(x, v) is unknown, and we cannot enforce the condition
Eq. (S2) exactly. Thus, we define empirical orthonormalized projectors

ĉα(x, v) = B̂−1/2
αβ bβ(x, v) (S7)

where
B̂αβ =

∆t
τ ∑

t
bα(x(t), v(t))bβ(x(t), v(t)), (S8)

such that 〈ĉα ĉβ〉 = δαβ where 〈...〉 refers to a time-average along the observed trajectory.

Our aim in performing inference is to find the terms Fµ(x, v) and σ2
µν(x, v). Thus,

we search for an operational definition of the estimators of the projection coefficients,
F̂µα and σ̂2

µνα. These estimators consists of increment-constructions projected onto the
trajectory-dependent orthonormal basis functions, constructed in such a way that the
leading order term in ∆t converge to the exact projection coefficients. Due to the Gaus-
sian nature of the stochastic noise, this projection procedure – which is equivalent to
a least-square regression of the local estimator – corresponds for the force field to a
maximum-likelihood approximation [1].

2 Derivation of the discrete estimators

To derive the leading order bias in the estimators for F and σ, we start by defining the
increments of the positions:

∆x(n)µ (t) = xµ(t + n∆t)− xµ(t) (S9)

The estimator for the accelerations is then given by a linear combination of these incre-
ments:

âµ(t) =
∆x(2)µ (t)− 2∆x(1)µ (t)

∆t2 =
xµ(t + 2∆t)− 2xµ(t + ∆t) + xµ(t)

∆t2 (S10)

Note that this is not in general the most natural way to define âµ(t), as this expression
is not centered around t. However, it makes the expression causal: the noise at t′ > t
is independent of the state at t, thus using forward increments significantly simplifies

3

258 7. Inferring the dynamics of underdamped stochastic systems



the calculations. We will later shift the definition back to a centered one, which will
only add higher order terms to our results. Similarly, we define the discrete velocity
estimator

v̂µ(t; λ) =
λ∆x(2)µ (t)

2∆t
+

(1− λ)∆x(1)µ (t)
∆t

(S11)

Note that we have kept some freedom in how we calculate the velocities from the
three points {t, t + ∆t, t + 2∆t}, denoted by the parameter λ. While most previous
approaches [2–5] use λ = 0, we will later show that in the presence of measurement
errors, we have to choose λ = 1 (i.e. v̂ odd under time reversal around t + ∆t) to obtain
an unbiased estimator. For now, we keep it as a variable parameter.

2.1 Itô integrals

Throughout this appendix, we will make use of Itô integrals [6], defined as follows:

I(n)0 =
∫ t+n∆t

t
ds = n∆t (S12)

I(n)00 =
∫ t+n∆t

t
ds
∫ s

t
ds′ = (n∆t)2 (S13)

I(n)µ =
∫ t+n∆t

t
dξµ(s) (S14)

I(n)0µ =
∫ t+n∆t

t
ds
∫ s

t
dξν(s′) (S15)

I(n)µν =
∫ t+n∆t

t
dξµ(s)

∫ s

t
dξν(s′) etc. (S16)

Throughout the text, we will frequently make use of the following identity

〈I(n)0µ I(m)
0ν 〉 = (∆t3)δµν fnm where fnm =





1/3 n = m = 1
5/6 n = 1, m = 2
8/3 n = m = 2
4/3 n = 1, m = 3
14/3 n = 2, m = 3
9 n = m = 3

(S17)

2.2 Force field

A first intuitive guess for the estimator of the force projections Fµα are the average pro-
jections of the acceleration

Âµα = 〈âµcα(x, v̂)〉 (S18)

and indeed, this quantity has been used as a proxy for Fµα throughout the literature [2–
5]. To rigorously derive the leading order contributions to this quantity in terms of the
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dynamical terms Fµ and σµν, we start by expanding the increments

∆x(n)µ = vµ I(n)0 +
∫ t+n∆t

t
ds(vµ(s)− vµ) (S19)

= vµ I(n)0 +
∫ t+n∆t

t
ds
[∫ s

t
ds′Fµ(x(s′), v(s′)) +

∫ s

t
dξν(s′)σµν(x(s′), v(s′))

]
(S20)

= vµ I(n)0 + σµν I(n)0ν + Fµ I(n)00 + (∂vρ σµν)σρτ I(n)0ντ +O(∆t5/2) (S21)

where we defined vµ ≡ vµ(t), Fµ ≡ Fµ(x(t), v(t)), etc. We will use this short-hand
notation as well as the Einstein summation convention throughout.

Next, we expand the basis functions cα(x, v̂) around the true velocities v:

cα(x, v̂) = cα(x, v) + (∂vρ cα)(v̂ρ − vρ) +
1
2
(∂2

vρvτ
cα)(v̂ρ − vρ)(v̂τ − vτ) +O(∆t3/2)

(S22)

From Eq. (S21), the leading order term of v̂ρ − vρ is given by

v̂ρ − vρ =
λ

2∆t
σρν I(1)0ν +

1− λ

∆t
σρν I(2)0ν +O(∆t) (S23)

Thus, the leading order contribution to the second term of Eq. (S23) is a fluctuating
(zero average) term of order ∆t1/2. To evaluate Eq. (S18), we also need the acceleration
estimator âµ. Substituting Eq. (S21) into Eq. (S10), we find the leading order terms of
the acceleration estimator

âµ =
1

∆t2

[
σµν(I(2)0ν − 2I(1)0ν ) + Fµ∆t2

]
+O(∆t3/2) (S24)

Thus, the leading order contribution to the acceleration is a fluctuating (zero average)
term of order ∆t−1/2.

When we evaluate Eq. (S18) by substituting Eq. (S21) and (S23), we obtain

Âµα = 〈Fµcα(x, v)〉+ 1 + 2λ

6
〈
(∂vρ cα(x, v))σρνσµν

〉
+O(∆t) (S25)

The second term in this expression is anO(∆t0)-bias which means that the acceleration
projections do not converge to the projections of the force, even in the limit of infinite
sampling rate (∆t → 0). This cross-term originates from the product of the fluctuating
terms in the basis functions (of order ∆t1/2) and the accelerations (of order ∆t−1/2),
which multiplied together give a term of order ∆t0 with non-zero average.

Our expression for the O(∆t0)-bias has several interesting properties:

• As one might expect, it vanishes in the deterministic limit σ → 0; it is thus a
property of stochastic systems.
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• It vanishes for purely positional terms in the force-field, as it depends on the
derivative ∂vρ cα(x, v). This makes sense, since it originates from the v̂-dependence
of the basis functions (Eq. (S23)). As shown by our derivation, it is a consequence
of averaging the second derivative of a stochastic signal conditioned on its first
derivative.

• A seemingly simple solution to remove the bias would be to set λ = −1/2. This
results in a rather unconventional definition of the discrete velocity estimator,

v̂µ(t; λ = −1/2) =
1

∆t

[
−1

4
x(t + 2∆t) +

3
2

x(t + ∆t)− 5
4

x(t)
]

(S26)

for which Âµα is a convergent estimator of Fµα. However, using this definition
of v̂µ results in large correction terms at the next order in ∆t, and thus does not
perform well at finite ∆t. This estimator would also be strongly biased by mea-
surement errors. For these reasons, we disregard it and turn to the derivation of
a better estimator.

For λ 6= −1/2, the bias does not vanish, and has to be explicitly corrected for. Eq. (S25)
allows us to derive an estimator for Fµα which is unbiased to first order in ∆t, i.e. which
converges to the exact projection coefficients in the limit ∆t→ 0:

F̂µα = 〈âµcα(x, v̂)〉 − 1 + 2λ

6

〈
(∂vν cα(x, v̂))σ̂2

µν(x, v̂)
〉

(S27)

Note that in going from Eq. (S25) to Eq. (S27), we have replaced v and σ by their esti-
mators, as their values are not known. This introduces additional correction terms, but
these are of higher order in ∆t. Eq. (S27) further implies that the noise term σ2 has to
be inferred before the force field can be inferred. In the presence of measurement errors
(section 3), we show below that we must choose λ = 1, rendering v̂µ odd under time
reversal around t + ∆t. We therefore use this choice for λ throughout.

Note that Eq. (S27) now conditions the acceleration âµ (Eq. (S10)) on its first point x(t).
In order to make this estimator symmetric, we shift the conditioning c(x(t), v̂(t)) →
c(x(t+∆t), v̂(t)). The resulting corrections, due to expanding c(x(t+∆t), v̂(t)) around
x(t), are of higher order in ∆t. We can then relabel all time points such that t→ t− ∆t,
to arrive at our final formula for the estimator:

F̂µα = 〈âµcα(x, v̂)〉 − 1
2

〈
(∂vν cα(x, v̂))σ̂2

µν(x, v̂)
〉

x = x(t)

v̂ =
x(t + ∆t)− x(t− ∆t)

2∆t

â =
x(t + ∆t)− 2x(t) + x(t− ∆t)

∆t2

(S28a)

(S28b)

(S28c)

(S28d)
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2.3 Noise term

To derive an estimator for σ, we derive the leading order contributions to the quantity

∆t〈âµ âν ĉα(x, v̂)〉 = ∆t〈[σµρ I(2)0ρ − 2σµρ I(1)0ρ ][σνρ I(2)0ρ − 2σνρ I(1)0ρ ]cα(x, v)〉+O(∆t) (S29)

=
2
3
〈σµρσνρcα(x, v)〉+O(∆t) (S30)

where we have used Eqs. (S17), (S21). Here, the somewhat counter-intuitive factor of
2/3 stems from the expectation values of the Itô-integrals given in Eq. (S17). Thus, an
unbiased estimator to first order in ∆t for the noise term is

σ̂2
µν =

3∆t
2
〈âµ âν ĉα(x, v̂)〉 (S31)

2.4 Comparison to the exact formula for a linear damping force

Pedersen et al. [3] calculated the discretization effect for a linear viscous damping force
F(v) = −γv (i.e. the one-dimensional underdamped Ornstein-Uhlenbeck process; in
its discrete form also know as the Persistent Random Walk), to which we can compare
our expression for theO(∆t0)-bias. The equation of motion for this process is given by

v̇ = −γv + σξ(t) (S32)

In ref. [3], the acceleration projections

〈â|v̂〉 = −γ̂v̂ (S33)

are considered. Here, 〈â|v̂〉 denotes conditional averaging of â with respect to v̂, which
is equivalent to using a basis of δ-functions, i.e. bα(v) = δ(v− v(α)). Using our definition
of the velocity estimator (Eq. (S11)) with λ = 0, one obtains [3]

γ̂ =
1

∆t

[
1− (1− e−γ∆t)2

2(e−γ∆t − 1 + γ∆t)

]
≈ 2

3
γ− 5

18
γ2∆t +

23
270

γ3∆t2 +O(∆t3) (S34)

From Eq. (S25), we expect to find a similar bias, since we are considering a v-dependent
component of the force field. To compare Eq. (S34) to our result, we use the basis b =
{v}. Then, the normalised projection coefficient is given by

c(v) =
v√
〈v2〉

=

√
2γ

σ
v (S35)

since 〈v2〉 = σ2/2γ for the Ornstein-Uhlenbeck process. Thus, Eq. (S25) predicts

〈âµcα(v̂)〉 = Fµα +
(∂vc)σ2

6
+O(∆t) = Fµα +

√
2γσ

6
+O(∆t) (S36)

and therefore

〈âµcα(v̂)〉cα(v) = Fµ +
γ

3
v +O(∆t) = −2

3
γv +O(∆t) (S37)

Thus, our approach recovers the leading order correction of the expression derived by
Pedersen et al. [3].
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3 Derivation of estimators in the presence measurement errors

In any real experiment, the recorded positions are subject to measurement errors, due
to, e.g., motion blur or uncorrelated localization errors. Such random measurement
errors can be modelled as an uncorrelated noise ηµ(t) (not necessarily Gaussian) acting
on the positions xµ(t) [3, 7], meaning that the signal we actually observe is

yµ(t) = xµ(t) + ηµ(t) (S38)

where 〈ηµ(t)ην(t′)〉 = Λµνδ(t− t′).

3.1 Force field

We will now again calculate the leading order contributions to the estimator of the
projected accelerations with measurement error (w.m.e.):

Â(w.m.e.)
µα = 〈â(w.m.e.)

µ cα(y, ŵ)〉 (S39)

Here, â(w.m.e.) and ŵ are the empirical acceleration and velocity derived from the signal
subject to measurement error y(t), respectively. Note that we are no longer condition-
ing on a single position-like coordinate, but rather the average quantity y, which is a
linear combination of the three time-points entering the acceleration. This allows us to
find a conditioning in terms of y and ŵ such that the leading order terms due to the
measurement errors cancel. We thus write

yµ(β, γ) = βyµ(t + 2∆t) + γyµ(t) + (1− (β + γ))yµ(t + ∆t) (S40)

The velocity estimator including measurement noise is

ŵµ = v̂µ +
λ∆η

(2)
µ

2∆t
+

(1− λ)∆η
(1)
µ

∆t
:= v̂µ +

f (v)µ (η; λ)

∆t
(S41)

Similarly,

â(w.m.e.)
µ = âµ +

∆η
(2)
µ − ∆η

(1)
µ

∆t2 := âµ +
f (a)
µ (η)

∆t2 (S42)

We assume here that the measurement error ηµ is relatively small compared to the scale
of variation of the fitting functions, such that we can expand the basis functions as

cα(y, ŵ) = cα(x, v̂) + (∂xν cα)ην(β, γ) + (∂vν cα)
f (v)ν (η; λ)

∆t
+O(η2) (S43)

Combining Eqs. (S43) and (S42), the estimator of the acceleration projection thus reads

Â(w.m.e.)
µα = Âµα + (∂xν cα)

〈ην(β, γ) f (a)
µ (η)〉

∆t2 + (∂vν cα)
〈 f (v)ν (η; λ) f (a)

µ (η)〉
∆t3 +O(η2) (S44)
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This shows that the leading order contribution to the estimator of the acceleration pro-
jection is of order ∆t−3, inducing a “dangerous” bias which diverges fast with ∆t→ 0.

Indeed, the standard approach [2–5] is to take Â(w.m.e.)
µα with λ = β = γ = 0 as a proxy

for the force projections, which results in

Â(w.m.e.)
µα = Âµα − (∂xν cα)

2Λµν

∆t2 − (∂vν cα)
3Λµν

∆t3 +O(η2) (S45)

Here we propose to make use of the free parameters λ, β and γ, to find a construction
for our estimator such that the divergent cross-terms in Eq. (S44) cancel. Thus, we solve
the following equations for {λ, β, γ}:

〈ην(β, γ) f (a)
µ (η)〉 = [(β + γ)− 2(1− (β + γ))]Λµν (S46)

〈 f (v)ν (η; λ) f (a)
µ (η)〉 = [3λ− 3]Λµν (S47)

These terms vanish for λ = 1 and β + γ = 2/3. There is thus a remaining freedom in
the choice of β and γ. For simplicity, we choose the symmetric option β = γ = 1/3.
We have thus determined optimal ’conditioning variables’, i.e. the arguments y and ŵ
of the basis function cα(y, ŵ), that are constructed in such a way that any measurement
error-induced cross-terms cancel.

Thus, an unbiased estimator for the force projections in the presence of measurement
errors is

F̂(w.m.e.)
µα = 〈â(w.m.e.)

µ cα(y(t), ŵ(t))〉

− 1
2

〈
(∂vν cα(y(t), ŵ(t)))σ̂2

(w.m.e.)
µν (y(t), ŵ(t))

〉
+O(∆t, η2)

y =
1
3
(y(t− ∆t) + y(t) + y(t + ∆t))

ŵ =
y(t + ∆t)− y(t− ∆t)

2∆t

â(w.m.e.) =
y(t + ∆t)− 2y(t) + y(t− ∆t)

∆t2

(S48a)

(S48b)

(S48c)

(S48d)
As before, to infer the force field, we have to first find an estimator for the noise term

σ̂2
(w.m.e.)
µν that is not biased due to measurement errors.
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3.2 Noise term

To derive an unbiased estimator for the noise amplitude in the presence of measure-
ment errors, we follow a very similar line of thought to the derivation of the measure-
ment error-corrected estimator for the force field. Specifically, using the increments of
the process, we derive an estimator constructed such that the bias-terms due to the mea-
surement error η(t) vanish. However, in contrast to the force estimator, we now con-
sider an estimator constructed from four points around t, {t − ∆t, t, t + 2∆t, t + 3∆t}.
This gives us three increments, rather than two as before, to construct our estimator.
This additional freedom is required to construct an estimator that is not spoilt by mea-
surement errors.

As before, we first start by constructing increments of the form

∆y(n)µ = yµ(t + n∆t)− yµ(t) (S49)

but now with n = {1, 2, 3}. We will later transform our results to a notation centered
around t. Similar to Eq. (S21), we expand these increments, now including the mea-
surement error

∆y(n)µ = ∆x(n)µ + ∆η
(n)
µ

= vµ I(n)0 + σµν I(n)0ν + ∆η
(n)
µ + Fµ I(n)00 + (∂vρ σµν)σρτ I(n)0ντ +O(∆t5/2)

(S50)

Since we are aiming to infer the term σµν I(n)0ν , which has zero average, we need to con-
sider products of the increments (similar to the noise-free version (S31), where σ̂2 ∼ â2).

∆(n,m)
µν := ∆y(n)µ ∆y(m)

ν (S51)

We thus aim to construct an estimator of the form

∆t−3

〈
cα(ỹ, w̌) ∑

1≤m≤n≤3
kmn∆(n,m)

µν

〉
!
= σ2

µνα +O(∆t, η2) (S52)

We therefore need to find the coefficients kmn for the linear combination of increment
products and conditioning coordinates ỹ and w̌ such that all dynamical and measure-
ment error cross-terms except for σ2 cancel out to first order.

We start by expanding the increment products

∆(n,m)
µν = vµvν(nm∆t2) + σµρσντ I(n)0ρ I(m)

0τ + ∆η
(n)
µ ∆η

(m)
ν + (vµFνmn2 + vνFµm2n)∆t3

+ (nvµσνρ I(m)
0ρ + mvνσµρ I(n)0ρ )∆t + (mvµ∆η

(n)
ν + nvν∆η

(m)
µ )∆t +O(∆t7/2)

(S53)

Note that the last two terms in this expansion are zero on average, so one might think
that we do not have to include them in the derivation of kmn. This is correct in the case of
constant noise. However, in the case of multiplicative noise, these terms correlate with
terms in the expansion of the basis function cα(ỹ, w̌), so we have to consider them.
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Deriving the coefficients kmn is essentially a linear algebra problem, so we define the
vectors

dnm
µν =

(
∆(1,1)

µν , ∆(2,2)
µν , ∆(3,3)

µν , ∆(1,3)
µν , ∆(2,3)

µν , ∆(1,2)
µν

)T
(S54)

knm = (k11, k22, k33, k13, k23, k12)
T (S55)

tµν =
(

vµvν∆t2, σ2
µν∆t3, Λδµν, Fµvν∆t3, vµσνρ I(1)0ρ , vµσνρ I(2)0ρ , vµσνρ I(3)0ρ

)T
(S56)

Note, that in the definition of tµν we have temporarily discarded the symmetry under
exchange of µ, ν for simplicity. We will later symmetrize our results to regain this sym-
metry. Furthermore, we have discarded the last term in Eq. (S53) in our definition of
tµν. We will ignore this term in our derivation of kmn as we can take care of it through
our choice of conditioning coordinates ỹ and w̌.

With these definitions, we explicitly evaluate the increment products:

dnm
µν = RT · tµν +O(∆t7/2) (S57)

where

R =




1 4 9 3 6 2
1/3 8/3 9 4/3 14/3 5/6

2 2 2 1 1 1
2 16 54 12 30 6
2 0 0 3 0 2
0 4 0 0 3 1
0 0 6 1 2 0




(S58)

Thus, a general estimator for the variable V is given by solving the equation

V̂µν = knm · dnm
µν

!
= `V · tµν (S59)

for knm. In our case the two quantities of interest are σ2 and Λ, as we may also wish to
infer the amplitude of the measurement error from the data. The constraint vectors `V
for these quantities are given by

`σ2 = (0, 1, 0, 0, 0, 0)T (S60)

`Λ = (0, 0, 1, 0, 0, 0)T (S61)

So far, we have derived everything in ”(nm)-space”, for increments as defined in Eq. (S49),
which has the key advantage that they are easy to expand. However, for the final form
of our estimators, we choose a more natural definition of the increments,

∆y(−)µ = yµ(t + ∆t)− yµ(t)

∆y(0)µ = yµ(t + 2∆t)− yµ(t + ∆t)

∆y(+)
µ = yµ(t + 3∆t)− yµ(t + 2∆t)

(S62)
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For this ”(+−)-space”, we define, similarly to before,

d+−
µν =

(
∆(0,0)

µν , ∆(−,−)
µν , ∆(+,+)

µν , ∆(+,−)
µν , ∆(0,+)

µν , ∆(0,−)
µν

)T
(S63)

k+− = (k00, k−−, k++, k+−, k0+, k0−)
T (S64)

We can transform between the two spaces using

dnm
µν = Md+−

µν (S65)

with the transformation matrix

M =




0 1 0 0 0 0
1 1 0 0 0 2
1 1 1 2 2 2
0 1 0 1 0 1
1 1 0 1 1 2
0 1 0 0 0 1




(S66)

Thus, we need to solve the transformed equation

Qk+− = `V (S67)

where Q = R(MT)−1. Finally, we add two additional constraints to the matrix Q which
ensure that the final estimator is symmetric in the increments,

Qsymk+−
sym = `

sym
V (S68)

We can now solve for the coefficients:

k+−
sym = Qsym

†`
sym
V (S69)

where Qsym
† is the Moore-Penrose pseudoinverse of the non-square matrix Qsym. This

yields

k+−
sym(σ2) =

6
11

(−1, 1, 1,−6, 1, 1)T (S70)

k+−
sym(Λ) =

1
44

(10, 1, 1, 8,−10,−10)T (S71)

With this solution for the coefficients, the estimator for σ2 is now operational for the
case of constant noise. The estimator for Λ is valid equally in the case of multiplicative
noise.

As we noted before, in the case of multiplicative noise, we need to adjust the condition-
ing variables ỹ and w̌ in order to avoid divergent biases due to the last term in Eq. (S53),
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similar to the case of the force field. As our estimator is a four-point construct, we also
construct the conditioning variables from four points:

ỹµ =
3

∑
n=0

anyµ(t + n∆t) = x̃µ + η̃µ({an}) (S72)

w̌µ =
1

∆t

[
b1∆y(−)µ + b2∆y(0)µ + b3∆y(+)

µ

]
= v̌µ +

g(v)µ (η, {bn})
∆t

(S73)

where ∑3
n=0 an = ∑3

n=1 bn = 1. Similarly to before (Eq. (S43)), we expand the basis
functions

cα(ỹ, w̌) = cα(x̃, v̌) + (∂xν cα)η̃ν({an}) + (∂vν cα)
g(v)ν (η, {bn})

∆t
+O(η2) (S74)

The remaining bias in our estimator (Eq. (S52)) is due to the last term in Eq. (S53),

q(m,n)
µν = (mvµ∆η

(n)
ν + nvν∆η

(m)
µ )∆t (S75)

We define
qnm

µν =
(

q(1,1)
µν , q(2,2)

µν , q(3,3)
µν , q(1,3)

µν , q(2,3)
µν , q(1,2)

µν

)T
(S76)

and can thus write

∆t−3
〈

cα(ỹ, w̌)kmn
sym · dnm

µν

〉
= 〈σ2

µνcα(x̃, v̌)〉

+ ∆t−3

〈
kmn

sym · qnm
µν

(
(∂xρ cα)η̃ρ({an}) + (∂vρ cα)

g(v)ρ (η, {bn})
∆t

)〉
+O(∆t, η2)

(S77)

This shows that the bias terms are of order ∆t−3 and ∆t−4, and thus diverge in the limit
∆t→ 0. We now need to find coefficients {an} and {bn} such that

〈
kmn

sym · qnm
µν η̃ρ({an})

〉
= 0 (S78)

〈
kmn

sym · qnm
µν

g(v)ρ (η, {bn})
∆t

〉
= 0 (S79)

We start by explicitly evaluating qnm
µν :

qnm
µν = E · hµ · (vν∆t) (S80)

where

E =




−2 2 0 0
−4 0 4 0
−6 0 0 6
−5 0 3 2
−4 3 0 1
−3 2 1 0




(S81)
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and
hµ =

(
ηµ(t), ηµ(t + ∆t), ηµ(t + 2∆t), ηµ(t + 3∆t)

)T . (S82)

We first focus on the conditioning of the configurational (position-like) coordinate, i.e.
solving Eq. (S78). Defining a = (a0, a1, a2, a3)T, Eq. (S78) becomes

〈(
kmn

sym · qnm
µν

) (
a · hρ

)〉
= 0 (S83)

Evaluating

kmn
sym · qnm

µν = ET ·M · k+−
sym(σ2) (S84)

=
1
11

(−30, 36, 42,−48)T (S85)

shows that Eq. (S78) is solved by

a =
1
4
(1, 1, 1, 1)T. (S86)

Next, we find the conditioning of the velocity coordinate, i.e. solving Eq. (S79). Defining
b = (b1, b2, b3)T, Eq. (S79) becomes

〈(
kmn

sym · qnm
µν

) b · F · hρ

∆t

〉
= 0 (S87)

where

F =



−1 1 0 0
0 −1 1 0
0 0 −1 1


 (S88)

are the coefficients of the measurement error h in the velocity estimator w̌. Evaluating

F · kmn
sym · qnm

µν = F · ET ·M · k+−
sym(σ2) (S89)

=
6

11
(11, 1,−15)T (S90)

shows that Eq. (S79) is solved by

b =
1
6
(1, 4, 1)T. (S91)

Summarizing, an unbiased estimator for the projection coefficients of the multiplicative
noise amplitude in the presence of measurement error is given by

σ̂2
(w.m.e.)
µνα = ∆t−3

〈
cα(ỹ, w̌)k+−

sym · d+−
µν

〉

k+−
sym =

6
11

(−1, 1, 1,−6, 1, 1)T

ỹ =
1
4
(y(t− ∆t) + y(t) + y(t + ∆t) + y(t + 2∆t))

w̌ =
∆y(−) + 4∆y(0) + ∆y(+)

6∆t

(S92a)

(S92b)

(S92c)

(S92d)
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with ∆y(+/0/−) as defined by Eq. (S62) and

d+−
µν =

(
∆y(0)µ ∆y(0)ν , ∆y(−)µ ∆y(−)ν , ∆y(+)

µ ∆y(+)
ν , ∆y(+)

µ ∆y(−)ν , ∆y(0)µ ∆y(+)
ν , ∆y(0)µ ∆y(−)ν

)T

(S93)

3.3 Scaling of the inference error with the measurement error amplitude

To determine the critical measurement error amplitude at which the estimators fail, we
investigate the scaling of the error curves with the observation time interval ∆t for the
damped harmonic oscillator. We find that the error curves of the estimator without
noise correction (section 2.2) collapse with σ∆t3/2, while the curves of the estimator
with noise correction (section 3.1) collapse with ∆t.

Figure S1: Error scaling of the force estimator in the presence of measurement error.
A. Top: mean-square-error for the estimator without noise correction (section 2.2) as a
function of the measurement error amplitude |η| for different values of ∆t. Bottom: Data
collapse by dividing by ∆t3/2. B. Top: same plot as in B, but for different values of σ.
Bottom: Data collapse by dividing by σ. C. Top: mean-square-error along the trajectory
for the estimator with noise correction (section 3.1) as a function of the measurement
error amplitude |η| for different values of ∆t. Bottom: Data collapse by dividing by ∆t.
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4 Choosing the basis size nb

We perform inference by projecting the dynamics onto a finite set of nb basis functions
{bα(x, v)} where the index α runs over all basis functions in the set, 1 6 α 6 nb. Thus,
we need to choose a value for nb, and this will clearly influence the accuracy of the in-
ference, leading to the question: is there an optimal choice n(opt)

b ? A criterion to choose

n(opt)
b was proposed for overdamped stochastic processes in ref. [1], which is based on

the empirical estimate of the information content in the observed trajectory. Here, we
show that this criterion similarly applies to underdamped stochastic systems.

The larger nb, the more accurately it can capture the features of the force field. Thus,
the information Îb =

τ
2 σ̂−2

µν F̂µα F̂να captured by the force field representation [1] increases
with nb. However, for a finite trajectory, the error in the inferred force field will also
increase with nb. Thus, we expect a trade-off between the inference error and the com-
pleteness of the force field projection. To choose nopt

b , we therefore maximize the infor-
mation Îb that can be statistically resolved, by determining the basis size which maxi-

mizes Îb− δ Îb, where δ Îb ≈
√

2 Îb + N2
b /4 is the typical error in the inferred information

and Nb = d× nb is the number of parameters to infer [1].

In Fig. S2, we plot the inference error δF̂2/F̂2 as a function of the number of param-
eters Nb for the 1D Van der Pol oscillator projected on a basis consisting of Fourier
components in x and polynomials in v. For all trajectory lengths, we see the expected
behaviour: at small Nb, the error first decreases with increasing Nb, since it is dominated
by underfitting. Beyond the optimum, the error increases with Nb, due to the increas-
ing inference error. Clearly, the optimal basis size n(opt)

b increases with the length of the
trajectory, as more information on the features of the force field becomes available. We
find that the overfitting criterion to maximize Îb − δ Îb yields an accurate prediction of
the optimal basis size (starred symbols in Fig. S2).
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Figure S2: Quantification of the inference performance as a function of basis size.
Here we study the 1D Van der Pol oscillator v̇ = µ(1− x2)v− x + σξ(t) as an example.
The inference error δF̂2/F̂2 is plotted as a function of number of parameters Nb used
in the projection basis, consists of Fourier components in x and polynomials in v. Each
curve corresponds to the result obtained from a single trajectory with the number of
time frames indicated in the legend. Starred symbols indicate the predicted optimal
basis size n(opt)

b determined by maximizing Îb − δ Îb.

5 Inference from experimental single cell trajectories

Here, we discuss the inference from experimental single cell trajectories shown in Fig.
2 of the main text in more detail. Specifically, we show that the experimental trajec-
tories contain enough information to perform Underdamped Langevin Inference, and
that the inferred models can be inferred self-consistently. Importantly, here the term
Fµ(x, v) corresponds to the underlying deterministic dynamics of the system, and not
to a physical force. We therefore call it the ”deterministic term” of the dynamics. De-
tails on cell culture, experimental protocols and tracking procedures can be found in
ref. [5].

5.1 Information content of experimental single cell trajectories

As discussed in the main text, the observed trajectories are limited in length due to
the finite life-time of a single cell, up until the point where it divides. The expected
mean-squared-error in the inferred flow field projected onto a basis b is given by

δF̂2/F̂2 ∼ Nb/2 Îb, (S94)

where Nb is the number of degrees of freedom in the basis b, i.e. the number of fit
parameters. Îb is the empirical estimate of the information content of the trajectory of
length τ, given by

Îb =
τ

2
σ̂−2

µν F̂µα F̂να, (S95)
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measured in natural information units (1 nat = 1/ log 2 bits). We estimate this infor-
mation by projecting onto a third-order polynomial basis, and find that the average
information per trajectory is 94.2 nats (Fig. S3). To perform accurate inference, we need
Îb � Nb. In previous work [5, 8], we inferred models averaged over large numbers
of cell trajectories using a basis of 30× 30 coarse-grained bins, i.e. Nb = 900. Thus,
single-cell inference was not possible with this approach. In contrast, here we use the
partial information to guide a principled selection of basis functions, which shows that
most of the information is captured by a symmetrised third-order polynomial basis
{x, v, x3, x2v, xv2, v3}. Thus, we infer Nb = 6 parameters and the criterion Îb � Nb is
fulfilled.

0 50 100 150 200

Îb (nats)

p(
Î b

)

Figure S3: Information content of single cell trajectories. Histogram of the informa-
tion content Îb of N = 149 single cell trajectories, obtained by projecting onto a third-
order polynomial basis. The information is measured in natural information units (1
nat = 1/ log 2 bits). The average information per trajectory is 94.2 nats.

5.2 Self-consistency test of the single-cell inference

To test whether the inferred single-cell models are self-consistent, we simulate trajec-
tories based on the inferred dynamics (Fig. S4). These trajectories perform stochastic
transitions on a similar time-scale to the experimental trajectories and exhibit similar
oscillation loops in the xv-phase space (Fig. S4E,F). To test model stability, we simulate
trajectories of the same length as the experimental ones and sample at the same time
interval as in experiment (∆t = 10 min). From these trajectories, we then infer a boot-
strapped flow field, which exhibits similar qualitative features as the original flow field
inferred from experiments (Fig. S4G). To quantify this, we directly compare the val-
ues of the bootstrapped F(x, v) relative to the experimentally inferred F(x, v) along the
experimental trajectory (Fig. S4H), which shows strong correlation with a typical mean-
squared-error of order 0.3. Thus, ULI with a symmetrised third-order polynomial basis
provides robust, self-consistent models for single-cell trajectories.
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Figure S4: Inferring single-cell models from two-state migration trajectories. A.
Experimentally recorded trajectory of the cell nucleus position, sampled at a time-
interval ∆t = 10 min. B. xv-plot of the trajectory shown in A. C. Flow field inferred
from the trajectory in A using ULI with a symmetrised third-order polynomial basis,
{x, v, x3, x2v, xv2, v3}. D. Partial information of the trajectory shown in A, projected
onto a third-order polynomial basis. The total estimated information Îb of the trajectory
is given. E. Trajectory simulated using the inferred model, consisting of the determinis-
tic flow field in C and the inferred constant noise amplitude. The process is simulated
at a small time-interval and subsequently sampled at the experimental time-interval
∆t = 10 min. F. xv-plot of the simulated trajectory shown in E. G. Bootstrapped flow
field inferred from the simulated trajectory in E using ULI with a symmetrised third-
order polynomial basis. H. Scatter plot of the deterministic term evaluated at the points
visited by the experimental trajectory, comparing the flow field inferred from experi-
ment against the bootstrapped result. The mean-squared-error (MSE) and the Pearson
r-coefficient are given. Inset: histogram of the mean-squared-error of N = 300 boot-
strap realizations. The four subfigures correspond to four individual cell trajectories.
The top subfigure corresponds to the trajectory shown in Fig. 2 of the main text.

6 Model details and simulation parameters for numerical re-
sults

To benchmark ULI, we apply it to several canonical examples of underdamped stochas-
tic processes (Fig. 1-3). To simulate these processes, we employ a simple discretization
scheme

x(t + dt) = x(t) + v(t)dt (S96)

v(t + dt) = v(t) + F(x(t), v(t))dt +
√

dt σ(x(t), v(t)) · ζ(t) (S97)

where ζ is a vector of independent Gaussian random numbers with zero mean and unit
variance. We simulate this equation with a small time interval dt to ensure numerical
stability. To generate a realistic experimental position trajectory, we sample the simu-
lated trajectory with a larger interval ∆t and add an uncorrelated measurement error
to the positions. We use dt = ∆t/20 throughout. Thus, ULI only has access to the
trajectory

{y(0), y(∆t), y(2∆t), ..., y(τ − ∆t), y(τ)} where y(t) = x(t) + η(t) (S98)

and η is a vector of independent Gaussian random numbers with zero mean and unit
variance, such that

ηµ(t)ην(t′) = Λδµνδ(t− t′) (S99)

and we define |η| =
√

Λ. The total duration of a trajectory with Nsteps observation
points given by τ = Nsteps∆t.
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Figure S5: Inferring Van der Pol dynamics with a Fourier basis. A. Same trajectory as
in Fig. 2A in the main text. B. ULI applied to the trajectory in A with basis functions
b = {sin(axx), sin(avv), sin(axx) cos(avv), cos(axx) sin(avv)}. In general, a reasonable
choice of the non-linear parameters ax, av is ax = 2π/Lx, av = 2π/Lv, where Lx, Lv are
the widths of the sampled phase space in the x and v directions, respectively. From
the trajectory in A, we see that Lx = 6, Lv = 12 are reasonable choices. Inset: inferred
components of the force along the trajectory versus the exact values.

6.1 Damped harmonic oscillator (Fig. 1)

We simulate the 1D stochastic damped harmonic oscillator,

v̇ = −γv− kx + σξ (S100)

We use γ = k = σ = 1 in all panels. Furthermore, we use
Fig. 1A-C: Nsteps = 103, ∆t = 0.1, |η| = 0
Fig. 1F-H: Nsteps = 103, ∆t = 0.1, |η| = 0.02
Fig. 1D: ∆t = 0.1, |η| = 0
Fig. 1E: τ = 102, |η| = 0
Fig. 1J: ∆t = 0.1, |η| = 0.02
Fig. 1K: ∆t = 0.1, Nsteps = 104

6.2 Van der Pol oscillator (Fig. 2)

For the Van der Pol oscillator, we use κ = 2, σ = 1 throughout.
In Fig. 2A,B, we simulate the 1D Van der Pol oscillator

v̇ = κ(1− x2)v− x + σξ (S101)

with ∆t = 0.01, Nsteps = 104, |η| = 0.002. As shown in Supplementary Fig. S5, we
recover the dynamics similarly well using a Fourier basis rather than a polynomial
basis in the inference.

In Fig. 2C, we simulate the d-dimensional Van der Pol oscillator Fµ(x, v) =
κµ(1 − x2

µ)vµ − xµ (no summation over µ, 1 6 µ 6 d) with d = 1...6. Here, we
use the same parameters as for the 1D Van der Pol oscillator, and take κµ = 2 ∀ µ.
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In Fig. 2 G-J, we simulate the 1D Van der Pol oscillator with multiplicative noise

v̇ = µ(1− x2)v− x + σ(x, v)ξ (S102)

where σ2(x, v) = σ0 + σxx2 + σvv2. We use σ0 = 1, σx = 0.3, σv = 0.1, ∆t = 0.01, Nsteps =
104, |η| = 0.002.

6.3 Interacting flocks (Fig. 3)

The model we simulate is a three-dimensional flock of N = 27 aligning self-propelled
particles, with ”soft Lennard-Jones”-type interactions. The particles are initialized on a
3× 3× 3 grid with zero velocity. The force on particle i is given by

Fi = γ(v2
0 − |vi|2)vi + ∑

j 6=i

[
ε0

1− (r/r0)3

(rij/r0)6 + 1
rij + ε1 exp(−rij/r1)vij

]
(S103)

where rij = rj − ri, vij = vj − vi, while the noise σξi(t) on each particle is isotropic and
uncorrelated with others. We choose the parameters γ = 1, v0 = 1.5, ε0 = 4, r0 = 2,
ε1 = 1, r1 = 3 and σ = 1, which result in a flocking behavior similar to that of bird
flocks. The simulation is performed with a time step dt = 0.005. It is run for 2000 steps
to reach steady state before recording, then the trajectory consisting in 1000 time points
with time interval ∆t = 0.02 is recorded.

For the inference, we employ a translation-invariant basis with single-particle and pair
interaction terms that is invariant under particle exchange i↔ j, such that

Fi,µ ≈ F(1)
µα c(1)α (vi) + F(2)

µα ∑
j 6=i

c(2)α (xi − xj, vi, vj) (S104)

The single particle fitting functions are chosen to be polynomials of order up to 3 in
the velocity (20 functions). The pair interactions are chosen to be of two kinds: radial
functions ∑j k(rij)rij and velocity alignment functions ∑j k(rij)vij. We choose the same
set of fitting kernels k(r) for both radial force and alignment, kn(r) = exp(−r/rn) with
rn = 0.5n and n = 1 . . . 8. The outcome of force inference is not very sensitive to this
choice; r-dependent Gaussian kernels centered at different radii gives similar results.
These result in 8 functions for each component of the vectors rij and vij, hence 48 func-
tions pair interaction functions. There are thus 68 functions in the basis, and thus 204
fit parameters for the force field. Inferring the noise tensor and these fit coefficients,
we find that the total information in the trajectory presented in Fig. 3 of the main text
is Î = 320, 000 nats – more than enough to precisely resolve these parameters. Indeed,
we find a mean-squared error on the force of 0.015 along the trajectory; this error could
be reduced by adding more functions to the basis, or by using longer trajectories, as
shown in the convergence plot in Fig. 3E.
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The migratory dynamics of cells in physiological processes, ranging from
wound healing to cancer metastasis, rely on contact-mediated cell-cell in-
teractions. These interactions play a key role in shaping the stochastic tra-
jectories of migrating cells. While data-driven physical formalisms for the
stochastic migration dynamics of single cells have been developed, such a
framework for the behavioral dynamics of interacting cells still remains elu-
sive. Here, we monitor stochastic cell trajectories in a minimal experimental
cell collider: a dumbbell-shaped micropattern on which pairs of cells per-
form repeated cellular collisions. We observe different characteristic behav-
iors, including cells reversing, following and sliding past each other upon
collision. Capitalizing on this large experimental data set of coupled cell
trajectories, we infer an interacting stochastic equation of motion that ac-
curately predicts the observed interaction behaviors. Our approach reveals
that interacting non-cancerous MCF10A cells can be described by repulsion
and friction interactions. In contrast, cancerous MDA-MB-231 cells exhibit
attraction and anti-friction interactions, promoting the predominant relative
sliding behavior observed for these cells. Based on these experimentally in-
ferred interactions, we show how this framework may generalize to provide
a unifying theoretical description of the diverse cellular interaction behav-
iors of distinct cell types.

Significance − When cells migrate collectively, such as to heal wounds or invade tissue, they
coordinate through cell-cell interactions. While much is known about the molecular basis of
these interactions, the system-level stochastic dynamics of interacting cell behavior remains
poorly understood. Here, we design an experimental ’cell collider’, providing a large ensemble
of interacting cell trajectories. Based on these trajectories, we infer an interacting equation of
motion, which accurately predicts characteristic pairwise collision behaviors of different cell
lines, including reversal, following or sliding events. This data-driven approach can be used
to quantitatively study how molecular perturbations control cell-cell interactions, and may be
extended to larger cell collectives, where the inferred interactions could provide key insights
into multi-cellular dynamics.

Collective cellular processes such as morphogenesis, wound healing, and cancer invasion, rely
on cells moving and rearranging in a coordinated manner. For example, in epithelial wound
healing, cells collectively migrate towards the injury and assemble to close the wound [1–3].
In contrast, in metastasizing tumors, cancer cells migrate outwards in a directed fashion and
invade surrounding tissue [4]. At the heart of these emergent collective behaviors lie contact-
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mediated cell-cell interactions [3, 5–10], which are apparent in two-body collisions of cells [10–
13]. These cellular interactions depend on complex molecular mechanisms, including cadherin-
dependent pathways and receptor-mediated cell-cell recognition [5,10,11,14–17]. At the cellular
scale, this molecular machinery leads to coordinated, functional behaviors of interacting cells [3,
5–10], which are highly variable and may take distinct forms in different biological contexts [10,
18–21].

Achieving a quantitative understanding of the stochastic migratory dynamics of cells at the be-
havioral level could yield key insights into both the underlying molecular mechanisms [22, 23]
and the biological functions [10] associated to these behaviors. For non-interacting, single mi-
grating cells, data-driven approaches have revealed quantitative frameworks to describe the
behavior of free unconstrained migration [24–26] and confined migration in structured envi-
ronments [27–29]. However, it is still poorly understood how the migratory dynamics of cells
are affected by cell-cell interactions and a quantitative formalism for the emergent behavioral
dynamics of interacting cells is still lacking [30]. Indeed, it is unclear whether cellular collision
behaviors follow a simple set of interaction rules, and if so, how these rules vary for different
types of cells.

The study of interacting cell dynamics is complicated by the complex settings in which they
take place, confounding contributions of single-cell behavior, interaction with the local micro-
environment, and cell-cell interactions. Thus, simplified assays have been developed where
cells are confined by one-dimensional micro-patterned patches [31, 32] or tracks [19, 20, 33, 34],
microfluidics [35], and suspended fibers [36]. In these systems, cells exhibit characteristic behav-
iors upon pair-wise collisions, including reversal, sliding and following events. Upon contact,
many cell types exhibit a tendency to retract, repolarize and migrate apart - termed Contact Inhi-
bition of Locomotion (CIL) [10,13,37]. Indeed, diverse cell types, including epithelial and neural
crest cells, predominantly reverse upon collision [19,33,34]. In contrast, the breakdown of CIL is
commonly associated with cancer progression [11, 18, 19, 19, 38], and cancerous cells have been
observed to move past each other more readily than non-cancerous cells [19]. However, it is
unclear how to describe these distinct collision behaviors in terms of physical interactions.

Models for collective cell migration often assume repulsive potentials or alignment terms [9,30,
39–42], but the form of these interactions is not derived directly from experimental data. Such
data-driven approaches have been developed for single cell migration [24–29], but have not yet
been extended to interacting systems. The search for unifying quantitative descriptions of the
dynamics of interacting cell trajectories is further complicated by their intrinsic stochasticity,
resulting in highly variable migration and collision behavior [19, 33, 34, 36]. Thus, developing
a system-level understanding of cell-cell interactions requires a quantitative data-driven ap-
proach to learn the full stochastic dynamics of interacting migrating cells.

Here, we develop a theoretical framework for the dynamics of interacting cells migrating in
confining environments, inferred directly from experiments. Specifically, we confine pairs of
migrating cells into a minimal ’cell collider’: a two-state micropattern consisting of two square
adhesive sites connected by a thin bridge. Both non-cancerous (MCF10A) and cancerous (MDA-
MB-231) human breast tissue cells frequently migrate across the bridge, giving rise to repeated
cellular collisions. In line with prior observations [19], we find that while MCF10A cells pre-
dominantly reverse upon collision, MDA-MB-231 cells tend to interchange positions by sliding
past each other. To provide a quantitative dynamical framework for these distinct interacting
behaviors, we focus on a simplified, low-dimensional representation of these collision dynam-
ics by measuring the trajectories of the cell nuclei. The cell collider experiments yield large data
sets of such interacting trajectories, allowing us to infer the stochastic equation of motion gov-
erning the two-body dynamics of interacting cells. Our data-driven approach reveals the full
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structure of the cellular interactions in terms of the relative position and velocity of the cells.
Specifically, the dynamics of MCF10A cells are captured by repulsion and friction interactions.
In contrast, MDA-MB-231 cells exhibit novel and surprising dynamics, combining attractive
and ’anti-friction’ interactions, which have no equivalent in equilibrium systems. This inferred
model quantitatively captures the key experimental observations, including the distinct colli-
sion phenotypes of both cell lines. Our framework can be generalized to provide a conceptual
classification scheme for the system-level dynamics of cell-cell interactions, and is able to cap-
ture various previously observed types of cell-cell collision behaviors.
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Figure 1: Stochastic switching dynamics of confined cell pairs. a. Experimental design: single cells are confined to
two-state micropatterns (white outline). We track cell pairs resulting from cell divisions. The stained nucleus is colored
in blue. b. Time-series of two interacting MDA-MB-231 cells transfected with LifeAct-GFP. Arrows highlight regions
of pronounced actin activity, and the arrow color indicates the cell identity. c. Brightfield image series with overlaid
nuclear trajectories (orange, violet). Images are taken at a time interval ∆t = 10 min. d. Sample set of nuclear trajectories
x1,2(t) as a function of time, shown for 14 cell pairs. Axes limits are 0 < t < 30 h and -60 µm < x < 60 µm, with x =
0 at the center of the bridge. In total, we tracked 155 MCF10A cell pairs (corresponding to a total trajectory length of
3200 h) and 90 MDA-MB-231 cell pairs (2700 h). e. Trajectories of individual cell pairs, with highlighted reversal (dotted
lines) and sliding events (dashed lines). f. Key stages of the reversal and sliding events, corresponding to the sections
highlighted in grey in e. Images are shown at 40 min time intervals for MCF10A, and 30 min intervals for MDA-MB-231.
Orange stars and violet circles indicate the identities of the cells. In panels c-f, the left column corresponds to MCF10A
cells, and the right column to MDA-MB-231 cells. All scale bars correspond to 25µm.
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Two-state micropatterns provide minimal cell collider

To investigate the two-body interaction dynamics of migrating cells, we designed a micropat-
terned system in which two cells repeatedly collide. The micropattern confines the cells to a
fibronectin-coated adhesive region, consisting of a narrow bridge separating two square islands.
Outside this dumbbell-shaped region the substrate is passivated with PLL-PEG, to which the
cells do not adhere. We first confine single cells to these patterns, as described in previous
work [27]. Here, we identify cells which undergo division from which we obtain confined, iso-
lated pairs of daughter cells (Fig. 1a). We employ phase-contrast time-lapse microscopy to study
the homotypic interactions of pairs of non-cancerous (MCF10A) and cancerous (MDA-MB-231)
human mammary epithelial cells. The confining bridge between the two islands leads to two
well-defined configurations, with either both cells on the same island, or on opposite sides of
the pattern, between which the system repeatedly switches (Fig. 1c,d and Movies S1-S4). Dur-
ing these switching events, the cells interact with each other. Therefore, our experimental setup
offers a simple platform to study the interactions of confined migrating cells in a standardized
manner: a minimal ’cell collider’.

Within this cell collider, cells are highly motile and exhibit actin-rich lamellipodia-like protru-
sions forming at the cell periphery (Fig. 1b, Movie S5). As a simplified, low-dimensional rep-
resentation of the interaction dynamics, we use the trajectories of the cell nuclei, which reflect
the long time-scale interacting behavior of the cells (Fig. 1c). These coupled cell trajectories are
highly stochastic. Using this assay, we monitor the stochastic two-body dynamics of hundreds
of cells over long periods of time (up to 40h per cell pair) in standardized micro-environments,
yielding an unprecedented amount of statistics on cell-cell interactions (Fig. 1d). Importantly,
we find that most of the interactive behavior is captured by the x position along the long axis of
the pattern (SI Appendix, Section S3). Thus, our cell-collider experiments provide a large data
set of low-dimensional trajectories of interacting cells, allowing in-depth statistical analysis of
the cellular dynamics.

Cell pairs exhibit mutual exclusion

A key feature of the trajectories for both cell lines is the apparent preference for the configura-
tion in which the cells are on opposite islands (Fig. 1d). Indeed, the positions of the two cells are
strongly correlated: the cross-correlation function 〈x1(t)x2(t′)〉 exhibits a pronounced negative
long-time scale correlation for both cell lines (Fig. 2a). Correspondingly, the joint probability
distribution of positions p(x1, x2) exhibits prominent peaks where cells occupy opposite sides,
and only faint peaks where they are on the same side (Fig. 2b), suggesting two distinct config-
urations. These configurations are connected by ’paths’ in the probability density, along which
transitions occur. We find that the cumulative probability S(t) that a configuration switch has
not occurred after time t decays more slowly for opposite-side than same-side configurations
(Fig. 2c). Taken together, these results indicate that both MCF10A and MDA-MB-231 cells ex-
hibit a mutual exclusion behavior.

MCF10A and MDA-MB-231 cells exhibit distinct collision behavior

While the cells mutually exclude each other, they are also highly migratory and thus frequently
transit the constricting bridge. This results in repeated stochastic collision events, providing
statistics for how these cells interact during a collision. Following a collision, we observe three
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Figure 2: Statistics of the stochastic interaction dynamics. a. Cross-correlation function of cell positions 〈x1(t)x2(t′)〉.
b. Joint probability distributions p(x1, x2) of cell positions, plotted logarithmically. The top triangle of the symmetric
distribution shows the experimental result, the bottom triangle shows the model prediction (for full distributions and
linear plots, see SI Appendix, Fig. S12,13). c. Probability distribution S(t) giving the probability that a configuration
switch has not occurred after time t, for the opposite-side configuration (solid) and the same-side configuration (dotted).
d. Percentages of each of the three types of collision events observed, which are sketched below. For MDA-MB-231 cells,
dashed bars correspond to data from cells on micropatterned tracks, with the corresponding model prediction obtained
using a single-cell term inferred from single cells on a track, and interaction terms inferred from cell pairs on two-state
patterns. e. Velocity cross-correlation function 〈v1(t)v2(t′)〉same, calculated for times where the cells occupy the same
island. In panels a and c, experimental data are shown in blue, and model predictions (corresponding to Eqn.(1)) in red.
Shaded regions and errorbars denote bootstrap errors (SI Appendix, Section S3).
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distinct types of behaviors: reversal events, where the cells turn around upon collision; sliding
events, where the cells interchange positions by sliding past each other; and following events
where the cells remain in contact and perform a joint transition (Fig. 1e,f, SI Appendix, Section
S3). These three behaviors have been previously used as observables of cell-cell interactions in
one-dimensional and fibrillar environments [19, 33, 34, 36, 43].

To quantify the interaction behavior of MCF10A and MDA-MB-231 cells, we identify collision
events and measure the percentage that result in reversal, sliding or following events (Fig. 2d).
Both cell lines exhibit only a small fraction of following events. Remarkably however, we find
that collisions of MCF10A cells predominantly result in reversals, while MDA-MB-231 cells typ-
ically slide past each other upon collision, in line with observations in other confining geome-
tries [19]. To further explore the generality of this result, we perform additional experiments
with MDA-MB-231 cells on micropatterned tracks without constrictions, but the same overall
dimensions of the two-state micropatterns (Movies S6, S7). We find that sliding events simi-
larly dominate for MDA-MB-231 cells on this pattern, with similar overall event ratios (Fig. 2d).
The different responses to cell-cell contacts are also reflected by the velocity cross-correlation of
the two cells when occupying the same side of the two-state micropatterns: 〈v1(t)v2(t′)〉same:
MCF10A cells exhibit a positive velocity correlation while MDA-MB-231 cells exhibit a negative
velocity correlation (Fig. 2e). Taken together, these findings show that while both cell lines ex-
hibit similar mutual exclusion behavior, there are clear differences in their collision dynamics.
This raises a key question: is there an overarching dynamical description which captures both
the similarities and differences of these interaction behaviors?

Contact acceleration maps reveal dynamics of cell-cell interactions

Here, we aim to describe the underlying interaction dynamics that capture the full stochastic
long time-scale behavior of repeatedly colliding cell pairs. The dynamics of single migrating
cells is well described by an equation of motion that is second order in time [24–29], making ac-
celerations the natural quantity to describe cell motility. Specifically, we previously showed that
the migration dynamics of single cells in confinement can be described by the average acceler-
ation as a function of cell position x and velocity v = dx/dt, given by the conditional average
F(x, v) = 〈v̇|x, v〉, where v̇ = dv/dt [27–29]. To uncover the general structure of the cell-cell
interactions in our experiments, we therefore first focus on the observed cellular accelerations
upon contact as a function of the distance and relative velocity of the cells. We anticipate con-
tributions from cell-cell interactions to depend on the relative position ∆x and relative velocity
∆v of the cell pair. Under certain assumptions, which we test in the next section, we can es-
timate the interactive contribution to cellular accelerations by first subtracting the single-cell
contribution F(x, v), and then determining the remaining acceleration as a function of ∆x and
∆v: G(∆x, ∆v) = 〈v̇ − F(x, v)|∆x, ∆v〉 (see Methods and SI Appendix, Section S3). To further
illustrate this approach, we verify that it accurately recovers the functional dependence of sim-
ple interactions from simulated trajectories (SI Appendix, Section S3). Thus, we interpret this
’contact acceleration map’ as the average acceleration due to the interactions of a cell pair.

Strikingly, we find that MCF10A and MDA-MB-231 cells exhibit qualitatively different contact
acceleration maps (Fig. 3a,d). Indeed, for MCF10A cells, the contact acceleration exhibits a
clear dependence on the relative position, while MDA-MB-231 cells exhibit accelerations that
mainly depend on the relative velocity. We investigate these differences by measuring the 1D-
dependence of the contact accelerations as a function of just ∆x or ∆v. These plots reveal that
MCF10A cells exhibit a combination of repulsive accelerations (Fig. 3b) and a weak friction-like
component (Fig. 3c). By contrast, MDA-MB-231 cells exhibit contact accelerations with opposite
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Figure 3: Contact acceleration maps. a,d. Contact acceleration maps G(∆x, ∆v), measured in units of µm/h2. Inset in
d: Map for MDA-MB-231 cells on micropatterned tracks. b,e. Contact accelerations as a function of the cell separation
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〈v̇− F(x, v)|∆v〉. Lines indicate linear fits. Error bars show bootstrap errors. Panels a-c show data for MCF10A cells,
and panels d-f for MDA-MB-231 cells. In panels e,f, open green symbols correspond to data from experiments on
micropatterned tracks.

sign, suggesting an attractive component (Fig. 3e) and an effective linear ’anti-friction’ (Fig. 3f).
Interestingly, we find that the contact accelerations on micropatterned tracks are qualitatively
and quantitatively similar, suggesting that these findings are not very sensitive to the confine-
ment geometry (Inset Fig. 3d). These findings suggest that the contact accelerations of these
cells exhibit features that could be described as combinations of cohesive (repulsion/attraction)
and frictional terms. This raises the question: are the simple physical interactions suggested by
these maps sufficient to describe the complex interaction dynamics of these cell pairs?

Interacting equation of motion captures experimental statistics

To investigate whether the interacting dynamics of MDA-MB-231 and MCF10A cells can be
described by the physical interactions implied by the contact acceleration maps, we consider a
simple model for cell-cell interactions in confining environments. Motivated by the structure
of the contact accelerations, we postulate that the dynamics of the cells can be described by a
stochastic equation of motion of the form

dv
dt

= F(x, v) + f (|∆x|)∆x + γ(|∆x|)∆v + ση(t) (1)

Here, we assume that the interactions between each cell and the confinement can be described
by a term F(x, v), similar to single cell experiments [27]. Furthermore, we assume that the
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interactions between the two cells can be separately described by two interaction terms: a co-
hesive term f (|∆x|)∆x, which captures repulsion and attraction; and an effective friction term
γ(|∆x|)∆v that may depend on the distance between the cells. The intrinsic stochasticity of
the migration dynamics is accounted for by a Gaussian white noise η(t), with 〈η(t)〉 = 0 and
〈η(t)η(t′)〉 = δ(t− t′). Note that this equation of motion captures the effective dynamics that
describe the cellular accelerations, rather than mechanical forces acting on the cell.

To investigate this model, we first require a systematic approach to infer the systems’ stochas-
tic dynamics and delineate single-cell (one-body) and interactive (two-body) contributions to
the dynamics. Thus, we employ a rigorous inference method, Underdamped Langevin Infer-
ence (ULI) [44], to infer the terms of this equation of motion from the experimentally measured
trajectories. In this approach, the inferred terms are completely constrained by the short time-
scale information in the measured trajectory, i.e. the velocities and accelerations of the cells (see
Methods and SI Appendix, Section S4).

Importantly, there is no a priori reason why (1) should provide a reasonable ansatz to correctly
capture cell-cell interactions, which could require a more complex description. Thus, we inves-

287



tigate the predictive power of our model by testing whether it correctly captures experimental
statistics that were not used to constrain the terms in (1). Specifically, while the model is learnt
on the experimental short time-scale dynamics, we aim to make predictions for long time-scale
statistics such as correlation functions. To this end, we simulate stochastic trajectories of inter-
acting cell pairs based on our model (Fig. 4d,h) to make a side-by-side comparison with the
experiments. Remarkably, we find that the model performs well in predicting key experimental
statistics for both cell lines, including the joint probability distributions (Fig. 2b), the distribu-
tions of switching times (Fig. 2c), the cross-correlations of positions and velocity (Fig. 2a,e), as
well as the relative fractions of reversal, sliding and following events (Fig. 2d). In contrast, per-
forming the same inference procedure with simpler models than (1), e.g. with only cohesive or
friction interactions, shows that simulated trajectories of these models do not capture the ob-
served statistics (SI Appendix, Section S4). To further challenge our approach, we test whether
we can use the interactions learnt from experiments on two-state micropatterns to predict the
collision behavior in a different confinement geometry. Specifically, we use the single-cell term
F(x, v) inferred from single cell data of MDA-MB-231 cells migrating on micropatterned tracks,
together with the interactions inferred from cell pair experiments on two-state micropatterns, to
predict the collision ratios of cell pairs on tracks. We find that this model accurately predicts the
observed event ratios (Fig. 2d), showing that the inferred interactions have predictive power
also beyond the data set on which they are learnt.

Remarkably, our inference approach reveals that the inferred single-cell contributions F(x, v) on
two-state micropatterns are qualitatively and quantitatively similar to the equivalent term in-
ferred from experiments with single cells for both cell lines [27] (Fig. 4a,e, SI Appendix, Section
S4). Also, the inferred noise amplitudes are similar to those inferred from single cell experi-
ments for both cell lines, σ ≈ 50 µm/h3/2. This suggests that the presence of another cell does
not significantly alter the confinement dynamics experienced by one of the cells, and instead
manifests in the interaction terms of the equation of motion. Our inference yields the spatial
dependence of the cohesion term (Fig. 4b,f) and the effective friction term (Fig. 4c,g). Impor-
tantly, the functional dependence of the inferred terms is in accord with our interpretation of
the contact acceleration maps (Fig. 3): MCF10A cells exhibit a repulsive cohesive interaction,
and a regular effective friction, which reflects that cells slow down as they move past each
other. In contrast, MDA-MB-231 cells interact through a predominantly attractive cohesion
term, becoming weakly repulsive at long distances, and exhibit effective ’anti-friction’. We infer
a similar ’anti-friction’ interaction from MDA-MB-231 cell pairs migrating on micropatterned
tracks, suggesting that this result is not sensitive to the presence of the constriction (Fig. 4f,g).
This anti-friction generates sliding behavior, where cells on average accelerate as they move past
each other with increasing relative speed. These results are robust with respect to the details of
the inference procedure (SI Appendix, Section S4). Taken together, these findings demonstrate
that the dynamics of interacting MCF10A and MDA-MB-231 cells on confining micropatterns
are well described by our model ((1)) with distinct types of interactions for the two cell lines.

Interaction behavior space: a theoretical framework for cell-cell interactions

To conceptualize the distinct interactions of MCF10A and MDA-MB-231 cells, we propose an
interaction behavior space, spanned by the amplitudes of the cohesive and frictional contributions
(Fig. 5). Based on our inference, the two cell lines occupy diagonally opposed quadrants in this
space. To investigate whether our model ((1)) is able to capture cellular interaction behaviors
more broadly, we predict trajectories for various locations within this interaction map. For
interactions consisting of repulsion and friction, we find that collisions predominantly result
in reversal events, as we have observed for MCF10A cells. In contrast, for positive friction
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coefficients, corresponding to effective ’anti-friction’, we find that sliding events dominate for
all parameter values. This regime thus corresponds to the dynamics we have observed for
MDA-MB-231 cells. Finally, attractive interactions with regular friction result in a dominance
of following events. The interaction behavior space thus provides an insightful connection
between the inferred interaction terms governing the instantaneous dynamics of the system,
and the emergent macroscopic, long time-scale collision behavior.

Discussion

In this study, we introduced a conceptual framework for the stochastic behavioral dynamics
of interacting cells. To this end, we designed a micropatterned ’cell collider’ in which pairs
of cells repeatedly collide with each other, providing large amounts of statistics on the long
time-scale interactions of migrating cell pairs. A key advantage of this setup is that it yields
a large number of collisions under controllable conditions. Moreover, the dynamics of single
cells migrating in this confinement is well understood [27], providing a benchmark for the
dynamics inferred for interacting cells. We compare the homotypic interaction behavior of
the non-malignant MCF10A and the metastatic MDA-MB-231 mammary epithelial cell lines.
While phenomenological bottom-up models have been developed to describe cell-cell interac-
tions [30, 32, 43, 45–47], we propose an alternative, top-down approach to learn the interacting
stochastic equations of motion governing cell migration from the experimentally observed tra-
jectories. Such an effective model captures the emergent dynamics at the cellular scale which
are driven by underlying mechanisms, including the intra-cellular polarity machinery. Our in-
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ferred models for interacting cells quantitatively capture the distinct behaviors of the two cell
lines. This inference reveals that the dynamics can be decomposed into a one-body motility
component, which qualitatively matches that observed in single cell experiments [27], and a
two-body interaction term.

The interaction terms we inferred from experiments take qualitatively different forms for the
two cell lines: while MCF10A cells exhibit repulsion and effective friction, MDA-MB-231 cells
exhibit attraction and a novel and surprising effective ’anti-friction’ interaction. At the single-
cell level, MDA-MB-231 cells are known to be more invasive than MCF10A cells [48, 49], and
express lower levels of the cell-cell adhesion protein E-cadherin [19, 50], possibly underlying
the different friction-like interactions we found for these cell lines. These two cell lines also
display remarkably different collective behaviors [51–53]: MCF10A cells in 2D epithelial sheets
exhibit aligned, directed motion and form compact spheroids in 3D culture, with few invasive
branches. In contrast, MDA-MB-231 cells in 2D epithelial sheets exhibit non-aligned, random
motion and form invasive, non-contiguous clusters in 3D culture, with significant single-cell
dispersion from the cluster. These differences in collective behavior may relate to the distinct
types of interactions we have inferred from the two-body dynamics of these cell lines.

Based on the inferred equation of motion, we predict an interaction behavior space to link the
interaction terms, which govern the instantaneous stochastic dynamics, to the emergent colli-
sion behaviors. The three distinct regimes emerging in our model correspond to specific be-
haviors observed in experiments for various cell types: predominant reversal behavior on 1D
lines has been termed contact inhibition of locomotion [33, 34], a common type of cell-cell inter-
action [5, 8, 10, 13]. By inhibiting intracellular Rho-signalling in neural crest cells, this reversal-
dominated behavior could be tuned to following-dominated behavior [34]. Such following be-
havior has also been identified as an important mechanism in collective migration [12,20,21,54],
and was termed contact following locomotion [20]. Finally, previous work has shown that reduc-
ing the expression levels of E-cadherin enables otherwise reversing cells to mainly slide past
each other [19]. For this regime of predominant sliding interactions, we propose the term con-
tact sliding locomotion. Based on our interaction behavior space, we find that the ’anti-friction’
interactions we identified for MDA-MB-231 cells promote such sliding behavior. The interaction
behavior space could thus provide a quantitative classification of distinct modes of interaction
that may be achieved through molecular perturbations in experiments [19,34]. On the other end
of the scale, the ’anti-friction’ interaction type we find here could play a role in collective systems
such as the fluidization of tissue in tumor invasion [53,55,56]. The form of the interaction terms
we inferred from experiments may thus inform models for collective cell migration [9,30,39–42].
Furthermore, the inference framework we have developed for the dynamics of interacting cell
pairs can be extended to infer the dynamics of more complex collective systems, such as small
clusters of cells [32, 41, 57], epithelial sheets [42, 58], or 3D organoids [55, 56]. In summary, our
model, which we rigorously derive directly from experimental data, could potentially describe
the diversity of previously observed cell-cell interaction behaviors in a unifying quantitative
framework.
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Methods

Sample preparation and cell culture− Fibronectin micropatterns are made by microscale plasma-
initiated protein patterning as described previously [27].

MCF10A cells (ATCC) are cultured at 37◦C in an atmosphere containing 5% CO2. The cultur-
ing medium DMEM/F-12 including Glutamax (Gibco) is supplemented with 5% Horse Serum
(Thermo Fisher), 20 ng/ml hEGF (Sigma), 500ng/ml Hydrocortisone (Sigma), 100ng/ml Cholera
Toxin (Sigma) and 10 µg/ml Insulin (Sigma). When passaging cells, the supernatant is aspirated
and centrifuged at 300rcf for 8 mins. The adherent cells are washed once with PBS before being
detached by a 12-min incubation with Accutase at 37◦C. Then the cell solution is re-suspended
with culture medium and subsequently centrifuged at 500rcf for 6 mins. Both cell pellets are
re-suspended in medium and a fraction is used for further cultivation. For experiments, a drop
containing 10,000 cells is added to an ibidi µ-dish (ibidi GmbH) and left to adhere for at least
4h. After that, the medium is exchanged to culture medium without phenol red. 15 nM Hoechst
33342 are added for nuclear staining. Cells are kept in a 5% CO2-atmosphere and at 37◦C during
experiments.

MDA-MB-231 cells (DSMZ) are cultured in Minimum Essential Medium (MEM, c.c. pro), con-
taining 10% FBS (Gibco) and 2mM L-Glutamine (c.c. pro). Cells are grown in a 5% CO2 atmo-
sphere at 37◦C. For passaging and experiments, cells are washed once with PBS and trypsinised
for 3 min. This cell solution is centrifuged at 1000 rcf for 3 min. The cell pellet is re-suspended
in MEM and 10,000 cells are added per µ-dish and left to adhere in the incubator for 4h. The
medium is then exchanged to L-15 medium containing L-glutamine (Gibco, supplemented with
10% FCS) and 25 nM Hoechst 33342 (Invitrogen) for staining cell nuclei. Experiments are per-
formed at 37◦C without CO2.

Microscopy and cell tracking − All measurements are performed in time-lapse mode for up to
50 h on an IMIC digital microscope (TILL Photonics) or on a Nikon Eclipse Ti microscope using
a 10x objective. The samples are kept in a heated chamber (ibidi GmbH or Okolab) at 37◦C
throughout the measurements. Images (brightfield and DAPI) are acquired every 10 mins. Tra-
jectories of cell pairs are obtained by selecting cells that undergo division during the experiment.
Following division and subsequent re-attachment to the micropattern, we track the trajectories
of the cell nuclei. A band pass filter is applied to the images of the nuclei, then images are bi-
narised. The cell trajectories are determined by tracking the binarised images using a Matlab
tracking algorithm [59]. For further details, see SI Appendix, Section S2.

Contact acceleration maps − To gain insight in the general structure of the accelerations due to
cell-cell interaction, we introduce contact acceleration maps. We estimate single-cell component
of the dynamics from the accelerations observed at time-points where the cells are far apart
F(x, v) =

〈
v̇i
∣∣xi, vi; |∆xij| > `

〉
, where we take the threshold distance ` = 25µm. To obtain the

accelerations due to cell-cell contacts, we take the time points where cells are close together and
calculate the average acceleration as a function of relative position ∆xij = xi − xj and velocity
∆vij = vi− vj of cell i and cell j: G(∆x, ∆v) ≈

〈
v̇i − F(xi, vi)

∣∣∆xij, ∆vij; |∆xij| < `
〉
. We show that

for simple simulated examples, this approach accurately recovers the structure of the interaction
terms. For more details, see SI Appendix, Section S3.

Underdamped Langevin Inference − From the short time-scale dynamics of the measured cell
trajectories x(t), we infer the second order stochastic differential equation that governs the mo-
tion [26, 27, 44, 60]. Specifically, to infer the terms of our model ((1)), we employ Underdamped
Langevin Inference [44], a method which is robust with respect to the effects of the discrete sam-
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pling of x(t) and the presence of measurement errors. Briefly, we fit the experimentally mea-
sured accelerations using a linear combination of basis functions {b(xi, vi), u(|∆xij|)∆xij, u(|∆xij|)∆xij}
using rigorous stochastic estimators [44]. For the single cell terms b(xi, vi), we use a combination
of polynomials and Fourier modes, while for the interaction kernels u(|∆xij|) we use exponen-
tial functions. The inference results do not sensitively depend on the choice of basis functions.
For more details, see SI Appendix, Section S4.
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tence of collective cell migration on small circular micropatterns,” Physical Review Letters,
vol. 114, no. 22, p. 228102, 2015.

[33] R. A. Desai, S. B. Gopal, S. Chen, and C. S. Chen, “Contact inhibition of locomotion proba-
bilities drive solitary versus collective cell migration,” Journal of the Royal Society Interface,
vol. 10, no. 88, 2013.

[34] E. Scarpa, A. Roycroft, E. Theveneau, E. Terriac, M. Piel, R. Mayor, E. Scarpa, A. Roycroft,
E. Theveneau, E. Terriac, M. Piel, and R. Mayor, “A novel method to study contact inhi-
bition of locomotion using micropatterned substrates,” Biology Open, vol. 2, pp. 901–906,
2013.

[35] B. Lin, T. Yin, Y. I. Wu, T. Inoue, and A. Levchenko, “Interplay between chemotaxis and
contact inhibition of locomotion determines exploratory cell migration,” Nature Communi-
cations, vol. 6, 2015.

[36] J. Singh, B. A. Camley, and A. S. Nain, “Rules of Contact Inhibition of Locomotion for Cells
on Suspended Nanofibers,” bioRxiv, 2020.

[37] R. Mayor and C. Carmona-Fontaine, “Keeping in touch with contact inhibition of locomo-
tion,” Trends in Cell Biology, vol. 20, no. 6, pp. 319–328, 2010.

[38] M. Abercrombie and J. E. Heaysman, “Invasiveness of Sarcoma Cells,” Nature, vol. 174,
no. 4432, pp. 697–698, 1954.
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1 Movie descriptions

Supplementary Movie 1
A pair of MCF10A cells transitioning repeatedly between the square adhesion sites of
a two-state micropattern. The cell nucleus is fluorescently labelled to allow automated
tracking of cell positions. Scale bar: 25 µm.

Supplementary Movie 2
A pair of MCF10A cells transitioning repeatedly between the square adhesion sites of
a two-state micropattern. The cell nucleus is fluorescently labelled to allow automated
tracking of cell positions. Scale bar: 25 µm.

Supplementary Movie 3
A pair of MDA-MB-231 cells transitioning repeatedly between the square adhesion sites
of a two-state micropattern. The cell nucleus is fluorescently labelled to allow auto-
mated tracking of cell positions. Scale bar: 25 µm.

Supplementary Movie 4
A pair of MDA-MB-231 cells transitioning repeatedly between the square adhesion sites
of a two-state micropattern. The cell nucleus is fluorescently labelled to allow auto-
mated tracking of cell positions. Scale bar: 25 µm.

Supplementary Movie 5
A pair of MDA-MB-231 cells transfected with LifeAct-GFP to visualize actin on a two-
state micropattern. The outline of the micropattern is drawn in white as a reference.
Actin hotspots are visible at the tip of the lamellipodia. Scale bar: 25 µm.

Supplementary Movie 6
A pair of MDA-MB-231 cells migrating on a rectangular micropattern without constric-
tion with the same overall dimensions as the two-state micropatterns. The cell nucleus
is fluorescently labelled to allow automated tracking of cell positions. Scale bar: 25 µm.

Supplementary Movie 7
A pair of MDA-MB-231 cells migrating on a rectangular micropattern without constric-
tion with the same overall dimensions as the two-state micropatterns. The cell nucleus
is fluorescently labelled to allow automated tracking of cell positions. Scale bar: 25 µm.

Supplementary Data 1-3
The three data files correspond to the data for MDA-MB-231 cells on two-state mi-
cropatterns, MCF10A cells on two-state micropatterns, and MDA-MB-231 cells on mi-
cropatterned tracks, respectively. The files contain the x-positions of the cells in µm,
ordered consecutively such that rows 1,2 correspond to the two cells in the first cell
pair.
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2 Further experimental details

2.1 Micropattern design

The adhesive sites of the two-state micropatterns have square dimensions (36.7± 0.6)2 µm2.
The connecting bridge has length (35.3 ± 0.5) µm and width (6.9 ± 0.6) µm. The
quoted errors correspond to the deviations in the dimensions of final protein patterns
which are due to the intrinsic variance of the manual stamping process and the mea-
surement uncertainty associated with the limited resolution of the brightfield images.

2.2 Cell exclusion criteria

We track the trajectories of a large number of cell pairs confined to two-state micropat-
terns. Following previous work [1], we apply the following inclusion criteria in our
analysis:

1. Two-cell trajectories are obtained by selecting cells which undergo division dur-
ing the experiment. Tracking begins after both daughter cells have re-attached
to the pattern after division. Tracking is terminated when one of the two cells
rounds up for division again.

2. Both cells and their protrusions are confined within the borders of the micropat-
tern.

3. Both cells show no abnormalities such as multiple nuclei or the occurrence of cell
death or detachment from the substrate.

4. At least one transition occurs during the experiment (i.e. at least one of the two
cells performs a transition across the bridge of the micropattern).

2.3 Cell transfections

For live-cell imaging of actin, approximately 10,000 MDA-MB-231 cells are seeded in
patterned µ-dishes and left to adhere for 12 h. As a cell culturing medium, MEM with
Glutamax (Gibco) supplemented with 10% FCS is used. 500ng LiveAct-GFP mRNA
(prepared in-house) is resuspended in OptiMEM (Gibco) to a final volume of 150 µL.
This solution is then added to a mix of 1.25 µL Lipofectamine 2000 (Invitrogen) and
123.75 µL OptiMEM, and left to incubate for 20 minutes at room temperature. Subse-
quently, cells are rinsed once with PBS and the transfection mix is added and left on the
cells for at least 5 h, before being replaced by L-15 medium. Cells are imaged every 10
minutes on the Nikon Ti Eclipse microscope using a 60x oil-immersion objective.
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2.4 Tracking procedure

Brightfield and fluorescence images of the stained nuclei are acquired every 10 min.
A band pass filter is applied to the images of the nuclei, then images are binarised.
The cell trajectories are determined by tracking the nuclei using a Matlab tracking al-
gorithm [2]. After application of the tracking algorithm, each trajectory is inspected
manually to verify that only two particles have been identified, and that the trajectories
exhibit no gaps that consist of more than one missing frame. In the rare case of a single
missing frame, we interpolate linearly between the previous and the subsequent coor-
dinate. Furthermore, we verify that the tracking algorithm has correctly identified the
identity of the two cells. In the cases where the two cells have been mixed up, this is
corrected manually. After tracking, the reference boundaries of the patterns are deter-
mined manually by means of the bright-field images, on which the micropatterns are
visible.

3 Analysis of the experimental dynamics

3.1 Error analysis

All errorbars throughout the paper correspond to bootstrap errors, as described in
refs. [3,4]. Briefly, from our data set of N cell pair trajectories {xk}, where k = 1...N, we
generate NBS bootstrap realizations by randomly sampling N cell pair trajectories with
replacement for each realization. To obtain the error in an observable θexpt measured
from the experimental data set, we estimate the value of θ for each bootstrap realiza-
tion and take the standard deviation of all obtained θs as our estimate for the error in
θexpt. To obtain the error in an observable θmodel predicted by our model, we perform
ULI on each of the NBS bootstrap realizations to obtain NBS bootstrapped models. Then,
we simulate a large number of trajectories for each bootstrap model, and estimate θ for
each set of trajectories. The standard deviation of these θs is our estimate for the error
in θmodel.

3.2 Stochastic switching dynamics and cross-correlation functions

Survival probability functions − To quantify the transition dynamics of cell pairs
within the two-state micropattern, we define two configurations: one where both cells
occupy the same side of the pattern, and one where they occupy opposite sides, with
the two sides defined by x < 0 and x > 0 (Fig. S1a). We obtain similar results if the
boundaries are instead defined by x < −L/2 and x > L/2, where L is the length of
the bridge. We define a switching event as a switch from a same-side to an opposite-
side configuration, and vice versa. To gain insight into the dynamics of these config-
uration switches, we calculate the times between switches, which yields the average
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dwell times of the same-side configuration {τsame} and the opposite-side configuration
{τopp}. Thus, we can calculate the survival probability distribution function of each
configuration, i.e. the probability that a switch has not occurred after time t, given that
the system is initially in state k = {same, opp}:

Sk(t) = 1−
∫ t

0
p(τk)dτk (S1)

where p(τk) is the probability distribution of τk. These distributions show that the same-
side configuration is typically occupied for shorter times than the opposite-side config-
uration (Fig. S1b,d). Both survival probability functions exhibit an initially exponential
decay (Fig. S1c,e), but become noisy at long times due to limited sampling.
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Figure S1: Stochastic switching dynamics. a. Sketch of the same- and opposite-
side configurations. b. Survival probability functions of the same- (dotted line) and
opposite-side (dashed line) configurations, for MDA-MB-231 cells. The average dwell
times of each state are given. c. Log-linear plot of panel b. d. Survival probability
functions of the same- (dotted line) and opposite-side (dashed line) configurations, for
MCF10A cells. The average dwell times of each state are given. e. Log-linear plot of
panel d. Shaded regions and error intervals for the average dwell times denote boot-
strap errors.
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Position cross-correlation function − The cross-correlation function of cell positions,
defined by:

〈x1(t)x2(t′)〉 :=
1

2 ∑
Npairs
j=1 Tj

Npairs

∑
j=1

Tj

∑
t′=1

x1(t)x2(t′) (S2)

where Npairs is the number of tracked cell pairs, and Tj is the total number of time-points
in the trajectory of pair j.

Velocity cross-correlation function − To investigate the correlations in migration ve-
locities when the cells are in contact, we calculate the cross-correlation function of cell
velocities v(t) = (x(t)− x(t + ∆t))/∆t, subject to the constraint that the cells are in the
same-side configuration:

〈v1(t)v2(t′)〉same :=
1

2 ∑
Npairs
j=1 Tsame

j

Npairs

∑
j=1

∑
{θsame}

v1(t)v2(t′) (S3)

where {θsame} is the set of time-point combinations (t, t′), where the cells are in the
same-side configuration at both time t and t′, and Tsame

j is the total number of such
time-point combinations of cell pair j.

3.3 Movement in the second dimension

The two-state micropattern is designed in such a way that most of the behavior occurs
in the x-direction. We find that most of the interaction behavior is indeed captured
by the x-components of the trajectories: the variance in y-motion is small (Fig. S2a,b),
and the joint probability distribution p(y1, y2) is peaked around (0, 0) and exhibits no
special structure (Fig. S2d,f). Furthermore, the cross-correlation function of y-positions
〈y1(t)y2(t′)〉 vanishes (Fig. S2g,h). Thus, we find that the x-component captures most
of the behavior displayed by these interacting cells, and thus provides a simple, low-
dimensional representation of the system’s behavioral dynamics.
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Figure S2: Motion in 2D. a,b. Several examples of 2D trajectories. Left: xy-trajectory
plotted on top of the micropattern dimension (shown in grey). Axis limits are
−50 µm < x < 50 µm and −20 µm < y < 20 µm; (x = 0, y = 0) corresponds to
the center of the bridge. Middle: x-trajectory as a function of time t. Axis limits are
−50 µm < x < 50 µm and 0 < t < 30 h. Right: y-trajectory as a function of time t. Axis
limits are −50 µm < y < 50 µm and 0 < t < 30 h, to allow direct comparison with the
x-trajectory. c,e. Joint probability distributions p(x1, x2) of the x-positions, plotted log-
arithmically on the same colour scale as in Fig. 2 in the main text. Here shown without
the Gaussian interpolation employed in Fig. 2 in the main text. d,f. Joint probabil-
ity distributions p(y1, y2) of the y-positions, plotted logarithmically on the same colour
scale as in Fig. 2 in the main text. g,h. Position cross-correlation function for x (blue)
and y-components (green). For all panels, the left hand side corresponds to MDA-MB-
231 cells, while the right hand side corresponds to MCF10A cells.

3.4 Collision events

To investigate the outcomes of cellular collisions, we identified collision events and de-
fined criteria to classify them as reversal, sliding, and following events. Similar classifi-
cations have been developed in the literature before [?, 5–7]. Here, we define a collision
as an event where the two cell nuclei move to within a threshold distance ∆xc of each
other (Fig. S3a). To classify reversals and sliding events, we are interested in whether
the cells have moved past each other as a response to the collision event. Thus, we iden-
tify collisions as reversals if the cells do not switch positions shortly after the collision,
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and as sliding events if they do switch positions. In practice, we find that we can easily
identify these three events by inspecting the trajectories within a fixed time window dT
following the collision. Thus we identify reversals if cells do not switch positions after
a time interval dT, while for sliding events cells switch positions at least once within
dT after the collision. To avoid artefacts where cells enter and exit the threshold dis-
tance ∆xc repeatedly in a short time-period, we only identify the first collision event
in a time-interval dT. Thus, we assume that the time-scale between subsequent tran-
sitions is � dT. Indeed, we find that subsequent traversals of the threshold distance
∆xc usually do not correspond to new collisions, but occur while the cells still remain
in contact. For following events, we are interested in identifying head-tail collisions
which result in adhesion and subsequent joint migration [8]. In practice, we find that
these events are robustly selected by identifying events where two cells perform the
same transition across the micropatterned bridge within a time interval dT.

We choose the threshold distance ∆xc = 20 µm throughout, i.e. slightly larger than a
typical cell radius when the cell occupies the island. For the time interval, we choose
dT = 6∆t = 1 h throughout. This is a reasonable choice as this interval needs to be
sufficiently larger than our time resolution ∆t = 10 min, but smaller than the shortest
switching time-scale, i.e. 〈τsame〉 ≈ 1.7 h for the MDA-MB-231 cells. By visual inspec-
tion of a large number of trajectories, we find that these values for ∆xc and dT robustly
identify reversal, sliding and following events for both cell types (Fig. S3b-f). Further-
more, we find that the measured percentages of events are robust within a wide range
of values around those chosen for our analysis (Fig. S3c-f). We achieve this level of ro-
bustness due to the clear separation of time-scales between dT and the transition time,
and due to our criterion that no two collisions can occur within an interval dT.
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Figure S3: Definition and identification of collision events. a. Sketches of the defini-
tions of reversal, sliding and following events. The blue square and orange circle show
the nuclear positions of the two cells. b. Example trajectories with collision events
shown by vertical lines (dotted: reversal, dashed: sliding, solid: following). Top 6 tra-
jectories correspond to MDA-MB-231 cells, bottom 6 trajectories to MCF10A cells. Each
trajectory plot shows the x-position of the cell nucleus on the y-axis, with axis limits
−50 µm < x < 50 µm; the x-axis shows the time in the interval 0 < t < 33 h. Fol-
lowing events occur rarely in our data set; an example can be seen in the top right
trajectory. c,e. Percentages of reversal, sliding, and following events obtained for dif-
ferent values of the threshold dT, using the standard value ∆xc = 20 µm, for MDA-MB-
231 and MCF10A cells, respectively. d,f. Percentages of reversal, sliding, and follow-
ing events obtained for different values of the threshold ∆xc, using the standard value
dT = 6∆t = 1 h, for MDA-MB-231 and MCF10A cells, respectively.

3.5 Contact acceleration maps

Construction of CAMs− To obtain insight into the detailed interaction dynamics of the
cell pairs, we measure ’contact acceleration maps’ (CAMs), which give the interaction
component of the acceleration of the cells as a function of the separation ∆xij = xi − xj
of cells i and j, and their relative velocity ∆vij = vi − vj. To measure CAMs, we assume
that the dynamics can be split into separate single-cell and interaction parts, resulting
in the equation of motion for cell i:

ẋi = vi

v̇i = F(xi, vi) + G(∆xij, ∆vij) + σηi(t)
(S4)

where 〈ηi(t)〉 = 0, and 〈ηi(t)ηj(t′)〉 = δijδ(t− t′). As show by the rigorously inferred
model using Underdamped Langevin Inference (ULI), the dynamics can indeed be de-
scribed by such an equation of motion.
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For a system of the form given by Eq. (S4), a simple way of obtaining an estimate of
the interacting component G(∆x, ∆v) is through a conditional averaging procedure.
Specifically, for interactions which decay beyond a threshold distance `, and the one-
body term F(x, v) can be estimated as

F(x, v) ≈ 〈v̇i
∣∣xi, vi; |∆xij| > `〉 (S5)

Next, we estimate the interaction term by calculating

G(∆x, ∆v) ≈ 〈v̇i − F(xi, vi)
∣∣∆xij, ∆vij; |∆xij| < `〉 (S6)

Note that more general binning approaches, e.g. conditioning on (x1, x2) or (v1, v2), are
not able to recover simple dependencies on ∆x or ∆v, as non-trivial correlations exist
in these phase spaces. As we show in the next paragraph, this construction yields a
good estimate for the interactions in the type of system we are considering here. To
give this approach further credence, we show in section 4.3.2 that our model inferred
from ULI, which does not rely on the assumption of short-ranged interactions, captures
the experimentally measured CAMs well.
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Figure S4: Testing CAM inference. For all cases, we used 100 trajectories with 200
time-points each, sampled at a time-interval ∆t = 10 min, which is comparable to the
experimental case. We use a cutoff of ` = 25 µm. a. Exact interaction terms G(∆x, ∆v) =
f0g(|∆x|)∆x + γ0g(|∆x|)∆v in units of µm h−2. For attraction/repulsion, we take f0 =
±6 h−2, γ0 = 0. For friction/anti-friction, we take f0 = 0, γ0 = ±2 h−1. b. Inferred
CAM. c. Inferred (blue dots) and exact (black line) ∆x-dependence of the interaction.
d. Inferred (blue dots) and exact (black line) ∆v-dependence of the interaction.
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Testing on simulated data− First, we test whether CAMs yield a good indicator for the
form of interaction terms governing the type of system we are considering here. Specif-
ically, we estimate CAMs from simulated trajectories with similar length and time res-
olution as in the experiment, obtained by simulating the inferred single-cell term with
known, artificial interactions. To obtain a simulated data set with known interactions,
which resembles the experimental data set, we use the single-cell term F231(xi, vi) and
noise amplitude σ231 inferred from MDA-MB-231 experiments, with additional cohe-
sion or frictional interactions. Thus, we simulate the model

v̇i = F231(xi, vi) + f0g(|∆xij|)∆xij + γ0g(|∆xij|)∆vij + σ231ηi(t) (S7)

with g(|∆xij|) = 1/[(|∆xij|/R0)4 + 1], R0 = 15 µm, and we vary the coefficients f0 and
γ0. Independently of the precise choice of parameters or functional forms, we find that
the inferred CAMs recover the known interactions (Fig. S4).

Application to experimental data − We calculate CAMs from the experimental data
using a threshold ` = 25 µm. We obtain a confinement term that is qualitatively very
similar to that obtained from single cell experiments (Fig. S5) [1]. Next, we obtain the
CAMs as shown in Fig. S5, and in Fig. 3 of the main text. The resulting maps are robust
with respect to changing the threshold ` within a reasonable range. To obtain insight
into the type of interactions implied by the measured CAMs, we first compare them to
CAMs plotted for simple analytical interactions (Fig. S4). By inspection, we find that
the CAM for MDA-MB-231 cells looks very similar to an anti-friction interaction, while
that for MCF10A cells looks similar to a repulsive interaction (compare Figs. S5b, S4a).
By performing averaging conditioned on only one variable, we show that the ∆x and ∆v
dependencies of the contact accelerations confirm this conclusion (Fig. 3b,e in the main
text). In addition, we also find that MDA-MB-231 cells exhibit an attractive component,
and MCF10A cells exhibit an additional weak friction component (Fig. 3c,f in the main
text). We use these results to guide our rigorous inference approach (section 4.1).

To further test these findings without relying on conditional averaging of the CAMs,
we calculate the first moments of the contact accelerations with respect to ∆x and ∆v.
For the cohesive component, we calculate:

p∆x = 〈[v̇i − F(xi, vi)]∆xij
∣∣|∆xij| < `〉 (S8)

For the case of simple monotonic interactions, the sign of this quantity indicates the
type of interaction observed: we expect p∆x < 0 for simple monotonic attractive inter-
actions, and p∆x > 0 for repulsive interactions. Thus, this quantity summarizes the sign
of the interaction. For the friction component, we calculate:

p∆v = 〈[v̇i − F(xi, vi)]∆vij
∣∣|∆xij| < `〉 (S9)

which gives p∆v < 0 for friction interactions, and p∆v > 0 for anti-friction interactions.
Indeed, we find that the dipole moments further support our conclusions based on the
CAMs: MDA-MB-231 cells exhibit contact accelerations indicating attraction and anti-
friction, while MCF10A cells exhibit repulsion and weak friction.
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Figure S5: Calculation of contact acceleration maps and dipole moments. a. Estimated
deterministic single-cell contribution to the dynamics F(x, v). b. Contact acceleration
map G(∆x, ∆v). In the main text, we show an 8× 8 grid, in the range −45 < ∆v < 45
for MCF10A and −70 < ∆v < 70 for MDA-MB-231. For comparison, we here show
10× 10 grids in the range −100 < ∆v < 100, which show the same qualitative features.
c. First moment of the contact accelerations with respect to ∆x, p∆x. d. First moment
of the contact accelerations with respect to ∆v, p∆v. Error bars in c, d correspond to
bootstrap errors. Top row: MDA-MB-231 cells. Bottom row: MCF10A cells.

4 Inference method and model selection

4.1 Application of Underdamped Langevin Inference

To infer an interacting stochastic equation of motion for confined migrating cell pairs,
we employ a rigorous inference method, Underdamped Langevin Inference (ULI) [9].
In this section, we lay out the details of applying ULI to our system. For further details
on the method itself, see ref. [9]. Our inference ansatz is to postulate that the system
can be described by the general equation of motion for cell i with position xi(t), velocity
vi(t) = dxi/dt, and acceleration v̇i(t) = dvi/dt:

ẋi = vi

v̇i = F(xi, vi) + f (|∆xij|)∆xij + γ(|∆xij|)∆vij + σηi(t)
(S10)

where ∆xij = xi − xj, ∆vij = vi − vj, 〈ηi(t)〉 = 0, and 〈ηi(t)ηj(t′)〉 = δijδ(t− t′).

Using ULI, the stochastic equation of motion of such an interacting system can be re-
constructed by projecting the dynamics onto a set of nb basis functions {bα(x, v)}α=1...nb ,
which are subjected to an orthonormalization scheme ĉα(x, v) = ∑nb

β=1 B̂−1/2
αβ bβ(x, v)

such that 〈ĉα ĉβ〉 = δαβ. The total deterministic contribution F(total) = F(xi, vi)+ f (|∆xij|)∆xij +
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γ(|∆xij|)∆vij of the system can then be approximated as a linear combination of these

basis functions, F(total) ≈ ∑nb
α=1 F(total)

α ĉα(x, v). Using ULI, we estimate the coefficients
of this expansion of the deterministic term F̂(total)

α and the noise amplitude σ̂ using the
increments of the observed position trajectories xi(t).

For interacting systems, we separate single-particle and interaction contributions into
separate sets of basis functions. We approximate the cohesion and friction terms f (|∆xij|)
and γ(|∆xij|) using a set of interaction kernels {uα(|∆xij|)} (see section 4.2). We fit the
single-cell term F(xi, vi) with a basis consisting of Fourier components in xi and poly-
nomials in vi including terms up to third order [1]:

F(xi, vi) ≈
N

∑
n=0

M

∑
m=0

[Anm cos(2πnxi/w) + Bnm sin(2πnxi/w)]vm
i (S11)

where N = M = 3 and w = 100 µm. As we show in section 4.2, our inference results
are not sensitive to the precise choise of basis employed.

A key assumption of our model (Eq. (S10)) is that the noise ηi(t) is uncorrelated in
time. To self-consistently test this assumption, we calculate the trajectories of the noise
increments ∆Wi(t) =

∫ t+∆t
t ηi(s) ds. An empirical estimator for ∆Wi(t) is [1, 10, 11]:

∆̂W i(t) ≈
∆t
σ̂

[
v̇i(t)− F̂(total)(xi, vi)

]
(S12)

Thus, we calculate the auto-correlation function of the noise as φ̂∆W = 〈∆̂W i(t)∆̂W i(t′)〉.
We find that for both cell lines, the noise decays to zero within a single time-step, con-
firming our white noise assumption. The weak negative correlation at |t− t′| = ∆t is
due to the presence of measurement errors in the positions, as discussed in refs. [1, 12].
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Figure S6: Inferred noise correlation functions. The correlation functions are normal-
ized by their value at |t− t′| = 0. The blue curve corresponds to MDA-MB-231 cells,
the green curve to MCF10A cells.

Three conditions for accurate inference from stochastic underdamped systems are (i)
sufficiently long trajectories to constrain the nb parameters of the fitted model, (ii) a
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sufficiently small measurement time interval ∆t to resolve the dynamics and (iii) mea-
surement errors on the positions that are smaller than the typical displacement in a
single time-step:

(i) Trajectory length − Inference from a finite data set relies on having sufficient in-
formation to accurately resolve the features of the underlying dynamical terms of the
equation of motion. The information contained in a set of trajectories for a system of

the type of Eq. (S10) can be empirically estimated as Îb = τ
2σ̂2 ∑nb

α=1

(
F̂(total)

α

)2
, where τ

is the total length of the trajectory. The parameters of the expansion can be accurately
inferred if Îb � nb, where Îb is given in natural information units (1 nat = 1/ log 2
bits) [9]. Here, we employ a basis with nb = 34 parameters (28 parameters for the sin-
gle cell term and 6 parameters for the interaction kernels). As shown in table 1, our
data sets contain enough information to constrain these parameters.

(ii) Discretization − To ensure a sufficiently accurate temporal sampling of the ob-
served signal, we ensured that the measurement time interval ∆t should be small enough
to resolve the time-scales of the collision dynamics, i.e. the switching time 〈τsame〉 =
(1.69± 0.11) h of MDA-MB-231 cells. Our measurement time interval is ∆t = 10 min,
and thus sufficiently small to resolve this time-scale. Additionally, the time interval
plays an important role as velocities and accelerations are obtained as discrete deriva-
tives from the position trajectories xi(t). Indeed, even for small ∆t, inference from un-
derdamped systems exhibits systematic discretization biases [9, 12, 13]. The leading or-
der term of the bias is removed through the construction of the ULI estimators [9]. We
show empirically that higher order biases do not strongly affect our inference results
by performing a self-consistency test (see section 4.3.1).

(iii) Measurement error − In any tracking experiment, the observed position trajecto-
ries are subject to time-uncorrelated measurement error m(t), such that the observed
signal is y(t) = x(t) + m(t), where x(t) is the true signal. ULI yields accurate inference
results in the regime |m| < v∆t, where v∆t is the typical displacement in a single time-
step. We can evaluate this condition from the data, using the average speed of the cells,
and comparing it to the measurement error amplitude inferred from the trajectories [9].
As shown in table 1, this condition is fulfilled for both data sets.

4.2 Robustness with respect to the projection basis

To infer the interaction terms of the dynamics, we approximate the cohesion and fric-
tion terms f (|∆xij|) and γ(|∆xij|) using a set of interaction kernels {uα(|∆xij|)}. Phys-
ically, we expect cell-cell interactions to be spatially local. Thus, to ensure accurate
inference in the region of interest, we choose kernels which decay at large distances,
uα(|∆xij| → ∞)→ 0. A simple choice for such kernels is a set of exponentials un(|∆xij|) =
exp(−|∆xij|/nr0) with n = 1...N. This basis therefore has two hyperparameters that
have to be chosen, the number for kernels N and the maximum decay length rmax =
Nr0. Alternatively, we also test a basis consisting of Gaussian functions un(|∆xij|) =
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Npairs Npts Îb (nats) σ̂ ( µm h3/2) 〈|v̂|〉∆t ( µm) |m̂| ( µm)

MDA-MB-231 90 15,979 11, 800± 150 51.4 2.6 1.3
MCF10A 155 19,470 11, 900± 160 47.9 2.4 1.4

Table 1: Statistics of the stochastic trajectory data sets for both cell lines. From left to
right, the columns denote: (i) The number of tracked cell pairs. (ii) The total number of
recorded time-points. (iii) The empirical estimate of the information content of the data
set, obtained by projecting the dynamics onto our standard basis choice (see section 4.2).
The error in the inferred information content is estimated as δ Îb ≈ [2 Îb + n2

b/4]1/2 [9].
(iv) The inferred noise amplitude. (v) The typical displacement in a single time-step.
(vi) The inferred amplitude of the measurement error, which is in line with previous
estimates for single cell migration in the same setup [1].

exp(−(|∆xij| − nr0)2/2W2) with n = 1...N. This basis therefore has three hyperparam-
eters N, rmax = Nr0, and W. While this inference scheme could be supplemented by
an additional optimization of the hyperparameters, we find this not to be necessary in
this case, as the inferred interaction terms do not sensitively depend on the choice of
hyperparameters or basis functions (Figs. S7,S8). Furthermore, the predictive power of
the inferred model is not sensitively affected by the choice of basis (Fig. S9). Through-
out the main text, we choose an exponential basis with an intermediate value of N = 3
functions and a maximum decay length rmax = 20 µm (black line in Figs. Figs. S7,S8).
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Figure S7: Inference results for exponential interaction kernels. a, Varying the num-
ber of kernels N, using rmax = 20 µm b, Varying the maximum decay length rmax, using
N = 3. (i), Cohesive component f (|∆xij|)|∆xij|. (ii), Friction kernel γ(|∆xij|). Top row:
MDA-MB-231 cells. Bottom row: MCF10A cells. Black line corresponds to the curves
shown in Fig. 4 of the main text, using N = 3 and rmax = 20 µm.
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Figure S8: Inference results for Gaussian interaction kernels. a, Varying the number
of kernels N, using rmax = 25 µm and W = 4 µm. b, Varying the maximum decay
length rmax, using N = 3 and W = 4 µm. (i), Cohesive component f (|∆xij|)|∆xij|. (ii),
Friction kernel γ(|∆xij|). Top row: MDA-MB-231 cells. Bottom row: MCF10A cells. Black
line corresponds to the curves shown in Fig. 4 of the main text, using an exponential
basis with N = 3 and rmax = 20 µm.
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Figure S9: Predicted position cross-correlation functions for various exponential
bases. a, Varying the number of kernels N. b, Varying the maximum decay length
rmax. Top row: MDA-MB-231 cells. Bottom row: MCF10A cells.
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4.3 Simulations of the inferred model

An important step in performing inference from data is to test the inferred model by
simulating stochastic trajectories based on the inferred model terms, and to compare
their statistical properties to those observed experimentally. We simulate the dynamics
using Verlet integration with a small time step dt. To compare the statistics of these
simulated trajectories to those observed experimentally, we sample the simulated tra-
jectories with the same discrete time interval as in experiments, ∆t = 10 min� dt.

4.3.1 Self-consistency test

First, we determine whether the inferred model is self-consistent: for a self-consistent
inference, re-inferring a model from simulated trajectories should yield the same model.
Here, we use the same number of simulated trajectories as experimentally observed tra-
jectories, with a similar trajectory length, and the same sampling interval ∆t as in the
experiment. We apply this test to the inferred models for MDA-MB-231 and MCF10A
cells, and find that the re-inferred model accurately matches the original inferred model
(Fig. S10), showing that our inference approach is numerically stable.
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Figure S10: Stability test of the inferred model. a, Flow field of the confinement
term F(xi, vi). Blue arrows: inferred from experimental data, black arrows: re-inferred
from simulated trajectories. b, Cohesive component f (|∆xij|)|∆xij|. c, Friction kernel
γ(|∆xij|). Top row: MDA-MB-231 cells. Bottom row: MCF10A cells.

4.3.2 Testing the predictive power of the model

To test the predictive power of the model, we apply the same analysis routines that
were applied to the experimental data to our simulated data (results shown in Fig.
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Figure S11: Experimental and predicted dynamics of the inferred model (Eq. 1 in
the main text). a, Probability distribution of all cell positions p(x) (experiment shown
in blue, model predictions in red). b, Normalized velocity auto-correlation function
〈vi(t)vi(t′)〉. Top row: MDA-MB-231 cells. Bottom row: MCF10A cells.

2 of the main text). The inferred model is fully constrained by the short time-scale
accelerations of the dynamics. Thus, comparing the predicted long time-scale features
such as correlation functions to the experimental data provides an independent test of
the model. In addition to the statistics shown in the main text, here we show several
additional statistics to test experiment-model agreement. To test how accurately the
model captures the dynamics at the single-cell level, we plot the distribution of all cell
positions p(x), and the velocity auto-correlation function 〈vi(t)vi(t′)〉. As shown in
Fig. S11a,b, these statistics are well captured by the model.

In our model, we assume that the cell-cell interactions separate into a cohesive contri-
bution f (|∆x|)∆x and an effective linear friction γ(|∆x|)∆v. This choice is motivated
by the observation that the ∆v-dependent component of the contact acceleration maps
is linear (Fig. 3c,f in the main text). We find that the contact acceleration maps pre-
dicted by the model are qualitatively very similar to those inferred from experiments
(Fig. S12), indicating that this assumption is valid.

Next, we show side-by-side comparisons of the full joint probability distribution of
positions p(x1, x2) and velocities p(v1, v2) (Fig. S13). The experimental distributions
p(x1, x2) exhibit several features (Fig. S13a). First, there is a clear minimum around
(0, 0), corresponding to both cells occupying the connecting bridge. Second, we find
peaks where each cell occupies one island, and fainter peaks where both cells occupy
the same island. This reflects the mutual exclusion behavior exhibited by these cells.
These peaks are connected by horizontal and vertical ’paths’, indicating that during
transitions, typically, only one cell performs a transition at a time. Finally, we find
that the peaks corresponding to both cells occupying the same island are ’split’, and
exhibit two distinct close-by maxima. Our model captures almost all of these features,

18

314 8. Learning cell-cell interactions from pair-wise collisions



M
C
F1

0A
°20 0 20

¢x (µm)

°100

0

100

¢
v

(µ
m

h
°

1
)

experiment

°20 0 20
¢x (µm)

°100

0

100

¢
v

(µ
m

h
°

1
)

modelba

M
DA

-M
B-

23
1

°20 0 20
¢x (µm)

°100

0

100

¢
v

(µ
m

h
°

1
)

experiment

°20 0 20
¢x (µm)

°100

0

100

¢
v

(µ
m

h
°

1
)

model

°20 0 20
¢x (µm)

°100

0

100

¢
v

(µ
m

h
°

1
)

experiment

°100

0

100

°20 0 20
¢x (µm)

°100

0

100

¢
v

(µ
m

h
°

1
)

model

°100

0

100

Figure S12: Experimental and predicted contact acceleration maps. a, Experimentally
measured contact acceleration map. b, Contact acceleration map measured from simu-
lation data, plotted for the same region of phase space sampled in the experiment. Top
row: MDA-MB-231 cells. Bottom row: MCF10A cells.
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Figure S13: Experimental and predicted joint probability distributions. a,b. Experi-
mental and predicted joint probability distribution of positions p(x1, x2). c,d. Exper-
imental and predicted joint probability distribution of velocities p(v1, v2). Top row:
MDA-MB-231 cells. Bottom row: MCF10A cells.

including the relative occupation of the same- and opposite-side configuration, and
the path-structure of the map (Fig. S13b). However, the model does not exhibit the
same splitting of the same-side probabilities, which may be due to movement in the
second dimension (the short axis of the micropattern, y), which is not captured by the
model. Our model further captures the structure of the velocity distributions p(v1, v2)
(Fig. S13c,d).
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Figure S14: Experimental and predicted joint probability distributions, plotted on a
linear scale. Same panels as shown in Fig. S13, but with a linear colour scale.

4.3.3 Ruling out simpler models

We arrived at our model (Eq. (S10)) by first excluding simpler alternatives. First, we
consider the non-interacting case, consisting only of the single-cell term:

v̇i = F(xi, vi) + σηi(t) (S13)

As expected, such a model is unable to capture the correlations in the system, and can
therefore be ruled out (Fig. S15). This model is still able to capture the distinct minimum
in the joint probability density around (x1, x2) = (0, 0), suggesting that this feature is
due to the single-cell term: due to the confinement very little occupancy is expected
near the center of the connecting bridge.

Next, we consider a model including only a cohesive term:

v̇i = F(xi, vi) + f (|∆xij|)∆xij + σηi(t) (S14)

While this model can approximately capture the dynamics of MCF10A cells, except for
the velocity cross-correlation function, it completely fails to describe the MDA-MB-231
statistics (Fig. S16). In fact it predicts that cells are more likely to occupy the same-side
configuration, in qualitative disagreement with our experimental observations, likely
due to the attractive nature of the cohesive interaction in MDA-MB-231 cells.

Finally, we consider a model including frictional interactions, but no cohesion:

v̇i = F(xi, vi) + γ(|∆xij|)∆vij + σηi(t) (S15)

This model qualitatively fails to account for the MCF10A statistics (Fig. S17): it predicts
that cells are more likely to occupy the same-side configuration, likely due to the regular
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Figure S15: Experimental and predicted dynamics for an inferred model without in-
teractions. a. Experimental joint probability distribution p(x1, x2). The colour bar cor-
responds to that shown in Fig. S13. b. Model prediction of the joint probability distri-
bution p(x1, x2). c. Position cross-correlation functions for the experiment (blue) and
model prediction (red). d. Velocity cross-correlation functions for same-side configura-
tions. Top row: MDA-MB-231 cells. Bottom row: MCF10A cells.
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Figure S16: Experimental and predicted dynamics for an inferred model with only
cohesive, but no friction interactions. See Fig. S15 for captions.

friction between MCF10A cells, which acts to slow cells down when they are close to
each other.

21

317



In conclusion, we find that the simplest model within the class of models considered
here, which can accurately capture the statistics of both MCF10A and MDA-MB-231
cell pairs, requires both cohesive and friction interactions.
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Figure S17: Experimental and predicted dynamics for an inferred model with only
friction, but no cohesive interactions. See Fig. S15 for captions.
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4.4 Separation of single-cell and interaction terms

Here, we directly compare the single-cell term inferred from experiments with interact-
ing cell pairs (F(xi, vi) in Eq. (S10)) to the deterministic term inferred from experiments
in which only a single cell occupies the pattern [1], denoted Fsc(x, v). In Fig. S18, the
terms are compared side by side. Furthermore, we show the deterministic flow field
(ẋ, v̇) = (v, F(x, v)) superimposed for both experiments. These results indicate a re-
markable similarity of the inferred terms, indicating that the contributions of single-cell
dynamics (corresponding to the internal motility of the cell and its interaction with the
local micro-environment placed by the micropattern) are not strongly affected by the
presence of another cell.

b ca single cell Fsc(x, v) cell pair F(x, v) flow fields

single cell
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Figure S18: Disentangling single-cell and interaction contributions. a, Deterministic
term Fsc(x, v) inferred from experiments with single cells confined to two-state micro-
patterns [1], obtained by applying ULI with the same basis expansion as used for cell
pair experiments (Eq. (S11)), without interaction terms. Plotted with the same colour
scale as in Fig. 4 in the main text. b, Single-cell term F(x, v) inferred from cell pair ex-
periments (as shown in Fig. 4 in the main text). c, Direct comparison of the flow fields
of both terms. Fat blue arrows: inferred from cell pair data, thin darkviolet arrows: in-
ferred from single-cell experiments. Top row: MDA-MB-231 cells. Bottom row: MCF10A
cells.
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4.5 Generalization of the inference approach to higher dimensions and het-
erotypic interactions

4.5.1 Inference in 2D and 3D multi-cellular systems

The cell-cell interaction inference procedure we have developed here can be readily
generalized to 2D and 3D systems, including assemblies of many cells. Specifically, our
model (Eq. (S10)) can be generalized to higher dimensions as follows:

ṙi = vi

v̇i = F(xi, vi) + ∑
j 6=i

[
f (rij)rij + γ(rij)vij

]
+ σηi(t) (S16)

where rij = ri − rj, rij = |rij|, and vij = vi − vj, and the sum goes over all particles
j = 1...N. The Gaussian white noise in this case has the property 〈ηi,µ(t)ηj,ν(t′)〉 =
δµνδijδ(t− t′), where {i, j} are particle indices and {µ, ν} = 1...d, where d is the dimen-
sionality of the system.

Here, the single-cell contribution F(xi, vi) reflects the properties of the environment in
which cells migrate. In a spatially unstructured system, such as in the case of an epithe-
lial monolayer, there will be no space-dependence, F(xi, vi) ≡ F(vi). For example, for
a simple persistent random motion model, the single-cell contribution would take the
form F(vi) = −τ−1

p vi, where τp is the persistence time of the cell. For the interactions
terms in Eq. (S16), we assume radially symmetric interactions, i.e. that f and γ only
depend on rij, similar to the model we have inferred here. In this case, the interactions
we have inferred here from confined 1D migration of cells could be directly generalized
to a 2D or 3D scenario, by taking f (rij) = f (|∆xij|) and γ(rij) = γ(|∆xij|). The Under-
damped Langevin Inference method we have used here for 1D inference can be directly
generalized to 2D or 3D data by assuming that interactions are in the radial direction
only. Note, however, that this method could also infer non-radial forces that depend
also, for instance, on the velocity vector of each of the particles through alignment or
avoidance torques. For a demonstration, see ref. [9].

4.5.2 Heterotypic interactions

Our model (Eq. (S10)) could furthermore be generalized to account for heterotypic in-
teractions, where cells of different types interact with one another. In this case, we can
no longer assume that the single-cell, interaction, and noise terms are identical for all
cells, but they will depend on the cell type of each cell si:

ṙi = vi

v̇i = Fsi(xi, vi) + ∑
j 6=i

[
fsisj(rij)rij + γsisj(rij)vij

]
+ σsi ηi(t)

(S17)
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where for a system with N cells with n different cell types, i, j = 1...N, and si ∈ {1...n}.
In this case, for each cell the single-cell and noise contribution is determined by its
cell type: Fsi and σsi . The interaction components fsisj and γsisj depend on the cell
type of both cells in a pairwise interaction. In the example of two cell types inter-
acting, there are thus four types of interactions: fs1s1 , fs1s2 , fs2s1 , fs2s2 , and similarly for
γ. To infer these interactions, the same set of basis functions {cα(x, v)} can be used
for both cell types, but a different set of coefficients will be inferred for each type si,
i.e. F(total)

si ≈ ∑nb
α=1 F(total)

α,si ĉα(x, v). Note that if fs2s1 6= fs1s2 , the cells will exhibit non-
reciprocal interactions.

5 Cell-cell interactions on a micropatterned track

To further test the generality of our results, we investigate the dynamics of MDA-MB-
231 cell pairs in a different confinement geometry: a short track with the same over-
all dimensions as the two-state micropatterns, but without a constriction (Fig. S19a).
Specifically, this micropattern has average dimensions ((103.4 ± 0.3) µm) × ((34.8 ±
0.2) µm). We track a total of 84 cell pairs, resulting in a large data set of coupled cell
trajectories (Fig. S19b). By applying the same inference scheme (using the same basis ex-
pansion) as for the two-state data, we determine the single cell contribution F(x, v) and
the cohesive and frictional interactions (Fig. S19c-e). As before, the single cell contribu-
tion is similar to the deterministic contribution inferred from experiments with only a
single cell in the pattern, Fsc(x, v) (Inset Fig. S19c; see section 4.4 and ref. [1]). Impor-
tantly, we find that the inferred model exhibits the same types of interactions as in the
two-state geometry, including a short-range attractive and an anti-friction component.
The model performs well on predicting the statistics of the trajectories: the joint proba-
bility distribution, the collision statistics, the position probability distribution, and the
velocity auto-correlation function are well captured (Fig. S19f-h,j). The cross-correlation
of positions deviates slightly, but decays on a similar time-scale (Fig. S19i). This devia-
tion is likely due to a larger freedom to explore the y-dimension of the pattern than in
the two-state geometry, which is not accounted for by our 1D model. Taken together,
these results demonstrate that our inference procedure can be generalized to other ge-
ometries, and that the results of the inferred cell-cell interactions do not sensitively
depend on the precise confinement geometry.

We challenge our inference approach further by attempting to predict the collision
statistics of interacting cells on a track geometry using only observations from other
experiments to constrain our model. Specifically, we combine the single-cell and noise
terms inferred from experiments where only a single cell migrates on the track together
with the interactive terms inferred from cell pair experiments on two-state micropat-
terns:

ẋi = vi

v̇i = Ftrack
sc (xi, vi) + f two−state(|∆xij|)∆xij + γtwo−state(|∆xij|)∆vij + σtrack

sc ηi(t)
(S18)

Strikingly, this model quantitatively predicts the relative percentage of collision events
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Figure S19: Cell-cell interaction dynamics on a micropatterned track (MDA-MB-231
cells). a, Microscopy image of an interacting cell pair confined to a micropatterned
track. Micropattern outline is shown in white. Scale bar: 25 µm. b, Sample set of nu-
clear trajectories x1,2(t) as a function of time, shown for 12 cell pairs. Axes limits are
0 < t < 30 h and -60 µm < x < 60 µm, with x = 0 at the center of the pattern. A
total of 84 cell pairs were tracked. c, Single-cell contribution F(x, v) to the interacting
dynamics, measured in units of µm/h2. White lines indicate the flow field given by
(ẋ, v̇) = (v, F(x, v)). Inset: corresponding term inferred from experiments with single
cells [1]. d, Cohesive interaction term f (|∆x|)∆x. Positive values indicate repulsive
interactions, while negative values correspond to attraction. e, Effective frictional inter-
action term γ(|∆x|). Here, positive values indicate an effective anti-friction, and nega-
tive values an effective frictional interaction. f, Joint probability distributions p(x1, x2)
of cell positions, plotted logarithmically. The top triangle of the symmetric distribu-
tion shows the experimental result, the bottom triangle shows the model prediction. g,
Percentages of each of the three types of collision events observed. h, Probability distri-
bution of all cell positions p(x) (experiment shown in blue, model predictions in red).
i, Cross-correlation function of cell positions 〈x1(t)x2(t′)〉, plotted on the same scale as
the plots in Fig. 2 of the main text. j, Normalized velocity auto-correlation function
〈vi(t)vi(t′)〉.

observed in experiment, highlighting the potential generalizability of the inferred in-
teractions.
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Figure S20: Predicted collision behaviors using the inferred interactions from two-
state micropatterns. Experimental (solid) and predicted (empty) collision percentages
using Eqn. S10. These correspond to the results shown in Fig. 2d of the main text.

6 Construction of the interaction behavior space (Fig. 5)

By inferring a model directly from experimental data, we have shown that the migra-
tion of cells in two-state micropatterns is well captured by an equation of motion of the
form Eq. (S10). In order to predict behaviors beyond those sampled in our experiments,
we extrapolate this description by scanning the interaction space spanned by the pref-
actors of cohesion and friction. Thus, we simulate trajectories using the equation of
motion

v̇i = F(xi, vi) + f0gc(|∆xij|)∆xij + γ0gf(|∆xij|)∆vij + σηi(t) (S19)

Here, we employ the confinement term F(xi, vi) and the noise strength σ inferred from
MDA-MB-231 experiments. For the inference on our experimental data (section 4), we
employed a functional expansion of the interactions using N = 3 exponentials, which
were required to capture the quantitative details of the correlation functions (Fig. 2 in
the main text). The collision behavior is already well captured with a simple expansion
consisting a single exponential (N = 1). Thus, for simplicity, in the construction of
the IBS we use single exponentials. For the result in the main text (Fig. 5), we use
gc = gf = e−|∆xij|/R0 with R0 = 30 µm.

To construct the IBS, we scan the ( f0, γ0)-plane to obtain a set of models, each of which
can be used to simulate a large set of stochastic trajectories. We apply the same analysis
routines to these trajectories as to the experimental data, and identify for each value of
( f0, γ0) the relative percentage of reversal, sliding and following events (Fig. S21). We
find that the interaction space exhibits well-defined behavioral regimes, in which one
of the three behaviors dominates. For example, for a combination of repulsive and fric-
tional interactions, we find that reversal events dominate over all other events (bottom
right in Fig. S21a). Thus, we can identify for each value of ( f0, γ0) the collision type
that dominates the observed behavior, plotted in Fig. S21d. Using this construction, we
can therefore connect the interaction parameters governing the instantaneous short-
time dynamics to the emergent long-time behavior. We therefore term this construction
interaction behavior space (IBS).
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Importantly, if we perform the same simulations with the MCF10A single-cell term,
we obtain a qualitatively similar IBS (Fig. S22), indicating that our predictions are not
sensitive to the details of the single-cell term, but are determined by the interactions. To
determine where to approximately place the MCF10A and MDA-MB-231 cells within
the IBS, we perform an inference with only a single (N = 1) exponential basis function.
In accord with our more general inference (using N = 3), we find that MCF10A exhibit
repulsive and frictional interactions, while MDA-MB-231 cells exhibit attractive and
anti-friction interactions (stars in Fig. S22). Furthermore, the qualitative structure of
the IBS is not sensitive to the choice of interaction decay length R0 within a reasonable
range, or to using non-exponential kernels (Fig. S23).

These results demonstrate two things: First, a large variety of behaviors can be cap-
tured by our model (Eq. (S19)). Second, with new experiments, similar models can be
inferred, and the inferred interactions can be placed within the IBS, assuming no addi-
tional parameters are required to describe their behavior. Thus, the IBS could provide
a way to connect different experimental observations within a single framework.
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Figure S21: Identification of behavioral regimes in the interaction behavior space.
a, Predicted percentage of reversal events as a function of the cohesion and friction
prefactors. Here, the same interaction kernel is used as in Fig. 5 of the main text:
gc,f = e−|∆xij|/R0 with R0 = 30 µm. b, Predicted percentage of sliding events. c, Pre-
dicted percentage of following events d, To construct the behavioral regimes, we iden-
tify the behavior with the maximal percentage in each bin, and plot its percentage in
the respective colour scheme. The colour scheme is constructed such that percentages
around 50%, where no single behavior contributes the majority of events, are plotted in
white.
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a bMDA-MB-231 MCF10A

Figure S22: Robustness of the IBS with respect to the single-cell term F(xi, vi). a, Pre-
dicted behavioral regimes using the MDA-MB-231 single-cell term. b, Predicted behav-
ioral regimes using the MCF10A single-cell term. In both cases, we use gc,f = e−|∆xij|/R0

with R0 = 30 µm. Black stars indicate the inferred values for ( f0, γ0) for each cell
type using an interaction basis consisting only of a single exponential usingle(|∆xij|) =
e−|∆xij|/R0 with R0 = 30 µm.

a b

c d

Figure S23: Robustness of the IBS with respect to the functional form gc,f(|∆xij|)
of the interaction kernels. a, Predicted behavioral regimes using gc,f = e−|∆xij|/R0

with R0 = 30 µm (shown in main text). b, Predicted behavioral regimes using
gc,f = e−|∆xij|/R0 with R0 = 40 µm. c, Predicted behavioral regimes using gc,f =
1/[(|∆xij|/R0)4 + 1] with R0 = 30 µm. d, Predicted behavioral regimes using gc,f =

1/[(|∆xij|/R0)4 + 1] with R0 = 40 µm.
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Cell dispersion from a confined area is fundamental in a number of biological processes, 
including cancer metastasis. To date, a quantitative understanding of the interplay of 
single cell motility, cell proliferation, and intercellular contacts remains elusive. In 
particular, the role of E- and N-Cadherin junctions, central components of intercellular 
contacts, is still controversial. Combining theoretical modeling with in vitro observations, 
we investigate the collective spreading behavior of colonies of human cancer cells (T24). 
Inhibition of E- and N-Cadherin junctions decreases colony spreading and average 
spreading velocities, without affecting the strength of correlations in spreading velocities 
of neighboring cells. Based on a biophysical simulation model for cell migration, we show 
that the behavioral changes upon disruption of these junctions can be explained by 
reduced repulsive excluded volume interactions between cells. This suggests that 
cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather 
than cohesive interactions between cells, thereby promoting efficient cell spreading 
during collective migration. 

 
Collective cell migration is central to a number of key physiological processes, including 
morphogenesis during development [1], as well as immune response [2], wound repair [3] and 
tissue homeostasis [4] in the developed organism. Aberrant cell migration is associated with 
several pathologies, such as the spread of malignant cancer cells to previously healthy tissues 
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during metastasis [5]. The migratory dynamics of cell collectives in these processes are not 
merely the outcome of many independently moving cells: they are controlled by cell-cell 
interactions [6, 7]. Specifically, cells form mechanosensitive cell–cell adhesion junctions 
(adherens junctions) and coordinate their movements by actively interacting with each other [8]. 
These interactions facilitate a coordination of collective behavior where a colony of cells invades 
an empty area [9]. However, it remains unclear how different types of cell-cell interactions 
control such collective spreading behavior. 
 
The trajectories of single migrating cells are well described by stochastic trajectory models, both 
for cells migrating on 2D surfaces [10-12] and in confining environments [13-15]. Yet, it is 
challenging to describe the stochastic collective migration of a cancer cell colony, as cell division 
and cell-cell contacts have to be taken into consideration. Cell-cell contacts lead to a variety of 
interactions between cells. Firstly, cells exhibit excluded volume (EV) interactions, where an 
individual cell occupies space and exerts a repelling force on other cells that move within this 
space [16]. Secondly, many cell types have the tendency to reorient their direction of motion and 
move apart upon contact, which is referred to as Contact Inhibition of Locomotion (CIL) [17, 18]. 
In physical stochastic trajectory models, these interactions are frequently incorporated as a 
combination of repulsive interactions, modelling EV, and velocity interactions including velocity 
alignment as well as CIL [19-23]. Conceptually, there is a key difference between these 
interactions: while repulsive interactions depend on the relative positions of cells, velocity 
interactions depend on their motion, i.e. their velocities or polarities. However, it remains 
unclear how changes in cell-cell contacts within a migrating colony influence these distinct types 
of interactions and the resulting collective migratory behavior. 
 
Intercellular interactions are strongly dependent on Cadherins, highly conserved calcium-
dependent transmembrane proteins that constitute the main component of adherens junctions. 
Type I classical cadherins (including epithelial (E) and neuronal (N) cadherin as well as P-, R- and 
M-cadherin [24]) form strong cell–cell adhesion by predominantly homotypic interaction 
between their extracellular domains [25]. The intracellular cadherin domains connect to β- and 
α-catenins that associate with the actin cytoskeleton to mediate mechanotransduction [26]. 
Changes in the normal expression levels of the different cadherin types has been associated with 
carcinogenesis. One of the most studied processes related to several epithelial tumors is the 
cadherin switch observed during Epithelial-Mesenchymal transition (EMT). EMT involves the loss 
of epithelial cell polarity and cell-cell adhesion and the gain of migratory and invasive properties, 
resulting in the predominance of a mesenchymal phenotype [27]. More specifically, there 
typically is a strong downregulation of E-Cadherin in parallel with an upregulation of N-Cadherin 
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in EMT. As a result, E-Cadherin adherens junctions disassociate while N-Cadherin junctions 
establish a relatively weak (compared to E-Cadherin) adherens junction [28].  
 
However, the role of E- or N- Cadherin-mediated intercellular adhesions in cancer cell migration 
remains controversial. On the one hand, E-Cadherin downregulation has been related to cancer 
development [29, 30], and it has been shown that the presence of E-Cadherin induces a spreading 
cell monolayer to retract and form a spheroid aggregate, a process called dewetting [31], 
suggesting its role as a potent tumor suppressor. On the other hand, a number of studies suggest 
the opposite effect: E-Cadherin is required for metastasis in multiple models of breast cancer 
[32], it promotes expansion of bladder carcinoma in situ [33], and is highly present in patients 
with prostate cancer [34], ovarian cancer [35], and glioblastoma [36]. A similar controversy 
characterizes the involvement of N-Cadherin in migratory behavior. Although N-cadherin is a 
marker of EMT and its expression has been associated with the development of multiple cancer 
types [28], there are studies pointing in the opposite direction. In fact, N-cadherin loss was 
associated with increased tumor incidence [37] and metastasis [38]. Consequently, a question is 
yet to be answered: what is the distinct contribution of E- and N-Cadherin junctions to cell-cell 
interactions and the resulting spreading dynamics of cancer cell colonies? 
 
Here, we aim to investigate this question by combining experimental observations on collectively 
migrating cells and a minimal physical model of the spreading behavior. We use an epithelial 
bladder cancerous cell line (T24), which is characterized by high N-Cadherin expression and 
limited [39] or zero functional levels of E-Cadherin [40, 41]. After initial confinement of a colony 
of cells to a circular micropattern, the cells are released using chemical tools [42, 43]. We quantify 
the collective migration by identifying and tracking the entire ensemble of single cell trajectories 
in each colony. To investigate the effect of cell-cell contacts for the migration, we inhibit E- or N-
Cadherin junctions via specific blocking antibodies. In both cases, our analysis reveals that such 
inhibition leads to a reduced spreading velocity of the cell colonies. To elucidate these dynamics, 
we develop a minimal active particle model for collective migration, that includes cell 
proliferation as well as repulsive and CIL interactions. This model shows that inhibiting E- or N-
Cadherin has an effect akin to reducing the strength of repulsive cell-cell interactions in the 
model. In other words, disturbing either of these cadherin junctions decreases the displacement 
generated when neighboring cells push each other away in order to create space for themselves. 
Therefore, we show that both E- and N-Cadherins contribute to the maintenance of intercellular 
contacts that facilitate cell spreading via repulsive interactions, causing cells to move further 
away from each other. This could be a consequence of cadherins 'sharpening' cellular boundaries, 
through e.g. shape regulation, changes in interfacial tension, or increased cell-cell recognition 
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[44]. These observations indicate the important role of cadherins in metastatic events and their 
potential as cancer treatment targets.  
 

 
 
Figure 1 | Schematic representation of the microcontact printing and click-chemistry process. A i) Ibidi’s 
uncoated surface (here one well is represented) undergoes plasma treatment to become reactive, for 
subsequent attachment of fibronectin (FN). ii) Example of PDMS-square stamp with circular patterns 
produced with standard microcontact printing techniques (blue). The stamp is placed at the center of the 
well and the surface is plasma-treated again. The whole surface except for the stamp-protected circular 
areas loses its fibronectin coating and becomes hydroxylated. B i) With the stamp remaining in place, APP 
is added next to it and absorbed by the whole surface except for the stamp-protected circular areas 
(green). B ii) This results in fibronectin-coated circular areas (green) surrounded by an otherwise cell 
repellent APP surface (red). T24 cancer cells are seeded on the circular areas forming the initial cell 
population. C i) BCN -RGD peptides are then added and bind to the APP coated surface via click chemistry 
reaction between the BCN and the azide groups of the APP. C ii) The previously cell-repellent surface is 
now coated with RGD and thus, highly cell adhesive. The cells are able to expand (migrate) from the 
circular areas to the rest of the surface.  
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Release from a micropatterned circular adhesive area leads to collective cell spreading 
To generate an experimental setup for tracking collective cell spreading dynamics, we develop a 
micropatterned platform from which cells can be released in a standardized manner. Specifically, 
we design a new patterning approach based on a novel sequence of surface plasma treatment, 
standard microcontact printing, fibronectin coating and click chemistry steps. This process results 
in the production of circular fibronectin-coated adhesive areas that are surrounded by cell-
repellent azido (PLL-g-PEG) (APP)-coated surfaces. These non-adhesive surfaces can then be 
activated on demand, via a biocompatible click chemistry reaction between the azide groups of 
the APP on the surface and added BCN-RGD peptides to allow time-controlled cell migration 
outside the circular areas [45] (see Materials and Methods and Fig. 1). Subsequently, we use T24 
urothelial bladder carcinoma epithelial cells which is a well-established malignant cell line [46], 
widely used in cell migration research [47-50] and in EMT transition [50]. The cells are detectable 
using fluorescence microscopy imaging via their nuclear H2B-GFP fluorescent tag.  
 
We perform time-lapse fluorescence and bright-field microscopy for the first 24 hours after 
surface activation. Here, we observe cells increasingly spreading outwards over time, in all 
directions, covering a large circular area (Fig. 2 A). While the cells form an approximately 
confluent monolayer, there are occasional gaps within the layer and significant nearest-neighbor 
rearrangements during the spreading process (Supplementary Movie S1). Thus, to gain access to 
the dynamics of the entire cell collective, we perform tracking of the fluorescently tagged nuclei 
as previously described [43], giving access to the full ensemble of cell trajectories in each escaping 
cluster (Fig. 2 B). 
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Figure 2 | Cell spreading and evolution of cell density of control (untreated) T24 cells. A) Time-lapse 
bright-field (upper), fluorescence (middle) microscopy images or overlay with cell tracks (lower) showing 
the T24 cell migration with 6h intervals from 0h to 24h after surface activation. B) Space diagram of colony 
spreading up to 24h after surface activation. C) Colony spreading radius of T24 cells at 0h (blue) vs 10h 
(red) after surface activation. D) Evolution of the density profiles over 24 hours (blue to red) plotted as 
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the mean of all colonies (n=14). All curves are separated by 1 h intervals. E) Kymograph of the cell density 
evolution, corresponding to (D). F) Mean radial velocity (ur) over time (average of all colonies per density). 
The high-density colonies (blue) exhibited a direct increase in radial velocity, larger than the medium and 
low-density colonies (gray and black, respectively), peaking around 5h after surface activation. G) Average 
distance where density has decayed to half of its value in the center of the original confinement (i.e. at 
r=0). The distance was higher over time for the high density compared to the medium and low-density 
condition. Error bars: SEM; nhigh= 12, nmedium= 15, nlow= 12. Space diagram of colony spreading for the 
different cell densities and complete density evolution profiles shown as mean of all colonies are provided 
in Supplementary Fig. S4. 
 
 
At the single cell level, these trajectories are also highly stochastic, as expected from single cells 
which perform stochastic persistent random motion on unstructured 2D substrates [12]. As 
shown by the space-time trajectories of the system, the cells have an overall tendency to escape 
the cluster, and after a period of 10h, a large fraction of the cells has left the initial confinement 
(Fig.  2 C). The spreading process is quantified by the evolution of the radial density profile ρ(r) of 
the cluster (Fig. 2 D, E). Specifically, we calculate the average number of cells per area element 
as a function of the distance to the center of the initial confinement radius. As a function of time, 
the density within the confinement initially decreases, due to cells leaving the confinement 
through random migration. Correspondingly, the density outside the confinement increases. 
Interestingly, after a period of approximately 10h, the density inside the confinement stabilizes 
at a constant value. To further quantify the overall spreading, we calculate the average radius at 
which the density profile has decayed to half its value at the center of the initial confinement R1/2 
(Fig. 2 G). Finally, we quantify the average radial velocity of the spreading cells as a function of 
time, which reveals a marked peak at intermediate spreading times (Fig. 2 F). These statistics are 
helpful to investigate the impact of collective effects. Thus, we analyzed clusters initialized in the 
same confinement radius, but with lower cell concentrations. At these lower concentrations, less 
spreading is achieved (Fig. 2 G), and the peak in radial velocity disappears (Fig. 2 F), indicating 
that the dynamics observed in our experiments are density dependent, and therefore have a 
distinct collective character. The collective escape behavior is therefore likely determined by a 
combination of single-cell motility, cell proliferation, and cell-cell interactions. 
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Figure 3 | Computational model for collective cell escape. A) Schematic of the components of our active 
particle model, from left to right: persistent random motion of individual particles, cell division with 
constant rate 𝜈, excluded volume interactions, and Contact Inhibition of Locomotion. B) Time-series of a 
cluster escape simulation. Cell positions are shown as blue circles of radius λ, which is the radius of the 
repulsive potential. Previous motion of the cells is shown as colored trajectories. C, D) Evolution of the 
density profile over time (blue to red) plotted as the mean of n=30 colonies. Inset: Kymograph of the cell 
density evolution. Dashed lines indicate the initial confinement radius. B corresponds to a model without 
cell division, while C includes cell division. E) Mean radial velocity over time for clusters with different 
initial density. F) Mean radial velocity over time for clusters with (i) different CIL interaction amplitudes, 
and (ii) different strengths of cell-cell repulsion interactions. G) Average distance where density has 
decayed to half of its value in the center of the original confinement (i.e. at r=0). H) Cross-correlation of 
velocity fluctuations. Error bars: SEM; n=30 for all panels. 
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Minimal active particle model captures experimental colony spreading 
To elucidate the interplay of the various factors affecting the collective migration in our 
experiments, we develop a minimal active particle model for collective cell migration (Fig. 3 A). 
In this model, single cells perform persistent random motion, as observed for single cell migration 
on two-dimensional substrates [10]. We include cell-cell interactions in our model through two 
distinct contributions [21, 43, 51]: a repulsive component modelling excluded volume (EV) 
interactions, and Contact Inhibition of Locomotion (CIL) which models the tendency of cells to 
reorient away from contacts upon collision. We first confine the particles into a circular region of 
radius R and then observe their behavior upon release, exactly like in the experiment (Methods 
Section and Fig. 3 B). 
 
Interestingly, this model predicts a rapid decay of the density within the initial confinement area 
over time, as particles perform random motion and are repelled by their neighbors and move 
outwards (Fig. 3 C). This observation is inconsistent with our experimental data, which showed 
only a weak decay in the initial confinement area (Fig. 2 D, E). As shown by our cell proliferation 
estimations, cell division plays an important role on the time-scale of tissue spreading in this 
system: the number of cells nearly doubles within 10h (Supplementary Fig. S3). We therefore 
include a basic implementation of cell division in our model, where cells stochastically perform 
divisions at a constant rate. This model including cell division exhibits a slower decay of density, 
and an overall density profile that is consistent with our experimental observations (Fig. 2 D, 3 
D). This also suggests that divisions play an important role in the experiment by keeping the cell 
layer close to confluent. This prevents the density from decreasing too quickly, in which case cells 
would not interact significantly, further supporting the important role of cell proliferation in 
collective cell spreading phenomena. 
 
Having included cell division, we find that our model captures other key features of the 
experimentally observed dynamics. Importantly, we observed that the model predicts a peak in 
the radial velocity (Fig. 3 F i), similar to experiments (Fig. 2 G). This peak in radial velocity on a 
time-scale of the order of the persistence time of the cells corresponds to the outward diffusive 
flux expected for a collection of self-propelled particles [43, 52]. Specifically, upon removal of the 
confinement, cells at the boundary of the cluster are repelled by the bulk of the cluster, leading 
to a re-orientation of their movement in an outward direction. This causes the initial increase of 
the average radial velocity, which is followed by a decreasing trend due to the randomization of 
movement once the cluster has spread significantly. Furthermore, our model reproduces the 
gradual increase of the spreading radius (Fig. 3 G i), and a positive cross-correlation of velocity 
fluctuations indicating short-ranged alignment of cell movement (Fig. 3 H i). Finally, our model 
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correctly predicts a reduction in the radial velocity for lower cell densities, as we observed 
experimentally (Fig. 3 E). Taken together, these results demonstrate that our cell cluster 
experiments exhibit the behavior expected for a collection of active particles with interactions. 
In the experiment, the interactions between cells are known to be controlled by transmembrane 
proteins, including E- and N-Cadherins [44, 53], whose role we seek to elucidate in the next 
section. 
 

 
Figure 4 | Effect of blocking antibody treatment on E- and N-Cadherin gene and protein expression. A) 
Quantitative PCR analysis of (i) E- and (ii) N-Cadherin gene expression in untreated (control) or treated 

337



T24 cells with E- blocking antibody for 1 and 5 hours, respectively. E-Cadherin blocking antibody treatment 
at the highest concentration tested (25um/ml) resulted in a significant upregulation of the E-Cadherin 
gene expression after 5 hours compared to control (mean diff. ± SE= 1.780± 0.4290, p=0.0142). 
Furthermore, the same treatment resulted in a significant downregulation of N-Cadherin gene expression 
at the same timepoint compared to the 1h timepoint, indicating a cadherin-switching effect (mean diff ± 
SE = 0.2251 ±0.05014, p=0.0099). B) Quantitative Western Blot analysis of E- cadherin protein levels in 
untreated (control) or treated T24 cells with 25μg/ml E-Cadherin or 50μg/ml N-Cadherin blocking 
antibody after 24 hours. Both antibodies significantly reduced the levels of E-Cadherin after 24 hours 
(Control vs E-CAD BA: mean diff ± SE=54.43±19.40, p=0.03; Control vs N-CAD BA: mean diff ± SE= 
61.47±19.40, p=0.03). C) Quantitative PCR analysis of (i) E- and (ii) N-Cadherin gene expression in 
untreated (control) or treated T24 cells with N- blocking antibody for 1 and 5 hours, respectively. N-
Cadherin blocking antibody treatment at the second highest concentration tested (50 μg/ml) resulted in 
a non-significant upregulation of N- and E-Cadherin gene expression at 5h compared to control (N-
Cadherin: mean diff ± SE= 0.0447±0.1676, p=0.9618; E-Cadherin: mean diff ± SE = 0.5150±0.3258, 
p=0.3232). D) Quantitative Western Blot analysis of N-Cadherin protein levels in untreated T24 cells 
(control), cells treated with 25μg/ml E-Cadherin blocking antibody and cells treated with 50μg/ml N-
Cadherin blocking antibody. Both antibodies significantly reduced the levels of N-Cadherin after 24 hours 
(Control vs E-CAD BA: mean diff ± SE=31.37±12.50, p=0.02; Control vs N-CAD BA: mean diff ± SE= 
53.80±12.50, p=0.02). Untreated cells were used for data normalization. One representative Western blot 
is shown per condition including a total protein loading control. Whole Western blots are shown in 
supplementary Figure S4. Statistical analysis was performed using 1-way ANOVA followed by Tukey’s 
multiple comparisons (qPCR) or Sidak's multiple comparisons (WB) test; p< 0.05 (*), p< 0.01 (**); n = 3 
(triplicates). 
 
  
Effect of blocking antibody treatment on E- and N-Cadherin gene and protein expression 
To investigate the role of E- and N-Cadherin adherens junctions in collective cell migration, we 
inhibit their function using either E- or N-Cadherin blocking antibodies at different 
concentrations. To assess the effect of E-Cadherin blocking antibody on the different cadherin 
gene expression levels, we perform qPCR for E- and N- Cadherin genes at 1h and 5h after E-
Cadherin blocking antibody treatment at the highest concentration tested (25 μg/ml). The qPCR 
serves as a short-term indicator of compensatory reactions of the cells upon functional blocking 
of an adhesion molecule in the crucial 5h time window after activation. This 5h timepoint 
coincides with the peak spreading velocities in the control condition and is therefore of particular 
interest. We find a significant upregulation of the E-cadherin gene expression after 5 hours 
compared to control (Fig. 4 Ai). This increase can be considered as a compensatory mechanism 
of the cell to normalize its E-Cadherin functionality after the antibody-mediated blockage. 
Furthermore, the same treatment results in an early slight upregulation followed by significant 
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downregulation of N-cadherin gene expression at 5h (Fig. 4 Aii). The latter result indicates that 
the upregulated E-Cadherin blocks the expression of N-cadherin [54, 55] , which may correspond 
to a known phenomenon called cadherin switching (extensively reviewed by Loh et al. [28]). 
Moreover, using Western Blot (WB), we evaluate the effect of E- or N-blocking antibody on E-
Cadherin protein levels, as WB provides a longer time-scale endpoint image of the blocking effect 
on the total E-Cadherin levels. Here, we observe a significant downregulation of E-Cadherin at 
24h after treatment with the E-Cadherin blocking antibody, verifying the antibody functionality. 
E-Cadherin is also downregulated after N-Cadherin blocking antibody treatment (Fig. 4 B), which 
further implies the presence of a cadherin switching effect. Specifically, the N-Cadherin blocking 
antibody could transiently increase the gene expression of N-Cadherin, as a compensatory 
mechanism, which in turn could represses E-Cadherin expression. Interestingly, for E-Cadherin in 
the control (untreated) condition, we detect multiple shorter bands rather than one band of 130-
135 kDa which is the normal size of the protein. The observed bands were a size of ~120 kDa, 95 
kDa and 55kDa (as shown in Supplementary Fig. S5, respectively). Such deviations from the 135 
kDa range, involving predominantly a soluble 80 kDa species [56] [57] [58] as well as 97 kDa [59], 
48 kDa [60] and 23 kDa [61] fragments are common in the literature and have been associated 
with the development of different cancer types [28] [62] [63].  Therefore, as E-Cadherin protein 
expression is known to be very limited [39] or non-existent [40, 41] in T24 cells, it is probable that 
the shorter E-Cadherin fragments we see are a result of protein degradation.  
 
We then investigate the effect of N-Cadherin blocking antibody on cadherin gene expression 
levels, by performing qPCR for E- and N- Cadherin genes 1h and 5h after N-Cadherin blocking 
antibody treatment at the second highest concentration tested (50 μg/ml). In that case, a slight 
tendency towards upregulation of E-Cadherin gene expression is observed at 5h compared to 
control (Fig 4 Ci), while the N-Cadherin expression levels were not significantly different from 
untreated cells (Fig. 4 Cii). This lack of significance could result from the fact that in T24 cells, the 
presence of N-Cadherin is much higher compared to E-Cadherin [39] and thus a higher 
concentration of blocking antibody would be required for a stronger effect. However, we observe 
the clear long-term influence of E- or N- blocking antibody on N-Cadherin protein levels by WB 
where we identify a significant downregulation of N-Cadherin protein levels at 24h after E- and 
N- Cadherin blocking antibody treatment (Fig. 4 D). Therefore, we conclude that treatment with 
either E- or N- cadherin blocking antibody starts with a transient upregulation in the 
corresponding cadherin gene expression which in turn leads to activation of the cadherin 
switching mechanism that results in the downregulation of the opposite cadherin. This result is 
further verified by the WB results, where E- or N- cadherin protein levels are significantly 
downregulated when cells are treated with opposite blocking antibody over the long-term 24h 
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timepoint. With regards to the WB-detected N-Cadherin bands in the untreated condition, a clear 
band at the expected size (140kDa) is always observed, suggesting that there was no apparent 
degradation or soluble form as was the case for E-Cadherin. This is not surprising, as N-Cadherin 
is the predominant and fully functional cadherin in the T24 cell line [39, 64, 65]. 
 
In summary, these findings verify that (i) there is a low gene and protein expression of functional 
(membrane-bound) E-Cadherin in our T24 cells (Supplementary Fig. S5 C, D) and that (ii) besides 
the direct blocking effect, there is an ‘off target’ blocking effect, where the continuous 
overexpression of the cadherin being directly blocked leads to a downregulation of the opposite 
cadherin due to cadherin switching.  
 

 
Figure 5 | Evolution of cell density profile, radial velocities and average distance of T24 cells treated 
with increasing concentrations of E-Cadherin blocking antibody. A) Time-lapse overlay of bright-field and 
fluorescence microscopy images with cell tracks of the 25 μg/ml E-Cadherin blocking, showing the T24 cell 
migration with 6h intervals from 0h to 24h after surface activation. B) Space diagram of colony spreading 
up to 24h after surface activation. B) Evolution of the density profiles over 24 hours (blue to red) plotted 
as the mean of all colonies per condition for T24 cells treated with (i) 10 μg/ml or (ii) 25 μg/ml E-Cadherin 
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blocking antibody. All curves are separated by 1 h intervals. C) Kymographs of the cell density evolution, 
for T24 cells treated with (i) 10μg/ml and (ii) 25 μg/ml E-Cadherin blocking antibody. D) i) Mean radial 
velocity (ur) over time (average of all colonies per condition). The control condition exhibited a direct 
increase in radial velocity, peaking around 5h after surface activation (blue). 10 μg/ml E-Cadherin blocking 
antibody slowed down this increase in radial speed, which peaked at 8h (orange). The highest 
concentration of blocking antibody (25 μg/ml) resulted in even lower radial velocity that did not reach the 
initial peaks exhibited in the other conditions (red). ii) Average distance where density has decayed to half 
of its value in the center of the original confinement (i.e. at r=0). The distance was the highest over time 
in the control condition and decreased with increasing concentrations of E-Cadherin blocking antibody. 
iii) Cross correlation of velocity fluctuations showing no significant differences between conditions. Error 
bars: SEM; ncontrol= 12, n10ECAD= 13, n25ECAD= 8. 
 
 
Disrupting E- and N-Cadherin junctions decreases speed of collective spreading 
Having quantified the E- and N-Cadherin expression upon different levels of E- or N-Cadherin 
blocking, we move on to analyzing the collective migration behavior in these conditions. First, we 
find that a low concentration of E-Cadherin blocking antibody (10 μg/ml) does not significantly 
affect migration behaviour such as the colony spreading represented by density profiles and 
radial velocities of the cells (Fig. 5 A, Bi, Ci, Di, Dii and Supplementary Movie S4). However, 
blocking E-Cadherin at a higher concentration of antibody (25 μg/ml) reduces the average 
spreading of the colonies (Fig. 5 Bii, Cii, Dii) as well as the average radial velocity of the cells (Fig. 
5 Di). Similarly, increasing concentrations of N-cadherin blocking antibody leads to reduced 
average colony spreading and radial velocities, with the highest one (100 μg/ml) having the 
strongest effect (Fig. 6 A, B, C, Di, Dii and Supplementary Movie S5). In contrast, we find that the 
average velocity of single migrating cells in experiments with sparsely seeded cells is not 
significantly affected by the addition of either blocking antibody, for the whole duration of the 
experiment (Supplementary Fig S1). Furthermore, the proliferation of cells is similar across all 
conditions (Supplementary Fig S3). These observations suggest that the change in spreading 
behaviour upon Cadherin blocking is not mediated by changes in the behaviour of single cells or 
their proliferation, but is mainly caused by the reduction in cell-cell interactions and is thereby a 
collective effect. 
 
To identify a possible change in cell-cell interactions due to cadherin blocking, we calculate the 
cross-correlation functions of velocity fluctuations between pairs of cells, which quantifies how 
similar cellular velocities are as a function of their distance from one another (Methods Section 
and Fig. 5 Diii and 6 Diii). As expected, in the control condition, we find that cells tend to align 
their direction of motion with neighbouring cells, but exhibit no correlations at long distances.  
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Unexpectedly, however, we find that all observed experimental conditions have a similar cross-
correlation function. This indicates that while we expect a change in cell-cell interactions to be 
responsible for the change in spreading behavior, this change does not directly affect the degree 
of velocity alignment, quantified through the velocity cross-correlation. In a following section, we 
will turn to a theoretical model for a possible explanation of these observations. 
 
To summarize our experimental findings, we find that by partially blocking either E- or N-cadherin 
adherens junctions, the collective spreading behaviour of initially confined clusters of T24 cells 
becomes less efficient. This suggests that cell-cell contacts are important for coordinated 
migration, possibly by promoting cell-cell interactions. This result is in agreement with earlier 
reports showing that preventing cells from forming stable cell-cell contacts resulted in 
uncoordinated and random cell movement [66], leading to significantly lower migration velocities 
[67]. In contrast to other studies observing no E-Cadherin expression in T24 cells, we detect its 
presence (120 kDa) among other fragmented species of the protein. Furthermore, we show that 
as a type III carcinogenic line, T24 cells exhibit an increased N-Cadherin vs E-Cadherin expression 
ratio (3/1 as shown in Fig. S 5 C, D), characteristic for EMT [28]. Interestingly, we find that the 
limited E-Cadherin expression is still important for the efficiency of the collective migration, as is 
the more predominantly expressed N-Cadherin. Therefore, the interplay between E- and N-
Cadherin in T24 cells points to a crucial balance in cell-cell contacts that seems to be important 
for collective migration. In the next section, we use our minimal active particle model to elucidate 
the nature of these interactions and how they influence the cell spreading behavior. 
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Figure 6 | Evolution of cell density profile, radial velocities and average distance of T24 cells treated 
with increasing concentrations of N-Cadherin blocking antibody. A) Time-lapse overlay of bright-field 
and fluorescence microscopy images with cell tracks of the 100 μg/ml N-Cadherin blocking, showing the 
T24 cell migration with 6h intervals from 0h to 24h after surface activation. B) Evolution of the density 
profiles over 24 hours (blue to red) plotted as the mean of all colonies per condition for T24 cells treated 
with (i) 25 μg/ml, (ii) 50 μg/ml or (iii) 100 μg/ml N-Cadherin blocking antibody.  All curves are separated 
by 1 h intervals. C) Kymographs of the cell density evolution, for T24 cells treated with (i) 25 μg/ml, (ii) 50 
μg/ml or (iii) 100 μg/ml N-Cadherin blocking antibody. D) i) Mean radial velocity (ur) over time (average of 
all colonies per condition). The control condition exhibited a direct increase in radial velocity, peaking 
around 5h after surface activation (blue). Increasing concentrations of N-Cadherin blocking antibody 
reduced this increase in radial speed, with the highest reduction observed in the 100μg/ml treated cells 
(dark green). ii) Average distance where density has decayed to half of its value in the center of the original 
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confinement (i.e. at r=0). The distance was the highest in the control condition and decreased with 
increasing concentrations of N-Cadherin blocking antibody up to 11h.  After this timepoint, the 25 μg/ml 
N-Cadherin blocking antibody treated colonies surpassed the control ones. iii) Cross correlation of velocity 
fluctuations showing no significant differences between conditions. Error bars: SEM; ncontrol= 12, n25NCAD= 
8, n50NCAD= 6 n100NCAD= 3. 
 
 
Varying cell-cell interactions in a minimal active particle model captures the effects of Cadherin 
blocking 
To investigate how changes in cell-cell interactions affect the spreading behavior in our model, 
we first vary the strength of contact inhibition of locomotion (CIL). We implement CIL as an 
angular repulsion that acts as a torque on cells undergoing a contact, with strength 𝛼, similar to 
previous work [43] (see Fig. 3 A and Methods Section). We find that decreasing 𝛼, corresponding 
to weaker CIL, leads to a reduction in radial velocity, spreading, and cross-correlations (Fig. 3 F i, 
G i, H i). Thus, while the first two findings are in line with the changes in behavior upon cadherin 
inhibition in the experiment, the change in cross-correlation is not observed in the experiment. 
In contrast, reducing the strength of the repulsive interactions between particles leads to a 
reduction of the radial velocity peak and the overall spreading, while keeping the cross-
correlations constant (Fig. 3 F ii, G ii, H ii) - similar to what we observed experimentally upon 
blocking E- or N-Cadherin-mediated intercellular contacts (Fig. 5 B ii, D and 6 B ii-iii, D). These 
results are robust over a wide range of parameters in the model (Supplementary Figs. 8-11). 
These observations suggest that disrupting cell-cell junctions through E and N-Cadherin blocking 
has an effect akin to reducing excluded volume interactions between cells. 
 
The reduced spreading for weaker CIL and weaker repulsive interactions can be understood 
intuitively. Firstly, CIL interactions ensure that cells at the cluster boundary do not cross paths, 
leading to outward alignment of their velocities. In fact, in this setup, CIL has an effect very similar 
to velocity alignment interactions: an alternative model with velocity alignment instead of CIL 
produces very similar results (Supplementary Fig. 7), highlighting the similarity of these two 
interaction types in this setup. Secondly, repulsion ensures that boundary cells are repelled by 
the bulk of the cluster, which further rectifies their motion into a radially outward direction. Thus, 
both stronger CIL and stronger repulsive interactions lead to faster, more efficient spreading 
dynamics (Fig. 3 F, G). 
 
However, we can distinguish the two types of interaction through the cross-correlation of cell 
velocities: this quantity serves as a good indicator for changes in CIL-behavior. Specifically, 
changing repulsive interactions has no significant effect on the correlation function, since it is a 
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position-dependent interaction (Fig. 3 H ii). In contrast, CIL is a velocity-dependent interaction, 
and its strength therefore controls the magnitude of the velocity cross-correlations (Fig. 3 H i). 
 
Taken together, these results show that cell-cell interactions are key drivers of tissue spreading 
in this setup, and that disrupting cell-cell junctions through E- and N-Cadherin blocking has an 
effect akin to reducing repulsive interactions between cells. Therefore, the congruity between 
our experimental and modeling data suggests that both E- and N-Cadherin-mediated intercellular 
contacts create repulsive events via excluded volume interactions that are critical for the efficient 
cell spreading during collective migration. This effect could be due to cadherins 'sharpening' cell 
boundaries by for example regulating cell shape, improving cell-cell recognition, or increasing 
interfacial tension. Indeed, both E- and N-cadherin have been shown to determine inter-cellular 
interfacial tension in the developing epithelium [44, 68, 69]. These results are also in qualitative 
agreement with previous work where the interactions of colliding pairs of cells were inferred 
directly from observed trajectories [51]. Specifically, it was shown that the cancerous MDA-MB-
231 cell line exhibits less repulsive interactions than the non-malignant MCF10A cell line, which 
is known exhibit higher E-cadherin expression than MDA-MB-231 cells [70, 71]. Our work 
therefore further supports the important role of cadherin-mediated cell-cell interactions, and 
elucidates their role in collective cell migration. 
 
This study provides new insight into the role of different cadherin junctions in the dynamics of 
collective cancer cell migration. In our setup, we reveal that blocking E- or N-Cadherin in 
collectively migrating T24 cancer cells significantly reduces their spreading efficiency. The 
observed phenomenology is well captured by a biophysical model of stochastically migrating 
cells. Our model shows that cell proliferation as well as the excluded volume and Contact 
Inhibition of Locomotion interactions between cells drive tissue spreading in our setup. Our 
combined experimental and theoretical results further indicate that disrupting E- and N-
Cadherin-mediated intercellular contacts leads to a decrease in repulsive cell-cell interactions, 
which in turn reduces the spreading efficiency of the cell collective. Therefore, from a biomedical 
point of view, this study underscores the importance of E- and N-Cadherins as potential 
pharmacological targets in metastatic cancer research. Furthermore, our experimental setup 
design could be adapted for future research in the field, such as studying the impact of 
mechanical cell-cell communication on cell spreading on mechanically compliant substrates [72-
74], or chemotactic cell spreading in external gradients [75, 76]. 
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Methods 
 
T24 cell culture transfection with H2B-GFP plasmid for nucleus labeling. 
H2B–GFP expression vectors, were obtained from Addgene (#11680). T24 cells exponentially growing in 
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (FCS) were 
transfected with 2.5 µg of the H2B–GFP expression vector carrying a G418 resistance as selection marker, 
using an Amaxa R-Kit (Program I-013) under constant humidity at 37°C and 5% CO2. 24h after the 
transfection, cells were treated with G418 (A1720, Sigma-Aldrich) to an end concentration of 0.8mg/ml in 
2ml well-plates and then further cultivated in T25 flasks and later on in T75 flasks with the same 
concentration of G418 (0.8mg/ml). After two rounds of additional cell sorting by flow cytometry the GFP+ 
cells at passage 30 were frozen in a nitrogen tank at a concentration of 1x 106 cells/ml. 
 
For all collective migration experiments, T24 cells were pre-grown as monolayers and diluted down to the 
desired concentrations in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf 
serum (FCS), 10.000 U/ml penicillin/streptomycin and 0.8 mg/ml antibiotic G418 under constant humidity 
at 37°C and 5% CO2. 
 
Microcontact printing for circular pattern generation 
8-well uncoated μ-Slides (ibidi, Martinsried, Germany) underwent 3 min of oxygen plasma treatment 
(Plasma cleaner typ ‘‘ZEPTO,’’ Diener electronic, Ebhausen, Germany) at 0.3 mbar for activation 
(generation of OH-hydroxyl bonds). Then, 250 μl/well of 0.05 mg/ml fibronectin (R&D Systems, US) 
solution in MilliQ were added to the now highly reactive surface and incubated at room temp for 2 hours. 
After washing 2 times with 500 μl of milliQ H2O the surface was allowed to dry. Following that, we used 
standard microcontact printing techniques to create PDMS stamps with circular patterns. We placed one 
stamp at the center of each well and plasma treated the surface one last time at the same conditions as 
before. This step removes all fibronectin from the surface except the areas that are protected by the 
stamp, so all the unprotected areas on the surface become hydroxylated and highly reactive again. 
Without removing the stamps, we added a 7 μl drop of 1mg/ml PLL(20)-g[3.5]- PEG-N3(3) (APP) (Susos AG, 
Switzerland) solution in MilliQ right next to each stamp allowing surface tension to absorb the liquid 
underneath the stamp. We let the above condition settle for 45 min. We gently removed the stamp and 
washed 2 times with 500 μl of MilliQ. Now the circular areas contain fibronectin and are highly cell-
adhesive while the surrounding areas are initially cell repellent.  At this point, T24 cells were trypsinized 
after reaching confluency, diluted to the desired density (70.000 cell/ml) in the aforementioned DMEM-
based medium and 250 μl of this cell suspension were added in each well and allowed to settle overnight 
at 37 °C. The next day, the cell medium was replaced with 200 μl of fresh medium and the slide was placed 
under the microscope. Finally, 10 μl of 100μM BCN-cRGDfk (Synaffix, Netherlands) in PBS were added in 
the medium of each well to a final concentration of 20 μM.  The BCN groups formed a link with the Azide 
groups of the APP-covered, cell-repellent areas around the colonies. This resulted in the binding of RGD 
on the surface, thereby rendering the surrounding areas cell adhesive and initiating cell migration. 
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Blocking antibody treatment of T24 circular colonies 
For the blocking antibody treatment experiments, we followed the exact same cell preparation protocol 
as above with the addition of the following steps: On the next day, after the first washing step, 200 μl of 
5mM EGTA solution were added in each well for 30 min. This step was performed in order to break the 
existing cadherin junctions and allow the blocking antibodies (anti N-Cadherin antibody: LEAF™ Purified 
anti-human CD325, #350804, Biolegend, USA; anti E-Cadherin antibody: CD324 #16-3249-82, Invitrogen, 
USA) to bind to their respective epitopes. Following that, the wells were washed two times with 200 μl of 
fresh cell medium. Subsequently, 200 μl of the appropriate E- (10 or 25μg/ml) or N- (25, 50 or 100μg/ml). 
Cadherin blocking antibody solution in cell medium were added in each well. Cells were incubated 
additionally for 30 min and then the slide was placed under the microscope. Finally, 10 μl of 100μM BCN-
cRGDfk (Synaffix, Netherlands) in PBS were added in the medium of each well to a final concentration of 
20 μM. 
 
Cell imaging 
Live cell imaging was performed using the T24 seeded 8-well fibronectin/APP patterned slides with an 
Eclipse Ti inverted microscope (Nikon, Dusseldorf, Germany) with a 4x/10x phase contrast objective and 
a CCD camera ([DS-Qi1Mc] Nikon, Dusseldorf, Germany). The slides were inserted into a 37 °C heating and 
incubation system that was flushed with actively mixed 5% CO2 at a rate of 10 l/h, and the humidity was 
kept at 80% to prevent dehydration. The cells were imaged in bright-field and the fluorescence of the 
nuclei was detected at a 488 nm wavelength using the integrated fluorescence LED. Time-lapse video 
microscopy was performed with a time interval of 5 min between images over 24 h. 
 
Tracking of single cell trajectories 
The positions of individual cells were detected as previously described [43] using custom-made ImageJ 
macros implementing the ‘Find Maxima’ built-in function. The individual trajectories were then 
reconstructed using a squared-displacement minimization algorithm 
(http://site.physics.georgetown.edu/matlab) and data analysis was performed via custom-made Matlab 
programs. 
 
qPCR 
T24 cells were lysed for mRNA isolation. Briefly, “Buffer RLT, Lysis Buffer” (RNeasy® Mini Kit (250) PCR lab) 
was mixed with DTT 2M at a ratio of 50:1. After medium aspiration and ice-cold PBS rinsing, ice-cold lysis 
buffer was added and the lysates were stored at -80 °C. For the mRNA, isolation the RNeasy® Mini Kit 
(250) (QIAGEN, Hilden, Germany) was used according to the modified manufacturer’s instructions. 2 µl of 
the mRNA samples was used directly for mRNA concentration determination using a Nanodrop® 
Spectrophotometer (PEQLAB Biotechnologie, Erlangen, Germany) with absorption at 260 nm (specific for 
mRNA) while impurities were determined at 280 nm. For the reverse transcription of mRNA to cDNA, 2X 
RT master mix was prepared containing: 10% TaqMan RT Puffer-10x, 0,04% dNTPs, 10% random 
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hexamers, 5% Reverse Transcriptase, 21%RNAase free water, 50% H2O+ RNA 2.5µg. For the quantitative 
PCR the following primers were obtained from metabion GmbH: E-Cadh_1_F (MM125, 5´TGG GCC AGG 
AAA TCA CAT CC3´), E-Cadh_1_R (MM126, 5´GGC ACC AGT GTC CGG ATT AA3´); N-Cadh_2_F (MM133, 
5´CCT TTC AAA CAC AGC CAC GG3´), N-Cadh_2_R (MM134, 5´TGT TTG GGT CGG TCT GGA TG3´). We used 
2 µl of the acquired cDNA in each well of the MicroAmp® Fast Optical 96-Well Reaction Plate or 2 µl of 
autoclaved Millipore H2O for the no-template controls (NTCs), respectively. 10.5 µl of PCR master mix 
containing 6.25 µl of PowerUPTM SYBR® Green Master Mix, 3.75 µl of autoclaved Millipore H2O, 0.25 µl 
of forward primer and 0.25 µl of reverse primer were added to each probe well and the qPCR was 
performed in a QuantStudio™ 3 Real-Time PCR system (ThermoFisher). Data were normalized to the 
housekeeping gene GAPDH. The analysis was carried out with the ∆∆CT method as previously described 
[77], using the ThermoFisher cloud and threshold cycle was set to > 9-15 and ≤ 30 to allow acceptable 
detection for best reproducibility. 
 
Western Blots 
Cells were harvested and lysed in RIPA lysis buffer containing a protease inhibitor mix (Roche 
#4693159001). Lysates were centrifuged at 10,000 x g for 10 min and 4 °C. Protein amounts were assessed 
by Bradford assay, and an equal amount of protein was separated by SDS-PAGE and transferred to 
nitrocellulose membranes (Hybond-ECLTM, Amersham Bioscience). Membranes were incubated with 
blocking buffer containing 5% BSA and 0.1% Tween 20 in PBS for 1h at room temperature, followed by 3x 
5 min. rinsing with PBS-T. After that, membranes were incubated with rabbit anti-ECAD (24E10) 
monoclonal Ab (1:500; #3195, Cell Signaling Technology, Inc. USA) or rabbit anti-NCAD (D4R1H) XP® 
monoclonal Ab (1:500; #13116, Cell Signaling Technology Inc. USA) at 4°C overnight. Membranes were 
washed again with PBS-T 3 times for 5 min. Secondary antibody (HRP-Goat-Anti-Rabbit 1:1000; #111-035-
144, Dianova, Germany) were used for 2h incubation at room temperature and subsequently conjugated 
with horseradish peroxidase and freshly prepared ECL solution (protected from light), which contained 
2.5 mM luminol (detailed description of ECL solution preparation in table 1). Conjugated proteins were 
detected by the ChemiDoc™ Touch Imaging System (Bio-Rad, USA) and quantified by ImageLab software 
(Bio-Rad, USA). For quantification protein amount was normalized to total protein-loading, detected by 
2,2,2-trichloroethanol activation as described previously [77] [78]. 
 

# Reagent Volume Stock 

1 distilled Water 4500µl  

2 Tris-Base pH 8.5 500µl  

3 p-coumaric acid 22µl 15mg/ml in DMSO (Aliquots at -20°C) 

4 luminol 50µl 44mg/ml in DMSO (Aliquots at -20°C) 

5 H2O2 30% 3µl  

 
Table 1 | Western Blot Solution Reagents 
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Cross-correlation functions of velocity fluctuations 
To investigate the interactions of cells in the experiment, we calculate the spatial velocity cross-
correlation function  

𝐶(𝑟) 	= 	
∑ 𝑣+ ∙ 𝑣-𝛿(𝑟 − 𝑟+-)+-

∑ 𝛿(𝑟 − 𝑟+-)+-
 

 
where 𝑣+ is the two-dimensional velocity vector of cell i and 𝛿(𝑟 − 𝑟+-) is the Dirac delta-function. This 
function measures how 'similar' the velocities (magnitude and direction) of cells at distance r from one 
another are on average. Using discrete bins as an approximation for the delta-function for finite data, we 
obtain expected results both for experimental and simulated data. 
 
The complete velocity field is composed of the collective outward motion, a dilatational mode, and 
additional velocity fluctuations due to interactions between the cells. Following previous work [79], we 
calculate these fluctuations by obtaining the scalar dilatation Λ as a function of time, by optimizing the 
quantity ∑ [𝑥+(𝑡 + 𝑇) − Λ𝑥+(𝑡)]7+ . The fluctuation velocities are then giving by 𝑢+ = [𝑥+(𝑡 + 𝑇) −
Λ𝑥+(𝑡)]/𝑇. Note that here, we use a time-interval 𝑇 = 15∆𝑡 which is larger than the time-resolution of 
the experiment. This allows us to average out the short-time scale noise fluctuations of the cellular 
velocities, and instead focusses on longer time-scale process relevant to the spreading dynamics. We test 
this approach in our simulations, and find that it accurately detects the presence of velocity-dependent 
interactions, such as CIL (Supplementary Figure 6). 
 
Computational modeling 
To provide a minimal computational model for the escape process, we implement a simple active particle 
model for collective cell migration. Similar to previous works [21, 22, 43, 80-82], we describe the motion 
of the cells using stochastic equations of motion with interactions. Specifically, we use the equation of 
motion 

𝑑𝑣>???⃗
𝑑𝑡

= −𝛾𝑣>???⃗ + �⃗�CDEFG𝑟+ − 𝑟-GH + �⃗�+IJK + 𝜎�⃗�+(𝑡) 

where �⃗�+(𝑡) represents a Gaussian white noise with ⟨�⃗�+(𝑡)⟩ = 0 and Q�⃗�+(𝑡)�⃗�-(𝑡R)S = 𝛿(𝑡 − 𝑡R)𝛿+-. The 
model furthermore includes a persistence term −𝛾𝑣, where 𝛾TU is the persistence time of the cells. The 
repulsive interactions are implemented as the repulsive part of a quadratic potential 

�⃗�CDE = −𝜀F2𝜆	 −	𝑟+-H
𝑟+-
𝑟+-

 

where 𝜆 represents the radius of the cells, and 𝜀 is the strength of the interaction.  
 
The contact inhibition of locomotion (CIL) interaction �⃗�IJK is implemented in the form of a rotation of the 
velocity vector away from the distance vector 𝑟+- = 𝑟- − 𝑟+ to nearest neighbours, which are defined by 
being within an interaction range of radius 2.5𝜆, and being on collision course with cell i, i.e. �⃗�+ ⋅ 𝑟+- > 0. 
The angular displacement only depends on the velocity direction, a constant acceleration 𝛼 and the 
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number as well as the positions of nearest neighbours: For each nearest neighbour the direction of the 
axis of rotation is found such that the rotation will be away from the nearest neighbours. All directions of 
the axes of rotations of all nearest neighbours are added up and multiplied by the acceleration 𝛼. 
Specifically, we use  

�⃗�+IJK 	= α]𝑠+- _�̂�b ×
�⃗�+
|�⃗�+|

e
-

 

where  

𝑠+- = f−sign_
�⃗�+
|�⃗�+|

× 𝑟+-e ⋅ 𝑒bg , G𝑟+-G < 2.5𝜆	and	�⃗�+ ⋅ 𝑟+- > 0

0, otherwise
 

 

In simulations where velocity alignment rather than CIL is used (Supplementary Figure 8) , we replace �⃗�IJK 
by an alignment interaction 𝛽𝑉?⃗ +/G𝑉?⃗ +G with strength 𝛽, which is implemented as a constant acceleration in 

the direction of the average velocity 𝑉?⃗ + = Qv?⃗ xS-∈zz{  of nearest neighbours within an interaction range of 

radius 2.5𝜆.  
 
Finally, cell division is implemented with a constant probability 𝜈d𝑡 of dividing, provided there is sufficient 
space for the appearance of new cells. In a division event, a cell produces a daughter cell in its direct 
neighborhood with an initial velocity pointing away from the mother cell.  
 
The simulation is performed in non-dimensional units such that γTU = 𝜆 = 1. We use the 
parameters		σ7 = 	2, 		𝜈 = 	0.1, and vary 𝜀 between 0.1 and 40, and 𝛼 between 0 and 12. We initialize 
𝑁 = 37 particles within the initial confinement radius 𝑅. The stochastic trajectories of the model are then 
simulated by step-wise Euler updates with a time-step of 𝑑𝑡 = 10T�. We first perform a pre-equilibration 
run with a confinement potential at 𝑟 = 𝑅, modelling the initial confinement phase. At 𝑡 = 0, we remove 
the boundary by setting the confinement potential to zero, leading to the escape of the simulated cluster. 
 
Statistical evaluation 
For statistical analysis of the data one-way ANOVA followed by Dunnett’s multiple comparisons test was 
performed using GraphPad Prism version 8.0.0 for Windows, (GraphPad Software, San Diego, California 
USA, www.graphpad.com). n.s.= not significant, * p < 0.05, ** p < 0.01. 
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Movie Descriptions 
 
Supplementary Movie S1: Video of bright-field microscopy imaging showing the control 
(untreated) T24 cell migration from 0h to 24h after surface activation. 
Supplementary Movie S2: Video of fluorescence microscopy imaging showing the control 
(untreated) T24 cell migration from 0h to 24h after surface activation. 
Supplementary Movie S3: Overlay video of bright-field and fluorescence microscopy imaging 
with cell tracks showing the control (untreated) T24 cell migration from 0h to 24h after surface 
activation. 
Supplementary Movie S4: Overlay video of bright-field and fluorescence microscopy imaging 
with cell tracks showing the T24 cell migration upon 25 μg/ml E-Cadherin blocking, from 0h to 
24h after surface activation. 
Supplementary Movie S5: Overlay video of bright-field and fluorescence microscopy imaging 
with cell tracks showing the T24 cell migration upon 100 μg/ml N-Cadherin blocking, from 0h to 
24h after surface activation. 
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Figure S1 | Single cell trajectories, radial velocities and SEM for single T24 cell migration in the different 
blocking conditions. A) Single T24 cell trajectories in the control condition and at the highest blocking 
antibody concentration for each cadherin type. B) i) Mean radial velocity (ur) over time and (ii) 
corresponding SEM graph showing no significant differences (1-way ANOVA, p>0.05) between averaged 
cell velocities of single cells for every condition. Average velocity of single cells was stable and was not 
affected by the addition of the different antibodies or EGTA pre-treatment. iii) Mean square displacement 
(MSD) plot showing all conditions having a 1.3 curve gradient. 
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Figure S2 | Initial number of cells of each colony for every condition and T24 cell proliferation in the 
different blocking conditions, followed by space diagrams and evolution of density profiles for colonies 
with different cell densities. A) Number of cells (t=0) for each colony per condition, color-coded according 
to the colony’s cell density. For every condition we ensured constant average initial cell density with an 
average cell number of ~40, except medium and low cell density control conditions. B) Cell proliferation 
shown as the average total number of cells of all colonies for each blocking condition. In all conditions, 
except the 25 μg/ml N-Cadherin blocking and the combination blocking, the proliferation rate was not 
affected by treatment with blocking antibodies. C) Space diagram of (i) a high cell density, (ii) a medium 
cell density and (iii) a low cell density colony spreading up to 24h after surface activation. D) Evolution of 
the density profiles of (i) high cell density, (ii) medium cell density and (iii) low cell density colonies over 
time (blue to red) plotted as the mean of all colonies (nhigh= 12, nmedium= 15, nlow= 12). All curves are 
separated by 1.5 h intervals.  
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Figure S3 | Complete Western blot triplicates and qPCR results. A) E- cadherin protein levels in untreated 
(control) or treated T24 cells with 25μg/ml E-Cadherin or 50μg/ml N-Cadherin blocking antibody after 24 
hours. WB triplicates show the different band sizes occurring and the accompanying protein loading, with 
the 120kDa being the functional protein observed in all three WBs. B) N- cadherin protein levels in 
untreated (control) or treated T24 cells with 25μg/ml E-Cadherin or 50μg/ml N-Cadherin blocking 
antibody after 24 hours. WB triplicates show the 140kDa band size occurring and the accompanying 
protein loading. In all cases, to calculate protein expression levels all band intensities were calibrated 
according to control using the loading band intensities. C) No significant differences in gene expression 
levels of E- and N-Cadherin at 1h and 5h upon 25μg/ml E-Cadherin blocking antibody treatment as 
determined by qPCR (E-Cadherin: 1-way ANOVA F=0.5435, p=0.6068; N-Cadherin: 1-way ANOVA F= 3.519, 
p=0.0974).  D) No significant differences in gene expression levels of E- and N-Cadherin at 1h and 5h upon 
50μg/ml N-Cadherin blocking antibody treatment as determined by qPCR (E-Cadherin: 1-way ANOVA F= 
0.4286, p=0.6699; N-Cadherin: 1-way ANOVA F= 0.04005, p=0.9610). In all cases the levels of N-Cadherin 
expression are ~3-fold higher than the levels of E-Cadherin expression. 
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Figure S4 | Calculation of the spatial fluctuation velocity cross-correlation function and comparison to 
a model with velocity alignment interactions. A) Correlation function of the full velocities for (i) 
experiment and (ii) model with CIL. As expected, the correlation function is initially positive, corresponding 
to neighboring cells on average moving in the same direction. After a distance on the order of the initial 
confinement radius, the function turns negative, corresponding to cells on opposite ends of the cluster 
moving on average in opposite directions. B) Correlation function of the velocity fluctuations, where the 
overall dilatation of the cluster is subtracted. For the model, corresponding curves for a simulation with 
CIL (blue), and without CIL interactions (black) is shown. As expected, in both cases, the negative part of 
the correlation due to the overall dilatation of the cluster disappears and only simulations with CIL exhibit 
significant fluctuation velocity correlations. C) Evolution of the density profile over time (blue to red). 
Inset: Kymograph of the cell density evolution. Dashed lines indicate the initial confinement radius. D) 
Mean radial velocity as a function of time. E) Cross-correlation of velocity fluctuations, for a model with 
and without velocity alignment interactions. Error bars: SEM; n=30 for all panels. 
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Figure S5 | Full parameter sweep: density profiles and radial velocity curves. A) Evolution of the density 
profile over time (blue to red) for all parameter combinations of repulsion strength 𝜀 and CIL interaction 
amplitude 𝛼, averaged over n=30 clusters per condition. The profiles exhibit further spreading for larger 
repulsions and larger CIL amplitudes. B) Mean radial velocity as a function of time for all parameter 
combinations of repulsion strength 𝜀 and CIL interaction amplitude 𝛼. We generally observe larger radial 
velocity peaks for larger repulsions and larger CIL amplitudes. Error bars: SEM; n=30 for all panels. 
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Figure S6 | Full parameter sweep: spreading radius and velocity fluctuation cross-correlation function. 
A) Average distance where density has decayed to half of its value in the center of the original confinement 
(i.e. at r=0) for all parameter combinations of repulsion strength 𝜀 and CIL interaction amplitude 𝛼. We 
observe larger spreading radii for larger repulsions and larger CIL amplitudes. Error bars: SEM; n=30 for 
all panels. B) Cross-correlation of velocity fluctuations for all parameter combinations of repulsion 
strength 𝜀 and CIL interaction amplitude 𝛼. We generally observe larger radial velocity peaks for larger 
repulsions and larger CIL amplitudes. Error bars: SEM; n=30 for all panels. 

363



364 9. Cell-cell interactions in collective cell spreading



Acknowledgements

The work presented in this thesis is the product of an immense collaborative effort, and it
is a great pleasure to conclude it by thanking everyone who I had the privilege to work and
interact with throughout my PhD. While science is objective, I strongly believe that scientific
research itself is much more personal than it is often portrayed. Research is done by people
− people with tastes, preferences, and their own way of doing things. The work in this thesis
has therefore been shaped by the people around me as much as by myself, and much of the
credit for the ideas and concepts presented here goes to them.

First of all, I would like to express my gratitude to my PhD advisor Chase Broedersz.
Chase, I would have to turn this section into a chapter to list everything I would like to thank
you for. I am deeply grateful for your immense support over the years, for giving me the
freedom to explore in all kinds of directions, and for trusting in my visions and ideas. From
you I have learnt how to speak, how to write and how to think. Most importantly, you have
taught me that science relies on collaboration, and how to turn collaborations into something
that is not just productive and intellectually stimulating, but also a lot of fun. Thank you
for making me part of the amazing research environment you have created right from day one.
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