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2. Introductory summary  

 

2.1 Lung Aging and Fibrosis 

The overall increase in life expectancy in the last decades has greatly affected the propor-

tions of elderly over younger individuals, with the former group being represented by 

over 700 million people worldwide1,2. As a consequence, the incidence of age related 

diseases such as cancer, atherosclerosis and idiopathic pulmonary fibrosis (IPF), have 

also dramatically increased. Although we still lack the knowledge and understanding of 

most pathogenic mechanisms that lead to IPF, there is clear evidence that multiple struc-

tural changes of the lung components that develop over time facilitate its occurrence. In 

fact, most of the hallmarks that govern lung aging have also been identified in IPF, such 

as altered intercellular communication, dysregulated extracellular matrix (ECM) deposi-

tion and cellular exhaustion3. 

Indeed stem cell exhaustion that results in improper epithelial regeneration is a key trait 

that defines both aging and pulmonary fibrosis3. The cells of the respiratory tract gradu-

ally lose their primary function while the repair mechanisms that should be in place, to 

assure the resolution of these issues, are dysfunctioning. The investigation of the molec-

ular alterations that occur during fibrosis and regeneration is of utmost importance in 

order to define novel therapeutics for severe non-reversible lung diseases such as IPF. 

The research described in this thesis aims to uncover novel hallmarks and previously un-

described features of aging and impaired regeneration. Current specific research ques-

tions in the field include: What are the molecular signals that drive fibrogenesis and re-

pair? Why is healthy regeneration defected in aged individuals?  How can we develop 

strategies to reverse these processes in an attempt to treat tomorrow's patients? The re-

search described in this thesis was conducted with these questions in mind and have been 

addressed in variant degrees in this study. 

2.2 Lung Function 

The respiratory tract's primary function is to deliver oxygen to the alveoli in order to 

reassure proper exchange of environmental oxygen with carbon dioxide from the blood 

circulation. Impaired oxygen exchange is thus the main characteristic of any lung related 

disorder and is a feature of the aged lung as well. Normal aging is defined by 

https://paperpile.com/c/lSfmkq/0IdA
https://paperpile.com/c/lSfmkq/8BiUT
https://paperpile.com/c/lSfmkq/AYYgG
https://paperpile.com/c/lSfmkq/AYYgG
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homogeneous alveolar enlargement resulting in reduced lung elastic recoils. In addition 

to this, aging is associated with a decrease of the total lung capacity (TLC), forced expir-

atory volume in 1 s (FEV1) and forced vital capacity (FVC)4,5. Unsurprisingly, these al-

terations have been shown to be accelerated in smokers6. Susceptibility to disease can be 

a direct consequence of  chronic physiological changes that occur during aging. In this 

regard and with respect to aging, age-related processes such as increased immunosenes-

cence and inflamaging, a form of chronic, sterile, low-grade inflammation that develops 

with age, gradually diminish any remaining regenerative capacity of the lung and seem 

to play a key role in the development of lung fibrosis7,8. Pulmonary fibrosis also severely 

affects the lungs physiology, altering all parameters of respiratory equilibrium such as 

gas exchange and diffusion capacity9. The ability of the lung to expand is also greatly 

reduced in IPF as a result of pulmonary surfactant deregulation and ECM deposition. 

Studies have shown that in patients with IPF the lipid profile of the pulmonary surfactant 

is dramatically deregulated, resulting in a defective surface activity that is far from the 

one found in healthy individuals10. 

2.3 Epithelial Cells of the lung 

There are two anatomical divisions of the respiratory tract. The nasal cavity, pharynx and 

larynx are all part of the upper respiratory tract. Meanwhile all other anatomic regions are 

part of the lower respiratory tract and include the conducting airways (trachea and bron-

chi), the small airways (bronchioles) and the respiratory zone (the alveoli). In the adult 

human the airways have a surface that can reach 70 m211. The groups and subsets of 

epithelial cells that span all the different anatomical sites of the respiratory tract vary both 

in composition and in structure and reflect their unique functions in each region. The 

epithelial cells of the lower respiratory tract constitute a highly effective barrier between 

the vital lung organ and potentially harmful environmental substances and function as the 

first line of defense against them12. Multiciliated cells, mucus-secreting goblet cells, club 

cells, neuroendocrine cells and basal cells, which secrete surfactants are the main cell 

types that build up the pseudostratified epithelium of the conducting airways. These cells 

are the initial cell types that interact with any externally inhaled particles and have devel-

oped abilities and traits that facilitate the effective mucociliary clearance of particles and 

microbes13. Multi-ciliated cells are equipped with cilia that reside on their apical surface 

and assist in transporting any intruding particles and mucus from the bronchi towards the 

https://paperpile.com/c/lSfmkq/cx0O
https://paperpile.com/c/lSfmkq/c8xf
https://paperpile.com/c/lSfmkq/HINL
https://paperpile.com/c/lSfmkq/YoBo+8ROz
https://paperpile.com/c/lSfmkq/07BZo
https://paperpile.com/c/lSfmkq/qnonA
https://paperpile.com/c/lSfmkq/tocU
https://paperpile.com/c/lSfmkq/eRy8
https://paperpile.com/c/lSfmkq/MAIy
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direction of the trachea and toward the respiratory exit. As for goblet and other secretory 

cells, their roles  include trapping inhaled particulates and microorganisms to reassure 

their early neutralization. Club cells, in particular, account for one fifth of all airway cells 

and specifically secrete the anti-inflammatory protein secretoglobin family 1A member 1 

(SCGB1A1)14. Basal cells are able to self-renew in addition to differentiating into the cell 

populations that comprise the pseudostratified epithelium during homeostasis and after 

injury15. Stromal cells such as interstitial fibroblasts, that play a crucial role in the tissue’s 

repair after injury, reside mainly in the tracheal region of the respiratory tract and in the 

larger airways16. 

 

Figure 1 | Cellular composition of the airways. a) Illustration of the lower respiratory 

tract. The trachea is followed by a continuous branching of the larger and smaller airways 

that terminate in the alveoli regions. b,c) Both murine and human epithelium are com-

posed of multiple cell types with distinct functions and markers. Illustration and text have 

been adapted from Zepp, J. A. & Morrisey, E. E, 201917 

In contrast to the aforementioned anatomical regions, the alveolar surfaces in the periph-

eral lung are lined by flat alveolar epithelial type 1 cells (AEC1). These cells are 

https://paperpile.com/c/lSfmkq/Iii5
https://paperpile.com/c/lSfmkq/FV4i
https://paperpile.com/c/lSfmkq/O7rw
https://paperpile.com/c/lSfmkq/Vdlh
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specialized in gas exchange and form a continuous cell layer along the alveolar tract. 

Unlike the AEC1s, alveolar epithelial type 2 cells (AEC2) are morphologically cuboidal 

cells that have two main functions. They primarily secrete pulmonary surfactant reducing 

the surface tension of the alveoli during respiration, a function of paramount importance 

to avoid alveolar collapse. Additionally they act as the resident stem cells that differenti-

ate into AEC1s during lung regeneration17. 

 

Figure 2 | Illustration of the alveolar epithelium.  The stem cell niche of the alveoli 

include type 1 and type  2 alveolar epithelial cells as well as fibroblasts, pericytes, alveo-

lar macrophages and various interstitial immune cells. Illustration and text have been 

adapted from Hogan B.L.M. 202018 

All the cells of the epithelial barrier have characteristic intercellular tight junctions that 

play a crucial role in maintaining the barrier’s main trait of  impermeability19.These tight 

junctions play a pivotal role in ensuring that the cells adhere together to form a regulated 

impermeable barrier. A vast number of interconnection proteins and receptors constitute 

the intracellular adhesion complex. Paracellular permeability is controlled by the tight 

junctions, while beneath those, the adherens junctions reside and play a crucial role in 

initiating differentiation and proliferation by mechanically connecting and disconnecting 

neighboring cells20. All these cellular junctions could malfunction as a result of improper 

cellular differentiation and contribute to the development of lung disorders that eventually 

may lead to immunopathology21–24. 

https://paperpile.com/c/lSfmkq/Vdlh
https://paperpile.com/c/lSfmkq/whQ6c
https://paperpile.com/c/lSfmkq/mNBH
https://paperpile.com/c/lSfmkq/P4Az
https://paperpile.com/c/lSfmkq/Vefb+6cNK+wxBG+3k7x
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2.4 Establishing Lung Fibrosis 

Any damage on the epithelium results in the activation of cells that reside both in the 

vascular and interstitial compartments of the lungs, along with existing resident macro-

phages. As a consequence of this local activation mesenchymal cells start accumulating 

in site and reprogram to differentiate into myofibroblasts effectively establishing fibrotic 

lesions25. The accumulating myofibroblasts secrete ECM proteins in abnormal quantities 

that help in activating mesenchymal cells via mechanotransduction, escalating even fur-

ther the fibrotic features of the tissue26,27. Fibrotic disorders such as IPF, have also been 

related to rare genetic disorders that increase the risk of the disease28. Genetic mutations 

in key regulatory genes such as SFTPC and SFTPA229 or transport genes such as 

ABCA30, lead to the development of chronic lung diseases and increase the risk of IPF.  

Extensive research on IPF has proven that a dysfunctional alveolar epithelium, which is 

related to senescence, mutations and stress, plays a significant role in the injury and repair 

process that occurs both in sporadic and familial IPF31. Fibrotic scarring is believed to be 

driven by the increase of fibroblasts and myofibroblast populations within the region of 

the injury, further enhancing the destructive nature of the disease31,32. From recent single-

cell transcriptomic studies, epithelial cells during the development and progression of IPF 

have been shown to develop specific phenotypes that are governed by the activation of 

many canonical pathways. These include AKT–phosphoinositide 3-kinase (PI3K), p53, 

HIPPO–YAP, TGFβ1, and WNT33. Activated lung epithelial cells are capable of produc-

ing almost all the mediators that promote migration of many mesenchymal cells of diverse 

origins (such as resident fibroblasts and fibrocytes) in addition to enhancing myofibro-

blast differentiation. Myofibroblasts thereafter secrete increased amounts of ECM com-

ponents, which mainly include fibrillar collagens, leading eventually to the destruction of 

the lungs architecture and function. In addition AEC2s, in IPF, express many proteins 

that promote profibrotic response. These include tumor necrosis factor (TNF), osteopon-

tin, endothelin-1, platelet-derived growth factor (PDGF), CXC chemokine ligand 12 

(CXCL12), connective tissue growth factor (CTGF) and TGFβ132,34–40 . Interestingly, 

these features have been shown to gradually accumulate in the aging lung and seem to be 

developing also as a natural consequence of aging, giving multiple profibrotic character-

istics to the aged lung as well41. 

https://paperpile.com/c/lSfmkq/U3NBh
https://paperpile.com/c/lSfmkq/ALg7A+XF38W
https://paperpile.com/c/lSfmkq/A3tS9
https://paperpile.com/c/lSfmkq/6LyKD
https://paperpile.com/c/lSfmkq/MggsT
https://paperpile.com/c/lSfmkq/HWcR
https://paperpile.com/c/lSfmkq/HWcR+KdyH
https://paperpile.com/c/lSfmkq/qVS0
https://paperpile.com/c/lSfmkq/KdyH+BwH4+Ebdu+cngU+fAbS+VvxW+VVxr+PPSQ
https://paperpile.com/c/lSfmkq/VrFDj
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Of all these factors, ACE2-driven TGFβ1 is most likely the strongest profibrotic media-

tor. It has been shown that the transduction of AECs with retrovirus that encode for acti-

vated TGFβ1  resulted in the remodeling of lung explants with interstitial fibrosis accom-

panied by an increase in fibroblasts populations along with AEC2 hyperplasia and en-

larged air space42. AEC2s are also able to activate the latent form of TGFβ1 through sur-

face expression of integrin αvβ643,44. It has been observed that angiogenesis along with 

the expression of signaling pathways critical for maintaining wound healing procedures, 

can be inhibited by activated AEC2s. Indeed  the expression of pigment epithelium-de-

rived factor, inhibits angiogenesis and could be the reason for the characteristic lack of 

capillaries in fibrotic foci. Moreover, via  secreting tissue factor (TF) and plasminogen 

activator inhibitor 1 (PAI1), AEC2s also influence the fibrin turnover45,46. 

 

Figure 3 | Model of idiopathic pulmonary fibrosis pathogenesis. The lungs capacity to 

regenerate and respond to stress is linked to age-related perturbations and exposures along 

with genetic predispositions. In IPF, epithelial cells express multiple senescence and 

stress markers disrupting their normal function. At the same time, KRT5+ Δp63+ epithe-

lial cells are incapable of properly regenerating ACE2s, promoting the characteristic in 

IPF, ‘honeycomb’ formations. Illustration and text have been adapted from Mora et al. 

201747 

In addition to the aforementioned functions, the alveolar epithelium also expresses coag-

ulation factor X (FX), a key proteinase of the coagulation pathway48. FXa enhances 

https://paperpile.com/c/lSfmkq/LVGw
https://paperpile.com/c/lSfmkq/UPSq+xSnh
https://paperpile.com/c/lSfmkq/rlqi+rOZU
https://paperpile.com/c/lSfmkq/D7TZ
https://paperpile.com/c/lSfmkq/vI6I
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fibroblasts differentiation into myofibroblasts via a TGFβ1-dependent mechanism of 

α-smooth muscle actin (αSMA) induction. AEC2s from fibrotic lung regions have been 

also shown to express markers of apoptosis and senescence effectively neutralizing these 

cells throughout the disease. It is thus clear that the approach of replacing AEC2s with 

functional counterparts  is essential for tissue repair. Although the source of the cells that 

promote re-epithelization and repair is uncertain, novel experimental procedures have 

emphasized on the emergence of a KRT5+ KRT14+ Δp63+ (a p63 splice variant) epithe-

lial population in disease that is usually not present in healthy human lungs, as a potential 

source. 

KRT5+ Δp63+ cells have notch signaling pathways constantly activated which adds to 

the overall increase in honeycomb structures and simultaneous decrease in the regenera-

tive capacity of the alveoli49. These findings indicate that stressed AEC2s in IPF are in-

capable of lung regeneration and that an additional  independent pool of progenitor cells 

moderate the general repair response and facilitates fibrosis and honeycomb structure 

generations33,49. Immunohistochemical evidence has shown that some epithelial cells can 

undergo epithelial-mesenchymal transition (EMT)49,50 and might add this way to the in-

creased mesenchymal features of IPF.  Nevertheless, it is still unclear to what extent this 

EMT-like process contributes to the development of fibrosis since it is not well docu-

mented if epithelial cells can acquire enough mesenchymal features to be classified as 

fibroblasts51. EMT and its reverse process, mesenchymal-epithelial transition (MET), are 

not black and white cell states but rather include many intermediate phases with partial 

EMT phenotypes52.  

A key characteristic of EMT is the disruption of all tight junctions between adjacent epi-

thelial cells. This is an important feature since it enables programmed migration and gen-

erates the epithelial secretome profile found in IPF. The main path to remodeling the 

lungs disrupted  architecture in IPF is through the regeneration of an intact alveolar epi-

thelium. Unfortunately our current  knowledge of lung epithelial regeneration is incom-

plete since most such studies have been conducted on wound healing experiments in skin 

injury models. It is clear that there is a need to enrich our understanding of the molecular 

mechanisms of lung re-epithelization using various, lung specific injury models. 

https://paperpile.com/c/lSfmkq/6tNZ
https://paperpile.com/c/lSfmkq/qVS0+6tNZ
https://paperpile.com/c/lSfmkq/6tNZ
https://paperpile.com/c/lSfmkq/IUfe
https://paperpile.com/c/lSfmkq/H8Zr
https://paperpile.com/c/lSfmkq/7qPs
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2.5 The Bleomycin mouse model of pulmonary fibrosis 

The most commonly used mouse model for studying IPF and other interstitial lung dis-

eases (ILDs) is the bleomycin mouse model in C57Bl6/J mice53. Bleomycin administra-

tion to murine lungs induces DNA strand breaks, leading to alveolar epithelial cell death 

followed by tissue injury along with an increasing inflammatory response and a gradual 

establishment of fibrogenesis by fibroblast activation and collagen deposition. These 

events are subsequently followed by tissue repair and almost complete regeneration of 

the destroyed tissue, enabling the study of both the injury and repair of the lungs in the 

context of fibrosis and regeneration54. Single dose administration of bleomycin leads to 

transient pulmonary fibrosis and reproduces several features of human ILD, defining this 

model to be very suitable for the study of both the development of fibrosis as well as its 

resolution over time55.  

2.6 Aims of the study  

Publication I: In order to study age related alterations at cell type level we employed 

microfluidic based single-cell RNA transcriptomics on whole lung homogenates of young 

(3 months old) and aged (24 months old) mice. These data were coupled with bulk prote-

omic and transcriptomic data in an attempt to create an atlas of the aged murine lung that 

represents a reference tool available for researchers of lung biology and aging. We exam-

ined gene expression patterns for over 30 cell types and identified changes with regard to 

aging in all cell types. Furthermore, we showed that aging is accompanied by an increase 

in transcriptional noise, a phenomena that had very recently been identified in human56,57, 

hinting that this feature could in fact be a global hallmark of aging that possibly affects 

most cell types in both humans and mice. Publication I in addition to all the findings that 

refer to the known hallmarks of aging, highlights a rather novel alteration of the stem 

cells of the alveolar epithelial barrier that had not been previously extensively studied. 

Our observations of increased cholesterol biosynthesis and high neutral lipid content in 

AEC2s of aged mice may refer to previous studies showing the lipid composition of the 

pulmonary surfactant being changed with age58. In our study we report a strong correla-

tion between the aged AEC2 phenotype and that of Insig1/2 knockout mice that accumu-

late neutral lipids, resulting in lipotoxicity-driven lung inflammation59. This indicated 

that, to some extent, the observed chronic inflammation in the aged lung could be 

https://paperpile.com/c/lSfmkq/TaPo
https://paperpile.com/c/lSfmkq/keL7
https://paperpile.com/c/lSfmkq/WUSM
https://paperpile.com/c/lSfmkq/bKaH+WFr3
https://paperpile.com/c/lSfmkq/8ZO9
https://paperpile.com/c/lSfmkq/tdcb
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influenced by deregulated lipid homeostasis. In addition, other hallmarks of aging such 

as epithelial senescence may be contributing to the inflammatory phenotype observed, 

since AEC2 specific deletion of telomerase in mice has been shown to promote the de-

velopment of a pro-inflammatory tissue microenvironment, resulting to a decreased abil-

ity of resolving any acute lung injury60. Finally, up to date most studies of lung aging 

have focused primarily on accumulating fibroblasts and impaired alveolar epithelium. 

Through our unbiased approach we have revealed compositional changes in other respir-

atory compartments discovering a clear alteration of the airway epithelial cells during 

aging which results in an overall increase in the number of ciliated cells aligning the air-

ways. 

 

Publication II: In this study we attempted to investigate the kinetics of murine lung re-

generation at the single cell level using the bleomycin murine injury model. We  resolved 

the gene expression changes within 28 cell types focusing primarily on the alveolar and 

airway epithelium. Our work describes how airway and alveolar stem cells initially con-

verge onto a novel Krt8+ transitional stem cell state, termed Krt8+ alveolar differentiation 

intermediate (ADI), prior to initiating proper regeneration of AEC1s. We identified these 

Krt8+ ADI cells in multiple mouse lung injury models as well as in human lung fibrosis. 

The Krt8+ ADI cells feature hallmarks of EMT, senescence and p53 activation and com-

prise a transient cell state governed by a squamous cell phenotype. In our attempt to de-

scribe the evolution of these cells we followed up our experiments with a daily sampling 

of lung tissue after bleomycin induced injury. Our research describes the gene expression 

profile of Krt8+ ADI cells throughout the development and resolution of fibrosis and 

identifies a transcriptional convergence of AEC2s and MHCII+ club cells towards the 

newly described Krt8+ ADI state. Finally we show that lung repair through terminal 

AEC1 differentiation  of Krt8+ ADI cells occurs after injury and is paramount to sustain-

ing epithelial regeneration. Our data indicate that the transcriptional signature of 

KRT5−/KRT17+ basaloid cells50 in IPF tissues resembles that of  Krt8+ ADI described 

in Publication II.  Driven by our findings we propose that chronic lung disease and in 

particular in IPF may be a result of a dysfunctional molecular differentiation checkpoint 

that results in a persistent  intermediate regenerative cell state that should have otherwise 

been transient. 

 

https://paperpile.com/c/lSfmkq/H3Zi
https://paperpile.com/c/lSfmkq/IUfe


 

18 

 

Publications I and II are the result of a greater attempt to describe the cellular architec-

ture of the respiratory tract in normal health and in disease. These two studies are com-

plementary to each other as they both similarly add to the greater pool of knowledge in 

the context of aging, injury repair and regeneration. Our research addressed many ques-

tions that existed in the field of lung regeneration and injury and highlights novel aspects 

of aging and IPF. Future research aiming to follow up the context of this thesis includes 

the study of injury repair and regeneration in the aged lung. Ongoing experiments that 

have been initiated in our lab will tackle these questions in detail. Administering bleomy-

cin to aged mice will generate a directly comparable dataset that will clarify, to a previ-

ously unprecedented level, if and how aging leads to impaired regeneration of the alveolar 

epithelium, and which cellular processes are involved. 
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The intricate structure of the lung enables gas exchange
between inhaled air and circulating blood. As the organ
with the largest surface area (~70m2 in humans), the lung

is constantly exposed to a plethora of environmental insults. A
range of protection mechanisms are in place, including a highly
specialized set of lung-resident innate and adaptive immune cells
that fight off infection, as well as several stem and progenitor cell
populations that provide the lung with a remarkable regenerative
capacity upon injury1. These protection mechanisms seem to
deteriorate with advanced age, since aging is the main risk factor
for developing chronic lung diseases, including chronic obstruc-
tive pulmonary disease (COPD), lung cancer, and interstitial lung
disease2,3. Advanced age causes a progressive impairment of lung
function even in otherwise healthy individuals, featuring struc-
tural and immunological alterations that affect gas exchange and
susceptibility to disease4. Aging decreases ciliary beat frequency
in mice, thereby decreasing mucociliary clearance and partially
explaining the predisposition of the elderly to pneumonia5.
Senescence of the immune system in the elderly has been linked
to a phenomenon called ‘inflammaging', which refers to elevated
levels of tissue and circulating pro-inflammatory cytokines in the
absence of an immunological threat6. Several previous studies
analyzing the effect of aging on pulmonary immunity point to
age-dependent changes of the immune repertoire as well as
activity and recruitment of immune cells upon infection and
injury4. Vulnerability to oxidative stress, pathological nitric oxide
signaling, and deficient recruitment of endothelial stem cell pre-
cursors have been described for the aged pulmonary vasculature7.
The extracellular matrix (ECM) of old lungs features changes
in tensile strength and elasticity, which were discussed to be
a possible consequence of fibroblast senescence8. Using atomic
force microscopy, age-related increases in stiffness of par-
enchymal and vessel compartments were demonstrated recently9;
however, the causal molecular changes underlying these effects
are unknown.

Aging is a multifactorial process that leads to these molecular
and cellular changes in a complicated series of events. The hall-
marks of aging encompass cell-intrinsic effects, such as genomic
instability, telomere attrition, epigenetic alterations, loss of
proteostasis, deregulated nutrient sensing, mitochondrial dys-
function, and senescence, as well as cell-extrinsic effects, such
as altered intercellular communication and extracellular matrix
remodeling2,3. The lung contains potentially at least 40 distinct
cell types10, and specific effects of age on cell-type level have
never been systematically analyzed.

In this study, we build on rapid progress in single-cell
transcriptomics11,12 which recently enabled the generation of
a first cell-type resolved census of murine lungs13, serving as a
starting point for investigating the lung in distinct biological
conditions as shown for lung aging in the present work. We
computationally integrate single-cell signatures of aging with
state-of-the-art whole lung RNA-sequencing (RNA-seq) and
mass spectrometry-driven proteomics14 to generate a multi-omics
whole organ resource of aging-associated molecular and cellular
alterations in the lung.

Results
Lung aging atlas reveals deregulated transcriptional control. To
generate a cell-type resolved map of lung aging we performed
highly parallel genome-wide expression profiling of individual
cells using the Dropseq workflow15 which uses both molecule and
cell-specific barcoding, enabling great cost efficiency and accurate
quantification of transcripts without amplification bias16. Single-
cell suspensions of whole lungs were generated from 3-month-old
mice (n= 8) and 24-month-old mice (n= 7). After quality

control, a total of 14,813 cells (7672 young, 7141 old) were used
for downstream analysis (Fig. 1a). Quality metrics including
number of unique molecular identifiers (UMI), genes detected per
cell, and reads aligned to the mouse genome were comparable
across mice (Supplementary Fig. 1a–c). To ensure that cell-type
discovery is not confounded by aging effects, we only used highly
variable genes between cell types (see Methods for details).
Unsupervised clustering analysis revealed 36 distinct clusters
corresponding to 30 cell types, including all major known epi-
thelial, mesenchymal, and leukocyte lineages (Fig. 1b, c). We
observed very good overlap across mouse samples (Silhouette
coefficient: −0.074) and most clusters were derived from >70%
of the mice of both age groups (Supplementary Fig. 1d and e).
The definition of cell types (clusters in t-distributed stochastic
neighbor embedding (tSNE) map) was very comparable between
old and young mice, indicating that the cell-type identity was not
strongly confounded by the aging effects (Supplementary Fig. 1f).
Two clusters exclusively contained cells from a single mouse and
were removed from downstream analysis. Interestingly, we
identified even rare (<1%, 43 cells) cell types such as mega-
karyocytes, which were recently identified as an unexpected
tissue-resident cell type in mouse lung17. Of note, some samples
contributed as little as a single cell to this megakaryocyte cluster,
emphasizing the power and accuracy of the computational
workflow used here for data integration from multiple mice.

We used differential gene expression analysis to determine cell
type-specific marker genes with highly different levels between
clusters (Fig. 1c, Supplementary Data 1). The clusters were
annotated with assumed cell-type identities based on (1) known
marker genes derived from expert annotation in literature and
(2) enrichment analysis using Fisher’s exact test of gene
expression signatures of isolated cell types from databases
including ImmGen18 and xCell19. Correlation analysis of marker
gene signatures revealed that similar cell types clustered together,
implying correct cell-type annotation (Fig. 1c).

We used the matchSCore tool20 to compare the cluster
identities of our dataset with the lung data in the recently
published Mouse Cell Atlas (MCA)13, and found very good
agreement in cluster identities and annotations (Supplementary
Fig. 2a). Moreover, when comparing our cluster identities to the
MCA peripheral blood data, only weak correspondence was
observed (Supplementary Fig. 2b), which was similar in the MCA
peripheral blood versus MCA lung comparison (Supplementary
Fig. 2c). One notable exception in this comparison is the
cluster of red blood cells in our dataset which achieved high
correspondence with the MCA peripheral blood cluster annotated
as Erythroblast_Hbb-a2_high. The red blood cells serve as a
control and illustrate matchSC values for a correct overlap
(Supplementary Fig. 2d). Taken together, these findings indicate
that very little blood-derived contamination was present.

Additionally, we noticed one cluster of mainly proliferating
cells showing high expression levels for S and G2M cell-cycle
marker genes (Supplementary Fig. 3a and b). Young mice showed
a higher fraction of cells in this cluster compared to old mice
(Supplementary Fig. 3c; Generalized linear binomial model, p <
0.001). Next, we isolated this cluster and corrected the gene
expression levels for cell-cycle phase (Supplementary Fig. 3 d and
e). Subsequent unsupervised clustering analysis revealed that
these proliferating cells belong to T cells, type-2 pneumocytes,
and alveolar macrophages (Supplementary Fig. 3f–i).

It was suggested that aging is a consequence of increased
transcriptional instability rather than the result of a coordinated
transcriptional program, and that an aging-associated increase
in transcriptional noise can lead to fate drifts and ambiguous cell-
type identities21,22. Therefore, we quantified transcriptional noise
following previous work22 and accounted for differences in total
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UMI counts and cell-type frequencies (see Methods for details).
We observed an increase in transcriptional noise with aging in
most cell types (Fig. 2a). To further exclude technical confound-
ing we additionally averaged the transcriptional noise scores
per mouse and obtained highly concordant results (Fig. 2b). To
further substantiate this finding we quantified transcriptional
noise in an alternative manner using Spearman's correlations
between cells. This analysis confirmed our finding that transcrip-
tional noise is increased with aging (Fig. 2c, d) and is in line
with previous reports in the human pancreas22 or mouse CD4+
T cells21.

Multi-omics data integration of mRNA and protein. To vali-
date the completeness of our single-cell RNA-sequencing
(scRNA-seq) data and capture age-dependent alterations in both
mRNA and protein content for the whole lung, we generated two
additional cohorts of young and old mice (Fig. 3a, Supplementary
Figure 4 and Supplementary Data 2): (1) bulk RNA-seq data of
three replicates of young (3 months) and old mice (22 months)
and (2) state-of-the-art shotgun proteomics data of four replicates
of young (3 months) and old mice (24 months). To compare the
whole lung bulk transcriptome with single-cell data we generated
in silico bulk samples from the scRNA-seq data by summing
expression counts from all cells for each mouse individually
(Supplementary Data 2). Differential gene expression analysis
from in silico bulks and real whole lung bulk sequencing revealed
a total of 2362 and 9245 differentially expressed genes (negative

binomial generalized linear model, false discovery rate (FDR)
<10%) between the two age groups, respectively (Supplementary
Fig. 4a, b, Supplementary Data 2). From whole lung tissue pro-
teomes we quantified 5212 proteins across conditions and found
213 proteins to be significantly regulated with age (two-sided t-
test, FDR < 10%, Supplementary Fig. 4c, Supplementary Data 2).
We observed very good agreement between the real and in silico
bulk data, thus excluding strong biases by the single-cell isolation
procedures (Fig. 3b). Furthermore, we also observed strong cor-
respondence between the age-dependent alterations in all three
data sets (Fig. 3c), indicating that we were able to pick up robust
age-dependent changes with three independent experimental
settings. Significant correlation was observed between the gene-
level fold changes derived from RNA-seq, scRNA-seq, and pro-
tein expression data (Supplementary Fig. 4d–f).

Prediction of the upstream regulators23 of the observed
expression changes in either the transcriptome or proteome data
gave very similar results (Fig. 2d). In both datasets from
independent mouse cohorts, we discovered a pro-inflammatory
signature, which included upregulation of Il6, Il1b, Tnf, and Ifng,
as well as the downregulation of Pparg and Il10 (Fig. 2d).
Furthermore, to reveal common or distinct regulation of gene
annotation categories in the transcriptome or proteome, we
performed a two-dimensional annotation enrichment analysis24

(Supplementary Data 3). Again, most gene categories regulated by
age were showing the same direction in transcriptome and
proteome so that the positive Pearson's correlation of the
annotation enrichment scores was highly significant (Fig. 2e).
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We observed several hallmarks of aging, including a decline in
mitochondrial function and upregulation of pro-inflammatory
pathways (‘inflammaging´). Interestingly, we detected a strong
increase in immunoglobulins in both datasets, as well as higher
levels of major histocompatibility complex (MHC) class I, which
is consistent with the observed increase in the interferon pathway
(Fig. 2e). Many extracellular matrix genes, such as collagen III,
were downregulated on both the mRNA and protein levels, while
the levels of all basement membrane-associated collagen IV genes
were increased on the protein level, but decreased at the mRNA
level in both transcriptome datasets (Fig. 2f) and in proximity

ligation in situ hybridization of mRNA in tissue sections (Fig. 2g).
The differential regulation of collagen IV transcripts and proteins
highlights the importance of combined RNA and protein analysis.
We validated the increased protein abundance of collagen IV
using immunofluorescence and found that interestingly the main
increase in collagen IV in old mice was found around airways and
vessels (Fig. 2g).

Altered frequency of airway epithelial cells upon aging. Single-
cell RNA-seq can disentangle relative frequency changes of cell
types from real changes in gene expression within a given cell
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type. We analyzed age-dependent alterations of relative fre-
quencies of the 30 cell types represented in our dataset. Since the
cell-type frequencies are proportions, the data are compositional.
Therefore, it is impossible to statistically discern if a relative
change in cell-type frequency is caused by the increase of a given
cell type or the decrease of another. However, after performing
dimension reduction using multidimensional scaling of the cell-
type proportions, we observed a significant association between
the first coordinate and age (Fig. 4a, b; Wilcoxon test, p < 0.005),
indicating that cell-type frequencies differed between young and
old mice. Interestingly, the Dropseq data showed a relative
increase in ciliated cells in old mice so that the ratio of club to
ciliated cells was altered (Fig. 4c, d). Relative frequency differ-
ences in scRNA-seq data can be biased by tissue isolation

artifacts. We therefore validated the change in club to ciliated cell
proportions by deconvolving the whole lung bulk expression data
using our single-cell gene expression profiles (Fig. 4e). Indeed, we
found that the ciliated cell marker genes signature was sig-
nificantly upregulated in old compared to young mouse lungs
(Fig. 4f). Interestingly, this analysis also revealed marked increase
of various immune cell populations, including CD4+ and CD8+
T cells, eosinophils, and classical monocytes (Fig. 4e). We addi-
tionally validated this finding in situ by quantifying airway club
and ciliated cells using immunostainings of Foxj1 (ciliated cell
marker) and CC10 (club cell marker) (Fig. 4g). In addition, in this
analysis the ciliated cells were increased in old mice (Fig. 4h),
leading to a significantly altered ratio of club to ciliated cells in
aged mouse airways (Fig. 4i).
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Altered composition of the pulmonary extracellular matrix.
The ECM can act as a solid phase-binding interface for hundreds
of secreted proteins, creating an information-rich signaling tem-
plate for cell function and differentiation25. Alterations in ECM
composition and possibly architecture in the aging lung have
been suggested26, but experimental evidence using unbiased mass
spectrometry is scarce. From the 5138 proteins quantified in the
tissue proteome (Fig. 5a), we identified 32 Matrisome proteins
with significant change upon aging (two-sided t-test, FDR < 10%,
Fig. 5b, Supplementary Data 2). Collagen XIV, a collagen of the
FACIT (Fibril Associated Collagens with Interrupted Triple
helices) family of collagens that is associated with the surface of
collagen I fibrils and may function by integrating collagen bun-
dles27, was downregulated in old mice (Fig. 5b). Collagen XIV is a
major ECM binding site for the proteoglycan Decorin28, which
is known to regulate TGF-beta activity29,30. Interestingly, our
scRNA-seq data localized collagen XIV expression to interstitial
fibroblasts that together with mesothelial cells also expressed
Decorin and were distinct from the lipofibroblasts that showed
very little expression of this particular collagen (Fig. 5c). Thus, the
combination of tissue proteomics with single-cell transcriptomics
enabled us to predict the cellular source of the regulated proteins,
which can be explored in the online webtool (https://theislab.
github.io/LungAgingAtlas). In the webtool the cell-type specificity
of any gene query can be exported as dot plot in pdf format.

We previously developed the quantitative detergent solubility
profiling (QDSP) method to add an additional dimension of
protein solubility to tissue proteomes31–33. In QDSP, proteins are
extracted from tissue homogenates with increasing stringency
of detergents, which typically leaves ECM proteins enriched in
the insoluble last fraction. This enables better coverage of ECM
proteins and analysis of the strength of their associations with
higher-order ECM structures such as microfibrils or collagen
networks. We applied this method to young and old mice and
compared protein solubility profiles between the two groups
(Fig. 6a). Differential comparison of the solubility profiles
between young and old mice revealed 74 proteins, including 8
ECM proteins, with altered solubility profiles (two-way analysis of
variance (ANOVA), FDR < 20%) (Supplementary Data 4).

Using principal component analysis of 432 secreted extra-
cellular proteins we found that the protein solubility fractions
separated in component 1, while the age groups separated in
component 4 of the data (Fig. 6b). Thus, principal component
analysis enabled the stratification of secreted proteins by their
biochemical solubility and their differential behavior upon aging
(Fig. 6c). This analysis also showed that neither the abundance
nor the solubility of many ECM proteins, including collagen I and

basement membrane laminins, was altered (Fig. 6c). While the
most abundant basement membrane laminin chain (Lamc1) was
unaltered in both abundance (Fig. 6d) and solubility (Fig. 6g),
serving as a control for overall integrity of the basement
membrane and the quality of our data, the basement
membrane-associated trimeric Fraser Syndrome complex (con-
sisting of Fras1, Frem1, and Frem2) was downregulated (Fig. 6e)
and more soluble (Fig. 6h) in old age. Incorporation of the Fraser
syndrome complex within the basement membrane (rendering it
more insoluble) has been shown to depend on extracellular
assembly of all three proteins34, indicating that this assembly and/
or the expression of either one or all subunits of the complex
is perturbed in old mice. Fraser syndrome is a skin-blistering
disease which points to an important function of the Fraser
syndrome complex proteins in linking the epithelial basement
membrane to the underlying mesenchyme34. In the lungs of adult
mice, expression is restricted to the mesothelium; Fras1−/− mice
develop lung lobulation defects35. Interestingly, the solubility of
the downregulated collagen XIV (Fig. 6f) was also significantly
changed (Fig. 6i).

Cell type-specific effects of aging. Cell type-resolved differential
gene expression testing between age groups in the single-cell
data sets identified 391 significantly regulated genes (Wilcoxon
rank sum test, FDR < 10%) (Fig. 7a; Supplementary Data 5).
Alveolar macrophages and type-2 pneumocytes, the two cell
types with highest number of cells in the dataset, are discussed
as an example for the type of insight that can be gained from
our cell type-resolved resource. Both cell types showed a clearly
altered phenotype in aged mice.

In alveolar macrophages, we found 125 significantly regulated
mRNAs (FDR < 10%, Fig. 7b), including the downregulation of
the genes for Eosinophil cationic protein 1 & 2 (Ear1 and Ear2),
which have ribonuclease activity and are thought to have potent
innate immune functions as antiviral factors36. We observed
higher levels of the C/EBP beta (Cebpb), which is an important
transcription factor regulating the expression of genes involved
in immune and inflammatory responses37,38. Several genes that
have been shown to be upregulated in lung injury, repair, and
fibrosis33, such as Spp1, Gpnmb, and Mfge8, were also induced in
alveolar macrophages of old mice, which may be a consequence
of the ongoing ‘inflammaging'.

In alveolar type-2 pneumocytes, 121 mRNAs were significantly
regulated (Wilcoxon rank sum test, FDR < 10%, Fig. 7c). We
observed a strong increase of the MHC class I genes H2-K1,
H2-Q7, H2-D1, and B2m (Fig. 7c), which we validated using an

Fig. 3 Multi-omic data integration uncovers uncoupled regulation of RNA and protein. a Experimental design—three independent cohorts of young and old
mice were analyzed by single-cell RNA-sequencing (scRNA-seq), bulk RNA-seq, and mass spectrometry-driven proteomics respectively. b On the left,
gene expression profiles from whole lung bulk samples (n= 6) and in silico bulk samples (n= 15) were averaged and plotted on X and Y axes, respectively.
Red and black lines indicate linear model fit and the diagonal. On the right, correlation heatmap shows Pearson's correlation between all bulk and in
silico bulk samples. c Normalized bulk (RNA-seq) and in silico bulk (scRNA-seq) data were merged with proteome data (mass spectrometry) and quantile
normalized. The first two principal components show clustering by data modality. The third principal component separates young from old samples
across all three data modalities. Blue and red colors indicate young and old samples, respectively. d Gene expression and protein abundance fold changes
were used to predict upstream regulators that are known to drive gene expression responses similar to the ones experimentally observed. Upstream
regulators could be cytokines or transcription factors. The color-coded activation z-score illustrates the prediction of increased or decreased activity upon
aging. e The scatter plot shows the result of a two-dimensional annotation enrichment analysis based on fold changes in the transcriptome (x-axis) and
proteome (y-axis), which resulted in a significant positive correlation of both datasets. Types of databases used for gene annotation are color coded
as depicted in the legend. f Expression of collagen IV genes in the in silico bulk (scRNA-seq), bulk (RNA-seq), and proteome (mass spec) experiments,
respectively. The box represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the interquartile
range. g Immunofluorescence image of collagen type IV using confocal microscopy at ×25 magnification and proximity ligation in situ hybridization (PLISH)
staining of Col4a1 mRNA. Note the increased fluorescence intensity of the protein around vessels in old mice along with the decreased mRNA expression
(scale bar: 50 µm)
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independent flow cytometry experiment on epithelial cells
marked by Epcam expression (Fig. 7k, l). Elevated MHC class I
levels likely result in increased presentation of self-antigens to the
immune system and are consistent with our observation of a
prominent interferon-gamma signature in old mice (Fig. 3d),
which is known to activate MHC class I expression39. Type-2
pneumocytes of old mice featured a highly significant upregula-
tion of the enzyme Acyl-CoA desaturase 1 (Scd1), which is the
fatty acyl Δ9-desaturating enzyme that converts saturated fatty
acids into monounsaturated fatty acids (Fig. 7c). The age-
dependent upregulation of Scd1 in type-2 pneumocytes may have
important implications since Scd1 is thought to induce adaptive

stress signaling that maintains cellular persistence and fosters
survival and cellular functionality under distinct pathological
conditions40.

To perform global validation of the cell type-resolved
differential gene expression analysis for a large number of genes
we flow-sorted epithelial cells and macrophages from an
additional cohort of young and old mice (see Supplementary
Fig. 5 for gating strategy) and performed bulk RNA-seq on these
isolated cell types from young (n= 4) and old (n= 4) mice.
Principal component analysis (PCA) was performed using the
scRNA-seq-derived signatures of alveolar macrophages and type-
2 pneumocytes. Gene expression profiles of flow-sorted epithelial
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cells and macrophages were projected into this PCA space (see
Methods for details) showing good overlap of cell-type identity,
thereby confirming the scRNA-seq-based cell-type annotation
(Fig. 7d, e). Next, age-dependent alterations in the flow-sorted
bulk RNA-seq data were identified (Supplementary Data 2).
Significant agreement with the scRNA-seq-derived results was
observed (Fisher’s exact test, p < 2.2e−16, Fig. 7f–j), thus
validating the power of scRNA-seq to derive age-dependent
changes in gene expression.

To obtain a meta-analysis of changes in previously character-
ized gene expression modules and pathways, we used cell type-
resolved mRNA fold changes for gene annotation enrichment
analysis (Supplementary Fig. 6a and b, Supplementary Data 6)
and upstream regulator analysis (Supplementary Fig. 6c–e). The
analysis revealed cell type-specific alterations in gene expression
programs upon aging. For instance, comparing club cells to type-
2 pneumocytes showed that Nrf2 (Nfe2l2)-mediated oxidative
stress responses were higher in type-2 pneumocytes of old mice
and lower in club cells (Supplementary Fig. 6c). Aging is known
to affect growth signaling via the evolutionary conserved Igf-1/
Akt/mTOR axis. Interestingly, we found evidence for increased
mammalian target of rapamycin (mTOR) signaling in type-2 and
club cells, but not in ciliated and goblet cells (Supplementary

Fig. 6c). Mesenchymal cells showed remarkable differences in
their aging response (Supplementary Fig. 6d). For instance, we
observed the pro-inflammatory Il1b signature in capillary
endothelial cells, as well as in mesothelial and smooth muscle
cells, but not in the other mesenchymal cell types. In myeloid cell
types we found both differences and similarities in the aging
response (Supplementary Fig. 6e). While an increased interferon-
gamma and reduced Il10 signature in old mice was consistently
observed, other effects were more specific, such as the increase in
Stat1 target genes in classical monocytes (Ly6c2+), which was not
observed in non-classical monocytes (Ly6c2−).

Increased cholesterol biosynthesis in aged cell types. Pulmonary
surfactant homeostasis is a tightly regulated process that involves
synthesis of lipids by type-2 pneumocytes and lipofibroblasts41.
Lipid metabolism in alveolar type-2 cells is regulated by sterol-
response element-binding proteins (SREBPs) such as Srebf2 and
their negative regulators Insig1 and Insig2. Deletion of Insig1/2 in
mouse type-2 pneumocytes activated SREBPs and led to the
accumulation of neutral lipids (cholesterol esters and trigylcerids)
in type-2 pneumocytes and alveolar macrophages, accompanied
by lipotoxicity-related lung inflammation and tissue
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remodeling42. Interestingly, we observed very similar gene
expression changes in type-2 pneumocytes of old mice as
reported for the Insig1/2 deletion. Consistently, the upstream
regulator analysis predicted increased activity of Srebf2 and
reduced activity of Insig1 specifically in type-2 pneumocytes of
old mice (Supplementary Fig. 6c). The upstream regulator ana-
lysis was based on 25 known targets of SREBP/Insig1, all of which
were increased in aged type-2 pneumocytes (Fig. 8a). Using gene
annotation enrichment analysis on the universal protein resource
(Uniprot) Keywords, Gene Ontology (GO) terms, and Kyoto

encyclopedia of genes and genomes (KEGG) pathways (Supple-
mentary Data 6), we found increased cholesterol biosynthesis as
the top hit in type-2 pneumocytes and lipofibroblasts and no
other cell type (Fig. 8b). Indeed, most of the Insig1/2 target genes
are directly involved in cholesterol biosynthesis (Fig. 8c).

To confirm the increased cholesterol biosynthesis and analyze
the actual lipid content of the cells, we performed immuno-
fluorescence of the type-2 pneumocyte marker prosurfactant
protein C (proSP-C) together with the LipidTox compound that
stains neutral lipids. Increased LipidTox staining in aged lungs
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was specific to alveolar type-2 cells (Fig. 8d). In addition, we used
the Nile red dye to stain neutral lipids in cells of a whole lung
suspension after depletion of leukocytes. Using flow cytometry we
quantified the Nile red lipid staining and found a significant
increase in mean fluorescence intensity (Fig. 8e–g) in the CD45-
negative cells of old mice. CD45+ cells were not significantly
altered, indicating that the increase in neutral lipid content is
specific to epithelial cells and fibroblasts. Thus, we have
shown that increased cholesterol biosynthesis and neutral lipid
content in type-2 pneumocytes and lipofibroblasts is a hallmark
of lung aging.

Discussion
Enabling healthy aging is one of the prime goals of the modern
society. In order to better understand age-related chronic lung
diseases such as COPD, lung cancer, or fibrosis, intense efforts
in integrated multi-omics systems biology tools for the analysis
of lung aging are needed26. In this work, we present a single-cell
survey of mouse lung aging and computationally integrate single-
cell transcriptomics data with bulk proteomics and tran-
scriptomics of whole lung to build a draft of an atlas of the aging
lung. Atlasing efforts are generally organized in stages so that
more detailed maps of cellular phenotypes will be integrated at
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later stages to initial drafts of the atlas. The intention in this study
was to perform an integrated analysis of aging effects at a depth of
current state of the art of proteomics and transcriptomics. The
lung aging atlas and associated raw data can be accessed at
https://theislab.github.io/LungAgingAtlas (Supplementary Fig. 7).
It features five dimensions that can be navigated through gene
and cell type-specific queries: (1) cell type-specific expression of
genes and marker signatures for 30 cell types, (2) regulation of
gene expression by age on cell-type level, (3) cell type-resolved
pathway and gene category enrichment analysis, (4) regulation of
protein abundance by age on tissue level, and (5) regulation of
protein solubility by age.

The highly multiplexed nature of droplet-based single-cell
RNA sequencing used in this study allows the direct analysis of
thousands of individual cells freshly isolated from whole mouse
lungs, providing unbiased classification of cell types and cellular
states. Two previous studies have analyzed aging effects using
single-cell transcriptomics and found increased transcriptional
variability between cells in human pancreas and T cells21,22. In
this study, we identify aging-associated increased transcriptional
noise, which may result from deregulated epigenetic control, in
most cell types of the lung, indicating that this phenomenon is a
general hallmark of aging that likely affects most cell types in both
mice and humans. This concept is supported by our study and it
will be interesting when and how future investigations will shed
light on the molecular mechanisms driving this phenomenon.

We have used three independent cohorts of young and old
mice and uncovered remarkably well-conserved aging signatures
in both mRNA and protein. Thus, the three datasets validate each
other and show that (1) single-cell analysis can be highly repre-
sentative of biological changes in total tissue, and (2) the analysis
of protein and mRNA content can lead to overall similar results
with important differences. Hallmarks of aging, such as the
downregulation of mitochondrial oxidative phosphorylation and
the upregulation of pro-inflammatory signaling pathways, were
consistently observed in all datasets. On the level of individual
genes/proteins, however, we often observed interesting differ-
ences, which indicates that for functional analysis of a particular
gene/protein, it remains essential to also analyze the protein,
which ultimately executes biological functions.

The example of basement membrane collagen IV genes that
were all downregulated on the mRNA level but upregulated on
the protein level illustrates that protein post-transcriptional reg-
ulation is indeed important. In particular, the abundance of ECM
proteins, which often have long half-lives and are thus likely more
often regulated on the posttranscriptional level, could frequently

show decoupling of protein and mRNA. Next to mass
spectrometry-based methods, single-cell methods combining
mRNA and protein analysis, such as cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq)43, will become
ever more important in the near future. We show that the
combination of single cell-resolved mRNA analysis and bulk
proteomics is highly complementary using the single-cell
expression data to understand the most likely cellular origin of
proteins that showed altered abundance with age. Spatial tran-
scriptomics methods for high-throughput detection of transcripts
in single cells in situ are currently quickly evolving44,45. Tradi-
tional antibody-based methods for single-cell protein analysis
in situ are however not well multiplexed and do not easily scale
for high throughput. Thus, to fully develop the enormous
potential of single-cell multi-omics data integration, the field
depends on current and future developments in multiple omics
layers on single-cell level in situ46,47.

We analyzed the foundations of lung tissue architecture by
quantifying compositional and structural changes in the aged
extracellular matrix using state-of-the-art mass spectrometry
workflows. The ECM is not only key as a scaffold for the lungs
overall architecture, but also an important instructive niche for
cell fate and phenotype25,48. Recent proteomic studies identified
at least 150 different ECM proteins, glycosaminoglycans, and
modifying enzymes in the lung, and these assemble into intricate
composite biomaterials that are characterized by specific bio-
physical and biochemical properties32,33,49. Due to this com-
plexity of the ECM, both in terms of composition and
posttranslational modification and the assembly of ECM proteins
into supramolecular structures, it is presently unclear on which
level and how exactly the aging process affects the lung ECM
scaffold. We used detergent solubility profiling to screen for
differences in protein crosslinking and complex formation within
the ECM. Surprisingly, most solubility profiles were not sig-
nificantly altered with age, indicating that aging-related ECM
remodeling does not involve large differences in covalent protein
crosslinks. However, we observed a few very strong changes in the
ECM which have not yet been reported in the context of aging
and are open for future investigation into their functional
implications.

In order to stabilize the alveolar structure during breathing-
induced expansion and contraction, type-2 pneumocytes produce
and secrete pulmonary surfactant, which is a thin film of phos-
pholipids and surfactant proteins41. The lipid composition of
pulmonary surfactant has been shown to change with age50, and
electron microscopy of surfactant and the lipid-loaded lamellar

Fig. 7 Single-cell RNA-sequencing (scRNA-seq) enables cell type-resolved differential expression analysis. a Heatmap displays fold changes derived from
the cell type-resolved differential expression analysis. Rows and columns correspond to cell types and genes, respectively. Negative fold change values
(blue) represent higher expression in young compared to old. Positive fold change values are colored in pink. b, c Volcano plots visualize the differential
gene expression results in b alveolar macrophages and c type-2 pneumocytes. X and Y axes show average log2 fold change and −log10 p value,
respectively. d Scatterplot illustrates principal component analysis (PCA) of in silico bulk samples of alveolar macrophages and type-2 pneumocytes and
the projected flow-sorted bulk samples. Color and shape indicate cell-type identity and data modality. PCA loadings show that well-known marker genes
define the first principal component corresponding to cell-type identity (e). Fold changes derived from the flow-sorted bulk samples and the cell type-
resolved differential expression analysis are depicted on the X and Y axes respectively for alveolar macrophages (f) and type-2 pneumocytes (g). The
likelihood of corresponding fold change direction was highly enriched between the scRNA-seq and flow-sorted bulk data for both cell types (h). X-axis
shows the odds ratio including 95% confidence interval. Black vertical line illustrates an odd ratio of one representing equal likelihood. Increased expression
of H2-K1 in old compared to young mice was observed for type-2 pneumocytes in the scRNA-seq (i) and flow-sorted bulk (j) data (n= 4 young and n= 4
old mice). For (j), the box represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the
interquartile range. k The indicated cell lineages were gated by flow cytometry as shown in the left panel in a CD31 and Epcam co-staining and evaluated
for H2-K1 expression on protein level. The histograms show fluorescence intensity distribution of the H2-K1 cell surface staining for the indicated lineages
and age groups. l Boxplot shows mean fluorescence intensity for H2-K1 in the indicated cell types taken from 4 young and 4 old mice. The p values are from
a two-sided t-test. The box represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the
interquartile range
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bodies in type-2 pneumocytes revealed ultrastructural dis-
organization with age51. This may be related to our finding that
cholesterol biosynthesis and neutral lipid content is upregulated
in type-2 cells of old mice. It is currently unclear at which level
the homeostasis of lipid metabolism is altered in the aged lungs.
We found strong similarity of the aged type-2 phenotype with the
phenotype in Insig1/2 knockout mice that accumulated neutral
lipids, accompanied by lipotoxicity-related lung inflammation
and tissue remodeling42. Thus, it is possible that part of the
chronic inflammation we observed in the aged lung is influenced
by deregulation of lipid homeostasis. The inflammatory pheno-
type may also be related to epithelial senescence, as mice with a
type-2 pneumocyte-specific deletion of telomerase, and thus

premature aging with increased senescence in these cells, devel-
oped a pro-inflammatory tissue microenvironment and were less
efficient in resolving acute lung injury52.

In summary, we have demonstrated that the lung aging atlas
presented here contains a plethora of information on molecular and
cellular scale and serves as a reference for the large community of
scientists studying chronic lung diseases and the aging process.

Methods
Ethics statement. Pathogen-free C57BL/6 mice were obtained from Charles River
and housed in rooms maintained at constant temperature and humidity with a 12 h
light cycle. Animals were allowed food and water ad libitum. For this study, organs
were obtained from mice that had to be killed because of excessive breeding.
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Fig. 8 Aging increases cholesterol biosynthesis in type-2 pneumocytes and lipofibroblasts. a The graph shows genes known to be negatively regulated by
Insig1 that were found to be upregulated in type-2 pneumocytes of old mice. b Selected gene categories found to be significantly (false discovery rate
(FDR) < 5%) upregulated (positive enrichment scores) or downregulated (negative enrichment scores) in the indicated cell types. c Segment of the
cholesterol biosynthesis pathway. Diamond-shaped nodes represent enzymes that were found to be upregulated in type-2 pneumocytes of old mice. The
biochemical intermediates are named in between the enzyme nodes. d Immunofluorescence staining of lung sections of young and old mice shows type-2
pneumocytes expressing pro-SPC and neutral lipids marked by LipidTox staining (scale bar: 50 µm). e Quantification of Nile red stainings using flow
cytometry. Histograms show flow cytometry analysis of Nile red in aged (red) and young (blue) mice; unstained control is represented in gray. Cells were
stratified by size in bins of large (FSC hi) and small (FSC lo) cells using the forward scatter. f, g Nile red mean fluorescence intensity (MFI) quantification
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Animal handling was performed according to strict governmental and interna-
tional guidelines and ethical oversight by the local government for the adminis-
trative region of Upper Bavaria, Germany.

Generation of single-cell suspensions from whole mouse lung. After killing
mice, lung tissue was perfused with sterile saline from the right to the left ventricle
of the heart and subsequently inflated via a catheter in the trachea by an enzyme
mix containing dispase (50 caseinolytic units/ml), collagenase (2 mg/ml), elastase
(1 mg/ml), and DNase (30 μg/ml). After tying off the trachea, the lung was
removed and immediately minced to small pieces (approximately 1 mm2). The
tissue was transferred into 4 ml enzyme mix for enzymatic digestion for 30 min at
37 °C. Enzyme activity was inhibited by adding 5 ml of phosphate-buffered saline
(PBS) supplemented with 10% fetal calf serum (FCS). Dissociated cells in sus-
pension were passed through a 70 μm strainer and centrifuged at 500 × g for 5 min
at 4 °C. Red blood cell lysis (Thermo Fisher 00-4333-57) was done for 2 min and
stopped with 10% FCS in PBS. After another centrifugation for 5 min at 500 × g
(4 °C) the cells were counted using a Neubauer chamber and critically assessed for
single-cell separation and viability. A total of 250,000 cells were aliquoted in 2.5 ml
of PBS supplemented with 0.04% of bovine serum albumin and loaded for DropSeq
at a final concentration of 100 cells/μl.

Single-cell RNA sequencing. Dropseq experiments were performed according to
the original Dropseq protocol15,16. Using a microfluidic polydimethylsiloxane
device (Nanoshift), single cells (100/µl) from the lung cell suspension were co-
encapsulated in droplets with barcoded beads (120/µl, purchased from ChemGenes
Corporation, Wilmington, MA) at rates of 4000 µl/h. Droplet emulsions were
collected for 15 min/each prior to droplet breakage by perfluorooctanol (Sigma-
Aldrich). After breakage, beads were harvested and the hybridized mRNA tran-
scripts reverse transcribed (Maxima RT, Thermo Fisher). Unused primers were
removed by the addition of exonuclease I (New England Biolabs), following which
beads were washed, counted, and aliquoted for pre-amplification (2000 beads/
reaction, equals ~100 cells/reaction) with 12 PCR cycles (Smart PCR primer:
AAGCAGTGGTATCAACGCAGAGT (100 µM), 2× KAPA HiFi Hotstart Ready-
mix (KAPA Biosystems), cycle conditions: 3 min 95 °C, 4 cycles of 20 s 98 °C, 45 s
65 °C, 3 min 72 °C, followed by 8 cycles of 20 s 98 °C, 20 s 67 °C, 3 min 72 °C, then
5 min at 72 °C)15. PCR products of each sample were pooled and purified twice by
0.6× clean-up beads (CleanNA), following the manufacturer’s instructions. Prior to
tagmentation, complementary DNA (cDNA) samples were loaded on a DNA High
Sensitivity Chip on the 2100 Bioanalyzer (Agilent) to ensure transcript integrity,
purity, and amount. For each sample, 1 ng of pre-amplified cDNA from an esti-
mated 1000 cells was tagmented by Nextera XT (Illumina) with a custom P5
primer (Integrated DNA Technologies). Single-cell libraries were sequenced in a
100 bp paired-end run on the Illumina HiSeq4000 using 0.2 nM denatured
sample and 5% PhiX spike-in. For priming of read 1, 0.5 µM Read1CustSeqB
(primer sequence: GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC)
was used.

Bioinformatic processing of scRNA-seq reads. The Dropseq core computational
pipeline15 was used for processing next-generation sequencing reads of the
scRNA-seq data. STAR (version 2.5.2a) was used for mapping53. Reads were
aligned to the mm10 genome reference (provided by the Dropseq group via the
Gene Expression Omnibus (GEO) accession code GSE63269). For cell filtering, we
considered all barcodes with more than 200 genes detected within the top 1200
barcodes by total UMI counts. Samples muc3838, muc3839, muc3840, and
muc3841 were sequenced at lower depth in which case we considered the top 800,
500, 500, and 500 barcodes by total UMI counts corresponding to the expected
number of cells, respectively.

Single-cell data analysis. After constructing the single-cell gene expression count
matrix, we used the R package Seurat54 and custom scripts for analysis.

For unsupervised clustering and visualization, we first defined highly variable
genes within each mouse sample separately following the Seurat standard
approach. Next, genes appearing in >4 mouse samples in the set of highly variable
genes were defined as a set of consensus highly variable genes. To minimize the
effect of cell cycle on clustering we removed cell-cycle genes55 from the set of
consensus highly variable genes. All 14,813 cells passing quality control were
merged into one count matrix and normalized and scaled using Seurat’s
NormalizeData() and ScaleData() functions, in which we regressed out the total
UMI count. The reduced set of consensus highly variable genes was used as the
feature set for independent component analysis using Seurat’s RunICA() function.
The first 30 independent components were used for tSNE visualization and
Louvain clustering using the Seurat functions RunTSNE() and FindClusters(),
respectively.

To quantitatively assess the clustering overlap across mouse samples, the
Silhouette coefficient was calculated. The Silhouette coefficient was calculated
between the Euclidean distance of the 50 independent components and the mouse
sample indicator. The Silhouette coefficient ranges from −1 to 1 and values close
to zero indicate random clustering with regard to the specified indicator.

The Seurat FindAllMarkers() function was used to identify cluster-specific
marker genes. Based on manual annotation and with guidance of the enrichment
analysis (see below), the 36 clusters were assigned to 30 cell-type identities. Using
the annotation of cell-type identities, the FindAllMarkers() function was called to
identify the final set of cell-type markers used throughout this analysis.

An important technical detail needed our attention and is briefly described here.
As infrequently discussed in the community but not yet addressed, we also
observed ‘ambient mRNA' effects, which we believe are the consequence of free
mRNA released from dying cells hybridizing with beads in droplets during the
microfluidic capture of single cells in the Dropseq workflow. The ambient mRNAs
are typically derived from highly abundant transcripts and this artifact is inherent
to all droplet-based methods (including the commercially available 10× platform).
Here, it can be exemplified by the Scgb1a1 gene in Fig. 1c that is known to be highly
specific for club and goblet cells but was nevertheless detected in almost 100% of
the cells in our data. However, the UMI count levels were much higher in club and
goblet cells (representing the real source of expression), indicating that the mRNA
counts observed in all other clusters were of ambient mRNA background. To
independently confirm this we therefore determined all genes that showed ambient
mRNA background by analyzing the identity of genes on beads at the tail-end
of the total UMI count distribution (on average 10 UMIs per barcode),
representing empty beads that were never in contact with a real cell but
nevertheless contain information from free-floating ambient mRNA. We identified
153 genes (Supplementary Data 7) with an ‘ambient mRNA' effect and accounted
for this effect in the cell type-resolved differential expression analysis (see below
for details).

To aid the assignment of cell type to clusters derived from unsupervised
clustering, we performed cell-type enrichment analysis. Cell-type gene signatures
obtained from bulk-level gene expression were downloaded from the ImmGen and
xCell resources. Each gene signature obtained from our clustering was statistically
evaluated for overlap with gene signatures contained in these two resources. Mouse
gene symbols were capitalized to map to human gene symbols. Overlap between
gene signatures was evaluated using Fisher’s exact test.

Cell-type marker signatures in our data (Supplementary Data 1) were compared
to cell-type marker signatures in the MCA13. MatchSCore20 was used to quantify
overlap between cell-type marker signatures derived from our study and the MCA.
Marker genes with adjusted p value < 0.1 and average log fold change >1 were
considered.

Transcriptional noise in the gene expression profiles was quantified following
previous work22. For each cell type with at least 10 old and young cells, we
quantified transcriptional noise in the following manner. To account for differences
in total UMI counts, all cells were downsampled so that all cells had equal
number of total UMI counts. To account for differences in cell-type frequency,
cell numbers were down-sampled so that equal numbers of young and old cells
were used. Next, genes were divided into 10 equally sized bins based on mean
expression and the top and bottom bins excluded. Within each bin, the 10% of
genes with the lowest coefficient of variation were selected. Subsampled raw count
data were reduced to this set of genes and square-root transformed. Next, the
euclidean distance between each cell and the corresponding cell-type mean within
each age group was calculated. This euclidean distance was used as one measure
of transcriptional noise for each cell. Additionally, we average the euclidean
distances for each mouse and calculated the transcriptional noise ratio between
young and old mice. Alternatively, we calculated Spearman's correlation
coefficients on the down-sampled expression matrices across all genes between
all pairwise cell comparisons within each cell type and age group. To be
consistent with the sign of the metric we used 1–Spearman correlation coefficient
as the second measure of transcriptional noise. To statistically assess the
association between transcriptional noise and age within each cell type, Wilcoxon’s
rank sum test was used. The p values were subsequently corrected for multiple
testing using the Bonferroni–Hochberg method as implemented in the R function
p.adjust().

Cell-type frequencies were calculated based on the counts of cells annotated
to each cell type for each mouse. Counts were transformed to proportions using
the DR_data() function of the DirichletReg R package which causes the values
to shrink away from extreme values of 0 and 1. Next, the mouse-wise euclidean
distances were calculated based on these proportions using the dist() R function
followed by multidimensional scaling using the isoMDS() R function. To
statistically assess the association between age and the first coordinate derived
from the multidimensional scaling, Wilcoxon test was applied. Relative changes
in cell-type frequencies were calculated by subtracting the median cell-type
proportion of the young mice from the cell-type proportions of the old mice.

Cell type-resolved differential expression analysis was performed using the
Seurat differential gene expression testing framework. Within each cell type, cells
were grouped by age and differential testing performed using the Seurat
FindMarkers() function. By inspecting barcodes with a very low number of UMI
counts, we identified 153 potential ambient mRNAs. However, these mRNAs could
represent true housekeeper genes which are constitutively expressed in all cells.
Therefore, we removed 41 mRNAs which showed no cell type-specific expression
effect (log2 fold change < 1) in any of the cell types in the cell-type marker
discovery analysis from this list. Next, to avoid differential testing of a gene in a cell
type where expression levels are driven by the ambient effect, cell type-resolved
differential expression testing of the remaining 112 ambient mRNAs was limited to
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cell types in which the ambient mRNA showed moderate cell type-specific
expression (adjusted p value < 0.25).

The one-dimensional annotation enrichment analysis24 was used for cell type-
resolved pathway analysis. We used the freely available software package Perseus56,
as previously described33. To predict the activity of upstream transcriptional
regulators and growth factors based on the observed gene expression changes, we
used the Ingenuity® Pathway Analysis platform (IPA®, QIAGEN Redwood City,
www.qiagen.com/ingenuity). The analysis uses a suite of algorithms and tools
embedded in IPA for inferring and scoring regulator networks upstream of gene
expression data based on a large-scale causal network derived from the Ingenuity
Knowledge Base. The analytics tool Upstream Regulator Analysis23 was used to
compare the known effect (transcriptional activation or repression) of a
transcriptional regulator on its target genes to the observed changes to assign an
activation Z-score. Since it is a priori unknown which causal edges in the master
network are applicable to the experimental context, the Upstream Regulator
Analysis tool uses a statistical approach to determine and score those regulators
whose network connections to dataset genes as well as associated regulation
directions are unlikely to occur in a random model23. In particular, the tool defines
an overlap p value measuring enrichment of network-regulated genes in the
dataset, as well as an activation Z-score which can be used to find likely regulating
molecules based on a statistically significant pattern match of up- and down-
regulation, and also to predict the activation state (either activated or inhibited) of a
putative regulator. In our analysis we considered genes with an overlap p value of
>7 (log10) that had an activation Z-score > 2 as activated and those with an
activation Z-score <−2 as inhibited.

Proteomics and multi-omics data integration. For proteome analysis ~100 mg of
fresh frozen total tissue (wet weight) of mouse lungs was homogenized in 500 µl
PBS (with protease inhibitor cocktail) using an Ultra-turrax homogenizer. After
centrifugation the soluble proteins were collected and proteins were extracted from
the insoluble pellet in three steps using buffers with increasing stringency using the
QDSP protocol33. Lungs were perfused with PBS through the heart to remove
blood. Then, ~100 mg of total lung tissue (wet weight) was homogenized in 500 µl
PBS (with protease inhibitor cocktail and EDTA) using an Ultra-turrax homo-
genizer. After centrifugation the soluble proteins were collected and proteins were
extracted from the insoluble pellet in three steps using buffers with increasing
stringency (buffer 1: 150 mM NaCl, 50 mM Tris-HCl (pH 7.5), 5% Glycerol, 1%
IGPAL-CA-630 (Sigma, #I8896), 1 mM MgCl2, 1× Protease inhibitors (+EDTA),
1% Benzonase (Merck, #70746-3), 1× Phosphatase inhibitors (Roche,
#04906837001); buffer 2: 50 mM Tris-HCl (pH 7.5), 5% Glycerol, 150 mM NaCl
+fresh protease inhibitor tablet (+EDTA), 1.0% IGEPAL® CA-630, 0.5% sodium
deoxycholate, 0.1% SDS, 1% Benzonase (Merck, #70746-3); buffer 3: 50 mM Tris-
HCl (pH 7.5), 5% Glycerol, 500 mM NaCl, protease inhibitor tablet (+EDTA),
1.0% IGEPAL® CA-630, 2% sodium deoxycholate, 1% SDS, 1% Benzonase (Merck,
#70746-3)). Insoluble pellets were resuspended in detergent containing buffers and
incubated for 20 min on ice (except for buffer 3, which was used at room tem-
perature), followed by separation of soluble and insoluble material using cen-
trifugation for 20 min at 16,000 × g. The PBS from the tissue homogenate and the
NP40 soluble fraction (buffer 1) was pooled which, together with the two fractions
derived from ionic detergent extraction (buffer 2 and 3), resulted in a total of three
soluble fractions and one insoluble pellet that were subjected to liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Soluble pro-
teins were precipitated with 80% acetone and subjected to in solution digestion
using a modified published protocol57. In brief, protein reduction (10 mM TCEP)
and alkylation (50 mM CAA) were performed at once in 6M guadinium hydro-
chloride (100 mM Tris-HCl pH 8) at 99 °C for 15 min. Subsequent protein
digestion was done in two steps. The first digestion was done at 37 °C for 2 h with
LysC (1:50 enzyme to protein ratio) in 10 mM Tris-Hcl (pH 8.5) containing 2M
guadinium hydrochloride (Gdm), 2.7 M Urea, and 3% acetonitrile. The second
digestion step was done using fresh LysC (1:50 enzyme to protein ratio) and trypsin
(1:20 enzyme to protein ratio) in 600 mM Gdm, 800 mM Urea, and 3% acetonitrile
at 37 °C overnight. For the insoluble protein pellet, which is strongly enriched for
insoluble ECM proteins, we optimized the in-solution digestion protocol with
additional steps involving extensive mechanical disintegration and ultra-sonication
aided digestion. The insoluble material was cooked, reduced, and alkylated in 6 M
Gdm for 15 min and then subjected to 200 strokes in a micro-dounce device, which
reduced the particle size of the insoluble protein meshwork. We then proceeded
with the two-step digestion protocol described above, which was additionally aided
by 15 min ultrasonication (Bioruptor, Diagenode) in the presence of the enzymes
in both digestion steps. Peptides were purified using stage-tips containing a poly-
styrene-divinylbenzene copolymer modified with sulfonic acid groups (SDB-RPS)
material (3 M, St. Paul, MN 55144-1000, USA) as previously described57.

Mass spectrometry data were acquired on a Quadrupole/Orbitrap type Mass
Spectrometer (Q-Exactive, Thermo Scientific) as previously described33.
Approximately 2 μg of peptides were separated in a 4 h gradient on a 50 cm long
(75 μm inner diameter) column packed in-house with ReproSil-Pur C18-AQ 1.9
μm resin (Dr. Maisch GmbH). Reverse-phase chromatography was performed with
an EASY-nLC 1000 ultra-high pressure system (Thermo Fisher Scientific), which
was coupled to a Q-Exactive Mass Spectrometer (Thermo Scientific). Peptides were
loaded with buffer A (0.1% (v/v) formic acid) and eluted with a nonlinear 240 min

gradient of 5–60% buffer B (0.1% (v/v) formic acid, 80% (v/v) acetonitrile) at a flow
rate of 250 nl/min. After each gradient, the column was washed with 95% buffer B
and re-equilibrated with buffer A. Column temperature was kept at 50 °C by an in-
house designed oven with a Peltier element58 and operational parameters were
monitored in real time by the SprayQc software59. MS data were acquired with a
shotgun proteomics method, where in each cycle a full scan, providing an overview
of the full complement of isotope patterns visible at that particular time point, is
followed by up to 10 data-dependent MS/MS scans on the most abundant not yet
sequenced isotopes (top10 method)60. Target value for the full scan MS spectra was
3 × 106 charges in the 300−1650m/z range with a maximum injection time of 20
ms and a resolution of 70,000 at m/z 400. Isolation of precursors was performed
with the quadrupole at window of 3 Th. Precursors were fragmented by higher-
energy collisional dissociation with normalized collision energy of 25% (the
appropriate energy is calculated using this percentage, and m/z and charge state of
the precursor). MS/MS scans were acquired at a resolution of 17,500 at m/z 400
with an ion target value of 1 × 105, a maximum injection time of 120 ms, and fixed
first mass of 100 Th. Repeat sequencing of peptides was minimized by excluding
the selected peptide candidates for 40 s.

MS raw files were analyzed by the MaxQuant61 (version 1.4.3.20) and peak lists
were searched against the human Uniprot FASTA database (version Nov 2016),
and a common contaminants database (247 entries) by the Andromeda search
engine62 as previously described33. As fixed modification cysteine
carbamidomethylation and as variable modifications, hydroxylation of proline and
methionine oxidation was used. False discovery rate was set to 0.01 for proteins and
peptides (minimum length of seven amino acids) and was determined by searching
a reverse database. Enzyme specificity was set as C-terminal to arginine and lysine,
and a maximum of two missed cleavages were allowed in the database search.
Peptide identification was performed with an allowed precursor mass deviation up
to 4.5 ppm after time-dependent mass calibration and an allowed fragment mass
deviation of 20 ppm. For label-free quantification in MaxQuant the minimum ratio
count was set to two. For matching between runs, the retention time alignment
window was set to 30 min and the match time window was 1 min. The mass
spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE [1] partner repository with the dataset identifier
PXD012307.

QDSP analysis intensities were first normalized such that the mean log2
intensities of the young and the old samples are zero, respectively. Using the
normalized intensities, a two-way ANOVA with the two-factor treatment (old/
young) and solubility fraction (FR1, FR2, FR3, INSOL) and the corresponding
interaction term was performed using the R function aov(). Proteins significant in
the interaction term correspond to proteins for which the solubility profile changes
between young and old mice. Therefore, the corresponding p value was used for
filtering the significantly changed profiles after FDR correction.

scRNA-seq, bulk RNA-seq, and proteome integration. In silico bulk samples
were generated by summing UMI counts across all cells within one mouse sample.
Differential gene expression analysis of in silico bulk samples was performed using
the R package DESeq2 (v1.20.0)63.To integrate scRNA-seq, bulk RNA-seq, and
protein data, the following approach was used. Raw count data from the in silico
bulk and whole lung tissue bulk were normalized using the voom() function of
the limma R package64. Next, in silico bulk, whole lung tissue bulk, and protein
data were merged on a set of genes present in all three data sets and quantile
normalized. This merged and quantile normalized expression matrix was then
subjected to PCA.

Some statistical and bioinformatics operations, such as normalization, pattern
recognition, cross-omics comparisons, and multiple-hypothesis testing corrections,
were performed with the Perseus software package56. The two-dimensional
annotation enrichment test used to compare proteome and transcriptome is based
on a two-dimensional generalization of the nonparametric two-sample test. The
false discovery rate is stringently controlled by correcting for multiple hypothesis
testing24.

Flow cytometry. Isolated total lung cell suspensions were used to detect and
quantify cell populations and activation by flow cytometry. We depleted red blood
cells by positive selection of Ter199 cells, followed by CD45 bead separation
(Miltenyi Biotec; Bergish Gladbach, 130-052-301). Next, we analyzed cells by
fluorescence-activated cell sorting (FACS) cell suspensions before and after
CD45 separation and stained cell suspensions with anti-mouse CD31 (Biolegend,
102419), EpCAM (Biolegend, 118225), and H2-K1 (Thermo Fisher Scientific,
Waltham, 12-5998-81). Cells were stained in the dark at 4 °C for 20 min. CD45
lineage-negative cells were stained with Nile red (Santa Cruz Biotechnology, sc-
203747) in a 1:1000 dilution for 10 min at 4 °C, as previously reported62.Cells were
sorted using the CD45-negative fraction of the cell isolate stained for anti-mouse
CD31, and EpCAM antibodies. Epithelial cells were sorted as CD31− cells and
EpCAM+ cells. For sorting macrophages we used the CD45-positive fraction and
stained with anti-mouse CD11c (Biolegend, 117310), CD11b (Biolegend, 101216),
MHC II (Biolegend, 107615), Siglec-F (552126, BD Pharmingen), and Ly6G
(Biolegend, 127627) antibodies. For flow cytometry sorting, neutrophils were
excluded by selection of Ly6G-negative cells. Macrophages were sorted as MHCII
+, CD11c+, CD11b+ as previously described65. Data acquisition was performed in
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a BD Fortessa flow cytometer (Becton Dickinson, Heidelberg, Germany). All
stainings were performed per 300,000 cells in the following dilutions: CD31
(1:300), EpCAM (1:50), H2-K1 (1:50), CD11c (1:100), Siglec-F(1:20), CD11b
(1:25), MHCII (1:50), and Ly6G (1:10).

Data were analyzed using the FlowJo software (TreeStart Inc., Ashland, OR,
USA). Data were reported as absolute numbers (cells/μl), normalized by bead
counts (BD Truecount TM Beads tubes; BD Biosciences, Heidelberg, Germany)
(Supplementary Fig 5). For H2-K1 and Nile red, data were analyzed by mean
fluorescence intensity (MFI). Negative thresholds for gating were set according to
isotype-labeled and unstained controls.

Bulk RNA-sequencing and analysis. RNA was isolated from whole lung tissue
using the Qiagen RNeasyⓇ Mini Kit (#74104) according to the manufacturer's
recommendations. The RNA isolate was thereafter enriched for poly-A templates
and submitted for whole mRNA sequencing on the Illumina HiSeq4000.

Whole lung tissue bulk RNA next-generation sequencing reads were aligned to
the mouse reference genome mm10 using STAR53 (version 2.2.1). Read
summarization was performed using the featureCounts63 (version 1.5.0) tool. To
statistically evaluate the agreement between the in silico bulk and true bulk RNA-
seq data, Spearman's correlation coefficients were calculated on the gene expression
profiles between all sample pairs and the averages of both modalities. Differential
gene expression analysis of whole lung tissue bulk samples was performed using the
R package DESeq266 (v1.20.0).

To identify potential age-dependent alterations in tissue composition, the whole
lung tissue bulk RNA-seq were integrated with the scRNA-seq-derived cell-type
signatures. Kolmogorov–Smirnov test was used to statistically evaluate the
enrichment of cell-type marker genes in the fold changes derived from the
differential expression analysis of the whole lung tissue bulk RNA-seq. The p values
were limited to the range from 1 to 1e−50.

Flow-sorted macrophages and epithelial cells were immediately lysed after
sorting and cDNA synthesis was performed using the Smart-Seq® v4 Ultra® Low
Input RNA Kit for Sequencing (TaKaRa, 634896). For each sample, 200 pg of pre-
amplified cDNA from an estimated 2000 cells was tagmented by Nextera XT
(Illumina) according to the manufacturer’s protocol and submitted for sequencing
on the Illumina HiSeq4000.

Flow-sorted bulk RNA next-generation sequencing reads were aligned to the
mouse reference genome mm10 using STAR53 (version 2.2.1). Read summarization
was performed using the featureCounts63 (version 1.5.0) tool. To increase
comparability between bulk and single-cell RNA-seq data, a total of 30 in silico
bulk samples were generated by summing the counts from all cells belonging to the
alveolar macrophages and type-2 pneumocytes clusters for each mouse. Next, PCA
was calculated for these in silico bulk samples using the alveolar macrophages and
type-2 pneumocytes marker genes with adjusted p value < 0.1 and fold change > 0
(Supplementary Data 1). Subsequently, the flow-sorted bulk RNA-seq samples
were projected into this PCA space to show correspondence between the scRNA-
seq-derived in silico bulk samples and the flow-sorted RNA-seq samples.
Differential expression analysis of flow-sorted bulk RNA-seq samples was
conducted using the R package limma64. To statistically evaluate the agreement
between the age-dependent alterations measured in the scRNA-seq and flow-sorted
bulk RNA-seq data, Fisher’s exact test was used. Fisher’s exact test assesses the
likelihood of genes having the same fold change direction (up- or down-regulation
in old compared to young).

Proximity ligation in situ hybridization (PLISH). Samples were prepared and
processed for PLISH and immunostaining as described in Nagendran et al.67. with
some modifications. 14 μm mouse lung cryosections were collected on superfrost
slides and allowed to air dry for 10 min. The slides were immersed in prewarmed
10 mM citrate buffer containing 0.05% lithium dodecyl sulfate at 100 °C in a water
bath for 5 min. The slides were quickly removed, rinsed with diethyl pyrocarbonate
(DEPC)-treated water and air dried. Seal chambers (GBL621505 Sigma-Aldrich)
were applied and the sections were rehydrated with DEPC-treated water for 1 min.
The samples were incubated with 0.025 mg/ml Pepsin (10108057001 Roche; from
Sigma-Aldrich) in 0.1 M HCL for 5 min at 37 °C followed by a quick rinse with 1×
PBS and the addition of H probes for Col4a1.

H probe sequences were: Col4a1 NM_009931.2:mmHLC2-VB01-Col4a1-5315
AGGTCAGGAATACTTACGTCGTTATGGTAGGGTTCATTGCTGTTACA,
mmHRC2-VB01-Col4a1-5315
AGGTACACAGGATATAATTCTTATAGGTCGAGTAGTATAGCCAGGTT,
mmHLC2-VB01-Col4a1-5385
AGGTCAGGAATACTTACGTCGTTATGGAGTTACGCGAATCCCTATAA,
mmHRC2-VB01-Col4a1-5385
CCAACGAAGCGGGGTGTGTTTTATAGGTCGAGTAGTATAGCCAGGTT,
mmHLC2-VB01-Col4a1-5910
AGGTCAGGAATACTTACGTCGTTATGGTTGACCTGCCTAATTGCTGA,
mmHRC2-VB01-Col4a1-5910
AACAGGCTCTACGCTAGAACTTATAGGTCGAGTAGTATAGCCAGGTT,
mmHLC2-VB01-Col4a1-5848
AGGTCAGGAATACTTACGTCGTTATGGATTTATTTATTTTCCATCTA,
mmHRC2-VB01-Col4a1-5848
ATATATATATTTATTTACTTTTATAGGTCGAGTAGTATAGCCAGGTT,

mmHLC2-VB01-Col4a1-5753
AGGTCAGGAATACTTACGTCGTTATGGAAGTTTGTGTTTGGGGCTGA,
mmHRC2-VB01-Col4a1-5753
CATAGTACCACACAGGGCATTTATAGGTCGAGTAGTATAGCCAGGTT.

Connector circle CCC2.1: 5′
ATTCCTGACCTAACAAACATGCGTCTATAGTGGAGCCACATAAT-
TAAACCTGGCTAT 3′.

Variable bridge VB01-P1:
ACTACTCGACCTATAACCATAACGACGTAAGT.

Label probe: LP1m-Cy5: 5′Cy5/ CTATACTACTCGACCTATA.

Immunofluorescence and histology. For immunofluorescence microscopy,
mouse lungs were perfused with PBS, fixed in 4% paraformaldehyde (pH 7.0), and
embedded in paraffin for formalin-fixed, paraffin-embedded sections. The paraffin
sections (3.5 µm) were deparaffinized and rehydrated, and the antigen retrieval was
accomplished by pressure-cooking (30 s at 125 °C and 10 s at 90 °C) in citrate
buffer (10 mM, pH 6.0). After blocking for 1 h at room temperature with 5% bovine
serum albumin, the lung sections were incubated with the primary antibodies
overnight at 4 °C, incubated with the secondary antibodies (1:250) for 2 h, followed
by 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, 1:2000) for 20 min at
room temperature. Images were acquired with an LSM 710 microscope (Zeiss). The
following primary (1) and secondary (2) antibodies were used: (1) CC10 rabbit
(Santa Cruz, sc-25554, 1:100), Foxj1 mouse (Santa Cruz, sc-53139, 1:50), collagen
IV rabbit (Abcam, ab6586, 1:100), (2) donkey anti-mouse Alexa Fluor (AF) 647
(Invitrogen, A21447), donkey anti-rabbit AF 568 (Invitrogen, A10042), and donkey
anti-goat AF 488 (Invitrogen, A21202). Counterstain with LipidTox was performed
using HCS LipidTOX deep red neutral lipid stain (Invitrogen, H34477, 1:200).

The frequency of ciliated (nuclear Foxj1+) and club cells (CC10+) were
quantified by counting 2647 cells, covering a total length of 22 mm airway in
28 individual airways (young, n= 14; old n= 14) of 2 mice of each age group.
We normalized cell numbers to the total length of their respective airway using
the ZEN 2.3 SP1 software for image processing.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. The code to reproduce the analyses and figures described in this
study can be found at: github.com/theislab/2018_Angelidis.

Data availability
Proteome raw data can be downloaded from the PRIDE repository under the accession
number PXD012307. scRNA-seq, whole lung tissue bulk and flow-sorted cell populations
bulk raw data, can be downloaded from the Gene Expression Omnibus under the
accession number GSE124872. The whole lung aging atlas can be accessed via an
interactive user-friendly webtool at: https://theislab.github.io/LungAgingAtlas. All other
data supporting the findings of this study are available from the corresponding authors
upon reasonable request.
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Supplementary Figures

Supplementary Figure 1. High technical reproducibility enables integration of the 15 mouse experiments. 
(a, b) The violin plots show the distrib-ution of the (a) number of genes detected per cell and (b) total UMI 
counts per cell across mice, respectively. (c) scRNA-seq alignment statistics show comparable values across 
mice. (d) Cell type identity and the fraction of cells per mouse are shown on the X and Y axes respectively. (e, 
f) tSNE visualization colored by (e) mouse sample  and (f) age group. 
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Supplementary Figure 2. Comparison with the Mouse Cell Atlas validates lung cell identities. (a-c) The 
matchSC score comparison between the clusters in this study, the MCA lung and peripheral blood signatures 
is shown. Red and white colors indicate high and low matchSC scores, respectively. The outlier in panel c 
represents red blood cells (purple rectangle). (d) The box plot shows the distribution of maximal matchSC 
scores for each cluster across the comparisons between these three data sets. The box represents the inter-
quartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the inter-
quartile range. The outlier in the comparison between cell types in this study and the MCA blood data repre-
sents red blood cells (underlined in purple).
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Supplementary Figure 3. Cell-cycle analysis reveals reduced proliferative capacity of T cells, Alveolar 
macrophages and Type-2 pneumocytes in aged lungs. (a, b) The `Mki67+ proliferating cell´ cluster (Fig. 1) 
showed high expression of (a) G2M-  and (b) S-phase  cell cycle signatures. (c) A higher fraction of 
proliferating cells was observed in young (n = 8 animals) compared to old (n = 7 animals) mice. The box 
represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 
1.5 times the interquartile range.  (d) PCA based on cell cycle marker genes revealed clustering by cell cycle 
phase and (e) the removal of this effect after regressing out the cell cycle effect. Cells are colored by cell 
cycle phase as assigned by Seurat. (f) Unsupervised Louvain clustering revealed three distinct cell 
clusters. (g-i) tSNE visualization colored by the expression of cell type marker genes (g) Trbc2, (h) Sftpd and 
(i) Ear2 corresponding to  T cells, Type 2 pneumocytes and alveolar macrophages, respectively. 
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Supplementary Figure 4. Multi-omics lung aging data displays significant correspondence. Volcano plots 
show the significantly regulated genes from (a) in from scRNA-seq, (b) bulk RNA-seq and (c) mass spectrome-
try. (d-f) Differential expression results from multi-omics experiments show significant correspondence. X 
and Y axes illustrate the log2 fold changes calculated from the (d) RNA-seq and scRNA-seq (in silico bulk) 
experiments, (e) the mass spectrometry (protein) and scRNA-seq (in silico bulk) experiments, and (f) the mass 
spectrometry (protein) and RNA-seq experiments. Blue line indicates the Deming regression fit. Black dotted 
horizontal and vertical lines indicate 0 values (no differential expression) for the in silico bulk and protein 
data, respectively.



Supplementary Figure 5. scRNA-seq data validation using bulk RNA-seq of flow sorted cell populations 
from young and old mice. Cells were sorted by using the (a) CD45 negative fraction of the cell isolate stained 
for anti-mouse CD31, and EpCAM antibodies. Epithelial cells were sorted as CD31- cells and  EpCAM+ cells 
(a-4). For sorting macrophages we used the (b) CD45 positive fraction and stained with anti-mouse CD11c, 
CD11b, MHC II, Siglec-F and Ly6G antibodies. For flow cytometry sorting, neutrophils were excluded by selec-
tion of Ly6G negative cells. Macrophages were sorted as MHCII+, CD11c+,CD11b+.
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Supplementary Figure 6. Pathway and upstream regulator analysis reveals cell type specific effects of 
aging. (a, b) The bar graph shows the result of a gene annotation enrichment analysis for (a) alveolar mac-
rophages, and (b) type-II pneumocytes, respectively. Gene categories with positive (upregulated in old) and 
negative scores (downregulated in old) are highlighted in red and blue respectively. (c-e) Upstream regulators 
are predicted based on the observed gene expression changes for (c) epithelial, (d) mesenchymal, and (e) 
myeloid cells. Cell types and regulators were grouped by unsupervised hierarchical clustering (Pearson corre-
lation) and the indicated transcriptional regulators and cytokines, growth factors and ECM proteins are color 
coded based on the activation score as shown.
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Supplementary Figure 7. A user friendly and interactive webtool enables navigating the Lung Aging Atlas. 
(a) The first tab ̀ Lung cell type signatures´ provides a cell type dotplot (left panel) and a color coded tSNE map 
(middle panel) for gene specific queries and illustrates cell type specific expression of any gene of interest. A 
cell type query produces a list of top marker genes for the cell type of interest (right panel). (b) The panel 
`Lung aging protein´ features a dot plot to illustrate the most likely cellular source of the protein of interest 
(left panel), a box plot to show alterations in total lung tissue protein abundance in old mice (middle panel), 
and a line plot to show protein solubilities. Protein solubility is measured by relative quantification of protein 
abundance across four fractions. Fraction 1 (FR1) contains proteins with highest and fraction 4 (ECM) with 
lowest solubility. Curves that peak on the right (ECM) thus represent insoluble proteins. (c) The tab `Lung 
aging mRNA´ again features the dotplot (left panel), a volcano plot that shows fold changes [old/young] on 
the x-axis and -log1 p-values on the y-axis (middle panel), and a violin plot of the log2 UMI counts illustrating 
mRNA abundance in young and old mice. The dot and violin plot are navigated with the gene specific query, 
while the volcano plot requires navigation via the cell type query. The volcano plot has a toggle over function 
that allows identification of genes and can thus be used to browse through differential gene expression 
between young and old cells of any cell type of interest. (d) In the tab `Lung aging - annotation enrichments´, 
the gene annotation enrichments between old and young can be browsed for all 3 cell types.
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The cell type specific sequences of transcriptional programs during lung regeneration have

remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model,

we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with

lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8+
transitional stem cell state during alveolar regeneration. These cells have squamous mor-

phology, feature p53 and NFkB activation and display transcriptional features of cellular

senescence. The Krt8+ state appears in several independent models of lung injury and

persists in human lung fibrosis, creating a distinct cell–cell communication network with

mesenchyme and macrophages during repair. We generated a model of gene regulatory

programs leading to Krt8+ transitional cells and their terminal differentiation to alveolar type-

1 cells. We propose that in lung fibrosis, perturbed molecular checkpoints on the way to

terminal differentiation can cause aberrant persistence of regenerative intermediate stem

cell states.
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Lung disease is a major health burden accounting for one in
six deaths globally1. The lung’s large surface area is exposed
to a great variety of environmental and microbial insults

causing injuries to its epithelium that require a stem cell driven
regenerative response. Lineage tracing studies revealed that
depending on the location within the lung and the severity of
injury, different stem cell populations can be engaged2–4. The
cell-intrinsic properties and niche signals driving these processes
are not well understood and likely involve tight spatiotemporal
control of crosstalk with the various immune and mesenchymal
cell types that are activated or recruited after injury5,6. Impor-
tantly, many of the functionally relevant cell states appear tran-
siently after injury. For instance, the conversion of fibroblasts to
myofibroblasts during fibrogenesis has been shown to be rever-
sible7. Similarly, the recruitment of monocytes early after injury
results in a continuum of macrophage states that evolve as their
microenvironment changes over time8. This implies that func-
tionally important cell states are limited in time and space by yet
to be resolved regulatory mechanisms.

In the alveolar compartment, gas exchange is enabled by ultra-
thin extensions of alveolar type-1 pneumocytes (AT1) forming
the alveolar surface area. The surfactant-producing cuboidal
alveolar type-2 pneumocytes (AT2) have been shown to act as
alveolar stem cells by self-renewing and differentiating into
squamous AT1 cells, during both homeostatic turnover and
injury9. In very severe cases of injury with massive loss of AT2
cells, both AT1 and AT2 cells can be replenished by airway-
derived stem cell populations10–13. The molecular details and
spatiotemporal organization of such decisive signals, gene pro-
grams and pathways during recovery of the AT1 cell layer have
not been resolved.

Using single-cell RNA sequencing (scRNAseq) methods it is
now possible to predict the future state of individual cells based
on RNA velocity14 and model cell fate trajectories in
pseudotime15,16. These methods are highly complementary with
traditional lineage tracing and longitudinal single-cell analysis of
a dynamic system17, combined with computational methods is
unbiased and allows for discovery in high-throughput. Further-
more, the dynamics of cell–cell communication networks can be
computationally approximated from scRNAseq datasets by the
integration of receptor-ligand databases18,19. Here, we ask if we
can leverage these ideas for the problem of gene regulation during
epithelial regeneration.

We chart the cell type specific gene expression trajectories in
whole-lung single-cell suspensions after bleomycin induced lung
injury to provide a resource of the gene expression dynamics and
routes of cell–cell communication during regeneration after
bleomycin induced lung injury. In this analysis we discover an
intermediate alveolar epithelial cell state forming a unique cellular
niche that peaks in frequency during the fibrogenic phase of
tissue repair together with the appearance of myofibroblasts and
M2-macrophages. Using high resolution pseudotime modeling
and lineage tracing we demonstrate transcriptional convergence
of airway and alveolar stem cells into the transitional stem cell
state and reveal candidate transcriptional regulators. Disease
relevance of the regenerative intermediate stem cell state descri-
bed in this work is emerging from our observation that this cell
state accumulates and persists in lung fibrosis.

Results
A time-resolved single cell analysis of lung regeneration. To
comprehensively chart the cellular dynamics of all major cell
lineages during regeneration after bleomycin-mediated acute lung
injury, we collected whole-organ single cell suspensions from six
time points after injury (day 3, 7, 10, 14, 21, and 28) and

uninjured control lungs (PBS) with on average four replicate mice
per time point. Using the Dropseq workflow20, we generated
single cell transcriptomes from ~1000 cells per individual mouse,
resulting in a final data set with 29,297 cells after quality control
filtering.

Single cell transcriptional profiles were visualized in two
dimensions using the Uniform Manifold Approximation and
Projection (UMAP) method21 (Fig. 1a). We identified 26 cell type
identities that were manually annotated using canonical marker
genes and previously published scRNAseq datasets of the mouse
lung22,23 (Supplementary Fig. 1a, b; Supplementary Data 1). Most
cell clusters contained cells from both conditions (Supplementary
Fig. 1c) and we found good reproducibility of quality metrics
across samples (Supplementary Fig. 1d). Linear discriminant
analysis confirmed good agreement of cell type frequencies
between conditions with 93% accuracy, demonstrating high
replicability of the mouse replicates (Supplementary Fig. 1e–g,
and Supplementary Fig. 2).

Cell frequency dynamics showed an expansion of T cells early
after injury at day 3 (Fig. 1b), recruitment of Ly6c2+ monocytes
from blood within the first weeks after injury (Fig. 1f), the
appearance of Arg1;+M2-macrophages peaking at day 10
(Fig. 1c), transient formation of Acta2+ myofibroblasts (Fig. 1d;
Supplementary Fig. 3), and appearance of a Mfge8+ resolution
macrophage state peaking at day 28 (Fig. 1e). Subclustering
macrophages revealed several distinct phenotypes at different time
points (Supplementary Fig. 4a–c). Previously published bulk
RNAseq signatures from lineage tracing of monocyte-derived
macrophages in the bleomycin model8 were used to score
individual cells, revealing that recruited monocytes give rise to
several different macrophage identities (Supplementary Fig. 4d–g).

A total of 6660 genes showed significant changes after injury in
at least one cell type (FDR < 0.1, Supplementary Data 2). The
results of this analysis can be interactively explored with our
webtool at github.com/theislab/LungInjuryRegeneration, which
provides a user-friendly resource of gene expression changes in
the whole lung during injury repair.

We constructed a putative cell–cell communication network by
mapping known receptor-ligand pairs across cell types (see
“Methods” for details) (Fig. 1g), and integrated longitudinal
expression dynamics of receptor-ligand pairs. This analysis
revealed considerable alterations in possible communication
routes between macrophages and fibroblasts, as well as striking
differences in communication of these cell types with the alveolar
epithelium (Fig. 1h).

To validate the scRNAseq data we performed extensive
comparisons with our previously published bulk RNA-seq and
proteomics data from day 14 after bleomycin treatment24. We
generated in silico bulk samples by summing counts across all cells of
each mouse replicate. Significant correlations were observed across all
three modalities (Fig. 2a, b), and samples clustered by data modality
but also injury status, cross-validating the global injury-induced
expression changes (Fig. 2c). Interestingly, the shared bleomycin
induced features across data modalities mostly showed cell type
specific expression in the alveolar epithelium, fibroblasts and
macrophages (Fig. 2d), with a peak at day 10 and resolving during
the regeneration time course (Fig. 2e). To validate changes in cell type
frequency observed at the cellular level, we performed bulk
deconvolution analysis, testing for enrichment of cell type marker
signatures in the bulk RNA-seq data. This analysis revealed cell types
and states with significantly increased frequency after bleomycin
injury (Fig. 2f, g).

Unique squamous Krt8+ cells in alveolar regeneration. One of
the clusters with significantly enriched frequency after injury
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represented a so far undescribed cell state in the alveolar epi-
thelium, marked by high expression of Keratin-8 (Krt8) and a
highly distinct set of genes. Subclustering of alveolar epithelial
cells resulted in four distinct clusters (Fig. 3a), which largely
represented different time points (Fig. 3b). Notably, AT1 and
AT2 cells were connected by cells mainly derived from inter-
mediate time points. We identified AT2 cells marked by Sftpc
expression, and an activated AT2 state marked by injury-induced
genes, such as Lcn2 and Il33 (Fig. 3d, e). The Krt8+ cells showed
some transcriptional similarity to AT1 cells, however, were clearly
distinct and did not highly express the canonical marker genes for
AT2 and AT1 (Fig. 3d, e). To analyze a possible transition of AT2
cells to these cells we used scVelo (see Methods for details) which
uses the ratio of spliced to unspliced reads to infer RNA velo-
cities14 and computationally predicts the future state of individual
cells. This RNA velocity analysis suggested that alveolar Krt8 high
cells were derived from activated AT2 cells and might give rise to
AT1 cells (Fig. 3c, d). Thus, we named the cell state Krt8+
alveolar differentiation intermediate (ADI).

Immunostainings of Krt8 in lung sections confirmed its
transient de novo expression in lung parenchyma. We observed
a peak of alveolar Krt8 expression around day 10–14 after injury
(Fig. 3f, g; Supplementary Fig. 5a). In contrast, the uninjured
control lungs and fully regenerated lungs at eight weeks after
injury showed Krt8 expression only in airways (Fig. 3f). The
transient burst of Krt8 protein expression was additionally

validated on whole tissue level using mass spectrometry (Fig. 3h)
and flow cytometry (Fig. 3i; Supplementary Fig. 5b, c).

Alveolar Krt8+ cells featured high expression of pro-fibrogenic
proteins, including the low-affinity epidermal growth factor
receptor ligands Areg and Hbegf, as well as the integrin Itgb6,
validated by flow cytometry (Supplementary Fig. 5b, c), and
immunostainings (Supplementary Fig. 5d, e). A recent report has
highlighted the important role of the Yap/Taz signaling pathway
in alveolar regeneration25. We found high levels of nuclear YAP
in Krt8+ ADI cells and also some myofibroblasts, indicating
active Yap/Taz signaling (Supplementary Fig. 5f, g). The
expression of many Yap/Taz target genes can also be activated
by TGF-beta signaling. We therefore assessed if Krt8+ ADI cells
also feature high levels of phospho-SMADs and found that
pSMAD2 staining in fibrotic areas after bleomycin injury
specifically marked Acta2+ myofibroblasts and was surprisingly
absent in Krt8+ ADI (Supplementary Fig. 5h, i).

Morphometric analysis on 300 micron-thick precision cut lung
slices revealed that Krt8 is expressed only at very low levels in
cuboidal AT2 cells in the uninjured lung, while in bleomycin
injured lungs it is increased in still cuboidal AT2 cells expressing
Sftpc and at highest levels in Sftpc negative cells with squamous
morphology (Fig. 3k). In comparison to AT2 cells, the Krt8+ cells
showed a significantly reduced sphericity factor and also AT2
cells with upregulated Krt8 after injury were found to assume a
significantly flatter shape (Fig. 3j).
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Fig. 1 Longitudinal single cell RNA-seq reveals cell state and cell communication dynamics. a Single cell suspensions from whole-mouse lungs were
analyzed using scRNAseq at the indicated time points after bleomycin-mediated lung injury. The color code in the UMAP embedding shows shifts of the
indicated cell types in gene expression space during the regeneration time course. b–f Relative frequency of the indicated cell types relative to all other cells
was calculated for individual mice at the indicated time points after injury (n= 4) and for PBS treated control mice (n= 7). The boxes represent the
interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the interquartile range. g The network shows 15 meta-
cell type identities (see Supplementary Fig. 1d) and their putative communication structure. Edge weight and color illustrate the number of receptor-ligand
pairs between cell types. h The edges represent the relative proportion of receptor-ligand pairs between cell types with altered expression after injury.
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To determine if the appearance of alveolar Krt8+ ADI is
specific to the bleomycin injury model, we turned to two other
independent mouse models that are not based on DNA damage
for the injury. Alveolar Krt8 expression was increased in a model
of neonatal hypoxia and hyperoxia with Influenza type-A
infection26 (Supplementary Fig. 6a), as well as exposure of adult
mice to hyperoxia, which has been shown to preferentially kill
alveolar AT1 cells27 (Supplementary Fig. 6b).

A sky dive into epithelial cell transitions after injury. To model
the generation of Krt8+ ADI at higher temporal and cellular

resolution we sorted EpCam+ cells and sampled single cell
transcriptomes daily up to day 13. We also included later time
points up to day 54 after injury to analyze the recovery of the
system back to baseline with fully regenerated AT1 cells. In total,
we collected 18 time points after injury using two replicate mice
each (n= 36 mice; k= 34575 cells) (Fig. 4a).

Cell type identities were consistent with the first whole-lung
experiment and we identified rare neuroendocrine cells and basal
cells in addition (Fig. 4b; Supplementary Fig. 7). We observed
gene expression changes of AT2 cells with cell state densities
moving towards the Krt8+ ADI state already at early time points
starting at day 2 (Fig. 4d). A continued presence of Krt8+ ADI
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cells was then seen until day 36 (Fig. 4d, Supplementary Fig. 7).
Scoring single cells for enrichment of gene programs revealed that
in comparison to the other epithelial cells, Krt8+ ADI displayed
high scores for genes involved in epithelial–mesenchymal
transition (EMT), cell senescence, and the p53, MYC, TNFA
via NFkB, and oxidative phosphorylation pathways (Fig. 4e). All
these pathways have been characterized by expression of a host of
secreted factors that may promote fibrogenesis. Statistical analysis
of pathway enrichment confirmed the strong and specific
enrichment of genes previously associated with wound healing,
angiogenesis and the p53 pathway in the Krt8+ ADI cells
(Fig. 4f).

We hypothesize that the Krt8+ ADI cell state with its unique
gene expression program serves important niche functions to
coordinate other cell types during tissue regeneration. In the
receptor-ligand database (Fig. 1) the Krt8+ ADI show their
largest number of receptor-ligand pairs with fibroblasts, macro-
phages and (capillary) endothelial cells (Fig. 4f; Supplementary
Data 6). Interestingly, in the endothelial cell (EC) connectome
with Krt8+ ADI and AT1, the capillary ECs received signals via
the endothelin-receptor (Ednrb) expressed on ECs via the ligand
endothelin-1 (Edn1), which was specifically expressed on Krt8+
ADI and not on AT1 (Fig. 4g). Conversely, the AT1 cells
displayed a large number of ligands, including Vegfa and Sema3e
that bind receptors, such as Flt1 or Nrp1/2 on ECs, which were
not expressed on Krt8+ ADI. Similar selective differences
between Krt8+ ADI and AT1 were observed for receptors such
as the urokinase plasminogen activator receptor (Plaur) specifi-
cally expressed on Krt8+ ADI but not AT1, binding to the EC-
derived ligand PAI-1 (Serpine1) (Fig. 4h).

Involvement of airway stem cells in alveolar regeneration. To
analyze global connectivity and potential trajectory topology in
the epithelial cell state transitions we applied partition-based
graph abstraction (PAGA) (Fig. 5a), which provides an inter-
pretable graph-like map of the data manifold28. Interestingly, the
PAGA map revealed several nodes with high connectivity
between cell types that represented potential transdifferentiation
bridges. In particular, we observed a subset of airway club cells
(cluster 10) with connectivity to all alveolar cells including Krt8+
ADI, and an activated AT2 cell state (cluster 9) which also fea-
tured high connectivity to Krt8+ ADI. We simulated gradual
differentiation intermediates by generating in silico doublets
combining AT1 with cluster 10 and 9 (Fig. 5b). The simulated
doublets mapped between these clusters and AT1 samples, while
Krt8+ ADI cells mapped orthogonal to linear differentiation

trajectories towards AT1. This demonstrates that the Krt8+ ADI
state is highly distinct and does not resemble a linear gene
expression intermediate from stem cells towards AT1 (Fig. 5b).

Two clusters (7 and 8) mainly represented club cells at different
times after injury, which we termed club and club activated,
respectively (Fig. 5c, d, h). Cluster 10, however, was highly
distinct and surprisingly marked by high expression of MHC-II
complex genes (e.g. H2-Ab1) and the cysteine proteinase
inhibitor Cystatin-C (Cst3), which is typically co-expressed
with MHC-II in dendritic cells29 (Fig. 5e, f). Of note, MHC-II
positive club cells were not doublet artefacts as evidenced by
comparison to artificially generated club and dendritic cell
doublets (Fig. 5g). We additionally validated the MHC-II+ club
cell state using immunofluorescence of Cst3 that stained a rare
subset of Scgb1a1+ airway club cells (Fig. 5i). Taken together, our
data suggests the existence of a distinct cell state within the club
cell lineage, marked by high expression of MHC-II genes, that
features high connectivity to alveolar epithelial cell identities.
Importantly, a recent report described a very similar gene
signature in club-like epithelial progenitors that regenerated both
AT2 and AT1 cells in the bleomycin model30, suggesting that we
have identified the same stem cell in our data.

We occasionally found rare cells with high levels of Krt8
expression in the alveolar space of uninjured control lungs
(Supplementary Fig. 7, 10a), suggesting that the same cell state
observed after injury may be a natural intermediate of
homeostatic cell turnover. These pre-existing alveolar Krt8+
cells did not undergo proliferative expansion. The relative
frequency of Ki67+ proliferating cells in the single cell data
manifold (cluster 14) peaked at day 15 (Supplementary Fig. 9a).
Counting Ki67+ cells in immunostainings confirmed the peak of
cell proliferation around day 14 with a sudden drop in
proliferation rates around day 28 (Supplementary Fig. 9d, e).
Cell cycle regression within the proliferative cells enabled us to
deconvolve cell type identity (Supplementary Fig. 9b), revealing
that Krt8+ ADI cells, AT2, club, and the MHC-II+ club cells all
proliferated after injury (Supplementary Fig. 9c). We validated
proliferating Krt8+ cells in co-immunostainings Ki67+ at day 10
after injury (Supplementary Fig. 9f). Importantly, the massive
expansion of Krt8+ ADI over time happened without spiking
numbers of Krt8+/Ki67+ cells preceding this (Supplementary
Fig. 10b). Using tamoxifen labeling in SPC-CreERT2 and Sox2-
CreERT mice we found that the rare pre-existing Krt8+ ADI cells
were 80% labeled in the SPC-CreERT2 mice (Supplementary
Fig. 10c–e), suggesting that these cells are derived from AT2,
possibly during normal homeostatic turnover.

Fig. 2 Bulk deconvolution reveals cellular source of regulated proteins and cell state frequency changes. a Pairwise Pearson correlation was calculated
across whole lung bulk RNA-seq (bulk, n=4), in silico bulk scRNA-seq (in silico, Bleo n= 4, PBS n= 7) and proteomics samples (protein, n=4). Bulk and
proteomics data contain samples from day-14 after bleomycin-induced injury and controls24. Red and blue colors indicate high and low correlation values,
respectively. Columns are ordered by unsupervised hierarchical clustering. Colored bars on top of heatmap indicate time point, data modality and injury status of
each sample. Boxplot displays the distribution of Pearson correlation coefficients across comparisons between various data modalities; boxes represent the
interquartile range, the horizontal line the median, and the whiskers 1.5 times the interquartile range. b Scatter plot depicts fold changes calculated between day 0
and 14 for the bulk (y-axis) and in silico bulk (x-axis) RNAseq samples. The black line represents the Deming regression line. Top 20 genes with the highest average
fold change in both modalities are highlighted. Statistical significance was assessed using Pearson correlation (p< 2.2e−16). c Data from all three modalities was
integrated. The first two principal components show clustering by data modality. The third principal component separates bleomycin samples from controls
across all three data modalities. Blue and red colors indicate control and bleomycin samples. d Barplot on top depicts genes with the highest loadings for
principal component 3. e The box plot shows the time-resolved loading of PC3 peaking at day 10. The boxes represent the interquartile range, the
horizontal line in the box is the median, and the whiskers represent 1.5 times the interquartile range (Bleo, n= 4 per timepoint; PBS, n= 7). f Volcano plot
illustrates results from the bulk deconvolutions analysis. X axis indicates mean fold change of cell type markers between day 14 and PBS bulk samples.
Y axis displays the −log10 p-value derived from a two-sided Kolmogorov-Smirnov test. P-values were limited to a minimum of 1e−50 for visualization
purposes. g Empirical cumulative density plots show two exemplary cell types Myofibroblasts (right) and M2 macrophages (left). Red and black lines
correspond to the distribution of cell type markers and all other genes, respectively.
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Fig. 3 Alveolar regeneration features a transient squamous cell state marked by Krt8 expression. a–d UMAP embedding of alveolar epithelial cells
shows (a) four distinct cell states, and (b) the time points of sampling, and (c) the RNA velocity vectors, indicating AT2 cell differentiation towards the
alveolar Krt8+ cell state after bleomycin-mediated injury, and (d) gene expression of the indicated marker genes. e Heatmap of top 50 differentially
expressed genes across alveolar cell states, with selected marker genes in boxes. f Fluorescent immunostainings from the indicated conditions show nuclei
(DAPI) in white, Krt8 in green, Sftpc (AT2 cells) in red, and Pdpn (AT1 cells) in blue (scale bar 100 microns). g Quantification of Krt8 mean fluorescence
intensity in alveolar space (excluding airways; n= 4 per time point, mean with SD). h Protein abundance of Krt8 in total lung homogenates was assessed
by mass spectrometry24. Individual data points show log2 ratio of Krt8 MS-intensity after bleomycin injury [n(d3)= 4, n(d14)= 7, n(d28)= 4, n(d56)= 3]
versus PBS control mice (n= 4). The mean and standard error of the mean is shown. i Krt8 fluorescence intensity quantified by flow cytometry in epithelial
cells. PBS control (n= 5, blue color) and day 10 after bleomycin (n= 7, red color) is shown. j Alveolar cell sphericity analysis of 21 cells per condition
revealed elongated cell shapes for alveolar Krt8+ cells in IF-stained precision cut lung slices (in k). Sphericity of 1 indicates round, cuboidal cells, 0
indicates flat cells. PBS, n= 2; Bleo, n= 2. One-way ANOVA with Dunnett’s post testing: *p= 0.0376, ***p < 0.0001. k Maximum projections of confocal
z-stacks taken from immunostained 300 micron-thick precision cut lung slices (PCLS) are shown for a representative PBS control mouse and a mouse at
day 14 after bleomycin injury. Nuclei (DAPI) are colored blue, Krt8 appears in green, Sftpc (AT2 cells) in red, and Pdpn (AT1 cells) in white. Image data
representation stems from n= 5 samples. Small images below show examples taken for cell morphometric analysis (in j). All scale bars in small single-cell
images represent 15 µm.
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Transcriptional convergence of alveolar and airway stem cells.
RNA velocity vectors overlaid onto the UMAP embedding
predicted transdifferentiation of club cells towards ciliated and
goblet cells, which is in agreement with previous literature2

(Fig. 6a). Interestingly, RNA velocities also strongly suggested a
dual origin of alveolar Krt8+ ADI cells from AT2 and airway
cells, in particular from Scgb1a1+ club cells (Fig. 6a, b). Club cells

and MHC-II+club cells show differentiation bridges towards
AT2 cells and Krt8+ ADI (Fig. 6b). As MHC-II+ club cells
showed very high connectivity to Krt8+ ADI and were closest in
the UMAP embedding, we restricted the analysis to the activated
AT2, MHC-II+ club and Krt8+ ADI states, and calculated
terminal state likelihoods based on RNA velocities, which
showed differentiation of both activated AT2 and MHC-II+

a b cHigh resolution longitudinal scRNA-seq;
n = 36 mice; k = 34.575 cells
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airway club cells towards Krt8+ ADI (Fig. 6c). Even
though MHC-II+ club cells (cluster 10) showed high con-
nectivity with alveolar cells (Fig. 5b), the data indicates that also
other Scgb1a1+ club cells can give rise to alveolar cells during
injury repair.

Restricting the analysis to cells “bridging” from the AT2 and
MHC-II+ club cells to Krt8+ ADI (Fig. 6d), we found that the

AT2 conversion preceded the MHC-II+ club to Krt8+ ADI
differentiation by about one week (Fig. 6e). This may indicate that
alveoli with surviving AT2 cells regenerate faster than alveoli with
total loss of AT2 that require recruitment of distal airway stem
cells. Thus, the data shows convergence of transcriptional states
from distinct lineages (airway stem cells versus alveolar AT2)
even at different times after injury.
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We identified 3036 genes showing distinct expression patterns
along these differentiation trajectories (Fig. 6f, g; Supplementary
Data 4). We observed a gradual decline in expression of the
Homeobox protein Nkx-2.1, critical for lung development and
lung epithelial identity31, as well as Foxp2, which is one of the key
transcriptional repressors involved in the specification and
differentiation of the lung epithelium32,33, in both MHC-II+
club and AT2 cells during conversion to Krt8+ ADI (Fig. 6h).
Also, expression of the transcription factor Cebpa with important
functions in lung development and maintenance of both club and
AT2 cell identity34–36 reached a minimum at the Krt8+ ADI
state. AT2 cell conversion into Krt8+ ADI was marked by a
drastic reduction of the transcription factor Etv5, which has been
shown to be essential for the maintenance of AT2 cells37 (Fig. 6h).
Conversely, the differentiation towards the Krt8+ ADI signature
expression was characterized by a gradual increase in one of the
master regulators of AT1 cell differentiation Gata638,39 in both

MHC-II+ club and AT2 cells. Both trajectories converged on a
large number of alveolar Krt8+ ADI specific genes representing
distinct pathways (Fig. 4) and their transcriptional regulators,
including the stress-induced p53 interactor Nupr1, a master
regulator of epithelial to mesenchymal transition Sox4, and many
other genes, including chromatin remodeling factors such as the
histone demethylase Kdm5c (Fig. 6h). To validate our findings we
re-analysed the scRNAseq data set from whole-lung suspensions
(Fig. 1), which confirmed differentiation of AT2 cells onto the
Krt8+ ADI state and contribution of airway cells to alveolar fates
(Supplementary Fig. 10).

To experimentally validate this computational analysis, we
used Sftpc-CreERT2 (AT2 cells) and Sox2-CreERT2 (airway cells)
reporter mice to trace the origin of Krt8+ ADI cells back to these
lineages. In the quantification of these two independent lineage
tracing experiments (Fig. 7a, b), we observed that approximately
half of the alveolar Krt8+ ADI cells were derived from either
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Sftpc-CreERT2 or Sox2-CreERT2+ airway cells in the bleomycin
model (Fig. 7c, d). Of note, Sox2-CreERT2+ airway cells gave rise
to both Sftpc+ and Sftpc- cells (Fig. 7b), Ager+ (AT1 marker)
and Ager- squamous cells covering alveolar surfaces (Fig. 7e). We
found increased contribution of Sox2-lineage labeled cells in
severely injured areas. Using an EdU pulse chase labeling strategy
we chased proliferating cells every other day for 20 days and
counted Sox2-CreERT2+/Ager+ cells, revealing that around 40%
of newly formed AT1 cells were airway derived (Fig. 7f;

Supplementary Fig. 10f). In conclusion, the lineage tracing data
confirms a dual origin of Krt8+ ADI cells and substantiates our
prediction of a substantial contribution of airway derived stem
cells in alveolar regeneration after bleomycin injury.

Cell state trajectory model of AT1 cell regeneration. Analysis
of RNA velocity information within the subset of Krt8+ ADI
and AT1 cells indicated differentiation of Krt8+ ADI toward
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AT1 cells (Fig. 8a). The ratio of spliced and unspliced reads
revealed gradual induction of transcription of the AT1 cell
marker Ager in Krt8+ ADI cells around day 14 (Fig. 8b). Days 0,
36 and 56 representing a baseline with mature AT1 cells con-
tained a significantly lower ratio of unspliced over spliced Ager
reads compared to all other time points (Fig. 8c; Wilcoxon Rank
Sum test, P < 1e-46). A gradual decrease in Ager mRNA velocity
(Fig. 8d), was reflected with a gradual increase of Ager expression
(Fig. 8e). Using this information, we modeled a pseudotime tra-
jectory and determined gene expression dynamics for 1150 sig-
nificantly regulated genes along the putative Krt8+ ADI to AT1
transition (Fig. 8f; Supplementary Data 5).

The differentiation trajectory was split in four phases that
were marked by distinct sets of transcriptional regulators,

developmental genes and signaling pathways (Fig. 8f, g). The
initial phase was marked by genes and pathways consistent with
cell growth after exit from the cell cycle (e.g. MYC targets). This
was followed by the induction of stress-related signaling
pathways, such as the p53 pathway and the unfolded protein
response pathway, featuring increased expression of the corre-
sponding transcriptional regulators such as Trp53inp1 and Atf4,
and the peak of Krt8 expression (Fig. 8f, g). Next, a critical pre-
AT1 stage was marked by the downregulation of the
Krt8 signature and the induction of a gene expression program
with similarities to the epithelial to mesenchymal transition
(EMT), together with one of its master regulators Sox440 (Fig. 8g).
We further observed pre-AT1 specific expression of important
transcriptional regulators such as TAZ (Wwtr1) and beta-catenin
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(Ctnnb1), and pro-fibrogenic proteins such as integrin beta-6
(Itgb6), and connective tissue growth factor (Ctgf). The non-
muscle myosin heavy chain IIa (Myh9) also peaked in pre-AT1
cells, suggesting important additional cytoskeletal rearrangements
and increased cell contractility in the already squamous Krt8+
ADI cells in the final steps of maturation towards AT1 cells
(Fig. 8g).

Terminally differentiated AT1 cells were characterized by high
expression of the transcription factors Hopx, Gata6 and Wwc1, as
well as a large number of developmentally important factors,
including extracellular matrix proteins and growth factors, such
as Fgf1, Npnt and Agrn (Fig. 8g). It has long been noted that
isolated AT2 cells spontaneously drift toward AT1 fate in vitro,
suggesting that plasticity may be a cell-intrinsic property and that
AT2 cell identity in vivo is actively maintained by niche signals.
Interestingly, during a five-day AT2 to AT1 in vitro differentia-
tion, Krt8 protein levels were shown to be highest at day 3,
followed by the AT1 marker Pdpn peaking later at day 541. We
repeated this experiment and subjected isolated AT2 cells to
inhibition of Wnt/β-catenin/TCF-mediated transcription, which
significantly reduced the induction of Krt8 expression and levels
of the AT1 cell marker Pdpn in comparison to controls
(Supplementary Fig. 12, Supplementary Fig. 13).

Aberrant persistence of Krt8+ ADI is linked to fibrosis. We
here identified and characterized the transient appearance of Krt8
+ ADI cells during lung regeneration. Single cell analysis of
human lung fibrosis recently identified a disease specific cell state
that was termed aberrant basaloid cell (KRT17+/KRT5-) based
on some similarities to airway basal cells42,43. It is currently
unclear if these cells are indeed airway derived or could
represent stem cells undergoing alveolar repair. We re-analysed
available human single cell data to extract a full gene expression
signature characterizing KRT5−/KRT17+ human basaloid cells
(Fig. 9a, b). Scoring the human basaloid cell signature on single
cells in the mouse data manifold revealed that Krt8+ ADI cells
described in this work are very similar to KRT5-/KRT17+ cells in
IPF (Fig. 9c). A systematic cross-species comparison of epithelial
cell state identities confirmed that human KRT5−/KRT17+
basaloid cells are most closely related to mouse Krt8+ ADI
(Fig. 9e).

A recent landmark study showed that blocking alveolar
stem cell differentiation, through deletion of the RhoGTPase
Cdc42 in a model of pneumonectomy induced regeneration,
leads to the accumulation and persistence of a unique AT2
derived cell state. These mice have progressive lung fibrosis with
the typical periphery-to-center pattern of disease progression as
seen in IPF patients44. Using quantitative comparisons of the
gene expression signatures measured in this study we found that
this AT2 derived cell state is also very similar if not identical to
the Krt8+ ADI cells discovered by us (Fig. 9d), suggesting
that persistence of Krt8+ ADI may directly mediate progressive
lung fibrosis.

To further validate that KRT8+ alveolar cells can also be
observed in human acute lung injury and chronic lung disease
associated with alveolar injury, we stained human tissue sections
and did not detect any expression of KRT8 in the alveolar space
of non-injured control lungs (n= 7; Fig. 9f). In sharp contrast, we
observed very strong alveolar KRT8 expression in human acute
respiratory distress syndrome (ARDS, n= 2) caused by
Influenza-A and pneumococcal infection and interstitial lung
disease patients with various diagnoses (n= 5; Fig. 9g, h). Finally,
we also co-stained KRT8 with KRT17 and observed co-expression
in both flat epithelial cells and bronchiolized epithelia in fibrotic
areas but not in controls (Fig. 9i).

Discussion
In this work, we describe the dynamics of mouse lung regenera-
tion at single cell resolution and discover the transcriptional
convergence of airway and alveolar stem cells to a Krt8+ transi-
tional stem cell state that precedes the regeneration of AT1 cells
(Fig. 10). The discovery of Krt8+ ADI cells in several independent
mouse lung injury models and human lung fibrosis sheds a
new light on reports of EMT45, senescence and p53 activation46–49

in lung injury, repair and fibrosis. We conceptualize these
observations with the appearance of this transient stem cell
derived Krt8+ ADI state with its unique transcriptomic signature.
Using the power of pseudotemporal modeling15,16,50 we analyze
gene regulation during stem cell differentiation, laying out the
sequence of gene programs and transcriptional regulators. Our
cell state trajectory model was validated by correspondence with
the real time points of sampling, RNA velocities of individual cells
and lineage tracing experiments. The receptor-ligand analysis
revealed potential routes of cell–cell communication and their
dynamics over time. All data and code is freely available at our
interactive webtool and github repository (github.com/theislab/
LungInjuryRegeneration).

Even though the Krt8+ ADI gene programs resemble features
found in EMT, we do not see conversion of epithelial cells to
anything similar to fibroblasts. It seems that we rather see an
overlap in gene expression patterns between cells undergoing
genuine epithelial–mesenchymal transition (e.g. neural crest cells)
and airway and alveolar stem cells changing their morphology.
Morphologically, the terminal differentiation of AT1 cells in
development has been shown to occur via a non-proliferative
two-step process of cell flattening and cell folding51. We have
shown that Krt8+ ADI cells in adult regeneration feature mostly
squamous morphology and may thus correspond with this first
phase of cell flattening. In the developmental cell folding phase,
AT1 cells increase their size ten-fold to span multiple alveoli and
establish the honeycomb alveolar structure in coordination with
myofibroblasts and capillary vessels51. In this process, AT1 cells
express a large number of morphogens, such as Vegfa and
semaphorins that stimulate angiogenesis and thus likely play an
active signaling role in the coordination of alveolar morphogen-
esis. We confirm the specific expression of these morphogens
only in mature AT1 in our study and show in contrast that Krt8+
ADI express a distinct set of morphogens, including Endothelin-1
(Edn1) that likely serves the paracrine stimulation of capillary
endothelial cells after injury.

In lung development, the generation of the distal epithelium
has been proposed to be driven by a bipotent progenitor co-
expressing both AT1 and AT2 markers52. Additionally, a recent
scRNAseq analysis of the mouse lung epithelium at birth iden-
tified a similar AT1/AT2 cluster that may be interpreted as a
bipotent progenitor state53. In our preliminary analysis, both
published developmental signatures do not correspond well to the
injury induced Krt8+ ADI signature. Additional experiments will
be needed to better understand the differences of epithelial line-
age trajectories in lung development versus adult homeostasis and
regeneration. Interestingly, we do find rare Krt8 high alveolar
cells in the parenchyma of the normal adult mouse lung. These
cells are largely lineage labeled in the SPC-CreERT2 analysis but
not in Sox2-CreERT2 labeling, suggesting that rare Krt8 high cells
in normal homeostasis are derived from AT2 and are possibly a
naturally occuring intermediate en route to AT1. We show that
upon injury the bulk of AT2 cells and also airway cells differ-
entiate into Krt8+ ADI, producing high frequencies of these cells
without massive proliferation of rare stem cells at early time
points.

The Krt8+ ADI cells display a highly distinct receptor-ligand
connectome with mesenchyme and macrophages, and are a
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specific source of pro-fibrogenic factors such as Ctgf, Itgb6, Areg,
Hbegf, Edn1, and Lgals3, all of which are antifibrotic targets that
have been tested in pre-clinical and clinical studies. Thus, the
availability of these factors (we have validated Areg, Hbegf, and
Itgb6 on protein level) during the fibrogenic phase around

10 days after injury is likely dependent on the Krt8+ ADI cell
state, while its transient nature elegantly enables the system to
temporally limit their expression. Many pathways that peaked in
the Krt8+ ADI state represent environmental stress- and
inflammation-induced gene programs, represented by their
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transcriptional master regulators, including Trp53, Atf3/4,
Nupr1, Hif1a, NFkB and TGF-beta. The proliferation of AT2 cells
after lung injury involves Il1-beta and Tnf-alpha driven NFkB
activation and accordingly was lost in AT2-specific IL1-receptor
knock-out mice54, which provides a molecular link between
inflammation and epithelial regeneration that is consistent with
our results. We propose that inflammatory stimuli can promote
cell plasticity by inducing epithelial cell states with a higher
susceptibility for alternative fate programs.

Our trajectory model predicts distinct transcriptional reg-
ulators as candidate switch points in terminal AT1 differentiation,
including TAZ (Wwtr1), Sox4 and beta-catenin (Ctnnb1). The
mechanistic importance of Wwtr1 (YAP/TAZ - Hippo pathway)
in AT2 to AT1 transdifferentiation has recently been demon-
strated by using small molecule inhibition and conditional knock-
out in mouse lung organoids and in vivo injury experiments25,55.
An important role of beta-catenin and the canonical Wnt sig-
naling pathways has been suggested based on in vitro differ-
entiation of isolated AT2 cells41. Moreover, the TGF-beta
pathway has been proposed to mediate cell cycle arrest in AT2
cells followed by transdifferentiation into AT1 cells56. Here, we

found high Yap/Taz activity in Krt8+ ADI cells using immu-
nostainings and reduced formation of Krt8+ ADI and AT1 cell
states upon Wnt/beta-catenin inhibition in vitro. A functional
role of Sox4 in switching towards AT1 fate as suggested by our
model awaits experimental validation.

Various potential stem cell sources for AT1 cells after injury have
been described, including AT2 cells, bronchioalveolar stem cells
(BASC) and p63(+)Krt5(+) distal airway stem cells (DASC). We did
not see an important contribution of Krt5+ cells in our data, how-
ever, the Sox2-CreERT2 lineage tracing confirmed that after bleo-
mycin injury a substantial fraction of Krt8+ ADI (and AT1/AT2)
was derived from airway cells. We found that Scgb1a1+ club cells
give rise to both AT2 and Krt8+ ADI, with a MHC-II+ subset of
club cells showing a particularly strong connectivity with alveolar cell
identity after injury. Comparing the signature of these MHC-II club
cells with the recently described H2-K1-high epithelial progenitors30

suggests that these cells are identical. Strong connectivity in PAGA
analysis and the observed continuous trajectories in UMAP space
indicate direct conversion of airway stem cells into Krt8+ ADI, as
presented in our model. However, we cannot formally exclude the
possibility that airway stem cells initially give rise to AT2 and

Fig. 9 Cells similar to Krt8+ADI persist in a mouse model of progressive lung fibrosis and human disease. a, b Re-analysis of human lung fibrosis single
cell data from GSE135893 for epithelial cells only. The indicated cell type identities (a) and disease status (b) show a relative increase of airway epithelial
cell types in lung fibrosis (IPF) and appearance of a disease specific cell state termed aberrant KRT5−/KRT17+ basaloid cell (arrow)42,45,79. c, d The
indicated human (c) and mouse (d) gene signatures downloaded from the Gene Expression Omnibus were scored on single cells in our mouse epithelial
data manifold. Higher scores indicate higher similarity in gene expression to the indicated signatures. e The matchScore matrix shows the degree of
similarity of the indicated cell state signatures across species. f FFPE sections from non-fibrotic controls were stained against KRT8 (red), SFTPC (green),
and ACTA2 (blue). Scale bar= 100 microns. g Human lung tissue sections were stained as in f, revealing pronounced KRT8 expression at the site of
acutely injured lesions (ARDS diagnosis) and fibrotic regions of ILD patient lungs (IPAF, IPF and EAA diagnosis). Scale bar= 100 microns. h Fluorescence
intensity of KRT8 stainings was quantified from representative areas of control tissue [n(patients)= 7, n(areas)= 36], EEA tissue [n(patients)= 1,
n(areas)= 5], IPF tissue [n(patients)= 3, n(areas per single patient)= 5], IPAF tissue [n(patients)= 1, n(areas)= 8], Sarcoidosis tissue [n(patients)= 1,
n(areas)= 8], and ARDS tissue [n(patients)= 1, n(areas)= 8]. One-way ANOVA statistical analysis: ***p < 0.0001, **p= 0.0041. i FFPE sections from
non-fibrotic controls or IPF patients were stained against KRT8 (red) and KRT17 (green). Scale bar= 50 microns; representative images from 2x IPF
patients and 2x controls.
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Fig. 10 A revised model of alveolar regeneration. We identify convergence of alveolar and airway stem cells on an injury-induced transitional cell state
characterized by a unique transcriptional signature, including high levels of Krt8 expression, that precedes the regeneration of AT1 cells. In this process,
stem cells lose cell identity genes, gain specific gene programs including p53 and NFkB target genes, and undergo a drastic change in shape towards a
squamous morphology. Krt8+ ADI cells feature a highly distinct connectome of receptor-ligand pairs with endothelial cells, fibroblasts, and macrophages.
The Krt8+ ADI cell state persists in models of progressive lung fibrosis and human IPF patients, suggesting that the cell state transitions described in this
work are coordinated in space and time by cell intrinsic and tissue niche checkpoints that may be derailed in disease.
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subsequently differentiate towards Krt8+ ADI. Interestingly, we find
that direct AT2 cell differentiation to Krt8+ ADI precedes the dif-
ferentiation of airway stem cells, suggesting that these two processes
happen at different locations, possibly reflecting heterogeneity in the
local severity of injury and AT2 cell survival.

In idiopathic pulmonary fibrosis patients, the aberrant activity
of p53, TGF-beta, Hippo and Wnt pathway genes has been
reported57, and a p53/p21 mediated cellular senescence program
in AT2 cells, which is also reflected in the Krt8+ ADI signature,
was recently proposed to drive progressive lung fibrosis in mice46.
Furthermore, local hypoxia signaling has been implicated in
dysplastic abnormal epithelial barriers58, which we suggest may
represent an accumulation of transitional or aberrant cell states
blocked in their commitment towards AT2/AT1 cell fate. Our
analysis shows that the transcriptional signature of KRT5−/
KRT17+ basaloid cells45 in IPF tissues is highly similar to the
Krt8+ ADI described here. Based on these findings we propose
that IPF in particular and chronic lung diseases in general may be
rooted in defective molecular cell differentiation checkpoints that
lead to aberrant persistence of (normally transient) regenerative
intermediate cell states. Indeed, our quantitative analysis
demonstrates that the Krt8+ ADI state is identical to a cell state
that accumulates and persists in mice with AT2 cell specific
deletion of the Rho GTPase Cdc42, which leads to progressive
fibrosis similar to IPF after pneumonectomy44. Thus, the defec-
tive terminal differentiation of stem cells into AT1 may be a key
event in pathogenesis of progressive fibrosis in IPF patients.
Future therapeutic approaches may specifically aim at (re)pro-
gramming Krt8+ ADI into AT1 to avoid self-amplifying para-
crine feedback loops in tissue regions that are still in the early
stage of disease progression.

Methods
Mouse experiments-bleomycin treatment. Pathogen-free female C57BL/6J mice
were purchased from Charles River Germany and maintained at the appropriate
biosafety level at constant temperature and humidity with a 12 h light cycle.
Animals were allowed food and water ad libitum. Animal handling, bleomycin/PBS
administration, and organ withdrawal were performed in accordance with the
governmental and international guidelines and ethical oversight by the local gov-
ernment for the administrative region of Upper Bavaria (Germany), registered
under 55.2-1-54-2532-130-2014 and ROB-55.2-2532.Vet_02-16-208.

Human tissues. Resected lung tissue and lung explant material was obtained from
the CPC-M bioArchive at the Comprehensive Pneumology Center (CPC), Munich.
ILD diagnosed lung tissue (n= 6) is derived from lung explant material obtained
during lung transplantation, reflecting non-resolving end-stage fibrotic disease.
Healthy control tissue (n= 7) was derived from tumor resection in non-chronic
lung disease (CLD) patients. The tissue section from a patient with ARDS (n= 2)
has been provided by the Institute of Pathology, Ludwigs Maximilians University,
Munich.

All participants gave written informed consent; the study was approved by the
local ethics committee of the Ludwig Maximilians University, Munich, Germany
(#333-10).

Experimental design and animal treatment. Mice were divided randomly into
two groups: (A) saline-only (PBS), or (B) bleomycin (Bleo). Lung injury and
pulmonary fibrosis were induced by single-dose administration of bleomycin
hydrochloride (Sigma Aldrich, Germany), which was dissolved in sterile PBS and
given at 2 U/kg (oropharyngeal instillation) and 3U/kg (intratracheal instillation)
bodyweight. The control group was treated with sterile PBS only. Mice were
sacrificed at designated time points (days 1–14, 21, 28, 35, 56) after instillation.
Treated animals were continuously under strict observation with respect to phe-
notypic changes, abnormal behavior and signs of body weight loss.

Generation of single cell suspensions for whole-lung tissue. Lung single cell
suspensions were generated as previously described24. Briefly, after euthanasia,
lung tissue was perfused with sterile saline through the heart and the right lung was
tied off at the main bronchus. The left lung lobe was subsequently filled with 4%
paraformaldehyde for later histologic analysis. Right lung lobes were removed,
minced (tissue pieces at ~1 mm2), and transferred for mild enzymatic digestion for
20–30 min at 37 °C in an enzymatic mix containing dispase (50 caseinolytic U/ml),
collagenase (2 mg/ml), elastase (1 mg/ml), and DNase (30 µg/ml). Single cells were

harvested by straining the digested tissue suspension through a 40 micron mesh.
After centrifugation at 300 g for 5 min, single cells were taken up in 1 ml of PBS
(supplemented with 10% fetal calf serum), counted and critically assessed for single
cell separation and overall cell viability. For Dropseq, cells were aliquoted in PBS
supplemented with 0.04% of bovine serum albumin at a final concentration of
100 cells/µl.

Production of microfluidic devices for Dropseq. Microfluidic devices needed for
scRNAseq using the Dropseq platform were fabricated by means of standard soft
lithography. In brief, by using photolithography, a polydimethylsiloxane (PDMS)
master mold for the Dropseq device design (CAD file available as a download from:
http://mccarrolllab.org/dropseq/) was fabricated from a SU-8 photoresist (Micro-
Chem, USA), and spin-coated on a 3″ silicon wafer to generate 125 μm-thick
uniform layers. Afterwards, the master mold was filled with a 10:1 mixture of base
to curing agent of the PDMS kit Sylgard 184 (Dow Corning, USA) and left at 60 °C
in an oven for 4 h to crosslink the PDMS. After crosslinking, the PDMS replica was
cut and peeled off from the master mold, as well as all necessary inlets/outlets for
tubing connection were made in it using a 1 mm puncher. Next, the replica was
sealed with a 2″ × 3″ microscopic slide, after the treatment of both in O2 plasma.
The assembled microfluidic device was treated with Aquapel (Pittsburgh Glass
Works, USA) to make all inner surfaces evenly hydrophobic.

Single cell RNA-sequencing using Dropseq. Dropseq experiments were per-
formed according to the original protocols24,27. Using the microfluidic device,
single cells (100/µl) were co-encapsulated in droplets with barcoded beads (120/µl,
purchased from ChemGenes Corporation, Wilmington, MA) at rates of 4000 µl/h.
Droplet emulsions were collected for 10–20 min/each prior to droplet breakage by
perfluorooctanol (Sigma-Aldrich). After breakage, beads were harvested and the
hybridized mRNA transcripts reverse transcribed (Maxima RT, Thermo Fisher;
Template-switch oligonucleotide primer: AAGCAGTGGTATCAACGCAGAGTG
AATrGrGrG (50 μM)). Unused primers were removed by the addition of exonu-
clease I (New England Biolabs), following which, beads were washed, counted, and
aliquoted for pre-amplification (2000 beads/reaction, equals ca. 100 cells/reaction)
with 12 PCR cycles (Smart PCR primer: AAGCAGTGGTATCAACGCAGAGT
(100 μM), 2x KAPA HiFi Hotstart Ready-mix (KAPA Biosystems), cycle condi-
tions: 3 min 95 °C, 4 cycles of 20 s 98 °C, 45 s 65 °C, 3 min 72 °C, followed by 8
cycles of 20 s 98 °C, 20 s 67 °C, 3 min 72 °C, then 5 min at 72 °C)27. PCR products
of each sample were pooled and purified twice by 0.6x clean-up beads (CleanNA),
following the manufacturer’s instructions. Prior to tagmentation, complementary
DNA (cDNA) samples were loaded on a DNA High Sensitivity Chip on the 2100
Bioanalyzer (Agilent) to ensure transcript integrity, purity, and amount. For each
sample, 1 ng of pre-amplified cDNA from an estimated 1000 cells was tagmented
by Nextera XT (Illumina) with a custom P5-primer (Integrated DNA Technologies;
primer sequence: AATGATACGGCGACCACCGAGATCTACACGCCTGTCCG
CGGAAGCAGTGGTATCAACGCAGAGT*A*C (10 μM)). Single-cell libraries
were sequenced in a 100 bp paired-end run on the Illumina HiSeq4000 using
0.2 nM denatured sample and 5% PhiX spike-in. For priming of read 1, 0.5 μM
Read1CustSeqB (primer sequence: GCCTGTCCGCGGAAGCAGTGGTATCAAC
GCAGAGTAC) was used.

Quality metrics, including the number of unique molecular identifiers (UMI),
genes detected per cell and reads aligned to the mouse genome were comparable
across all mice (Supplementary Fig. 1). Every time point was analyzed together with
control mice that were instilled with phosphate-buffered saline (PBS). UMI-based
counting of mRNA copies was used to determine differential gene expression
between single cells. We used the six batches of PBS control mice to exclude
dominant batch effects observing very good overlap across mouse samples
(Silhouette coefficient: −0.08) (Supplementary Fig. 1).

Processing of the whole-lung data set. For the whole-lung data set, the Dropseq
computational pipeline was used (version 2.0) as described by Macosko et al.20.
Briefly, STAR (version 2.5.2a) was used for mapping59. Reads were aligned to the
mm10 reference genome (provided by the Dropseq group, GSE63269). For barcode
filtering, we excluded barcodes with <200 detected genes. As 1000 cells were
expected per sample, the first 1200 cells were used before further filtering. A high
proportion (>10%) of transcript counts derived from mitochondria-encoded genes
may indicate low cell quality, and we removed these unqualified cells from
downstream analysis. Cells with a high number of UMI counts may represent
doublets, thus only cells with less than 5000 UMIs were used in downstream
analysis.

Analysis of the whole-lung data set. The computational analysis of the whole-
lung data set was largely performed using the R package Seurat60. Count matrices
were merged using Seurat version 2.3. The merged expression matrix was nor-
malized using the Seurat NormalizeData() function. To mitigate the effects of
unwanted sources of cell-to-cell variation, we regressed out the number of UMI
counts using the Seurat function ScaleData(). Highly variable genes were calculated
per sample, selecting the top 7000 genes with a mean expression between 0.01 and
8. After excluding homologs of known cell-cycle marker genes61, a total of 18893
genes were subjected to independent component analysis. The first 50 independent
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components were used as input to the FindClusters() function with the ‘resolution’
parameter set to two and the RunUMAP() function with the “n_neighbors”
parameter set to ten.

Multi-omic data integration: to confirm global expression changes observed at
the single-cell level, we integrated previously published bulk RNAseq and
proteomics data obtained from whole-mouse lungs 14 days after bleomycin-
induced injury and controls24. Multi-omic data integration was performed
following previous work23,24. Briefly, in silico bulk samples were generated by
summing all counts within a mouse sample. Both the in silico bulk and whole-lung
tissue bulk data were normalized using the voom() function of the limma R
package62. Next, in silico bulk, whole-lung tissue bulk, and proteomics data were
merged on a set of genes present in all three data sets and quantile normalized. This
merged and quantile normalized expression matrix was then subjected to principal
component analysis (PCA).

Bulk deconvolution analysis: to interpret the expression changes observed in the
bulk RNAseq data at the cellular level and to validate the cell type frequency
changes observed at the single cell level, we performed deconvolution analysis. Fold
changes between the bleomycin model at day 14 and controls were obtained from
Table EV4 from Schiller et al.24. For each cell type, marker genes with average fold
change greater than zero and adjusted p-value < 0.25 were tested for enrichment in
the fold changes by comparison to all other genes using the Kolmogorov-Smirnov
test. For visualization purposes the minimum p-value was set to 1e-50.

Discovery of cell type identity marker genes: to identify cluster-specific marker
genes, the Seurat FindAllMarkers() function was applied, restricted to genes
detected in more than 10% of cells and with an average fold change difference of
0.25 or more. Based on these derived marker genes and manual curation we
assigned all clusters to cell type and meta-cell type identities (Supplementary
Fig. 1d). Cell type frequencies were calculated by dividing the number of cells
annotated to a specific cell type identity, by the total number of cells for each
mouse sample. In droplet-based scRNAseq data, background mRNA
contamination by the so-called “ambient RNAs” is frequently observed. These
mRNAs are believed to stem from dying cells which release their content upon cell
lysis. This contamination is distributed to many droplets and leads to a blurred
expression signal that does not stem solely from the single cell in the droplet but
also from the solution that contains it. We used the function
inferNonExpressedGenes() from SoupX63 to identify a set of 80 ambient RNAs and
accounted for these in the downstream analysis.

Time course differential expression analysis: to identify genes that show
differential expression patterns across time within a given cell type we performed
the following analysis. We used the R packages splines and lmtest for our modeling
approach. First, we manually combined the Louvain clusters into 26 cell types to
generate a more coarse grained cell type annotation for the time course differential
expression analysis (Supplementary Fig. 1d). Within each of these groups we
modeled gene expression as a binomial response where the likelihood of detection
of each gene within each mouse sample was the dependent variable. Therefore, the
sample size of the model was the number of mouse samples (n= 28) and not the
number of cells. To assess significance we performed a likelihood-ratio test between
the following two models. For the first model, the independent variables contained
an offset for the log-transformed average total UMI count and a natural splines fit
of the time course variable with two degrees of freedom. The independent variables
of the second model just contained the offset for the log-transformed average total
UMI count. The dependent variable of both models was the number of cells with
UMI count greater than zero out of all cells for a given cell type and mouse sample.
To account for potential false positive signal derived from ambient RNA levels, we
calculated cell type marker genes for the 26 cell type annotation using the Seurat
FindAllMarkers() function. For all 80 candidate ambient RNAs, we consequently
set all regression p-values to one in cell types where the gene was not
simultaneously a marker gene with an adjusted p-value of <0.1 and a positive
average log fold change.

Cell–cell communication analysis: to identify cell–cell communication networks,
we downloaded a list of annotated receptor-ligand pairs64. Next, we integrated this
information with the cell type marker genes from Supplementary Data 1. Cell–cell
communication networks were generated in the following manner. An edge was
created between two cell types if these two cell types shared a receptor-ligand pair
between them as marker genes.

Macrophage analysis: it is not entirely understood whether monocyte-derived
macrophages contribute to the development of lung fibrosis. To see if our data
reflects published models of monocyte recruitment, we integrated bulk RNAseq
data from FACS sorted macrophage populations after bleomycin-induced lung
fibrosis8,65. This data set contained bulk RNAseq gene expression of tissue-resident
alveolar macrophages (TR-AMs), monocyte-derived alveolar macrophages (Mo-
AMs), interstitial macrophages (IM), and monocytes (Mono) for both day 14 and
day 19 after bleomycin injury, including additional measurements for TR-AMs at
day 0. To derive a gene expression signature from the bulk RNAseq data, we used
the R package limma66. We followed the standard limma workflow65 to find genes
which are differentially expressed between these four populations. Next, we subset
our scRNAseq data set to only clusters expressing known macrophage markers and
selected a new set of variable genes. Following this the PCA and UMAPs were
recreated for this subset, using 20 PCs and 20 n_neighbors in Seurat’s functions.
The macrophages from our data were scored according to their similarity to these
bulk-derived signatures using Pearson correlation. For each of the four bulk-

derived groups, the log fold changes of the 500 most differentially expressed genes
were correlated with the scaled expression values of each macrophage cell in our
scRNAseq data. To separate potential monocyte-derived macrophages from
interstitial macrophages, we assigned each cell to the category with the higher
correlation coefficient as long as the difference was >0.05. Otherwise, the cell was
labeled unassigned.

Processing of the high-resolution epithelial data set. The high-resolution gene
expression matrix was generated as specified for the whole-lung data set with the
following changes. To lessen the technical bias introduced by ambient RNA, we
applied SoupX the pCut parameter set to 0.3 within each sample before merging
the count matrices together. The merged expression table was then pre-processed
as described in the section “Processing of the whole-lung data set”, with minor
alterations. To account for the fact that a certain fraction of the counts was
removed, the upper threshold for the number of total UMI counts per cell was set
to 3000.

Analysis of the high-resolution epithelial data set. The computational analysis
of the whole-lung data set was performed using a combination of the Seurat60 and
Scanpy67 code. Cell-cycle effects, the percentage of mitochondrial reads, and the
total number of UMI counts are often viewed as unwanted sources of variation and
were therefore regressed out using the Seurat functions CellCycleScoring() and
ScaleData(). Genes which had a variable expression in at least two samples (17038
genes) were used for the principal component analysis. The majority of the cells
were airway and alveolar epithelial cells, although non-epithelial cells were also
captured. To filter the data further, the cells were clustered and clusters expressing
non-epithelial markers were excluded from the data set. The cleaned object was
then converted to a.h5ad file for downstream analysis using the python package
Scanpy. The aligned bam files were used as input for Velocyto14 to derive the
counts of unspliced and spliced reads in loom format. Next, the sample-wise loom
files were combined, normalized and log transformed using scvelos (https://github.
com/theislab/scvelo)68 functions normalize_per_cell() and log1p(). After merging
the loom information to the exported.h5ad file using scvelos merge() function the
object was scaled and the neighbourhood graph constructed with Batch balanced
KNN (BBKNN)69 to account for the different PCR cycles used in the experiment
with neighbors_within_batch set to 15 and n_pcs to 40. Two dimensional visua-
lization and clustering was carried out with the Scanpy functions tl.louvain() at
resolution two and tl.umap(). The neuroendocrine cells (NEC) formed a distinct
cluster in the UMAP, however, they were only assigned to a single cluster at higher
resolutions. To separate them from basal cells we captured the NEC with dbscan
using the UMAP coordinates and assigned them as cluster 21. After manual
curation of the markers the remaining 20 clusters were combined, leading to
thirteen final meta cell types. Relative frequencies were calculated as described for
the whole-lung data set. To better visualize the dynamic changes of each cell type
over time, values were scaled to a minimum of 0 and a maximum of 1 using
numpy’s interp() function for each cell type annotation separately. Smoothed line
plots of the scaled frequencies were generated by employing the lmplot() function
of the python module seaborn with default parameters.

Cell-cycle analysis: the proliferating cells (Louvain cluster 14, Fig. 4d) of the
high-resolution data set were subjected to cell type deconvolution analysis. Cell
cycle phases (S.Score, G2M.Score) were regressed out using the Seurat ScaleData()
function. Next, PCA was calculated using all unique marker genes from
Supplementary Data 3 and the Seurat RunPCA() function. UMAP embedding and
Louvain clusters were calculated using the first 20 principal components with the
Seurat RunUMAP() and FindClusters() functions, respectively. Upon manual
curation of the marker genes for the generated embedding, we identified four
distinct clusters. Next, the frequency of proliferating cells was calculated by
dividing the number of cells in cluster 14, by the number of total cells for each
mouse sample.

PAGA analysis: to assess the global connectivity topology between the Louvain
clusters we applied Partition-based graph abstraction (PAGA)28. We applied the tl.
paga() function integrated in the Scanpy package to calculate connectivities and
used the Louvain clusters as partitions. The weighted edges represent a statistical
measure of connectivity between the partitions. Connections with a weight <0.3
were removed.

Velocity analyses: to infer future states of individual cells we made use of the
spliced and unspliced information. We employed scvelo68 (https://github.com/
theislab/scvelo). The previously normalized and log transformed data was the
starting point to calculate first and second order moments for each cell across its
nearest neighbors (scvelo.pp.moments(n_pcs= 40, n_neighbors= 15)). Next, the
velocities were estimated and the velocity graph constructed using the scvelo.tl.
velocity() with the mode set to’stochastic’ and scvelo.tl.velocity_graph() functions.
Velocities were visualized on top of the previously calculated UMAP coordinates
with the scvelo.tl.velocity_embedding() function. To compute the terminal state
likelihood of a subset of cells, the function scvelo.tl.terminal_states() with default
parameters was used.

Trajectory differential expression analysis: to identify genes showing significantly
altered expression along the differentiation trajectories toward the Krt8+ cell state,
the following approach was used. The high-resolution data set was restricted to
cells from Louvain clusters 2, 10, 11, and 12 for the convergence and AT1
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trajectories. The convergence (Louvain clusters 2, 10, 11) and AT1 (Louvain
clusters 2, 12) trajectories were analyzed independently. For the convergence and
AT1 trajectories we used diffusion map and UMAP as the cellular embeddings,
respectively. The dbscan() function from the DBSCAN R package was used to
identify outlier cells which were subsequently removed from further analysis. The R
package slingshot70 was used to infer the pseudotemporal ordering along the
trajectory of the cellular embeddings of all remaining cells. Next, the analysis was
restricted to genes detected in at least 5% of cells. The R package tradeSeq71 was
used to identify genes differentially expressed along the trajectories. Despite the fact
that p-values derived from pseudotemporal analyses are inflated they can be used
to prioritize candidate genes. Heatmaps were restricted to genes with Benjamini-
Hochberg adjusted p-values < 0.05. Gene expression patterns along
pseudotemporal trajectories were visualized using local polynomial regression
fitting as implemented in the R loess() function with default parameters.

In silico doublet simulation: to exclude the potential artefacts derived from cell
doublets we performed the following analyses. In silico bulk samples were
generated by summing the counts across cells randomly sampled from specific cell
clusters or mixtures thereof. More precisely, we randomly selected 600 cells from
AT1, AT2, club and Krt8+ ADI cell clusters in silico bulk samples per cell identity.
Doublets were generated by randomly selecting 300 cells from the AT2 and AT1
clusters as well as Club and AT1 clusters and subsequently aggregated into in silico
samples. This procedure was repeated five times to generate five in silico samples
per condition. Counts were normalized using the voom() function of the limma R
package and subjected to principal component analysis. Analogous procedure was
performed for the club cell analysis.

Integration of whole-lung and high resolution data sets: epithelial cells of the
whole-lung data set were re-analysed to validate findings derived from the high
resolution data set. The principal components were re-calculated on this subset
using a new set of variable genes, in order to emphasize changes in the epithelium
specifically. Following the procedure described above, UMAP visualization and
RNA velocities were generated using Scanpy and scvelo.

Pathway analysis. To predict the activity of pathways and cellular functions based
on the observed gene expression changes, we used the Ingenuity Pathway Analysis
platform (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity) as previously
described24. The analysis uses a suite of algorithms and tools embedded in IPA for
inferring and scoring regulator networks upstream of gene-expression data based
on a large-scale causal network derived from the Ingenuity Knowledge Base. We
used the upstream regulator tool in IPA to derive pathway z-scores across cell type
identities by loading the marker gene list fold changes of our single cell louvain
clusters (logFC relative to all other cells) for comparison of the indicated cell type
identities. The missing values represent cell type signatures that did not have
significant overlap with the respective pathways in IPA. The upstream regulator
tool in IPA defines an overlap p value measuring enrichment of network-regulated
genes in the data set, as well as an activation Z-score which can be used to find
likely regulating molecules based on a statistically significant pattern match of up-
and down-regulation, and also to predict the activation state (either activated or
inhibited) of a putative regulator. In our analysis we considered pathways/genes
with an overlap p value of > 7 (log10) that had an activation Z-score > 2 as activated
and those with an activation Z-score <−2 as inhibited.

Magnetic-activated cell sorting. Cells from whole-lung single cell suspensions
were strained using a 40 µm mesh size and red blood cells were eliminated by lysis
(RBC lysis buffer, ThermoFisher). For positive epithelial cell selection, cells were
stained with CD326-AlexaFluor647 antibody (Biolegend, 118212) for 30 min at
4 °C in the dark, and after washing, incubated with microbeads specific against
AlexaFluor647 (Miltenyi Biotec, 130-091-395) for 15 min at 4 °C. MACS LS col-
umns (Miltenyi Biotec, 130-042-401) were prepared according to the manu-
facturer’s instructions. Cells were applied to the columns and positively-labeled
epithelial cells were retained in the column. The flow-through was collected
separately for later mesenchymal cell enrichment (negative magnetic-activated cell
sorting (MACS) selection) and kept on ice. Epithelial cells were eluted from the LS
columns and used for either Dropseq runs. Mesenchymal cells from the flow-
through were further enriched by negative depletion of CD31+ (Invitrogen, 17-
0311-82), CD45+ (Biolegend, 103112), Lyve1+ (Invitrogen, 50-0443-82), Ter119+
(Biolegend, 116218), and CD326+ cells (Biolegend, 118212). After antibody
staining, 100 µl per 10 million cells of MACS dead cell removal beads (Miltenyi
Biotec, 130-090-101) were added and incubated according to the product’s
accompanying protocols. Depletion of undesired cell types was achieved by the use
of microbeads specific for APC (Miltenyi Biotec, 130-090-855), which ensured
magnetic retention of these cells. Likewise to epithelial cells, negatively-selected
mesenchymal cells were applied to the Dropseq workflow.

Flow cytometry. Isolated total lung cell suspensions were used to detect and
quantify cell populations by flow cytometry. After depletion of red blood cells by
red blood cell lysis buffer (Invitrogen, ThermoFisher), cell suspensions were stained
with anti-mouse CD45-PE-Vio770 (Miltenyi Biotec, 130-110-661), CD326-BV421
(Biolegend, 118225), Krt8/TROMA-I (DSHB-Developmental Studies Hybridoma
Bank at the University of Iowa), and αvβ6-specific monoclonal antibody 6.3G9

(Itgb6-3G9; kindly provided by Prof. Dr. Dean Sheppard, available through Biogen
Idec, USA). Cells were stained for surface markers in the dark at 4 °C for 20 min,
followed by cell fixation and permeabilization (Fix & Perm, Life Technologies,
GAS004) for intracellular staining of Krt8. Epithelial cells were selected using the
CD45-negative fraction of the cell isolate that stained positively for CD326. Within
the epithelial cell gate, Krt8+, Itgb6+, or Krt8+/Itgb6+ cells were identified and
quantified by their geometric mean fluorescence signal intensity. For exclusion of
non-specific antibody binding and autofluorescence signal, fluorescence minus one
(FMO) controls were included in the measurement. All stainings were performed
per 1,000,000 cells in the following dilutions: CD326 (1:500), CD45 (1:20), Krt8
(1:35), Itgb6 (1:1000). Data was acquired in a BD LSRII flow cytometer (Becton
Dickinson, Heidelberg, Germany) and analyzed by mean fluorescence intensity
(MFI) using the FlowJo software (TreeStart Inc., Ashland, OR, USA). Negative
thresholds for gating were set according to isotype-labeled and unstained controls.

Precision cut lung slices (PCLS). Precision cut lung slices were generated as
previously described72. Briefly, using a syringe pump, the mouse lungs were filled
via a tracheal cannula with 2% (w/v) warm, low gelling temperature melting point
agarose (Sigma Aldrich, A9414) in sterile DMEM/Ham’s F12 cultivation medium
(Gibco, 12634010), supplemented with 100 U/ml penicillin, 100 µg/ml streptomy-
cin, and 2.5 µg/ml amphotericin B (Sigma Aldrich, A2942). Afterwards, the lungs
were removed and transferred on ice in cultivation medium for 10 min to allow for
gelling of the agarose. Each lung lobe was separated and cut with a vibratome
(Hyrax V55; Zeiss, Jena, Germany) in 300 µm thick sections. The PCLS were
immediately fixed in −20 °C-cold methanol for 20 min and subsequently stained
for immunofluorescence microscopy.

Immunofluorescence microscopy of PCLS and analysis. Methanol-fixed PCLS
were stained and imaged as previously described73. Shortly, primary antibodies
were diluted in 1% bovine serum albumin (BSA, Sigma Aldrich, 84503) in PBS
(1:100), incubated for 16 h at 4 °C and subsequently washed three times with PBS
for 5 min each. Secondary antibodies were diluted in 1% bovine serum albumin in
PBS (1:200), incubated for 4 h at room temperature and subsequently washed three
times with PBS for 5 min each. Primary antibodies were: rat anti-Krt8/TROMA-I
(1:200; DSHB-Developmental Studies Hybridoma Bank at the University of Iowa),
rabbit anti-pro-SPC (1:200; Millipore, AB3786), goat anti-Pdpn (1:200; R&D
Systems, AF3244). Cell nuclei were stained with DAPI (40,6-diamidino-2-pheny-
lindole, Sigma-Aldrich, 1:2,000). Confocal high-resolution 3D imaging of the PCLS
was accomplished by placing the PCLS into a glass-bottomed 35 mm CellView cell
culture dish (Greiner BioOne, 627870) as a wet chamber. Images of PCLS were
acquired as z-stacks using an inverted microscope stand with an LSM 710 (Zeiss)
confocal module operated in multitrack mode using the following objectives: Plan-
Apochromat W 40×/1.0 M27 and Plan-Apochromat W 63×/1.3 M27. The auto-
mated microscopy system was driven by ZEN2009 (Zeiss) software, version 5.5.
The acquired confocal fluorescent z-stacks were surface rendered in Imaris
9.3 software (Bitplane) and its statistical analysis tool (MeasurementPro) was used
for 3D cell shape analysis using morphometric parameter sphericity as a readout (a
value of 1 corresponds to a perfect sphere).

Immunofluorescence microscopy. After euthanasia, mouse lungs were immedi-
ately inflated with 4% paraformaldehyde. For frozen OCT embedding, tissue was
fixed for 1 h at room temperature. Thin lung sections (7 µm) were cut on a cryostat.
Sections were incubated with 0.1% sodium borohydride (PBS) to reduce background
fluorescence, followed by blocking in PBS plus 1% bovine serum albumin, 5% non-
immune horse serum (UCSF Cell Culture Facility), 0.1% Triton X-100 (Carl Roth,
3051.3) and 0.02% sodium azide (Sigma Aldrich, S2002). Slides were then incubated
in primary antibodies overnight at 4 °C followed by secondary antibody incubation
at 1:1,000 dilutions at room temperature for >1 h. Slides were counterstained with 1
µM DAPI for 5 min at room temperature and mounted using Prolong Gold (Life
Technologies, P36930). The following antibodies were used: rabbit anti-pro-SPC
(1:2,500; Millipore, AB3786), and rat anti-Krt8 (0.9 µg/ml; TROMA-I (Krt8); Uni-
versity of Iowa Hybridoma Bank). Slides were imaged using a Leica Microscope
(DM6B-Z; Leica Biosystems) or Axivision Imager M1 (Carl Zeiss AG).

For formalin-fixed, paraffin-embedded (FFPE) lung tissue, sections were cut at
3.5 µm, followed by deparaffinization, rehydration, and antigen retrieval by
pressure-cooking (30 s at 125 °C and 10 s at 90 °C) in citrate buffer (10 mM, pH
6.0). After blocking for 1 h at room temperature with 5% bovine serum albumin,
lung sections were incubated in primary antibodies overnight at 4 °C, followed by
secondary antibody (1:250) incubation for 2 h at room temperature. The following
primary (1) and secondary (2) antibodies were used: (1) rat anti-Krt8 (170 µg/ml;
University of Iowa Hybridoma Bank, 1:200), rabbit anti-pro-SPC (1:200; Millipore,
AB3786), goat anti-Pdpn (1:200; R&D Systems, AF3244), rabbit anti-SPC (1:150;
Sigma-Aldrich, HPA010928), mouse anti-alphaSMA (1:1,000, Sigma-Aldrich,
A5228), rabbit anti-Areg (1:50; LSBIO, LS-B13911), rabbit anti-Hbegf (1:200; Bioss
Antibodies, bs-3576R), rabbit anti-Ki67 (1:200; Abcam, ab16667), mouse anti-
CC10 (1:200; Santa Cruz, sc-365992), rabbit anti-Cst3 (1:100; Abcam, ab109508),
rabbit anti-Yap (1:500; Abcam, ab205270), rabbit anti-pSmad2 (Ser465/467)
(1:1000; Cell Signaling, 3101), rabbit anti-Krt17 (1:200; Sigma, HPA000452); (2)
donkey anti-rabbit AlexaFluor568 (Invitrogen, A10042), donkey anti-rat
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AlexaFluor488 (Invitrogen, A21208), donkey anti-goat AlexaFluor647 (Invitrogen,
A21447), goat anti-mouse AlexaFluor647 (Invitrogen, A21236). Images were
acquired with an LSM 710 microscope (Zeiss).

Microscopic image analysis–quantification. The fluorescence intensity of Krt8
expression in selected regions of immunofluorescence microscopy images was
measured excluding airways using FIJI (ImageJ, v.1.8.0)74. For quantification of
Krt8 expression in the human FFPE sections, and likewise, for the Hbegf and Areg
quantification in the mouse sections, the mean overall fluorescence intensities were
measured. For quantification of cell proliferation, cells were stained with Ki67 and
Krt8 and counted manually for Ki67 positive cells.

Lineage tracing experiments. SPC-CreERT2 (Sftpctm1(cre/ERT2,rtTA)Hap) mice
were crossed with Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo mice. Sox2-CreERT2
mice were crossed with Ai14-tdTomato (Gt(ROSA)26Sortm14(CAG-tdTomato)Hze).
Four doses (SPC-CreERT2) or three doses (Sox2-CreERT2) of 0.25 mg/g body
weight tamoxifen in 50 μl corn oil. A chase period of >21 days was used to ensure
the absence of residual tamoxifen before injury. Bleomycin (1.5 U/kg) was delivered
to mouse lungs via oral aspiration in 40 µL sterile PBS. Lungs were harvested at
10 days or 14 days following injury.

Edu labeling and Sox2-CreERT2. Sox2-CreERT2/tdTomato mice were labeled with
tamoxifen dissolved in corn oil (3 doses, 250mg/kg) followed by two weeks of chase
before injuring with bleomycin dissolved in 1X PBS (2.1U/kg). Proliferating cells
were labeled with 5-Ethynyl-2′-deoxyuridine (Edu) every other day starting two days
after bleomycin injury (50mg/kg dissolved in 1X PBS, intraperitoneal injection).
Lungs were harvested twenty days post bleomycin injury, embedded in optimal
cutting temperature compound (OCT) and stained for Edu using Click-iT Edu
Imaging kit (ThermoFisher, c10086). Images were quantified by counting the total
number of proliferating AEC1s (Edu+/RAGE1+) in two-three lobes/mouse (n= 2
mice). Each dot represents one large region (>600 DAPI+ cells each) from one lobe.

Uninjured labeling. Spc-CreERT2 or Sox2-CreERT2 mice were labeled with
tamoxifen (4 or 3 doses at 250 mg/kg, respectively). Lungs were harvested at least
one week post last dose of tamoxifen and OCT embedded sections were stained for
KRT8. At least one lobe/mouse was quantified for Spc-CreERT2 mice (n= 3). Each
dot represents quantification of a large region from one lobe of a mouse. We found
no labeling of alveolar cells in Sox2-CreERT2 mice.

Hypoxia/Hyperoxia+InfA infection model. Wild-type or bi-transgenic
SftpcCreERT2; Rosa26RmTmG mice were exposed to 12% (hypoxia), 21% (room air)
or 100% (hyperoxia) oxygen between postnatal days 0–475. All mice were then
exposed to room air until they were 8 weeks old. SftpcCreERT2; Rosa26RmTmG mice
were administered tamoxifen (Sigma Aldrich, T5648) (0.25 g/kg) or corn oil vehicle
by single daily injections for four consecutive days76. On the seventh day, the mice
were infected with influenza A virus (HKx31, H3N2) and lungs were harvested on
post-infection day 14. Lungs were inflation fixed overnight in 10% neutral buffered
formalin, embedded in paraffin, sectioned and stained with antibodies against pro-
SPC (Seven Hills Bioreagents, Cincinnati, OH);

T1alpha (1:100; Syrian Hamster, clone 8.1.1, DSHB-Developmental Studies
Hybridoma Bank at the University of Iowa) and Krt8/TROMA-I (DSHB-
Developmental Studies Hybridoma Bank at the University of Iowa); Sections were
incubated with fluorescently labeled secondary antibody and stained with 4’,
6-diamidino-2-phenylindole (DAPI). Slides were visualized with a Nikon E-800
fluorescence microscope (Nikon Instruments, Microvideo Instruments, Avon,
MA). Images were captured with a SPOT-RT digital camera (Diagnostic
Instruments, Sterling Heights, MI).

pmATII isolation and culture. Primary mouse ATII cells (pmATII) were isolated
from 8 to 10 week-old, pathogen-free, female C57BL6/N mice (Charles River
Laboratories, SUuzfeld, Germany) as previously described59,77. Briefly, lungs were
filled with dispase (Corning, New York, NY, USA) and low-gelling temperature
agarose (Sigma Aldrich, Saint Louis, MO, USA) before mincing and filtering
through 100-, 20-, and 10-μm nylon meshes (Sefar, Heiden, Switzerland). Fibro-
blasts were depleted by adherence on non-coated plastic plates. Macrophages and
white blood cells were depleted using CD45-specific magnetic beads (Miltenyi
Biotec, Bergisch Gladbach, Germany), and endothelial cells with CD31-specific
magnetic beads, respectively. Cell depletion was performed according to the
manufacturer’s instructions. pmATII cells were resuspended in DMEM containing
10% FCS (PAA Laboratories, Pasching, Austria), 2 mM glutamine, 1% penicillin/
streptomycin (both Life Technologies, Carlsbad, CA), 3.6 mg/ml glucose (Appli-
chem GmbH, Darmstadt, Germany) and 10 mM HEPES (PAA Laboratories), and
cultured for 24 h to allow for cell attachment. The medium was changed to medium
containing 7.5 µM ICG-001 (Biomol) or the respective DMSO control, refreshed at
day 3. Cells were cultured up to 5 days.

Western blotting. Cells were washed with PBS (PAA Laboratories), lysed in
T-PER lysis buffer (Thermo Fisher Scientific, Waltham, MA), supplemented

with proteinase inhibitor cocktail tablets (Roche, Germany). Protein con-
centration was quantified using the Pierce BCA Protein Assay Kit (Pierce,
Thermo Fisher Scientific) according to the manufacturer’s instructions. In all,
10 µg of protein lysates were separated on SDS-polyacrylamide gel and trans-
ferred to nitrocellulose membranes. Membranes were blocked with 5% non-fat
dried milk solution in TRIS-buffered saline containing 0.01% (v/v) Tween
(TBS-T) (Applichem, Darmstadt, Germany) for 1 h and incubated with primary
T1α (R&D Systems) or Krt8/TROMA-I (DSHB-Developmental Studies Hybri-
doma Bank at the University of Iowa) antibody at 4 °C overnight. Next, blots
were incubated for 1 h at RT with secondary, HRP-conjugated, antibodies
(GE-Healthcare), or HRP-conjugated anti-β-actin antibody (Sigma-Aldrich)
prior to visualization of the bands using chemiluminescence reagents (Pierce
ECL, Thermo Scientific, Ulm, Germany). Blots were recorded with the Che-
miDocTMXRS+ system and analyzed using the Image Lab 6.0.1 software
(Biorad, Munich, Germany).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Bulk and scRNA-seq data are available via the Gene Expression Omnibus with the
accession code GSE141259. Additionally, results can be explored using our interactive
webtool at https://theislab.github.io/LungInjuryRegeneration.

Code availability
Code to reproduce the analyses described in this manuscript can be accessed via: https://
github.com/theislab/2019_Strunz.
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Supplementary Figure 1. Good technical agreement of whole lung single cell transcriptomes of 28 individual               
mice. ​(a) UMAP embedding colored by Louvain clusters demonstrates separation of cells into major lineages. ​(b)                
Unsupervised hierarchical clustering of the Louvain clusters recapitulates known hierarchical cell type topology.             
UMAP embeddings show good overlap between treatment conditions (c). (d) Alignment summary statistics are              
comparable across mouse samples. (e) Bar plot shows high overlap of mouse samples across cell types. (f) Scatter                  
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plot depicts coordinates from singular value decomposition of the arcsine square root transformation of the               
relative cell type frequencies. Dashed lines connect the mean coordinates between PBS and all other time points.                 
Ellipses are colored by time point and encapsulate samples from the same time point. (g) Barplot displays mean                  
Euclidean distance derived from the embedding in (f) between PBS and all other time points. 

 

 

Supplementary Figure 2. Barplots display the relative frequencies (y-axis) of 16 meta-cell types across time points                
(x-axis) across 28 mouse replicates. Each dot represents one mouse sample. The boxes represent the interquartile                
range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the interquartile range.  
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Supplementary Figure 3. Transient appearance of the myofibroblast cell state upon lung injury. ​(a-c) Relative               
expression levels of Col1a2 (a), Acta2 (b), and Tnc (c) are shown on the UMAP embedding. (d) The volcano plot                    
shows differential gene expression between myofibroblasts (right side) and fibroblasts (left side). (e) Single cell               
analysis was used to derive the myofibroblast specific ECM components in comparison to other fibroblasts and                
smooth muscle cells. 
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Supplementary Figure 4. Dynamics of macrophage states in lung tissue regeneration. ​(a, c) ​UMAP embedding of                
10379 cells that express known macrophage markers is colored by (a) cluster identity and (c) time points. Following                  
cells along the time course after reaching the peak of inflammation at day 10 and 14, two potential trajectories can                    
be discerned. (b) Several macrophage populations can be identified. These clusters uniformly express the              
macrophage marker Cd68 and Mrc1 while also showing distinct expression of certain genes. (d) Previously               
published gene signatures from bulk RNA experiments were used to reveal potential origins of macrophage cells. In                 
this data set, FACS-sorting allowed to differentiate between tissue-resident alveolar (AM), interstitial (IM) and              
monocyte-derived macrophage populations​9​. Similarity score of each cell is calculated as correlation to             
differentially expressed genes and corresponding log fold changes in the three sorted populations. Cells are               
assigned to either AM or IM category, if the difference in scores for either category is higher than 0.05. Alveolar                    
macrophages in our data set indeed show the highest score on the tissue-resident AM. (e) Potentially                
monocyte-derived cells based on scoring (at threshold of 0.1). There is a separation in the potentially                
monocyte-derived cells, which concurs with the real-time trajectories in (c). (f-i) The line plots show the smoothed                 
expression mean over time for the indicated genes within all macrophage subsets with a confidence interval of                 
0.95 (grey shades) across the 28 mouse replicates. 
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Supplementary Figure 5. Protein validation of the alveolar Krt8+ ADI signature. ​(a) Immunostaining of Krt8               
(green) at the indicated time points after bleomycin injury. FFPE tissue sections were co-stained with the AT2                 
marker Sftpc (red), and the AT1 marker Pdpn (blue). Nuclei were labeled using DAPI (white). Scale bar = 50                   
microns; representative images from n=4 lungs/timepoint. (b) Gating strategy for the analysis of CD45-/Epcam+              
epithelial cells. (c) The scatter plots and histograms show increased expression of Krt8 and Itgb6 at day 10 after                   
bleomycin in Epcam+ epithelial cells. Highest expression of Itgb6 was observed on Krt8 high cells.               
Fluorescence-minus-one (FMO) controls were used for both the Krt8 and Itgb6 quantification. (d) Increased Hbegf               
(red) expression in bleomycin treated lung tissue, showing partial overlap with Krt8 (green) signal. Quantification               
of the mean fluorescence signal intensities confirmed increased Hbegf expression (unpaired t-test, one-sided, ***              
p = 0.0001, mean measure with SD). Sections were co-stained with Pdpn (blue); scale bar = 50 microns. Sections                   
assessed in PBS n=9, in Bleo n=6. (e) Immunostainings of Areg (red) and Krt8 (green) expression in the lung,                   
co-stained with Pdpn (blue) and quantified by mean fluorescence intensity. Unpaired t-test, one-sided, *** p <                
0.0001, mean measure with SD. Scale bar = 50 microns. Sections assessed in PBS n=7, in Bleo n=7. (f-i) Tissue                    
sections from either controls (f, h) or bleomycin day 10 (g, i) were stained with the indicated antibodies to assess                    
activity of the Yap/Taz pathway (f, g) and the TGF-beta signaling by pSMAD nuclear translocation (h, i);                 
representative images from n=2 lungs/condition. 
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Supplementary Figure 6. Appearance of Krt8+ ADI cells in two alternative mouse injury models. (a) An aberrant                 
oxygen environment at birth alters alveolar injury and repair following influenza A virus infection. Lungs of infected                 
mice that were previously exposed to the indicated neonatal conditions were stained for Krt8 (red) and Sftpc                 
(green). Scale bar = 100 microns. (b) A sixty-hour exposure of adult mice to hyperoxia leads to the emergence of                    
Krt8+ cells in the alveolar space. Mice were sacrificed three days after the exposure period terminated. Lung tissue                  
was stained for Krt8 (red) and Sftpc (green). Scale bar = 50 microns. 
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Supplementary Figure 7. Feature plots of selected marker genes for epithelial cell types and states. ​(a,b) UMAP                 
embeddings showing the Louvain clustering as calculated with the resolution parameter=2 (a) and resolution              
parameter=4 (b). (c) PAGA graph representation of the data overlaid onto the UMAP representation with               
respective Louvain clustering, calculated with resolution parameter=2. (d-n) ​UMAP embeddings display distinct            
expression patterns for selected epithelial cell type marker genes: (d) Krt8 (ADI), (e) Sftpc (AT2 cells), (f)Vegfa (AT1                  
cells), (g) Lcn2 (activated AT2 cells), (h) Scgb1a1 (club cells), (i) Muc5b (goblet cells), (j) Calca (neuroendocrine                 
cells), (k) Mki67 (proliferative cells), (l) Foxj1 (ciliated cells), (m) H2-Ab1 (club cell subset), (n) Krt5 (basal stem                  
cells). Red colors indicate higher expression levels, (o) doublet score calculated with the doublet detection               
algorithm Scrublet. (p) UMAP shows epithelial cells at the indicated time points after injury color coded by their                  
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respective louvain cluster identity (Fig. 5). Note the massive increase of Krt8+ ADI relative frequency during                
inflammation and fibrogenesis. (q) Heatmap shows the average expression levels for the top 20 genes with lowest                 
adjusted p value of each cell type. 

 

 

Supplementary Figure 8. Gene programs with increased activity in Krt8+ ADI. Ingenuity upstream regulator              
analysis was used to score the activity of upstream regulators within the signatures of the indicated cell states. The                   
activation z-scores were grouped by hierarchical clustering using their Pearson correlation. Bar graphs show target               
genes sorted by highest expression in Krt8+ cells relative to all other cells.  
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Supplementary Figure 9. Cell cycle analysis shows no massive expansion of rare pre-existing Krt8+ ADI cells. ​(a)                 
The line plot shows the smoothed relative frequency of Mki67+ proliferating cells over time. Grey colors indicate                 
95% confidence interval of fit across the 36 mouse replicates. (b) The scatter plots show cells from proliferating cell                   
cluster 14 before and after cell cycle regression, colored by inferred cell cycle phase. Regression removes cell cycle                  
effects from principal component data manifold. Re-analysis of cell cycle corrected expression deconvolves cell              
type identities of proliferating cells. (c) UMAP of cell cycle corrected cluster 14 cells visualizes four distinct clusters,                  
which contain Krt8+ ADI, AT2, club, and MHC-II+ club cells. Heatmap shows the average expression levels of                 
selected marker genes. (d) Immunofluorescence stainings of control versus bleomycin treated lung sections (day 3,               
7, 10, 14, 21, 28). Sections were stained for Krt8 (green), Ki67 (red), Pdpn (blue), and DAPI (white). Scale bar                    
indicates 100 microns. (e) Ki67+ cells were quantified from the micrographs by counting Ki67+ cells in each                 
ROI/field of view [mean with SD, n(d0)=6, n(d3)=4, n(d7)=3, n(d10)=5, n(d14)=5, n(d21)=7, n(d28)=6]. (f)              
Immunostaining as in (e) on day 10 post bleomycin injured lungs with enlarged views on proliferative Krt8+ ADI                  
cells (Ki67+/Krt8+), highlighted with yellow arrowheads. Scale bar indicates 100 microns, n(mice)=2.  
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Supplementary Figure 10. Rare Krt8 high alveolar cells in healthy lung parenchyma. (a) Fluorescent              
immunostainings and confocal imaging of lung sections from untreated control lungs. Nuclei (DAPI) are colored in                
white, Krt8 appears in green, Sftpc (AT2 cells) in red, and Pdpn (AT1 cells) in blue. The scale bar indicates 100                     
microns. (b) Line plots show smoothed relative frequency of cells with a Krt8+ ADI signature stratified in Ki67+ (red                   
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line) and Ki67- bins (blue line). Note the massive expansion of Krt8+ ADI over time without spiking numbers of                   
Ki67+ cells preceding this. This indicates that most Krt8+ ADI are generated by differentiation of stem cells rather                  
than expansion of pre-existing Krt8 high cells from the baseline. Grey colors indicate 95% confidence interval of a                  
fit across the mouse replicates. (c, d) SPC-CreERT2 mice (c, n=3) or Sox2-CreERT2 mice (d) were labeled for 1 week                    
using 4x tamoxifen (TAM) injections. Cryosections were stained for (c) Krt8 or SPC (d) and the lineage label as                   
shown. (e) Quantification of SPC-CreERT2 traced cells with high expression of Krt8 in alveolar areas shows that                 
most pre-existing rare Krt8 high alveolar cells are AT2 cell derived; n(mice)=3 Each data point represents                
quantification from one large region (n=6; each at least 2.5sqmm area). Error bars show standard deviation. (f)                 
Cryosection of an Edu-labeled lung after bleomycin-injury in the Sox2-CreERT2 mice; the four enlargements as               
indicated by the white box show that proliferating Edu+/RAGE1+ cells have overlapping signal with the Sox2                
lineage label (yellow arrows), indicating that Sox2 lineage-derived cells can give rise to RAGE1+ AT1 cells; untraced                 
double positive Edu+/RAGE1+ cells are highlighted by a white circle. Experiment includes n=2 mice; at least 3                 
lobes/mouse were analyzed with similar results. 

 

 

Supplementary Figure 11. Targeted re-analysis of epithelial cells from whole lung data set. ​(a, b) Data from                 
epithelial cells in the whole lung data set (Fig. 1) was subjected to dimension reduction. UMAP visualizations                 
colored by cell type (a) and time point (b) illustrate injury-specific cells connecting major cell types. (c) RNA                  
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velocities predict both AT2 and airway cell derived Krt8+ ADI. (d) Expression of select marker genes is colored on                   
top of the UMAP embedding. Grey and red colors correspond to low and high values, respectively. 

 

Supplementary Figure 12: AT1 cell differentiation involves Wnt/β-catenin/TCF-mediated transcription. ​(a)          
Representative Western blot for the detection of Krt8 and Pdpn in MACS-negatively selected pmAT2 cells plated                
on plastic dishes; proteins were analyzed and quantified at day 1, day 3, and day 5, demonstrating that during in                    
vitro differentiation the expression of Krt8 (peak expression at day 3) and Pdpn are increased over time (n of blots                    
= 3). All gels/blots were processed in parallel. (b) Representative Western blot for likewise selected pmAT2 cells,                 
treated with WNT inhibitor ICG-001 (start of inhibition at day 1). Inhibition was stopped at day 3 and day 5,                    
respectively, and lysates loaded for Western blot analysis. WNT inhibition induced a reduction in both Krt8 and                 
Pdpn levels compared to untreated control samples (n of blots = 3, data shown with mean). Quantification of the                   
Krt8 protein at day 5 revealed a significant decrease of protein levels upon WNT inhibition (paired t-test,                 
two-sided, p = 0.0454). All gels/blots were processed in parallel. 
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Supplementary Figure 13. Full-scan sizes of all western blots from supplementary figure 12. A total of n=3                 
samples were used for all blots. (a) The first sample used as a representative blot. (b) The second and third sample                     
blots which were included in the blot quantification. (c) The first sample used as a representative blot for the                   
inhibition experiment. (d) The second and third sample blots which were included in the blot quantification of the                  
inhibition experiment. 
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