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Zusammenfassung

Die Untersuchung der großräumigen Verteilung von Galaxien hat wesentlich zu unserem
heutigen Verständnis von der Zusammensetzung und der Entwicklung unseres Univer-
sums beigetragen. Die kommende Generation von Galaxien-Durchmusterungen wird es
uns ermöglichen, die kosmische Expansionsgeschichte und das Strukturwachstum mit bis-
lang unerreichter Präzision zu messen, und dadurch das kosmologische Standardmodell und
seine möglichen Erweiterungen noch genauer zu erforschen. Ziel dieser Arbeit ist es neue
Einblicke in Verfahren für die Gewinnung kosmologischer Information aus der großräumi-
gen Struktur zu gewähren, die für zukünftige Analysen der “Klumpungseigenschaften” von
Galaxien (Galaxy Clustering) von Nutzen sein könnten.

Die Kovarianzmatrix von Clustering-Messungen ist ein wesentlicher Bestandteil von
Analysen, der Voraussetzung für die unverfälschte Bestimmung kosmologischer Parameter
ist. Die Verwendung einer großen Anzahl von Mock-Katalogen, die aus Simulationen kon-
struiert werden, gilt als der zuverlässigste Ansatz für die Schätzung der Kovarianzmatrix.
Die Durchführung einer großen Anzahl von vollständigen kosmologischen Simulationen ist
jedoch mit einem hohen Rechenaufwand verbunden. Der erste Teil der Arbeit beschreibt
einen gründlichen Vergleich von Kovarianzmatrizen, die mit sieben unterschiedlichen ap-
proximativen Methoden zur gravitativen Strukturbildung hergeleitet werden. Das umfasst
prädiktive Methoden, die die Entwicklung des Dichtefelds der dunklen Materie determinis-
tisch vorhersagen (ICE-COLA, Peak Patch, Pinocchio), Methoden, die eine vorherige
Kalibrierung mit vollständigen N-Körpersimulationen (Patchy und Halogen) erfordern,
und zwei einfachere Verfahren, die auf der Annahme einer log-normalen oder normalen
Wahrscheinlichkeitsdichtefunktion des Dichtefelds der Dunklen Materie basieren. Der Ver-
gleich bezieht sich auf Messungen der anisotropen Zwei-Punkt-Korrelationsfunktion, eines
der erfolgreichsten und am weitesten verbreiteten Mittel für die statistische Analyse des
Galaxy Clustering.

Die mit den approximativen Methoden erhaltenen Kovarianmatrizen werden mit Refe-
renz-Kovarianzmatrizen verglichen, die aus einem Satz kosmologischer N-Körpersimulatio-
nen hergeleitet werden. Insbesondere wird untersucht, wie geeignet die Kovarianzmatrizen
sind, die mithilfe der approximativen Methoden geschätzt worden sind, um die Parame-
terbestimmung basierend auf den Referenz-Kovarianzmatrizen aus N-Körpersimulationen
zu reproduzieren. Die Ergebnisse zeigen, dass alle approximativen Methoden die Referen-
zergebnisse mit einer Genauigkeit von 5% für unsere untere Massenschwelle und von 10%
für unsere obere Massenschwelle der Dunkle-Materie-Halos nachbilden können, ohne dass
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eine Methode signifikant besser ist als die anderen.
Gegenstand des zweiten Teils der Arbeit ist ein mögliches Verfahren zur Gewinnung kos-

mologischer Information aus der Galaxienverteilung, das über Zwei-Punkt-Statistiken hin-
ausgeht. Dazu werden Minkowski-Funktionale untersucht, die die Geometrie und Topologie
des kosmischen Dichtefelds charakterisieren und komprimierte Informationen von Korrela-
tionen höherer Ordnung enthalten. Der erste Schritt ist die Implementierung einer robusten
und genauen Methode zur Schätzung der Minkowski-Funktionale von dreidimensionalen
Punktverteilungen, insbesondere aus Simulationen mit periodischen Randbedingungen.
Der daraus resultierende Code mit dem Namen MEDUSA berechnet die Minkowski-
Funktionale von triangulierten Oberflächen gleicher Dichte, die aus der Delaunay-Tessellation
der Eingabepunktmenge konstruiert werden.

Nach der gründlichen Validierung des Codes mit Testpunktmengen folgt die Anwen-
dung auf synthetische Kataloge aus verschiedenen N-Körpersimulationen. Die aus den
Katalogen berechneten Minkowski-Funktionale weisen klare Abweichungen von den Vorher-
sagen für ein Gaußsches Dichtefeld auf. Dies ist aufgrund der nichtlinearen Gravita-
tionsentwicklung des Dichtefelds zu erwarten, die zu Korrelationen höherer Ordnung in
der Galaxienverteilung führt. Die Analyse der im Rotverschiebungsraum gemessenen
Minkowski-Funktionale zeigt, dass die Rotverschiebungsraum-Verzerrungen die Schätzung
der Minkowski-Funktionale signifikant beeinflusst. Der Effekt der Verzerrungen kann je-
doch erheblich verringert werden, wenn die Messungen als Funktion des Anteils des aus-
gefüllten Volumens anstelle der Dichteschwelle ausgedrückt werden. Auch die Alcock-
Paczynski(AP)-Verzerrungen beeinflussen die Messungen der Minkowski-Funktionale. Ihr
Effekt kann modelliert werden, indem die Messungen mit geeigneten Potenzen des isotropen
AP-Parameters q skaliert werden, der von der volumengemittelten Distanz DV(z) abhängt.
Die außerdiagonalen Elemente der Kovarianzmatrix der Minkowski-Funktionale sind zum
Teil stark korreliert, und müssen daher für zukünftige Analysen berücksichtigt werden.

Schließlich wird ein neuartiger Ansatz getestet, genannt Evolution Mapping, um die
Abhängigkeit der Minkowski-Funktionale von den kosmologischen Parametern zu beschrei-
ben, die die Entwicklung des linearen Wachstumsfaktors mit der Rotverschiebungs beein-
flussen. Die zugrundeliegende Idee besteht darin, den Einfluss dieser Parameter anhand
von σ12, der Dispersion des über Kugeln mit einem Radius von 12 Mpc gemittelten, lin-
ear nach heute extrapolierten Dichtekontrastes, zu charakterisieren. Die Analyse zeigt,
dass dieser Ansatz für die Minkowski-Funktionale mit hoher Genauigkeit gültig ist und als
Ausgangspunkt für die Entwicklung eines simulationsbasierten Modells für die Minkowski-
Funktionale von Nicht-Gaußschen-Dichtefeldern dienen kann.



Abstract

The study of the large-scale galaxy clustering has significantly contributed to our present-
day understanding of the composition and the evolution of our Universe. The upcoming
generation of galaxy redshift surveys will open the opportunity to further probe our stan-
dard cosmological model and its possible extensions by measuring the cosmic expansion
and growth of structure histories to unprecedented precision. This thesis aims to provide
new insights into the challenges of capturing the information encoded in the large-scale
structure, which might be useful for future galaxy clustering analyses.

The covariance matrix of the clustering measurements is an essential ingredient to derive
unbiased constraints on cosmological parameters. Using large numbers of mock catalogues
from simulations is considered the most reliable approach to estimate the covariance ma-
trix. However, running large numbers of full cosmological simulations is computationally
very expensive. The first part of the thesis presents a detailed comparison of the covari-
ance matrices inferred from seven state-of-the-art approximate methods for gravitational
structure formation. These include predictive methods that follow the evolution of the un-
derlying matter density field deterministically (ICE-COLA, Peak Patch, Pinocchio),
methods that require a prior calibration with full N-body simulations (Patchy and Halo-
gen), and two simpler recipes based on assuming log-normal or Gaussian shapes of the
full density probability distribution function. The comparison focuses on measurements of
the anisotropic two-point correlation function, one of the most successful and widespread
tools for the statistical analysis of galaxy clustering.

We compare the covariance estimates obtained from the approximate methods against
reference covariances inferred from a set of cosmological N-body simulations. In particular,
we examine the performance of the covariance matrices from the approximate methods at
reproducing parameter constraints from the analysis based on the N-body simulations.
Our results show that all approximate methods can recover the results from the N-body
simulations with an accuracy of 5% for our lower halo mass threshold, and of 10% for our
higher halo mass threshold, with no method clearly outperforming the others.

With the goal of extracting information beyond two-point statistics, the second part
of the thesis considers Minkowski functionals, which characterize the geometry and topol-
ogy of the cosmic density field and contain compressed higher-order information. In this
context, we implement a robust and accurate method for estimating the Minkowski func-
tionals of three-dimensional point distributions, in particular of samples from simulations
with periodic boundary conditions. The resulting code, dubbed MEDUSA, computes the
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Minkowski functionals of triangulated isodensity surfaces that are constructed from the
Delaunay tessellation of the input point sample.

After the thorough validation of the code on test samples, we apply it to synthetic
catalogues from different N-body simulations. The resulting Minkowski functionals exhibit
clear non-Gaussian signatures. These are expected due to the non-linear gravitational
evolution of the density field, which leads to higher-order correlations in the galaxy dis-
tribution. The analysis of the Minkowski functionals measured in redshift space indicates
that the redshift-space distortions significantly change the Minkowski functional estimates,
but their impact is considerably reduced if the measurements are expressed as a function
of the volume-filling fraction instead of the density threshold. The Minkowski functional
measurements are also sensitive to Alcock-Paczynski (AP) distortions. Their effect can be
modelled by scaling the measurements with suitable powers of the isotropic AP parameter
q, which depends on the volume-averaged distance DV(z). The covariance matrix of the
Minkowski functional measurements has significant off-diagonal structure, which needs to
be taken into account for future analyses.

Finally, we test a novel approach to describe the cosmology dependence of the Minkowski
functionals, dubbed evolution mapping, in which the impact of a large number of cosmolog-
ical parameters that affect the redshift evolution of the linear growth factor is characterized
by the value of σ12, the linear-theory rms mass fluctuation in spheres of radius 12 Mpc.
Our analysis shows that this approach is valid for the Minkowski functionals with high
accuracy and can serve as a starting point to develop a simulation-based model for the
Minkowski functionals of non-Gaussian density fields.



Für meine Eltern



“There is no harmony in the Universe

We have to get acquainted to this idea that

there is no real harmony as we have conceived it

But when I say this, I say this all full of admiration”

Werner Herzog

In Takeshi’s Cashew “There Is No Harmony”
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Chapter 1

Introduction

Modern cosmology has advanced our understanding of the composition and the evolution
of our Universe to an extraordinary accuracy. A rich variety of observations, including
measurements of the cosmic microwave background, Type Ia supernovae and the large-
scale clustering of galaxies, have established the standard ΛCDM model of cosmology.

According to this concordance model, the Universe is mainly composed of two con-
stituents that cannot be directly observed. The first one is a mysterious dark energy
component that accounts for the accelerated expansion of the Universe and can be de-
scribed by the cosmological constant Λ. The second one is attributed to cold dark matter
(CDM), an additional mass component that only interacts gravitationally, but not electro-
magnetically. Furthermore, the ΛCDM model provides the general framework to describe
the evolution of cosmic structure. Under the effect of gravity and cosmic expansion, small
inhomogeneities grow into the large-scale structure that today can be observed as galaxy
filaments, galaxy clusters and vast almost devoid regions.

The statistical analysis of the large-scale structure traced by galaxies is one of the
primary tools of observational cosmology. For this purpose, during the last decades galaxy
redshift surveys have mapped the three-dimensional galaxy distribution in increasingly
larger cosmic volumes, providing catalogues with the angular positions and the redshifts of
the observed galaxies (e.g. Huchra et al., 1983; York et al., 2000; Colless et al., 2001; Jones
et al., 2004; The Dark Energy Survey Collaboration, 2005; Hill et al., 2008; Drinkwater
et al., 2010).

An outstanding example is the Baryon Oscillation Spectroscopic Survey (BOSS) of the
Sloan Digital Sky Survey (SDSS) III, which delivered the largest galaxy catalogue with
spectroscopic redshifts to date (Dawson et al., 2013). The footprint of the survey covers
approximately 10 000 deg2 of the sky, containing more than 1.5 million galaxies in a redshift
range of 0.15 < z < 0.75 and 150 000 quasars at a mean redshift of z ' 2.5 (Alam et al.,
2015). The extended BOSS program (eBOSS, Dawson et al., 2016) further added ∼550 000
galaxies in a redshift range of 0.6 < z < 1.1 and ∼340 000 quasars in a redshift range of
0.8 < z < 2.2 (Ross et al., 2020).

The most commonly used methods to extract the cosmological information encoded
in the galaxy distribution are two-point statistics, more specifically the two-point correla-
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tion function and its Fourier transform, the power spectrum. One of the most remarkable
features in the measured two-point statistics is the signature of the baryon acoustic os-
cillations (BAO). These oscillations arise from sound waves propagating in the plasma of
the early Universe and imprint a characteristic scale in the clustering pattern of galaxies.
BAO distance measurements employ this characteristic scale as a standard ruler, in order
to infer constraints on the expansion history of the Universe (Blake & Glazebrook, 2003;
Linder, 2003; Cole et al., 2005; Eisenstein et al., 2005). Further information can be re-
trieved from distortions in the measured clustering statistic that are caused by the peculiar
velocities of the galaxies. These so-called redshift-space distortions (RSD) can be used to
probe the growth-rate of cosmic structures (Guzzo et al., 2008). Measurements of the full
shape of the two-point statistics provide complementary information to the BAO distance
measurements and simultaneously constrain the growth rate (Percival et al., 2001; Sánchez
et al., 2006; Chuang & Wang, 2012; Sánchez et al., 2013).

The clustering analyses of the past surveys have confirmed and constrained the ΛCDM
model with an increasing precision. In particular, the most recent surveys turned the
large-scale structure analysis into a precision scientific discipline (e.g., Alam et al., 2017;
Sánchez et al., 2017; Grieb et al., 2017; eBOSS Collaboration et al., 2020; Hou et al., 2021).

Despite the success of the ΛCDM model, which has been well-tested not only by galaxy
clustering measurements, but a large variety of complimentary cosmological probes, includ-
ing the CMB, gravitational lensing, supernovae and galaxy clusters, many open questions
remain. The nature of dark energy or the origin of the accelerated cosmic expansion is one
of the most intriguing questions of modern physics.

The upcoming new generation of surveys sampling several millions of galaxies in huge
cosmic volumes, will allow us to measure the expansion history of the Universe and the
growth of cosmic structure to unprecedented precision and accuracy, and will hopefully
bring us closer to unravel the mystery of cosmic expansion. Apart from this, these surveys
will also explore other important physical problems, such as the neutrino mass and the
physics of inflation.

The ESA mission Euclid, which is planned for launch in 2022, is expected to make
significant progress in this direction. Euclid will observe up to 50 million galaxies with
near-infrared spectroscopy in a redshift range of 0.7 < z < 2.1 covering 15 000 deg2 of
the extragalactic sky (Laureijs et al., 2011). A second upcoming ground-based survey will
be conducted by the Dark Energy Spectroscopic Instrument (DESI Collaboration et al.,
2016), which will contain 30 million galaxy and quasar redshifts starting at z ∼ 0.2 and
up to z > 2 in a footprint of 14 000 deg2.

These future surveys will provide an abundance of cosmological information. In order
to reliably extract the largest possible amount of this information, two key aspects need to
be further explored. First, the large amount of high-quality data will significantly reduce
the statistical errors of large-scale structure measurements. Consequently, the systematic
errors introduced by the analysis methods might become the largest error source. For this
reason, it is important to examine all components of the systematic error budget. Secondly,
as previous analyses have shown, the underlying matter density field traced by the galaxies
is not simply Gaussian distributed, and thus, it cannot be completely characterized by two-
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point statistics. Complementing standard two-point analyses by higher-order statistics
will be essential to fully exploit the cosmological information encoded in the large-scale
structure. The aim of this thesis is to make contributions to both aspects that might
serve to extract unbiased and higher-order information from the large-scale structure in
the clustering analyses of future surveys.

The first part of this thesis is devoted to the covariance matrix, one of the key ingredients
in the analysis of clustering measurements. In particular, I focus on the covariance matrices
of two-point correlation function measurements. Commonly, these covariance matrices are
estimated from mock catalogues based on simulations that are designed to reproduce the
observed galaxy clustering properties. Due to the finite number of mock catalogues, the
estimation of the covariance matrix is affected by noise, which must be considered as
potential systematic error and must be propagated into the final cosmological constraints
(Taylor et al., 2013; Dodelson & Schneider, 2013; Percival et al., 2014; Sellentin & Heavens,
2016). To satisfy the precision requirements of future surveys, it might be necessary to
produce an unfeasibly large number of simulations. Approximate methods for gravitational
structure formation and evolution can represent a viable alternative to full cosmological
simulations, since they allow for a faster generation of mock catalogues. Before applying
these methods to clustering analyses, they must be thoroughly tested, in order to avoid
introducing systematic errors or biases on the final parameter constraints. To this end, I
conduct a detailed comparison of several state-of-the-art approximate methods with regard
to their accuracy in reproducing the covariance matrix estimates from full cosmological
simulations.

The second part of this thesis addresses the topic of higher-order statistics and, more
specifically, considers Minkowski functionals. The direct approach to extract the infor-
mation encoded in the large-scale galaxy distribution beyond two-point statistics is to
compute higher-order N -point functions, such as the three-, four- ore five-point correlation
functions and their Fourier transforms. However, already the estimation and the analysis
of the three-point correlation function and its Fourier transform the bispectrum is chal-
lenging (e.g., Maŕın et al., 2013; Gil-Maŕın et al., 2015; Gil-Maŕın et al., 2017; Slepian
et al., 2017b,a; Pearson & Samushia, 2018), the analysis of higher-order N -point functions
is still unfeasible.

An alternative approach is to use statistics that contain compressed higher-order infor-
mation, such as the Minkowski functionals, which characterize the geometry and topology
of the galaxy density field. The idea to use Minkowski functionals for the large-scale struc-
ture analysis dates back to the 1990s (Mecke et al., 1994) and since then there have been
several cosmological studies on Minkowski functionals. Two different main methods were
introduced to determine Minkowski functionals from the galaxy distribution. One of them
is based on the Germ-Grain model, where the Minkowski functionals are estimated on
intersecting spheres inflated around the galaxies. The Germ-Grain Minkowski functionals
have been used to study several galaxy and galaxy cluster catalogues in the last three
decades (e.g., Mecke et al., 1994; Kerscher et al., 1997, 1998, 2001; Wiegand et al., 2014;
Wiegand & Eisenstein, 2017).

Alternatively, the Minkowski functionals can be estimated from excursion sets, i.e.
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isodensity surfaces, constructed from the galaxy distribution. The isodensity MFs have
long known analytic expressions for Gaussian density fields (Tomita, 1990; Schmalzing
& Buchert, 1997; Matsubara, 2003), and they are commonly evaluated using calculation
methods from differential or integral geometry. They also were applied to different galaxy
surveys (e.g., Hikage et al., 2003; Park et al., 2005; Gott et al., 2009; James et al., 2009;
Choi et al., 2010; Zhang et al., 2010; Blake et al., 2014). Most analyses were based on
the Gaussian predictions, which are sensitive to the two-point statistics only, and often
only considered the genus, one of the Minkowski functionals encompassing the topological
information.

Although the studies of the germ-grain and isodensity Minkowski functionals of the
galaxy density field led to several interesting cosmological results, they could not compete
with the large number of the highly advanced analyses based on two-point statistics. In
the light of upcoming surveys, however, it becomes promising to reconsider Minkowski
functionals as complementary tools to the standard two-point clustering statistics. Driven
by this long-term goal, we developed MEDUSA, a new implementation of a robust and
accurate method to estimate the isodensity Minkowski functionals of three-dimensional
galaxy distributions based on Delaunay tessellations. The first applications of MEDUSA
to synthetic catalogues already allows us to study several key aspects that will be relevant
for future analyses of Minkowski functionals, and thus will also be important for extracting
unbiased information.

The thesis is organised as follows: In the following Chapter 2, I depict the key theoretical
concepts of cosmology and the statistical analysis of galaxy clustering relevant for this
work. In Chapter 3, I describe the covariance matrix comparison project including the
methodology, the considered state-of-the-art approximate methods and the analysis of
the inferred covariance matrices. In Chapter 4, I present the basic algorithm to measure
Minkowski functionals implemented in MEDUSA, the various validation tests and the
first applications to synthetic catalogues. The latter allows exploring the non-Gaussian
features, some relevant distortions expected from real galaxy surveys and the covariance
matrices of the Minkowski functional measurements. Finally, I analyse the novel approach
of evolution mapping for the Minkowski functionals that could be used as the basis for
modelling the Minkowski functionals of non-Gaussian density fields. In the last Chapter 5,
I discuss the main results and possible future perspectives.



Chapter 2

Theory of the Cosmological
Large-Scale Structure

This chapter gives an overview of the principal theoretical concepts in cosmology with an
emphasis on the statistical analysis of galaxy clustering. The analysis of the large-scale
structure (LSS) of the Universe is a mature field which covers a broad range of approaches
and topics. Here, I focus on the aspects more relevant to my work on two-point statistics
and Minkowski functionals.

Section 2.1 is dedicated to the homogeneous ΛCDM universe and explains cosmic dis-
tances. The subsequent sections describe the evolution of cosmic density perturbations
on the smooth background Universe from their seeds (Section 2.2) to the late-time non-
linear structure formation (Section 2.5). In this context, Section 2.3 introduces two-point
clustering statistics, which fully characterize the initial Gaussian density field. An impor-
tant technique for the prediction of the non-linear evolution of the matter density field
are N-body simulations, whose basic concepts are summarized in Section 2.6. Section 2.7
presents Minkowski functionals as a useful set of statistics beyond two-point correlations.
The last Section 2.8 addresses important aspects of clustering observations encompassing
galaxy bias, redshift-space distortions and Alcock-Paczynski distortions.

Most of the sections, besides the introduction to Minkowski functionals, are largely
inspired by the textbook by Dodelson & Schmidt (2020) and the lecture notes on “The
Formation and Evolution of Cosmic Structures” by Sánchez (in prep.). For a more detailed
description of the concepts introduced here and a more complete overview over observa-
tional cosmology the reader is referred to these references.

2.1 The homogeneous universe

2.1.1 The background evolution

In our current physical understanding, gravity and cosmic expansion are the main drivers of
the evolution of the large-scale structure in the Universe. The theory of General Relativity
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provides the framework to describe cosmology. In General Relativity, gravity is attributed
to the curvature of the four-dimensional space-time, characterized by the metric gµν

1.
The Einstein field equations, which form the core of this theory, relate the space-time
geometry encoded in the Einstein tensor Gµν to the matter distribution given by the
energy-momentum tensor Tµν

2,

Gµν − Λgµν = 8πGTµν . (2.1)

G is the Newtonian gravitational constant. Λ is the cosmological constant, which is essential
for the description of the accelerated cosmic expansion. It can be interpreted as part of
the space-time geometry on the left-hand side of the equation or it can be associated to
the energy-momentum tensor as so-called dark energy on the right-hand side.

The solution of the Einstein field equations for our Universe is based on a fundamental
hypothesis: the cosmological principle that states that the Universe is spatially homoge-
neous and isotropic on large scales. This clearly can only hold for the very large scales of
hundreds of megaparsecs, since for smaller scales large non-uniformly distributed density
fluctuations such as galaxies, filaments and voids are observed. However, modelling the
evolution of the large-scale background cosmology is also crucial for the study of smaller
scales, since it allows to describe the structure in the Universe as perturbations on the
homogeneous and isotropic background.

Under this assumption of homogeneity and isotropy, the most general solution for the
metric tensor gµν is the spatially maximally symmetric Friedmann-Lemâıtre-Robertson-
Walker (FLWR) metric. For the FLRW metric, the line element, which corresponds to the
infinitesimal distance in the four space-time coordinates, has the form

ds2 = gµν dxµ dxν = − dt2 + a2(t)

[
dr2

1−Kr2
+ r2( dθ2 + sin2 θ dφ2)

]
, (2.2)

where t is the time coordinate and r, θ and φ are the spatial spherical coordinates. The time
evolution of the spatial part of the metric is entirely absorbed into the scale factor a(t),
which allows for uniform spatial expansion or contraction. The constant K specifies the
curvature of spatial hypersurfaces of the Universe and can be classified as flat (Euclidean)
for K = 0, open (hyperbolic) K < 0 or closed (elliptical) K > 0.

The idealized matter and energy distribution in the Universe, which is homogeneous
and isotropic, can be modelled as a perfect fluid. For a perfect fluid with pressure p and
energy density ρ in its own rest-frame the energy-momentum tensor is given by

Tµν = (p+ ρ)UµUν + pgµν , (2.3)

where Uµ is its four-velocity.
Inserting the perfect-fluid form for the energy momentum tensor (2.3) and the FLRW

metric (2.2) into the field equations (2.1), yields the Friedmann equations,

1Greek indices denote the four space-time components from 0 to 3 (time and spatial coordinates), Latin
indices the three spatial components from 1 to 3.

2Assuming c = 1 throughout the work.
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(
ȧ

a

)2

=
8πG

3

∑
i

ρi +
Λ

3
− K

a2
, (2.4)

ä

a
= −4πG

3

∑
i

(ρi + 3pi) +
Λ

3
. (2.5)

The Friedmann equations describe the time evolution of the scale factor a(t) as a function
of the curvature K, the cosmological constant Λ, the energy densities ρi and the pressure
pi of the different constituents of the Universe. The rate of cosmic expansion is also called
Hubble parameter H,

H ≡ ȧ

a
, (2.6)

and today’s value is denoted as H0 ≡ H(t0). The scale factor today is set to a(t0) = 1.
For historical reasons the Hubble constant is often expressed by the parameter h, H0 =
100h km s−1 Mpc−1.

Another frequently used quantity is the critical density,

ρc =
3H2

0

8πG
= 2.773 · 1011 M� h

−1( Mpch−1)−3, (2.7)

which, according to equation (2.4), is the total energy density that leads to a flat Universe
today (K = 0). The energy content of the different species in the Universe is often expressed
in terms of the energy density normalized by the critical density,

Ωi =
ρi(t0)

ρc

. (2.8)

The density parameter of the component associated with the cosmological constant Λ can
also be expressed as

ΩΛ =
Λ

3H2
0

. (2.9)

The density parameter of the curvature K is defined as

ΩK = − K

H2
0

. (2.10)

When so defined, the energy densities Ωi depend on the value of h, according to equa-
tion (2.7). In some cases, it is useful to consider the physical density parameters,

wi = Ωih
2 =

8πG

3H2
100

ρi, (2.11)

which are defined with respect to the constant H100 = 100 km s−1 Mpc−1, and therefore do
not depend on the value of h. From equation (2.8) it follows that

∑
i Ωi = 1, and from

equation (2.11) that
∑

iwi = h2.
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To derive the evolution of each density component, it is necessary to assume a relation
between the pressure and the density in equation (2.5). In the perfect fluid approach, the
pressure is related to the density by a linear equation of state

pi = wiρi, (2.12)

with a constant equation-of-state parameter wi. Using this relation and expressing the
Friedmann equations in terms of the density parameters, the evolution of each density
component can be written as

ρi(t) = Ωi ρc a(t)−3(1+wi). (2.13)

This means that the evolution of the energy density of a specific constituent of the Uni-
verse is determined by its equation-of-state parameter wi. A larger wi leads to a faster
dilution and therefore different constituents will dominate the evolution of the scale factor
at different cosmic times.

The definitions in equations (2.9) and (2.12) imply a constant equation-of-state param-
eter for the dark energy density, wDE = wΛ = −1. A standard parametrization to test
deviations from a constant wDE = −1 is

wDE(a) = w0 + wa(1− a). (2.14)

2.1.2 The ΛCDM Universe

There are four constituents with a specific wi in our Universe that can contribute to the
total energy content, Ωm +Ωr +ΩΛ +ΩK = 1. The constraints on the energy densities that
are specified in the following come from the base ΛCDM analysis from Planck Collaboration
et al. (2020) if not otherwise stated. The Planck results were obtained from the analysis of
the cosmic microwave background (CMB), consisting of photons that decoupled from the
photon-baryon fluid in the early Universe, and representing the most precise measurements
at present. The different constituents are:

• Matter : Only 5% of the total energy content is in the form of ordinary matter, which
encompasses the non-relativistic particles of the standard particle physics model and
is dubbed baryonic matter (Ωb = 0.0493 ± 0.0022). From CMB measurements and
a wide range of other observations from galactic to cosmological scales it is known
that there must be an additional matter component which predominantly interacts
gravitationally, namely dark matter. More specifically, this component is referred
to as cold dark matter (CDM) because it can be modelled as a collisionless fluid
with a small velocity dispersion, and has a energy density Ωc = 0.2645 ± 0.0033.
Both matter species together make up around 30% of the total energy density (Ωm =
0.3153± 0.0073). On large scales matter can be modelled as dust with wm = 0 and
hence ρm ∝ a−3.
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• Radiation: The contribution of radiation to the total energy density today is negligi-
ble, since it can be modelled as fluid with wr = 1/3 and the energy density decreases
rapidly with ρr ∝ a−4. The photon density can be estimated from the temperature
of the cosmic microwave background T0 = 2.726± 0.001 K (Fixsen, 2009), such that
Ωγ = 5.54 · 10−5. It should be noted that neutrinos also behave as radiation as long
as they are relativistic, which is true for the early Universe before they transition
from relativistic to non-relativistic.

• Dark Energy : There is strong observational evidence for the accelerated expansion of
the Universe. This requires an additional energy component with a negative pressure
taking up ∼ 70% of the total energy content. This component can be interpreted as
the cosmological constant Λ, which corresponds to wΛ = −1 with an exponentially in-
creasing scale factor, a(t) ∝ exp(Ht). Τhis means that ΩΛ is the dominant component
in the present-day Universe. The current constraints from the base ΛCDM analysis
from the Planck collaboration are ΩΛ = 0.6847 ± 0.0073 and H0 = 67.36 ± 0.0073.
Late-time measurements in the local Universe tend to find higher values of H0, point-
ing to a tension of 4σ to 6σ (Verde et al., 2019) and it is an open question of actively
ongoing research whether there is a Hubble tension between measurements based on
the early and the late-time Universe. Current analyses which allow deviations of wDE

from −1, such as the parametrization in equation (2.14), find values consistent with
the cosmological constant model.

• Curvature: Current measurements of the spatial curvature indicate that the Universe
is extremely close to flat. For example, the Planck Collaboration et al. (2020) find
ΩK = 0.0007±0.0019 when extending the baseline model by a free ΩK and combining
the information from Planck power spectra, Planck lensing and the analysis of baryon
acoustic oscillations, which will be introduced in Section 2.4.

Together these components define the standard cosmological model - the flat ΛCDM model
- which is the simplest model consistent with cosmological measurements, and their corre-
sponding evolution under the hypothesis of homogeneity and isotropy.

2.1.3 Distances in the expanding Universe

The distance in an expanding universe has no unique definition, and a further challenge
is that it cannot be measured directly but has to be inferred from observed redshifts
and angles. The following definitions of cosmological distances are crucial in order to
understand the origin of distortions in large-scale structure measurements that will be
described in Section 2.8.

The cosmological redshift, z, results from the increase of the wavelength, λ, of the light
due to the cosmic expansion between the time of its emission at a distant source and its
observation,

1 + z =
λobs

λem

=
1

a(t)
, (2.15)
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where the scale factor at the time of observation is set to today’s value a(t0) = 1. For
cosmological observations, the redshift is a useful quantity, since it can be used to infer
radial distances and it is directly related to the scale factor and the lookback time that
elapsed since the light was emitted at the source.

The metric in equation (2.2) was defined in comoving coordinates, where the effect
of the expansion is factored out, and is common in cosmology to express measurements,
simulations or theoretical models in those coordinates. For a Euclidean Universe, the
relation between the comoving distance, Dc, to an object and its redshift is

Dc(z) =

∫ 0

z

dz′

H(z′)
, (2.16)

and H(z) =
√

Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ based on the previous two sections.
The physical distance of an object at constant comoving coordinates changes with time

due to the expansion. This distance is called proper distance, Dp, and for a Euclidean
Universe it is related to the comoving distance by

Dp(t) = a(t)Dc. (2.17)

While the proper distance is not directly measurable in observations, it is possible to
instead determine the so-called angular diameter distance, DA. For an object of physical
size, δl, and measured angular diameter, δφ, the angular diameter distance is

DA(z) ≡ δl

δφ
. (2.18)

The comoving angular distance is given by DM(z) = DA(z)(1 + z), and for a flat Universe
DM(z) = Dc(z).

In the following sections, we will also use the volume-averaged distance, DV, which is a
combination of the comoving angular distance and the radial comoving distance,

DV(z) =

(
D2

M

z

H(z)

)1/3

. (2.19)

2.2 Seeds of cosmic structure

The observations of the large-scale structure in the Universe show clear deviations from
perfect homogeneity and isotropy that cannot be solely described by general relativity
and the cosmological principle. Already in the cosmic microwave background (CMB) at
z ≈ 1100 small temperature fluctuations of the order ∆T/T̄ ≈ 10−5 can be observed. The
origin of these small fluctuations can be well explained by the mechanisms of inflation.

Inflation refers to a brief phase of rapid accelerated expansion that the Universe un-
derwent during a very early epoch, even before the generation of known matter. During
this phase the Universe expanded by at least a factor of e60 and quantum fluctuations were
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blown up to cosmological scales, thereby becoming classical by decoherence. In the most
simple inflationary scenario, this expansion is driven by a single scalar field, ϕ(t,x), called
inflaton. Quantum fluctuations of the field lead to slightly different values in different
regions, x, at a given time, t,

ϕ(t,x) = ϕ̄(t) + δϕ(t,x), (2.20)

where ϕ̄(t) is the mean value of the field. While, on average, the fluctuations δϕ in the
different regions of the field add up to give a zero mean value, the variance, i.e. the average
of the square of the fluctuations is non-zero. Since inflation ends at a determined value of
the field, ϕend, there are patches in the Universe where inflation lasts slightly shorter or
longer than the average due to these inflaton fluctuations. The final density of these patches
depends on the time they have experienced inflation, and therefore the time fluctuations
propagate into density fluctuations, δ = δρ/ρ̄.3

The further growth of the density fluctuations is determined by the comoving Hubble
scale, (aH)−1. During inflation, the Hubble scale decreases due to the accelerated expansion
and the fluctuations loose causal contact. The fluctuations remain ‘frozen-in’ outside the
causal horizon, also referred to as Hubble horizon, until the Hubble scale increases again
in the subsequent cosmic epochs. More and more fluctuations re-enter the Hubble horizon
and can finally grow.

Inflation does not only provide a theoretical explanation for the origin of density fluc-
tuations that evolve into the cosmic structure observed today, but also solves several other
cosmological problems. For example, it explains why the geometry of the Universe today
is so close to flat, and why the regions of the CMB that are not in causal contact with each
other have almost the same temperature. There has been no direct observational evidence
of inflation yet, but a few very useful predictions have been derived from it and tested
thoroughly in observations.

The most important prediction for the following study is that the distribution of these
density fluctuations is Gaussian due to their quantum mechanical origin and is character-
ized by a single power spectrum P (k) = 2σ2

k, where σ2
k is the variance of the distribution

in Fourier space. This primordial power spectrum is nearly scale-invariant and can be
described as a power law with spectral index,

ns ≡
d lnP (k)

d ln k
. (2.21)

Furthermore, the density fluctuations are predicted to be adiabatic, implying that the num-
ber densities of the different species in the Universe are changed by the same factor under
expansion or compression. The CMB temperature fluctuations then can be associated to
radiation density fluctuations that in turn are linked to the matter density fluctuations,

δT

T̄
∝ δργ

ρ̄γ
∝ δρm

ρ̄m

. (2.22)

3This is the shortened and simplified picture. The full physical description is based on cosmological
perturbation theory, including metric and density perturbations and taking into account gauge freedom
i.e. freedom of coordinate choice. The lengthy in-depth treatment goes beyond the scope of this section.
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These are the matter density fluctuations that originate from inflation and, during the
subsequent epochs, grow into the large-scale structure observed today.

2.3 Gaussian random fields and two-point statistics

The study of the cosmic large-scale structure is based on the matter density fluctuation
field, δ(x),

δ(x) =
ρ(x)− ρ̄

ρ̄
, (2.23)

where ρ̄ is the mean density and δ(x) is also referred to as the density contrast.
Due to the quantum mechanical origin of the density fluctuations, the density field at

position x is a realization of a Gaussian random process. The probability of the density
field taking some value δ(x) in a given interval interval, P (δ(x)) dδ, is described by the
Gaussian probability distribution function with zero mean and variance, σ2, given by

P (δ(x)) =
1√
2πσ

exp

(
−δ

2(x)

2σ2

)
. (2.24)

The cosmic density field at any number of locations x1, ...,xN forms a Gaussian random
field with N random variables δ(x1), δ(x2), ..., δ(xN) drawn from the joint probability
distribution function that is the multivariate Gaussian distribution

P (δ(x1), δ(x2), ..., δ(xN)) =
1

(2π|ξ|)N/2 exp

(
−1

2

N∑
i,j=1

δ(xi)(ξij)
−1δ(xj)

)
. (2.25)

Here ξ is the covariance or the two-point correlation function of the density fluctuations.
The variance ξii = 〈δ(xi)δ(xi)〉 = σ2 is the same as in the single-variate case of equa-
tion (2.24). It can easily be shown that all odd moments of the probability density function
vanish, i.e. 〈δ(xi)δ(xj)δ(xk)〉 = 0 , and thus the density fluctuation field is completely
specified by its two-point correlation function. Since the density field is homogeneous and
isotropic, the two-point correlation function only depends on the distance between two
positions, r = |r| = |xi − xj|,

ξ(r) = 〈δ(x)δ(x+ r)〉. (2.26)

The two-point correlation function of a discrete set of points can also be understood
as the excess probability of finding pairs at a separation r compared to a homogeneous
distribution of points. The probability of finding pairs in two volume elements dV1 and
dV2 separated by a distance r is given by

dP12 = 〈ρ1ρ2〉 dV1 dV2 (2.27)

= ρ̄2(1 + ξ(r)) dV1 dV2. (2.28)
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It is often convenient to work in Fourier space, since the Fourier modes of the density
fluctuation field δ(k) evolve independently, as long as their amplitude remains small |δ| �
1. Analogous to the correlation function in configuration space, the power spectrum is
defined as the covariance of the density fluctuations in Fourier space

〈δ(k)δ∗(k′)〉 = (2π)3δD(k − k′)P (k), (2.29)

where δD denotes the 3D Dirac delta function. The power spectrum is the Fourier transform
of the correlation function and vice versa,

P (k) =

∫
ξ(r) e− ik·r d3r, (2.30)

ξ(r) =
1

(2π)3

∫
P (k) e ik·r d3k. (2.31)

The Fourier modes of an isotropic and homogeneous density field depend only on the
absolute wavenumber k = |k|. The relation between correlation function ξ(r) and power
spectrum P (k) can then be expressed as

ξ(r) =
1

2π2

∫
P (k)j0(kr)k2 dk, (2.32)

where j0 is the spherical Bessel function of the first kind with j0(x) = sin(x)/x.

2.4 The linear evolution of density fluctuations

2.4.1 Equations of motion and growth rate

The small matter density fluctuations that originate from inflation are amplified by gravity
and finally form the observed large-scale structure.

Right after inflation, all density fluctuations are still outside the horizon and cannot
grow, as they are not causally connected. During the subsequent radiation and matter
dominated epochs, however, more density fluctuations re-enter the Hubble horizon, and
start to evolve. The evolution of the density fluctuations can be derived from the linearised
Einstein equations using general relativistic perturbation theory. Since the full treatment
is outside the scope of this work, this section focuses on the evolution of matter density
fluctuations on scales much smaller than the Hubble horizon.

On these scales, the equations of motion of matter can be in principle described by those
of Newtonian gravity, but taking into account the background expansion for the particle
positions and momenta and for the gravitational potential. Based on this notion, the
equations of motion for the density contrast, δ(x, τ), of the pressureless and non-relativistic
cold dark matter and its comoving peculiar velocity field, v(x, τ), are the Poisson equation,

∇2Φ(x, τ) =
3

2
Ωm(τ)H2(τ)δ(x, τ), (2.33)
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the continuity equation,

∂δ(x, τ)

∂τ
+∇ · {[1 + δ(x, τ)]v(x, τ)} = 0, (2.34)

and the Euler equation,

∂v(x, τ)

∂τ
+H(τ)v(x, τ) + v(x, τ) · ∇v(x, τ) = −∇Φ(x, τ), (2.35)

where τ is the conformal time with dt = a(τ) dτ , H = Ha is the conformal expansion rate
and Φ(x, τ) the gravitational potential sourced by the density field ρ(x, τ).

In the linear regime where |δ| � 1 and |v| � 1, the equations (2.34)-(2.35) can be
linearised,

∂δ(x, τ)

∂τ
+ θ(x, τ) = 0, (2.36)

∂v(x, τ)

∂τ
+H(τ)v(x, τ) = −∇Φ(x, τ), (2.37)

where θ(x, τ) ≡ ∇ · v(x, τ) is the velocity divergence. Combining these two equations and
inserting equation (2.33), one finds a second order differential equation for δ(x, τ) alone,

∂2δ(x, τ)

∂2τ
+H(τ)

∂δ(x, τ)

∂τ
− 3

2
Ωm(τ)H2(τ)δ(x, τ) = 0. (2.38)

From the growing mode solution of this equation, the linear growth of matter density
fluctuations is obtained as

δ(x, τ) = D1(τ)δ(x), (2.39)

where the linear growth factor D1, as a function of the scale factor a, is given by

D1(a) =
5Ωm

2

H(a)

H0

∫ a

0

da1

(a1H(a1)/H0)3
. (2.40)

2.4.2 The linear power spectrum

The linear matter density field can be best studied by means of the power spectrum P (k)
of equation (2.29), since the Fourier modes δ(k) of the density field evolve independently
if δ(k)� 1.

The evolution of the linear power spectrum with time or scale factor can be described by
the squared growth factor D1(a)2 from equation (2.40). The shape of the power spectrum
depends on the primordial power spectrum from equation (2.21), which is characterized
by the scale factor ns. During the radiation and matter-dominated epoch, the shape of
the primordial power spectrum is modified as the density fluctuations grow. The change
in shape is determined by the horizon entry of each density mode δ(k), which depends
on the wavelength k, and is encoded in the transfer function, T (k). Calculating T (k) is
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commonly done by using the publicly available, fast codes camb (Lewis et al., 2000) or
class (Blas et al., 2011), which accurately integrate the underlying system of coupled
Boltzmann equations in a perturbed FLRW metric numerically.

Putting all these ingredients together, the full expression for the linear power spectrum,
Plin, is given by

Plin(k, a) = As

[
D1(a)

D1(a0)

]2

T 2(k)

(
k

k0

)ns

, (2.41)

where the spectral amplitude As is a free parameter that usually sets the global amplitude of
the fluctuations at z = 0 for an arbitrary pivot scale, k0. The linear matter power spectrum
results in a shape similar to that shown in the left panel of Fig. 2.1. It was computed using
the Boltzmann solver Class at a redshift z = 0.57 with an input cosmology matching
the one of the Minerva simulations, which will be described in Section 3.4. The linear
two-point correlation function is the Fourier transform of the linear power spectrum, as
defined in equation (2.32), and shown on the right panel of the figure.

An interesting feature is visible for the power spectrum as well as for the correlation
function: a series of wiggles modulate the amplitude of the power spectrum, whereas the
correlation function exhibits a broad peak at a scale of ∼155 Mpc. These are the imprints
of the baryon acoustic oscillations (BAO). To explain the physical origin of BAO, we have
to go back to the early Universe. Before electrons and nuclei form atoms, baryons and
photons are tightly coupled due to Thomson scattering and form the so-called baryon-
photon plasma. During this phase, density fluctuations in the dark matter component can
already grow at a logarithmic rate. In the baryon-photon plasma, however, the radiation
pressure prevents the growth of density fluctuations and the interplay between gravity
and radiation pressure produces acoustic waves. When the Universe becomes cold enough
at a temperature of roughly T ∼ 3000 K, nuclei and electrons form atoms during the
so-called recombination. As a result, the mean free path of photons becomes larger and
they can decouple from the baryons, forming the previously mentioned CMB. After the
baryons are released from the photons, they fall into the potential wells of the dark matter
distribution. From that point on, it is possible study the evolution of the total matter
density fluctuations with the same physical description. Although the contribution of the
baryonic matter component to the gravitational potential is small, it has a non-negligible
impact on the dark matter density fluctuations. The imprint of BAO in the baryonic
matter distribution leads to an excess of clustering in the dark matter distribution at the
scale of rs(zd), which is the sound horizon at the drag redshift zd corresponding to the
time when the baryons were released from the photons. The broad peak in the correlation
function and the oscillatory pattern in the power spectrum reflect the size of the sound
horizon.

To complete the description of the linear matter power spectrum, a further parameter is
defined that is commonly used to characterize its amplitude. The variance of the smoothed
linear density fluctuations within a sphere of radius R is given by

σ2
R(a) =

∫
d3k

(2π)3
Ŵ 2
R(k)Plin(k, a), (2.42)
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Figure 2.1: The linear matter power spectrum (left panel) and two-point correlation function
(right panel) at redshift z = 0.57 for the ΛCDM cosmology of the Minerva simulations, which
are described in Section 3.4. The linear theory predictions were computed using the Python
binding for the Boltzmann solver class of the nbodykit package (Hand et al., 2018). The BAO
signature is visible as a series of wiggles in the power spectrum and as the peak of the correlation
function at r ∼155 Mpc.

where ŴR is the Fourier transform of the spherical top hat used for smoothing. Tradition-
ally, σ8 = σ8(a = 1) at a scale of R = 8h−1 Mpc has been used in large-scale structure
analyses. In order to avoid a dependence on h, a very recent work by Sánchez (2020)
proposes to use the reference scale R = 12 Mpc that has a similar value as σ8 for h ' 0.67
(more details are given in Section 2.8.2).

2.5 Non-linear gravitational evolution

The linear matter power spectrum and correlation function discussed in the previous section
give only a good theoretical description if the density fluctuations are very small, |δ| � 1.
This is the case for the early Universe and very large scales. For the late Universe, at
the redshifts and scales that are relevant for the following work, linear theory is not valid
anymore. To illustrate this, Fig. 2.2 shows the measurement of the dark matter two-point
correlation function from the Minerva simulations, which will be described in Section 3.4,
at a redshift of z = 0.57 in comparison to the corresponding linear prediction. The non-
linear growth of structure changes the shape of the correlation function, most notably as
a damping and broadening of the BAO feature.

The most common approaches to model the non-linear gravitational evolution of density
fluctuations are based on perturbation theory. This section gives a brief summary of
standard cosmological perturbation theory (SPT), which is the foundation of the model
dubbed gRPT used in the following work, and describes the idea of gRPT. The concepts
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Figure 2.2: The dark matter correlation function measured from the Minerva simulations (see
Section 3.4) at redshift z = 0.57 compared against the corresponding linear theory prediction,
which is described in the previous Section 2.4. The broadening of the BAO feature in the
measurement is an obvious signature of the non-linear growth of the density fluctuations.

of Lagrangian perturbation theory and the spherical collapse of dark matter halos are also
introduced, since they will be relevant for the approximate methods of the comparison
project in Chapter 3. The subsections 2.5.1 and 2.5.3 are largely based on Bernardeau
et al. (2002). For a more detailed treatment the reader is referred to this review.

2.5.1 Standard Perturbation Theory

The main idea of perturbation theory is to model the evolution of density fluctuations
beyond the linear regime by expanding the density contrast and velocity fields as series of
powers of the linear solutions from Section 2.4.1. For this purpose, it is convenient to work
in Fourier space, since the derivatives in the Poisson, continuity and Euler equations (2.33)-
(2.35) become multiplications and the coupling of different modes can be studied.

The equations of motion (2.33)-(2.35) can be written as two coupled equations in Fourier
space,

∂δ(k, τ)

∂τ
+ θ(k, τ) = −

∫
d3k1

(2π)3

d3k2

(2π)3
(2π)3δD(k − k12)α(k1k2)θ(k1, τ)δ(k2, τ), (2.43)

∂θ(k, τ)

∂τ
+H(τ)θ(k, τ) +

3

2
Ωm(τ)H2(τ)δ(k, τ) =

−
∫

d3k1

(2π)3

d3k2

(2π)3
(2π)3δD(k − k12)β(k1k2)θ(k1, τ)θ(k2, τ),

(2.44)
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where k12 = k1 + k2. The kernel functions,

α(k1,k2) =
k12 · k1

k2
1

, β(k1,k2) =
k2

12(k1 · k2)

2k2
1k

2
2

, (2.45)

describe the coupling between different modes. Unlike the linear evolution where each
mode evolves independently, the non-linear evolution introduces couplings between modes
with different wavelengths k.

The perturbation theory approach relies on the assumption that the non-linear density
and velocity field can be expanded as

δ(k, τ) =
∞∑
n=1

δ(n)(k, τ), θ(k, τ) =
∞∑
n=1

θ(n)(k, τ). (2.46)

At first order, δ(1) corresponds to the linear density contrast from equation (2.39). The
higher-order terms δ(n) are proportional to the corresponding power of the linear density
contrast, δ(n) ∝ (δlin)n.

A general solution for equations (2.43) and (2.44) at n−th order can be obtained from
the ansatz

δ(n)(k, τ) =

∫
d3k1 · · · d3kn

(2π)2n−3
δD

(
k −

n∑
i=1

ki

)
Fn(k1, . . . ,kn, τ)δ(1)(k1, τ) · · · δ(1)(kn, τ),

(2.47)

θ(n)(k, τ) = −H(τ)f(τ)

∫
d3k1 · · · d3kn

(2π)2n−3
δD

(
k −

n∑
i=1

ki

)
×Gn(k1, ...,kn, τ)δ(1)(k1, τ) · · · δ(1)(kn, τ),

(2.48)

where Fn and Gn are the perturbation theory kernels (cf. equations (12.40) in Dodelson &
Schmidt (2020) and (41)-(42) in Bernardeau et al. (2002)). At first order, F1 = G1 = 1 and
the linear theory solution without mode-coupling is recovered. The higher-order kernels Fn
and Gn can be computed iteratively using the recursion relations from Bernardeau et al.
(2002).

Analogous to the density field, also the power spectrum can be expanded in a series of
δ(k, τ),

〈δ(k, τ)δ(k′, τ)〉 = 〈δ(1)(k, τ)δ(1)(k′, τ)〉+ 〈δ(1)(k, τ)δ(3)(k′, τ)〉
+ 〈δ(3)(k, τ)δ(1)(k′, τ)〉+ 〈δ(2)(k, τ)δ(2)(k′, τ)〉+ . . . ,

(2.49)

where the odd moments vanish due to the Gaussian initial conditions. This equation can
be rewritten as a sum of the linear power spectrum and the so-called ’loop’ corrections,

P (k, a) = Plin(k, a) + P (22)(k, a) + 2P (13)(k, a) + . . . . (2.50)
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The linear order contribution, Plin(k, a) = D2
1(a)/D2

1(a = 1)Plin(k), is called ’tree-level’.
The different combinations that add up to the next even power of the density field are called
’loop’ corrections. The contributions to the one-loop correction of the power spectrum are

P (22)(k, a) = 2

∫
d3q

(2π)3
[F2(q, (k − q))]2Plin(q, a)Plin(|k − q|, a), (2.51)

P (13)(k, a) = 3Plin(k, a)

∫
d3q

(2π)3
[F3(q,−q,k)]Plin(q, a), (2.52)

where F2 and F3 are the corresponding perturbation theory kernels. In the same way,
higher-loop corrections can be found.

2.5.2 Renormalized Perturbation Theory

The expansion series of SPT cannot be efficiently used for predicting the non-linear power
spectrum at the redshifts and the small scales required by state-of-the-art galaxy clustering
analysis. The reason is that the SPT loop corrections can each have negative and positive
contributions that can cancel each other out, and higher-order loop corrections can have
the same magnitudes as lower-order loop corrections. This makes it difficult to truncate
the expansion at a specific order in the expansion.

Renormalized Perturbation Theory (RPT, Crocce & Scoccimarro, 2006) improves the
convergence by re-organizing the terms of the perturbative expansion into two main con-
tributions as

P (k, a) = Plin(k)G(k, a)2 + Pmc(k, a). (2.53)

The first term sums up all orders of the perturbative expansion proportional to the linear
power spectrum Plin(k). The renormalized propagator G(k, a) measures how much power
is directly linked to the linear initial conditions as a function of scale and redshift. At
0-th order or at very large scales (corresponding to small k), G(k, a) corresponds to the
linear growth factor D1(a). For increasing k it decays approximately as a Gaussian with
constant variance σ2

v . The second term Pmc sums up the power from the different mode
couplings that are ordered according to the number of initial modes coupled. At the 1-loop
correction, Pmc(k, a) corresponds to P (22)(k, a) from equation (2.51).

The advantage of the reorganized expansion of RPT is that all loop terms are positive,
the successive terms dominate the expansion series at increasingly smaller scales, and their
amplitudes become successively smaller. This makes it easier to find the specific order to
truncate the expansion series for a given accuracy.

A further improvement in the resummation of the mode-coupling terms can be made
by imposing Galilean-invariance in the equations of motion and in that way making it
consistent with the resummation of the propagator G(k, a) (Crocce et al., in prep.). This
approach, dubbed Galilean-invariant renormalized perturbation theory (gRPT), leads to
an even better convergence of the expansion series. Already the 1-loop gRPT expansion
predicts the non-linear power spectrum up to a scale kmax with an accuracy suitable for
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high-precision galaxy clustering analyses. RPT would require a much larger number of
terms to achieve the same accuracy.

The gRPT modelling has been successfully applied for several cosmological analy-
ses: the Fourier-space analysis of the SDSS BOSS DR12 galaxy samples with a kmax ∼
0.25hMpc−1 by Grieb et al. (2017), the configuration-space analyses of the same samples
by Sánchez et al. (2017) and by Salazar-Albornoz et al. (2017) with a minimum distance
scale of smin = 20h−1Mpc, and the configuration-space analysis of the SDSS eBOSS DR14
quasar sample with the same smin by Hou et al. (2018). In the present work, all predictions
of the non-linear power spectrum are based on gRPT.

2.5.3 Lagrangian perturbation theory

A different approach to model the evolved density field at a given comoving spatial position
x is to follow the trajectories of particles. The initial Lagrangian position q is mapped
through the displacement field, Ψ(q, τ), to the corresponding Eulerian position x at time
τ ,

x(q, τ) = q + Ψ(q, τ). (2.54)

The equation of motion for the particle trajectory x(τ) in the expanding universe is

d2x

dτ 2
+H(τ)

dx

dτ
= −∇Φ, (2.55)

which corresponds to the linear Euler equation (2.37). Due to mass conservation, the
density field in Lagrangian coordinates is related to the density field in Eulerian coordinates
by

ρ̄(τ) d3q = ρ̄(τ)(1 + δ(x, τ)) d3x. (2.56)

The Jacobian of the transformation between Eulerian and Lagarangian space is then given
by

J (q, τ) =

∣∣∣∣ d3x

d3q

∣∣∣∣ =
1

1 + δ(x, τ)
= det (δij + Ψi,j) , (2.57)

where Ψi,j ≡ ∂Ψi/∂qj.
Taking the divergence of equation (2.55) and inserting the Jacobian from (2.57) and

the Poisson equation, the following equation can be derived,

J (q, τ)∇ ·
(

d2Ψ(q, τ)

dτ 2
+H(τ)

dΨ(q, τ)

dτ

)
=

3

2
H2(τ)Ωm(τ) (J (q, τ)− 1) , (2.58)

where the gradient is still in Eulerian coordinates x. This equation (2.58) describes the
evolution of the displacement field Ψ.

The central idea of Lagarangian perturbation theory is to solve this equation pertur-
batively by expanding Ψ(q, τ) as

Ψ(q, τ) =
∞∑
n=1

Ψ(n)(q, τ), (2.59)
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and from this to obtain predictions for the evolved density field and corresponding power
spectrum. The linear solution, called Zel’dovich Approximation, provides a simple and
intuitive model to study structure formation. Second-order Lagrangian perturbation theory
(2LPT) is often used to generate the initial density field for simulations at a high redshifts.
Many approximate methods of gravitational evolution and structure formation, such as
the methods that will be compared in this work in Chapter 3, are based on second-order
or third-order Lagrangian perturbation theory (3LPT), or other approaches derived from
Lagrangian perturbation theory. A limit for the validity of the Lagrangian approach is the
orbit-crossing (or also called shell-crossing) that occurs when particles from different initial
positions q get to the same Eulerian position x. For the redshifts and scales relevant for the
galaxy clustering analysis, Lagrangian perturbation theory cannot predict the non-linear
matter power spectrum with sufficient accuracy.

2.5.4 Spherical collapse

A further, very simplistic model for the non-linear growth of structure is the gravitational
collapse of spherically symmetric perturbations. The interesting aspect about this approach
is that it provides an analytic solution for the formation of dark matter halos. The starting
point is a spherical matter perturbation with a physical radius r and a slightly higher
density, ρm, than the otherwise homogeneous universe with density ρ̄m. The corresponding
matter density contrast is then given by

δ(t) =
M(< r(t))

ρ̄m4πr(t)3/3
− 1, (2.60)

where M(< r(t)) is the enclosed mass. This spherical region evolves like a FLRW universe
with a higher density ρm > ρ̄m and the evolution of its radius r is given by the Newtonian
equation of motion extended with the repulsive effect from the expansion of the Universe,

d2r

dt2
= −GM(< r(t))

r(t)2
+

8πG

3
ρΛr(t). (2.61)

The spherical region initially expands due to the background Hubble expansion, but its
self-gravitational attraction slows down the expansion leading eventually to collapse. If
the density inside the spherical region is sufficiently high, such that Ωm ≈ 1, the expansion
term can be neglected and a parametric solution can be found,

r = rmax(1− cos θ),

t = tmax(θ − sin θ), (2.62)

with the constants r3
max = GMt2max and a phase parameter θ. The spherical region collapses

at θ = 2π and the collapse time is

tsc = 2πtmax. (2.63)
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The density at collapse is δ → ∞, but it is typically assumed that a real perturbation
reaches virial equilibrium at this point and forms a bound dark matter halo. At a given
time t, the critical initial density needed for collapse can be computed from this approach.
Denser perturbations will have collapsed, while less dense ones have not. A more detailed
description of spherical collapse can be found in Bertschinger (1985).

The spherical collapse model is the simplest treatment of the formation of collapsed
structures, and this approach has been further improved and generalized. In particular,
the homogeneous ellipsoidal collapse model provides a way to compute accurate collapse
times for halo formation using triaxial perturbations and Lagarangian perturbation theory.
For a detailed description the reader is referred to Monaco (1997).

2.6 N-body simulations

The previous section presented different ways of modelling the non-linear evolution of the
dark matter density fluctuations. The second major pillar in the large-scale structure
analysis are N-body simulations, which evolve the density field numerically. N-body sim-
ulations can precisely predict the density field up to the highly non-linear regime where
arbitrary, overdense regions collapse under their own gravity and known PT models break
down.

Cosmological N-body simulations have a wide range of applications. They are used for
different aspects of the large-structure analysis such as covariance matrix estimation, which
will be described in Section 3.3, for the generation of mock observations of real galaxy
surveys, and to test theory predictions against simulations and vice versa. A complete
description of N-body simulations would be a work on its own, here I only summarize the
main ideas based on Bertschinger (1998), Dodelson & Schmidt (2020), Bernardeau et al.
(2002) and the lecture notes by Blot (2020).

N-body simulations solve the gravitational dynamics of a system of N particles nu-
merically. For cosmological N-body simulations, these particles do not represent physical
particles, but are test particles for elements of the discretized phase-space of the cold dark
matter density field. The particles are specified by their position, velocity and mass. Mod-
ern N-body techniques are able to simulate systems of order 109 “dark matter particles”
with typically equal masses of mp ≈ 1010M� in boxes with Gpc side lengths. The coor-
dinates of the particles are comoving and periodic boundary conditions are employed, in
order to create a representative volume of the expanding universe.

The Gaussian initial conditions are randomly drawn according to a linear input power
spectrum that is computed with specific values for the cosmological parameters, most
commonly using camb or class. The initial positions of the particles are generated using
2LPT, which allows starting the simulation at a redshift of z ≤ 70.

The gravitational force acting on the particles is computed by solving the Poisson
equation (2.33) numerically at discrete time steps. Evaluating the force on each particle by
summing directly over the contributions from all neighbours scales as N2, and is therefore
infeasible for the large number of particles needed for cosmological simulations.
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There are two main alternatives to efficiently compute the gravitational forces: tree
methods and particle-mesh (PM) approaches. Tree algorithms perform a hierarchical de-
composition of the particle system according to their relative distances. The gravitational
forces are expanded in multipoles and the contributions of long range interactions from
distant regions are approximated by the lowest multipoles. In the particle-mesh method, a
grid is superimposed to the particle distribution and the particle masses are interpolated to
densities of grid cells. The Poisson equation is solved through a Fast Fourier Transform on
the grid and the forces are interpolated back to the particle positions. The accuracy of this
approach can be increased if the grid is adaptively refined in high density regions. Both
types of algorithms require a smoothing of the force on very small scales, in order to avoid
unphysical artefacts due to direct particle encounters, since the particles do not represent
actual DM particles. The computational cost of these algorithms scales approximately as
N logN .

The N-body simulations considered in this work were performed with the massively
parallelized GADGET code by Springel (2005), which is widely applied for cosmological
studies. GADGET is based on a hybrid approach which uses a tree algorithm for the
short-range and a PM algorithm for the long-range gravitational force.

The output of the simulations are so-called snapshots corresponding to the collection
of the particle positions and velocities at specific redshifts, which usually lie in the range
of 0 ≤ z ≤ 2 for galaxy clustering analyses. The positions of the particles can be used to
compute the statistics of the evolved dark matter density field, such as the power spectrum
and correlation function, at the redshift of the snapshot.

Finally, one can also further post-process the snapshots by searching for gravitationally
bound dark matter halos and populating the halos with synthetic galaxies. There are
several algorithms to identify halos from simulations. A very popular one, which was
first proposed by Davis et al. (1985), is the Friends-of-Friends (FoF) algorithm, which
groups all particles that are separated by distance less than a given linking length into
halos. A potential weak point of this simple approach is that the identified halos are
not necessarily gravitationally bound structures. This problem can be alleviated by using
more sophisticated versions of FoF algorithms such as SubFind (Springel et al., 2001)
and rockstar (Behroozi et al., 2013), which will described for the corresponding halo
catalogues in Chapters 3 and 4. For the generation of synthetic galaxy catalogues the
halos can be populated using halo occupation distribution (HOD) models. More details on
a HOD galaxy catalogue will be given in Section 4.4.1.

2.7 Beyond two-point statistics: Minkowski function-

als

The non-linear gravitational evolution of the density contrast generates higher-order cor-
relations leading to deviations from a Gaussian distribution. Consequently, these higher-
order correlations contain valuable information on the growth of structure.
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The most direct approach to access this information is to directly measure the higher-
order correlations. For example, the third-order correlation in Fourier space corresponds
to the bispectrum, B(k1,k2,k3), which is defined as

〈δ(k1)δ(k2)δ(k3)〉 = (2π)3δD(k1 + k2 + k3)B(k1,k2,k3), (2.64)

and encompasses all possible triplets (k1,k2,k3). Measuring all possible triplets is a com-
plex task, as well as modelling the underlying theory predictions from perturbation theory.
Present-day surveys allow for accurate analyses of the bispectrum and its Fourier trans-
form, the three-point function (e.g. Gil-Maŕın et al., 2017; Slepian et al., 2017b,a; Pearson
& Samushia, 2018).

A full characterization of the density field, however, would require measuring also the
four-, five-point and ultimately an infinite hierarchy of N -point correlations. Measuring,
modelling and analysing N -point functions of higher order than three-point exceeds our
current possibilities. An alternative approach is to use statistics that encode compressed
higher-order information complementary to two-point statistics. One of the most promising
statistics to explore the non-Gaussian information in the matter density field is the set of
Minkowski functionals.

2.7.1 Definition and properties

Minkowski functionals derive from the theory of convex sets in integral geometry and were
introduced to large-scale structure analysis by Mecke et al. (1994). According to Hadwiger’s
Theorem (Hadwiger, 1957) in d-dimensional Euclidean space E the global morphological
properties satisfying motional invariance, continuity and additivity of a suitable set Q ⊆ E
can be fully characterized by a linear combination of d+ 1 Minkowski functionals.

In this work, we consider the excursion sets of the three-dimensional density field that
are obtained by applying a given density threshold, ρth (or equivalently δth). Points with
a density ρ(x) > ρth are considered to be inside the isodensity surfaces encompassing the
excursion sets. For such a three-dimensional set, there are four Minkowski functionals:

(i) the surface area S,

(ii) the volume V enclosed by the surface,

(iii) the integrated mean curvature C of the surface,

C =
1

2

∮
S

(
1

R1

+
1

R2

)
dS,

where R1 and R2 are the principal radii of curvature at a given point on the surface,

(iv) the integrated Gaussian curvature of the surface,

χ =
1

2π

∮
S

(
1

R1R2

)
dS, (2.65)
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also known as Euler-characteristic.

The Minkowski functionals do not only provide direct information about the geometry
of the isodensity surface, but also contain topological information. The Euler characteristic
is equivalent to a fundamental quantity in topology, the genus,

G = 1− χ/2. (2.66)

The genus characterizes the topology of the isodensity surface by counting the number of
holes and isolated regions,

G = 1 + number of holes− number of isolated regions.

A hole is commonly referred to as tunnel in large-scale structure. For example, the genus
of a sphere or ellipsoid is G = 0, the genus of a torus with one handle is G = 1, and the
genus of an eyeglasses frame is G = 2. Closed multiply-connected surfaces always have
G > 0. The genus measures the connectivity of the isodensity surface and is invariant under
continuous deformations such as stretching, compression or rotation. Therefore, it can offer
interesting insights into the evolution of the density field, which are complementary to the
information inferred from standard two-point statistics.

In large-scale structure analysis, we aim to study the global Minkowski functionals of
the three-dimensional matter or galaxy density field by summing over the local Minkowski
functionals of all excursion sets. It is often suitable to rescale the global MFs by the total
volume considered, Vtot and work in terms of the Minkowski functional densities. The
surface, curvature, and genus densities will be denoted by s, c, and g, respectively. The
rescaled volume functional is also called the volume-filling fraction,

fV = V/Vtot. (2.67)

A different approach to study Minkowski functionals of the three-dimensional galaxy
distribution is used by the so-called Germ-Grain models. Theses models consider the
Minkowski functionals from intersecting spheres inflated around the input galaxy sample
(see, e.g. Mecke et al., 1994; Schmalzing et al., 1996; Kerscher, 2000, for a comprehensive
overview). An interesting aspect of this definition is that the Minkowski functionals can
be expressed as sums over integrals of the N -point correlation functions (Schmalzing et al.,
1999b; Wiegand et al., 2014). However, the focus of this work lies on isodensity Minkowski
functionals, since they are more directly linked to the underlying density field.

2.7.2 Theory predictions for a Gaussian density field

For Gaussian random fields, isodensity Minkowski functionals have known analytical pre-
dictions, which depend on the power spectrum of the distribution. According to Tomita’s
formula, the Minkowski functional densities for a Gaussian density field in three dimension
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Figure 2.3: Theory predictions for the Minkowski functionals of a Gaussian density field with
the same linear power spectrum as the Minerva simulations (see Section 3.4) as a function of the
normalized density threshold ν at redshift z = 0.57.

are given by (Tomita, 1990; Schmalzing & Buchert, 1997; Matsubara, 2003):

fV (ν) =
1

2
− 1

2
Φ

(
ν√
2

)
, (2.68)

where Φ(x) =
2√
π

∫ x

0

dt exp
(
−t2
)

denotes the error function, (2.69)

s(ν) =
2

λc

√
2

π
exp

(
−ν

2

2

)
, (2.70)

c(ν) =

√
2π

λ2
c

ν exp

(
−ν

2

2

)
, (2.71)

g(ν) =
1

λ3
c

√
2π

(1− ν2) exp

(
−ν

2

2

)
. (2.72)

These predictions are defined as functions of the threshold ν, which corresponds to a certain
value of the smoothed density field normalized by its standard deviation, ν = δ/σ0, such
that is has zero mean, 〈ν〉 = 0, and unit variance, 〈ν2〉 = 1. The smoothing is done by
applying a smoothing kernel WR with smoothing length R to the raw, unsmoothed density
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field,

δ(x) =

∫
d3x′WR(|x− x′|)δraw(x′). (2.73)

Most commonly, the smoothing is performed with a Gaussian kernel and will be discussed
in more detail in Chapter 4.

The parameter λc can be derived from the value of the correlation function ξ(0) and
its second derivative ξ′′(0) at zero separation by

λc =

√
2πξ(0)

|ξ′′(0)| . (2.74)

The values for ξ(0) and ξ′′(0) can be directly computed from the power spectrum of the
smoothed distribution as

ξ(0) = 〈δ2〉 = σ2
0, (2.75)

|ξ′′(0)| = 〈|∇δ|2〉 = σ2
1, and (2.76)

σ2
j (R) =

∫
k2 dk

2π2
k2jP (k)Ŵ (k)2, (2.77)

where Ŵ (k) is the Fourier transform of the smoothing filter. As can be seen from these
equations, the amplitudes of the surface area, curvature and genus densities depend on
the underlying power spectrum. The volume-filling fraction, however, is insensitive to the
power spectrum. Fig. 2.3 shows the theory predictions for a Gaussian density field at
redshift z = 0.57 with the same linear ΛCDM power spectrum as the Minerva simulations,
which will be described in more detail in Section 3.4. A deviation from Gaussianity,
which can be caused by the non-linear gravitational evolution, leads to discrepancies of the
measured Minkowski functionals with the corresponding Gaussian predictions. The most
notable discrepancy manifests in an asymmetry of the genus curve (Matsubara, 1994).

For the comparison of measurements to theory predictions, it is often convenient to ex-
press the Minkowski functional densities as functions of fV instead of the density threshold
ν. In particular, the Minkowski functional densities expressed as functions of fV are ex-
pected to be invariant under any local monotonic transformation (Codis et al., 2013). For
a Gaussian density field, the prediction of the volume-filling fraction fV in equation (2.68)
can be easily inverted and the predictions of the other Minkowski functional densities can
then be written in terms of fV .

The Gaussian theory predictions are useful for searching for deviations from Gaussianity
and extracting non-Gaussian information, which is equivalent to higher-order information.
In the recent years, new theoretical predictions for the Minkowski functionals of weakly
non-Gaussian fields have been derived (Pogosyan et al., 2009; Matsubara, 2010; Gay et al.,
2012; Codis et al., 2013; Matsubara & Kuriki, 2020; Matsubara et al., 2020). Since the
formulae for the Minkowski functionals of non-Gaussian density fields are lengthy and their
application to large-scale structure analysis has practically not been explored yet, I will
not discuss them here. The Minkowski functionals of the non-linear galaxy field will be
one of the main topics of Chapter 4.
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2.8 Galaxy clustering in redshift space

In large-scale structure analysis, the underlying matter density field can only be probed in-
directly. This section describes the three main problems associated with the interpretation
of the observed galaxy clustering.

2.8.1 Galaxy bias

The first problem is how to connect the galaxy distribution to the theory predictions for
the matter density field. Present-day galaxy formation models indicate that galaxies form
and reside inside dark matter halos. The dark matter halos in turn form through the
gravitational collapse of the matter. The spherical collapse model, which is discussed in
Section 2.5.4, gives a simplified explanation for the formation of gravitationally bound
halos. Since the halos form at the peaks of the matter density field, the halo clustering is
not identical to that of the underlying matter density field, and the relation between both
can be described by the so-called halo bias.

The galaxy density contrast on the other hand is not exactly the same as the halo
density contrast due to the complex and non-linear process of galaxy formation. More
massive halos, for example, can host multiple galaxies. In general, galaxies are biased
tracers of the underlying matter density field.

Without making any assumptions about the formation, the density contrast of tracers
such as galaxies and halos can be related to the underlying matter density contrast by a
perturbative bias expansion, as

δg(x) =
∑
k

bk
k!
δ(x)k, (2.78)

where the coefficients bk are the bias parameters. Here, I show the expansion for the
galaxy density field δg, but the same framework can be applied to the halo density field
δh. On large scales, this relation can be approximated by the linear galaxy bias, δg ≈ b1δ.
Including also the second-order bias b2 results in a more accurate modelling of the galaxy
or halo two-point statistics.

Equation (2.78) assumes that the galaxy bias only depends on the local matter density
contrast. The non-linear gravitational evolution, however, can introduce a nonlocal galaxy
bias, which depends on the velocity divergence and gravitational potentials. This work
follows the bias expansion by Chan & Scoccimarro (2012), which was also used in the
recent analyses of the BOSS and eBOSS surveys by Sánchez et al. (2017), Grieb et al.
(2017), Salazar-Albornoz et al. (2017) and Hou et al. (2018),

δg = b1δ +
b2

2
δ2 + γ2G2 + γ−3 ∆3G + . . . , (2.79)

where γ2 and γ−3 are nonlocal bias parameters, and G2 is the so-called second ‘Galileon’
operator of the normalized density and velocity potentials Φ and Φv, which is defined as

G2[Φv] = (∇ijΦv)
2 −

(
∇2Φv

)2
, (2.80)
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and
∆3G = G2[Φ]− G2[Φv]. (2.81)

Under the assumption of a local bias in Lagrangian coordinates, the nonlocal bias param-
eters can be expressed in terms of the local linear bias b1. Sánchez et al. (2017) and Grieb
et al. (2017) found that fixing γ2 to the local Lagrangian relation is a good approximation
for the bias modelling of the two-points statistics that are measured from the Minerva N-
body simulations, which will be described in Section 3.4. According to Chan & Scoccimarro
(2012), the local Lagrangian relation for γ2 is

γ2 = −2

7
(b1 − 1). (2.82)

The full and rather long expressions for the galaxy power spectrum that follow from the
full bias expansion of equation (2.79) can be found in Sánchez et al. (2017).

The implications of galaxy bias for Minkowski functionals have not been studied in
detail yet. The local bias, however, corresponds to a local monotonic transformation of the
density field, for which Codis et al. (2013) showed that the Minkowski functional densities
as function of fV are expected to be invariant.

2.8.2 Redshift-space distortions

The distance of a galaxy is inferred from the observed redshift. The measured redshift,
however, does not only contain the cosmological redshift due to expansion of the Universe,
which is described in Section 2.1.3, but also an additional component due to the peculiar
velocity of the galaxy. The measured distance s in redshift space differs from the true
distance r in real space by the peculiar velocity along the line of sight v‖,

s = r +
v‖

aH(a)
n̂ (in comoving Mpc), (2.83)

where v‖ = v · n̂, n̂ = r/|r| and |v| � c. Hence, the galaxy appears displaced along the
line of sight. Although this effect impedes the exact measurement of the true distance to
the galaxy, it contains useful information on the growth of structure, since the evolution of
the velocity field is tightly connected to the matter density field. During this whole section,
the distant observer approximation is used, i.e. assuming that the considered objects are
far away and separated by a small angle.

Linear redshift-space distortions

In the linear regime, the relation between the divergence of the velocity field and the matter
density field can be obtained from the linearised continuity equation (2.36) and the growing
mode solution for the matter density field, δ(x, a) = D1(a)δ(x) of equation (2.39),

∇ · v(x, a) = −aH(a)f(a)δ(x, a), (2.84)
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where the dimensionless linear growth factor, f , is defined as

f ≡ a

D1

dD1

da
=

d lnD1

d ln a
. (2.85)

Taking the number conservation between redshift and real space into account, ρs(s) ds =
ρr(r) dr, the relation between the redshift and real space density contrast is given by

(1 + δs(s)) d3s = (1 + δr(r)) d3r, (2.86)

where s and r are the superscripts for redshift and real space, respectively. Τhe Jacobian,
J = |∂ri/∂si|, that maps between redshift and real space, has the form

J =

(
1 +

1

aH

∂v‖
∂r

)−1

≈
(

1− 1

aH

∂v‖
∂r

)
. (2.87)

Using equation (2.84) for the velocity field in Fourier space, where the derivative is trans-
formed as ∂/∂ri → iki, finally leads to

δs(k) = δr(k)(1 + f(z)µ2
k), (2.88)

where µk = k‖/k is the cosine of the angle between the line of sight and wave vector k.
The growth factor f imprinted in the redshift-space density field is a valuable source of
cosmological information. According to Linder & Cahn (2007), it can be parametrized by
f = Ωm(z)γ. General relativity predicts for a ΛCDM universe γ = 0.55, and therefore f
can either probe general relativity or the value of Ωm.

For galaxies or halos, equation (2.88) becomes

δsg(k) = δrg(k)(1 + βµ2
k), (2.89)

where β = f/b1, and assuming that there is no velocity bias (vg = v). The corresponding
linear power spectrum is then given by

P s
g (k, µk) = b2

1(1 + βµ2
k)

2P (k). (2.90)

The Kaiser factor (1+βµ2
k)

2 describes the squashing along the line of sight in the clustering
pattern that is produced by coherent bulk flows of matter towards overdense regions. Due
to this effect, the power spectrum in redshift space is anisotropic.

From equations (2.89) and (2.90) the growth factor f can only be extracted in com-
bination with the linear bias b1. An alternative is to rewrite equation (2.90) according to
Sánchez (2020) as

Pg(k, µk, z) =
(
b1σ12(z) + fσ12(z)µ2

k

)2 P (k)

σ2
12(z)

, (2.91)

where σ12, the linear-theory rms mass fluctuation in a sphere of radius 12 Mpc, has been
defined in equation (2.42). Expressing the redshift-space power spectrum in this way has
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the advantage that the last factor only depends on the shape of the isotropic matter power
spectrum and not on the amplitude of the fluctuations. Hence, the anisotropy and the
amplitude of the galaxy power spectrum are described by bσ12(z) and fσ12(z). So far, it
has been standard in galaxy clustering analyses to rewrite equation (2.91) in terms of σ8

instead of σ12 and to constrain the growth rate fσ8(z).

A full derivation for the linear redshift-space distortions can be found in Kaiser (1987)
in Fourier space, and Hamilton (1992) in configuration space.

The non-linear redshift-space power spectrum

The non-linear gravitational evolution induces a non-linear coupling between the density
and velocity fields. Furthermore, the random motions of galaxies within virialized struc-
tures lead to an elongation of the clustering pattern on small scales. Both effects are not
captured by the linear model for redshift-space distortions.

Many models of non-linear redshift-space distortions that are applied to present-day
galaxy clustering analyses are based on the ansatz

Pg(k, µk) = FFoGPnovir(k, µk), (2.92)

where the fingers-of-god factor FFoG describes the small-scale redshift-space distortions and
Pnovir includes the effect of the non-linear bulk flow of matter on larger scales.

According to Scoccimarro (2004) and Taruya et al. (2010) the non-linear anisotropic
power spectrum Pnovir can be decomposed into

Pnovir(k, µk) = P
(1)
novir(k, µk) + P

(2)
novir(k, µk) + P

(3)
novir(k, µk). (2.93)

The first term P
(1)
novir corresponds to a non-linear version of the Kaiser formula of equa-

tion (2.90),

P
(1)
novir(k, µk) = Pgg(k) + 2fµ2

kPgθ(k) + f 2µ4
kPθθ(k), (2.94)

where Pgg(k) = 〈δg(k)δg(k′)〉, Pgθ(k) = 〈δg(k)θ(k′)〉 and Pθθ(k) = 〈θ(k)θ(k′)〉 are the
galaxy-galaxy, galaxy-velocity and velocity-velocity power spectra.4 All these power spec-
tra can be computed using gRPT and the bias expansion of equation (2.79).

The second term is given by

P
(2)
novir(k, µk) =

∫
d3q

qz
q2

[Bσ(q,k − q,−k)− [Bσ(q,k,−k − q)], (2.95)

where Bσ is the cross bispectrum between the density and velocity field,

〈θ(k1)σ(k2)σ(k3)〉 = (2π)3δD(k1 + k2 + k3)Bσ(k1,k2,k3), (2.96)

4θ is the subscript for the velocity divergence defined in Section 2.5.1
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with σ(k) = δg(k) + f(k‖/k
2)θ(k). Finally, the third contribution to Pnovir is

P
(3)
novir(k, µk) =

∫
d3q

q‖(k‖ − q‖)
q2(k − q)2

(b1 + fµ2
q)(b1 + fµ2

k−q)Pδθ(k − q)Pδθ(q). (2.97)

The last two terms can be evaluated with standard tree-level perturbation theory.
The factor FFoG models the redshift-space distortions on small scales, which are dom-

inated by the random motions of galaxies inside virialized structures. The resulting elon-
gation of the clustering pattern along the line of sight is called “Fingers of God” (FoG)
effect. It can be well described by the following functional form,

FFoG ≡ W∞(k, µk) =
1√

1 + f 2µ2
kk

2avir

exp

( −f 2µ2
kk

2σ2
v

1 + f 2µ2
kk

2avir

)
, (2.98)

where σv is the one-dimensional linear velocity dispersion and avir encodes the kurtosis
of the small-scale velocity distribution. If the clustering of halos instead of galaxies is
considered, the FoG factor should be neglected. The model for Pnovir can also be applied
for halo clustering measurements.

The model of the redshift-space galaxy power spectrum described here was used in the
analyses by Sánchez et al. (2017), Grieb et al. (2017), Salazar-Albornoz et al. (2017) and
Hou et al. (2018). A more detailed explanation can be found in Sánchez et al. (2017).

A model for the galaxy two-point correlation function in redshift space, ξ(s, µ), can be
obtained by the Fourier transform of the predictions for the power spectrum. More details
on the measurement of ξ(s, µ) will be described in Chapter 3.

While the analysis of redshift-space distortions is highly advanced for the two-point
clustering statistics, the impact of redshift-space distortions on Minkowski functionals is
not understood and modelled in such great detail yet. I will discuss the effect of redshift-
space distortions on the Minkowski functionals as part of the original work of this thesis
in Chapter 4.

2.8.3 Alcock-Paczynski distortions

In addition to bias and redshift-space distortions, a further complication needs to be taken
into account. In order to convert the measured redshift into a comoving distance, a fiducial
cosmology has to be assumed. If the fiducial cosmology differs from the true underlying
cosmology, the inferred distance deviates from the true one. This leads to the the so-called
Alcock-Paczynski (AP) distortions (Alcock & Paczynski, 1979) in the components parallel
and perpendicular to the line-of-sight, s‖ and s⊥, of the separation vector s between two
galaxies,

s‖ = q‖s
′
‖, s⊥ = q⊥s

′
⊥, (2.99)

where the primes denote the quantities in the fiducial cosmology.
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The geometric distortion parameters q‖ and q⊥ are given by the ratios of the angular
diameter distance DM and the Hubble parameter H in the true and fiducial cosmologies,

q‖ =
H ′(z)

H(z)
, (2.100)

q⊥ =
DM(z)

D′M(z)
. (2.101)

For a flat ΛCDM universe with a negligibly small radiation density Ωr, the distortion
parameters are directly sensitive to Ωm, since in that case DM(z) = Dc(z), and H(z) =√

Ωm(1 + z)3 + (1− Ωm) (see Sections 2.1.1 and 2.1.3).
As described in the previous Section 2.8.2, measurements of the anisotropic two-point

statistics are usually expressed as functions of the separation s =
√
s2
⊥ + s2

‖ and the cosine

of the angle between the separation vector s and line of sight, denoted as µ. The rescaling
of s and µ due to the AP distortions can then be obtained as

s = s′
√
q2
‖(µ
′)2 + q2

⊥(1− (µ′)2), (2.102)

µ =
q‖µ

′√
q2
‖(µ
′)2 + q2

⊥(1− (µ′)2)
. (2.103)

The anisotropy in the measurements of the two-dimensional two-point statistics allows
to separate the information on the Hubble parameter H(z) and the angular diameter
distance DM(z). However, for the case of a volume-averaged measurement, such as the
Minkowski functionals, the isotropic volume element changes as

d3s = q3d3s′ =
(
q2
⊥q‖
)

d3s′ =

(
DV(zm)

D′V(zm)

)3

d3s′, (2.104)

where q is dubbed isotropic AP parameter. Hence, it is only possible to obtain information
on the volume-averaged distance DV, which is defined in equation (2.19). Similar to the
redshift-space distortions, I will discuss the effect of the Alcock-Paczynski distortions on
Minkowski functionals as part of the original work in Chapter 4.

BAO distance measurements can constrain the angular diameter distance DM(z) and
and the Hubble parameter H(z) relative to the sound horizon scale at the drag redshift,
rd (see Section 2.4.2). In order to obtain comparable results, the geometric parameters
inferred from the analysis of full-shape clustering measurements are usually rescaled by
the ratios of the sound horizon in the fiducial and true cosmologies,

α‖ = q‖
r′d
rd

, α⊥ = q⊥
r′d
rd

, (2.105)

and α‖ and α⊥ are referred to as Alcock-Paczynski parameters or BAO shift parameters.
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Chapter 3

Covariance Matrix Comparison

This chapter focuses on the covariance matrix, one of the most important requisites to ex-
tract unbiased cosmological information from clustering measurements. As already pointed
out in the introduction in Chapter 1, future galaxy surveys covering large cosmological vol-
umes with millions of galaxies will allow for unprecedented statistical precision. To achieve
this high precision, it is essential to identify all components of the systematic error budget
affecting cosmological analyses and if possible, reduce the associated uncertainties. In this
regard, the robust estimation of the covariance matrix plays a key role in the inference of
cosmological parameters.

In galaxy clustering analyses, the covariance matrix is typically computed from a set
of mock catalogues. In order to reach the level of statistical precision needed for future
surveys, a number of several thousand mock catalogues might have to be generated. Since
N-body simulations can reproduce the non-linear structure formation with high accuracy
(see Section 2.6), they are the ideal choice for the construction of mock catalogues. How-
ever, N-body simulations are expensive in terms of run-time and memory. The construction
of the large number of mock catalogues that is presumable necessary for the covariance
estimates of future surveys might therefore be infeasible. During the last decades, sev-
eral approximate methods for gravitational dynamics have been developed that enable a
faster generation of mock catalogues. The nIFTy comparison project by Chuang et al.
(2015) compared several approximate methods regarding their ability to reproduce clus-
tering statistics, more specifically the two-point correlation function, power spectrum and
bispectrum, of halo samples drawn from N-body simulations.

Here, we extend those efforts and perform a comparison of the covariance matrices in-
ferred from different approximate methods. In particular, the focus lies on the performance
of the different covariance matrices at reproducing parameter constraints obtained using
N-body simulations. To this end, seven state-of-the-art approximate methods and recipes
and a reference N-body simulation are considered. The following analysis is based on halo
samples, in order to obtain results that do not depend on a specific recipe for populating
the halos with galaxies.

The work presented in this chapter is part of a set of comparison projects with the goal
of analysing the covariance matrices of two-point correlation function (Lippich et al., 2019),
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power spectrum (Blot et al., 2019) and bispectrum (Colavincenzo et al., 2019) measure-
ments. After the comparison project, I also contributed to a follow-up project on a further
novel approximate method that was developed in the meantime (Balaguera-Antoĺınez et al.,
2020). Here, I will focus on the work based on correlation function measurements, since I
led the corresponding analysis. One may also note that the covariance matrix in config-
uration space has a more interesting structure than in Fourier space, where it is almost
diagonal.

This chapter is structured as follows. The first part of the chapter gives an overview
of the general methodology of correlation function measurements (Section 3.1), standard
likelihood analysis (Section 3.2) and covariance matrix estimation (Section 3.3), which are
the basis for inferring parameter constraints in the subsequent performance tests. Sec-
tion 3.4 introduces the reference halo catalogues from the Minerva N-body simulations.
The different approximate methods and recipes included in our comparison are described
in Section 3.5. The halo samples that we consider are defined in Section 3.6. The method-
ology of the performance tests is presented in Section 3.7. We compare the clustering
properties of the different halo samples in Section 3.8, the corresponding covariance ma-
trices in Section 3.9, and finally the performance of the different covariance matrices in
Section 3.10. The last Section 3.11 further discusses the results from the performance tests
and puts them into the context of the joint comparison project.

The study presented here has been published as Lippich et al. (2019). I carried out the
majority of the analysis and wrote most of the text, with significant advisory contributions
from the authors in order of their appearance in the authors list. The authors in alphabet-
ical order contributed with the raw halo catalogues generated by the different approximate
methods. Sections 3.1 to 3.4 present a more detailed description of the underlying method-
ology than in the publication. Sections 3.5 to 3.11 reproduce the corresponding sections
of the publication, adapted such the format, references and section titles match the thesis
format.

3.1 Clustering measurements in configuration space

In Section 2.3 the two-point correlation function was introduced to describe the probability
of finding an excess of pairs compared to a homogeneous distribution. The probability of
finding halo pairs separated by the distance s in a direction specified by µ, which is the
cosine of the angle between the separation vector s and the line of sight as defined in
Section 2.8.2, is given by

DD(s, µ) =
Npairs(s, µ)

Ntot

, (3.1)

where Ntot = Nh(Nh − 1)/2 is the total number of halo pairs. The probability of finding
halo pairs in a random distribution is denoted by RR(s, µ).

In the present work, all measurements are performed in simulation boxes with periodic
boundary conditions. In order to obtain redshift-space measurements, one Cartesian axis,
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here the z-axis, is treated as the line-of-sight. The halo positions are then distorted by
adding the halo velocities parallel to this axis.

Due to the periodic boundary conditions, the normalized random pair counts can be
computed directly as the ratio of the volume of a shell dV at a radius s and the total
volume of the simulation box, RR(s) = dV (s)/Vtot, where

dV (s) =
4π

3
[(s+ ds)3 − s3]. (3.2)

According to equation (2.28) the two probabilities are related by

DD(s, µ) = RR(s, µ)(1 + ξ(s, µ)). (3.3)

This equation directly yields an expression for computing the two-point correlation function
ξ(s, µ) from pair counts, which is also known as the natural estimator,

ξ(s, µ) =
DD(s, µ)

RR(s, µ)
− 1. (3.4)

There are alternative estimators that lead to a lower variance in the correlation func-
tion estimation of real galaxy surveys. If the random counts can be calculated using equa-
tion (3.2), however, they reduce to the natural estimator. Hence, all two-point correlation
function measurements in this work are based on equation (3.4).

The measurement of the full two-dimensional correlation function ξ(s, µ) is typically
associated with a large number of data points and a low signal-to-noise ratio leading to
complications in its further analysis. Therefore, in most cosmological analyses the infor-
mation in ξ(s, µ) is compressed into a small number of functions. A standard approach is
to decompose ξ(s, µ) into Legendre multipoles, ξ`(s), given by

ξ`(s) =
2`+ 1

2

∫ 1

−1

L`(µ)ξ(µ, s) dµ, (3.5)

where L`(µ) denotes the Legendre polynomial of order `. Due to the symmetry of ξ(µ, s)
with respect to µ, all multipoles with odd ` are zero. For current clustering analyses,
the largest amount of information can be extracted by considering the multipoles with
` = 0, 2, 4, called monopole, quadrupole and hexadecapole, respectively.

An alternative is the clustering wedges statistic (Kazin et al., 2012), which corresponds
to the average of the full two-dimensional correlation function over wide bins in µ, that is

ξw,i(s) =
1

∆µ

∫ i/n

(i−1)/n

ξ(µ, s) dµ, (3.6)

where ξw,i denotes each individual clustering wedge, and n represents the total number of
wedges. In this study, we follow the analysis by Sánchez et al. (2017) and divide the µ
range from 0 to 1 into three equal-width intervals, i = 1, 2, 3.
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For the measurements of the Legendre multipoles and clustering wedges, we consider
scales in the range 20 h−1Mpc ≤ s ≤ 160 h−1Mpc throughout this chapter, and implement
a binning scheme with ds = 10h−1Mpc for the following analysis. For illustration purposes,
we also use a binning of ds = 5h−1Mpc for figures showing correlation function measure-
ments. Since we have three multipoles ` = 0, 2, 4 and three µ wedges, the dimension of the
total data vector, ξ, for each case, containing all the measured statistics is Nb = 42 for the
binning with ds = 10h−1Mpc (and Nb = 84 for ds = 5h−1Mpc). Note that here we use the
common units of h−1Mpc so that the joint comparison project is directly comparable to
previous clustering analyses. For the future we advocate the use of Mpc units (see Sánchez,
2020).

3.2 Standard likelihood analysis

To infer the cosmological parameters that best describe the clustering measurements, we
follow a Bayesian approach and perform fits that maximize the likelihood function. The
likelihood, L, is defined as the probability of the measured data given a specific param-
eter set, θ, of the considered theory model. In many cases the likelihood can be well
approximated by a multivariate-Gaussian, L ∝ exp(−χ2(θ)/2). This is motivated by the
central limit theorem stating that the sum of many independent and identically distributed
random variables is Gaussian. Here we explore the Gaussian likelihood in the form,

−2 lnL(ξ|θ) = (ξ − ξtheo(θ))tΨ, (ξ − ξtheo(θ)) (3.7)

where the expression on the right-hand side of the equation corresponds to the standard
χ2, and ξtheo represents the theoretical model of the measured statistics, which here cor-
responds to the Legendre multipoles or clustering wedges ξ. An important ingredient of
the likelihood is the precision matrix Ψ, which is the inverse of the covariance matrix,
Ψ = C−1. The estimation of the covariance matrix is the topic of the next Section 3.3.

For the theoretical model, we adopt the prediction of the anisotropic non-linear power
spectrum based on gRPT that is described in Sections 2.5.2 and 2.8. We transfer the theory
power spectrum to predictions for the correlation function multipoles and wedges using a
Fourier transform and equations (3.5) and (3.6). Since here we analyse halo samples, we
do not include the fingers-of-God factor, W∞(k, µ), of equation (2.98).

In galaxy clustering analyses, it has been common to fix the cosmological parameters for
the prediction of the non-linear matter power spectrum to those of a ‘template’ cosmology
and only use the anisotropic information to constrain DM(z)/rd, H(z)rd and fσ8(z). In
that way, there are less free parameters and one can obtain cosmological constraints with
a smaller computational cost. As the aim of this work is to compare the performance of
covariance matrices from several different methods and not to obtain the most accurate
parameter constraints from real data, we also follow this approach and set the template
parameters to those of the Minerva simulation. In total, our parameter space contains six
free parameters : the Alcock-Paczynski parameters α‖ and α⊥ from equation (2.105), the
growth rate fσ8 from the RSD model in Section 2.8.2, the nuisance parameters associated
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with the linear and quadratic local bias, b1 and b2, and the non-local bias γ−3 from the bias
model in Section 2.8.1.

We perform fits varying these six parameters by means of the Monte Carlo Markov
Chains (MCMC) technique and based on the likelihood of equation (3.7). The best-fitting
value and corresponding error of a parameter are inferred from the marginalised mean and
dispersion of the resulting MCMC chains.

Note that in practice we fit for the geometric distortion parameters q‖ and q⊥, as h is
fixed, and quote our results in terms of α‖ and α⊥, as discussed in Section 2.8.3. Also, we
quote our results using the traditional growth rate fσ8, because we conducted this analysis
as part of the joint comparison project before Sánchez (2020) was published, with the
intention of having comparable results to previous analyses. Since h is fixed, the results on
fσ8 can be directly expressed in terms of fσ12 by multiplying the resulting values of fσ8

by the ratio of σ12/σ8 for the considered redshift and cosmology. For that reason, all our
results remain valid, however, we endorse the use of fσ12 and Mpc units in the future (see
also Section 2.8.2).

3.3 Covariance matrix estimation from mocks

The key ingredient in the likelihood is the covariance matrix C. There are three main
approaches to estimate the covariance of the data vector. One possibility is to model the
covariance analytically. This has the advantage that the covariance matrix estimate is not
affected by noise. The challenge of this approach, however, is to model the covariance in the
non-linear regime, and in particular to include the complex masks of real galaxy surveys.
A way to circumvent this problem is to estimate the covariance directly from the data, for
example by means of Jackknife estimates. Besides noise, the downside of such method is
that it can introduce biases in the covariance estimates that are difficult to capture.

Therefore, the most popular choice for galaxy clustering analyses is to estimate the
covariance matrix from a set of Ns mock catalogues from simulations as

Cij =
1

Ns − 1

Ns∑
k=1

(ξki − ξ̄i)(ξkj − ξ̄j), (3.8)

where ξ̄i = 1
Ns

∑
k ξ

k
i is the mean value of the measurements at the i-th bin and ξki is the

corresponding measurement from the k-th mock. In order to obtain an invertible covariance
matrix, and hence an estimate for the precision matrix Ψ in the likelihood, the number of
mocks should be significantly larger than the number of measurement bins, Ns � Nb. The
covariance estimate from mocks tends to be less affected by biases than estimates from the
data, and does not require any assumptions regarding the properties of the true covariance
matrix, as it is the case for theoretical estimates. Furthermore, survey masks can be easily
included, in order to generate mock observations that reproduce the properties of a given
survey.

However, the finite number of mocks introduces noise in the covariance estimates that
must be propagated into the final parameter constraints as additional uncertainty (Taylor



40 3. Covariance Matrix Comparison

et al., 2013; Dodelson & Schneider, 2013; Percival et al., 2014; Sellentin & Heavens, 2016).
Following Dodelson & Schneider (2013), this additional uncertainty can be approximated
by

σextra

σideal

≈ 1 +
Nb −Np

2(Ns −Nb)
, (3.9)

where σextra is the parameter variance inferred from the noisy covariance matrix, σideal is the
ideal variance without noise, Ns the number of simulations, Nb the number of bins, Np the
number of parameters and we assume Ns � Nb � Np. We consider the following example
where to goal is to limit the additional uncertainty to 2%. Already for our set up with Nb =
48 and Np = 6, we would need more than 1000 simulations according to equation (3.9). A
real galaxy clustering analysis would ideally have smaller and consequently more bins, vary
all cosmological parameters and fit a number of redshift slices simultaneously. The control
of this additional error would require an even larger number of independent realizations,
with Ns in the range of a few thousands.

For the new generation of galaxy surveys with large volumes and multiple redshift bins,
the construction of mock catalogues in such a number will be challenging and might need
to rely on approximate N-body methods. The goal of our analysis is to test the impact of
the covariance estimates C from different approximate methods on parameter constraints.

There are several techniques that can help to reduce the required number of realiza-
tions, such as resampling the phases of N-body simulations (Hamilton et al., 2006; Schneider
et al., 2011), shrinkage (Pope & Szapudi, 2008), calibrating the non-Gaussian contributions
of an empirical model against N-body simulations (O’Connell et al., 2016), or covariance
tapering (Paz & Sánchez, 2015). However, even after applying such methods, the genera-
tion of multiple N-body simulations with the required number-density and volume for the
clustering analysis of future surveys would be extremely demanding.

3.4 The Minerva N-body simulations and halo cata-

logues

We compare the performance of the approximate methods against reference N-body sim-
ulations called Minerva. The simulations were performed using GADGET-3, the third
version of the GADGET code (Springel, 2005) that was introduced in Section 2.6. They
consist of 300 independent realizations of the same cosmology, corresponding to the best-
fitting flat ΛCDM model from the WMAP+BOSS DR9 analysis of Sánchez et al. (2013).
This cosmology is characterized by the total matter and baryon densities Ωm = 0.285
and Ωb = 0.046, a Hubble constant of H0 = 69.5 km s−1Mpc−1, a scalar spectral in-
dex ns = 0.968, and a linear-theory rms mass fluctuation in spheres of radius 12 Mpc,
σ12 = 0.805 (Sánchez, 2020, c.f. Section 2.4). The first set of 100 realizations, which is de-
scribed in Grieb et al. (2016), was used in the BOSS analyses by Sánchez et al. (2017) and
Grieb et al. (2017). For this analysis, 200 new independent realizations were added, which
were generated with the same set-up as the first simulations. The initial conditions were
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derived from second-order Lagrangian perturbation theory with an input power spectrum
computed by CAMB (Lewis et al., 2000, c.f. Section 2.4) and the simulations were started
at a redshift zini = 63. Each realization simulates the evolution of 10003 dark-matter (DM)
particles in a cubic box of side length L = 1.5h−1Gpc with periodic boundary conditions.
For the approximate methods included in the following analysis, we use exactly the same
initial conditions for each realization as in the Minerva simulations and the same box size.

The positions and velocities of the evolved DM particles were stored in five snapshots
at z ∈ {2.0, 1.0, 0.57, 0.3, 0.0}. For each snapshot, halos were identified with a Friends-of-
friends (FoF) algorithm with a linking length of 0.2 of the mean inter-particle separation.
The FoF halos were then further processed with the unbinding procedure provided by the
SUBFIND code (Springel et al., 2001), such that particles with positive total energy are
removed and halos that were artificially linked by FoF are separated. In the following, we
use the so identified halos at a snapshot of z = 1.0 as our reference catalogues. Given the
particle mass resolution of the Minerva simulations, the minimum halo mass is 2.667 ×
1012 h−1M�.

3.5 Approximate methods for covariance matrix esti-

mates

3.5.1 Methods included in the comparison

In this comparison project1, we included covariance matrices inferred from different ap-
proximate methods and recipes, which we compared to the estimates obtained from the
set of reference N-body simulations of the previous Section 3.4. Approximate methods
have recently been revived by high-precision cosmology, due to the need of producing a
large number of realizations to compute covariance matrices of clustering measurements.
This topic has been reviewed by Monaco (2016), where methods have been roughly di-
vided into two broad classes. “Lagrangian” methods, as N-body simulations, are applied
to a grid of particles subject to a perturbation field. They reconstruct the Lagrangian
patches that collapse into dark matter halos, and then displace them to their Eulerian
positions at the output redshift, typically with Lagrangian Perturbation Theory (LPT,
see Section 2.5.3). ICE-COLA, Peak Patch and Pinocchio fall in this class. These
methods are predictive, in the sense that, after some cosmology-independent calibration
of their free parameters (that can be thought at the same level as the linking length of
friends-of-friends halo finders), they give their best reproduction of halo masses and clus-
tering without any further tuning. This approach can be demanding in terms of computing
resources and can have high memory requirements. In particular, ICE-COLA belongs to
the class of Particle-Mesh codes; these are in fact N-body codes that converge to the true
solution (at least on large scales) for sufficiently small time-steps. As such, Particle-Mesh

1The text of this Section 3.5 has significant contributions from the authors providing the methods, in
particular by P. Monaco
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codes are expected to be more accurate than other approximate methods, at the expense
of higher computational costs.

The second class of “bias-based” methods is based on the idea of creating a mildly
non-linear density field using some version of LPT, and then populate the density field
with halos that follow a given mass function and a specified bias model. The parameters
of the bias model must be calibrated on a simulation, so as to reproduce halo clustering
as accurately as possible. The point of strength of these methods is their very low com-
putational cost and memory requirement, that makes it possible to generate thousands of
realizations in a simple workstation, and to push the mass limit to very low masses. This
is however achieved at the cost of lower predictivity, and need of recalibration when the
sample selection changes. Halogen and Patchy fall in this category.

In the following, we will refer to the two classes as “predictive” and “calibrated” models.
All approximate methods used here have been applied to the same set of 300 initial con-
ditions (ICs) of the reference N-body simulations, so as to be subject to the same sample
variance; as a consequence, the comparison, though limited to a relatively small number
of realizations, is not affected by sample variance.

Additionally, we included in the comparison two simple recipes for the shape of the PDF
of the density fluctuations, a Gaussian analytic model that is only valid in linear theory
and a log-normal model. The latter was implemented by generating 1000 catalogues of
“halos” that Poisson-sample a log-normal density field; in this test case we do not match
the ICs with the reference simulations, and use a higher number of realizations to lower
sample variance.

3.5.2 Predictive methods: ICE-COLA, Peak Patch, Pinocchio

ICE-COLA

COLA (Tassev et al., 2013) is a method to speed up N-body simulations by incorporating
a theoretical modelling of the dynamics into the N-body solver and using a low resolution
numerical integration. It starts by computing the initial conditions using second-order
Lagrangian Perturbation Theory (2LPT, see Crocce et al. 2006). Then, it evolves parti-
cles along their 2LPT trajectories and adds a residual displacement with respect to the
2LPT path, which is integrated numerically using the N-body solver. Mathematically,
the displacement field x is decomposed into the LPT component xLPT and the residual
displacement xres as

xres(t) ≡ x(t)− xLPT(t). (3.10)

In a dark matter-only simulation, the equation of motion relates the acceleration to the
Newtonian potential Φ, and omitting some constants it can be written as: ∂2

t x(t) =
−∇Φ(t). Using equation (3.10), the equation of motion reads

∂2
t xres(t) = −∇Φ(t)− ∂2

t xLPT(t). (3.11)

COLA uses a Particle-Mesh method to compute the gradient of the potential at the
position x (first term of the right hand side), it subtracts the acceleration corresponding
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to the LPT trajectory and finally the time derivatives on the left hand side are discretized
and integrated numerically using few time steps. The 2LPT ensures convergence of the
dynamics at large scales, where its solution is exact, and the numerical integration solves
the dynamics at small non-linear scales. Halos can be correctly identified running a FoF
algorithm on the dark matter density field, and halo masses, positions and velocities are
recovered with accuracy enough to build mock halo catalogues.

ICE-COLA (Izard et al., 2016, 2018) is a modification of the parallel version of COLA
developed in Koda et al. (2016) that produces all-sky light cone catalogues on-the-fly. Izard
et al. (2016) presented an optimal configuration for the production of accurate mock halo
catalogues and Izard et al. (2018) explains the light cone production and the modelling of
weak lensing observables.

Mock halo catalogues were produced with ICE-COLA placing 30 time steps between
an initial redshift of zi = 19 and z = 02 and forces were computed in a grid with a cell size
3 times smaller than the mean inter-particle separation distance. For the FoF algorithm, a
linking length of b = 0.2 was used. Each simulation reached redshift 0 and used 200 cores
for 20 minutes in the MareNostrum3 supercomputer at the Barcelona Supercomputing
Center 3, consuming a total of 20 CPU khrs for the 300 realizations.

Peak Patch

From each of the 300 initial density field maps of the Minerva suite, we generate halo cat-
alogues following the peak patch approach initially introduced by Bond & Myers (1996).
In particular, we use a new massively parallel implementation of the peak patch algorithm
to create efficient and accurate realizations of the positions and peculiar velocities of dark
matter halos (Stein et al., 2019). The peak patch approach is essentially a Lagrangian
space halo finder that associates halos with the largest regions that have just collapsed by
a given time. The pipeline can be separated into four subprocesses: (1) the generation
of a random linear density field with the same phases and power spectrum as the Min-
erva simulations; (2) identification of collapsed regions using the homogeneous ellipsoidal
collapse approximation; (3) exclusion and merging of the collapsed regions in Lagrangian
space; and (4) assignment of displacements to these halos using second order Lagrangian
perturbation theory.

The identification of collapsed regions is a key step of the algorithm. The determination
of whether any given region will have collapsed or not is made by approximating it as an
homogeneous ellipsoid, the fate of which is determined completely by the principal axes of
the deformation tensor of the linear displacement field (i.e. the strain) averaged over the
region. In principle, the process of finding these local mass peaks would involve measuring
the strain at every point in space, smoothed on every scale. However, experimentation has
shown that equivalent results can be obtained by measuring the strain around density peaks
found on a range of scales4. This is done by smoothing the field on a series of logarithmically
spaced scales with a top-hat kernel, from a minimum radius of Rf,min = 2alatt, where alatt

2The time steps were linearly distributed with the scale factor.
3http:www.bsc.es.

http:www.bsc.es
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is the lattice spacing, to a maximum radius of Rf,max = 40 Mpc, with a ratio of 1.2. For
each candidate peak, we then find the largest radius for which a homogeneous ellipsoid
with the measured mean strain would collapse by the redshift of interest. If a candidate
peak has no radius for which a homogeneous ellipsoid with the measured strain would have
collapsed, then that point is thrown out. Each candidate point is then stored as a peak
patch at its location with its radius. We then proceed down through the filter bank to all
scales and repeat this procedure for each scale, resulting in a list of peak patches which we
refer to as the unmerged catalogue.

The next step is to account for exclusion, an essential step to avoid double counting of
matter, since distinct halos should not overlap, by definition. We choose here to use binary
exclusion (Bond & Myers, 1996). Binary exclusion starts from a ranked list of candidate
peak patches sorted by mass or, equivalently, Lagrangian peak patch radius. For each
patch we consider every other less massive patch that overlaps it. If the smaller patch
is outside of the larger one, then the radius of the two patches is reduced until they are
just touching. If the center of the smaller patch is inside the large one, then that patch is
removed from the list. This process is repeated until the least massive remaining patch is
reached.

Finally, we move halos according to 2LPT using displacements computed at the scale
of the halo.

This method is very fast: each realization ran typically in 97 seconds on 64 cores of the
GPC supercomputer at the SciNet HPC Consortium in Toronto (1.72 hours in total) . It
allows to get accurate – and fast – halo catalogues without any calibration, achieving high
precision on the mass function typically for masses above a few 1013 M�.

Pinocchio

The PINpointing Orbit Crossing Collapsed HIerarchical Objects (Pinocchio) code (Monaco
et al., 2002) is based on the following algorithm.

A linear density contrast field is generated in Fourier space, in a way similar to N-body
simulations. As a matter of fact, the code version used here implements the same loop
in k-space as the initial condition generator (N-GenIC) used for the simulations, so the
same realization is produced just by providing the code with the same random seed. The
density is then smoothed using several smoothing radii. For each smoothing radius, the
code computes the time at which each grid point (“particle”) is expected to get to the
highly non-linear regime. The dynamics of grid points, as mass elements, is treated as
the collapse of a homogeneous ellipsoid, whose tidal tensor is given by the Hessian of the
potential at that point. Collapse is defined as the time at which the ellipsoid collapses
on the first axis, going through orbit crossing and into the highly non-linear regime; this

4This is not to say that a halo found on a given scale corresponds to a peak in the density smoothed
on that scale, however, which is only the case when the strain is isotropic and the collapse is spherical.
Thus, the use of density peaks as centers for strain measurements and ellipsoidal collapse calculations in
the algorithm is only an optimization, to avoid wasting computations measuring the properties of regions
of Lagrangian space that are unlikely to collapse in the first place.
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is a difference with respect to Peak Patch, where the collapse of extended structures is
modelled. The equations for ellipsoidal collapse are solved using third-order Lagrangian
Perturbation Theory (3LPT). Following the ideas behind excursion-sets theory, for each
particle we consider the earliest collapse time as obtained by varying the smoothing radius.

Collapsed particles are then grouped together using an algorithm that mimics the hier-
archical assembly of halos: particles are addressed in chronological order of collapse time;
when a particle collapses the six nearest neighbours in the Lagrangian space are checked,
if none has collapsed yet then the particle is a peak of the inverse collapse time (defined
as F = 1/Dc, where Dc = D(tc) is the growth rate at the collapse time) and it becomes
a new halo of one particle. If the collapsed particle is touching (in Lagrangian space) a
halo, then both the particle and the halo are displaced using LPT, and if they get “near
enough” the particle is accreted to the halo, otherwise it is considered as a “filament”
particle, belonging to the filamentary network of particles that have suffered orbit crossing
but do not belong to halos. If a particle touches two halos, then their merging is decided
by moving them and checking whether they get again “near enough”. Here “near enough”
implies a parametrization that is well explained in the original papers (see Munari et al.,
2017, for the latest calibration). This results in the construction of halos together with
their merger histories, obtained with continuous time sampling. Halos are then moved to
the final position using 3LPT. The so-produced halos have discrete masses, proportional
to the particle mass Mp, as the halos found in N-body simulations. To ease the procedure
of number density matching described below in Section 3.6, halo masses were made con-
tinuous using the following procedure. It is assumed that a halo of N particles has a mass
that is distributed between N ×Mp and (N + 1)×Mp, and the distribution is obtained by
interpolating the mass function as a power law between two values computed in successive
bins of width Mp. This procedure guarantees that the cumulative mass function of halos
of mass > N ×Mp does not change, but it does affect the differential mass function.

We use the latest code version presented in Munari et al. (2017), where the advantage
of using 3LPT is demonstrated. No further calibration was required before starting the
runs. That paper presents scaling tests of the massively parallel version V4.1 and timings.
The 300 runs were produced in the GALILEO@CINECA Tier-1 facility, each run required
about 8 minutes on 48 cores.

3.5.3 Calibrated methods: Halogen, Patchy

Halogen

Halogen (Avila et al., 2015) is an approximate method designed to generate halo cata-
logues with the correct two-point correlation function as a function of mass. It constructs
the catalogues following four simple steps:

• Generate a 2LPT dark matter field, and distribute their particles on a grid with cell
size lcell.

• Draw halo masses Mh from an input Halo Mass Function (HMF).
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• Place the halo masses (from top to bottom) in the cells with a probability that

depends on the cell density and the halo mass P ∝ ρ
α(Mh)

cell . Within cells we choose
random particles to assign the halo position. We further ensure mass conservation
within cells and avoid halo overlap.

• Assign halo velocities from the particle velocities, with a velocity bias factor: vhalo =
fvel(Mh) · vpart

Following the study in (Avila et al., 2015), we fix the cell size at lcell = 5h−1Mpc. In
this paper we take the input HMF from the mean of the 300 Minerva simulations, but in
other studies analytical HMF have been used. The parameter α(Mh) controls the clustering
as a function of halo mass and has been calibrated using the two-point function from the
Minerva simulations in logarithmic mass bins (Mh = 1.06 × 1013, 2.0 × 1013, 4.0 × 1013,
8.0 × 1013, 1.6 × 1014 h−1M�). The factor f(Mh) is also tuned to match the variance of
the halo velocities from the N-body simulations.

Halogen is a code that advocates for the simplicity and low needs of computing
resources. The fact that it does not resolve halos (i.e. using a halo finder), allows to probe
low halo masses while keeping low the computing resources. This has the disadvantage
of needing to introduce free parameters. However, Halogen only needs one clustering
parameter α and one velocity parameter fvel, making the fitting procedure simple.

Patchy

The Patchy code (Kitaura et al., 2014, 2015) relies on modelling the large-scale density
field with an efficient approximate gravity solver, which is populated with the halo density
field using a non-linear, scale dependent, and stochastic biasing description. Although it
can be applied to directly paint the galaxy distribution on the density mesh (see Kitaura
et al., 2016).

The gravity solver used in this work is based on Augmented Lagrangian Perturbation
Theory (ALPT, Kitaura & Heß, 2013), fed with the same initial conditions as those imple-
mented in the Minerva simulations. In the ALPT model, 2LPT is modified by employing
a spherical collapse model on small comoving scales, splitting the displacement field into
a long and a short range component. Better results can in principle be obtained using a
particle mesh gravity solver at a higher computational cost (see Vakili et al., 2017).

Once the dark matter density field is computed, a deterministic bias relating it to the
expected number density of halos is applied. This deterministic bias model consists of a
threshold, an exponential cut-off, and a power-law bias relation. The number density is
fixed by construction using the appropriate normalization of the bias expression.

The Patchy code then associates the number of halos in each cell by sampling from a
negative binomial distribution modelling the deviation from Poissonity with an additional
stochastic bias parameter.

In order to provide peculiar velocities, these are split into a coherent and a quasi-
virialised component. The coherent flow is obtained from ALPT and the dispersion term
is sampled from a Gaussian distribution assuming a power law with the local density.
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The masses are associated to the halos by means of the HADRON code (Zhao et al.,
2015). In this approach, the masses coming from the N-body simulation are classified in
different density bins and in different cosmic web types (knots, filaments, sheets and voids)
and their distribution information is extracted. Then HADRON uses this information to
assign masses to halos belonging to mock catalogues. This information is independent of
initial conditions, meaning it will be the same for each of the 300 Minerva realizations.

We used the MCMC python wrapper published by Vakili et al. (2017) to infer the values
of the bias parameters from Minerva simulations using one of the 300 random realizations.
Once these parameters are fixed one can produce all of the other mock catalogues without
further fitting. The Patchy mocks were produced using a down-sampled white noise of
5003 instead of the 10003 original Minerva ones with an effective cell side resolution of
3h−1Mpc to produce the dark matter field.

3.5.4 Models of the density PDF: Log-normal and Gaussian dis-
tribution

Log-normal distribution

The log-normal mocks were produced using the public code presented in Agrawal et al.
(2017), which models the matter and halo density fields as log-normal fields, and generates
the velocity field from the matter density field, using the linear continuity equation.

To generate a log-normal field δ(x), a Gaussian field G(x) is first generated, which
is related to the log-normal field as δ(x) = e−σ

2
G+G(x) − 1 (Coles & Jones, 1991). The

pre-factor with the variance σ2
G of the Gaussian field G(x), ensures that the mean of

δ(x) vanishes. Because different Fourier modes of a Gaussian field are uncorrelated, the
Gaussian field G(x) is generated in Fourier space. The power spectrum of G(x) is found
by Fourier transforming its correlation function ξG(r), which is related to the correlation
function ξ(r) of the log-normal field δ(x) as ξG(r) = ln[1 + ξ(r)] (Coles & Jones, 1991).
Having generated the Gaussian field G(x), the code transforms it to the log-normal field
δ(x) using the variance σ2

G measured from G(x) in all cells.
In practice, we use the measured real-space matter power spectrum from Minerva and

Fourier transform it to get the matter correlation function. For halos we use the measured
real-space correlation function. We then generate the Gaussian matter and halo fields with
the same phases, so that the Gaussian fields are perfectly correlated with each other. Note
however, that we use random realizations for these mocks, and so, these phases are not
equal to those of the Minerva initial conditions. We then exponentiate the Gaussian fields,
to get matter (δm(x)) and halo (δh(x)) density fields, following a log-normal distribution.

The expected number of halos in a cell is given as Nh(x) = n̄h[1 + δh(x)]Vcell, where
n̄h is the mean number density of the halo sample from Minerva, δh(x) is the halo density
at position x, and Vcell is the volume of the cell. However, this is not an integer. So, to
obtain an integer number of halos from the halo density field, we draw a random number
from a Poisson distribution with mean Nh(x), and populate halos randomly within the
cell. The log-normal matter field is then used to generate the velocity field using the linear
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continuity equation. Each halo in a cell is assigned the three-dimensional velocity of that
cell.

Since the log-normal mocks use random phases, we generate 1000 realizations for each
mass bin, with the real-space clustering and mean number density measured from Minerva
as inputs. Also note, that because halos in this prescription correspond to just discrete
points, we do not assign any mass to them. An effective bias relation can still be established
using the cross-correlation between the halo and matter fields, or using the input clustering
statistics (Agrawal et al. (2017)).

The key advantage of using this method is its speed. Once we had the target power
spectrum of the matter and halo Gaussian fields, each realization of a 2563 grid as in Min-
erva, was produced in 20 seconds using 16 cores at the RZG in Garching. The resulting
catalogues agree perfectly with the Minerva realizations in their real-space clustering as ex-
pected. Because we use linear velocities, they also agree with the redshift-space predictions
on large scales (Agrawal et al., 2017).

Gaussian distribution

A different approach to generating “mock” halo catalogues with fast approximate methods
is to model the covariance matrix theoretically. As mentioned in Section 3.3, this has
the advantage that the resulting estimate is free of noise. In this comparison project we
included a simple theoretical model for the linear covariance of anisotropic galaxy clustering
that is described in Grieb et al. (2016). Based on the assumption that the two-dimensional
power spectrum P (k, µ) follows a Gaussian distribution and that the contributions from the
trispectrum and super-sample covariance can be neglected, Grieb et al. (2016) derived the
explicit formulae for the covariance of anisotropic clustering measurements in configuration
and Fourier space. In particular, they obtain that the covariance between two Legendre
multipoles of the correlation function of order ` and `′ (see Section 3.1) evaluated at the
pair separations si and sj, respectively, is given by

C`,`′(si, sj) =
i`+`

′

2π2

∫ ∞
0

k2σ2
``′(k)j̄`(ksi)j̄`′(ksj) dk, (3.12)

where j̄`(ksi) is the bin-averaged spherical Bessel function as defined in equation A19 of
Grieb et al. (2016), and

σ2
``′(k) ≡ (2`+ 1) (2`′ + 1)

Vs

×
∫ 1

−1

[
P (k, µ) +

1

n̄

]2

L`(µ)L`′(µ) dµ. (3.13)

Here, P (k, µ) represents the two-dimensional power spectrum of the sample, Vs is its vol-
ume, and n̄ corresponds to its mean number density.

Analogously, the covariance between two configuration-space clustering wedges µ and
µ′ (see Section 3.1) is given by

Cµ,µ′(si, sj) =
∑
`1`2

i`1+`2

2π2
L̄`1,µL̄`2,µ′ ×

∫ ∞
0

k2σ2
`1`2

(k)j̄`1(ksi)j̄`2(ksj) dk, (3.14)
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where L̄`1,µ represents the average of the Legendre polynomial of order ` within the cor-
responding µ-range of the clustering wedge. The covariance matrices derived from the
Gaussian model have been tested against N-body simulations with periodic boundary con-
ditions by Grieb et al. (2016), showing good agreement within the range of scales typically
included in the analysis of galaxy redshift surveys (s > 20h−1Mpc).

3.6 Halo samples

In this section we describe the criteria used to construct the halo samples on which we
base our covariance matrix comparison.

We define two parent halo samples from the Minerva simulations by selecting halos with
masses M ≥ 1.12 × 1013h−1M� and M ≥ 2.667 × 1013h−1M�, corresponding to 42 and
100 dark matter particles, respectively. We apply the same mass cuts to the catalogues
produced by the approximated methods included in our comparison. We refer to the
resulting samples as “mass1” and “mass2”.

Note that the Patchy and log-normal catalogues do not have mass information for
individual objects and match the number density and bias of the parent samples from
Minerva by construction. The Gaussian model predictions are also computed for the spe-
cific clustering amplitude and number density as the mass1 and mass2 samples. For the
other approximate methods, the samples obtained by applying these mass thresholds do
not reproduce the clustering and the shot noise of the corresponding samples from Minerva.
These differences are in part caused by the different applied methods for identifying or as-
signing halos, e.g. Peak Patch uses spherical overdensities in Lagrangian space to define
halo masses while most other methods are closer to FoF masses, as described in Section
3.5. Therefore, for the ICE-COLA, Halogen, Peak Patch and Pinocchio catalogues
we also define samples by matching number density and clustering amplitude of the halo
samples from Minerva. For the number-density-matched samples, we find the mass cuts
where the total number of halos in the samples drawn from each approximate method best
matches that of the two parent Minerva samples. We refer to these samples as “dens1” and
“dens2”. Analogously, we define bias-matched samples by identifying the mass thresholds
for which the clustering amplitude in the catalogues drawn from the approximate methods
best agrees with that of the mass1 and mass2 samples from Minerva. More concretely,
we define the clustering-amplitude-matched samples by selecting the mass thresholds that
minimize the difference between the mean correlation function measurements from the cat-
alogues drawn from the approximate methods and the Minerva parent samples on scales
40h−1 Mpc < s < 80h−1 Mpc. We refer to these samples as “bias1” and “bias2”.

The mass thresholds defining the different samples, the number of particles correspond-
ing to these limits, their halo number densities, and bias ratios with respect to the Minerva
parent samples are listed in Table 4.1. Note that, as the halo masses of the Pinocchio
and Peak Patch catalogues are made continuous for this analysis, the mass cuts defining

5As the halo masses corresponding to our low-mass threshold are not correctly resolved in the Peak
Patch catalogues, only the high-mass threshold (mass2) is considered in this case.
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Table 3.1: Overview of the different samples, including the mass limits, Mlim, expressed in units
of h−1M�, the corresponding number of particles, Np, the mean number density, n̄, and the bias

ratio to the corresponding Minerva parent sample, 〈(ξapp/ξMin)1/2〉. The sample names “mass”,
“dens”, and “bias”, indicate if the samples were constructed by matching the mass threshold,
number density, or clustering amplitude of the parent halo samples from Minerva.

code sample name Mlim/
(
h−1M�

)
Np n̄/

(
h3Mpc−3

)
bias ratio

Minerva mass1 1.12× 1013 42 2.12× 10−4 1.00
Minerva mass2 2.67× 1013 100 5.42× 10−5 1.00
ICE-COLA mass1 1.12× 1013 42 2.06× 10−4 0.99
ICE-COLA dens1 1.09× 1013 41 2.12× 10−4 0.98
ICE-COLA bias1 1.17× 1013 44 1.93× 10−4 1.00
ICE-COLA mass2 2.67× 1013 100 5.81× 10−5 0.99
ICE-COLA dens2, bias2 2.77× 1013 104 5.45× 10−5 1.00
Halogen mass1, dens1, bias1 1.12× 1013 42 2.14× 10−4 1.00
Halogen mass2, dens2 2.67× 1013 100 5.40× 10−5 0.98
Halogen bias2 2.91× 1013 109 4.61× 10−5 1.00
Peak Patch5 mass2 2.67× 1013 100 4.45× 10−5 1.04
Peak Patch dens2, bias2 2.35× 1013 88.3 5.44× 10−5 1.00
Pinocchio mass1 1.12× 1013 42 1.95× 10−4 1.02
Pinocchio dens1 1.04× 1013 39.1 2.15× 10−4 1.00
Pinocchio bias1 1.06× 1013 39.9 2.09× 10−4 1.00
Pinocchio mass2 2.67× 1013 100 5.35× 10−5 1.03
Pinocchio dens2 2.63× 1013 98.6 5.48× 10−5 1.03
Pinocchio bias2 2.42× 1013 90.7 6.27× 10−5 1.00

the density- and bias-matched samples do not correspond to an integer number of particles.
Also note for the calibrated methods that the Halogen catalogue was calibrated using
the input HMF from the mean of the 300 Minerva simulations in logarithmic mass bins
for this analysis, whereas the Patchy mass samples were calibrated for each mass cut
individually. For the case of the Halogen catalogue, the selected high mass threshold lies
nearly half way (in logarithmic scale) between two of the mass thresholds of the logarithmic
input HMF. This explains why whereas for the first mass cut, bias and number density
are matched by construction, that is not the case for the second mass cut. This has the
effect that the bias2 sample of the Halogen catalogue has 15% fewer halos than the cor-
responding Minerva sample. Comparisons of the ratios of the number densities and bias of
the different samples drawn from the approximate methods to the corresponding ones from
Minerva are shown in Fig. 3.1. Since the catalogues drawn from log-normal and Patchy
match the number density and bias of the Minerva parent samples by construction, they
are not included in the Table and figures.

In the following we refer to all samples corresponding to the first mass limit, mass1,
dens1 and bias1, as “sample1”, and the samples corresponding to the second mass limit,
mass2, dens2 and bias2, as “sample2”.



3.7 Methodology for performance tests 51

IC
E-

CO
LA

 m
as

s1
IC

E-
CO

LA
 d

en
s1

IC
E-

CO
LA

 b
ia

s1
IC

E-
CO

LA
 m

as
s2

IC
E-

CO
LA

 d
en

s2
, b

ia
s2

PI
NO

CC
HI

O 
m

as
s1

PI
NO

CC
HI

O 
de

ns
1

PI
NO

CC
HI

O 
bi

as
1

PI
NO

CC
HI

O 
m

as
s2

PI
NO

CC
HI

O 
de

ns
2

PI
NO

CC
HI

O 
bi

as
2

Pe
ak

 P
at

ch
 m

as
s2

Pe
ak

 P
at

ch
 d

en
s2

, b
ia

s2
HA

LO
GE

N 
m

as
s1

, d
en

s1
, b

ia
s1

HA
LO

GE
N 

m
as

s2
, d

en
s2

HA
LO

GE
N 

bi
as

2

0.9

1.0

1.1

N h
al

os
/N

ha
lo

s,
N

bo
dy

IC
E-

CO
LA

 m
as

s1
IC

E-
CO

LA
 d

en
s1

IC
E-

CO
LA

 b
ia

s1
IC

E-
CO

LA
 m

as
s2

IC
E-

CO
LA

 d
en

s2
, b

ia
s2

PI
NO

CC
HI

O 
m

as
s1

PI
NO

CC
HI

O 
de

ns
1

PI
NO

CC
HI

O 
bi

as
1

PI
NO

CC
HI

O 
m

as
s2

PI
NO

CC
HI

O 
de

ns
2

PI
NO

CC
HI

O 
bi

as
2

Pe
ak

 P
at

ch
 m

as
s2

Pe
ak

 P
at

ch
 d

en
s2

, b
ia

s2
HA

LO
GE

N 
m

as
s1

, d
en

s1
, b

ia
s1

HA
LO

GE
N 

m
as

s2
, d

en
s2

HA
LO

GE
N 

bi
as

2

0.98
0.99
1.00
1.01
1.02
1.03

/
N

bo
dy

Figure 3.1: Ratios of the total halo number (left panel) and the clustering amplitude (right
panel) of samples drawn from the approximate methods to the corresponding quantity in the
Minerva parent samples. By definition, for the dens samples the halo number is matched to the
corresponding N-body samples and therefore the corresponding ratio is close to one in the left
panel, while the ratios from the bias samples are meant to be close to one in the right panel.
For some cases two or three samples are represented with the same symbol, e.g. ICE-COLA
dens2, bias2 which means that the ICE-COLA dens2 sample is the same as the ICE-COLA
bias2 sample.

3.7 Methodology for performance tests

In order to asses the impact of using approximate methods to estimate C, we perform fits
based on the Gaussian likelihood approach of Section 3.2. The first step is the measurement
of the multipoles and clustering wedges of the two-point correlation function of all the
samples described in Section 3.6. For the halo samples of the reference N-body simulations,
of the predictive and calibrated methods we compute the corresponding covariance matrices
according to equation (3.8) with Ns = 300, for the log-normal samples with Ns = 1000.
Since we only use the anisotropic information of the clustering measurements for the fits,
for each halo sample we average the three separate estimates of C that can be obtained by
treating each axis of the simulation boxes as the line-of-sight direction. This reduces the
noise due to the small number of realizations in the final covariance estimates.

The aim of our performance tests is to compare the constraints obtained when C is
estimated from the approximate methods described in Sec 3.5 to the corresponding results
from N-body simulations. We focus on the cosmological information that can be recovered
from fitting procedure described in Section 3.2 and is encoded in α⊥, α‖ and fσ8(z). This
analysis set-up also matches that of the covariance matrix comparison in Fourier space of
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Figure 3.2: Comparison of the mean correlation function multipoles (upper panels) and clustering
wedges (lower panels) of the mass1 and mass2 samples (left and right panels, respectively) drawn
from our Minerva N-body simulations, and the model described in Section 3.2. The points
with error bars show the simulation results and the dashed lines correspond to the fit to these
measurements. The error bars on the measurements correspond to the dispersion inferred from
the 300 Minerva realizations. In all cases, the model predictions show good agreement with the
N-body measurements.

our companion paper (Blot et al., 2019).

In order to ensure that the model used for the fits has no impact on the covariance
matrix comparison, we do not fit the measurements of the Legendre multipoles and wedges
obtained from the N-body simulations. Instead, we use our baseline model of Section 3.2
to construct synthetic clustering measurements, which we then use for our fits. For this,
we first fit the mean Legendre multipoles measured from the parent Minerva halo samples
using our model and the N-body covariance matrices. We fix all cosmological parameters
to their true values and only vary the bias parameters b1, b2, and γ−3 . We then use the
mean values of the parameters inferred from the fits, together with the true values of the
cosmological parameters, to generate multipoles and clustering wedges of the correlation
function using our baseline model. Fig. 3.2 shows the mean multipoles and clustering
wedges measured from the Minerva halo sample for both mass cuts and the resulting fits.
In all cases, our model gives a good description of the simulation results. The parameter
values recovered from these fits were also used to compute the input power spectra when
computing the Gaussian predictions of C. As these synthetic data are perfectly described
by our baseline model by construction, their analysis should recover the true values of
the BAO parameters α‖ = α⊥ = 1.0, and the growth-rate parameter fσ8 = 0.4402.
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The comparison of the parameter values and their uncertainties recovered using different
covariance matrices allows us to test the ability of the approximate methods described
in Section 3.5 to reproduce the results obtained when C is inferred from full N-body
simulations.

3.8 Comparison of correlation function measurements

In order to estimate the covariance matrices from all the samples introduced in Section 3.6,
we first measure configuration-space Legendre multipoles and clustering wedges for each
sample and in each realization as described in Section 3.1.

As an illustration of the agreement between the clustering measurements obtained from
the approximate methods and the Minerva simulations, we focus here on two cases: i) the
multipoles of the density-matched samples for the first mass cut (dens1 samples), and ii)
the clustering wedges of the bias-matched samples for the second mass cut (bias2 samples).
As described in Section 3.6, for Patchy and the log-normal realizations, the density- and
bias-matched samples are identical to the mass-matched samples by construction.

The upper panel of Fig. 3.3 shows the mean multipole measurements from all real-
izations for the dens1 samples obtained from the predictive methods ICE-COLA and
Pinocchio (left panels) and the calibrated methods Halogen, Patchy, and the log-
normal recipe (right panels). The predictive methods are in excellent agreement with
the measurements from the Minerva parent sample, showing only differences of less than
3% for the ICE-COLA monopole measurements on scales < 40h−1Mpc. The monopole
measurements obtained from the calibrated methods and the log-normal model are also in
good agreement with the results from Minerva. However, the quadrupole and hexadecapole
measurements obtained from Halogen and the log-normal samples exhibit deviations of
more than 20% on scales < 60h−1Mpc.

The lower panel of Fig. 3.3 shows the mean wedges measurements from all realizations
for the bias2 samples obtained from the predictive methods ICE-COLA, Pinocchio and
Peak Patch (left panels), and for the corresponding samples obtained from calibrated
methods Halogen, Patchy, and the log-normal recipe (right panels). Here we find
that the measurements obtained from the predictive methods and the log-normal model
agree well within the error bars with the corresponding Minerva measurements. We no-
tice that the strongest deviations are present in the measurements of the transverse and
parallel wedge from the Halogen samples, of up to 6% and 20% respectively on scales
< 60h−1Mpc. The measurements recovered from Patchy show deviations ranging be-
tween 5% to 10% on small scales.
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Figure 3.3: Upper panel : measurements of the mean multipoles for the density matched samples
for the first mass cut (dens1 samples). The first, third and fifth row show the monople, quadrupole
and hexadecapole, respectively. Lower panel : measurements of the mean clustering wedges for the
bias matched samples for the second mass cut (bias2 samples). The first, third and fifth row show
the transverse, intermediate and parallel wedge, respectively. Comparison of the measurements
drawn from the results of the predictive methods ICE-COLA and Pinocchio (left panels) and
the calibrated methods Halogen and Patchy and the log-normal model (right panels) to the
corresponding N-body parent sample. The error bars correspond to the dispersion of the results
inferred from the 300 N-body catalogues. The remaining rows show the difference of the mean
measurements drawn from the results of the approximate methods to the corresponding N-body
measurement.
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Figure 3.4: The full correlation matrix inferred from the multipoles of the N-body parent sample
for the low-mass cut (mass1, left panel) and from the clustering wedges of the mass2 N-body
parent sample (right panel).

3.9 Comparison of covariance matrix measurements

In this section we focus on the comparison of the covariance matrix estimates obtained
from the different approximate methods, which we computed as described in Sections 3.3
and 3.7.

The structure of the off-diagonal elements of C of Legendre multipoles and clustering
wedges measurements can be more clearly seen in the correlation matrix, defined as

Rij =
Cij√
CiiCjj

. (3.15)

Fig. 3.4 shows the correlation matrices of the multipoles inferred from the mass1 halo
samples from Minerva (left panel) and the wedges of the mass2 samples (right panel).

The estimates of R obtained from the approximate methods are indistinguishable by eye
from the ones inferred from the Minerva parent samples and therefore not shown here. In-
stead, we compare the variances and cuts through the correlation function matrices derived
from the different samples. Fig. 3.5 shows the ratios of the variances drawn from the ap-
proximate methods with respect to those of the corresponding Minerva parent catalogues.
We focus here on the same example cases as in Section 3.8: the multipoles measured from
the dens1 samples, and the clustering wedges measured from the bias2 samples. We notice
that in both cases the predictive methods perform better than the calibrated schemes and
the PDF-based recipes. On average, the variance from Minerva is recovered within 10%,
with a maximum difference of 20% for the variance of the monopole inferred from the
Pinocchio dens1 sample at scales around 80h−1Mpc. The variances recovered from the
other methods show larger deviations, in some cases up to 40%.

Fig. 3.6 shows cuts through the correlation matrix at sj = 105h−1Mpc for the same
two example cases. The error bars for the measurements of the corresponding Minerva



56 3. Covariance Matrix Comparison

−0.4

−0.2

0.0

0.2

0.4

∆
σ

2 0
/σ

2 0,
N
−

b
od

y

“dens1”
ICE− COLA

PINOCCHIO

−0.4

−0.2

0.0

0.2

0.4

∆
σ

2 2
/σ

2 2,
N
−

b
od

y

40 60 80 100 120 140

s/[h−1Mpc]

−0.4

0.0

0.4

∆
σ

2 4
/σ

2 4,
N
−

b
od

y

multipoles

HALOGEN

PATCHY

log − normal

Gaussian

40 60 80 100 120 140

s/[h−1Mpc]

−0.4

−0.2

0.0

0.2

0.4

∆
σ

2 w
1/
σ

2 w
1,

N
−

b
od

y

“bias2”
ICE− COLA

PINOCCHIO

PeakPatch

−0.4

−0.2

0.0

0.2

0.4

∆
σ

2 w
2/
σ

2 w
2,

N
−

b
od

y
40 60 80 100 120 140

s/[h−1Mpc]

−0.4

0.0

0.4

∆
σ

2 w
3/
σ

2 w
3,

N
−

b
od

y

wedges

HALOGEN

PATCHY

log − normal

Gaussian

40 60 80 100 120 140

s/[h−1Mpc]

Figure 3.5: Left panel : Relative variance of the multipoles of the correlation function measure-
ments from the density matched samples for the first mass cut (dens1 samples).The first, third
and fifth row show the measurements for monople, quadrupole and hexadecapole, respectively.
Right panel : Relative variance of the clustering wedges of the two-point correlation function for
the bias matched samples for the second mass cut (bias2 samples). The first, third and fifth
row show the measurements for transverse, intermediate and parallel wedge, respectively. Com-
parison of the relative variance drawn from the results of the predictive methods ICE-COLA,
Pinocchio, Peak Patch (left) and Halogen, Patchy and the log-normal model (right) to
the corresponding N-body parent sample.

parent samples are obtained from a jackknife estimate using the 300 Minerva mocks,

(∆Mij)
2 =

NS − 1

NS

∑
S

(M
(s)
ij −Mij)

2, (3.16)

where M is the covariance matrix C or the correlation matrix R (for Fig. 3.6 we use R).
M(s) is the covariance or correlation matrix which is obtained when leaving out the s−th
realization,

M
(s)
ij =

1

NS − 1

∑
r 6=s

(ξ
(r)
i − ξ̄i)(ξ(r)

j − ξ̄j). (3.17)

For the comparison of the cuts through the correlation matrices, all methods agree well
with the corresponding N-body measurements with only very small differences. In order to
quantify the discrepancies between the covariance and correlation matrices drawn from the
approximate methods to the corresponding N-body measurements, we use a χ2 approach.
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Concretely, we compute χ2 as

χ2 =
∑
i

∑
j≥i

(Cij,approx − Cij,Minerva)2

∆C2
ij,Minerva

, (3.18)

and

χ2 =
∑
i

∑
j>i

(Rij,approx −Rij,Minerva)2

∆R2
ij,Minerva

, (3.19)

where the indices i and j run over the bins corresponding to the range of interest of 20−
160h−1Mpc and ∆ CMinerva and ∆ RMinerva are the estimated errors from equation (3.16).
If the approximate methods perfectly reproduce the expected covariances from the N-body
simulations, the χ2 obtained from the approximate methods should be χ2 ≈ 0 for the
predictive and calibrated methods. This is due to the fact that the simulation boxes of the
predictive and calibrated methods match the initial conditions of Minerva and therefore
the properties of the noise in the estimates of C should be very similar. For the covariance
and correlation matrices obtained from the PDF-based predictions, we expect χ2 ≈ N(N−
1)/2 where N is the number of bins of the covariance or correlation matrix, since these
predictions do not correspond to the same initial conditions. In table 3.2 we list the
obtained relative χ2-values,

χ2
rel =

χ2

N(N − 1)/2
, (3.20)

where N = 42, for all considered samples and clustering statistics. We notice that the
χ2-values are in most cases smaller for the predictive than the calibrated methods. Fur-
thermore, the χ2-values from the wedge measurements are overall smaller than the corre-
sponding ones from the multipole measurements. Also, in most cases the χ2-values obtained
from the covariance matrices are slightly larger than the corresponding ones from the corre-
lation matrices, indicating discrepancies in the variances obtained from the approximated
methods.

The computed χ2-values do not take the covariance between the different entries of C
into account. In order to provide a more complete picture of how far the multipole and
wedges distributions characterized by the different covariance matrices are, we also compute
the Kullback-Leibler divergence (Kullback & Leibler, 1951; O’Connell et al., 2016). In our
case (two multivariate normal distributions with the same means), the Kullback-Leibler
divergence is given as

DKL(CMinerva ‖ Capprox) =
1

2

(
tr(C−1

approxCMinerva)

+ln

(
detCapprox

detCMinerva

)
−N

)
.

(3.21)

If the approximate methods perfectly reproduce the expected distributions from the N-
body simulations, including the same noise, we expect DKL ≈ 0. In table 3.2 we list
the obtained DKL values. We find that the values for DKL are closer to zero for the
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Table 3.2: Values of the relative χ2 for the covariance matrices C (equation 3.18), correlation
matrices R (equation 3.19) and values for the the Kullback-Leibler divergence DKL (equation
3.21) obtained from the approximate methods.

code sample χ2
rel for C χ2

rel for C χ2
rel for R χ2

rel for R DKL DKL

from ξ024 from ξw from ξ024 χ2
rel from ξw for ξ024 for ξw

ICE-COLA mass1 0.19 0.21 0.17 0.16 0.24 0.24
ICE-COLA dens1 0.31 0.42 0.17 0.15 0.28 0.27
ICE-COLA bias1 0.20 0.11 0.19 0.19 0.27 0.27
Pinocchio mass1 0.48 0.51 0.27 0.26 0.33 0.33
Pinocchio dens1 0.76 0.67 0.78 0.70 0.77 0.77
Pinocchio bias1 0.23 0.20 0.24 0.22 0.28 0.29
Halogen mass1 1.22 0.90 1.09 0.77 1.28 1.14
Patchy mass1 0.67 0.40 0.73 0.44 0.82 0.79
Gaussian mass1 2.50 2.20 2.04 0.91 0.82 1.08
log-normal mass1 1.76 1.09 1.31 0.97 0.96 0.98

ICE-COLA mass2 0.40 0.36 0.38 0.33 0.43 0.45
ICE-COLA dens2 0.36 0.23 0.35 0.27 0.28 0.28
Pinocchio mass2 1.03 1.20 0.44 0.41 0.46 0.44
Pinocchio dens2 0.81 0.83 0.44 0.40 0.41 0.40
Pinocchio bias2 0.70 0.31 0.42 0.54 0.41 0.73
Peak Patch mass2 1.84 2.02 0.69 0.69 1.05 1.03
Peak Patch dens2 0.48 0.47 0.48 0.45 0.46 0.48
Halogen mass2 1.77 1.32 1.70 1.29 1.07 1.07
Halogen bias2 2.24 1.76 2.06 1.59 1.28 1.32
Patchy mass2 1.41 1.26 1.21 0.97 0.99 1.01
Gaussian mass2 2.02 1.77 1.75 1.03 0.78 1.14
log-normal mass2 2.27 2.57 1.64 1.88 1.02 1.07

predictive than for the other approximate methods. For the calibrated methods and for
the distributions with different noise, obtained from the Gaussian and log-normal models,
we find values DKL ≈ 1.
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Figure 3.6: Cuts at sj = 105h−1Mpc through the correlation matrices for the two example cases
drawn from the results of the approximate methods and the corresponding N-body parent sample.
Upper, left panel : Correlation matrices measured from the multipoles of the correlation function
drawn from dens1 samples from the predictive methods ICE-COLA and Pinocchio. Upper,
right panel : Correlation matrices measured from the multipoles of the correlation function drawn
from dens1 samples from the calibrated methods Halogen and Patchy and the Gaussian and
log-normal recipes. Lower, left panel : Correlation matrices measured from the clustering wedges
of the correlation function drawn from the bias2 samples from the predictive methods ICE-
COLA, Pinocchio and Peak Patch. Lower, right panel : Correlation matrices measured from
the clustering wedges of the correlation function drawn from bias2 samples from the calibrated
methods Halogen and Patchy and the Gaussian and log-normal recipes. The error bars are
obtained from a jackknife estimate using the 300 Minerva realizations.



60 3. Covariance Matrix Comparison

0.32
0.36
0.40
0.44
0.48
0.52
0.56

f
σ

8

ICE− COLA
N−body

PINOCCHIO
N−body

“dens1” multipoles
HALOGEN
N−body

0.960.991.02
α⊥

0.32
0.36
0.40
0.44
0.48
0.52
0.56

f
σ

8

PATCHY
N−body

0.960.991.02
α⊥

Gaussian
N−body

0.960.991.021.05
α⊥

lognormal
N−body

0.24
0.32
0.40
0.48
0.56
0.64

f
σ

8

ICE− COLA
N−body

PINOCCHIO
N−body

“bias2” wedges

PeakPatch
N−body

0.95 1.00 1.05
α⊥

HALOGEN
N−body

0.95 1.00 1.05
α⊥

0.24
0.32
0.40
0.48
0.56
0.64

f
σ

8

PATCHY
N−body

0.95 1.00 1.05
α⊥

Gaussian
N−body

0.95 1.00 1.05
α⊥

lognormal
N−body

Figure 3.7: Comparison of the marginalised two-dimensional constraints in the α⊥-fσ8 plane
for the analysis of samples from the approximate methods with the corresponding constraints
obtained from analysis of the parent Minerva sample. The contours correspond to the 68% and
95% confidence levels. Upper panel : Results from the analysis of the multipoles measured from
the dens1 samples. Lower panel : Results from the analysis of the clustering wedges measured
from the bias2 samples.
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3.10 Performance of the covariance matrices

For the final validation of the covariance matrices inferred from the different approximate
methods, we analyse their performance on cosmological parameter constraints. We perform
fits to the synthetic clustering measurements described in Section 3.7, using the estimates
of C obtained from the different halo samples and approximate methods. We focus on the
constraints on the BAO shift parameters α‖, α⊥, and the growth rate fσ8.

Fig. 3.7 shows the two-dimensional marginalised constraints in the α⊥-fσ8 plane for
the analysis of our two examples cases, the Legendre multipoles measured from the dens1
samples (upper panels), and the clustering wedges recovered from the bias2 samples (lower
panel).

In general, the allowed regions for these parameters obtained using the estimates of
C inferred from the different approximate methods (shown by the solid lines) agree well
with those obtained using the covariance matrices from Minerva (indicated by the dotted
lines in all panels). However, most cases exhibit small deviations, either slightly under- or
over-estimating the statistical uncertainties. We find that, for all samples and clustering
statistics, the mean parameter values inferred using approximate methods are in excellent
agreement with the ones from the corresponding N-body analysis, showing differences that
are much smaller than their associated statistical errors. The parameter uncertainties
recovered using covariances from the approximate methods show differences with respect
to the N-body constraints ranging between 0.3% and 8% for the low mass samples, while
most of the results agree within 5% with the N-body results, and between 0.1% and 20%
for the high-mass cut, while most of the results agree within 10% with the N-body results.
For the comparison of the obtained parameter uncertainties it is important to point out
that in our companion paper Blot et al. (2019) estimate that the statistical limit of our
parameter estimation is about 4% to 5%. Fig. 3.8 shows the ratios of the marginalised
parameter errors drawn from the analysis with the different approximate methods with
respect to the N-body results. We observe that for the samples corresponding to the first
mass cut, all methods reproduce the N-body errors within 10% for all parameters, and
in most cases within 5% corresponding to the statistical limit of our analysis. For the
samples corresponding to the second mass cut also most methods reproduce the N-body
errors within 10% with exception of the Peak Patch mass-matched and the Halogen
bias-matched samples. This might be due to the fact that these two samples have 15-20%
less halos than the corresponding N-body sample.

In order to evaluate the parameter errors, we use the volume of the allowed region in
the three-dimensional parameter space of α‖, α⊥ and fσ8, which can be estimated as

V =
√

det Cov(α‖, α⊥, fσ8) (3.22)

where det Cov(α‖, α⊥, fσ8) is the determinant of the parameter covariance matrix. For
a Gaussian posterior distribution, the allowed volume is proportional to the volume en-
closed by the three-dimensional 68% C.L. contour. This definition is similar to the two-
dimensional Dark Energy Task Force figure of merit of the dark-energy equation-of-state



62 3. Covariance Matrix Comparison

IC
E-

CO
LA

 m
as

s1

IC
E-

CO
LA

 d
en

s1

IC
E-

CO
LA

 b
ia

s1

PI
NO

CC
HI

O 
m

as
s1

PI
NO

CC
HI

O 
de

ns
1

PI
NO

CC
HI

O 
bi

as
1

HA
LO

GE
N 

m
as

s1
, d

en
s1

, b
ia

s1

PA
TC

HY
 m

as
s1

Ga
us

sia
n 

m
as

s1

lo
gn

or
m

al
 m

as
s1

0.8

1.0

1.2

1.0

1.2

1.0

1.2

/
,N

bo
dy

/
,N

bo
dy

f
8/

f
8,

N
bo

dy sample1 multipoles

IC
E-

CO
LA

 m
as

s2
IC

E-
CO

LA
 d

en
s2

, b
ia

s2
PI

NO
CC

HI
O 

m
as

s2
PI

NO
CC

HI
O 

de
ns

2
PI

NO
CC

HI
O 

bi
as

2
Pe

ak
 P

at
ch

 m
as

s2
Pe

ak
 P

at
ch

 d
en

s2
, b

ia
s2

HA
LO

GE
N 

m
as

s2
, d

en
s2

HA
LO

GE
N 

bi
as

2
PA

TC
HY

 m
as

s2
Ga

us
sia

n 
m

as
s2

lo
gn

or
m

al
 m

as
s2

0.8

1.0

1.2

1.0

1.2

1.0

1.2

/
,N

bo
dy

/
,N

bo
dy

f
8/

f
8,

N
bo

dy sample2 multipoles

IC
E
-C

O
LA

 m
a
ss

1

IC
E
-C

O
LA

 d
e
n
s1

IC
E
-C

O
LA

 b
ia

s1

P
IN

O
C

C
H

IO
 m

a
ss

1

P
IN

O
C

C
H

IO
 d

e
n
s1

P
IN

O
C

C
H

IO
 b

ia
s1

H
A

LO
G

E
N

 m
a
ss

1
, 

d
e
n
s1

, 
b
ia

s1

P
A

T
C

H
Y
 m

a
ss

1

G
a
u
ss

ia
n
 m

a
ss

1

lo
g
n
o
rm

a
l 
m

a
ss

10.8

1.0

1.2

1.0

1.2

1.0

1.2

σ
α
/σ

α
,N
−

b
od

y
σ
α
/σ

α
,N
−

b
od

y
σ

fσ
8
/σ

fσ
8,

N
−

b
od

y sample1wedges

IC
E
-C

O
LA

 m
a
ss

2

IC
E
-C

O
LA

 d
e
n
s2

, 
b
ia

s2

P
IN

O
C

C
H

IO
 m

a
ss

2

P
IN

O
C

C
H

IO
 d

e
n
s2

P
IN

O
C

C
H

IO
 b

ia
s2

P
e
a
k 

P
a
tc

h
 m

a
ss

2

P
e
a
k 

P
a
tc

h
 d

e
n
s2

, 
b
ia

s2

H
A

LO
G

E
N

 m
a
ss

2
, 

d
e
n
s2

H
A

LO
G

E
N

 b
ia

s2

P
A

T
C

H
Y
 m

a
ss

2

G
a
u
ss

ia
n
 m

a
ss

2

lo
g
n
o
rm

a
l 
m

a
ss

20.8

1.0

1.2

1.0

1.2

1.0

1.2

σ
α
/σ

α
,N
−

b
od

y
σ
α
/σ

α
,N
−

b
od

y
σ

fσ
8
/σ

fσ
8,

N
−

b
od

y sample2wedges

Figure 3.8: Comparison of the marginalised error on the parameters α‖, α⊥ and fσ8 which are
obtained from the analysis using the covariance matrices from the approximate methods to the
corresponding ones from the N-body catalogues. The light grey band indicates a range of ±10%
deviation from a ratio equal to 1. The different panels show the results obtained from the analysis
of upper, left panel : the multipoles drawn from the samples corresponding to the first N-body
parent sample with the lower mass cut, upper, right panel : the multipoles drawn from the samples
corresponding to the second N-body parent sample with the higher mass cut, lower, left panel :
the wedges drawn from the samples corresponding to the first N-body sample, lower, right panel :
the wedges drawn from the samples corresponding to the second N-body sample.
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Figure 3.9: Comparison of the volume ratios between the allowed statistical volumes obtained
from the analysis using the covariance matrices from the approximate methods to the correspond-
ing ones from the N-body catalogues. The light grey band indicates a range of ±10% deviation
from a ratio equal to 1. The different panels show the results obtained from the analysis of
upper, left panel : the multipoles drawn from the samples corresponding to the first N-body par-
ent sample with the lower mass cut, upper, right panel : the multipoles drawn from the samples
corresponding to the second N-body parent sample with the higher mass cut, lower, left panel :
the wedges drawn from the samples corresponding to the first N-body sample, lower, right panel :
the wedges drawn from the samples corresponding to the second N-body sample.
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parameters w0–wa (Wang, 2008; Albrecht et al., 2006), but without taking the inverse of
the allowed volume. The ratios of the allowed volumes obtained from the analysis with
the different approximate methods and the N-body results are shown in Fig. 3.9. Here the
differences in the performance of the methods become clearer. For the first mass cut we
notice that most approximate methods can reproduce the N-body volume at a 10% level,
with the exception of Halogen and the Gaussian and log-normal models, which lead to
slightly worse results and show 10%–15% agreement. For the second mass cut we find over-
all larger differences between the samples. The results from the majority of the samples
agree within 10% with the N-body results, the rest shows differences of 10%–15%, and for
the Peak Patch mass2 and Halogen bias2 samples differences of up to 40%. For both
mass cuts, we find significant differences in the performances of samples drawn from the
same approximate method but using different selection criteria.

3.11 Discussion

In this section we discuss our results on the allowed parameter space volumes obtained
in Section 3.10. Fig. 3.9 clearly shows that there are significant differences in the volume
ratios between samples drawn from the same approximate method when applying different
selection criteria to define the halo catalogues. Matching the parent samples from Minerva
by mass limit, number density or bias can lead to differences of up to 20% on the obtained
results.

For each approximate method, mass limit, and clustering statistic, we identified the best
selection criteria for matching to the N-body parent samples. As discussed in Section 3.6,
for Patchy, log-normal and the Gaussian model we only have samples characterized by
the same mass cuts as the N-body catalogues. The best cases in decreasing order of the
accuracy with which the results of the N-body covariances are reproduced are:

• Lower mass cut, Legendre multipoles: Patchy (V/VMin = 1.02), Pinocchio bias
matched (V/VMin = 0.97), ICE-COLA mass matched (V/VMin = 0.96), log-normal
(V/VMin = 1.11), Gaussian (V/VMin = 0.88), Halogen mass, density, bias matched
(V/VMin = 0.85)

• Lower mass cut, clustering wedges: Pinocchio bias matched (V/VMin = 1.01),
ICE-COLA mass matched (V/VMin = 0.96), Patchy (V/VMin = 1.07), log-normal
(V/VMin = 1.09), Halogen mass, density, bias matched (V/VMin = 0.87), Gaussian
(V/VMin = 0.87)

• Higher mass cut, Legendre multipoles: ICE-COLA density matched (V/VMin =
0.96), Halogen mass, density matched (V/VMin = 1.04), Peak Patch density,
biased matched (V/VMin = 1.06), Patchy (V/VMin = 0.94), Gaussian (V/VMin =
0.92), Pinocchio density matched (V/VMin = 1.11), log-normal (V/VMin = 1.16)

• Higher mass cut, clustering wedges: Halogen mass, density matched (V/VMin =
1.02), ICE-COLA density matched (V/VMin = 0.97), Peak Patch density, biased
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matched (V/VMin = 1.03), Patchy (V/VMin = 0.91), log-normal (V/VMin = 1.09),
Pinocchio density matched (V/VMin = 1.1), Gaussian (V/VMin = 0.87)

For a better illustration, Fig. 3.10 shows the two-dimensional marginalised constraints
on α⊥ and fσ8 obtained from the Legendre multipoles for the low (upper panels) and high
(lower panels) mass limits. The different panels show the results obtained from the different
approximate methods when the best selection criteria for each case is implemented. The
overall agreement with the results derived from the N-body covariances is better in this
case than when the same definition is applied to all methods.

The best strategy to define the halo samples for a given approximate method is often
different for our two mass limits. For example, considering the results from Pinocchio,
while for our first mass limit the bias-matched halo samples lead to the best agreement
with the constraints inferred from the N-body covariances, for the second mass threshold
the density-matched samples provide a better performance. Focusing on the results from
the multipole analysis, we observe that for the first mass limit Patchy, ICE-COLA and
Pinocchio perform slightly better than the other methods. These methods reproduce the
statistical volume of the allowed parameter regions obtained using the N-body covariances
within 5% while the other methods only reach a 10%-15% agreement. For the second
mass limit ICE-COLA, Halogen and Peak Patch can reproduce the N-body results
within 5%, Patchy and the Gaussian model within 10%, and Pinocchio and the log-
normal model within 15%. It is also interesting to note that the order of performance of
the methods is slightly different for the multipole and the wedges analysis. For example,
the multipole analysis using the Patchy covariance matrix leads to a better than 2%
agreement with the N-body results, whereas the wedge analysis only reaches 7%.

Our analysis is part of a general comparison project of approximate methods involving
also the covariances of power spectrum and bispectrum measurements (Blot et al., 2019;
Colavincenzo et al., 2019). The power spectrum analysis of Blot et al. (2019) is more
closely related to the one presented here, as it is based on the same baseline model of
the two-dimensional power spectrum and explore constraints on the same nuisance and
cosmological parameters. The bispectrum covariance analysis of Colavincenzo et al. (2019)
is different in terms of the model and the parameter constraints included in the comparison.
Both of our companion papers consider the same approximate methods and mass cuts used
here, but focus on the abundance-matched samples. A comparison of the results of the
three studies shows that the differences between the predictive, calibrated and PDF-based
approximate methods are less evident for the correlation function analysis than for the
power spectrum and bispectrum. This can be clearly seen by comparing the variations of
the statistically allowed volumes recovered from the different approximate methods when
applied to the correlation function, power spectrum and bispectrum covariances. Since our
companion papers focus on the density-matched samples, we also show the allowed volumes
only for the “dens” samples in Fig. 3.11. The differences between the approximate methods
are less evident in configuration space, become more evident for the power spectrum and
are strongest for the bispectrum analysis.
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Figure 3.10: Comparison of the marginalised two-dimensional constraints in the α⊥-fσ8 plane
for the multipole analysis using the best choice of matching for each approximate method in-
dividually to the corresponding constraints obtained from the N-body analysis analysis. The
contours correspond to the 68% and 95% confidence levels.Upper panel : Results for the samples
corresponding to the first mass cut. Lower panel : Results for the samples corresponding to the
second mass cut.
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Figure 3.11: Volume ratios between the allowed statistical volumes obtained from the analysis
using the covariance matrices from the approximate methods to the corresponding ones from the
N-body catalogues for the density matched samples. The light grey band indicates a range of
±10% deviation from a ratio equal to 1.

In summary, our results and those of our companion papers indicate that approximate
methods can provide robust covariance matrix estimates for cosmological parameter con-
straints. However, the differences seen between the various recipes, statistics, and selection
criteria considered here highlight the importance of performing detailed tests to find the
best strategy to draw halo samples from any given approximate method.

Supplementary note

After the covariance matrix comparison described here, I carried out a similar analysis for
a further calibrated method called BAM (Bias Assignment Method; Balaguera-Antoĺınez
et al., 2019). The methodology for the performance tests of the covariance matrices es-
timated from BAM halo catalogues is analogous to the one described here. The main
difference is that it focuses on the real-space power spectrum covariance, since redshift-
space distortions were not included yet into BAM. Therefore, only constraints on the
nuisance parameters b1, b2 and γ−3 are compared to the corresponding reference constraints
from the N-body simulations. The BAM covariance matrices reproduce the N-body er-
rors within 5%-10%, which corresponds to the same level of agreement of the approximate
methods considered here. This makes BAM a promising method for the generation of
mocks for covariance matrix estimation. Once redshift-space distortions are included, fur-
ther performance tests would need to follow to compare BAM against N-body simulations
and other approximate methods. A detailed description of the BAM analysis in real space
can be found in Balaguera-Antoĺınez et al. (2020).
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Chapter 4

Minkowski functionals of the
Large-Scale Structure

The previous chapter focused on a key aspect for extracting unbiased information from two-
point correlation function measurements. However, we know that the underlying matter
density field is not simply Gaussian distributed, and therefore two-point statistics cannot
provide a complete description of the large-scale structure of the Universe. The aim of
this chapter is to develop a complementary approach to extract the non-Gaussian, or
equivalently the higher-order, information from the cosmic density field.

Chapter 2 introduced the isodensity Minkowski functionals (MFs) as geometric and
topological descriptors of the cosmic density field that contain compressed higher-order
information (see Section 2.7). Most previous analyses are based on two calculation methods
for the isodensity MFs, Koenderink invariants from differential geometry and Crofton’s
intersection formula from integral geometry (Schmalzing & Buchert, 1997; Schmalzing
et al., 1999a).

An alternative technique for the estimation of the isodensity MFs is to compute these
statistics on triangulated isodensity surfaces constructed from the underlying density field.
Although this approach follows very closely the geometry of the isodensity surfaces, there
have been very few efforts in this direction. Sheth et al. (2003), who first introduced this
idea to large-scale structure analysis, developed a code to construct triangulated surfaces
from fixed lattice cubes. The main cosmological application of their code has been the MF
measurement from mock catalogues with different cosmologies (Sheth, 2004).

Yaryura et al. (2004) and Aragon-Calvo et al. (2010) proposed a more efficient tech-
nique by defining the triangulated surface directly from the Delaunay tessellation of the
galaxy distribution instead of using a regular grid. In three dimensions, the Delaunay tes-
sellation divides up the space into tetrahedra, whose vertices are formed by the points of
the distribution, here the galaxies. It is defined such that the circumsphere of a Delaunay
tetrahedron contains no points from the distribution in its interior. The main advantage
of the Delaunay tessellation compared to a regular grid is its adaptive resolution: high
density regions are automatically resolved with a large number of small tetrahedra, while
low density regions are probed with fewer and larger tetrahedra.
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This first part of the chapter presents MEDUSA, a new implementation of an algo-
rithm to estimate MFs based on the Delaunay tessellation of the three-dimensional galaxy
distribution, and its first application to synthetic galaxy catalogues. MEDUSA is based
on an earlier implementation of the same basic algorithm that was described in Yaryura
et al. (2004). A crucial extension is the implementation of periodic boundary conditions,
which are required for the analysis of density fields from N-body simulations and the correct
comparison of the measurements against theory predictions.

The two main steps of the algorithm, consisting of the construction of the triangulated
isodensity surfaces from the Delaunay tessellation and the estimation of the MFs, are
outlined in Section 4.1. A thorough validation of MEDUSA using a series of test samples
whose MFs can be theoretically predicted follows in Section 4.2. The construction of the
isodensity surface requires the values of the density field at the galaxy positions. In galaxy
catalogues the underlying density field is not known and needs to be reconstructed from the
galaxy distribution itself. Section 4.3 describes the approach implemented for the density
estimation. Having all the steps for the MF measurements implemented and validated, we
apply MEDUSA to the synthetic galaxy catalogues of the Minerva simulations, which were
introduced in Section 3.4. Our main focus lies on three main issues of great importance for
the analysis of the MFs inferred from real galaxy surveys: non-Gaussian features due to
non-linear gravitational evolution (Section 4.4.1), redshift-space distortions (Section 4.4.2),
and Alcock-Paczynski (AP) distortions (Section 4.4.3).

The work presented in these sections has been submitted as “MEDUSA: Minkowski
functionals estimated from Delaunay tessellations of the three-dimensional large-scale struc-
ture” by M. Lippich and A. G. Sánchez to the Monthly Notices of the Royal Astronomical
Society (Lippich & Sánchez, 2020). Sections 4.1 to 4.4 reproduce the corresponding sec-
tions of the paper draft, adapted such that the format and references match the thesis
format.

The second part of this chapter sets the course to extract further information from
the MF measurements in the future. For a standard likelihood analysis (see Section 3.2),
we will need a model for the MFs of the non-Gaussian density field and an estimate for
their covariance. In this context, Section 4.5 describes the covariance matrix of the MF
measurements from the Minerva simulations.

Finally, Section 4.6 presents the novel approach of evolution mapping for MFs, which
can represent the basis to build a model for the MFs of the non-Gaussian density field. The
research presented in this section is planned for submission to a peer-reviewed scientific
journal.

4.1 The MEDUSA code

In real or synthetic galaxy catalogues in general we do not know the underlying continuous
density field. Instead, we have to estimate the isodensity MFs from a discrete three-
dimensional point distribution. For this, we need three main ingredients

(i) an estimate of the density at each point of the distribution,
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Figure 4.1: The three different tetrahedron configurations considered in MEDUSA: (i) all vertices
are the same, either underdense or overdense compared to the density threshold ρth, here shown as
empty circles, (ii) one vertex is different to the others, here shown as filled circle, (iii) two vertices
are underdense and the other two are overdense. The different fillings of the circle indicate the
different densities. The grey area shows the intersection of the triangulated isodensity surface
with the tetrahedron.

(ii) a fast and accurate extraction of the isodensity surfaces based on the point distribu-
tion for any given density threshold,

(iii) the computation of the MFs of the resulting isodensity surface.

These three steps are implemented into our code MEDUSA (Minkowski functionals Es-
timated from DelaUnay teSsellAtion). There are several approaches to estimate densities
based on a discrete set of points. However, the second and third steps only require a set
of points with known densities as an input and are independent of the particular method
used to obtain such values. In the following two subsections, we describe each of the two
steps (ii) and (iii) in detail and come to point (i) in Section 4.3 after testing MEDUSA
extensively on point distributions with known densities.

4.1.1 Extraction of isodensity surfaces

The crucial step for the estimation of the MFs is the extraction of the isodensity surfaces
at a desired threshold from a set of points. For MEDUSA we chose a similar approach
to Sheth et al. (2003), Yaryura et al. (2004) and Aragon-Calvo et al. (2010), and compute
a triangulated isodensity surface directly from a three-dimensional point distribution. We
extend these previous approaches by also including a recipe to account for periodic bound-
ary conditions. Analogously to Yaryura et al. (2004) and Aragon-Calvo et al. (2010), we
perform a Delaunay tessellation on the three-dimensional point distribution, which we use
as the basis for the interpolation of the density field. This approach is simpler than the
regular grid used by Sheth et al. (2003) and automatically provides us with higher reso-
lution in the regions where the density is higher. In the case of point distributions from
boxes with periodic boundary conditions, we add buffer zones around the box that repli-
cate the particles from the opposite sides. MEDUSA assigns a flag to each tetrahedron
resulting from the Delaunay tessellation. This flag depends on how many particles of the
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tetrahedron are inside the box and, if the tetrahedron lies (partially) outside the box, on
its position. The following cases need to be considered:

(i) Tetrahedra that lie completely inside the box.

(ii) Tetrahedra that are partially outside the box and cross one face of the box far from
its edges. Each of these tetrahedra has one copy at the opposite side of the box.

(iii) Tetrahedra that are partially outside and lie close to the edges, but far from the
corners of the box. Each of these tetrahedra has three copies at the three opposite
edges of the box.

(iv) Tetrahedra that are partially outside and lie close to the corners of the box. Each of
these tetrahedra has seven copies at the other seven corners of the box.

(v) For tetrahedra that are located at the corners of the box there is the special case that
the vertices of the tetrahedron are all outside, but the tetrahedron is still partially
inside the box.

(vi) Tetrahedra close to the edges or corners that lie completely outside the box and
are copies of tetrahedra that are completely inside the box, but are neighbours of
tetrahedra that are partially inside.

(vii) Tetrahedra that are completely outside the box and do not belong to the previous
case (vi). They are also copies of tetrahedra that are completely inside the box.

The tetrahedra that belong to the last category (vii) can be discarded. All other tetrahedra
are assigned a flag that takes into account to which category they belong and at which side
of the box they are located, in order to prevent double counting. These flags are used in
the estimation of the MFs as described in Section 4.1.2.

Additionally, all particles are considered as “overdense” or “underdense” depending
on whether their corresponding densities are larger than the density threshold ρth being
considered or not (see Section 2.7.1 for the details on ρth). Given this classification, there
are only three different types of tetrahedron configurations:

(i) All vertices of the tetrahedron are either overdense or underdense.

(ii) One vertex is different to the other three vertices.

(iii) Two vertices are overdense and the other two are underdense.

These three cases are illustrated in Fig. 4.1, where vertices with the same density property,
i.e. underdense or overdense, are shown with circles with the same filling. The isodensity
surface will only intersect tetrahedra of the last two types. This intersection will occur
at the edges between particles with different density properties. The intersection points
of the surface with the tetrahedron edges correspond to the points where the density
matches the threshold ρth, which are obtained by linearly interpolating the densities of the
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two corresponding particles. This is equivalent to assuming a constant density gradient
within the tetrahedron. For case (ii), where one particle is different to the others, we
obtain an intersection triangle. For case (iii), where two particles have the same density
property, we obtain four points of intersection on the edges and the resulting surface can
be decomposed into two triangles. Following this approach, MEDUSA computes the
intersection triangles for all tetrahedra where at least one vertex is different to the others.
These are 12 configurations less to take into account than for cubic lattice intersections as
in Sheth et al. (2003), which makes this step significantly simpler. Once all tetrahedra of
types (ii) and (iii) have been considered, we obtain a triangulated surface representing the
isodensity contour corresponding to ρth.

4.1.2 Minkowski Functionals of a triangulated surface

Since the MFs are additive (see Section 2.7.1), the global MFs of the density distribution
can be obtained by summing over the MFs of the isodensity surfaces enclosing the individ-
ual excursion sets. As described in Sheth et al. (2003), the MFs of a triangulated surface
can be computed in a straightforward way:

1. The surface area S of the triangulated surface is given by the sum over the areas of
all triangles of the surface,

S =
Nt∑
i=1

Si, (4.1)

where Nt is the total number of triangles contributing to the surface.

2. The volume V is the sum over the volumes of all fully enclosed tetrahedra, denoted
with T, and the fraction of the volumes of the intersected tetrahedra that lie within
the surface, denoted with S,

V =

NT∑
i=1

Vi +

NS∑
j=1

Vj. (4.2)

If only one vertex is overdense or underdense, corresponding to case (ii) in Fig. 4.1,
the volume of the tetrahedron defined by this point and the triangle of the isodensity
surface as a base has to be added or subtracted, respectively. If the tetrahedron
contains two overdense vertices, as in case (iii) of Fig. 4.1, the contributing volume
can be split into three tetrahedra.

3. The integrated mean curvature C is obtained by summing over the edges of all
adjacent triangles i and j,

C =
1

2

∑
i,j

`ijφijε (4.3)
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where `ij is the length of the common edge, φij is the angle between the normals, n̂i
and n̂j, of the two triangles,

cosφij = n̂i · n̂j, (4.4)

and the value of ε distinguishes the cases in which the surface is locally convex,
indicated by the value ε = 1, or locally concave, in which case ε = −1.

4. The Euler characteristic χ of a triangulated surface can be determined by

χ = Nt −Ne +Nv, (4.5)

where Nt, Ne and Nv are the total number of triangles, triangle edges and triangle
vertices contained in the surface.

As mentioned in Section 4.1.1, MEDUSA assigns a flag to every tetrahedron depending
on its position in the box and/or the buffer zone. From the tetrahedra that are partially
inside the box, and hence are repeated on its other sides, only those that are closer to the
origin (0,0,0) are taken into account in the sums of equations (4.1)-(4.2), while all other
copies are discarded. The flags that MEDUSA assigns to each tetrahedron ensure that
all triangle edges and vertices from tetrahedra that are partially inside the box are taken
into account in the sums of equations (4.3)-(4.5), and that their contribution is counted
only once.

4.2 Results for test models

In this section we test the performance of MEDUSA by measuring the MFs of point
distributions following known density profiles.

4.2.1 Spherical density distribution

As a first test sample we consider a distribution of points following a spherically-symmetric
Gaussian density profile given by

ρ(r) = ρmax exp

(
− r2

2σ2

)
, (4.6)

where r = |r|. We generated a set of points following this density profile with 3.5 × 105

particles, σ = 0.6 and a maximum radius, rmax = 4.0. The density at each point was
obtained by evaluating the true density profile of equation (4.6) at the corresponding
location. We used MEDUSA to measure the MFs of 20 equispaced density thresholds
from ρ/ρmax = 0.0 to 1.0. The analytical MFs for a sphere are:

(i) S(ρth) = 4πr(ρth)2

(ii) V (ρth) =
4

3
πr(ρth)3
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Figure 4.2: Minkowski Functionals inferred from a set of points following a spherically-symmetric
Gaussian distribution as a function of the normalized density threshold ρ/ρmax. The red circles
correspond to the measurements from MEDUSA using 20 equispaced density thresholds, the
black lines show the analytical predictions.

(iii) C(ρth) = 4πr(ρth)

(iv) χ(ρth) = 2 and hence G = 0

The radius corresponding to a given density threshold, r(ρth), can be obtained by inverting
equation (4.6). A lower density threshold corresponds to a larger radius of the spherical
isodensity surface. Fig. 4.2 shows that the measured MFs are in good agreement with the
analytical predictions. The overall agreement of the measurements of the first three MFs
with the corresponding predictions is significantly better than 1%. The measured genus is
always zero.

In order to test the implementation of periodic boundary conditions, we generated sets
of points following the same spherically symmetric density profile of equation (4.6) but
where the density distributions were cut into two half-spheres located at two opposite faces
of a cubic box, four quarter-spheres located at the center of four opposite edges of the box,
and eight partial spheres located at each corner of the box. Without the implementation
of periodic boundary conditions, the isodensity surface cannot be extracted correctly at
the boundaries of the box, since tetrahedra cannot extend outside it.
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Figure 4.3: Minkowski Functionals of spherical density distributions where the spheres were
cut into two half-spheres located at two opposite faces of a cubic box (red), four quarter-spheres
located at the centres of four opposite edges of the box (blue), and eight partial spheres located at
each corner of the box (green), measured with periodic boundary conditions. The measurements
agree perfectly with the ones obtained from the corresponding unified spheres and their analytical
predictions. All MFs are measured as a function of threshold ρ/ρmax.

Fig. 4.3 shows the agreement between the MFs measured from these three distributions
taking into account periodic boundary conditions and the results obtained from the unified
spherical distribution, for which no periodic boundary conditions are required. The agree-
ment with the analytical predictions is also excellent. These results show that MEDUSA
can correctly account for distributions with periodic boundary conditions. In particular,
an error in the implementation of the periodic boundary conditions leading to a single in-
correctly counted triangle, triangle vertex or triangle edge would result in values of genus
G 6= 0.
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Figure 4.4: Minkowski Functionals for three different ellipsoidal point distributions, oblate, pro-
late, and triaxial, defined by the density profile of equation (4.7) expressed as a function of the
normalized density ρ/ρmax. The lines indicate the corresponding theoretical predictions.

4.2.2 Ellipsoidal density distribution

We now consider as test samples ellipsoidal density distributions given by,

ρ(x, y, z) = ρmax exp

[
−
(
x2

σ2
a

+
y2

σ2
b

+
z2

σ2
c

)]
. (4.7)

We generated three different point distributions corresponding to oblate (σa = σb = 1.0,
σc = 0.4), prolate (σa = σb = 0.4, σc = 1.0), and triaxial (σa = 0.4, σb = 0.7, σc = 1.0)
ellipsoids using the same number of points and density thresholds as for the spherical case.

For the oblate and the prolate case, we compared the measured MFs against analytical
predictions. For the triaxial case no analytical predictions are known for the surface and
the curvature and therefore we computed numerical predictions. As for the case of the
spherical distributions, a lower density threshold corresponds to larger principal axes a, b, c
of the ellipsoid, while conserving the constant axes ratios for all density thresholds, such
that b = a σb

σa
and c = a σc

σa
. The analytical predictions for the MFs are given by:
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(i)

Sobl = 2πa (ρth)2

[
1 +

σ2
c

σa
√
σ2
a − σ2

c

arctanh

(√
1− σ2

c

σ2
a

)]
(4.8)

Spro = 2πa (ρth)2

[
1 +

σ2
c

σa
√
σ2
c − σ2

a

arcsin

(√
1− σ2

a

σ2
c

)]
(4.9)

(ii)

Cobl = 2πa (ρth)

[
σc
σa

+
σa√
σ2
c − σ2

a

arccosh

(
σc
σa

)]
(4.10)

Cpro = 2πa (ρth)

[
σc
σa

+
σa√
σ2
a − σ2

c

arccos

(
σc
σa

)]
(4.11)

(iii) V = 4
3
π a (ρth)3 σbσc

σ2
a

(iv) χ = 2 and hence G = 0

Fig. 4.4 shows that in all cases the measured MFs agree perfectly with the theoretical
predictions. As in the case for the spherical density distribution, the overall agreement of
the measurements of the first three MFs with the corresponding predictions is better than
1%. The measured genus is always exactly zero.

4.2.3 Toroidal density profiles

The point distributions considered in the previous sections have isodensity surfaces without
holes, and therefore their genus is zero for all density thresholds. In order to test the
estimation of the Euler characteristic and the genus, we studied sets of points corresponding
to one or more overlapping toroidal distributions. For the case of one torus, the point
distribution is generated following a density profile

ρ(x, y, z) = ρmax exp

[
−(R−

√
x2 + y2)2 + z2

σ2

]
, (4.12)

where R and r are the major and minor radii of the torus, respectively, and r2 =(
R−

√
x2 + y2

)2

+ z2. The upper panel of Fig. 4.5 shows the measured genus of such

a density distribution, generated with R = 1.1 and σ = 0.9. The upper panels of
Fig. 4.6 show the corresponding triangulated isodensity surfaces obtained by MEDUSA
for ρ/ρmax = 0.225, ρ/ρmax = 0.475 and ρ/ρmax = 0.725. For low density thresholds,
no hole is visible in the isodensity surface and MEDUSA measures G = 0. For density
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Figure 4.5: Genus measurements as a function of the normalized density ρ/ρmax of point dis-
tributions following profiles of one torus (upper panel) and three overlapping tori (lower panel).
The solid lines show the theoretical predictions for each case.

thresholds ρ/ρmax > 0.25 a hole in the center of the isodensity surface becomes visible and
the code correctly recovers G = 1.

We also considered a set of points corresponding to three overlapping tori with R = 1.3
and σ = 0.8, and centred at (1, 0, 0), (−1, 0, 0) and (0, 2, 0), respectively. The lower panel
of Fig. 4.5 shows the genus measured from this density distribution, and the lower panels of
Fig. 4.6 show three characteristic isodensity surfaces at the same thresholds as before. As in
the case of a single torus, for low density thresholds the isodensity surface contains no holes
and the measurement of the genus is G = 0. For a density threshold 0.4 < ρ/ρmax < 0.55
the corresponding isodensity surface shows the hole of the torus whose center is furthest
from the other two and hence the measured genus is G = 1. For a density threshold
ρ/ρmax > 0.55, the isodensity surface contains three holes and we recovered the correct
value G = 3.

4.2.4 Effect of using particles tracing the density field

When estimating MFs, MEDUSA uses the values of the density field directly at the
positions of the points in the sample being analysed. In the test samples considered in
the previous sections, as in numerical simulations or real galaxy surveys, the points trace
the underlying density field. Using their positions as the nodes to interpolate the density
field, as opposed to, e.g. the vertices of a regular grid, has the advantage of automatically
providing a higher resolution in high-density regions. Note however, that the procedure
described in Section 4.1 does not require the points used as the basis of the Delaunay
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ρ/ρmax = 0.225 ρ/ρmax = 0.475 ρ/ρmax = 0.725

Figure 4.6: Isodensity surfaces for three different density thresholds ρ/ρmax = 0.225, ρ/ρmax =
0.475 and ρ/ρmax = 0.725 for density distributions following profiles of one torus (upper panel)
and three overlapping tori (lower panel).
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Figure 4.7: Minkowski Functionals for the spherical density distribution of Section 4.2.1 obtained
using samples with 350 000, 100 000 and 10 000 points that are placed following the density profile
or randomly within the same volume. The genus is not shown as it is consistently zero in all
cases.

tessellation to follow the density field.
As a test, Fig. 4.7 shows the MFs for the same spherical density distribution as in

Section 4.2.1 estimated using sets of particles of different size that are placed following the
density distribution or randomly within the same volume. The computation of the genus
is consistently zero for all considered cases and density thresholds. The remaining three
MFs computed from the 100 000 and 350 000 particles tracing the density field agree with
the analytical predictions at better than 1% level. Even for the case of 10 000 points the
agreement between measurements and analytical predictions is better than 2% on densities
0.1 < ρ/ρmax < 0.8.

For the case of the randomly distributed particles, we obtain a comparable precision
only when using 350 000 particles. For smaller samples, the deviations from the analytical
predictions become significantly larger, particularly for high density thresholds. This com-
parison illustrates the advantage of using particles tracing the density field as the nodes of
the Delaunay tessellation, which provides a better resolution on high-density regions and
allows for a robust determination of all MFs even for sparse samples.
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Figure 4.8: Mean MFs of 100 GRFs, generated with the same linear ΛCDM power spectrum
as the Minerva simulations in a cubic box with length 737 Mpc and smoothed with a Gaussian
kernel with λ = 20 grid units (λ = 28.8 Mpc). We used the densities at 200 000 random points
within the box. The red points show the mean values determined using MEDUSA together with
the standard deviation from 100 realizations. The theoretical predictions are shown as black solid
lines.

4.2.5 Gaussian density field

For a final test of MEDUSA, we computed the MFs of a smoothed Gaussian random
field (GRF), which have known analytical expressions that are sensitive to the power
spectrum of the field, P (k), as described in Section 2.7.2. This case also serves as an
additional validation of the implementation of periodic boundary conditions in our code,
as an incorrect treatment would lead to deviations from the analytical predictions. We
generated 100 realizations of a GRF with the same linear power spectrum as our Minerva
simulations, which were introduced in Section 3.4, at redshift z = 0.57 on a cubic grid with
side length L = 737 Mpc and periodic boundary conditions. The field, f , was smoothed
with a Gaussian kernel

W (x) =
1

(2π)3/2R3
exp

(
− x2

2R2

)
, (4.13)

with a smoothing scale R = 20 grid units (= 28.8 Mpc) and normalized by its standard
deviation, ν = f/σ0, such that it has zero mean, 〈ν〉 = 0, and unit variance, 〈ν2〉 = 1.
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Figure 4.9: Upper panel: estimated densities for the same spherical point distribution of Sec-
tion 4.2.1 plotted against their true values. The densities are estimated using the Gaussian kernel
of equation (4.14) with a smoothing length λ = 0.2 and truncated at a radius rcut = 2λ and
closely follow the convolution of the true density profile with the same kernel, indicated by a
black dashed line. Lower panel: the ratios of the estimated densities and their expected values.
The red lines indicate the column mean and corresponding dispersion.

Since there are grid cells with negative values of ν, it cannot be treated as a density
field and sampled with points. Instead, we follow the approach tested in Section 4.2.4 and
use the values of ν at 200 000 randomly placed points in each box. The resulting mean
interparticle separation is approximately half of the smoothing length, and thus it should
be possible to resolve the full structure of the smoothed density field.

As introduced in Section 2.7.2, the theoretical predictions for the MFs of a smoothed
GRF only depend on the parameter λc which is sensitive to the underlying power spec-
trum. We compute the theoretical predictions according to equations (2.68) to (2.77) using
the linear power spectrum convolved with the kernel of equation 4.13 as input. Fig. 4.8
shows the mean MFs computed with MEDUSA from the 100 realizations of the GRF
and their corresponding theoretical predictions, which are in good agreement. This shows
that MEDUSA can accurately determine MFs of cosmological density fields and that the
periodic boundary conditions are correctly implemented.
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4.3 Density estimation

The procedure to extract isodensity surfaces and estimate MFs described in Section 4.1
requires as input the values of the density at each point of our discrete distribution. In the
test cases of Section 4.2, we used the true values of the underlying density field evaluated
at the position of the points. When analysing N-body simulations or galaxy surveys, these
densities need to be estimated from the point distribution itself. Here, we estimate densities
by applying a Gaussian kernel with a fixed smoothing scale λ,

W (r) =
1

A
exp

(
− r2

2λ2

)
, (4.14)

where r represents the distance between the points. This kernel is truncated at a scale
rcut and the normalization A is defined such that the volume integral of W (r) up to
this maximum scale is equal to one and hence the total mass is conserved. We tested
this approach by applying it to the spherical Gaussian density distribution described in
Section 4.2.1 for which the true underlying density distribution is known. We examined
the impact of using different kernel smoothing lengths and truncation radii. The true
underlying density profile corresponding to each case can be obtained by convolving the
Gaussian density field of equation (4.6), which is truncated at rmax = 4, with the kernel of
equation (4.14).

Fig. 4.9 shows the densities estimated at each point of the spherical Gaussian distribu-
tion of Section 4.2.1 by applying a Gaussian kernel with a smoothing length λ = 0.2 and a
truncation radius of rcut = 2λ, which follow closely the true profile, which is indicated by a
black dashed line. Fig. 4.10 shows the MFs measured using these density estimates and the
corresponding theory predictions computed using the convolved density profile. The mea-
surements match the theory predictions remarkably well, with a similar level of agreement
as for the case in which the true densities were used, which was discussed in Section 4.2.1.
Note that, as the convolution with the Gaussian kernel reduces the maximum densities in
the profile, the highest density threshold considered in this case is ρ/ρmax = 0.875. We
tested the impact of using different values of λ and rcut and found similar results but with
a larger variance.

When this method is applied to realistic point distributions such as galaxy catalogues,
the smoothing length and truncation radius of the kernel need to be adjusted to provide the
necessary smoothing to avoid discreteness effects without erasing too much information.
In principle, steps (ii) and (iii) of the MEDUSA code described in Section 4.1 could be
applied to density estimates obtained using a different approach. Other possibilities include
non-parametric methods in which the densities are derived from the size of the Voronoi
or Delaunay cells (e.g., Schaap & van de Weygaert, 2000). Although these approaches
can better resolve high-density regions due to their varying resolution, we have found that
these density estimates are highly affected by Poisson noise in the low density regions of
sparse samples, and are therefore not optimal for the analysis of real galaxy catalogues. An
additional advantage of using an isotropic Gaussian kernel with a fixed smoothing length
is that it is more convenient to compute theory predictions.
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Figure 4.10: MFs of the same spherical point distribution of Section 4.2.1 but inferred from
density estimates based on a Gaussian kernel with a smoothing length λ = 0.2 and truncated at
a radius rcut = 2λ, expressed as a function of the normalized density ρ/ρmax. The black lines
shows the theoretical predictions corresponding to the convolved density profile.

4.4 Minkowski functionals of the Minerva HOD galaxy

catalogues

4.4.1 Real-space measurements

After validating the performance of MEDUSA for several test cases with different geome-
tries and topologies, we now show the results obtained by applying the code to synthetic
cosmological galaxy samples. We use catalogues derived from the set of 300 N-body sim-
ulations Minerva, which were described in Section 3.4.

To create a synthetic galaxy catalogue, the halos of the snapshot at z = 0.57 were
populated using the halo occupation distribution (HOD) parametrization of Zheng et al.
(2007). The HOD gives the average number N of galaxies in a halo as a function of its
mass M by decomposing it into contributions from central and satellite galaxies, 〈N(M)〉 =
〈Ncen(M)〉 + 〈Nsat(M)〉. This derives from the idea that only halos that already host a
central galaxy can host a further satellite galaxy and that the probability that a halo hosts
a central galaxy can be characterized by a minimum mass.
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Figure 4.11: Isodensity surface of one structure found in the first Minerva HOD galaxy catalogue
at a density threshold of δ = 0.584.
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Figure 4.12: Mean MFs of the 300 Minerva HOD catalogues as a function of the density contrast
δ for the real- and redshift-space galaxy density fields (orange and blue, respectively). The error
bars corresponding to the standard deviation from the 300 realizations are of the size of the
points or smaller and therefore not visible. The densities were estimated with a smoothing length
λ corresponding to the mean interparticle separation and a truncation radius rcut = 3λ.
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In total, the mean occupation function 〈N(M)〉 by Zheng et al. (2007) has five free
parameters, which are fitted such that they best match a specific observation. The position
and velocity of a central galaxy correspond to those of the most-bounded DM particle of
the halo. The position and velocity of a satellite galaxy is randomly assigned from the
other DM particles of the halo. The redshift z = 0.57 corresponds to the mean redshift of
the CMASS sample of the BOSS survey (Alam et al., 2017). Grieb et al. (2016) produced
100 HOD catalogues for the first set of Minerva simulations choosing the HOD parameters
such that the monopole of the mean correlation function from the resulting sample matches
the one measured from the CMASS galaxies. For the remaining 200 Minerva realizations
we generated HOD catalogues with the same HOD parameters (for more details see Grieb
et al. (2016)).1

As a first step for the MF measurements, we estimated the number density, nest, at the
position of each galaxy by smoothing the distribution with a Gaussian kernel as described
in Section 4.3. We used a smoothing length corresponding to the mean interparticle sep-
aration, λ = 19.7 Mpc, close to what was found to be the optimal smoothing length for
BAO reconstruction in the final BOSS analyses (Alam et al., 2017). This smoothing length
is sufficiently large to avoid discreteness effects, but without erasing too much information
on small scales. The truncation radius of the kernel was set to rcut = 3λ, which gives the
highest signal-to-noise. The density contrast at the position of each galaxy was obtained
as δ = nest/n̄− 1, where n̄ is the mean number density.

We computed the MFs on 35 density thresholds equispaced in logarithmic scale around
the mean density contrast δ = 0. Fig. 4.11 shows a section of the isodensity surface
corresponding to the threshold δth = 0.584 viewed from three different angles. This sample
is sparser than the test samples of Section 4.2, which makes the triangles contributing to
the surface more visible than for the toroidal profiles of Fig. 4.6. This structure has a hole
in the center that is visible in panel c), and can then be described by a local genus of 1.

Fig. 4.12 shows the mean global MFs from the 300 Minerva realizations as a function of
δth. In logarithmic scale, the shape of the MFs resembles that of the Gaussian predictions
from Fig. 4.8, but the genus is clearly not symmetric and exhibits different depths for the
two minima.

In order to compare MF measurements to theory predictions, the MF densities are
typically expressed as functions of the volume-filling fraction fV . The advantage of this is
that the MF densities are expected to be invariant under any local monotonic transforma-
tion, if the threshold is adjusted such that that it gives the same volume-filling fraction
(Codis et al., 2013). Fig. 4.13 shows the measured mean MF densities and the correspond-
ing Gaussian predictions as a function of fV . The Gaussian predictions are obtained from
equations (2.68)-(2.72) using the measured mean galaxy power spectrum multiplied by the
Fourier transform of the smoothing kernel. There are clear differences between the mea-
surements and the Gaussian predictions. In particular, the asymmetry of the genus is also
obvious here, with the Gaussian prediction providing a better match to the measurement

1This paragraph is a slightly extended and modified version of the corresponding one in Lippich &
Sánchez (2020).
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Figure 4.13: MF densities for the mean of the 300 Minerva HOD catalogues measured from the
same smoothed galaxy density field in real space as in Fig. 4.12, but plotted as a function of the
volume-filling fraction fV .

at low fV values. The measured power spectrum, which is well in the non-linear regime, is
dominated by the high-density regions. Hence, it is to be expected that the Gaussian pre-
diction derived from it is in better agreement with the measurements at the high-density
end, which corresponds to low fV values.

It is clear that the Gaussian model cannot be used to analyse the MFs of galaxy
catalogues with comparable number density and redshift as our HOD sample. Since the
measurements of the surface area, curvature and, in particular, the genus are sensitive to
the non-Gaussian features of the density field, they contain complementary information to
that of the galaxy power spectrum. We will explore the cosmological information content
of these measurements in detail in upcoming work. In the next sections, we will focus on
two important observational effects that must be taken into account before measuring the
MFs of a real galaxy survey, namely RSD and AP distortions.

4.4.2 Effect of redshift-space distortions

To study the effect of RSD on the MFs, we distorted the positions of the HOD galaxies
by taking into account the component of their peculiar velocities along one Cartesian
axis of the box, which was treated as the line-of-sight direction. Since the total volume
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Figure 4.14: MF densities for the mean of the 300 Minerva HOD catalogues measured from the
same smoothed galaxy density field in real and redshift space as in Fig. 4.12, but plotted as a
function of the volume-filling fraction fV .

and number density are not altered by RSD, we used the same smoothing length as in
Section 4.4.1 to estimate the densities at the distorted galaxy positions. Fig. 4.12 compares
the measurements of the MFs in real and redshift space. The amplitudes of both sets of
measurements are very similar, but the redshift-space MFs appear to be stretched towards
lower and higher densities than δ = 0 compared to the corresponding ones in real-space.

Fig. 4.14 shows the same measurements from Fig. 4.12, but plotted as functions of the
volume-filling fraction, fV . Expressed in this way, the agreement between the MFs in real
and redshift space is significantly improved, with only small deviations in their amplitude.
The surface measurements agree at a 2% level, while the deviations in the curvature and
genus are smaller than 5% (except for the density thresholds where these MFs are close
to zero). RSD do not correspond to a monotonic transformation of the density field.
Nonetheless, on average, the mapping from the real-space density threshold, δrs, to the
corresponding value in redshift space, δzs(δrs), can be well described by matching the values
of fV in the two spaces (although the scatter for the individual densities is large). For this
reason, the global effect of RSD on the MFs of the Minerva HOD galaxy catalogues is small
when these are expressed as functions of fV . However, this result cannot be generalised to
other samples with different number densities or mean redshifts without careful study.

The fact that RSD have only a small effect on the MF densities when expressed in terms
of fV implies that it should be possible to probe the impact of deviations from Gaussianity
or the sensitivity to the underlying cosmology without a detailed characterization of the
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Figure 4.15: MFs for the mean of the 300 Minerva HOD catalogues as a function of the galaxy
density contrast δ for three AP distorted boxes with different fiducial Ω′m : a) the undistorted
box with Ω′m = Ωm, b) Ω′m = 0.20, c) Ω′m = 0.37 .The densities are estimated with a kernel of a
smoothing length λ corresponding to specific the interparticle and a truncation radius rcut = 3λ.

mapping between real and redshift space. However, an accurate modelling of such mapping
would open up the possibility to use the measurements of all four MFs and to extract
constraints on the growth-rate of cosmic structure. We leave such analysis for a future
study.

4.4.3 Effect of Alcock-Paczynski distortions

The MFs measured from a real galaxy survey will depend on the fiducial cosmology assumed
to transform the observed redshifts into comoving distances. Any difference between this
cosmology and the true underlying one gives rise to AP distortions (Alcock & Paczynski
(1979), see Section 2.8.3). The modelling of AP distortions is standard in the analysis of
two-point statistics, but has mostly been ignored for MFs. We mimic the effect of AP
distortions on our Minerva HOD samples by distorting the galaxy positions according to
equations (2.99) to (2.101) by

x′⊥ = q−1
⊥ x⊥, (4.15)

for the two Cartesian axes perpendicular to the line of sight and

x′‖ = q−1
‖ x‖, (4.16)
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for the line-of-sight coordinate. To obtain two different pairs of q⊥ and q‖, we compute
the values of the comoving angular-diameter distance, DM(z), and the Hubble parameter
H(z) using the true underlying matter density of the Minerva simulations and the fiducial
values, D′M(z) and H(z)′, using two different fiducial matter densities Ω′m = 0.20 and
Ω′m = 0.37. We apply the same smoothing procedure as in Section 4.4.1 to the AP distorted
HOD galaxy samples, where we again set the smoothing scale λ as the mean interparticle
separation and rcut = 3λ. As the volumes of the AP distorted boxes change with respect
to the undistorted reference one, also the mean interparticle separations, and therefore the
corresponding values of λ and rcut, are adjusted accordingly.

We used MEDUSA to measure the MFs of the resulting density fields using the same
density thresholds as in Section 4.4.1. Fig. 4.15 shows the mean global MFs as function
of the density contrast δ of the original boxes (green points) and the two distorted cases
(orange and blue points). There are obvious differences in the amplitudes of S, V , and C
for the three different choices of fiducial matter densities. As the topology of the galaxy
density field is not changed by the coordinate transformations of equations (4.15) and
(4.16), the genus is the same in all cases.

As MFs are angle-averaged measurements, they are sensitive to the isotropic AP pa-
rameter q from equation (2.104), which depends on the volume-averaged distance DV(z)
given by the combination of DM(z) and H(z) of equation (2.19). The coordinate trans-
formation associated with AP distortions is described by the Jacobian of the volume and
surface integrals of the MFs. Following from this, the global MFs transform under AP
distortions as

S = q2 S ′, (4.17)

V = q3 V ′, (4.18)

C = q C ′, (4.19)

while the genus remains unaffected. Equivalently, the AP distorted MF densities can be
rescaled by the factors qα, with α = 0, -1, -2, -3 for f ′V , s′, c′, and g′ to obtain the
undistorted MF densities. Fig. 4.16 shows the global MFs rescaled by the corresponding
powers of q, which are in excellent agreement with the undistorted reference measurements.

The correction factors of equations (4.17) – (4.19) must be taken into account before
any model of the MFs can be compared against measurements inferred from galaxy redshift
surveys. They also show that these measurements can be used to constrain q, and hence the
volume-averaged distance DV(z). This was the approach followed by Blake et al. (2014),
who used Gaussian theory predictions to derive constraints on DV(z) from the differential
MFs of WiggleZ. As we discussed in Section 4.4.1, the Gaussian predictions do not give
a correct description of the MFs of our HOD catalogues, indicating that the derivation of
unbiased constraints on DV(z) from real galaxy samples with similar clustering properties
(such as the BOSS CMASS sample) would require a more accurate treatment of the impact
of non-linearities on the MFs.
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Figure 4.16: The same as Fig. 4.15, but now the MFs are rescaled by the corresponding powers
of the isotropic AP parameter q.

4.5 Covariance matrix for Minkowski functionals

One of the main prerequisites for performing a likelihood analysis of MF measurements will
be the estimation of the covariance matrix (see Section 3.2). In this context, this section
shows the measurements of the covariance matrices from the MFs of the Minerva HOD
catalogues.

We compute the covariance matrix by using equation (3.8), where we insert the MF
measurements from the 300 Minerva catalogues in place of the two-point statistics. We
measure the MFs for 10 density thresholds equispaced in logarithmic scale around the
mean density contrast δ = 0, and hence the total size of the resulting covariance matrix is
40x40. Fig. 4.17 shows the resulting correlation matrices, computed from equation 3.15,
for real and redshift space. We note the rich structure of the correlation matrices. The MF
measurements of the high and the low density thresholds are correlated with each other
and there is pronounced cross-correlation between the different MFs, in particular for the
surface, volume and curvature MF.

The real and redshift-space correlation matrices exhibit a very similar structure. Small
differences in the variances σ =

√
Cii of the MF measurements in real and redshift space

are displayed in Fig. 4.18. The redshift-space variances are slightly increased at the low-
and at the high-density ends.
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Figure 4.17: The full correlation matrix inferred from the Minkowski functionals of the 300
Minerva HOD catalogues in real space (left panel) and redshift space (right panel).

In their analysis of the MFs measured from the WiggleZ survey, Blake et al. (2014)
propose to use differential MFs, in order to reduce the covariance between the different
density thresholds and obtain a covariance matrix that is more closely diagonal. Due to
the additivity of the MFs, the differential MFs can be defined as

M ′(δ) =
∆M(δ)

∆δ
, (4.20)

where M is the surface, volume, curvature or genus MF, M = S, V, C,G, and ∆M(δ) is
the difference between the MF measurements of two adjacent density thresholds. Fig. 4.19
shows the correlation matrices computed from the measurements of the differential MFs of
Minerva HOD catalogues in real and redshift space for the same density thresholds as in
the previous Fig. 4.17. The correlations between the different density thresholds appears
to be alleviated compared to the Fig. 4.17, but the correlation matrix still exhibits notable
off-diagonal structure.

The measurements in this section show that we have to take the covariance between the
different density thresholds and the cross-covariance between the surface, volume, curvature
and genus MFs into account for future likelihood analyses. As in the case of the two-point
clustering measurements, also for MF analyses we might rely on the approximate methods
described in Section 3.5, in order to obtain a large enough number of mocks for robust
covariance matrix estimates. We expect that the approximate methods that reproduce
well the bispectrum covariances in Colavincenzo et al. (2019), in particular the predictive
methods, will also be a suitable choice for the estimation of the MF covariance matrix,
since the bispectrum already includes the 3-point order correlations. A thorough validation
of the approximate methods for MF covariances is left for future study.
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Figure 4.18: Comparison of the variance of the Minkowski functionals measurements from the
Minerva HOD catalogues in real and redhsift space
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Figure 4.19: The same as Fig. 4.17, but now for the differential Minkowski functionals.
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4.6 Evolution mapping of Minkowski Functionals

4.6.1 Evolution mapping of two-point statistics and beyond

The theoretical modelling of previous isodensity MF analyses, such as the one by Blake
et al. (2014), is commonly based on the predictions for a Gaussian density field of equa-
tions (2.68) to (2.77). However, in the MF measurements from the Minerva simulations
we found clear deviations from the Gaussian case. Hence, for a likelihood analysis of MF
measurements from real galaxy catalogues of comparable or better quality, we need a model
for the MFs valid for the non-linear and thus non-Gaussian density field.

A possible strategy is to implement the analytical models for the MFs of weakly non-
Gaussian fields that have been derived in the recent years (Pogosyan et al., 2009; Matsub-
ara, 2010; Gay et al., 2012; Codis et al., 2013; Matsubara & Kuriki, 2020; Matsubara et al.,
2020). Their application to large-scale structure analysis has practically not been explored
yet, and it will be interesting to test these predictions for density fields in the highly non-
linear regime and to study their dependence on specific cosmological parameters. We leave
this approach for future research.

An alternative for predicting the MFs of non-linear density fields is to design a suit-
able emulator based on simulations. Several emulators for the non-linear power spectrum
have been built, such as the CosmicEmu (Lawrence et al., 2010; Heitmann et al., 2014;
Casarini et al., 2016) and the EuclidEmulator (Euclid Collaboration et al., 2019). They
were constructed by first performing a set of N-body simulations that sample a specific
cosmological parameter space in a given redshift range, and by finally incorporating an
interpolation scheme to obtain predictions for the non-linear power spectrum for any pa-
rameter combination in the sampled space. The limitations of such emulators are that their
predictions might not be valid for different cosmological parameter spaces and arbitrary
redshifts.

To alleviate the limitations, Sánchez et al. (in prep.) recently developed a novel ap-
proach to construct emulators for the non-linear power spectrum for general cosmological
parameter spaces and redshift ranges. The underlying idea is based on the fact that the
cosmological parameters can be classified according to their impact on the linear matter
power spectrum into shape and evolution parameters. The shape parameters, Θs, define
the shape of the linear theory power spectrum. These are, for example, the physical den-
sities (see Section 2.1.1) of baryons ωb, cold dark matter ωc, or the spectral index ns,

Θs = (ωb, ωc, ns, . . . ) . (4.21)

The evolution parameters, Θe, determine the amplitude of the linear power spectrum
at a given redshift z. This group of parameters consists of, for example, the scalar spectral
amplitude As, the curvature density ωK , the dark energy density ωDE, and dark energy
equation-of-state parameter wDE, which can either be constant or evolving with the scale
factor a (c.f. equation (2.14)),

Θe = (As, ωK , ωDE,wDE(a), . . . ) . (4.22)
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The impact of the evolution parameters can be completely characterized by σ12(z,Θe),
the rms linear perturbation theory variance in spheres of radius r = 12 Mpc (see equa-
tion (2.42), and also Sánchez, 2020). The linear power spectrum for a given set of shape
parameters Θs and evolution parameters Θe at a redshift z can then be written as

PL(k|z,Θs,Θe) = PL (k|Θs, σ12 (z,Θe)) . (4.23)

Note that the traditional σ8 is not a suitable choice, since it depends on h, which is a
combination of shape and evolution parameters.

Based on equation 4.23, power spectra defined by the same set of shape parameters and
different evolution parameters are the same if the corresponding values of σ12 are identical.
At the linear level, the time evolution of these power spectra can then be mapped from
one to the others by matching the redshifts that correspond to the same values of σ12.

To validate this approach Sánchez et al. (in prep.) constructed a set of simulations with
eight different input cosmologies, which are characterized by the same shape parameters
and different evolution parameters that lead to the same value of σ12 at redshift z = 0.
These simulations will be described in more detail in the following Section 4.6.2. The left
panel of Fig. 4.20 shows the linear matter power spectra for these eight different cosmologies
at five redshifts that are chosen such that the σ12(z) values of each case match the σ12(z)
values of the reference cosmology at z ∈ {2.0, 1.0, 0.57, 0.3, 0.0}. As expected, the linear
power spectra all perfectly agree. Note that they use Mpc units and not the traditional
units h−1Mpc, which would lead to changes in the power spectrum shape for cosmologies
with different h values.

Furthermore, Sánchez et al. (in prep.) show that this approach can be extended to the
non-linear power spectrum with high accuracy. The right panel of Fig. 4.20 displays the
non-linear matter power spectra measured from the simulations with these eight different
input cosmologies (models) at the same redshifts as the left panel. The agreement of
these measurements is remarkable. For the three lower σ12 values corresponding to higher
redshifts the deviations compared to the measurements from the reference case are less
than 1%. For the second-highest and highest σ12 values slightly larger deviations of up to
4% arise for some of the models at scales much larger than those currently used by power
spectrum analyses.

This means that from a single set of simulations with one input cosmology, the redshift
evolution for various non-linear power spectra with different evolution parameters can be
predicted, also for non-ΛCDM models. Therefore, the evolution mapping is a promising
approach for the construction of emulators that are valid for a wide range of cosmologies
and redshifts.

The aim of this section is to test if this approach can be extended to the MFs. In
particular, we test if the impact of the evolution parameters on the MFs can also be com-
pletely characterized by σ12(z,Θe). This is related to the question whether the evolution
mapping approach is also valid for higher-order correlations.
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Figure 4.20: Redshift evolution of the linear matter power spectra (left panel) and the non-linear
matter power spectra (right-panel) from the Columbus simulations with eight different input
cosmologies characterized by equal shape parameters, but different evolution parameters (more
details in Section 4.6.2). Each of the five redshifts for each cosmology is chosen such that it gives
the same value of σ12 as the reference cosmology at z ∈ {2.0, 1.0, 0.57, 0.3, 0.0}. Image credit:
Sánchez et al. (in prep.)

4.6.2 Columbus simulations and halo catalogues

The setup for our analysis is the same as in Sánchez et al. (in prep.). It is based on
the Columbus simulations, a set of “fixed-paired” N-body simulations with eight different
cosmologies. The name “fixed-paired” derives from the fact that the initial realizations
were generated in pairs by fixing the amplitudes of the initial Fourier modes to a specific
power spectrum, and with the initial modes exactly out of phase. Angulo & Pontzen
(2016) proposed this “fixed-paired” technique to reduce the variance caused by the sparse
sampling of modes in simulations. They showed that one pair of fixed simulations can
correctly reproduce the average dark matter power spectrum from an ensemble of 300
simulations that were generated with the standard Gaussian random initial conditions.
Therefore, this technique is ideal for exploring the cosmological parameter space with
simulations.

Table 4.1: The cosmological parameters for the reference Columbus simulations.

ωb ωc h ns ωK ωΛ wDE

0.022445 0.120567 0.67 0.96 0 0.305887 -1

The eight different input cosmologies are chosen such that they have the same shape
parameters and the same value of σ12 at redshift z = 0, σ12(z = 0) = 0.825. The first
cosmology corresponds to a standard flat ΛCDM model close to the Planck cosmology
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Table 4.2: The cosmological parameters that define the different eight input cosmologies of the
Columbus simulations and the redshifts of the five snapshots for each cosmology that yield the
same σ12(z) as the reference simulation (model 0).

Model Cosmology
z0 : z1 : z2 : z3 : z4 :

σ12(z) = 0.343 σ12(z) = 0.499 σ12(z) = 0.611 σ12(z) = 0.703 σ12(z) = 0.825
0 Reference ΛCDM

2.000 1.000 0.570 0.300 0.00
from table 4.1.

1 ΛCDM, h = 0.55. 1.761 0.859 0.480 0.248 0.00

2 ΛCDM, h = 0.79. 2.231 1.137 0.659 0.352 0.00

3 wCDM, wDE = −0.85. 2.100 1.044 0.590 0.307 0.00

4 wCDM, wDE = −1.15. 1.923 0.964 0.553 0.293 0.00

5 Dynamic DE,
1.973 0.990 0.566 0.299 0.00

w0 = −1,wa = −0.2.
6 Dynamic DE,

2.031 1.011 0.574 0.301 0.00
w0 = −1,wa = 0.2.

7 curved ΛCDM,
1.938 0.978 0.561 0.297 0.00

ΩK = −0.05.

from the Planck Collaboration et al. (2020, c.f. Section 2.1.2) and is denoted by “model 0”
as in Fig. 4.20. The parameter values for this reference cosmology are listed in table 4.1.
Note that we express the energy densities as the physical densities (see Section 2.1.1),
which do not depend on the value of h, such that we can classify shape and evolution
parameters as described in the previous section. For each case of the remaining seven
cosmologies (model 1-7), the value of one evolution parameter is changed compared to the
reference cosmology. There are two cosmologies with different h values (model 1 & 2), two
cosmologies with a different dark energy equation-of-state parameter wDE (model 3 & 4),
two dynamic dark energy models with the parametrization of equation (2.14) with different
values for wa (model 5 & 6), and finally one cosmology with non-zero curvature (model
7). These models do not correspond to cosmologies allowed by present-day observations,
but are suitable models for our tests. The parameters that are different for the considered
cases compared to the reference cosmology can be found in the column “Cosmology” in
table 4.2.

For each of these cosmologies, two realizations were generated according to the “fixed-
paired” technique. The initial density fields were generated with 2LPT at redshift zini = 99
using the linear power spectra of the different cosmologies computed by CAMB (Lewis
et al., 2000, c.f. Section 2.4) as input. Each realization simulates 15003 dark-matter
particles in a cubic box of side length L = 1492.5 Mpc, corresponding to 1000h−1 Mpc
for the reference cosmology, with periodic boundary conditions. The simulations were
performed using a modified version of GADGET-2 (Springel, 2005, c.f. Section 2.6) that
includes the background evolution for dynamic dark energy models. For the simulations
of the reference cosmology, the positions and velocities of the evolved DM particles were
stored in five snapshots corresponding to z0 = 2.0, z1 = 1.0, z2 = 0.57, z3 = 0.3 z4 = 0.0.
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Figure 4.21: Mean MFs measured for the halo samples from the eight pairs of the Columbus
simulations with different cosmologies (model 0–7) at z = 0 as function of the density contrast δ.
The error bars corresponding for each case to the standard deviation from the pair of realizations
are of the size of the points or smaller and therefore not visible. The densities were estimated
with a smoothing length λ corresponding to the mean interparticle separation of the model 0 halo
samples.

For the simulations of the other cosmologies, the redshifts of the snapshots were chosen
such that they have the same value of σ12(z) as the one of the reference cosmology. The
values of σ12(z) and the corresponding redshifts of the snapshots are listed in table 4.2.

Halos were identified with the Rockstar halo finder (Behroozi et al., 2013), which is an
improved variant of a FoF halo finder. Rockstar builds a hierarchy of FoF subgroups by
adaptively reducing the six-dimensional linking length, which also takes the velocities of the
particles into account. In that way it can better resolve the substructure compared to other
halo finders and identify the halos consistently across the time-steps of the simulations.
Here, we consider all halos with masses above 1013 M�. More details on the Columbus
simulations will be published soon by Sánchez et al. (in prep.).
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Figure 4.22: Ratios of the mean MF measurements from the halo samples of the cosmologies 1–7
defined in 4.2 with respect to the ones from the reference cosmology 0 for the snapshots corre-
sponding to low, intermediate and high σ12 values as defined in Section 4.6.2. The light grey
bands indicate a range of ±2% deviation for the volume, surface and curvature, and of ±5% for
the genus.
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4.6.3 The dependence of the Minkowski functionals on the cos-
mological evolution parameters

To test the evolution mapping approach for the MFs, we apply MEDUSA to the halo
samples from the five snapshots of the Columbus simulations. We use a halo mass cut of
1013 M�, which yields roughly the same halo number density for all catalogues inferred
from one snapshot defined by z0,...,4 in table 4.2. For the density estimation at the halo
positions, we smooth the distribution with a Gaussian kernel as described in Section 4.3.
We apply a smoothing length λ corresponding to the mean interparticle separation in
the pair of reference halo samples (model 0) for all samples of one snapshot z0,...,4, and a
truncation radius rcut = 3λ.

Analogous to Section 4.4.1, we compute the MFs on 35 density thresholds equispaced
in logarithmic scale around the mean density contrast δ = 0. Fig. 4.21 shows the mean
MF measurements from the halo samples of the eight pairs of the Columbus simulations
(model 0– 7) for the snapshot corresponding to z4 = 0. No differences between the mea-
surements from the different cases are visible. We note, that we again find the clear
non-Gaussian signature in the asymmetry of the genus. For the other snapshots, we find
very similar results and therefore do not show them here.

The differences between the models can be seen in Fig. 4.22, which displays the ratios
of the measurements for models 1–7 with respect to the reference ones for model 0 in
three panels corresponding to σ12(z) = 0.323, σ12(z) = 0.611 and σ12(z) = 0.825. For all
snapshots z0,...,4, we find that in the density range of −0.6 ≤ δ ≤ 3.0 the overall agreement
with the reference measurement is better than 2% for the surface, volume and curvature.
For the genus, the differences are in the 5% range, since its measurements are noisier than
the ones of the other MFs. The noise in all measurements increases for lower σ12 values
due to the lower number density of the corresponding halo samples. We note that the
measurements from the different models are more similar for the lower σ12 values. The
largest differences appear for the cosmologies with different h values (model 1 & 2) at
σ12 = 0.825. This behaviour is analogous to the measurements of the non-linear matter
power spectrum by Sánchez et al. (in prep.).

Our results show that the impact of the evolution parameters on the MFs can be
characterized with high accuracy by σ12 and hence imply that the evolution mapping
equation (4.23) can be transferred to the MFs as

M(δ|z,Θs,Θe) ≈M (δ|Θs, σ12 (z,Θe)) . (4.24)

This relation can be of great use for building a simulation-based model for the MFs
of non-linear density fields. It allows us to describe the dependence of the MFs on the
evolution parameters based on σ12 and to explore large parameter spaces starting from a
single set of shape parameters.

In upcoming studies, we intend to analyse the mapping of the MFs between different
redshifts in more detail and to examine the impact of bias, since here we have focused on
halo samples defined with the same mass threshold. Finally, our results suggest that the
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evolution mapping approach is valid for higher N -point statistics. It would be interesting
to further confirm this approach in a similar analysis of the bispectrum.



Chapter 5

Summary and Outlook

The large-scale structure traced by galaxies carries a wealth of cosmological information.
Extracting this information is a challenging endeavour involving many different compo-
nents. This thesis examined two useful tools for the statistical analysis of the large-scale
galaxy clustering: covariance matrices and Minkowski functionals.

First, we considered the covariance matrices of anisotropic two-point clustering mea-
surements in configuration space. Chapter 3 presented an extensive comparison of the
covariance matrix estimates from several approximate methods. We included seven ap-
proximate methods from three broad categories: predictive methods (ICE-COLA, Peak
Patch, and Pinocchio), calibrated methods (Halogen and Patchy), and recipes as-
suming specific shapes of the density probability distribution function (log-normal and
Gaussian density fields).

For the predictive and calibrated methods, we generated sets of 300 halo catalogues,
matching the initial conditions of Minerva, our reference N-body simulations. Furthermore,
we produced a set of 1000 log-normal catalogues with the same number density and mean
correlation function as the N-body simulations, and computed the theoretical prediction for
the Gaussian covariance matrix. We defined two halo samples from the Minerva simulations
with the lowest halo mass corresponding to 42 and 100 dark matter particles, respectively.
We constructed equivalent samples from the approximate mocks by matching the mass
threshold, number density and clustering amplitude of the parent samples from the N-
body simulations.

Our comparison focused on the performance of the covariance matrices estimated from
the approximate halo samples at inferring cosmological parameters. We constructed syn-
thetic clustering measurements based on the theoretical model for the non-linear power
spectrum that was used in recent LSS analyses (Sánchez et al., 2017; Grieb et al., 2017;
Salazar-Albornoz et al., 2017; Hou et al., 2018). Τhen, we fitted these synthetic data with
the same baseline model, using the covariances from the different methods, and analysed
the obtained parameter constraints on the AP parameters α‖, α⊥ and the growth rate fσ8.

The mean parameter values obtained from all these fits agree all perfectly with the N-
body results. The marginalised parameter errors reproduce those from the N-body analysis
within the expected statistical uncertainty of 5% for the lower mass cut and 10% for the
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higher mass cut. The allowed statistical volumes in the three-dimensional parameter space
of α‖, α⊥, and fσ8 showed differences of up to 20% for the halo samples based on the
same approximate method but different selection criteria, i.e. by mass, number density, or
bias matching. Therefore, we selected for each case the matching scheme that yielded the
closest agreement with the N-body results. Finally, we found that the allowed statistical
volumes from the best-matched halo samples agree with the N-body results mostly within
10%, with no method performing significantly better than the others.

Our main conclusion from the covariance matrix comparison are:

(i) Due to their similar performance, there is no preference for a specific approximate
method for the covariance estimates of two-point correlation function measurements.

(ii) The decisive criterion for choosing a particular approximate method might be the
computational cost. Although the calibrated methods are computationally less ex-
pensive than the predictive methods, it has to be taken into account that also the
calibration to N-body simulations can be challenging and time-consuming. In this
context, it is noteworthy that the simple Gaussian prediction performs similar to the
other approximate methods.

Chapter 4 was devoted to the Minkowski functionals as geometrical and topological
descriptors of the galaxy density field. We developed MEDUSA, a code for the accurate
estimation of isodensity Minkowski functionals from three-dimensional point distributions.
MEDUSA performs three main steps: First, the density values at every point in the input
sample are estimated using a Gaussian kernel with a fixed smoothing length. This step
can also be skipped if the densities are already known, or adapted to a different recipe
for density estimation. Secondly, triangulated isodensity surfaces are constructed from the
Delaunay tessellation of the input points. MEDUSA selects the tetrahedra from the Delau-
nay tessellation that contain vertices with densities above and below a chosen threshold.
Then it finds the intersection of the isodensity surface by linearly interpolating the density
between those vertices. The third step is the computation of the four Minkowski func-
tionals, volume, surface area, integrated mean curvature and Euler characteristic, on the
triangulated surface by summing over all contributions from the tetrahedra and triangles.
MEDUSA is a refined version of the algorithm by Yaryura et al. (2004), which can also
account for periodic boundary conditions.

We tested MEDUSA for several point samples with different geometrical and topolog-
ical properties and known densities. We applied MEDUSA to spherical, ellipsoidal and
toroidal density distributions and computed the corresponding theoretical predictions for
the Minkowski functionals. We also included different spherical distributions intersecting
the edges of a box with periodic boundary conditions to our tests. The estimated volume,
surface area and extrinsic curvature agreed significantly better than one per cent with the
theoretical predictions for all cases. The Euler characteristic, and equivalently the genus,
were always computed exactly. Also, we generated 100 Gaussian random fields with the
linear power spectrum from the Minerva simulations as input and periodic boundary con-
ditions, since they have known analytical predictions for the Minkowski functionals, which
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are sensitive to the power spectrum. We found that the Minkowski functionals estimated
by MEDUSA agree well with the theoretical predictions.

After the validation tests, we applied MEDUSA to the 300 HOD galaxy catalogues
from the Minerva simulations at z = 0.57. For the density estimation, we used a smooth-
ing length matching the mean inter-particle separation of the sample. We computed the
Minkowski functionals of the HOD catalogues as functions of the density contrast δ using
MEDUSA. We also expressed the resulting measurements as functions of the volume-filling
fraction fV .

Our analysis focused on three aspects crucial for the Minkowski functional measure-
ments of real galaxy redshift surveys: non-Gaussian signatures due to non-linear gravita-
tional evolution, redshift-space distortions (RSD), and Alcock-Paczynski (AP) distortions.
We found non-Gaussian signatures in the measured Minkowski functionals, in particular,
the asymmetric genus. The measurements of the Minkoswki functionals in redshift space
were affected by RSD. However, when expressed as a function of fV , the impact of RSD
was significantly reduced. AP distortions only changed the measured volume, surface area,
and curvature. The topology of the density field should not be affected by AP distortions.
In agreement with this expectation, we found that the Euler characteristic and hence the
genus remained unchanged. We could account for the AP distortions by rescaling the
Minkowski functionals by the corresponding powers of the isotropic AP parameter q.

As the next point, we computed the covariance matrices for the Minkowski func-
tional measurements from the Minerva HOD catalogues. We found significant correla-
tions between different density thresholds and between the different Minkowski functionals.
The covariance between the density thresholds could be reduced by using the differential
Minkowski functionals introduced by Blake et al. (2014).

Finally, we tested the novel approach dubbed evolution mapping by Sánchez et al.
(in prep.) to study the cosmology dependence of the Minkowski functionals. The under-
lying idea is to classify the cosmological parameters into shape and evolution parameters
according to their effect on the linear power spectrum, and to characterize the impact of
the evolution parameters by σ12, the linear-theory rms mass fluctuation in spheres of radius
12 Mpc. We applied MEDUSA to the halo catalogues from five snapshots of the Colum-
bus simulations, a set of “paired-fixed” simulations with eight different input cosmologies.
They were constructed such that they have the same shape parameters and the same value
of σ12 irrespective of their redshifts, but different evolution parameters. We found that
the Minkowski functionals from the different cosmologies overall agree within 5% for all
snapshots corresponding to different redshifts.

Our main conclusion from the analysis of the Minkowski functionals are:

(i) Since the measured Minkowski functionals are sensitive to deviations from Gaussian-
ity, and therefore encode information on higher-order correlations, they are promising
tools to study the non-linear galaxy density field.

(ii) Expressing the Minkowski functionals as a function of fV presents an opportunity
to probe the deviations from Gaussianity in redshift space even without a detailed
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model of the RSD. However, modelling the mapping between the real- and redshift-
space densities would allow us to extract information on the growth rate of cosmic
structure from Minkowski functionals.

(iii) As the impact of AP distortions on the Minkowski functionals can be described by
the isotropic AP parameter q, the directly related volume-averaged distance DV(z)
can be constrained.

(iv) The covariance matrix of the Minkowski functionals is essential for future likelihood
analyses due to its significant off-diagonal structure. Using the differential Minkowski
functionals can be beneficial because the covariance between the density thresholds
is alleviated.

(v) The impact of the evolution parameters on the Minkowski functionals can be char-
acterized to high accuracy by σ12. Therefore, the evolution mapping approach can
be a good starting point for building a simulation-based model for the Minkowski
functionals of non-linear density fields.

The findings in this thesis lead to several interesting questions for future research. For
the covariance matrices, it will be useful to include the effect of the survey geometry in
further studies, to assess the impact of applying approximate methods to the analysis
of real galaxy surveys. So far, the considered approximate methods have neglected neu-
trino effects. For the analysis of future clustering measurements, it might be necessary
to incorporate massive neutrinos. The likelihood-based analysis of Minkowski functional
measurements will also require robust covariance matrix estimates. We expect that the
predictive methods, which accurately reproduce the bispectrum covariances in Colavin-
cenzo et al. (2019), are also suitable for the Minkowski functionals. However, this has to
be confirmed through careful examination.

In upcoming studies, we can explore different avenues for the Minkowski functionals.
An interesting topic is the modelling of the effect of redshift-space distortions since it could
allow us to constrain the growth rate from Minkowski functional measurements. Further,
accurate predictions for the Minkowski functionals of the non-linear galaxy density field
will be crucial for future analysis. We could address this issue by implementing and testing
the analytical models for the Minkowski functionals of weakly non-Gaussian density fields
that were developed in the last years (e.g., Codis et al., 2013; Matsubara & Kuriki, 2020).

In this thesis, we have laid the foundation for an alternative simulation-based approach.
We might exploit the evolution mapping idea and design an emulator for the non-linear
Minkowski functionals in forthcoming studies. This would also open the path to assess-
ing the sensitivity of the Minkowski functionals to specific cosmological parameters. In
this context, it could also be possible to study the effect from massive neutrinos on the
Minkowski functionals. To explore the cosmological implications of Minkowski functional
measurements inferred from real galaxy surveys, will further require to examine and ac-
count for the survey geometry. The final goal of the described future avenues is to advance
the analysis of Minkowski functionals as a powerful complement of the standard two-point
clustering statistics.
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Kitaura, F.-S., Gil-Maŕın, H., Scóccola, C. G., Chuang, C.-H., Müller, V., Yepes, G. &
Prada, F., “Constraining the halo bispectrum in real and redshift space from pertur-
bation theory and non-linear stochastic bias”, 2015, MNRAS, 450, 1836-1845, arXiv:
1407.1236.

http://dx.doi.org/10.1093/mnras/stw797
https://arxiv.org/abs/1509.04685
a
http://dx.doi.org/10.1093/mnras/stx2544
https://arxiv.org/abs/1707.06312
a
http://dx.doi.org/10.1111/j.1365-2966.2008.14358.x
https://arxiv.org/abs/0810.2115
a
http://dx.doi.org/10.1111/j.1365-2966.2004.08353.x
https://arxiv.org/abs/astro-ph/0403501
a
https://arxiv.org/abs/astro-ph/0403501
http://dx.doi.org/10.1093/mnras/227.1.1
http://dx.doi.org/10.1111/j.1365-2966.2011.19962.x
https://arxiv.org/abs/1105.2037
a
https://arxiv.org/abs/1105.2037
https://arxiv.org/abs/astro-ph/9912329
a
http://dx.doi.org/10.1093/mnras/284.1.73
https://arxiv.org/abs/astro-ph/9606133
a
https://arxiv.org/abs/astro-ph/9704028
a
http://dx.doi.org/10.1051/0004-6361:20011063
https://arxiv.org/abs/astro-ph/0105150
a
https://arxiv.org/abs/astro-ph/0105150
http://dx.doi.org/10.1093/mnrasl/slt101
https://arxiv.org/abs/1212.3514
a
http://dx.doi.org/10.1093/mnrasl/slt172
https://arxiv.org/abs/1307.3285
a
https://arxiv.org/abs/1307.3285
http://dx.doi.org/10.1093/mnras/stv645
https://arxiv.org/abs/1407.1236
a
https://arxiv.org/abs/1407.1236


BIBLIOGRAPHY 113
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