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Abstract 

Cell death can be activated either from the biologically uncontrolled process necrosis or via 

regulated cell death (RCD) including apoptosis, necroptosis, pyroptosis, autophagy and 

ferroptosis among others. Ferroptosis is an iron-dependent form of cell death characterized 

by the accumulation of lipid peroxides to lethal level. To date, the mechanisms and signaling 

pathways of this newly characterized form of cell death remains still relatively unknown, 

whether and how ferroptosis is involved in pathological scenarios needs to be clarified. The 

Schick lab recently performed a study to identify genes involved in ferroptosis using an 

unbiased CRISPR activation screen (Kraft et al., 2019). This effort led to the discovery of a 

novel four-pass membrane protein, MS4A15, which protects against ferroptosis strongly and 

specifically. In this thesis, a systematic framework has been designed to discover and 

characterize the molecular mechanisms of MS4A15 in protecting cells from ferroptosis and to 

identify biomarkers of ferroptosis for human degenerative diseases.  

Membrane-spanning 4-domains subfamily A member 15 (MS4A15) is localized to the ER and 

it was immunoprecipitated with calcium related proteins. In Ms4a15-overexpressing mouse 

immortalized fibroblasts (MF Ms4a15 OE), IP3R1 expression level was dramatically 

downregulated, suggesting that calcium homeostasis might be disrupted. In line with these 

results, the MS4A15 Go-Term analysis and GSEA analysis showed a strong correlation 

between MS4A15 and calcium signaling. Further experiments confirmed that MS4A15 

functions independently in the ER to mediate ferroptosis resistance via reducing intracellular 

calcium content, downregulating IP3R and impairing store operated calcium uptake. By 

contrast, MS4A15 induced ER calcium depletion does not cause ER stress. Taken together, 

these evidences provide a crucial link between ferroptosis and calcium flux.  

Calcium is a potent signaling molecule ascribed to diverse cellular processes. MF parental 

control cells with persistent calcium depletion induced by thapsigargin generated less lipid 

ROS and obtained ferroptosis resistance. Interestingly, overexpression of SERCA, which 

transports calcium from the cytosol into the ER store, leads to sensitization of Ms4a15 OE 

cells, emphasizing the importance of intracellular calcium in mediating ferroptosis resistance. 

Polyunsaturated fatty acids containing glycerophospholipids (PUFA-GPs) are essential 

elements as the substrates for lipid peroxidation, which have different unsaturation degrees 

and chain lengths. Lipidomics and metabolomics analysis revealed that, compared with the 

control cells, the Ms4a15 OE show a significant decrease of molecular weight and 

desaturation of PUFA-GPs, as well as an accumulation of saturated fatty acids, 

monounsaturated fatty acids containing glycerophospholipids (MUFA-GPs) and 

plasmalogens. Notably, the MUFAs and plasmalogens increased in Ms4a15 OE cells were 

strongly depleted after RSL3 treatment, indicating the protection role against lipid 
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peroxidation. These results leading us to conclude that sustained depletion of intracellular 

calcium suppressed ferroptosis through promoting fundamental lipid remodeling. Further 

analysis indicates that a branch of calcium genes from the KEGG pathway define a signature 

for driving ferroptosis sensitivity in cancer cells, which may solve the link between calcium 

homeostasis and ferroptosis sensitivity and provide a new strategy for cancer therapeutics. 

Ferroptosis has been proposed to be involved in a large number of diseases; however the 

cumulative implication of ferroptosis in disease is based on cell culture experiments and in 

vivo evidence with mice. Due to a lack of discriminating ferroptosis cell death markers, direct 

demonstration of ferroptosis in human diseases is missing. To isolate potential ferroptosis 

biomarkers, cell surface biotinylation and protein mass spectrometry approaches were 

performed from cells undergoing ferroptosis. As a result, a list of secreted/membrane-bound 

proteins in early stage of ferroptosis was identified. The top five identified membrane proteins 

were further investigated and showed a significant increase in abundance upon ferroptosis 

stimulation using immunofluorescence detection of HT1080 cells. In addition, these 

biomarker candidates were found to be specific to ferroptosis induction with an elevated 

expression, as no change under other forms of cell deaths was observed. Furthermore, initial 

evaluation of corresponding antibodies on control human paraffin embedded tissue revealed 

FABP5 as a promising ferroptosis-specific biomarker for brain tumors. 

In summary, these findings provide a novel mechanism of MS4A15 that persistent disruption 

of calcium homeostasis results in stimulation of fundamental lipid remodeling, which protect 

cells against ferroptotic cell death. Therefore, induction of ferroptosis by mediating calcium 

homeostasis may be helpful for overcoming cancer therapy resistance and improving 

prognosis. In addition, this work provides a new insight for early diagnosis of human 

degenerative diseases through identified potential ferroptosis-specific protein biomarkers. 
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1. Introduction 

Cell death is an inevitable process for multicellular organisms to maintain health and vitality. 

Dysregulation of cell death has been implicated in various physiological and pathological 

processes. Traditionally, cell death has been divided into programmed cell death, e.g. 

apoptosis and accidental cell death, e.g. necrosis modalities to explain diverse biological 

processes. With the deepening of research on cell death during the last decades, more 

distinct cell death phenotypes have been discovered, including a novel mode of non-

apoptotic cell death, termed ferroptosis. Due to the emerging evidences in pathophysiological 

processes of many diseases, such as tumors, blood diseases, and kidney injury, this 

ferroptotic cell death has become an exciting topic recently. More importantly, current 

findings indicate that tumors cells, which escape from other types of cell death are likely to 

undergo ferroptosis, suggesting a new strategy for cancer therapy.  

Ferroptosis is an iron-dependent form of non-apoptotic cell death which was first proposed 

by the lab of Dr. Brent R Stockwell in 2012 (Dixon et al., 2012), it occurs through an 

accumulation in cellular phospholipid peroxidation to lethal level. This form of cell death is in 

the context of a compromised phospholipid peroxide repair system and is genetically, 

biochemically, and morphologically distinct from diverse cell deaths, such as necrosis, 

apoptosis, and autophagy (Table 1). 

How, when and where does ferroptosis occur? What is the relationship between ferroptosis 

and other types of regulated cell death? What are the mechanisms and downstream 

regulation pathways of ferroptosis? How can we promote ferroptosis to treat cancer, and 

resists ferroptosis to treat human diseases by regulating ferroptosis? These are the main 

questions that have been attracting me. In the dissertation project, the main goal is to study 

the molecular mechanisms ferroptosis and to discover the potential ferroptosis-specific 

biomarkers of human degenerative diseases. The following sections in chapter1 describe the 

historical perspectives of our understanding of ferroptosis.  

In the subsequent chapters, the molecular mechanisms of the newly discovered membrane-

spanning 4-domains subfamily A member 15 (MS4A15) in controlling ferroptosis and the 

relevance of ferroptosis to human diseases were investigated using technologies from 

systems biology and molecular biology.  
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Table 1 The main morphological, biochemical, regulatory pathways and core regulators of 

ferroptosis, apoptosis, necroptosis, and autophagy, summarized from (Galluzzi et al., 2012; 
Kroemer et al., 2005; Li et al., 2020; Xie et al., 2016).  

Type Morphological features 
Biochemical 

features 

Regulatory 

pathways 

Core 

regulators 

Ferroptosis 

Cell membrane: rounding-up 
of the cell 

Iron and lipid ROS 
accumulation 
 
MAPK activation 
 
Inhibition of 
system Xc

−  
 
GSH depletion 
and increased 
NAPDH oxidation 

Xc
-/GPX4, MVA, 

sulfur transfer 
pathway;  
 
P62-Keap1-NRF2 
pathway; 
 
P53/SLC7A11, 
ATG5-ATG7-
NCOA4 pathway;  
 
P53-SAT1-
ALOX15 pathway;  
 
HSPB1-TRF1, 
FSP1-COQ10-
NAD(P)H 

Positive 

• VDAC2/3 
• Ras 
• NOX 
• TFR1 
• p53 
• ACSL4 
• CARS 
 

Negative 

• GPX4 
• SLC7A11 
• HSPB1 
• NRF2 
• FSP1 

Cytoplasm: small 
mitochondria with condensed 
mitochondrial membrane 
densities, reduction or 
vanishing of mitochondria 
crista, outer mitochondrial 
membrane rupture 

Nucleus: lack of chromatin 
condensation 

Apoptosis 

Cell membrane: plasma 
membrane blebbing; 
rounding-up of the cell 

Activation of 
caspases 
 
DNA 
fragmentation 
 
Δψm dissipation 
 
PS exposure 
 

mitochondrion and 
endoplasmic 
reticulum 
pathway;  
 
Caspase, P53, 
Bcl-2 mediated 
signaling pathway 

Positive 

• p53 
• Bax 
• Bak 
• Caspase 
 
Negative 

• Bcl-2 
• Bcl-XL 

Cytoplasm: 
pseudopods retraction 

Nucleus: reduction of volume; 
fragmentation; chromatin 
condensation 

Necroptosis 

Cell membrane: rupture of 
plasma membrane Drop in ATP 

levels 
 
Release of 
DAMPs (e.g., 
HMGB1) 
 
PARP1 
hyperactivation 

TNF-R1 and 
RIP1/RIP3-MLKL 
signaling 
pathways;  
 
PKC-MAPK-AP-1 
related signaling 
pathway;  
 
ROS-related 
regulation 
pathway 

Positive 

• RIP1 
• RIP3 
• MLKL 
  
 

Cytoplasm: cytoplasmic 
swelling (oncosis); swelling of 
cytoplasmic organelles 

Nucleus: chromatin 
condensation 

Autophagy 

Cytoplasm: formation of 
double-membraned 
autophagic vacuoles 

Increased 
lysosomal activity 
 
Substrate (e.g., 
p62) degradation 

mTOR, Beclin-1, 
P53 signaling 
pathway 

Positive 

• ATG5 
• ATG7 
• Beclin 1 
• DRAM3 
• TFEB  

Nucleus: lack of chromatin 
condensation 
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 1.1 Mechanisms of Ferroptosis 

The initiation and execution of ferroptosis is mainly regulated by metabolism changes in iron 

homeostasis and lipid peroxidation, the mechanisms and regulatory pathways of ferroptosis 

can be roughly categorized into four groups so far. 

  
Figure 1.1 Molecular mechanisms and signaling pathways of ferroptosis.  (A) Core regulators in 
GSH/GPX4 pathway. (B–D) Roles of iron metabolism (B), lipid peroxidation metabolism (C), and the 
MAPK pathway (D) in ferroptosis (Xie et al., 2016).          

 

1.1.1 GPX4–GSH–cysteine Axis 

The GPX4–GSH–cysteine axis of ferroptosis includes GPX4 activity, system Xc
-, 

transsulfuration pathway, Mevalonate pathway, glutamine pathway, and p53 regulatory axis, 

etc..  

GPX4 Pathway. Glutathione peroxidase 4 (GPX4) is the key enzyme to protect from 

ferroptosis, which oxidizes glutathione (GSH) to convert lipid hydroperoxides (L-OOH) to lipid 

alcohols (L-OH) within biological membranes. Deprivation of GPX4 activity causes elevated 

intracellular lipid ROS to lethal level. RSL3 and ML162 are small molecules that trigger 
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ferroptosis by directly targeting GPX4 (Shimada et al., 2016; Yang et al., 2014a); therefore, 

cells treated with RSL3 or ML162 display increased lipid ROS and accumulated iron in the 

absence of GSH depletion. The lipophilic antioxidants such as vitamin E protect against 

ferroptosis through suppressing the formation and propagation of oxidized lipids on GPX4 

deprivation.  

System Xc
- Pathway. System Xc

- is a crucial antioxidant system, which is widely distributed 

in phospholipid bilayers. It is an amino acid anti-transporter composed of two subunits, 

SLC7A11 and SLC3A2. Through system Xc
-, cystine and glutamate can be exchanged in and 

out of the cell at a ratio of 1:1 (Dixon et al., 2012). Cysteine, the reduced form of cystine, is a 

precursor for the synthesis of GSH. The reduced GSH can be used as an enzyme co-

substrate to reduce lipid peroxidation under the action of GPX4.  Hence, inhibition of system 

Xc
- results in loss of cellular antioxidant capacity through inactivating GPX4 activity indirectly.  

A metabolite profiling assay revealed that erastin initiates ferroptosis by blocking system Xc
- 

and depletes GSH, as GSH was the most decreased cellular metabolite (Yang et al., 2014a).  

GPX4 pathway and system Xc
- pathway explain how RSL3 and erastin share a common 

ferroptosis execution mechanism but have different triggering mechanisms (Figure 1.1 

Molecular mechanisms and signaling pathways of ferroptosis.Figure 1.1A). 

Mevalonate Pathway. GPX4 is a selenoprotein that contains selenocysteine (Sec) as one of 

the essential amino acids in the active site (Yang et al., 2014a). The selenocysteine tRNA 

[tRNA (Sec)] is the key component to insert selenocysteine into GPX4 (Kryukov et al., 2003). 

Therefore, the mevalonate (MVA) pathway can affect the occurrence of ferroptosis through 

regulating the maturation of tRNA (Sec) and the synthesis of GPX4.  

The mevalonate pathway leads to the production of CoQ10 which is an endogenous inhibitor 

of ferroptosis by serving an antioxidant function in membranes (Shimada et al., 2016). The 

ferroptosis-inducing compound FIN56 depletes CoQ10 by modulating squalene synthase 

activity (SQS), which in part drives accumulation of lethal lipid peroxidation (Shimada et al., 

2016). Statins, inducers of ferroptosis, are the rate-limiting enzymes of the mevalonate 

pathway, have been shown to interfere with the maturation of tRNA (Sec) and promote the 

depletion of CoQ10  (Warner et al., 2000).  

The Transsulfuration Pathway. The Transsulfuration Pathway (TSS pathway) is an 

alternative source of cysteine, in which methionine is used as a sulfur donor and is converted 

into cysteine through homocysteine and cystathionine (McBean, 2012). When cell uptake 

mechanisms are normal, the importance of TSS pathway is cell-type dependent, however, 

when the uptake mechanism is inhibited, the TSS pathway is important for cell survival. 

Cysteinyl tRNA synthetase (CARS) were identified from a genome-wide RNAi screen as 
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robust genetic suppressors of erastin-induced ferroptosis (Hayano et al., 2016). Further 

studies demonstrated that some genes and metabolites in the TSS pathway were 

upregulated in CARS-depleted cells treated with erastin, suggesting that modulate the TSS 

pathway can regulate ferroptosis sensitivity (Hayano et al., 2016). 

Mitochondrial VDACs. The mitochondrial voltage-dependent anion channels (VDACs) are 

transmembrane channels that transport ions and metabolites, blocking the VDACs leads to 

mitochondrial dysfunction and cell death (Skonieczna et al., 2017). Previous study found that 

VDACs is one of the direct molecular targets of erastin (Yagoda et al., 2007), providing a vital 

regulatory role in ferroptosis. Erastin targets VDACs causing the dysfunction of mitochondrial 

and accumulation of releases oxides, eventually leading to ferroptosis. 

Glutamine Pathway. Glutaminolysis plays a key role in the ferroptosis process. Upon 

deprivation of amino acids, glutamine (Gln) and transferrin (TF) are two essential 

extracellular compounds to induce ferroptosis via the glutaminolysis pathway (Gao et al., 

2015). The degradation of Gln via glutaminolysis can provide fuel for the tricarboxylic acid 

(TCA) cycle as well as build blocks for essential biosynthetic processes, such as lipid 

biosynthesis. Therefore, deprivation of Gln or inhibition of glutaminolysis can trigger 

ferroptosis, suggesting additional strategies for suppressing the accumulation of ROS, lipid 

peroxidation, and ferroptosis.  

P53-Mediated ferroptosis. The P53 gene is a significant tumor suppressor gene, which may 

regulate ferroptosis in 2 different pathways. Studies have found that P53 modulates 

ferroptosis by downregulating the expression of SLC7A11, which results in the inhibiton of 

system Xc
- and subsequent inactivation of GPX4 activity and reduction of antioxidant 

capacity. In addition, the P53-SAT1-ALOX15 pathway has also been reported to regulate 

ferroptosis (Ou et al., 2016). P53-mediated activation of SAT1, a transcription target of P53, 

contributes to lipid peroxidation and sensitizes cells to undergo ferroptosis under ROS stress, 

which is closely related to the expression level of arachidonate lipoxygenase 15 (ALOX-15). 

However, other studies proposed that P53 inhibits ferroptosis by increasing the activity of 

system Xc
- and reducing the sensitivity of some cells to ferroptosis. The process of reducing 

ferroptosis sensitivity requires the involvement of a P53 transcription target CDKN1A 

(encoding P21) through regulating GSH metabolism, this P53-P21 axis has been found to 

negatively regulate the occurrence of ferroptosis in cancer cells (Tarangelo et al., 2018). 

Furthermore, the expression of P53 limits erastin-induced ferroptosis by blocking dipeptidyl-

peptidase-4 (DPP4) activity, which prevents the generation of DPP4-dependent lipid 

peroxidation. This molecular link between P53 and DPP4 in the control of lipid metabolism is 

involved in medicine therapy of colorectal cancer cells (Xie et al., 2017).  
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1.1.2 Iron metabolism 

Ferroptosis is a new type of cell death depends on intracellular iron, meaning iron is essential 

for the execution of ferroptosis. Cells execute ferroptosis under the treatment of erastin, 

RSL3, or other inducers normally show higher levels of irons (Yang and Stockwell, 2008) 

associated with an increased level of lipid ROS (Yang et al., 2014a), and these executors 

can be pharmacologically inhibited by iron chelators and lipophilic antioxidants (Dixon et al., 

2012; Yagoda et al., 2007). 

Free Fe2+ can be oxidized by ceruloplasmin to Fe3+, which binds to transferrin (TF) on the cell 

membrane and enters into cells by TF receptor 1 (TFR1). Fe3+ is then reduced to Fe2+ by iron 

oxide reductase, the six-transmembrane epithelial antigen of the prostate 3 (STEAP3), and 

Fe2+ is then stored into the unstable iron pool and ferritin in the cytoplasm, which is mediated 

by divalent metal transporter 1 (DMT1) or Zinc-Iron regulatory protein family 8/14 (ZIP8/14) 

(Frazer and Anderson, 2014). Free intracellular Fe2+ can produce hydroxyl radicals (∙OH) or 

peroxide radicals, which further oxidize lipids, under the action of the Fenton reaction (Figure 

1.2).  Fenton reaction converts H2O2 into ∙OH thus limiting the uptake of iron suppresses 

ferroptosis. Excess Fe2+ is oxidized to Fe3+ by ferroportin (FPN) (Bogdan et al., 2016). This 

recycling of internal iron strictly controls iron homeostasis in cells.  

In ferroptosis, iron metabolism-related genes are the critical mediators of the lipid ROS 

formation, such as TF, TFR1, FPN, DMT1, ferritin heavy chain 1 (FTH1), and ferritin 

light chain (FTL) (Figure 1.1B). Therefore,  downregulation of transferrin receptor–mediated 

import of transferrin-iron via silencing transferrin receptor (TFRC), the gene encoding TFR 1, 

can inhibit erastin-induced ferroptosis (Gao et al., 2015), moreover the iron-containing heme 

oxygenase-1 (HO-1) can be a source of iron to accelerate ferroptosis (Kwon et al., 2015).  

 

Figure 1.2 Role of iron in ferroptosis.  Arrows indicate promotion; blunt-ended lines indicate 
inhibition. Tf, transferrin; TfR, transferrin receptor; H2O2, hydrogen peroxide; •OH, hydroxyl radicals; 
GPX4, glutathione peroxidase 4. 
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Based on the previous research, heat shock protein beta-1 (HSPB1) was found as a novel 

negative regulator of ferroptotic cell death which reduces intracellular iron concentrations and 

ROS production by inhibiting TRF1 expression (Sun et al., 2015b). Furthermore, iron 

response element binding protein 2 (IREB2) is the main transcription factor of iron 

metabolism and the majority of iron is stored within ferritin, inhibiting IREB2 expression can 

significantly increase the expression of the two factors of ferritin, FTL and FTH1, to store Fe2+ 

and prevent erastin-induced ferroptosis. In addition, miRNAs were reported to have an 

impact on ferroptosis through regulating iron export, storage, utilization, and uptake. For 

example, MiR-20a and miR-485-3p can reduce iron output by targeting FPN genes (Babu 

and Muckenthaler, 2016; Sangokoya et al., 2013); MiR-210 and miR-152 inhibit the 

expression level of TFR, thereby reducing intracellular iron concentration (Kindrat et al., 

2016; Yoshioka et al., 2012).  

Disruption of iron homeostasis can affect the normal physiological processes in the body. 

Cells exposed to high levels of extracellular iron may be sufficient to induce ferroptosis. 

Interestingly, this process alters the sensitivity of different types of cancer cells to ferroptosis, 

for example high-grade serous ovarian cancer (HGSOC) cells which are highly susceptible to 

ferroptosis due to increased TFR1 expression level and decreased iron efflux pump FPN 

level (Basuli et al., 2017). Therefore, initiation of ferroptosis via increasing the concentration 

of intracellular iron could be a strategy for cancer therapy. 

 

1.1.3 Lipid metabolism 

Iron-dependent lipid peroxidation is one of the hallmarks of ferroptosis (Figure 1.1C), apart 

from defective lipid peroxide repair and redox-active iron. Lipid peroxidation is fundamental to 

all pathways. 

The membranes of mammalian cells are enriched with glycerophospholipids [hereafter refer 

to GPs] acylated with at least one polyunsaturated fatty acid (PUFA) chain. PUFAs, which 

have different chain lengths (C18, C22 or higher) and various degrees of unsaturation (e.g., 

C18:3, C20:4, C22:5), are essential elements as the substrates of lipid metabolism signal for 

ferroptosis.  

The bis-allylic hydrogen atoms present within PUFAs are more susceptible to oxidative 

conditions compared with saturated fatty acids (SFA) and monounsaturated fatty acids 

(MUFA) (Gaschler and Stockwell, 2017). However, free PUFAs are unlikely to promote 

ferroptosis, to participate in ferroptosis processes, they must be incorporated into GLs with 
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different head groups [e.g., phosphatidylinositol (PI), phosphatidylcholine (PC), or 

phosphatidylethanolamine (PE)] (Magtanong et al., 2016).  

PEs, which contain arachidonic acid (AA, C20:4) or docosahexaenoic acid (DHA, C22:6) 

fatty acyl chains, were discovered as the key phospholipids that triggers ferroptosis 

execution (Kagan et al., 2017; Wenzel et al., 2017). Acyl-CoA synthetase long-chain family 

member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3), which 

participate in the biosynthesis and remodeling of PE, activate PUFAs and affect the 

incorporation of activated PUFAs into membrane GLs. Therefore, suppressing the activity of 

ACSL4 and LPCAT3 could inhibit ferroptosis due to lack of esterified PUFAs and depletion of 

the substrates for lipid peroxidation (Dixon et al., 2015; Do Van et al., 2016; Doll et al., 2017). 

Alternatively, PUFA-containing PE further oxidizes the cells under the catalysis of 

lipoxygenase (LOX) to promote ferroptosis (Kagan et al., 2017). PUFA-PL oxidation could 

also lead to membrane thinning and aberrant membrane curvature, forming a structured lipid 

pore on membrane and accelerating death rate (Agmon et al., 2018). 

The models in Figure 1.3 briefly displayed the important role of lipid peroxidation in 

ferroptosis (Agmon et al., 2018). PUFAs are acetylated by acyl-CoA synthetase and are 

incorporated into phospholipids with SFAs. Initiation of ferroptosis triggered by PUFA 

oxidation can be prevented by GSH/GPX4 pathway through reducing the oxidized PUFAs to 

lipid alcohols. When the activity of GSH/GPX4 is blocked, oxidized PUFAs can cause the 

release of reactive oxygen species (ROS) and membrane destruction, which can be 

protected by iron chelators and lipophilic antioxidants. 

 

Figure 1.3 Lipids activities during ferroptosis. PUFAs are depicted in light blue, oxidized PUFAs 
are labeled with red circles, PUFA alcohols are labeled with blue triangles, reactive oxygen species 
are depicted with red fragment. 
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Based on previous research, ferroptosis can be prohibited by free radical scavenging (i.e. α-

tocopherol (αTOC), ferrostatin), feeding cells with bis-allylic deuterated PUFAs that are less 

susceptible to oxidation (Magtanong et al., 2019; Skouta et al., 2014; Yang et al., 2016) or 

adding compounds to compete with the oxidation substrates for the binding site  (i.e. 

plasmalogens, corking). How lipid composition alteration leads to the final implementation of 

ferroptosis requires more exploration.  

 

1.1.4 MAPK pathway 

In addition to the two hallmarks of ferroptosis, iron metabolism and lipid peroxidation, 

activation of the mitogen-activated protein kinase (MAPK) pathway contributes to ferroptotic 

cancer cell death as well (Figure 1.1D). 

RAS (H-RAS, K-RAS4A and 4B, and N-RAS) activation of cancer cells could contribute to 

ferroptosis sensitivity by increasing the expression of TFR and ferritin, thereby promoting 

intracellular iron abundance and lipid ROS accumulation (Yang and Stockwell, 2008). 

Silencing of oncogenic KRAS expression in KRAS-mutant Calu-1 cells significantly reduces 

the lethality of erastin (Yagoda et al., 2007). However, ectopic expression of oncogenic RAS 

increases resistance to erastin-induced ferroptosis in rhabdomyosarcoma cells (RMS), which 

means the Ras-mediated ferroptosis sensitivity is altered in different cancer types (Dixon et 

al., 2015). In fact, a broad panel of cancer cell lines has been studied to discover the 

relationship between certain gene expression levels and cell sensitivity to ferroptosis, 

however, no correlation was observed between RAS mutation status and the potency of 

erastin (Yang et al., 2014a). 

The above evidences of cell type-specific and mutation-specific sensitivity to ferroptosis 

extends to the role of MAPK pathway or the RAS-RAF-MEK-ERK pathway. The mammalian 

family of MAPKs mainly includes extracellular signal–regulated kinase (ERK), p38, and c-Jun 

NH2-terminal kinase (JNK). The mechanism of action of erastin is involved the 

RAS/RAF/MEK-dependent oxidative cell death through targeting the VDACs, which has been 

proved to be an important target for the treatment of hepatocellular carcinoma (HCC). 

Oncogenic mutations in KRAS, BRAF, and PIK3CA have been confirmed to sensitize cells to 

cystine deprivation–induced death. Blocking the RAS/RAF/MEK/ERK pathway inhibits 

erastin-induced ferroptosis in RAS-mutated cancer cells (Yagoda et al., 2007).   

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) that transduces 

signals through the MAPK and other pathways. When human mammary epithelial (HME) 

cells express an activated EGFR mutant, deprivation of cystine led to increased cell death 
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which was associated with synchronous loss of plasma membrane integrity. In addition, 

elevated MAPK signaling was uncovered to be related to ferroptosis vulnerability, on the 

contrary, blockade of EGFR or MAPK signaling protected cells against erastin. 

Xenografts derived from EGFR mutant or activating EGFR mutation non-small-cell lung 

cancer (NSCLC) prevented tumor growth in mice when treated with a cystine-depleting 

enzyme (Poursaitidis et al., 2017), suggesting a therapeutic benefit of cystine depletion in 

some tumors through promoting ferroptosis. In fact, NSCLC cells which have the highest 

relative MAPK activity were most sensitive to ferroptosis induced by cystine deprivation. This 

phenomenon is consistent with the observation that some cell lines  were sensitized to 

ferroptosis through activation of the RAS/MAPK pathway (Poursaitidis et al., 2017).  

In summary, these findings indicated that responses of cells to ferroptosis induction are 

associated with a differential MAPK module response in different cell types. More 

importantly, a potential sensitization approach of tumors to cystine deprivation induced 

ferroptosis could be exploited through manipulating EGFR/MAPK signaling. 

 

1.1.5  Classification of ferroptosis inducers 

Collectively, based on the mechanisms mentioned, compounds that are able to induce 

ferroptosis can be divided into four categories through distinct mechanisms (Li et al., 2020). 

The first category includes chemicals that reduce GSH levels by directly inhibiting system Xc
- 

which is part of an important antioxidant system in cells, such as erastin, sulfasalazine 

(SAS), sorafenib and buthionine sulfoxamine (BSO). The second category includes RSL3, 

ML162 and DPI7, which inhibit GPX4 activity without GSH depletion, thereby resulting in 

accumulation of lipid hydroperoxides. The third category includes chemicals such as FIN56 

and statins, which can either deplete endogenous antioxidant coenzyme Q10 (CoQ10) via 

binding to the enzyme squalene synthase or decrease GPX4 protein abundance to cause 

lipid peroxidation (Shimada et al., 2016). The final category includes FINO2, an organic 

peroxide that can promote the oxidation of labile iron and inactivation of GPX4 (Gaschler et 

al., 2018).  

 

1.2 Calcium and ferroptosis   

Calcium is a ubiquitous second messenger functioning as an important regulator of cell 

growth, migration, and cell death. Although the dysregulation of Ca2+ homeostasis has been 

proposed to be involved in pathogenic mechanisms of various neurodegenerative diseases, 
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such as Alzheimer’s, Parkinson’s and Huntington’s disease (Czeredys et al., 2013; 

Schöndorf et al., 2014; Small, 2009; Zündorf and Reiser, 2011), the study of Ca2+ signaling is 

still a novel field of research, especially its role in modulating ferroptosis. 

In 1989, glutamate induced Ca2+-dependent cell death was first reported in the N18-RE-105 

neuroblastoma X retina cell line, which inhibits the import of cystine via the cystine/glutamate 

antiporter system Xc
−, resulting in depletion of the antioxidant GSH, burst of oxidative stress, 

and a massive Ca2+ influx (Henke et al., 2013; Murphy et al., 1989). This Ca2+-dependent 

cytotoxicity has been named oxidative glutamate toxicity or oxytosis (Tan et al., 2001) and 

has been extensively studied in the hippocampal cell line HT22.  

During glutamate induced oxytosis, a sharp increase in ROS generation has been captured 

when the GSH levels drop below 20%, however, this is just a necessary step in the oxytosis 

process but not the final step that causes cell death (Maher et al., 2018a). The similarity of 

oxytosis and ferroptosis has been long debated; especially GSH is also a crucial factor of 

ferroptosis (Figure 1.4). GPX4 is the key enzyme that protects cells from ferroptosis using 

GSH as an essential cofactor to convert lipid L-OOH to L-OH (Dixon et al., 2012; Yang et al., 

2014b). Loss of GPX4 activity and deprivation of GSH both lead to the activation of 12/15-

lipoxygenase (12/15-LOX, the protein product of the ALOX15 gene) (Li et al., 1997; Seiler et 

al., 2008). 12/15-LOX is an enzyme not only oxidizes PUFAs, but generates metabolites 

including 12- and 15- hydroxyeicosatetraenoic acid (HETE) which promote Ca2+ influx for the 

final phase of oxytosis (Lewerenz et al., 2013). 12/15-LOX also directly integrates into the 

membranes of various organelles further increasing lipid peroxidation and ROS production. 

Approximately 10–12 hours after the induction of oxidative glutamate toxicity, the pro-

apoptotic Bcl-2 family member Bid translocates to the mitochondria causing the loss of their 

membrane integrity (Landshamer et al., 2008). Meanwhile, mitochondria apoptosis-inducing 

factor (AIF) translocate to the nucleus, where it rapidly induces caspase-independent cell 

death. 

The major source of these ROS appears to be complex I of the mitochondrial electron 

transport chain, which is followed by an essential lethal influx of store-operated calcium 

(SOCE) that immediately executes cell death (Maher et al., 2018a; Tan et al., 1998). Of note, 

there is a mutual requirement for calcium and ROS for each to reach their maximal levels.  

Although it has been argued that ferroptosis is distinct from oxytosis, especially the role of 

Ca2+ in ferroptosis has not been fully explored. These two cell death pathways show 

similarities since both can be inhibited by iron chelators (e.g. DFO) (Maher and 

Kontoghiorghes, 2015) and lipophilic antioxidants (e.g. ferrostatin-1) (Kang et al., 2014b). 

Additional evidence supports lethal calcium flux involvement in ferroptosis (Kang et al., 
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2014a; Liu and Schubert, 2009; Maher et al., 2018b). Despite this, the role of calcium 

underlying ferroptosis remains to be fully characterized. 

 

Figure 1.4 The common cell death pathway in oxytosis and ferroptosis  (Lewerenz et al., 2018). 
Cystine uptake by system xc

- is inhibited by Glu and Erastin which leads to the depletion of GSH and 
inhibition of GPX4 activity. RSL3 targets GPX4 directly to activate LOX, therefore, lipid hydroperoxides 
(lipid icons with OOH) accumulate at various membrane sites, including ER and mitochondria. 
Lysosomes also contribute to the overall ROS production. 

 

1.3 MS4A15 and Ferroptosis resistance  

Recently, our lab performed an unbiased Clustered Regularly Interspaced Short Palindromic 

Repeats activation (CRISPRa) screen to identify genes protecting against ferroptosis. Three 

established ferroptosis inducers were chosen to treat immortalized murine fibroblast (MF) 

cells: RSL3, imidazole ketone erastin (IKE) and genetic ablation of Gpx4. A single gene was 

obtained, Gch1, from all three conditions (Figure 1.5A). GCH1 promotes the production of its 

metabolic derivatives tetrahydrobiopterin/dihydrobiopterin (BH4/BH2) which are the 

endogenous antioxidants, to ultimately prevent peroxidation of certain PUFAs (Kraft et al., 

2019). This GCH1-BH4-phospholipid axis exists as an independent parallel system to 

regulate ferroptosis resistance. This new mechanism completes the ferroptosis pathway and 

provides a new therapy strategy for cancer entities. 
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Figure 1.5 The CRISPR activation screen for genes protecting against ferroptosis (Kraft et al., 

2019). (A) Venn diagram of overlapping top 30 genes found in each overexpression screen against 
ferroptosis inducers. (B) Heat map validating 21 overexpressing MF cell lines against challenges 
Gpx4-/-, 0.3 µM RSL3, 2 µM IKE and 20 µM doxorubicin (Doxo) compared to empty vector control 
cells (control): BODIPY 581/591 C11 (BODIPY-C11) and 2,7-Dichlorodihydrofluorescein diacetate 
(DCF) indicate lipid and cytosolic ROS respectively in these lines after 0.3µM RSL3 treatment for 2 h. 
Untreated cells (#) serve as control treatment for Doxo. 
 

In addition, Ms4a15 was identified under two conditions from the screen, i.e. RSL3 and 

GPX4-/-, and exhibited almost complete protection against ferroptosis correlated with 

suppression of BODIPY-C11 and DCF oxidation, comparable to α-tocopherol (Figure 1.5A, 

B).  MS4A15 belongs to the membrane-spanning 4-domains subfamily A (MS4A) which 

encompasses a group of genes (MS4A1 to MS4A15 and TMEM176A and B) that primarily 

clustered to chromosome 11q12-13. The MS4A proteins are predicted to span the cellular 
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membrane four times and share similarities in their polypeptide sequence and predicted 

overall topological structure (Eon Kuek et al., 2016).  

As reported, the human and mouse genomes contain 16 and 17 MS4A members, 

respectively. A recent study identified the homologs of MS4A proteins are present in all 

mammalian lineages as well as in many other deuterostomes. Through the process of 

tandem duplication, the MS4A family proteins were widely divergent during the evolution of 

mammals; the most amino acid residues variabilities are highly enriched within the predicted 

extracellular loops. In contrast to the divergence of the other MS4A family members, Ms4a15 

sequences are conserved across evolution with a single copy identified in bird genomes 

(Greer et al., 2016). 

The functions of many of the MS4A proteins are currently not well defined, recent studies 

suggest they might be involved in some human diseases, only limited members have been 

functionally characterized although far less extensively. For example, MS4A1 (CD20), the 

pan B cell marker, has been shown to interact with the B cell receptor at the cell surface to 

regulate cell survival and proliferation (Beers et al., 2010); MS4A2 (FcɛRIβ) is expressed in 

mast cells and basophils as part of the high affinity IgE receptor complex and regulates IgE-

mediated signaling pathways (Cruse et al., 2010; Donnadieu et al., 2003); HTm4 (MS4A3) is 

expressed in the perinuclear and involved in hematopoietic cell cycling (Kutok et al., 2011); 

MS4A12 functions in colon epithelial cell cycling and store operated calcium influx (Koslowski 

et al., 2008). 

Beyond these reports, MS4A15 is poorly understood, including amino acid sequence 

characteristics, subcellular localization and fundamental functions. MS4A15 is a membrane 

protein found primarily in lung; it might be involved in signal transduction as a component of 

a multimeric receptor complex like its close homolog MS4A12, which is mainly expressed in 

the apical membrane of colonocytes and regulates store operated calcium entry. Knockdown 

of MS4A12 in colon cancer cells leads to the inhibition of cell proliferation, migration, and 

chemotactic invasion.  Previous study suggested that the expression of MS4A15 was 

positively associated with the overall survival probability of Lung Adenocarcinoma (LUAD)  

patients (Shang et al., 2017), indicating MS4A15 as a prognostic biomarker for LUAD.  

To date, functional studies related to MS4A15 are rare, discovering the mechanism of 

MS4A15 is the main goal of this work, especially the protection role in ferroptosis. 
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1.5 Biomarker 

The characteristics of cell surface proteins include their accessibility, the stability, and easy 

detection. Moreover, the cell surface proteins have attracted increasing attention due to their 

involvement in vital signaling pathways and determination of cell fate. Therefore, the cell 

surface proteins associated with various human diseases have been regarded as promising 

clinical biomarkers (Anderson and LaBaer, 2005), investigation of specific protein or peptide 

biomarkers associated with human diseases is of great implications for improvement of drug 

research, for early prediction of a lethal outcome and for patients to receive optimal treatment 

(Figure 1.6). 

 

Figure 1.6 The discovery of biomarkers.  The implications of biomarker discovery (A) and three 
major steps of biomarker research workflow (B). 

 

Cell death is a fundamental biological process maintaining tissue homeostasis, while 

excessive or defective cell death leads to a large number of human pathologies, such as 

cancers stimulated by failure of cell death execution, and neurodegenerative diseases by 

increased cell death. Investigation of the cell death molecular mechanisms in depth will likely 

improve therapeutic strategies; however, the lack of adequate and appropriate biomarkers is 

the obstacle to stratify patients and to design optimal treatment for the corresponding patient 

subgroups. Nevertheless, retrospective extrapolation using TUNEL has revealed by 

exclusion a substantial contribution of apoptosis in human colorectal cancer (Simpson et al., 

2013) and cardiovascular disease (Singh et al., 2011), and non-apoptotic cell death in stroke 

(Li et al., 2003), Alzheimer’s (Lassmann et al., 1995), Parkinson’s (Hartmann and Hirsch, 

2001), and Huntington’s (Turmaine et al., 2000) diseases. 
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Ferroptosis is a non-apoptotic iron-dependent cell death (Dixon et al., 2012), which was 

extensively characterized. The cumulative implication of ferroptosis in ALS (Kwan et al., 

2012), Alzheimer’s (Ghosh et al., 2014; Zhang et al., 2018), Parkinson’s (Do Van et al., 

2016) and Huntington’s (Skouta et al., 2014), among others (Di Fonzo et al., 2014; Tuo et al., 

2017; Zille et al., 2017), is based on cell culture experiments and in vivo evidence, whereas 

no conclusively evidence has been demonstrated under pathological conditions in humans 

so far.  

Insights into adequate ferroptosis biomarkers for human diseases will likely provide more 

chances to target this process for rational therapy design. Therefore, central to current 

research and clinical efforts is to find ferroptosis-specific biomarkers of human diseases for 

detection of disease state, accurate diagnosis, better prognosis, and drug improvement, 

which can accelerate medical development. 

 

1.6 Aim of this work 

Investigation of ferroptosis in pathological research and treatment has become a hotspot and 

focus since it has been first reported in 2012 (Dixon et al., 2012). However, how to interfere 

with ferroptosis in development of human diseases is still a big challenge, it needs further 

exploration of the specific molecular mechanisms, downstream signaling pathways and 

functional changes. 

In general, the goals of this work are  

(i) To systematically characterize the mechanisms of the novel four-pass membrane 

protein MS4A15 in mediating ferroptosis resistance.  

(ii) To discover promising biomarkers of ferroptosis for early detection and diagnosis of 

human degenerative diseases.  

The real challenge related to this project was to link calcium action and lipids remodeling and 

to obtain appropriate materials for histochemical staining of biomarker candidates. Calcium 

signaling is highly complex. The role of calcium in ferroptosis and the function of MS4A15 are 

poorly understood. To address this from a new perspective, a systematical biology approach 

was used to analyze the mechanisms, signaling pathways and therapeutic potential of 

ferroptosis. Moreover, no specific biomarkers of ferroptosis for human diseases have been 

identified at present, the study of ferroptosis-specific biomarkers of is important for proposing 

new targets for the treatment of related diseases. 



Preliminary study of MS4A15 

17 

 

2. Preliminary study of MS4A151 

2.1 Introduction 

With the development of techniques in biology, more distinct cell death phenotypes have 

been discovered in the last decades, such as apoptosis, necrosis and ferroptosis. 

Ferroptosis is a newly identified form of regulated cell death characterized by the iron-

dependent accumulation of lipid hydroperoxides to lethal levels (Dixon et al., 2012). This 

form of iron-dependent cell death is distinct from other cell death modalities (Table 1), and 

the mechanisms stay not fully understood.  

To better understand the molecular mechanisms and signaling pathways of ferroptosis, a 

CRISPR activation approach was performed by the Schick lab aiming to identify new genes 

protect against ferroptosis (Figure 1.5A). CRISPR presents a novel approach for gene editing 

and regulation; so far CRISPR–Cas9-mediated overexpression/knockout screen of 

ferroptosis has been accomplished (Chavez et al., 2015; Konermann et al., 2015; Maeder et 

al., 2013; Mali et al., 2013).  

Traditional molecular biology techniques restrict researchers to focus on genes with previous 

information reported or specific hypotheses already known. However, when a novel gene is 

identified, often no prior information is available and premature attempts to engage in 

hypothesis-driven researches may be difficult. Ms4a15 is a novel gene identified in the 

overexpression screen (Kraft et al., 2019). According to previous research, information 

regarding MS4A15 is rare, basic information including subcellular localization and 

fundamental functions of MS4A15 is poorly understood.  

Here, genetic manipulation was adapted to study the function of MS4A15 (Figure 1.5B). Cell 

viability of cellular status upon lethal compound treatment is generally useful for 

understanding changes induced by the compound treatment in an unbiased manner. 

Moreover, RNA sequencing, proteomics technology and bioinformatics methods have 

improved drastically recently, which can be employed as the first step to stratify functionally 

relevant signaling components, to provide basic insights of MS4A15. Since these 

technologies only hint to the pathway or direction, hypotheses generated by their analyses 

need to be validated in independent experiments.   

                                                             

1
 Chapter 2-4 were adapted from a manuscript in preparation: Shan Xin, Constanze Müller, Susanne 
Pfeiffer, Joel A. Schick 
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2.2 Results  

2.2.1 MS4A15 overexpression specifically abrogates ferroptosis 

Through the approach of CRISPR activation screen, the novel four-pass transmembrane 

protein MS4A15 was identified (Kraft et al., 2019). To test whether MS4A15 preferentially 

inhibits ferroptosis or it is generally protective against various lethal stimuli, a pooled 

CRISPRa Ms4a15 overexpressing cell line (Ms4a15 OE) was generated using mouse 

immortalized fibroblasts (MF) (Figure 2.1A) and a 20-fold increase in transcripts was 

observed compared to a control line with an empty vector.  

 

Figure 2.1 MS4A15 specifically protects cells against ferroptosis. (A) Relative Ms4a15 mRNA 
expression levels in Ms4a15-overexpressing MF-dCas9-Ms4a15 (Ms4a15 OE) cells and empty vector 
control (control) immortalized mouse fibroblasts. Relative mRNA expression is shown as mean ± SD 
of n = 3 technical replicates of three independent repetitions of the experiment with similar results. (B) 
Dose response curves against RSL3 treatment in MF Ms4a15 OE cells and control. Addition of 10 μM 
αToc serves as rescue control for ferroptosis.  (C) Survival of MF Ms4a15 OE cells compared to 
control against ferroptosis inducers: Ferroptosis induced with 2 μM IKE and Gpx4–/– by using 1 μM 
tamoxifen with 10 μM αToc rescue.  (D)  Lipid peroxidation induced by 0.3 μM RSL3 induction in MF 
Ms4a15 OE cells and control cells measured by BODIPY 581/591 C11 stain (BODIPY-C11). A typical 
FACS histogram of n = 4 technical replicates of three independent repetitions is depicted. (E) Western 
blots of MS4A15 protein expression level of MF Ms4a15 OE cells and control cells after RSL3 
treatment (500nM) for 0h, 1h, 2h, 3h, and 4h, respectively. (F-G) Survival of MF Ms4a15 OE cells 
compared to control cells against inducers of cell death: Extrinsic apoptosis induced by 20 ng/mL 
tumor necrosis factor α (TNFα) with 10 μM z-VAD-FMK (zVAD) rescue (F). Necroptosis induced by 
1 μg/mL lipopolysaccharide (LPS) cotreatment with 10 μM zVAD with 10 μM necrostatin-1 (Nec-1) 
rescue (G). Viability data are plotted as mean ± SD of n = 3 technical replicates of at least three 
repetitions of the experiment with similar outcomes.     
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Further, when Ms4a15 OE and parental control cells were treated with different ferroptosis 

inducers: RSL3 for targeting GPX4, IKE for blocking system Xc- and tamoxifen for genetic 

ablation of Gpx4; a strong protection of Ms4a15 OE was observed(Figure 2.1B, C). One of 

the hallmarks of ferroptosis is lipid peroxidation; then the lipid-soluble fluorescent indicator, 

Bodipy-C11, was used to detect lipid peroxidation of Ms4a15 OE and control cells after 

treated with RSL3 for three hours. Control cells generated a robust lipid oxidation, while 

Ms4a15 OE was virtually unchanged, indicating the role of MS4A15 in protecting from lipid 

peroxidation (Figure 2.1D). To test whether MS4A15 works in other cell types as well, 

MS4A15 overexpression cell lines were constructed using non-small-cell lung cancer Calu-1 

cells, because MS4A15 is highly expressed in human lung tissue (Uhlen et al., 2017). The 

Calu-1 cells were treated with ferroptosis inducer IKE and conserved protection was 

observed by both MSA15-pCAG-IRES-Puro transfection (Figure 2.2A) and MS4A15-

pLVTHM viral infection (Figure 2.2B).  

 

Figure 2.2 Overexpression of MS4A15 in Calu-1 cells protects from ferroptosis.  Viability of 
transfection (A) and viral infection (B) of MS4A15 compared to empty control in Calu-1 cells treated 
with RSL3. Viability data are plotted as mean ± SD of n = 3 technical replicates of at least three 
repetitions of the experiment with similar outcomes. Western blots indicate the overexpression of 
MS4A15.   

 

To discover the activity of MS4A15 during ferroptosis, the MF cells were treated with RSL3 

for up to three hours. The Ms4a15 OE revealed increased expression level of RSL3 post-

treatment compared with the low expression in control cells, suggesting that the increased 

activity of MS4A15 is important for cells to survive (Figure 2.1E). Next, whether Ms4a15 

protects against ferroptosis specifically or if Ms4a15 is resistant to different stimuli was 

detected using extrinsic apoptosis inducer TNFα, necroptosis inducer LPS+zVAD and an 

unselective inducer of cell death staurosporine. No protection against TNFα and LPS+zVAD 

was observed, while cells treated with staurosporine showed minor resistance (Figure 2.1F, 

G). Together, these results indicate that overexpressed MS4A15 can robustly and 

specifically protect against ferroptosis. 
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2.2.2 MS4A15 is associated with ER-resident calcium regulators 

The results in chapter 2.2.1 suggested that MS4A15 showed a conserved and specific 

protection on both mouse and human cells, whereas its mechanism still remains unclear. 

Previous studies reported that MS4A15 may have potential function in different diseases 

based on its expression pattern and the function of its family members; however, no 

functional study of MS4A15 has been published yet (Beers et al., 2010; Cruse et al., 2010; 

Donnadieu et al., 2003; Koslowski et al., 2008; Kutok et al., 2011; Shang et al., 2017). 

To investigate the role of MS4A15 more precisely, an immunoprecipitation assay was 

performed to discover its function according to the interaction proteins. Human C-terminal 

FLAG-tagged MS4A15 was constructed and expressed in HEK293 cells and the flag-tag was 

pulled down. The samples were analyzed using quantitative proteomics. Control GFP-

expressing lysates and MS4A15 OE lysates were probed with anti-FLAG antibodies and 

differential proteins interpreted as the fold change (FC) log2(MS4A15/GFP). A robust positive 

enrichment was seen for MS4A15 itself (p=2.32E-05 (two tailed t-test); log2FC=9.17) while an 

expected negative enrichment was seen for GFP (p=0.012; log2FC=-3.98) (Figure 2.3A).  

Strikingly, the highest scoring protein was TMEM33 (p=4.33E-06; log2FC=20.46), which has 

featured prominently as a endoplasmic reticulum (ER) resident membrane-bound regulator of 

intracellular calcium release and cell migration (Arhatte et al., 2019). Other highly enriched 

proteins include ERLIN1 and ERLIN2 which are located in the ER and known to help the 

degradation of IP3Rs. Additional identified proteins such as DNAJ family members are 

involved in ER-associated degradation (ERAD). Of note, these all were calcium related 

molecules being pulled down together. 

  

Figure 2.3 MS4A15 binds and co-localizes with TMEM33.  (A) Co-immunoprecipitation of MS4A15 
with TMEM33 in HEK293T cells when MS4A15 is pulled down. GFP-expressing lysates were used as 
control. (B) Localization of MS4A15-flag (cyan), TMEM33-myc (magenta) and ER tracker 
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(concanavalin A, yellow) in Calu-1 cells. The merged image shows co-localization is shown at the 
right-bottom panel. Scale bars, 10 µm. (C) The extent of correlation between TMEM33 and cytotoxicity 
of each compound. Data were pulled up from The Cancer Therapeutics Response Portal (CTRP) 
database. Plotted values are z-Scored correlation coefficients.   

 

In fact, TMEM33 has been reported to be localized to the ER. Therefore, to detect the 

localization of MS4A15, human C-terminal FLAG-tagged MS4A15 and C-terminal MYC-

tagged TMEM33 were co-transfected into non-small-cell lung Calu-1 cells and overlapping 

subcellular localization of MS4A15 and TMEM33 proteins to the ER has been confirmed 

(Figure 2.3B). Additionally, when the sensitivity of TMEM33 to ferroptosis was examined 

through mining data of the Cancer Therapeutics Response Portal (CTRP) database for 

correlated compounds, the association of TMEM33 with three ferroptosis-inducing drugs (i.e. 

RSL3, ML162 and ML121) has been observed. Hence, these results suggested a potential 

function of TMEM33 in ferroptosis (Figure 2.3C).  

To verify whether MS4A15 and TMEM33 have overlapping or contradictory functions, Calu-1 

cells were used to generate transient overexpression and knock down cell lines. However, 

neither TMEM33 overexpression (Figure 2.4A) nor TMEM33 siRNA knockdown (Figure 2.4B) 

has virtual impact on ferroptosis sensitivity, indicating that TMEM33 is not sufficient to 

augment MS4A15 OE protection. Therefore, MS4A15 may have an independent function in 

mediating ferroptosis sensitivity at the ER. 

 

Figure 2.4 MS4A15 protects from ferroptosis independently.  (A) Survival of Calu-1 MS4A15 OE 
and Calu-1 TMEM33 OE cells compared to control against IKE with 10 μM αToc rescues.  (B) Survival 
of Calu-1 siTMEM33 cells compared to control of Calu-1 siGFP against IKE with 10 μM αToc rescues. 
Viability data are plotted as mean ± SD of n = 3 technical replicates of at least three independent 
repetitions of the experiment with similar outcomes.   
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2.2.3 MS4A15 informatics supports intracellular calcium role  

As discovered, several calcium related molecules (e.g. TMEM33, ERLIN1/2, and DNAJA2) 

were identified from MS4A15 immunoprecipitation, indicating a potential role of MS4A15 in 

regulating calcium homeostasis. Supporting this, a bioinformatics analysis was performed 

using The Cancer Genome Atlas database (TCGA) database and a positive correlation 

between MS4A15 expression and gene ontology Ca2+ signaling factors was found in lung 

tumors (Pearson coefficient R = 0.49; Figure 2.5A). As TMEM33 has been reported as a 

modulator of calcium homeostasis through inhibiting inositol 1,4,5-trisphosphate (IP3) 

dependent calcium signaling, and ERLIN proteins regulate IP3 receptors and reside at the 

interface between calcium flux and lipid regulation (Kuchay et al., 2017; Pearce et al., 2009), 

IP3  is a second messenger molecule binds to IP3 receptors to release Ca2+  into the cytosol.  

The expression level of IP3 receptors in Ms4a15 OE cells has been investigated using 

western blot and a marked downregulation of IP3R1 protein was observed (Figure 2.5B), 

suggesting that reduced IP3R1 levels may be a consequence of disrupted calcium 

homeostasis. 

 

Figure 2.5 MS4A15 associated with calcium flux in the ER.  (A) ssGSEA analysis shows positive 
correlation between MS4A15 and gene ontology calcium signaling members in human lung tumors. (B) 
Western blots indicate the IP3R1 level is dramatically downregulated in Ms4a15 OE compared with 
control cells.    

 

The correlations between MS4A15 and different pathways were analyzed in LUAD, because 

MS4A15 is highly expressed in lung (Uhlen et al., 2017). Comparison of the top co-regulated 

KEGG pathways from LUAD in TCGA revealed the strongest association of MS4A15 with 

vascular smooth muscle contraction (dependent on intracellular [Ca2+]), PPAR signaling, 

arachidonic acid metabolism, and calcium signaling (Figure 2.6A). 
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The most highly co-regulated genes associated with MS4A15 in LUAD were shown in the 

heat map, including chloride intracellular channel protein 5 (CLIC5), cardiac troponin 

(TNNC1), sushi domain containing 2 (SUSD2), and the beta-1 adrenergic receptor (ADRB1). 

CLIC5 is a redox sensitive membrane ion channel involved in generation of 

phosphatidylinositol 4, 5-bisphosphate (PIP2) and cell migration was included (Al-Momany et 

al., 2014). TNNC1 is a highly sensitive Ca2+ binding protein which also acts as a Ca2+ buffer. 

SUSD2 is a membrane protein that mediates cell adhesion and migration (Zhang et al., 

2017). ADRB1 is a beta-adrenergic G-protein coupled receptor that stimulates IP3 release 

and calcium flux (Figure 2.6B). All these genes were found to be upregulated with MS4A15 

(Figure 2.6C; R>0.5) and showed strong correlation with calcium regulation (Figure 2.6D; 

R>0.5), these evidences demonstrate that these genes have a significant association with 

Ca2+ signaling in primary human cancer tissue. In contrast, TMEM33 displayed an inverted 

correlation with MS4A15 expression (Figure 2.6C; R = -0.27) and Ca2+ transporters (Figure 

2.6C; R = -0.31), indicating an unnecessary function of TMEM33 for MS4A15. Taken 

together, these results suggested that MS4A15 may play an independent role in regulating 

calcium processes in the ER.  
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Figure 2.6 Bioinformatics show correlation between MS4A15 and calcium.  (A) ssGSEA shows 
the correlation between MS4A15 and the top enriched GO-biological pathways. (B) Heat map of the 
top expressed genes associated with MS4A15 in LUAD. (C-D) ssGSEA shows the correlation between 
four genes and MS4A15 (C) or calcium factors (D) in lung cancers. The log2(rsem+1) value means the 
expression level of CLIC5, SUSD2, TNNC1 and TMEM33, respectively.   

 

2.3 Discussion 

In this chapter, the role of the novel four-pass transmembrane protein, MS4A15, was initially 

investigated, suggesting a potential role of MS4A15 in modulating calcium homeostasis.  

First, Ms4a15 was verified to protect specifically against ferroptosis other than different 

stimuli relating to cell death induction (e.g. apoptosis, necrosis). To further discover the 

function of MS4A15, a pull-down assay was performed. With the identification that the top-

scored proteins involved in IP3R regulation, it was further experimentally demonstrated that 

the IP3R level of Ms4a15 OE cells were significantly downregulated. Moreover, MS4A15 was 

co-localized with TMEM33 in the ER by immunofluorescence microscopy; nevertheless, 

TMEM33 is not necessary to augment MS4A15 OE protection. Therefore, MS4A15 may play 

an independent role in protecting against ferroptosis through regulating calcium homeostasis. 

MS4A15 belongs to the MS4A family which is not well characterized. There are several 

publications about this family, such as function as olfactory receptors, but MS4A15 is not 

investigated in those studies. MS4A1/CD20, a component of SOCE activated by the B-cell 

receptor, accounts for recruiting immune effectors as well as mediates cell growth arrest and 

cell death within the lipid raft (Deans et al., 2002; Shan et al., 2000). MS4A12, a very close 

homolog of MS4A15, blocks the replenishment of calcium through acting as a part of SOCE 

in intestinal cells. MS4A12 also functions as a modulator of epidermal growth factor receptor 

(EGFR) signaling to regulate calcium flux (Koslowski et al., 2008). Ca2+ is a universal 

secondary messenger, which achieves specificity using complex signaling modalities. Based 

on the evidences of MS4A15 and MS4A12, the hypothesis was put up that MS4A15 may 

also be involved in regulating calcium homeostasis.  

In fact, TMEM33 has been reported as a modulator of Ca2+ homeostasis through inhibiting 

IP3-dependent calcium signaling, impeding Ca2+ refilling of endolysosomes, and preventing 

autophagic flux upon ER stress. Moreover, TMEM33-mediated calcium oscillations are able 

to drive the formation of endothelial tip cell filopodia and EC migration (Arhatte et al., 2019; 

Savage et al., 2019). Activated IP3Rs interact with many proteins that mediate their 

degradation, component of the ERLIN1/ERLIN2 complex mediates the ubiquitination of IP3Rs 

and the subsequent endoplasmic reticulum-associated degradation (Wright and 
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Wojcikiewicz, 2016; Wright et al., 2018). DNAJ chaperone family members are required to 

promote protein folding and trafficking, prevent aggregation of client proteins, and promote 

unfolded proteins to ERAD (Shen et al., 2002).  

Examination of the activity of IP3R displayed a dramatically decrease of IP3R1 in Ms4a15 OE 

compared with control cells, indicating that MS4A15 participates in the process of regulating 

Ca2+ homeostasis through affecting IP3R expression level, however, whether MS4A15 and 

IP3R have an additional relationship remains unclear. In the calcium pathway, PIP2 functions 

as a substrate for hydrolysis by phospholipase C (PLC) to generate diacylglycerol (DAG) and 

IP3 (Michell et al., 1981). DAG activates the calcium-dependent Protein Kinase C (PKC) with 

the help of the Ca2+ released from the ER. IP3 enters the cytoplasm and activates IP3Rs to 

cause a conformational change that leads to calcium release from intracellular Ca2+ stores.  

The reduction of IP3R1 in Ms4a15 OE suggests a potential role of MS4A15 in regulating Ca2+ 

release from the ER. Further support was provided by the bioinformatics analysis of the 

association of MS4A15 and Ca2+ factors in LUAD. All the genes found to be upregulated with 

MS4A15 showed strong correlation with Ca2+, demonstrating a strong association with 

signaling mechanisms involving Ca2+ in primary human cancer tissue.  

In summary, MS4A15 is associated with calcium and displays a protective effect against 

ferroptosis strongly and specifically. 
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3. Functional characterization of MS4A15  

3.1 Introduction 

MS4A15 shows correlation with calcium in primary human cancer tissue, but cell signaling is 

very complicated to be effectively queried with existing technology. The activity of a certain 

protein depends on the abundant cross talk and conditional dependence, therefore, 

computational interpretation of genomics data using current annotations is not adequate to 

understand proteins relevant to biological events of interest, while functional studies often 

give more informative results. Generally, genetic manipulation and pharmacological 

perturbation approaches are frequently used to distinct the certain biological event of a 

particular gene. 

In adults, there exists about 1,000 g of calcium, which is the fifth most abundant element in 

the human body. Ca2+ plays a vital role in controlling diverse processes such as growth, 

migration, and cell death. It can trigger protein function through changing protein 

conformation and local charge, which are versatile tools for signaling transduction. In 

emphasizing the importance of Ca2+ signaling, no other molecule does a better job than 

Calmodulin, which is an intracellular target of Ca2+ that amplifies the diminutive size of Ca2+ to 

the scale of binding proteins (Abzhanov et al., 2006).  GCaMP6s is a widely used genetically 

encoded fluorescent Ca2+ indicator consists of the calmodulin-binding peptide M13 and 

shows high sensitivity and slow decay kinetics. 

There is a huge difference between intracellular (∼100 nM free) and extracellular (∼2 mM) 

Ca2+ concentrations (Figure 3.1 A). Hundreds of cellular proteins have been reported to be 

involved in the process to control Ca2+, these include phospholipases, PIP2, inositol (1,4,5) 

trisphosphate (IP3), IP3 receptor (IP3R), and others. (Figure 3.1A). Ca2+ releasing from 

intracellular store is a universal mechanism for signaling transduction, which can be activated 

either by G protein-coupled receptors (GPCRs) or by receptor tyrosine kinase (RTK) to 

promote PLC cleaving PIP2 into IP3 and DAG, IP3 activates IP3Rs to cause calcium release 

from intracellular stores and DAG activates the PKC with the help of the Ca2+ released from 

the ER. GPCRs mainly activate PLCβ via catalyzing the exchange of guanosine diphosphate 

(GDP) for GTP on Gα subunits, while RTKs activate PLCγ through dimerization (Figure 3.1 

B). IP3 is a ligand for the intracellular IP3R, binding the IP3R ER channel allows diffusion of 

Ca2+ from the ER to cytoplasm. DAG can be converted to AA by DAG lipase to generate a 

large amount of bio-reactive molecules, and can be phosphorylated by Ca2+-sensitive DAG 

kinase to produce phosphatidic acid .  
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Ca2+ is constantly leaking into the cytoplasm from the ER. In response to receptor activation 

or extra stimulation, persistent IP3R-mediated release of Ca2+
 from the ER into the cytosol to 

drain the ER store. To compensate for this process, SERCA transporters tirelessly pump the 

Ca2+ back into the ER to keep store Ca2+ balance. If these channels are blocked, ER Ca2+ 

homeostasis is disrupted, therefore, targeting these pathways have been used for investigate 

Ca2+ function. To better understand the role of Ca2+ in cells, pharmacological approaches 

were discovered to modulate Ca2+ homeostasis, e.g. EDTA and cobalt for chelating Ca2+, 

thapsigargin for store depletion.  

The results in chapter 2 proposed that the novel membrane protein MS4A15 has a role in 

modulating intracellular calcium homeostasis; hence in depth investigation needs to be taken 

to better understand how MS4A15 mediates ferroptosis resistance through regulating 

calcium through genetic manipulation and pharmacological modulation. 

 

Figure 3.1 The Ca
2+

 signaling network, adapted from (Clapham, 2007). (A) Molecules and 
channels to maintain the gradients of intracellular and extracellular Ca2+, e.g. the plasma membrane 
Ca2+ ATPase (PMCA), smooth endoplasmic reticular Ca2+ ATPase (SERCA), and the Na/Ca 
exchanger (NCX). (B) The core regulators of the Ca2+ signaling in response to stimulation. GPCRs or 
RTKs-mediated the activation of PLC to cleave PIP2 into IP3 and DAG, thus spanning the ER 
membrane and activating Ca2+ release.   

 

3.2 Results 

3.2.1 MS4A15 regulates calcium-mediated ferroptosis 

All these evidences give a strong suggestion that calcium is involved in the process of 

ferroptosis, but whether or how the downstream signal is affected remains elusive. To test 
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whether additional signaling pathways are involved, the cells were treated with EGF to 

examine the activation of receptor-mediated pathway, because Ca2+ flux is the fastest 

response to receptor tyrosine kinases, and EGF signal is in involved in IP3-, MAPK-, mTOR- 

and JAK-STAT pathway. As observed, IP3R1 expression level was dramatically 

downregulated in Ms4a15 OE cells in the absence of EGF. When treated with EGF, IP3R1 

level in Ms4a15 OE cells increased to control level after 2ng/ml and 3ng/ml EGF induction. 

MS4A15 and IP3R1 showed only partial co-localization, suggesting that MS4A15 does not 

directly affect IP3R1 (Figure 3.2A). In addition, Ms4a15 OE displayed increased basal 

phosphor-ERK level compared with the consistent weak expression in the control cells. While 

STAT and AKT signaling pathways remains unchanged (Figure 3.2B). These results strongly 

support the role for MS4A15 in Ca2+-regulating processes. 

 

Figure 3.2 MS4A15 regulates downstream MAPK/ERK signaling. (A) Western blots of IP3R1 in 
Ms4a15 OE and control cells after 15min EGF treatment with a concentration of 0 ng/ml, 1 ng/ml, 
2 ng/ml, 3 ng/ ml, and 4 ng/ml, respectively (upper panel) and co-localization of MS4A15-FLAG (red) 
and IP3R1 (green) (lower panel). Scale bar, 10 µm. (B) Western blots of proteins involved in RTK 
signaling pathway of Ms4a15 OE and control cells after 15 min EGF treatment with the concentrations 
mentioned above.   

 

The effect of calcium modulators on Ms4a15 OE and control MF cells were next examined 

using cells expressing the Ca2+ sensor GCaMP6s. GPCRs activate PLCβ to cleave PIP2 into 

IP3 and DAG, and elicit Ca2+ release from internal stores. When the cells were treated with 

bradykinin in calcium free medium, GPCR was activated and stimulated Ca2+ release from 

internal stores (Figure 3.3A). In Ms4a15 OE cells, Ca2+ response to bradykinin stimulation 

was strikingly reduced compared to control cells; while adding CaCl2 back to the medium 

induced robust Ca2+ transients in control cells, only limited response in Ms4a15 OE has been 

observed (Figure 3.3B), suggesting less store Ca2+ storage and Ca2+  uptake inhibition of 
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Ms4a15 OE. To evaluate global cellular Ca2+ stores, cells were treated with calcium 

ionophore A23187 in calcium free medium and a marked decrease in released calcium from 

Ms4a15 OE internal stores was witnessed (Figure 3.3B), further proving the store depletion 

of Ms4a15 OE.  

 

Figure 3.3 Ms4a15 overexpression protects cells from ferroptosis through store depletion.  (A)  
Schematic of GPCR mediated calcium pathway. (B) ER Ca2+ release mediated by 50 nM Bradykinin or 
5 μM Ionophore (∆) and uptake of Ca2+ mediated by 2 mM CaCl2 addition (▲) in MF Ms4a15 OE cells, 
control cells (Top), and control cells pre-treated with 0.5 µM thapsigargin for 3 h (Bottom). Calcium 
sensitivity was measured by Ca2+ sensor GCaMP6s. Data shown are representative results of three 
independent experiments done in triplicate. (C) Time -dependent effect of thapsigargin on lipid 
peroxidation induced by 0.3 μM RSL3 induction in MF Ms4a15 OE cells and control measured by 
BODIPY 581/591 C11 (BODIPY-C11). A typical FACS histogram of n = 4 technical replicates of three 
independent repetitions is depicted. (D) Survival of MF control cells pre-treated with 2.5 nM 
Thapsigargin for 3 h or 32 h against 0.1 µM (3h) or 0.2 µM (32h) RSL3, 10 μM αToc serves as rescue 
control for ferroptosis.  Viability data represent mean ± SD of n = 4 technical replicates. Statistics, one-
way ANOVA.  
 

Thapsigargin, which has similar profile with MS4A15 in regulating calcium levels, was 

examined for RSL3-induced ferroptosis. Disruption of calcium homeostasis by thapsigargin 

for up to 48h reduced lipid peroxidation detected by BODIPY-C11, corresponding to the 

length of treatment (Figure 3.2C). Concurrent treatment of RSL3 with thapsigargin showed 

slightly protection in ferroptosis response while 32h pretreatment of thapsigargin significantly 

protected cells (Figure 3.2D) in line with reduced lipid peroxidation (Figure 3.3C). Whereas 

thapsigargin treatment abolishes bradykinin and ionophore-induced store release, Ca2+ 
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uptake from the extracellular milieu is distinctly enhanced (Figure 3.3B). Therefore, 

enhanced ferroptosis resistance is a consequence of persistent calcium stores depletion.  

The calcium release-activated channels (CRAC) channel is activated when calcium ions 

(Ca2+) are depleted from intracellular stores, to slowly replenish the level of calcium in the ER 

(Hoth and Penner, 1992; Zweifach and Lewis, 1993). The ER-resident membrane protein 

STIM1 can sense intracellular calcium concentrations. When the store is drained, STIM1 

interacts with the membrane protein ORAI to refill the stores (Zhou et al., 2018). The 

expression pattern of Orais from the RNA sequencing (RNAseq) data suggested that Orai1 

and Orai3 were unchanged; while Orai2 slightly increased in Ms4a15 OE compared with 

control cells (Figure 3.4A), suggesting a potential compensatory role. The endoplasmic 

reticulum Ca2+-ATPase (SERCA) plays an important role in intracellular Ca2+ homeostasis by 

pumping Ca2+ from the cytoplasm into the ER (Higgins et al., 2006).  

 

Figure 3.4 Acute flux of calcium does not affect ferroptosis resistance . (A) The changes of Orais 
mRNA expression in Ms4a15 OE compared to control. Expression data are shown as mean ± SD of 
n = 5 technical replicates. (B) Sensitization of MF Ms4a15 OE cells overexpressing SERCA2 to 
ferroptosis induced by 500 nM RSL3 (left) and overexpression of ATP2A2 verified by western blotting. 
(C) Viability of cells incubated with dose amount of Cocl2 challenged against RSL3. (D-E) Dose 
response curves of MF control cells treated with 1mM EDTA (D) or 1 μM calcium ionophore (E) 
against RSL3. Addition of 10 μM αToc serves as rescue control for ferroptosis. Viability data are 
plotted as mean ± SD of n = 3 technical replicates of at least three repetitions of the experiment with 
similar outcomes. 
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To test if levels of calcium in the cell are critical for ferroptosis sensitivity, Atp2a2 was 

overexpressed in Ms4a15 OE cells to promote ER Ca2+ restoration. As expected, 

overexpression of Atp2a2 (serca2) sensitized Ms4a15 OE cells to RSL3-induced ferroptosis 

(Figure 3.4B). To verify the effects of prolonged calcium depletion as opposed to acute 

treatment, cells were supplemented with cobalt, EDTA, and calcium ionophore, respectively, 

before ferroptosis induction, because ionophore triggers Ca2+ release, while EDTA and 

cobalt chloride inhibit calcium signaling in cells. However, none of these treatments affects 

ferroptosis sensitivity (Figure 3.4C-E). Taken together, it can be concluded that persistent 

disruption of calcium homeostasis in Ms4a15 OE and long term thapsigargin-treated cells 

leads to ferroptosis resistance.  

3.2.2 MS4A15 mediated calcium store depletion does not trigger UPR  

The endoplasmic reticulum (ER) is the main site of lipid synthesis, protein folding and cellular 

calcium storage (Ron and Walter, 2007). As calcium has an important role in mediating 

chaperone function and protein folding, perturbation of ER calcium homeostasis leads to 

stress and activation of the unfolded protein response (UPR) (Ron and Walter, 2007). 

Ms4a15 OE cells displayed persistent store depletion, RNAseq data was analyzed to explore 

if this results in ER stress. 

During ER stress, inositol-requiring enzyme 1 α (IRE1α), encoded by the endoplasmic 

reticulum to nucleus signaling 1 (ERN1) gene, splices and induces the expression of proteins 

involved, such as the key modulator of UPR, X-box-binding protein 1 (XBP1). RNAseq data 

showed that the expression level of Ire1 slightly increased which leads to spliced XBP1, and 

activated ATF4 for the C/EBP homologous protein (CHOP) (Ddit3) and GADD34 (Ppp1r15a). 

But according to the subtle changes, we cannot make the conclusion that UPR is activated 

(Figure 3.5A, B). Contrastingly, an increase in IRE1-suppressed peroxisome proliferator-

activated receptor γ (PPARγ) expression has been observed, which is associated with 

lipogenesis (Figure 3.5B). To examine whether ER stress in general contributes to 

ferroptosis resistance, cells were pretreated with tunicamycin, which specifically causes 

protein misfolding in the ER, for ferroptosis induction. Whereas, neither no pretreatment nor 

24 h pretreatment with tunicamycin could protect against ferroptosis (Figure 3.5C), indicating 

that alterations in Ca2+ homeostasis rather than triggering UPR is responsible for ferroptosis 

protection. 
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Figure 3.5 MS4A15 induced calcium depletion does not trigger unfolded protein response 

(UPR). (A) Xbp1 and Chop mRNA expression levels in Ms4a15 OE compared to control. (B) 
Expression changes of genes associated with lipogenesis in Ms4a15 OE compared to control. 
Expression data are shown as mean ± SD of n = 5 technical replicates. (C) Survival of MF control cells 
against RSL3 after 0 h or 24 h tunicamycin pretreatment. Viability data are plotted as mean ± SD of 
n = 3 or 4 technical replicates. 

  

3.2.3 MS4A15 suppresses cell migration 

An important cellular feature tightly regulated by the oscillation of Ca2+ is migration (Berridge 

et al., 2000). Growth factor stimulation of IP3 receptors mediates calcium release from 

cellular stores into the cytosol and activates the membrane-proximal actin cytoskeleton, thus 

driving migration (Feldner and Brandt, 2002). As previously reported, the EGFR signaling 

modulator, MS4A12, reduced cell migration via lowering the threshold for EGF-triggered 

Ca2+ entry (Koslowski et al., 2008). In addition, TMEM33 has been discovered to mediate 

VEGF-dependent endothelial Ca2+ oscillations, filopodia formation, and wound healing 

(Savage et al., 2019).  

To investigate whether MS4A15 has an impact on cell motility, a classic wound healing 

assay was carried out. Intriguingly, the cellular migration of Ms4a15 OE has been strongly 

impeded, as control cells filled in the gap (50 µm) after 7 h while Ms4a15 OE did not (Figure 

3.6A, B), suggesting that Ca2+ released from the ER stores can be mobilized and force cell 
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migration. This result is consistent with the analysis that the adhesion of primary LUAD 

tumors exhibits a positive correlation with the expression of MS4A15. Strikingly, however, 

MS4A15 expression is lost in cell lines established from human tumors, suggesting that the 

tumors may need high expression level of MS4A15 in vivo to protect against ROS species 

but that motility is impacted as a result (Figure 3.6C). Moreover, using the LUAD patient’s 

data downloaded from TCGA, increased survival of patients with high MS4A15 expression 

has been observed, potentially indicating that decreased metastatic migration due to 

disruption of calcium homeostasis may provide translational insight for cancer therapy 

(Figure 3.6D).  

Another important cellular process tightly regulated by calcium oscillation is cell cycle. 

Calcium release from internal stores results in induction of resting cells (G0) to reenter the 

cell cycle (Berridge, 1995). Furthermore, prevention of Ca2+ influx via targeting store 

operated entry could inhibit tumor growth (Kohn et al., 1996). Therefore, the effect of Ms4a15 

expression on cell cycle was assessed, and a distinct G1-S arrest in Ms4a15 OE cells was 

observed, which might resulted from store depletion (Figure 3.7). 
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Figure 3.6 Ms4a15 overexpression suppresses cell migration.  (A-B) Digital phase contrast views 
(A) and migration speed (B) from the wound healing assay of Ms4a15 OE cells and control using high-
content microscopy and Harmony software. The cells were tracked for 8 h and the average speed is 
calculated by Harmony software. (C) Correlation of MS4A15 expression level with tumor adhesion (left 
panel) and tumor cell MS4A15 expression level in culture (right panel). Data from 188 lung cancer cell 
lines were used. (D) Kaplan-Meier survival analysis for LUAD patients with high and low MS4A15 
expression levels. Data from 517 patients were calculated by best-cut point method in survival, and 
patients were classified into low- and high-expression of MS4A15 groups using a cutoff value of 0.5. 
The value means the log2(rsem+1) expression level of MS4A15.   
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Figure 3.7 G1-S phase is arrested in Ms4a15 OE cells.  Ms4a15 OE and control cells were cultured 
and analyzed under the same conditions. Cell cycle analysis is shown as bar chart of cell fractions in 
different cell cycle states. Cell cycle data are plotted as mean ± SD of n = 3 technical replicates of at 
least three repetitions of the experiment with similar outcomes.   

 

 

Figure 3.8 Global proteomics analysis of Ms4a15 OE and control cells.  (A) Volcano plot indicates 
global proteomics analysis of Ms4a15 OE compared to control cells. The log2 of the normalized protein 
abundance ratios and -log10 of corresponding p-values of proteins quantified by at least two unique 
peptides were plotted.  (B) The extent of correlation between protein levels and RSL3 cytotoxicity. 
Data were pulled up from The Cancer Therapeutics Response Portal (CTRP) database. Plotted values 
are z-Scored correlation coefficients.    
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Global proteomics analysis revealed marked increases in proteins involved in actin 

polymerization. In Ms4a15 OE cells, the highly enriched Wiskott-Aldrich syndrome protein 

(WASP) and WAS-associated Sialophorin (SPN), as well as a potent decrease of the EGF 

regulator Sorting Nexin 16 (SNX16), are implicated in regulating RAC1/CDC42-mediated 

actin reorganization in tumor cell migration (Feldner and Brandt, 2002) (Figure 3.8A, B). 

Interestingly, the former two (WASP and SPN) are among the top inversely correlated 

proteins with resistance to RSL3, indicating the less of these two proteins in certain cells 

correlates to a more RSL3 sensitive phenotype (Figure 3.8A).  

In line with proteomics analysis, immunofluorescence further proved increased intensity of 

proteins enriched in Ms4a15 OE, especially WASP (Figure 3.9). Calcium can also regulate 

multiple cell functions including gene expression; however, the expression level of the known 

ferroptosis related proteins did not change a lot in Ms4a15 OE cells, indicating a novel 

regulation pathway of MS4A15 in protecting against ferroptosis (Figure 3.10).  In summary, 

these results support the theory that Ms4a15 OE cells persistently deplete calcium from the 

ER and block calcium uptake causing depress of cellular migration, which is directly linked to 

ferroptosis sensitivity. 
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Figure 3.9 Immunofluorescence of highly enriched proteins in global proteomics.  Phalloidin-
TRITC was used to stain cellular skeleton F-actin. Intensity was detected with high-content microscopy 
and analyzed by the Harmony software; these data are plotted as mean ± SD of n = 3 technical 
replicates. FUK, fucose kinase; FAK, focal adhesion kinase; CD71, transferrin receptor protein 1, also 
short for TFRC;WASP, Wiskott-Aldrich syndrome protein; CLTC, Clathrin Heavy Chain; Cortactin, 
cortical actin binding protein; GRF, growth-regulating factor. 

 

Figure 3.10 Heat map of the ferroptosis related proteins level  in Ms4a15 OE and the control 

cells. Heat map indicates protein change of Ms4a15 OE compared to control cells from global 
proteomics data. The log2 of the normalized protein abundance ratios and -log10 of corresponding p-
values of proteins quantified by at least two unique peptides were plotted. Expression data are shown 
as mean ± SD of n = 5 technical replicates.   
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3.3 Discussion 

In this chapter, MS4A15 was unrevealed a novel mechanism in protecting against 

ferroptosis through constitutive depletion of ER Ca2+ stores to prevent lipid peroxidation. In 

normal cells, intracellular Ca2+ depletion can be stimulated either by RTK activates PLCγ or 

by GPCRs activate PLCβ to cleave PIP2 into IP3 and bound to IP3R channel to span the ER 

membrane, ultimately allowing ER Ca2+ release. Indeed, expression of IP3R1 was 

downregulated in Ms4a15 OE cells as a result of calcium homeostasis disruption. 

MS4A15 modulates receptor-mediated pathway via increasing phosphor ERK. Extracellular 

regulated kinases (ERK) pathway has been reported to have two sides effect. On one hand, 

researches showed that inhibition of RAS-ERK pathway by U0126 rescued erastin-induced 

ferroptosis (Yagoda et al., 2007). Blocking ERK pathway can prevent ferroptosis has been 

announced in U57810 and C2C12 cells. Specifically, augmented ferroptosis susceptibility 

was observed in engineered rhabdomyosarcoma cells exhibiting a higher growth rate driven 

by increased ERK pathway activation, linking ferroptosis susceptibility to cell motility 

(Codenotti et al., 2018). In fact, this coincides with our finding that Ms4a15 overexpression 

suppressed cell migration, which resulted from the depletion of calcium. Because cell 

migration needs the calcium triggered from the stores then the actin can be mobilized and 

force protrusion, lacking of calcium cannot provide energy for the cells to migrate. Several 

proteins that are highly enriched in Ms4a15 OE in the global proteomics analysis (i.e. WASP, 

SPN and SNX16) have been identified involved in actin reorganization and cell migration in 

vitro (Fawcett and Pawson, 2000). Recent research confirmed this finding, pointing that 

human cancer cells in a high mesenchymal state typically adopt synthesis of polyunsaturated 

lipids to migrate slowly, and are highly dependent on the enzymes protect against ferroptosis 

(Viswanathan et al., 2017; Wu et al., 2019).  

On the other hand, some scientists claimed that JNK and p38, but not ERK, contribute to 

erastin-induced cell death in leukemia cells (Yu et al., 2015). Recently, the protective effect 

of ERK was discovered that panx1 deletion lead to the activation of MAPK/ERK signaling 

pathways and increased antioxidant gene HO1 expression, resulting in the inhibition of 

ferroptotic cell death during renal ischemia/reperfusion injury (Su et al., 2019). Glutamate-

induced oxidative toxicity, which is known as oxytosis, shares common characteristics with 

ferroptosis. It has been reported that during oxytosis, ERK1/2 activation contributes to an 

adaptive response to oxidative stress of HT22 cells at initial phases when calcium efflux 

happens (Luo and DeFranco, 2006), indicating a protection role of calcium depletion. 

Consistently, in this work, control cells with 48h thapsigargin pretreatment showed protection 

against ferroptosis in line with reduced lipid peroxidation compared to cells with 3h 



Functional characterization of MS4A15 

40 

 

thapsigargin treatment, demonstrating lipids remodeling process might be activated during 

constitutive depletion of ER stores. Aberrant calcium homeostasis normally leads to ER 

stress and UPR activation, however, Ms4a15 OE cells cause store depletion without 

activating UPR, suggesting that constitutive calcium homeostasis disruption rather than 

triggering UPR that is responsible for resistance. 

ERK signal stimulation is one of the major effectors of GPCRs. GPCR was activated and 

stimulated Ca2+ release from internal stores when the cells were stimulated with bradykinin in 

calcium free medium. Ca2+ response to bradykinin stimulation of Ms4a15 OE cells was 

strikingly reduced compared with control cells, suggesting less Ca2+ in the stores. The ATP-

dependent SERCA pump, which transports calcium from the cytosol into the ER, is 

principally responsible for maintaining ER calcium homeostasis (Higgins et al., 2006). 

Indeed, overexpression of SERCA2 promoted calcium influx into the ER and re-sensitized 

Ms4a15 OE cells to ferroptosis induction.  Henke et al. have reported that CoCl2 , protect 

cells against erastin and RSL3 induced ferroptosis through reducing calcium influx (Henke et 

al., 2012). However, neither EDTA or CoCl2 nor ionophore markedly affected ferroptosis 

sensitivity in this work, indicating acute Ca2+ flux and persistent Ca2+ dyshomeostasis are 

distinct cell death phenomena. These results suggest that although calcium homeostasis 

alteration is the crucial event of Ms4a15 OE cells, there still be substantial differences in 

regulation of ferroptosis induced by individual compounds. 

Taken together, persistent disruption of calcium homeostasis suppresses cell migration and 

inhibits cell proliferation, which associated with ferroptosis sensitivity; however, the 

mechanism needs to be further discovered. 
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4. Constitutive calcium depletion drives lipids remodelling 

4.1 Introduction 

Previous results demonstrated that overexpression of Ms4a15 resulted in disruption of 

calcium homeostasis, reduction of lipid peroxidation and retardation of cell migration. As 

reported, cancer cell migration and adhesion is a feature of calcium signaling (Berridge et al., 

2000) which could be suppressed by PUFAs through remodeling of the fatty acid 

composition within the membranes (Tonutti et al., 2010). Accumulation of lipid peroxides is 

one of the hallmarks of ferroptosis, and bioinformatics analysis revealed a role of MS4A15 in 

arachidonic acid metabolism and ether lipids metabolism. However, neither lipids 

characteristics in Ms4a15 OE cells nor the link between calcium depletion and reduced lipid 

peroxidation has been classified so far.  

To systematically characterize the mechanisms of MS4A15, the metabolomic and lipidomic 

landscape were comparatively examined in this work.  Metabolomics profiling has often been 

reported in the study of cell death, certain metabolites disorder, such as ATP, NADH, and 

NADPH, directly leads to cell death (Jain et al., 2012; Skouta et al., 2014; Yang et al., 

2014a). Specially, as a subset of metabolomics, lipidomics is of great interests for 

quantitative measurement of lipids which play essential roles in ferroptosis.   

 

Figure 4.1 General structure of phospholipids and common head groups.  GPs contain two fatty 
acids ester-linked to glycerol at C-1 and C-2, and a polar head group attached at C-3 via a 
phosphodiester bond. The fatty acids in GLs can vary in carbon group length and saturation degree. 
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PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, 
phosphatidylserine;  PI, phosphatidylinositol. 

 

Glycerophospholipids (GPs) are main components of cell membranes which comprise a 

glycerol backbone and a polar head group (Chilton and Murphy, 1986). The position of 

glycerol is numbered in a stereospecific manner (sn), so the phosphate group is located at 

the sn-3 position. Based on the polar head group attached to the phosphate, phospholipids 

can be classified into different classes: phosphatidylinositol (PI), phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidic acid (PA) with no 

polar head (Figure 4.1).  

According to the chemical bond of the fatty chain of glycerol on sn-1 position (i.e., acyl ester, 

ether and vinyl ether bond), phospholipids can be subdivided into diacyl, alkyl-acyl or alkenyl-

acyl types.  At the sn-2 position, where there is usually esterified an unsaturated fatty acid, 

the acyl chains are connected by an ester bond. Different combinations of head groups, the 

length and degree of unsaturation at the sn-1 and -2 yield different species of GPs 

(Yamashita et al., 2017). When cells undergo ferroptosis, oxidation in ER-associated 

compartments occurs on only PE species and is specific toward arachidonic acid (AA) and 

adrenaline (AdA) (Kagan et al., 2017). Hence, inhibition of AA or AdA esterification into PE 

could be a way to protect from ferroptosis. 

The process of regulated cell death, including apoptosis and ferroptosis, can be initiated 

when certain proteins or pathways are activated. Therefore, pharmacological or genetic 

perturbations of proteins or pathways can alter the resultant cell death (Fuchs and Steller, 

2011). Here, in line with the “omics” approaches, gene activation/silencing and chemical 

activation/inhibition were utilized to modify certain pathways to study the action of Ms4a15 

OE cells in response to different stimuli, to ultimately uncover the mechanisms of MS4A15 in 

mediating ferroptosis resistance. 

 

4.2 Results 

4.2.1 Lipid metabolites are reshaped in Ms4a15 OE cells 

In the omics’ cascade (i.e., DNA → RNA → proteins → metabolites), metabolites are the 

most downstream and thus considered to be the reflection of cellular metabolic processes. 

As a result, the global assessment of metabolites, metabolomics, has rapidly gained 

popularity in the study of cell death. Ferroptosis is executed by peroxidized membrane 
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phospholipids, particularly PEs that contain PUFA chains including AA (C20:4) and 

docosahexaenoic acid (DHA, C22:6). Here, metabolomics profiling assay was performed to 

capture metabolic changes of Ms4a15 OE cells using electrospray Fourier transform ion 

cyclotron resonance mass spectrometry (ESI-FT/ICR-MS). The data was analyzed 

independently with two electrospray ionization (ESI) modes (ESI- and ESI+), which differ 

significantly due to the analytical sensitivity and technical variability. The m/z was annotated 

based on exact mass and mapped in Kyoto Encyclopedia of Genes and Genomes (KEGG), 

Human Metabolome Database (HMDB) and Lipid maps databases (Figure 4.2A). To gain 

insight into the metabolic mechanism of MS4A15, metabolic pathways of the significantly 

altered metabolites were analyzed by searching HMDB (Figure 4.2B). Volcano plots and 

principal component analysis (PCA) of the ESI-/+ generated data are shown in Figure 4.3, a 

list of lipids and metabolites were annotated as dramatically differentially expressed between 

Ms4a15 OE and control cells (p<0.05).  

 

Figure 4.2 Summary of metabolites biological processes.  Overview of annotations of metabolites 
(A) and pathway analysis module indicates the pathways most involved (B). 

 

As PUFAs are easily oxidized, decreasing PUFA content helps the cells to be less vulnerable 

to ferroptosis inducers. In general, the Ms4a15 OE cells have more SFA and MUFA as well 

as less PUFA compared with control, indicating a protection role. Indeed, the ESI- data 

showed an increase of free/saturated fatty acids of Ms4a15 OE, such as Myristoleic acid 

(C14H26O2), an omega-5 fatty acid; PI(18:0/18:2, C45H83O13P); 

PE(22:5(4Z,7Z,10Z,13Z,16Z)/18:0, C45H80NO8P) and the ester of pyrophosphoric acid, 

uridine diphosphate (UDP, C9H14N2O12P2). The downregulated lipids and metabolites in 

the ESI- data including PE(O-16:0/0:0, C21H46NO6P), PI(18:0/20:4(8Z,11Z,14Z,17Z), 

C47H83O13P) PC(O-15:0/0:0,C23H50NO6P), Lysophosphatidic acid(LPA, 18:0/0:0, 



Constitutive calcium depletion drives lipids remodelling 

44 

 

C21H43O7P), LPA(P-16:0, C19H39O6P), and adenosine monophosphate (AMP, 

C10H14N5O7P), an ester of phosphoric acid that binds to AMPK and leads to the activation 

of a cascade of cellular metabolic processes (Figure 4.3A).  

 

Figure 4.3 Metabolomis analysis acquired by ESI-FT/ICR-MS.  Volcano plots and respective 
unsupervised PCA of Ms4a15 OE and control samples in ESI- (A) and in ESI+ (B) modes. Volcano 
plots show log2 fold change of the MS4A/CTL mean ratios plotted against –log10 of adjusted p values, 
red dots represent lipids, and blue dots represent metabolites. In PCA plots, red dots represent control 
samples; blue triangles represent Ms4a15 OE samples.  
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In addition to the increase of hydroxyl fatty acid, the ESI+ data showed a list of lipids which 

were significantly downregulated in Ms4a15 OE cells (Figure 4.3B). For example, calcitriol 

(C27H44O3), the active form of vitamin D being used for taking up calcium into the cells.  

SLC7A11 expression level shown in the heat map of the known ferroptosis related proteins 

was slightly increased (Figure 3.10), metabolomics analysis showed however that the 

calcitriol-dependent antioxidant GSH reduction was observed in Ms4a15 OE cells, 

demonstrating that the protection role of MS4A15 is through a novel mechanism whereas not 

depend on GSH/GPX4 pathways. Other highly downregulated metabolites include a branch 

of short- and lyso- ether lipids, e.g., PI(22:4(10Z,13Z,16Z,19Z) /16:0, C47H83O13P) which 

consists of one chain of palmitic acid (C16:0) at the C-1 position and one chain of 

(10Z,13Z,16Z,19Z-docosatetraenoyl) at the C-2 position; C45H81O13P that consists of one 

chain of palmitic acid at the C-1 position and one chain of mead acid at the C-2 position; 

while PC(15:0/P-16:0, C39H78NO7P) consists of one chain of pentadecanoic acid (C15:0) at 

the C-1 position and one chain of plasmalogen 16:0 at the C-2 position; 

LysoPE(0:0/22:6(4Z,7Z,10Z,13Z, 16Z,19Z), C27H44NO7P) has a free alcohol in either the 

sn-1 or sn-2. These metabolic analyses indicate that MS4A15 may play an independent role 

in alterations of lipids structure through mediating calcium signaling.  

In some cases, the extensive usage of metabolites within well studied pathways, such as 

amino acid metabolism and lipid metabolism, rather than a particular metabolite, is of greater 

importance. Previously, targeted deletion of the luminal Ca2+ buffering protein Calreticulin 

was shown to drastically alter lipid homeostasis in mice (Guo et al., 2002). Since MS4A15 

informatics revealed a role in arachidonic acid metabolism and ether lipids metabolism 

(Figure 2.6A), further investigation has been conducted to understand how Ca2+ homeostasis 

disruption in Ms4a15 OE cells directly impacts cellular lipid composition and metabolism. An 

untargeted mass spectrometry-based lipidomics analysis was performed on Ms4a15 OE 

cells treated with RSL3/DMSO for 3 hours, and parental control cells which were incubating 

with thapsigargin (3 or 16 hours) before being treated with RSL3/DMSO for 3 hours.  

There were more than 4600 individual lipid species have been detected. The Non-targeted 

cluster analysis demonstrated that Ms4a15 OE and 16h thapsigargin-treated control cells 

(Tgnlong) have similar lipids profile in both ESI+ and ESI- modes, whereas control cells were 

clustered together with 3h thapsigargin-treated control samples (Tgnshort) (Figure 4.4A). 

Similarly, an unsupervised principal component analysis (PCA) delivered a clear separation 

of Ms4a15 OE and Tgnlong treatment from control and Tgnshort in the second component 

(PC1=33.1%, PC2=15.2%), which was showed in the heat map that the relative abundances 

of several lipid species were altered significantly of Ms4a15 OE and Tgnlong in response to 

calcium depletion (Figure 4.4B). Retention time and detected masses were used to annotate 
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the species and categorize them in the LIPID classification system. The pie chart gives us an 

insight of the important lipids categories which were decreased or increased in Ms4a15 OE 

and Tgnlong that displayed in the heat map (i), those exclusive to Ms4a15 OE (ii), and shared 

in Ms4a15 OE and Tgnlong (iii). The majority of modulated lipids are gylcerophospholipids, 

followed by several fatty acid species (Figure 4.4C).  

Generally, PUFA lipids are the driven factors of ferroptosis which have strong sensitization. 

Indeed, Ca2+ depletion of Ms4a15 OE and Tgnlong cells cause a significant increase (p < 0.05, 

two sided Welch-test) of the main saturated fatty acids (palmitic (C16:0), stearic (C18:0)), 

and MUFAs (gondoic (C20:1), erucic acid (22:1)) (Figure 4.4D). Also, a dramatic decrease of 

the PUFA lipids are observed, such as alpha-linolenic acid (ALA, the essential omega-3 

fatty acids) derivatives eicosapentaenoic acid (EPA, C20:5), doasapentaenoic acid (DPA, 

C22:5n-3) and doxosahexaenoic acid (DHA, C22:6), which support lipid peroxidation and can 

change the fatty acid composition of the membranes (Figure 4.4D). There was about 39% of 

the total cellular lipid content has been reshaped in total, suggesting the crucial role of 

calcium depletion in lipid remodeling. 

 

Figure 4.4 Untargeted lipidomics reveals calcium depleted cells protect from ferroptosis 

through changes of specific lipids.  (A) Non-targeted cluster analysis (wardD2) of Ms4a15 OE and 
parental control cells with treatment as indicated. (B) Heat map (one-way ANOVA; FDR-corrected p-
value <0.05) showing changes in lipid profile. The relative abundance of lipid is color-coded from red 
indicating high signal intensity to dark blue indicating low intensity and clustered using Pearson 
correlations. (C) Pie diagram shows the categories of the alteration of lipids abundant of Ms4a15 
OE/Tgnlong compared to control / Tgnshort corresponding to the groups in (B). GP, glycerophospholipid; 
FA, Fatty acid; ST, Sterol Lipid; SP, Sphingolipid; GL, glycerolipid. (D) Fold change of free fatty acids 
of Ms4a15 OE/Tgnlong compared to control / Tgnshort. p < 0.05, two sided Welch-test.  
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Figure 4.5 Significantly modified ester and ether glycerophospholipids in Ms4a15 OE.  GP, 
glycerophospholipid; SFA GP, saturated phospholipid; MUFA GP, monounsaturated phospholipid; 
PUFA GP, polyunsaturated phospholipid 

 

To better explore the role of MS4A15 in lipids remodeling, the Kendrick mass defect plot was 

applied as a helpful tool to reveal homologous series of various lipid classes. Therefore, the 

most significantly changed ester lipid species detected in Ms4a15 OE were transformed into 

the Kendrick scale. In line with the metabolomics analysis (Figure 4.3), the plots illustrate a 

dramatic increase in saturated GPs and MUFA GPs. In contrast, PUFA GPs are 

downregulated in Ms4a15 OE (Figure 4.5 A). Along with the distinct transformation to mono- 

and saturated species, the Kendrick plot showed a decrease in higher molecular weight 

PUFA GPs. Importantly, Ms4a15 OE displayed a dramatic increase in ether lipids abundance 

(Figure 4.5 B). Consequently, Ms4a15 OE reveals a decrease in number of double bonds 

and in chain length of ester lipids, suggesting the elongation and desaturation are inhibited.  

Notably, the increased GPs in ferroptosis-resistant models are almost exclusively ether 

lipids, compared with the decreased ester lipids in ferroptosis-sensitive models (Figure 4.6A). 

Among the ether lipids detected, which have been confirmed to be vinyl-ether lipids 
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(plasmalogens) by acidic hydrolysis, glycerophosphocholines (PCs) and 

glycerophosphoethanolamins (PEs) are two predominant lipid groups (Figure 4.6B) PCs and 

PEs are two major types of plasmalogens, i.e. ethanolamine plasmalogens (PlsEtns) and 

choline plasmalogens (PlsChos) that have been reported to function as endogenous 

antioxidants against lipid peroxidation (Brites et al., 2004). PlsEtns and PlsChos are 

occupied by C16:0 (palmitic acid), C18:0 (stearic acid) or C18:1 (oleic acid) carbon chains at 

the sn-1 position, and normally contain a polyunsaturated fatty acid at sn-2 position, 

specifically AA or DHA (Figure 4.7). Further analysis showed consistently increased amount 

of PCs and PEs in Ms4a15 OE/Tgnlong (Figure 4.6C). The abundance of other GPs were 

detected, including phsphoinositols (PIs), phosphoserins (PSs) and GPs which were 

changed according to the length and saturation degree. This is in particular the case for 

higher molecular weight and unsaturated species with a strong trend from ester- to ether-

type sn-1 bonds. For example, PA(O-36:4), PA(O-36:3), PS(42:6) and PS(42:7) were 

markedly decreased in Ms4a15 OE cells, and primarily saturated or monounsaturated C16, 

C18 and C20-containing species were increased, e.g. PI(26:0), PI(O-26:1), PI(O-28:0), 

PS(28:1), PA(O-36:1)  (Figure 4.6D). Overall, Ms4a15 OE/ Tgnlong cells showed increased 

amount of SFA- and MFUA- containing GPs as well as decreased PUFA containing GPs 

(Figure 4.5A). 

 

Figure 4.6 Untargeted lipidomics reveals lipids change of calcium depleted cells.  (A) 
Abundance of ether and ester lipids changed in samples detected. (B) All detected ethers are mainly 
PC/PE ethers. (C) Summed peak area of all annotated PC and PE lipids all samples. (D-E) The RKMD 
plots reveal homologous series of PEs/PCs (D) and ether PEs/PCs (E). (F) Fold change of 
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phosphoinositols, phosphoserins and glycerophosphates in Ms4a15 OE/Tgnlong compared with 
control/Tgnshort.  

 

Figure 4.7 Chemical structures of Plasmalogens. R1 = saturated fatty acid (SFA), monounsaturated 
fatty acid (MUFA). R2 = polyunsaturated fatty acid (PUFA).  
 

Consequently, persistent disruption of calcium homeostasis favors lipids remodeling which 

serves as the protective mechanism against oxidative stress of cells. In fact, lipids 

significantly degraded in Ms4a15 OE cells are mainly C40H76NO8P (PC(18:2(9Z,12Z)/14:0)), 

which is a tetradecanoate ester PUFA; DAG, the analogue of phorbol esters that mostly 

found in lipid droplets; one species of ether lipids C37H71O7P (PA(P-18:0/16:1(9Z))); and 2-

Hydroxypropyl stearate (C21H42O3) (Figure 4.8). Ester PUFA lipids and their analogues are 

the major targets of RSL3, leading to the burst of lipid peroxides.  

 

Figure 4.8 Lipid species decreased in Ms4a15 OE.   

 

In contrast, the lipids dramatically increased in Ms4a15 OE cells are mainly MUFAs, SFAs 

and plasmalogens (Figure 4.9A), such as C40H78NO8P (PE(15:0/20:1(11Z))) that consists 

of SFA pentadecanoic acid at the C-1 position and MUFA eicosenoic acid at the C-2 position, 

and C42H84NO7P (PC(18:0/P-16:0)) that consists of SFA stearic acid at the C-1 position 

and plasmalogen 16:0 at the C-2 position. These MUFAs and plasmalogens which act as 

antioxidants were strongly depleted to protect cells from lipid peroxidation after RSL3 
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treatment in Ms4a15 OE cells, however, remained unchanged in control cells (Figure 4.9B). 

These results indicate that phospholipids with one monounsaturated fatty acyl chain or one 

plasmalogen chain are easier attacked by ferroptotic ROS and depletion of MUFAs or 

plasmalogens does not drive cells undergo ferroptosis. Conclusively, MS4A15 promotes lipid 

remodeling through mediating calcium signaling and ultimately regulates ferroptosis 

resistance. 
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Figure 4.9 lipids profile in Ms4a15 OE. (A) Lipid species increased in Ms4a15 OE. All of these are 
putative PE- or PC- glycerophopholipids, NO7Ps indicate ether lipids and NO8Ps indicate ester lipids. 
(B) Change of lipids abundance upon RSL3 treatment in Ms4a15 OE and control. 

 

PUFA lipid arachidonic acid (AA) is the key driver that stimulates ferroptosis execution, since 

lipid peroxides mainly derive from AA. Lipidomics analysis suggested that Ms4a15 OE and 

Tgnlong cells caused a dramatic decrease of free AA (Figure 4.10A). Consistent with these 

lipids profile, RNA sequencing data suggested that Ms4a15 OE cells display upregulation of 

cyclooxygenase-1 (Cox-1; Ms4a15/Parental Log2= 4.39; p(adj)= 0.0), which produces 

prostaglandins from enzymatically converting AA, suggesting reduction of AA. Additionally, 

calcium-dependent Phospholipase A2 (Pla2g1b, EC 3.1.14); Log2=5.36; p(adj)= 0.00093), 

which releases AA from membrane GPs, has been also strongly upregulated in Ms4a15 OE, 

hinting that AA production was limited (Figure 4.10B).  

In conclusion, these data suggested that the lipids profiling has been significantly altered in 

Ms4a15 OE and Tgnlong cells through depleting store Ca2+ and blocking Ca2+ uptake. Briefly, 

MS4A15 showed a protection role through reshaping the lipid structure within cell 

membranes, leading to increased MUFAs and ether lipids as RSL3 targets but decreased 

PUFAs. However, the mechanism of calcium homeostasis perturbation in affecting lipids 

remodeling needs to be further discovered.  

 

Figure 4.10 Arachidonic acid level is limited in Ms4a15 OE cells.  (A) Free AA content in Ms4a15 
OE and control cells. Putative AA content are shown as mean ± SD of n = 5 technical replicates. (B) 
Fold change of mRNA expression levels of Cox1, Pla2g1b and Pla2g4a in Ms4a15 OE compared with 
control cells.  β-actin was used as internal control. Expression data are shown as mean ± SD of n = 5 
technical replicates.   

 

4.2.2 DPA and DHA are the key drivers of ferroptosis sensitivity 
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Lipid peroxidation and ferroptosis is specifically driven by PUFA lipids, the lipid profile 

showed marked downregulation of highly unsaturated fatty lipids in Ms4a15 OE and Tgnlong 

treated cells; while upregulation of ether lipids and MUFAs have been observed. Ether-linked 

lipids, especially plasmalogens, have been reported to function as endogenous antioxidants 

against lipid peroxidation. Two complementary approaches were carried out to modify lipids 

metabolism and to examine the effects of these lipids on ferroptosis sensitivity. If the control 

cells supplemented with certain plasmalogens in the culture media become more resistant to 

ferroptosis or the Ms4a15 OE supplemented with specific PUFA lipids are sensitized, then 

modification of these lipids can regulate ferroptosis sensitivity. The cells were pretreated with 

indicated compounds for 48 h before ferroptosis induction.  

Due to the dramatic decrease of DPA, DHA and EPA in Ms4a15 OE cells (Figure 4.4B),   

exogenous DPA, DHA and EPA were used for supplementation with Ms4a15 OE cells which 

resulted in susceptibility to ferroptosis in a dose-dependent manner (Figure 4.11). There were 

more than 60 species plasmalogens were increased in Ms4a15 OE, however, control cells 

supplemented with the antioxidants plasmalogens (C18(Plasm)-22:6 PE, C18(Plasm)-18:1 

PC and C18(Plasm)-20:4) in the culture medium did not prevent ferroptosis (Figure 4.12).  

 

Figure 4.11 Addition of PUFAs sensitizes Ms4a15 OE cells from ferroptosis. Survival of Ms4a15 
OE cells pretreated with DPA, DHA and EPA species at concentrations indicated in figures for 48h. 
Ferroptosis induced with 500 nM RSL3 with 10 μM αToc rescue. Viability data are plotted as mean ± 
SD of n = 3 technical replicates of at least three repetitions of the experiment with similar outcomes. 
 

 

Figure 4.12 Addition of plasmagens does not protect control cells from ferroptosis.  Survival of 
control cells pretreated with C18(Plasm)-22:6 PE, C18(Plasm)-18:1 PC and C18(Plasm)-20:4 PE at 
concentrations indicated in figures for 48h. Ferroptosis induced with 200 nM RSL3 with 10 μM αToc 
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rescue. Viability data are plotted as mean ± SD of n = 3 technical replicates of at least three repetitions 
of the experiment with similar outcomes. 
  

To validate this result, RNAseq and proteomics data were applied to check the expression 

levels of plasmalogen biosynthesis enzymes. Fatty acyl reductase (FAR1) is the rate-limiting 

enzyme of plasmalogen synthesis which located in the outer peroxisomal membrane 

(Honsho et al., 2010). Glyceronephosphate O-acyltransferase (GNPAT) catalyzes the first 

step of plasmalogen biosynthesis and followed by the exchange of the acyl group for an alkyl 

group by alkyl-glycerone phosphate synthase (AGPS) (Biermann et al., 1999; Brown and 

Snyder, 1982). Consistent with the result that addition of exogenous plasmalogen failed to 

protect control cells, the mRNA and protein expression levels of Far1, Agps, Gnpat, are 

relatively unchanged (Figure 4.13A). Consistently, knockdown of Gnpat of either Ms4a15 OE 

or control cells to inhibit the biosynthesis has no impact on ferroptosis sensitivity , indicating 

plasmalogens may not be the key factors to prevent ferroptosis (Figure 4.14). To uncover if 

MS4A15 participates in the process of plasmalogen biosynthesis, the colocalization of 

MS4A15 with peroxisome marker Catalase was performed, because the first step of 

plasmalogen biosynthesis is in peroxisome, however no overlap was observed (Figure 

4.13B), suggesting that MS4A15 is not involved in the plasmalogen biosynthesis process 

directely.  

Taken together, these results indicating that certain PUFA lipids, i.e. DHA, DPA and EPA, 

may form critical mass of lipid peroxides required for executing ferroptosis, but plasmalogens 

may not be the essential regulator for ferroptosis resistance. More analysis needs to be done 

to provide evidences for calcium alteration affecting lipids reshaping. 

 
Figure 4.13 MS4A15 does not affect plasmalogen biosynthesis directly.  (A) Expression levels of 
genes/proteins in plasmalogen biosynthesis. (B) Co-localization of MS4A15 and Catalase. Data are 
shown as mean ± SD of n = 5 technical replicates. Scale bar, 20 µm. 
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Figure 4.14 Knockdown of siGnpat does not affect ferroptosis sensitivity. (A-B) Viability of siRNA 
knockdown of Gnpat (siGnpat) compared to control (siGFP) in MS4a15 OE cells (A) and parent control 
(B) treated with RSL3 (left) and IKE (right) with the concentration indicated in the figure. mRNA 
expression levels of Gnpat confirms the knockdown efficiency. Expression data are shown as 
mean ± SD of n = 3 technical replicates. Viability is shown as mean ± SD of n = 3 technical replicates.  

 

4.2.3 Global calcium genes define a signature for ferroptosis sensitivity  

Strict control and regulation of calcium signaling is essential for appropriate cellular function, 

which was confirmed by the role of calcium perturbation during cell proliferation, gene 

transcription and cell death (Berridge et al., 2003; Berridge et al., 2000; Parkash and Asotra, 

2010). Increasing reports have indicated that altered calcium influx/efflux is associated with 

some cancers and can be applied in cancer therapy through inhibiting EMT (Stewart et al., 

2015), yet, the mechanisms are not completely understood. Global survey for the function of 

calcium homeostasis in ferroptosis resistance through data mining from the CTRP database 

was performed, and the top 100 RSL3-resistant/sensitive cancer cell lines in the CTRP 

database were analyzed for CCLE KEGG calcium signaling gene expression using Cancer 

Cell Line Encyclopedia (CCLE) expression data.  

From the unbiased hierarchical cluster heat map, clear separations of these cell lines in line 

with their ferroptosis sensitivity have been observed. Several clusters were associated with 

ferroptosis sensitivity. one of the clusters upregulates Calcium Voltage-Gated Channel 

Subunits (CACNA 1A/1B/1G/1F/1E/1I), Calcium/Calmodulin Dependent Protein Kinase II 
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Beta (CMK2B), Plasma Membrane Calcium Pumps (ATP2B2/3),  and Nitric oxide synthases 

(NOS1/2),  to drive the susceptibility to ferroptosis.  The other clusters clearly downregulated 

in sensitive cell lines including histamine receptor Histamine Receptor H1 (HRH1), Troponin 

C1 (TNNC1), NOS3 and PLC subtypes E1/B1/B4; in particular a cluster containing EGFR, 

ERBB2/3 (HER2/3), ITPR3 (IP3 receptor 3) and GNAQ (the Gq alpha subunit coupled to 

activation of PLC-beta and IP3 release) (Figure 4.15).   

The resistant cell lines, in contrast, formed smaller unique clusters, possibly reflecting single 

gene contribution to resistance. Upregulation of Adrenoceptor Beta 2 (ADRB2), Platelet 

Activating Factor Receptor (PTAFR), and Purinergic Receptor P2X (P2RX6/7) or 

downregulation of Bradykinin B Receptors (BDKRB1/2), Ryanodine Receptor 1 (RYR1), are 

crucial factors in resistance. One prominent but nonexclusive cluster in the resistant cell lines 

downregulates Cyclic ADP-Ribose Hydrolase (CD38), P2RX1 and cGMP phosphohydrolyase 

(PDE1B). Intriguingly, several RSL3-sensitive lines also display this downregulated cluster 

and lack the EGFR/ERBB cluster, but upregulate the ATP2B/CACNA/CAM2K cluster. This 

would appear to have the effect of neutralizing the CD38/P2RX1/PDE1B cluster (Figure 

4.15).   

Consistently, PCA analysis identified a distinct separation of resistant (red) and sensitive 

(green) cell lines based on the scores of PC1 (22.6%) and PC2 (8.3%) (Figure 4.16). In the 

RSL3 resistant group, EGFR, ERBB2/3, ASPH, ADRB2 and PLCD3 were the key drivers, 

while ATP2A3, CD38, P2Rx5, PLCG2 and ADORA2A were the main factors in the RSL3 

sensitive group, which is convincing because overexpression of ATP2A2 sensitized Ms4a15 

OE cells. The GNAQ, SPHK1 and PLCB4 are noteworthy as they show where resistant and 

sensitive cell lines grouping together. These results suggested that manipulation of calcium 

homeostasis could provoke sensitivity.  

Through identification of calcium homeostasis involvement in ferroptosis, a mechanism has 

been elucidated that allows us to realize a polygenic signature for identification and targeted 

sensitization for individual lines. These results suggested manipulation of this pathway could 

provoke sensitivity, therefore providing a new strategy to reverse the resistance of cancer 

drug therapy. 
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Figure 4.15 Unsupervised hierarchical cluster of genes in RSL3-resistent/sensitive cell lines.  
Each column represents normalized gene expression of genes in the KEGG_CALCIUM pathway. 
Each row represents the different cell lines separated by their sensitivity to RSL3 induced ferroptosis. 
Red, RSL3 resistant; Black, RSL3 sensitive. The relative abundance of lipid is color-coded from red 
indicating high signal intensity to dark blue indicating low intensity and clustered using Pearson 
correlations 
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Figure 4.16 Principal component analysis (PCA) of genes in KEGG calcium pathways.  Cells 

have been divided into two groups, including 102 ferroptosis resistant cell lines (R) and 102 ferroptosis 

sensitive cell lines (S). 

 

4.3 Discussion 

Calcium blockers have been reported to have anti-peroxidative protection to membrane lipid 

peroxidation through altering the structure of the membrane lipid bilayer (Mason et al., 

1999a). In this study, MS4A15 was found to play an important role in protecting cells against 

ferroptosis through disrupting calcium homeostasis and impairing store operated calcium 

entry as well as preventing lipid ROS production. How calcium alteration affects lipids 

remodeling was explored in detail.  

Metabolomics showed that calcitriol was downregulated in Ms4a15 OE cells (Figure 4.3). 

Apart from enhancing cytotoxicity induced by alternative signals like doxorubicin, quinone 

menadione, and hydrogen peroxide, calcitriol can also regulate cell death through increasing 

the calcium concentration to disturb calcium signaling, releasing cytochrome c or reducing 

intracellular glutathione to increase the production of ROS (Ravid and Koren, 2003; Sergeev, 

2005; Weitsman et al., 2005). Hence, downregulation of calcitriol may help to decrease 

intracellular calcium concentration.  

The reduced ER Ca2+ in Ms4a15 OE reveals lipids with a decrease in number of double 

bonds and in chain length. The n-3 PUFAs (i.e. EPA (C20:5), DPA (C22:5n-3) and DHA 

(C22:6)), which can change the fatty acid composition of the membranes and affect different 

types of membrane proteins are dramatically decreased. EPA, DPA and DHA are 
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synthesized from α-linolenic acid through a series of enzymatic desaturation and chain 

elongation reactions (Dyall and Michael-Titus, 2008). Ms4a15 OE cells incubated with 

exogenous EPA, DPA and DHA obtained sensitivity to ferroptosis, from which DHA showed 

the most significant effect followed by DPA and EPA, indicating that PUFAs are the 

proximate executioners of ferroptosis. Desaturation and elongation steps of the longer chain 

omega-3 PUFAs in Ms4a15 OE are inhibited (Figure 4.11). Of note, the Ms4a15 OE cells 

display an accumulation of MUFA-containing phospholipids. One recent research highlighted 

the role of MUFAs as ferroptosis inhibitors via preventing the accumulation of lipid ROS and 

displacing PUFAs at the plasma membrane, further suggesting the protective effect is 

associated with decreased lipid saturation (Magtanong et al., 2019). Together, these results 

were interpreted as an indication of a reduced elongation and desaturation capacity of fatty 

acids due to depletion of intracellular ca2+ prevents from being elongated and desaturated. 

Additionally, there were more than 60 species plasmalogens increased in Ms4a15 OE, which 

are crucial endogenous antioxidants in protecting lipids from oxidative stress (Brites et al., 

2004). When plasmalogens were exposed to oxidizing conditions, the vinyl ether bond is 

preferably oxidized, thus protecting the PUFAs in the sn-2 position from being oxidized 

(Braverman and Moser, 2012). Yet, the control MF cells supplemented with plasmalogens 

did not show protection to ferroptosis. Indeed, the RNAseq data provides the information that 

genes involved in initiation of plasminogen biosynthesis at peroxisomes are unchanged, 

suggesting that the increase of plasmalogens may be a result of calcium depletion but not 

the key mediator of ferroptosis. One possibility is that, cell membranes contain plasmalogens 

were reported less fluid than the plasmalogen-deficient membranes (Hermetter et al., 1989), 

accumulation of plasmalogens could, at least in part, compensate for PUFA induced 

membrane fluidity for incorporation into the phospholipid bilayer. This might be the reason 

that Ms4a15 OE exhibited slower migration. PUFAs have inhibitory effects on migration and 

calcium influx (Kim et al., 2014; Tonutti et al., 2010). PUFA deprivation, on the other hand, 

increases calcium import (Zhang et al., 2012). Theoretically, cells could compensate for 

reduced calcium influx by downregulating PUFA production via various mechanisms.  

One striking feature of ether-linked membrane phospholipids is their high AA content 

(Nakagawa and Waku, 1989) Indeed, plasmalogens serve as a PUFA store at the sn-2 

position from where AA could be released through the activity of a plasmalogen-specific 

PLA2 (PlsEtn-PLA2). AAs are widely known to be degraded by COX pathway and 

dramatically reduced in Ms4a15 OE, in keeping with this, Cox1 is one of the most 

significantly upregulated genes in Ms4a15 OE which reduces the abundance of AA. AA can 

be released either after PLA2 action, or after PLC and DAG lipase. MS4A15 constantly 

releases calcium and keeps a very low concentration of the ER store and downregulates the 
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activities of phospholipases, ultimately limiting AA release. However, overexpression of 

ATP2A2 keeps pumping in calcium into the ER store and disrupting the low-concentration 

balance, ultimately resulting in ferroptosis susceptibility. 

Calcium signal guides the cell fate via coordinated activity of a suite of calcium channels, 

pumps, exchangers and binding proteins. According to unbiased hierarchical clustering and 

principal component analysis of the 204 cancer cell lines from CCLE, genes that drive 

ferroptosis susceptibility including ATP2A3, CD38, P2Rx5, PLCG2 and ADORA2A. From 

which, overexpression of ATP2A2, for example, has been proved to be able to sensitize the 

Ms4a15 OE cells, in line with the report that SERCA2 overexpression drives proliferation and 

migration of colorectal cancer cells. On the contrary, genes drive ferrroptosis resistance 

including GNAQ, SPHK1, ERBB2/3 and PLCB4 et.al. Of interest, activating mutations in 

GNAQ, which is altered in 32.2% of uveal melanoma patients and 3.79% of melanoma 

patients, drive uveal melanoma oncogenesis. Moreover, overexpression of ERBB2/3, also 

known as human epidermal growth factor receptor 2 (HER2/3), occurs in ∼20–25% of breast 

cancers and causes a worse outcome. ERBB2/3 belongs to the EGFR family which regulates 

calcium efflux from the ER. Therefore, overexpression of some of these genes into the 

Ms4a15 OE cells could be a strategy to make the cells be susceptible to ferroptosis. On the 

contrary, knockdown of genes classified in the RSL resistant group could be regarded as an 

alternative strategy to alter calcium homeostasis.  

Ferroptosis resistance is related to cancer cells therapy resistance, solving the link between 

calcium homeostasis and ferroptosis resistance is of great significance for cancer 

therapeutics. To verify this hypothesis that calcium homeostasis mediates ferroptosis, more 

genetic experiments need to be done in the future. Such an understanding could aid in 

guiding the development of therapies specifically targeting altered calcium signaling in 

cancer cells during tumorigenic progression. 
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5. Discovery of ferroptosis-specific biomarkers2 

5.1 Introduction 

Cell death is a basic biological process that maintains tissue homeostasis; however, 

excessive or defective cell death can cause a large number of human diseases. There has 

been no conclusively evidence that ferroptosis, a newly characterized type of cell death, is 

pathologically induced in human so far; nonetheless, there exist certain connections with 

ischemic organ damage, Huntington’s disease and cancer, et.al., where ferroptotic cell death 

may play an essential role in vitro and in vivo (Do Van et al., 2016; Skouta et al., 2014; 

Stockwell et al., 2017). Due to the lack of specific ferroptosis biomarkers, investigations into 

tissue pathophysiology are impeded. Currently, a handful of critical ferroptosis regulators 

have been identified primarily by genetic and chemical screens in vitro. A thorough 

understanding of the appropriate biomarkers in ferroptosis will likely provide an opportunity to 

target this process for early detection, accurate diagnosis and rational therapy design.  

An unambiguous determination of ferroptosis contribution in these diseases would directly 

enable clinic pathological assessment and treatment (Figure 5.1). The execution of 

ferroptosis happens at the membranes. Cell surface proteins account for only about 22% of 

all proteins in the human genome, however, two-thirds of the protein-based drug targets are 

surface proteins currently. Therefore, the cell surface proteins are attractive biomarkers of 

human diseases for novel therapies, due to their involvement in vital signaling pathways and 

execution of ferroptosis at the membrane (Hopkins and Groom, 2002; Overington et al., 

2006).  

 

Figure 5.1 Detection of cell death in acute and postmortem presentations. Currently, diagnostic 
tools for the detection of contemporary or postmortem cell death are limited to apoptosis. This 
proposal seeks to validate ferroptosis-specific antigens present in (top) extracellular vesicles and 

                                                             

2
 This chapter was adapted from a manuscript in preparation: Shan Xin, Susanne Pfeiffer, Joel A. 
Schick 
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(bottom) tissue to enable appropriate diagnostic and treatment regimes. Retrospective diagnosis will 
impact future treatments associated with similar clinic pathological presentation. 

 

5.2 Results 

5.2.1 Identification of cell surface proteins involved in ferroptosis 

Due to a lack of discriminating ferroptosis cell death markers, direct demonstration of 

ferroptosis in humans is missing. Therefore, marker discovery was carried out using the 

established model of ferroptosis human HT-1080 fibrosarcoma cells, since HT1080 exhibits 

strong intrinsic sensitivity to ferroptosis. HT1080 cells were treated with RSL3 for biotinylation 

of cell surface proteins, and a critical time point (3 hours) and RSL3 concentration (2 μM) 

were identified immediately preceding overt cell death as evinced by membrane 

impermeable carbocyanine monomer (TO-PRO-3) exclusion (Figure 5.2).  

 

Figure 5.2 Identification of the critical time point for RSL3 treatment.  (A) Population shift contour 
of HT1080 cells treated with RSL3 time course. (B) Oxidized lipid (Bodipy C11) stain of RSL3-treated 
HT1080 fibrosarcoma for 3 hours. Oxidation of the unsaturated dye results in a shift of the 
fluorescence emission peak from ~590 nm to ~510 nm (FL1). 

 

Forward scatter revealed two distinct TO-PRO negative populations, termed P1 and P2, with 

P2 population more tending to approach membrane lapse indicative of viability loss, with 

elevated TO-PRO-3 labeling (Figure 5.3A). This time point was termed as early-stage 

ferroptosis. These two populations were isolated for biotinylation of cell surface proteins 
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using cleavable, cell impermeable biotin and magnetic streptavidin beads. To identify and 

quantitate differentially expressed proteins, the biotinylated samples were extracted for mass 

spectrometry analysis and revealed a list of predominantly secreted/membrane-bound 

proteins (Figure 5.3B). When protein hits were ranked according to the ratio with a minimum 

of two peptides assigned by MS/MS analysis, protein ratios relative to an unselected control 

population were determined for each population. Only proteins with positive identification by 

two different peptides were considered. Overlapping enrichments were observed from both 

populations, however P2 displayed greater ratios and was chosen for candidate selection. 

Highly enriched proteins were mapped by volcano plot and evaluated for cell surface or 

membrane localization (COMPARTMENTS: unification and visualization of protein 

subcellular localization evidence) with a top score of five indicating high confidence (Figure 

5.3). Of the highest scoring 10 proteins, only CDC5L lacks secretory assignment, supporting 

the robust methodology of membrane protein biotinylation (Figure 5.3D). Moreover, 

interrogation of associated GO-terms revealed primarily lipid processes implicated in 

ferroptosis (Figure 5.4). 
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Figure 5.3 Cell surface biotinylating assay isolates membrane proteins in early stage 

ferroptosis.  (A) Flow cytometry results of untreated and short (3h) ferroptosis induction (RSL3).  (B) 
Schematic overview of cell surface biotinlyation for populations P1/P2 from (A).  (C) Identified proteins 
in volcano plot in relation to control population. (D) Top 10 identified proteins and likelihood of 
membrane localization/secretion (0-5, 5 is maximum).  

 

Figure 5.4 Comparative Toxicogenomics Database (CTD) Gene-Disease Associations.  Identified 
proteins revealed a strong association with lipid and fatty acid (FAA) metabolism.  

 

5.2.2 Biomarker candidates are specific to ferroptosis in vitro 

The top five cell surface proteins: (Calmodulin-like protein 5 (CALML5), Fatty acid-binding 

protein 5 (FABP5), Cathepsin V (CTSV), Galectin 7 (LGALS 7), and S100 Calcium Binding 

Protein A14 (S100A14)), were chosen as the biomarker candidates to validate the differential 

expression of ferroptosis-associated proteins identified in our analysis against those 

antibodies that are commercially available. Immunofluorescence staining of the antibodies 

against the biomarker candidates was first performed to validate the differential expression of 

the cells treated with RSL3 and straurosporine (at equivalent EC50) as a nonspecific cell 

death inducer using high-content microscopy. The results indicated that as the duration of 

RSL3 treatment increased, the expression level of all these five proteins are getting higher, 

indicated by the fluorescence signal and intensity calculation. However, when cells were 

treated with straurosporine, a nonspecific inducer of cell death, the expression of CALML5 

and S100A14 stay unchanged, while the expression level of FABP5, CTSV and LGALS7 are 

mostly unchanged (Figure 5.5).  
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Figure 5.5 Validation of the expression pattern of the biomarker candidates within HT1080 cells 

using high content microscopy analysis. (A) Panels indicate marker cell intensity (arbitrary intensity 
units). (B) Right panels show cellular localization and intensity. 

 

The mRNA levels of CALML5, FABP5, CTSV, S100A14, and LGALS7 are consistent with the 

immunofluorescence protein data that the expression level are increased after RSL3 

treatment, indicating the transcriptional regulation of the expression of these candidates 

(Figure 5.6). 
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Figure 5.6 mRNA expression level of the biomarker candidates. Relative mRNA expression levels 
of CALML5, FABP5, CTSV, S100A14, LGALS7 in HT1080 cells treated with RSL3 for 0h, 1h, 3h, 5h 
and 7h, respectively. Relative mRNA expression is shown as mean ± SD of n = 3 technical replicates 
of three independent repetitions of the experiment with similar results. 

 

Furthermore, immunofluorescence staining was carried out to investigate specificity of the 

different candidate biomarkers. The protein levels were examined under different compounds 

treatment. HT1080 cells were treated with different drugs for 8 h at various concentrations, 

and the specific concentration of each compound was determined to correspond to IC70-80 

as determined by DAPI staining (Figure 5.7A, B). Next, appropriate concentration of each 

drug was selected to treat the cells for 8 h, and the protein levels of the five candidates were 

measure under certain conditions using immunofluorescence staining. All of these proteins 

are highly expressed after RSL3 treatment, whereas the expression only slight increased 

after IKE treatment, which may due to different activation pathways of ferroptosis. Overall, no 

significant change of the expression level of the five candidates has been observed when cell 

death was induced using other oncological substances. Consequently, CALML5, FABP5, 

CTSV, S100A14, and LGALS7 are putative cell surface protein biomarkers specific for RSL3-

induced ferroptosis (Figure 5.8).  

Although the antigens discovered are promising beginning for such a study, they will have to 

be tested for specific staining in tissue, absence of background and individual bands in 

Western blots. In order to investigate the potential clinical value of these ferroptosis 

biomarker candidates in human tissues, specific immunohistochemical staining would be 

performed on pathological (stroke, Alzheimer’s, Parkinson disease) and control donor tissue 

sections. These potential ferroptosis biomarkers would be significantly elevated in 

degenerative diseases patients compared with control groups. So far, FABP5 is the only one 

that highly increased on the patients’ tissues based on initial evaluation of some of these 

antibodies on control human paraffin embedded tissue, which showed strong staining and 



Discovery of ferroptosis-specific biomarkers 

66 

 

low to absent background in control sections from glioblastoma brain tumors, while the 

others are essentially undetectable. Currently, the focus of us is to identify high-performing 

antibodies, and validate the specificity of FABP5 and breadth of ferroptosis in human 

degenerative diseases. FABP5 is a lipid binding protein; mass spectrometry analysis of 

material from the same source serves as a strong complement to histological analysis of 

human tissue. 

 

Figure 5.7 Detection of appropriated death rate detection upon cell death induction.  (A) Digital 
phase contrast images using high content Cells treated with different compounds listed in (B) at 
concentrations indicated in methods for 8 h. (B) Heat map of the cell viability of cells treated with 
different compounds at concentrations indicated in methods for 8 h. CHX, cycloheximide; 6-TG, 6-
thioguanine; H2O2, hydrogen peroxide; CP, cyclophosphamide.   
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Figure 5.8 Validation of the specificity of the the biomarker candidates for ferroptosis.  Marker 
specificity upon cell death induction. Heat map (yellow=high signal) derived from high content 
microscopy following stimulation with ferroptosis inducer RSL3 or cancer therapeutics (CHX, 
cycloheximide; 6-TG, 6-thioguanine; H2O2, hydrogen peroxide; CP, cyclophosphamide).   

 

5.3 Discussion 

Cell surface proteins are responsible for cellular contact and communication, and 

contributing more than two-thirds of known protein-based drug targets while accounting for 

only about 22% of all proteins in the human genome (Hopkins and Groom, 2002; Overington 

et al., 2006). Nevertheless, it is a difficult to investigate cell surface proteins due to their low 

absolute content and their hydrophobic nature. In this chapter, several cell surface proteins 

that are specifically associated with ferroptosis were identified via using mass spectrometry 

analysis to compare an isogenic pair of cells treated with RSL3 or control (DMSO). 

In the cell surface analysis, only CDC5L, which is from the highest scoring 20 proteins, lacks 

secretory assignment, supporting the robust methodology of P2 membrane protein 

biotinylation. Furthermore, the results about the investigation of the top five biomarker 

candidates demonstrated that the expression level of these proteins can be specifically 

upregulated with RSL3 treatment but not with the treatment of other drugs that induce 

different cell deaths, which nicely proves the cell biotinylation assay to be a valuable tool as 

well as illustrates the validity of the cell line model. 

Among all the highly enriched proteins, CALML5 or calmodulin-like skin protein (CLSP) is of 

the highest score, which encodes a novel calcium binding protein expressed in the epidermis 

(Hwang et al., 2007; Sun et al., 2015a) and shows elevated levels in skin disease like 
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psoriasis (Méhul et al., 2006). Loss of CALML5 leads to an impaired epidermal barrier (Sun 

et al., 2015a), indicating a role of CAML5 in maintaining cell integrity. In the present study, 

the expression of CALML5 increased with the time course treatment of RSL3, suggesting a 

potential role not necessarily in responding to cell death challenge. However, based on initial 

staining on human paraffin embedded tissue, CALML5 is essentially undetectable which may 

be caused by three reasons. First, antibodies work differently on fixed cells and on paraffin-

embedded tissue; second, CALML5 may express highly at the initiation of cells death to 

protect cells but not after execution; third, the fixation of the tissues was not good. These 

reasons may also apply to CTSV which is a proteolytic enzyme with strong staining on fixed 

cells after ferroptosis induction but remains undetectable on paraffin-embedded tissue. Loss 

of CTSV has been reported to result in the development of fibrosis, proliferative vasculopathy 

and the altered phenotype of keratinocytes in systemic sclerosis (Noda et al., 2013). Indeed, 

CTSV expression level was remarkably and uniformly decreased in cultured dermal 

fibroblasts from early-stage systemic sclerosis compared with healthy controls (Noda et al., 

2013), indicating the importance in maintain health. 

FABP5 is a lipid binding protein, previous studies have reported the upregulation of FABP5 in 

many types of tumors, such as atherosclerosis (Furuhashi et al., 2017), lymph node 

metastasis (Lv et al., 2019; Wang et al., 2016) and high Gleason score prostate cancer 

(Fujita et al., 2017). As many diseases are followed with cell death, FABP5 acts as a 

potential ferroptosis-specific biomarker for human disease. In fact, FABP5 deficiency leads to 

suppress the development of insulin resistance, diabetes mellitus and atherosclerosis 

(Furuhashi et al., 2017). Additionally, in clear cell renal cell carcinoma (ccRCC), FABP5 may 

exert a pro-proliferative role that overexpression of FABP5 promoted cell proliferation, while 

silencing of FABP5 significantly inhibited cell proliferation (Lv et al., 2019). Overall, FABP5 

expression significantly correlates with the clinical characteristics; thus, upregulation of 

FABP5 can be a promising indicator for detecting some ferroptosis related diseases, which is 

in line with the result that FABP5 expression is elevated specifically after RSL3 treatment as 

well as highly increased on the patients’ tissues according the initial evaluation. 

LGALS7 and S100A14 were among the top five ferroptosis biomarker candidates. 

Ferroptosis is involved in various diseases such as cancers. According to the previous 

studies, the upregulation of LGALS7 expression level in breast cancer cells drastically 

increased their metastasis ability (Demers et al., 2010); while S100A14 has been reported as 

an independent prognostic factor in triple-negative breast cancer (TNBC) (Ehmsen et al., 

2015) and in hepatocellular carcinoma (HCC) (Mohamed et al., 2019) due to the high 

expression level in these tumors together with equally poor outcomes. In our results, the 

expression levels of these two proteins showed a robust increase after RSL3 treatment in 
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vitro, whereas only very weak signal can be detected in patients’ paraffin-embedded tissues. 

This inconsistence may due to the difference between in vitro and in vivo; therefore, tissue 

staining with higher concentrations of the antibodies should be tested in the second 

evaluation. 

In conclusion, a panel of biotinylated cell surface proteins, whose expression was correlated 

with ferroptosis, has been identified. Theses putative biomarkers may provide a novel 

therapeutic strategy for human degenerative diseases. A further understanding of the 

mechanism underlying the link between the expression level of the other ferroptosis 

biomarker candidates and degenerative diseases may enable the development of diagnostic 

tests and new therapeutic strategies for a variety of important diseases.  
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6. Summary 

Ferroptosis has argued a perspective for the potential utilization in human diseases since it 

has been first reported (Dixon et al., 2012), with the fast-growing investigation in pathological 

research. In this dissertation, the mechanism and potential application of ferroptosis were 

evaluated through the functional exploration of MS4A15 and the discovery of putative 

biomarkers.  

MS4A15 protects cells from ferroptosis through calcium-driven lipid remodeling 

The ER-located membrane protein, MS4A15, was investigated to protect against ferroptosis 

robustly and specifically through modulating Ca2+ homeostasis and depressing IP3R 

expression, ultimately preventing lipid ROS generation. This is consistent with previous 

reports about this family that MS4A1/CD20, a component of SOCE, accounts for recruiting 

immune effectors as well as mediating cell death within the lipid raft (Deans et al., 2002; 

Shan et al., 2000). MS4A12 blocks the replenishment of Ca2+ through acting as a part of 

SOCE in intestinal cells (Koslowski et al., 2008). In contrast to MS4A1 and MS4A12, which 

promote SOCE, MS4A15 leads to constitutive depletion of ER stores and loss of capacitive 

Ca2+ entry. Thapsigargin has similar profile with MS4A15 in regulating calcium oscillation. 

Strikingly, 48h pretreatment of thapsigargin before challenge with RSL3 significantly 

protected cells in line with diminished peroxidized membrane lipids. More importantly, 

promoting calcium influx via overexpressing ER Ca2+ ATPase 2 re-sensitized cells to RSL3-

induced ferroptosis. Taken together, enhanced ferroptosis resistance is a consequence of 

persistent calcium stores depletion.  

Calcium blockers (amlodipine, verapamil, diltiazem) have been reported to protect against 

membrane lipid peroxidation through altering the structure of the membrane lipid bilayer, this 

mechanism also prevented the glutathione decrease caused by inhibition of peroxide 

generation (Mak et al., 1992; Mason et al., 1999b).  Here, a close correlation between 

calcium levels and fatty acyl composition of lipids was demonstrated. Compared with 

ferroptosis sensitive cells (MF control and tharpsigarging short-term treated), the resistant 

cells showed an accumulation of SFAs, MUFAs and plasmalogen species, but a dramatic 

decrease of long chain fatty acids and PUFAs, indicating that the fatty acid elongase and 

desaturase activities may be under a calcium-dependent regulatory effect. One recent 

research reported that  MUFAs act as ferroptosis inhibitors via preventing the accumulation 

of lipid ROS and displacing PUFAs at the plasma membrane, further suggesting the 

protective effect is associated with decreased lipid saturation (Magtanong et al., 2019). 

Additionally, plasmalogens species, which are crucial endogenous antioxidants in protecting 
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lipids from oxidative stress, were increased to compensate for PUFA induced membrane 

fluidity and resulted in the slower migration of Ms4a15 OE.  

In this context, Ms4a15 OE cells incubated with exogenous EPA, DPA and DHA obtained 

sensitivity to ferroptosis, whereas, the control MF cells supplemented with plasmalogens did 

not show protection to ferroptosis. Plasmalogens are crucial endogenous antioxidants in 

protecting lipids from oxidative stress (Brites et al., 2004). When plasmalogens were 

exposed to oxidizing conditions, the vinyl ether bond is preferably oxidized to protect the 

FUFAs from being oxidized (Braverman and Moser, 2012). The reason why plasmalogens 

did not show protection role is uncertain, which may because of the lack of appropriate 

protocols or not enough species added. It could also because of the possibility we put up that, 

accumulation of plasmalogens could compensate for PUFA induced membrane fluidity for 

incorporation into the phospholipid bilayer.  

Further experiments could be conducted to clarify this problem via i) updating current 

protocols for pretreating plasmalogens before adding into cells; ii) adding different 

plasmalogen species at once into the cells; iii) modulation of  the rate-limiting genes of 

plasmalogen biosynthesis. 

Regulating calcium homeostasis to reverse cancer therapy resistance 

Calcium signaling is complex; this complexity indicates that disruption of calcium 

homeostasis can be a feature of certain pathological states, including cancer. Intriguingly, 

cancer cells that escape from other types of cell death are likely to undergo ferroptosis, 

suggesting a new strategy for cancer therapy. Indeed, alterations of calcium signal for cancer 

treatment have been reported that manipulation of intracellular calcium signal can control 

EMT induction in human breast cancer cells, therefore preventing metastases (Davis et al., 

2014) . 

Based on the results in this context, persistent Ca2+ depletion affects fatty acids desaturation 

capacity, ultimately constraining PUFA synthesis. However, since PUFAs can regulate T-cell 

activation and proliferation, reduced PUFA would affect cell proliferation and the immune 

response. Human cancer cells in a high mesenchymal state are typically inhibiting synthesis 

of PUFA to migrate slowly in a GPX4-dependent manner and contribute to therapy-

resistance (Viswanathan et al., 2017). Consistently, persistent cancer cells which escape 

from conventional cytotoxic treatment via a dormant state depend on the GPX4 pathway. In 

keeping with this, overexpression of Ms4a15 retards cell migration as well as drives lipids 

remodeling through alteration of calcium homeostasis. Therefore, execution of ferroptosis 

through triggering calcium influx may be critical for reversing therapy-resistance in cancer 

strategy. 
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Cancers are heterogeneous and are able to acquire resistance to chemotherapy over time; 

there are not many effective strategies to chemotherapy resistant cancers currently. To verify 

whether altering Ca2+ homeostasis can reverse cancer therapy-resistance, genetics 

modulation need to be conducted in ferroptosis resistant cancer cells to regulate the 

sensitivity. The key genes that drive ferroptosis sensitivity are mostly reported to be involved 

in cancer oncogenesis. These genes are divided into two groups which promote Ca2+ influx 

and efflux, respectively. We may be able to either overexpress the genes that drive 

ferroptosis susceptibility to sensitize the cells, or knockdown of key genes classified in the 

RSL resistant group as an alternative strategy to alter Ca2+ homeostasis, and ultimately 

initiate ferroptosis of cancer cells. Exploring more novel mechanisms would be beneficial for 

cancer therapy.  

Utilization of ferroptosis in human diseases 

Excessive or defective cell death leads to a large number of human pathologies, such as 

apoptosis in human colorectal cancer (Simpson et al., 2013) and cardiovascular disease 

(Singh et al., 2011), and non-apoptotic cell death in stroke (Li et al., 2003), Alzheimer’s 

(Lassmann et al., 1995), Parkinson’s (Hartmann and Hirsch, 2001), and Huntington’s 

(Turmaine et al., 2000) diseases. 

Although extensive research indicated that ferroptosis could be triggered by diverse 

physiological conditions and pathological stresses in animals, no conclusive evidence has 

been demonstrated under pathological conditions in humans yet. The cumulative implication 

of ferroptosis in ALS (Kwan et al., 2012), Alzheimer’s (Ghosh et al., 2014; Zhang et al., 

2018), Parkinson’s (Do Van et al., 2016) and Huntington’s (Skouta et al., 2014), is based on 

cell culture experiments and in vivo evidence, whereas no evidence has been demonstrated 

under pathological conditions in humans so far. In this work, several cell surface proteins that 

are specifically associated with ferroptosis were identified using mass spectrometry analysis. 

Among which, CALML5, FABP5, CTSV, S100A14, and LGALS7 are putative cell surface 

protein biomarkers specific for RSL3-induced ferroptosis.  

Further experiments need to be performed on various types of patients’ paraffin-embedded 

tissues, such as stroke, Alzheimer’s, Huntington’s and Parkinson’s diseases, for 

immunohistochemistry stain of the biomarker candidates. The results might provide evidence 

for characterizing ferroptosis in acute and postmortem conditions in Human by a combination 

of marker discovery on cells and human pathologic tissue. Insights into adequate ferroptosis 

biomarkers for human diseases will likely provide more chances to target this process for 

rational therapy design. Therefore, central to current research and clinical efforts is to find 

ferroptosis-specific biomarkers of human diseases for detection of disease state, accurate 
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diagnosis, better prognosis, and drug improvement, which can accelerate medical 

development. 

The exact mechanism(s) of ferroptosis still needs to be further elucidated, however, the 

identification of the connection between calcium and ferroptosis together with the discovery 

of ferroptosis-specific biomarkers have established a new level of ferroptosis in diagnosis 

and therapeutics of human diseases. I hope that this work will contribute to the treatment for 

the diseases.  
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7. Methods and materials  

7.1 Molecular biological methods 

7.1.1 Phenol-Chloroform Extraction of genomic DNA for NGS 

TE Lysis Buffer  10 mM Tris/HCl pH8 

 1 mM EDTA 

  50 mM KCl 

  2 mM MgCl2 

  fresh: 200 µg/ml RNAseA; 625 ng/ml ProtK 

Phenol Roth, 0038.1 

Phenol/Chloroform/Isoamylalcohol Roth, A156.3 

Chloroform Merck, 1.02445.2500 

Ethanol (100%) Merck 

 

Genomic DNA was isolated from certain cells based on the requirement. Cells were 

harvested and lysed overnight at 60 °C in TELysis buffer. The reaction was stopped at 95 °C 

for 2 min. Subsequently, added one volume of Phenol to each sample and invert 5-8 times, 

spun at 14,000rpm for 5 min at 4 °C. The supernatant was removed carefully and transferred 

to an Eppendorf tube. Added one volume of Phenol/Chloroform/Isoamylalcohol to each tube 

inverted 5-8 times and spun at 14,000rpm for 5 min at 4 °C. Removed the supernatant to a 

new tube and added one volume of Chloroform, invert 5-8 times, spun at 14,000 rpm for 

5 min at 4 °C. Removed the supernatant to a new tube, added 2.5 volumes of 100% Ethanol 

and spun at 14,000 rpm for 5 min at 4 °C. Removed the remaining ethanol and solved 

genomic DNA in 40 μL HPLC water and heat it for 30 min at 55 °C, stored at -20 °C for 

following experiments. The concentrated gDNA can be used for PCR reactions. 

7.1.2 Molecular cloning of the reporter plasmids  

The cloning of the plasmids used in this study were previously described (Kunzelmann and 

Mehta, 2013). To this end, the MS4A15/Ms4a15 and TMEM33 introns were amplified by 

PCR using primers that contain restriction enzyme recognition sites at their ends and the 

corresponding splice signals / mutations.  

Table 2 Amplification primers used in this study 

Genes Primers 
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Human MS4A15  tctcatcattttggcaaagaattcgccaccatgtctgcagctcccgccagcaatg 

 cctctagctacctagctagctcacttatcgtcatcgtctttgtaatcgacgactccttgggcatatgcc

ac 

Human TMEM33 acgagactagcctcgaggtttaaacgccaccatggcagatacgaccccgaacg 

 ccttcgccgctgccactagtcaggtcctcctcgctgatcagc 

Mouse Ms4a15 tctcatcattttggcaaagaattcgccaccatgtgggagcgcagaggcagaggggagtcag 

 cctctagctacctagctagcttaaaatctaagccacgctgtt 

 

Prior to ligation, the PCR products and the Plasmid were digested with the enzymes. The 

digested plasmid backbone was treated with FastAP (Thermo) to remove the 5’ phosphate at 

the ends. Linearized and dephosphorylated plasmid backbones and PCR products were 

purified by using the Wizard SV Gel and PCR Clean-Up System (Promega) according to the 

manufacturer’s instructions.  

Insert and backbone DNA was ligated using T4 DNA ligase (NEB) according to the 

manufacturer’s instructions. E. coli cells (XL2) were transformed with the ligation product. 

After selection on LB-Amp-plates, positive clones were validated by colony PCR, subsequent 

restriction digest and sequencing (Eurofins GATC). Sequencing results were analyzed using 

the Finch TV and Vector NTI.  

7.1.3 RNA isolation and reverse transcription, qPCR  

Total RNA was isolated with the InviTrap Spin Universal RNA Mini Kit (Stratec Molecular 

1060100200) according to the manufacturer's instructions including a DNAse treatment step 

(Promega M6201). Subsequently, 2 μg total RNA of each sample was reverse transcribed 

using random hexamer primer and AMV Reverse Transcriptase (NEB).  

Quantitative PCR reactions were prepared using the LightCycler480 (Roche) with Power 

SYBR Green PCR Master Mix (Thermo Fisher Scientific 4368577). Differences in mRNA 

levels compared to control were calculated by the 2‐∆∆Ct method (Livak and Schmittgen, 

2001) using Gapdh as a reference gene. Each sample condition contains at least three 

biological replicates and all measurements were performed with four technical replicates.  

Table 3 qPCR primers used in this study: 

Genes Primers 

Human MS4A15  ccgagaagaaccacaccagt 

 tgacgctgaggatgttggt 
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Human TMEM33 cactcatctttgtaaattcctatcca 

 ggcagcatgaagcaaagag 

Human CALML5 gccctgcagtggaatgag 

 ttcatggaactcggcagtc 

Human FABP5 gcagacccctctctgcac 

 tcgcaaagctattcccactc 

Human LGALS7 ggcttggttcctcccaat 

 ccttgctccttgctgttga 

Human S100A14 cttctgagctacgggacctg 

 ttctcttccaggccacagtt 

Human CTSV ggcaacacacagaagattatatgg 

 tcattttcatattcttttcccaca 

Mouse Serca2a2 gggcaaagtgtatcgacagg 

 tcagcaggaactttgtcacc 

Mouse Ms4a15 gtcagcagccggtacagc 

 ggatgacaacgaacacacca 

Mouse Tmem33 gctcaggccttgttagagga 

 gcaaagaaaataacaagactggaaa 

Mouse Actin cctctatgccaacacagtgc 

 gtactcctgcttgctgatcc 

Mouse Gapdh  gggttcctataaatacggactgc 

 ccattttgtctacgggacga 

 

7.2 Protein biochemistry  

7.2.1 SDS‐PAGE and western blotting 

SD-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting was performed as 

previously described in (Aumiller et al., 2012). 

Buffers used in this part are: 
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Lysis buffer 63 mM Tris-HCl, pH 6.8 

10% glycerol 

2% SDS 

2.5% DTT 

1x protease inhibitor tablet 

SDS-running buffer (5x) 125 mM Tris/HCl, pH 7.5 

1.25 M glycine 

5% SDS 

Blotting buffer Tris pH 8.3 (48 mM) 

Glycine (39 mM) 

Methanol (20 % (v/v)) 

SDS (0.03 % (w/v)) 

TBST NaCl (137 mM) 

Na2HPO4 (10 mM) 

KCl (2.7 mM) 

KH2PO4 (1.7 mM) 

Tween-20 (0.1 % (v/v)) 

Milk 5% in TBST 

 

Approximately 5x106 cells per condition were lysed in 300 μL lysis buffer for 30 min. DNA 

was shredded with a sonicator and was pelleted for 20 min at maximum speed centrifugation 

at 4 °C. The supernatant was mixed with 4x Roti®-Load (Roth) and run on a 6-12% SDS-

PAGE gel and transferred onto PVDF membranes using electrophoretic semi-dry western 

blot transfer system. Membranes were blocked with 5% non-fat milk in PBS-T for 1 h at room 

temperature and incubated in specific primary antibody overnight at 4 °C. Membranes were 

washed for 3X10 min in PBS-T before addition of HRP-coupled secondary antibodies for 1 h 

at room temperature. ECL prime Western blotting detection reagent (GE Healthcare) was 

used for chemiluminescence detection according to the manufacturer’s instructions. Each 

experiment presented was repeated at least twice.   

Following antibodies were used: 

Primary antibodies: 

Table 4 Antibodies used in WB. 

Antibodies Source Dilution 
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Mouse anti-MS4A15 Regina 1:10 in 2.5% BSA ‐ TBST 

Rabbit monoclonal anti-ERK1/2 cell signaling 1:1,000 in 2.5% BSA ‐ TBST 

Rabbit monoclonal anti-pERK1/2 cell signaling 1:1,000 in 2.5% BSA ‐ T 

Mouse monoclonal anti-STAT3 cell signaling 1:1,000 in 2.5% BSA ‐ TBST 

Mouse monoclonal anti-pSTAT3 cell signaling 1:1,000 in 2.5% BSA ‐ TBST 

Rabbit monoclonal anti-Akt cell signaling 1:1,000 in 2.5% BSA ‐ TBST 

Rabbit monoclonal anti-pAkt cell signaling 1:1,000 in 2.5% BSA ‐ TBST 

Mouse monoclonal anti-IP3R1 Biozol  1:500 in 2.5% BSA ‐ TBST 

Mouse monoclonal anti-ß-Actin 

(8H10D10) 

cell signaling  1:2,000 in 2.5% BSA ‐ TBST 

Mouse monoclonal anti-Flag M2  Sigma  1:1,000 in 2.5% BSA ‐ TBST 

Rabbit polyclonal anti-Flag Sigma  1:1,000 in 2.5% BSA ‐ TBST 

Mouse monoclonal anti-Myc-Tag 

(9E10) 

Abcam 1:500 in 2.5% BSA ‐ TBST 

Rabbit monoclonal anti-Myc-Tag 

(71D10) 

cell signaling  1:500 in 2.5% BSA ‐ TBST 

Mouse monoclonal anti-Vinculin Abcam 1:1,000 in 2.5% BSA ‐ TBST 

Rabbit polyclonal anti-ATP2A2 Elabscience 1:500 in 2.5% BSA ‐ TBST 

 

Secondary antibodies: 

Antibodies Source Dilution 

Anti-rabbit-HRP cell signaling 7074 1:2,000 in 2.5% BSA ‐ TBST 

Anti-mouse-HRP cell signaling 7076 1:2,000 in 2.5% BSA ‐ TBST 

 

7.2.2 Immunoprecipitation and mass spectrometry 

HEK 293T cells were seeded at 1x106 in 10 cm plates the day before transfection. 

Transfections were performed in triplicates with 10 μg of each plasmid using Lipo2000. The 

transfected cells were harvested 24 h later in 1 ml RIPA lysis buffer (50 mM Tris HCl, pH 8.0, 

150 mM sodium chloride, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM EDTA, 



Methods and materials 

79 

 

protease inhibitors (Complete mini, EDTA-free, Roche Diagnostics)). Cells were crosslinked 

using 1% formaldehyde at RT for 10 minutes, with incubation for 7 minutes followed by 3 

minutes centrifugation at 1,800xg. The supernatant was removed and the reaction was 

quenched with 0.5 ml ice-cold 1.25 M glycine/ PBS. Cells were transferred to a 1.5 ml 

Eppendorf tube, spun, washed once in 1.25 M glycine/PBS and lysed in 1 ml RIPA buffer 

per cells for 60 minutes on ice. Cell lysates were homogenized using vortex after 30 minutes. 

Lysates were spun for 30 minutes at 20,000 g after lysis to remove insoluble debris. 

Lysates were precleared by incubation with 20 μl protein G agarose beads (Protein A/G 

PLUS-Agarose, Santa Cruz) for 2 h. 2 μl antibodies were incubated in the precleared lysates 

for 1 h, after that 20 μl of beads were added and immunoprecipitation was performed 

overnight. All steps were performed with mild agitation at 4°C. The beads were washed three 

times with RIPA buffer and incubated in 1X Roti Loading Dye (Phosphate buffered, 8% SDS, 

40% glycerol, 20% β-mercaptoethanol, 0.015 % mg/ml bromophenol blue) at 65 °C for 5 min. 

Samples were stored at 80°C for mass spectrometric analysis. 

Dried beads after pulldown of MS4A15 from formaldehyde-fixed samples were resuspended 

in 50 µl 1x Laemmli and de-crosslinked for 60 minutes at 99 °C. After centrifugation, the 

supernatant containing eluted proteins was digested using a modified FASP procedure 

(Wiśniewski et al., 2009). Briefly, after reduction and alkylation using DTT and IAA, the 

proteins were centrifuged on a 30 kDa cutoff filter device (Sartorius), washed thrice with UA 

buffer (8 M urea in 0.1 M Tris/HCl pH 8.5) and twice with 50 mM ammoniumbicarbonate. The 

proteins were digested for 2 h at room temperature using 0.5 µg Lys-C (Wako Chemicals, 

Neuss, Germany) and for 16 h at 37 °C using 1 µg trypsin (Promega, Mannheim, Germany). 

After centrifugation (10 min at 14,000 g) the eluted peptides were acidified with 0.5% TFA 

and stored at -20 °C. 

LC-MS/MS analysis was performed on a Q-Exactive HF mass spectrometer (Thermo 

Scientific) online coupled to an Ultimate 3000 nano-RSLC (Thermo Scientific). Tryptic 

peptides were automatically loaded on a C18 trap column (300 µm inner diameter (ID) 

x5 mm, Acclaim PepMap100 C18, 5 µm, 100 Å, LC Packings) at 30 µl/min flow rate prior to 

C18 reversed phase chromatography on the analytical column (nanoEase MZ HSS T3 

Column, 100Å, 1.8 µm, 75 µm x 250 mm, Waters) at 250 nl/min flow rate in a 95 minutes 

non-linear acetonitrile gradient from 3 to 40% in 0.1% formic acid. Profile precursor spectra 

from 300 to 1,500 m/z were recorded at 60,000 resolution with an automatic gain control 

(AGC) target of 3e6 and a maximum injection time of 50 ms. TOP10 fragment spectra of 

charges 2 to 7 were recorded at 15,000 resolution with an AGC target of 1e5, a maximum 

injection time of 50 ms, an isolation window of 1.6 m/z, a normalized collision energy of 27 

and a dynamic exclusion of 30 seconds. 
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Generated raw files were analyzed using Progenesis QI for proteomics (version 4.1, 

Nonlinear Dynamics, part of Waters) for label-free quantification as described previously 

(Hauck et al., 2010; Merl et al., 2012). Features of charges 2-7 were used and all MSMS 

spectra were exported as mgf file. Peptide search was performed using Mascot search 

engine (version 2.6.2) against the Swissprot human protein database (20237 sequences, 

11451954 residues). Search settings were: 10 ppm precursor tolerance, 0.02 Da fragment 

tolerance, one missed cleavage allowed. Carbamidomethyl on cysteine was set as fixed 

modification, deamidation of glutamine and asparagine allowed as variable modification, as 

well as oxidation of methionine. Applying the percolator algorithm (Brosch et al., 2009) 

resulted in a peptide false discovery rate of 0.73%. Search results were reimported in the 

Progenesis QI software. Proteins were quantified by summing up the abundances of all 

unique peptides per protein. Resulting normalized protein abundances were used for 

calculation of fold-changes and statistical values. 

The log2 of the normalized protein abundance ratios MS4A15/GFP and –log10 of 

corresponding p-values of all quantified proteins were plotted in a volcano plot. A very 

specific pulldown in the MS4A15-PD samples and very low protein abundances in the GFP 

controls lead to the appearance of mainly only one “arm” of the volcano plot. 

7.2.3 Metabolomics and proteomics 

Procedures to measure metabolomics and proteomics were previously described (Kraft et 

al., 2019). 

Cell pellets were lysed by vortexing and sonification in two freeze-thaw cycles using 200 μL 8 

M urea in 0.1 M Tris/HCl pH 8.5. Equal total protein amounts (10 μg) of the resulting crude 

cell lysate were digested with a modified FASP procedure (Grosche et al., 2016; Wisniewski 

et al., 2009) using Lys-C and trypsin as proteases and Microcon centrifugal filters (Sartorius 

Vivacon 500 30kDa). Approximately 0.5 μg peptides per sample were measured in a 

randomized fashion on a Q-Exactive HF mass spectrometer online coupled to an Ultimate 

3000 RSLC (Thermo Fisher Scientific) in data-independent acquisition mode as described 

previously (Lepper et al., 2018; Mattugini et al., 2018). 

For data analysis, the recorded raw files were analyzed using the Spectronaut Pulsar 

software (Biognosys;(Bruderer et al., 2016)) with a peptide identification false discovery rate 

<1% , using an in-house mouse spectral library which was generated using Proteome 

Discoverer 2.1 and the Swissprot Mouse database (release 2016_02). Quantification was 

based on MS2 area levels of all unique peptides per protein and normalized protein 

quantifications were exported. Log2 transformed abundance ratios to the median abundance 

per protein were used for heat map generation in cluster 3.0 (Eisen et al., 1998), with 
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clustering of proteins using the ‘Euclidean distance’ setting and the ‘complete linkage’ 

algorithm. The resulting tree and heat map were visualized with Java Treeview. The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 

the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier 

PXD014810.  

7.2.4 Lipid extraction and global lipidomics 

Procedures for lipid extraction and global lipidomics profiling using UPLC-MS were in detail 

described early (Witting and Schmitt-Kopplin, 2016). In short, we used a two-step MTBE 

extraction in a cooled Precellys (Bertin). The organic content was analyzed using data-

dependent auto LC-MS/MS (maXis, Bruker Daltonics, Bremen, Germany, coupled to an 

UHPLC Acquity, Waters, Eschborn, Germany) using reverse phase chromatography (RP) 

columns in both positive and negative electrospray modes. The injection volume was set to 

10 µL. RP was performed on a CORTECS UPLC C18 column (150 mm x 2.1 mm ID 1.6 µm, 

Waters Corporation) using 10 mM ammonium formate and 0.1% formic acid in 60% 

acetonitrile/water mixture (A) and B 10 mM ammonium formate and 0.1% formic acid in 90% 

isopropanol/acetonitrile mixture (B) as mobile phase. The gradient was set to 32% B for 

1.5 min, followed by an increasing proportion of B to 97% at minute 21 and a plateau for the 

remaining 4 min. Column temperature was kept at 40 °C and flow rate was set to 

0.25 ml/min. A quality control consisting of an aliquot of each samples as well as pure 

solvent blanks were included in the sample que and used for column equilibration. The MS 

analysis alternated between MS and data-dependent MSn scans using dynamic exclusion. 

Raw data were extracted, peak identified and quality control processed using Genedata 

software (Genedata Expressionist 13.5, Genedata). M/z features were annotated using 

MassTRIX web server with a maximal mass error of 0.005 Da. MSn information was 

annotated based on MoNA library using MSPepSearch, Metfrag and further validated by 

manual curation as the very helpful MSn software are still prone for false identification 

(Witting et al., 2017). Identification was done for PC based on head group fragment 184, 125, 

105 and M-R1/M-R1-OH for PCs. Furthermore, the existence of the vinyl ether linkage was 

verified via acidic hydrolysis. For this an aliquot of 70 µl of the extract was used for acidic 

hydrolysis, 7 ml of 32% HCl was added and a reaction time of 30 min was given. Samples 

were evaporated and reconstituted in methanol prior MS analysis (Boncompain et al., 2014). 

Under the chosen conditions, only vinyl ether linkages in plasmenyl-compounds are cleaved. 

Ether and ester bindings are stay intact.  

Statistical analysis 
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Statistical analysis was performed in R studio and simcaP. All data are presented as mean 

±SEM. To identify metabolites that show significant change a Mann-Whitney U test for non-

parametric variables was performed, and BH corrected for multiple testing. Missing values 

were imputed by randomly generated minimum values and the data was TIC normalized. 

Unit variance scaling and mean centering was applied before statistical testing. PLS-DA 

models were validated by performing 100 random permutations. 

7.3 Cell culture 

7.3.1 Cell lines and culture conditions 

Cells were maintained in their preferable media. 

Table 5 Cell lines and medium used in this work. 

HT1080 DMEM 

HCT116 DMEM 

MCF7 DMEM 

MDA-MB-231 DMEM 

MF DMEM 

Hela DMEM 

Calu-1 RPMI 

 

HEK 293T, MF (mouse fibroblast), HT1080 (human fibrosarcoma) cells were maintained in 

Dulbecco's Modified Eagle's medium containing 10% fetal bovine serum. HT1080 cells were 

culcured with additional 1% non-essential amino acids (NEAA). Calu-1 cells were maintained 

in Roswell Park Memorial Institute 1640 Medium with 15% FBS. All cells were grown in 

medium supplemented with 1% L-Glutamine and 1% Penicillin-Streptomycin at 37 °C in a 

humidified atmosphere of 5% CO2. 

7.3.2 Generation of cell lines 

To generate Ms4a15 OE cell line, the respective guides were cloned into lenti-sgRNA 

(MS2)_Zeo (Addgene plasmid #61427) (Konermann et al., 2015) with the selection marker 

changed to neomycin resistance. Empty lentiviral vector was used for the corresponding 

control cell line. Viruses were made using third generation ecotropic packaging. Cell pool 

was selected for eight days with 1 mg/mL G418 Sulfate (Geneticin Selective Antibiotic, 
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Thermo Fisher Scientific). All lines were individually validated for survival against the three 

inducers from the screen and doxorubicin control as well as lipid and cytosolic ROS using 

BODIPY-C11 and DCF after 0.3 μM RSL3 induction for 2 h. (Kraft et al., 2019). 

7.3.3 Transient transfection and viral infection 

Human MS4A15-pCAG-IRES-Puro and TMEM33-pCAG-IRES-Puro expression constructs 

were linearized and transfected using Lipofectamine 2000 at a ratio of 1:3 (DNA:reagent) into 

parental Calu-1 cells. After 24h transfection, cells were used in viability assays against 

ferroptosis inducers. Transient, increased MSA15 and TMEM33 protein levels were verified 

by WB. 

Third generation ecotropic lentiviruses were made using pRSV-Rev (Addgene plasmid # 

12253) (Dull et al., 1998) and the respective transfer vectors. HEK293T cells were used for 

virus production. Cells were seeded the day before to reach 70% confluency and transfected 

with vector DNA mixed with XtremeGENE HP (Roche 6366244001) DNA transfection 

reagent in a ratio of 1:3 (DNA:reagent). Supernatant containing viral particles was collected 

after 72 h, filtered through a 0.45 μM syringe filter and added to recipient cells. After 48 h of 

infection, antibiotic selection was started to either generate pools or clones. 

7.3.4 Cell viability assays 

Unless indicated otherwise, 2x103 MF cells or 4x103 Calu-1 cells were seeded in 96-well 

plates and treated overnight with the respective compounds as indicated. Cell viability was 

assessed by the addition of Resazurin (MultiTarget Pharmaceuticals) to final concentration of 

50µM and fluorescence was measured 6-8h later at 540nm excitation / 590nm emission in an 

Envision 2104 Multilabel plate reader (PerkinElmer). At least 3 wells per condition were 

averaged and all cell viability results are presented as percentage relative to the respective 

untreated control as mean±SD. 

7.3.5 RNA-Seq and data analysis 

RNA-Seq analysis was performed with independent replicates of MF Ms4a15 OE cells and 

parental controls, non-strand specific, polyA-enriched RNA sequencing was performed as 

described earlier(Haack et al., 2013). Briefly, RNA was isolated from whole-cell lysates using 

InviTrap Spin Universal RNA Mini Kit (Stratec Molecular 1060100200) according to the 

manufacturer's instructions including a DNAse treatment step (Promega M6201).  

For library preparation, 1 μg of RNA was poly(A) selected, fragmented, and reverse 

transcribed with the Elute, Prime, Fragment Mix (Illumina). End repair, A-tailing, adaptor 

ligation, and library enrichment were performed as described in the Low Throughput protocol 
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of the TruSeq RNA Sample Prep Guide (Illumina). RNA libraries were assessed for quality 

and quantity with the Agilent 2100 BioAnalyzer and the Quant-iT PicoGreen dsDNA Assay 

Kit (Life Technologies). RNA libraries were sequenced as 100 bp paired-end runs on an 

Illumina HiSeq4000 platform. The STAR aligner (Dobin et al., 2013) (v 2.4.2a) with modified 

parameter settings (--twopassMode=Basic) is used for split-read alignment against the 

human genome assembly mm9 (NCBI37) and UCSC knownGene annotation. To quantify the 

number of reads mapping to annotated genes, HTseq-count were used (Anders et al., 2015) 

(v0.6.0). FPKM (Fragments Per Kilobase of transcript per Million fragments mapped) values 

are calculated using custom scripts and differential gene expression analysis was performed 

with the R Bioconductor package DESeq2 (Love et al., 2014). 

7.3.6 siRNA knockdown 

1.5x105 MF cells in 2 mL medium were seeded in six well plates one day before. Before 

transfection, 10 nmol of siRNA and 30 μl Lipofectamine RNAiMAX Transfection Reagent was 

mixed and incubated at RT for 15 min, then added dropwise on top of the cells. After 48 h 

transfection, cells were harvested and re-seeded at a density of 2 x103 cells per well in 96-

well plates for cell viability assay (see above). 

Following siRNAs were used: 

Table 6 siRNAs used in this work. 

esiRNA Source Identifier 

hTMEM33 Sigma Ehu035611 

mTmem33 Sigma Emu078331 

EGFP Sigma EHUEGFP 

 

7.3.7 EGF signaling in cultured cells 

Serum-starved MF cells were stimulated with 0-5 ng/ml EGF for 10min at 37 °C, respectively. 

After incubation, cells were washed with PBS and lysed in lysis buffer supplemented with 

protease inhibitor (as describe above) for 30 min. The lysates were stored at -20 °C for 

western blot. 

7.3.8 High throughput screening 

400 cells per well were seeded in 384-well plates in a total volume of 40 μL medium one day 

before. The next morning, 0.5 μL compounds were added on top of the cells. After 8h 

incubation with compounds, cells were treated with 10 μL RSL3 overnight resulting in the 
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final concentration 0.5 μM. Cell viability was measured after 16 h RSL3 treatment using 

50 μM AquaBluer (See above). 

For screening data analysis, row 23 (cells+RSL3+DMSO) was defined as positive control. 

Average of all wells of row23 was set to 100% activity. %-activity of compound was 

calculated: (value of compound well/average value of row23) x 100. Compounds that are 

marked as toxic (because of toxicity in several other screens) were excluded. Hit-threshold 

was calculated on plate level. Hit threshold was calculated as following: Median value of all 

compound-treated wells 3x Standard deviation of all compound-treated wells. A compound 

that has a %-activity below this value was defined as hit. 

7.3.9 High-resolution high-speed time-lapse live cell imaging  

For the high-throughput wound healing assay, the ibidi Culture-Inserts were used for creating 

the gap that two reservoirs for culturing cells were separated by a 500 µm thick wall. 8x103 

MF cells were seeded in each reservoir and cultured for 24 h until they attached and formed 

a monolayer. 

The cells were imaged immediately at x20 magnification after the coverslips removed using 

an Operetta High-Content Screening System (PerkinElmer) equipped with digital phase 

contrast (DPC) for live-cell imaging. Image analysis was conducted with Harmony software 

(PerkinElmer). All images (8 images per well) were collected with the same instrument 

parameters and processed with the same settings to maximize the ability to compare results 

between conditions.  

7.3.10 Different cell death induction 

For testing the best concentration of cell death rate, HT1080 cells were treated with different 

drugs for 8 h and detected the viability with DAPI.  

Cells were plated in 96-well plates for cell viability microscopy-based assays and the 

following day cells were treated with different drugs indicated below.  

Table 7 Compounds for induction of cell deaths. 

Compound Source Concentration  

Cycloheximide (CHX) Merck 50, 25, 12.5, 6.25, 3, 1.5, 0.75 µg/ml 

Hydrogen Peroxide (H2O2) Sigma 10%, 5%, 2.5%, 1.25%, 0.6%, 0.3%, 0.15% 

Vinblastine Sigma 10, 5, 2.5, 1.25, 0.6, 0.3, 0.15 mg/ml 

6-Thioguanine (6-TG) Sigma 10, 5, 2.5, 1.25, 0.6, 0.3, 0.15 mg/ml 
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Cisplatin Sigma 250, 125, 62.5, 31.25, 15, 7.5, 3.75 mg/ml 

Cytochalasin Sigma 1, 0.5, 0.25, 0.125, 0.06, 0.03, 0.015 mg/ml 

RSL3 Stockwell lab 20, 10,5, 2.5, 1.25, 0.625, 0.3 µM 

IKE Stockwell lab 20, 10,5, 2.5, 1.25, 0.625, 0.3 µM 

Etoposide J&K 100, 50, 25, 12.5, 6.25, 3, 1.5 mg/ml 

Cyclophosphamide (CP) J&K 1000, 500, 250, 125, 62.5, 31.25, 15 mg/ml 

Cochicine Serva 250, 125, 62.5, 31.25, 15, 7.5, 3.75 mg/ml 

 

After 8 h treatment, 100 μl of 0.5 μM DAPI was added to each well and incubated for 10min 

at room temperature under light-shielded conditions. The plates were analyzed by high-

content imaging system immediately using 350-nm excitation and 486 nm emission 

wavelengths for DAPI signal, digital phase contrast (DPC) was used for tracking all the cells. 

For further use, aspirated the DAPI solution and wash the cells two times with 100 μl PBS, 

after the final wash, removed the PBS and fixed the cells with 4% PFA for 10 min, added 

100 μl PBS and stored in 4 °C. 

The Harmony software in HCA system was utilized to measure and analyze cell viability by 

counting the number of both DAPI positive and negative cells. To determine cell viability, 

divide the number of DAPI positive by the total number of cells and multiply by 100. This 

value also represents overall cell death rate, choosing the drug concentrations of ~20% cell 

death for next experiment. 

To detect the specificity of the biomarker candidates, HT1080 cells were plated the day 

before treatment at a density of 4000 cells/well on 96 well plates and maintained for 24 h in 

control conditions. Added 10 μl culture medium containing different concentrations of drugs 

on top of the cells to make the final concentrations below:  

CHX (12.5 µg/ml), H2O2 (0.15%), Vinblastine (0.15 mg/ml), 6-TG (10 mg/ml), RSL3 (50 nM), 

IKE (50 nM), Etoposide (100 mg/ml), Cochicine (3.75 mg/ml), CP (31.25 mg/ml), and 

Cisplatin (62.5 mg/ml).  

After 8 h treatment, cells were fixed with 4% PFA and used for immunofluorescence assay 

with high-content microscopy. 

7.3.11 High-Content immunofluorescence staining  

The cells were seeded on 96-well plates one day before to reach a confluency of 70%. The 

cells were treated with compounds indicated in the figure legends, and fixed with 4%PFA for 
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10 min. Washed with PBS 2 X 5 min, the cells were blocked with staining buffer at RT for 1 h, 

and subsequently incubated with primary antibody at 4 °C overnight. 

Staining Buffer BSA Fraction V 2,5 g 

FBS 5 ml 

Triton-X 150 µl 

1xPBS Add to 50 ml 

PBS 1x 

PFA in PBS 4% 

DAPI/PBS 0,5 µg/ml 

 

The next day, the cells were washed with PBS 3 X 5 min, incubated with secondary antibody 

for 1 h at RT. Washed with PBS; cells were stained with DAPI/PBS for high-content 

microscopy. 

Following antibodies were used: 

Primary antibodies: 

Table 8 Antibodies used in immunofluorescence staining 

Antibodies Source Dilution 

Rabbit polyclonal anti-CTSV Elabscience 1:500 in staining buffer 

Rabbit polyclonal anti-CALML5 Biozol 1:500 in staining buffer 

Rabbit polyclonal anti-FABP5 Cusabio 1:500 in staining buffer 

Rabbit polyclonal anti-S100A14 Biozol 1:250 in staining buffer 

Mouse monoclonal anti-LGALS7 R&D Systems 1:500 in staining buffer 

Rabbit polyclonal WASP Biozol 1:500 in staining buffer 

Rabbit polyclonal FAK Elabscience 1:200 in staining buffer 

Rabbit polyclonal FUK Biomol 1:200 in staining buffer 

Rabbit polyclonal Cortactin Biozol 1:500 in staining buffer 

Rabbit polyclonal Phospho-FAK (Try397) Biomol 1:200 in staining buffer 
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Rabbit polyclonal Phospho-CTTN (Tyr421) Elabscience 1:300 in staining buffer 

Rabbit polyclonal CLTC Elabscience 1:500 in staining buffer 

Rabbit polyclonal Phospho-WAS Cusabio 1:500 in staining buffer 

 

Secondary antibodies: 

Antibodies Source Dilution 

goat anti mouse Cy3 Jackson Immuno 

115-165-003 

1:500 in staining buffer 

donkey anti goat Cy3 Jackson Immuno 

705-165-147 

1:500 in staining buffer 

goat anti rabbit Cy3 Jackson Immuno 

111-165-003 

1:500 in staining buffer 

 

7.3.12 Confocal microscopy and immunofluorescence 

Calu-1 and MF cells were plated at a density of 4000 cells/well, on a glass-bottom 96-well 

plate (Perkin Elmer Cell Carrier Ultra Viewer). Cells were transfected 24 h before imaging 

using a laser scanning confocal microscope (Olympus FluoView 1200; Olympus Corporation) 

with a 60X 1.35 solid immersion lens oil immersion objective. Nuclei were labeled with DAPI 

staining (blue).  

MS4A15 were visualized with Anti-Flag antibody (Sigma F7425; 1/500) and a secondary goat 

anti rabbit antibody (Cy3 Jackson Immuno 111-165-003; 1/500). TMEM33 were visualized 

with Anti-Myc tag antibody (Abcam 9E10; 1/200) and a secondary donkey anti-mouse 

antibody (Alexa 647 Invitrogen A-32733; 1/500). IP3R1 were visualized with anti-IP3R1 

antibody (Biozol BLD-817701; 1/500) and a secondary donkey anti-mouse antibody (Alexa 

647 Invitrogen A-32733; 1/500). ER was tracked with ER marker Concanavalin A / Alexa 

fluor 488 conjugate (invitrogen C11252; 100 μg / ml). Peroxisome was marked with Anti-

Catalase (Abcam 89529; 1/200) and a secondary goat anti rabbit (Cy2 Jackson Immuno 111-

225-003; 1/500). 

7.3.12 Lipid peroxidation analysis by imaging and flow cytometry 

For imaging, MF cells were plated at 4000 cells per well in a 96-well (PerkinElmer Cell 

Carrier Ultra Viewer) in DMEM one day before. Cells were incubated with 2 μM BODIPY-

581/591 C11 (Thermo Fisher Scientific) for 1 h and the media was changed to DMEM 
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containing 0.5 µM RSL3 for live-cell imaging. Cells were imaged at x40 magnification using 

an Operetta High-Content imaging platform (PerkinElmer) equipped with Digital Phase 

Contrast, 488 nm and 647 nm lasers. Image analysis was conducted with Harmony software 

(PerkinElmer) and Fiji (Image J). All images (19 images per well) were collected with the 

same instrument parameters and processed with the same settings to maximize the ability to 

compare results between conditions.  

For flow cytometry analysis, 5,000 cells per well were seeded in 96-well plates in triplicate 

per condition. The next day, medium was replaced with 100 µL medium containing RSL3, 

cells were induced with 0.3 µM RSL3 for 2 h. Subsequently, fluorescence dye to a final 

concentration of 2 µM BODIPY 581/591 C11 (BODIPY-C11, Thermo Fisher Scientific D3861) 

for lipid ROS were added on top and cells were incubated for another 30 min. After removal 

of the medium, wells were rinsed with 30 µL PBS before adding 30 µL Accutase (Sigma 

A6964) to each well. Detached cells were resuspended in 170 µL PBS per well followed by 

analysis on an Attune acoustic flow cytometer (Applied Biosystems). A minimum of 10,000 

events per well were collected from the BL-1 channel (excited by 488 nm laser). The median 

fluorescence intensity of each well was determined and normalized to DMSO treated control 

cells using FlowJo 10 software. Each experiment was independently performed at least twice 

and representative experimental results are shown.  

7.3.13 Intracellular calcium measurements 

Cells were seeded the day before to a 10cm dish/analysis to reach 70%-80% confluency. 

The next day, cells were harvested and treated with indicated compounds for flow cytometry 

analysis. All buffers contained 125 mmol/L NaCl, 5 mmol/L KCl, 1 mmol/L MgCl2, 20 mmol/L 

HEPES, and the pH was adjusted to 7.4 with NaOH. 

 

7.4 Bioinformatics 

7.4.1 KEGG Calcium clustering 

CTRP2.0 data were downloaded from CTD2 data-portal (Basu et al., 2013). Top 100 RSL3 

resistant/sensitive cell lines are AUC v20.data.curves_post_qc.txt values.  

CCLE expression data were downloaded from  

https://depmap.org/portal/download/all/?release=DepMap+Public+20Q1&file=CCLE_express

ion_full.csv.  

KEGG Calcium signaling pathway genes were downloaded from  
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https://www.genome.jp/dbget-bin/get_linkdb?-t+orthology+path:ko04020.  

After normalization, Gene Cluster 3.0 with hierarchical clustering for cell lines was used 

according to Euclidean distance with complete linkage; clustering for genes used City Block 

clustering. Data were visualized using Java TreeView. 

7.4.2 Principal component analysis  

Gene expression data consists of 204 human cell lines (observations) from two different 

known groups (Resistant group (R) and Sensitive group (S)) described by 193 genes 

(variables). 

Principal component analysis (PCA) were performed in R software (version 3.6.3) to 

visualize the clustering of the gene expression data using log-fold transcript abundance of 

gene arrays in each group. Variables were pretreated to eliminate redundant columns with 

more than 40 zero values by applying the function implemented in R/colSums(RS ==0).  The 

following analysis was performed by variables with the highest 100 median absolute 

deviations (MAD). Multivariate biplot was performed to characterize the variability of the data 

in each group using “ggplot2” (Wickham, 2016), “factoextra” (Kassambara and Mundt, 2017), 

and “ade4” (Dray and Dufour, 2007) packages. Arrows show dominant clustering of variable 

s by groups. The distance between points approximates gene expression pattern differences 

among groupings. Arrows indicate top 20 genes that have greater biplot scores that drive the 

differences between groups. Arrowheads close to a particular group indicate genes are 

expressed at a greater relative abundance differences in those samples. 

7.4.3 ssGSEA implementation 

TCGA Lung Adenocarcinoma (LUAD) transcriptome data and clinical information were 

downloaded via the TCGA website. R software (version: 3.5.3) was used for all the analyses 

in the manuscript. The enrichment scores of the terms  (GO or KEGG)  were evaluated using 

single-sample gene set enrichment analysis (ssGSEA) (R package “GSVA” (Hänzelmann et 

al., 2013)).  

GO_CALCIUM_ION_TRANSMEMBRANE_TRANSPORT and 

KEGG_CALCIUM_SIGNALING_PATHWAY term lists were derived from GSEA. The 

correlation between each term and gene expression level was calculated by Pearson’s test. 

The plots were plotted by package “ggplot2” (Wickham, 2016). Briefly, all tumor samples 

were centered into 40 values by their expression level of MS4A15. Each dot in the plot 

represents the average MS4A15 expression level of 40 tumor samples. The most significant 

correlation between each GO terms and MS4A15 expression was identified and plotted with 

R package “ggplot2” (Wickham, 2016).  
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The correlations between gene expression levels were calculated by Pearson’s test. The 50 

genes with the most significant correlation coefficients were identified from whole 

transcriptome. The heat map was plotted with R package “pheatmap” (Kolde and Kolde, 

2015).  

7.5 Statistics 

Generally, statistical analyses were performed in GraphPad Prism 8.0. Individual 

experiments were repeated independently at least three times on different days with similar 

results and a representative experiment is shown. All of the statistical details of experiments 

can be found in the figures, figure legends and results, including the statistical tests used (* p 

< 0.05; ** p < 0.01; *** p < 0.001; ns = not significant). 
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9. Appendix 

Table 9 Reagents and sources used in this study. 

Compounds Source Identifier 

Imidazole ketone erastin (IKE) Stockwell lab N/A 

(1S,3R)-RSL3 Stockwell lab N/A 

TNF Recombinant Mouse Protein (TNFα) Thermo Fisher Scientific  PMC3014 

BODIPY 581/591 C11 Thermo Fisher Scientific D3861 

DMEM, high glucose, pyruvate, no glutamine Thermo Fisher Scientific  21969035 

Geneticin Selective Antibiotic (G418 Sulfate) Thermo Fisher Scientific 10131027 

L-Glutamine (200mM) Thermo Fisher Scientific 25030024 

Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific 15140122 

Power SYBR Green PCR Master Mix Thermo Fisher Scientific  4367659 

RPMI 1640 Medium Thermo Fisher Scientific  21875034 

Trypsin-EDTA Thermo Fisher Scientific  25300054 

Lipofectamine RNAiMAX Transfection 

Reagent 

Thermo Fisher Scientific  13778030 

Lipofectamine 2000 Transfection Reagent Thermo Fisher Scientific  11668027 

Skim Milk Powder Sigma 70166-500G 

X-tremeGENE HP DNA Transfection 

Reagent 

Sigma 6366244001 

Accutase solution Sigma A6964 

(Z)-4-Hydroxytamoxifen Sigma H7904-5mg 

α-Tocopherol (αToc) Sigma T3251 

Puromycin dihydrochloride Sigma P9620 

Blasticidine S hydrochloride Sigma 15205-25MG  

Hygromycin B solution from Streptomyces 

hygroscopicus 

Sigma H0654-1G 

Lipofectamine RNAiMAX Transfection 

Reagent 

LifeTechnologies 13778100  

Zeocin Selection Reagent LifeTechnologies R25001  
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AquaBluer MultiTarget 

Pharmaceuticals 

6015 

Standardized Fetal Bovine Serum (FBS) Biochrom s0615 

RNase Inhibitor, Human Placenta NEB M0307S 

Z-VAD-FMK (zVAD) BioCat T6013-5mg 

Eicosapentaenoic Acid  Biomol Cay-90110.1 

Docosahexaenoic Acid Biomol Cay90310-50 

Docosapentaenoic Acid Biomol Cay90165-1 

C18(PLASM)-18:1 PC Sigma 852467C-5MG 

C18(PLASM)-22:6 PE Sigma 852806C-5MG 

C18 (Plasm) -20: 4 PE Sigma 852804C-5MG 

Calcium Ionophore A23187 Sigma C7522 

BRADYKININ ACETATE Sigma B3259-1MG 

Thapsigargin Santa Cruz SC-24017 

U-73122 Fisher Scientific  15465189 

m-3M3FBS Biomol Cay16867-5 

Phorbol 12,13-dibutyrate (PdBu) R&D 4153/1  

Gö6983 Biomol Cay13311-1 

(S)-Bromoenol lactone Biomol Cay10006801 

Methyl Arachidonyl Fluorophosphonate Biomol Cay70660-1 

FIPI Biomol Cay13563-1 

Cycloheximide Merck 239764 

Hydrogen Peroxide  Sigma 31642 

 6-Thioguanine  Sigma A4882 

Vinblastine Sigma V1377 

Cisplatin Sigma P4394 

Cytochalasin Sigma C6762 

Etoposide J&K 320523 

Cyclophosphamide J&K 419656 

Cochicine Serva 77120 
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Table 10 Reagents that modulate ferroptosis sensitivity (Li et al., 2020). 

  Reagent Target/function Impact on ferroptosis 

Inducers/ 

Sensitizers 

Erastin, PE, IKE, other 

erastin analogs System Xc
- 

 

Prevent cystine import, 

cause GSH depletion 
  

Sulfasalazine, 

Glutamate, Sorafenib 

  (1S,3R)-RSL3 

GPX4 

Covalent inhibitor of GPX4 

that causes accumulation of 

lipid hydroperoxides 
  

ML162, DPI compounds 

7,10, 12, 13, 17, 18, 19 

  BSO, DPI2, cisplatin GSH Deplete GSH 

  FIN56 SQS and GPX4 

Depletes CoQ10 via SQS-

mevalonate pathway, and 

decreases GPX4 

abundance 

  FINO2 
Trigger lipid 

peroxidation 

Induces loss of GPX4 

activity and lipid 

peroxidation 

  

Statins 

(e.g., cerivastatin, 

simvastatin) 

HMGCR 
Block CoQ10 biosynthesis 

via mevalonate pathway 

  Cysteinase Cysteine 
Depletes cysteine, resulting 

in GSH depletion 

  
Silica-based 

nanoparticles 
GSH, iron 

Deliver iron into cells and 

reduce GSH abundance 

  Ferric ammonium citrate Iron Increased iron abundance 

  Trigonelline, brusatol NRF2 Blocks NRF2 

Inhibitors 
alpha-tocopherol, 

Trolox, tocotrienols 

Block lipid 

peroxidation 

may inhibit lipoxygenases 

  Deuterated PUFAs 

Blocks initation and 

propagation of lipid 

peroxidation 
  

Butylated 

hydroxytoluene, 

butylated 

hydroxyanisole 
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Ferrostatins, 

liproxstatins 

  CoQ10, Idebenone 

  XJB-5-131 Nitroxide antioxidant  

  
Deferoxamine, 

cyclipirox, deferiprone 
Iron 

Depletes iron and prevents 

iron-dependent lipid 

peroxidation 

  
Glutamine deprivation, 

Glutaminolysis inhibitor 
Glutaminolysis Unknown 

  

CDC, Baicalein, PD-

146176, AA-861, 

Zileuton 

Lipoxygenases 
Block lipoxygenase-induced 

lipid peroxidation 

  Cycloheximide Protein synthesis Suppresses ferroptosis 

induced by system Xc
- 

inhibitors   beta-mercaptoethanol Reducing agent 

  Dopamine Neurotransmitter Blocks GPX4 degradation 

  Selenium Selenoproteins Increases selenoproteins 

  
Vildagliptin, alogliptin 

and linagliptin 
DPP4 

Blocks DPP4-mediated lipid 

peroxidation 

 

  



Acknowledgements 

108 

 

10. Acknowledgements 

First of all, I would like to thank my supervisor Dr. Joel Schick for his excellent guidance and 

support within the last two and a half years. He has been optimistic and patient with my work, 

and his encouragement, advices and constructive criticism helped me all the time to solve 

the confusions and break the difficulties. Joel has been passionate about science, his broad 

knowledge, scientific enthusiasm and stringency have deeply influenced me and set an 

example for my future work.  

I would like to especially thank my doctor father Prof. Dr. Klaus Förstemann and Dr. Michelle 

Vincendeau for their comments and advices to improve my projects during HELENA thesis 

committee meetings. I am also indebted to the members of the examination committee for 

the time and effort they offered in reviewing my thesis: PD. Dr. Dietmar Martin, Prof. Dr. 

Konstantin Karaghiosoff, Prof. Dr. Lucas Jae, Prof. Dr. Julian Stingele and Prof. Dr. Olivia 

Merkel. 

I am very much thankful to all collaborators of two projects during my PhD study. I would like 

to give my sincere thanks to Dr. Constanze Müller from the Research Unit Analytical 

BioGeoChemistry, Helmholtz Center Munich for her brilliant ideas and overall insights of the 

lipidomics analysis. I also want to thank PD. Dr. Stefan Momma from Frankfurt University for 

his support in the biomarker project.  

I would like to express my gratitude to the most awesome colleagues of the Schick lab and 

other groups in the Institute for Molecular Toxicology and Pharmacology for their precious 

help and their companionship. Special thanks to Susanne Pfeiffer for her help and support in 

work and life. 

Finally, I am deeply grateful to my family and friends for their love and encouragement. I 

want to especially thank Zhe for his understanding, encouragement and support. 

 


