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Zusammenfassung 

Die Übertragung von Tierversuchen in die klinische Umgebung bleibt problematisch, da das 

Tiersystem die menschliche In-vivo-Umgebung nicht angemessen repliziert. Als gute 

Alternative haben sich Bioreaktoren herauskristallisiert, die in vivo Prozesse und Organe des 

Menschen in vitro reproduzieren können. Das Ziel dieser Studie war es, ein neues 

Organoides In-vitro-Kulturmodell zu entwerfen, das lange Kulturperioden in vitro 

überstehen kann, und die knocheninduktiven Eigenschaften dieses Systems unter 

Verwendung von aus Korallen stammenden makroporösen Vorrichtungen zu testen, die 

spontan die Knochenbildung induzieren. Das langfristige Ziel dieser Experimente und 

anderer Studien ist die Entwicklung eines neuartigen Bioreaktorsystems, mit dem 

menschlicher Knochen entweder für experimentelle Studien, direkte klinische 

Transplantationen oder die direkte Regeneration von verlorenem osteogenem Gewebe bei 

Patienten synthetisch gezüchtet werden kann. Für den ersten Teil der Studie, der sich mit 

dem Überlebensaspekt von dem Organoiden Model befasste, wurden dreidimensional 

- -TCP / HA) -Anlagen entweder in eine 

Hülle aus Rattenmuskelgewebe eingewickelt oder zuerst heterotop in eine 

Muskelgewebehülle implantiert, dann herausgeschnitten und in vitro für bis zu 30 Tage 

kultiviert. Die Resultate im Muskelbeutel Organoid Modell zeigten angiogene und begrenzte 

prä-osteogene Genexpressionstendenzen mit konsistenter Hochregulation von TGF-ß1, 

COL4A1, VEGF-A, RUNX-2 bzw. BMP-2. Histologisch wurde ein Abbau des 

Muskelgewebes mit Fibrinfreisetzung beobachtet, die von den Anlagen  absorbiert wurde, 

die möglicherweise als Unterstützung für die Neubildung von Gewebe fungieren, wobei 

postuliert wurde, dass das Muskelgewebe als kataboles Reservoir fungiert, das in vitro  
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wiederaufbereitet wird, um die Entwicklung von neuem anabolem Bindegewebe zu 

unterstützen und auch die osteogene Differenzierung von Vorläuferstammzellen in dem 

biokeramischen Gerüst. Nachdem das erste Ziel erreicht worden war und ein relevantes 

organoides Modell entwickelt worden war, wurde eine makroporöse biomimetische Anlage 

aus Korallen, das sich in vivo als wirksam erwiesen hat, um spontan die Knochenbildung zu 

induzieren, in das Beutelmodell eingeführt. Auch wurde die Kultivierungszeitspanne auf bis 

zu 60 Tage verlängert. VEGF-A und OCN waren beide hochreguliert in der Transkriptions- 

oder Translationsebene, wobei das konstant hochregulierte COL4A1-, RUNX-2-, BMP-2- 

und BMP-6-Expressionsmuster das Potenzial für Angiogenese und Osteogenese innerhalb 

dieses Systems implizierte. Im Anschluss an diese Entdeckungen zeigten die Ergebnisse mit 

dem osteogenen Medium auch, dass in diesem organoiden Muskelsystem das Medium die 

Osteogenese nicht unterstützt, wie allgemein angenommen wird, sondern nur die 

hypertrophe Verschlechterung des Gewebes mit zunehmender Kulturzeit fördert. Dies macht 

das osteogene Medium für In-vitro-Tests ungeeignet, da es zu irreführenden Ergebnissen 

führt, die keiner echten osteogenen Körperreaktion entsprechen. Diese Ergebnisse zeigen 

daher, dass das auf einem Skelettmuskelbeutel basierende Biomaterial-Kultursystem das 

Überleben des Gewebes über einen längeren Kulturzeitraum unterstützen kann und ein neues 

Organoid-Gewebemodell darstellt, das mit weiteren Anpassungen in zukünftigen Studien 

reines Knochengewebe erzeugen könnte.  
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Summary 

The translation from animal research into the clinical environment remains problematic, as 

animal system do not adequately replicate the human in vivo environment. Bioreactors have 

emerged as good alternative that can reproduce the human in vivo processes and organs at 

an in vitro level. As such the aim of the present study was to design a new organoid in vitro 

culture model that could survive long culture periods in vitro and to test the bone inductive 

qualities of this system using coral derived macroporous devices that spontaneously induce 

bone formation. The long-term goal of these experiments and other studies is to develop a 

novel bioreactor system that can synthetically grow human bone for either experimental 

studies, direct clinical transplantations or directly regenerate lost osteogenic tissue on 

patients. For the first part of the study, dealing with the organoid survival aspect, three-

-tri- -TCP/HA) devices were 

either wrapped in a sheet of rat muscle tissue or first implanted in a heterotopic muscle pouch 

that was then excised and cultured in vitro for up to 30 days. Devices wrapped in muscle 

tissue necrosed by day 15.  Contrarily, devices in muscle pouches showed angiogenic and 

limited pre-osteogenic gene expression tendencies with consistent TGF-ß1, COL4A1, VEGF-

A, RUNX-2, and BMP-2 upregulation, respectively. Histologically, muscle tissue 

degradation with fibrin release was seen being absorbed by devices acting possibly as a 

support for new tissue formation where it is postulated that the muscle tissue acts as catabolic 

reservoir that in vitro is repurposed to supported new anabolic connective tissue 

development and ingrowth into the bioceramic scaffold with progenitor stem cell osteogenic 

differentiation. With the first goal achieved and possessing a relevant organoid model, a 

coral-derived macroporous biomimetic device, proven to be effective in vivo to  
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spontaneously induce bone formation, was then introduced to the pouch model, replacing 

-TCP/HA device with in vitro culture periods being extended up to 60 days. VEGF-A 

and OCN were both upregulated either at the transcriptional or translational level, with the 

constant upregulated COL4A1, RUNX-2, BMP-2 and BMP-6 expression pattern, implying 

the potential for angiogenesis and osteogenesis within this system. Subsequent to these 

discoveries the results of the “osteogenic” medium also showed that within this muscle 

pouch organoid system, this medium type does not, as globally believed, support 

osteogenesis, but rather accelerates the hypertrophic deterioration of the tissue as culture 

time increases. This makes osteogenic medium unsuitable for in vitro testing as it creates 

misleading results that do not correspond with a true osteogenic environmental reaction. 

These results therefore demonstrate that the skeletal muscle pouch-based biomaterial 

culturing system can support tissue survival over an extended long culture period and 

represents a novel organoid tissue model that with further adjustments could generate pure 

bone tissue in the future studies.
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The bone tissue engineering challenge 

The effective translation from in vitro to in vivo and in vivo to clinical practice remains a 

major challenge for tissue regenerative sciences (Anderer and Libera, 2002; Reichert et al., 

2009; Amini et al., 2012; Denayer et al., 2014). Whilst experimental in vitro and in vivo 

investigations continue to contribute greatly to deciphering specific criteria in biological 

sciences, the translation from a functional model to the clinical setting takes an exuberant 

amount of time and consumes vast resources (Collier, 2009). This is one of the reasons why 

bone tissue induction models are not yet used and the autogenous bone graft (Havers and 

Geuder, 1692; Ollier, 1867; Senn, 1889; Galindo-Moreno et al., 2008; Nkenke and Stelzle, 

2009; Atef et al., 2019) remains the golden standard for bone regeneration clinically. The 

following sections provide an overview of the challenges faced in the prospect to regenerate 

bone in vivo setting where alternative and yet unexplored research holds perhaps the 

solutions to solving the enigma for how to engineer bone tissue, clinically. 

 

1.1 Induction of bone formation 

The induction of bone formation defines the process of bone formation that is stimulated 

in sites of the body not normally associated with the super-organ bone. These sites can, but 

are not limited to, muscle tissue, organs including adipose deposits. Bone tissue 

regeneration and its subsequent engineering through science derives from a rich past (Urist, 

1965; Reddi, 2000; Ripamonti, 2006) and present (Klar, 2018). In order to understand the 

principle of bone induction, the foundations that have led to its development are key as all 

developed principles, from experimental theories, have a unique role and to ignore this 

history is to repeat the mistakes of the past. 
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It all started from the founding principle discovered by Senn (1889) nearly two centuries 

ago. Without the research done by Senn (1889) the ideas and principles that shape the 

modern concept of bone formation by inducing bone formation may never have emerged. 

Senn (1889) performed a series of implantations into skull defects of canines using 

decalcified antiseptic bone cuts and was the first to discover that decalcified bone possessed 

new bone formation potential, that would only much later under Levander, 1945 become 

known as induction. Subsequent to the findings that decalcified bone cuts could undergo 

new osteogenesis in bony defect sites, Senn (1889) also by accident discovered that the 

surrounding of the implant was often showing new embryonic-like tissue formation thereby 

indirectly suggesting the process of osteogenesis within these bone “devices” was a 

recapitulation of embryonic processes that normally only occur during fetal development 

(Levander, 1938).    

Whilst it still remains debatable today whether the implantation of decalcified bone 

material implanted into a bone defect site by Senn 1889 can truly be considered as bone 

induction, follow up experiments in uroepithelial tissue by Huggins, 1931 indeed proved 

that bone formation could be “induced” within non-bony extra-skeletal sites. Subsequent 

studies utilizing partially extracted ethanol-treated bone matrices and then implanted in 

heterotopic sites of rats could also induced new bone formation (Levander, 1938; 

Willestaedt et al., 1950) supporting further Senn 1889 observations regarding the 

recapitulatory events of embryogenesis. Concomitantly, by 1968 the theory of some 

unknown as yet to be classified “substance” that resided within bone was also postulated 

(Friedenstein, 1968) which was previously theorized to be “osteogenin” (Lacroix, 1945) a 

molecule or particle that possesses the capability to induce new bone formation.  
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However, it would be the pioneering research by Urist, 1965, who identified key criteria 

form the investigations and reports from Senn, Huggins, Levander, Lacroix, which then 

through his own analyses would culminate in the groundbreaking the foundations and 

principles that would become known as the autoinduction principle of bone formation 

(Urist, 1965; Urist et al., 1967). Additionally, he would go on to re-name Lacroix 1945 

“osteogenin” molecule to  “bone morphogenetic protein (BMP)” which Urist hypothesized 

was a type of compound present within the bone matrix that modulated or stimulated the 

reaction toward new bone formation or more appropriately “bone morphogenesis”. The 

subsequent experiments in other animals’ models would lead to the isolation of a protein 

family (Wang et al., 1988; Wozney et al., 1988) specifically denoted as “BMPs” (Urist et 

al., 1967; Urist and Strates, 1971).  

Once BMPs had been successfully extracted from the extracellular matrix of bone (Reddi 

and Huggins, 1972; Sampath and Reddi, 1981; Reddi, 1994) the bone induction principle, 

postulated by Urist and Strates 1971, was eventually defined after the systematic works of 

Sampath and Reddi, 1981. Critical to the bone induction principle was that only when an 

insoluble matrix carrier and soluble molecular signals in the form of morphogens were 

combined would it be possible to induce new bone formation in vivo (Sampath and Reddi, 

1981). This basis is still the foundation on which most tissue inductive models function 

where it has to be however noted that the principle does not apply to all scenarios especially 

those of the disease state of ectopic bone formation (Gonda et al., 2000; Lin et al., 2010; 

Wang et al., 2014; Katagiri et al., 2015) and specifically the spontaneous bone formation 

potential of naturally derived biomaterials such as coral derived macroporous biomimetic 

matrices (Ripamonti, 1990; 1991; Klar et al., 2014; Ripamonti et al., 2016). 
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1.2 Biomaterials 

A wide range of biomimetic biomaterials have been tested in bone tissue engineering and 

bone regeneration, including bioactive metal, ceramics, natural and synthetic polymers, and 

glasses. (Ripamonti, 1991; Livingston et al., 2002; Fujimura et al., 2003; Mauney et al., 

2004; Meinel et al., 2004; Nazarov et al., 2004; Kim et al., 2005; Mauney et al., 2005; 

Moreira-Gonzalez et al., 2005; Sul et al., 2005; Klar et al., 2013; Ye et al., 2016; He et al., 

2017; Yang et al., 2017) Among them, calcium carbonate and hydroxyapatite (HA), owing 

to their similar chemical composition and biomechanical nature as bone tissue, are regarded 

amid the most promising bone graft substitute. (White et al., 1975; Daculsi et al., 1989; 

Ripamonti, 1990; Lu et al., 1998; Boyde et al., 1999; Flautre et al., 1999; Kon et al., 2000; 

Dong et al., 2001; Dong et al., 2002; Livingston et al., 2003; Gauthier et al., 2005; 

Mastrogiacomo et al., 2006; Cosar et al., 2008; Boos et al., 2011; Klar et al., 2013; Kakar 

et al., 2017) Apart from chemical composition, the stereo configuration is another critical 

characteristic for the efficient bone formation and ingrowth into biomaterials, including the 

ratio of porosity, pore size, pore shape, and the pattern and size of pore interconnection 

pathway. (Gauthier et al., 1998; Lu et al., 1999; Chang et al., 2000; De Oliveira et al., 2003; 

Karageorgiou and Kaplan, 2005; Mastrogiacomo et al., 2006) Macropores have been 

reported with increasing evidence to support a more comprehensive and superior bone 

tissue ingrowth into biomaterials in vivo, whereas microporous biomaterial constraints its 

capacity of osteoinduction and osteoconduction. (Gauthier et al., 1998; Boyde et al., 1999; 

Chang et al., 2000) One of the key parameters that facilitates osteoconduction in 

macroporous biomaterials is the pattern of pore interconnection pathway (Mastrogiacomo 

et al., 2006). When the size of the interconnection pathway is reduced to a certain extent, 

the bone tissue ingrowth will be considerably limited due to the restraint potential for larger 
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vessel penetration into biomaterials, ultimately restricting the size of bone graft substitute 

for the treatment of critical size bone defect. 

 

1.3 The Molecular conundrum in bone tissue engineering 

Expanding molecules are added into the complex molecular network as morphogens (Urist 

and Strates, 1971; Joyce et al., 1990; Rosen et al., 1994; Reddi, 1998; Pang et al., 2004; 

Mayer et al., 2005; Lin et al., 2006; Simic et al., 2006; Klar et al., 2014), signaling 

molecules (Itoh et al., 2001; Hsu and Huang, 2013; Yang et al., 2015; Xu et al., 2018; 

Morgoulis et al., 2019), transcription factors and co-regulators (Dudek et al., 2010; Javed 

et al., 2010; Martinez-Sanchez et al., 2012; Steck et al., 2012; Schipani et al., 2013; Dey et 

al., 2014; Trzeciak and Czarny-Ratajczak, 2014; Lewis et al., 2016; Komori, 2017; 

Lefebvre, 2019), altogether synergistically regulating the induction of bone formation 

process. The physiological differential process comprises mainly four phases: cell 

proliferation and lineage commitment, osteoprogenitor proliferation and differentiation, 

synthesis of extracellular matrix (ECM) and programmed osteoprogenitor apoptosis, and 

maturation of osteocyte with mineralization (Figure 1) (Javed et al., 2010).  Different 

regulators are expressed in a rigorous spatial and temporal dependent manner at both 

transcriptional and translational levels. The key transcription factors include, but are not 

limited to, Runt-related transcription factor 2 (RUNX-2), Osterix, activating transcription 

factor 4 (ATF4), activator protein 1 (AP-1), and osteoblast-stimulating factor-1(OSF-1), 

involved in different phases of the osteogenic differentiation. At the translational level, 

BMPs (BMP-2, 4, 6, 7), transforming growth factor (TGF)- - 1, - 2, - 3), 

insulin like growth factor-1 (IGF-1), wingless-related integration site proteins (Wnts) -
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catenin, Indian hedgehog homolog (IHH), fibroblast growth factor-2 (FGF-2) and FGF-18 

play integral  roles in mediating mesenchymal stem cells (MSCs) differentiating into 

osteocyte. 

 

Figure 1. Diagrammatical illustration of the developmental progression of osteoblast lineage and 
the list of correspondent secretory and phenotypic markers. The first row demonstrates the 
chronological stages of the osteoblast lineage from pluripotent stem cells to terminally 
differentiated osteocyte accompanied with characteristic description. The critical transcription 
factors involved in regulating osteoblast differentiation are listed in the second row, with inhibitors 
indicated in red. The third row summarizes the paracrine/autocrine secretory mediators controlling 
osteoblast development. Key phenotypic genes expressed in the process of osteogenic 
differentiation are indicated in the last row. (With permission by Javed et al. 2010) 

 
In additional to osteoblast differentiation, angiogenesis and/or vasculogenesis shares the 

same, if not even more important, role in the formation of bone tissue in a large scale, as 

the permeability of soluble blocks into tissue is restricted within 2 mm where no vascular 

perfusion is present, preventing the necessary nutrient support and molecular regulation for 

an effective and efficient bone formation. RUNX-2, collagen type IV alpha 1 (COL4A1) 
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and vascular endothelial growth factor A (VEGF-A) are known as the key proteins involved 

in the process of angiogenesis and vasculogenesis. (Trueta, 1963; Feder et al., 1983; Ingber 

and Folkman, 1989; Flamme and Risau, 1992; Flamme et al., 1993; Vernon et al., 1995; 

Risau, 1997; Vittet et al., 1997; Arthur et al., 1998; Wartenberg et al., 1998; Goumans et 

al., 1999; Zhu et al., 2000; Vailhé et al., 2001; Mayer et al., 2005; Kneser et al., 2006; 

Polykandriotis et al., 2007; Beier et al., 2010; Amini et al., 2012; Gu et al., 2013; Bhatt and 

Atkins, 2014; Filipowska et al., 2017; Sharma et al., 2019) 

 

Collectively, the exquisite interplay of a complex transcriptional and translational 

regulators network contributes to the true bone formation by induction, with the presence 

of both osteogenesis and angio-/vasculogenesis. 

 

1.4 The animal translation enigma 

The first of the bone inductive BMPs isolated and tested for its osteogenesis potential was 

the recombinant human BMP-2 (rhBMP-2). In a time study, recombinant human BMP-2 

was able to increase cellular invasion and induced chondrogenesis within the demineralized 

bone matrices within just 5 days (Wang et al., 1990). Within 7 days the cartilage was 

beginning to be ossify and after just 21 days the bone matrix had been formed. It was 

therefore postulated that BMP-2 was one of the critical molecules crucial for initiating bone 

formation, within the insoluble substratum. Afterwards, other BMPs were assessed for their 

part in inducing bone formation. Specifically, BMP-4 was found to only induce bone 

formation at high concentration (Hammonds et al., 1991), with the BMP-5 inducing bone 

at a retarded level, irrelevant of application dose (Cox et al., 1991; D'alessandro, 1991). 
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Subsequently BMP-6, osteogenic protein-1 (OP-1/BMP-7) and BMP-9 all were discovered 

to induce bone formation similar to that of BMP-2 (Riley et al., 1996). 

 

The substantial induction of bone formation in pre-clinical animal studies prematurely 

convinced basic scientists and skeletal reconstructioneers that an application of a single dose 

of a recombinant human bone morphogenetic protein would induce tissue morphogenesis, in 

a clinical environment (Friedlaender et al., 2001; Govender et al., 2002). However, this 

theoretical potential has so far not been successfully translated to clinical context. Clinical 

trials of craniofacial orthopaedic applications such as mandibular reconstruction have 

indicated that supra-physiological doses of a single recombinant human BMPs/OPs 

(hBMPs/OPs) are needed to often induce clinically unacceptable induction of bone, which 

still falls short of autogenous bone grafts (Ripamonti, 2006; Garrison et al., 2007; Mussano 

et al., 2007; Ripamonti et al., 2007; Ripamonti et al., 2009). 

 

It is well known by now that in vitro to in vivo testing and subsequently in vivo to human 

trials do not properly replicate treatments clinically (Denayer et al., 2014). Criteria affecting 

often results from turning out positive are those of methodological design and sample size 

variations which are often overlooked when interpreting into the clinical aspect. In their 

review Denayer et al. (2014) adequately listed several factors that affect the translation from 

animal models into humans.  Alternative criteria such as maturity of animals, differences 

between bones and size variations between animal models all contribute towards the 

translation enigma (Evans and Stoddart, 2016). Alternatively, it has to be considered that 

present bone induction procedures are utilizing allo-/xenografting principles that have been 

shown to not function in vivo (Ladd and Pliam, 1999; Keating and McQueen, 2001; Betz, 
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2002; Linovitz and Peppers, 2002; Klar, 2018), but are replicated in the form of biomaterials, 

utilizing autogenous bone grafting principles.  

 

Subsequently, most studies overlook the difference between animal and human genes that, 

whilst structurally similar, have different expression patterns or function. Often it is assumed 

that animal models, in particular for inductive bone studies, are genetically compatible to 

each other since osteogenesis appears to be similar between all experimentally utilized 

animal models compared to humans. Whilst there are homologous trends in the gene 

structure of various animal models, with that of the human including functionality in vivo, a 

fact often left out is that in most cases subtle variations in gene structure can produce 

considerable difference between species.  

 
These criteria including many others too numerous to all compile here have forced tissue 

engineers to consider alternative modes of research models that negate animal models 

completely and instead focus on using in vitro based systems that replicate in their totality 

the complexity of the human organs. 

 

1.3 Bioreactors 

Bioreactor platforms, simulating certain tissue types, have shown great capabilities at 

replicating certain in vivo environments (Martin et al., 2004; Plunkett and O'Brien, 2011). 

However, bioreactors remain problematic for use in forming a super-organ like bone, as 

there are various biochemical, cellular and mechanical requirements that need to be met to 

form this tissue type either ectopically or orthotopically (Urist and Strates, 1971; White et 

al., 1975; Sampath and Reddi, 1981; Ripamonti, 1990; Reddi, 2000; Martin et al., 2004; 
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Mastrogiacomo et al., 2006; Ripamonti, 2006; Plunkett and O'Brien, 2011; Klar et al., 2013; 

Alexander et al., 2014; Klar et al., 2014; Ripamonti et al., 2016; Costa et al., 2017; Ho et 

al., 2017) In brief, a proper bioreactor should be comprised of multipotent stem cells or 

progenitor cells located within a bone tissue ECM simulating scaffold, with tunable 

autocrine or paracrine biological factors regulating the system toward osteogenic 

morphogenesis, where a biomimetic perfusion and mechanical stimuli should also be 

included (Figure 2). Furthermore, vascularization and/or angiogenesis are essential 

components that help the tissue survive and grow in a size with diameter more than 2mm 

(Trueta, 1963; Feder et al., 1983; Flamme et al., 1993; Nakagawa et al., 1993; Risau, 1997; 

Vailhé et al., 2001; Filipowska et al., 2017; Sharma et al., 2019).   

 

Figure 2. Schematic bioreactor for bone tissue engineering in vitro. (With permission by Costa et 
al. 2017) 

 
Most bioreactor platforms utilize stem cells, such as bone marrow stem cells (BMSCs), 

MSCs and adipose-derived stem cells (ADSCs) or mesenchymal progenitor cells (MPC) 

on a specific biomaterial to produce a specific single cell derived tissue type, which have 

showed the up-regulation of different sets of osteogenic differentiation related phenotypic 
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markers in vitro and some promising evidence showing the capacity of osteo-induction 

and/or osteo-conduction in vivo. (Sottile et al., 2003; zur Nieden et al., 2003; Bonab et al., 

2006; Kubo et al., 2009; Mendez-Ferrer et al., 2010; Yablonka-Reuveni, 2011; Amini et 

al., 2012; Bhumiratana et al., 2016; Nguyen et al., 2016; Mitra et al., 2017; De La Vega et 

al., 2018) However, they are still inadequate for the real bone tissue morphogenesis in vitro 

as various steps are required that together culminate in the formation of this tissue (Gilbert, 

2000). Additionally, cells cultured in vitro not only lose their homeostatic state through the 

loss of essential amino acids, that growth medium can hardly supply in a controlled and 

released state as in vivo tissue breakdown would (Nelson and Cox, 2005), but also need to 

develop a viable ECM environment first before they can thrive and grow (Leighton et al., 

1968; Blair et al., 2017). Hence, in vivo tissue based bone inductive studies remain to date 

the best models to study the effect of biomaterial behavior in vivo. As such, a tissue based 

bioreactor platform (Sakakura et al., 1989; Roach, 1990; Bhumiratana et al., 2016) could 

be superior to that of a stem cell based system as tissues poses various biochemical building 

blocks and adult stem cell niches together with pre-established cell growth promoting 

environments that theoretically could provide a superior culturing milieu. However, the use 

of bone directly as a biomaterial growth environment in vitro is highly problematic, as 

culture medium cannot adequately diffuse across a hard tissue barrier (Sakakura et al., 

1989).  
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2.1 Research Aims 

The present study aimed at investigating (1) the feasibility and (2) the bone induction 

potential of a new skeletal muscle-based biomaterial in vitro organoid bioreactor system 

utilizing rat.    

 

2.2 Research objectives 

The first objective dealt with developing a tissue-based biomaterial in vitro tissue model that 

reproduces a heterotopic inductive bone formation environment with the potential to survive 

long culture periods in vitro and showing possible signs of vasculo-/angiogenic 

morphogenesis, crucial for de novo bone formation (Trueta, 1963; Nakagawa et al., 1993). 

The two models tested were:  

(A) A biomaterial wrapped in abdominal muscle tissue; 

(B) A biomaterial placed in a pouch similar to heterotopic in vivo implantation models 

situated within the abdominal muscle tissue.  

 

The secondary objective was then to utilize the best model from the first objective, that 

showed the best reactivity and survivability, to assay bone inductive processes utilizing a 

known and spontaneously inducing bone formation biomaterial, i.e. 7% 

hydroxyapatite/calcium carbonate (7% HA/CC; Ripamonti, 1990; 1991; Klar et al., 2013; 

Klar et al., 2014).  
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3.1 Proof-of-concept: In vitro tissue-biomaterial organoid model  

3.1.1 Three dimensional (3D) - -

TCP/HA) devices  

Eighteen devices were provided by BioMed Center Innovation gGmbH (Bayreuth, 

Germany), by Mr. Daniel Seitz. The 3D- -TCP/HA bioceramic devices (Figure 3 

A) were manufactured using a mixture of tri-calcium phosphate and hydroxyapatite powders 

(Merck, Kenilworth, NJ, USA)) at a ratio of 40%:60%, respectively. The mixture had 

previously been spray-nozzle granulated from a water-based slurry with addition of organic 

dispersing and binding agents using a custom spray-dryer (Trema, Kemnath) and cut off at 

100 μm using a classing sieve (Retsch, Haan, Germany). The lower fraction of granulate 

was coated with organic adhesion-improving agents by means of fluidized bed coating; the 

final printing powder had size distributio

secret), the scaffolds were then printed out in a Z310 3D-Printer (3D Systems, Rock Hill, 

USA) using the standard colorless ink provided with the printer. After de-powdering, the 

scaffolds were sintered at 1250°C, producing a solid, organic-free, porous bioceramic device 

with macroscopic pore channels (670.52 +/- 97.60 μm) resulting from printing design and 

smaller internal pores (80.95 +/- 23.38 μm) as described above. The devices were then 

allowed to cool, after which they were cleaned using deionized water, packed and sterilized 

by vacuum pulse autoclaving. 

 

3.1.2 Skeletal-muscle-based biomaterial culturing models 

Four Rattus norvegicus Fischer 344/DuCrl adult male rats (Charles River, Sulzbach,  
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Germany), were utilized in the pilot study, and equally split between the two tissue models. 

Animals were euthanized with an overdose of isoflurane (Abbot, Chicago, USA). This was 

done in accordance to the rules and regulations of the Animal Protection Laboratory Animal 

Regulations (2013), European Directive 2010/63/EU and approved by the Animal ethics 

research committee (AESC) of the Ludwig Maximillian’s University of Munich (LMU), 

Bavaria, Germany Tierschutzgesetz  §1/§4/§17 (https://www.gesetze-im-

internet.de/tierschg/TierSchG.pdf) with respect to animal usage for pure tissue or organ 

harvest only.  

 

Figure 3. In vitro wrapping and heterotopic implanted bioceramic pouch model methodology (A-I). 
The three-dimensional printed macro- -tricalcium -TCP/HA) 
bioceramic devices (A), for the wrapping or pouch models, were placed in growth medium (DMEM), 
prior to either wrapping them in rat skeletal muscle tissue (B-E), or implanting them first in 
heterotopic extra-skeletal muscle sites (F-I) of euthanized rats, after which the implant site with 
devices was harvested, devices embedded in the muscle tissue excised, and subsequently placed in 
growth medium to be cultured for 5, 15 and 30 days in vitro. 
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Two skeletal muscle tissue biomaterial-based models were designed and tested:  

1) Tissue wrapping model 

-TCP/HA devices, were first immersed in normal 

-high glucose (DMEM-

hg, Biochrom GmbH, Berlin, Germany), 40 IU/mL penicillin (Biochrom GmbH) and 40 

IU/mL streptomycin (Biochrom GmbH) .  

 

Two F-344 adult male rats (Charles River) were euthanized under sterile conditions, the 

abdominal skeletal muscle tissue harvested, placed in normal DMEM-hg after which 3D 

-TCP/HA devices were wrapped in the sheets of muscle tissue (Figure 3 B-E). Nine 

-TCP/HA devices were then wrapped with a skeletal muscle sheet, and divided into 3 

culturing periods set at 5, 15 and 30 days. Each culturing period contained 3 tissue bags. 

-TCP/HA devices was cultured in parallel to tissue bags and acted 

as controls. Medium was changed every 2 days. Fresh muscle tissue was used in the 

normalization of quantitative real-time polymerase chain reactions (qRT-PCR).  

 

2) Tissue pouch model 

-TCP/HA devices were prepared by placing them in normal growth medium as 

explained in the section of the tissue wrapping model.  Rats were then euthanized under 

-TCP/HA devices were immediately implanted in intramuscular pouches 

created by sharp and blunt dissection (Figure 3 F-I -TCP/HA devices had been 

implanted, muscle tissue pouches with biomaterials were excised using 8 mm biopsy 

punches (PFM medical, Cologne, Germany). Nine muscle pouches -TCP/HA were 

created, and divided into 3 culturing periods set at 5, 15 and 30 days. Each culturing period 
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contained 3 tissue pouches. -TCP/HA devices was cultured in 

parallel to tissue pouches and acted as controls. Medium was changed every 2 days. Fresh 

muscle tissue was used in the normalization of qRT-PCR. 

 

-TCP/HA devices were harvested and 

cut in half, with one-half flash frozen in liquid nitrogen for qRT-PCR assays and the other 

half fixed in 4% paraformaldehyde (Microcos GmbH, Garching, Germany) to be processed 

for histological and histomorphometric analysis. 

 

3.1.3 Bacterial contamination assay 

To determine if tissue cultures systems were contaminated by bacteria and as such have 

affected histological interpretations, the culture medium was collected after every medium 

change and randomly tested. Under sterile conditions collected culture medium was plated 

out on a standard Luria Broth Agar (LA) plates (1g Tryptone, 1.5g Technical agar, 0.5g 

Yeast extract, 0.5g NaCl (all (Sigma-Aldrich)) in 100ml dH2O),  with a normal LA plate 

with fresh DMEM-hg (Biochrom GmbH) medium set as control. After 72 hours of 

incubation at 37 °C with 5% CO2, plates were assessed for bacterial colony formation by 

two blinded analysts. 

 

3.1.4 QRT-PCR 

QRT-PCR was performed to determine the relative gene expression quantity of tissue growth 

related genes especially angiogenesis and endothelial tissue formation genes, VEGF-A and 

COL4A1 and TGF- 1 including known osteogenesis signaling and structural markers, 

specifically RUNX-2 and BMP-2. 
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Specimen fragments for qRT-PCR were ground to powder in the presence of liquid Nitrogen. 

Total ribose nucleic acid (RNA) was then isolated using a modified RNA Trizol extraction 

procedure (Chomczynski & Mackey, 1995). Briefly, 1 ml Trizol (Invitrogen, San Diego, 

CA, USA) was added to the powderised tissue, where through the addition of chloroform 

(Sigma-Aldrich) the aqueous RNA containing phase was transferred to Isopropanol (Sigma-

Aldrich). RNA was then pelleted out in an overnight centrifugation step at 4 °C, which were 

concentration of the RNA was determined using a NanoDropTMLite (Thermo Scientific, 

Waltham, USA) and quality assessed with a Bioanalyzer 2100 (Agilent Technologies, CA, 

USA). RNA integrity numbers lower than 8 were not accepted. RNA was then reverse 

transcribed into complementary DNA (cDNA) using the QuantiTect Reverse Transcription 

cDNA Synthesis Kit (Qiagen, Hilden, Germany).  

 

QRT-PCR was then performed, in duplicate with FastStart Essential DNA Green Master 

(Roche, Basel, Switzerland) in a final reaction volume of 10 μl, using a LightCycler® 96 

thermocycler (Roche). Each reaction contained 10 ng cDNA; 2x FastStart Essential DNA 

Green Master and 10 μM of each primer (Table 1). Primers were designed using Integrated 

DNA Technologies PrimerQuest Tool (https://eu.idtdna.com/Primerquest/Home/Index). 

Use of GeNorm (http://medgen.ugent.be/~jvdesomp/genorm/) established that ribosomal 

protein large P0 (RPLP0), succinate dehydrogenase complex subunit A (SDHA), RNA 

polymerase II subunit E (POLR2E) and TATA binding protein (TBP) were the most 

appropriate internal reference genes to use in this experiment. All amplified PCR 

(polymerase chain reactions) products underwent Sanger sequencing (GATC Biotech, 
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Cologne, Germany) and were then analyzed utilizing nucleotide analysis 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch) to confirm that the 

correct sequence had been amplified. QRT-PCR thermocycling parameters included a pre-

incubation of 3 min at 95°C, followed by a three-

consisting of a denaturation, annealing and extension step set at 95°C for 10 s, 60 °C for 15s 

and 72°C for 30s, respectively. Relative gene expression was normalized against four 

reference genes. Gene expression from the harvested tissue/device models was normalized 

to the four reference genes and fresh abdominal skeletal muscle tissue using the Qbase+ 

software (http://www.biogazelle.com). Gene expression results were represented as mean 

calibrated normalized relative quantities (CNRQs) ± SEM, which reflect the log10 2- .  

Table 1. Gene primer sequences for target and reference genes in the pilot study. 

Gene Forward Primer (5´-3´) Reverse Primer (5´-3´) 

VEGF-A CTACCAGCGCAGCTATTG GATCCGCATGATCTGCATAG 

COL4A1 CTGGGAATCCCGGACTT GGGATCTCCCTTCATTCCT 

TGF- 1 TTTAGGAAGGACCTGGGTT ACCCACGTAGTAGACGATG 

BMP-2 GGAAGTGGCCCACTTAGA TCACTAGCAGTGGTCTTACC 

RUNX-2 CCCAAGTGGCCACTTAC CTGAGGCGGTCAGAGA 

RPLP0    

(reference) 

CAACCCAGCTCTGGAGA CAGCTGGCACCTTATTGG 

SDHA     

(reference) 

GCGGTATGACACCAGTTATT CCTGGCAAGGTAAACCAG 

POLR2E 

(reference) 

GACCATCAAGGTGTACTGC CAGCTCCTGCTGTAGAAAC 
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3.1.5 Quantitative angio-/vasculogenic protein assays 

The amount of VEGF-A produced by the two bioreactors and controls were determined 

using Magnetic Luminex® Assays (R&D systems, Minneapolis, USA). Supernatants of 

tissue cultures were harvested at 5 days, 15 days and 30 days for either the wrapping model 

specimens or the pouch model specimens and controls. VEGF-A contents in supernatants 

were measured according to the manufacturer’s instructions. Results were generated using 

xPONENT® 4.2 for MAGPIX® Software (R&D systems, Minneapolis, USA). 

 

3.1.6 Histological and histo-morphometrical evaluation 

Specimens were fixed in 4% paraformaldehyde (Microcos GmbH) for 24h after which they 

each paraffin block was decalcified (Bancroft and Gamble, 2008). In order to validate our 

gene expression patterns with respect to tissue survivability within the two tissue models, 

histological sections were stained using either the hematoxylin and eosin (HE, Morphisto 

GmbH, Frankfurt, Germany) staining (Feldman and Wolfe, 2014) or the Movat (Morphisto 

GmbH) pentachrome staining (Movat, 1955). Stained sections were subsequently analyzed 

under PreciPoint M8 microscope (PreciPoint, Freising, Germany).  

 

Histomorphometric analysis was performed using Image-Pro Plus v7 (Media Cybernetics, 

Inc., Rockville, USA). One representative section at the middle of the scaffold from each 

sample was analysed. Three tissue samples per group were used for histomorphometry. First, 

TBP        

(reference) 

TAACCCAGAAAGTCGAAGAC CCGTAAGGCATCATTGGA 
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the positively area (PA) within the scaffold and the total area of the scaffold as the region of 

interest (ROI) were established respectively. Subsequently PA / ROI (%) was calculated and 

values were demonstrated as a mean percentage of positive area within the scaffold from 

each group. 

 

3.2 Bone formation by autoinduction in vitro 

3.2.1 7% HA/CC (coral-derived) devices 

Macroporous replicas of coral-derived calcium carbonate exoskeletons of the genus Gonipora were 

prepared by hydrothermal chemical exchange with phosphate (Ripamonti, 1991; Shors, 1999). 

Limited conversion to hydroxyapatite resulted in calcium carbonate constructs with 7% 

hydroxyapatite defined as 7% HA/CC (Biomet, Indiana, USA) (Ripamonti et al., 2010). 7% HA/CC 

constructs were rods 5 mm in diameter and 3.5 mm in length. The solid components of the HA/CC 

replica averaged 130 μm in diameter and their interconnections were 220 μm; the average porosity 

was 600 μm and their interconnections averaged at 260 μm in diameter (Ripamonti, 1991; Shors, 

1999). 

 

3.2.2 Muscle pouch organoid culturing model 

Four Fischer 344/DuCrl adult male Rattus norvegicus (Charles River, Sulzbach, Germany), 

were utilized in the pilot study, and equally split between the two tissue models. Animals 

were euthanized with an overdose of isoflurane (Abbot, Chicago, USA). This was done in 

accordance to the rules and regulations of the Animal Protection Laboratory Animal 

Regulations (2013), European Directive 2010/63/EU and approved by the Animal ethics 

research committee (AESC) of the Ludwig Maximillian’s University of Munich (LMU), 

Bavaria, Germany Tierschutzgesetz  §1/§4/§17 (https://www.gesetze-im-
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internet.de/tierschg/TierSchG.pdf) with respect to animal usage for pure tissue or organ 

harvest only.  

 

Forty-eight coral-derived 7% HA/CC devices were prepared by placing them in serum-free 

growth medium as explained in the section of the tissue wrapping model.  Rats were then 

euthanized under sterile conditions, 7% HA/CC devices were immediately implanted in 

intramuscular pouches created by sharp and blunt dissection (Figure 4).  

 

Figure 4. Establishment of in vitro 7% HA/CC device -muscle pouch model organoid system. 
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Once all 7% HA/CC devices had been implanted, muscle tissue pouches with biomaterials 

were excised using 8 mm biopsy punches (PFM medical). Forty-eight muscle pouches with 

7% HA/CC device  were created, with half cultured in serum-free growth medium and half 

cultured in serum-free osteogenic medium (Lennon et al., 1995; Sottile et al., 2003; Heng et 

al., 2004; Kishimoto et al., 2013; Langenbach and Handschel, 2013; Sinha and Vyavahare, 

2013) composed of DMEM-hg, 40 IU/ml penicillin, 40 IU/ml streptomycin, 100 nM 

dexamethasone (Sigma- -glycerophosphate (Sigma-

Aldrich), and 50 μM L-ascorbic acid (Sigma-Aldrich), and subsequently divided into 4 

culturing periods set at 5, 15, 30 and 60 days. Each treatment group (in either normal growth 

or osteogenic medium) per culturing period contained 6 tissue pouches. Muscle tissue 

without 7% HA/CC devices was cultured in parallel to tissue pouches and acted as controls. 

Medium was changed every 2 days. Fresh muscle tissue was used in the normalization of 

qRT-PCR. 

 

After the allotted culturing period, specimens with 7% HA/CC device  devices were 

harvested and cut in half, with one-half flash frozen in liquid nitrogen for qRT-PCR assays 

and the other half fixed in 4% paraformaldehyde (Microcos GmbH, Garching, Germany) to 

be processed for histological and histomorphometric analysis. 

 

3.2.3 Bacterial contamination assay 

To determine if tissue cultures systems were contaminated by bacteria and as such have 

affected histological interpretations, the culture medium was collected after every medium 

change and randomly tested. Under sterile conditions collected culture medium was plated 

out on a standard Luria Broth Agar (LA) plates, with a normal LA plate with fresh DMEM-
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hg (Biochrom GmbH) medium set as control. After 72 hours of incubation at 37 °C with 5% 

CO2, plates were assessed for bacterial colony formation by two blinded analysts. 

 

3.2.4 QRT-PCR 

QRT-PCR was performed to determine the relative gene expression quantity of tissue growth 

related genes, including VEGF-A, COL4A1, TGF- 1, TGF- 2, and TGF- 3, as well as known 

chondro-/osteogenesis signaling and structural markers, specifically RUNX-2, BMP-2, 

BMP-4, BMP-6, BMP-7, osteocalcin (OCN), alkaline phosphatase (ALP), COL1A1, SOX-9, 

aggrecan (ACAN), COL2A1, and COL10A1. 

 

Specimen fragments for qRT-PCR were ground to powder in the presence of liquid Nitrogen. 

Total RNA was then isolated using a modified RNA Trizol extraction procedure 

(Chomczynski & Mackey, 1995). Briefly, 1 ml Trizol (Invitrogen, San Diego, CA, USA) 

was added to the powdered tissue, where through the addition of chloroform (Sigma-

Aldrich) the aqueous RNA containing phase was transferred to Isopropanol (Sigma- 

Aldrich). RNA was then pelleted out in an overnight centrifugation step at 4 °C, which were 

then wa  

concentration of the RNA was determined using a NanoDropTM Lite (Thermo Scientific, 

Waltham, USA) and quality assessed with a Bioanalyzer 2100 (Agilent Technologies, CA, 

USA). RNA integrity numbers lower than 8 were not accepted. RNA was then reverse 

transcribed into cDNA using the QuantiTect Reverse Transcription cDNA Synthesis Kit 

(Qiagen).  
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QRT-PCR was then performed, in duplicate with FastStart Essential DNA Green Master 

(Roche) in a final reaction volume of 10 μl, using a LightCycler® 96 thermocycler (Roche). 

Table 2. Gene primer sequences for target and reference genes in the main study. 

Gene Forward Primer (5´-3´) Reverse Primer (5´-3´) 

VEGF-A CTACCAGCGCAGCTATTG GATCCGCATGATCTGCATAG 

COL4A1 CTGGGAATCCCGGACTT GGGATCTCCCTTCATTCCT 

TGF- 1 TTTAGGAAGGACCTGGGTT ACCCACGTAGTAGACGATG 

TGF- 2 AAATAAGAGCCAAGAGCTGG GGACTCCAGTCTGTAGGAG 

TGF- 3 AACCTAAGGGTTACTATGCC ACCACCATGTTGGACAG 

RUNX-2 CCCAAGTGGCCACTTAC CTGAGGCGGTCAGAGA 

BMP-2 GGAAGTGGCCCACTTAGA TCACTAGCAGTGGTCTTACC 

BMP-4 TGAGGTGATCTCCTCTGC ATGGACTAGTCTGGTGTCC 

BMP-6 GGACATGGTCATGAGCTTTG GTCAGAGTCTCTGTGCTGAT 

BMP-7 AGGGCTGGTTGGTATTTG GAAGAAGGCCACCATGAA 

COL1A1 GGTGACAGAGGCATAAAGG AGACCGTTGAGTCCATCT 

ALP CGACAGCAAGCCCAAG   AGACGCCCATACCATCT 

OCN  GCGACTCTGAGTCTGACA GGCAACACATGCCCTAAA 

SOX-9 CCAGAGAACGCACATCAAG GGTGGTCGGTGTAGTCATA 

ACAN CAAGTGGAGCCGTGTTT GAGCGAAGGTTCTGGATTT 

COL2A1 ATCCAGGGCTCCAATGA AAGGCGTGAGGTCTTCT 

COL10A1 CCAGGTCTCAATGGTCCTA TGTCCAGGCACTCCTTTA 

RPLP0 

(reference) CAACCCAGCTCTGGAGA CAGCTGGCACCTTATTGG 

GAPDH 

(reference) CATGGGTGTGAACCATGA TGTCATGGATGACCTTGG 

POLR2E 

(reference) GACCATCAAGGTGTACTGC CAGCTCCTGCTGTAGAAAC 

ACTB 

(reference) AGCTATGAGCTGCCTGA GGCAGTAATCTCCTTCTGC 

TBP 

(reference) TAACCCAGAAAGTCGAAGAC CCGTAAGGCATCATTGGA 

RPL13A 

(reference) TTTCTCCGAAAGCGGATG AGGGATCCCATCCAACA 
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Each reaction contained 10 ng cDNA; 2x FastStart Essential DNA Green Master and 10 μM 

of each primer (Table 2).  

 

Primers were designed using Integrated DNA Technologies PrimerQuest Tool 

(https://eu.idtdna.com/Primerquest/Home/Index). Use of geNorm 

(http://medgen.ugent.be/~jvdesomp/genorm/) established that RPLP0, GAPDH, POLR2E, 

ACTB, TBP, and RPL13A were the most appropriate internal reference genes to use in this 

experiment. All amplified PCR products underwent Sanger sequencing (GATC Biotech, 

Cologne, Germany) and were then analyzed utilizing nucleotide analysis 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch) to confirm that the 

correct sequence had been amplified. QRT-PCR thermocycling parameters included a pre-

incubation of 3 min at 95°C, followed by a three-

consisting of a denaturation, annealing and extension step set at 95°C for 10 s, 60 °C for 15s 

and 72°C for 30s, respectively. Relative gene expression was normalized against six 

reference genes. Gene expression from the harvested tissue/device models was normalized 

to the six reference genes and fresh abdominal skeletal muscle tissue using the Qbase+ 

software (http://www.biogazelle.com). Gene expression results were represented as mean 

calibrated normalized relative quantities (CNRQs) ± standard error (SEM), which reflect the 

log10 2- .  

 

3.2.5 Histological and histomorphometrical evaluation 

Specimens were fixed in 4% paraformaldehyde (Microcos GmbH) for 24h after which they 

each paraffin block was decalcified (Bancroft and Gamble, 2008). In order to validate our 
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gene expression patterns with respect to tissue survivability within the two tissue models, 

histological sections were stained using either the HE (Morphisto GmbH, Frankfurt, 

Germany) staining (Feldman and Wolfe, 2014) or the Movat (Morphisto GmbH) 

pentachrome staining (Movat, 1955). Stained sections were subsequently analyzed under 

PreciPoint M8 microscope (PreciPoint, Freising, Germany).  

 

Histomorphometric analysis was performed using Image-Pro Plus v7 (Media Cybernetics, 

Inc., Rockville, USA). One representative section at the middle of the scaffold from each 

sample was analyzed. Three tissue samples per group were used for histomorphometry. First, 

the PA within the scaffold and the total area of the scaffold as the region of interest (ROI) 

were established respectively. Subsequently PA / ROI (%) was calculated and values were 

demonstrated as a mean percentage of positive area within the scaffold from each group. 

 

3.2.6 Immunohistochemical and immune-histomorphometric assays 

For angio-/vasculogenesis and chondro- -thick paraffin wax 

sections were incubated with primary antibody to detect the presence of VEGF-A, COL4A1, 

ACAN, COL1A1 and OCN. The primary antibody of VEGF-A, COL4A1, ACAN, COL1A1 

and OCN (Biorbyt) was diluted by antibody diluent (ZYTOMED SYSTEMS GmbH, Berlin, 

Germany) at the concentration of 1:200, 1:100, 1:150, 1:200, and 1:100, respectively, 

determined by serial dilution pre-test with established specimens set as positive control. The 

Vina Green TM Chromogen Kit (Biocare Medical) was prepared freshly for each protein 

assay as chromogen to show the antigen-antibody interactions. The sections of the specimens 

were then analyzed with a PreciPoint M8 microscope with images captured using the 

Viewpoint software. Green staining of the areas indicated positive protein production. 
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Accordingly, the absorbance value of the incident light in the blank area of specimens is 

calibrated. The integrated optical density (IOD) was then measured and the mean optical 

density (MOD) of ROI was calculated using the following formula: MOD = IOD/ ROI, 

which represents the corresponding value of the relative strength of antigenicity in the slice. 

 

3.3 Statistical analysis 

Data were analyzed using GraphPad Prism v8.0.1 (GraphPad Software, San Diego, USA). 

The results were represented as mean ± SEM. Measurements were performed in either 

immune-histomorphometric analysis (n=3) and qRT-PCR (n=6). The Holm-Sidak method 

= 0.05. Statistical significance was indicated 

by ns for no significance, * for p<0.05, ** for p<0.01 and *** for p<0.001. 
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4.1 Tissue pouch model supported superior tissue survival than tissue wrapping model 

in vitro  

Many investigators have designed 3D osteogenic bioreactors utilizing different sources of 

cells and types of scaffolds (Kim and Ma, 2012; Bhumiratana et al., 2016; Tsimbouri et al., 

2017). However, the osteogenic transformation of fibrous tissue in vitro is conceived 

impossible owing to the lack of a blood supply (Trueta, 1963). This study attempted for the 

first time to establish a tissue-scaffold complex in vitro that would support tissue 

survivability ex vivo and cast light on inducing de novo bone formation over a long culturing 

period, which attempts to replicate the normal in vivo experimental environmental conditions 

of most known extra-skeletal bone inductive models (Urist and Strates, 1971; Sampath and 

Reddi, 1981; Ripamonti, 1991; Klar et al., 2013).  

 

The abdominal skeletal muscle tissue of adult male Fischer 344/DuCrl rats was utilized, 

where macro- -TCP/HA were either wrapped in the tissue harvested or where 

-TCP/HA devices were first implanted in non-harvested muscle pouch within heterotopic 

sites, the standard experimental form to test new bone induction in vivo, and then excised 

before being cultured in vitro (Figure 3). In order to test the survivability of these two 

models, we pushed the culturing time up to 30 days, where no evidence, to our knowledge, 

has yet reported on culturing muscle tissue ex vivo for more than 30 days. In the tissue 

wrapping model, no gene expression data could be generated for the 30-day in vitro -

TCP/HA wrapped in skeletal muscle tissue from rats (Figure 5 J,  Figure 6 C), as the tissue 

became necrotic, gradually losing the original tissue structure with denuclearization, 

preventing successful extraction of messenger ribose nucleic acid (mRNA) to be available 

for qRT-PCR analysis (Figure 5 A-C, Figure 8 A-D -TCP/HA devices 
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pouched in the skeletal muscle survived the 30-day in vitro culturing process (Figure 5 D-

F, J, Figure 8 E-H), with no bacterial contamination in the culturing system (Figure 7). 

Furthermore, histomorphometric analysis showed a consistent tissue survival around the 

scaffold in the pouch model up to 30 days, with ongoing tissue necrosis in the wrapping 

model over time. Statistical difference between these two models was observed at day 30 (P 

< 0.05) (Figure 5 G).  

 

Figure 5. Comparison of tissue survivability between the two in vitro models in growth medium at 
day 5, 15 and 30 (A-J). Cells are confined at the interface between muscle and scaffold at day 5 in 
the wrapping model (A), with a shock silence of tissue-survival related genes (H). Muscle tissue 
undergoes necrosis over time (B) with dying of cells (C, I and J). In the pouch models, initial cell 
releasing occurs at day 5 (D), leading to successive cell migration and connective tissue formation 
(E). Viable vessels (F, higher power view) are still present by day 30 in vitro culturing with consistent 
tissue survival and growth gene expression pattern. Histological analysis (G) shows superior tissue 
survival around/within the scaffold (P < 0.05) by day 30. Error bars are Mean ± SEM. Ns, non-
statistically significant; *, P < 0.05; ***, P < 0.001. HE staining. M = Skeletal muscle, S = scaffold, 
CT = connective tissue. Bar: Lower power, 200 μm; higher power, 20 μm. 
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With the goal of defining the difference of gene expression pattern between these two models 

and evaluate which method provides better tissue growth and survival with possible 

osteogenic tendencies we then compared the qRT-PCR data between them. The tissue 

wrapping model, only at day 15 in vitro showed an up-regulation of tissue survival and 

angiogenesis markers including VEGF-A and COL4A1 and TGF- 1 (Figure 5 H-J), whereas 

-TCP/HA bioceramics pouched in abdominal skeletal muscle tissue of rats showed a 

considerable increase in angiogenesis and endothelial tissue formation genes expression at 

all timepoints (P < 0.05). For osteogenic differentiation markers, only BMP-2 up-regulation 

was noticed at day 5 in the wrapping model (Figure 6 A), while both RUNX-2 and BMP-2 

were steadily up-regulated over time in the pouch model and was superior than the wrapping 

model at day 30 (P < 0.01) (Figure 6 A-C).  These results suggest better tissue growth and 

survivability in vitro in a tissue pouch model. 

 

Figure 6. Chronological osteogenic-related gene expression pattern in both wrapping and pouch 
model (A - C). Pouch models showed superior osteogenic differentiation capacity at day 15 (B) and 
30 (C) comparing wrapping models. Error bars are Mean ± SEM. Ns, non-statistically significant; 
**, P < 0.01; ***, P < 0.001. 

 

Figure 7. Microbiological culture results of the 30-day culturing medium with a pouch model. No 
microbial contamination is detected in the 30-day culturing medium with a pouch model (right 
plate). 
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Figure 8. Morphology and tissue response to devices in wrapping models and pouch models at day 
5 and day 15 (A - H). A considerable amount of fibrils were seen forming into the device (A, F; 
blue arrows) with some collagen-osteoid formation (green arrow) noticeable at days 5, while the 
self-adaptation of tissue at the periphery of device was observed in both models (B, E; pink 
arrows). In contrast, to tissue implanted heterotopically (G, H; blue arrows) the survivability of 
tissue was compromised in the tissue bag model at days 15, where the muscle tissue on the 
periphery of the bioceramic device was observed to undergo a type of fragmentation, discontinuing 
fibrous tissue formation at the interface of the muscle and device (C, D; pink arrows). Movat 
pentachrome staining was utilized to assess for collagen associated with chondrogenesis and 
osteogenesis, elastic fibers, muscle and connective tissue. Bars: A, B, D, E, F and H = 100μm; C 
and G = 200 μm. 
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4.2 Maintenance of vascular structure in tissue pouch models 

Upon demonstrating better tissue survivability and growth in the tissue pouch model through 

histology/histomorphometry and gene expression patterns representative of cell proliferation 

and differentiation supporting new tissue formation, the chronological change of VEGF-A 

gene expression, protein production pattern up to 30 days of the culturing process and 

histological results at day 30 was assessed in the heterotopic pouch model (Figure 9). This 

aimed to determine if a regulatory gene pattern could be identified and prove that this model 

indeed supports vascular structure maintaining and potential angiogenesis.  

 

Figure 9. Maintenance of vascular structure and potential of angiogenesis in tissue pouch models up 
to 30 days (A-D).  Connective tissue grows into the macropore of the scaffold at the periphery (A, 
dotted lines show the contour of the macropores), with neurovascular bundle still surviving by 30 
days (B). Both transcriptional (C) and translational (D) results suggest the maintenance of 
angiogenesis capacity with a pouch model by 30 days, whereas the capacity loses with a wrapping 
model (P < 0.01 and 0.05, respectively). Error bars are Mean ± SEM. *, P < 0.05; **, P < 0.01. HE 
staining. M = Skeletal muscle, S = scaffold, CT = connective tissue, MP = macropores, mp = 
micropores, BV = blood vessel, N = nerve, C = capillary. Bar: A, 200 μm; B, 50 μm. 
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-TCP/HA bioceramic devices muscle pouch model, the best up-regulated genes were 

COL4A1, VEGF-A and TGF- 1 at day 15 and day 30, whilst at day 5 it was COL4A1, BMP-

2 and VEGF-A (Figure 5, Figure 6). In short, COL4A1 and VEGF-A were highly up-

regulated at all time-points, whilst a marked high expression of BMP-2 at day 30 occurred 

compared with muscle tissue alone (P < 0.05) (Figure 10  I). Our findings, in the gene 

expression aspect, suggest that the bioceramic devices muscle pouch support vessel survival 

and potential angiogenesis when cultured under normal in vitro growth conditions with 

limited osteogenic tendencies present, especially 30 days after treatment. 

 

4.3 Tissue pouch models initiate osteogenic differentiation ex vivo  

-TCP/HA bioceramic devices wrapped in rat abdominal skeletal 

muscle tissue clearly showed a thin layer of fibrous-like tissue lining the interface between 

muscle tissue and scaffold at day 5 (Figure 5A). In contrast, fibrils and cells were released 

from the injured muscle fibers and attached to the interface of the scaffold (Figure 5 D). 

Successively, a noticeable increase of the volume of necrotic muscle fibers was observed at 

day 15 in the bioceramic muscle tissue wrapped model (Figure 5 B), with limited numbers 

of condensed nuclei containing fibers sparsely distributed within ECM at the periphery of 

the devices. In contrast, muscle tissue of the bioceramic devices in the heterotopic pouch 

model, at day 15, appeared to actively “invade” and undergo a transformation, into 

connective tissue (Figure 5 E) that was clearly visible at the tissue to scaffold microporous 

interface and could partially be observed lining the macroporous hole-like structures of the 

scaffold (Figure 5 E higher magnification view). By day 30, in contrast to tissue pouched 

bioceramic devices, as represented in Figure 5 F, the survival of tissue was compromised in 

the wrapping model, where the muscle tissue on the periphery of the bioceramic device was 
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observed to undergo a type of fragmentation, discontinuing fibrous tissue growth at the 

muscle to device interface (Figure 5 C), without any presence of living cells within the 

scaffold (Figure 5 C higher magnification view). Contrarily, for the 30 days heterotopic 

pouch model group, the muscle tissue was seen breaking down (Figure 10 C and G),  

 

Figure 10.  Representative morphology and tissue response to devices in pouch models at day 30 
(A-I). Extensive connective tissue forms (A and B) around the scaffold, with comprehensive mucin 
deposition (E in blue) and fibrils (E in red) evenly distributed in between, consistent with the gene 
expression pattern showing proliferation and angiogenesis (I). A fibrous tissue layer forms at the 
interface contacting medium (B and F), where fibrous-like cells line at the surface of tissue (B), 
producing condensed fibers (F in red) underneath. Cells releasing from muscle fiber (C) migrate 
within the mucin-fibril rich extracellular matrix (G) towards either outer layer or scaffold (D and 
H). The osteoid (H, area in scarlet) mesh at the interface (dashed lines) between tissue and scaffold 
indicates the osteogenic transformation of the connective tissue, which is supported by BMP-2 gene 
expression results (P < 0.05).  Error bars are Mean ± SEM. *,#, P < 0.05; **, P < 0.01. HE staining 
(A-D); Movat pentachrome staining (E-H). M = Skeletal muscle, S = scaffold. Bar: A and E, 200 
μm; B-D, F-H 50 μm. 
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yet obviously supporting connective tissue that was observed invading, although mainly at 

the periphery -TCP/HA devices (Figure 10 D 

and H), with fibrils also appearing to interact with the particles of the porotic bioceramic 

scaffold. No cells or tissues pertaining to bone formation could be visualized.  

 
Subsequently, during muscle tissue degeneration, cells within and between the muscle tissue 

fibers were released and appeared to be  migrating into the scaffold together with the extra-

cellular matrix (Figure 10 A, C and D). Certain transitional zone showed some signs of a 

collagen-osteoid-like matrix forming near the connective tissue to porous superstructure 

interphase of the device (Figure 10 E and H). These results indicated that cell migration 

could be initiated as early as day 5, being supported up to 30 days by connective tissue in 

the tissue pouch model, with limited formation of collagen-osteoid-like matrices at the 

peripheries of the porous device. 

 

4.4 Coral devices facilitate cell proliferation and tissue ingrowth  

In order to improve the biological response of skeletal muscle tissue to the biomaterial in the 

pouch model established in our previous proof of concept study, 7% HA/CC device as a proven 

efficient biomaterial that can spontaneously induce extra-skeletal bone formation in vivo was 

-TCP/HA device. As shown in Figure 11, the 7% HA/CC device was 

surrounded by a layer of approximately 1 mm thick abdominal skeletal muscle (E), while a 

-TCP/HA group (A). An early-

phase ECM formation was partially present from the periphery to the center of the 7% HA/CC 

device lining the contour of the macropores and seemingly attempting to fill the pores. 
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Figure 11. -TCP/HA and 7% HA/CC device with a muscle-pouch model 
-TCP/HA device by 

day 15 (A - D), whilst 7% HA/CC device  initiates efficient tissue ingrowth into the macropores at day 
5 and supports a more comprehensive cell migration by day 15, showing specific structures at the 
concavities within the device. HE staining (E – F). Bar: A, B, E, F = 1mm, C, D, G, H =50 μm. 
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In contrary, no tissue could be -TCP/HA device at day 15 while fibrous 

tissue with limited cells were constrained at the periphery of the device (B and D). In brief, 

a more efficient ingrowth of connective tissue was induced into the 7% HA/CC device  from 

the very early phase of in vitro culturing at day 5 (E and G), whereas only limited ECM was 

noticed a -TCP/HA device without 

any ECM available within the device (A and C). By day 15, a more comprehensive tissue 

ingrowth with clustered cells located in ECM could be noted at the center of the 7% HA/CC 

device (F and H).  

 

4.5 7% HA/CC device initiates and mediates angiogenesis and osteogenesis with 

extended long-term culture 

In the 30-day long-term culture, tissue around the device showed active response to the 

device (Figure 12 A), where neurovascular structures (Figure 12 C) were still maintained in 

the 7% HA/CC device -muscle pouch model and mucin and collagen formation was present 

at the periphery (Figure 12 E and G). The culture period was further extended up to 60 days 

and a more comprehensive tissue formation within the macroporous structures was noted in 

histochemical evaluation (Figure 12 B). Still, intact vascular structure was shown in the 

muscle tissue after the 60-day culturing with the thickening of the mucin formation (Figure 

12 D and F). Furthermore, mucin and fibrous-like tissue combined with erythrocyte was 

demonstrated lining at the interface of the concavity at the center of the 7% HA/CC device 

(Figure 12 H). 
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Figure 12. Morphology of tissue around and within 7% HA/CC device at day 30 and 60 (A - H). 
Movat pentachrome staining was utilized to assess for collagen associated with chondrogenesis and 
osteogenesis, elastic fibers, muscle and mucin. 
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The angiogenic potential within this system was further investigated using either qRT-PCR 

or immunohistological assays. COL4A1 as a known prerequisite marker for angiogenesis, 

reflecting basal membrane formation was regulated over time, reached the climax at day 15 

and then significantly being down-regulated by day 60 (Figure 13 E). 

 

Figure 13. Immunohistological analysis of VEGF-A protein expression within the 7% HA/CC 
device in the biomaterial-muscle pouch model by day 60 (A – D) and angiogenic gene markers 
expression pattern over time (E – F). Error bars are Mean ± SEM. Two-way ANOVA and Turkey’s 
multiple comparison are used to detect statistical significance (n=6). ** and ##, P < 0.01; ***, P < 
0.001. 
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Besides, compared with muscle tissue alone, its potential for angiogenesis was maintained 

with no statistically significant difference. In terms of VEGF-A, a down-stream angiogenic 

marker that has been most commonly used for evaluating angiogenesis, demonstrated a 

steadily increasing up-regulation in the 7% HA/CC device -muscle system, whilst the peak 

up-regulation was reached at day 30 in muscle alone. Significant difference was only present 

at day 30 between 7% HA/CC device -muscle system and muscle alone. (Figure 13 F)  

Immunohistological staining of VEGF-A at day 60 (Figure 13 A - D) showed that VEGF-

A protein production was mainly located at the surface of the macropores within the device, 

with some vascular-like structure actively expressing VEGF-A. In short, an extended long-

term culture facilitated the angiogenesis process with the 7% HA/CC device -muscle pouch 

organoid system. 

For osteogenesis, osteoid tissue formation was seen within the 7% HA/CC device  device at 

day 60, while immunohistological assays of OCN, an important marker for mineralisation, 

showed a significant increase either histomorphologically or histomorphometricallly 

(Figure 14 A and B). The gene expression of OCN also confirmed this  pattern but without 

statistical significance (Figure 14 C). A constant up-regulation of RUNX-2, SOX-9, BMP-2 

and BMP-6 supported the osteogenic differentiation process taking place within the 7% 

HA/CC device -muscle pouch system (Figure 14 D), in which RUNX-2 and SOX-9 were 

markers for the early phase of osteogenic progenitor commitment while BMP-2 and BMP-6 

were more involved in osteoblast lineage differentiation and mineralisation. Furthermore, 

the consistent upregulation of COL1A1 (bone matrix marker) over time accompanied with 

persistent down-regulation of COL2A1 (cartilage matrix marker) and COL10A1 

(hypertrophic cartilage marker) suggested an intramembranous ossification process rather 
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than an endochondral ossification mechanism. (Figure 15).  

 

 

Figure 14. Representative morphology and osteogenic gene markers expression with the 7% 
HA/CC device -muscle pouch model at day 60 (A – D). ). Error bars are Mean ± SEM. Student t-
test is used in histomorphometric analysis of OCN protein production. Two-way ANOVA and 
Turkey’s multiple comparison are used in gene expression data to detect statistical significance at 
each time point compared with day 5 per gene (n=6). *, P < 0.05; **, P < 0.01. 
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Figure 15. Different collagen types gene expression patterns over time in the muscle-biomaterial 
organoid pouch model cultured in growth medium. COL1A1 (blue bars) is consistently and 
increasingly upregulated, whilst both COL2A1 and COL10A1 are constantly down-regulated. Error 
bars are Mean ± SEM. 

 

4.6 “Osteogenic” medium inhibits angio-/vasculogenesis and accelerates hypertrophic 

tissue deterioration in extended-period culture. 

The effect of previously established osteogenic medium was assessed. Histochemical results 

showed the collapse of the 7% HA/CC device -muscle system cultured in osteogenic medium 

with fragmented and disassociated muscle tissue after 60-day culturing (Figure 16 A), while 

the 7% HA/CC device -muscle system maintained intact. A more comprehensive VEGF-A 

protein expression was shown within the confine of the device by immuno-histological 

results. Quantitative analysis of both COL4A1 and VEGF-A protein expression, though not 

statistically significant, exhibited a higher level in the growth medium group comparing the 

osteogenic medium group. (Figure 16 B and C)  
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 Figure 16. Comparison of histological morphology between 7% HA/CC device-muscle organoid 
pouch models cultured in growth medium and osteogenic medium by 60 days. Bar: A left panel = 1 
mm, right panel = 500 μm. Error bars are Mean ± SEM. DMG, device-muscle cultured in growth 
medium; DMO, device-muscle cultured in osteogenic medium. 
 

Tissue-survival-related genes including TGF- 1, VEGF-A and COL4A1 was superiorly up-

regulated in the growth medium group, indicating a better survival over the 7% HA/CC device 

-muscle complex cultured in the osteogenic medium.  (Figure 17 A - C) In contrary, BMP-2, 
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ALP, OCN, markers for ossification and mineralization are more up-regulated in the osteogenic 

medium group. Concerning the histological morphology of the muscle around and tissue within 

the 7% HA/CC device cultured in the osteogenic medium at day 60, the mineralisation related 

genes’ higher up-regulation indicated a hypertrophic deterioration of tissue when cultured in 

the osteogenic medium.  

 

Figure 17. Comparison of genes expression patterns between 7% HA/CC device-muscle organoid 
pouch models cultured in growth medium and osteogenic medium. Error bars are Mean ± SEM. 
Two-way ANOVA and Turkey’s multiple comparison are used to detect statistical significance 
(n=6). *, P < 0.05; **, P < 0.01; ***, P < 0.001. DMG, device-muscle cultured in growth medium; 
DMO, device-muscle cultured in osteogenic medium. 
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5.1 Challenges of translation in tissue engineering and regeneration  

Developing a new technology that can fully replicate, synthetically, an in vivo environment 

in vitro, however challenging, is attractive as it would allow for more efficient testing on par 

with the physiological reality of the clinical setting. It is expected that such medically 

supportive platforms would deliver faster and superior results with reduced costs whilst 

allowing for more accurate prediction and therapeutic models to be developed for a clinical 

setting (Freeman et al., 2017). Whilst one solution to this problem has been the emergence 

of bioreactor platforms (Martin et al., 2004; Plunkett and O'Brien, 2011; Liu et al., 2013; 

Bouet et al., 2015) that have a limited capacity at replicating some in vivo processes, 

developing a synthetic system that can fully replicate the supra-organ of bone(s), let alone 

induce bone formation in vitro, with its plethora of varying proteins arranged geometrically 

within the 3D superstructure and assortment of cellular entities (Liu et al., 2013; Klar, 2018) 

remains perhaps the most challenging prospect for tissue engineering regenerative sciences 

with only the neurological complexities of the brain surpassing this endeavor.   

 

5.2 Bone tissue engineering and regeneration 

The bone tissue engineering paradigm dictates that bone tissue induction and morphogenesis 

rely on the principles that soluble molecular signal(s) combined with an insoluble substratum 

are critical for the initiation and formation of de novo bone tissue in vivo (Urist et al., 1967; 

Sampath and Reddi, 1981). A further prerequisite, in order to facilitate proper bone 

formation to occur, is that of an adequate vascular supply, formed either by vasculogenesis 

and/or angiogenesis, with vessel structures invading the macro- and microporous 

superstructure of a device and bringing vital stem cells, nutrients, amino acids, protein 

signals and other resources. This would culminate in new endothelial tissue invasion into the 
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confines of the substratum, supplying nutrients necessary for subsequent new bone tissue 

formation (Trueta, 1963; Polykandriotis et al., 2007; Beier et al., 2010). However, it was 

never shown what happens when there is no vascular supply or angiogenesis to bring new 

material for biological constructive process, such as was the case in the present pilot study 

in vitro.  

 

Vasculogenesis is classically defined as the differentiation of precursor cells, angioblasts, 

into endothelial cells and the new formation of a primitive vascular network, whereas 

angiogenesis is the formation of new capillaries from an existing arterial or venous blood 

vessel (Vailhé et al., 2001). Various 2D and 3D in vitro models have been previously 

developed to replicate vasculo-/angiogenesis in vitro and investigate key characteristics that 

would help in understanding and directing these processes better as in vivo (Arthur et al., 

1998; Wartenberg et al., 1998; Goumans et al., 1999; Zhu et al., 2000). The pioneering assays 

often utilizing embryonically derived stem cells, endothelial cells and/or cancer cells in 

conjunction with some fibrin, collagen type I and other matrices (Auler et al., 2017) remain 

instrumental applications that provided insights into the formation of  vascular and 

angiogenic structures at an in vitro level. However, to date actual tissue vasculogenesis or 

even angiogenesis from harvested tissue for use within in vitro based tissue regenerative 

procedures, especially to help establish a bone formation bioreactor system as was tested 

within the present study, remains a pioneering novelty.  

 

5.3 A biomaterial-muscle pouch model organoid system 

In the present study, COL4A1 was originally chosen as it is a well-known biomarker for 

angiogenesis, where it is critical in the basement membrane formation of new capillaries and 



CHAPTER 5: Discussion  

 

52  

partially also in endothelial tissue development (Reddi, 2000; Ripamonti, 2006; Klar et al., 

2014). VEGF-A was included after interest was aroused at whether angiogenesis would also 

be developed, as it is known to support the endothelial tissue formation and act as a paracrine 

signaling molecule on the development and proliferation of endothelial cells, especially 

during new osteogenesis (Mayer et al., 2005).  Interestingly, qRT-PCR analysis and 

histological observations in our proof-of-concept study revealed that COL4A1 and VEGF-A 

are only briefly up-regulated within the wrapping model at day 15, after which the tissue 

-TCP/HA device pouched in abdominal 

skeletal muscle sites, harvested and then cultured in vitro, showed a consistent and almost 

regulatory pattern of endothelium proliferation and/or angiogenesis up to 30 days at either 

transcriptional or translational level. This could also, at least for connective and endothelial-

-TCP/HA printed bioceramics, be validated 

histologically. Here new tissue formation was histologically apparent by day 30, invading 

the macroporous superstructure of the devices, near the peripheries only. Moreover, whilst 

true osteogenesis eluded our investigations, as this was not a central aim as yet at this point, 

the gene expression level of RUNX-2 increased considerably at both day 15 and 30 in the 

pouch groups with also positive up-regulation of BMP-2 and TGF- 1. This suggests that the 

presently utilized pouch model has the potential to form new bone at an in vitro cell culturing 

level, as it was demonstrated to do in vivo in various animal models (Urist, 1965). However, 

possibly because of the reduced stem cell availability, the resident differentiated osteoblastic 

cells present within the pouch model were too low to facilitate proper bone formation in the 

in vitro model. This is perhaps due to lack of an active blood supply that would normally 

bring in extra stem cells and even monocyte/macrophages critical for osteoclastogenesis 

(Klar et al., 2013) and which are an essential support for new bone formation. Alternatively, 
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the bioceramic devices used might not have been of a sufficient quality to fully support the 

spontaneous induction of new bone formation signals. Multiple studies reported that 

interconnection pathway has a strong impact on osteogenic outcomes, with incomplete and 

undersized pore interconnection limiting efficient connective tissue infiltration and blood 

vessels invasion into the scaffold (Mastrogiacomo et al., 2006).  However, in our proof of 

concept study, the average diameter of the interconnection pathway was ~40 μm, indicating 

the limited capacity for sound tissue and vascular invasion, subsequently constrained the 

proper bone formation within the micropores. This could explain why connective tissue 

formation and vascular survival were only observed in this study at the peripheral 

macropores with diameter larger than 500 μm. In the 7% HA/CC device study, the ingrowth 

of tissue into the device was significantly improved with an extended culture time up to 60 

days. Furthermore, the angiogenic and osteogenic differentiation potential was noted within 

this device. The results from our 7% HA/CC device study again support the theory 

concerning the pores interconnection pathway pattern, because the 7% HA/CC device has 

wider interconnection pathway allowing cells as well as ECM to migrate and grow into the 

center of the device. The present results showed promising prospect of this organoid system 

with 7% HA/CC device, but still, this leaves new strategic avenues open to improve the 

responsive signals in the system and the formation of de novo bone in vitro. Follow-up 

experiments need to be considered to investigate this aspect further, by using established 

biomimetic devices that are known to be viable at inducing bone formation spontaneously.  

 

Aside from the initial validations of the in vitro pouch model as a tissue model to be utilized 

for further investigations with good survival chances, partial osteogenic support combined 

with angiogenic responses, our study revealed new connective tissue formation and 
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endothelial tissue survival at the peripheral region of the heterotopic pouch implanted 

devices. This indicates that in vitro blood vessel had survived the long-term culture period 

with resident cells producing the necessary signals that are required for tissue survival with 

the potential to angiogenesis that could support connective tissue ingrowth into the scaffold 

and the subsequent osteogenic differentiation of MSCs located within the connective tissue. 

We postulate that the surrounding tissue in heterotopic sites are actively engaged in the 

formation of specific connective and/or endothelial tissue formation rather than simply 

providing a signal that facilitates an immunological response or acting as a stem cell 

reservoir to sustain the metabolic formation of new bone by induction with an insoluble 

substratum (Urist, 1965; Sampath and Reddi, 1981; Klar et al., 2013; Klar et al., 2014; 

Ripamonti et al., 2016). 

 

Various researches into in vitro metabolic effects of cells removed from their natural 

environment and cultured with an ex vivo system clearly re-iterate that cells lose their 

homeostatic state where critical essential amino acid building blocks, normally available for 

protein synthesis, suddenly disappear. This greatly limits efficient protein translation 

(Nelson and Cox, 2005), including losing critical energy production requirements to fuel 

necessary anabolic activities to support formation of complex ECM components (Cassim et 

al., 2017). Catabolic reactions using glucose, adipose tissue or proteins are a necessary 

requirement for the survival of any cell, let alone a tissue. In vitro systems cannot adequately 

replicate these reactions and might prevent cellular in vitro tissue experiments from 

progressing past the generally accepted 30-day culturing period limit (Griffith et al., 2005; 

Bonab et al., 2006; McKee and Chaudhry, 2017). After this, because of extensive 

proliferation of cells or tissues, the catabolic breakdown into basic components and energy 
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might be insufficient to meet the anabolic synthetic requirements to maintain cells and/or 

tissues active in vitro and might therefore limit their capacity to form larger complex organs. 

However, considering the histological results of the present study of the skeletal muscle 

pouched bioceramic device cultured in vitro up to 60 days, we propose that the muscle tissue 

rescues the catabolic and anabolic homeostasis by behaving as a catabolic reservoir that 

breaks down into base components. It has come into consensus that critical components such 

as extra glucose and proteins but critically essential amino acid, critical for mammalian 

protein production (Brand, 1997; Albert, 2005; Nelson and Cox, 2005), are released that 

assists in establishing a new homeostasis in vitro. This allows resident stem cells to undergo 

differentiation and proliferation into the macroporous spaces of the bioceramic device, 

depositing new endothelial tissue matrix that could support vascular structures. There the 

culturing medium might act as a nutrient source to more effectively transport biochemical 

building blocks and nutrients into the confines of the device.  

 

Providing sufficient survival, the tissue in vitro could lead to new bone formation by fine 

tune of the system. This form of cell differentiation and tissue repurposing or “hypertrophic 

tissue transformation” needs to be further validated and elucidated if it indeed is some type 

of tissue “recycling” modus or is simply an artefact of deterioration. Future research needs 

to more critically investigate this aspect. Similarly, the benefit of tissue in vitro culturing 

over standard cell culture systems still need to be assessed; we suspect it is so, as the tissue 

might more efficiently support critical catabolic and anabolic mechanisms as well as more 

complex cytological reactions, leading to the new in vitro formation of complex super 

organoid bone. In the hereby presented study, the first nascent steps towards developing such 

a bone inductive/formative environmental reality in vitro have been attempted. Systematic 
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studies can be further developed and improved to ultimately produce in vitro bone formation 

of any skeletal bone in view of clinical applications.   

 

5.4 Outlook for bone formation by autoinduction in vitro  

There are several aspects that should be further addressed in the future studies. First, 

osteoclast, with its integral role in bone tissue formation, could be introduced into this system 

to offer the essential and proper transcriptional and/or translational regulation of the bone 

formation by introduction in vitro. Second, the in vitro culturing environment should be 

further optimized. The first attempt of preparing the culture medium offering a proper milieu 

for osteoinduction and osteochondral differentiation was made by (Lennon et al., 1995). In 

the following two decades more efforts are added in this field, trying to optimize the formula 

of chemicals and proteins to enhance the effect of osteoinduction in vitro. (Sottile et al., 

2003; Heng et al., 2004; Griffith et al., 2005; Fiorentini et al., 2011; Kim and Ma, 2012; 

Kishimoto et al., 2013; Langenbach and Handschel, 2013; Sinha and Vyavahare, 2013; 

Sorice et al., 2014; Freeman et al., 2017; Katagiri et al., 2017; McKee and Chaudhry, 2017; 

Vrselja et al., 2019) Multiple osteogenic inducers have been investigated where 

glucocorticoid dexamethasone (anti-inflammation factor), ascorbic acid (ECM promoter) 

-glycerophosphate (mineralization promoter) are considered among the most critical 

components for the induction of osteogenesis mainly based on in vitro stem cells related 

evidence. (Sottile et al., 2003; Fiorentini et al., 2011; Kishimoto et al., 2013; Langenbach 

and Handschel, 2013; Sorice et al., 2014) However, debates consist concerning the validity 

and safety of this formula, owing to its inhibitory effect on angiogenesis and the potential 

risk of oncogenicity. (McCluskey and Gutteridge, 1982; Yuen et al., 2008; Fan et al., 2014; 

Bian et al., 2015; Luedi et al., 2018). Particularly, dexamethasone should be taken carefully 
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as an osteogenic inducer in the in vitro culturing. Besides, other inducers like physiologic 

mediators, including IGF-1, VEGF-A and TGF- 1 have recently been investigated. (Katagiri 

et al., 2017) In addition to chemical factors, the mechanical extracellular environment, 

perfusion microenvironment and diffusion limit are drawing cumulative attention for a more 

natural and efficient osteogenic in vitro culturing environment. (Griffith et al., 2005; Kim 

and Ma, 2012; Freeman et al., 2017) 

 

Although it has a potential benefit at the very early stage of culturing to facilitate the cell 

commitment into the osteoblast lineage, its negative effect on tissue survival and 

angiogenesis dominates in the long-term culture. Third, other types of connective tissue such 

as periosteum and muscle fascia, thanks to their intrinsic properties of osteogenic 

metamorphosis potential, could also be investigated as alternatives for a better biological 

response to bioceramic devices within the tissue-biomaterial organoid system. Last but not 

least, in vivo experiment is a must in the future to 1) validate the spontaneous bone induction 

effect of the coral-derived macroporous biomaterial in rat; 2) elucidate the conundrum of 

heterotopic bone induction and formation by biomaterial in vivo and subsequently define the 

direction how to finely tune this in vitro tissue-biomaterial complex system for the real bone 

formation ex vivo. 
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In conclusion, the proof-of-concept study clearly showed that a pouch model exhibited 

superior tissue survivability with the maintenance of neurovascular structure in vitro 

compared with the wrapping model, thereby being suitable for follow-up bone inductive 

endeavors provided the correct material and/or signals are present to facilitate this reaction. 

The introduction of 7% HA/CC device  into the organoid pouch model system facilitated the 

cell migration and connective tissue penetration into the macropores of the device,  

subsequently enhancing either the angiogenic or the osteogenic cell differentiation and tissue 

morphogenesis. Furthermore, extended long-term in vitro culture enabled comprehensive 

ECM network to form within the biomaterial-muscle system, where multiple cell types 

(MSCs/MPCs, pre-osteoblast, endothelium cells, etc.) essential for initiating real bone 

formation distributed properly, functioning as a hopeful platform for bone diseases related 

pharmaceutical investigation. Moreover, as a promising bone graft substitute, this organoid 

system maintains the long-term survivability of neurovascular structure for a superior 

capability to connect the neural and vascular network in situ of the host compared with to 

date cell-biomaterial based graft. Additionally, the previously described “osteogenic” 

medium acted as more of a role accelerating the hypertrophic deterioration of tissue rather 

than a real enhancement of the bone induction process. In brief, whilst the in vitro tissue 

inductive model can support the development in part of an angiogenic response, the culturing 

system needs to be further supplemented and enhanced with either the relevant stem cells 

including monocytes/macrophages lineage uniting a synthetic perfusion system that would 

enable future in vitro models to function as an in vivo system would. Subsequently, 

differences in molecular signals between in vitro and in vivo pouch models, including macro 

and micro signals involved in new autogenous bone formation, still need to be determined 

that would enable such future models to fully replicate the in vivo environment ex vivo. 
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