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ABSTRACT 

Background: Multiple sclerosis (MS) and related diseases constitute a spectrum of inflammatory 

autoimmune diseases of the central nervous system (CNS). The identification of autoantibodies 

(Abs) targeting myelin oligodendrocyte glycoprotein (MOG) or the water channel protein 

aquaporin-4 (AQP4), contributed to a better understanding of pathomechanisms in MS, 

neuromyelitis optica spectrum disorders (NMOSD) and related diseases. However, for most of the 

patients with MS, the actual target of a misguided autoimmune response is unknown. MS is 

characterized by both gray and white matter injury. For that reason, a promising novel target could 

be expressed exclusively in the CNS on neurons and oligodendrocytes. These criteria are fulfilled 

by the oligodendrocyte myelin glycoprotein (OMGP), which is linked to the membrane via 

glycosylphosphatidylinositol (GPI) anchor. This study investigates the role and relevance of 

OMGP Abs and TOMGP cells in an animal model as well as the presence of OMGP autoreactivity 

in humans. 

Materials and Methods: Cell-based (CBAs) and enzyme-linked immunosorbent assays (ELISA) 

were established for the screening of Abs against OMGP in patients. OMGP was transiently 

expressed transmembraneously (OMGP-TM) or GPI anchored (OMGP-GPI) on HeLa cells and 

antibody binding was evaluated using flow cytometry. For the streptavidin-ELISA (STV-ELISA), 

OMGP was recombinantly produced by HEK293-EBNA cell line, purified and enzymatically 

biotinylated. Additionally, the recombinant antigen was used for generation of new monoclonal 

Abs (mAbs), which were evaluated in CBAs and used for immunofluorescence staining of 

oligodendrocytes and neurons. OMGP-specific T cell lines were generated and injected into Lewis 

rats, with or without MOG/OMGP Abs. Identification of TOMGP cells in MS patients was carried out 

by using proliferation assays, ELISA cytokine measurements or bead coupled antigen stimulation 

and subsequent FluoroSpot analysis of interferon γ (IFNγ), interleukin 22 (IL-22) and IL-17A. 

Results: This study identified a few patients who have a clear autoreactivity to OMGP detected 

with several assays. Using stringent criteria, OMGP autoantibodies were found in patients with 

MS, pediatric acute disseminated encephalomyelitis (ADEM) and psychosis. Further, patients with 

NMOSD and limbic encephalitis (LE) were identified with a lower OMGP antibody reactivity. 

Additionally, features of OMGP Abs could be studied, using affinity purified Abs from a highly 

reactive patient. This revealed an IgG1 and IgG4 isotype of OMGP Abs and the potential binding 

of C1q complement to these Abs. By using newly developed mAbs, OMGP expression was 

successfully evaluated on cortical as well as hippocampal neurons and in spinal cord tissue 

sections. Moreover, immature O4+ and mature myelin basic protein (MBP) positive 
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oligodendrocytes, were found to co-express OMGP. TOMGP cells injection into Lewis rats resulted 

in a novel experimental autoimmune encephalitis (EAE) with inflammation of cortical meninges 

and the dorsal horn of grey matter of the spinal cord. Since TOMGP cells have the potential to breach 

the blood-brain barrier (BBB), injected MOG Abs, but not OMGP Abs induced demyelination. 

Finally, OMGP-specific T cells could also be identified in a few untreated and natalizumab treated 

MS patients. In summary, this thesis is combining (a) development of three assays to detect 

autoantibodies to OMGP, (b) screening of a total of 675 sera, (c) detailed analysis of the 

autoimmunity to OMGP in a highly reactive MS patient by affinity-purifying OMGP-specific ABs, 

analyzing C1q binding, long term persistence, isotype usage, detection of circulating OMGP-

specific B cells and (d) identification of OMGP autoreactive T cells in MS patients. The 

immunostaining of oligodendrocytes and neurons for OMGP expression as well as determination 

of the pathogenic potential of OMGP-specific autoimmunity in an animal model, were carried out 

in collaboration. 

Conclusion: This thesis identifies autoimmunity to OMGP in a few percent of patients with 

inflammatory CNS diseases and shows (in cooperation with NK and HL) that autoimmunity to 

OMGP is pathogenic in an animal model. These findings have implications for stratification of 

patients with inflammatory CNS diseases with possible therapeutic consequences. 
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ZUSAMMENFASSUNG 

Hintergrund: Multiple Sklerose (MS) und verwandte Krankheiten bilden ein Spektrum an 

entzündlicher Autoimmunerkrankungen des zentralen Nervensystems (ZNS). Die Identifikation 

von Autoantikörpern gegen das Myelin-Oligodendrozyten-Glykoprotein (MOG) oder das 

Wasserkanalprotein Aquaporin-4 (AQP4) konnten zu einem besseren Verständnis der 

Pathomechanismen bei MS, Neuromyelitis Optica Spektrum- (NMOSE) und verwandten 

Erkrankungen beitragen. Für die meisten Patienten mit MS ist das tatsächliche Ziel der 

fehlgeleiteten Autoimmunreaktion jedoch unbekannt. MS ist charakterisiert durch Entzündungen 

des ZNS, die sowohl die graue, als auch die weiße Substanz betreffen. Aus diesem Grund könnte 

sich ein vielversprechendes neues ZNS-spezifisches Ziel auf Neuronen und Oligodendrozyten 

befinden. Diese Kriterien werden vom Oligodendrozyten-Myelin-Glykoprotein (OMGP) erfüllt, 

welches über einen Glycosylphosphatidylinositol-Anker (GPI) an der Membran fixiert ist. Diese 

Arbeit untersucht die Rolle und Relevanz von OMGP Antikörpern (AK) und TOMGP Zellen in einem 

Tiermodell sowie das Vorhandensein von OMGP-Autoreaktivität beim Menschen. 

Material and Methoden: Für das Screening von AK gegen OMGP bei Patienten wurden 

zellbasierte- (ZBAs) und enzymgebundene Immunosorbent Assays (ELISA) etabliert. OMGP 

wurde transient entweder transmembran- (OMGP-TM) oder GPI-verankert (OMGP-GPI) auf 

HeLa-Zellen exprimiert und die AK-Bindung wurde unter Verwendung von Durchflusszytometrie 

bewertet. Für den Streptavidin-ELISA (STV-ELISA), wurde OMGP rekombinant durch eine 

HEK293-EBNA-Zelllinie hergestellt, gereinigt und enzymatisch biotinyliert. Zusätzlich wurde das 

rekombinante Antigen zur Erzeugung neuer monoklonaler AK (mAK) verwendet, die in ZBAs 

charakterisiert und zu Immunfluoreszenzfärbungen von Oligodendrozyten und Neuronen 

verwendet wurden. OMGP-spezifische T-Zelllinien wurden etabliert und Lewis Ratten mit oder 

ohne MOG/OMGP-AK injiziert. Die Identifizierung von TOMGP Zellen bei MS Patienten wurde unter 

Verwendung von Proliferationsassays, ELISA Zytokin Messungen oder Antigenstimulation durch 

gekoppelte paramagnetische Kugeln und anschließender FluoroSpot-Analyse von Interferon γ 

(IFNγ), Interleukin 22 (IL-22) und IL-17A durchgeführt. 

Resultate: Diese Studie identifizierte mit mehreren Tests einige Patienten, bei denen eine 

eindeutige Autoreaktivität gegenüber OMGP nachgewiesen wurde. Unter Verwendung strenger 

Kriterien wurden OMGP-AK bei Patienten mit MS, pädiatrischer akuter disseminierter 

Enzephalomyelitis (ADEM) und Psychose gefunden. Ferner wurden Patienten mit NMOSE und 

limbischer Enzephalitis (LE) mit einer geringeren OMGP-Antikörper Reaktivität identifiziert. 

Zusätzlich konnten Merkmale von OMGP-AK, unter Verwendung von affinitätsgereinigten AK 
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eines hochreaktiven Patienten, untersucht werden. Diese ergaben IgG1 und IgG4 als Isotyp von 

OMGP-AK, sowie zusätzlich die mögliche Bindung des C1q Komplementproteins an diese AK. 

Unter Verwendung der neu entwickelten mAK wurde die OMGP Expression sowohl an kortikalen, 

als auch an hippocampalen Neuronen und in Gewebeschnitten des Rückenmarks erfolgreich 

nachgewiesen. Darüber hinaus wurde festgestellt, dass unreife O4+, sowie reife Oligodendrozyten 

mit positiver Myelin-Basisprotein (MBP) Färbung, OMGP co-exprimieren. Die Injektion von TOMGP 

Zellen in Lewis Ratten führte zu einer neuartigen experimentellen Autoimmunenzephalitis (EAE), 

mit Entzündung der kortikalen Meningen und des dorsalen Horns der grauen Substanz des 

Rückenmarks. Da TOMGP Zellen das Potenzial haben, die Blut-Hirn-Schranke zu durchbrechen, 

induzierten verabreichte MOG-AK, jedoch nicht OMGP-AK, eine Demyelinisierung. Schließlich 

konnten OMGP-spezifische T Zellen auch bei einigen unbehandelten und mit Natalizumab 

behandelten MS Patienten identifiziert werden. Zusammenfassend kombiniert diese Arbeit (a) die 

Entwicklung von drei Assays zum Nachweis von Autoantikörpern gegen OMGP, (b) das Screening 

von insgesamt 675 Seren, (c) die detaillierte Analyse der Autoimmunität gegen OMGP bei einem 

hochreaktiven MS Patienten durch Affinitätsreinigung von OMGP-spezifischen AK, die Analyse 

der C1q-Bindung, Langzeitpersistenz, Identifizierung der Isotypen, Nachweis von zirkulierenden 

OMGP-spezifischen B Zellen und (d) Identifizierung von autoreaktiven OMGP-spezifischen T 

Zellen bei MS Patienten. Die Immunfärbungen von Oligodendrozyten und Neuronen für die 

Bewertung der OMGP Expression, sowie die Bestimmung des pathogenen Potentials der OMGP-

spezifischen Autoimmunität in einem Tiermodell, wurden in Zusammenarbeit durchgeführt. 

Schlussfolgerung: Diese Arbeit identifiziert die Autoimmunität gegen OMGP bei manchen 

Patienten mit entzündlichen ZNS Erkrankungen und zeigt (in Zusammenarbeit mit NK und HL), 

dass die Autoimmunität gegen OMGP in einem Tiermodell pathogen ist. Diese Ergebnisse haben 

Auswirkungen auf die Stratifizierung von Patienten mit entzündlichen ZNS Erkrankungen und 

zusätzlich mögliche therapeutische Konsequenzen. 
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1. INTRODUCTION 

1.1 Autoimmune mediated inflammation of the central nervous system (CNS) 

Under healthy conditions the immune system protects the host against diseases. To defend the 

body, the detection of a broad spectrum of antigens from pathogens is required. If this protective 

function is disrupted, disorders of the human immune system like immunodeficiency, 

hypersensitivity or autoimmunity can occur (Theofilopoulos et al., 2017). 

The mechanism for preventing autoimmune disease is that immune cells can distinguish own 

tissue from foreign proteins or non-healthy tissue. If this fails, the immune system will target self-

structures and attack the tissue. The susceptibility to autoimmune disease is controlled by 

environmental and genetic factors (Rosenblum et al., 2015).  

Autoimmune diseases have an estimated prevalence of 7.6–9.4 % of the whole world population 

and occur mainly in younger people (Cooper et al., 2009). They can be on the one hand general 

like in systemic lupus erythematosus (SLE), where antibodies (Abs) attack nuclear antigens in the 

whole body or on the other hand organ specific. Typical examples are type 1 diabetes, where 

insulin producing pancreatic β-cells are destroyed or diseases affecting the CNS (Marrack et al., 

2001). Looking at this compartment, patients presenting with psychiatric symptoms and seizures 

may suffer from autoimmune-mediated limbic encephalitis (LE). These can occur both in a 

paraneoplastic and non-paraneoplastic context, with classical autoreactive targets including 

intracellular antigens or membrane bound antigens like the glutamate receptor NMDAR (Tuzun 

and Dalmau, 2007). Furthermore, autoantibodies against the glutamic acid decarboxylase (GAD) 

are also detected in LE patients (Finelli, 2011), other neurological diseases and are therefore 

named as GAD‐Ab–associated neurological disorders (Thaler et al., 2019; Tohid, 2016). These 

encephalitides can’t be completely separated from CNS demyelinating diseases, as it is shown, 

that they overlap and sequentially show both clinical phenotypes (Titulaer et al., 2014).   

Beside LE, a whole spectrum of autoimmune CNS inflammatory and additionally demyelinating 

diseases exist, including multiple sclerosis (MS), which is discussed in more detail in chapter 1.2, 

acute disseminated encephalomyelitis (ADEM), optic neuritis (ON) and neuromyelitis optica 

spectrum disorders (NMOSD). The diagnoses of these clinical heterogeneous groups are 

challenging, since they can also overlap in cerebrospinal fluid (CSF) and magnetic resonance 

imaging findings. These groups vary regarding the disease onset, clinical symptoms as well as 

course and in treatment options.  
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ON is the inflammation and demyelination of the optic nerve and can occur as an isolated event 

or relapsing in combination with MS (Ebers, 1985) or NMOSD (Wingerchuk et al., 2007). 

Figure 1.1 gives an overview on how the diagnosis of ON can be divided after the first clinical 

isolated syndrome is diagnosed. If it is recurrent, it can lead to chronic/relapsing inflammatory 

optic neuropathy (CRION/RION). A subgroup of CRION and NMOSD is further classified by their 

myelin oligodendrocyte (MOG) or aquaporin-4 (AQP4) autoantibody status (Zabad et al., 2017), 

which is discussed in detail in section 1.3. 

 

 

Figure 1.1 Classification of ON in combination with other diseases 

The first CIS as ON can be distinguished as an isolated event or as relapsing ON. Patients suffering from recurrent 
episodes can be diagnosed with RION/CRION, MS or NMOSD. A further stratification of patients by the presence of 
MOG and AQP4 autoantibodies is possible. (Zabad et al., 2017). 
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Every year, 5 in 100,000 people are diagnosed with ON (Rodriguez et al., 1995). 70 % of affected 

people are women and the mean age at onset is 37 years (Langer-Gould et al., 2014). Patients 

experience unilateral visual loss, which might appear as light flashes or decreased color vision 

among other symptoms (Hickman et al., 2002). Additionally, patients suffer from ocular or orbital 

pain, especially while moving their eyes (Foroozan et al., 2002). ON may occur as a first event in 

developing MS, whereas 38 % may be diagnosed with MS in the next ten years (Beck et al., 2003). 

NMOSD patients are diagnosed according to the revised diagnostic criteria (Wingerchuk et al., 

2015), considering the presence of serum autoantibodies to AQP4, which were identified in 2005 

as novel autoantibodies (Lennon et al., 2005). Patients typically suffer from recurrent ON or 

longitudinal extensive transverse myelitis (LETM), which can be optionally in association with other 

CNS autoimmune diseases. In addition to spinal cord (SC) lesions, these patients may have 

typical NMO brain lesions localized periventricular, in brainstem or hypothalamus (Roemer et al., 

2007). Before the discovery of AQP4-IgG as biomarker for NMOSD, the disease was frequently 

misdiagnosed as MS (Cree et al., 2002). However, NMOSD appears to be more severe since 

50 % of patient’s lose their walking ability or the functional vison in one eye within five years 

(Lennon et al., 2004). NMOSD has an incidence of 0.70/100,000 per year analyzed in an 

Australian cohort (Bukhari et al., 2017), women are nine times more affected than men and the 

mean age of onset is 39 years (Wingerchuk et al., 2007). 

ADEM is an autoimmune demyelination, which predominantly affects children younger than 

15 years, with an incidence of 0.64 per 100,000. The diagnostic criteria were updated 2013 and 

have to include a polyfocal demyelinating event in the CNS and among others, abnormal brain 

MRI during the acute phase with diffuse large white matter (WM) lesions or optional grey matter 

lesions (Krupp et al., 2013). ADEM has typically a monophasic disease course and occurs after 

vaccination or inflammation with a mean age of onset at 5.7 years (Torisu et al., 2010). Long-

lasting fever, ataxia, brainstem symptoms and somnolence affect children diagnosed with this 

disease (Menge et al., 2005). In 40 % of these pediatric cases, autoantibodies to MOG are 

detected (Brilot et al., 2009). 
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1.2 Multiple sclerosis 

1.2.1 Genetics and epidemiology 

MS is a frequent chronic inflammatory demyelinating autoimmune disorder of the CNS and 

affected in 2002 around 2.5 million people in the world (Compston and Coles, 2002). The 

prevalence in the USA was in 2010 for women 450.1 and men 159.7 per 100,000. This shows that 

females are diagnosed 2.8 times more often with MS than males (Wallin et al., 2019), which might 

be due to sex related differences in the immune system, based on hormones (Greer and 

McCombe, 2011). The age of disease onset is between 20 and 40 years (Confavreux et al., 1980), 

but also childhood-onset of MS is described (Renoux et al., 2007).  

The cause of MS is multifactorial, since a genetic predisposition and environmental factors appear 

to contribute to the development of the disease (Sospedra and Martin, 2005b). The life-time risk 

for first-degree affected relatives is 2-3 % for parents and children, whereas it is 5 % among 

siblings. With 25 % it is much higher between monozygotic twins (Compston and Coles, 2008). In 

1972, the first association with certain alleles of human leukocyte antigen (HLA) was discovered 

(Jersild et al., 1972) and the highest risk in northern Europeans with the class II gene HLA-

DRB1*15 (Hollenbach and Oksenberg, 2015; Olerup and Hillert, 1991). Genome-wide association 

studies identified several more genes, like mutations in cytokine receptors, which are linked to a 

higher susceptibility of MS (De Jager et al., 2009; International Multiple Sclerosis Genetics, 2019).  

The highest prevalence of MS is seen in North America, South Australia and northern Europe 

(Noseworthy et al., 2000), but only rarely observed around the equator (Compston and Coles, 

2008) as well as in Asians or Africans (Hemmer et al., 2002). Several studies identified less sun 

exposure, low Vitamin D levels, smoking and certain diets as factors which increase the 

susceptibility of MS (Reich et al., 2018). Furthermore, through molecular mimicry of antigens, past 

Epstein-Barr virus (EBV) infections may also contribute to the development of the disease 

(Goldacre et al., 2004; Nielsen et al., 2007; Sundstrom et al., 2004).  

 

1.2.2 Diagnosis and disease course 

The clinical manifestation of MS can be observed in cerebrum, cerebellum, brainstem, spinal cord 

or optic nerve and therefore leading to various symptoms. Regarding the side of inflammation, 

patients present with painful color, eventually complete vision loss, weakness, spasms, bladder 

dysfunction, if the spinal cord is affected or else impaired speech, vertigo, and tremor. 

Hemisensory or motor dysfunction as well as in rare cases epilepsy, may indicate a cerebellar 

manifestation (Compston and Coles, 2008). This latter of symptoms among others, show the 
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complexity of the disease. For the diagnostics, patients need to get a MRI scan to visualize lesions 

and a lumbar puncture for the evaluation of oligoclonal bands (OCBs) in the CSF. These bands 

represent intrathecally produced antibodies and are detected by isoelectric focusing (Lowenthal 

et al., 1959) in 95 % of MS patients (McLean et al., 1990), but are also seen in other neurological 

diseases (Bourahoui et al., 2004). Regarding the revised McDonald criteria from 2017, after the 

first CIS, patients must fulfill a combination of characteristics, to be diagnosed with MS. These 

compose of number of lesions in brain or spinal cord, an attack lasting minimum 24 h and the 

evaluation of OCBs. The last criteria is optional, if the patient didn’t experienced a second relapse. 

Accordingly, it is possible to show the dissemination in space and time of the disease and diagnose 

therefore patients with MS (Thompson et al., 2018).  

Already before diagnosis, the first event might be seen as radiologically isolated syndrome (RIS) 

in MRI scans, where white matter lesions appear in the brain without leading to clinical symptoms. 

Within five years, one-third of RIS patients develop MS (Yamout and Al Khawajah, 2017).  

MS starts in 10-20 % with primary progressive MS (PPMS) and in 80-90 % with a relapsing 

remitting (RRMS) course, with various frequent and severe recurrent attacks without complete 

remission (Hemmer et al., 2002). Between the relapses, patients experience a stable phase and 

in a 25 year follow up, 90 % convert into a secondary progressive phase (SPMS), which can be 

combined with relapses until a continuous worsening level (Hurwitz, 2009). The transition from 

RIS, CIS, RRMS into SPMS, with an increasing number of lesions, relapses without complete 

remission and disability, is illustrated in Figure 1.2.  

The disability of MS patients is quantified by the expanded disability status scale (EDSS), which 

is a score in the range from zero, no dysfunction, to ten, which refines death by MS. It is composed 

of the examination of seven systems, like vision, sensitivity and bladder function among others 

(Kurtzke, 1983). 
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Figure 1.2 Transition from first RIS or CIS event to a relapsing and further progressive MS 

Patients with RIS have no clinical symptoms, but lesions in the MRI are visible. CIS is defined as first attack together 
with MRI findings. From the second relapse on, the diagnose RRMS is made, with several attacks, additional lesions 
and incomplete remission. The transition phase into non-relapsing secondary progressive MS (NRSPMS) may occur 
with some relapses (RSPMS), but overall a progression of the disease is observed, until loss of walking ability. Modified 
from Giovannoni et al. 2016.  

 

Much more occurs in a subclinical state, whereas only the ‘tip of the iceberg’ (Figure 1.3, A), like 

the disability progression, the patient-reported outcome and number of relapses, are visible signs 

(Giovannoni et al., 2016). Besides detectable WM lesions, there might be destruction of the GM, 

which is currently not sufficiently detectable with standard MRI techniques. A study on postmortem 

MS brains identified a new myelocortical phenotype, with demyelination in the GM of spinal cord 

and cerebral cortex. To identify this in living humans, it is necessary to improve the sensitivity of 

imaging modalities (Trapp et al., 2018). Another postmortem analysis revealed a cortical pathology 

in progressive MS, distinct from the RRMS pattern. This type of damage is challenging to visualize 

by MRI, because the destruction occurs in the absence of contrast enhancement, which is used 

to display lesion activity (Kutzelnigg et al., 2005). 
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Figure 1.3 Sub-/clinical disease progression of MS accompanied with brain atrophy 

(A) Clinical symptoms are only the ‘tip of the iceberg’ and additionally major signs occur subclinical, like non detectable 
lesions or brain atrophy. (B) Brain volume loss in MS patients in comparison to healthy controls. (C) The treatment of 
MS patients should be initiated at the point of diagnosis, to have a lower and slower increase of disability over time, 
compared to a later time or no treatment. Modified from Giovannoni et al. 2016.  

 

Furthermore, current research projects focus on the identification of useful biomarkers, like 

neurofilament light chain protein, as indicator for neuronal destruction (Deisenhammer et al., 

2019). It was shown, that the reduction of the concentration in CSF, correlates with a lower number 

of relapses and a decline of new lesion development under treatment (Kuhle et al., 2015). 

The loss of brain volume (Figure 1.3, B) is physiologically driven by aging. Healthy individuals 

loose around 0.1-0.5 % per year, whereas MS patients’ brain, especially when untreated, 

atrophies with a rate of 0.5-1.35 % within a year (De Stefano et al., 2014; Giovannoni et al., 2016). 

This acceleration in brain atrophy starts early, often before patients are diagnosed with MS. 

Therefore, it is an interesting aspect to quantify brain atrophy, since it also occurs mainly 

subclinical and is not assessed in standard MRI. By a meta-analysis study, the treatment effect in 

RRMS on reduced brain atrophy, resulted in a significant correlation to the lower disability 

progression (Sormani et al., 2014).  
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In 2019, another study by Beltran et al. focused on the identification of subclinical 

neuroinflammation (SCNI) markers in a monozygotic twin cohort. This interesting group composed 

of pairs, where one twin is diagnosed with MS, whereas the other is healthy or only subclinically 

affected (SCNI twin). Cells from CSF were analyzed by single-cell RNA sequencing and an early 

adaptive immune activation of a clonally expanded CD8+ T cell subset was identified. Especially, 

in the MS group and in SCNI twins, upregulation of activation markers as well as proinflammatory 

cytokines are detected (Beltran et al., 2019). This is not seen in the healthy twins and may 

determine to diagnose the subclinical affected twin with prodromal MS (Wijnands et al., 2017).  

In summary, the disability in MS patients increase over time by relapses, number of lesions and 

brain atrophy among others, which might not be obviously seen, since many events happen 

subclinical. This leads to the recommendation to start therapeutic intervention already at the time 

point of diagnosis (Figure 1.3, C). Consequently, it is possible to slow down and lower disease 

progression and finally cause a better outcome of the patients’ disability (Giovannoni et al., 2016).  

 

1.2.3 Immunopathogenesis - Role of B and T cells in MS 

MS is induced through misguided tolerance of the immune system, where the main key players in 

this disease are CD4+, CD8+ T cells, B cells and autoantibodies (Hohlfeld et al., 2016a; Hohlfeld 

et al., 2016b; Sospedra and Martin, 2005b). Furthermore, CNS damage is localized to white and 

grey matter (Kutzelnigg et al., 2005). 

The animal model experimental autoimmune encephalitis (EAE) allows to study the pathogenesis 

as an MS like disease with similarities. As initial step of EAE, myelin derived peptides like 

proteolipid protein (PLP), MOG and MBP were used to induce encephalitis (Anderson et al., 2000; 

Zamvil and Steinman, 1990). The final proof of the relevance of CD4+ T cell was given through 

passive adoptive transfer of MBP or MOG-specific CD4+ T cells into a healthy recipient (Gold et 

al., 2006; Hohlfeld and Wekerle, 2004). Both, CD4+ in active and CD8+ T cells in a greater number 

in chronic MS lesions, are found in patients (Chitnis, 2007; Lassmann, 2014). CD8+ T cells also 

play a role in early subclinical MS, as proinflammatory markers are upregulated in a subclinical 

patient cohort, found by CSF single-RNA sequencing in a clonally expanded T cell subset (Beltran 

et al., 2019). Further, CD8+ T cells are also expanded at the site of lesions (Lassmann and van 

Horssen, 2011). The search for new autoreactive targets of T cells in MS remains to be an 

interesting field (Hohlfeld et al., 2016a). 
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B cells and autoantibodies are important key players in EAE and MS (Hohlfeld et al., 2016b). First, 

the CSF of patients with MS harbors, beside clonally expanded CD8+ T cells, also expanded 

plasma cells, producing intrathecal antibodies, which then can be detected as OCBs (von 

Budingen et al., 2010). Additionally, it was possible to isolate the antibodies, coming from OCBs 

and analysis of the self-antigens resulted in intracellular non-brain tissue specific targets, which is 

a hint for the mechanism of molecular mimicry (Brandle et al., 2016; Obermeier et al., 2008). 

 

 

Figure 1.4 Interplay of B and T cells in the immunopathogenesis of MS 

B and T cells get primed outside the CNS by recognizing self-antigens, which are released upon destruction or through 
molecular mimicry and get clonally expanded. CD4+ T cells re-enter the CNS and induce with cytokines a 
proinflammatory environment. Expanded B cell clones maturate in the CNS to antibody secreting plasma cells. (Hemmer 
et al., 2002). 

 

The putative complex interplay of B and T cells in MS pathology is illustrated in Figure 1.4, where 

B cells have several functions. Inside the CNS and in the periphery, B and T cells recognize 

autoantigens which might have been released by the brain tissue or are detected upon molecular 

mimicry (Sospedra and Martin, 2005b). After priming, clonally expanded B and T cells re-enter the 

CNS and target the structures on neurons or oligodendrocytes, where T cells secrete cytokines 

and produce a proinflammatory milieu, which is harmful for the brain tissue itself. B cells maturate 

to autoantibody secreting plasma cells (Hemmer et al., 2002). These can bind their targets and 
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mediate, as brain reactive antibodies, cytotoxicity by induction of the complement cascade and 

formation of the membrane attack complex (Brimberg et al., 2015). It was shown, that MOG-

specific antibodies augment the disease severity (Linington et al., 1988). Furthermore, in an 

animal model it is demonstrated, that the antigen presentation by B cells enhances 

neuroinflammation, through expansion of antigen specific B cells and therefore amplify the 

interaction between B and T cells (Parker Harp et al., 2015). 

A strong evidence is the presence of antibodies and complement deposition in lesions of some 

MS patients, which is classified as MS-Type-II pattern (Lucchinetti et al., 2000). These patients 

benefit from plasmaexchange leading to immunoglobulin (Ig) removal (Keegan et al., 2005). By 

administration of anti-CD20 B cell depleting antibodies, they have less change to mature to Ig 

releasing plasma cells, which is a concept in treatment of MS and leads to a reduction of the 

relapse rate (Hoffmann and Meinl, 2014; Krumbholz and Meinl, 2014). This is a further prove of 

the importance of B cells in MS and shows the relevance for ongoing research on the identification 

of new autoantigens, which may help for stratification and treatment of the heterogeneous disorder 

MS (Hohlfeld et al., 2016b).   

 

1.2.4 Treatment 

Looking at B cells, as highly relevant mediators of MS immunopathogenesis, many therapies 

among others are directed against those, and ameliorate the disease (von Budingen et al., 2015).  

Some of the treatment possibilities, like anti-CD20, anti-BAFF, anti-C5 complement, anti-IL-6-R 

and the corresponding affected B cell function are exemplary illustrated in Figure 1.5. Anti-CD20 

treatment is frequently used for B cell depletion up to the plasmablast stage (Krumbholz and Meinl, 

2014) and targets additionally the small subpopulation of CD3+/CD20+ T cells, as it was later 

shown (Schuh et al., 2016). Among those, the chimeric antibody rituximab and the humanized 

ocrelizumab are used for RRMS treatment (Sellebjerg et al., 2020; von Budingen et al., 2015). 

Other antibodies, like anti-IL-6-R prevent the spread of the proinflammatory cytokine signal, 

aquaporumab and anti-C5 complement factor used in clinical trials in NMOSD. The antibodies 

directed against BAFF affect the survival of the B cells. 
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Figure 1.5 Effector functions of B cells and treating possibilities 

The centered B cell can maturate into a plasma cell and produce antibodies, e.g. Anti-AQP4. Further they function as 
antigen presenting cells, shuttling antigens or produce proinflammatory cytokines (IL-6, TNF) and IL-10/IL-35, as 
regulatory B cells. Each function can be blocked by intervention of antibodies, anti-CD20, anti-BAFF, anti-C5, anti-IL-6-
R or other substances, like fingolimod. (Krumbholz and Meinl, 2014). 

 

Beside the named agents, there are two further antibodies which target not exclusively B cells. 

Natalizumab binds the cell adhesion molecule VLA4 and retains the leucocytes in the blood stream 

and alemtuzumab binds CD52 on B and T cells. Substances like fingolimod prevents lymphocytes 

to exit from lymph nodes and cladribine blocks DNA synthesis and therefore prevents the 

proliferation of B and T cells (Dendrou and Fugger, 2017; Krumbholz et al., 2012). In addition there 

is the possibility of an autologous hematopoietic stem-cell transplantation, which is an extreme 

intervention and should therefore be considered well (Dendrou and Fugger, 2017).  

The overall aim in MS therapy would be to restore the dysbalance in autoimmunity and bring back 

the physiological self-tolerance (Sospedra and Martin, 2005a). To implement this, antigen specific 

therapies are necessary. A study by Lutterotti et al. tried this approach, by coupling myelin 

peptides to red blood cells and reinfuse these back into patients. The outcome looks promising 

due to reduced autoreactive T cells, but the treatment still remains in an early experimental phase 

(Lutterotti et al., 2013; Lutterotti and Martin, 2014). 
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1.3 Stratification of patients with MS and related disorders  

Due to the described heterogeneous disease course and the pathogenesis, which involves many 

parts of the immune system, diagnosis and treatment of MS, NMOSD and related diseases 

remains challenging. Therefore, the individual stratification of patients by their presence of 

autoantibodies or autoreactive T cells, supports this process. 

 

1.3.1 Autoantibodies 

Serology is an essential diagnostic tool and gives additional information for the assessment of 

autoimmune diseases. In the past 30 years, several groups studied the role of MOG 

autoantibodies in MS and related neurological disorders. In 1991 these autoantibodies were 

identified for the first time by enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) 

in CSF of MS patients (Xiao et al., 1991). Other studies followed and proofed by using tetramers 

of conformational intact MOG in radio immune assay, the presence of circulating MOG 

autoantibodies in some ADEM and a few MS patients (O'Connor et al., 2007). Further methods 

developed and MOG autoantibodies are analyzed by cell-based assays (CBAs), where cells are 

transfected with the antigen and analyzed by flow cytometry (Brilot et al., 2009; Probstel et al., 

2011; Spadaro and Meinl, 2016). Live CBA are the gold standard (Yeh and Nakashima, 2019), 

but they differ in their technical implementation, as some laboratories use beside flow cytometer 

the immunofluorescence evaluation of titers determined by microscopy (Mader et al., 2011) or 

IgG1 specific detection antibodies (Waters et al., 2015). 

Some assays identify beside MS patients also other neurological disease and healthy donors with 

autoantibodies to MOG (O'Connor et al., 2007; Spadaro, 2017). This leads to the current view, 

that MOG associated disease is a separate entity of disorders (Wynford-Thomas et al., 2019). The 

diagnoses of MOG seropositive patients are summarized in Figure 1.6. The affected patients 

range from children with recurrent ON (Rostasy et al., 2012), pediatrics MS (McLaughlin et al., 

2009) or ADEM (Brilot et al., 2009) to adults. These MOG seropositive patients are diagnosed with 

NMOSD (Mader et al., 2011), bilateral recurrent ON (Ramanathan et al., 2016) or MS with 

NMOSD-like clinical phenotype (Spadaro et al., 2016). More recent studies identified MOG Abs in 

patients with cortical encephalitis and epileptic seizures (Ogawa et al., 2017; Wang et al., 2019). 

The pathogenicity of monoclonal MOG antibodies is shown in rats (Brunner et al., 1989; Linington 

et al., 1988) and furthermore transfer of human MOG autoantibodies induces lesions in mouse 

brain (Saadoun et al., 2014) as well as in Lewis rats (Spadaro et al., 2018). 
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Figure 1.6 First diagnose of patients presenting with MOG autoantibodies 

Patients having MOG Abs are diagnosed with various diseases, from uni-/bilateral ON to ADEM, LETM or combination 
of both ON and transverse myelitis. The minority with 4 % of seropositive patients have short transverse myelitis (TM). 
(Jurynczyk et al., 2019). 

 

NMO specific autoantibodies, as another serological biomarker, were identified in 2004 in patients 

(Lennon et al., 2004) and one year later the target water channel protein AQP4 was described 

(Lennon et al., 2005). The autoantibodies are identified either by indirect immunofluorescence or 

CBA, the latter having the higher sensitivity (Waters and Vincent, 2008). The pathogenicity of one 

patient was shown by recombinant production of the AQP4 specific autoantibodies from CSF cells 

and the antibody was transferred into EAE rats. There they induced a NMOSD like pathology with 

complement and Ig deposition and perivascular astrocyte destruction (Bennett et al., 2009). As it 

is already described above with MOG Abs, the patients having AQP4-Abs show a clinically diverse 

pattern and often overlap in some criteria like LETM, or severe ON with MS pattern (Roemer et 

al., 2007).  

Regarding this heterogeneity, these biomarkers like MOG or AQP4 autoantibodies help, to 

separate the diseases and support a better diagnosis. The dependency and relation of these Abs 

to different diseases is illustrated in Figure 1.7, whereas MOG Abs positive patients can suffer 

from ON, ADEM, myelitis or other encephalitides.   
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Figure 1.7 Overview of MOG and AQP4 autoantibodies related to the diseases 

MOG immunoglobulin disease overlaps with MS, NMOSD, ON, ADEM, myelitis and other encephalitides. AQP4-IgG 
only appear in NMOSD. (Fujihara et al., 2018). 

 

64.7-80 % of adult patients with typical NMOSD and LETM have AQP4 autoantibodies and in the 

seronegative group, 3-7.4 % are positive for MOG autoantibodies (Akaishi et al., 2017; Sato et al., 

2014). MOG Abs are more commonly found in children, with 40 % in an ADEM cohort (Brilot et 

al., 2009), compared to 4.8 % in adults in a preselected MS cohort. This group fulfills the McDonald 

criteria but has clinical features of NMOSD, like severe recurrent ON, myelitis and brainstem 

involvement (Spadaro et al., 2016). Patients with MOG Abs have compared to AQP4-IgG 

seropositive cases a better visual and motor outcome and respond quicker to first line treatments 

(Reindl et al., 2017). There are only rare cases (1/43) describing recurrent ON patients having 

both MOG and AQP4 autoantibodies (Peng et al., 2018). 

The differences between these serological MOG and AQP4 antibody markers are, that patients 

with AQP4 Abs are mainly non-Caucasian and have rarely brain involvement with specific lesions. 

The MOG seropositive patients have no specific ethnic origin but frequent brain involvement with 

unspecific lesions (de Seze, 2017). Coexistence of other autoantibodies in NMOSD, like NMDAR-

Abs are rarely seen in MOG+-Abs patients, but more common in AQP4+-Abs patients (Titulaer et 

al., 2014).  

Searching for other autoimmune targets in MS, neurofascin (NF) was identified by a proteomic 

approach (Mathey et al., 2007). This antigen is shared between central and peripheral nervous 

system and exists as isoform NF155 paranodal on myelin or NF186 as neuronal protein on 

myelinated axons at the node of Ranvier (Sherman et al., 2005). The distribution of these isoforms 
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is displayed in Figure 1.8. A further detailed analysis, including cell-based assays and ELISA, 

revealed that a subset of patients with chronic inflammatory demyelinating polyneuropathy (CIDP) 

had Abs to NF155 isoform (Ng et al., 2012). This was confirmed in subsequent studies by many 

other labs (Vural et al., 2018). 

Contactin-1 and Caspr-1 autoantibodies are identified in CIDP patients by ELISA and CBA 

(Cortese et al., 2020; Doppler et al., 2016) and target these proteins at the paranode (Figure 1.8). 

Contactin-2, localized at the juxtaparanode, was identified 2009 by ELISA as target for 

autoantibodies in MS patients (Derfuss et al., 2009). Caspr-2 as associated protein in the same 

region, is also recognized as autoantigen in patients with LE, epilepsy or Morvan syndrome (Irani 

et al., 2010; van Sonderen et al., 2016). Patients suffering from this syndrome have insomnia, 

fatigue, muscle weakness, spontaneous hyperexcitability of muscles and cramps (Lee et al., 

1998).  

 

 

Figure 1.8 Localization of myelin related and neuronal autoantigens 

Autoreactive targets can be clustered into four groups: internodal, juxtaparanodal, paranodal or located at the node of 
Ranvier, which contains the neurofascin186 isoform (NF). Nf155 isoform, Contactin-1, Contactin associated protein 1 
(Caspr) and cyclic-nucleotide-phosphodiesterase (CNP) are found paranodal. Contactin-2 and Caspr-2 are 
juxtaparanodal, whereas myelin basic protein (MBP), proteolipid protein (PLP) are juxtapara-/internodal. MOG, myelin-
associated glycoprotein (MAG), neurite outgrowth inhibitor (Nogo) and its receptor (NgR1) are localized internodal. 
(Mayer and Meinl, 2012). 
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In 2016 a new autoreactive target, chloride channel anoctamin 2 (ANO2), in MS patients was 

identified by a bead based protein array (Ayoglu et al., 2016). This target shares similarity in the 

amino acid sequence with EBV nuclear antigen 1 (EBNA) and autoantibodies may be developed 

due to molecular mimicry (Tengvall et al., 2019).  

The group of Vanda Lennon, who already in 2005 identified AQP4 on astrocytes as target of 

autoantibodies in NMOSD (Lennon et al., 2005), discovered glial fibrillary acidic protein (GFAP) 

as autoreactive target in 2016. In a cohort of 103 patients, 16 have autoantibodies against GFAP 

analyzed by CBA. These seropositive patients suffer from meningoencephalitis and 38 % 

developed neoplasia within the next three years from the time point of neurological disease onset 

(Fang et al., 2016).  

The progress in research over the last decades contributed enormously to a better understanding 

of neurological autoimmune diseases. Due to the identification of several novel autoantigens, 

there was an improvement in diagnosis and stratification of patients with putative similar disorders. 

 

1.3.2 Autoreactive T cells 

Beside the analysis of autoantibodies, also the evaluation of autoreactive T cells may be important 

for various diseases. The first reactivity of MS patients’ CSF derived T cells reactive to MBP, was 

reported in 1983 (Richert et al., 1983). In 1990, peripheral blood of MS patients reacted upon MBP 

peptide stimulation and could be used for generation of MBP specific T cell lines (Ota et al., 1990; 

Pette et al., 1990). Furthermore, PLP is also an autoreactive target for T cells in MS patients. In 

this study they used radioactive DNA thymidine incorporation assays to study the T cell 

proliferation upon stimulation (Trotter et al., 1991). 

Another technique for the identification of antigen specific T cells is by enzyme-linked immune 

absorbent spot assay (ELISPOT). Hereby, peripheral blood mononuclear cells (PBMCs) from MS 

patients, which were stimulated with Contactin-2, resulted in secretion of Interleukin-17 (IL-17) 

and Interferon γ (IFNγ) by T cells using an ELISPOT assay (Derfuss et al., 2009). The same assay 

led to the identification of MOG-specific T cells in MS patients by analyzing the IL-17A, IL-22 and 

IFNγ response. Interestingly, in this study antigens were bound to paramagnetic beads and used 

for purification reasons within the antigen production (Bronge et al., 2019b). 

Using thymidine incorporation assay and carboxyfluoresceinsuccinimidylester (CFSE) staining of 

proliferating cells, AQP4 specific T cells in NMO patients could be detected upon peptide 

stimulation. Additionally, this study showed that some AQP4 specific T cells of patients are cross 

reactive to peptides of adenosine triphosphate‐binding cassette transporter permease protein 
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from Clostridium perfringens (Varrin-Doyer et al., 2012). The cross reactivity or molecular mimicry 

might be a potential mechanism in the development of autoimmune diseases (Fujinami and 

Oldstone, 1985).  

In 2018 a research group in Berlin analyzed autoreactive T cells against NF186/155, myelin 

protein zero (P0) as well as MBP in CIDP, multifocal acquired demyelinating sensory and motor 

polyneuropathy (MADSAM) patients. Regarding this IFNγ ELISPOT analysis, the patient cohort 

could be stratified into groups of NF186 autoreactive T cells, which are more present in MADSAM, 

whereas higher MBP and P0 protein autoreactivity is found in CIDP patients (Diederich et al., 

2018). 

Recently, as a new neuronal autoreactive target, α- and β-synuclein specific T cells were identified 

in MS patients. Especially the SPMS cohort has a significant higher rate of CD4 positive T cell 

proliferation upon antigen stimulation, analyzed in CFSE assay. In the same study, a new EAE 

animal model in Lewis rats was developed by injection of β-synuclein specific T cells, directed 

against grey matter. This induces destruction of neurons and further develops brain atrophy 

(Lodygin et al., 2019). 

In summary, patients are more often stratified by using autoantibodies as biomarkers. For 

technical reasons, it is difficult to use the rarely occurring autoreactive T cells for this purpose. So 

far it is only applied in diagnostics for cytomegalovirus (CMV) or tuberculosis (Schmidt et al., 2014) 

and for difficult diagnosis of invasive mold infections (Bacher et al., 2015). 

For most of the patients the autoantigen is unknown, but the past identification of autoimmune 

targets in MS, NMOSD and other related disorders helped for a better understanding of the 

diseases and stratification of patients. Therefore, screening and evaluation of new neuronal and 

oligodendrocyte expressed proteins, like the subsequently discussed oligodendrocyte myelin 

glycoprotein, is of great relevance in neuroimmunolgy research. 

 

1.4 Oligodendrocyte myelin glycoprotein (OMGP) 

1.4.1 Structure and localization of OMGP 

The OMGP protein was identified as glycoprotein, first only in in the WM of human CNS (Mikol et 

al., 1988), but later also in GM (Habib et al., 1998). The 120 kDa protein was detected by binding 

to the lectin peanut agglutinin and released by phosphatidylinositol specific phospholipase C (PI-

PLC) from its glycosylphosphatidylinositol (GPI) -anchor (Mikol et al., 1988). The remaining 

105 kDa protein is highly glycosylated with twelve predicted (UNIPROT) N-linked glycosylation 
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sites, with a weight of 25 kDa and additional 30 kDa of O-linked sugars (Mikol and Stefansson, 

1988). This anchor provides a high mobility, it can be quickly removed by PLC from the membrane 

(Mikol and Stefansson, 1988; Wang et al., 2002b) and leaving diacylglycerol as signaling mediator 

(Ferguson and Williams, 1988). GPI anchored proteins often cluster in lipid rafts, as it was also 

shown for OMGP (Boyanapalli et al., 2005). 

The 433 amino acid (aa) long protein, located in the neurofibromin-1 gene on chromosome 17 

(Viskochil et al., 1991), consists of 32 aa long cysteine rich motif, 172 aa long leucine rich repeats 

as well as 197 aa of serine and threonine rich domain (Mikol et al., 1990a). Additionally, a portion 

of the isolated OMGP from human brain, contains the carbohydrate epitope “human natural killer-

1” (HNK-1) and might therefore be a hint for developmental and regional variation (Mikol et al., 

1990b). In an earlier study, where only WM fraction was analyzed, the HNK-1 epitope was not 

detected (Mikol and Stefansson, 1988). This carbohydrate is involved in synaptic plasticity 

(Yamamoto et al., 2002) and mediates cell adhesion (Kunemund et al., 1988).  

OMGP is found to be present on the outermost surface of compact myelin and is not responsible 

for the nodal architecture (Chang et al., 2010). A study focused on traumatic spinal cord injury in 

mice, detected elevated OMGP levels after the impact. By immunofluorescence, physiological 

intact tissue was tested in advance and OMGP is also expressed on oligodendrocytes in WM of 

the spinal cord and on neurons in the GM, but not on astrocytes. It is further detected by WB in 

cerebrum and cerebellum (Dou et al., 2009). The expression pattern on neurons varies throughout 

brain development in mice, with an increase of OMGP from embryo to adults, detected by WB. 

Furthermore, it is shown that hippocampal and cortical neurons express OMGP. For the 

hippocampal neurons, OMGP co-localizes with synapses (Gil et al., 2010).  

So far, the ocular expression of OMGP is not studied as extensively as for the MOG protein, where 

a high expression in the Müller cells of the retina (Quesada et al., 2011) as well as in the optic 

nerve is detected (Renner et al., 2017). This plays a role for the pathogenesis of MOG associated 

diseases, since in the MOG induced animal model (Bettelli et al., 2003; Horstmann et al., 2013) 

and in humans, an inflammation of the optic nerve occurs (Ramanathan et al., 2016; Rostasy et 

al., 2012). The OMGP protein is only found to be low expressed in the inner plexiform layer of the 

retina (Liao et al., 2011) and further on the optic nerve (Chang et al., 2010). 
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1.4.2 Function of OMGP 

The initial inhibitory neurite outgrowth function of OMGP together with Nogo-A and MAG was 

detected in 2002 (Kottis et al., 2002). Through binding to Nogo receptor (NgR1) the growth cone 

collapse is induced (Lee and Petratos, 2013; Wang et al., 2002b). Besides OMGP, MAG and Nogo 

bind to the GPI anchored NgR, which needs the co-receptor p75/TROY/LINGO-1 for signal 

transduction (Figure 1.9) and the activated RhoA GTPase induces the collapse of the growth cone 

(Lee and Petratos, 2013; Wang et al., 2002a).  

 

 

Figure 1.9 NgR and PirB signaling upon binding of its ligands 

The scheme illustrates the interactions of NgR, PirB and its ligands MAG, OMGP and Nogo-A. NgR is like OMGP a GPI 
anchored protein and binds p75/TROY and LINGO-1 as co-receptor, to induce signal transduction. The downstream 
RhoA-GTPase induces via collapsin response mediator protein 2 (CRMP-2) growth cone collapse in the neuron. 
Modified from Lee and Petratos, 2013. 
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Another receptor, paired immunoglobulin-like receptor B (PirB), which also induces growth cone 

collapse, was found to bind OMGP, Nogo and MAG too (Figure 1.9). This receptor was first 

described on immune cells, but now additionally found in cerebellum and dorsal root ganglia. The 

discovery of PirB is an important step, as in this study by blocking both receptors NgR and PirB 

the inhibition of neurite outgrowth by OMGP, Nogo and MAG could be abrogated (Atwal et al., 

2008).  

OMGP can be shed through exogenously added PLC and could therefore also act as soluble 

ligand on the NgR (Mikol and Stefansson, 1988; Wang et al., 2002b). If the protein is soluble or 

substrate bound, seems to play a role in its function, as it was shown that substrate bound OMGP 

and Nogo is not effective in neurite outgrowth inhibition. In contrast, the substrate bound OMGP 

and Nogo bind to NgR and induce growth cone collapse (Chivatakarn et al., 2007).  

Analysis OMGP-deficient mice revealed several findings. First, in the MAG-Nogo-OMGP system 

of inhibition of axonal outgrowth, there is redundancy and OMGP deficiency does not have a 

strong effect on regulating axonal outgrowth (Cafferty et al., 2010). Second, OMGP is a negative 

regulator of activity-dependent synaptic plasticity (Raiker et al., 2010). Third, OMGP knock out 

mice showed altered distribution of thalamo-cortical axons in cortical layer IV (Gil et al., 2010) and 

mice fell more often from the rotating wheel in the locomotion test, than WT animals (Lee et al., 

2010). Furthermore, OMGP deficient mice are hypomyelinated and show an enhanced sensitivity 

to MOG induced EAE (Lee et al., 2011).  

In summary, OMGP inhibits axonal outgrowth like Nogo and MAG via NGR and PirB. These 

effects have been described for membrane-bound OMGP as a component of myelin and for 

soluble OMGP, as it is GPI anchored and can be shed by exogenously added PLC. OMGP-

deficient mice revealed hypomyelination and altered distribution of thalamo-cortical axons. 

Additionally, this protein is exclusively expressed in CNS in white as well as grey matter and makes 

it therefore as an interesting target for further investigations in neurological autoimmune mediated 

diseases. 
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1.5 Objectives 

This study address the evaluation of OMGP as novel autoreactive target for B and T cells in MS 

and related disorders. OMGP was selected, since the autoantigen is expressed CNS specific in 

WM and GM. The following points were the main aims of this study: 

 

 Development of three assays for autoantibody screening, including GPI and transmembrane 

anchored OMGP cell-based assays as well as streptavidin ELISA with recombinant produced 

antigen.  

 

 Testing patient cohorts with MS, pediatric ADEM, limbic encephalitis with GAD antibodies and 

other neurological/inflammatory diseases (OND/OIND) for OMGP Abs. 

 

 Affinity purification of OMGP Abs from highly reactive patient for studying features of these 

autoantibodies. 

 

 Identification of OMGP-specific T cells in treated and untreated MS patients, by using 

recombinant produced OMGP in proliferation assays or FluoroSpot analysis. 

 

 Evaluation of the pathogenic relevance of OMGP autoimmunity in an animal model (in 

collaboration with Dr. Naoto Kawakami and Prof. Hans Lassmann) 
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2. MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Patient material 

Sera, PBMCs and CSF were obtained from Prof. Dr. Tania Kümpfel of the MS outpatient clinic at 

the Institute of Clinical Neuroimmunology of the Klinikum Großhadern (Munich, Germany). 

Additional samples were provided by Prof. Dr. Tomas Olsson and Dr. Mohsen Khademi from the 

Karolinska institute in Stockholm and the Canadian Pediatric Study Group (Prof. Dr. Amit Bar-Or 

and Prof. Dr. Brenda Banwell). 

The original stocks were stored at -80 °C, whereas the working aliquots were stored at -20 °C. 

PBMCs were obtained from EDTA blood by ficoll density gradient as described in section 2.5.2 

and stored in liquid nitrogen. 

 

2.1.2 Reagents and buffers 

Table 2-1 List of generally used Buffers and media 

Name  Use  Composition  

PBS pH 7.4 
ELISA, WB, protein 
purification 

130 mM NaCl  
3.5 mM Na2HPO4  

1.5 mM NaH2PO4 x H2O  

PBST ELISA 0.05 % Tween in PBS 

Trypan blue cell counting 0.05 % trypan blue in PBS 

LB agar plate cloning 

5 g Bacto tryptone 
2.5 g Bacto yeast extract 
7.5 g Bacto agar 
5 g NaCl 
500 ml H2O 

LB medium retransformation, cloning 

5 g Bacto tryptone 
2.5 g Bacto yeast extract 
5 g NaCl 
500 ml H2O 

Carbonate coating buffer pH 
9.5 

ELISA 
15 mM Na2CO3 
35 mM NaHCO3 
3 mM NaN3 

Blocking buffer  ELISA 3 % BSA in PBST 

Incubation buffer ELISA 0.5 % BSA in PBST 

Milk blocking solution WB 
5 % milk powder in PBST (0.05 
% Tween) 

Ammonium sulfate solution 
pH 7.4 

Ab purification 4.1 M (NH4)2SO4 
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RIPA buffer pH 8 cell lysis 

150 mM NaCl 
1 % NP40 
0,5 % Na-Deoxycholat 
50 mM Tris 
0.1 % SDS 
in 50 ml H2O 
add freshly 1 tbl. Protease 
inhibitor 

Blocking buffer IF IF 5 % Saccharose, 10 % FCS 

FACS buffer FACS 1 % FCS in PBS 

DMEM cell culture 
1 % Pen Strep 
10 % FCS 

RPMI complete cell culture 

10 % FCS 
1 % Pen Strep 
1% non-essential amino acid 
solution 
1 % sodim pyruvate 
1 % L-glutamine 

Cryoprotection buffer IF 30 % sucrose 

Sodium citrate pH 8.5 antigen retrieval 10 mm Sodium citrate 

Blocking free floating IF 
10 % goat serum 
0.5 % Triton 
in PBS 

Stop solution  ELISA 1 M H2SO4 

TAE buffer gel electrophoresis 

484 g Trizma base 
114.2 ml Acetic acid 
50 mM EDTA 
in 2 l of H2O 

Freezing medium cell culture 
FCS 
10 % DMSO 

HEK293-EBNA medium cell culture 
Freestyle medium 
0.1 % Pluronic 
25 µg/ml Geneticin  

Dialysis buffer pH 7.5 protein purification 
20 mM Na2HPO4 x 2 H2O 
0.5 M NaCl 
10 mM Imidazole 

Elution buffer pH 7.5 protein purification 
20 mM Na2HPO4 x 2 H2O 
0.5 M NaCl 
1 M Imidazole 

Coomassie Stain SDS gelelectrophoresis 
0.1 % Brilliant Blue G250 
50 % Methanol 
7 % Acetic acid in H2O 

Coomassie destainer SDS gelelectrophoresis 
50 % Methanol 
7 % Acetic acid in H2O 

SDS Gel fixation SDS gelelectrophoresis 7 % Acetic acid in H2O 

Stripping buffer SDS gelelectrophoresis 
0.9 g glycine 
0.06 g SDS 
in 60 ml H2O 
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Solubilization buffer 
pH 7.4 

patients Ab purification 

150 mM NaCl 
6 mM Tris-base 
3 mM Tris-HCl 
in 500 ml H2O 
add freshly 1% octyl-beta-
glucoside 

Antibody acidic elution buffer 
pH 3 

patients Ab purification 0.1 M glycine/HCl  

Antibody neutralization buffer 
pH 8 

patients Ab purification 1 M Tris-HCl 

 
Table 2-2 List of commercial kits 

Name  Use  Source  

BirA Kit biotinylation of OMGP Avidity 

Biotinylation Kit biotinylation of antibodies Abcam, ab201795 

Human IFN-gamma DuoSet 
ELISA 

T cell proliferation assay R&D, DY285-05 

Human IFN-γ/IL-22/IL-17A 
FluoroSpot 

bead-based antigen 
stimulation of T cells 

Mabtech, FSP-011803-10 

Human IgG ELISA  
determination of IgG in 
plasma/sera/cell culture 
supernatants 

Mabtech, 3850-1AD-6 

Click-it-plus-EdU staining T cell proliferation assay Invitrogen, C10632 

HiSpeed Plasmid Mini cloning Qiagen, 27106 

HiSpeed Plasmid Midi cloning Qiagen, 12643 

HiSpeed Plasmid Maxi cloning Qiagen, 12663 

RNeasy Mini Kit cloning Qiagen, 74106 

QIAshredder cloning Qiagen, 79656 

DNA Clean & Concentrator  cloning Zymo Research, D4013 

PCR purification cloning Qiagen, 28004 

MinElute Gel Extraction Kit cloning Qiagen, 28604 

Pierce BCA Protein Assay Kit protein concentration Thermo Scientific, 23227 

Mouse IgG ELISA 
determination of IgG in 
hybridoma supernatants 

eBioscience, 88-50400-88 

Rat IgG ELISA 
determination of IgG in 
hybridoma supernatants 

eBioscience, 88-50490-88 

 

Table 2-3 List of reagents 

Name  Use  Source  

HiTrap streptavidin columns antibody purification GE Healthcare, GE17-5112-01 

HisTrap HP protein purification GE Healthcare, GE17-5247-01 

Rabbit complement 
neuronal complement 
assay 

Cedarlane, CL3111 

CFSE - Cell Labeling Kit T cell proliferation assay Abcam, ab113853 
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Concanavalin A T cell proliferation assay Sigma, C5275 

Measles T cell proliferation assay MyBioSource, MBS239121 

Tetanus toxin T cell proliferation assay Sigma, T3194-25UG 

DAPI IF Thermo Scientific, 62248 

Propidium iodide flow cytometry P4864-1ML 

Complement component C1q complement assay Sigma, C1740 

Human complement complement assay Sigma, S1764 

X-Vivo 15 T cell proliferation assay Lonza, BE02-060Q 

VECTASHIELD Mounting 
Medium 

IF Biozol, VEC-H-1000 

Fluoromount-G IF Thermo Scientific, 00-4958-02 

T4 DNA Ligase cloning NEB, M0202T 

ECL Western Blotting System WB GE Healthcare, RPN2109 

ECL Prime Western Blotting 
System 

WB GE Healthcare, RPN2232 

Human AB-Serum T cell proliferation assay Sigma, H4522-100ML 

IvIg rat transfer Kedrion 

dNTPs cloning Thermo Scientific, R0181 

Phusion High-Fidelity DNA 
Polymerase 

PCR NEB, M0530S 

Optipro medium HEK293-EBNA Gibco, 12309-019 

Lactalbumin HEK293-EBNA BD Biosciences, 259962 

PEI HEK293-EBNA Polysciences, 23966-2 

Lipofectamine 2000 
transfection HeLa, 
HeK293T 

Invitrogen, 11668-019 

Optimem 
transfection HeLa, 
HeK293T 

Gibco, 31985-062 

Milk powder WB Spinnrad 

PNGase F Deglycosylation NEB, P0704S 

NP-40    patients’ Ab purification Sigma, I-3021 

Octyl-beta-Glucopyranoside patients’ Ab purification Sigma, 08001-25G 

Triton-X-100  Roche, 789704 

Tween20 ELISA, WB Biorad, 170-6531 

DMEM cell culture Sigma, D5796-500ML 

RPMI cell culture Sigma, R0883-500ML 

Pen/Strep cell culture Gibco, 15140-122 

MEM non-essential amino acid 
solution 100x 

cell culture Sigma, M7145 

FBS Superior cell culture Millipore, S0615 

Sodium pyruvate 100 mM 
(100x) 

cell culture Gibco, 11360-039 
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L-Glutamin cell culture Sigma, G7513 

Trypsin – EDTA cell culture Sigma, 59417C-100ML 

Tissue freezing medium embedding of tissue Leica, 0.201.08926 

A&B detection ELISA R&D  R&D, DY999 

SuperScript™ II Reverse 
Transcriptase 

cloning of mAbs Invitrogen, 18064-014 

Recombinant ribonuclease 
inhibitor 

cloning of mAbs Takara, 2313A 

RNase-Free DNase Set cloning of mAbs Qiagen, 79254   

Bovine Albumin Fraction V ELISA Serva, 11945.03 

TMB ELISA Sigma, T8665-100ML 

pNPP ELISA Sigma, P7998-100ML 

Novex Sharp Pre-stained 
Protein Standard 

SDS-PAGE, WB Invitrogen, LC5800 

NuPAGE MOPS SDS Running 
Buffer (20X) 

SDS-PAGE Invitrogen, NP0001 

NuPAGE LDS Sample Buffer 
(4X) 

SDS-PAGE Invitrogen, NP0007 

NuPAGE Sample Reducing 
Agent (10X) 

SDS-PAGE Invitrogen, NP0004 

Gel Loading Dye, Purple (6X) agarose gel NEB, B7024S 

1 kb Plus DNA Ladder agarose gel NEB, N3200L 

Agarose agarose gel Biozym, 840004 

Ampicillin cloning Sigma, A9518-25G 

Kanamycin cloning Sigma, K1377-5G 

R848 PBMC stimulation Sigma 

IL2 PBMC stimulation R&D 

Dephosphorylation CIAP cloning Fermentas, EF0341 

Freestyle medium HEK293-EBNA Gibco, 12338-018 

Geneticin HEK293-EBNA Gibco, 10131-035 

10% Pluronic F68 HEK293-EBNA Gibco, 24040-032 

Imidazole  IMAC Merck, 1.04716.0250 

Pancoll PBMC density gradient Pan Biotech, P04-60500 

Peq green agarose gel Peqlab, 37-5010 

Soc medium cloning NEB, B9020S 

DMSO freezing medium Sigma, D8418-500ML 

 

Table 2-4 List of materials 

Name  Use  Source  

PVDF membrane WB GE Healthcare, 10600023 

NuPage 4-12 % Bis-Tris Gel SDS-PAGE Invitrogen, NP0321 



Materials and Methods 

27 

96 well FACS plates cell-based assay Thermo Scientific 

F96 MaxiSorp Nunc 
immunoplate 

ELISA, BCA Thermo Scientific, 442404 

Nunc Immobilizer streptavidin 
F96 

ELISA Thermo Scientific, 436014 

Amicon Ultra 0.5 ml 50K protein purification Merck Millipore, UFC505096 

Amicon Ultra 0.5 ml 3K protein purification Merck Millipore, UFC500396 

Amicon Ultra 15 ml 50K protein purification Merck Millipore, UFC905024 

Amicon Ultra 15 ml 30K protein purification Merck Millipore, UFC903024 

D-Tube Dialyzer Maxi 12-14 
kDa 

protein purification Millipore, 71510-3 

Spectra Por7 Dialysis 
Membrane 50 kDa 

protein purification Spectrum, 132130 

 

2.1.3 Primer 

The following primers were all synthesized at Metabion (Martinsried) and delivered as lyophilized 

product. The primers were diluted in ddH2O to a stock concentration of 100 µM. For the PCRs or 

sequencing a working concentration of 100 mM was used. 

 

Table 2-5 List of primers 

Name Sequence 5‘-3‘ 

sequencing 

ratOMGP-GPI sequ-3 CCTCTCTGAAGGAACAGA 

pEGFP-N1_rev CGACTGCAGAATTCGAAGCTT 

CMV_fwd CGCAAATGGGCGGTAGGCGTG 

pEGFP-N1_rev_2 GCAGCTTGCCGGTGGTGCAGATGAAC 

pTT5-forw GGGGTGAGTACTCCCTCTCAAAAGC 

pTT5-rev GGGGCAGAGATGTCGTAGTCAGG 

rOMGP-seq-Fwd CATATTGTGGACCTGTC 

GFP sequencing-1 GGAGTACAACTACAACAG 

hOMGP sequencing-2 CTGGAAAGTCTTCCCGC 

hOMGP-GPI sequ-3 AATTCTCTGAGCGTAGTG 

pTT5-sequ-FWD CTTTCTCTCCACAGGTGTCCAC 

ratOMGP sequencing-2 TTCAAACAACAGGCTTG 

cloning of soluble rOMGP 

rOMGP-sol_FWD ATAGGTACCATTTGTCCTCTCCAATGTATATGCACAG 

rOMGP-sol_REV ATAGCTAGCGGAAGGTGGCTGAGTCTTTACATTT 



Materials and Methods 

28 

cloning of hOMGP-GPI-T2A-EGFP 

BsrGI_T2A-hOMGP_Fwd 
GCTGTACAAGGGTTCTGGTGAGGGCAGAGGAAGTCTTCTAAC
ATGCGGTGACGTGGAGGAGAATCCCGGCCCTATGGAATATCA
GATCC 

NotI-GPI-hOMGP_Rev 
tcgcggccgcTCAGACAGCCAGCATGACCACAACATTGAGCAATA
AGAGAAATGAAGCATTTACTTTCCAAGCATTTGCCACGGAAG
GCAGAGGAGTC 

cloning of rOMGP-GPI-T2A-EGFP 

BsrGI_T2A-hOMGP_Fwd 
GCTGTACAAGGGTTCTGGTGAGGGCAGAGGAAGTCTTCTAAC
ATGCGGTGACGTGGAGGAGAATCCCGGCCCTATGGAATATCA
GATCC 

NotI-GPI-ratOMGP_Rev 
TCGCGGCCGCTCAGACAGCCAGCATGACCACAACATTGAGC
AATAAGAGAAATGAAGCATTTACTTTCCAAGCATTTGCCACGG
AAGGTGGCTGAG 

rOMGP insertion-rev CGGTACCGTCGACTGCCAGAATTCC 

cloning 22H6 rIgG2A antibody into hIgG1-pTT5 

HC_mG1/2a_rG1/2a/2b_r CTCAATTTTCTTGTCCACCTTGGTGC 

HC_mG2b_r CTCAAGTTTTTTGTCCACCGTGGTGC 

LC-kappa_m/r_r  CTCATTCCTGTTGAAGCTCTTGAC 

LC-lambda_m-1-4/r-1_r  ACACTCAGCACGGGACAAACTCTTCTC 

LC-lambda_m-2-3/r-2_r  ACACTCTGCAGGAGACAGACTCTTTTC 

CHeavy_rev_uni_SalI 
GTGCCCCCAGAGGTCGACTTGGAGGAGGGTGCCAGGGGGA
AGACCGATGGGCCCTTGG 

CHeavy_ SacII_for_22H6 
GTTTCCGCGGTGGGTCCTGTCCCAGGTTACTCTGAAAGAGTC
TGGC 

CHeavy_rev_22H6 
AGACCGATGGGCCCTTGGTGGAGGCTGAGGAGACAGTGACT
GAAGTTC 

lamda_BssHII_for_22H6 AACGGGCGCGCGATGAGCTATGAGCTGATCCAACCAC 

L-to-ka_ KasI_r_22H6 
AGATGGCGCCGCCACAGTTCGTAGGACAGTGAGCTTGGTTC
C 

L_BssHII_FWD-
ORF22H6 

AACGGGCGCGCGATGTAGCTATGAGCTGATCCAACCAC 

TSO_PCR AAG CAG TGG TAT CAA CGC AG 

TSO-FWD_E. Beltran AAGCAGTGGTATCAACGCAGAGTACATrGrG+G 

 

2.1.4 Plasmids 

Table 2-6 List of plasmids 

Vector Resistance Expression  
Size 
[kb] 

Plasmid 
number  

Source 

T2A-mOMGP-hGPI_pMA-T Ampicillin 
surface, GPI-
anchor 

3.8 60 Geneart 

rOMGP-CD80_pMK-RQ-Bs Kanamycin 
surface, 
transmembrane 

1.5 33 Geneart 
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secr_hOMGP_Avi_His_ 
pMK-RQ 

Kanamycin soluble 3.7 35 Geneart 

pEGFP Kanamycin cytoplasm 4.7 65 
CLONTECH 
Laboratories 

pEGFP-hOMGP-CD80 Kanamycin 
surface, 
transmembrane 

6.2 28 
Institute (AG 
Meinl) 

pEGFP-hOMGP-T2A-GPI Kanamycin 
surface, GPI- 
anchor 

6.1 48 
Institute (AG 
Meinl) 

pEGFP-rOMGP-T2A-GPI  Kanamycin 
surface, GPI- 
anchor 

6.1 51 
Institute (AG 
Meinl) 

pEGFP-mOMGP-T2A-GPI  Kanamycin 
surface, GPI- 
anchor 

6.1 61 
Institute (AG 
Meinl) 

pTT5 Ampicillin / 4.4 37 
Dr. Jenne 
(Perera et al., 
2013) 

pTT5-hOMGP-Avi-His Ampicillin soluble 5.7 40 
Institute (AG 
Meinl) 

pTT5-rOMGP-Avi-His  Ampicillin soluble 5.7 101 
Institute (AG 
Meinl) 

pTT5-hIgG1-heavy-22H6 Ampicillin soluble 5.8 102 
Institute (AG 
Meinl) 

pTT5-hIgG1-kappa-22H6 Ampicillin soluble 5.1 103 
Institute (AG 
Meinl) 

pTT5-hIgG1-heavy-HK3 Ampicillin soluble Institute (AG Dornmair) 

pTT5-hIgG1-kappa-HK3 Ampicillin soluble Institute (AG Dornmair) 

 

2.1.5 Restriction enzymes for digestion 

Table 2-7 Used endonucleases 

Name  Source  

Avr II, BssH I, BamH I, BsrG I, EcoR I-HF, Hind III, Kas I, Kpn I, 
Nhe I, Not I, Sac I, Sac II-HF, Sal I-HF, Xho I 

NEB 

 

2.1.6 Cell lines 

Table 2-8 Cells for cell culture 

Name  Use  Source  

HeLa cell-based assay Institute (AG Meinl) 

HEK293T cell-based assay Institute (AG Meinl) 

HEK293-EBNA 
human embryonic kidney cell line, 
G418-resistence 

Dr. Jenne  
(Perera et al., 
2013) 

HEK-293S-GnT1-/- 
test reduction of glycosylation on 
antigen 

ATCC 
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2.1.7 Proteins and Peptides 

Table 2-9 List of proteins and peptides 

Name  Description  Expression system Source 

hOMGP 
Human oligodendrocyte 
myelin glycoprotein 

HEK293-EBNA Institute (AG Meinl) 

rOMGP 
Rat oligodendrocyte myelin 
glycoprotein 

HEK293-EBNA Institute (AG Meinl) 

mOMGP 
Mouse oligodendrocyte 
myelin glycoprotein 

Mouse myeloma 
cell line 

R&D (1674-MG-025) 

rOMGP-
peptide 

BIOT-SP-ETTANVKTQPPS-
HHHHHH 

synthesized Peps4LS 

Avi-
His_CTR 

ASGSGMGMGMGMMGLND
IFEAQKIEWHEPRSGGSGH
HHHHH 

synthesized Thermo Fisher Scientific 

22H6-hIgG1 monoclonal OMGP antibody HEK293-EBNA Institute (AG Meinl) 

HK3-hIgG1 
monoclonal neuroborreliosis 
antibody  

HEK293-EBNA Institute (AG Dornmair) 

 

2.1.8 Antibodies 

Table 2-10 Primary antibodies 

Antibody 
specificity 

Use  
Dilution/final 
concentration 

Conjugate  Host  Source  

C1q-HRP ELISA 1:200 HRP sheep  
LifeSpan Biosciences, 
LS-C41845 

His-tag-HRP WB 1:1000 HRP mouse Sigma- Aldrich, A7058 

Biotin-HRP 
ELISA 
WB 

 
1:2000 

HRP goat Cell signaling, 7075 

GFP-HRP WB 1:1000 HRP goat GeneTex, GTX26663 

human-CD3 FACS 1:15 APC mouse 
BD Pharmingen, 
555342 

human-CD4 FACS 1:60 PerCP mouse 
eBioscience, 12-0048-
42 

human-CD8 FACS 1:60 efluor450 mouse 
eBioscience, 48-0088-
42 

HNK-1 
FACS 
ELISA 
WB 

1:1000 
1:100 
 

- mouse IgM Sigma, C0678 

mAb-OMGP 
FACS 
WB 
ELISA 

1-10 µg/ml 
1 µg/ml 

- rat IgG1 R&D MAB1674 

pAb-OMGP 

FACS
WB 
ELISA 
IF 

1-10 µg/ml 
0.4 µg/ml 
1 µg/ml 
5 µg/ml 

- 
polyclonal 
goat IgG 

R&D AF1674 

β-III-tubulin IF 1:200 - rabbit IgG Cell signaling, D7169 
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22H6 
FACS 
ELISA 
IF 

1-10 µg/ml 
1-10 µg/ml 
20 µg/ml 

- rat IgG2A 
Helmholtz Zentrum 
München (AG 
Feederle) 

31A4 
FACS 
ELISA  
IF 

1-10 µg/ml 
1-10 µg/ml 
20 µg/ml 

- 
mouse 
IgG2B 

Helmholtz Zentrum 
München (AG 
Feederle) 

14A9 
FACS 
ELISA  
IF 

1-10 µg/ml 
1-10 µg/ml 
20 µg/ml 

- rat IgG 2B 
Helmholtz Zentrum 
München (AG 
Feederle) 

human-IgG1 FACS 1:50 - sheep 
The binding site, 
AU006 

human-IgG4 FACS 1:50 - sheep 
The binding site, 
AU009 

 

Table 2-11 Secondary antibodies 

Antibody specificity Use  
Dilution/final 
concentration  

Conjugate  Host  Source  

HRP FACS 1:100/1:2000 647 goat 
Jackson, 123-605-
021 

rat-IgG 

WB 
ELISA 

1:2500 
1:7000 

HRP goat 
Jackson, 112-036-
003 

IF 10 µg/ml 594 goat Invitrogen, A-11007 

IF 10 µg/ml 488 donkey Invitrogen, A-21208 

FACS 1:500 647 mouse 
Jackson, 212-605-
082 

 FACS 1:500 biotin goat 
Jackson, 112-065-
062 

goat-IgG 

IF 10 µg/ml 488 donkey Invitrogen, A-11055 

IF 10 µg/ml 594 donkey Invitrogen, A-11058 

ELISA 1:7000 HRP rabbit abcam, ab6741 

FACS 1:500 biotin donkey 
Jackson, 705-065-
003 

mouse-IgG 

ELISA 1:7000 HRP goat 
Jackson, 115-036-
072 

IF 10 µg/ml 488 donkey Invitrogen, A-21202 

FACS 1:500 647 rat 
Jackson, 415-605-
166 

FACS 1:500 biotin goat 
Jackson, 115-067-
020 

mouse-IgM 
FACS 1:500 biotin goat 

Jackson, 115-067-
020 

ELISA 1:7000 HRP goat 
Jackson, 115-035-
075 

sheep-IgG FACS 1:100 647 donkey 
Jackson, 713-606-
147 
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rabbit-IgG 
IF 10 µg/ml 488 goat Invitrogen, A-11008 

IF 1:500 594 donkey Invitrogen, A-21207 

human-IgM 

ELISA 
FACS 

1:500 
1:50 

HRP mouse Zymed, 05-4920 

FACS 1:20 APC mouse 
eBioscience, 17-
9998-42 

human-IgE 

ELISA 
FACS 

1:500 
1:50 

HRP mouse Zymed, 05-4720 

FACS 1:100 APC mouse Pharmingen, 34612D 

human-IgA-RPE FACS 1:50 RPE goat 
Jackson, 109-115-
011 

human-IgG 

IF 10 µg/ml 550 rabbit 
Invitrogen, SA5-
10111 

IF 10 µg/ml 555 goat Invitrogen, A-21433 

FACS 1:50 RPE goat 
Jackson, 109-116-
098 

FACS 1:500 biotin goat 
Jackson, 109-066-
098 

WB 
ELISA 

1:2500 
1:5000/1:7000 

HRP goat 
Jackson, 109-036-
003 

FACS 
1:150/1:500/ 
1:1000 

alexa647 goat Invitrogen, A21445 

human-IgG1 

ELISA 
FACS 

1:500 
1:50 

HRP mouse Zymed, 05-3320 

FACS 1:500/1:1000 biotin mouse Invitrogen, MH1515 

FACS 1:50 RPE mouse abcam, ab99776 

FACS 1:50 BIMA mouse 
Southern Biotech, 
9054-28 

FACS 1:50/1:500 biotin mouse 
Southern Biotech, 
9052-08 

FACS 1:50/1:100 PE mouse 
Southern Biotech, 
9052-09 

FACS 5 µl/5x104cells APC mouse R&D, FAB110A 

human-IgG2 

FACS 1:50 RPE mouse abcam, ab99781 

FACS 1:100 PE mouse 
Southern Biotech, 
9060-09 

ELISA 
FACS 

1:500 
1:50 

HRP mouse Zymed, 05-0520 

FACS 1:50/1:500 biotin mouse 
Southern Biotech, 
9060-08 

human-IgG3 

FACS 1:50 RPE mouse abcam, ab99831 

ELISA 
FACS 

1:500 
1:50 

HRP mouse Zymed, 05-3620 

FACS 1:50 PE mouse 
Southern Biotech, 
9210-09 

FACS 1:50/1:500 biotin mouse 
Southern Biotech, 
9210-08 
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human-IgG4 

FACS 1:50 PE mouse 
Southern Biotech, 
9200-09 

FACS 1:50 RPE mouse abcam, ab99819 

ELISA 
FACS 

1:500 
1:50 

HRP mouse Zymed, 05-3820 

FACS 1:50/1:500 biotin mouse 
Southern Biotech, 
9200-08 

 

Table 2-12 Streptavidin conjugated dyes 

Name  Use  Dilution  Conjugate  Source  

streptavidin-alexa647 FACS 1:2000 alexa647 Jackson, 016-600-084 

streptavidin-
peroxidase 

WB 
ELISA 

1:100.000 
 

HRP Jackson, 016-030-084 

streptavidin-HRP ELISA 1:10-1:200  HRP R&D, DY998 

 

Table 2-13 Isotype controls 

Name  Use  Source  

mIgG2B ELISA, IF, rat transfer BD Pharmingen, 559530 

mIgG2A ELISA, IF, rat transfer BD Pharmingen, 554645 

rIgG2B ELISA, IF, rat transfer BD Pharmingen, 556968 

rIgG2A ELISA, IF, rat transfer BD Pharmingen, 553926 

rIgG polyclonal IF Abcam, ab27478 

rat IgG1 IF R&D, MAB005 

goat IgG IF R&D, AB-108-C 

 

2.2 Molecular cloning 

For the production of expression vectors, the following section describes how the plasmids were 

amplified, cloned, processed and expanded. Applying these techniques, the vectors were used 

for the production of target proteins. 

 

2.2.1 Polymerase chain reaction (PCR) 

To amplify or modify DNA fragments and plasmids, the PCR technique with the following reaction 

mixture (Table 2-14) was used in a total volume of 50 µl. The parameters for the PCR program 

are listed in Table 2-15.The elongation time was adjusted to the length of the amplified product, 

whereas in 60 sec 1000 bp can be elongated. 
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Table 2-14 Reaction mixture for PCR 

component µl  final concentration in 50 µl 

Phusion buffer 5x 10 1x 

dNTPs 10 mM 1 0.2 µM 

Primer forward 10 µM 2.5 0.5 µM 

Primer reverse 10 µM 2.5 0.5 µM 

DNA template 50 ng/µl 1 10 ng/ml 

Phusion polymerase 0.5  

ddH2O 32.5  

 

Table 2-15 PCR program 

function temperature time cycles 

initial denaturation 98 °C 30 sec 1 

denaturation 98 °C 20 sec  

hybridization 60 °C 20 sec 30 

elongation 72 °C 60 sec/1000 bp  

final elongation 72 °C 10 min 1 

cooling 4 °C ∞  

 

2.2.2 RNA extraction 

Hybridoma cell pellets of the 22H6/14A9/31A4 OMGP antibodies were frozen at -80 °C. The RNA 

of 5 x 106 cells was extracted by RNeasy Mini Kit from Qiagen. The protocol was carried according 

to the manufacturer’s protocol. 

 

2.2.3 Reverse transcription (RT) and template switch PCR 

The purified RNA serves as template for the generation of complementary DNA (cDNA). For this 

process the sequence of 5’ end and the 3’ end of the mRNA is important. The reverse primer 

“HC_mG1/2a_rG1/2a/2b_r“ for the cDNA synthesis (Table 2-5) of the constant heavy region can 

be used for the amplification of mouse IgG1/IgG2A and rat IgG1/IgG2A/IgG2B, whereas for the 

constant heavy region of mouse IgG2B there is a separate primer. For the kappa and lambda light 

chain other primers were used (Table 2-5). 

The sequences of the antibodies, coming from the hybridoma cells, are unknown. Therefore, we 

used the described reverse primers flanking the constant region (Kontermann and Dübel, 2010) 
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and the SMARTscribe reverse transcriptase together with 5’-template-switching oligonucleotide 

(TSO) primer (Figure 2.1).  

 

 

Figure 2.1 SMARTscribe acting as reverse transcriptase 

The figure shows the mRNA template with an unknown 5’ end. After SMARTscribe reaches the 5’ end, additional 
deoxycytidine are added and allows the template switching oligonucleotide (TSO) primer to bind with it complementary 
guanosines.  

 

This SMART (switching mechanism at the 5' end of RNA template) enzyme is a modified version 

of the moloney murine leukemia virus (MMLV)-RT and it adds upon reaching the 5’ end of the 

RNA template additional deoxycytidine. The TSO forward primer carries three riboguanosines 

(rGrGrG) at its 3' end and the complementary to this 3' deoxycytidine extension of the cDNA 

molecule allows the subsequent template switching (Picelli et al., 2014). 

All reagents listed in Table 2-16 were mixed and the tube was incubated for 3 min at 72 °C, 

followed by 2 min at 42 °C.  

 

 

 



Materials and Methods 

36 

 

Table 2-16 cDNA synthesis (first step) 

component µl  

H-chain_RT reverse primer 10 μM 1 

L-chain_RT reverse primer 10 μM 1 

dNTPs 10 mM 1 

RNA (max. 2 µg) 2 

 

After the preincubation with the reverse primer, the 5.25 µl of Table 2-17 were added and the PCR 

run was continued for 1 h at 42 °C and a final step for 10 min at 70 °C. The synthesized cDNA 

was purified using DNA Clean & Concentrator™-5 (ZYMO RESEARCH) and eluted in 8 μl of 

elution buffer. 

 

Table 2-17 cDNA synthesis (second step) 

component µl  

buffer 5x 2 

DTT 20 mM 1 

TSO 10 µM 1 

SMARTscribe 100 U/µl 1 

RNase inhibitor 40 U/μl 0.25 

 

2.2.4 Isolation of Plasmid DNA 

Bacterial cultures were grown at 37 °C overnight in LB medium with 100 µg/ml Ampicillin or 

50 µg/ml Kanamycin. For Miniprep E. coli were cultured in 2ml and in 200-300 ml for Mini-

/Maxiprep. Cells were harvested and processed regarding the manufacturers protocol. The 

plasmid concentration was determined by Nanodrop.  

 

2.2.5 Agarose Gelelectrophoresis  

DNA constructs were loaded on an agarose gel. Therefore, 1 % agarose was dissolved in TAE 

buffer and supplemented with 5 µl of Peq green in a total volume of 50 ml. 10 µl of DNA ladder 

1 kb from NEB was loaded and 110 V were applied for 45-60 min. If DNA was cut out of the gel, 

the bands of interest were cut out and purified using the Qiagen MinElute Gel Extraction kit. 
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2.2.6 Digest of DNA 

The different endonucleases used in this study are listed in Table 2-7. All restriction digests were 

carried out in a total volume of 25 µl in the buffer as recommended by the manufacturer, using the 

appropriate amount of enzyme units. The optimal temperatures for the enzyme were used for 1 h 

to digest the construct. 

 

2.2.7 DNA Ligation 

T4 DNA ligase was used to ligate the insert into the cut vector. Molar ligation ratios of 1:3 and 1:7 

vector (100 ng) to insert together with a negative control (vector only) were incubated in 20 µl at 

16 °C overnight. On the next day 5 µl of the ligation mixture were pipetted to the chemical 

competent E. coli. 

 

2.2.8 Transformation of chemically competent E. coli 

E. coli DH5α (NEB, C2987H) were thawed on ice. 1 µl of DNA was added and gently mixed by 

squiring the pipet tip. After an incubation of 20 min on ice a heat shock pulse for 90 sec at 42 °C 

followed. The tubes were chilled for 5 min on ice and cells recovered for 60 min shaking at 37 °C 

in SOC medium. For expanding the bacteria 50 µl of the bacteria were grown in 200-300 ml LB 

medium with required antibiotics. If the E. coli were transformed after ligation, 100 µl of bacteria 

were spread on an ampicillin or kanamycin agar plate and transferred to a 37 °C incubator 

overnight.  

 

2.2.9 DNA Sequencing 

Cloning was proofed by using the Sanger sequencing method of the sequencing service from the 

LMU faculty of biology. The listed primers (Table 2-5) were used for it and data was analyzed 

using “Chromas Lite” software. 

 

2.2.10 Cloning of OMGP-TM and OMGP-GPI (human/rat/mouse) for cell-based assay 

The cell-based assay was conducted using antigens expressed in the pEGFP-N1 vector (Figure 

2.2). For studying the autoantibody binding in vitro, the OMGP antigen was expressed on HeLa 

cells in two versions.  
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Figure 2.2 Plasmid map of pEGFP-N1 

The vector consists of a multiple cloning site (MSC), where OMGP constructs are inserted and driven by CMV promoter. 
Kanamycin resistance gene is used in this vector. 

 

In the first construct, the human OMGP (Uniprot P23515) was fused to the transmembrane part 

of CD80 (murine B lymphocyte activation antigen CD80 (Uniprot, Q549R2) P237 to end, stop 

codon deleted). Therefore, the physiological occurring GPI-anchor signal peptide V418-V440 was 

deleted, replaced by CD80 and further fused to EGFP in the vector. This hOMGP-TM construct 

was introduced into pEGFP-N1 by the endonuclease XhoI and HindIII. It was developed for having 

a stable anchored protein in the membrane (Figure 2.3, A). 
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Figure 2.3 Anchoring of OMGP to the membrane 

The two anchoring methods of the OMGP protein expression systems are displayed. (A) OMGP-TM, where it is fused 
to the CD80 transmembrane part and further to EGFP or (B) as second variant where OMGP is anchored via GPI in the 
cell membrane like in vivo. In this construct EGFP is separated from the protein. 

 

The second variant was cloned with a GPI-anchor (Figure 2.3, B), like the protein is expressed in 

vivo. To guarantee the recognition of the signal peptide on the N-terminus, the antigen was 

introduced into pEGFP-N1 with BsrGI and NotI. Thereby the stop codon of EGFP was removed 

and a T2A (thosea asigna virus 2A) ribosome sequence (GSGEGRGSLLTCGDVEENPGP) was 

cloned in between. Due to sterically hindrance, the ribosome skips during the translation (Kim et 

al., 2011) at the glycyl-prolyl peptide bond (Figure 2.4), which results in cleavage between the 

EGFP and the downstream OMGP. Two further constructs were generated in the same way: 

mOMGP-GPI (UNIPROT, Q63912) and rOMGP-GPI (UNIPROT, Q7TQ25). For these two rodent 

specific antigens, the human specific GPI signal peptide was used, since the protein expression 

efficiency in HeLa cells was very little using the rodent specific signal sequence. 
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Figure 2.4 Schematic ribosome skipping between EGFP and OMGP-GPI 

The pEGFP-T2A-hOMGP-GPI plasmid induces the transcription of one mRNA (green EGFP, gray T2A sequence and 
blue hOMGP-GPI). During translation the ribosome (yellow) skips between glycine and proline, resulting in two 
separated proteins. 

 

2.2.11 Cloning of human/rat OMGP for protein expression 

In house proteins were produced using the mammalian HEK293-EBNA expression system as 

described later in chapter 2.3.1. Therefore, the human (Uniprot P23515) or rat (Uniprot Q7TQ25) 

OMGP was cloned into pTT5 expression vector (Figure 2.5) using EcoRI and BamHI restriction 

sites.  

 

Figure 2.5 Plasmid map of pTT5 

The human OMGP in the pTT5 protein expression vector with an N-terminal murine Ig kappa secretion tag and a C-
terminal Avi- and His-tag. The construct is driven by the CMV promoter.  
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The construct harbors N-terminal murine Ig κ secretion tag for the protein production into the 

supernatant, followed by the OMGP sequence without the GPI signal peptide. The C-terminus of 

the protein was designed with a flexible 11–amino acid linker (GSGMGMGMGMM) (O'Connor et 

al., 2007) for the following Avi-tag sequence (GLNDIFEAQKIEWHE), used for site-specific 

biotinylation (Fairhead and Howarth, 2015) and a poly-His-tag sequence for IMAC purification 

(section 2.3.2). 

 

2.2.12 Cloning of recombinant antibody 

To clone the OMGP-specific antibody 22H6-rIgG2A, which was produced by the Helmholtz 

Center, with a human IgG1 Fc part, the RNA and cDNA was processed as described in section 

2.2.2 and 2.2.3. The amplified antibody DNA fragments were sent for sequencing (section 2.2.9) 

and aligned to the IMGT database to determine leader, variable and constant regions. Afterwards 

the variable antibody sequences were cloned into pTT5-hIgG1 heavy and pTT5-light-kappa chain 

vectors, which were provided by AG Dornmair. The heavy chain was introduced with SacII and 

SalI restriction sites, whereas the light chain with BssHI and KasI endonucleases.  

 

2.3 Recombinant protein production 

Studying antigens and also antibodies, the proteins are required in big amounts. Therefore, they 

were produced in house by a mammalian cell line, where it is secreted into the supernatant and 

followed by an ion metal affinity chromatography (IMAC) purification. 

 

2.3.1 Eukaryotic expression system of HEK293-EBNA 

The cell line is related to the HEK293 cells and stably transfected with the Epstein-Barr virus 

nuclear antigen-1 (EBNA1), which is under antibiotic selection to Geneticin G-418 (Geisse and 

Kocher, 1999). Cells are grown as suspension culture in Freestyle media without serum and 

supplemented with 25 µg/ml Geneticin and 0.1 % Pluronic F68 for reduction of foam formation. 

Multitron shaker was used for shaking cells at 37 °C, 8 % CO2, 70 % humidity and 90 rpm. 

For optimal growth and survival, cells were maintained at concentrations of 0.2-3 x 106 cells and 

therefore splitted two to three times per week. Live and dead cells were distinguished using 0.05 % 

trypan blue in a 1:10 dilution and 10 µl were pipetted in a Neubauer counting chamber.  
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Large amounts of proteins could be produced by transfecting the HEK293-EBNA cells with pTT5 

vector constructs (section 2.2.11). This vector allows due to its oriP and improved cytomegalovirus 

(CMV) expression cassette a three- to tenfold increase in protein expression compared to 

pcDNA3.1 and pCEP4 vectors (Durocher et al., 2002).  

To produce recombinant proteins, cells were transfected at a final concentration of 1 x 106 cells/ml 

in a total volume of 100-1000 ml. 1 µg of DNA (for antibodies 500 ng heavy and 500 ng light chain) 

and 2 µg of the transfection reagent polyethylenimine was used per 1 ml of culture. Therefore, two 

tubes were prepared, whereas in tube A the respective amount of DNA was diluted into OptiPro 

with a volume of 1/20 of the total cell suspension and in tube B the required PEI also into OptiPro 

(1/20 of total volume). After mixing the tubes and incubation for 30 min at RT, the solution was 

added slowly dropwise on the culture. 24 h after transfection 0.5 % lactalbumin was added. Cells 

were incubated for four days until the supernatant was harvested by centrifugation for 15 min at 

2500 rpm and subsequently sterile filtered with 0.22 µm. 

 

2.3.2 Ion metal affinity chromatography  

Supernatant containing the secreted antigen/antibody was dialyzed in 50 kDa tubes in dialysis 

buffer (500 mM NaCl, 20 mM Na2HPO4, 10 mM Imidazole, pH 7.5) overnight. On the next day the 

solution was filtered again (0.22 µm) and the HisTrap column was equilibrated using the ÄKTA-

START machine with 10-15 column volumes (CV) of dialyzing buffer and 1 ml/min. Afterwards 

sample was loaded with 0.5 ml/min and column was washed with 10-15 CV dialyzing buffer. To 

elute the His-tagged protein, an increasing gradient from 0.01-1 M Imidazole was applied. The 

wavelength was measured at 280 nm for tracking the fractions containing the eluted protein. All 

samples, load, flow-through, wash and elution fractions were applied on SDS gel (section 2.4.1) 

to check the size and purity of the recombinant protein. Pooled elution fractions were concentrated 

using 50 kDa Amicon tubes, dialyzed against PBS and protein concentration was determined by 

BCA assay (section 2.4.3). 

 

2.3.3 Enzymatic biotinylation 

Proteins having an Avi-tag can be enzymatically biotinylated using the BirA ligase. This enzyme 

recognizes the 15 amino acid long motif (GLNDIFEAQKIEWHE) and site specifically adds the 

biotin to the lysine of the sequence. 10 nmol of protein were incubated with 10 x biotin mix A and 

biotin mix B as well as 2.5 µg of the BirA ligase of the company Avidity at 30 °C overnight. On the 

next day the mixture is dialyzed in an Amicon 50 kDa to remove the excess biotin and the BirA 
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ligase with a size of 33.5 kDa. The success of biotinylation is proofed by using an ELISA or 

Western Blot and detection by streptavidin-HRP. Biotinylated OMGP was used in this study for 

the affinity purification of patient derived OMGP-specific antibodies, for screening of patients by 

ELISA and for C1q binding assay. 

 

2.4 Protein analysis 

Assessment of quality and concentration of the in house produced proteins is important prior to 

usage in various assays.  

 

2.4.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Using SDS-PAGE allows the separation of proteins regarding their molecular weight in an electric 

field. Samples are incubated with the anionic detergent SDS and migrate therefore to the positive 

cathode. 

Precasted ten or twelve well 4-12 % Bis-Tris gels (Invitrogen) were inserted in Xcell Mini Cell 

electrophoresis chamber and filled with NuPAGE MOPS SDS running buffer. Sample preparation 

could be conducted either under reducing or non-reducing conditions to keep disulfide bonds 

connected. In both cases, samples were diluted 1:4 with NuPAGE LDS sample buffer and only for 

dissolving these bonds, NuPAGE sample reducing agent containing 50 mM dithiothreitol (DTT) 

was added 1:10 and samples were boiled at 95 °C for 5 min. As protein marker next to the 

samples, 10 µl of Novex Sharp pre-stained protein standard were loaded. For 90 min an electric 

field of 130 V was applied.  

To visualize the proteins, gels were soaked with Coomassie staining solution for 15 min at RT, 

followed by three rounds of 10 min with Coomassie destainer solution. Afterwards gels were 

transferred into 7 % acetic acid overnight to reduce unspecific background staining. Gels were 

imaged with digital systems Odyssey Fc from Leica. 

 

2.4.2 Mass spectrometry 

The mass spectrometry was carried out by the technician Reinhard Mentele from the Dornmair 

lab at the LMU. Therefore, the band on a SDS gel of patients’ purified antibodies at the height of 

150 kDa was cut out from the gel and transferred into 100 µl water. The subsequent steps and 

analysis were all carried out in the mass spec facility of the LMU. 
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2.4.3 Bicinchoninic acid assay (BCA) 

This assay allows the quantification of purified proteins (BCA kit, Pierce). The photometric test is 

based on the formation of Cu2+ complexes with the peptide bonds and the reduction of it to Cu+ in 

an alkaline environment. The assay was carried out according the manufacturer’s instruction. The 

samples were incubated with the reaction mixture at 37 °C for 30 min and subsequently measured 

at 540 nm. Total protein concentration was calculated by using a bovine serum albumin (BSA) 

protein standard curve 2000-25 µg/ml. 

 

2.4.4 Endotoxin quantification in protein preparations by LAL assay 

The endotoxin/lipopolysaccharide (LPS) quantification was carried out by the technician Heike 

Rübsamen using limulus amebocyte lysate assay (LAL), regarding the manufacturer’s instructions 

(Pierce Chromogenic Endotoxin Quant Kit). The samples were analyzed in a 96 well plate at 

37 °C. 

 

2.4.5 Affinity purification of patient derived OMGP-specific antibodies 

The plasma of patients with OMGP-specific antibodies was thawed on a magnet stirrer and slowly 

an equal volume of saturated ammonium sulfate solution was added until the solution became 

cloudy. After stirring 1 h at RT the mixture was centrifuged at 4 °C, 8000 g for 30 min. The pellet, 

containing the precipitated immunoglobulin was dissolved in 30-50 ml PBS and dialyzed in 50 KDa 

tubes in PBS at 4 °C overnight without stirring. On the next day, PBS was replaced by fresh PBS 

and the dialysis continued for 48 h with stirring. Subsequently, the material from the tubes was 

centrifuged at 4 °C, 8000 g for 1 h, filtered with a 0.45 μm filter and diluted 1:10 in solubilization 

buffer. Meanwhile, 1 ml HiTrap streptavidin HP column (GE Healthcare) was equilibrated with 

10 CV of solubilization buffer, followed by the load of 1 mg biotinylated OMGP (section 2.3.3) 

diluted in the same buffer. Then, the previously prepared immunoglobulin solution was loaded at 

4 °C with a flow rate of 0.5 ml/min in rotation overnight onto the column. Afterwards, the column 

was washed again with 10 CV of solubilization buffer and the OMGP-specific antibodies were 

eluted with 0.1 M glycine/HCl (pH 3) and immediately neutralized with 1/10 of volume with 1 M 

Tris/HCl (pH 8). Concentration of eluted antibodies was carried out using 50 KDa Amicons. Then, 

the purified patient’s derived OMGP-specific antibodies were dialyzed against PBS at 4 °C 

overnight, followed by binding test to OMGP in cell-based assay and ELISA. 
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2.5 Cell culture 

Immortalized cell lines are useful for in vitro assays and can be produced in endless amounts 

using the required conditions. Beside these lines also primary cells from humans, PBMCs, were 

cultured for this study. 

 

2.5.1 Culturing of immortalized cell lines 

HEK293T cells and HeLa cells were cultured in T75/T175 flasks in DMEM supplemented with 

10 % FCS and 1 % Penicillin/Streptomycin at 37 °C and 5 % CO2. Cells were passaged every two 

days in a ratio of 1:10. First media was removed and cells were washed with PBS, followed by 

5 min incubation with 4 ml of Trypsin at 37 °C. Reaction was stopped by adding 6 ml medium and 

cells were split into a new flask. 

For seeding cells in 10, 6 or 3 cm dish, number of living cells was determined by diluting cells 1:10 

in 0.05 % trypan blue and count 10 µl in a Neubauer counting chamber. Four big squares were 

counted and multiplied by the dilution factor as well as 104 to get the cell number per 1 ml. Cells 

were seeded on a plate at a concentration of 2-2.5 x 105 cells/ml. 

 

2.5.2 PBMC isolation 

Lymphocytes are purified out of human peripheral blood by separating PBMCs from red blood 

cells and granulocytes. Peripheral blood was withdrawn in EDTA tubes and subsequently diluted 

1:2 in PBS in a 50 ml falcon. 15 ml of Pancoll was filled into a new 50 ml falcon and the diluted 

blood was carefully layered above. This Pancoll gradient medium with a density of 1.077 g/ml 

allows the separation of a low density population, upper fraction of PBMCs and a higher density 

fraction, red blood cells and granulocytes, which sink down to the bottom of the tube. Therefore, 

the gradient was centrifuged for 30 min at 400 g without break of the centrifuge. Afterwards, 

plasma (yellow most upper fraction) and white PBMCs clumps were collected. Cells were washed 

thrice in PBS, centrifuged at 400 g for 10 min, counted as described in section 2.5.1 and either 

directly used in RPMI complete medium or frozen in FCS with 10 % DMSO at -80 °C. In average, 

1 x 106 PBMCs per 1 ml of blood were obtained. For long term storage PBMCs were transferred 

into liquid nitrogen. To thaw PBMCs, cells were quickly put in 15 ml of warm RPMI and washed 

twice with RPMI by centrifugation for 10 min at 400 g. Cells were counted in a Neubauer counting 

chamber as described in section 2.5.1. 
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2.6 Immunological methods 

2.6.1 Enzyme-linked immunosorbent assay (ELISA) 

ELISAs were carried out for testing different hypothesis. The target protein was directly coated on 

the plates. For testing IgG concentrations the MaxiSorp-ELISA was used, whereas for patients 

screening for autoantibodies the streptavidin (STV)-ELISA was applied.   

a) MaxiSorp-ELISA 

For an OMGP ELISA, the protein was directly coated with 1 µg/ml in PBS and 100 µl per 96 well. 

As control protein BSA was diluted to the same concentration. After incubation at 4 °C overnight 

on a shaker, the plate was washed four times with 250 µl PBST (0.05 % Tween). The next step, 

blocking with 200 µl of 3 % BSA in PBST was carried out at RT for 2 h. Plate was washed as 

mentioned above and incubated with sera 1:100 or primary anti-OMGP with 10 µg/ml for 2h at RT. 

Afterwards, the secondary antibody, either directly labeled with HRP or biotinylated, was added in 

0.5 % BSA in PBST for 1 h at RT. After 4x of additional washing, the plate was incubated for 

around 15 min with 100 µl TMB substrate. In the meanwhile TMB was oxidized to a blue complex. 

The reaction was halted by adding 50 µl H2SO4 which turns the complex into yellow. The OD was 

measured at 450 nm and 540 nm for the correction of the plate background.  

b) STV-ELISA 

The biotinylated OMGP was coated with 1 µg/ml in PBST (0.05 %) in 100 µl per 96 well and 

incubated for 2 h at RT. The plate was washed four times with 250 µl PBST and sera were diluted 

1:100 in PBST and added overnight at 4 °C on a shaker. As positive control, commercial available 

polyclonal or monoclonal OMGP antibodies were used with 1 µg/ml. On the following day, the 

plate was washed again as mentioned above and an anti-human-IgG-HRP conjugated antibody 

was diluted 1:7000 in PBST. Plate was incubated for 1 h at RT, washed again and developed for 

approx. 10 min with 100 µl of A&B-ELISA detection solution (R&D). Color formation was stopped 

by adding 50 µl H2SO4. The OD was measure at 450 nm and 540 nm. 

c) C1q-ELISA 

For testing the ability of antibodies activating the complement cascade, a C1q-binding ELISA was 

carried out. Therefore, a STV plate was coated for 2 h at RT with 1 µg/ml of biotinylated OMGP. 

The plate was washed four times with 250 µl PBST (0.05%) and sera were diluted 1:100, mAb 

with 1-10 µg/ml, and incubated overnight at 4 °C on the plate. On the next day, the plate was 

washed as mentioned above and 5-10 µg of C1q complement was added for 2 h at RT. After an 

additional washing step, the binding was detected by an anti-C1q-HRP antibody, diluted 1:200 for 
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30 min at RT. 100 µl TMB substrate were added to the plate after washing again and then the 

reaction was stopped after 10-15 min by 50 µl H2SO4. The OD was measured at 450 nm and 

540 nm.  

d) IFNγ ELISA upon T cell stimulation 

Due to activation of T cells by an antigen binding to their T cell receptor (TCR), they secrete IFNγ 

into the supernatant. Therefore, 2 x 105 PBMCs were seeded in each 96 well in a volume of 200 µl 

and stimulated with ConA, tetanus toxoid, measles antigen and OMGP as mentioned above. After 

seven days of incubation at 37 °C with 5 % CO2, the supernatant was analyzed using an IFNγ 

sandwich ELISA. 

 

2.6.2 Western Blot 

Prior to the blotting, proteins are separated by size through SDS-PAGE as described in section 

2.4.1. For the subsequent detection of proteins by an antibody, they are transferred on a 

polyvinylidene difluoride (PVDF) membrane. The membrane was activated in methanol and then 

together with Whatman paper soaked in transfer buffer containing 10 % methanol. The activated 

membrane was placed on three layers of filter paper and above was the gel from the SDS-PAGE, 

followed by three more layers of soaked filter paper. Throughout the horizontal blotting for 90 min 

with 60 mA, the negatively charged proteins migrate to the anode to the membrane. Afterwards 

the membrane was blocked by incubating 1 h at RT in 5 % milk in PBST (0.05%). Directly labeled 

antibodies were incubated for 1 h in 5 % milk in PBST, whereas unlabeled primary antibodies at 

4 °C overnight. On the next day, the membrane was washed three times for 10 min in PBST and 

incubated for 1 h at RT with the secondary HRP labeled antibody diluted in 5 % milk in PBST. 

After washing three times 10 min with PBST, the enhanced chemiluminescence substrate solution 

(ECL/ECL prime for higher sensitivity) was mixed (50 % solution A + 50 % solution B) and dropped 

onto the blot. Signals were captured using the digital imaging systems Odyssey Fc from Leica. 

 

2.6.3 Immunofluorescence  

For studying the OMGP antigen expression, murine spinal cord and primary hippocampal/cortical 

neuronal cultures were stained. Furthermore immunofluorescence was carried out to visualize the 

binding of OMGP autoantibodies to OMGP transfected HeLa cells. 
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a) Staining of free floating tissue 

Spinal cord of C57BL/6J mice was stained for OMGP expression. Surgery and paraformaldehyde 

fixation was carried out by Aleksandra Mezydlo (lab of Prof. Martin Kerschensteiner). Tissue was 

transferred for two days in 30 % sucrose for cryoprotection and then spinal cord was cut between 

Th12-L2. The embedded tissue was sliced sagittal at the cryostat with 55 µm, transferred into 

24 well plates and remaining embedding medium was removed by washing three times 10 min in 

PBS at RT with shaking. Therefore, the wells were filled with PBS and the tissue was carefully 

transferred with a brush from one well to the other.  

To break the methylene bridges, that were formed during PFA fixation and to allow antibodies to 

bind to antigenic sites, the sections were incubated for 20 min at 80 °C in 10 mM sodium citrate 

pH 8.5. The tissue was washed as mentioned above and blocked for 1 h at RT in 10 % goat serum 

in 0.5 % Triton-PBS. After an additional washing procedure, tissue was incubated overnight at 

4 °C in a 48 well plate with 300 µl primary antibody diluted in 1 % goat serum in 0.5 % Triton/PBS. 

On the next day, sections were washed again incubated overnight at 4 °C in a 48 well plate with 

300 µl secondary antibody diluted 1:1000 in 1 % goat serum in 0.5 % Triton/PBS. Then the tissue 

was washed as previously and the nucleus was stained using DAPI 1:10.000 in PBS for 10 min. 

After washing, sections were mounted with vectashield on slides and sealed with nail polish. 

Spinal cord was imaged using confocal microscopy. 

b) Staining of murine primary hippocampal and cortical neurons 

Preparation of neurons was carried out by Dr. Hung-En Hsia (lab of Prof. Stefan Lichtenthaler). 

Methanol fixed cells on cover slips were blocked for 1 h at RT in PBS containing 5 % sucrose and 

10 % FCS. After one night incubation with the primary antibodies, diluted in the blocking buffer, 

cover slips were washed three times with 200 µl PBS. Secondary antibodies were diluted in 

blocking buffer and incubated for 1 h at RT and then washed as mentioned previously. The nucleus 

was stained with DAPI 1:10.000 for 10 min and neurons were washed again with H2O before they 

were mounted and sealed on slides. Neurons were imaged using the Leica DFC 300 G 

microscope. 

 

2.6.4 Cell-based assay – Flow cytometry 

Antigens can be detected by fluorescence labeled antibodies in a flow cytometer. For the detection 

of OMGP autoantibodies, patients’ sera and CSF were screened in a cell-based assay and 

subsequently analyzed with FACSVerse instrument from BD. Therefore, on the first day 2-2.8 x106 

HeLa cells were seeded in the afternoon in a 10 cm dish. Next morning, HeLa cells were 
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transfected with 14 µg of pEGFP, pEGFP-OMGP-TM, or pEGFP-OMGP-GPI using 68 µl of 

Lipofectamine 2000 according to the manufacturer’s protocol. After 22-26 h of incubation the 

transiently transfected cells were removed by washing the plate with ice cold PBS. Cells were 

counted as described (section 2.5.1) and 5 x 104 cells were transferred in each 96 well (v-bottom 

shape). From there on, all steps were carried out on ice. Whereas in the entire screening always 

living non-fixed cells were used, in one experiment cells were fixed for 20 min at RT in 4 % PFA 

and washed afterwards. To spin down the cells, the plate was centrifuged at 400 g for 5 min at 

4 °C and supernatant was removed by quickly inverting the plate. Three rounds of washing were 

carried out where the cells were resuspended in 150 µl of FACS buffer (1 % FCS in PBS) and 

centrifuged. Sera were screened 1:50, plasmapheresis material 1:25 and CSF 1:2 diluted in FACS 

buffer in 100 µl per 96 well for 45 min at 4 °C on a shaker. For verification of the OMGP expression, 

commercial monoclonal/polyclonal OMGP antibodies were used. After three washing steps as 

mentioned above, the secondary anti-human-IgG biotinylated antibody was diluted 1:500 in FACS 

buffer and incubated with 50 µl per 96 well for 30 min at 4 °C shaking. Before streptavidin-alexa647 

was added 1:2000 with 50 µl per 96 well for 30 min at 4 °C shaking, the cells were washed again. 

Death cells were excluded from the analysis by propidium iodide (PI). Therefore, HeLa cells were 

washed again and resuspended in 100 µl PI diluted 1:2000 in PBS and transferred in small FACS 

tubes. After analysis at the FACSVerse, data was analyzed using FlowJo software. 

The isotype testing of OMGP Abs was carried out as described above, but using 1:50 dilution of 

secondary Abs: anti-human-IgG1 or anti-human-IgG4 and detected with 1:100 diluted anti-sheep-

IgG-alexa647. More subclasses were evaluated by using 1:50 diluted: anti-human-IgG1-4-HRP, 

or anti-human-IgM-HRP, followed by detection with 1:100 diluted anti-HRP-alexa647. 

 

2.6.5 Stimulation of human peripheral B cells for immunoglobulin secretion 

6 x 105 PBMCs of patients were cultured in 24 well plate in RPMI complete medium supplemented 

with 1000 U/ml IL2 and 2.5 µg/ml of the toll-like receptor (TLR) 7/8-ligand resiquimod (R848) at 

37 °C and 5 % CO2. With this condition it is possible to stimulate 30–40 % of memory B cells 

secreting approximately 200 ng IgG (Pinna et al., 2009). After eleven days, supernatants were 

harvested and tested for specific antibody production in cell-based assay and IgG concentration 

was measured by human IgG ELISA from Mabtech. 
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2.6.6 Stimulation of human peripheral T cells 

Activation of T cells in the presence of an antigen was measured by T cell proliferation or IFNγ 

cytokine secretion into cell culture supernatant. Therefore, PBMCs of healthy donors and patients 

were cultured in RPMI complete with FCS/human AB serum or in X-VIVO15 medium.  

a) Carboxyfluoresceinsuccinimidylester (CFSE) staining for T cell proliferation analysis 

Proliferating cells will take up the CFSE dye and due to cell division the dye is reduced. The more 

proliferation, the less dye will be seen afterwards in the flow cytometry analysis. 1 x 106 PBMCs/ml 

were stained with 0.1 µM CFSE for 15 min at 37 °C by diluting 2 x 106 PBMCs 1:2 into the warm 

0.2 µM CFSE-PBS staining solution. Staining was quenched to remove unincorporated CFSE by 

adding same volume of warm media for 5 min at RT. Cells were washed with media and 

centrifuged for 10 min at 400 g. For stimulation, 1 x 106 stained PBMCs were seeded into 24 well 

plate and the following antigens were added to different wells: 5 µg/ml ConA, 5 µg/ml tetanus 

toxoid, 20 µg/ml measles antigen, 50 µg/ml OMGP, and medium only as background control. After 

an incubation of 3 or 7 days at 37 °C with 5 % CO2, cells were analyzed by flow cytometry. 

b) 5-Ethynyl-2´-deoxyuridine (EdU) staining for T cell proliferation analysis 

PBMCs were stimulated without CFSE staining with the conditions mention above and stained 

(d3/d6) with 10 µM EdU 24 h prior flow cytometry analysis, which was on fourth and seventh day. 

The intracellular staining procedure on the day of analysis was carried out regarding the 

manufacturer’s protocol. Due to high proliferation, cells will incorporate more dye into the DNA 

and can be distinguished thereby from non-activated or less responsive cells. 

 

2.6.7 FluoroSpot assay 

The coupling of the antigen to the beads and the LPS removal by NaOH washing, was carried out 

by Mattias Bronge (lab of Prof. Hans Grönlund), as described previously by their group (Bronge 

et al., 2019b).  

Precoated 96 well FluoroSpot plates (FSP-011803, Mabtech) were washed three times with 200 µl 

sterile PBS and blocked for 2 h at RT with 200 µl RPMI complete. 2.5 x 105 PBMCs in 100 µl were 

seeded in each well and stimulated in duplicates with CMV-beads, which are coated with antigenic 

peptides from cytomegalovirus (Bronge et al., 2019a), negative empty control beads, Avi-His-tag 

coupled beads or OMGP beads. These beads were either washed with 0.01 M or 0.1 M NaOH 

before. For CD3 stimulation wells only 1.25 x 105 PBMCs in 100 µl were seeded and stimulated 

with 10 ng/ml with anti-CD3 from the kit. 
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The bead preparation was carried out in a master plate where stocks were diluted in RPMI to 

reduce the possibility of beads sticking to plastic. These diluted beads were then transferred to 

the cells, to have a final concentration of around 10 beads/cell. Wells were filled with 100 µl RPMI 

to a total volume of 200 µl. Plates were incubated for 44 h at 37 °C with 5% of CO2.  

FluoroSpot assay was developed according the manufacturer’s protocol and spot forming units 

(SFUs) of plates were analyzed by IRIS reader (Mabtech). 

 

2.7 Animal experiments 

Dr. Naoto Kawakami performed the experiments in a Lewis rat model. OMGP-specific T cell lines 

were generated by injecting the in house produced hOMGP. TOMGP/TMBP/ TOVA cells were expanded 

and maintained by Dr. Kawakami. For the experimental autoimmune encephalitis (EAE) model, 

10 x 106 TOMGP, 15 x 106 TOVA or 1.1 x 106 TMBP cells were injected intravenously (i.v.) in the tail of 

the rats (Figure 2.6). 

 

 

Figure 2.6 Scheme for EAE animal experiments in Lewis rats 

The figure illustrates the procedure for the T cell transfer experiments. On day zero the intravenous (i.v.) injection of T 
cells into the tail vein, day two the intrathecal (i.t.) injection of antibodies and on day five rats were sacrificed, perfused 
and sent for histological analysis to Vienna.  

 

Every day the body weights and the clinical score of the animals were evaluated ( 

Table 2-18). Two days after the injection of the T cells, 500 µg of the following antibodies were 

injected intrathecal (i.t.): 14A9-rIgG2B, 31A4-mIgG2B, 22H6-rIgG2A, 22H6-hIgG1, 8-18C5-

hIgG1, IvIg and isotype controls respectively. Three days after antibody injection, rats were 

sacrificed and perfused with 4 % PFA in PBS. The brain and spinal cord were then postfixed with 

4 % PFA in PBS at 4 °C. For neuropathological analysis the material was sent to Prof. Hans 

Lassmann to the medical university of Vienna. 
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Table 2-18 Scoring scale for EAE 

Score Clinical symptoms 

0 no detectable signs 

0.5 loss of tail tonus 

1 tail paralysis 

2 gait disturbance 

3 hind-limb paralysis 

4 fore-limb paralysis 

5 death 

 

2.8 Statistical analysis 

Prism software from GraphPad was used for statistical analysis. For the identification of statistical 

differences, spearman correlation analysis were carried out. The data is represented as mean ± 

standard deviation (SD) or standard error of the mean (SEM). P-values ≤0.05 were considered 

significant (* p≤0.05; ** p≤0.01; *** p≤0.001). 
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3. RESULTS 

3.1 Detection of autoantibodies by cell-based assays 

In the laboratory of Prof. Edgar Meinl, autoantibodies in the serum and CSF of patients are 

screened by using cell-based assays. These assays were already established for other 

autoantigens of the CNS like MOG CBA (Spadaro and Meinl, 2016), neurofascin CBA (Ng et al., 

2012), aquaporin-4 (AQP-4) IF assay (Mader et al., 2010) and others, but not for OMGP so far. 

 

3.1.1 Development of OMGP-TM and OMGP-GPI cell-based assays 

The first aim of this study was to develop an assay where patients’ sera can be screened for 

autoantibodies against the OMGP protein. Therefore, the transient transfection efficiency of HeLa 

and HEK293T cells was compared. By using Lipofectamine 2000 the best transfection rate could 

be obtained with the HeLa cell line (Figure 3.1), where 19.1 % of the cells expressed the human 

OMGP-TM-EGFP (transmembrane anchored variant, which is explained later) fusion protein on 

the surface and 80.9 % of the cells were EGFP negative. The transfection of HEK293T cells 

resulted only in a portion of 7.92 % OMGP positive cells, which is around 60 % less effective than 

with HeLa cells.  

 

 

Figure 3.1 Comparison of transfection efficiencies between HeLa and HEK293T cell lines 

The x-axis indicates the EGFP fluorescence intensity. In the left graph HeLa cells were transfected with hOMGP-TM-
EGFP, whereas on the right side HEK293T cells are displayed. EGFP positive cells are above the fluorescence intensity 
of 500 and <500 the cells are EGFP negative.   
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As threshold for positive transfection, the gate is set on cells with fluorescence intensity >500. 

Regarding this result the screening for autoantibodies against OMGP in patients (chapter 3.2) was 

conducted with transient transfected HeLa cells. Due to the transient transfection, the efficiency 

of OMGP-EGFP positive cells can vary from 15-40 %. In this thesis, the term OMGP-TM and 

OMGP-GPI always describes the human variant of the protein. If the mouse variant is used it is 

indicated as mOMGP, whereas for the rat as rOMGP. 

To detect autoantibodies in the serum of patients, two cell-based assays were established. In the 

first OMGP was transiently expressed as transmembrane variant by fusing OMGP to the 

membrane spanning part of CD80 (OMGP-TM) and also fused to EGFP. In the second assay 

OMGP was expressed like in vivo with a GPI-anchor (OMGP-GPI) on the cell membrane and not 

fused to EGFP, since the construct harbors the ribosome skipping element T2A (Figure 2.4). With 

this, out of one mRNA two proteins, OMGP-GPI and cytosolic EGFP are translated which was 

verified by Western blot (Figure 3.2). OMGP-TM and OMGP-GPI were detected by monoclonal 

anti-OMGP (Figure 3.2, A) in transiently transfected cell lines HEK293T and HEK293S. The 

HEK293S is a special variant by having a knock out in the gene of N-

acetylglucosaminyltransferase I (GnT1). This leads to less glycosylation of proteins which is 

detectable in the visible size shift in the blot. OMGP has around 105 kDa (Mikol et al., 1990a) and 

is larger in the OMGP-TM variant because it is fused to EGFP. OMGP-GPI band in HEK293T is 

at 105 kDa, since the EGFP is cut due to the successful ribosome skipping. 

The detection of the OMGP proteins with an anti-GFP mAb (Figure 3.2, B) is still visible in the 

OMGP-TM variant due to the direct fusion to EGFP. Several bands appear, which represents 

incomplete produced protein fragments. For the OMGP-GPI construct the antibody detected only 

EGFP with 30 kDa because of the separation of the two proteins. Recombinant OMGP was not 

fused to EGFP and therefore is not detected by the antibody. 
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Figure 3.2 WB of OMGP-TM and OMGP-GPI constructs expressed in two HEK cell lines  

HEK293T or HEK293S (with N-acetylglucosaminyltransferase I (GnT1) knock out) transfected cell lysates were loaded 
on SDS gel and Western blot was developed with mAb anti-OMGP (A) or anti-GFP (B). As positive control for anti-
OMGP detection, recombinantly produced OMGP was loaded in the first lane next to the standard. 

 

In the next step, the correct expression of OMGP on the surface of the cells was verified by using 

a commercial monoclonal and polyclonal antibody (Figure 3.3). In the dot blot, grey represents the 

antibody binding on EGFP-, blue on OMGP-TM-EGFP and orange on EGFP-OMGP-GPI- 

transfected cells. Two different methods were used for the evaluation of antibody binding. For the 

OMGP-TM mean fluorescence intensity ratio is calculated by dividing mean fluorescence intensity 

(MFI) from cells above the EGFP fluorescence intensity >500. Therefore for MAB1674 antibody 

the MFI of 911 of OMGP-TM is divided by the background MFI of 1.9 of EGFP cells. This results 

in a MFI ratio of 479.47 (Figure 3.3, upper row). The analysis for antibodies binding to the OMGP-

GPI construct is evaluated by ΔMFI values and for this purpose the horizontal line is adjusted to 

the background control (grey blot, EGFP control cells). To calculate the binding of MAB1674, the 

percentage of cells in the Q2 gate of EGFP (0.63 %) is subtracted from the number in Q2 gate of 

OMGP-GPI cells (orange dot plot, 23.6 %) resulting in ΔQ2 of 22.97 %. In the same way it is done 

for the polyclonal antibody AF1674 (Figure 3.3 , lower row). The OMGP-TM MFI ratio results in 

1390/68.8 = 20.2, whereas ΔQ2 for OMGP-GPI is 26.3-2.28 % = 24.02 %. 
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Figure 3.3 Detection of OMGP by mAb MAB1674 and pAb AF1674 

Hela cells were transiently transfected with the constructs indicated on the x-axis and then stained with two OMGP-
specific Abs. Dot plots represent the evaluation of commercial available monoclonal MAB1674 and polyclonal AF1674 
antibody on EGFP (grey), OMGP-TM-EGFP (blue), EFGP-OMGP-GPI (orange) transfected cells. Vertical line is set to 
fluorescence intensity 500 and MFI values are calculated >500. For OMGP-TM, the MFI ratio by dividing the OMGP-
TM MFI by EGFP MFI is calculated. For OMGP-GPI, the ΔQ2 is calculated by subtraction of EGFP from OMGP-GPI 
Q2 percentage. Therefore, the horizontal line is adjusted to the background control (EGFP, grey blot). 

 

By using these commercial antibodies which result in high MFI ratios for OMGP-TM (479.47 for 

MAB1674, 20.2 for AF1674) and high ΔQ2 values for OMGP-GPI (22.97 % for MAB1674, 24.02 % 

for AF1674) it was proofed, that these cells express OMGP on their surface. Therefore, these 

assays could be used for autoantibody screening in the sera and CSF of patients. The following 

chapter describes how this CBA was optimized and the sensitivity of antibody detection could be 

increased. 

 

3.1.2 Optimization of CBA 

For MOG CBA established in the lab of Prof. Edgar Meinl, the HeLa cells are removed for the 

screening of autoantibodies by a short trypsin digest. This method on OMGP transfected cells cut 

quickly a lot of transfected protein from the surface, since OMGP has 33 predicted recognition 

sites (Table 3-1) for the trypsin enzyme (ExPASy PeptideCutter tool).  
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Table 3-1 Position and number of Trypsin cleavage sites within OMGP 

Name of 

enzyme 

No. of 

cleavages 
Positions of cleavage sites 

Trypsin 33 

7 (100%) 35 (100%) 37 (100%) 44 (100%) 81 (100%) 89 (100%) 99 

(100%) 112 (100%) 116 (100%) 126 (100%) 132 (100%) 137 (95.7%) 

142 (89.7%) 146 (100%) 157 (95.3%) 168 (100%) 202 (91.4%) 226 

(100%) 232 (100%) 240 (100%) 246 (100%) 262 (92.8%) 299 (100%) 

302 (100%) 305 (64.2%) 308 (100%) 310 (90.9%) 320 (86.7%) 329 

(92.8%) 372 (100%) 404 (100%) 412 (100%) 423 (100%)  

 

An alternative method for removing adherent cells is by incubating them instead of trypsin in EDTA 

solution. This was done for OMGP and EGFP transfected cells in comparison of 10 min, 6 min 

trypsin digest and 0.5 mM EDTA (Figure 3.4). It was demonstrated that trypsin cuts within 6-10 min 

high levels of OMGP from the surface, since with serum of a patient having OMGP antibodies 

(2492) the detection signal diminished (MFI ratio 2.1 for 10 min and 1.9 for 6 min). If the transfected 

HeLa cells were removed by 0.5 mM EDTA, no OMGP was shed from the surface and the higher 

MFI ratio of five is measured. The same effect was also noticeable by detecting OMGP with the 

commercial MAB1674. This antibody is a purified monoclonal and still detected the small amounts 

of OMGP on the surface, no matter if cells were incubated 6 min or 10 min with trypsin, the MFI 

ratio of 27.8 is comparable to 32.5. But the MFI ratio of 151.2 is much higher when the EDTA 

removal was used, which shows again that there is much more OMGP available on the surface. 

This effect was seen to a greater extend for the detection of the OMGP autoantibodies within 

patients’ sera, because the concentration and the affinity of these antibodies is much less than 

the commercial antibody. In this way the CBA could be improved by using an alternative cell 

removal with 0.5 mM EDTA or then furthermore cold PBS removal was developed. By flushing 

down the cells with cold PBS the outcome was the same and it is even less manipulation on the 

cells. 
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Figure 3.4 Effect of trypsin or EDTA treatment on OMGP transfected HeLa cells 

HeLa cells were transfected either with EGFP (grey) or OMGP-TM-EGFP (blue) and the surface expression of OMGP 
was detected by a patient having OMGP autoantibodies (2492) or the commercial monoclonal antibody (MAB1674). 
The variation of the detection was compared by using 10 min, 6 min of trypsin digest or 0.5 mM EDTA for removal of 
the transfected adherent HeLa cells. MFI ratios are indicated below each dot plot. 

 

Additionally, the sensitivity of rare autoantibody detection in patients’ sera could be improved by 

using a biotinylated secondary antibody followed by incubation with streptavidin-alexa647 dye. 

This amplification of the signal in Figure 3.5 was compared to an anti-human-IgG antibody directly 

labeled with alexa647. Patient PPH035 had a MFI ratio of 2.7 for the detection with a directly 

labeled one, whereas by amplification of the signal with the biotin-streptavidin system the MFI ratio 

increased to 20.3. Additionally, the same effect but less imposing was seen with the serum of 

patient 1913, where the MFI ratio increased from 3.7 with the directly labeled antibody to 3.9 by 

using the biotinylated secondary antibody. Moreover, the incubation time of the staining can be 

carried out on a shaker in the cold room and not only in standing tubes on ice. This lead also to 

an improvement of detection, which was seen in the increase of the MFI ratio from 3.9 to 10.8 in 

patient 1913. For patient PPH035 shaking during incubation time didn’t had this effect since the 

MFI ratio of 11.4 was even a bit lower, than in the non-shaking condition with 20.3. 
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Figure 3.5 Increased sensitivity of autoantibody detection in CBA by using Biotin-STV system 

Two different patients with autoantibodies against OMGP were compared for the detection using a directly labeled 
(direct 2nd Ab) or a biotinylated secondary antibody followed by incubation with a streptavidin coupled fluorophore 
(Biotin-STV). In the last column (Biotin-STV shaking), the staining was carried out on a shaker in the cold room during 
the incubation time, whereas for the other conditions it was done in a usual non-shaking condition on ice. The patient 
PPH035 displays plasmapheresis material, while patient 1913 is a serum sample. MFI ratios are indicated under each 
single dot plot. 

 

The CBA for MOG autoantibody screening is conducted with living HeLa cells and therefore the 

OMGP cell-based assay was also tested for using living or fixed cells. Figure 3.6 illustrates the 

effect of autoantibody binding from two patients (1913, 2492) and two commercial antibodies 

(AF1674, MAB1674) to paraformaldehyde fixed or non-fixed cells expressing OMGP on their 

surface. If the cells were fixed, the autoantibody binding to OMGP was completely abolished in 

patient 1913 with a MFI ratio of 1.0 compared to non-fixed with 4.7. For patient 2492 it decreased 

similarly from a MFI ratio of 7.8 in living cells to 1.1 in fixed cells. 
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Figure 3.6 Effect of fixation on transfected HeLa cells for screening of autoantibodies in CBA 

The dot plots illustrate the antibody binding of two commercial antibodies (MAB1674, AF1674) and two autoantibody 
positive patients’ sera (1913, 2492) to OMGP-TM-EGFP (blue) and EGFP (grey) transfected cells. The right column 
demonstrates the antibody binding to living non-fixed HeLa cells and the left column to PFA fixed HeLa cells. 

 

Also the binding of the monoclonal antibody MAB1674 to OMGP was decreased due to fixation 

from a ratio of 148.1 in non-fixed cells to 5.0 in the fixed condition. The least affected polyclonal 

antibody AF1674 showed the same trend also with a higher MFI ratio of 42.5 in non-fixed 
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compared to 22.0 in fixed cells. All sera with autoantibodies and commercial antibodies showed 

that due to fixation the antigen can no longer be recognized as good as on living cells, since the 

epitopes got destructed. Therefore, the CBA was carried out on non-fixed living HeLa cells 

expressing OMGP on their surface.  

The CBA for OMGP autoantibody screening was established similar to the MOG assay, where 

sera are screened on living HeLa cells expressing the antigen transiently expressed on their 

surface (Spadaro and Meinl, 2016). Furthermore, the sensitivity of detection could be increased, 

by using the biotin-streptavidin amplified signal and an incubation of the staining on a shaker. 

While in the MOG assay, cells are removed by a short trypsin treatment, in OMGP CBA cells were 

flushed down with cold PBS.  

 

3.2 CBA screening for autoantibodies against OMGP-TM and OMGP-GPI 

In total 675 samples, coming from three different centers, were analyzed for OMGP 

autoantibodies. The pediatric ADEM cohort is kindly provided by Prof. Amit Bar-Or (currently 

University of Pennsylvania), MS and OND/OIND cohort from Prof. Tomas Olsson (Karolinska 

Institute in Stockholm), patients with GAD Abs, MS/CIS and MS twin cohorts from the Institute of 

Clinical Neuroimmunology LMU (Prof. Tania Kümpfel and colleagues).  

The raw data of the screening of 675 sera and 14 plasmapheresis samples are demonstrated in 

Figure 3.7. The quantification of the data was carried out as described in Figure 3.3.  
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Figure 3.7 CBAs for OMGP autoantibody screening 

The graphs show the results of the autoantibody screening for two different OMGP anchored constructs. (A) For OMGP-
TM, six cohorts were tested: MC/CIS (n=376), patients having glutamic acid decarboxylase autoantibodies (GAD+, 
n=22), children with acute disseminated encephalomyelitis (ADEM, n=56), other neurological diseases (OND) or other 
inflammatory neurological diseases (OIND, n=107), healthy controls (HC, n=114) and 37 twin pairs, discordant for MS. 
(B) OMGP-GPI was analyzed within the same cohorts, except the MS twins. Red triangle marks highest positive index 
patient (mean value of 30 measurements as daily control in each assay), blue symbols are subjects positive for OMGP-
TM+ and OMGP-GPI+, purple for OMGP-TM+/OMGP-GPI-, orange for OMGP-TM-/OMGP-GPI+. Beside sera, this figure 
also includes measurements of 14 plasmapheresis samples (open circle), whereas only one above the cutoff is visible. 
The horizontal lines indicate the thresholds in each graph and are calculated by mean value of HCs plus three/six times 
SDs (OMGP-TM lower cutoff 3.0, higher cutoff 4.4 and OMGP-GPI cutoff 7.1). 104 HCs were measured twice, ten HCs 
samples coming from the Swedish cohort were analyzed once. Positive sample values are included as mean of 
minimum two replicates.  
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The 104 sera from the Munich HC cohort were analyzed twice, 10 HCs from the Swedish cohort 

once. Positive samples above 3 SDs of the healthy control group, were analyzed at least twice. 

The index patient 2492 is represented as mean of 30 measurements. The coefficient of variation 

in the replicates is in average for the OMGP-TM 0.27 and therefore more precise than for OMGP-

GPI with 0.39, which indicates, that OMGP-GPI has a greater level of dispersion around the mean. 

Looking at the original data, it is evident that there are few clearly positive patients, while the vast 

majority is negative. Further, there is a gray zone and the classification of these patients depends 

on the threshold. In general, a low threshold results in false positive and a high threshold in false 

negative classifications. For both assays, OMGP-TM (Figure 3.7, A) and OMGP-GPI (Figure 3.7, 

B), the cutoff is calculated from 114 HCs. In Figure 3.7A and B, a low (mean of HCs + 3SDs) and 

additionally a high threshold (mean of HCs + 6 SDs) is indicated in Figure 3.7A. For 3 SDs, this 

results for OMGP-TM in a MFI ratio of 3.0 and for OMGP-GPI in 7.1 % of ΔQ2. For 6 SDs in 

OMGP-TM, this results in a MFI ratio of 4.4. This consideration indicates that a threshold of 

mean + 6SDs is meaningful for the OMGP-TM construct, but appears to be too stringent for 

OMGP-GPI, since the signal to noise ratio is better in the OMGP-TM, than in the OMGP-GPI 

assay. 

Six different cohorts were included in the screening. When considering the less stringent cut-off, 

the highest frequency with 5.3 % (20/376) of OMGP-TM antibodies was seen in the MS/CIS 

cohort. These positive patients have all MS and some in addition NMOSD or ON. This number 

was reduced to 2.4 % in the same cohort, when analyzed on OMGP-GPI, which shows the 

differences in those two cell-based assays. The blue symbol in the graph show subjects double 

positive for OMGP-TM+ and OMGP-GPI+, purple for OMGP-TM+/OMGP-GPI- and orange for 

OMGP-TM-/OMGP-GPI+. The patients with the highest reactivity were positive in both assays 

(2492 index patient red triangle, 11-114, 1364, 3031, 3008, PPH035, 1825), whereas the 

intermediate patients were only positive in either OMGP-TM or OMGP-GPI assay. Combining both 

assays result in 5.9 % (22/376) of MS/CIS patients having autoantibodies against the human 

OMGP protein. Comparing this number to 1.8 % in healthy donors, the appearance of these 

autoantibodies in MS patients is three times higher.  

Another patient cohort having autoantibodies against glutamic acid decarboxylase, had in addition 

with 4.5 % antibodies against OMGP-TM and with 9.1 % against OMGP-GPI. These two patients 

are diagnosed with limbic encephalitis or cerebellar syndrome. Pediatric patients with ADEM 

showed a frequency of 1.8 % autoreactivity towards OMGP. In OND/OIND group, 3.7 % off 

patients had antibodies to OMGP-TM and only 0.9 % to OMGP-GPI. These four patients are 

diagnosed with psychosis, paresthesia, neurosarcoidosis or SLE.  
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Concluding these findings, MS/CIS patients had with a frequency of 5.9 % a three times higher 

appearance of autoantibodies than healthy donors with a frequency of 1.8 %.  

When considering the stringent cutoff of mean + 6SDs (Figure 3.7, A), then 2.1 % of MS, one 

patient with a psychosis and one child with ADEM would score positive. Thus, the conclusion 

would be the same: antibodies to OMGP are detected in serum of a few percent of MS patients. 

 

 

Figure 3.8 Autoantibody screening in CSF 

CSFs from 42 MS patients were analyzed either on OMGP-TM (blue) or on OMGP-GPI (orange) transfected cells. The 
dotted horizontal line indicates the 3SDs-cutoff, calculated with sera for the different OMGP variants. OMGP-TM is 
represented as MFI ratio, whereas OMGP-GPI as ΔQ2. 

 

Next, the presence of antibodies to OMGP was analyzed in the CSF. To this end, a total of 42 CSF 

samples from MS patients were screened with both OMGP-TM and OMGP-GPI (Figure 3.8). For 

the analysis of the CSF data, the HCs’ sera cutoff was applied, which might be too harsh for this 

diluted body fluid. But still one patient had antibodies to OMGP and appeared in the OMGP-TM 

CBA above the cutoff. However, the signal is relatively low. Thus, while in a few patients 

autoantibodies to OMGP could be clearly detected in serum, anti-OMGP reactivity in CSF is low. 

From none of donors with antibodies to OMGP in serum, CSF was available.   

 

3.3 IgG1 as main subclass of OMGP autoantibodies in patients 

The screening for OMGP autoantibodies was conducted for all IgG isotypes by using an anti-

human-IgG Fcγ fragment specific antibody. To analyze the subclasses by flow cytometry, seven 

different IgG1 and four IgG2/IgG3/IgG4 secondary antibodies (Table 2-11) were tested. None of 

those gave a signal for the OMGP seropositive patients. In Figure 3.9 (A) one series of isotyping 
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antibodies is illustrated, where the index patient 2492 was analyzed in OMGP-GPI CBA for the 

subclasses, by using anti-human-IgG-HRP or anti-IgM/IgG1-4 antibodies for detection. The 

staining of those subclass antibodies was carried out by an anti-HRP-alexa647. Although a clear 

signal with anti-IgG is visible, the IgG subtype secondary Abs are just indicative for an OMGP-

specific IgG1 and IgG4 response. 

Another antibody specific for IgG1 detection is shown in Figure 3.9 (B). This also gave a strong 

signal for one patient having MOG antibodies in the MOG CBA, where it serves as positive control. 

Although the function of this secondary antibody was proofed by the detection of IgG1 in MOG 

seropositive patient, there was no signal for the index patient with OMGP autoantibodies. 

Since the identification of the isotype of the anti-OMGP response was not clear, another isotype-

specific Ab from “The Binding Site”, which was also used in another study (van Sonderen et al., 

2016) was tested (Figure 3.9, C).  

 

 

Figure 3.9 Comparison of isotype specific antibodies 

(A) The serum of the index patient 2492 was analyzed in OMGP-GPI CBA with anti-IgG-HRP and subclass antibodies 
(anti-IgG1-4-HRP, anti-IgM-HRP), followed by an incubation with anti-HRP-alexa647 detection antibody. (B) To proof 
the function of another anti-human-IgG1 antibody (abcam), a MOG-IgG1 seropositive patient was tested. This antibody 
didn’t give a signal for OMGP seropositive index patient tested by OMGP-TM CBA. (C) Only one primary anti-human-
IgG1 antibody from “The Binding Site” was detecting IgG1 isotype in patients with OMGP autoantibodies, displayed 
here for the index patient. 
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This anti-human-IgG1 is the only antibody, which detected the IgG1 subclass in some OMGP 

seropositive patients. Regarding the positive result, this anti-human-IgG1 and anti-human-IgG4 of 

the same company were then used for the isotype screening. Using the lower cutoff, out of 

29 positive patients, ten were identified having IgG1 isotype and none IgG4 autoantibodies. In the 

OMGP-TM positive cohort, out of 26 patients in 38 % of patients IgG1 was determinable, whereas 

in OMGP-GPI CBA out of 13 patients 23 % had detectable IgG1 autoantibodies. In 62 % for 

OMGP-TM CBA and 77 % for OMGP-GPI CBA no isotype could be analyzed. Considering the 

stringent cutoff, the nine positive patients are displayed in Figure 3.10, whereas the tenth patient 

(index 2492) is described in detail in section 3.9. 

 

 

Figure 3.10 Overview of IgG1 isotype in OMGP seropositive patients 

OMGP-TM CBA shows identification of IgG1 subclass in OMGP IgG seropositive patients. Grey Histograms represent 
background of EFGP transfected cells, whereas purple histogram represent antibody binding to OMGP-TM transfected 
cells. 
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3.4 Long-term persistence of OMGP autoantibodies in the serum of patients 

Longitudinal samples were available from eleven patients, from which five had only one follow up 

sample and six could be analyzed in 3-7 time points. The highly reactive index patient 2492, who 

showed persistent Abs to OMGP, is discussed in detail in section 3.9. The other five longitudinal 

courses are illustrated in Figure 3.11. 

 

 

Figure 3.11 Longitudinal course of five patients 

Patients were analyzed from 0.5 up to 26 years after disease onset. Blue color represents the measurement from 
OMGP-TM CBA, whereas orange from OMGP-GPI. The dotted horizontal line indicates the cutoff (mean of healthy 
controls + 3SDs) for each assay, 3.0 for OMGP-TM and 7.1 for OMGP-GPI. 
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For patient 1014 four samples could be evaluated and all time points were continuously positive 

for the OMGP-TM as well as OMGP-GPI CBA. The 71 year old (at first time point) female patient 

suffers from GAD antibody associated cerebellar syndrome and she was followed for 4.5 years 

from 7.2-11.7 years after disease onset. 

The second patient 1294 was analyzed from 21.1-26.3 years after disease onset. At the first time 

point the female patient was 47 years old, where she was diagnosed with a severe form of RRMS, 

which is also expressed by the high clinical EDSS score of six. During the follow up period of 

5.2 years, the autoantibodies were always present, as seen with both assays, OMGP-TM and 

OMGP-GPI CBA. 

The patient indicated with PPH035 presented over a time period of about a year, almost every 

second month in the outpatient clinic. It was her fourth year after disease onset, where she 

experienced several relapses. The antibodies were always positive, when analyzed with the 

OMGP-TM, whereas only the two last time points scored positive in the OMGP-GPI CBA. 

Patient 2233 could be measured relatively early after 0.5 years of disease onset and with an age 

of 41. The female RRMS patient with an EDSS score of two, was seropositive over a period of 1.3 

years evaluated with OMGP-TM, whereas in OMGP-GPI the antibody values stayed under the 

cutoff. 

For the female 32 year old (first time point) patient 1913 with an EDSS score of 4.5, only in one 

time point autoantibodies against OMGP-TM were detectable 19.3 years after disease onset. In 

the whole follow up period of 3.3 years no autoantibodies were detected with OMGP-GPI CBA. 

Together, these longitudinal data indicate that OMGP autoantibodies tend to persist in most 

patients. 

 

3.5 Purity of recombinantly expressed OMGP and subsequent biotinylation 

Human OMGP was produced as a secreted protein in HEK293-EBNA cells as described in section 

2.3.1 and purified through an IMAC (section 2.3.2). The antigen was used to establish an ELISA 

(section 3.6), for the affinity purification of patient derived Abs (section 3.9.2), to detect OMGP-

specific T cells (section 3.13) and for generation of OMGP-specific T cells to be used in an animal 

model (section 3.12). To check the successful elution and quality of the purified protein, the crude 

supernatant, flow through, wash as well as elution fractions 50/75/150/1000 mM imidazole were 

loaded on a SDS gel (Figure 3.12). Before the purification, the supernatant contained also other 

proteins, which already passed the column while loading (flow through). An increasing purity of 
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the OMGP protein with raising imidazole concentrations is demonstrated in Figure 3.12, at a size 

of around 105 kDa. Due to the high glycosylation content, OMGP appears as a broad band in the 

gel. 

 

 

Figure 3.12 Coomassie stained SDS gel of recombinant produced human OMGP 

The two gels show the unpurified supernatant (Renner et al.) of HEK293-EBNA cells, flow through (FT), wash (W) of 
the column and the elution steps using different concentrations of imidazole (50/75/150/1000 mM). The increasing purity 
of OMGP at 105 kDa is shown. 

 

In average, all purifications yielded in 2.3 mg purified OMGP protein per 100 ml HEK293-EBNA 

culture (Table 3-2). This varied due to the quality of the cells regarding their passage number and 

the amount of death cells in the culture. 

 

Table 3-2 Yield of hOMGP in HEK293-EBNA culture 

HEK293-EBNA culture volume [L] purified hOMGP [mg] 

0,2 3 

0,6 10 

0,8 28 

0,7 26 

0,65 26 

1,5 7 

1,1 11 
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The final purification step required the dialyzing against PBS and final concentration of OMGP by 

using an Amicon 50 kDa spin column. In Figure 3.13 the OMGP appears at 105 kDa and almost 

no contamination of other proteins is visible.  

 

 
Figure 3.13 Purified hOMGP 

The SDS gel proofed the absence of proteins in the flow through (FT Amicon) and a clean production of 105 kDa OMGP 
in the dialyzed and concentrated fraction. 

 

For some assays (ELISA and antibody affinity purification), it was required to use biotinylated 

protein and therefore the Avi-tag of the protein was necessary. After enzymatic biotinylation 

(chapter 2.3.3) by BirA ligase, the efficiency was analyzed by Western Blot. Figure 3.14 

demonstrates the positive biotinylation by staining with STV-HRP and a visible band of 105 kDa. 

The addition of biotin increased the protein by 0.24 kDa, which is not detectable by Western blot. 

The broad smear of the band is due to high amount of protein loaded and also the behavior of 

glycoproteins on a gel or Western blot. 
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Figure 3.14 Proof of biotinylation by Western Blot 

In the WB the biotinylation of OMGP could be analyzed by detection with STV-HRP. The protein shows a size of around 
110 kDa, whereas the additional weight of 0.24 kDa from the biotin can’t be seen. 

 

3.6 Detection of OMGP autoantibodies by streptavidin ELISA 

Purified and biotinylated OMGP was used for an ELISA screening, beside the CBA screening 

(section 3.2). The STV-ELISA was validated, using pAb AF1674 (Figure 3.15). Each screening 

plate contained as daily control the highly reactive index patient 2492 for OMGP autoantibodies. 

This allowed the normalization of each serum measurement to this daily value, since the OD varied 

regarding the substrate incubation time. Figure 3.15 represents 35 measurements of the index 

patient compared to its reactivity towards the STV background. For the analysis of the 

autoantibody in the different cohorts, the STV background was subtracted and then normalized to 

the daily control.  

 

 

Figure 3.15 STV-ELISA validation and OMGP Ab reactivity of the index patient 

The bar with pAb AF1674 validation shows the mean of five measurements, whereas the index patient 2492 is displayed 
as mean of 35 measurements, similar as for STV background. This serum 2492 served as daily control on each ELISA 
plate and was used for normalizing the OD values. Error bars represent SDs. 
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Different cohorts were analyzed for OMGP autoantibodies by ELISA (Figure 3.16). The cutoff for 

positivity was set to the mean value of the HC measurements plus three SDs and results in 0.4. 

All patients above the threshold were analyzed twice and the value represents the mean of these 

measurements. The coefficient of variation in the replicates was in average 0.13 and therefore 

lower than in CBAs. 

 

 

Figure 3.16 STV-ELISA screening for OMGP autoantibodies 

The graph displays the normalized OD of the analyzed sera. From each value the STV background is subtracted and 
then normalized, by setting the OD of the index patient as daily control to 100 %. These groups were analyzed: multiple 
sclerosis/clinical isolated syndrome (MS/CIS, n=376), neuromyelitis optica spectrum disorder (NMOSD, n=24), opticus 
neuritis (ON, n=11), other inflammatory neurological disease (OIND, n=27), other neurological disease (OND, n=45) 
and healthy controls (HC, n=114). Horizontal line indicates cutoff at 0.4 (mean of HCs plus three SDs). All sera above 
the cutoff are mean values of at least two measurements. The cross symbols display patients newly identified by ELISA, 
which are not positive in CBAs. The orange triangle indicates the index patient and it’s normalization to 100 %. 

 

The biggest cohort is the MS/CIS group, where 2.4 % of the patients showed reactivity against 

OMGP, while in the HC cohort 1/114 (0.9 %) scored positive. Four patients were newly identified 

in this MS group and didn’t score positive in any of the CBAs. In the other cohorts, NMOSD, ON 

and OND no patients were detected with OMGP autoantibodies.  

 

3.7 Comparison of different assays established to detect autoantibodies to 

OMGP 

Due to the SDs observed in the healthy donor group for the ELISA and the OMGP-GPI assay, a 

cutoff that is more stringent than mean + 3SDs does not appear meaningful. Therefore, the 

quantitative comparisons between ELISA and CBAs, outlined in this chapter, were performed 
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using the lower cutoff. Additionally, just for completeness the higher cutoff is displayed to indicate 

the grey zone between low and high threshold. 

In the ELISA, 2.4 % of MS/CIS patients were detected with OMGP autoantibodies, whereas with 

the OMGP-TM CBA 5.4 % and OMGP-GPI CBA 2.4 %. For the comparative analysis between 

ELISA and CBA 596 sample pairs were tested in Spearman correlation and gives a weak but 

significant correlation of 0.19 between ELISA and OMGP-TM CBA (Figure 3.17). There are five 

samples which were seropositive for both assays. The ELISA detected overall less autoantibodies 

than the OMGP-TM CBA, but new patients were identified: two with high, one with intermediate 

and two with low reactivity.  

 

 

Figure 3.17 Spearman correlation analysis between ELISA and CBAs 

The left graph shows for each ELISA measurement (cutoff at mean value of HCs + 3 SDs) the corresponding value in 
the OMGP-TM CBA with the lower (mean value of HCs + 3SDs) and higher cutoff (mean value of HCs + 6SDs) with its 
grey zone in-between. The right graph displays correlation between ELISA and OMGP-GPI CBA (cut off at mean value 
of HCs + 3SDs). 596 values were compared and double positives (ELISA+/OMGP-TM+ or ELISA+/OMGP-GPI+) are 
marked in blue, ELISA+ in green, OMGP-TM+ in violet and OMGP-GPI+ in orange. 

 

If ELISA measurements are compared to the GPI anchored variant in CBA, only the values of two 

patients overlap for the OMGP autoantibody identification. The correlation between these two 

assays is significant, but also weak with r=0.18.  

By comparing 675 pairs of data points from both TM and GPI anchored OMGP CBA variants, a 

higher significant correlation of r=0.69 can be obtained (Figure 3.18). In these assays, eleven 
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double positive patients with autoantibodies were detected, no matter if the OMGP was presented 

TM or GPI anchored. These patients have a higher titer and also the detection of Ig subclasses is 

more likely in double positives as well as more frequent long-term persistence of OMGP 

autoantibodies is observed. 

 

 

Figure 3.18 Spearman correlation between the two CBAs 

The dots represent for each OMGP-GPI autoantibody measurement the corresponding value in the OMGP-TM CBA. 
675 values were compared and double positives (ELISA+/OMGP-TM+ or ELISA+/OMGP-GPI+) are marked in blue, 
OMGP-TM+ in violet and OMGP-GPI+ in orange. Vertical grey lines indicate low (mean values of HCs + 3 SDs) and high 
(mean values of HCs + 6 SDs) cutoffs, with its grey zone in-between. Horizontal line displays cutoff (mean values of 
HCs + 3 SDs) for OMGP-GPI CBA.  

 

Table 3-3 summarizes the autoantibody screening for OMGP-TM/-GPI CBA, using the lower 

cutoff. By combining both results, which means positivity in either OMGP-TM- or OMGP-GPI CBA, 

5.9 % of MS/CIS patients had autoantibodies against the antigen. The highest ones scored 

positive with 1.9 % for both assays. For patients with GAD autoantibodies the OMGP-GPI CBA 

detected with 9.1 % one patient more than with the OMGP-TM assay. This is the only case where 

the GPI detection method had a higher frequency. Patients with ADEM were detected in both 

assays with a frequency of 1.8 % and the same was true for HCs. In the OND/OIND cohort 3.7 % 

had autoantibodies in the TM detection method and only 0.9 % with the GPI CBA. Overall with the 

OMGP-TM CBA more MS/CIS patients were identified than with OMGP-GPI CBA, whereas the 

frequency for HCs was in both assays identical.  
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Table 3-3 Summary of seropositive numbers in CBA measurements 

Numbers in the table are calculated by using the less stringent cutoff (mean values of HCs + 3 SDs). 

  OMGP-TM+ or 
OMGP-GPI+ 

CBA 

OMGP-TM+ CBA OMGP-GPI+ CBA OMGP-TM+ & 
OMGP-GPI+ CBA 

Patient 
cohort 

total  number freq. number freq. number freq. number freq. 

MS/CIS 376 22 5.90 % 20 5.3 % 9 2.4 % 7 1.9 % 
GAD 22 2 9.10 % 1 4.5 % 2 9.1 % 1 4.5 % 
ADEM 56 1 1.80 % 1 1.8 % 1 1.8 % 1 1.8 % 
OND/OIND 107 4 3.70 % 4 3.7 % 1 0.9 % 1 0.9 % 
HC 114 3 2.60 % 2 1.8 % 2 1.8 % 1 0.9 % 
          

total 675 32 4.70 % 28 4.1 % 15 2.2 % 11 1.6 % 

 

Together, here three assays were developed and all three assays were validated with commercial 

Abs to OMGP (Figure 3.3 for CBAs and Figure 3.15 for STV-ELISA). Although the results of the 

assays correlated with each other, the strongest association was observed between OMGP-TM 

and OMGP-GPI. When considering the dispersion, the difference between the strongly reactive 

ones and the mean background level, the OMGP-TM assay would be most reliable assay. 

 

3.8 Clinical description of patients with autoantibodies against OMGP 

The clinical details of donors with autoantibodies to OMGP are given in Table 3-4 and patients 

with a higher level of autoantibodies to OMGP, who scored positive with the stringent cutoff are 

indicated with a star symbol.   

Most patients from the Munich cohort have lesions in the brain, several in the spinal cord and 

some in the brainstem. Interestingly, three highly positive patients (2492, 1294 and 2088) have a 

brain atrophy in the MRI scan. The sampling point varies from beginning of the disease, to more 

than 20 years after disease onset or manifestation. Five patients experience a more severe 

disease course having an EDSS score ≥ 4. All Munich cohort samples were tested negative for 

MOG autoantibodies and some were additionally tested for AQP4 reactivity and also showed 

negative results.  
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Table 3-4 Clinical features of patients with OMGP autoantibodies 

Star symbol (*) indicates patients positive even with the stringent cutoff. 
 

# 
Positive 
sera/number 
of follow up 

Sex Age Diagnosis Clinical description EDSS 

Munich MS-NMOSD 

2492* 5/5 M 37 RRMS 

Relapses: 4 (brainstem, myelitis, ON) 
Lesions: brainstem, spinal cord, cerebral 
MS typical, brain atrophy 
Disease duration: 17.7 years, OMGP 
seropositive in 60 month follow up 

2.5 

1294* 7/7 F 48 RRMS 

Relapses >10 (brainstem, recurrent 
myelitis, ON, cognitive dysfunction) 
Lesions: brainstem, spinal cord, cerebral 
multiple MS lesions, brain atrophy 
Disease duration: 26.6 years, OMGP 
seropositive in 48 month follow up 

6.0 

2088* 1/2 M 51 RRMS 
Relapse: 1 (myelitis, pathological VEP) 
Lesions: deep WM, LETM, brain atrophy 
Disease duration: 0.8 years 

2.5 

PPH035 7/7 F 32 RRMS high relapse rate (3/year) 3.0 

2233 3/3 F 58 RRMS ocular and spinal manifestation 2.0 

1913 1/4 F 33 RRMS recurrent ON, spinal manifestation 4.5 

3051 1/2 F 22 RRMS high lesion load, brainstem manifestation 3.5 

233 1/2 M 30 RRMS 
disease activity reduced under 
natalizumab 

2.0 

3008 1/1 M 37 NMOSD ON, myelitis along several vertebra 1.5 

Munich typical MS 

2105* 1/1 M 58 RRMS 

Relapse: 1 (myelitis) 
Lesions: spinal cord, several WM and 
subcortical 
Disease duration: 0.6 years 

2.5 

1825 2/2 F 30 RRMS 
ON and increasing number of lesions due 
to therapy rejection of patient 

2.0 

1453 1/1 F 43 RRMS visceral symptoms, Hashimoto’s thyroiditis 3.0 

1319 1/1 M 29 RRMS multiple lesions, spinal manifestation 1.5 

2252 1/1 M 30 RRMS myelitis along several vertebra 2.0 

2273 1/1 M 51 RRMS brainstem and spinal lesions 5.5 

Munich CIS 

1364* 1/2 F 37 CIS/MS 

Relapse: 1 (large tumefactive cerebral 
lesion) 
Lesions: large parietal contrast enhancing 
deep WM 
Disease duration: 2.5 years 

1.5 

3031* 1/1 F 36 CIS/MS 
Relapse: 1 (myelitis) 
Lesions: spinal cord, deep WM 
Disease duration: 0.5 years 

0.0 

Munich encephalitis 

1014 4/4 F 72 
cerebellar 
syndrome 

Non-paraneoplastic limbic encephalitis 
(NPLE), GAD antibody associated 

/ 
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3887 1/2 F 38 
limbic 
encephalitis 

GAD antibody associated, NPLE / 

Stockholm MS cohort 

11-114* 1/1 M 45 SPMS more than nine lesions in MRI scan 4 

11-134* 1/1 F 29 RRMS 
remission, more than nine lesions in MRI 
scan 

2 

11-077 1/1 M 25 RRMS remission phase, 3-5 lesions in MRI scan 0 

12-176 1/1 F 45 PRMS 
relapses without remission, 0-2 lesions in 
MRI scan 

1.5 

11-102 1/1 M 45 RRMS remission phase, 0-2 lesions in MRI scan 6 

Stockholm OND cohort 

12-236* 1/1 M 29 psychosis 
no treatment, no OCBs, no lesions in MRI 
scan 

 

Canadian pediatric cohort 

ACJ-108* 1/1 F 10.5 ADEM 
monophasic acquired demyelinating 
syndrome 

/ 

 

In conclusion, most patients have an interesting clinical phenotype, since the majority with nine 

out of 19 Munich samples, have MS-NMOSD phenotype. This pattern was already described by 

our lab (Spadaro et al., 2016), where patients showing more often ON, lesions in brainstem and 

spinal cord involvement. Therefore, those were categorized as MS selected group with an NMOSD 

phenotype. 

In addition to patients with MS, this study identified one patient with a psychosis and one child 

diagnosed with ADEM, having high level of OMGP autoantibodies. 

The following section describes the highest positive patient 2492 with OMGP autoantibodies, 

which is subsequently named as index patient. This patient is also highlighted in Table 3-4 and 

has an interesting MS-NMOSD clinical phenotype. 

 

3.9 Detailed analysis of the highest positive index patient 2492 

3.9.1 Clinical case 

The male patient was diagnosed with MS in 2002 when he was 18 years old. After a Hepatitis B 

vaccination and a measles infection he experienced paresthesia of his extremities. At this time 

point, no OCB were detectable in the CSF. The symptoms disappeared after steroid treatment. 

One year later, the patient got a relapse with signs of brain stem dysfunction and there OCBs, 

also with intrathecal IgM production, were present in the CSF. From 2002 until March 2014 the 

patient was treated with interferon beta but got two more relapses in 2006 and 2009 with ataxia 

of gait and ON. Since 2014 he has been visiting the LMU MS outpatient clinic yearly and started 
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at age of 30 years dimethyl fumarate (DMF) treatment. His MS course had several relapses, where 

he didn’t completely recover and was therefore diagnosed with RRMS and incomplete remission. 

The patient had from beginning on a high titer of OMGP antibodies and scored positive in the 

OMGP-TM assay with a MFI ratio of 16.6 as well as in OMGP-GPI CBA with 31.16 % (Figure 

3.19). 

 

 

Figure 3.19 OMGP autoantibody reactivity of the index patient in CBAs 

The serum of the patient was tested for OMGP autoantibodies in TM CBA (blue) where the MFI ratio is 16.6 and in GPI 
CBA (orange) with ΔQ2 of 31.16 %. The grey dot plot represents the antibody binding to EGFP transfected HeLa cells. 

 

Five longitudinal samples could be collected over the time and were analyzed from 12.6 until 

15.6 years after disease onset (Figure 3.20). In all time points the patient had autoantibodies 

against OMGP. 

The clinical EDSS score of the patient varied from 2.5 in 2014, stayed at 2.0 from 2015-2017 and 

declined to 1.5 in February 2019. Under DMF treatment he is quite stable and didn’t experience 

further relapses, as it was the case with interferon beta. In the MRI scan he already presented in 

2014 with lesions in the cervical spinal cord, cerebellar on both sides and brainstem lesions in the 

pons region. Furthermore, periventricular, sub- and juxtacortical lesions in the cerebrum and the 

tissue destruction of the corpus callosum were visible. From 2014-2019 this findings were stable 
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and no contrast enhanced lesions, which represent active lesions, appeared. Only one lesion 

increased and therefore the patient’s brain was analyzed with positron emission tomography 

(PET) using a translocator protein (TSPO) tracer, which detects microglial activation. There was 

no evidence for focal microglia activation in this specific periventricular lesion. During this 

observation period, the patient didn’t develop new lesions, neither in the brainstem, cerebellum or 

cerebrum, nor in the spinal cord. However, brain atrophy over the years could be measured by 

MRI. 

 

 

Figure 3.20 Longitudinal OMGP autoantibody analysis of the index patient 

The graph shows the measurements of five follow up samples, analyzed with OMGP-TM CBA. Dotted horizontal line 
indicates the lower cutoff, which is the MFI ratio of 3.0. Values represent n≥2 replicates. Time point 2, 3 and 5 are 
plasma, whereas 1 and 4 display measurement of serum samples. Error bars represent SEM of 30 replicates for the 
first time point, six replicates of the last time point and of two measurements for the other time points 2/3/4.  

 

The noticeable parameters in the blood were the high anti-nuclear antibody (ANA) titer, which 

decreased in 2015 from 1:3200 to 1:800 in 2016. No other autoimmune related autoantibodies like 

double-strand DNA (dsDNA), MOG, AQP4, rheumatoid factor (RF) or anti-phospholipid were 

detected. The blood was analyzed for cold agglutinins and cryoglobulins, since the serum clogged 

in the autoantibody preparations in the lab. The clinical chemistry in the LMU hospital detected 

positive titer for cold agglutinins with 1:10 dilution at 4 °C, which is still in the physiological range 

and might also vary in blood of patients regarding the season. These cryoglobulins can be seen 

in patients with HBV, HCV, HIV and rheumatoid disease or appear, if patients have high titers of 

antibodies, which is the case for OMGP and ANA autoantibodies in the index patient’s blood. 
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The high titer of OMGP autoantibodies is illustrated in Figure 3.21 by diluting the serum of the 

patient from the second time point from 1:50, which is the screening dilution, to 1:1600. Also with 

higher dilutions, the reactivity was still detectable. 

 

Figure 3.21 Serial dilution of the index patient’s serum 

The serum sample of the second time point was used for serial dilutions in OMGP-TM CBA. The following steps of 
dilution were used: 1:50/1:200/1:400/1:800/1:1600.  

 

This patient showed the highest reactivity for OMGP autoantibody screening in OMGP-TM and 

OMGP-GPI CBA. Furthermore these antibodies could also be detected with a high OD in the 

OMGP STV-ELISA (Figure 3.15) and also in the longitudinal course, he stayed seropositive for 

the autoantibodies. Regarding the high titer of the OMGP antibodies, this patient was selected for 

an affinity purification of the autoantibodies out of plasma material. 

 

3.9.2 Outcome of OMGP autoantibody affinity purification of patient’s plasma  

Starting with 450 ml of EDTA blood for affinity-purification with an OMGP-loaded column, 112 µg 

of OMGP autoantibodies could be obtained. The purity of these antibodies is demonstrated by 

SDS-PAGE in Figure 3.22 under reduced and non-reduced conditions. In the load, flow-through 

and wash fractions, the bands of all immunoglobulins as well as albumin between 50-60 kDa are 

visible. In the non-reduced samples the immunoglobulins have a size of 150 kDa, but by adding 

reducing agents they separate into heavy (50 kDa) and light chains (25 kDa). The elution fraction 

shows clean OMGP autoantibodies with 150 kDa under non-reduced conditions and at 50 kDa as 

well as 25 kDa under reduced conditions. 
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Figure 3.22 Non-/reduced SDS gel of OMGP autoantibody purification of the index patient 

The gel shows the load (L), flow-through (FT), wash (W) and elution (E) fractions under non-reduced and reduced 
conditions. The immunoglobulins have a size of 150 kDa, heavy chain of 50 kDa and light chain of 25 kDa. 

 

The bands from the elution fractions were cut out and analyzed by mass spectrometry in 

collaboration with the technician Reinhard Mentele from the lab of Dr. Klaus Dornmair. Regarding 

these results the existence of human immunoglobulins heavy and light chain was confirmed. The 

purified antibodies were still functional after the acidic elution and the enriched reactivity is shown 

in Figure 3.23. 50 ng of total immunoglobulins were tested on 5 x 104 OMGP-GPI transfected 

HeLa cells and only in the elution fraction autoantibodies bound to the antigen. These precious 

purified OMGP autoantibodies could be used for further functional analysis. 

 

 

Figure 3.23 Purified OMGP autoantibodies in OMGP-GPI CBA 

In all four columns 50 ng of immunoglobulins were tested on 5 x 104 OMGP-GPI transfected HeLa cells. Load, flow-
through (FT) and wash didn’t show antibody binding, but the elution fraction displays the enrichment of OMGP 
autoantibodies in Q2 gate. 
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3.9.3 IgG1 and IgG4 as subclasses of OMGP autoantibodies in the index patient 

The isotype screening for the serum of the patient is depicted in section 3.3, which showed no 

strong signal in in the unpurified material with the OMGP-GPI CBA (Figure 3.9, A). If this unpurified 

serum sample was tested by STV-ELISA, IgG1 and IgG4 subclasses for OMGP autoantibodies 

were identified (Figure 3.24). There were no other signals for the detection of IgG2, IgG3 and IgM 

and therefore are not present as OMGP autoantibodies in this patient. 

 

 

Figure 3.24 Determination of Ig subclasses by ELISA in unpurified serum of the index patient 

The autoantibodies in serum were detected by OMGP STV-ELISA. After background correction (450 nm-540 nm), the 
STV background is subtracted from the OD signal of OMGP at 450 nm. 

 

However, if autoantibodies were tested after the OMGP affinity purification, also IgG1 and IgG4 

subclasses were detected by OMGP-GPI CBA (Figure 3.25). While the unpurified serum of this 

patient provided evidence for IgG1 and IgG4 Abs against OMGP (Figure 3.9), this was now firmly 

established, using the affinity-purified Abs. IgG2, IgG3 and IgM were still not found as isotypes of 

OMGP autoantibodies in this patient, even after purification. 
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Figure 3.25 CBA isotyping of affinity purified OMGP autoantibodies of the index patient  

600 ng of purified autoantibodies on 5x104 transfected cells were tested for each subclass in OMGP-GPI CBA. 
Secondary antibodies were used from ELISA and detected with anti-HRP-alexa647 antibody by flow cytometry. 

 

3.9.4 Potential induction of complement cascade by binding of C1q to autoantibodies  

Having now the results of IgG1 and IgG4 isotypes of this OMGP-specific autoantibodies, it was of 

great interest to know, if they could also induce antibody mediated effector functions like the 

induction of the classical pathway of the complement cascade (Figure 3.26, A). In this whole 

process many proteins and steps in between are involved that result in the development of 

inflammatory mediators like C5a and also the final membrane attack complex (MAC) is formed in 

vivo. The detection of the MAC would be the most valuable effect, but it is very difficult to induce 

the entire process in vitro, since many factors are required and also a lot of inhibitory mechanisms 

need to be extinguished. For the detection of the potential initiation of the cascade, an ELISA was 

established, which detects the binding of the starter protein C1q to the autoantibodies of the 

patient (Figure 3.26, B). The C1q is only detected, if it is able to bind to the OMGP autoantibodies 

of the patient. 
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Figure 3.26 Classical pathway of complement system 

(A) If complement cascade is activated by the binding of an antibody to its antigen in vivo and the starting protein C1q 

binds, a cascade of several proteins is induced with ends in the formation of a membrane attack complex (MAC). (B) 
The experimental set up is illustrated how the start of the complement cascade induction could be measured in vitro. 
STV (green cross) coated ELISA plate was incubated with biotinylated (green triangle) OMGP and detected by purified 
autoantibodies (blue). The bound C1q was detected by an anti-C1q-HRP. This is a simplified scheme to illustrate the 
detection of bound C1q. Recent work has provided evidence that C1q binding is enhanced by multimeric Ab platforms 
(Soltys et al., 2019). 

 

The OMGP affinity purified autoantibodies of the index patient were titrated with 

5/2.5/1.25/0.625 µg/ml in this ELISA (Figure 3.27). As CTR antibodies the intravenously 

administered immunoglobulins (IvIg) were used. The index patient’s antibodies gave an OD of 

0.5 with 5 µg/ml, whereas the signals of the control antibodies were in all concentrations around 

zero. With reducing concentrations of the OMGP autoantibodies, the signal declined to 0.18, but 

was still higher than with CTR antibodies. 
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Figure 3.27 C1q protein binding to OMGP autoantibodies of the index patient 2492 

The red line illustrates the results from the C1q binding to the autoantibodies of the patient, whereas the black line 
shows the values for the control immunoglobulins. These are Igs, which are given intravenously to patients and therefore 
called IvIg. OD signal was subtracted by C1q background signal (C1q BR). Error bars show SDs of two individual 
experiments. 

 

3.9.5 Cross reactivity of hOMGP autoantibodies to rodent OMGP 

The OMGP autoantibodies have a high specificity to the human protein, but due to the close 

evolutionary relationship of humans to rat and mice, these were also tested for the reactivity on 

mouse and rat m/rOMGP. This is of further interest, because the final and future aim of the OMGP 

autoimmunity study would be, to show the pathogenicity of these autoantibodies in an animal 

model. 

The results of the protein alignments are demonstrated in Figure 3.28. The identity of human and 

of mouse protein is 88.6 % and between human and rat OMGP with 89.3 % quite similar. The 

green signal peptide from 1-24 aa shows only at one position an exchange of an amino acid 

between the rodent and human OMGP. Five variations in the sequence occur in the purple GPI 

signal peptide from 418-440 aa. 
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Figure 3.28 OMGP protein alignment 

The amino acid sequences of human (P23515), mouse (Q63912) and rat (Q7TQ25) OMGP from Uniprot were aligned 
by using the online program Clustal Omega. Stars indicate similarity and dots are present if there are differences. In 
green the signal peptide 1-24 aa is marked and in purple from 418 to 440 aa the GPI-anchor signal peptide. 

 

Human and rodent OMGP share 89 % identical amino acid sequence and therefore the 

autoantibodies of the index patient 2492 were able to bind beside the human variant also the 

rodent form (Figure 3.29). If serum was used, which represents unpurified material, the binding to 

the human protein was strong with 19.6 % of hOMGP-GPI expressing cells bound with 

autoantibodies and a mean fluorescence signal of 637. Rat OMGP was detected less with 15.3 % 

and MFI of 137. The mouse variant was stained with unpurified serum with 23.1 % in OMGP-GPI 

and MFI of 241 in OMGP-TM assay.  

After the successful affinity purification of patients’ plasma, the elution fraction contains enriched 

OMGP autoantibodies. This was evaluated in the OMGP-GPI CBA by a similar or enhanced 

percentage number in Q2 gate and more obvious by an increase of the MFI signal. The detection 

of human OMGP increased from MFI of 637 to 6055 in Q2 gate, for rat OMGP from 137 to 197 

and for mouse OMGP from 241 to 3691.  
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Figure 3.29 Detection of rodent cross reactivity of OMGP purified Abs from the index patient 

Serum of patient was tested in regular CBA with 1:50 dilution as unpurified sample (upper row) on human, rat and 
mouse OMGP-GPI. The lower row displays the OMGP affinity purified sample tested with 50 ng of IgG on 5x104 

transfected HeLa cells. Mean fluorescence intensity is shown in each Q2 gate below the number of percentage.  

 

This patient showed a high cross reactivity to mouse OMGP and a bit to rat OMGP, which had a 

higher signal after the autoantibody affinity purification. Therefore, this purified material could be 

used for further studies in an animal transfer experiment.  

 

3.9.6 Identification of circulating OMGP-specific B cells in the blood of the index patient 

In the serum of different time points of the patient, OMGP autoantibodies were constantly detected 

(Figure 3.20). To study if circulating OMGP-specific B cell can be differentiated into antibody 

secreting cells, PBMCs were stimulated with TLR ligand R848 and IL2. This protocol was already 

established in our lab for analyzing GAD and MOG circulating B cells (Thaler et al., 2019; 

Winklmeier et al., 2019). 

Figure 3.30 shows the analysis of 13 stimulated wells of the index patient 2492. One out of 13 

scored clearly positive in both CBAs, whereas the second highest was also producing OMGP Abs 

into the supernatant, but with a lower concentration or affinity. 
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Figure 3.30 Production of OMGP Abs after in vitro differentiation of B cells to Ab-secreting cells 

13 wells with 6 x 105 PBMCs/well of the index patient 2492 were stimulated and tested for OMGP autoantibody 
production in the supernatant by OMGP-TM- (blue symbols) and OMGP-GPI- (orange symbols) CBAs (left y-axis). The 
two highest values are coming from the same well. Additionally, all 13 wells were analyzed further for their IgG 
concentration by human IgG ELISA, indicated on the right y-axis. Horizontal lines represent the mean in each group. 

 

In all wells the IgG production was quantified by human IgG ELISA (Figure 3.30, B). The 

concentration varied from 2.5 µg/ml to 4 µg/ml. This is in the lower range of IgG production, when 

comparing to the patients and healthy controls analyzed in the MOG study (Winklmeier et al. 

2019). 

 

3.10 Development and characterization of monoclonal antibodies against OMGP 

In collaboration with the group of Dr. Regina Feederle from Helmholtz Centrum München we 

developed our own monoclonal antibodies by immunizing mice and rats with the recombinant 

produced hOMGP as well as the rat specific OMGP peptide (Table 2-9). The evaluation of these 

133 hybridoma supernatants was the MD project of Lena Kristina Pfeffer and described in detail 

in her thesis. Three antibodies (22H6-rIgG2A, 31A4-mIgG2B and 14A9-rIgG2B) from all clones 

were used for further investigations and also appear in this study (Table 2-10). 

Additionally in this project, one clone (22H6) was transformed from rat IgG2A Fc part to human 

IgG1 and successfully produced as a recombinant antibody in HEK293-EBNA cells (section 

2.2.12.). The functionality of this monoclonal antibody is displayed in Figure 3.31.  



Results 

89 

 

Figure 3.31 Characterization of monoclonal antibody 22H6-hIgG1 in CBA and ELISA  

(A) The functionality of 22H6-hIgG1 was proofed in OMGP-TM CBA with four concentrations 10/1/0.1/0.01 µg/ml of the 
antibody. (B) After Fc part exchange from rIgG2A to hIgG1, the antibody 22H6 still recognized the OMGP antigen from 
three different species: human (blue), mouse (purple) and rat (green) in MaxiSorp ELISA, coated with 1 µg/ml of 
human/mouse/rat OMGP. The signals of the antibody of the BSA background wells were subtracted from OMGP coated 
wells. For plate background correction signal at 540 nm was subtracted from values at 450 nm. 

 

The specificity of this recombinant Ab was elaborated with the human OMGP-TM CBA, showing 

that this Ab reacted even with a low concentration of 10 ng/ml (Figure 3.31, A). This recombinant 

mAb was also able to detect mouse and rat OMGP in an ELISA, but the reactivity to rat and mouse 

OMGP was weaker than to human OMGP (Figure 3.31, B).  

The final aim was to test antibodies against OMGP in an animal model and therefore all three 

selected mAbs (22H6-rIgG2A, 31A4-mIgG2B and 14A9-rIgG2B) as well as 22H6-hIgG1 were 

evaluated for their C1q binding ability in vitro (Figure 3.32). 
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Figure 3.32 C1q protein binding to newly developed OMGP mAbs 

C1q complement protein binding ELISA with all selected OMGP mAbs and commercial MAB1674. Grey triangles 
represent decreasing Ab concentrations 10/1/0.1/0.01 µg/ml. Bars display mean of two replicates with SEM. 

 

Some new antibodies, e.g. 22H6-rIgG2A, 31A4 and commercial MAB1674 hardly bound C1q, 

whereas 14A9 showed the highest binding affinity. As soon as rIgG2A Fc part from 22H6 was 

exchanged to hIgG1, a stronger binding to C1q could be achieved.  

 

3.11 Staining of oligodendrocytes and neurons as OMGP expressing cells 

Primary mouse oligodendrocyte cultures from O4 positive oligodendrocyte precursor cells (OPCs) 

and MBP positive oligodendrocytes were stained by Lena Kristina Pfeffer in the lab of Prof. Tanja 

Kuhlmann together with Laura Starost and Dr. Stefanie Albrecht. It was shown, that O4+ OPCs 

express OMGP. After maturation to oligodendrocytes, MBP and OMGP double staining was 

observed, indicating that also mature oligodendrocytes display OMGP. Further results are 

discussed in her MD project. 

 

3.11.1 Expression of OMGP in human oligodendrocytes 

Laura Starost in the lab of Prof. Tanja Kuhlmann in Münster generated human oligodendrocytes 

from induced pluripotent stem cells (Ehrlich et al., 2017). These cells were fixed and stained with 

the new established and humanized antibody 22H6-hIgG1 (section 3.10).  
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Figure 3.33 Flow cytometer analysis of human induced oligodendrocytes 

Dot plot of the flow cytometer shows O4-APC staining on the x-axis, whereas OMGP-FITC signal is displayed on the y-
axis. Percentage of cells in each gated group are labeled (analysis done by Laura Starost). 

 

Double positive staining of the early oligodendrocyte marker O4 and OMGP with subsequent 

analysis by flow cytometer, allowed the identification of 24.4 % of OMGP+/O4+ human induced 

oligodendrocytes (Figure 3.33). 56.4 % of the cells displayed OMGP on their surface but not O4 

and 3.4 % had only the O4 marker whereas 15.8 % had none of those. 

 

3.11.2  Expression of OMGP in hippocampal and cortical mouse neurons  

It is already described that neurons express OMGP (Habib et al., 1998), but for validation of the 

newly developed mAbs against OMGP (22H6-rIgG2A, 31A4-mIgG2B and 14A9-rIgG2B), they 

were tested on primary mouse neurons and double stained with β-III-tubulin. As representative 

staining of cortical and hippocampal neurons, 22H6 is displayed in Figure 3.34. 

OMGP showed a double staining with β-III-tubulin on cortical and hippocampal neurons (Figure 

3.34, A), where tubulin was localized in the soma together with OMGP, while in the axons it was 

less co-expressed. For tissue sections of the spinal cord (Figure 3.34, B), OMGP co-localized with 

β-III-tubulin in the soma of neurons in the grey matter.  
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Figure 3.34 Immunofluorescence staining of mouse primary neurons and spinal cord tissue 

Staining of anti-OMGP (mAb 22H6, green) on cortical (CTN) and hippocampal (HPN) neurons in combination with β-III-
tubulin marker, displayed in red (A). Scale bar represents 20 µm. Furthermore, spinal cord tissue sections of 55 µm 
were stained with anti-OMGP (red) and β-III-tubulin (green) for visualization in grey matter. Images are stacks from 
confocal microscopy with 60x magnification and white scale bar indicates 50 µm. 

 

In the previous section, the successful staining of human oligodendrocytes could be shown. 

Mouse oligodendrocytes were positively stained by Lena Kristina Pfeffer in Münster and discussed 

in detail in her MD thesis. Furthermore, on mouse neurons the existence of OMGP could be 

additionally proofed. Therefore, the next step address the evaluation of OMGP autoimmunity in 

an animal model.  
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3.12 Pathogenicity of OMGP autoimmunity in an animal model 

In this project, Dr. Naoto Kawakami carried out all animal experiments in Lewis rats. Ovalbumin 

specific cell line TOVA were used as a negative control (CTR), whereas TMBP directed against MBP 

as positive CTR, since these cells have a strong effect on opening the blood-brain barrier (BBB) 

(Kawakami et al., 2004). Table 3-5 summarizes the experimental setup and combinations of T 

cells with antibodies. As positive antibody CTR, the anti-MOG 818C5 was used with the 

humanized IgG1 Fc part. The ability of its demyelination potential was already proofed in a 

previous study (Spadaro et al., 2018). 

 

Table 3-5 Overview of i.v. injected T cells and i.t. injected antibodies in EAE rat model 

Digits in the table indicate the number of animals injected with the respective T cells and Abs. 
 

  TOVA  
(15 x 106) 

TMBP  
(1.1 x 106) 

TOMGP 

(10 x 106)  

no antibody 3 - 3 

818C5-hIgG1 3 3 3 

14A9-rIgG2B - 2 - 

31A4-mIgG2B - 2 - 

22H6-rIgG2A - 2 2 

22H6-hIgG1 - - 3 

MAB1674-rIgG1 - - 3 

IvIg 3 - 3 

HK3-hIgG1 - 3 3 

CTR-rIgG2B - 2 - 

CTR-mIgG2B - 2 - 

CTR-rIgG2A - 2 2 

CTR-IgG1 - - 3 

 

3.12.1 Inflammation of cortical meninges and SC gray matter caused by TOMGP cells  

The first experiment compares i.v. injected TOVA to the newly developed TOMGP cells. These rats 

neither lost weight nor showed any clinical symptoms. The histology by Prof. Hans Lassmann 

showed a massive meningitis (Figure 3.35, A), which was mainly located in the cerebral cortex 

and perivascular, but not in the cerebellum or brain stem (Figure 3.35, B). Nonetheless, some 

aggregation close to the Virchow Robin space between medulla and cerebellum was observed.  
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Figure 3.35 Histology of TOMGP cell transfer 

The tissue sections were stained for CD3 T cells. Immunostaining was developed with peroxidase and diaminobenzidine 
as substrate resulting in a brown color, whereas nuclei were counterstained with haemalum solution, giving a blue color. 
(A) Overview of rat brain displaying cortical meningitis and perivascular inflammation of T cells. (B) No meningitis in 
brain stem and cerebellum, but spread of T cells close to Virchow Robin space between medulla and cerebellum. (C). 
Inflammation of T cells in dorsal horn of spinal cord. (D) Negative control cells TOVA were compared TOMGP cell transfer 
with CD3 staining in the cortex.  
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Furthermore infiltrations of TOMGP cells into the grey matter of the dorsal horn of the spinal cord 

were detected (Figure 3.35, C). As negative control for this experimental setup, TOVA cells were 

injected and compared to the CD3 staining of TOMGP cells in the cortex (Figure 3.35, D). 

Overall these newly generated OMGP autoreactive T cells induced an unusual massive 

meningitis, which was not demonstrated in any other EAE model. With this animal experiment a 

cortical and grey matter pathology was induced with a strong BBB disruption. 

 

3.12.2 TOMGP synergize with MOG but not OMGP antibodies to mediate demyelination 

For the evaluation of the pathogenicity of the OMGP antibodies, five different antibodies (Table 

3-5, blue) and one positive CTR MOG antibody (818C5-hIgG1) as well as respective negative 

CTR antibodies (Table 3-5, grey) were injected two days after the T cell transfer. Largely none of 

the OMGP antibodies induced any clinical symptoms or showed a histological effect. Even when 

the strong encephalitogenic MBP specific T cell line was used, there was only the pathology due 

to the T cells but no enhancement by antibodies. Even, the injection of the humanized antibody 

22H6-hIgG1 with the same Fc part as 818C5-hIgG1 didn’t lead to demyelination or 

neurodegeneration. Thus, none of the applied mAbs to OMGP clearly enhanced the pathology 

mediated by the OMGP-specific T cells. 

Interestingly when using TOMGP cells together with the potent MOG antibody, these animals 

developed a clinical score of 0.5, which indicates a loss of tail tonus and partial paralysis of legs. 

The histology demonstrated that TOMGP cells open the BBB and pave the way for anti-MOG 

mediated demyelination. Figure 3.36 illustrates the demyelination of ventral areas in the spinal 

cord by the MOG antibody. The HE and the LFB staining indicate the loss of white matter. With 

the CTR antibody no destruction of the spinal cord tissue was seen.  
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Figure 3.36 TOMGP cells pave the way for anti-MOG mediated demyelination 

The left panel displays TOMGP cells injected with 818C5-hIgG1 MOG antibody and the right panel TOMGP cells injected 
together with CTR antibody (Co Ig). The first row shows hematoxylin and eosin (HE) staining and the second line luxol 
fast blue (LFB) staining. 

 

In this experimental setup with the MOG antibody also focal demyelinating lesions in the cortex of 

the rat brain were detected (Figure 3.37). In these lesions an aggregation of CD3 positive T cells, 

a slight activation of ED1 CD68 macrophages and a massive activation of Iba1 microglia 

compared to the CTR animal can be seen (Figure 3.37, A). Furthermore, there is an intense 

staining for rat Ig, human Ig (Fc part of 818C5 MOG antibody) and C9neo complement 

precipitation due to the BBB disruption (Figure 3.37, B). The loss of MOG indicates the myelin loss 

and the reduction of the AQP4 marker of astrocytes as manifestation of reactive gliosis (Figure 

3.37, C), which is a response to CNS damage, also seen in lesions of NMOSD patients (Misu et 

al., 2013). Additionally, there is also an increase of the signal for amyloid precursor protein 

observed in this panel, due to the axonal injury. 
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Figure 3.37 Cortical area with a lesion after TOMGP cell transfer together with a MOG Ab 

In all panels 818C5-hIgG1 MOG antibody is compared to CTR antibody. (A) T cell staining with CD3, CD68 
macrophages (ED1) and microglia (Iba1). (B) The histology is displayed for rat Ig, human Ig and complement deposition 
of C9neo. (C) Amyloid precursor protein, MOG and AQP4 were stained. 
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In this animal model OMGP-specific T cells lead to a massive BBB disruption and therefore the 

i.t. injected antibodies evaded through the inflamed vessels into the peripheral blood and could 

recirculated into the perivascular space. This view is supported by detection of MOG Abs by ELISA 

in the blood of animals that had received anti-MOG intrathecally (Figure 3.38). 

 

 

Figure 3.38 Detection of intrathecally injected MOG antibody in the peripheral blood 

The MOG antibody 818C5-hIgG1 was detected by MOG STV-ELISA. Before rats were sacrificed, peripheral blood was 
withdrawn and tested for presence of circulating MOG Abs. The results display the OD measurements of each serum 
from the five different animals, three for anti-MOG and two for CTR Ig injection. Values are calculated by subtraction of 
540 nm value from 450 nm. Further STV background value is subtracted from MOG measurement.  

 

3.13 Human autoreactive T cells against OMGP 

Subsequent to the findings in the Lewis rat model, where OMGP T cells induced an inflammatory 

phenotype with meningitis and BBB disruption, the question arose if patients with MS also have 

autoreactive T cells which are directed towards OMGP. To address this question, T cell 

proliferation assays and cytokine analysis of stimulated T cells were conducted.  

 

3.13.1 T cell proliferation analysis upon OMGP stimulation – CFSE and EdU assay 

The PBMCs of HCs and patients were cultured with measles, tetanus, OMGP and with the lectin 

ConA as positive control. This is a potent T cell activator by triggering crosslinking of the T cell 

receptor complex (Dwyer and Johnson, 1981). 

After four and seven days the results of proliferating CD3 positive T cells were compared with 

CFSE signal reduction or EdU dye uptake. Both methods work in a different way since with EdU 
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staining the uracil was added 24 h prior analysis and got incorporated into the DNA, which resulted 

in a gain of the signal as proliferation response of the 24 h time window. Whereas CFSE was 

added as cell permeable dye on day zero, it coupled covalently to intracellular molecules (Lyons 

and Parish, 1994). According to this, the dye got diluted out due to proliferation and the signal 

decreased, but represents a summation of the response of the whole time frame. 

In Figure 3.39 one HC donor is demonstrated and the proliferation was analyzed on day four 

(Figure 3.39, A) and day seven (Figure 3.39, B). Respectively, the gate of proliferation is defined 

by the unstimulated control. On day four, T cells had a high proliferation response of 66 % 

analyzed with CFSE and 71.8 % with EdU towards ConA, whereas on day seven it was already 

reduced to 15.6 % with EdU since the cells were exhausted. The CFSE staining increased a bit to 

85.6 % and represent the summation of the proliferation events over the last seven days. The 

tetanus antigen induced also a T cell response, which was hardly detectable on day four with 

2.9 % for EdU and 0.25 % for CFSE, but much more on day seven with 4.97 % for EdU and 2.57 % 

for CFSE. The same goes for the measles antigen where 5.55 % of the EdU stained T cells and 

0.33 % of the CFSE proliferated on day four. On day seven this increased for CFSE stained T 

cells to 9.19 %, whereas for Edu it stayed with 4.69 % in the same range as detected on day four. 

The low proliferation response of T cells against OMGP with 1.73 % for EdU and 0.16 % for CFSE 

on day four increased slightly on day seven to 2.01 % for CFSE, whereas it stayed for EdU with 

1.79 %. 

These experiments with healthy controls showed that the analysis on day seven is better since 

the signal can still increase over the time and a proliferation of rare T cells might be better seen 

by the summation of the response when using CFSE. 

In the following experiments the response of patients having autoantibodies against OMGP were 

analyzed for their T cell autoreactivity after seven days using the CFSE assay. Also frozen 

PBMCs, as in previous experiments with HC, were stimulated using ConA, measles, tetanus, OVA 

as negative control and OMGP. In Figure 3.40 the responses of the index patient 2492 and the 

limbic encephalitis patient 1014 are displayed. Patient 2492 had a higher spontaneous 

proliferation in the unstimulated condition of 0.53 % compared to 0.034 % in the other patient. 

Both reacted with 81 % similarly to the positive control ConA and also to tetanus with 2.13 % in 

2492 and 1.76 % in 1014. For measles antigen the proliferation response was 4.32 % for patient 

2492 and 2.12 % for patient 1014. The OMGP response for the sample 2492 was comparable to 

the negative control OVA and below 1 %. In one OMGP stimulation well, patient 1014 responded 

with 2.28 % of proliferation, which was higher than the OVA background of 0.11 % proliferation. 
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Figure 3.39 Proliferation analysis of HC PBMCs using EdU and CFSE staining 

The zebra plots show the proliferation of T cells from a healthy control after stimulation with Concavalin A (ConA), 
tetanus, measles and OMGP antigens on day four (A) and day seven (B). The x-axis indicates the used staining solution 
EdU or CFSE, whereas CFSE indicates proliferation by signal reduction and EdU displays proliferation through dye 
uptake and therefore an increase in signal. The gate of proliferation is set by the unstimulated control, respectively. 
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Figure 3.40 CFSE T cell proliferation analysis of 
two patients with frozen PBMCs  

The index patient 2492 and the limbic encephalitis 
patient (1014) were stimulated with Concanavalin A 
(ConA), tetanus, measles, duplicates of OMGP 
(OMGP-1, OMGP-2) and ovalbumin. The x-axis of the 
graphs represent the loss of CFSE signal due to 
proliferation, whereas the y-axis displays signals of the 
forward scatter (FSC). Proliferation gate is set 
regarding the unstimulated control. 
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Another possibility for increasing the proliferation rate of autoreactive T cells was the usage of 

fresh preparations of PBMCs instead of frozen PBMCs. The index patient 2492, could be analyzed 

with freshly isolated and stimulated PBMCs (Figure 3.41).  

 

 

Figure 3.41 CD4/CD8 positive T cell proliferation of freshly isolated PBMCs of patient 2492 

The graphs represent the proliferation of CD3+/CD4+ (A) or CD3+/CD8+ (B) in the CFSE assay after seven days. As 
stimulus Concavalin A (ConA), measles, tetanus and OMGP were used.  

 

By using fresh PBMCs the ConA proliferation rate of CD3+/CD4+ T cells (Figure 3.41, A) was 

49.6 %, with measles 6.64 %, tetanus 0.34 % and the mean proliferation rate of all 33 OMGP 

stimulated wells with 0.19 % similar to the background level of medium with 0.13 %. The results 

looked similar for CD3+/CD8+ T cells (Figure 3.41, B): 76.6 % proliferation with ConA, 1.29 % with 

measles, tetanus induced 0.04 % and the mean proliferation rate of all 33 OMGP stimulated wells 

was 0.02 %. The medium background was with 0.2 % proliferation rate similar to the value 

observed with CD3+/CD4+ T cells. 

In summary, no OMGP-specific T cell response in 33 stimulation wells was induced by using fresh 

PBMCs and analyzing the CD4 and CD8 percentage of CFSE proliferation by flow cytometer. This 

patient responded to measles more than to tetanus, which was already seen in the previous 

experiment with frozen PBMCs (Figure 3.40). In conclusion with these experiments, no OMGP-

specific T cells could be reliably identified in the blood of the analyzed patients.  
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3.13.2 Cytokine analysis of T cells as readout upon OMGP stimulation 

Higher sensitivity in detection of rare autoreactive T cells might be given by the analysis of cytokine 

production in the supernatant of stimulated T cells. For these experiments eight new and untreated 

CIS/MS patients were collected and the stimulation was carried out on freshly isolated PBMCs. In 

addition, seven healthy controls with fresh PBMCs were included.  

The first try was the measurement of the T cell specific cytokine IL-17 in the supernatant on day 

seven after stimulation with OMGP and positive control antigens like tetanus and measles. The 

IL-17 signals was extremely low and hardly reached the lowest value of the standard curve from 

the ELISA. Thus, another cytokine IFNγ, which results in much higher levels, was analyzed. In 

summary each patient was stimulated with 6-56 wells of OMGP and control wells respectively. In 

total 287 OMGP stimulated wells were analyzed regarding the IFNγ production in the supernatant. 

Thereby an OMGP-specific IFNγ production in both patient and control group could be detected. 

As it turned out later, these results do not give any conclusions about OMGP autoreactive T cells, 

since different OMGP preparations were used and throughout the evolution of the project various 

endotoxin contaminations in the protein preparations were detected.  

 

3.13.3 Strong lipopolysaccharide (LPS) effect on T cell stimulation assays 

For analyzing the effect of the endotoxin contaminations from the in house produced OMGP, the 

CFSE assay and IFNγ analysis were re-evaluated using LPS as control stimulations. Fresh 

PBMCs of the index patient 2492 were stimulated with 100/10/1/0 pg/ml of LPS and CD4 as well 

as CD8 proliferation were analyzed (Figure 3.42). CD3+/CD4+ T cells (Figure 3.42, A) responded 

still with low concentration of 10 pg/ml of LPS with 2.46 % proliferation. The results were a bit 

lower, but the effect was comparable with CD3+/CD8+ T cells (Figure 3.42, B), that small 

concentrations of LPS induced a proliferative response.  
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Figure 3.42 LPS effect on T cell proliferation in CFSE assay 

Graphs show the result of CD3+ gated cells of the flow cytometer analysis. PBMCs of patient 2492 were stimulated with 
the indicated concentrations of LPS and CD3+/CD4+ proliferation rate (A) or CD3+/CD8+ proliferation rate (B) is 
calculated on day seven after stimulation.  

 

There was a strong effect of LPS on the proliferation of T cells. Already small amounts of 10 pg/ml 

of this endotoxin induced an immune response compared to 0 pg/ml of LPS. It is necessary to use 

this as control parameters in all experiments to exclude false positive results due to LPS induction 

of an immune response. Having endotoxin contaminations above 1 pg/ml, it is hardly possible to 

detect a correct autoreactive T cell response, which might additionally result in only a few 

percentage.  

The same effect could be seen by analyzing the IFNγ response after stimulating PBMCs with LPS 

(Figure 3.43). 30 wells in each condition of one freshly stimulated healthy donor are displayed. 

There was a big variation throughout the wells in one condition. Furthermore, it was indicated that 

already small amounts of 1 pg/ml induce a mild IFNγ secretion of 5 pg/ml in average, whereas 

100 pg/ml of LPS resulted in 415 pg/ml of IFNγ in the supernatant. 
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Figure 3.43 LPS stimulates IFNγ production of PBMCs 

PBMCs of one healthy donor were stimulated with indicated concentrations of LPS and IFNγ values were measured by 
ELISA. Individual concentrations of LPS were tested in 30 wells of a 96 well plate and each triangle represents one well.  

 

Since a strong effect was seen, all in house produced OMGP preparations were analyzed in 

limulus amebocyte lysate assay and various LPS contaminations from 0.22 to 132 ng/ml are 

detected (Table 3-6). 

 

Table 3-6 LPS contaminations in OMGP protein preparations 

OMGP 

preparations 

Stock protein 

concentration 

[mg/ml] 

LPS stock 

concentrations 

[ng/ml] 

Other center 

LPS 

measurements 

[EU/ml] 

Final LPS concentrations 

[pg/ml]                           

in 50 µg/ml of OMGP in 

assays 

March 2016 4.5 0.22 (=2.2 EU/ml) 

 

2.5 

Feb 2017 7.9 2.7 (=27 EU/ml) 

 

17 

Nov 2017 7.9 11.7 (= 117 EU/ml) 2.5 and 6 75 

Dec 2017 10 132 (=1320 EU/ml) 1533 and 2243 660 
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These used proteins have a high variability in the endotoxin/LPS contaminations. The range in the 

final concentration in CFSE T cell proliferation assay or in IFNγ ELISA is from 2.5 pg/ml to 

660 pg/ml. It is shown in Figure 3.42 and Figure 3.43 that already 1 pg/ml induced proliferation or 

cytokine production in a few wells, which might lead to false positives in the readout for rare OMGP 

autoreactive T cells. Neither the CFSE proliferation assay, nor the IFNγ evaluation in the 

supernatant could therefore give reliable results by the use of the endotoxin contaminated OMGP 

protein. 

Purification processes via LPS removal columns failed and therefore a collaboration with Mattias 

Bronge in the lab of Prof. Hans Grönlund at the Karolinska Institute in Stockholm was initiated. 

 

3.13.4 Identification of a few MS patients with OMGP-specific T cells by FluoroSpot assay 

Mattias Bronge and Prof. Hans Grönlund published in 2019 a bead-based T cell stimulation 

method, where antigen coupled beads can be washed for LPS removal (Bronge et al., 2019b). 

The LPS was removed by washing steps with 0.01/0.1/0.5/1 M NaOH. The quality control of 

successful coupled antigen to magnetic beads was carried out by positive staining of anti-OMGP 

or anti-His-tag antibody in flow cytometry. As control beads, uncoupled (neg-CTR) and Avi-His-

tag coupled beads were used. This allowed to control, if patients react to those tags, which also 

appear in the OMGP construct.   

As antigen OMGP-Dec17 preparation with 132 ng/ml LPS (Table 3-6) was used for the coupling 

to the magnetic beads. The results of successful coupling of OMGP antigen or Avi-His peptide are 

displayed in Figure 3.44. The analysis was carried out on single, aggregated and total number of 

beads. As example of gating, negative CTR beads (Figure 3.44, A) are displayed in the forward 

(FSC) and side scatter (SSC) with 51 % of aggregate formation and 48.9 % of single beads. 

Similar results were observed for the OMGP beads aggregation and Avi-His beads. Furthermore, 

the anti-OMGP antibody didn’t bind unspecific to the neg-CTR beads. The coupling of OMGP to 

the beads resulted in 98.7 % positive staining of these beads (Figure 3.44, B), whereas the control 

of the secondary antibody was negative. Also the coupling of Avi-His peptide with 95.5 % was 

highly efficient and no or extreme low unspecific staining of the secondary antibody was seen.  

The beads with OMGP, having a high LPS contamination due to preparation, were washed with 

harsh conditions of 1 M NaOH. Nevertheless the detection by the OMGP antibody in the flow 

cytometer was with 98.7 % highly positive. The Avi-His peptide was produced LPS free by 

chemical synthesis and therefore these control beads were only washed with PBS.  
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Figure 3.44 Flow cytometry quality control of OMGP and Avi-His-tag coupling to the beads 

The gating of the analysis is displayed in A as example on negative control beads (neg-CTR, uncoupled), where single 
(blue), aggregates (red) and total beads (grey) can be separated in the forward scatter (FSC-A) and side scatter (SSC-
A). No unspecific binding of OMGP antibody to the neg-CTR beads is displayed. Coupling of OMGP to the beads is 
illustrated in B, where the secondary antibody CTR (2nd Ab) stains nothing and on the right side of B the positive antibody 
staining of anti-OMGP is displayed. These OMGP beads were washed with 1 M NaOH. (C) Avi-His beads were washed 
with PBS. There the 2nd Ab staining as control is shown on the left side and the positive anti-His staining on the right 
side. 

 

To analyze the washing efficiency and also the required amount of NaOH, a wash titration from 

0.01 M to 1 M NaOH treated OMGP beads was tested with six healthy controls and evaluated by 

IFNγ, IL-22 and IL-17A FluoroSpot assay (Figure 3.45). A decline in the signal of all three cytokines 

was observed by washing with high NaOH concentrations of 0.5 or 1 M. The number of IFNγ spot 

forming units (SFUs) per 2.5 x 105 stimulated PBMCs was always higher than for the other 

cytokines IL-22 and IL-17A.  
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Figure 3.45 Wash titration analysis of OMGP beads in FluoroSpot assay 

The graphs illustrate the LPS removal effect by 0.01/0.1/0.5/1 M NaOH (x-axis) washing procedure. Values display the 
mean and standard deviation of six healthy individuals. IFNγ, IL-22 and IL-17A secretion were measured by spot forming 
units (SFUs) per 2.5 x 105 PBMCs of technical duplicates from each donor.  

 

These results indicated the best signal to noise ratio by using 0.1 M NaOH washing condition on 

OMGP beads. To exclude the loss of some low positive autoreactive patients, also less harsh 

washing condition with 0.01 NaOH OMGP beads was included in the analysis. 

The screening for autoreactive T cells was conducted with 53 donors: 17 HCs, 19 untreated and 

17 natalizumab (anti-α4-integrin) treated patients. Due to exclusion criteria, which is first anti-CD3 

positive stimulation response with SFUs below 100, ten donors were removed from analysis (two 

healthy, three untreated and five natalizumab treated donors). Regarding second and third criteria, 

one HC donor had no comparable technical duplicates and another HC sample reacted unspecific 

to the negative uncoupled control beads were excluded. The remaining cohorts with 13 HCs, 

12 natalizumab and 16 untreated patients were then included in the final analysis.  

Figure 3.46 shows the immunofluorescence pictures of one HC-39 and one untreated patient 6361 

with all six stimulation conditions. CD3 induced in both samples a strong response of cytokine 

IFNγ, 1090 in HC and 1208 spots in untreated patient sample detected with a secondary antibody 

coupled to FITC (LED490). The yellow signal, detected by Cy3 (LED550) secondary antibody, 

represents IL-22 production, 206 spots in the HC-39 and 14 spots produced by patient 6361. CD3 

stimulation induced 126 red IL-17A spots in the HC-39 and 25 spots in the untreated patient. This 

was detected in LED640 channel by an antibody coupled to Cy5. The stimulation with CMV beads 

(coated with antigenic peptides from cytomegalovirus) lead only in the untreated patient to a 

response of 973 IFNγ spots, three IL-22 spots and two IL-17A spots but no cytokine production 

by the PBMCs of the healthy donor was induced. 

 



Results 

109 

 

Figure 3.46 IF pictures from FluoroSpot analysis showing all screening conditions 

The upper row displays as an example one HC-39 and the lower row one untreated patient (6361) with all six screening 
conditions: positive CTR anti-CD3, CMV (antigenic peptides from cytomegalovirus) beads, neg-CTR (uncoupled beads), 
Avi-His-tag coupled beads (PBS washed) and OMGP beads washed before with either 0.01 M or 0.1 M NaOH. IFNγ 
was detected by an antibody coupled to FITC (LED490), IL-22 by Cy3 (LED550) and IL-17A by Cy5 (LED640). In all 
wells 2.5 x 105 PBMCs were stimulated, except in the CD3 condition, where only 1.25 x 105 PBMCs were seeded.  

 

The neg-CTR beads and the Avi-His-tag beads did neither produce IL-22 spots, nor IL-17A spots. 

Only a low number of 3-4 IFNγ spots in the HC and patient 6361 were detected. OMGP beads, 

washed with 0.01 M NaOH, induced in the HC a moderate number of 339 IFNγ spots, 39 IL-22 

spots and eight IL-17A spots. In the patient 6361, IL-22 and IL-17A were similar with 32 and nine 

spots, but IFNγ response was with 93 spots 3.6 times lower than in the HC. Most likely, these 

numbers are unspecific results and coming from the higher LPS contamination, since the numbers 

decline if PBMCs, which were stimulated with cleaner OMGP (washed with 0.1 M NaOH). This 

bead preparation induced four IFNγ spots in the HC and two in the patient. For this reason the 

final evaluation of OMGP-specific autoreactive T cells was carried out on samples stimulated with 

the 0.1 M NaOH washed antigen. 

In all samples of the entire screening, anti-CD3 and CMV beads as positive controls were included. 

These responses from 13 HCs, 12 natalizumab and 16 untreated patients towards this stimuli are 

shown in Figure 3.47. 
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Figure 3.47 IFNγ, IL-22 and IL-17A response after anti-CD3 or CMV beads stimulation 

FluoroSpot analysis of 12 natalizumab (green open circles), 16 untreated (green closed circles) patients and 13 HCs 
(grey circles) donors are displayed. The spot forming units (SFUs) of CD3 are based on 1.25 x 105 PBMCs in the 
stimulation well (A), whereas CMV response (B) is coming from 2.5 x 105 PBMCs per well. Each cytokines were 
evaluated separately and are indicated on the x-axis. Every symbol represents the mean of two technical replicates.   

 

CD3 stimulation response of IFNγ from 1.25 x 105 PBMCs was on average in all three cohorts 

similar: 627 SFUs in natalizumab cohort, 885 SFUs in untreated and 882 spots in HC group (Figure 

3.47, A). IL-22 cytokine response varied from 39 spots in natalizumab group to 228 spots in 

untreated cohort and 162 spots in HCs. The numbers of SFUs by IL-17A producing cells were in 

average 40 in natalizumab, 105 in untreated and 83 in HC group. 

The reactivity to CMV (Figure 3.47, B) was mainly coming from T cells producing IFNγ. Numbers 

of SFUs were based on 2.5 x 105 stimulated PBMCs. 105 SFUs in untreated, 117 SFUs in 

natalizumab and 322 SFUs in HC cohort were detected on average. The values of IL-22 and IL-

17A were very low and can be disregarded since CMV response is known to induce mainly IFNγ 

cytokine (Tay and Welsh, 1997).  

In PBMC cultures responding to the positive control anti-CD3, the autoreactivity of these samples 

towards OMGP was evaluated. Therefore, single cytokine SFUs from IFNγ, IL-22, IL-17A, as well 

as double and triple positives were analyzed in Figure 3.48. Values are displayed as ΔSFUs / 

2.5 x 105 stimulated PBMCs, since numbers of Avi-His beads as background signal are 

subtracted. For each cytokine, a cutoff was calculated which represents the mean value of the HC 

measurements plus three SDs.  

The response against the autoantigen OMGP, was in all cohorts with values from 0 to 9.5 

compared to CMV responses (Figure 3.47, B) with SFUs till 2060 quite low. This is not surprising, 

since it is an autoreactive target and not as often attacked as a viral peptides coming from CMV. 
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Figure 3.48 OMGP beads stimulated IFNγ, IL-22 and IL-17A production 

OMGP beads, washed with 0.1 M NaOH, stimulated IFNγ, IL-22 and IL-17A production of PBMCs from 12 natalizumab 
(green open circles), 16 untreated (green closed circles) and 13 HCs (grey circles). Values represent ΔSFUs per 2.5 x 
105 PBMCs in each well, since Avi-His-tag SFUs numbers were subtracted from OMGP numbers respectively. Each 
circle represents the mean of two technical replicates. Plus symbols below x-axis indicated the analysis of the labeled 
cytokine. The last column displays the analysis of triple positive SFUs. Horizontal lines in the cytokine columns are 
cutoff lines, which are calculated by mean of HC values plus three SDs. Columns with no cutoff line have either a value 
of zero or no sample reaches numbers above it. The cutoff SFUs are: 7 in IFNγ, 2.6 in IL-22, 5 in IL-17A and 0.9 in IL-
22+/IL-17A+ assay. The green natalizumab patient above the cutoff is the same donor, whereas five values in the 
untreated cohort are coming from four different donors. 

 

The IFNγ signal after OMGP stimulation resulted in one untreated patient with 9.5 ΔSFUs, which 

is above the cutoff of 7. The analysis of IL-22 lead to two untreated patients and one natalizumab 

patients above the cutoff of 2.6. Additionally, the same natalizumab patient scored positive for the 

IL-17A cytokine. By evaluating the most prominent autoreactive cytokines, IL-22 and IL-17A 

double positives, the same natalizumab patient 6334 was detected with 5 ΔSFUs above the cutoff 

of 0.9. Additionally, two other untreated patients 5397 and 5681 reached values of 1.5 and 

1.0 ΔSFUs, which are slightly above the cutoff. 

Finally, this bead-based stimulation method is a reliable detection method for rare autoreactive T 

cells towards OMGP, since the effect of LPS can be controlled by NaOH washing, which allows 

the removal of endotoxins. Furthermore, it is sensitive enough to pull out four untreated and one 

natalizumab treated patient by higher IFNγ, IL-22 and IL-17A cytokine production. 

  



Discussion 

112 

4. DISCUSSION 

This study identified autoantibodies to OMGP in a few percent of patients with MS using stringent 

criteria and different assays. For the detection of autoantibodies, CBAs were developed, with two 

different anchoring methods of the antigen and an ELISA. Further, in cooperation with Dr. Naoto 

Kawakami and Prof. Hans Lassmann it was found by a newly developed EAE animal model, that 

autoimmunity to OMGP is pathogenic. Thus, detection of autoantibodies might be useful in the 

future to stratify patients with inflammatory CNS disorders. 

 

4.1 Development of assays for the identification of OMGP autoantibodies in 

patients 

The first aim of this thesis was to identify patients with Abs to OMGP. To this end, several tests 

were developed. Autoantibodies can be assessed by various methods using ELISA or WB among 

others (Xiao et al., 1991). Live CBAs are the gold standard for the detection of several 

autoantibodies against many membrane-bound surface antigens, such as MOG-IgG (Yeh and 

Nakashima, 2019). Therefore, reactivity against OMGP was evaluated using two variants of the 

antigen, transiently expressed by HeLa cells, which display the antigen more efficiently than 

HEK293T cells (Figure 3.1). The method for detecting OMGP autoantibodies was performed 

following a protocol developed in our lab for the identification of MOG-IgG. OMGP antibodies are 

screened on unfixed cells, which express OMGP protein and bound antibodies are detected using 

a biotinylated secondary antibody and a streptavidin labelled fluorescent dye for subsequent 

analysis by flow cytometry (Mayer et al., 2013; Spadaro et al., 2016). Other groups use distinct 

antibodies for detection, such as anti-human-IgG1, instead of anti-human-IgG biotin (Waters et 

al., 2015). In addition autoantibody binding can be assessed by IF microscopy as an alternative 

for flow cytometry (Mader et al., 2011). During establishment of the OMGP CBAs, it was worked 

out that in the case of this antigen, trypsin digestion of transfected cell reduces the assay sensitivity 

and are therefore removed by ice cold PBS.  

The OMGP constructs used in these CBAs were either transmembraneously anchored to the 

membrane or GPI-linked as found in vivo (Mikol and Stefansson, 1988). On the one hand, by 

using the OMGP-TM, the transient expression varies less than with OMGP-GPI, because a 

ribosome skipping element is introduced between EGFP and OMGP-GPI. On the other hand the 

GPI-anchor might lead to a more flexible and accessible antigen targeting by autoantibodies. 

Comparing these assays, patients with high reactivity score positive in both CBAs, whether OMGP 

is TM- or GPI-linked to the membrane.  
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Furthermore, these two assays display a great correlation of r=0.69 (Figure 3.18). The presence 

of autoantibodies in healthy donors is also seen for autoantibodies against MOG (O'Connor et al., 

2007; Spadaro, 2017) and NF (Ng et al., 2012), which holds true for OMGP autoantibodies as 

well. The group of HCs was used for determination of a threshold for the identification of OMGP 

Abs in patients. Therefore, a reasonable cutoff is calculated by using the mean of HC 

measurements plus three SDs, as it is also used for MOG Ab detection in our lab (Spadaro and 

Meinl, 2016). However, some groups also use a higher cutoff such as HCs’ mean plus six SDs 

(Waters et al., 2015). As such, in our assay, no HCs would score positive above the threshold of 

4.4 in OMGP-TM CBA. By using this stringent cutoff, eight out of 376 from the MS/CIS cohort 

would display autoreactivity against OMGP. Here, in this study the evaluation of OMGP 

autoantibodies was carried out based on the cutoff at 3.0, which is calculated by mean value of 

HCs plus three SDs. Combining both CBAs, OMGP-TM or OMGP-GPI positivity, then 22 patients 

with OMGP autoantibodies in the MS/CIS cohort, two in the GAD Abs positive cohort, one ADEM 

and four in OND/OIND diagnosed with psychosis, paresthesia, neurosarcoidosis and SLE are 

considered positive. Looking at double positive candidates for OMGP-TM+/OMGP-GPI+, a total 

number of ten patients is detected with autoantibodies: seven MS/CIS, one GAD+, one ADEM and 

one psychosis patient.  

Beside sera, plasma and PPH also CSF samples were analyzed for the presence of OMGP Abs, 

since for some autoantibodies like AQP4-IgG they can also present in this body fluid (Bennett et 

al., 2009; Jarius et al., 2010). The result for OMGP autoantibodies in CSF is low, because only 

one patient from 42 screened MS samples, scored positive above the cutoff which is calculated 

by sera. This threshold is not optimal, but it is hard to evaluate HCs’ CSF for cutoff calculation.  

The determination of isotypes from patient specific OMGP autoantibodies was challenging, as 

only some samples were detected to harbor IgG1 OMGP Abs and in the majority no isotype for 

OMGP Abs was detectable by flow cytometry. Nonetheless, after affinity purification of OMGP 

autoantibodies from the MS index patient 2492, besides IgG1 also IgG4 was detectable (chapter 

3.9.3). This indicates, that the total number of determinable isotypes in OMGP autoantibodies 

might be underestimated, since it is only detectable in purified material. Furthermore, these 

enriched purified antibodies displayed in vitro the binding ability of complement cascade initiator 

protein C1q (Figure 3.27) and additionally an enhanced cross reactivity to rodent OMGP (Figure 

3.29).  

Persistence of OMGP antibodies could be observed for the whole observation period of 60 months 

in the index patient (Figure 3.20) and for 48 months in a severely affected MS patient 1294 (Figure 

3.11). The titration of OMGP antibodies in the index patient revealed positivity until a 1:400 dilution, 
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whereas with a 1:800 dilution the value would sank below the cutoff at MFI ratio of 3.0. But this 

threshold was determined from HCs with 1:50 dilution and is not meaningful in this experiment. 

All findings mentioned, are based on the detection by CBAs, but for the use in ELISA, full length 

protein was successfully produced by HEK293-EBNA cells (Figure 3.13). It is important, that the 

antigen is produced by this human cell line, as it was shown for NF that proteins produced from 

murine NS0 cells harbor abnormal immunogenic glycosylation patterns and are not suitable for 

autoantibody detection in patients (Ng et al., 2012). Therefore in this study, HEK293-EBNA 

derived OMGP was enzymatically biotinylated and used for detection of autoantibodies in STV-

ELISA (Figure 3.16). A total number of 596, from all 675 samples analyzed by CBAs, were 

screened in STV-ELISA, resulting in nine patients with OMGP Abs in the MS/CIS cohort. Four of 

these patients were newly identified and didn’t score positive in any CBAs. The correlation 

between STV-ELISA and OMGP-TM with r = 0.19 as well as r = 0.18 for OMGP-GPI CBA is low 

and only a few patients overlap in detection of OMGP Abs. Until now it is not understood, why by 

ELISA different patients are identified than in CBAs, but this is also reported for the detection of 

MOG Abs (Spadaro, 2017). However, it is possible to display also other autoreactive targets like 

NF by both assays, ELISA and CBA, for identification of seropositive patients (Ng et al., 2012; 

Vural et al., 2018). 

The evaluation of OMGP autoantibodies was carried out using three different assays, which have 

some internal variability. Nevertheless, highly reactive patients as the index patient 2492 among 

others, show OMGP antibody autoreactivity in all assays. Although the determination of a fixed 

cutoff at mean plus three or six SDs values from HCs is discussable, patients with a high titer will 

always be identified as seropositive, similarly by using the criteria OMGP-TM/OMGP-GPI double 

positives. This avoids the identification of false positives, also by using three different assays for 

detection of OMGP Abs and setting a stringent cutoff for the evaluation of OMGP-IgG 

seropositivity.  

Furthermore, using PBMCs of the index patient, the identification of circulating OMGP-specific B 

cells in the peripheral blood was possible. By using this assay, as it was established for the 

identification of MOG- and GAD- specific B cells (Thaler et al., 2019; Winklmeier et al., 2019), two 

out of 13 stimulated wells produced OMGP autoantibodies, which were secreted into the cell 

supernatant (Figure 3.30) and analyzed by CBAs. With this method, it was easy and robust to 

detect OMGP-specific B cells and this suggests also a similar frequency for circulating 

autoreactive T cells. Nonetheless, the detection of these autoantigen specific T cells is more 

difficult, because measuring the Abs is more robust and sensitive than current T cell methods. 
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4.2 Strategies to identify autoreactive OMGP T cells in patients  

This part of the thesis aims at identifying autoreactive T cells against OMGP. The previously 

described OMGP Abs were of the IgG isotype, indicating cognate T cell help. The detection of 

rare autoreactive T cells is challenging, due to the low frequency of many myelin reactive T cells, 

e.g. 0.61 TMBP cells per 105 PBMCs in MS patients (Chou et al., 1992). Therefore, different 

methods were established from limiting dilution to proliferation assays measuring 3H-thymidine, 

EdU incorporation, the dilution of CFSE dye or the analysis of IFNγ secretion by ELISA (Elong 

Ngono et al., 2012). High sensitivity can be achieved by using ELISpot or FluoroSpot assays, 

whereas the latter allows simultaneous detection of a higher number of cytokines (Bronge et al., 

2019a). 

In this study, the first try for the identification of OMGP-specific T cells was carried out using EdU 

and CFSE proliferation assays. Thereby, the assay was established with a healthy donor (Figure 

3.39), showing low unspecific background proliferation with EdU staining and less in CFSE 

condition after 7d of stimulation. The protocol was established successfully, seen by high CD3+ T 

cell proliferation response with ConA treatment or stimulation with measles or tetanus antigen. T 

cells of this HC reacted after 7d with EdU and CFSE proliferation upon OMGP stimulation, showing 

less response than with the recall antigens, but more than observed for the background level. 

For two patients, 1014 and 2492, the OMGP T cell response in the CFSE assay after 7d is 

displayed in Figure 3.40. The unspecific background proliferation in these patients is low and two 

OMGP stimulation wells display 0.26 % and 0.39 % of proliferating CD3+ T cells in patient 2492, 

whereas for patient 1014 there is a variation from 0.047 % in the first to 2.28 % in the second well. 

This may reflect the rare frequency of OMGP-specific T cells by having 106 stimulated PBMCs in 

a well, that only in some a response can be detected. Analyzing the CD4+ and CD8+ T cell 

response, the mean frequency of OMGP-specific T cells is in both subsets with 0.04-0.19 % is 

comparable to the background level with 0.13-0.2 % of unstimulated proliferating T cells. 

Furthermore, the use of fresh PBMCs instead of frozen in this assay, didn’t increase the number 

of proliferating T cells upon OMGP stimulation (Figure 3.41).  

The second try to identify OMGP-specific T cells with a higher sensitivity, was conducted by IL-

17/IFNγ cytokine measurement in the supernatants of stimulated PBMCs from MS patients and 

HCs. Whereas IL-17 signals were hardly detected at all, IFNγ could be measured in the 

supernatants of patients and HCs, stimulated with our in house produced OMGP. As it turned out 

later, these results can’t be used, because it was observed throughout the evolution of the project, 

LPS contaminations contribute to the IFNγ concentrations (Figure 3.43). Additionally, it was 
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demonstrated, that proliferation of CD4+ and CD8+ T cell is influenced already by low 

concentrations of 1 pg/ml of LPS (Figure 3.42). In these assays, various OMGP preparations with 

final LPS concentrations of 2.5-660 pg/ml were used (Table 3-6). 

To overcome the effect of LPS contaminations and using a highly sensitive as well as specific 

FluoroSpot assay, a new method from 2019 was applied (Bronge et al., 2019b). Therefore, OMGP 

was coupled to paramagnetic beads, which could be washed with NaOH for LPS removal. 

Afterwards, the binding success of the antigen to beads with 98.7 % positive anti-OMGP staining 

and 95.5 % anti-His staining for Avi-His control peptide was evaluated by flow cytometry (Figure 

3.44). For an optimal signal to noise ratio, the wash titration analysis of OMGP beads (Figure 3.45) 

pointed out 0.1 M NaOH as optimal condition. Upon stimulation with these beads, a few MS 

patients with OMGP-reactive T cells could be identified by FluoroSpot assay, measuring IFNγ, IL-

17A and IL-22 secretion (Figure 3.48). In total after OMGP beads treatment, one natalizumab 

patient and five untreated patients responded with cytokine secretion.  

Interestingly, patients with IL-22+/IL-17A+ T cells are identified. This cytokine pattern is found by 

Th17 cells, which might play a role in the pathogenesis of MS (Dos Passos et al., 2016; 

Knochelmann et al., 2018). In the MOG T cell study, natalizumab treated patients were included 

in the screening, since this anti-α4 integrin monoclonal antibody is directed against a cell adhesion 

molecule and therefore blocks the leukocyte extravasation, resulting in a higher number of 

circulating lymphocytes and PBMCs (Bronge et al., 2019b; Krumbholz et al., 2008). Therefore, 

this effect is beneficial for increasing the chance to detect rare autoreactive T cells and might be 

useful for other autoimmunity studies as well (Jelcic et al., 2018). Although, this assay identified a 

few patients with OMGP T cells, the number of SFUs is low and it might be valuable to perform 

replicates as well as longitudinal analysis in patients to investigate the persistence of these 

autoreactive T cell subsets. Nevertheless, using those purified beads for stimulation and 

evaluation by FluoroSpot, the LPS as well as the sensitivity issue could be overcome. 

Together, three different methods have been applied in this thesis to identify OMGP-specific T 

cells. First, measuring T cell proliferation using CFSE or EdU. Thereby, no OMGP-specific T cells 

could be detected, although an immune response against recall antigens was detected. Second, 

cytokine production. However, this assay is too sensitive towards low amounts of LPS 

contaminations, which could be detected even in the eukaryotic produced antigen. The 

identification of OMGP-specific T cells was possible with a novel assay and research period at the 

Karolinska Institute, Stockholm. This assay has three advantages: a) enhanced sensitivity through 

efficient antigen-uptake via beads, b) washing away any possible LPS contamination of the beads, 

and c) high sensitivity through detection by FluoroSpot assay. 
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To identify an immune reaction against certain infectious agents, like CMV and tuberculosis, 

antigen specific T cell activation is used (Bacher et al., 2015; Schmidt et al., 2014). For the 

diagnosis of autoimmune diseases, the identification of autoantibodies (e.g. against MOG or 

AQP4) is much more sensitive and robust, than the identification of autoreactive T cells. However, 

the identification of autoreactive T cells might give insight into possible pathogenic mechanisms 

of the disease (Cao et al., 2015; Cruz-Herranz et al., 2017; Hohlfeld et al., 2016a; Hohlfeld et al., 

2016b; Lodygin et al., 2019; Planas et al., 2018). 

For the development of a personalized treatment, the identification of target antigens is of 

fundamental importance. An ultimate aim of future therapies is either the targeted therapy, where 

pathogenic autoreactive T cells should be specifically removed or by restoring the self-tolerance 

(Hohlfeld et al., 2016a). This could be applied in numerous ways by vaccines or oral administration 

of myelin peptides among others (Steinman et al., 2019). One recently developed method uses 

MOG/MBP/PLP peptides coupled to blood cells for induction of tolerance in MS patients in a 

clinical trial (Lutterotti et al., 2013). For that reason, it is important to find novel antigens, like 

OMGP, which might be included in the toleration cocktails of future studies. 

 

4.3 Pathogenic relevance of OMGP autoimmunity 

This study demonstrated for the first time the pathogenic potential of autoimmunity to OMGP in a 

rat model, where TOMGP cells induced a novel type of EAE with gray matter lesions in the spinal 

cord and cortical meningitis. For several autoantigens, it is reported, that the clinical outcome 

depends on the expression of the target. Injection of MOG or S100β specific T cells led to mild 

disease, but with intense CNS inflammation (Kawakami et al., 2004). In contrast, TMBP cells 

mediate a potential lethal EAE in Lewis rats and drive inflammation mainly in the white matter, 

whereas T cells for neuronal specific antigens affect the grey matter. For example contactin-2 

specific T cells induce grey matter pathology of the cortex and the spinal cord (Derfuss et al., 

2009) or β-synuclein directed T cells lead to neuronal destruction, gliosis as well as to brain 

atrophy (Lodygin et al., 2019). 

To understand the clinical picture observed in animals treated with TOMGP cells, the expression 

pattern of OMGP needs to be analyzed. In this study, OMGP is detected on oligodendrocytes, 

hippocampal as well as cortical neurons and in SC tissue sections (Figure 3.34). Early O4+ OPCs 

and also mature MBP+ oligodendrocytes display OMGP on their surface and could be detected 

with our new mAbs (MD thesis of Lena Kristina Pfeffer). Similarly, human oligodendrocytes 

express OMGP on O4+ and O4- cells. This is consistent with previous studies, where OMGP could 
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be detected together with MBP on the outermost surface of myelin of a dissected optic nerve 

(Chang et al., 2010). Furthermore, it was shown that cortical and hippocampal neurons express 

OMGP (Gil et al., 2010; Habib et al., 1998). There the staining of OMGP in the spinal cord was 

located at the dorsal horn, which reflects our findings seen in histology after OMGP T cell transfer.  

As OMGP is a GPI anchored protein and can be shed by lipases (Mikol and Stefansson, 1988; 

Wang et al., 2002b), it might be existing as soluble form in the CSF. In a study of 2012, OMGP 

peptides were identified by mass spectrometry in CSF of MS patients (Dhaunchak et al., 2012). 

Seeing cortical meningitis in Lewis rats injected with TOMGP cells, may reflect T cells activated by 

potential high soluble OMGP levels in the CSF. Comparing this EAE model to MS, meningeal 

inflammation in patients is linked to cortical injury (Bevan et al., 2018). Furthermore, cortical 

meningitis might be followed by subpial cortical demyelination, which is described as characteristic 

feature in MS (Kutzelnigg et al., 2005). Whether soluble OMGP helps to mediate meningitis and 

the underlying mechanism of OMGP processing, if despite lipases other enzymes, like ADAM 10 

for the GPI anchored PrP protein (Liang and Kong, 2012) can be involved, remains to be 

elucidated in future studies. 

Knowing that TOMGP cells do not induce clinical symptoms, but have the potential to mediate 

cortical meningitis and grey matter pathology in the spinal cord, the question arose if they can 

open the BBB for pathogenic antibodies. Co-injection of 818C5-hIgG1 MOG antibody resulted in 

an intense demyelination. The demyelinating characteristic of 818C5-hIgG1 was already seen, 

when injected with TMBP or TMOG cells (Spadaro et al., 2018). TOMGP cells breach the BBB, induce 

a massive inflammation, but only little ED1 macrophage activation and allow MOG antibodies to 

enter the CNS, where they induce demyelination. It is mainly observed perivascular, in which the 

lesions are composed of Ig-precipitation, complement C9neo deposition and a low number of Iba1 

macrophages. This indicates, that the demyelination is most likely mediated through complement 

rather than by antibody dependent cellular cytotoxicity. Additionally, intrathecally injected MOG 

antibodies were also found in high levels in the periphery, which presumably explains the 

perivascular demyelination. 

Looking at the subpial cortex, to analyze the characteristic subpial demyelination, typically found 

in MS (Kutzelnigg et al., 2005), only mild complement activation with no demyelination was 

observed. Regarding the short observation period of 3d after MOG antibody injection, the mAb 

might induce subpial demyelination by prolonging the exposure time and allowing therefore a 

persistent binding.  
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Beside the demyelination potential of MOG antibodies, this study also evaluated the pathogenicity 

of OMGP autoantibodies, injected together with TOMGP or TMBP cells. A summary of all used 

antibodies and combinations with T cells is listed in Table 3-5. A total of four different OMGP mAbs 

with distinct isotypes were used for induction of demyelination in the EAE rat model. Beforehand, 

they were tested regarding there in vitro C1q binding ability, resulting in 14A9 as strong binder 

(Figure 3.32). But neither 14A9 anti-OMGP, nor one of the others induced demyelination with 

TOMGP or TMBP cells. To exclude the lack of the appropriate Fc part of these OMGP mAbs, rat 22H6 

antibody Fc part was exchanged and produced recombinantly as 22H6-hIgG1 with the same part 

used for 818C5-hIgG1 (Spadaro et al., 2018). However, this didn’t induce demyelination, when 

injected together with TOMGP cells. 

For now, comparing to MOG antibodies, mAbs against OMGP didn’t reveal a demyelination 

potential. One possible reason might be an absorption of antibodies by soluble OMGP in the CSF 

and parenchyma. Furthermore, the mechanism of shedding is completely unknown and OMGP 

might be quickly released upon antibody binding and therefore no tissue destruction can occur. 

Although two mAbs generated against OMGP bind C1q in vitro, it might be that these have too 

low affinity, not as high as 818C5-hIgG1 to MOG and lack appropriate features for complement 

activation in vivo, as it was shown for AQP4 mAbs, a certain antigen structure is required (Soltys 

et al., 2019). 

This study didn’t address the function of OMGP among Nogo/MAG as member of ligands for 

neurite outgrowth and remyelination inhibitors. Throughout antibody binding to OMGP, these 

functions might be limited. It can be speculated, that antibodies targeting OMGP could promote 

remyelination and axonal repair. This is reported for Nogo, which is together with OMGP a ligand 

for NgR. In a lysolecitin demyelinating mouse model the anti-Nogo treatment induced 

remyelination and enhanced axonal repair (Ineichen et al., 2017a). There are several clinical trials 

phase I studies testing anti Nogo-A mAbs for MS, spinal cord injury and amyotrophic lateral 

sclerosis. Indicating the importance, that drugs protecting the nervous system from chronic 

progressive diseases are an urgent need and might be beneficial in progressive MS (Ineichen et 

al., 2017b).  

Another target of antibody treatment in phase II clinical studies is LINGO-1. The protein acts as 

co-receptor to NgR/p75NTR receptor complex and therefore is involved in the same signaling as 

OMGP (Lee and Petratos, 2013). Both are negative regulators of axonal sprouting and are 

overexpressed in EAE animal models (Lee et al., 2011; Loov et al., 2012). Therefore, 

neutralization of LINGO-1 results in an expansion of immature neurons and might be a promising 

target for promoting neurogenesis in neurodegenerative disorders or after spinal cord injuries 
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(Loov et al., 2012). Whether binding LINGO-1 by Opicinumab, used in phase II studies for MS and 

optic neuritis induces regeneration, remains to be elaborated in ongoing studies. Until now, the 

effect seen in animal models is not as strong in treated patients (Cadavid et al., 2019). Therefore, 

it might be interesting, to evaluate the role of another similar target like OMGP and study the 

relevance of therapeutic antibodies against it. 

 

4.4 OMGP-associated disease as a new subgroup of MS and related disorders?   

This study elaborates OMGP as an autoreactive target, by identification of antibodies and T cells 

against this antigen. Furthermore, the pathological potential of TOMGP opening the BBB, could be 

displayed in an animal model.  

This study identifies for the first time patients with inflammatory CNS diseases, who have 

autoantibodies to OMGP. As illustrated in Figure 4.1 (A), autoantibodies to AQP4 and MOG 

constitute own entities, NMOSD- and MOG-Ab associated diseases (Fujihara et al., 2018; 

Wynford-Thomas et al., 2019). Will autoantibodies to OMGP constitute also a separate disease? 

This will be answered by further studies identifying more patients. These future studies can use 

the methods of Ab detection described here.  

A critical issue will be the development of standardized assays and thresholds. This thesis shows, 

that by using a low threshold a spectrum of diseases from MS, NMOSD, ADEM, LE and psychosis 

is identified (Figure 4.1, B). By using a very stringent threshold the MS, ADEM and psychosis is 

still seropositive for OMGP autoantibodies. In these cohorts, none of the patients with MOG or 

AQP4 Abs do have autoantibodies against OMGP, but one patient with LE and GAD Abs has 

additional OMGP Abs. For the unspecific diagnosis of psychosis, not much more clinical 

information about this patient is available. In some disorders like NMDAR encephalitis, which was 

describe for the first time in 2007 (Dalmau et al., 2007), patients present early with psychiatric 

symptoms, whereas autoantibodies are not yet evaluated and only in retrospective analysis the 

presence of NMDAR Abs was confirmed (Pruss et al., 2010).  
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Figure 4.1 Spectrum of antibody associated diseases 

(A) Studies about MOG and AQP4 autoantibodies helped for the stratification of patients with different diseases and 
constitute now separate entities (Fujihara et al., 2018). (B) OMGP Abs are identified in patients with different diseases. 
The purple circles illustrate other autoantibodies against, MOG, AQP4 or GAD, whereas the latter shows overlap with 
OMGP Abs. Black circles around ADEM, MS and psychosis indicate patient groups, which score seropositive, even 
with the stringent cutoff.  

 

The second part of this study evaluated the pathogenicity of OMGP autoimmunity and the 

presence of OMGP-specific T cells in humans. In the animal model, TOMGP cells induced 

meningitis, breached the BBB and allowed MOG Abs to induce demyelination, whereas OMGP 

Abs didn’t show a pathogenic effect. 
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Figure 4.2 Aspects of CNS pathology mediated by OMGP-directed autoimmunity 

OMGP autoimmunity mediates three pathologies: (A) cortical meningitis, (B) grey matter injury of the spinal cord and 
(C) breaching the BBB to pave the way for MG-Ab induced demyelination. Level 1: presence of OMGP on neurons as 
well as oligodendrocytes and OMGP-specific immune cells. Level 2: concept of antigen-specific activation in tissue and 
its consequences in the CNS milieu. Level 3: pathology observed in animal transfer experiments with CD3 and luxol 
fast blue (LFB) staining, coloring myelin in blue. 

 

All findings of this study and additional hypotheses are summarized in Figure 4.2. It is shown, that 

OMGP is displayed on the surface by neurons and oligodendrocytes (Figure 4.2, A1), where it 

might be directly targeted by autoantibodies. Since neither neuronal destruction, nor 

demyelination are observed following injection of OMGP Abs, a potential mechanism behind it 

may be the release of OMGP from its GPI-anchor (Figure 4.2, A2/B2). PLC could cut the protein 

from its anchor, as it was reported by exogenously added enzyme (Wang et al., 2002b). 

Additionally, ADAM10 proteases have the ability to shed proteins close to the c-terminal end as it 
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was demonstrated for the GPI anchored prion protein (McDonald and Millhauser, 2014). Soluble 

OMGP is released into the CSF, also found by mass spectrometry (Dhaunchak et al., 2012), where 

it might absorb antibodies or is taken up by meningeal macrophages and presented to OMGP-

specific T cells (Figure 4.2, A2), which produce effector cytokines like IFNγ, IL-22 or IL-17A. 

Similarly, in spinal cord tissue the OMGP might be taken up by microglia and presented to OMGP-

specific T cells and induce inflammation in the dorsal horn of the SC (Figure 4.2, B2-3). 

Furthermore, injection of TOMGP cells leads to BBB disruption and therefore allows demyelinating 

MOG Abs to enter the CNS (Figure 4.2, C). 

All this may lead to the pathological pattern, seen in an animal model after injection with TOMGP 

cells (Figure 4.2): a) cortical meningitis with perivascular aggregation of T cells, b) grey matter 

injury of spinal cord, mainly of the dorsal horn which is consistent with literature (Habib et al., 

1998) and c) by breaching the BBB TOMGP cells mediate MOG Ab induced demyelination. 

 

4.5 Conclusion 

This work evaluates for the first time autoimmunity against the OMGP protein in an animal model 

and patients. The target was selected by its exclusive presence on neurons and oligodendrocytes 

in the CNS, as MS is a disease of grey and white matter. With the development of two CBAs and 

an ELISA, autoantibodies against OMGP could be identified in patients with MS and related 

diseases. By purification of OMGP-specific antibodies from a highly reactive MS patient, additional 

features like isotypes and complement binding could be elucidated. The further aim would be to 

inject these patient derived antibodies in an animal model to study the relevance of OMGP Abs 

from patients. The pathogenic relevance of TOMGP cells in Lewis rats was pointed out, as they open 

the BBB and pave the way for demyelination by MOG Abs. Furthermore, these autoreactive TOMGP 

cells were also detected in natalizumab and untreated MS patients.  

In conclusion, the findings of the novel autoreactive target OMGP for antibodies and T cells helps 

to get more insights into the pathological mechanisms behind MS and related autoimmune 

diseases. For the MOG antigen it took more than ten years to define it as a separate MOG-

antibody associated disease entity. Therefore, this study just gives an idea of how OMGP 

autoimmunity could work, but for understanding the role and relevance, future studies are needed. 

Furthermore, these data help to support the idea of personalized treatment strategies, as OMGP 

Abs might be used in future as biomarker or OMGP T cells could be targeted by drugs, composed 

of a mixture of myelin peptides to bring back the physiological self-tolerance.  
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5. LIST OF ABBREVIATIONS 

aa amino acid 

Ab antibody 

ADEM acute disseminated encephalomyelitis 

ANA antinuclear antibodies 

ANO2 anoctamin 2 

AQP4 aquaporin-4 

BAFF B cell activating factor 

BBB blood-brain barrier 

BCA bicinchoninic acid assay 

BR background 

BSA bovine serum albumin 

Caspr Contactin associated protein 

CBA cell-based assay 

cDNA complementary DNA 

CFSE carboxyfluoresceinsuccinimidylester 

CIDP chronic inflammatory demyelinating polyneuropathy 

CIS clinical isolated syndrome 

CMV cytomegalovirus 

CNP cyclic-nucleotide-phosphodiesterase 

CNS central nervous system 

ConA Concavalin A 

CRION chronic inflammatory optic neuropathy 

CRMP-2 collapsin response mediator protein 2 

CSF cerebrospinal fluid 

C-terminus carboxy-terminus of the protein 

CTR control 

CV column volume 

DNA desoxyribonucleic acid 

dsDNA double-stranded desoxyribonucleic acid 

DMF dimethyl fumarate 

DTT dithiothreitol 

EAE experimental autoimmune encephalitis 

EBNA Epstein-Barr virus nuclear antigen 

EBV Epstein-Barr virus 

ED1 mAb against CD68 

EDSS expanded disability status scale 

EDTA ethylenediaminetetraacetate 

EdU 5-Ethynyl-2´-deoxyuridine 

EGFP enhanced green fluorescent protein 

ELISA enzyme-linked immunosorbent assay 

ELISPOT enzyme-linked immune absorbent spot 

FACS fluorescence-activated cell scanning 

FCS fetal calf serum 

FSC forward scatter 

FT flow through  

FWD forward 

GAD glutamic acid decarboxylase 

GFAP glial fibrillary acidic protein 
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GM grey matter 

GnT1 N-acetylglucosaminyltransferase I 

GPI glycosylphosphatidylinositol 

HBV hepatitis B virus 

HC healthy control 

HCV hepatitis C virus 

HE hematoxylin and eosin 

HEK human embryonic kidney cell line 

HeLa Henrietta Lacks cell line 

His histidine tag 

HIV human immunodeficiency virus 

HLA human leukocyte antigen 

HNK-1 human natural killer-1 

HRP horseradish peroxidase 

IBA1 ionized calcium-binding adapter molecule 1 

IF immunofluorescence 

IFNγ interferon gamma 

Ig immunoglobulins  

IL interleukin 

IMAC immobilized metal ion affinity chromatography 

i.t. intrathecal 

i.v. intravenous 

IvIg Intravenous immunoglobulin 

LAL limulus amebocyte lysate 

LB lysogeny broth medium 

LE limbic encephalitis 

LETM longitudinal extensive transverse myelitis 

LFB luxol fast blue 

LINGO-1 leucine rich repeat and immunoglobin-like domain-containing protein 1 

LPS Lipopolysaccharide 

mAb monoclonal antibody 

MAC membrane attack complex 

MADSAM multifocal acquired demyelinating sensory and motor polyneuropathy 

MAG myelin-associated glycoprotein 

MBP myelin basic protein 

MFI mean fluorescence intensity 

MOG myelin oligodendrocyte glycoprotein 

MRI magnetic resonance imaging 

MS multiple sclerosis 

MSC multiple cloning site 

N-terminus amino-terminus of the protein 

NF neurofascin 

NgR neurite outgrowth inhibitor receptor 

NMDAR N-methyl-D-aspartate receptor 

NMOSD neuromyelitis optica spectrum disorders 

Nogo neurite outgrowth inhibitor 

NPLE non-paraneoplastic limbic encephalitis 

NRSPMS non-relapsing secondary progressive multiple sclerosis 

OCB oligoclonal bands 

OD optical density 
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OMGP oligodendrocyte myelin glycoprotein 

OMGP-GPI oligodendrocyte myelin glycoprotein glycosylphosphatidylinositol 

OMGP-TM oligodendrocyte myelin glycoprotein transmembran 

OIND other inflammatory neurological diseases 

ON optic neuritis 

OND other neurological diseases 

OPC oligodendrocyte precursor sells 

OVA ovalbumin  

P0 myelin protein zero 

pAb polyclonal antibody 

PBMCs peripheral blood mononuclear cells 

PCR polymerase chain reaction 

PEI polyethylenimine 

PET positron emission tomography 

PFA paraformaldehyde 

PI propidium iodide 

PI-PLC phosphatidylinositol specific phospholipase C 

PirB paired immunoglobulin-like receptor B 

PLC phospholipase C 

PLP proteolipid protein 

PPH plasmapheresis  

PPMS primary progressive multiple sclerosis 

PVDF polyvinylidene difluoride 

R848 resiquimod 

Rev reverse 

RF rheumatoid factor  

RION relapsing inflammatory optic neuropathy 

RIS radiological isolated syndrome 

RNA ribonucleic acid 

RRMS relapsing remitting multiple sclerosis 

RSPMS relapsing secondary progressive multiple sclerosis 

RT reverse transcriptase 

SC spinal cord 

SCNI subclinical neuroinflammation 

SD standard deviation 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM standard error of the mean 

SFU spot forming unit 

SLE systemic lupus erythematosus 

SMART switching Mechanism At the 5' end of RNA Template 

SPMS secondary progressive multiple sclerosis 

SSC side scatter 

STV streptavidin 

T2A thosea asigna virus 2A peptide 

TCR T cell receptor 

TLR toll-like receptor 

TM transmembrane 

TNF tumor necrosis factor 

TSO template switching oligonucleotide 

TSPO translocator protein 
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WB Western blot 

WM white matter 

WT wild type 
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