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Abstract

Autonomous structural health monitoring (SHM) of a large number of struc-

tures became a topic of paramount importance for maintenance purposes

and safety reasons in the last few decades. Civil infrastructures are the back-

bone of modern society, and the assessment of their conditions is of renowned

importance. This aspect is even more exacerbated because of the existing

systems, such as bridges, that are fast approaching their service life. Since the

replacement of those structures is functionally and economically demanding,

maintenance and retrofitting operations must be planned wisely.

Moreover, edge computing, a key part of the upcoming 6G technologies,

will offer cloud applications whilst providing more resources and reduced

latency. This paradigm is grounded on mobile application-specific compu-

tations between the cloud, the data-producing devices, and the network in-

frastructure components at the edges of wireless and wired networks. The

increasing amount and variety of data generated by users and sensors inter-

connected to the future 6G network requires new strategies to manage several

types of data with highly different characteristics and also requires solutions

to power the wireless network with renewable energies [1–7]. In the last

few years, the rise of Internet of things (IoT) showed us how pervasive and

widespread the applications of electronic devices and intelligent sensors could

be, and now heading towards 6G, the idea of Internet of everything (IoE)

has become anything but visionary [8–13].

As far as bridge monitoring is concerned, some statistics highlight the

relevance of the problem. For example, in Italy, there are almost 2000 bridges

that require special monitoring; in France, 4000 bridges need to be restored,

and 840 are considered to be in critical conditions; in Germany, 800 bridges
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are reputed at risk. According to conservative estimates, at least 1 % of

the bridges are considered deficient in the entire world. Besides, historic

structures and highly populated buildings need special attention in terms of

monitoring.

In this scenario, the adoption of artificial intelligence (AI) and in par-

ticular machine learning (ML) strategies represents a flexible and poten-

tially powerful solution that must be investigated. To manage the big and

widespread amount of data generated by the extensive usage of multiple

types of sensors, several ML techniques can be investigated, with the aim to

perform data fusion and reduce the amount of data. Furthermore, the usage

of anomaly detection techniques to identify potentially critical situations in

infrastructures and buildings represents a topic of particular interest that

still needs a significant investigation effort.

In this research activity, we provide the fundamental guidelines to per-

form automatic damage detection, which combines SHM strategies and ML

algorithms capable of performing anomaly detection on a wide set of struc-

tures. In particular, several algorithms and strategies capable of extracting

relevant features from large amounts of data generated by different types of

sensors are investigated. Finally, to effectively manage such an amount of

data in communication constraints, we obtained some design rules for the

acquisition system for bridge monitoring for the first time.
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Chapter 1

Introduction

1.1 Scenario

Nowadays, the widespread adoption of automation and sensors in a broad

set of applications (i.e., industry, telecommunication, structural monitoring,

autonomous driving, crowdsensing) generated the opportunity to access a

variety of data that can be used for new types of services and to increase the

reliability of the existing ones (see Fig. 1.1). Moreover, the increasing number

of devices per km2 that with the 6G aims to become greater than 10 million

leads to new networks paradigms that must be properly designed [18–23],

and represents a tremendous source of data that must be organized and

compressed.

n this scenario, where several new research areas have grown, both in

data analysis and big data management, this thesis focuses on the adoption

of innovative ML strategies applied to the important field of SHM.

The study of methods able to determine the state of health of a structure,

and the localization and quantification of the damage, generated a vast liter-

ature, reviewed in several works [24–28]. Over the years, with the aim to per-

form damage detection on structures, several techniques have been developed

to extract the most significant damage-sensitive features. Such techniques

can be divided into model-free and model-based. In model-free methods, the

only information is gathered by measurements (e.g., acceleration, temper-
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2 Introduction

Figure 1.1: An example of wireless networks for SHM in an outdoor scenario.

ature, position), while in model-based approaches, information comes from

measurements and prior knowledge of a model of the structure [14]. With the

aim to develop a general strategy that can be applied to a broad set of struc-

tures and situations, this thesis is focused on the investigation of model-free

methods.

Since the whole process is quite complicated and requires fine-tuning of

several parameters, specifically for the structure at hand, recently, some

works put forward the idea to adopt ML techniques to detect changes in

the damage sensitive features [29–32]. However, despite the considerable

amount of literature on SHM, much effort is still necessary to analyze data

automatically and ensure the massive monitoring of a large number of infras-

tructures. Unfortunately, performing automatic SHM is not trivial because

of the variety of structures and their peculiar characteristics, which, again,

tend to require specific settings.

ML represents a comprehensive set of powerful and flexible tools that can
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solve general tasks if adequately used. After the extraction of the most sig-

nificant damage-sensitive features performed by SHM techniques, a wide set

of ML algorithm able to perform anomaly detection on a general dataset will

be presented and extensively discussed. Moreover, a collection of innovative

tools with increased detection capabilities, compared to classical approaches,

will be proposed and meticulously examined.

1.2 Main Contributions

In this thesis, we attempt to provide a method to automatically detect

anomalies in structures starting from vibrational data. The proposed frame-

work starts from a feature extraction phase, performed through OMA, a

widely known SHM strategy, to extract the fundamental frequencies of the

structure, followed by their clustering and tracking in the time domain. The

processed modal frequencies are then used as features for a one class classi-

fier (OCC) to perform anomaly detection. In particular, the main contribu-

tions of this thesis can be summarized as follows:

• We present a complete processing chain capable of monitoring the struc-

tural health of a structure autonomously using model-free system iden-

tification based on accelerometric data.

• After performing modal frequencies clustering in the stabilization di-

agram, we propose a new time-domain tracking algorithm based on

modal frequencies density.

• We investigate strategies to select the best features among all the ex-

tracted ones, comparing feature extraction and feature selection tech-

niques in order to provide the best solution for bridge monitoring.

• We propose a new anomaly detector, namely OCCNN, which finds the

normal class (the boundary of the features space in normal operating

conditions) through a two-step approach.

• We propose a variant of OCCNN, named OCCNN2, which combines

the two-step approach of OCCNN with an ANN.
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• We applied the proposed framework on data collected from the Z-24

bridge to assess its performance, and we made comparisons with several

anomaly detection techniques such as PCA, KPCA, GMM, and ANN,

in terms of F1 score, accuracy, recall, and precision.

• We test the robustness and responsiveness of the proposed solution to

different sensor configurations.

• We investigate the effect of sensor failures in order to provide the mini-

mum number of sensors necessary to ensure predefined anomaly detec-

tion performance.

• We investigate the minimum observation time and the minimum num-

ber of bits that must be used to achieve the target performance, to

reduce the amount of data stored for anomaly detection.

1.3 Thesis Structure and Notation

The rest of the thesis is organized as follows:

Chapter 2 presents an overview of the ML literature, considering the prob-

lems of regression, classification, dimensionality reduction, and anomaly

detection, and several algorithms able to accomplish these tasks. More-

over, two novel anomaly detectors OCCNN and OCCNN2 are proposed

and extensively analyzed.

Chapter 3 investigates some strategies of SHM, whose aim is to extract

damage sensitive features, with particular focus on the model-free meth-

ods. Among the several possibilities, SSI has been selected as a good

candidate to solve this task because of its characteristics and wide ap-

plicability.

Chapter 4 proposes a connection between ML and SHM, the complete

chain for acquisition, feature extraction, and damage detection is pre-

sented and also tested on a real structure, the Z-24 bridge, a benchmark

widely known in the literature.
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Chapter 5 analyzes strategies to select the most reliable frequencies among

all the extracted ones, comparing feature extraction and feature selec-

tion techniques.

Chapter 6 explores the reliability of the monitoring system, and the min-

imum operating conditions necessary to ensure a target performance

of the anomaly detection chain, varying the number of sensors avail-

able, the acquisition time, and the number of bits per sample used to

quantize the measurements.

Chapter 7 proposes a method for passive human activity classification ex-

ploiting ground vibrations observed by a biaxial geophone. The solu-

tion is grounded on the idea that some activities can be better analyzed

by the horizontal channel while others by the vertical one.

Chapter 8 investigates the problem of detecting the presence of a target in

a room to perform intrusion detection, evaluating the power spectral

density (PSD) variation of signals of opportunity via anomaly detection

techniques.

Throughout the thesis, capital boldface letters denote matrices and ten-

sors, lowercase bold letters denote vectors, (·)T stands for transposition, (·)+

indicates the Moore-Penrose pseudoinverse operator, || · ||2 is the `2-norm of

a vector, || · ||F is the Frobenius norm of a matrix, <{·} and ={·} are the real

and imaginary parts of a complex number, respectively, V{·} is the variance

operator, and 1{a, b} is the indicator function equal to 1 when a = b, and

zero otherwise.
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Chapter 2

Machine Learning Algorithms

2.1 Introduction

Recognising patterns, classifying elements, clusterize data, and perform re-

gression from sampled data, are fundamental task to solve problems in en-

gineering. In the last few decades many efforts have been spent to develop

algorithms able to accomplish these tasks with few hyper-parameters, i.e.,

few parameters to be tuned.

Generally, a ML algorithm workflow is composed by a training phase and

a test phase. During the training phase the algorithm is fed with a training

dataset with the aim to set some parameters θ typical of the considered

algorithm in order to minimize a cost function. After that, a validation

dataset is used to set some hyper-parameters φ of the algorithm and finally

a test dataset is used to evaluate the performance. More in detail, given a

matrix of data D of dimension Nd ×D where Nd represents the number of

observations and D stands for the dimensionality of the observation (number

of features), we can define the following subsets:

• Training set X of dimension Nx × D, where Nx is the number of ob-

servations used to train the algorithm and set the parameters θ, with

the aim to minimize an error function E(θ,φ) with a direct solution

(where possible) or with some minimization strategies (i.e., stochastic

descent algorithms and Newton-Raphson method).

7
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Figure 2.1: Block diagram of a general ML algorithm.

• Validation set V of dimension Nv × D, where Nv is the number of

observations used to set the hyper-parameters φ of the algorithm, in

this case the hyper-parameters are set manually with trial and error

strategies or with some metrics that can be defined depending on the

problem.

• Test set Y of dimension Ny × D, where Ny is the number of obser-

vations used to test the algorithm performance; in this phase neither

the parameters nor the hyper-parameters can be modified, in order to

preserve generalization with respect to the training points.

It can be noted that the dimensionality D is constant among the sets of data

and the total number of observations can be written as Nd = Nx +Nv +Ny.

It is good practice to partition the data with the following proportions:

Nx = 60%Nd, Nv = 20%Nd, Ny = 20%Nd. When the number of obser-

vations Nd is low, some strategies like k-fold validation, cross validation,

and one-vs-rest can be implemented to use a greater number of observations

for the training set [29]. Another important step to apply before using the

data is the normalization. Let us define the offset x̂ as the column vec-

tor containing the row-wise mean of the matrix X, and the rescaling factor

xm = maxn,d |x̄n,d − x̂n|. Before proceeding with the application of ML algo-

rithms, the matrices X, Y and V are centered and normalized subtracting

the offset x̂ row-wise and dividing each entry by the rescaling factor xm, in

this way the training data will fall in the interval [+1,−1]. A target matrix

T(·) is defined for the whole dataset of dimensions Nd × Dout where Dout

stands for the dimensionality of the output; this matrix represents the out-

put of the observations. For instance, in a classification problem, for the

training, the target matrix is actually a vector t(X) of dimension Nx×1 that

contains the classes to which each training point belong.
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The general procedure of a ML algorithm can be summarized as shown in

Fig. 2.1, and the goal is to set the parameters θ and the hyper-parameters φ

to make a prediction g(X,θ,φ) of a target matrix T(X) in order to minimize

an error function E(θ,φ).

2.1.1 Metrics

Several metrics can be defined to estimate the performance of a ML algo-

rithm, usually related to the particular application. Generally, the most

common metrics for regression purpose are the following:

• Sum of squares error (SSE)

SSE(θ,φ) =
N∑
n=1

(g(xn,θ,φ)−T(xn))2

• Mean square error (MSE)

MSE(θ,φ) =
1

N

N∑
n=1

(g(xn,θ,φ)−T(xn))2

• Root mean square error (RMSE)

RMSE(θ,φ) =
1√
N

Ã
N∑
n=1

(g(xn,θ,φ)−T(xn))2

• Negative log likelihood (NLL)

NLL(θ,φ) = −
N∑
n=1

g(xn,θ,φ) ln T(xn).

In several applications a regularization term is introduced in order to

make the error function convex. This term helps the minimization algorithms

to converge to an optimal solution, usually written in the form λ||θ||22 where
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λ represents the regularization hyper-parameter that belongs to the hyper-

parameters set φ. For classification purposes we can define a different set of

metrics, more useful to understand the performance of our algorithms:

• Accuracy

Acc =
TP + TN

TP + TN + FP + FN

• Precision

Prec =
TP

TP + FP

• Recall

Rec =
TP

TP + FN

• F1 score

F1 = 2 · Rec · Prec

Rec + Prec

where TP, TN, FP, and FN, represent respectively true positive, true negative,

false positive, and false negative predictions. Such indicators are obtained

comparing the actual labels t(X), with those predicted by the ML algo-

rithm g(X,θ,φ). In the case of unbalanced classes, the F1 score represents

a more reliable metric to evaluate the performance with respect to the accu-

racy. These metrics can be defined only for two-class classification problems;

for multi-class classification problems, the accuracy is still valid, defined as

number of correct predictions over the total number of points, and confusion

matrix can be adopted to estimate the correct prediction over the different

classes.

2.1.2 Minimization Strategies

Now that we have defined the most common methods to evaluate the algo-

rithm performance, we are ready to define some generic strategies to set the

weights θ in order to minimize the selected error function. The most com-

mon strategy is the gradient descent. The basic idea with gradient descent

is to build a linear model of the selected error function E(θ) (to simplify the
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Figure 2.2: Gradient descent applied to a convex function, red points repre-
sent the iterative evaluation of the error function E(θ) due to the update of
the weight vector θ.

notation we neglected φ, because it is not influent in this process), deter-

mine the downward direction on this function, travel a short distance along

this direction, hop back on to the error function, and repeat until conver-

gence. Formally, beginning at an initial configuration of weights θ(0) the

linear model of E(θ) at this point is given precisely by the first order Taylor

series approximation centered at θ(0):‹E(θ) = E(θ(0)) +∇E(θ(0))T (θ − θ(0)). (2.1)

Now we take the first step by travelling in the direction in which the

tangent hyper-plane most sharply angles downward (referred to as the steep-

est descent direction). It can be shown that this steepest descent direction

is given precisely as −∇E(θ(0)). Thus, we descend in the direction of the

negative gradient (hence the name of the algorithm gradient descent) taking

our first step to a point θ(1) where

θ(1) = θ(0) − ρ∇E(θ(0)). (2.2)
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The same process can be repeated iteratively; in general the number of iter-

ation represents the number of epochs Ne (if all the dataset is used for each

iteration of the algorithm) and the hyper-parameter ρ represents the learning

rate. For the kth iteration we can write the update rule as follows:

θ(k) = θ(k−1) − ρ∇E(θ(k−1)). (2.3)

The number of epochs Ne can be substituted with several convergence criteria

based on the error value or the error decreasing rate [30]. Several variations

of this technique have been introduced over the years to reduce the oscillation

problems and increase the velocity of convergence [30]. Furthermore, when

the second derivative of E(θ) can be computed, the Newton-Raphson method

can be implemented to strongly increase the convergence rate [29]. An exam-

ple of gradient descent algorithm applied in a two-dimensional weight vector

space is shown in Fig. 2.2.

2.1.3 Example: Polynomial curve fitting

To clarify the notation, a toy regression problem is presented. For instance,

observe a one-dimensional (D = 1) phenomena described by the following

equation: f(z) = y(z) + n = cos (4πz) + 2 sin (2πz) + n where n represents

a generic additive noise. Let’s now observe a set of Nd acquisitions of the

phenomena that form the observation matrix D. In this example the dimen-

sionality of the problem is equal to one, hence the observation matrix is a

column vector d of dimension Nd × 1. Partitioning this vector in training

set, validation set, and test set as described previously, we obtain respec-

tively the training vector x of dimension Nx × 1, the validation vector v of

dimension Nv × 1, and the test vector y of dimension Ny × 1. In this exam-

ple the target vector corresponds to the collection of samples of the function

output t(d) = f(d), with dimension Nd × 1. An example of training set

for the given problem, with Nx = 60, is reported in Fig 2.3. We can now

define a polynomial model, in order to implement the curve fitting. A generic
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Figure 2.3: Example of polynomial fitting, with underfitting and overfitting
phenomena due to different values of φ.

one-dimensional polynomial model can be defined as follows:

g(z,θ, φ) = θ0 + θ1z + θ2z
2 + · · ·+ θφz

φ =

φ∑
j=0

θjz
j

where φ represents the model order of the polynomial model, the only hyper-

parameter for this model, and z is a generic point. The values of the coef-

ficients θ can be determined by fitting the polynomial to the training data.

This can be done by minimizing an error function that measures the misfit

between the function g(x,θ, φ), for any given value of θ, and the training set

data point targets t(x). One simple choice of error function, which is widely

used in literature, is given by the sum of the squares of the errors between the

predictions g(xn,θ, φ) for each data point xn and the corresponding target
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values t(xn), so that we minimize:

E(θ, φ) =

NX∑
n=1

(g(xn,θ, φ)− t(xn))2.

It is possible to solve the curve fitting problem by choosing the value of θ

for which E(θ, φ) is as small as possible. Because the error function is a

quadratic function of the coefficients θ, its derivatives with respect to the

coefficients will be linear in the elements of θ, and so the minimization of the

error function has a unique solution, denoted by θ∗, which can be found as a

direct solution. The resulting polynomial is given by the function g(x,θ∗, φ∗).

The optimal φ∗ must be set in order to prevent overfitting and underfitting,

the first one is a situation in witch the error is low over the training set

but high over the test set, whereas in the second case the error is high both

in the training and the test set. An example of overfitting, underfitting,

and optimal configuration is illustrated in Fig 2.3 to clarify these possible

situations. In the example shown, the noise presented is a Gaussian noise

with zero mean and variance equal to 0.1, i.e., n ∼ N (0, 0.1).

2.2 Neural Networks

NNs represent a powerful and flexible tool belonging to the ML algorithms.

This kind of algorithm can be adopted to solve regression, classification, and

dimensionality reduction problems with slightly differences in its structure,

and without particular limitations [29,31]. The general structure of a NN is

reported in Fig. 2.4. As we can see in the picture the structure provides the

following elements:

• Neurons, represented as circles, each one has an activation function

used to propagate the input of the neuron to the next layer.

• Weights, represented as arrows, used to connect the neurons giving to

them different relevance.

The layers of a neural network can be divided into the following groups:
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Figure 2.4: General NN structure; grey neurons represent the input layer,
white neurons the hidden layers, and yellow neurons the output one.

• Input layer, equal to the number of features of the problem (D) that

are used to feed the network with the dataset.

• Hidden layers, that are used to create non linear function able to follow

the data function.

• Output layer, that is used to communicate the results.

In the next chapter we will see how to set the activation functions, and the

number of neurons and layers for several problems. Generally, in this thesis

the number of hidden layers and the relative number of neurons in each

hidden layer will be represented with the vector h of dimension Nh×1 where

Nh stands for the number of hidden layers and the elements of h represent

the number of neurons in the relative hidden layer.

The NN provide, as all the ML algorithms, a training phase and an online

phase. During the training phase the network is fed with the training dataset

X with the training target T(X) to set the network weights θ in order to

minimize the selected error function E(θ,φ). To set the hyper-parameters

φ (i.e. λ, ρ, h, and Ne) several trainings can be performed to maximize the

performance on the validation set V and finally the real performance can be

evaluated on the test set Y. As we can infer from the previous observations,

the training phase can be computationally onerous, and requires a long time
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to be performed. In order to reduce the computational cost, the gradient

descent algorithm is usually replaced by the backword propagation algorithm

that accomplishes the same gradient descent task but with lower complexity.

The description of this strategy is beyond the scope of this thesis, but detailed

description can be found in [29]. The online phase (after the training phase)

for the NN is faster and this represents another remarkable aspect of this

kind of algorithms that are prone to be used in real time applications after

a time consuming training phase.

2.2.1 Regression

As shown previously, a regression problem is a possible application for ML

algorithms and particularly for NNs. In this kind of problem, the goal is

to reconstruct a curve starting from a set of measurements. This type of

application can be useful for:

• filtering, when the goal is to reduce the noise present on a set of mea-

surements.

• interpolation, when the goal is to reconstruct a curve in order to esti-

mate missing points.

• prediction, when the objective is to predict some values out of the

boundaries of the given points.

The generic structure of a NN able to perform regression is reported

in Fig. 2.5. For this application the number of input neurons (depicted in

blue) is equal to the number of input features D, the neurons present in the

hidden layers (in the example h = [3, 4, 3]) exhibit a non linear activation

function (the most common is the rectified linear unit (ReLU) function, but

many other possible solutions are presented in [29, 30]). In these layers the

activation functions are non-linear in order to catch non-linear dependencies

among the data, and finally the output neurons (depicted in green) equal to

the dimensionality of the output and adopt a linear activation function, able

to follow all the possible excursion of the target t(X). The white neurons
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Figure 2.5: NN structure for regression, different neuron colours stays for
different activation functions.

represent the bias terms, they are not connected to the previous layer and

are able to follow the bias values among the data.

2.2.2 Classification

As said before, a quite similar structure can be used to perform classification

on a given dataset. A classification problem is an application of NN where

the target function t(X) is discrete, and represents the class to which the

points belong. In this case the number of input neurons is still equal to the

number of input features D, the neurons in the hidden layers remain the same

as the previous application, but the output layer has a number of neurons

equal to the number of classes of the problem C. The activation function is

a sigmoid with the following expression:

S(z) =
ez

ez + 1
(2.4)

where z represents the input of the considered neuron and S(z) its output.

In this case a sigmoid activation function with excursion between 0 and 1

is preferred to a linear one. That is because the output of each network

can be interpreted as a value related to the probability that the input point

belongs to the class represented by the considered neuron, hence an excursion
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Figure 2.6: NN structure for classification, different neuron colours stands
for different activation functions.

between 0 and 1 is preferred. To assign an input to the relative class, the

neuron with the highest activation function is selected. An example of NN

structure for classification purpose is shown in Fig. 2.6.

2.2.3 Dimensionality Reduction

The last application considered is the dimensionality reduction performed by

the ANN [31]. This particular NN structure is composed by the following

sections:

• Mapping layers, which consist of one or more hidden layers, with the

number of neurons in each layer decreasing progressively till the last

one, called bottleneck. In the bottleneck the number of neurons is

usually lower than the number of input features;

• Demapping layers, composed of one or more hidden layers where the

number of neurons increases progressively.

The input and output layers have the same dimension of the feature space,

and the labels during the training phase must be set equal to the input

data point. With this structure, the data is mapped in a lower-dimensional

feature space (with dimension equal to the number of neurons present in
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Figure 2.7: ANN structure for dimensionality reduction, different neuron
colours stands for different activation functions.

the bottleneck layer), and then reconstructed through the demapping layers

minimizing the error with respect to the input data. After the training phase,

if we feed the network with a new data point, the activation function in the

bottleneck layer outputs a mapped version of the starting data point in a

lower dimensional feature space. Afterwards, we can reconstruct the data

using the demapping layers with a low reconstruction error. An example of

ANN is shown in Fig. 2.7.

Now, focusing on the specific problems we are investigating the following

two questions arises:

Q1: How can we use tools for dimensionality reduction to perform anomaly

detection?

Q2: What are the most effective algorithms able to perform anomaly detec-

tion?

2.3 Anomaly Detection

In this section we review PCA, KPCA, and GMM, which are often im-

plemented for anomaly detection. Usually, the algorithms that implement

dimensionality reduction can also be used as anomaly detectors. One class
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Figure 2.8: Example of PCA; blue points represent the starting points in the
original feature space, the projected ones are depicted in red.

classification or anomaly detection is a particular case of the classification

problem, where the training data is present only for one class (the standard

one), the algorithm is trained only with this class, and the goal is to detect

whether a new point belongs to the same class or is an anomaly [33–40]. To

use a dimensionality reduction technique as anomaly detector, it is enough

to evaluate the reconstruction error between the input data and the recon-

structed ones. Then, through a threshold, that can be set in order to ensure

a certain false alarm rate on the training set, evaluate if a new point exper-

iments a reconstruction error greater than the threshold: in this case it is

considered as anomalous, otherwise it is considered standard. These strate-

gies can be also used with ANN which represents an important and useful

tool for anomaly detection.

2.3.1 Principal component analysis

This technique remaps the training data from the feature space RD in a

subspace RP (where P < D is the number of components selected) that
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minimizes the error (defined as Euclidean distance) between the data in the

feature space and their projection in the selected subspace [41]. More in

detail, to find the best subspace over which to project the training data, we

need to evaluate the D ×D sample covariance matrix

Σx =
XTX

Nx − 1
. (2.5)

By eigenvalue decomposition Σx can be factorized as Σx = VxΛxVx
T, where

Vx is an orthonormal matrix whose columns are the eigenvectors, while Λx

is a diagonal matrix that contains the D eigenvalues. The eigenvalues mag-

nitude represents the importance of the direction pointed by the relative

eigenvector. The projection into the subspace is obtained by multiplying the

data with VP, i.e., XP = XVP, yP = YVP, and uP = UVP where VP

represent the P greatest eigenvector selected among the D extracted.

To evaluate the error between the projected points and the starting ones

it is necessary to reconstruct the data in the original feature space (i.e. ‹X =

XPVT
P , ‹Y = YPVT

P , and ‹U = UPVT
P). After the reconstruction, it is possible

to evaluate the error as the Euclidean distance between the original data and

the reconstructed data. An example of PCA applied on a set of data is

reported in Fig. 2.8. An important limitation of this technique is that it is

able to find just linear boundaries in the original feature space.

2.3.2 Kernel principal component analysis

In many cases, the linear boundaries found by PCA represent a severe limi-

tation [42]. KPCA firstly maps the data with a non-linear function, named

kernel, then applies the standard PCA to find a linear boundary in the new

feature space. Such boundary becomes non-linear in the original feature

space. A crucial point in KPCA is the selection of the kernel that leads to

linearly separable data in the new feature space. In [43], when data distribu-

tion is unknown, the RBF kernel is proposed as good candidate to accomplish

this task. Given a generic point z that corresponds to a 1×D vector, we can
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Figure 2.9: Example of KPCA; on the left the points in the original feature
space are depicted, on the right the same points are projected in a new feature
space through RBF.

apply the RBF as

K(z)
n = e−γ||z−xn||

2

with n = 1, 2, . . . , Nx (2.6)

where γ is a kernel parameter (which controls the width of the Gaussian

function) that must be set properly, xn is the nth row of X, and K
(z)
n is the

nth component of the point z in the kernel space. Overall, the vector z is

mapped in the vector k(z) = [K
(z)
1 , K

(z)
2 , . . . , K

(z)
Nx

]. Remapping all the data

in the kernel space, we obtain the subsequent matrices Kx of size Nx × Nx

for training, Ky of size Ny × Nx for validation, and Kv of size Nv × Nx for

test, respectively. Applying now the PCA to the new data sets, it is possible

to find non-linear boundaries in the original feature space. An example of

KPCA with RBF kernel applied on a set of data is shown in Fig. 2.9.

2.3.3 Gaussian mixture model

Another important algorithm that can be used to solve OCC problems is

the GMM [44]. This approach assumes that data can be represented by

a mixture of M multivariate Gaussian distributions. The outputs of the
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Figure 2.10: Example of GMM; blue points represent the training data, the
surface represents the Gaussian mixture of order 2 that fit the data.

algorithm are the covariance matrices, Σm, and the mean values, µm, of the

Gaussian functions, with m = 1, 2, . . . ,M. The GMM algorithm finds the

set of parameters Σm and µm of a Gaussian mixture that better fit the data

distribution. This strategy can also be used to perform clustering on a set of

data [29,30]. An example of GMM applied on a set of data is shown in 2.10.

Now, considering the high versatility of NNs, and the need for effective

OCCs, the following question arises:

Q3: Is it possible to use classical NN structures (instead of the ANNs) to

perform anomaly detection?

2.4 OCCNN

In this section, a novel technique based on NN classifiers is presented. For

the sake of clarity, this section is divided in several parts, each one describing

a block of the diagram depicted in Fig. 2.11.
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Figure 2.11: Block diagram of the OCCNN algorithm.

2.4.1 Density estimator

The first fundamental step in the classification chain is the density estimation

of the training points. As proved in [45] by Pollard, a minimum-variance un-

biased estimator of the density exists when the data is distributed according

to a Poisson point process. Such estimator has the form [45]

λ̂x =

Ä∑Np

n=1 kn
ä
− 1

π
∑Np

n=1 r
2
n

(2.7)

where λ̂x is the estimated density for a dataset X, rn is the Euclidean distance

between the the n-th point and its kn-th neighbour, and Np is the number

of points considered for the estimation. It is possible to show that the mean

value and variance of the estimator are, respectively

E
¶
λ̂x

©
= λx (2.8)

V
¶
λ̂x

©
=

λxÄ∑Np

n=1 kn
ä
− 2

. (2.9)

From equation (2.9) it is clear that by increasing the number of points Np

and the value of kn (hence considering farther points) the estimator variance
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decreases and accordingly the accuracy increases. However, when the spatial

distribution of data points deviates from Poisson, some countermeasures are

taken especially to account for the finite boundaries of the normal class:

• the set of points from which evaluating the distances rn is a subset of

the training data X;

• low values of kn are selected;

• A high number of points Np is used to increase the estimator accuracy.

More precisely, a subset of Np = 200 points is selected from the training

set (when X has less points, all the training set is used for the density es-

timation), and for all these points the second nearest point is considered so

kn = 2 for n = 1, 2, . . . , Np.

2.4.2 Adversarial points generator

This block solves the task to generate uniformly distributed random points

with density λi = λ̂xαi in a specific portion of the feature space defined

by θi−1 where i is the iteration index. This is fundamental to create an

adversarial class Z from which the NN can learn the boundaries between the

training data X and the adversarial ones. The adversarial points must be

generated in the portion of space where the training points are absent, hence

where the output layer activation function is greater than 0.5 (we suppose

to associate label 1 to the training set points and 0 to the adversarial ones).

The function gets as input the estimated training point density multiplied by

a factor αi, that we will discuss in Section 2.4.4, and the NN weights matrix

θi−1 that represents the network state after the previous training iteration

and defines the actual estimated boundaries. At the first iteration (i = 1)

we suppose θ0 equal to a null matrix; this means that the adversarial points

will be generated in all the feature space including in the area filled by the

training points.
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2.4.3 Network structure

A feed-forward NN with two hidden layers and M neurons in each layer

is trained to find the boundaries between the normal class data and the

adversarial ones [30]. All the layers are fully connected, and the activation

functions are ReLU for the hidden layers and softmax for the output layer.

The network is trained with all the training set points for Ne epochs with

learning rate ρ. At the end of the training phase, the network provides the

weight matrix θi that defines the boundaries estimated at the ith iteration

of the OCCNN algorithm that will be used in the next iteration by the

adversarial points generator block to generate points outside the boundaries

defined. Finally, at the last iteration, the boundaries estimated by the NN

are the ones used for anomaly detection.

2.4.4 Dimensioning

In this section, a wide set of tests is presented with the aim to find the best

configuration of hyper-parameters. The main goals are:

• testing the proposed algorithm with different numbers of training points,

Nx, varying α1;

• finding the value of α2 that maximize the classification accuracy;

• comparing the OCCNN solution with PCA, KPCA, GMM, and ANN.

The OCCNN hyper-parameters are M = 50 neurons, Ne = 5000 epochs, and

the learning rate is ρ = 0.05. The error function for a generic training point

xn is defined as

exn =

Ã
D∑
d=1

(xn,d − x̃n,d)2. (2.10)

The same metric can also be used to evaluate the reconstruction error of all

the test set points. A target false alarm rate on the training set is fixed equal

to 0.01, consequently a threshold is selected for each algorithm to guarantee

such constraint.
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Figure 2.12: Average accuracy calculated varying α1 and NP.

Dataset size and test on α1

The first important step is to find the value of α1 that maximizes the accuracy

of the first iteration evaluated on a validation set and checked on the test

set. Validation and test sets have the same distribution, but in order to avoid

generalization error it is good practice to define two different datasets [31].

The value of Nx = Ny = Nv = Np is tested between 200 and 1000, for lower

values the density estimator variance becomes too high and the dataset too

small to train the NN. Again, the value of α1 is varied in the range between

0.01 and 1, higher values would generate too many adversarial points in

the area of the training set and the NN would classify all the feature space

as adversarial. In Fig. 2.12 a heatmap that shows the average accuracy

(evaluated over the six distributions shown in Fig. 2.14) of the OCCNN

algorithm varying Np and α1 is reported. Note that accuracy increases with

the number of points in the training set and the best value for α1 is 0.3,

irrespectively of the number of training points. From now on the parameter

α1 is set to 0.3 and the number of training, test and validation points for the

next simulations is fixed at 500.

Test on α2

Another important test is the definition of the parameter α2 that sets the

adversarial point density after the first iteration. This test is executed with
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Figure 2.13: Accuracy as a function of α2 for different distributions.

a fixed number of points in the training set, and the accuracy, when α2

varies between 0.01 and 2, is shown in Fig. 2.13. It is important to highlight

that in this case α2 can assume values greater than 1 because in this phase of

the OCCNN algorithm the boundaries are already defined, so the adversarial

points will only be generated outside the boundaries estimated by the NN and

defined by the weight matrix θ1. We can see this step as a fine-tuning of the

boundaries roughly estimated in the first iteration. All six curves are shown

along with the average accuracy (thick blue curve). It can be noted that

for values of α2 lower than 0.6, the accuracy becomes unpredictable because

the low number of adversarial points generated is not enough to define the

boundaries correctly. On the other hand, increasing α2 beyond 1.5 slightly

decreases the accuracy because the boundary region tends to be shaped by

the adversarial class. The value of α2 = 0.8 is selected to maximize the

accuracy and improve the performances with respect to the first step. With

these parameters, an image of the boundaries estimated by the OCCNN at

the end of the two iterations is shown at the bottom of Fig. 2.14. Comparing

these with the points distributions at the top of Fig. 2.14 it is possible to see
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Figure 2.14: At the top some examples of normalised dataset points dis-
tribution. Blue circles denote features corresponding to normal conditions,
red circles denote features corresponding to anomaly conditions. Estimated
boundaries by the OCCNN algorithm are showed at the bottom.

that the estimated boundaries are really close to the real ones. Now that all

the parameters are set we are ready to compare the various algorithms.

2.4.5 OCCNN2

The OCCNN performance is rather sensitive to the density estimation; there-

fore, depending on the data set, its ability to detect anomalies may be dom-

inated by this first step [36]. Moreover, the Pollard’s estimator (2.7) may

exhibit accuracy degradation when the data set points distribution devi-

ates from Poisson. Based on these considerations, a possible solution is the
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OCCNN2, an anomaly detector that shares the same strategy of OCCNN

only the first NN of the classification chain (the red box in Fig. 2.11) is

replaced with another OCC to have a rough estimate of the normal class

boundaries. As shown in Section 4.3, a good choice for this step is to use an

ANN.

Now that a set of tools for detection of anomalies are available, two ques-

tions concerning the goal of this thesis arise:

Q4: How can we perform anomaly detection based on machine learning tools

to detect a damage in a structure?

Q5: Is there an effective technique to extract features able to highlight a

damage in a structure?



Chapter 3

Structural Health Monitoring

3.1 Introduction

In this section we present some tools that belong to the so-called OMA able

to perform structural monitoring and extract damage sensitive features from

some structure characteristics. Over the years several strategies have been

developed to extract relevant parameters that can represent the healthy state

of a structure (i.e., natural frequencies, fundamental modes, dumping ratios,

etc.). These strategies can be divided in two groups:

• Model based methods, that require a simulated model of the structure,

hence needing an accurate knowledge of the structure elements and

materials.

• Model-free methods, that can be assumed as a blind technique not

needing a detailed description of the structure.

Among the model based techniques we can find the finite element method,

this strategy provides a simulated model of complex structure as a sum of

basic elements that are easier to model with respect to the whole system.

This strategy provides an accurate estimation of the modal parameter of

the structure as long as its simulation is accurate. The main problem with

this strategy is the computational cost and the impossibility to generalize

it to different structures. In fact, the need of a model require a targeted

31
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study of the particular infrastructure and cannot be generalized [14]. For

this reason we decided to focus our efforts on the model-free methods; to this

class belong the peak-picking method, the auto-regressive moving average

(ARMA) models, and the SSI approach.

3.2 Operational Modal Analysis

The expression OMA means the class of modal identification methods based

on response measurements only. This discipline has been systematized in the

last two decades but early applications can be traced back to the beginning

of modal testing in the 1960s.

The first applications of OMA were mainly based on the analysis of PSD

and the identification of operational deflection shapes (ODSs). An ODS

represents the deflection of a structure at a particular frequency under a

generic input and it is usually the result of the contribution of different

modes.

However, under certain assumptions, ODSs are a close estimate of the

actual mode shapes. The mode shapes represent the displacement of a struc-

ture subject to a stress with respect to its repose position.

In the 1990s, a number of methods working in time domain were devel-

oped and applied in combination with correlation functions, leading to the

so-called output-only modal analysis. In the same period the use of ARMA

models for modal parameter estimation, first suggested in the late 1970s,

started spreading. An increasing number of applications appeared in the

literature but output-only modal identification was not fully developed and

widely accepted as a reliable source of information, yet.

However, at the end of the 1990s new effective output-only modal identi-

fication techniques, such as the SSI, became available, overcoming the limi-

tations of the previous techniques in dealing with closely spaced modes and

noise [46].

Nowadays, OMA is a widely accepted tool for modal identification, with

several successful applications in civil engineering (bridges, buildings, pedes-

trian bridges, historical structures, offshore platforms, wind turbines, dams,
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stadia), mechanical and industrial engineering (ships, trucks, car bodies, en-

gines, rotating machineries), aerospace engineering (in-flight modal identifi-

cation of aircrafts and shuttles, studies about flutter).

OMA is based on the following assumptions:

• Linearity (the response of the system to a given combination of inputs

is equal to the same combination of the corresponding outputs).

• Stationarity (the dynamic characteristics of the structure do not change

over time, so that the coefficients of the differential equations governing

the dynamic response of the structure are time independent).

• Observability (the sensor layout has been properly designed to observe

the modes of interest, avoiding, for instance, nodal points).

Moreover, unlike the traditional modal testing where the input is con-

trolled, OMA is based on the dynamic response of the structure under test

to non-controllable and immeasurable loadings such as environmental and op-

erational loads (traffic, wind, microtremors, and so on). As a consequence,

some assumptions about the input are needed. If the structure is excited

by white noise, that is to say, the input spectrum is constant, all modes are

equally excited and the output spectrum contains full information about the

structure [14]. However, this is rarely the case, since the excitation has a

spectral distribution of its own. Modes are, therefore, weighted by the spec-

tral distribution of the input and both the properties of the input and the

modal parameters of the structure are observed in the response.

Additionally, noise and spurious harmonics due to rotating equipment

are observed in the response. Thus, generally, the structure is assumed to

be excited by unknown forces that are the output of the so-called excitation

system loaded by white noise (see also Fig. 3.1). Under this assumption, the

measured response can be interpreted as the output of the combined system,

made by the excitation system and the structure under test in series, to a

stationary, zero mean, Gaussian white noise.

Since the excitation system and the structure under test are in cascade,

the frequency response function of the combined system is the product of
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Figure 3.1: Block diagram of the OMA strategy [14].

their respective frequency response functions [14]:

Hc(ω) = Hf (ω)Hs(ω)

where Hc(ω), Hf (ω), and Hs(ω) are the frequency responses of the combined

system, the excitation system, and the structure under test, respectively.

In fact, for each subsystem, output and input are related by the following

equations [14]:

F (ω) = N(ω)Hf (ω)

Y (ω) = F (ω)Hs(ω) (3.1)

where N(ω), F (ω), and Y (ω) denote the Fourier transforms of the white

noise input to the excitation system, the excitation system output, and the

structure output, respectively. In this context, the measured response in-

cludes information about the excitation system and the structure under test,

but the modal parameters of the structure are preserved and identifiable, and

the characteristics of the excitation system have no influence on the accuracy

of modal parameter estimates.

The discrimination between structural modes and properties of the ex-

citation system is possible since the structural system has a narrowband

response and time invariant properties, while the excitation system has a

broadband response and it may have either time variance or time invariance

properties.

The estimation of the modal model of the structure gives the opportunity

to estimate also the unknown forces, according to (3.1). The assumption of

broadband excitation ensures that all the structural modes in the frequency

range of interest are excited. Assuming that the combined system is excited
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by a random input, the second order statistics of the response carries all

the physical information about the system and plays a fundamental role in

output-only modal identification. The focus on second order statistics is

justified by the central limit theorem. In fact, the structural response is

approximately Gaussian in most cases, regardless of the distributions of the

(independent) input loads, which are often not Gaussian.

The spatial distribution of the input also affects the performance of OMA

methods, especially in the presence of closely spaced modes. A random dis-

tribution of inputs in time and space provides better modal identification

results. The presence of measurement noise and spurious harmonics in re-

sponse to measurements requires appropriate data processing to mitigate

their effects and discriminate them from actual structural modes. These

strategies take the name of mode selection and will be discussed in the fol-

lowing section.

3.2.1 Peak-Picking

The most undemanding method for output-only modal parameter identi-

fication is the basic frequency domain (BFD) method, also known as the

peak-picking method. The name of the method comes from the fact that the

modes are identified by picking the peaks in the PSD plots. Given a pair

of sample records x(t) and y(t) of finite duration T from stationary random

processes, their Fourier transforms (which exist as a consequence of the finite

duration of the signals) are:

X(f) =

∫ T

0

x(t)e−j2πftdt

Y (f) =

∫ T

0

y(t)e−j2πftdt

and the auto-spectral and cross-spectral density functions are defined as fol-

lows:

Sxx(f) =

∫ +∞

−∞
Rxx(τ)e−j2πfτdτ
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Syy(f) =

∫ +∞

−∞
Ryy(τ)e−j2πfτdτ

Sxy(f) = Syx(f) =

∫ +∞

−∞
Rxy(τ)e−j2πfτdτ

where Rxy(τ) represents the cross-correlation function between the signals

x(t) and y(t). The BFD technique is based on the assumption that, around

a resonance, only one mode is dominant. A reference sensor for the com-

putation of the cross-spectral densities with all other measurement channels

has to be selected to ensure that most of the modes can be observed. As a

consequence, sensors close to nodes of the mode shapes cannot be adopted

as reference sensors. The ideal choice for the reference sensor makes possi-

ble the identification of all the modes through the computation of a single

column of the PSD matrix (the column made by the cross-spectral densities

between the selected reference sensor and all other sensors).

However, depending on the geometry of the structure and the adopted

sensor layout, a single reference sensor could be insufficient to identify all the

modes and at least a couple of reference sensors with different orientation

have to be adopted. For instance, in the case of a building-like structure

characterized by two bending modes in two orthogonal directions x and y

and sensors parallel to these directions, the selection of a sensor measuring

along x as reference permits the identification of the bending modes in the

x direction and eventually torsional modes, but it is inadequate to identify

the bending modes in the y direction. This can be observed only through

the selection of an additional reference sensor measuring along y [14].

However, the success of the identification process heavily depends on the

geometry of the structure and the skill of the analyst. The results of modal

identification suffer a certain degree of subjectivity also in the case of noisy

measurements, when the peaks in the spectra are not clear. The BFD method

provides local estimates of the modal properties. Moreover, the accuracy of

the estimated eigenfrequencies depends on the frequency resolution of the

spectra. A fine frequency resolution is fundamental to obtain good natu-

ral frequency estimates, but this can be increased with well known signal

processing techniques (i.e., zero padding) [47].
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In principle, the BFD should be applied to evaluate natural frequencies

and mode shapes only. However, the BFD technique is effective when damp-

ing is low and modes are well separated. If these conditions are violated

it may lead to erroneous results. Thus, this technique can be used only in

certain circumstances, suffer of subjectivity, and does not provide an ex-

haustive and accurate estimation of the modal parameters. However it is

computationally inexpensive.

3.2.2 Auto-regressive moving average

This technique starts with the equation of motion of a randomly excited

linear time-invariant system, that can be written as follows:

M
d2y(t)

dt2
+ D

dy(t)

dt
+ Ky(t) = w(t) (3.2)

where y(t) stands for the measured system response, w(t) is a continuous-

time, zero mean Gaussian white noise, M represents the mass matrix, D the

dumping matrix, and K the stiffness matrix [14]. It is possible to show that

this system can be also described by a discrete-time ARMA vector model

(the ARMA model is referred as such an ARMA vector model to point out

its multivariate character) by approximating the differential operator with

finite differences over a finite time step ∆t.

Historically, ARMA vector models have been used for the estimation of

the modal parameters of civil structures. Due to a number of shortcomings

(in particular for systems with many outputs and many modes, where the

large set of parameters to be estimated leads to large computational burden

and convergence problems), stochastic state-space models have progressively

replaced them in the context of modal identification.

In order to explain how modal parameters can be extracted from an

ARMA model, assume that a continuous-time system is observed at discrete

time instants k with a sampling interval ∆t. Since the input on the structure

is not available (it is immeasurable), the equivalent discrete-time system can

be obtained only by requiring that the covariance function of its response
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to a Gaussian white noise input be coincident at all discrete time lags with

that of the continuous-time system. This implies that the first and second

order moments of the response of the discretized model are equal to the

first and second order moments of the response of the continuous-time sys-

tem at all the considered discrete time instants. Under the assumption that

the response of the system is Gaussian distributed, the covariance equiva-

lent model is the most accurate approximated model, since it is exact at all

discrete time lags. When the dynamic response of the system is driven by

the Gaussian white noise w(t) but there are also some disturbances (process

and measurement noise), the latter must also to be taken into account by

the equivalent discrete-time model. In the presence of such disturbances, an

ARMA(nα, nγ) model has the following form:

yk + Ω1yk−1 + · · ·+ ΩNΩ
yk−NΩ

= ek + Γ1ek−1 + · · ·+ ΓNΓ
ek−NΓ

(3.3)

where yk is the vector of the output at the time instant tk, and ek is the

innovation modeled as a zero mean Gaussian white noise. The left-hand side

of (3.3) is the auto-regressive part, while the right-hand side is the moving

average part. The matrices Ωi contain the auto-regressive parameters, while

the matrices Γj contain the moving average parameters; NΩ and NΓ represent

the auto-regressive and moving average order of the model. It is possible to

show that a covariance equivalent ARMA vector model can be converted into

a forward innovation state space model, and vice versa. If the order of the

state-space model is too large, the model will contain redundant information;

on the contrary, if the state-space dimension is too small, a certain amount

of information about the modelled system will be lost. This transformation

provides a good estimation of the modal parameters but ARMA models

usually present stability issues and are computationally expansive.

3.2.3 Stochastic subspace identification

Among all the possibilities, this strategy has been selected as the best can-

didate to extract modal parameters from the accelerometric measurements

present for the Z-24 bridge. In the following will be explain how this tech-
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nique has been applied to the Z-24 environment. The SSI is a time-domain,

parametric, covariance-driven procedure for blind modal analysis (i.e., it can

extract the modal frequencies from the accelerometric measurements without

any a priori knowledge about the structure [14]).

SSI is characterized by the system order n ∈ N and the time-lag i ≥ 1. To

apply the algorithm it is enough to satisfy the following constraint, l · i ≥ n

[14], where l stands for the number of sensors. In the Z-24 monitoring, the

system order n is considered unknown, so it is kept as a parameter varied in

the range n ∈ [2, 160] (with step 2), while the time-lag is i = 60 [14].

Let us define the block Toeplitz matrix for a given time-lag i and shift s

T
(a)
s|i =


R

(a)
i R

(a)
i−1 . . . R

(a)
s+1 R

(a)
s

R
(a)
i+1 R

(a)
i . . . R

(a)
s+2 R

(a)
s+1

...
...

. . .
...

...

R
(a)
2i−1 R

(a)
2i−2 . . . R

(a)
i+1 R

(a)
i

 (3.4)

of dimensions li× li where

R
(a)
i =

1

N − iD(a,1:N−i,:)D
T
(a,i:N,:) (3.5)

is a correlation matrix of dimension l × l, and the data matrix D(a,b:c,:) is

obtained by the tensor D selecting a particular acquisition a from all the

sensors in the time interval [b, c], where tensor D of dimensions Na × l ×
Ns, contains all the data collected after a pre-processing phase that will

be described in the following, with Na number of acquisitions, l number

of sensors, and Ns number of samples. For the sake of this presentation

we will drop the acquisition index a, considering that all the subsequent

operations are performed for each acquisition. Now, by the singular value

decomposition (SVD) we can factorize the block Toeplitz matrix (3.4), with

s = 1, as

T1|i = U(n)Σ(n)V(n)T (3.6)

where U(n) and V(n)T are matrices of dimensions respectively li×n and n×li
and Σ is a diagonal matrix, of dimension n × n, that contain the singular
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values arranged in descending order. For the sake of this presentation, we

will drop the model order index n, considering that all the subsequent obser-

vations can be applied for each model order. The SVD allows selecting the

correct number of singular values that must be considered, and therefore to

split the matrix T1|i in two parts

T1|i = OiΓi (3.7)

Oi = UΣ1/2S (3.8)

Γi = S−1Σ1/2VT (3.9)

where

Oi =


C

CA
...

CAi−1

 and Γi =
î
Ai−1G . . . AG G

ó
(3.10)

represent, respectively, the observability matrix and the reversed controlla-

bility matrix. In (3.8) and (3.9) the matrix S plays the role of a similarity

transformation applied to the state-space model, therefore it can be set equal

to the identity matrix I. The matrices A, C, and G, in equation (3.10) repre-

sent the state matrix, the output influence matrix, and the next state-output

covariance matrix, respectively. Note that C and G can be easily extracted

from the matrices Oi and Γi, while A can be calculated by (3.4) as

A = O+
i T2|i+1Γ

+
i . (3.11)

Applying the eigenvalues decomposition to A we get

A = ΨΩΨT (3.12)

where Ψ is an orthonormal matrix whose columns are the eigenvectors, while

Ω = diag(λ̃1, . . . , λ̃n) is a diagonal matrix that contains the n eigenvalues of

the state matrix. Therefore, reintroducing the previously omitted indices, it
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Figure 3.2: Example of stabilization diagram for the first hour monitoring:
a) through SSI, b) after mode selection and clustering.

is possible to estimate the continuous-time damage sensitive parameters of

the pth mode as follows:

• eigenvalues λ
(a,n)
p = fs ln(λ̃

(a,n)
p );

• natural frequencies µ
(a,n)
p = |λ(a,n)

p |/(2π);

• dumping ratios δ
(a,n)
p = −<{λ(a,n)

p }/|λ(a,n)
p |;

• mode shapes φ(a,n)
p = C(a,n)ψ(a,n)

p ;

where φ(a,n)
p is a l × 1 vector, and ψ(a,n)

p is the pth column vector of Ψ(a,n)

defined in (3.12). The natural frequencies extracted through this approach

in the Z-24 environment for the first acquisition (a = 1) varying the order n

is depicted in the stabilization diagram shown in Fig. 3.2a.

3.3 Mode selection

Through SSI, a large number of spurious modes are generated. To sift them

out, there are several approaches to distinguish between the real modes and

the spurious ones [48]. In this work we used four criteria, which must be satis-

fied to select a physic mode and reject the spurious ones. The four metrics ex-

tracted are: modal assurance criterion (MAC), mean phase deviation (MPD),
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dumping ratio check, and complex conjugate poles check. Among several

criteria, we choose to use these four metrics as a good compromise between

computational cost and accuracy of the spurious modes detection. The met-

rics selected are widely used and discussed in literature [46,48–50].

MAC

It is a dimensionless squared correlation coefficient between mode shapes,

defined as [46]

MAC(φ(a,n)
p ,φ(a,j)

q ) =
|φ(a,n)T

p φ(a,j)
q |2

||φ(a,n)
p ||22||φ(a,j)

q ||22
(3.13)

with values between 0 and 1. A MAC larger than 0.9 indicates a consis-

tent correspondence between the modes and so, very likely physical modes,

whereas small values indicate poor resemblance of the two shapes and so, a

spurious mode. A validation criteria based on MAC is the following [51]

dm(a, n, j, p, q) =
|λ(a,n)
p − λ(a,j)

q |
max(|λ(a,n)

p |, |λ(a,j)
q |)

+ 1−MAC(φ(a,n)
p ,φ(a,j)

q ) (3.14)

where the first term is a measure of the distance between the pth and qth

eigenvalues. With (3.14) a mode is considered physical when dm(a, n, j, p, q) <

0.1.

MPD

It measures the deviation of a mode shape components from the mean phase

(MP) of all its components. A widely used technique to evaluate the MP is

through the SVD [51]

PΛQT = [<{φ(a,n)
p } ={φ(a,n)

p }] (3.15)
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where P is l × 2, Λ is 2 × 2, and Q is 2 × 2. From this decomposition the

MPD can be evaluated as follows

MPD(φ(a,n)
p ) =

∑l
r=1 |φ

(a,n)
r,p | arccos

∣∣∣<{φ(a,n)
r,p }q22−={φ(a,n)

r,p }q12√
q2
12+q2

22|φ
(a,n)
r,p |

∣∣∣∑l
r=1 φ

(a,n)
r,p

. (3.16)

When the ratio MPD(φ(a,n)
p )/(π/2) > 0.75 the deviation of the mode shape

components is stronger than MP and probably the mode is spurious, hence

it is rejected.

Damping ratio and complex conjugate poles

For each mode the dumping ratio δ
(a,n)
p in real structures must be positive

and lower than 0.2 (otherwise the structure is unstable) hence only modes

with 0 < δ
(a,n)
p < 0.2 are considered. Moreover, if <

{
λ

(a,n)
p

}
> 0 the mode

represents an unstable structure hence it is considered spurious.

In Fig. 3.2b, showing the stabilization diagram after mode selection, the

remaining modes are represented with µ̄
(a,n)
p .

Q6: Is it possible to perform frequencies tracking automatically after the

fundamental frequencies extraction?

3.4 Features Extraction

After mode selection, we propose clustering and a novel tracking algorithm

to extract the time-series of the first two fundamental frequencies. To clarify

the process, this section will be presented in the Z-24 bridge environment,

but can be easily extended to other structures.

3.4.1 Clustering

The stabilization diagram obtained after mode selection needs to be further

processed to select the natural frequencies. For this purpose, K-means can

be used to cluster the data, associating each cluster to a prospective natural
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frequency corresponding to its centroid [29, 52]. For each acquisition the

algorithm starts with an initial number of centroids (e.g., K = 4) initialized

at random frequencies within the range of interest, and then their position

will be updated until convergence.

Since the number of natural frequencies is unknown, the approach is re-

peated for different K values, ranging between 2 and 6; a large K tends to

produce many spurious modes while small values may discard real funda-

mental frequencies.

Finally, the centroids configuration that leads to the solution with the

lowest error (evaluated as the sum of the Euclidean distances between the

centroids and the associated points) is selected. The output ofK-means is the

number of natural frequencies and their estimation (red lines in Fig. 3.2(b)).

Repeating this procedure for each acquisition the blue points depicted in

Fig. 3.3a are obtained.

At the end of clustering, the estimated frequencies are no more dependent

on the model order n, consequently the notation µ̄
(a)
p is adopted (see Fig. 4.2).

3.4.2 Density-based mode tracking

The tracking phase is the final step in the natural frequencies extraction

chain. There are several algorithms able to find the frequency traces starting

from the estimation made through the clustering phase [49]. In this thesis,

a novel technique, that needs neither the frequency starting points nor their

number, is proposed, contrary to several approaches that infer the number

and the starting position of the fundamental frequencies through simulation

of the physical structure. The proposed tracking algorithm consists of two

steps: a starting phase and an online phase.

Initial phase

Without any assumption about the structure, the idea is to analyze the data,

µ̄
(a)
p , and find some clusters of points that could be the starting ones. To per-

form this task, the first Nt = 200 acquisitions (i.e. µ̄
(a)
p with a = 1, 2, . . . , Nt,

are considered (see Fig. 3.3a)). From this initial data, the number of points
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Figure 3.3: a) Residual modes after mode selection over time with one acqui-
sition per hour (first 200 acquisitions). b) Natural frequencies selected after
the initial phase of the tracking algorithm. c) First two natural frequencies
estimation after the density-based tracking algorithm. Blue points represent
the residual modes, red and yellow tracks represent, respectively, the first
and second fundamental frequency estimated after the tracking algorithm;
vertical dashed lines highlight the period when the average measured tem-
peratures are below 0 ◦C [15], in particular, it has been demonstrated in [16]
that when the temperature goes below 0 ◦C the natural frequencies of the
bridge increase. Blue and green backgrounds highlight the acquisitions made
during the normal condition of the bridge, used respectively as training and
test sets, while red background stands for damaged condition acquisitions
used in the test phase.

that fall into frequency bins of bandwidth Bf = 0.4 Hz are counted. The his-

togram obtained is depicted in Fig. 3.3b. Selecting the largest values of the

histogram, the number of starting points and the corresponding frequencies,

f
(0)
s , are estimated. Specifically, the first estimated frequency is evaluated as

the average values of the frequencies that fall into the respective bins. For

example, according to Fig. 3.3b the values of the starting points, f
(0)
s , in this

case s = 1, . . . , 4, are estimated and correspond to 4.0, 5.2, 10.1 and 12.8 Hz.
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Online phase

In this phase, for each starting point a Gaussian kernel of the form

G
(
θ; f (a)

s , σf

)
= e

− 1

2σ2
f

Ä
θ−f (a)

s

ä2
(3.17)

is used to track the frequencies evolution over time. The parameter σf con-

trols the kernel width and has been chosen equal to σf = 0.01 Hz; larger val-

ues of σf make the system more reactive to fast frequency changes during the

tracking but more sensitive to outliers due to the noisy measurements. The

tracking algorithm is initialized with f
(0)
s and iteratively updated through

the following rule

f (a)
s = (1− ε)f (a−1)

s + εf̃ (a)
s (3.18)

where the parameter ε ∈ [0, 1] controls the impact of the new observation.

Large values of ε reduce smoothness but allow capturing sudden changes

of modal frequencies. For the specific data set ε = 0.7 is selected. The

innovation term f̃
(a)
s in (3.18) is evaluated through the Gaussian kernel as

f̃ (a)
s =

∑
p µ̄

(a)
p G

(
µ̄

(a)
p ; f

(a−1)
s , σf

)∑
p G
(
µ̄

(a)
p ; f

(a−1)
s , σf

) . (3.19)

The four tracks fs = {f (a)
s }Na

a=1 are shown in Fig. 3.3 and stored in the

following matrix

F =


f1

f2

f3

f4


T

=


f

(1)
1 f

(2)
1 . . . f

(Na)
1

f
(1)
2 f

(2)
2 . . . f

(Na)
2

f
(1)
3 f

(2)
3 . . . f

(Na)
3

f
(1)
4 f

(2)
4 . . . f

(Na)
4


T

. (3.20)

Now that a tool to extract damage sensitive features is introduced and

designed the following question arises:

Q7: How can we test these strategies? Is there in literature a reference

structure with accelerometric measurements both in standard and in

damaged conditions?



Chapter 4

Z-24 Bridge

4.1 System Configuration and Data Collec-

tion

The Z-24 bridge was located in the Switzerland canton of Bern. The bridge

was part of the road connection between Koppigen and Utzenstorf, over-

passing the A1 highway between Bern and Zurich. It was a classical post-

tensioned concrete two-cell box girder bridge with a main span of 30 m and

two side spans of 14 m. The bridge was built as a freestanding frame with

the approaches backfilled later. Both abutments consisted of triple concrete

columns connected with concrete hinges to the girder. Both intermediate

supports were concrete piers clamped into the girder. An extension of the

bridge girder at the approaches provided a sliding slab. All supports were

rotated with respect to the longitudinal axis that yielded a skew bridge. The

bridge was demolished at the end of 1998 [53]. Before complete demolition,

the bridge was subjected to a long-term continuous monitoring test and sev-

eral progressive damage tests (see also Tab. 4.1):

• A long-term continuous monitoring test took place during the year be-

fore demolition. The aim was to quantify the environmental variability

of the bridge dynamics.

• Progressive damage tests took place over a month, shortly before com-

47
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Table 4.1: Chronological overview of applied damage scenarios
Date (1998) Scenario

4 August Undamaged condition
9 August Installation of pier settlement system
10 August Lowering of pier, 20 mm
12 August Lowering of pier, 40 mm
17 August Lowering of pier, 80 mm
18 August Lowering of pier, 95 mm
19 August Lifting of pier, tilt of foundation
20 August New reference condition
25 August Spalling of concrete at soffit, 12 m2

26 August Spalling of concrete at soffit, 24 m2

27 August Landslide of 1 m at abutment
31 August Failure of concrete hinge
2 September Failure of 2 anchor heads
3 September Failure of 4 anchor heads
7 September Rupture of 2 out of 16 tendons
8 September Rupture of 4 out of 16 tendons
9 September Rupture of 6 out of 16 tendons

plete demolition. The aim was to prove experimentally that realistic

damage has a measurable influence on the bridge dynamics. Progressive

damage tests were alternated with short-term monitoring tests while

the continuous monitoring system was still running.

4.1.1 Data collection

The database of accelerometric measurements is freely available for research

purposes on the website [17]. Such a dataset was built within the framework

of the European Brite EuRam research project BE-3157, “System Identifica-

tion to Monitor Civil Engineering Structures” (SIMCES). One of the main

objectives of the SIMCES project was to deliver a proof of feasibility for

vibration-based structural health monitoring of civil engineering structures

by full-scale, long-term tests and progressive failure tests of a representative

structure, the Z-24 bridge.

The accelerometers used are force balance type FBA-11 by Kinemet-

rics [54]; they are triaxial devices with high sensitivity and are characterized

by high reliability and low current consumption. The main specifications
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Figure 4.1: Data acquisition setup along the Z-24 bridge: the selected ac-
celerometers, their positions, and the measured acceleration direction [17].

are: full scale range ±9.81 m/s2, output ±2.5 V, natural frequency critical

damping 0.7, and supply voltage ±12 V DC. The A/D converter used is the

IOtech ADC 488/8SA [55], an 8 channel sample and hold with 8 differential

inputs, 16 bit, and 100 kHz sampling rate.

The accelerometers position and their measurements axis are shown in

Fig. 4.1. In this work, we considered l = 8 accelerometers, identified as 03,

05, 06, 07, 10, 12, 14, and 16, which are present in both long-term continuous

monitoring phase and in the progressive damage one.1 Longitudinal accelera-

tion is collected by sensors 03 and 06, transversal acceleration is measured by

sensors 14 and 16, and all the remaining sensors gather vertical accelerations.

Every hour Ns = 65536 samples are acquired from each sensor with sam-

pling frequency fsamp = 100 Hz which corresponds to an acquisition time

Ta = 655.36 s. Since the measurements are not always available, there are

Na = 4107 acquisitions collected in a period of 44 weeks. All the data col-

lected by the selected sensors are organized in a tensor Draw of dimensions

Na × l ×Ns.

During the long-term monitoring, environmental parameters like temper-

ature, wind speed, and traffic were also considered before and after each ac-

celerometer measurement. In this work, only the temperature is considered,

consisting of 20 measurements acquired by different thermometers placed

1Some accelerometers that experienced failures during the long-term monitoring have
been avoided. Moreover, we selected a subset of accelerometers present in both phases to
ensure data consistency.
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Figure 4.2: The block diagram for signal acquisition, processing, feature
extraction, and detection.

along with the structure.

4.1.2 Data pre-processing

The block diagram depicted in Fig. 4.2 represents the sequence of tasks per-

formed for the fully automatic anomaly detection approach presented in this

work.

To reduce the computational cost and memory needs of the subsequent

elaborations, some pre-processing steps have been applied to the data Draw.

First, a decimation by a factor 2 is applied to each acquisition; thus the

sampling frequency is scaled to fsamp = 50 Hz. Such sampling frequency

is deemed sufficient because the Z-24 fundamental frequencies fall in the

[2.5, 20] Hz frequency range [53]. After decimation, the data are processed

with a finite impulse response (FIR) band-pass filter of order 30 with band

[2.5, 20] Hz, to remove disturbances. The pre-processed data are then stored

in a tensor D of size Na × l ×N , where N = 32000 ' Ns/2. Regarding the

environmetal parameters, the temperatures collected are averaged over time

and among sensors to have one estimate for the whole bridge each hour. The

main matrices, vectors and scalars introduced are summarised in Table 4.2.
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Table 4.2: Data symbol, dimension, unit of measure, and description

Variable Dimension Unit Description

Draw Na × l ×Ns m/s
2

Raw accelerometer data

D(a,:,:) Na × l ×N m/s
2

Preprocessed accelerometer data

λ
(a,n)
p 1× 1 Hz Eigenvalues

µ
(a,n)
p 1× 1 Hz Natural frequencies

δ
(a,n)
p 1× 1 Dumping ratios

φ(a,n)
p l × 1 Mode shapes

µ̄
(a,n)
p 1× 1 Hz Natural freq. after mode selection

µ̄
(a)
p 1× 1 Hz Natural frequencies after clustering

f
(a)
1 1× 1 Hz First natural freq. after tracking

f
(a)
2 1× 1 Hz Second natural freq. after tracking

ζ̂(a) 1× 1 Decision labels

4.2 Algorithmic Complexity and Processing

Time

In this section, we discuss the computational complexity of the algorithms

adopted and the corresponding processing time when they are applied on the

Z-24 dataset. The most computationally expensive blocks are SSI and the

anomaly detectors during the training phase: PCA, KPCA, GMM, ANN,

OCCNN, OCCNN2. Their complexity is evaluated as follows:

• SSI requires the SVD of matrix T1|i (3.6), of size li× li, and eigenvalues

decomposition of matrix A (3.12), of size n × n. SVD complexity is

O(k(li)2 + k′(li)3) (where k and k′ are constants which are 4 and 22,

respectively, for the R-SVD algorithm) [56]; the complexity of eigenval-

ues decomposition is O(n3). All these procedures are applied for each

system order n considered in the range n ∈ [2, 160] (with step 2, for

a total of ns = 80), and repeated for all the Na acquisitions. Thus,

the overall complexity is O(Na

∑
n((k(li)2 + k′(li)3) + n3)), and can be

rewritten as O(Nans(k(li)2 + k′(li)3 + 2n3
s )).
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• PCA needs the evaluation of the covariance matrix of the training

points with complexity O(Nxs
2), and its eigenvalues decomposition,

O(s3), where s is the number of features and Nx the number of train-

ing points. The total complexity of PCA results to be O(Nxs
2 + s3).

• KPCA requires the evaluation of the kernel with complexity O(N2
x ),

its covariance matrix evaluation, O(N3
x ), and its eigenvalues decompo-

sition, O(N3
x ). The overall complexity of KPCA is O(N2

x + 2N3
x ).

• GMM has complexity O(NxM2) where M is the order of the model,

according to [57].

• ANN is a particular kind of NN with 5 layers of L1, L2, L3, L4 and

L5 neurons each, respectively. The computational cost for training the

ANN using the backpropagation algorithm is O(NxNe(L1L2 + L2L3 +

L3L4 + L4L5)), where Ne is the number of epochs.

• OCCNN requires a two-step training with a different number of training

points in each phase, Nx1 and Nx2 respectively, with Nx1 > Nx2 as

explained in the previous section. Considering a NN of 4 layers with

L1, L2, L3, and L4 neurons, respectively, the complexity is O((Nx1 +

Nx2)Ne(L1L2 + L2L3 + L3L4)).

• OCCNN2 exploits the combination of ANN and OCCNN. Therefore,

O(NxNe(L1L2 + L2L3 + L3L4 + L4L5) +Nx2Ne(L6L7 + L7L8 + L8L9))

is the overall complexity, where L1, L2, L3, L4 and L5 are the neurons

in the ANN layers, and L6, L7, L8, and L9 are the ones in the OCCNN

layers.

In Table 4.3 a summary of the complexity of all the algorithms is reported,

along with the processing times experienced on a computer with 2, 4 GHz

Intel Core i5 processor and 2133 MHz LPDDR3 RAM.
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Table 4.3: Computational complexity and processing time of the algorithms

Algorithm Complexity Time [s]

SSI O(Nans(k(li)2 + k′(li)3 + 2n3s )) 12 334.29

PCA O(Nxs
2 + s3) 3.55

KPCA O(N2
x + 2N3

x ) 8.71

GMM O(NxM2) 2.50

ANN O(NxNe(L1L2 + L2L3 + L3L4 + L4L5)) 26.26

OCCNN O((Nx1 +Nx2)Ne(L1L2 + L2L3 + L3L4)) 135.65

OCCNN2 O(NxNe(L1L2+L2L3+L3L4+L4L5)+Nx2Ne(L6L7+
L7L8 + L8L9))

54.86

4.3 Performance

In this section, the proposed algorithms are applied to the Z-24 bridge

data set to detect anomaly based on the fundamental frequencies estima-

tion [14,58,59]. The performance is evaluated through the following metrics,

described previously, considering only the test set through accuracy, preci-

sion, recall and F1 score. In these numerical results, the dataset is divided

into a training set and a test set. For this comparison, we decided not to

use a validation phase because it is not needed in OCCNN and OCCNN2

as there are no hyper-parameters to set. For the other algorithms, we set

their parameters to ensure the maximum accuracy on the test set. With this

methodology, we slightly overestimate the accuracy of PCA, KPCA, and

GMM. Despite this setup favor PCA, KPCA and GMM, in the following

paragraph it is shown that the proposed solution, OCCNN2, overcame their

performance.

The feature space has dimension D = 2 because only the first two funda-

mental frequencies are considered (this decision will be widely discussed in

the next chapter), and unless otherwise specified the three data sets used for

training, test in normal condition, and damaged condition, have cardinality

Nx = 2399, Ny = 854, and Nu = 854, respectively. For PCA, the number of

components selected is P = 1. For KPCA, after several tests the values of P

and γ that ensure the minimum reconstruction error are P = 3 and γ = 8.
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Figure 4.3: Error function evolution over the epochs during training.

For GMM the order of the model that maximize performance is M = 10.

Regarding the ANN, we adopted a fully connected network with 5 layers of,

respectively, 100, 50, 1, 50 and 100 neurons, with ReLU activation functions.

Note that, the same ANN is also used for the first step of the OCCNN2 al-

gorithm. The parameters of the OCCNN and OCCNN2 are set accordingly

to [36], resulting in α1 = 0.3, α2 = 0.8, and are largely independent on the

spatial distribution of the feature points; this allows to presume that such

OCCs can work on different structures and bridges. The NN has 2 hidden

layers with L = 50 neurons each. All the NNs are trained for a number of

epochs Ne = 5000 with a learning rate ρ = 0.05. The error function adopted

for a training set X is

EX = −
Nx∑
n=1

C∑
c=1

tn,c ln t̃n,c (4.1)

where Nx is the number of points in the training set, C is the number of

classes (C = 2), tn,c = 1 if the nth acquisition belongs to the cth class and

zero otherwise, and t̃n,c is the activation function value for point n of the cth



4.3 Performance 55

Table 4.4: Algorithm, parameter, value, and description

Algorithm Parameter Value Description

SSI n [2, 160] System order

Clustering K [2, 6] Number of clusters

Tracking Nt 200 Window size

Tracking Bf 0.4 Hz Frequency bin bandwidth

Tracking φf 0.01 Hz Kernel width

Tracking ε 0.7 Innovation

PCA P 1 Number of selected components

KPCA γ 8 Gaussian kernel width

KPCA P 3 Number of selected components

GMM M 10 Gaussian mixture model order

ANN layers 5 Number of hidden layers

ANN neurons {100, 50, 1, 50, 100} Number of neurons

NN layers 2 Number of hidden layers

NN neurons {50, 50} Number of neurons

Training Ne 5000 Number of training epochs

Training ρ 0.05 Learning rate

OCCNN α1 0.3 Density factor first iteration

OCCNN α2 0.8 Density factor second iteration

OCCNN2 α2 0.8 Density factor second iteration

output neuron [30]. As can be seen in Fig. 4.3 for each step of the algorithms

the networks are trained for Ne = 5000 epochs, quite enough for the error

function to reach the minimum. A target false alarm rate on the training set

is fixed equal to 0.01, from which a threshold is selected for each algorithm

to guarantee such constraint. In Table 4.4 the principal hyper-parameters

are summarized.
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Figure 4.4: Comparison of the classification algorithms in terms of F1 score,
recall, precision, and accuracy.

4.3.1 Algorithm Comparison

The performance comparison of the algorithms is reported in Fig. 4.4. As we

can see, considering the F1 score OCCNN outperforms PCA and ANN but

is overtaken by KPCA and GMM. This happens because the non-uniform

data distribution of the training set influences Pollard’s estimator which over-

estimates the density. As a result, there are too many adversarial points

generated, which lead to an underestimation of the normal class boundary.

The OCCNN2 overcomes this limitation and shows the best F1 score and

accuracy. This represents a remarkable result considering the low number of

hyper-parameters to be tuned.
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Figure 4.5: F1 score varying the number of points, Nx, used for training, with
Ny = 854 and Nu = 854.

4.3.2 Impact of the training set and responsiveness

In Fig. 4.5 and Fig. 4.6, the F1 score dependence on the number of points

used to train the algorithms, Nx, and the number of anomaly points, Nu,

used to test the algorithms, are depicted.

The number of training points, Nx, in Fig. 4.5 varies from 250 to 2399 with

steps of 250 points (except for the last step, equal to 149). This plot shows

how many points are necessary for the correct estimation of the normal class

boundaries. In these results, all the numbers of points used for test are kept

constant (i.e. Ny = Nu = 854) to maintain the same boundaries between

the classes. As it can be seen in the figure, all the algorithms require a high

number of data points corresponding to long-lasting monitoring (almost one

year [14]) to provide the highest F1 score. The algorithms that show a sharper

increase in their performance, hence requiring less training points, are KPCA

and GMM.

In Fig. 4.6, the number of training points is kept constant, Nx = 2399,



58 Z-24 Bridge

200 400 600 800

0

0.2

0.4

0.6

0.8

1

Damaged Points

F
1
sc
o
re

OCCNN OCCNN2 PCA

KPCA GMM ANN

Figure 4.6: F1 score varying the number of points during damage, Nu, used
to test the algorithms, with Nx = 2399 and Ny = 854.

and the number of anomaly test points, Nu, varies from 86 to 854 with 10

points steps. The plot shows that OCCNN2 exhibits the best responsiveness

(i.e. it requires the lowest number of damaged points to achieve higher values

of the F1 score).

Now that the performance has been analyzed in detail, the following

question arises:

Q8: Is it possible to automatically select the most reliable fundamental fre-

quencies, among all the ones extracted, in order to reduce the problem

dimensionality without affecting the performance?
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Dimensionality Reduction

In this section, we introduce two possible strategies to reduce the dimension-

ality of the damage-sensitive features extracted, with the intention of reduc-

ing the amount of data stored and transmitted through the sensor network

and increase the anomaly detection performance or at least do not deteriorate

it. Moreover, in case of wireless monitoring network, several strategies can

be adopted to manage the sensors and increase the network life time [60–63],

but firstly, a good practice can be to define the minimum number of sensors

necessary to accomplish the anomaly detection task.

5.0.1 Feature extraction

This technique consists of mapping a set of data in a low-dimensional fea-

ture space, trying to reduce an error function that represents the distance

between the original data and the remapped data obtained from the map-

ping subspace. In this work, we decided to use the ANN as auto-encoders to

accomplish this task [29, 31]. In this case, the normalized feature matrix X

is fed to an ANN with the classic bottleneck structure that provides a map-

ping set of layers and a consequent set of demapping layers. The input and

output layers have the same dimension of the feature space, and the labels

during the training phase must be set equals to the input data point. With

this structure, the data are mapped in lower-dimensional feature space (with

dimension equal to the number of neurons present in the bottleneck layer)

59



60 Dimensionality Reduction

and then reconstructed through the demapping layers minimizing the error

with respect to the input data.

5.0.2 Feature selection

This approach proposes to select the most reliable features among all the

available ones with some metrics to eliminate noisy components that can

deteriorate the damage detection capability of the OCC algorithms. In this

thesis, we decided to evaluate some statistical features (i.e., variance, kurto-

sis, and entropy) to identify the most reliable fundamental frequencies among

the four extracted, which are widely discussed in the next section.

5.1 Performance

The performance is evaluated through the following metrics, described pre-

viously, considering only the test set:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score = 2 · Recall · Precision

Recall + Precision

where TP, TN, FP, and FN, represent, respectively, true positive, true nega-

tive, false positive, and false negative predictions.

The feature space has dimension D = 4, the three data sets used for

training, test in normal condition, and damaged condition, have cardinality

Nx = 2399, Ny = 854, and Nu = 854. For PCA, the number of components

selected is P = 1. For KPCA, after several tests the values of P and γ that

ensure the minimum reconstruction error are P = 3 and γ = 8. Regarding

the ANN we adopted a fully connected network with 7 layers of, respectively,
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Figure 5.1: F1 score varying the considered fundamental frequencies, vertical
dashed red lines indicate the best configuration with 4, 3, and 2 frequencies.

50, 20, 10, k, 10, 20 and 50 neurons with k number of features extracted,

with ReLU activation functions for the feature extraction task, and a fully

connected network with 5 layers of, respectively, 100, 50, 1, 50 and 100 for

the anomaly detection. All the NNs are trained for a number of epochs

Ne = 5000 with a learning rate ρ = 0.05. The error function adopted for a

training set X is

EX = −
Nx∑
n=1

C∑
c=1

tn,c ln t̃n,c, (5.1)

where Nx is the number of points in the training set, C is the number of

classes (C = 2), tn,c = 1 if the nth acquisition belongs to the cth class and

zero otherwise, and t̃n,c is the activation function value for point n of the cth

output neuron [30].
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Figure 5.2: Modal frequencies variance for different points; vertical dashed
red lines indicate the minimum number of points for the correct frequency
sorting.

5.1.1 Frequencies selection

First of all, a brute force approach is implemented to evaluate the fundamen-

tal frequencies that provide the best performance of the anomaly detection

algorithms in terms of F1 score with all the possible combinations of features.

As reported in Fig. 5.1, the best performance is achieved with algorithms with

the same feature configuration, highlighted by the red vertical dashed lines,

that allows sorting the features with increasing importance as f4, f3, f2, and

f1. This is why a good metric to describe the fundamental frequencies re-

liability must sort the frequencies in the same order. With this aim, three

statistical metrics are reported as a good candidate to accomplish this task.

The first one is the sample variance of the frequencies extracted defined

as

Variance =

∑Nc
i=1(f

(i)
s − f̄s)2

Nc − 1
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Figure 5.3: Modal frequencies skewness varying the number of points; verti-
cal dashed red lines indicate the minimum number of points for the correct
frequency sorting.

where Nc is the number of acquisition considered, f
(i)
s is the ith acquisition

of the sth fundamental frequency, and f̄s stands for the mean value of the

sth frequency evaluated in the interval {1, . . . , Nc}. As shown in Fig. 5.2,

this feature works well after Nc = 30 observations; as depicted, the variance

of reliable features is lower with respect to the noisy ones; so, this method

can be successfully used to sort the frequencies in the correct order.

The second metric proposed is the skewness that measures the asymmetry

of the probability distribution, i.e.

Skewness =
1
Nc

∑Nc
i=1(f

(i)
s − f̄s)3(»

1
Nc

∑Nc
i=1(f

(i)
s − f̄s)2

)3 .

As shown in Fig. 5.3, this metric can also be used to sort the frequencies

correctly; the method becomes reliable after around Nc = 100 observations.
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Figure 5.4: Modal frequencies entropy varying the number of points.

Finally, in Fig. 5.4 the entropy is evaluated as a further metric

Entropy = −
Nc∑
i=1

P (f (i)
s ) log10 P (f (i)

s )

where the probability density function P (f
(i)
s ) is evaluated numerically im-

plementing data binning. In this case, the trend is descendent because the

information introduced by new measurements decreases by increasing the

number of observations. This metric can also be used to sort the frequencies,

but in this case, f3 and f4 are inverted for some values of Nc and f2 is very

close to the previous two and can be missorted.

5.1.2 Algorithm Comparison

This paragraph provides a performance comparison of the anomaly detection

algorithms and dimensionality reduction techniques. In Fig. 5.5 the perfor-

mance of PCA, KPCA, and ANN is evaluated in term of F1 score, varying

the dimensionality of the features considered. Dashed curves are referred to
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Figure 5.5: F1 score varying the dimensionality of the feature space, dashed
lines correspond to frequency extraction technique, and continuous lines are
referred to as the frequency extraction approach.

features extracted with auto-encoder implemented with ANN. As we can

observe from the plot, the dimensionality reduction slightly decreases the

algorithms’ performance; hence, for this application, feature extraction does

not improve the system’s anomaly detection capability. On the contrary, con-

tinuous lines are referred to feature selected through the metrics described

in the previous paragraph. In this case, selecting the correct fundamental

frequencies tends to increase the detection performance, so it is strongly rec-

ommended for this application because both reduce the dimensionality of

the problem and increase the anomaly detection capability. In Fig. 5.6 the

performance of the algorithms in terms of F1 score, recall, precision, and

accuracy is reported in the best configuration, hence considering only the

first two fundamental frequencies selected by the described metrics (f1 and

f2). As we can see, the F1 score of both KPCA and ANN are around 95%,

and the accuracy for ANN is greater than 96% that represents a remarkable
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Figure 5.6: Comparison of the classification algorithms in terms of F1 score,
recall, precision, and accuracy with the best feature configuration.

result in this anomaly detection application.

The performance assessment of the automatic detection of anomalies re-

vealed promising results. However, a widespread use of such techniques is a

large-scale monitoring scenario poses the following research questions:

Q9: Is it possible to further reduce the amount of data that must be stored

by the network?

Q10: Is there a possibility to reduce the network infrastructure costs, reducing

the amount of sensors necessary to detect a damage or using low-cost

sensors?



Chapter 6

Data Management

This chapter analyzes the minimum amount of data that must be stored to

perform anomaly detection on the vibrational waveforms, and some strategies

that can be implemented to reduce such volume of data, both representing

important topics often studied in literature [6, 64].

Considering a network of l = 8 synchronized sensors interconnected to a

coordinator that store the accelerometric measurements, where each sensor

acquire Ns = 65536 samples each acquisition with Nb = 16 resolution bits

for Na = 4107 acquisition, it is trivial to observe that the total amount of

data stored by the coordinator is equal to Mt = NsNbNal ' 32 Gbit = 4 GB.

This considerable amount of data has been stored in a year of non continuous

measurements. In fact the effective acquisition time can be estimated as Tt =

TaNa ' 44860 m ' 448 h, that shows how huge could be the volume of data in

a continuous measurement system; in a year it is around 47 GB. To reduce the

amount of data the first step is the decimation approach. In this application

the fundamental frequency of the bridge falls in the interval [0, 20] Hz, so

to respect the Shannon’s theorem with a guard band of 5 Hz a sampling

frequency fsamp = 50 Hz it is enough to capture the bridge oscillations, since

the measurements are acquired by accelerometers with fsamp = 100 Hz, a

decimation by factor 2 can be adopted and the total amount of data is halved:

Md = Mt/2 ' 2 GB. Moreover, starting from the decimated acquisitions,

three other parameters can be modified to find some possible configuration

67
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Figure 6.1: Examples of feature transformation due to the effect of low num-
ber of sensors, low number of bits, and low number of samples with respect
to the standard measurement condition reported on the left.

that does not deteriorate the performance of the OCC algorithms, but can

reduce the volume of data:

• The number of sensors l can be reduced in order to contain the network

costs and the amount of data produced by the sensor network.

• The number of samplesNs or equivalently the acquisition time Ta can be

reduced to limit the network’s operative time, the energy consumption,

and the data produced.

• The number of bits Nb can be reduced to drop the storage occupation

of the single acquisition and contain the accelerometer cost.

All these possibilities will be analyzed and widely discussed in the next

section. In Fig. 6.1 some working points of the system are reported and

compared to the reference working condition after decimation (l = 8, Nd =

32768, Nb = 16).

6.1 Performance

The performance is evaluated through the accuracy, considering only the test

set. The feature space has dimension D = 2, and the three data sets used for
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Figure 6.2: Error produced removing the selected sensor.

training, test in normal condition, and damaged condition, have cardinality

Nx = 2399, Ny = 854, and Nu = 854. For PCA, the number of components

selected is P = 1. For KPCA, after several tests, the values of P and γ that

ensure the minimum reconstruction error are P = 3 and γ = 8. For GMM

the order of the model that maximizes performance is M = 10. Regarding

the OCCNN2 the first step boundary estimation is made by a fully connected

ANN with 7 layers of, respectively, 50, 20, 10, 1, 10, 20 and 50 neurons, with

ReLU activation functions, and a fully connected NN with 2 hidden layers

with L = 50 neurons, each one for the second step. All the NNs are trained

for a number of epochs Ne = 5000 with a learning rate ρ = 0.05. The error

adopted to evaluate the points displacement in the feature space from the

original position due to the different configurations is the RMSE, defined as

Ef =
1√
NaNs

Ã
Ns∑
s=1

Na∑
n=1

(f
(n)
s − f̄ (n)

s )2 (6.1)

where Ns is the number of features (Ns = 2), f
(n)
s is the sth feature of the

nth acquisition in the initial configuration, and f̄
(n)
s is the relative data point

in the modified configuration.

6.1.1 Sensors Relevance

Before evaluating the error introduced by reducing the number of sensors,

it is fundamental to evaluate the importance that each one has in the fun-
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Figure 6.3: Error varying the number of sensors available.

damental frequencies estimation. It is widely known in literature that the

sensor position strongly affects the mode estimation [14, 65, 66]. To verify

the sensors’ relevance, we removed them one-by-one and evaluated the error

resulting in the feature space points with respect to the standard condi-

tion. The error is calculated as the RMSE defined previously. As it can

be seen in Fig. 6.2, sensor S10 generates the most significant error in the

fundamental frequencies extraction when removed. With this technique it

is possible to sort the sensors from the most relevant to the least one as

follows: S10, S03, S16, S14, S05, S12, S06, S07. To evaluate the performance

with respect to the number of sensors used to extract fundamental frequen-

cies, the sensors will be removed in the same order, to always consider the

worst condition with the given number of sensors.

6.1.2 Number of Sensors

Now that the sensor relevance is defined, we are able to verify the perfor-

mance by varying the number of sensors used on the structure to derive the

fundamental frequencies with low error. As we can see in Fig. 6.3, the ac-
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Figure 6.4: Error varying the number of samples.

curacy of the algorithms remains almost the same as long as the number of

sensors available is greater than 2, as the error presents a significant increase

in correspondence of the gap between 2 and 3 sensors. Thus we can deduce

that the minimum number of sensors that can be used to monitor the Z-24

bridge is equal to 3. In this configuration it is easy to notice that the amount

of data stored is reduced to Msen = NsNbNa3 ' 0.8 GB.

6.1.3 Number of Samples

To evaluate the effect of the acquisition time on the algorithms’ anomaly

detection performance, we progressively reduced the number of samples used

to extract the structure’s fundamental frequencies. As we can see in Fig. 6.4,

the performance of the algorithms remains almost constant as long as the

number of samplesNs is greater than 600, which corresponds to an acquisition

time of 12 s with a sampling frequency fsamp = 50 Hz. By reducing the

acquisition time drastically without relevant loss of performance, we achieve

a strong reduction of data occupation, that in this configuration is equal to

Msam = 600NbNal ' 0.04 GB without performance degradation.
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Figure 6.5: Error varying the number of bits.

6.1.4 Number of Bits

The number of bits can also be dropped to reduce the volume of data stored

and the single accelerometer cost. To test their impact on the performance,

we progressively reduced the number of bits used to encode the waveforms

extracted from the accelerometers as reported in Fig. 6.5. As we can see,

the error remains contained as far as the number of bits used to encode the

samples is greater than 6; likewise, the accuracy of the algorithms remains

high as long as the error is contained. Several low-cost accelerometers are

available on the market with a resolution Nb = 8, and these results show

that this type of sensor could accomplish the anomaly detection task. In this

case, the data occupation is Mbit = 8NsNal ' 1 GB.

6.2 Observations

Three different approaches are proposed to reduce the volume of data stored

and limit the costs of sensors and network infrastructure necessary to mon-

itor the structure. In this sense, when the goal is reducing the amount of
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data stored, it is good practice cut down the observation time using a number

of accurate sensors; when the target is to minimize the sensor cost, a good

practice is to adopt low-cost sensors (with low resolution or number of bits

per sample), combined with long observation time with a network of several

sensors; when the objective is to contain the network infrastructure cost, a

low number of accurate sensors and long observation time can be considered.

To evaluate the error introduced from these strategies and the performance

of the algorithms, the RMSE and the accuracy are used as metrics. The

results show that these strategies can be adopted without significant loss of

performance; in fact, all the algorithms except the PCA, ensure accuracy

greater than 94% in all the proposed configurations, with the maximum per-

formance reached by OCCNN2 whose accuracy never goes down below 95%.

The effectiveness of this approach led us to poses the following question:

Q11: Is it possible to exploit accelerometric measurements acquired by senors

installed on a structure also to infer human activities?



74 Data Management



Chapter 7

Human Activities Classification

Using Biaxial Seismic Sensors

7.1 Introduction

The problem of identifying and classifying the presence of a target in a par-

ticular environment with low-cost sensors remains a key issue for outdoor

security applications [35, 36, 67, 68]. The variability of the ground and en-

vironment characteristics (i.e., weather conditions, humidity, temperature,

wind speed) makes the target detection more complicated than a controlled

indoor environment.

In literature, many works propose to use networks of geophones (which

present weak dependencies from the environment) to capture the ground

vibration to detect the presence of persons in indoor scenarios [69] or to clas-

sify several vehicles with different weights in a well defined outdoor area [70].

In [71], a method for detecting intruders and predicting their activities out-

door using a seismic sensor is presented. Similarly, in [72], the objective is

to detect and classify different targets (e.g., humans, vehicles, and animals

led by a human) using seismic and passive infrared sensors. Other solutions

exploit cooperative sensors (i.e., microphones and geophones) and data fu-

sion techniques to improve vehicle classification accuracy and estimate their

velocity [73,74]. In [75], a system architecture for the classification of moving

75
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objects using both scalar and multimedia sensors is proposed.

In this work, we aim to distinguish between four different human activ-

ities, ride a bike, drive a car, walk, run, and investigate the possibility of

doing it using only a biaxial geophone (i.e., with two channels, horizontal

and vertical). In particular, the intuition behind this work is that forces in-

volved in the activities based on sliding contact with the ground solicit mainly

horizontal ground vibrations, while activities characterized by footsteps are

responsible for vertical vibrations. The consequences of this consideration on

the solution proposed are explained more in-depth in Section 7.3. The pre-

sented solution is based on the dimensionality reduction of frequency-domain

features of the data, based on PCA, to ensure good classification performance

at low computational cost [76]. Then, two different classification methods,

using two distinct classifiers for each one, are presented.

The main contributions of the letter are the following. i) We propose a

human activities classification system that uses only a biaxial geophone; ii)

We propose the PSD as a sensitive feature for the activity identification, and

PCA to remap the data in an advantageous feature space; iii) We propose two

different classification methods: classification made with a single classifier or

using a cascade of two classifiers; iv) For both methods, we compare two dis-

tinct classifiers, support vector machine (SVM) and k-NN, and we measure

the impact of vertical and horizontal components on classification perfor-

mance. Moreover, we present a comparison with conventional algorithms

that exploit cross-correlation, named template matching, and an alternative

classification method based on linear discriminant analysis (LDA).

7.2 System Model

As depicted in Fig. 7.1, a passive geophone with two channels (vertical and

horizontal) captures ground vibrations in an outdoor environment. The ac-

quired data are then processed to classify between four human activities: ride

a bike, drive a car, walk, and run.

At first, the analog signals produced by the horizontal and vertical chan-

nels of the geophone, xh(t) and xv(t), pass through an analog to digital
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ŷS̃h

S̃v
xv

CLASSIFIER
xhxh (t)

xv (t)
FFT PCA

FEATURES EXTRACTION

Sh

Sv

Zh

Zv

CONDITIONING

ADC
STACKING

&
NORM.

Figure 7.1: Illustration of the processing data chain to extract features from
the geophone signals and perform classification.

converter (ADC) with sampling frequency fs and resolution Nbit. The out-

put of the conversion consists in two time series xh = {xh(k/fs)}K−1
k=0 and

xv = {xv(k/fs)}K−1
k=0 of K samples. Subsequently, the time series are firstly

split in Nw row vectors, obtained through a partially overlapped sliding win-

dow of length W samples, with W ≤ K, and a sliding step ∆w, and then

rearranged into the matrices Zh and Zv, of size Nw ×W , by stacking them.

From now on, since the processing stages apply to Zh and Zv separately, we

indicate both with Z for the sake of conciseness. In this phase, the samples

of each observation window are normalized column-wise such that the results

are zero mean row vectors with maxj |zn,j| = 1, n = 1, . . . , Nw. Finally, the

data are labeled by activity for the classification during the training phase.

7.2.1 PSD estimation

For the identification of relevant features for human activity classification, we

analyze the signal in the frequency domain [34]. In particular, we estimate

the PSD of the acquired samples using the weighted overlapped segment

averaging (WOSA) for each row of Z, with Hanning window and 50% overlap.

The number of points, D, of the fast Fourier transform (FFT) regulates the

trade-off between the frequency resolution and the PSD estimation accuracy

[77]. The estimated PSDs {sj}Nw
j=1 are then organized in the matrix S of size

Nw×D, generically used at this stage to indicate both Sh and Sv. Afterward,

PCA is applied to S to reduce the dimensionality of the data and extract

the features. From now on, we split Nw into two subsets No and Nt, for the

training and the test phases, respectively.
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7.2.2 PCA

Principal component analysis (PCA) distills the essential information from

the dataset, which is then represented as a set of new orthogonal variables

called principal components obtained from a linear combination of the orig-

inal data [78]. For the calculation of the principal components, we consider

only the No points of the training subset. After centering the matrix S by

subtracting its column-wise sample mean, we evaluate the sample covari-

ance matrix Σ = 1
No

STS. Then, Σ is factorized by eigenvalues decompo-

sition (EVD) Σ = QΛQT, where Λ is the diagonal matrix of eigenvalues,

ordered from the largest to the smallest, and Q is the matrix of eigenvec-

tors [79].

In order to perform dimensionality reduction, we only keep the first Dh

or Dv eigenvalues of Λ and the corresponding eigenvectors Q̃ (i.e., selected

columns of Q). The projections S̃ of the observations in the components

subspace through the new projection matrix Q̃ are S̃ = SQ̃, where S̃ is a

Nw ×Dh or Nw ×Dv matrix, and Dh, Dv ≤ D are the number of principal

components considered for S̃h and S̃v. Note that, while the principal com-

ponents are calculated solely over the training points No, all the Nw points

are projected in the components subspace. These two matrices represent the

selected features used to train and test the classifiers described in Section 7.3.

7.3 Classification Techniques

After dimensionality reduction, the features S̃h, S̃v are used by a classifier

to determine the type of human activity. In particular, two classification

methods are proposed.

• Single classifier. For each observation window, the data of the two

channels are jointly processed. The Nw× (Dh +Dv) matrix S̃hv is built

concatenating the matrices S̃h and S̃v as S̃hv = [S̃h S̃v]. The monoaxial

(i.e., horizontal or vertical) geophone configuration is obtained setting

Dv = 0 or Dh = 0, respectively.
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• Cascade classifier. The classification is carried out in two steps.

Firstly, a three-class classifier uses the data acquired from the horizon-

tal channel S̃h to classify between bike, car, and footsteps (i.e., run and

walk are treated as if they are the same class). Then, if the first classi-

fier does not choose for the bike or car classes, a second one uses the S̃v

features to discriminate between run and walk. The rationale behind

this approach is that based on the dominant forces during the inter-

action between the target and the ground, all the activities based on

sliding contact (i.e., car and bike) tend to stimulate horizontal ground

vibrations. In contrast, activities characterized by footsteps tend to

excite vertical vibrations.

Hereafter, the two classifiers used in this work are briefly described. Be-

sides, ordinary cross-correlation based classification method used both in

time and frequency domain is reviewed. For the sake of clarity, y is the vec-

tor of actual classification labels of length Nw, ŷ is the vector of classification

labels estimated by the algorithms, s̃n is the n-th row of S̃h (either S̃v or S̃hv),

and S is the feature space of dimension D (either Dh or Dv). Thus, each

point, both for training and test, is represented by the pair (̃sn, yn).

7.3.1 Support vector machine

The SVM constructs a set of hyperplanes in high-dimensional space that

can be used for tasks like classification or regression [29]. Hence, it is a

parametric learning algorithm whose error function includes a regularization

term as follows:

g(w̃) =
No∑
n=1

ln
Ä
1 + e−yn (̃sT

n w̃)
ä

+ λ||w̃||22

where w̃ are the weights of the parametrical model, and λ is the regularization

parameter [29, 30]. The hyperplane that performs a good separation is the

one that maximizes its distance from the nearest training points of each class,

and it is identified by the set of weights w̃ that minimizes the error function.

Given a test point (̃sm, ym), the estimated label ŷm is given by ŷm = s̃mw̃T.
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7.3.2 k-NN

In k-NN a set of No pairs {(̃sn, yn)}No
n=1 is given as training set, where s̃n takes

values in the feature space S upon which is defined the metric d(̃sn, s̃m); the

Euclidean distance in this work. Given a test point (̃sm, ym), the estimate of

ym is given by the nearest neighbor training point with respect to the test

point as

ŷm =
{
yk : s̃k = arg min

s̃n

d(̃sn, s̃m)
}
. (7.1)

With (7.1) we can assign s̃m to the same class of the nearest s̃n. If the number

of training points is large enough, it makes sense to use the majority rule of

the nearest k neighbors, instead of the single nearest neighbors [80]. In the

case of binary classification, k is chosen to be odd to avoid that a point is

assigned to two different classes.

7.3.3 Template matching

Classification methods that use cross-correlation as a similarity metric, often

called template matching, are extensively used in signal processing [81, 82].

Similarity can be searched both in time and frequency domain. In the

frequency-domain case, at first the estimated PSDs, {sj}Nw
j=1, of both hor-

izontal and vertical channel, are normalized to have zero mean and unitary

standard deviation. Then, given a set of No pairs ({sn, yn)}No
n=1 as train-

ing set, and a test point (sm, ym), we define the vector r such that its n-th

element is

rn = max{corr(sn, sm)} n = 1, . . . , No (7.2)

where corr(sn, sm) is the cross-correlation vector, of length 2D − 1, between

the sequences sn and sm [81,82]. Carrying out the same operations for both

the horizontal and the vertical channel, we obtain the vectors rh and rv,

respectively, which are then concatenated to obtain rhv = [rh rv]. The esti-

mated label ŷm, is thus

ŷm =
{
y(k−1)modNo+1 : k = arg max

n
(rhv)

}
. (7.3)
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Similar operations are performed in the time-domain case.

7.4 Numerical Results

In this section, we present several tests to compare the performance of

the classifiers in different settings. For the measurements, a biaxial two-

channel geophone, with natural frequency of 4.5 Hz, frequency bandwidth

of 0.2 − 240 Hz, and sensitivity of 78 V/m/s has been used. The geophone

has been placed in a flowerbed next to a car park. All the activities have

been performed within a distance of 6 m from the geophone. The seismic

sensor was interfaced with the PC using an ADC with sampling frequency

fs = 400 Hz and resolution Nbit = 14 bit. Furthermore, for each channel

a LM 386 amplifier has been adopted to increase the signal-to-quantization

noise ratio.

Each activity has been repeated several times for a whole period equal

to Ta = 20 min, using different vehicles and involving people with various

height and gait. In particular, six people took part in the run and walk

measurements, while two bikes and a car, driven by two persons, were used.

Then, the acquisition period has been split into several observation windows

of duration Tob = W/fs ranging between 5 s to 30 s, depending on the test,

and using a sliding step of ∆w = 5 s; the PSDs was computed with a D = 64

points FFT.

To properly study the classifiers’ performance, the acquisitions have been

randomly split in training and test sets as:

• Training and validation: 60% of all PSDs of each activity are ran-

domly chosen to calculate the projection matrix of PCA, Q̃. Then,

the projected points are used to train the classifiers. To set the hyper-

parameters of SVM and k-NN, 10% of these points are randomly chosen

and then used to perform cross-validation. The resulting optimal values

are k = 3 and λ = 0.1.

• Test: the other 40% of PSDs are used to test the performance of the

algorithms. In this case, the projection in the principal components
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Figure 7.2: Accuracy varying PCA components of the vertical and horizontal
channels, with Tob = 20 s.

subspace through PCA is made using the projection matrix computed

during the training phase.

The same ratio of training and test points has also been used for the template

matching based approaches and the LDA. However, no cross-validation is

required in these cases. As a figure of merit, to evaluate the performance of

the classifiers, we consider the accuracy, defined as

η =
number of points correctly classified

number of total points
. (7.4)

7.4.1 Accuracy vs. number of PCA components

For both the horizontal and the vertical channel, the number of selected

components Dh and Dv have been varied and the effect on the accuracy of

the algorithms has been studied. In this test the observation window has been

set to W = 8000 samples, corresponding to an observation time Tob = 20 s.
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As shown in Fig. 7.2, the single SVM (S-SVM) classifier provides always

the best performance, for each value of Dh and Dv; in particular, with only

Dh = Dv = 3 components, it reaches an accuracy greater than 96%, while

to achieve the same accuracy with the cascade SVM (C-SVM) configuration,

it is necessary to use a higher number of PCA components (Dh, Dv ≥ 5).

On the contrary, the single k-NN (S-k-NN) converges to an accuracy roughly

equal to 93%, much lower than that of the cascade k-NN (C-k-NN), which

stands at almost 97%. These results prove that, in the case of k-NN and

for this experiment setup, it is better to adopt the cascade solution and

use the samples coming from the channels separately. With regard to the

monoaxial scenario, we can see that for the SVM, the performance in case

we use only the samples of the vertical channel is comparable with those of

C-SVM and S-SVM solutions, when Dv = Dh = 10. On the contrary, if we

use only the horizontal channel, the accuracy is always worse. Differently,

the performance of k-NN is always better when using a biaxial geophone.

7.4.2 Accuracy vs. observation duration

In this test, the observation window duration varies between 5 s and 30 s. The

selected principal components are Dh = Dv = 5. As shown in Fig. 7.3, here

too, the performance of the single k-NN is worse than the cascade solution.

On the contrary, the accuracy S-SVM is always better than the cascade

solution, with a higher gap when Tob = 5 s. Moreover, we can notice that

for Tob > 20 s the accuracy of the cascade k-NN and of the single SVM are

comparable, while that of the cascade SVM decreases. The results for the

monoaxial geophone confirm what has been experimented in Section 7.4.1.

The performance of template matching based approaches, both in time

and frequency -domain, are included in Fig. 7.3 for comparison. As can

be noted, the traditional techniques which do not exploit data structure

are outperformed by the proposed solutions. In addition, the accuracy of

LDA in both cascade (C-LDA) and single (S-LDA) configurations, are also

included [83]. While for very long (> 30 s) observation windows, the S-

LDA classifier reaches the same performance as the proposed solution based
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Figure 7.3: Accuracy varying the observation window duration, Tob. For
PCA-based classifiers Dh = Dv = 5.

on PCA, followed by SVM, for short observations some of the proposed

solutions (C-SVM, S-SVM, and S-SVM (V)) outperform LDA. Note that,

C-LDA classification always exhibit poor performance almost equivalent to

template matching.

7.5 Observations

A passive human activity classification method exploiting the ground vibra-

tions observed by a two-channel geophone is proposed. Data collected by

the two channels are processed by a PCA-based dimensionality reduction

to extract significant features in the frequency domain. The classification

step is performed by either a single classifier or a cascade of two classifiers.

The analysis considered the most important parameters (observation window

and the number of PCA components) and setups (joint processing or cascade

processing) to provide a complete set of results which may assist the system
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designer. Based on performance assessment on real waveforms, the extensive

numerical results show that the number of selected PCA components and

the observation window duration strongly impact the performance of the al-

gorithms. For example, for large observation windows, the best solution is

represented by the single SVM classifier that jointly processes both vertical

and horizontal data. However, as complexity may have a role in designing

autonomous low-power devices, if the k-NN classifier is preferred, the cascade

solution performs the best.

The flexibility of these tools led us to poses the following question:

Q12: Is it possible to apply similar techniques to solve other problems?
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Chapter 8

Anomaly Detection Using WiFi

Signals of Opportunity

8.1 Introduction

With the advent of the technological revolution named Internet of things

(IoT), increasingly pervasive and context-adaptive communication systems

are conquering the radio-frequency (RF) spectrum [10]. Since spectrum

population may represent an issue in some frequency bands, e.g., the over-

crowded industrial, scientific and medical (ISM) ones, there is an increasing

interest in exploiting existing over-the-air signals, devised for some specific

purpose, to perform other tasks thus avoiding dedicated radio emissions.

WiFi routers, broadcast stations, and mobile cellular networks are only a

few examples of such signals of opportunity (SoOp) [84–87].

Security in homes, industrial environments, and facilities is becoming a

critical aspect of modern society, and for such reasons, ambient intelligence

is gaining attention recently [37]. Video-based surveillance systems using, for

example, cameras are the dominant technology in such scenarios. However,

the personal privacy issue is still a reason for deterring users. The ambient

intelligence paradigm is not only beneficial for security purposes but more

generally as an enabler for context-aware applications like smart homes, to

name one example.

87
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The capability to extract information from the effects of the propagation

on RF signals opens up a way to acquire knowledge about an environment

by the observation of SoOp. In this context, there are two main charac-

teristics of the observed signal used for detection, one is the RSS, and the

other is channel-state information (CSI). The RSS is very easy to get with

simple hardware, so it gained considerable attention in the last decade. A

human motion localization method that exploits standard deviation of RSS

is presented in [88], [89], and the detection and tracking of multiple persons

in an indoor environment is proposed in [90]. However, techniques that ex-

ploit received power are susceptible to multipath propagation and need a

multitude of devices to be effective, even when confined in indoor environ-

ments [91], [92].

Channel estimation allows greater precision when used in motion detec-

tion compared to RSS measurements. In [93], fine-grained subcarrier infor-

mation (i.e., channel frequency response) is exploited to design a device-free

passive human detection. In [94], a scheme for adaptive indoor passive de-

tection is proposed, where the CSI amplitude measured in an indoor environ-

ment is shown to vary in the presence of human motion. In [95] the authors

propose a device-free RF environmental vision system based both on RSS

and CSI, while in [96] a crowd counting system that uses SoOp is presented.

Target/change detection can also be performed with radar techniques,

either using dedicated sources with large bandwidth [97], or using sources

of opportunities [98] with smaller bandwidth but in large environments that

ensure target/anomaly spatial resolution. However, our goal here is to avoid

dedicated signals with very large bandwidth and perform anomaly detection

with SoOp even when the target/anomaly is not spatially resolvable.

This work proposes a ML approach for anomaly detection in an indoor

environment using WiFi SoOp. In particular, the main contributions are the

following.

• We use inexpensive RF sensors to collect SoOp [35]. Environmental

changes are detected through RF channel modifications without de-

modulating the signal.
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Figure 8.1: The four scenarios considered with the anomaly represented by
a human being.

• In particular, we record and analyze samples that belong to beacon

packets transmitted by an access point (AP).

• We compare the performance of two ML classifiers such as PCA and

KPCA, as a function of the number of beacon packets collected [36].

• The tests have been performed in both line-of-sight (LOS) and non-

line-of-sight (NLOS) conditions.

• Finally, we show that the proposed approach exhibits superior perfor-

mance than a well-known RSS-based solution in terms of accuracy, even

using just a single sensor.
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Table 8.1: Scenarios considered for anomaly detection.

Condition Scenario Target/Anomaly

LOS
(a)

Static in the middle of

the direct path

(b) Moving in the room

NLOS
(c)

Static in the middle of

the direct path

(d) Moving in the room

8.2 System Overview and Problem Setup

Let us consider a scenario of the ones depicted in Fig. 8.1, where a RF

sensor performs down-conversion followed by an analog-to-digital conversion

to capture samples of over-the-air WiFi signals. In particular, without loss

of generality, let us focus on the case where there is an AP operating in the

2.4 GHz band. While, nowadays, there are several high-performance devices

for spectrum monitoring, it is interesting to investigate the possibility of

using very low-cost devices [35]. Using inexpensive devices the measurement

quality is usually affected by front-end impairments, low sampling frequency,

low resolution, and low sensitivity. However, as is shown in Section 8.4, the

samples have been acquired with enough accuracy to allow the ML algorithms

to achieve high accuracy.

As case studies, let us focus on the four different scenarios depicted in

Fig. 8.1, where the visibility of the AP and the position of the target are

varying. In Table 8.1, a synthetic description of the scenarios is presented.

For the sake of conciseness, we refer to such scenarios as (a), (b), (c), and

(d), respectively.

8.2.1 Data pre-processing

The samples of the complex envelope of the received signal at the RF sensor,

ri, i ∈ N, are pre-processed to detect the time of arrival (ToA) of the beacon
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packets emitted by the AP. In the RF sensor adopted, the sampling rate,

fs, can be varied according to the needs. On the one hand, a high sampling

frequency can guarantee a larger signal bandwidth at the cost of an increasing

computational rate required to process the samples. On the other hand, a

low sampling rate may alleviate the computational burden but result in poor

detection performance.

To detect changes in the propagation environment, we need to compare

the received packet samples (or their frequency representation) in the pres-

ence and absence of the anomaly. To facilitate this task, in principle, we

should have the same transmitted SoOp in both situations so that any change

in the received signal characteristics can be ascribed to a change in the chan-

nel. In the IEEE 802.11 standard, the AP sends beacons at regular intervals.

Beacons are special packets repeated over time, which contain the same infor-

mation, e.g., the network service set identifier (SSID). Our idea is to exploit

beacon packets as sources of opportunity for our anomaly detector. In litera-

ture, the most common approaches for intrusion detection are based on RSS

estimation. A non-parametric kernel-function based anomaly detection has

been used in several applications, such as [99], [92]. These methods do not

require to have the same transmitted SoOp because RSS estimation reflects

the energy superposition of multiple paths of the signal. In section 8.4, the

performance of the RSS-based method (named RASID) proposed in [99] is

compared to our novel solution based on PCA.

As shown in Fig. 8.2, the first step in the proposed approach is to extract

beacon packets from the observed samples. In order to keep the computa-

tional burden low, it is possible to use non-coherent detection of beacons

starting from the envelope of the received samples, |ri|, i ∈ N. After bea-

con detection from the ultra-dense over-the-air packet flow, NP samples are

extracted. In particular, denoting with NB the number of beacons detected,

we have

bj = {ri}ToAj+NP

i=ToAj
with j = 1, . . . , NB (8.1)

where bj is a vector containing the first NP samples of the j-th beacon while

ToAj is the j−th beacon time of arrival. We want to emphasize that precise
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Figure 8.2: Illustration of the pre-processing data chain to extract features
from beacon packets.

ToA estimation is not necessary as the detection algorithm proposed is rather

insensitive to time shifts and therefore to ToA uncertainty. Note that when

NP is relatively small, only a fraction of the beacon is captured, e.g., its

preamble.

8.2.2 Features extraction

Starting from the basic idea that any change in the environment reflects

on the radio channel response, we estimate the PSD of the received beacon

signals and train two well-known ML algorithms for change detection.

The PSD is estimated from the received samples {bj}NB
j=1 using WOSA

with Hanning window and 50% overlap. The segment length D < NP used

in WOSA is a parameter that can be tuned to trade-off between frequency

resolution and PSD estimation accuracy (D is the FFT length). The esti-

mated PSDs {sj}NB
j=1 are then organized in a matrix S of size NB × D. To

further mitigate the impact of outliers in training the algorithms, PSDs have

been averaged over M points and organized in vectors xk, as

xk =
1

M

kM∑
j=(k−1)M+1

sj with k = 1, . . . , N (8.2)

where N is the number of points after the averaging operation, i.e., N =

NB/M . For a given M it is possible to estimate the time needed for target
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detection as

TD =
M

BREC

(8.3)

where BR is the beacon rate (number of beacons per second), and EC rep-

resents the number of beacons extracted over the number of beacons trans-

mitted.1 Finally, the features are organized in the matrix

X = [xT
1 ,x

T
2 , . . . ,x

T
N ]T (8.4)

of size N ×D, where, from now on, N is the number of input points and D

is their dimension. Note that if M = 1 then X = S.

8.3 Survey of ML Techniques

In this section, we briefly review PCA and KPCA which are usually adopted

for classification problems, especially for pattern recognition and anomaly

detection. Both of them need a zero-mean training set Xm, that must be

obtained subtracting the mean value m = 1N ⊗ [m1,m2, ...,mD], calculated

as follows

md =
1

N

N∑
n=1

xn,d with d = 1, 2, ..., D (8.5)

and therefore evaluated as Xm = X−m.

8.3.1 Principal Component Analysis

PCA is a widely known algorithm in exploratory data analysis. Given the

centered training set Xm, the algorithm remaps the training data from the

feature space RD in a subspace RP (where P < D is the number of principal

components selected) that minimize the information loss between the pro-

jected data and the original ones. The best subspace over which to project

the data depends on the training set distribution and the number of com-

ponents selected P . The algorithm starts evaluating the sample covariance

1Beacon extraction may fail because of collisions so the actual fraction of beacons
selected can be less than one.
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matrix C of the training set as

C =
XT

mXm

N − 1
. (8.6)

The matrix C can be factorised by eigenvalue decomposition as

C = VΛVT (8.7)

where V is an orthonormal matrix whose columns are the eigenvectors, and

Λ is a diagonal matrix that contains the D eigenvalues. The eigenvalues mag-

nitude represent the importance of a particular component, hence selecting

the P eigenvectors corresponding to the P highest eigenvalues, we obtain the

best P -dimensional linear subspace over which to project the data. To do

this, we multiply the portion of eigenvector matrix selected

VP = [v1,v2, . . . ,vP ] (8.8)

by the data that we want to project

XP = XVP . (8.9)

An illustration of the data projected in a two-dimensional subspace is re-

ported in Fig. 8.3. For each scenario, the blue points represent the features

extracted in the empty room case, while the red points refer to features ob-

served in the presence of a target. It is easy to see that as the two groups of

points are overlapped, anomaly detection can be challenging.

8.3.2 Kernel Principal Component Analysis

This approach takes inspiration by the standard PCA and overcomes the lim-

itation of the linear mapping that corresponds to finding linear boundaries

in the original feature space. In many applications, this constraint repre-

sents a severe limitation and can sharply decrease the classification accuracy.

KPCA firstly maps the data with a non-linear function, after which applies
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Figure 8.3: Examples of PCA outputs, in the four scenarios, when P = 2
principal components are selected. Blue circles refer to empty room points
while red circles refer to the presence of a target in the room.

the standard PCA to find a linear boundary in the new feature space. Such

boundary becomes non-linear, going back to the original feature space. A

crucial point in KPCA is the selection of a non-linear function that leads

to linearly separable data in the new feature space. In literature, when the

data distribution is unknown, the RBF kernel is often proposed as the right

candidate to accomplish this task [43]. Suppose we have a generic point z

that corresponds to a vector of length D, we can apply the RBF as follows

Kzj = e−γ||z−xj ||
2

with j = 1, 2, . . . , N (8.10)

where γ is a kernel parameter (inversely proportional to the width of the

Gaussian function) that must be appropriately set, and Kzj is the j-th com-
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ponent of the point z in the kernel space. Overall the starting vector z is

mapped in a vector Kz of length N . Applying now the PCA described in

section 8.3.1 to the new data set obtained remapping all the training points,

it is possible to find non-linear boundaries in the starting feature space for

a better classification. It is good practice to center the points mapped with

the RBF because the mapping in the new feature space could be non-zero

mean.

8.4 Numerical Results

In this section, we present several tests intending to select the best parameters

setting in different working conditions and compare the performance of the

algorithms.

The RF sensor is represented by the software defined radio (SDR) device

HackRF One operating in receiving mode in the 2.4 GHz ISM band with a

bandwidth of 20 MHz which corresponds to fs = 20 MS/s. The sensor output

is composed by the in-phase and the in-quadrature baseband signals, each one

represented with 8 bit/sample. In the setting considered BR = 10 packets/s

and EC = 0.83. The scenario is represented by a room of size 4.8×4.8×2.8 m3

and the target considered is a person of 1.78 m height and 65 kg weight.

The next subsections present the accuracy varying the number of averaged

points M , used to make the detection in two different working conditions

and compare the performance also with the RSS-based technique [99], in

two cases, M = 2 and M = 8, respectively.2 The number of features is set

to D = 32, which corresponds to the number of frequency bins. In all the

experiments, the data are partitioned in the following sets:

• Training: composed of 50% of the data extracted in the empty room

case;

• Validation: composed of 25% of the empty room points and with the

same number of adversarial points (the adversarial class depends on

2The accuracy is defined as the number of correct classifications over the number of
points classified.
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the working condition and the target type);

• Test: composed of the remaining empty room points and the same

number of adversarial points.

In this configuration, training, validation, and test sets have the same number

of points, N = 400, when averaging is not performed (M = 1). For each

simulation point, 100 Monte Carlo iterations are performed, and the data

partitioning is repeated, selecting random points in each iteration. Given a

generic point z and its reconstructed version z̃ = zPVT
P from its projection

zP , the error function ez is defined as

ez = ||z− z̃||. (8.11)

Evaluating the error function over the validation set, we selected a threshold

to ensure a false alarm (FA) probability lower than 0.01 on the training set.

8.4.1 AP-sensor link in line-of-sight

Firstly, the scenarios showed in Fig. 8.1a and Fig. 8.1b, where the AP and the

RF sensor are in LOS, are analyzed. In these scenarios, the PCA, KPCA,

and RSS-based algorithms are trained varying the number of beacons M

considered for the classification of one point. For each value of M the num-

ber of components P of the PCA algorithm is varied from 1 to D − 1, and

the accuracy is tested on the validation set. Hereafter, the value of P that

maximizes the validation accuracy with a particular value of M is used to

evaluate the performance on the test set. The same procedure is taken for

the KPCA to select the best configuration of the parameters P and γ (the

kernel parameter is varied from 5 to 40 with steps of 5). The parameters used

are listed in Table 8.2. A Gaussian kernel for RSS-based method has been

chosen, and the normal distribution approximation for the bandwidth has

been adopted [100]. The RSS has been calculated over the acquired beacon

samples. As shown in Fig. 8.4 both PCA and KPCA provide comparable
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Table 8.2: PCA and KPCA parameters for the considered scenarios.

M

1 2 3 4 5 6 7 8 9 10 11 12

(a)

PCA P 4 2 1 1 1 1 1 1 1 1 1 1

KPCA
P 6 2 1 1 2 2 2 2 2 2 2 2

γ 30 10 5 5 5 5 5 5 5 5 5 5

(b)

PCA P 4 2 1 1 1 1 1 1 1 1 1 1

KPCA
P 10 2 1 1 2 2 2 2 2 2 2 2

γ 25 20 15 15 10 10 5 5 5 5 5 5

(c)

PCA P 2 1 1 1 1 1 1 1 1 1 1 1

KPCA
P 4 4 3 3 2 2 2 2 2 2 2 1

γ 10 10 10 20 10 10 15 5 15 5 25 5

(d)

PCA P 2 1 1 1 1 1 1 1 1 1 1 1

KPCA
P 4 3 3 3 2 2 2 2 2 2 1 2

γ 10 15 10 10 5 10 10 5 10 5 20 10

performance for values of M greater than 3, that corresponds to data acqui-

sition of 0.4 s and overcome the accuracy of the RSS-based technique both

in scenarios (a) and (b). For lower values of M , the KPCA presents higher

accuracy with respect to PCA.

8.4.2 AP-sensor link in non-line-of-sight

In the NLOS case depicted in Fig. 8.1c and Fig. 8.1d, an obstacle between

the AP and the RF sensor is present. Even in this scenario PCA, KPCA,

and RSS-based method are trained and optimized with the same procedure

described in the previous subsection. As we can see from Fig. 8.5, the per-

formances are different from the LOS case. In this configuration, the PCA
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Figure 8.4: Accuracy in scenarios (a) and (b), varying M .

accuracy with static target slightly decrease, instead KPCA works well also

for low M . For M = 2 in the case of a static object, we experience a remark-

able performance degradation for PCA while KPCA preserves high accuracy.

This effect is not present in the case of a moving target. This happens be-

cause the absence of a direct path between the transmitter and the RF sensor

makes the channel transfer function strongly influenced by the target that

intersects the reflected paths. Therefore, the detection of a moving target,

for low values of M , is favored by a NLOS scenario: presumably, the inter-

section of a reflected path is more likely to happen than the intersection of

the direct path in the LOS case. Even in these scenarios, the RSS-based

technique accuracy is overwhelmed by the proposed approaches, particularly

for low values of M .
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Figure 8.5: Accuracy in scenarios (c) and (d), varying M .

8.4.3 Beacon average

For the sake of selecting the best solution in each scenario, in this subsection,

we compare the performance of the algorithms, with M = 2 when the main

goal is a fast detection of the target and M = 8 when the objective is the

maximization of the classifier accuracy. As we can see in Fig. 8.6, the KPCA

algorithm provides a better solution when a timely detection is needed (blue

curve), in this case, the accuracy is always greater than 95%. The worst-case

for the PCA algorithm is the NLOS scenario with a static target where the

accuracy goes down to 75%. In the case of M = 8, the accuracy generally

increases in all the scenarios for all the algorithms, because the average over a

higher number of points reduces the outliers and hence increases the distance

between points in different classes, particularly PCA sharply increase its

performance becoming comparable with the KPCA, instead the RSS-based

solution experiences a saturation effect with no increment in the performance.

With large values of M , the PCA performance is comparable with that of
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Figure 8.6: Accuracy of PCA, KPCA, and RSS-based method varying M , in
the four scenarios.

KPCA in all the scenarios, suggesting the use of PCA that is less complex

and computationally faster. Finally, it is also important to highlight that the

PCA presents lower accuracy in the case of NLOS with respect to the LOS

one when M is low. This happens because the interception of the direct path

strongly changes the channel transfer function when the target is present.

8.5 Observations

In this work, we proposed and studied an RF-based automatic indoor anomaly

detector exploiting SoOp from WiFi devices and machine learning techniques.

The numerical results based on real waveforms, collected by a RF sensor,
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demonstrated that the detection of changes in the environment is possible

and that it does not require expensive devices. Moreover, the accuracy of

PCA reaches 90% at relatively low observation intervals (i.e., 0.4 s), while for

KPCA the observation of one beacon is enough to ensure an accuracy greater

than 95%. Finally, numerical results show that the proposed approaches ex-

hibit superior performance than the RSS-based solution in terms of accuracy,

even using only one RF sensor.
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Conclusion

With this thesis, we proposed an automated approach to perform anomaly

detection for SHM. Several ML algorithms have been tested and compared

on a widely known dataset, the Z-24 accelerometric measurements.

More in detail, in chapter 2, we provided an overview of several machine

learning algorithms and their general applications (regression, classification,

dimensionality reduction) with a particular focus on anomaly detection. In

this branch of ML, we contributed with two new anomaly detectors named

OCCNN and OCCNN2 that in low dimensional feature spaces provide better

performance compared to the classic solutions available in the literature.

Both approaches exploit the flexibility of the NN classifiers in the anomaly

detection setting. Still, the second one overcame the limitation of OCCNN

related to the density estimation of the points in the feature space.

In chapter 3, we presented some important SHM algorithms and strategies

able to extract modal parameters from the input data. We focused our efforts

on the output-only model-free approaches to extend our strategy to different

kinds of structures without any assumption about materials or models. The

goal was to develop a blind system that does not need prior knowledge about

the structure, except the accelerometer data.

In chapter 4, we presented how to apply the ML algorithms described

in chapter 2 in the context of SHM. To demonstrate the proposed solu-

tions’ effectiveness, we considered a widely known benchmark, the dataset

103
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of accelerometric measurements taken from the Z-24 bridge. In particular,

we applied the SSI algorithm to the Z-24 bridge measurements to extract

the structure’s modal parameters. Then, we proposed a new density-based

mode tracking able to extract the fundamental frequencies from the modal

parameter via a Gaussian kernel. Finally, we applied the ML algorithms on

the extracted frequencies to perform anomaly detection, and we proved that

OCCNN2 provides the best performance among all the algorithms tested, in

terms of accuracy and F1 score.

In chapter 5, we proposed some strategies to select the most reliable

features among the ones extracted. More specifically, we compared the fea-

ture extraction technique performed by an ANN with the feature selection

paradigm. We proved that the second option is the most appropriate in

the SHM environment, where the fundamental frequencies are already sig-

nificant features. Moreover, we demonstrated that noisy modal frequencies

could deteriorate the anomaly detector performance; hence using only the

most reliable features is recommended in this scenario.

In chapter 6, we investigated the minimum operational condition that can

be adopted to ensure some target performance, with the aim to reduce the

amount of data stored by the network during monitoring. We showed that

it is possible to reduce the number of bits used to encode the accelerometric

measurements, the number of sensors used to monitor the structure, and the

acquisition time for each measurement. In particular, the third solution is the

one that reduces the amount of data that must be stored more significantly.

Still, when the aim is to reduce the network complexity or the sensors cost,

the other two solutions can be a good compromise between complexity and

data volume.

A related work that exploits some of the signal processing tools developed

during the research is presented in chapter 7. Such work consists of classifying

the activities performed by a human being from accelerometric data collected

through a biaxial geophone located in its vicinity. Finally, in chapter 8, we

propose anomaly detection tools in the radio-frequency domain to exploit

over-the-air SoOp to assess the presence of a non-collaborative intruder in

an indoor scenario. While deviating a little bit from the primary research
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area, these two last chapters present original results that originated from it.

This thesis presents the endeavor to explore the use of ML algorithms in

the area of SHM. While most of the results are based on the Z-24 database,

the extension of the proposed solutions to a wide class of structures appears

feasible and supported by the analysis of their robustness. Therefore, an in-

teresting direction to pursue is applying and validating the designed method-

ologies to other structures. Moreover, since deep learning is a growing area

capturing the attention of many researchers worldwide, the application of

deep learning in this context seems a thriving research area that could lead

to attractive solutions.

Questions Recall

Q1: How can we use tools for dimensionality reduction to perform anomaly

detection?

A1: Dimensionality reduction techniques can always be used to accomplish

anomaly detection tasks. The strategy maps the data in a low dimen-

sional feature space and remaps them in the original one. This proce-

dure introduces a reconstruction error; depending on its magnitude, a

point can be defined as standard or anomalous.

Q2: What are the most effective algorithms able to perform anomaly detec-

tion?

A2: It is not possible to define the best algorithm to perform anomaly

detection. The performance of the algorithms depends on the data

structure; for instance, some algorithms work well with a large number

of points in a low dimensional feature space. On the contrary, other

strategies achieve good performances with a low number of points and

high dimensionality. In general, there are algorithms more flexible than

others, which can provide good results in a wide set of problems.

Q3: Is it possible to use classical NN structures (instead of the ANNs) to

perform anomaly detection?
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A3: Yes, it is. In this thesis, we propose the OCCNN and OCCNN2 algo-

rithms that exploit the NN flexibility in the anomaly detection task.

These algorithms generate adversarial dummy points to train the anomaly

detector as a two-class NN classifier.

Q4: How can we perform anomaly detection based on machine learning tools

to detect damage in a structure?

A4: Anomaly detection can be applied in several scenarios, one of this

is SHM. To achieve good performance, it is necessary to effectively

extract damage-sensitive features from the sensors’ measurements in-

stalled on the structure.

Q5: Is there an effective technique to extract features able to highlight dam-

age in a structure?

A5: Yes, there is. In this thesis, we focused our efforts on processing ac-

celerometric measurements gathered by sensors installed on bridges.

In order to maintain generality, we decide not to use strategies that

require a model of the monitored structure; hence we only exploited in-

formation extracted by the data (model-free or data-driven strategies).

Among several approaches offered by the literature, we decide to use

SSI that satisfies all the requirements described above.

Q6: Is it possible to perform frequencies tracking automatically after the

fundamental frequencies extraction?

A6: Yes, it is. In this thesis, we propose several strategies to accomplish

this task. We proposed a novel density-based time-domain tracking

algorithm to exploit the time correlation between consecutive measure-

ments, filtering new measurements with different kernels (linear and

Gaussian). These strategies provide satisfactory and reliable tracking

results.

Q7: How can we test these strategies? Is there in literature a reference

structure with accelerometric measurements both in standard and in

damaged conditions?
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A7: The crucial point is to find an actual structure with an extensive

database of measurements both in standard and in damaged condi-

tion to test the algorithm performance. Fortunately, the Z-24 bridge,

a known benchmark in literature, is a real structure whose accelero-

metric and environmental measurements are available online both in

standard and damaged conditions. We decided to test our algorithms

on this structure.

Q8: Is it possible to automatically select the most reliable fundamental fre-

quencies, among all the ones extracted, to reduce the problem dimen-

sionality without affecting the performance?

A8: Yes, it is. We proposed several metrics to accomplish this task, and we

showed that variance and skewness of the extracted frequencies could

be effectively used to determine the most reliable frequencies among all

the extracted ones.

Q9: Is it possible to further reduce the amount of data that the network must

store?

A9: Yes, it is. In the thesis, we proposed three different strategies to reduce

the amount of data stored without effect the anomaly detectors perfor-

mance: i) reduce the number of sensors used to monitor the structure;

ii) reduce the number of resolution bits of the sensors; iii) reduce the

acquisition time for each measurement.

Q10: Is there a possibility to reduce the network infrastructure costs, reducing

the number of sensors necessary to detect damage, or using low-cost

sensors?

A10: Yes, it is. Experimental results showed that when the objective is to

reduce the network infrastructure costs, the best strategy is to reduce

the number of sensors using a low number of accurate accelerometers to

achieve good performance. Instead, when the goal is to reduce sensors

cost, a large network of low-cost sensors should be the best solution to

maintain high anomaly detection capability.
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Q11: Is it possible to exploit accelerometric measurements acquired by sensors

installed on a structure also to infer human activities?

A11: Yes, it is. As shown in chapter 7, measurements gathered by seismic

sensors installed on the ground can be used to infer human activities

with high accuracy.

Q12: Is it possible to apply similar techniques to solve other problems?

A12: Yes, it is. As said before, ML and anomaly detection techniques are

flexible strategies that can be used in different fields. For instance, in

chapter 8, we propose an application that exploits WiFi signals of op-

portunity to detect the presence of a target in an environment through

anomaly detection algorithms. Experimental results show that this ap-

proach works pretty well and provides very good results in terms of

accuracy.
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gaussian mixture models,” Neural computation, vol. 15, no. 2, pp. 469–

485, 2003.



118 BIBLIOGRAPHY

[58] M. Silva, A. Santos, E. Figueiredo, R. Santos, C. Sales, and J. Costa,

“A novel unsupervised approach based on a genetic algorithm for struc-

tural damage detection in bridges,” Engineering Applications of Arti-

ficial Intelligence, vol. 52, pp. 168–180, Jun. 2016.

[59] M. Silva, A. Santos, R. Santos, E. Figueiredo, C. Sales, and J. C. Costa,

“Agglomerative concentric hypersphere clustering applied to structural

damage detection,” Mechanical Systems and Signal Processing, vol. 92,

pp. 196–212, Feb. 2017.

[60] G. Park, T. Rosing, M. D. Todd, C. R. Farrar, and W. Hodgkiss,

“Energy harvesting for structural health monitoring sensor networks,”

Journal of Infrastructure Systems, vol. 14, no. 1, pp. 64–79, 2008.

[61] S. Taylor, K. Farinholt, E. Flynn, E. Figueiredo, D. L. Mascarenas,

E. A. Moro, G. Park, M. Todd, and C. Farrar, “A mobile-agent-based

wireless sensing network for structural monitoring applications,” Mea-

surement Science and Technology, vol. 20, no. 4, pp. 1–14, Jan. 2009.

[62] D. Mascarenas, E. Flynn, C. Farrar, G. Park, and M. Todd, “A mo-

bile host approach for wireless powering and interrogation of structural

health monitoring sensor networks,” IEEE Sensors Journal, vol. 9,

no. 12, pp. 1719–1726, 2009.

[63] A. Girolami, F. Zonzini, L. De Marchi, D. Brunelli, and L. Benini,

“Modal analysis of structures with low-cost embedded systems,” in

IEEE International Symposium on Circuits and Systems (ISCAS),

2018, pp. 1–4.

[64] A. Elzanaty, A. Giorgetti, and M. Chiani, “Weak RIC analysis of finite

gaussian matrices for joint sparse recovery,” IEEE Signal Processing

Letters, vol. 24, no. 10, pp. 1473–1477, 2017.

[65] E. B. Flynn and M. D. Todd, “A bayesian approach to optimal sensor

placement for structural health monitoring with application to active

sensing,” Mechanical Systems and Signal Processing, vol. 24, no. 4, pp.

891 – 903, 2010.



BIBLIOGRAPHY 119

[66] E. B. Flynn and M. Todd, “Optimal placement of piezoelectric actua-

tors and sensors for detecting damage in plate structures,” Journal of

Intelligent Material Systems and Structures, vol. 21, no. 3, pp. 265–274,

2010.

[67] Q. Zhou, G. Tong, D. Xie, B. Li, and X. Yuan, “A seismic-based fea-

ture extraction algorithm for robust ground target classification,” IEEE

Signal Processing Letters, vol. 19, no. 10, pp. 639–642, Oct. 2012.

[68] J. Huang, Q. Zhou, X. Zhang, E. Song, B. Li, and X. Yuan, “Seis-

mic target classification using a wavelet packet manifold in unattended

ground sensors systems,” Sensors, vol. 13, no. 7, pp. 8534–8550, Jul.

2013.

[69] S. Pan, K. Lyons, M. Mirshekari, H. Y. Noh, and P. Zhang, “Multiple

pedestrian tracking through ambient structural vibration sensing,” in

Proceedings of the 14th ACM Conference on Embedded Network Sensor

Systems, New York, NY, USA, Nov. 2016, pp. 366–367.

[70] J. Jackowski and R. Wantoch-Rekowski, “Classification of wheeled mil-

itary vehicles using neural networks,” in 18th International Conference

on Systems Engineering (ICSEng), Las Vegas, NV, USA, Aug. 2005,

pp. 212–217.

[71] B. Mukhopadhyay, S. Anchal, and S. Kar, “Detection of an intruder

and prediction of his state of motion by using seismic sensor,” IEEE

Sensors Journal, vol. 18, no. 2, pp. 703–712, Jan. 2018.

[72] X. Jin, S. Sarkar, A. Ray, S. Gupta, and T. Damarla, “Target detec-

tion and classification using seismic and PIR sensors,” IEEE Sensors

Journal, vol. 12, no. 6, pp. 1709–1718, Jun. 2012.

[73] M. Zubair and K. Hartmann, “Target classification based on sensor

fusion in multi-channel seismic network,” in IEEE International Sym-

posium on Signal Processing and Information Technology (ISSPIT),

Bilbao, Spain, Dec. 2011, pp. 438–443.



120 BIBLIOGRAPHY

[74] A. Sutin, H. Salloum, A. Sedunov, and N. Sedunov, “Acoustic detec-

tion, tracking and classification of low flying aircraft,” in IEEE In-

ternational Conference on Technologies for Homeland Security (HST),

Waltham, MA, USA, Nov. 2013, pp. 141–146.

[75] M. Civelek and A. Yazici, “Automated moving object classification in

wireless multimedia sensor networks,” IEEE Sensors Journal, vol. 17,

no. 4, pp. 1116–1131, Feb. 2017.

[76] W. D. Fisher, T. K. Camp, and V. V. Krzhizhanovskaya, “Anomaly

detection in earth dam and levee passive seismic data using support

vector machines and automatic feature selection,” Journal of Compu-

tational Science, vol. 20, pp. 143–153, May 2017.

[77] P. Welch, “The use of fast Fourier transform for the estimation of power

spectra: A method based on time averaging over short, modified peri-

odograms,” IEEE Transactions on audio and electroacoustics, vol. 15,

no. 2, pp. 70–73, Jun. 1967.

[78] I. Jolliffe, Principal Component Analysis. Springer Verlag, 1986.

[79] H. Abdi and L. J. Williams, “Principal component analysis,” WIREs

Comput. Stat., vol. 2, no. 4, pp. 433–459, Jul. 2010.

[80] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE

transactions on information theory, vol. 13, no. 1, pp. 21–27, Jan. 1967.

[81] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image process-

ing using MATLAB. Pearson Education India, 2004.

[82] K. Briechle and U. D. Hanebeck, “Template matching using fast nor-

malized cross correlation,” in Optical Pattern Recognition XII, vol.

4387, 2001, pp. 95–102.

[83] Y. Guo, T. Hastie, and R. Tibshirani, “Regularized linear discriminant

analysis and its application in microarrays,” Biostatistics, vol. 8, no. 1,

pp. 86–100, 2007.



BIBLIOGRAPHY 121

[84] S. Bartoletti, A. Conti, and M. Z. Win, “Device-free counting via wide-

band signals,” IEEE Journal on Selected Areas in Communications,

vol. 35, no. 5, pp. 1163–1174, May 2017.

[85] S. Bartoletti, A. Conti, and M. Z. Win, “Passive radar via LTE signals

of opportunity,” IEEE International Conference on Communication

Workshops (ICC), pp. 181–185, Jun. 2014.

[86] S. Bartoletti, A. Conti, and M. Z. Win, “Device-free counting via

OFDM signals of opportunity,” IEEE International Conference on

Communication Workshops (ICC), pp. 1–5, May 2018.

[87] M. Leng, W. P. Tay, C. M. S. See, S. Gulam Razul, and M. Z. Win,

“Modified CRLB for cooperative geolocation of two devices using sig-

nals of opportunity,” IEEE Transactions on Wireless Communications,

vol. 13, no. 7, pp. 3636–3649, Jul. 2014.

[88] A. E. Kosba, A. Abdelkader, and M. Youssef, “Analysis of a device-

free passive tracking system in typical wireless environments,” in 3rd

International Conference on New Technologies, Mobility and Security,

Cairo, Egypt, Dec. 2009, pp. 1–5.

[89] Y. Jin, Z. Tian, M. Zhou, Z. Li, and Z. Zhang, “A whole-home

level intrusion detection system using WiFi-enabled IoT,” in 14th In-

ternational Wireless Communications Mobile Computing Conference

(IWCMC), Limassol, Cyprus, Jun. 2018, pp. 494–499.

[90] I. Sabek and M. Youssef, “Multi-entity device-free WLAN localiza-

tion,” in IEEE Global Communications Conference (GLOBECOM),

Anaheim, California, Dec. 2012, pp. 2018–2023.

[91] J. Yang, Y. Ge, H. Xiong, Y. Chen, and H. Liu, “Performing joint

learning for passive intrusion detection in pervasive wireless environ-

ments,” in Proceedings IEEE International Conference on Computer

Communications (INFOCOM), San Diego, California, Mar. 2010, pp.

1–9.



122 BIBLIOGRAPHY

[92] Y. Jin, Z. Tian, M. Zhou, Z. Li, and Z. Zhang, “An adaptive and

robust device-free intrusion detection using ubiquitous WiFi signals,”

in IEEE International Conference on Digital Signal Processing (DSP),

Shanghai, China, Nov. 2018, pp. 1–5.

[93] Z. Zhou, Z. Yang, C. Wu, L. Shangguan, and Y. Liu, “Omnidirectional

coverage for device-free passive human detection,” IEEE Transactions

on Parallel and Distributed Systems, vol. 25, no. 7, pp. 1819–1829, Jul.

2014.

[94] Z. Tian, Y. Li, M. Zhou, and Z. Li, “WiFi-based adaptive indoor pas-

sive intrusion detection,” in IEEE International Conference on Digital

Signal Processing (DSP), Shanghai, China, Nov. 2018, pp. 1–5.

[95] S. Savazzi, S. Sigg, M. Nicoli, V. Rampa, S. Kianoush, and U. Spag-

nolini, “Device-free radio vision for assisted living: Leveraging wireless

channel quality information for human sensing,” IEEE Signal Process-

ing Magazine, vol. 33, no. 2, pp. 45–58, Mar. 2016.

[96] E. Cianca, M. De Sanctis, and S. Di Domenico, “Radios as sensors,”

IEEE Internet of Things Journal, vol. 4, no. 2, pp. 363–373, Apr. 2017.

[97] M. Chiani, A. Giorgetti, and E. Paolini, “Sensor radar for object track-

ing,” Proceedings of the IEEE, vol. 106, no. 6, pp. 1022–1041, Jun.

2018.

[98] F. Colone, D. Pastina, P. Falcone, and P. Lombardo, “WiFi-based pas-

sive ISAR for high-resolution cross-range profiling of moving targets,”

IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 6,

pp. 3486–3501, Jun. 2014.

[99] A. E. Kosba, A. Saeed, and M. Youssef, “Rasid: A robust wlan device-

free passive motion detection system,” in IEEE International Con-

ference on Pervasive Computing and Communications, Lugano,Swiss,

Mar. 2012, pp. 180–189.



BIBLIOGRAPHY 123

[100] B. W. Silverman, Density Estimation for Statistics and Data Analysis.

Chapman and Hall/CRC, Apr. 1986.



124 BIBLIOGRAPHY



Acknowledgements

There are several people I should thanks for where I am today, several people

who gave me support when I wanted to give up, several people who showed

me the light when the only thing I could see was the darkness.

First of all Enrico Testi, a friend, a colleague, a teammate. He was al-

ways by my side cheering in the best moments and standing next to me in

the worst ones. Enrico I own you all my success and I will be with you to

share all of our failures. I could not hope for a better friend to walk with me

down this path, I can just hope one day I will become for you what you are

for me.

My family, my mother Barbara, Massimo, and my little sister Nicole (the

greatest person I know). My mother, my first fan always there, since she

gave me the first Lego piece till my Ph.D. in engineering, she never failed

to show me her support. Massimo, that reminds me everyday that does not

matter what destiny takes from your life, you can always find a way to create

your own path. My sister, Nicole, she taught me how to dream and how to

fill my mind with a million dreams to create the world I vision and that I

want to create. They are my safe place where to find refuge from a storm, I

own you my life, my strength and my hope. Thank you.

My father, Daniele, my green light at the end of the pier, a man who

had that rare smile that probably you meet once in your life, an indelible

example of the person that I want to be.

125



126 Acknowledgements

All my friends and relatives that support me every day, sometimes with

simple gesture, sometimes with great supports, I hope to spend as much time

as possible with them and to give them back at least half of the good they

gave me.

I want to thanks my co-advisor Prof. Alessandro Marzani, always present

when I needed suggestions or help, he represents a great support for me.

Finally I would like to thanks my advisor and mentor Prof. Andrea Gior-

getti, a great person and an illuminating professor, he always supported me

during these years and I hope to continue to work with him as long as pos-

sible. I have the merit of having followed him, he has the merit of having

believed in me.

Thank you all, for your trust, your support and your love. Is not al-

ways easy to believe in yourself during life, there are moments that the only

thought you have in your mind is “I am not gonna make it I am not good

enough” well today I finally proved to myself, that I am good enough. Thank

you.



“A true master is an eternal student”




