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stupito per la loro professionalità e gentilezza, che mai mi sarei aspettato da persone

che prima del mio dottorato conoscevo come nomi ricorrenti nei libri di testo. Uno

su tutti, Kazuya Koyama. Kazuya mi ha accolto durante il mio periodo in visita

all’ICG a Portsmouth e grazie ad una pacatezza a cui non ero abituato è stato da
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è stato un privilegio di cui farò sempre tesoro. Questo momento storico, unito alle

vicissitudini della sorte, ha confermato quanto sia cruciale avere una famiglia forte e

che si sostiene in ogni momento a prescindere dalle difficoltà.
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ABSTRACT

In this PhD thesis, I study cosmologies within the simplest scalar-tensor theories

of gravity consisting in a scalar field σ non-minimally coupled to the Ricci scalar

through a function F (σ) that induces a time-variation in the Newton constant and

a potential V (σ). I explore the new physics in these cosmologies and use publicly

available data to constrain them.

Depending on the functional form of the non-minimal coupling and the potential,

the cosmological dynamics changes significantly. For some of the models, the specific

dynamics helps recover the consistency with very stringent tests of General Relativity

from Solar System and laboratory experiments without the need of any screening

mechanisms.

When compared to publicly available data, all these models feature a value of the

Hubble constant H0 larger than the standard ΛCDM cosmology. This makes scalar-

tensor theories one of the most interesting candidates to solve the H0 tension which

is becoming one of the most pressing questions in the post-Planck cosmology.

In order to better characterize the phenomenology of scalar-tensor theories, I also

investigate their degeneracy with parameters describing the physics of neutrinos. I

show that bounds on the effective number of active neutrinos and their masses are

slightly relaxed in this context, although they are only a very weakly degenerate with

the modification to gravity studied in this thesis and the full inclusion of CMB and

LSS data used here.

Finally, I address the issue of initial conditions within these theories and present a

new regular isocurvature mode connected with the variation of the Newton constant

which is absent in Einstein gravity. Although the observational imprints are different,

the allowed fraction of this mode, relative to the adiabatic one, is constrained by

Cosmic Microwave Background data at a similar level to other known isocurvature

modes.
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SINTESI

In questa tesi di Dottorato studio la cosmologia delle più semplici teorie scalari-

tensoriali della gravità che consistono in un campo scalare σ accoppiato non-minimalmente

al tensore di Ricci per mezzo di una funzione F (σ) che induce una variazione nel tempo

della costante di Newton e un potenziale V (σ). Esploro la nuova fisica in queste cos-

mologie e uso dati pubblici per vincolarle.

A seconda della forma funzionale dell’accoppiamento non-minimale e del poten-

ziale di σ, la dinamica della cosmologia cambia significativamente. Per alcuni modelli,

la particolare dinamica aiuta a ritrovare la consistenza con gli stringenti test sulla Rel-

atività Generale da esperimenti nel Sistema Solare e in laboratorio, senza il bisogno

di nessun meccanismo di screening.

Inoltre, quando testati con dati pubblici, tutti questi modelli sono caratterizzati

da un valore della costante di Hubble H0 più alto che nel modello standard ΛCDM.

Questo rende le teorie scalar-tensoriali uno dei migliori candidati a risolvere la tensione

su H0, la quale sta diventando una delle questioni più pressanti della cosmologia post-

Planck.

Per caratterizzare ancora meglio la fenomenologia di queste teorie, investigo anche

la loro degenerazione con i parametri che descrivono la fisica dei neutrini. Mostro

come i vincoli sul numero effettivo di neutrini e sulla loro massa vengano rilassati

in questo contesto, nonostante siano solo debolmente degeneri con la modifica della

gravità.

Per concludere, esploro anche la possibilità di usare perturbazioni di isocurvatura

come condizioni iniziali per l’evoluzione delle perturbazioni lineari in queste teorie e

presento un nuovo modo regolare che è assente in Relatività Generale. Nonostante

i diversi effetti sulle osservabili cosmologiche, la frazione di questo modo, relativa al

modo adiabatico, permessa dai dati sulla Radiazione Cosmica di Fondo è simile a

quella di altri modi di isocurvature già conosciuti.
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Introduction

Chapter 1 I review the cosmology of the ΛCDM standard concordance model

and the equations governing both the background (homogeneous and isotropic)

and perturbed dynamics of the Friedmann-Lemaitre-Robertson-Walker (FLRW)

cosmology. This chapter does not original work and the main purpose is to

present equations and mathematical concepts that the following chapters rely

on.

Chapter 2 I present a short review on Scalar-Tensor theories of gravity and

show how the non-minimally coupled theories that are considered in this thesis

fits into the broader context of (beyond) Horndeski theories. I derive all the

equations relevant for non-minimally coupled theories, that I will use in the

subsequent Chapters, and discuss the main constraints on these theories from a

variety of tests of gravity.

Chapter 3 I review the the state of the art of the H0 tension. I contextualize

the problem and provide the reader with an updated list of indirect (model de-

pendent) and local (model independent) measurements of the Hubble constant.

The standpoint that I adopt in this thesis is that such a discrepancy between

early and local measurements of H0 calls for some new physics. In this spirit,

I discuss how the H0 tension can be recast in a tension on the comoving sound

horizon at baryon drag rs and explain why solutions that modify the ΛCDM

model prior to recombination seem to be favored over the ones that modify it

at small redshifts. To corroborate this conclusion, I discuss three popular early

time solutions to the H0 tension: dark radiation, Early Dark Energy (EDE) and

Modified Gravity (MG).

This Chapter is mainly a review the H0 tension to set the stage for the following

Chapters, but it also contains results from my original work in Ref. [1].

Chapter 4 I present cosmological constraints on ST theories in which the scalar

degree of freedom (σ) is nearly massless and coupled to the Ricci scalar through

a function of the form F (σ) = N2
pl + ξσ2n and discuss the complementarity of

cosmological observations to laboratory and solar system ones in constraining

deviations from General Relativity.
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Furthermore, I analyze in depth the implications of these theories for the H0

tension. I show that, although the tension cannot be completely solved, it is

naturally eased within ST theories, featuring a considerably reduced fine tuning

with respect to other solutions to the H0 tension such as EDE.

This Chapter contains original work from Refs. [2–4].

Chapter 5 I build on the results on the previous Chapter and extend the

model by endowing it with a quartic potential V (σ) = λσ4/4 that induces a

small effective mass. I show that the potential modifies the motion of the scalar

field which at late times settles in its minimum at σ = 0, thus evading any

constraint on the deviation from GR.

I present cosmological constraints on the model using several combinations of

Cosmic Microwave Background (CMB) and Large Scale Structure datasets and

show that the extended parameter space relaxes the constraints on the coupling

ξ and allows for a larger H0 than the massless case. In particular, the ξ ≥ 0

branch of the coupling, which is ruled out by data in the massless case, is now

perfectly allowed.

This Chapter contains original work from Ref. [3].

Chapter 6 I discuss joint constraints on the physics of neutrinos and ST models.

The results of this Chapter are constraints on the parameters describing the

effective number of relativistic species in the form of neutrinos, i.e. Neff and

their total masses
∑
mν , in the ST context.

Contrary to the expectations (neutrino physics is degenerate with many models

of MG, e.g. f(R) theories), I find that there is only a small degeneracy between

ST theories so that Neff and mν do not vary sensibly with respect to their ΛCDM

value, although, as expected, the constraints are a bit relaxed.

This Chapter contains original work from Ref. [4].

Chapter 7 I present a new set of isocurvature initial conditions for the cosmo-

logical perturbations in ST models. I analytically derive the most general set

of initial conditions as solutions to the full set differential equations in a power

series of kτ , where k is the wavevector of the mode and τ the conformal time and

explore its imprint on cosmological observables. I focus on the new isocurvature

mode due to the presence of the scalar field σ and present the theoretical CMB

spectra.

2



I close the Chapter by presenting bounds on the allowed fraction of such an

isocurvature initial conditions obtained with Planck 2015 and 2018 data.

This Chapter contains original work from Ref. [5] and preliminary results from

Ref. [6].

Chapter 8 Finally, I critically discuss and summarize the results of the previous

Chapter and discuss open directions and the future perspectives for new research

that may follow this Thesis work.
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Chapter 1

Basics of Cosmology and the ΛCDM

model

With the beginning of the 21st century, Cosmology has undergone significant pro-

gresses on both the theoretical and observational sides. Ever since the discovery of the

accelerated expansion of the Universe [7], several astrophysical and cosmological data,

which span a large range of scales and describe processes occurred during different

cosmological epochs, have confirmed evidence of a dark nature of our Universe. The

latter is indeed now known to be composed of about 68% of Dark Energy and 27%

of Dark Matter, with the ordinary baryonic matter only accounting for the remain-

ing 5%. Although the nature of Dark Energy (DE) and Dark Matter (DM) is still

unknown, this has not stopped cosmologist from settling to a standard cosmological

model, in which DE is in the simplest form of a cosmological constant Λ and the

majority of DM is non-relativistic (cold). At the current time, despite facing its own

theoretical problems, some of which I will describe later in this Chapter, the stan-

dard ΛCDM model is the most economic model, which is in remarkable agreement

with the largest number of observations. Besides the former assumptions on the dark

components, the other pillars of the ΛCDM model are:

• the validity of the laws of General Relativity (GR);

• the isotropy and homogeneity of the Universe, also known as the cosmological

principle;

• the Hot Big Bang model history agreeing perfectly with the observed abun-

dance of light elements and the thermal nature of the relic blackbody radiation

permeating the Universe;

• an accelerated period of inflation to explain the non-observation of magnetic

monopoles, the flatness of the Universe, the correlation of apparently causally

disconnected patches in the CMB sky and to provide the adiabatic and Gaussian

spectrum of initial conditions needed to seed structure formation;
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• the current stage of accelerated expansion consistent with a cosmological con-

stant Λ.

The power of the ΛCDM model is that all these assumptions can be described by

a minimal number of 6 parameters (see Section 1.13), which are exquisitely constrained

by the outstanding measurement of the Cosmic Microwave Background (CMB) anisotropies

by WMAP [8] and Planck [9] and by large scale structure measurements.

In this Chapter, I will briefly describe the formalism, based on GR, needed to head

out on the rest of the thesis. I then go on to describe the ΛCDM, its predictions and

the main observables that are used to test them. As understood, this Chapter only

gives an incomplete overview of these subjects and I refer to popular textbooks [10–20]

for more detailed information.

1.1 General Relativity and the Friedmann-Lemaitre-

Robertson-Waker

The formalism used to describe the expansion of the Universe and relate it to the

its energetic budget is the one of GR. In this framework, an event is a point of the

4-dimensional spacetime manifold and, once chosen a coordinate system, it can be

described by its coordinates xµ = (x0, x1x2, x3) = (t, x, y, z). All the information

of interest is encoded in the 2-rank symmetric metric tensor gµν(x), used to define

distances and lengths of vectors on the manifold. Considering two events xµ and

xµ + dxµ separated by an infinitesimal increment dxµ, the spacetime interval

ds2 = gµν(x)dxµdxν (1.1.1)

gives the squared distance between the two events.

Given a metric, test particles move along the trajectories that extremize their

actions. Such trajectories xµ(λ), where λ is an affine parameter, are called geodesics

and satisfy the following equation

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0, (1.1.2)

where the Christoffel symbols are given in terms of the metric gµν as

Γσµν =
1

2
gσρ

(
∂gνρ
∂xµ

+
∂gµρ
∂xν

− ∂gµν
∂xρ

)
. (1.1.3)

In order to derive the field equations for the metric gµν it is useful to introduce
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the Einstein-Hilbert action:

S =

∫
d4x
√−g

[
R

16πG
+ Lm

]
, (1.1.4)

where g is the determinant of the metric and R is the so-called Ricci scalar, obtained

by contracting the first and third indices of the tensor defined as

Rµν ≡ Rα
µαν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ

β
µα. (1.1.5)

Starting from Eq. (1.1.4) and computing the Euler-Lagrange equations for the metric,

one can derive the Einstein field equations

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν (1.1.6)

which relate the total energy-momentum tensor describing the constituents of the

Universe, on the right hand side, to the geometry of the Universe on the left hand side.

An important consequence, crucial for cosmology, of the form of Rµν in Eq. (1.1.5)

is that the Einstein tensor Gµν satisfies a set of equations called Bianchi identities

∇νG
µν = 0 that lead to the conservation of the total energy-momentum tensor

∇νT
µν = 0. (1.1.7)

Note that ∇µ is the covariant derivative associated to the metric gµν that acts on a

tensor Aσρ as ∇µA
σ
ρ = ∂µA

σ
ρ − ΓνρµA

σ
ν + ΓσµνA

ν
ρ.

In principle, in order to determine the metric of the Universe, one should solve

the Einstein equations (1.1.6). In cosmology, the isotropy and homogeneity of the

Universe imply that the 4-dimensional spacetime has a maximally symmetric 3-

dimensional subspace, so that its metric assumes the general form:

ds2 = −dt2 + a2(t)γijdx
idxj (1.1.8)

where the t is the physical time coordinate and the metric on hypersurfaces of equal

time γij is given by

γij = δij + k
xixj

1− k(xkxk)
, (1.1.9)

where k = −1, 0,+1 for a spatially hyperbolic, flat or spherical Universe respectively.

Hereafter, I will restrict to k = 0 since CMB and other cosmological observations

agree very well with a flat geometry [21–23] (see however Refs. [24–26] for recent

papers claiming that the Universe can instead be closed).
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The metric (1.1.8) is called Friedmann-Lemaitre-Robertson-Walker (FLRW) met-

ric and can also be written in spherical coordinates as:

ds2 = −dt2 + a2(t)(dr2 + r2dΩ2). (1.1.10)

The quantity a(t) is the scale factor and together with its time derivative H(t) =

d log a(t)/dt describes the expansion of the Universe. Sometimes, another time vari-

able called conformal time τ , which is related to the physical time by dτ = dt/a(t),

is useful.

With the symmetries of the FLRW metric, the form of the energy-momentum

tensor Tµν is greatly simplified. Indeed, symmetries connected with space translations

and rotations require its components to transform in a particular way. Specifically,

T 00 has to transform as a scalar, T 0i as a vector and T ij as a tensor with respect

to these transformations. Isotropy and homogeneity imply that T 0i has to vanish

and T ij has to be proportional to the 3-metric gij. These requirements restrict the

energy-momentum tensor to take the perfect fluid form as follows:

T µν = Pgµν + (ρ+ P )UµUν , (1.1.11)

where Uµ = dxµ/
√
−ds2 is the 4-velocity vector, P is the total pressure and ρ the

total density of the fluid.

1.1.1 Redshift, distances and horizons in a FLRW Universe

Starting from the FLRW metric in Eq. (1.1.8) useful concepts can be introduced.

Perhaps the most important one is redshift. The wavelength of light emitted from an

object receding from us is stretched out by the expansion of the Universe. Therefore,

we observe a wavelength which is longer than the one emitted. The redshift z, defined

as

1 + z ≡ λobs

λemit

=
a(t0)

a(t)
(1.1.12)

quantifies this effect. For nearby sources, it is convenient to expand a(t) in a power

series around t0 to get

a(t) = a(t0)[1 + (t− t0)H0 + . . . ], (1.1.13)

8



where I have introduced the Hubble constant

H0 ≡
(
ȧ(t)

a(t)

)

t=t0

= 100h km s−1Mpc−1. (1.1.14)

For close objects t0 − t is just the physical distance d and the redshift increases

linearly with distance z ' H0d. Historically, the Hubble constant was first introduced

by Hubble [27] to explain the redshift of the spectrum of galaxies with the famous

Hubble law

vgal = Hd (1.1.15)

that was the first observational proof that the Universe is expanding. Contrary to

far galaxies, nearby ones show a blueshift instead of a redshift, because their motion

is dominated by their peculiar velocity with respect to the comoving grid which is

determined by local gravity.

The parameter h is established to be around h ∼ 0.7, but its exact value is

currently under debate. In fact, some direct measurements of H0 are in tension with

its inference from CMB, Baryonic Oscillations measurements from galaxy surveys and

other early time experiments. This so-called H0 tension, will be explained in details

in Chapter 3 and will be discussed extensively in the rest of this thesis.

Another important concept is that of distances. Indeed, in a FLRW Universe

this can assume different meanings and one has to be careful in defining distances.

First of all, it is very useful to redefine the radial coordinate dχ ≡ dr/
√

1− kr2. In

order to investigate the propagation of light we note that photons follow null geodesics,

i.e. ds2 = 0. For a radial trajectory θ, ϕ = 0 are geodesics and, using the metric (1.1.8),

null geodesics become simply dτ 2 − dr2 = 0 and are therefore described by straight

lines in the τ − χ plane, that is χ(τ) = ±τ + const. The comoving distance χ(τ),

however, is not observable and to get the physical distance, it has to be multiplied by

the scale factor dphys(t) = a(t)χ(t).

The luminosity distance dL and the angular diameter distance dA are also exten-

sively used in cosmology. The former relates the observed flux F of a source with

intrinsic luminosity L at comoving distance χ and redshift z as

F =
L

4πχ2(1 + z)
≡ L

4πd2
L

, (1.1.16)

where we have identified

dL = χ(1 + z). (1.1.17)

The latter instead measures the distance between the observer and the object when
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light was emitted. To measure it one has to know the object physical and angular

sizes D and δθ respectively as dA = D/δθ, so that dA = χ
1+z

and the following relation

between angular diameter and luminosity distances holds

dA =
dL

(1 + z)2
. (1.1.18)

The last concept that I wish to introduce is that of cosmological horizon. If the

Universe has a finite age, as for instance in the FLRW metric (see following Section),

light can only travel a finite distance from its beginning and, at any given moment,

an observer can receive information coming only from a finite volume of the Universe.

The boundary of this volume is the so-called particle horizon and its comoving size is

given by1

χph(τ) = τ − τi =

τ∫

τi

dτ =

ln a∫

ln ai

(aH)−1d ln a. (1.1.19)

Note that, sometimes the same name is used for both the particle horizon and the

so-called Hubble radius defined as H−1. When the dominating component of the

Universe satisfies the strong energy condition ρ+ 3P > 0, however they are indeed of

the same magnitude. Nevertheless there are situations, as for the case of inflation, in

which the two are different, so it is important to keep in mind their different meaning:

the particle horizon is the maximum distance a photon can travel from the time of

the Big-Bang, whereas the Hubble radius is the distance over which photon can travel

with a Hubble time H−1. In fact, the comoving Hubble radius, i.e. (aH)−1, is related

to the particle horizon by Eq. (1.1.19).

For completeness, there exists also another kind of horizon, called event horizon

which is complementary to the particle horizon and defined as

χe(τ) =

τf∫

τ

dτ = τf − τ (1.1.20)

in which τf is the final moment of life of the Universe, equal to τf = +∞ if it expands

forever. The meaning of χe is that an observer will never receive signals sent at a

given moment τ from points with χ > χe.

1Here τi is taken to be the initial Big-Bang singularity (see again next Section).
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1.1.2 The Friedmann Equations

With the FLRW metric and the perfect fluid form of Tµν in hand, one can simply plug

them into the Einstein equations (1.1.6) to derive the so-called Friedmann equations,

that, once solved, allow us to determine the time evolution of the scale factor a(t).

They are given by:

H2 =
8πG

3

∑

i

ρi −
k

a2
(1.1.21)

Ḣ = −4πG
∑

i

(ρi + Pi) +
k

a2
, (1.1.22)

where the index i runs over the energetic components of the Universe, which in the

ΛCDM model are simply the matter and radiation contribution and the cosmological

constant one. Combining these equations together, it is possible to derive an equation

for the second derivative of the scale factor as

ä = −4πG

3
a(ρ+ 3P ). (1.1.23)

From Eq. (1.1.23), it is understood that the Universe decelerates, i.e. ä < 0, when a

fluid satisfies the so-called strong energy condition w > −1
3
, where I have defined the

equation of state w as w ≡ P/ρ. Since ordinary matter pressure is always positive,

the current acceleration of the Universe has to be explained by an exotic component

that violates the strong energy condition. In the ΛCDM model, this is achieved by

the cosmological constant which, as the name says, has a constant equation of state

w = −1 over all the cosmological evolution.

Note that H > 0 for an expanding Universe, so the scale factor is a growing

function of time. This means that there exists a time, say t = 0, at which a(t = 0) = 0.

This is the known Big-Bang singularity [28]. At that time the particle horizon defined

in the previous Section vanishes and pressure and density are predicted to be infinite

by classical physics.

In order to compare theoretical predictions of a model to observations, it is useful

to define the density parameter Ωi for each component as

Ωi ≡
ρi
ρcrit

=
8πG

H2
ρi (1.1.24)

where ρcrit is the density value corresponding to a flat Universe, as can be seen sub-

stituting ρ = ρcrit in the first of Eqs.(1.1.21). If the sum of the density parameters

of each component Ωtot =
∑

i Ωi is >, < or = 1 the Universe is closed, open or flat
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Figure 1.1: Evolution of the density contrasts Ωi for matter, radiation and cosmo-
logical constant.

respectively.

To close the system of equations describing the Universe and its content, the

conservation equations for the energy-momentum tensor are used. Indeed, the 0 com-

ponent of ∇µTµν = 0, together with the perfect fluid form of the energy-momentum

tensor leads to the continuity equation:

ρ̇ = −3H(ρ+ P ). (1.1.25)

If the different components of the Universe follow an hydrodynamic equation of state

Eq. (1.1.25) can be integrated to obtain the evolution of density with respect to the

scale factor

ρi(t) = ρ0i

(
a(t)

a0

)−3(1+wi)

. (1.1.26)

Note that wi = 0, 1/3, −1, for non-relativistic matter, radiation and a cosmological

constant respectively. Therefore for these components Eq. (1.1.25) leads to the simple

scaling laws ρm ∝ a−3 whereas ρr ∝ a−4 and ρΛ = const. Since the scale factor

increases with time, radiation first dominates the Universe. However, since it is diluted

along the expansion faster than the matter component, the latter overtakes radiation

at the so-called equivalence redshift defined by ρr(zeq) ≡ ρm(zeq). Eventually, also

the matter contribution redshits away and the Universe starts to accelerate because of

the cosmological constant domination at the redshift of matter-cosmological constant

equivalence zΛ. This is depicted in Fig. 1.1.
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1.2 The Hot Big-Bang model

Of the three cosmological eras shown in Fig. 1.1, the last moments of the radiation

era are very well understood because they rely on our good understanding of quantum

field theory and nuclear physics at the energy scales that can be reached in laboratories

and accelerators. The radiation era can be divided into the following stages:

• Quark era T > TQH ' 200− 300 MeV: at very high temperatures matter exists

in the form of the quark-gluon plasma. At T = TQH the Universe undergoes

a phase transitions and pairs of quarks and antiquarks join together to form

hadrons, including pions and nucleons.

• Hadron era TQH > T > Tπ ' 130 MeV: pion-pion interactions are very im-

portant and the perfect fluid approximation cannot be applied until pions and

antipions annihilate at T = Tπ.

• Lepton era Tπ > T > Te ' 0.5 MeV: leptons dominate the Universe until

positrons and electrons annihilate at T = Te. It is during this era that the

primordial nucleosynthesis occurs.

• Plasma era Te > T > Teq ' 1 eV: the Universe is filled with photons, matter

(protons, electrons and helium nuclei) and neutrinos, which have already de-

coupled from the background fluid of tightly coupled photons and baryons since

the Lepton era.

After zeq, the matter-radiation equivalence, the baryons-photons fluid is still tightly

coupled because of Thompson scattering between photons and electrons and can be

considered as a single fluid in statistical equilibrium. As the temperature T decreases

in the so-called recombination era electrons start to recombine in nuclei. Then, as the

Universe expands, Thompson scattering becomes more inefficient photons decouple

from the cosmological fluid. However, note that both decoupling and recombination

are not exactly instantaneous processes. Rather, they are characterized by a small,

but finite duration.

The Hot Big Bang model therefore leads to the following predictions:

• it predicts light-element abundances in perfect agreement with observations [29];

• it naturally accounts naturally for the expansion of the Universe;

• it explains the presence of the CMB (see below) as a relic of the hot thermal

phase [30].
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1.3 Problems of the Standard Big-Bang Model and

Inflation

Despite its many successes, the standard Big-Bang model faces some serious problems,

which are ultimately related to each other:

• The magnetic monopole problem. Great Unified Theories (GUT) that

aim at explaining the fundamental physics at very high energies predict the

production of topological defects like magnetic monopoles, cosmic strings or

domain walls. The predicted density of these defects at present days is much

higher than that of the matter [16], but no such objects have ever been observed

in the Universe.

• The flatness problem. An intuitive way to formulate this problem is as

follows. The Friedmann equations (1.1.21) in the presence of a non-zero spatial

curvature become:

Ω(t)− 1 =
k

(aH)2
= −Ωk. (1.3.1)

From this equation it is clear that, in order to explain cosmological observations

that are compatible with a flat Universe, the initial density parameter has to be

very close to 1 [16]:

Ωi − 1 = (Ω0 − 1)
(H0a0)2

(Hiai)2
= (Ω0 − 1)

(
ȧ0

ȧi

)2

≤ 10−56 (1.3.2)

therefore the Universe has to be very close to flat near the Big-Bang singularity.

• The horizon problem. The finiteness of the conformal time elapsed between

the initial Big-Bang singularity implies that regions we observe in the sky were

never in causal contact. As can be seen from Fig. 1.2, if two CMB photons,

emitted close to the Big-Bang singularity at ti, were separated by a sufficient

comoving distance, their past light cones will never overlap. In particular, being

the angle subtended by the comoving horizon at recombination θhor = 1.16◦,

regions separated by an angle θ > 2θhor would never come in causal contact in

the standard Hot Big-Bang scenario. This is in stark contrast with the observed

spectrum of the CMB which is essentially homogeneous and isotropic over the

whole sky, if one does not consider its tiny anisotropies of the order of 10−5.

It can be shown that all these problems are related to each other [31] so I will focus

on the horizon one in the following. In order to find a solution to this problem, it is
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Figure 1.2: Representation of the horizon problem [top] and of its solution [bottom].
Figure taken from [31].

useful to realize where the problem comes from. The Hubble radius for a Universe

dominated by a fluid with P = wρ is given by

(aH)−1 = H−1
0 a

1
2

(1+3w) (1.3.3)

so that it grows with the expansion of the Universe for ordinary matter satisfying

the strong energy condition. Therefore, in this case, the integral in Eq. (1.1.19) is

dominated by the its upper limit of integration.

The solution is then at hand. Postulating a non-growing comoving Hubble radius

in the early Universe, the integral in Eq. (1.1.19) becomes instead dominated by its

lower integration limit and the particle horizon becomes much larger than the Hubble

one. This is the paradigm of inflation. Thanks to a shrinking Hubble radius, large

scales λ become smaller than the comoving particle horizon and they could have been

in causal contact in the past, as can be seen from Fig. 1.2, from which it is also seen

that the initial singularity is now pushed to negative conformal times τi → −∞.

Eq. (1.3.3) suggests that a shrinking Hubble radius can be obtained by considering

a fluid with negative pressure. The simplest physical model of inflation where this

can be obtained is the one of single field inflation in which an homogeneous scalar

field φ(t), as required by the symmetries of the FLRW spacetime, slowly roll down its
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potential.

The action of such a scalar field in a curved spacetime is

S =

∫
d4x
√−g

[
−1

2
gµν∂µφ∂νφ− V (φ)

]
(1.3.4)

and its energy-momentum tensor can be recast in the form of a perfect fluid defining

the scalar field density and pressure as

ρφ =
1

2
φ̇2 + V (φ) (1.3.5)

Pφ =
1

2
φ̇2 − V (φ). (1.3.6)

Substituting ρφ and Pφ in Eqs. (1.1.21) gives the Friedmann equations

H2 =
1

3M2
pl

[
1

2
φ̇2 + V (φ)

]
(1.3.7)

Ḣ = −1

2

φ̇2

M2
pl

, (1.3.8)

while the Euler-Lagrange equations of motion lead to the Klein-Gordon equation

φ̈+ 3Hφ̇+
∂V

∂φ
= 0. (1.3.9)

Using these equations, the violation of the strong energy condition is violated if the

potential energy dominates over the kinetic one. This condition can also be satisfied

if the so-called Hubble slow-roll parameters

ε ≡ − Ḣ

H2
(1.3.10)

η ≡ ε̇

Hε
(1.3.11)

δ ≡ − φ̈

Hφ̇
(1.3.12)

are small, that is ε, |δ| � 1, that implies |η| � 1. When these conditions are satisfied,

inflation is said to be in the slow-roll regime and the Friedmann and Klein-Gordon

simplify to

H2 ≈ V

M2
pl

(1.3.13)

and

3Hφ̇ ≈ −V,φ . (1.3.14)
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The Hubble slow-roll parameters ε and η become

ε ≈ εV ≡
M2

pl

2

(
V,φ
V

)2

(1.3.15)

|η| ≈ |ηV | ≡M2
pl

V,φφ
V

, (1.3.16)

where εV and ηV are called potential slow-roll parameter and slow-roll inflation occurs

for εV , ηV � 1. These parameters are useful to determine if inflation can occur just

considering the shape of the potential.

The existence of Universe as observed today implies that inflation needs to end.

The important question is therefore how long inflation has to be in order to solve the

horizon problem and how it can end. Defining the number of e-folds as

N ≡
aE∫

aI

d ln a =

tE∫

tI

dtH, (1.3.17)

where tI and tE are the initial and ending time of inflation, defined as ε(tE) = 1. The

high degree of homogeneity in the CMB can be explained, in the simplest slow roll

models, if inflation last more than 50− 60 e-folds.

In a completely homogeneous and isotropic Universe, however, structures cannot

form. Indeed inflation, besides solving the aforementioned problems of the Hot Big-

Bang cosmology, also predicts an adiabatic spectrum of tiny fluctuations on top of

the homogeneous background. These are the quantum vacuum fluctuations of the

inflaton field that get stretched during inflation, cross the Hubble radius and get

frozen. Once the fluctuations cross the Hubble radius, they classicalize and behave

as a Gaussian stochastic field. Eventually, they re-enter the Hubble radius after

inflation and they seed for the large-scale structure observed today in galaxies and

clusters. Most importantly, the primordial fluctuation are imprinted in the CMB

anisotropies, that is small temperature (and polarization) fluctuations of the order

δT/T ∼ 10−5 around its T0 = 2.72548 ± 0.00057K [32]. In the standard picture,

inflation is followed by a period of reheating during which the inflaton decays into

Standard Model particles.

1.4 Cosmological Perturbations Theory

In this Chapter, I briefly review the theory of cosmological perturbations on top of the

homogeneous and isotropic Universe. It is because of such tiny inhomogeneities and
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anisotropies that we observe the CMB anisotropies and structure formation ultimately

started out. For reviews see Refs. [33,34].

A quantity that can be used to roughly estimate whether a perturbation of a given

wavelength λ can collapse to start structure formation is the Jeans length λJ . This

is computed, by simply comparing the attractive and repulsive forces of pressure and

gravity respectively. Given a spherical inhomogeneity of radius λ and mass M , in

a background fluid of density ρ, it will grow if the self-gravitational force per unit

mass, Fg ' GM/λ2 exceeds the opposing force per unit mass arising from pressure

FP = P/(ρλ), leading to the condition

λ > λJ ≡ c2
s(Gρ)−1/2, (1.4.1)

where c2
s is the speed of sound of the fluid, given in Eq. (1.8.14) below. If this condition

is not satisfied, the perturbation freely propagates as an oscillating wave. The Jeans

length, however, is a concept that makes only sense within Newtonian gravity, which

is an adequate description only for perturbations with scales smaller than the Hubble

radius. For larger scales, a General Relativistic approach, that I introduce in the next

Section, is needed.

I will follow the notation of Ref. [35]. In particular, since I will have to deal

with perturbations at linear order, it is useful to work in their Fourier space rather

than in real space. Indeed, since inflation predicts an initial distribution of density

perturbations which is Gaussian at leading order, Fourier modes are decoupled, gratly

simplifying their treatment. My notation for the Fourier transform of a Gaussian field

A(x) is:

A(x, τ) =

∫
dk

(2π)3
A(k, τ) eik·x. (1.4.2)

With these conventions, the power spectrum of the function A is then defined as

〈A(k)A(k′)〉 = (2π)3P(k)δ(3)(k − k′), (1.4.3)

where δ(3)(k − k′) is the Dirac delta distribution function. Also, I will rise and lower

spatial indices, denoted with latin letters i, j, k, . . . with the Kronecker delta δij.
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1.5 Perturbations to the Metric

The idea is to consider small perturbations δgµν around the background FLRW metric

ḡµν , so that the full metric can be written as

ds2 = a2(τ)[−(1 + 2A)dτ 2 + 2Bidx
idτ + (δij + hij)dx

idxj]. (1.5.1)

The metric perturbations can be divided into scalar, vector and tensor according to

their transformation properties under the group of 3-rotations and 3-translations. In

particular, δg00 is a scalar perturbation, δg0i can be composed as

Bi = ∂iB + B̂i, (1.5.2)

where B̂i is the vector traceless (∂iB̂
i = 0) part of Bi and B its scalar one. δgij can

be instead decomposed as follows

hij = 2Cδij + 2∂〈i∂j〉E + 2∂(iÊj) + 2Êij, (1.5.3)

where I denote divergenceless quantities with an overhat and I have defined

∂〈i∂j〉E ≡
(
∂i∂j +

1

3
∇2

)
E, (1.5.4)

∂(iÊj) ≡
1

2
(∂iÊj + ∂jÊi). (1.5.5)

The first two terms on the right hand side of Eq. (1.5.3) are the scalar part of hij

and the third is the vector one. The fourth term, i.e. Êij encodes the transverse and

traceless tensorial degrees of freedom of the FLRW metric and physically represents

Gravitational Waves propagating on the background FLRW metric. Therefore, 10

degrees of freedom are encoded in the FLRW metric, but only 4 of them are scalar

perturbations. Note that scalar, vector and tensor perturbations evolve independently

on each other because of the so-called decomposition theorem [14]. Physically, scalar

perturbations are the ones induced by inhomogeneities in the energy density of matter

and radiation and are the ones that exhibit gravitational instability and eventually

lead to the formation of the large scale structure in the Universe, therefore these

will be the focus of the next Sections. Vector perturbations are instead related to

the rotational motion of the fluid and very quickly decay with the expansion of the

Universe. Tensor perturbations, as mentioned above, describe Gravitational Waves

propagating in the FLRW metric.
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1.5.1 Gauge Transformations

In order to simplify the equations above, it is often convenient to exploit the so-called

gauge invariance of GR and choose a particular coordinate system, or gauge. An

infinitesimal coordinate transformation is

xµ → x̃µ = xµ + dµ(xν) (1.5.6)

where

d0 =α(xν), (1.5.7)

di =∂iβ(xν) + εi(xν); (1.5.8)

∂iβ is longitudinal, i.e. irrotational (εijk∂
j∂kβ = 0), and εi is transverse, i.e. diver-

genceless.

Under the transformation (1.5.6) the metric transforms as

g̃αβ(x̃ρ) =
∂xγ

∂x̃α
∂xδ

∂x̃β
gγδ(x

ρ). (1.5.9)

Assuming that dµ is of the same order of the perturbations, the equation above can

be easily linearized and the metric g̃αβ rewritten as

g̃αβ(x̃ρ) = ḡαβ(x̃ρ) + δg̃αβ. (1.5.10)

The relation between the old and new metric is readily found to be

δgαβ → δg̃αβ = δgαβ − ḡαβ,γdγ − ḡβδdδ,α−ḡαδdδ,β , (1.5.11)

where both the right and left hand side are computed at the point x̃ρ.

From Eq. (1.5.11), it is easy to find the transformation laws of scalar perturbations,

that is:

A→ A− α′ −Hα (1.5.12)

B → B + α− β′ (1.5.13)

C → C −HT − 1
3
∇2β (1.5.14)

E → E − β. (1.5.15)

Therefore metric perturbations are not uniquely defined and depend on the specific

time slicing of the space time and on the specific choice of spatial coordinates on these
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time slices.

A possible way to avoid this ambiguity is to define so-called gauge invariant vari-

ables that do not change under the gauge transformation (1.5.6), as for example the

so-called Bardeen variables [36]:

ΨB ≡ A+H(B − E ′) + (B − E ′)′, (1.5.16)

ΦB ≡ −C −H(B − E ′) + 1
3
∇2E. (1.5.17)

Note that an infinite number of gauge invariant variables can be constructed as a

linear combination of ΨB and ΦB.

1.5.2 Gauge Fixing

Another possibility is instead to use the gauge freedom to impose conditions on the

scalar and vector perturbations. This procedure is known as gauge fixing and can be

very useful as, depending on the problem considered, there could be gauges where the

physical interpretation and/or computations is easier. Furthermore, the choice of the

gauge is sometimes crucial when it comes to numerically integrating the equations

governing the evolution of the cosmological perturbations.

Among the several possible choices of gauge, two of them are particularly relevant.

• Newtonian (or longitudinal) gauge. It is defined by the conditions

Bl = El = 0. (1.5.18)

Defining A ≡ Ψ and C ≡ Φ. The metric then becomes

ds2 = a2(τ)[−(1 + 2Ψ)dτ 2 + (1− 2Φ)δijdx
idxj]. (1.5.19)

This gauge is fixed uniquely as any transformation with β 6= 0 (α 6= 0) spoils

the condition El (Bl = 0). The function Ψ plays the role of the gravitational po-

tential in the weak field limit of the Einstein equations and thus the Newtonian

gauge has a clear physical interpretation.

• Synchronous gauge. It is defined by

As = Bs = 0, (1.5.20)
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so that the metric becomes

ds2 = a2(τ)[−dτ 2 + (δij + hij)dx
idxj]. (1.5.21)

In order to be consistent with the notation of Ref. [35], I define 2C ≡ h/3 and

2E ≡ µ. It is useful to write hij as a Fourier integral

hij(x, τ) =

∫
dk

(2π)3
eik·x

[
k̂ik̂jh(k, τ) +

(
k̂ik̂j −

1

3
δij

)
6η(k, τ)

]
, k = k̂k.

(1.5.22)

It then becomes clear that the gauge is specified by the two functions h and µ in

real space and by h and η in Fourier space. Unlike the Newtonian one, the syn-

chronous gauge is not uniquely fixed, since the choice of the initial time-slicing

is arbitrary [18]. This can result in fictitious gauge modes in the solutions to the

Einstein equations, so usually the gauge freedom is used to fix the CDM velocity

to zero θc = 0. The synchronous gauge is particularly useful for the integra-

tion of the perturbed Einstein equations (see below) because of its numerical

stability.

Other possible choices of gauge include the so-called spatially flat and comoving gauge,

that are useful to perform calculations in the inflationary context.

1.6 Perturbed Einstein Equations

Splitting the Einstein tensor into a background part and a perturbed one as Gµν =

G
(0)
µν +δGµν , and analogously for the energy-momentum tensor, the perturbed Einstein

equations are simply given by:

δGµ
ν = 8πGδT µν , (1.6.1)

where all the quantities are intended to be computed in a specific gauge.

In order to explicitly write down each of the components of the equation above,

the energy-momentum tensor can be written as

T 0
0 = −(ρ̄+ δρ), (1.6.2)

T 0
i = (ρ̄+ P̄ )vi = −T i0, (1.6.3)

T ij = (P̄ + δP )δij + Σi
j, (1.6.4)

where δρ and δP are the perturbations to the denisty and pressure of the perfect
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fluid, vi ≡ dxi/dτ its coordinate velocity and where Σi
j ≡ T ij − δijT kk /3 is the traceless

anisotropic shear perturbation to T ij . Following Ref. [35], it is also useful to define

the variables θ and σ as

θ ≡ ikjvj, (1.6.5)

(ρ̄+ P̄ )σ ≡ −(k̂ik̂j −
1

3
δij)Σ

i
j (1.6.6)

δ ≡ δρ/ρ. (1.6.7)

Also, the relations between the quantities in the synchronous and in the Newtonian

gauge under the gauge transformation (1.5.6) are given by [35]:

δ(S) = δ(N) − αρ̄
′

ρ̄
, (1.6.8)

θ(S) = θ(N) − αk2, (1.6.9)

δP (S) = δP (N) − αP̄ ′, (1.6.10)

σ(S) = σ(N), (1.6.11)

and

Ψ =
1

2k2
[h′′ + 6η′′ +H(h′ + 6η′)] , (1.6.12)

Φ = η − 1

2k2
H(h′ + 6η′), (1.6.13)

where again all the quantities are evaluated at the same space-time coordinate.

Then, the Einstein equations take the following form [35,37]

k2η − 1

2
Hh′ = −8πGa2

∑

i

δρ
(S)
i

2
, (1.6.14)

k2η′ = 8πGa2
∑

i

(ρ̄i + P̄i)
θ

(S)
i

2
, (1.6.15)

h′′ + 2Hh′ − 2k2η = −24πGa2
∑

i

δP
(S)
i , (1.6.16)

(h+ 6η)′′ + 2H(h+ 6η)′ − 2k2η = −24πGa2
∑

i

(ρ̄i + P̄i)σ
(S)
i , (1.6.17)
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in synchronous gauge and the following one

k2Φ + 3H(Φ′ +HΨ) = −8πGa2
∑

i

δρ
(N)
i

2
, (1.6.18)

k2(Φ′ +HΨ) = 8πGa2
∑

i

(ρ̄i + P̄i)
θ

(N)
i

2
, (1.6.19)

Φ′′ +H(Ψ + 2Φ)′ +

(
2
a′′

a
−H2

)
+
k2

3
(Φ−Ψ) = 4πGa2

∑

i

δP
(N)
i , (1.6.20)

k2(Φ−Ψ) = 12πGa2
∑

i

(ρ̄i + P̄i)σ
(N)
i , (1.6.21)

in the Newtonian gauge, where the index i runs over all species contributing to the

content of the Universe.

1.7 Boltzmann Equations for Matter and Radia-

tion

In the previous Section, I derived the perturbed Einstein equations describing the evo-

lution of metric perturbations. In order to close the system of differential equations,

they have to be supplemented by those governing the time evolution of the density and

velocity perturbations. The latter equations should include the interactions between

the different matter components and therefore are more complicated than the ones

obtained by simply perturbing the conservation equations of the energy-momentum

tensor, which describe uncoupled fluids. The systematic way to deal with such inter-

actions is to write down and solve the Boltzmann equations for each species [14].

In the following, I will derive the Boltzmann equations only in the synchronous

gauge and refer to Ref. [35] for those in the Newtonian gauge. I work in the phase

space described by spatial coordinates xi and their conjugate momenta Pi. The latter

is just the spatial part of the energy-momentum 4-vector Pi, given by

Pi = a(δij +
1

2
hij)p

j, (1.7.1)

where pj = δjipi is the proper momentum measured by an observer at fixed spatial

coordinates. The phase space infinitesimal volume is dV = dx1dx2dx3dP1dP2dP3 and

its zeroth-order is proportional to a3. At the zeroth-order pi scales as a−1, so it is

useful to define the quantity qj = apj and its modulus q and direction nj as qj = qnj,

with nini = 1 [38]. Another useful quantity is ε = (q2 + a2m2)1/2 = a(p2 + m2)1/2,

where (p2 +m2)1/2 is the proper energy measured by a comoving observer which can
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be related to the 0 component of the energy-momentum 4-vector as P0 = −ε.
All this conventions set up, the Boltzmann equations can now be derived starting

from the equations for the phase space distribution fj for the j-th species

dfj
dτ

= C[fj], (1.7.2)

that gives the number of particles in dV

f(xi, Pj, τ)dV = dN. (1.7.3)

The term C[fi] is the collision term describing the interaction between different parti-

cle species. The zeroth-order phase space distribution is simply the Fermi-Dirac (for

fermions, − sign) or the Bose-Einstein (for bosons, + sign) distribution function and

depends only on ε (or q)

f0 = f0(ε) = gs
[
eε/aT ± 1

]−1
(1.7.4)

where the factor gs is the number of spin degrees of freedom.

The perturbed phase-space distribution can be expanded around its zeroth-order

as

f(xi, Pj, τ) = f0(q)(1 + Υ(xi, q, nj, τ)), (1.7.5)

and using that

Tµν =

∫ √−gdP1dP2dP3
PµPν
P 0

f(xi, Pj, τ), (1.7.6)

the components of the energy-momentum tensor can be written in terms of Υ as

T 0
0 = −

∫
q2dqdΩ

√
q2 +m2a2

a4
f0(1 + Υ), (1.7.7)

T 0
i = −

∫
q3dqdΩ

nif0Υ

a4
, (1.7.8)

T ij = −
∫
q4dqdΩ

ninj

a4
√
q2 +m2a2

f0(1 + Υ), (1.7.9)

where dΩ is the solid angle associated with ni.

Turning the total derivative with respect to τ in Eq. (1.7.2) into partial derivatives

df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dni
dτ

∂f

∂ni
(1.7.10)

and use the geodesic equations to find the appropriate expression for dq/dτ , the

unintegrated Boltzmann equation in Fourier space in the synchronous gauge becomes
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∂Υ

∂τ
+ i

q

ε
(k · n̂)Υ +

d ln f0

d ln q

(
η′ − h′ + 6η′

2
µ2

)
=

1

f0

C[f ], (1.7.11)

where µ ≡ k̂ · n̂. Eq. (1.7.11) is valid for any species, regardless of its nature. I now

consider separately each species to give an appropriate expression for the collision

factor and integrate the Boltzmann equation (1.7.11).

1.7.1 Neutrinos

For simplicity, I focus here on massless neutrinos for which ε = q. Their energy

density, pressure and anisotropic stress are given by Eq. (1.7.7). The procedure is

then to integrate out the q-dependence from Eq. (1.7.11) by taking its moments, and

to expand the angular dependence of the perturbation Υ in Legendre polynomials

Pl(µ) as:

Fν(k, n̂, τ) ≡
∫
q3dq f0Υ∫
q3dq f0

≡
∞∑

l=0

(−i)l(2l + 1)Fνl(k, τ)Pl(µ). (1.7.12)

The density, velocity and stress perturbations of neutrino are given by

δν = 1
4π

∫
dΩP0(µ)Fν = Fν0, (1.7.13)

θν = 3i
16π

∫
dΩP1(µ)Fν = 3

4
kFν1, (1.7.14)

σν = − 1
8π

∫
dΩP0(µ)Fν = 1

2
Fν2,+ (1.7.15)

so that, in order to find the equations respectively for the neutrino density, velocity

and stress, the unintegrated collisionless (neutrinos are weakly interacting with other

particles) Boltzmann equation (1.7.11) has to be multiplied by the Legendre poly-

nomials and integrated over dq. Therefore, one is left with an infinite hierarchy of

equations for the multipole moments of the distribution function. The usual way to

deal with such an hierarchy is to truncate it at some lmax. In the case of neutrinos the

multipole Fνl becomes negligible for l ≥ 3 and it is safe to truncate neglect multipoles
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with to l ≥ 3. One is thus left with the following set of equations

δ′ν = −4

3
θν −

2

3
h′, (1.7.16)

θ′ν = k2

(
1

4
δν − σν

)
, (1.7.17)

2σ′ν =
8

15
θν −

3

5
kFν3 +

4

15
(h′ + 6η′), (1.7.18)

F ′νl =
k

2l + 1
[lFν(l−1) − (l + 1)Fν(l+1)], l ≥ 3. (1.7.19)

1.7.2 Photons

The evolution of the photon distribution can be treated similarly to the one for mass-

less neutrinos, but now the collision term is not negligible. Indeed, before the time of

recombination, photons are tightly coupled to baryons because of Thomson scatter-

ing and some energy transfer between baryons and photons is also present afterwards

during freestreaming. In both cases, the contribution of the Thomson scattering to

the collision term has to be considered.

Due to scattering of electron density perturbation with wavevector k, photons are

polarized in a plane orthogonal to their propagation n̂. It is useful to introduce the

Stokes parameters Fγ(k, n̂, τ) and Gγ(k, n̂, τ), as the sum of the phase space densities

in the two polarization states for k and n̂, and their difference respectively. Their

explicit expressions can be found in Ref. [35, 39].

The Boltzmann equations take the form [35]:

δ′γ = −4

3
θγ −

2

3
h′, (1.7.20)

θ′γ = k2

(
1

4
δγ − σγ

)
+ aneσT (θb − θγ), (1.7.21)

σ′γ =
4

15
θγ −

3k

10
Fγ3 +

2

15
(h′ + 6η′)− ane

20
σT (18σγ −Gγ0 −Gγ2), (1.7.22)

F ′γl =
k

2l + 1
[lFγ(l−1) − (l + 1)Fγ(l+1)]− aneσTFγl, l ≥ 3, (1.7.23)

where ne is the proper mean density of the electrons and σT = 0.6652×10−24cm−2 the

Thomson cross section. Here the hierarchy is truncated at l = 2 as higher multipoles

are suppressed [35].
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1.7.3 Cold Dark Matter

The simplest case, however, is that of cold dark matter, since it can be treated as

a pressureless perfect fluid interacting with other particles only through gravity. As

mentioned above, CDM can be used to define the synchronous coordinates setting by

setting θc = 0. Therefore the only equation for CDM is:

δ′c = −1

2
h′, (1.7.24)

that could have also been derived from perturbing the continuity equation (1.1.25)

with P = 0, since the collision term for CDM is negligible.

1.7.4 Baryons

As discussed above, baryons are tightly coupled to photons, causing an energy-

momentum transfer represented by the term aneσT (θb − θγ) in Eq. (1.7.21). The

Boltzmann equations for baryons then become [35]:

δ′b = −θb −
1

2
h′, (1.7.25)

θ′b = −Hθb + c2
sk

2δb −
4ργ0

3ρb0
aneσT (θb − θγ). (1.7.26)

Tight-Coupling Approximation

At early times the Hubble time tH ≈ aτ is larger than the characteristic baryon-

photons interaction time scale tbγ ≈ 1/(neσT ). Combining Eqs. (1.7.21) and (1.7.26)

with Hθb + 1
3
k2δγ as a forcing term, it is easy to see that θγ = θb in the σT → ∞

limit. Therefore it is safe to set θγ = θb at very early times deep in the radiation era.

The equation governing the evolution of θγ is obtained by combining Eqs. (1.7.21)

and (1.7.26) so to cancel the scattering terms as [40]:

(
4

3
Ωγ + Ωb

)
θ′γ = −ΩbHθγ +

1

3
Ωγk

2δγ. (1.7.27)

The scattering terms can also be neglected in the equations for the density contrast

of photons and baryons leading to:

δ′b = −θγ −
1

2
h′, (1.7.28)

δ′γ = −4

3
θγ −

2

3
h′. (1.7.29)
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1.8 Initial Conditions for Cosmological Perturba-

tions

The coupled set of the Einstein-Boltzmann equations is usually solved numerically

using Einstein-Boltzmann codes such as CLASS1 [41, 42] or CAMB2. In order to solve

them, however, a set of initial conditions for the metric and density perturbations

has to be chosen. To this purpose, it is customary to define the initial conditions for

cosmological perturbations deep in the radiation era after neutrino decoupling, when

all the modes of observational interest are well outside the Hubble radius.

As mentioned in Section 1.3, these initial conditions are connected to the spectra

of primordial perturbations produced during inflation. In the simplest single field

inflationary models, initial conditions are adiabatic, in contrast to isocurvature per-

turbations spectrum that can be produced only if more than a single scalar field is

active during inflation. In the following, I explain what is meant by adiabatic and

isocurvature perturbations.

1.8.1 Adiabatic and Isocurvature Perturbations

Consider, for example, the matter-radiation plasma in the early Universe. From the

entropy per matter particle is given by Γ = T 3/nm, where nm is the number density

of matter particles, it is possible to define the entropy perturbation as:

S ≡ δΓ

Γ
= 3

δT

T
− δm =

3

4
δr − δm, (1.8.1)

where I have used the fact that ρr ∝ T 4. In order for the entropy perturbation to

vanish, the following condition must hold:

δγ ' δν '
4

3
δc '

4

3
δb. (1.8.2)

From Eq. (1.8.1), it is possible to construct a gauge-invariant entropy perturbations:

S = H

(
δP

ṗ
− δρ

ρ̇

)
. (1.8.3)

1https://github.com/lesgourg/class public
2https://camb.info/
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Furthermore, Eq. (1.8.1) can be generalized to two barotropic fluids, each with a

constant equation of state wi = Pi/ρi, as follows [43]:

Sij =
δi

1 + wi
− δj

1 + wj
. (1.8.4)

Perturbations that satisfy the condition Eq. (1.8.2) are referred to as adiabatic pertur-

bations. In fact, in the literature, they are also-called curvature perturbations, since

they are associated to perturbations to the local geometry of the Universe (see also

next subsection), or isentropic perturbations, since the relative entropy perturbation

in Eq. (1.8.4) vanishes when Eq. (1.8.2) holds.

If instead the matter components are perturbed without a correspondent pertur-

bation to the local geometry of the Universe, i.e. without a curvature perturbation,

the perturbations are said to be entropy or isocurvature ones. Initial conditions that

belong to one category or to the other lead to very distinct predictions and I can an-

ticipate that isocurvature perturbations are very constrained by current cosmological

data, see next Section.

For the reasons above, it is customary to set adiabatic initial conditions on the

cosmological perturbations that read as follows (in the synchronous gauge) [35]:

h = Ck2τ 2, (1.8.5)

η = 2C − C 5 + 4Rν

6(15 + 4Rν)
k2τ 2, (1.8.6)

δc = δb =
3

4
δγ =

3

4
δν = −C

2
k2τ 2, (1.8.7)

θc = 0, (1.8.8)

θb = θγ ≡ θγb = −C
18
k4τ 3, (1.8.9)

θν = −C
18

23 + 4Rν

15 + 4Rν

k4τ 3, (1.8.10)

σν =
4C

3(12 +Rν)
k2τ 2, (1.8.11)

(1.8.12)

where C is an overall normalization constant that has to be matched to the so-

called COBE normalization of the CMB power spectrum and Rν is the neutrinos

fraction ρν0/(ρν0 + ργ0). However, in addition to the adiabatic mode, also four non-

singular isocurvature modes exist [40]. They are called baryon isocurvature mode,

CDM isocurvature mode, neutrino density isocurvature mode and neutrino velocity

isocurvature mode and are not excited in single-field inflationary models, but rather

require more sophisticated mechanisms involving additional fields for their generation
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[43].

1.8.2 The Curvature Perturbation

As mentioned above, the names adiabatic and curvature perturbations are used inter-

changeably in the literature. It is the purpose of this Subsection to explicitly show

why.

First of all, it is useful to relate the pressure perturbation to the density fluctua-

tions as follows:

δP = c2
sδρ+ δPnad, (1.8.13)

where

c2
s =

(
δP

δρ

)

Γ

(1.8.14)

is the adiabatic speed of sound and

δPnad =

(
δP

δΓ

)

ρ

δΓ (1.8.15)

is the so-called non-adiabatic contribution to the total pressure, which, as the name

says, vanishes for adiabatic perturbations. Note that when multiple fluids coexist

at the same time, which is the situation needed to have non-vanishing isocurvature

perturbations, the relation c2
i = wi no longer holds. The reason the non-adiabatic

pressure is so important will become clear in a bit.

A key quantity is the so-called gauge invariant comoving curvature perturbation,

defined as [44]:

R = Φ +H θ

k2
(1.8.16)

in the Newtonian gauge and I have defined H ≡ a′/a. Upon using the background

and the perturbed Einstein equation given in the previous Sections, R can be also

expressed as:

R = Φ +
H

H2 −H′ (Φ
′ +HΨ) = Φ +

2H
a2(ρ+ P )

(Φ′ +HΨ). (1.8.17)

R = Φ +
H

H2 −H′ (Φ
′ +HΨ) = Φ +

2

3H(1 + w)
(Φ′ +HΨ). (1.8.18)

Finally, combining the perturbed Einstein equations (1.6.18), an useful equation for
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the Newtonian potential Φ can be derived:

Φ′′ +H[Ψ′ + (2 + 3c2
s)Φ

′] + [H2(1 + 2c2
s) + 2H′]Ψ + k2c2

sΨ−
1

3
(Ψ−Φ) = 4πGa2δPnad.

(1.8.19)

and used to write the following equation governing the evolution of R

R′ = H
P + ρ

δPnad + k2 H
4πGa2(ρ+ P )

[(
c2
s −

1

3

)
Ψ +

1

3
Φ

]
. (1.8.20)

This equation clearly shows that, for adiabatic perturbations with δPnad, the comoving

curvature perturbation R is conserved and its time derivative vanishes for scales

outside the Hubble radius k � aH.

The latter is the reason why adiabatic perturbations are also-called curvature per-

turbations. Indeed they can be characterized by the comoving curvature perturbation

R, whose spectrum deep in the horizon era has to be matched to the one produced

during inflation, since it is constant on super-Hubble scales.

On the other hand, since the entropy perturbation is related to the non-adiabatic

pressure by S = HδPnad/Ṗ , if any mechanism in the primordial Universe also lays

down an initial isocurvature perturbation, the situation is more complicated as it

sources a time evolution for R, even in the super-Hubble limit, as can be seen by

Eq. (1.8.20).

1.9 Cosmic Microwave Background Anisotropies

During its expansion the Universe cooled down. Around zrec ≈ 1100, the tempera-

ture became sufficiently low that the scattering between protons and photons in the

primordial plasma stopped being efficient and the atoms started to recombine eventu-

ally leading to the decoupling of matter and radiation. The CMB that is observed in

the Universe today consists in the relic photons that decoupled from the primordial

plasma at that time.

As expected by the prediction of the Hot Big Bang model [30], CMB has an

almost perfect blackbody thermal spectrum, with a temperature TCMB = 2.7255 ±
0.0006 K isotropic in all directions in the sky [45, 46]. As mentioned above, though,

the propagation of primordial the CMB photons through the small inhomogeneities

of the Universe manifest itself in temperature anisotropies over the sky, of the order

δT/T ≡ Θ ∼ 10−5 [47]. These anisotropies are the fingerprint of the primordial

fluctuation produced in the early Universe. The CMB anisotropies were mapped

with a very high precision with the WMAP experiment [48], but their most accurate
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Figure 1.3: Planck 2018 SMICA temperature map. Figure taken from Ref. [9].

mapping to date is the one shown in Fig. 1.3 from the third data release (DR3) of the

Planck mission in 2018 [9].

In addition to temperature fluctuations, CMB anisotropies are also polarized [14],

due mainly to the Thomson scattering between baryons and photons before decou-

pling. However, the polarization signal is much weaker than the temperature one.

This can be seen from Fig. 1.4, which shows the polarization signal is about 10% of

the total temperature fluctuations for small angular scales and only 1% for large an-

gular scales. Contrary to the usual treatment in terms of the Stoke parameters Q and

U (V = 0 at a very good accuracy for the CMB), when it comes to CMB analysis it is

more useful to consider combinations of them that are invariant under the rotation of

the observation frame. These are the so-called E and B modes [39,49,50]. The former

modes are scalar functions describing the part of the polarization signal which is even

under parity transformations and has a non-zero correlation with temperature fluc-

tuations, also even under parity transformations. The B-modes instead are instead

odd and have a zero correlation with temperature and E modes in absence of parity

violating interactions, see however [51]. The E mode polarization has been success-

fully measured by Planck and other CMB experiments (see below). Only upper limits

exist for primordial B mode polarization, which is a unique signature of primordial

gravitational waves generated during inflation or exotic models with vector modes,

only foreground contributions have been measured so far.
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Figure 1.4: Planck 2018 polarization map. Figure taken from Ref. [9].

The information contained in maps of CMB anisotropies can be compressed in the

angular power spectrum. For example, the temperature anisotropy field Θ(θ, φ) ≡
δT (θ,φ)

T
of the CMB can be expanded in terms of its multipole moments [52]:

Θ(θ, φ) =
∞∑

l=1

l∑

m=−l

almYlm(θφ), (1.9.1)

where Ylm are the spherical harmonic functions and the index l is related to the

angular scale θ ∼ 2π
l

. If the distribution of δT is Gaussian, the multipole moments

alm are fully characterized by their angular power spectrum:

〈a∗l′m′alm〉 = δll′δmm′C
TT
l , (1.9.2)

where the average is performed over an ensemble of different angular power realiza-

tions. In practice, a real observer is limited to one Universe and the spectra are

computed averaging over the different 2l + 1 independent modes:

Cl =
1

2l + 1

m=l∑

m=−l

|alm|2. (1.9.3)

The fundamental limitation to the accuracy with which the CMB angular power

spectra are measured is the cosmic variance, i.e. the fact that there are only 2l + 1
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independent modes for each l, that leads to an intrinsic error on each Cl given by:

∆Cl =

√
2

2l + 1
Cl. (1.9.4)

Similarly, also the E and B modes can be expanded in spherical harmonics and their

spectra computed as:

CEE
l ≡ 〈E∗lmElm〉, (1.9.5)

CTE
l ≡ 〈a∗lmElm〉, (1.9.6)

CBB
l ≡ 〈B∗lmBlm〉. (1.9.7)

Finally, CMB photons are deflected by the large scale structure in the Universe,

described by a spectrum Cφφ
` , see Ref. [53].

The temperature and E-mode polarization spectra from the Planck DR3 are shown

in Fig. 1.5 and a summary of the current measurements of all the CMB spectra by

several CMB experiments is shown in Fig. 1.6.

As can be seen from Fig. 1.7, the shape of the spectrum strongly depends on the

initial conditions on the cosmological perturbations discussed in Section 1.8. Compar-

ing to the left panel of Fig. 1.5, it is possible to see by eye that the initial conditions

that agree with observations are the adiabatic ones, as predicted by the simplest infla-

tionary models. In fact, a very small fraction isocurvature perturbations, eventually

correlated with adiabatic ones, is still allowed by Planck DR3 [54]. I will come back

to this point in Chapter 7.

In order to qualitatively discuss the physics that lead to the shape of the angular

power spectrum in Fig. 1.5 (I will focus on the temperature spectrum for simplicity),

it is useful to divide the anisotropies in the CMB in primary, that were originated

at the time of decoupling, and secondary ones [55], generated by the interactions of

the CMB photons with the LSS in the Universe during their journey from the last

scattering surface to today.

Depending on the angular scale of interest in the power spectrum, different physical

effects dominate the primary anisotropies. At large angular scales the dominant effect

is the Sachs-Wolfe term [56], that consists in a variation in the CMB temperature

caused by photons climbing out of the gravitational potential wells and rolling down

potential hills due to dark matter perturbations. In this way, hot spots in the CMB

sky correspond to underdense regions and cold spots to overdense ones.

At intermediate scales, it is possible to observe the fingerprint of the acoustic

oscillations of the density and velocity fluctuations of the photon-baryons coupled
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fluid when they are inside the Hubble radius. For adiabatic perturbations, the co-

sine mode of the oscillations is excited [57] and, being the angular power spectrum

proportional to the the perturbations squared, its peaks correspond to the scales

that were in the extrema of their oscillations at the time of recombination. These

are the so-called baryon acoustic oscillations (BAO) and their imprint in the matter

power spectrum [58] is an important cosmological probe, complementary to the CMB

anisotropy pattern. Note that the first CMB peak, located at l ≈ 220, corresponds

to the angular scale of the Hubble radius at recombination (θ ∼ 1◦) and can be used

to estimate the total density parameter.

At small scales (` ≥ 1000) the amplitude of the spectrum drops because of the

so-called Silk damping [59]. Indeed, the tight coupling between baryons and photons

is only an approximation valid if the scattering rate of photons off electrons is infinite.

This condition is not always met, because in reality photons travel a finite distance

in between scatters. After a Hubble time, a photon, with a mean free path λmfp, has

moved a distance of order λD. Any perturbation on scales smaller than λD is expected

to be washed out resulting in the damping of small angular scales in Figs. 1.5 and 1.6.

The effects of secondary anisotropies, that may also provide information on struc-

ture formation, instead manifest as follows:

• Gravitational lensing: photons are observed as coming from a slightly different

direction than the original one since they are deflected by the gravitational

potentials due to the large-scale distribution of matter [53].

• Sunayev-Zel’dovich effect: in passing through the cluster of galaxies, photons

may interact with free electrons of the hot inter-cluster medium by Inverse

Compton scattering generating a spectral distortion [60,61].

• Integrated Sachs-Wolfe effect (ISW): the gravitational potentials vary with time,

shifting the energy of the photons travelling through them [62–64]. This ef-

fect can be divided into Early ISW, often considered as part of the primary

anisotropies, that happens right after decoupling when radiation density still

has non-negligible effect, and Late ISW due to the late time effect of dark en-

ergy on gravitational potentials. The latter is crucial in order to investigate the

nature of dark energy with large scale structure (LSS) data .

.

In the following Chapters, I will use data from the Planck DR3 to constrain pa-

rameters for different cosmologies. Unless stated otherwise, I will always use the

combination of temperature, polarization, and weak lensing CMB anisotropies angu-

lar power spectra [66, 67]. The high-multipoles likelihood ` ≥ 30 is based on Plik
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Figure 1.5: [Left] Temperature and [right] E-mode polarization normalized angular
power spectrum, as measured by Planck 2018. The theoretical spectrum for the
ΛCDM bestfit is plotted using a blue solid line in the bottom panels and the residuals
with respect to this model are shown in the lower panels. Figure taken from Ref. [21].

likelihood. I will use the low-` likelihood combination at 2 ≤ ` < 30: temperature-

only Commander likelihood plus the SimAll EE-only likelihood. For the Planck CMB

lensing likelihood, and consider the conservative multipoles range, i.e. 8 ≤ ` ≤ 400.

Throughout this thesis, I will refer to this dataset as P18.

1.10 The Matter Power Spectrum

As described in Section 1.4, the same linear perturbations that generate the CMB

anisotropies pattern undergo gravitational instability leading to the distribution of

galaxies and large scale structure in the Universe. The latter is best studied by

mapping the distribution of the inhomogeneities in the Universe

In this context, one of the main observables is the matter power spectrum P (k, z)

defined as

〈δM(z, k) δ∗M(z, k′〉δ3(k− k′)P (z, k), (1.10.1)

where I have defined the total matter density contrast as δM = (δρc + δρb)/(ρc + ρb).

Assuming an initial spectrum of adiabatic and Gaussian perturbations, as sug-

gested in the previous Section, the power spectrum can be factorized into a power-law

primordial contribution, describing the quantum the quantum fluctuations produced

during inflation, and a transfer function describing its evolution in redshift, as

P (z, k) =
2π2

k3
As

(
k

k∗

)ns−1

δ2
M(z, k), (1.10.2)
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Figure 1.7: Temperature anisotropy shapes for the three isocurvature modes. [Left]
The shapes of the CDM isocurvature modes, neutrino density isocurvature mode, and
neutrino velocity isocurvature mode are shown together with the adiabatic mode. The
modes have the same amplitude parameters (PRR for the adiabatic mode and PII for
each isocurvature mode). [Right] The narrower multipole range illustrates the relative
phases of the acoustic oscillations for these modes. Figure taken from Ref. [65].

Figure 1.8: Linear-theory matter power spectrum P (k) at z = 0 inferred from
different cosmological probes (the dotted line shows the impact of non-linear clustering
at z = 0) and ΛCDM model prediction (solid lines). Figure taken from Ref. [9].
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where the pivot scale is typically k = 0.05Mpc−1. The equation before shows how

the power spectrum is sensitive to the parameters describing inflation that govern its

amplitude and tilt.

In Fig. 1.8, I show the power spectrum inferred from different cosmological probes

and the prediction of the ΛCDM model, which, as can be seen, fits all the data

extraordinarily well. Note that the main feature of the matter power spectrum is a

turnover in the growth of structure at k ∼ 2×10−2hMpc−1, for scales that re-enter the

horizon around the transition from radiation dominance to that of matter dominance,

which makes the power spectrum sensitive to both ωm and ΩΛ. Another interesting

feature is the small oscillatory pattern of the Baryonic Acoustic Oscillations to be

discussed in the next section.

In the following Chapters, I will use the full shape of the BOSS DR12 pre-

reconstructed power spectrum measurements [68]. In particular, I will consider the

combination of the monopole and quadrupole of the power spectra of the three dif-

ferent sky-cuts CMASS NGC and CMASS SGC at effective redshift zeff = 0.57 and

LOWZ NGC at zeff = 0.32 and follow the conventions of Refs. [69–71], where the data

were analyzed with the Effective Field Theory of Large Scale Structure (EFTofLSS),

for the maximum wavenumber considered (kmax = 0.23h/Mpc for CMASS and kmax =

0.20h/Mpc for NGC). Throughout this thesis, I will refer to this dataset as FS.

1.11 Baryon acoustic oscillations

Another observable commonly exploited to constrain cosmological parameter consists

in the pattern of Baryon Acoustic Oscillations (BAO) which arises from the acoustic

oscillations in the baryon-photon fluid driven by the gravitational potentials prior to

recombination [72–74], see Refs. [75, 76] for reviews. These oscillations are at the

origin of the acoustic peaks and troughs observed in the CMB spectra in Fig. 1.6, but

the name BAO usually refers to their measurements in galaxy surveys. Their pattern

in the galaxy surveys was first detected by Refs. [58, 77] is visible in Fig. 1.8 around

k ∼ 0.1h/Mpc and has also been found in galaxy clusters surveys.

BAO are the archetypal example of statistical standard rule and exploit the idea

that the clustering of structures may have a preferred scale that can be used to

constrain the expansion history of the Universe. In practice, BAO constrain the

acoustic scale ratio DV (z)/rd. In this expression rd is the comoving size of the sound

horizon at the time of baryon drag. Since its scale is around 147 Mpc, much larger

than the one of virialized structures, BAO measurements are unaffected by nonlinear
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Figure 1.9: [Left] Acoustic-scale distance measurements divided by the correspond-
ing mean distance ratio from Planck TT, TE, EE + lowE + lowT + lensing in the
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for Dm/rd are very similar). [Right] Comoving Hubble parameter as a function of red-
shift. The grey bands show the 68 % and 95 % confidence ranges allowed by Planck
TT, TE, EE + lowE + lowT + lensing in the base-ΛCDM model, clearly showing the
onset of acceleration around z = 0.6. Figure taken from Ref. [21].

physics. The quantity DV (z) is instead given by

DV (z) =

[
D2
A(z)

cz

H(z)

] 1
3

(1.11.1)

and is a combination of the Hubble parameter and the comoving angular distance. I

summarize the latest BAO results in the left panel of Fig. 1.9, taken from Ref. [9].

In the same way, BAO measurements along the line of sight constrain the combi-

nation H(z)rd as well. Since Planck constrains rd to a great precision for the ΛCDM

model, this can be converted to a measurement of H(z), as can be seen from the right

panel of Fig. 1.9.

In the following Chapters I will use BAO of the Baryon Spectroscopic Survey

(BOSS) DR12 [78] post-reconstructed power spectrum measurements in three redshift

slices with effective redshifts zeff = 0.38, 0.51, 0.61 [79–81], in combination with the

’small-z’ measurements from 6dF [82] at zeff = 0.106 and the one from SDSS DR7 [83]

at zeff = 0.15. Throughout this thesis, I will refer to this combination of BAO data

as BAO. When combining these post-reconstructed this dataset with the FS data

mentioned in the previous paragraph, I will only consider ’small-z’ BAO and refer to

the dataset as FS-BAO.
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Figure 1.10: Luminosity distance of the Supernovae in the Pantheon sample of
Ref. [84].

1.12 Supernovae

Although type Ia supernovae as standard candles played a central role and led to

the discovery of the accelerated expansion of the Universe, they only have a little

constraining power on (some of) the ΛCDM parameters compared to current CMB

data. The use of Supernovae data is still important to fix the low-redshift back-

ground cosmology in theories beyond ΛCDM where dark energy is not in the form

of a cosmological constant. However, the theories considered in the next Chapter

show an evolution very similar to ΛCDM at late times and therefore are only slightly

constrained by SN data.

In the following Chapters, I will use Pantheon supernovae dataset [84], which

includes measurements of the luminosity distances of 1048 SNe Ia in the redshift

range 0.01 < z < 2.3, shown in Fig. 1.10. Throughout this thesis, I will refer to this

dataset simply SN.

1.13 Summary of the ΛCDM Model

To summarize, the ΛCDM explains successfully many cosmological observations. Be-

cause of that, and because of its simplicity, it has now become the standard model of
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cosmology. Within this model, the Dark Matter permeating the Universe is assumed

to be Cold and pressureless, and only a very small amount of Hot (or Warm) Dark

Matter is allowed, and the current accelerated phase of the Universe is driven by the

negative pressure of a cosmological constant Λ.

Under the assumptions of a primordial power spectrum described by a power-law, a

CMB temperature of Tγ = 2.7225, an effective number of neutrinos of Neff = 3.046 and

a He primordial abundance consistent with the BBN current measurement constrain

the relative abundances of the ΛCDM components to be [21]

ΩM = 0.31110± 0.00561,

Ωc = 0.2607± 0.0035,

Ωb = 0.04897± 0.00064,

Ων < 0.016,

(1.13.1)

at 68% CL and the curvature of the Universe is constrained to be

Ωk ≤ 0.0026 (1.13.2)

showing consistence with a flat Universe [21], that needs to be explained with an

initial period of inflation before the onset of the standard Hot Big Bang history.

The quantum fluctuations produced during inflation act as seeds for CMB anisotropies

and structure formation. While these quantum fluctuations can show non-Gaussian

features or contain isocurvature components, in the ΛCDM model an adiabatic and

Gaussian distribution of primordial fluctuations is assumed, which is easily produced

by the simplest single field inflationary models. In this framework, the primordial

power spectrum of the metric perturbations is described by a power-law, that can be

parameterized by an amplitude As and a spectral index ns computed at a reference

scale, usually taken to be k = 0.05 Mpc−1 or k = 0.002 Mpc−1.

The power of the ΛCDM model is thus that it can fit cosmological data with only

an handful of parameters. These parameters are the energy densities of the baryons

and CDM ωb ≡ Ωbh
2 and ωc ≡ Ωch

2, the angular scale of the comoving sound horizon

at the last scattering surface θ∗, the optical depth at reionization τ and the parameters

describing the primordial power spectrum As and ns.
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Chapter 2

Modified Gravity and Scalar-Tensor

theories

2.1 Modified gravity

The theory of General Relativity (GR), on which the ΛCDM model is based, is not

only the most elegant scientific theory of gravity ever proposed, but also one of the

most tested ones. More than a hundred years after Einstein first proposed his famous

field equations, it is probably still the best description of cosmological and astrophys-

ical phenomena to date. Besides governing the laws of the expanding Universe and

several astrophysical observations, the recent detection of gravitational waves from

coalescing confirms GR at a very precise level.

Despite its incredible success, however, there are various motivations to look at

extensions or modifications to GR. For example, the nature of the dark components

that are blind to electromagnetic interactions and constitute almost the totality of the

energy budget of the Universe in the ΛCDM model is still unknown, and it is a natural

question to ask ourselves whether it could be or not explained by a modification to

the laws of GR on galactic or cosmological scales. Also, corrections to GR in the

regime of strong gravity and the development of a quantum theory of gravity could

resolve the Big Bang singularity or the ones associated with black holes. On one

hand, all these problems have stimulated the research community to propose a wealth

of theories to extend or modify GR, on the other they have triggered the search for

optimal parameterizations to test such deviations from the laws of GR [85,86].

From the historical point of view, one of the first steps in this direction was the idea

of Dirac that fundamental constants might vary with time, which was later formalized

by Jordan [87] and Brans and Dicke [88] in the Jordan-Brans-Dicke theory in which

the Newton constant is promoted to a dynamical variable that depends on a new

time-dependent scalar degree of freedom. The JBD is the prototypical version of the

modern scalar-tensor (ST) theories of gravity [89], that are the focus of this thesis.
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Note, however, that the addition of a new scalar degree of freedom is only one way to

modify gravity, and many other possibilities like adding new vector or tensor degrees

of freedom instead or breaking some of the GR assumptions as for example allowing

for Lorentz-violating or Non-Local interactions, see e.g. Ref. [90] for a review.

2.2 Scalar-tensor theories

Since the JBD proposal, there has been a significant development in the scalar tensor

theory of gravitation (see Ref. [91] for a recent review). In particular, it has been

understood that the JBD is only the archetypal model of a much broader class of

theories that involve a new scalar degree of freedom.

Indeed, from a theoretical point of view, the requirement for a theory to be classi-

cally viable is that the new scalar field, say σ, does not induce a so called Ostrogradsky

instability [92]. A very simple way to avoid such instability is too require time deriva-

tives in the Euler-Lagrange, or Klein-Gordon (KG), equation for the scalar field to be

only up to second order so that only a single scalar degree of freedom is propagated. To

this purpose, the Horndeski theory was constructed out [93] (see Ref. [94] for a recent

review). The Horndeski Lagrangian easily satisfies the criterium above as it contains

only second-order derivatives of σ. The importance of this class of ST theories for

cosmology, however, has been understood only relatively recently in connection with

the generalization of the Galileon symmetry [95] in curved space [96–98].

A further step towards the classification of healthy theories containing an ad-

ditional scalar field was to understand that, having only up to second order time

derivatives in the KG equation in not a necessary condition, albeit a sufficient one.

By performing invertible disformal transformations starting from the Einstein-Hilbert

action [99] (and therefore conserving the number of degrees of freedom [100]) or adding

specific combinations of functions in the Lagrangian [101,102], it is possible to prop-

agate a single scalar degree of freedom even if the KG equation contains third order

time derivatives. Theories belonging to this class, sometimes referred to as beyond

Horndeski or GLPV theories [101], then paved the way to the so called Degenerate

Higher Order Scalar Tensor (DHOST) theories [103–107]. Such theories are based on

the idea that the absence of an extra scalar degree of freedom can also be ensured

by the degeneracy of the mass matrix of the field φ, which leads to less restricting

criterium than the ones mentioned above.
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Figure 2.1: The landscape of Scalar Tensor theories. Figure taken from Ref. [108].

The corresponding Lagrangians can be written in the form

S[g, σ] =

∫
d4x
√−g

[
F(2)(X, σ) (4)R + P (X, σ) +Q(X, σ)�σ +

5∑

I=1

AI(X, σ)L(2)
a

+F(3)(X, σ)Gµνσ
µν +

10∑

I=1

BI(X, σ)L(3)
a + Lm

]
, (2.2.1)

where X = ∇µσ∇µσ and the functions L
(2)
i and L

(3)
i are quadratic and cubic in σµν

respectively and represent all the possible contractions of the second-order derivatives

σµν with the metric gµν and the scalar field gradient σµ. Note that these functions

are not arbitrary functions of σ and X and, in order to represent a viable theory,

they have to satisfy specific degeneracy conditions [108]. The landscape of viable ST

theories is summarized in Fig. 2.1.

2.2.1 Traditional Scalar-Tensor theories

The class of traditional ST theories, to which the models studied in this thesis belong,

is the smallest subset of DHOST theories and their Lagrangian can be obtained by
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setting all the functions in Eq. (2.2.1) to zero except for:

F(2)(X, σ) =
F (σ)

2
and P (X, σ) = X − V (σ) (2.2.2)

leading to the following action

S =

∫
d4x
√−g

[
F (σ)

2
R− gµν

2
∂µσ∂νσ − V (σ) + Lm

]
. (2.2.3)

The metric gµν is the physical metric to which the matter fields in Lm are mini-

mally coupled and the conformal frame in which the action takes the form above, is

the so called Jordan frame. By performing a conformal transformation of the form

ĝµν ∝ Fgµν it is possible to switch to the corresponding Einstein frame in which

the canonically rescaled scalar field is universally coupled to the trace of the matter

energy-momentum tensor.

In principle, also the possibility of a non-canonical kinetic term is allowed, but

usually that can be remapped into a canonical one by performing a field redefinition

[109]. It is therefore seen that a model is completely specified by choosing a functional

form for the non-minimal coupling F (σ) and the potential V (σ). The form of F (σ),

however, is not arbitrary since it induces some conditions that the theory needs to

satisfy in order to have a stable FLRW evolution. For the action (2.2.3), indeed, there

are in total three physical degrees of freedom associated with the gravity sector (that

is, the metric and the σ field) [110]. In order to avoid negative kinetic energy states

in the tensor sector the following equation has to be satisfied

F > 0 , (2.2.4)

and the positivity of the kinetic term in the reduced quadratic action of the scalar

field perturbations leads to the second condition

F (2F + 3F 2
σ ) > 0 . (2.2.5)

For the matter sector, any fluid that satisfies the null energy condition and has real

sound speed will be stable. Note that the conditions (2.2.4) and (2.2.5) also ensure

the positivity of the effective gravitational and cosmological Newton constants (see

Eq. (2.2.19) below).

The field equations are obtained by varying the action with respect to the metric:
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Gµν =
1

F (σ)

[
Tµν + ∂µσ∂νσ −

1

2
gµν∂

ρσ∂ρσ − gµνV (σ) + (∇µ∇ν − gµν2)F (σ)
]
.

(2.2.6)

The Einstein trace equation results:

R =
1

F
[−T + ∂µσ∂

µσ + 4V + 3�F ] , (2.2.7)

where T is the trace of the energy-momentum tensor. The Klein-Gordon (KG) equa-

tion can be obtained varying the action with respect to the scalar field:

−�σ − 1

2
F,σR + V,σ = 0, (2.2.8)

and substituting the Einstein trace equation one obtains:

−�σ
(

1 +
3

2

F 2
,σ

F

)
+ V,σ − 2

V F,σ
F

+
F,σ
2F

[T − ∂µσ∂µσ (1 + 3F,σσ)] = 0 . (2.2.9)

If I specify instead to a flat FLRW metric, as in Eq. (1.1.8), the Friedmann and

the KG equations reduce to:

3H2F = ρ+
σ̇2

2
+ V (σ)− 3HḞ (2.2.10)

= ρ+ ρσ, (2.2.11)

−2ḢF = ρ+ p+ σ̇2 + F̈ −HḞ (2.2.12)

= (ρ+ p) + ρσ + pσ. (2.2.13)

σ̈ + 3Hσ̇ =
Fσ

2F + 3F 2
σ

[
ρ − 3p + 4V − 2

F Vσ
Fσ

−
(
1 + 3Fσσ

)
σ̇2
]
. (2.2.14)

The above equations lead to the straightforward associations:

ρσ =
σ̇2

2
+ V (σ)− 3HḞ (2.2.15)

and

pσ =
σ̇2

2
+ V (σ) + F̈ + 2HḞ (2.2.16)

where in the equation for pσ I have explicitly substituted the KG equation. It is

possible to recover an expression for the dark energy (DE) density parameter dividing

ρσ for the quantity 3H2F which represents the critical density.
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Alternatively, it is also convenient to define new density parameters in a framework

which mimics Einstein gravity at present and satisfy the conservation law ρ̇DE +

3H(ρDE + pDE) = 0 [110,111]:

ρDE =
F0

F
ρσ + (ρm + ρr)

(
F0

F
− 1

)
, (2.2.17)

pDE =
F0

F
pσ + pr

(
F0

F
− 1

)
. (2.2.18)

The effective parameter of state for DE can be defined as wDE ≡ pDE/ρDE.

Because of the non-minimal coupling, the Newton constant in the Friedmann

equations is replaced by GN := (8πF )−1 that now varies with time. This has not

to be confused with the effective gravitational constant that regulates the attraction

between two test masses and is measured in laboratory experiments, which is instead

given by [111]:

Geff =
1

8πF

(
2F + 4F 2

,σ

2F + 3F 2
,σ

)
. (2.2.19)

The deviations from general relativity (GR) can also be parameterized by means

of the so-called Post-Newtonian (PN) parameters [85] where the metric is expanded

in powers of the gravitational potential Φ. For the theories described by Eq. (2.2.3),

only the parameters γPN and βPN differ from GR predictions, for which they both

equal unity. In terms of these parameters the line element can be expressed as:

ds2 = −(1 + 2Φ− 2βPNΦ2)dt2 + (1− 2γPNΦ)dxidx
i, (2.2.20)

where the only non-zero PN parameters are given by the following expressions [111]:

γPN = 1− F 2
,σ

F + 2F 2
,σ

, (2.2.21)

βPN = 1 +
FF,σ

8F + 12F 2
,σ

dγPN

dσ
. (2.2.22)

Linear perturbations

ST theories also modify the equations governing the evolution of cosmological pertur-

bations. As in Chapter 1, I study linear fluctuations around the FLRW metric in the

synchronous gauge and follow the conventions of Ref. [35]. Here, however, I also have
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to consider the scalar field perturbation δσ:

hSij =

∫
d3k ei

~k·~x

[
k̂ik̂j h(~k, τ)

+

(
k̂ik̂j −

1

3
δij

)
η(~k, τ)

]
, (2.2.23)

δσ =

∫
d3k ei

~k·~xδσ(~k, τ). (2.2.24)

The modified Einstein equations at first order for scalar perturbations are:

k2

a2
η − 1

2
Hḣ = − 1

2F

[
δρ+ σ̇δσ̇ + V,σδσ −

F,σ
F

(
ρ+

σ̇2

2
+ V − 3HḞ

)
δσ − k2

a2
δF +

1

6
ḣḞ

]
,

k2

a2
η̇ =

1

2F

[∑

i

(ρi + pi)θi + k2
(
σ̇δσ + δḞ −HδF

)]
,

ḧ+ 3Hḣ− 2
k2

a2
η = − 3

F

[
p+ σ̇δσ̇ − V,σδσ −

F,σ
F

(
p+

σ̇2

2
− V + F̈ + 2HḞ

)
δσ

+
2

3

k2

a2
δF + δF̈ + 2HδḞ +

1

3
ḣḞ

]
,

ḧ+ 6η̈ + 3H(ḣ+ 6η̇)− 2
k2

a2
η = − 3

F

[∑

i

(ρi + pi)σi +
2

3

k2

a2
δF +

Ḟ

3
(ḣ+ 6η̇)

]
,

(2.2.25)

where all perturbations are considered in the Fourier configuration. The quantities

θi and σi represent the velocity potential and the anisotropic stress, respectively1. It

can be seen from the last of these equations that the coupling function acts also as a

source for the anisotropic stress.

The perturbed Klein-Gordon equation is:

δσ̈ = −δσ̇
[
3H +

2(1 + 6ξ)ξσσ̇

F + 6ξ2σ2

]
− δσ

{
k2

a2
+

FV,σ,σ
F + 6ξ2σ2

− 2ξσV,σ
F + 6ξ2σ2

[
1 +

F (1 + 6ξ)

F + 6ξ2σ2

]

+
ξ

F + 6ξ2σ2

[
1− 2(1 + 6ξ)ξσ2

F + 6ξ2σ2

][
(1 + 6ξ)σ̇2 − 4V + (3p− ρ)

]}
− (3δp− δρ) ξσ

F + 6ξ2σ2
− 1

2
ḣσ̇.

(2.2.26)

1Note that here σi has nothing to do with the initial condition on the scalar field σ that I will
use in the next Chapters
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2.3 Observational constraints on Scalar-Tensor the-

ories

A snapshot of the current observational is given in Fig. 2.2, which is reproduced from

Ref. [112]. In the plots, the gravitational forces are parameterized by the gravitational

potential ε ≡ Φ = GM/r and the space curvature ξ ≡ GM/r3, where M and r are the

mass and the radius of a spherical object respectively. The plots show that gravity

has been currently tested mostly in the large curvature regime with solar system

and binary pulsar experiments operate, but that there is still a lot to explore on

lower curvature scales1. At those scales, the plot shows that the relevant observations

are cosmological ones. The constraints on ST theories that can be derived using

cosmological data will be discussed in the following chapter and, in the following, I

discuss the very tight constraints on ST theories by a series of other observations.

Specifically I consider constraints from the observation of a neutron star merger and

its optical counterpart, from Solar System and laboratory experiments and from Big

Bang Nucleosynthesis.

Before going ahead, note also that Fig. 2.2 clearly shows the importance of study-

ing gravity in different regimes. Indeed, many MG theories develop so called screen-

ing mechanisms that hide the modification to gravity in dense environments or small

scales [113–116], but are not active on large cosmological scales (see Ref. [117] for a

review). Only testing gravity on as much scales as possible we can hope to constrain

possible deviations from GR in the optimal way.

2.3.1 Constraints from the speed of gravitational waves

A major step forward in constraining ST theories of gravity has been made thanks

to the observation of a neutron star merger GW170817 and of its optical counterpart

GRB170817A, on August 17, 2017 [118–121]. Indeed, the follow up of the gravitational

event, i.e. a short gamma ray burst, was seen only 1.74±0.05 s later by Fermi and the

International Gamma-Ray Astrophysics Laboratory, allowing to constrain the speed

of gravitational waves cg to be essentially the same as the speed of light, with a

precision of [118]:

−3 · 10−15 ≤ cg/c− 1 ≤ 7 · 10−16 . (2.3.1)

The crucial point here is that ST theories described by Eq. (2.2.1) can modify the

speed of the propagation of gravitational waves. The evolution of linear, transverse-

1Note that the definition of ε and ξ has to be changed on such scales for which speaking of
spherical objects is meaningless [112].
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Figure 2.2: Left: A parameter space for gravitational fields. Right: The experi-
mental version of the parameter space. See Ref. [112] for details. The horizontal lines
in the left figure indicate the background curvature of the Universe at Big Bang Nu-
cleosynthesis (BBN) and Last scattering, and the curvature associated with Λ. Some
of the label abbreviations are: SS=planets of the Solar System MS=Main Sequence
stars, WD=white dwarfs, PRSs=binary pulsars, NS=Neutron stars, BH= stellar mass
black holes, MW=the Milky Way, SMBH=supermassive black holes. PPN= Parame-
terized Post-Newtonian regime, Inv.Sq.=laboratory tests of the inverse square law of
the gravitational force, Atom=atom interferometry experiments, EHT=Event Hori-
zon Telescope, ELT=the Extremely Large Telescope, DEFT4=a hypothetical stage
4 experiment of dark energy, Facility=a futuristic large radio telescope such as the
Square Kilometer Array. Figure taken from Ref. [112].
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Figure 2.3: Summary of the viable (left) and non-viable (right) scalar-tensor theories
after GW170817. Only simple Horndeski theories, G4,X ≈ 0 and G5 ≈ constant,
and specific beyond Horndeski models, conformally related to cg = 1 Horndeski or
disformally tuned, remain viable. Figure adapted from Ref. [122].

traceless tensor perturbations over a cosmological background is governed by the

following equation [123]:

ḧ+,× + (3 + αM)Hḣ+,× + (1 + αT )k2h+,× = 0 , (2.3.2)

where both αM(σ) and αT (σ) depend on the scalar field σ and their explicit expressions

in terms of the Horndeski functions is given in the Appendix of Ref. [123]. Although

the former term contributes to the damping of gravitational waves, the latter is a

genuine modification to their speed of propagation which becomes c2
g = 1 + αT and

can therefore differ from the speed of light, which is equal to unity in our conventions.

As shown in Fig. 2.3, using Eq. (2.3.1) it is therefore possible to rule out a number

of models that would otherwise be perfectly viable for other cosmological observations

[122, 124–126] (see however Ref. [127] for a more critical take on this point). The

importance of GW170817 is astounding, as it was the first case ever when it has been

possible to rule out so many MG theories with a single event. Importantly, traditional

ST theories, for which αT = 0 and αM = Ḟ /HF , survive this constraint and are still

viable after GW170817.

2.3.2 Constraints from Big Bang Nucleosynthesis

Theories where the Newton constant varies with time also modify the light elements

production in BBN. The efficiency of the latter, which is the result of nuclear and

weak reaction, is affected by the modification to the expansion rate of the Universe

induced by a time-varying GN(t) (or equivalently Geff(t)).
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Therefore, if at early times GN(tBBN) 6= GN(t0), there would be a variation of

the light element abundances with respect to the standard BBN predictions. Using

a parameterized form of ∆GN , for which it depends on time through a monotonic

power law ∝ t−α, BBN data where used in Refs. [128, 129], to derive a constraint

of ∆GN/GN = (GN(tBBN) − GN(t0))/GN(t0) = 1.010.20
−0.16 at a 68% CL level. A

tighter constraint was also derived more recently in Ref. [130], which found ∆GN =

0.02± 0.06.

2.3.3 Constraints from Solar System experiments

Among the most stringent constraints on the deviations from GR, belong the ones

from Solar System tests [85]. Constraints on γPN can be derived from bounds on the

deflection angle and on the time delay of light. Indeed, a light ray that grazes the

surface of the sun is deflected by an angle

δθ ' 1 + γPN

2
1.7505′′, (2.3.3)

that makes it possible to constrain the quantity γPN. The tightest constraint on the

deflection of light comes from the very long baseline interferometry (VLBI) observa-

tion of quasars and radio galaxies that are primary used to monitor the rotation of

the Earth. Since they are sensitive to the deflection of light over almost the entire

celestial sphere they lead to the optimal constraint γPN−1 = (−2±3)×10−4 [131,132]

as of 2010 (see also Ref. [133] for a slightly older constraint).

However, the tightest constrain on γPN comes from measurements of the time delay

of light. A photon sent across the solar system past some object and returned to the

Earth experiences a non-Newtonian time delay that depends again on the combination

(γPN + 1)/2 as (say it passes past the Sun, which is distant from us r, at the closest

distance of d) [85]:

δt ' 1 + γPN

2

[
240− 20 ln

(
d2

r

)]
µs. (2.3.4)

Using the Doppler tracking of the Cassini spacecraft that was on its way to Saturn,

the bound γPN−1 = (2.1±2.3)×10−5 was derived [134], almost an order of magnitude

tighter than the ones from light deflection.

Constraints on βPN are instead derived using the observation of the anomalous 43

arcseconds perihelion shit of Mercury’s orbit. The advanced per orbit ∆ω is given

by [85]:

∆ω 6πm
p

[
2 + 2γPN − βPN

3

η

6
(2α1 − α2 + α3 + 2ζ2) +

J2R
2

2mp
)

]
(2.3.5)
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Figure 2.4: Constraints on the PN parameters γPN and βPN. Figure taken from
Ref. [135].

but now it includes, in addition to relativistic PN contributions, also the ones from a

possible Sun quadrupolar moment. In Eq. (2.3.5), m is the sum of the masses of the

two bodies m1 and m2 and η is their reduced mass, p is the semi-latus rectum of the

orbit, R is the mean radius of the oblate body and J2 measures its quadrupole moment,

whereas the αs and ζ2 are additional PN parameters that are equal to zero in the ST

theories under consideration. Therefore, unlike the deflection of light or its time-delay,

here the measurement depends on the combination of γPN and βPN so a bound on γPN

has to be assumed. Adopting the one above from the Cassini spacecraft and using the

latest inversions of helioseismology data that give J2 = (2.2 ± 0.1) × 10−7 [136, 137],

it is possible to constrain βPN − 1 = (4.1± 7.8)× 10−5 [85].

The limits in the plane γPN−βPN are shown in Fig. 2.4. As I will show in the next

Chapters, and can be understood from Eqs. (2.2.21) and (2.2.22), these very tight

bounds on the deviations from GR translate into bounds on the allowed parameters

that describe the non-minimal coupling F (σ).

2.3.4 Constraints from Laboratory experiments

Finally, another stringent constrain on ST theories comes from the very precise mea-

surement of the Newton constant in laboratory constraints. Although it is not the
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Figure 2.5: Timeline of measurements and recommended values for G since 1900:
values recommended based on a literature review are shown in red, individual torsion
balance experiments in blue, other types of experiments in green. Figure taken from
Wikipedia.

main purpose of this thesis, note that laboratory constraints are also a powerful probe

of screening mechanisms. [138]

The modern techniques used to measure are atom interferometry and very precise

torsion balances. A timeline of measurements of G is shown in Fig. 2.5, where also

the standard uncertainty is shown. The current value recommended by CODATA

is G = 6.67430(15) × 10−11 m3 kg−1 s.2, with a standard uncertainty of 22 ppm.

However, note that different experiments are in tension on the 4th figure after the

comma, so there is currently an uncertainty (in units where G = 1) of 10−4. This is the

uncertainty that I would quote throughout this thesis. It is important to stress that,

in the context of ST theories, the quantity that has to be confronted with laboratory

tests is Geff and not GN , as it is the former that governs the interaction between test

masses [110,111].
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Chapter 3

Cosmological tensions and new physics

3.1 The H0 tension

As anticipated in the previous Chapter, one of the most challenging problems that

Cosmology faces nowadays is to explain the so called H0 tension.

The accurate measurement of the CMB anistropies has permitted the determina-

tion of the six ΛCDM parameters at a very precise level. In particular, the Hubble

constant, or H0, which is the normalization of the Hubble parameter measuring the

rate of expansion of the Universe, is tightly constrained by the latest Planck CMB

temperature, polarization and lensing data to H0 = 67.36 ± 0.54 km s−1Mpc−1 [21].

However, this determination is not strictly speaking a measurement of the aforemen-

tioned quantity. Indeed, it is inferred from the CMB data assuming the underlying

cosmological model to be the ΛCDM one.

Since the CMB photons started to travel freely in the Universe after recombination

at redshift of the order zr ∼ 1100, CMB measurements are usually referred to as

Early time measurements, as opposed to local measurements at very recent redshifts

that are referred to as Late time ones. Contrary to early time measurements of H0,

late time ones are model independent. The most important example of the latter is

the measurement obtained by calibrating the distance ladder using the luminosity of

Cepheid variable stars performed by the SH0ES team [161].

With the first release by Planck, where a value for the Hubble constant of H0 =

67.3 ± 1.2 km s−1Mpc−1 [162] was inferred, it was understood that it was in tension

with the SH0ES measurement of H0 = 73.8 ± 2.4 km s−1Mpc−1 [161]. At the time,

however, the SH0ES measurement was not the only one in tension with Planck results,

as another late time determination of H0 by Carnegie Hubble Program based on the

mid-infrared calibration of the Cepheid distance scale based on observations with the

Spitzer Space Telescope, that is H0 = 74.3± 2.5 km s−1Mpc−1 [154].

Ever since then, any CMB data used to calibrate the sound horizon and subse-

quently the BAO, like the new Planck releases or the ones from the Atacama Space
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Figure 3.1: Values of H0 together with their 68% CL errors from CMB and Late
time measurements in Refs. [139–160].

Telescope or the South Space Telescope have lead to values of H0 consistent that

were consistent among each other, but in tension with SH0ES measurements. It is

important to stress that, CMB measurements were not the only ones leading to such

a discrepancy. Indeed, also results from the DES collaboration using also BAO and

BBN data lead to H0 = 67.2+1.2
−1.0 km s−1Mpc−1 [140] and at the same time other local

measurements point to a value of H0 closer to the one measured by the SH0ES team.

As of the time I am writing this thesis, the situation is the one shown in Fig. 3.1,

where I show a series of early and late time measurements of H0 performed by different

experiments using several and more refined techniques.

It is clear that, as the time passes, more measurements, many of which are inde-

pendent on the others, accumulate casting doubts on the possibility that systematics

is the cause of the tension. Indeed, although revisions of the determination of the

Hubble rate based on the Cepheid calibration [163–165], from SNe Ia calibrated using

the tip of the red giant branch method [153] point to values which are slightly smaller,

i.e. 70 km s−1Mpc−1, it is unclear whether systematic errors alone can explain the

tension [152,166].
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Figure 3.2: ΛCDM determination of the sound horizon from existing data (solid
symbols) and forecasts (open symbols) from Ref. [177]. The plot is reproduced from
the code in Ref. [177].

3.2 How to solve the H0 tension

If the H0 tension is taken at face value and under the assumption that there are no

unaccounted systematic errors that can explain it, then it points to the need of new

physics beyond the ΛCDM model. When it comes to build physical models that aim

at a large H0 there are mainly two possibilities. The first one is to introduce a late

time modification to the expansion history of the Universe. Examples of such late

time solutions are Refs. [167–176]. However, these models are tightly constrained by

late-time observational data, especially those from BAO. Besides, some of the late

time solutions lead to fast wiggles in the evolution of the Hubble parameter H(z)

in the region of the three BOSS BAO redshits, which might invalidate the reduction

of BOSS data from a near-continuum range of redshifts to the constraints that are

publicly available at three discrete redshifts.

A second solution is instead to introduce new physics around the redshift of re-

combination. This is probably the most followed route and the one I am going to

discuss here in more details.

A quantity that is of crucial important is the comoving sound horizon, which is
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defined as:

rs =

∫ ∞

zd

dz′
cs

H(z′)
(3.2.1)

where zd is the end of the baryon drag epoch and cs(z) is the sound speed of baryons

(1.8.14). This quantity represents the distance that the sound waves in the primordial

plasma traveled from the Big-Bang at z =∞ to zd. Note that rs is closely related to

the same quantity evaluated at the time of the last scattering z∗, at which the optical

depth becomes equal to one. The latter, which I denote as r∗s , is about 2% smaller

than rs and is the one relevant for CMB power spectra, whereas rs is relevant for

BAO. However, their difference is nearly model independent and so both quantities

can be used for the following arguments.

The reason rs is so important is that the H0 tension can be recast into a tension

on rs [177,178]. In fact, low redshift probes as BAO constrain the product rsH0 to be

constant relating rs and H0 which are absolute scales for distance measurements at

early and late times respectively. Although rs is inferred from the CMB data, it can

also be directly measured by only relying on the BAO giving a standard ruler and

SNe being standard candles [179]. The result can be seen in Fig. 3.2 which shows the

duality of the H0 and rs tension.

It is then clear that a lower rs will reduce the H0 tension, so, when introducing

new early time physics, this is the direction that model builders should look at. In

order to better understand why lowering the sound horizon results in a larger Hubble

constant inferred from the CMB, it is useful to understand how H0 is extracted by

these data. This can be understood qualitatively as follows1 [180].

The first step is to determine the two quantities ωb and ωm. ωb can be determined

from the effects that has on the damping scale of the CMB and, especially, from

the effects on the boost and suppression of odd and even peaks of the CMB spectra.

Indeed increasing ωb, and thus the baryon to photon ratio ηb, alters the zero point

of the acoustic oscillations in the primordial plasma. ωm, on the other hand, can be

precisely determined from the so called potential envelope effect [52]. Once ωb and ωm

are known, since the radiation density can be determined from the temperature of the

CMB which is precisely measured [46, 181], it is possible to compute cs(z) and H(z)

in Eq. (3.2.1) for a given cosmological model and determine rs (and consequently also

r∗s).

The second step is then to measure θ∗s , which is the angular size of r∗s . This

quantity can be directly read off the spacing of the peaks of the temperature angular

1The only quantitative way to parameter estimation is by performing a full MCMC analysis, but
the following argument helps get a taste of how a larger H0 is obtained by lowering rs with new
physics.
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Figure 3.3: Orange and green bands show 68% and 95% CL contours from R19 and
BOSS galaxy BAO + SN data respectively and are model independent. For P18, full
results together with results for TT (limited to either ` > 800 or ` < 800) + lowE are
shown. P18 results are obtained assuming the ΛCDM model. The plot is taken from
Ref. [180].

power spectrum of the CMB as it is related to them by the relation θ∗s = π/∆`. Since

∆`, and hence θ∗s , is measured at the very precise level, any model that aims at solving

the H0 tension must preserve it. Note that the angular size of the comoving sound

horizon is given by θ∗s = r∗s/D
∗
A, where the angular diameter distance is given by:

D∗A =

∫ z∗

0

dz′

H(z′)
. (3.2.2)

It is clear that, knowing r∗s , the last step is to adjust D∗A, and hence H0, to keep θ∗s

fixed. In particular if r∗s decreases, then a larger H0 is needed for this. To make this

more clear, in Fig. 3.3, I show the constraints in the rs−H0 plane from Ref. [180] for

the ΛCDM model. As can be seen the value of rs is too large and, although it can be

lowered by enhancing the baryon density ωb, this goes in the direction orthogonal to

BAO and SN data so it spoils the fit to data sets other than CMB.

In the following, I introduce perhaps the three most important frameworks within

which a lower rs can be accommodated and explain how they ultimately leads to a

larger H0 by the introduction of extra relativistic degrees of freedom, an Early Dark

Energy component or a modification to gravity.
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Figure 3.4: Evolution of the energy density fraction of extra relativistic species
(left) and samples in the H0-rs plane for the analysis with the data set P18 + BAO +
SN + R19. The plot is produced using the MCMC chains produced for the analysis
in Ref. [3] and the code from Ref. [180].

3.3 Extra-Dark Radiation

Modifications to the expansion history of the early Universe are often enclosed in the

parameter Neff , defined as

ρr =

[
1 +

7

8

(
4

11

) 4
3

Neff

]
ργ, (3.3.1)

which parameterizes the effective number of relativistic species. For the Standard

Model of particle physics, there are three species of active neutrinos corresponding to

Neff = 3.046, where the small correction Neff − 3 = 0.046 accounts for the fact that

neutrino decoupling is immediately followed by e+ e− annihilation, see e.g. Ref. [182].

I refer to this as ∆Neff model in the following.

From the theoretical point of view, many Beyond Standard Model theories predict

thermalized extra relativistic species making the parameterization above very useful

to quickly test the model predictions in a very simple way, see e.g. Ref. [183] for a

concrete example.

Concerning the H0 tension, it is clear by looking at the definition in Eq. (3.3.1)

that a positive ∆Neff ≡ Neff − 3.046 increases the energy budget of the Universe and

therefore its expansion history around recombination. This form of dark radiation

only interacts gravitationally with the rest of the matter content of the Universe,

being decoupled at the level of the Boltzmann equations, and, after recombination,

it redshifts away with the radiation like behavior as ∝ a−4. This makes the ∆Neff a
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Figure 3.5: CMB TT (top left), EE (top right) and TE (bottom) residuals for the
bestfit ∆Neff model. The plot is produced using the bestfit computed from the chains
produced for the analysis in Ref. [3] and the code from Ref. [180].

perfect candidate to relieve the H0 tension and indeed it is perhaps the one that was

first considered in this context [161,178,184].

The evolution of the fraction of dark radiation corresponding to ∆Neff = 0.254 is

shown in the left panel of Fig. 3.4. Such value of ∆Neff is the mean value for obtained

by performing an MCMC analysis with P18 + BAO + SN + R19 data, the results of

which are presented in the right panel of Fig. 3.4. The positive (negative) correlation

between ∆Neff and H0 (rs) can be appreciated by looking at the color bar. As can be

seen the model successfully lowers rs and therefore, as argued in the previous Section,

leads to a larger H0 = 70.01 ± 0.89 km s−1Mpc−1 reducing the tension with R19 at

the 2.4σ level. The

It is interesting to note that the energy injected into the cosmic fluid from a

variation of ∆Neff = 0.254 is very small (of the order of ΩNeff
' 0.032, confirming

that deviations from the ΛCDM model are tightly constrained by CMB data from P18.

In fact, although it is clear from the color bar in Fig. 3.4 that a larger ∆Neff would
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completely solve the tension [169], the modification to the early Universe physics

induced by this model already degrades the fit to CMB data.

Indeed, although there is an improvement in fitting the R19 data, I observe a

degradation1 of the total ∆χ2 = +3.9. , overall fit to the total data set with respect

to ΛCDM model, with a ∆χ2, this improvement mostly comes from the reduction of

the H0 tension and to the better fit to R19, whereas the fit BAO and especially high-`

CMB data is worsened. I explicitly show this for the residuals ∆C` in Fig. 3.5 using

The best-fit values for ΛCDM and the ∆Neff model for the data set P18 + BAO +

SN + R19 are respectively:

θs = 1.0418, 100ωb = 2.251, ωc = 0.1189, τreio = 0.057, ln 1010As = 3.047,

ns = 0.9687, (3.3.2)

with a derived bestfit value of H0 = 68.42 km s−1Mpc−1, and

θs = 1.0410, 100ωb = 2.274, ωc = 0.1246, τreio = 0.058, ln 1010As = 3.063,

ns = 0.9786, Neff = 3.41, (3.3.3)

leading to H0 = 70.53 km s−1Mpc−1. As can be seen from Fig. 3.5 where the CMB

TT, EE and TE residuals are plotted, the degradation is mainly due to the bad fit

to Planck TTTEEE high-` data of the ∆Neff model, with a partial ∆χ2 of 9.07. The

fit to other CMB BAO and SN data is not significantly different. For completeness, I

also quote the best-fit parameters for the ∆Neff model obtained using only P18 data2:

θs = 1.041296, 100ωb = 2.2195, ωc = 0.11671, τreio = 0.0533, ln 1010As = 3.0339,

ns = 0.9577, Neff = 2.815, (3.3.4)

leading to H0 = 65.79 km s−1Mpc−1, which is even smaller than the ΛCDM best-fit.

In this case the fit to P18 worsens compared to the ΛCDM model one for the same

dataset, with ∆χ2 = +0.17.

Note, however, that the ∆Neff model is the simplest 1 parameter extension to

ΛCDM to include extra relativistic species, but it does not take into account even-

tual interaction among such species or interactions between such species and other

component of the Universe. In fact, the results presented here can be significantly

improved if strong interactions between neutrinos, between neutrinos and additional

1Note the difference with the result of Ref. [3], where the bestfit values quoted are taken directly
from the MCMC chains, whereas here I have extracted them using the PyMinuit minimizer, which
a more accurate bestfit finder.

2See https://wiki.cosmos.esa.int/planck-legacy-archive/.
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light relics or between dark matter and hidden gauge fields are introduced [185–188].

3.4 Early Dark Energy

Another popular model that has been proved to substantially ease, or even solve,

the H0 tension is the Early Dark Energy (EDE) model [189]. These models act to

lower the comoving sound horizon introducing a new energetic component that is

active only during a very narrow redshift window. From the phenomenological point

of view, EDE is very economical solution to the H0 tension, as it only modifies the

prediction of the ΛCDM model for a very limited period of time.

In the original models, inspired by the string-axiverse scenario [190–192] the exotic

energy density of a minimally coupled (e.g. with F (σ) = 1 in Eq. (2.2.3)) behaves

like a cosmological constant at early times and eventually decays faster than radiation

injecting energy into the cosmic fluid in a narrow redshift range. Since the scalar

field is subdominant both during the early Universe and after its energy density has

redshifted away as fast as, or even faster than, radiation.

Cosmological applications of very light axion-like particles were first studied in

Ref. [193]. The action of these models is described by the Lagrangian in Eq. (2.2.3)

with F (σ) = 0, where the shape of potential is not arbitrary as the latter is generated

by non-perturbative effects, called instantons, that break the global U(1) symmetry

to a discrete one, leading to [194]:

V (σ) =
∑

n

cne
−Sn cos

(
nσ

f

)
. (3.4.1)

Assuming the validity of the which is justified as long as f > Mpl [195,196], since the

instantons contributions scale as Sn ' nMpl/f [194, 196], the leading order contribu-

tion scales as cos(σ/f). The potentials used in Ref. [189] take the form:

V (σ) = V0

[
1− cos

(
σ

f

)]n
(3.4.2)

where V0 ≡ m2f 2, which corresponds to a fine-tuning of the instantons hierarchy in

Eq. (3.4.2). S the averaged equation of state of the field σ during the oscillations

around its minimum is given by [197]

wn =
n− 1

n+ 1
, (3.4.3)

the scalar field contributes to the total dark matter of the Universe [193] for n = 1.
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Figure 3.6: Evolution of the normalized scalar field Θ (top left), equation of state
parameter wEDE (top right) and the energy injection fEDE (bottom left) for the three
models with (p, n) = {(2, 0), (2, 4), (4, 2)}. For definiteness, I have chosen fEDE =
0.1, log10 zc = 3.5 and Θi = 0.4. I also plot the samples in the H0-rs plane for the
analysis with the data set P18 + BAO + SN + R19 (bottom right). The first three
plots are taken from Ref. [1], and the fourth one is produced using the MCMC chains
produced for the analysis in Ref. [1] and the code from Ref. [180].

Therefore, if a dilution of the field energy density as fast, or faster than radiation,

is needed, n ≥ 2 has to be considered. The best-fit integer value for n reported in

Ref. [198] is n = 3.

An alternative can be to consider instead a potential which captures the feature of

Eq. (3.4.2) around its minimum as proposed by Ref. [199], were a power law potential

of the form

V (σ) = V0

(
σ

Mpl

)2n

(3.4.4)

was studied. However, it has been shown in Ref. [198], that CMB polarization data

are sensible enough to distinguish between the two model and prefer a large initial

field displacement which can be supported by the potential in Eq. (3.4.2), but not by
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the one in Eq. (3.4.4).

Since the pioneering works in Refs. [189, 199, 200], a substantial effort has been

made in building new models of EDE [198, 201–211]. In this Section, I consider the

EDE model introduced in Ref. [1] in the context of the α-attractor framework. From

the model building point of view, the only requirement to be consistent with the α-

attractor construction is that the potential be of the form V (σ) = f 2 [tanh Θ] where

I define Θ ≡ φ/(
√

6αMpl) and α is a positive constant. Therefore, the α-attractor

formulation makes the model free from some of theoretical inconsistencies that affect

models inspired axion fields, as discussed above.

I therefore adopt a potential of the form [1,212,213]:

V (Θ) = V0
22n tanh (Θ)2p

[1 + tanh (Θ)]2n
, (3.4.5)

where V0, p and n are constants. The dynamics of the scalar field, that I show in

Fig. 3.6, is similar to other models of EDE studied in the literature and is essentially

that of an ultralight axion field [214]. The scalar field starts from its initial value

Θi deep in the radiation era and remains frozen because of the Hubble friction. As

mentioned above, the energy density of the scalar field is subdominant in this regime

and its equation of state wEDE ≡ PEDE/ρEDE is equal to −1, hence the name “Early

Dark Energy”. Eventually, the effective mass of the scalar field becomes comparable

to the Hubble rate H and φ starts to thaw. The redshift zc at which this occurs

can be implicitly defined from the relation ∂2V (φi)
∂φ2 ' 9H2(zc) [214]. After zc, the

Hubble friction is too weak to keep the scalar field up its potential and it rolls down

in a very short time. When this happens, the potential energy of the scalar field

is converted into a kinetic one and a certain amount of energy, parameterized by

fEDE ≡ ρEDE(zc)/3M
2
plH

2(zc) is injected into the cosmic fluid. Depending on the slope

of the potential and its structure around the minimum, the scalar field then starts to

oscillate or simply freezes again once it has exhausted its inertia. The critical redshift

zc and the value of the energy injection fEDE are the key parameters describing all

EDE models [200]. As I am going to discuss, the shape of the energy injection and

wEDE crucially depend on the different possible dynamics of the scalar field after zc.

The scalar field energy density quickly redshifts away after zc and its contribution

becomes subdominant with respect to the other components of the Universe. The

power of α-attractor EDE is exactly that it can consistently accommodate several

distinct redshift shapes for the energy injection. This can be clearly seen from the

three examples plotted in Fig. 3.6 (I refer to the caption for the parameters used).

In the cases A and B , the scalar field oscillates at the bottom of its poten-
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Figure 3.7: CMB TT (top left), EE (top right) and TE (bottom) residuals for
the bestfit EDE B model. The plot is produced using the bestfit computed from the
chains produced for the analysis in Ref. [1] and the code from Ref. [180].

tial leading to a highly oscillatory equation of state. In the A case, the potential

is tanh4 Θ ∼ Θ4 around Θ ' 0 and therefore the shape for the energy injection

closely resembles the one obtained in the so-called rock’n’roll model of Ref. [199]

where V (φ) ∝ φ4. On the other hand, the B case looks more similar to the origi-

nal EDE proposal of Ref. [189] (see e.g. Fig. 2 of Ref. [198]). However, given the

asymmetry of our potential for the B case, the oscillatory pattern in the energy in-

jection shows an asymmetric amplitude of odd and even peaks in the oscillations.

Although this is barely visible in Fig. 3.6, this effect is more pronounced for larger

Θi and might in principle lead to distinct results, as the CMB power spectrum is

very sensitive to the shape of fEDE(z) [180]. Indeed, because of such a sensitivity, the

oscillatory patterns of the scalar field in models A and B leave different imprints on

the CMB angular spectra as shown in Refs. [199] and [198]. Therefore, although at a

first glance their background evolution might look similar, it is important to explore

the phenomenology of both of them separately.
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The case C is instead different. Unlike the first two oscillatory models, for this

choice of p and n, the bottom of the potential is very close to flat and the scalar

field shows no oscillations. This model looks similar to the canonical Acoustic Dark

Energy (cADE) model proposed in Ref. [202]. As in cADE (see also Ref. [201]), the

potential energy is suddenly converted to a kinetic one and the scalar field remains in

a kination regime in which wEDE = 1, and its energy is kinetically dominant until it

redshifts away. However, differently from cADE, where the potential was introduced

by patching a quartic potential for positive values of φ to V (φ) = 0 for negative ones,

the potential C is consistently embedded in the α-attractor’s construction. Some

other possibilities can be obtained for other combinations of the potential parameters

(p, n).

The capability of these models to ease the H0 tension is clear from the last panel

in Fig. 3.6, where, for simplicity, I show the results for the model B obtained in

Ref. [1] using the data set P18 + BAO + SN + R19. In fact, model B is the one that

leads to the largest H0 among the ones considered here, as expected from the fact that

it resembles the one in Ref. [198] The positive (negative) correlation between fEDE

and H0 (rs) can be appreciated by looking at the color bar. Indeed, a mean value of

fEDE = 0.082 ± 0.029 leads to large H0 = H0 = 70.9 ± 1.1 km s−1Mpc−1 reducing

the tension with R19 at the level of 1.74σ, better than the ∆Neff model. Differently

from the latter model, however, not only does the model improve the overall fit by a

factor of ∆χ2 = −5.8, but also it improves the fit to each separate data set, besides

the obvious improvement in the fit to R19. The improvement in the fit to high-`

P18 data of ∆χ2 = −2 can be appreciated by looking at Fig. 3.7, where the CMB

residuals are plotted against P18 binned data. An exception is made for low-` EE

data for which the fit is worsen by the same factor. The best-fit values used in the

plot for ΛCDM and the EDE model B for the data set P18 + BAO + SN + R19 are

respectively1:

θs = 1.0419, 100ωb = 2.252, ωc = 0.1188, τreio = 0.057, ln 1010As = 3.049,

ns = 0.9690, (3.4.6)

with a derived bestfit value of H0 = 68.09 km s−1Mpc−1, and

θs = 1.0416, 100ωb = 2.261, ωc = 0.1259, τreio = 0.063, ln 1010As = 3.071,

ns = 0.9765, fEDE = 0.061, log10, zc = 3.49, Θi = 0.104, (3.4.7)

1Here, I refer to the results of Ref. [1], where the choice of running with the Planck convention [67]
of one massive neutrino with mν = 0.06 eV. As can be seen by comparing the ΛCDM bestfit with
the ones in Eq. (3.3.2), there is almost no difference.
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leading to H0 = 70.17 km s−1Mpc−1. The bestfit for P18 data was not calculated in

Ref. [1]. In fact, this was not calculated even for other EDE models in other works

in the literature, with the exception of Ref. [215], where the bestfit was computed

without including CMB lensing in P18, but for a 1-parameter EDE model where Θi

and log10 zc were kept fixed. I will come back to this point in Section 5.5.

The results presented in this Section are for the α-attractor EDE model B. How-

ever, CMB data are very sensitive to the specific shape in redshift of the energy injec-

tion and therefore although all EDE models generically lead to a large H0, quantita-

tive arguments concerning the estimation of cosmological parameters, the H0 tension

and the fit to data set, may differ depending on the specific model under consider-

ation [198, 202]. At the time I am writing this thesis, the EDE model which more

efficiently reduces the is the axion-like original proposal of Refs. [189,192,198].

All in all, the capability to significantly reduce the H0 tension has made EDE

models very popular and they are now regarded as one of the most promising solution.

However, they are not free from phenomenological and theoretical issues. Regarding

the former, EDE has been recently claimed not to solve H0 tension anymore when

LSS data from weak lensing measurements and the full shape of the matter power

spectrum are included [216–218]. Also, there is growing concern that EDE models

may fail to alleviate the H0 tension when no prior information on H0 is included

in the data set [216]. I will come back to these points in Chapter 5. Regarding

the theoretical concerns, EDE models present a very high degree of fine tuning, as

the parameters of the scalar field potential, which is not always theoretically sound

itself, has to be tuned in such a way that the scalar field starts to roll precisely at

the required redshift. The same holds for the initial conditions on the scalar field

that regulates the amount of energy injection. The need to include EDE in a more

theoretically sound framework has been addressed by α-attractor models presented

here, models in which energy injection is produced by a phase transition [203, 208],

or models in which the EDE field is coupled to gauge bosons [204, 207], whereas a

concrete example of model in which the fine tuning is reduced by coupling the EDE

field to massive neutrinos is the work of Ref. [205].

For the reasons explained above, it is clear the importance of testing the consis-

tency of EDE with different data [219] and proposing new observations to further

constrain these models [203,207,208,220].
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Figure 3.8: Evolution of the effective energy Dark Energy density fraction (left)
and samples in the H0-rs plane for the analysis with the data set P18 + BAO + SN
+ R19. The plot is produced using the MCMC chains produced for the analysis in
Ref. [4] and the code from Ref. [180].

3.5 Scalar-tensor theories

If the H0 tension is taken at face value, it is also natural to ask ourselves if this can

point towards theories of Modified Gravity that go beyond General Relativity. In fact,

several modified gravity models have been proposed to solve the H0 tension. Among

them, some are strictly late time modifications to the dynamics of our Universe and

some also change it at early time [2–4, 221–231]. In the spirit of this Chapter, the

latter are the ones I am interested in.

As discussed in Chapter 1, Scalar-tensor (ST) theories are perhaps the simplest

framework to test modifications to gravity that can also work as an alternative to the

cosmological constant in explaining the observed acceleration of the Universe. The

study of such theories is the subject of this Thesis and will be discussed in details in

the next Chapters. Here, I only intend to give a general idea of why these theories

are able to alleviate the H0 tension. To do so, I consider the simplest example of ST

theory, that is the extended Jordan-Brans-Dicke (JBD) theory [87, 88], that I recast

in its Induced Gravity (IG) formulation [232]. The theory is described by Eq. (2.2.3)

with F (σ) = γσ2, where γ is a positive constant, and I consider for simplicity a

potential of the form V (σ) = λF (σ)2/4, for which the theory is effectively massless

and discuss in details the choice of the potential in the following Chapters.

The degeneracy of the coupling γ, which regulates the strength of the modification

to gravity, and H0 was first noticed in Refs. [221] and [222] (see their Figures 7 and

8 respectively). The reason the modification to gravity helps ease the H0 tension is
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easily understood. Indeed, in the IG theory, the effective contribution of the scalar

field to the cosmic expansion is similar to the one from extra relativistic degrees of

freedom, as can be seen from the left panel in Fig. 3.8. The scalar field, that has an

effective equation of state, as computed from Eqs. (2.2.17), wDE ' 1/3, continuously

injects energy during the early Universe before recombination reducing the comoving

sound horizon rs. Unlike in the ∆Neff model, however, its energy density redshifts

away slower than a−4 and the scalar field contribution, although very small, is not

completely negligible during the matter radiation era, as can be seen from Fig. 3.8

in which ΩDE ' 0.07 at z ' 100, which can compared to Fig. 3.4 for the ∆Neff

model. The compatibility of such models with laboratory experiments and Solar

System observations will be discussed in details in the next Chapters.

To confirm the above argument, I plot samples from the chains used in Ref. [4]

in Fig. 3.8. Note that the data set used is P18 + BAO + R19, whereas SN are not

included because the modification to gravity changes the peak luminosity of SNe and

this needs to be properly accounted in the analysis1 [235–238].

As can be seen from Fig. 3.8, larger values for H0 are indeed obtained for a larger

value of γ. Indeed, a coupling as large as γ = 0.00051+0.00043
−0.00046 (95% CL) leads to

H0 = 70.06 ± 0.81 km s−1Mpc−1 reducing the tension with R19 at the 2.4σ level,

with a result which is similar to the one for the ∆Neff model. The best-fit values

used in the plot for ΛCDM and the IG model for the data set P18 + BAO + R19 are

respectively2:

θs = 1.0418, 100ωb = 2.251, ωc = 0.1186, τreio = 0.064, ln 1010As = 3.062,

ns = 0.9704, (3.5.1)

with a derived bestfit value of H0 = 68.50 km s−1Mpc−1, and

H0 = 70.18, 100ωb = 2.253, ωc = 0.1197, τreio = 0.053, ln 1010As = 3.044,

ns = 0.9707, γIG = 5× 10−4. (3.5.2)

The IG model leads to an improvement in the fit to data of ∆χ2 = −1.5, which is

better than the ∆Neff model. However, as can be seen from the plots in Fig. 3.9, the

improvement comes mainly from the better fit to R19 and the fit to high-` CMB data

is worsened, although there is a gain in fitting low-` EE polarization data. A similar

1Note also that the modification of the gravitational constant can also change the low-redshift
distance ladder measurements of the Hubble constant [233,234].

2Here, I refer to the results of Ref. [4], where the choice of running with the Planck convention [67]
of one massive neutrino with mν = 0.06 eV.
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Figure 3.9: CMB TT (top left), EE (top right) and TE (bottom) residuals for the
bestfit IG B model. The plot is produced using the bestfit computed from the chains
produced for the analysis in Ref. [4] and the code from Ref. [180].
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worsening of the fit is found for BAO data. For completeness, I also quote the best-fit

parameters for the IG model obtained using only P18 data [4]:

H0 = 67.73, 100ωb = 2.2398, ωc = 0.12012, τreio = 0.053, ln 1010As = 3.0432,

ns = 0.9673, γIG = 1.005× 10−4. (3.5.3)

Similarly to the ∆Neff model, the bestfit to P18 worsens compared to the ΛCDM

model one for the same dataset, with ∆χ2 = +0.2 (see Table 4.7 in the next Chapter).

Before concluding, it is worth to stress that the model presented here is perhaps

the simplest and most studied model of modified gravity, and its relevance is also

due to the fact that many Horndeski models can be very well approximated by the

JBD one [239]. Furthermore, the most important feature of this model is that the

scalar field naturally starts to move around the recombination driven by pressureless

matter to which it is coupled at the level of the equations of motion. In this sense, the

degree of fine tuning is much lower than models like EDE, that require the potential to

acquire a specific value in order for the energy to be injected at a particular redshift,

as discussed in the previous Section.

3.6 Summary

In this Chapter I have presented the status of the art of the so called H0 tension

and discussed the possibility to solve it using pre-recombination physics. As argued

in Section 3.2, the most promising solution is to reduce the comoving sound horizon

rs, so that H0 has to increase in order to keep the parameter θs, which is precisely

measured from the spacing of the CMB peaked, fixed [177,178,180].

The three most popular frameworks, within which this goal is achieved are modifi-

cations to the radiation content of the Universe (which is active before recombination

by definition), Early Dark Energy and models of Modified Gravity. For each class, I

have therefore discussed a representative model, in order to capture the main features

that lead to a larger H0 inference. In particular, I have described how the H0 tension

is reduced within the ∆Neff , the α-attractor EDE, and the extended JBD model. The

results of the analysis are summarized in Fig. 3.10.

The tension with R19 is reduced at 2.4σ or ∆Neff and JBD models, and 1.74σ

for EDE. This is not only due to a larger mean value for H0, but also to a larger

error, as can be seen from the normalized 1-dimensional posteriors in the right panel

of Fig. 3.10. However, although very useful, Fig. 3.10 gives only rough information

that has to be complemented by a detailed analysis of the fit of the models to the
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not used. The plots are produced using the MCMC chains produced for the analysis
in Ref. [1, 3, 4] and the code from Ref. [180].

data on one hand and by physical considerations on the other. Indeed, what cannot

be appreciated by looking at Fig. 3.10 is that the three models fit the data in a

different way and arrive at the posteriors in the right panel using different physics. In

particular, the ∆Neff model does not lead to an improvement in the fit compared to

ΛCDM, and is only a parameterized model, whereas the EDE model, despite almost

solving the H0 tension, suffers from fine tuning issues and has been claimed to ruin

the fit to LSS data.

The JBD model, on the other hand, is a model with solid physical foundations

that addresses the tension without the need of fine tuning and improves the fit to data

at the same time. This triggers the need of exploring in details the phenomenology of

ST theories in relation to the H0 tension, which is the subject of the next Chapters.
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Chapter 4

Cosmological constraints on nearly

massless Non-Minimally Coupled theories

and consequences on the H0 tension

4.1 Non-Minimally coupled theories

In this Chapter, I study the cosmological dynamics of Non-Minimally Coupled (NMC)

theories described by the action (2.2.3) with F (σ) = N2
pl + ξσ2, where Npl and ξ are

two constant that are arbitrary as long as they satisfy the stability conditions in

Eqs. (2.2.4) and (2.2.5). Note that other theories, known as extended quintessence

models [240–245], can be described by the same Lagrangian and a different choice

of potential. I then use cosmological data to constrain this class of theories and

discuss implications for the H0 tension. Note that the NMC model reduces to General

Relativity for ξ = 0 and to the eJBD model introduced in Section 3.5 for Npl = 0.

As discussed in Chapter 2, Solar System tests and laboratory experiments puts

stringent constraints on ST theories. In order to satisfy these constraints one could

follow several approaches when analyzing the theory on cosmological scales. The first

one is to simply not care about those constraints at all. Indeed, as discussed in the

previous Chapter, one is not guaranteed that the behavior of the theory is the same at

cosmological and galactic or Solar System scales, so one could simply evoke a screening

mechanism to hide gravitational effects at small scales [117]. This is in line with the

philosophy of testing a gravitational theory on different scales to characterize it with

complementary information. However, in its simplest formulation, the NMC theory

described in the following Sections does not support any screening mechanism, since

the scalar field σ is canonically coupled and the potential is not of the runaway form.

Therefore if one wanted to implement a screening mechanism in the simplest model

studied here, some additional assumptions would have to be adopted.

Another approach is instead to ensure by hand that the cosmological evolution of

the scalar field is consistent with the value of the gravitational constant measured in
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laboratory. This can be done by setting suitable boundary conditions on the evolution

of σ today, i.e. σ0, so that the value of Geff(σ0) is exactly equal to its value measured

in laboratory experiments and then see how the PN parameters deviate from GR

(or viceversa one could fix the PN parameters and look at the deviation of Geff(σ0)

from G). I will adopt the former approach in Section 4.2. Note that this additional

condition on σ0 reduces the number of free parameters in the theory.

However, as I will show in Section 4.3, this is not necessarily needed for the

specific case of the NMC model. Indeed, for the negative branch of coupling ξ < 0, σ

decreases and the modification of gravity at late times becomes smaller and smaller

with redshift. As it turns out, cosmological data seem indeed to favour that branch

and the resulting cosmological bounds on Geff and the PN parameters are consistent

with laboratory and Solar System ones. It is therefore important to explore the

possibility of constraining σi itself with cosmological data.

An interesting feature of the NMC model is that it behaves very similarly to the

∆Neff model introduced in Sec. 3.3 of the previous Chapter at the background level.

In this Chapter, I also discuss the consequences that this similarity has on the H0

tension and show how it is naturally alleviated in this context.

Finally, for completeness, I also present the cosmological constraints on the IG (or

eJBD) model introduced in Section 3.5. In this model, however, the scalar field grows

and if the boundary conditions are not set on the scalar field, cosmological constraints

are inevitably in tension with both laboratory and Solar System experiments.

This Chapter is based on the research work in Refs. [2–4] and the plots are pro-

duced using either CLASSig [2, 221], a modified version of the CLASS1 [41, 42] for

scalar-tensor theory of gravity, or with a modified version of hiCLASS [246,247] which

allows to study consistently oscillating scalar fields. The agreement of CLASSig and

hiCLASS for the precision of current and future experiments has been demonstrated

in [248].

4.2 Consistency condition on Geff(t0)

I start by considering the NMC theory described above in which [2]. For later con-

venience I denote by a tilde the quantities normalized to Mpl ≡ 1/
√

8πG, where

G = 6.67× 10−8 cm3 g−1 s−2 is the gravitational constant measured in a Cavendish-

like experiment and I introduce the notation Ñpl ≡ 1∓∆Ñpl for ξ ≷ 0. Throughout

this Section, I will restrict myself to a potential of the form V ∝ F 2 in which the scalar

field, as can be seen from Eq. (2.2.14) is effectively massless. This case generalizes the

1https://github.com/lesgourg/class public
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Figure 4.1: [Left] Top panel: relative evolution of σ for different values of ξ. Bottom
panel: evolution of σ for different values of Npl for the CC case, i.e. ξ = −1/6. [Right]
Evolution of wDE for different values of Npl and ξ. I plot the effective parameter of
state for DE for ξ > 0 in the upper panel, ξ < 0 in the central panel, and the CC case
ξ = −1/6 in the bottom panel. Figure taken from Ref. [2].

broken scale invariant case [232,249,250] to NMC and is a particular case of the class

of models with V ∝ FM admitting scaling solutions [241]. Note that though for the

form of F (σ) used in the paper and for large values of σ, this potential looks similar

to that in the Higgs inflationary model [251], in fact it is crucially different, since it is

exactly flat in the Einstein frame1 in the absence of other matter and cannot support

a metastable inflationary stage in the early Universe. Contrary, this model may be

used for description of dark energy in the present Universe.

The evolution of relevant background quantities is shown in Figs. 4.1 and 4.2.

Depending on the sign of the non-minimal coupling, the scalar field σ grows or de-

creases for ξ > 0 or ξ < 0 respectively. In particular, as the magnitude of ξ increases,

the field-excursion of σ and the growth or decay of σ is more pronounced. This can

be best appreciated by looking at the plots for the Conformally Coupled case with

ξ = −1/6, for which the scalar field decays very efficiently. This leads to an equation

of state wDE which is essentially equal to 1/3, as for a relativistic fluid, till recent

redshifts at which it becomes wDE = −1 so that the recent accelerated phase of the

Universe is driven. This should be contrasted with smaller values of |ξ| for which

1Although I always work in the physical Jordan frame, it is also useful to think about this class
of theories in the dual Einstein frame where ĝµν ∝ Fgµν , V̂ = V/F 2.
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the equation of state follows the one of the dominating component of the Universe,

i.e. wEDE ' 1/3 during radiation dominated era and wEDE ' 0 during the matter

dominated one. Note that the CC case is one of a particular theoretical relevance as

the equations of motion for σ in a FLRW spacetime are conformally invariant in the

absence of matter fields.

As mentioned above, the evolution displayed in Figs. 4.1 and 4.2 is obtained by

imposing that the effective Newton’s constant at present time, as given by Eq. (2.2.19),

is compatible with Cavendish-like experiments. It is possible to distinguish three

different cases beyond GR:

• Ñpl → 0 which is the IG case introduced in Section 3.5 and will be useful in the

following. This leads to:

σ̃2
0 =

1

ξ

1 + 8ξ

1 + 6ξ
, (4.2.1)

which is the same result as obtained in Ref. [221];

• ξ → −1/6 which is the CC. In this particular case the polynomial equation

(2.2.19) in σ0 in quadratic and the solution is:

σ̃2
0 =

18Ñ2
pl(Ñ

2
pl − 1)

1 + 3Ñ2
pl

; (4.2.2)

• a general NMC case for ξ 6= −1/6:

σ̃2
0 =

1− 2Ñ2
pl + 2ξ(4− 3Ñ2

pl)

2ξ(1 + 6ξ)

±

√
1− 4ξ(5Ñ2

pl − 4) + 4ξ2(3Ñ2
pl − 4)2

2ξ(1 + 6ξ)
.

(4.2.3)
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Ñpl = 0.99
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By requiring σ̃2 ≥ 0 and F ≥ 0, I obtain conditions on the two parameters Ñpl and ξ

for the physical solution:

Ñpl < 1 for ξ > 0 , (4.2.4)

Ñpl > 1 for ξ < 0 . (4.2.5)

In Fig. 4.3 I show the evolution of the relative effective gravitational constant

(2.2.19). It is interesting to see that the effective gravitational constant decreases in

time for all the choices of both Npl and ξ, regardless on the sign and the magnitude

of the latter, which, however, affects the relative decrease of Geff from early times

to today. The PN parameters in Fig. 4.4 shows how the sign of ξ determines the

departure of βPN from 1.

4.2.1 CMB anisotropies and matter power spectra

The footprints of these scalar-tensor theories into the CMB anisotropies angular power

spectra can be understood as follows. The redshift of matter-radiation equality is

modified in ST theories by the motion of the scalar field driven by pressureless matter

and this results in a shift of the CMB acoustic peaks for values ξ 6= 0, as for the IG

case, see e.g. Figs. 3.9. In addition, a departure from Ñpl = 1 induces a further change
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6
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and right panels respectively. Figure taken from Ref. [2].

both in the amplitude of the peaks and their positions. Note that by decreasing the

value of ∆Ñpl it is possible to suppress the deviations with respect to the ΛCDM

model allowing for larger values of the coupling ξ compared to the IG case.

To explicitly see this effect, I show the relative differences with respect to the

ΛCDM model for the lensed CMB angular power spectra anisotropies in temperature

and E-mode polarization and the CMB lensing angular power spectra for different

values of Npl for ξ > 0 and ξ < 0 in Fig. 4.5. In addition, in the same plots I also

the absolute difference of the TE cross-correlation weighted by the square root of the

product of the two auto-correlators. Note that in the CC case, where ξ = −1/6 is

larger than the values of the coupling shown in Fig. 4.5, a smaller ∆Ñpl is needed to

generate effects of the same order of magnitude.

Another important signature of the NMC model is in the matter power spectra,

that I plot in Fig. 4.6 where I show the relative differences for the matter power

spectrum at z = 0 with respect to the ΛCDM model for different values of the

parameters. In all the cases the P (k) is enhanced at small scales, i.e. k & 0.01 h

Mpc−1, compared to the ΛCDM model. This is a generic feature of these theories

and can be traced back Geff decreasing with time. A larger gravitational strength at

early time indeed enhances structure formation. An explicit example of ST theories in

which a weaker gravitational strength at early time helps suppress structure formation

is given in the next Chapter.
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Ñpl = 0.99

ξ= 5× 10−3
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Figure 4.5: From top to bottom: relative differences of the TT-EE-TE-φφ power
spectra with respect to the ΛCDM model for Ñpl = 1, 0.9 (Ñpl = 1.01, 1.1) and
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panel respectively. Figure taken from Ref. [2].

4.2.2 Cosmological constraints from Planck DR2

I now present the results of the of Ref. [2]. Note that the CMB and BAO data are not

the most recent one. All the data sets are described in Chapter 1. Separate MCMCs

for each of the two branches of negative and positive ξ were performed in Ref. [2].

Although this is not strictly necessary, it greatly simplifies the given that different

boundary conditions have to be imposed in each branch.

The results from the MCMC exploration are summarized in Table 4.1. A lower

bound is found for the positive branch of the coupling at 95% CL:

Npl > 0.81 [Mpl], (4.2.6)

ξ < 0.064. (4.2.7)

I show in the left panel o Fig. 4.7 a zoom of the 2D parameter space (H0, ξ) and

compare the result of NMC to the ones for IG for the same data set obtained in

Ref. [222], i.e. Npl = 0. The constraint on ξ is degraded by almost two order of

magnitude (ξ < 0.0075 at 95% CL for IG [222]) due to a degeneracy between Npl and

ξ, see right panel.
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The constraints for the negative branch are (see Fig. 4.8):

Npl < 1.39 [Mpl], (4.2.8)

ξ > −0.11. (4.2.9)

at the 95% CL for P15 + BAO11.

I also quote the derived constraints on the change of the effective Newton’s con-

stant (2.2.19) evaluated between the radiation era and the present time, and also its

derivative at present time at 95% CL:

δGeff

G
> −0.027 , (4.2.10)

Ġeff

G
(z = 0) > −1.4

[
×10−13 yr−1

]
, (4.2.11)

for ξ > 0, and:

δGeff

G
> −0.027 , (4.2.12)

Ġeff

G
(z = 0) > −0.97

[
×10−13 yr−1

]
, (4.2.13)

for ξ < 0.

For the CC case, i.e. fixing ξ = −1/6, results are listed in Tab. 4.4. This model is

severely constrained by data leading to tight upper bound on Npl at 95% CL:

1 < Npl < 1.000038 [Mpl], (4.2.14)
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P15 + BAO11 P15 + BAO11 P15 + BAO11 P15 + BAO11
ΛCDM IG (ξ > 0) (ξ < 0)

ωb 0.02225± 0.00020 0.02224+0.00020
−0.00021 0.02226± 0.00019 0.02226± 0.00021

ωc 0.1186± 0.0012 0.1191±−0.0014 0.1190± 0.0015 0.1189± 0.0015

H0 [km s−1 Mpc−1] 67.78± 0.57 69.4+0.7
−0.9 69.2+0.8

−1.1 69.2+0.7
−1.0

τre 0.066± 0.012 0.063+0.012
−0.014 0.068± 0.014 0.069± 0.013

ln
(
1010As

)
3.062± 0.024 3.059+0.022

−0.026 3.069+0.023
−0.027 3.071± 0.024

ns 0.9675± 0.0045 0.9669+0.0042
−0.0047 0.9674± 0.0046 0.9728± 0.0043

ξ . . . < 0.00075 (95% CL) < 0.064 (95% CL) > −0.011 (95% CL)

Npl [Mpl] . . . 0 > 0.81 (95% CL) < 1.39 (95% CL)

γPN 1 > 0.9970 (95% CL) > 0.995 (95% CL) > 0.997 (95% CL)

βPN 1 1 > 0.99987 (95% CL) < 1.000011 (95% CL)

δGN/GN . . . −0.009+0.003
−0.009 > −0.027 (95% CL) > −0.027 (95% CL)

1013 ĠN(z = 0)/GN [yr−1] . . . −0.37+34
−12 > −1.4 (95% CL) > −0.97 (95% CL)

Table 4.1: Constraints on main and derived parameters for P15 + BAO11 (at 68%
CL if not otherwise stated). In the first column I report the results obtained for the
branch with ξ > 0 and in the second the branch for ξ < 0. In the first column I
report the results obtained for the ΛCDM model with the same dataset [252] and in
the second column IG case, i.e. Npl = 0, for comparison [222].

P15 + BAO11 P15 + BAO11 + R18

ωb 0.02223± 0.00021 0.02228± 0.00021

ωc 0.1188+0.0014
−0.0015 0.1187± 0.0015

H0 [km s−1 Mpc−1] 69.19+0.77
−0.93 70.20± 0.83

τre 0.068+0.012
−0.014 0.070+0.013

−0.015

ln
(
1010As

)
3.070± 0.024 3.074± 0.024

ns 0.9699± 0.0045 0.9728± 0.0043

Npl [Mpl] < 1.000038 (95% CL) 1.000028+0.000012
−0.000014

γPN > 0.99996 (95% CL) 1.00003± 0.00001
βPN < 1.000003 (95% CL) 0.999998± 0.000001

Table 4.2: Constraints on main and derived parameters for Planck TT + lowP +
lensing + BAO in the case of the CC model (at 68% CL if not otherwise stated).

where Ñpl can take only values larger than one in this case.

All these models provide a fit to Planck 2015 and BAO data very similar to ΛCDM

with an improvement of ∆χ2 ∼ −2.6 for all the models considered above. Due to the

limited improvement in ∆χ2 at the expense of additional parameters, none of these

models is preferred at a statistically significant level with respect to ΛCDM.

H0 tension. As explained above, the model mimics a dark radiation con-

tribution at early times so it may help alleviate the H0 tension. Indeed, although

constraints compatible with the ΛCDM values for the standard cosmological parame-

ters are found, the shifts in H0 deserve a particular mention and the mean values for

H0 are larger for all the models studied here. Fig. 4.9 shows how the 2D marginalized

contours for (H0, Npl) have a degeneracy. I find:

H0 = 69.19+0.77
−0.93 [km/s/Mpc], (4.2.15)

87



This value is larger, but compatible at 2σ level with the ΛCDM value (H0 = 67.78±
0.57 [km/s/Mpc]). However, it is still lower than the local measurement of the Hub-

ble constant [253] (H0 = 73.52 ± 1.62 [km/s/Mpc]) obtained by including the MW

parallaxes from R18 and Gaia to the rest of the data from [254]. Therefore the

tension between the model dependent estimate of the Hubble parameter from P15

plus BAO11 data and the local measurement from [253] decreases to 2.3σ from the

3.3σ of the ΛCDM model. For comparison, by varying the number degree of rela-

tivistic species Neff in Einstein gravity, a lower value for the Hubble parameter, i.e.

H0 = 68.00±1.5 [km/s/Mpc] (with Neff = 3.08+0.22
−0.24) for Planck TT + lowP + lensing

+ BAO at 68% CL, is obtained compared to the CC case reported in Eq. (4.2.15).

When the local measurement of the Hubble constant [253] is included in the fit the

constraint is instead:

H0 = 70.20± 0.83 [km/s/Mpc], (4.2.16)

Npl = 1.000028+0.000012
−0.000014 [Mpl] . (4.2.17)
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Figure 4.9: [Left] 2D marginalized confidence levels at 68% and 95% for (H0, Npl)
for conformal coupling with P15 + BAO11 + R18. [Right] 2D marginalized confidence
levels at 68% and 95% for (H0, γPN) for NMC ξ > 0 (red) and IG (blue) with P15 +
BAO11. Figure taken from Ref. [2].

Constraints on the post-Newtonian parameters. Finally, I quote the derived

constraints on the post-Newtonian parameters. In this class of models γPN, βPN 6= 1
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according to Eqs. (2.2.21)-(2.2.22) at 95% CL:

0.995 < γPN < 1, (ξ > 0) (4.2.18)

0.99987 < βPN < 1, (4.2.19)

0.997 < γPN < 1, (ξ < 0) (4.2.20)

1 < βPN < 1.00001. (4.2.21)

See Fig. 23 for the 2D marginalized constraints in the (γPN, βPN) plane. See Fig. 24

for the 2D marginalized constraints in the (H0, γPN) plane for ξ > 0 compared to the

IG case studied in [222].
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β
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Figure 4.10: 2D marginalized confidence levels at 68% and 95% for (γPN, βPN) for
NMC ξ > 0 [left] and ξ < 0 [right] with P15 + BAO11. Figure taken from Ref. [2].

The tight constraint on Npl for the CC case correspond at 95% CL to:

0 < 1− γPN < 4× 10−5, (4.2.22)

0 < βPN − 1 < 3× 10−6, (4.2.23)

for Planck TT + lowP + lensing + BAO, where the latter is tighter than the con-

straint from the perihelion shift βPN−1 = (4.1±7.8)×10−5 [85] and the former is twice

the uncertainty of the Shapiro time delay constraint γPN−1 = (2.1±2.3)×10−5 [134].

4.2.3 Updated cosmological constraints from Planck DR3

I now update the constraints to the most recent Planck DR3 and complementary data

sets. The constraints are summarized in Table 4.3.
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P18 P18 + BAO P18 + BAO + R19
ωb 0.02244± 0.00015 0.02241± 0.00013 0.0250± 0.0013
ωc 0.1197± 0.0012 0.11990± 0.00094 0.1195± 0.0010
H0 [km s−1Mpc−1] 69.0+0.7

−1.2 (3.2σ) 68.62+0.47
−0.66 (3.6σ) 69.64+0.65

−0.73 (2.8σ)
τ 0.0554+0.0064

−0.0081 0.0551+0.0058
−0.0076 0.0562+0.0066

−0.0077

ln
(
1010As

)
3.048+0.013

−0.016 3.047+0.011
−0.015 3.050+0.013

−0.015

ns 0.9684± 0.0047 0.9668± 0.0039 0.9707± 0.0040
Npl [Mpl] < 1.000028 (95% CL) < 1.000018 (95% CL) < 1.000031 (95% CL)
γPN > 0.999972 (95% CL) > 0.999982 (95% CL) > 0.999969 (95% CL)
βPN < 1.0000023 (95% CL) < 1.0000015 (95% CL) < 1.0000025 (95% CL)
δGN/GN > −0.026 (95% CL) > −0.017 (95% CL) > −0.029 (95% CL)

1013ĠN/GN [yr−1] > −3.8× 10−9 (95% CL) > −2.5× 10−9 (95% CL) > −4.2× 10−9 (95% CL)
GN/G > 0.999986 (95% CL) > 0.999991 (95% CL) > 0.999985 (95% CL)

Ωm 0.299+0.011
−0.009 0.3023± 0.0061 0.2928± 0.0064

σ8 0.832+0.011
−0.007 0.8299+0.0060

−0.0088 0.8364+0.0089
−0.011

rs [Mpc] 146.71+0.46
−0.33 146.82+0.37

−0.28 146.53+0.51
−0.42

∆χ2 2.2 0.8 −1.7

Table 4.3: Updated constraints on main and derived parameters (at 68% CL if not
otherwise stated) considering P18 in combination with BAO and BAO + R19 for the
CC model. Figure taken from Ref. [4].
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Figure 4.11: [Left] Marginalized joint 68% and 95% CL regions 2D parameter space
using P18 (P15) data in combination BAO in blue (red). [Right] Marginalized joint
68% and 95% CL regions 2D parameter space using P18 (gray) in combination with
BAO (blue) and BAO + R19 (red) for the CC model. Figure taken from Ref. [4].
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The coupling to gravity is constrained to Npl < 1.000028 Mpl at 95% CL for

P18 and Npl < 1.000018 Mpl at 95% CL in combination with BAO data. These

constraints update the ones obtained with P15 in combination with D10-DR11 BAO

Npl < 1.000038 Mpl at 95% CL in Ref. [2], presented in the previous Section. Again,

there is a clear degeneracy between H0 and the coupling to gravity Npl as visible from

Fig. 4.11. The results do not vary much for NMC, for which the same cosmological

parameters and uncertainties are obtained if ξ is allowed to vary, with prior range

[0, 0.1] and [−0.1, 0], together with Npl. In particular, for the positive branch (Npl <

Mpl, ξ > 0) of the coupling I obtain:

Npl > 0.64 Mpl (> 0.60 Mpl) , ξ < 0.046 (< 0.055) (4.2.24)

both at 95% CL and H0 =
(
68.78+0.56

−0.84

)
km s−1Mpc−1 (70.14+0.86

−0.72 km s−1Mpc−1)

with P18+BAO (P18+BAO+R19). The constraints for the negative branch (Npl >

Mpl, ξ < 0) are:

Npl < 1.05 Mpl (< 1.04 Mpl) , ξ > −0.042 (> −0.051) (4.2.25)

both at 95% CL and H0 =
(
68.76+0.54

−0.78

)
km s−1Mpc−1 (69.74 ± 0.75 km s−1Mpc−1)

with P18+BAO (P18+BAO+R19).

Consistently with the constraints on the coupling parameters ξ and Npl, I find also

tighter limits on the variation of the Newton’s gravitational constant and its derivative

at present time. The following 95% CL bounds for P18 + BAO are obtained:

δGN

GN

(z = 0) > −0.017 ,
ĠN

GN

(z = 0) > −0.25× 10−23 yr−1 . (4.2.26)

Note that whereas the constraints on δGN/GN(z = 0) hardly change for different

coupling F (σ), the limits on ĠN/GN(z = 0) strongly depend on the details of the

model, but are anyway much tighter than those obtained by the Lunar Laser Ranging

experiment, see Chapter 2. It is interesting to note from Table 4.3 that the bounds

on γPN , βPN are now tighter than those in the Solar System. Furthermore, note that

although the results of this Section are obtained using V (σ) ∝ F 2(σ), they are stable

with respect to considering V (σ) = Λ, since the potential is very flat around the

origin. This is shown in Fig. 4.12.

H0 tension. Concerning consequences on the H0 tension, the inferred value of

the Hubble constant is H0 =
(
69.0+0.7

−1.2

)
km s−1Mpc−1, compared to the ΛCDM case,

i.e. H0 = (67.36± 0.54) km s−1Mpc−1, for P18.

The addition of BAO drives the value for H0 to lower values, for CC to H0 =
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Npl using P18 + BAO data for CC [left] and IG [right] (see Sections 3.5 and 4.4) with
V (σ) = λF (σ)2/4 (red) and V (σ) = Λ (blue). Figure taken from Ref. [4].

(
68.62+0.47

−0.66

)
km s−1Mpc−1. Note however that these values are larger than the cor-

responding ΛCDM value, i.e. H0 = (67.66± 0.42) km s−1Mpc−1. Again, this is very

important as it shows that the H0 is generically higher in these models, even if R19

is not included.

Once R19 is included, the constraint change to H0 =
(
69.64+0.65

−0.73

)
km s−1Mpc−1 at

68% CL, Npl < 1.000031 Mpl at 95% CL for CC. Fig. 4.11 shows how the degeneracy

between H0 and ξ can easily accommodate for larger H0 value with respect to the

ΛCDM concordance model reducing the H0 tension from 4.4σ to 3.2σ for P18 and

3.6σ including BAO for CC. The reduction of the tension is due to the combination of

having an higher mean and larger uncertainties on H0 compared to the ΛCDM model.

Note that, although the tension with R19 is not solved, the CC model considered here

can produce values of H0 in complete agreement with the local value of H0 measured

using red giants [255].

4.3 Initial conditions on the scalar field σi

As mentioned in Section 4.1, fixing the boundary conditions on the scalar field so to

recover consistency with laboratory experiments is not the only possibility. Indeed,

as shown in Section 4.2, when the coupling is negative the scalar field decreases

and the non-minimal coupling tends to F (σ) → F (σ0) ∼ N2
pl. In the simplest case

Npl = Mpl, this suggests that consistency with laboratory and Solar System tests

might be recovered even without imposing any boundary condition on σ in some

regions of the parameter space. This approach was explored in Ref. [3], where the
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Figure 4.13: Evolution of the scalar field σ for the models with n = 2, ξ < 0 (purple
lines), n = 4, ξ < 0 (magenta lines), n = 2, ξ > 0 (red lines) and n = 4, ξ > 0
(brown lines), together with the EDE model of Ref. [199] (orange lines) and the
ΛCDM+Neff model (cyan lines). In order to compare the evolution of our model to
the aforementioned ones, I set the cosmological parameters to the bestfit values in
Table 3 of Ref. [199] and set ξ = −1/6. In the cases with ξ > 0, I change the values
of the initial conditions on the scalar field and the coupling ξ as in the plot legends.
Figure taken from Ref. [3].

analysis was carried out for F (σ) = M2
pl + ξσn and V (σ) = Λ, for both n = 2 and

n = 4.

I plot the evolution of the scalar field σ is shown in Fig. 4.13 and other relevant

background quantities is shown in Fig. 4.14 for the case of n = 2 and n = 4 (see

caption for the parameters used in the plots). As can be seen from the central panel

in Fig. 4.14, the scalar field is nearly frozen deep in the radiation era, and is driven

by the coupling to non-relativistic matter around the radiation-matter equality era

z ∼ O(103 − 104), as evident from the Klein-Gordon equation (2.2.14), decreasing

(growing) for ξ < 0 (ξ > 0).

In order to confront with other attempts at solving the H0 tension, I also plot the

relevant quantities for two other reference models, i.e. the ∆Neff model and the EDE

Rock’n Roll model introduced Ref. [199]. Let me stress again the important differences

between the model studied here, and the two other reference cases. By considering

our model as Einstein gravity analogues [110, 111], the resulting effective DE has an

equation of state wDE ≡ pDE/ρDE ∼ 1/3 during radiation era (see e.g. Fig. 4.1) and

the contribution of the scalar field to the total expansion rate H(z) thus resembles

the one from an extra dark radiation component. This is confirmed by the top panel

in Fig. 4.14, where I plot the energy fraction of the scalar field, parameterized by

Ωσ = ρDE/3H
2F0 - where the subscript 0 denotes quantities evaluated at z = 0 - and

compare it to the ΛCDM+Neff model. As can be seen, when ξ < 0, the scalar field

contributes to the total energy density in a way that is very similar to the ΛCDM
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Newton constant. See Fig. 4.13 for the parameters used. Figure taken from Ref. [3].

+Neff model. Having started with the same ξ < 0 and initial condition σi/Mpl < 1 in

both the n = 2 and n = 4 case, the term multiplying the square bracket in Eq. (2.2.14)

is smaller in the latter case and the rolling of the scalar field towards smaller values

is less efficient. The equation of state wDE is not 1/3 anymore in general when the

scalar field is subsequently driven by matter.

The model, as already mentioned in Chapter 3, is therefore different from EDE

models recently proposed in the literature (see e.g. Refs. [189, 198, 199, 201, 202]) for

which the equation of state is close to −1 at early times. Again, it is important to

stress that the scalar field moves in a natural way without the need of any fine tuning

after radiation-matter equality, being driven by non-relativistic matter, and is not

important just around recombination.

It is also instructive to see the effects of removing the boundary conditions on the

scalar field. For ξ < 0, being the scalar field contribution negligible at late times, both

GN and Geff are very close to G today and the model is consistent with laboratory

and Solar System experiments for a large volume of the parameter space. However,

for a positive coupling ξ, σ grows and Geff , which is very close to G at high redshifts,

deviates substantially from it at late times, as can be seen from the right panel in

Fig. 4.14.

4.3.1 Constraints from cosmological observations

Since the boundary condition on the scalar field is now removed, a prior on its initial

value deep in the radiation era has to be chosen. In Ref. [3] flat priors consistent

with the stability conditions in Sec. 4.1 on the extra parameters were considered, i.e.

ξ ∈ [−0.9, 0.9] and σi/Mpl ∈ [0, 0.9], for n = 2 case with free ξ and σi/Mpl ∈ [0, 0.9]
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in the CC case. The analysis has been also carried out for the case with n = 4, in

which the prior on ξ had to be restricted to ξ ∈ [−0.9, 0.2] as larger positive values

for the coupling ξ lead to a deviation of order 10−1 from GR as can be seen from

Fig. 4.14.

Note that the analysis differs from the one of Refs. [2] presented in Section 4.2.2

not only in the updated data, but also in theoretical priors: now flat priors are set

on (ξ, σi), whereas in [2] flat priors were assumed on (ξ, ∆Ñpl), with ξ > 0 and ξ < 0

considered separately, and ∆Ñpl was also allowed to vary, with a boundary condition

on σ0 (the value of the scalar field today) to fix consistency between Geff and G.

The results of our cosmological analysis for the CC (n = 2 with free ξ) model are

summarized in Fig. 4.15 (Fig. 4.16), where I show the reconstructed two-dimensional

posterior distributions of main and derived parameters, and in Table 4.4 (Table 4.5),

where I report the reconstructed mean values and the 68% and 95% CL. I also report

the results for the n = 4 case in Table 4.6

H0 tension. The plots show that all the models, regardless of the dataset con-

sidered, lead to a larger H0 than in ΛCDM. I find H0 = 68.47+0.58
−0.86 (H0 = 68.40+0.59

−0.80)

km s−1Mpc−1 at 68% CL for CC (for free ξ) with P18 data only. As in other sim-

ilar models, as also mentioned in Chapter 4, there is a shift in ns , ωc , σ8 toward

larger values and smaller values for ωb compared to the baseline ΛCDM model. When

BAO and SH0ES data are combined, i.e. P18+BAO+R19, I obtain H0 = 69.29+0.59
−0.72

(H0 = 69.10+0.49
−0.66) km s−1Mpc−1 for CC (for free ξ). Higher values for H0 can be

obtained by substituting the combination of measurements V191 to R19, as can be

seen from Tables 4.4 and 4.5. Note that similar results are also obtained in the n = 4

case, for which the value of H0 = 68.05 ± 0.56 (H0 = 69.09+0.52
−0.69) km s−1Mpc−1 with

P18 (P18+BAO+R19) data slightly smaller than th n = 2 case. For this reason, I

focus the discussion on the n = 2 case in the following, commenting only when results

for n = 4 substantially differ.

In Tables 4.5, 4.4 and 4.6, I also report the difference in the best-fit of the model

with respect to ΛCDM, i.e. ∆χ2 = χ2 − χ2(ΛCDM), where negative values indicate

an improvement in the fit of the given model with respect to the ΛCDM for the same

dataset 2. Although the models studied here provide a similar or slightly worst fit

1With V19, I denote a tight Gaussian likelihood, i.e. H0 = 73.3 ± 0.8 km s−1Mpc−1 [146],
obtained from a combination of H0 measurements from R19 [145], MIRAS [150], CCHP [255],
H0LiCOW [159], MCP [256] and SBF. The reader should be warned that the V19 value is ob-
tained by neglecting covariances between the aforementioned observations, as stressed in Ref. [146].
Nevertheless, V19 can give an idea of how the model can respond to a possible future worsening of
the H0 tension.

2Note that the ΛCDM reference cosmology in our case has massless neutrinos, differently from
the assumption adopted by the Planck collaboration of one massive neutrino with mν = 0.06 eV
consistent with a normal hierarchy with minimum mass allowed by particle physics. The differences
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to P18 data compared to ΛCDM, the fit gets better ∆χ2 ∼ −5 (−6.8) for CC (free

ξ) when BAO+R19 are combined. Higher values of ∆χ2 are obviously obtained by

substituting V19 to R19. In order to give an idea of whether the improvement in the

fit actually leads to a statistical preference for the model, I compute values of the

Aikike (Bayes) information criteria ∆AIC (∆BIC) defined as ∆AIC = ∆χ2 + 2∆p

(∆BIC = ∆χ2+∆p lnN), where ∆p is the number of extra parameters with respect to

ΛCDM model and N is the number of data points considered in the MCMC analysis
1 [257]. According to both criteria, all the models are penalized compared to ΛCDM

for P18 data only due to the addition of parameters. Only for AIC the model with

n = 2 is favoured for (CC) free ξ compared to ΛCDM when BAO and R19 are

combined. Substituting V19 to R19 makes the statistical preference of the model

stronger in general.

Constraints on modified gravity parameters: The constraints on the modi-

fied gravity parameter are very different in the CC and n = 2 case, which are a one-

and two-parameter extension of the ΛCDM model. Although the mean values are very

similar, constraints are very much looser in the latter case. This is because, when ξ

is large and negative, the decreasing of the scalar field is very efficient and thus its

effect redshifts away even before matter-radiation equality, leaving smaller imprints

on the CMB. Note that positive values of ξ, for which the scalar field increases after

matter-radiation equality contributing to the late-time background evolution, seem

disfavoured by the data for our priors. In particular for P18, I find an upper bound

ξ < 0.052 (ξ < 0.02) at the 2σ level for n = 2 (n = 4). The upper bound is even

more stringent when BAO + R19 data are added to the analysis, for which ξ < 0.047

(ξ < −0.026) at the 2σ level for n = 2 (n = 4).

Comparison with BBN constraints: With the choice of the priors as above,

the departure of
√
F from Mpl can also be constrained by BBN, as explained in

Chapter 2 Section [128–130, 258]. Since the scalar field is frozen at very early times,

the BBN constraints reported in [128, 129] would imply ξσni = 0.01+0.20
−0.16 at 68% CL,

which are consistent, but less stringent, than the constraints reported in Tables 4.4,

4.5 and 4.6, as already mentioned in previous works on scalar-tensor [222]. The

constraints from the MCMC analysis are −0.014+0.026
−0.052 (> −0.0150) for the n = 2

(CC2) and −0.0010+0.0029
−0.0076 for the n = 4 case at 95% CL using P18 data only. When

adding BAO+R19 a higher ξσni is obtained and the constraints change to −0.025+0.037
−0.070

with respect to the baseline Planck results in the estimate of the cosmological parameters due
the choice Neff = 3.046 and mν = 0 is small, except for a shift towards higher values for H0, as
H0 = 67.98± 0.54 (H0 = 68.60± 0.43) km s−1Mpc−1 for P18 (P18+BAO+R19).

1I consider 2352 points for P18, 8 for BAO and 1 (6) for R19 (V19).
2Note that, in the CC case, ξσ2

i < 0 by construction.
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Figure 4.15: Constraints on main and derived parameters of the CC model with
n = 2 and ξ = −1/6 from Planck 2018 data (P18), P18 in combination with BAO and
SH0ES measurements and P18 in combination with BAO and a combined prior which
takes into account all the late time measurements. Parameters on the bottom axis
are sampled MCMC parameters with flat priors, and parameters on the left axis are
derived parameters (with H0 in [km s−1Mpc−1]). Constraints for the ΛCDM model
obtained with P18 data are also shown for a comparison. Contours contain 68% and
95% of the probability. Figure taken from Ref. [3].

(> −0.0234) for the n = 2 (CC) and −0.013+0.021
−0.038 for the n = 4 case at 95% CL. Note

that ξσni is more constrained in the CC case compared to n = 2 and n = 4, as the

coupling is fixed to ξ = −1/6.

Comparison with PN: The derived cosmological PN parameters are well consis-

tent with GR and their uncertainties are comparable with bounds from Solar System

experiments [85, 134]. Again, because of the large errors on ξ, the bounds in the

n = 2 model are somewhat looser than in the CC model. Therefore, the CC (n = 2)

model potentially offers a simple one (two) modified gravity parameter extension to

the baseline ΛCDM that naturally eases the H0 tension and can be consistent at 2σ

with Solar System constraints on the deviation from GR. I have checked that the

inclusion of Solar System constraints in the analysis by means of a Gaussian prior

based on the Cassini constraint γPN − 1 = 2.1 ± 2.3 × 10−5 [134] has a very small

impact in our constraints on the six standard cosmological parameters.

For the representative example of n = 2 with free ξ the constraint on H0 ob-

tained from P18+BAO+R19 changes to H0 = 69.00+0.47
−0.57 km s−1Mpc−1. The con-

straints on the modified gravity parameters instead change substantially. Thanks

to the constraining power of the prior I find σi = 0.19+0.13
−0.08Mpl at 68% CL and
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γPN − 1 > −2.2 · 10−6 and a bound on ξ < −0.15 at 95% CL. Although ξ remains

unconstrained, note that the upper limit is tighter than the the one obtained without

the prior information on γPN. Negative values of ξ are more favored as they lead to a

more efficient rolling of the scalar field toward smaller values, and therefore a smaller

γPN − 1.

Robustness and caveats of the inclusion of SNe data: So far I did not use

the SNe Ia luminosity distance because the time evolution of gravitational constant

changes the peak luminosity of SNe and this needs to be properly accounted in the

analysis [235–238]. However, for the bestfit value obtained from P18 + BAO + R19

with the priors on γPN, the relative change of Geff from G today is at most 10−5 in

the relevant range of redshifts for SNe Ia. Under the assumption that the effect of

time evolution of Geff on the magnitude-redshift relation of SNe Ia can be ignored,

the Pantheon Sample of SNe can be used to check the robustness of our constraint

on H0 [84]. I obtain H0 = 69.28+0.58
−0.74 (H0 = 68.98+0.46

−0.54) km s−1Mpc−1 for CC (for

free ξ) using P18+BAO+R19+Pantheon with the prior on γPN. This shows that the

inclusion of SNe Ia data does not change the constraint on H0. Note also that the

modification of the gravitational constant can also change the low-redshift distance

ladder measurements of the Hubble constant [233, 234]. However, again due to the

smallness of the relative change of Geff from G today, this effect can be ignored safely

in our models.

Comparison with other EDE models: Models based on a sharp energy in-

jection around the time of matter-radiation equality lead to a value of H0 which

can be higher than the ones found within our model for any choice of n and ξ al-

though this is model dependent (see e.g. Refs. [189,198,199,201,202]). However, the

radiation-like behavior of the scalar field in theories described by the action (2.2.3), is

completely generic and, provided that the coupling ξ is negative, the scalar field con-

tribution quickly becomes negligible thanks to the coupling to non-relativistic matter

and modifies essentially only the early time dynamics. For this reason, a higher H0

than in ΛCDM is a natural outcome of the NMC for a large portion of the parameter

space compared to EDE models, which have more extra parameters to tune.

4.4 Cosmological constraints on the Induced Grav-

ity model

Before ending this Chapter, I present the constraints on the IG model, introduced in

Section 3.5. Like Section, I consider here a very flat potential of the form V (σ) =
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Figure 4.16: Constraints on main and derived parameters of the model with n = 2
and ξ as a main parameter from Planck 2018 data (P18), P18 in combination with
BAO and SH0ES measurements and P18 in combination with BAO and a combined
prior which takes into account all the late time measurements. Parameters on the
bottom axis are our sampled MCMC parameters with flat priors, and parameters on
the left axis are derived parameters (with H0 in [km s−1Mpc−1]). Constraints for the
ΛCDM model obtained with P18 data are also shown for a comparison. Contours
contain 68% and 95% of the probability. Figure taken from Ref. [3].

CC P18 P18 + BAO + R19 P18 + BAO + V19

102ωb 2.242± 0.015 2.248± 0.014 2.252± 0.013
ωc 0.1197± 0.0012 0.11910± 0.00099 0.1188± 0.0010
100 ∗ θs 1.04194± 0.00030 1.04205± 0.00028 1.042± 0.00028
τreio 0.0547± 0.0077 0.0570± 0.0071 0.05803± 0.0075
ln
(
1010As

)
3.046± 0.015 3.049± 0.014 3.053± 0.015

ns 0.9675± 0.0046 0.9695± 0.0038 0.9734± 0.0037

σi [Mpl] 0.1312+0.039
−0.13 0.224+0.13

−0.081 0.3585+0.078
−0.047

H0 [km s−1Mpc−1] 68.47+0.58
−0.86 69.29+0.59

−0.72 70.56± 0.6

σ8 0.8272+0.0063
−0.0081 0.8313+0.0079

−0.011 0.841± 0.010

rs [Mpc] 146.97+0.33
−0.29 146.83+0.48

−0.34 146.4± 0.45

ξσ2
i [M2

pl] > −0.0150 > −0.0234 −0.022+0.016
−0.015

σ0 [Mpl] 0.004017+0.0012
−0.004 0.006841+0.004

−0.0025 0.01102+0.0024
−0.0015

γPN − 1 > −0.95 · 10−5 > −1.5 · 10−5
(
−1.4+1.0

−0.9

)
· 10−5

βPN − 1
(

0.23+0.61
−0.34

)
· 10−6

(
0.53+0.75

−0.61

)
· 10−6

(
1.16+0.78

−0.84

)
· 10−6

∆χ2 +0.42 −5.0 −13.64

Table 4.4: Constraints on main and derived parameters considering P18, P18 in
combination with BAO and SH0ES measurements and P18 in combination with BAO
and a combined prior which takes into account all the late time measurements for the
CC model n = 2 and ξ = −1/6. I report mean values and the 68% CL, except for the
modified gravity derived parameters in the third block, for which I report the 95%
CL.
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n = 2 P18 P18 + BAO + R19 P18 + BAO + V19

102ωb 2.241± 0.015 2.249± 0.014 2.253± 0.014

ωc 0.1198± 0.0012 0.11903+0.00095
−0.0011 0.1190± 0.0012

100 ∗ θs 1.04193± 0.00030 1.04205± 0.00031 1.04210± 0.00029
τreio 0.0544± 0.0076 0.0564± 0.0076 0.0578± 0.0072
ln
(
1010As

)
3.045± 0.0014 3.048± 0.015 3.052± 0.014

ns 0.9673± 0.0046 0.9699± 0.0046 0.9724± 0.0041

σi [Mpl] < 0.224 0.260+0.088
−0.19 > 0.46

ξ < 0.052 (95% CL) < 0.047 (95% CL) < −0.0283(95% CL)

H0 [km s−1Mpc−1] 68.40+0.59
−0.80 69.10+0.49

−0.66 70.64± 0.71

σ8 0.8456+0.013
−0.018 0.8370+0.0072

−0.020 0.8450+0.0088
−0.014

rs [Mpc] 147.01± 0.36 146.95+0.48
−0.30 146.08+0.77

−0.89

ξσ2
i [M2

pl] −0.014+0.026
−0.052 −0.025+0.037

−0.070 −0.030+0.030
−0.074

σ0 [Mpl] 0.1046+0.40
−0.18 0.09+0.46

−0.19 0.20+0.33
−0.26

γPN − 1 > −1.73 · 10−3 > −1.56 · 10−3 > −1.26 · 10−3

βPN − 1 −
(

3.0+1.8
−1.6

)
· 10−5 −

(
3.0+1.7
−1.4

)
· 10−5 −

(
1.5+2.9
−2.5

)
· 10−5

∆χ2 +0.52 −6.8 −18.44

Table 4.5: Constraints on main and derived parameters considering P18, P18 in
combination with BAO and SH0ES measurements and P18 in combination with BAO
and a combined prior which takes into account all the late time measurements for
n = 2. I report mean values and the 68% CL, except for the modified gravity derived
parameters in the third block, for which I report the 95% CL.

n = 4 P18 P18 + BAO + R19 P18 + BAO + V19

102ωb 2.240± 0.015 2.250± 0.013 2.258± 0.013
ωc 0.1198± 0.0012 0.11892± 0.00093 0.11830± 0.00097
100 ∗ θs 1.04190± 0.00028 1.04205± 0.00028 1.04217± 0.00028

τreio 0.0545± 0.0074 0.0564± 0.0076 0.0596+0.0070
−0.0078

ln
(
1010As

)
3.045± 0.014 3.049± 0.015 3.055± 0.015

ns 0.9662± 0.0043 0.9706+0.0037
−0.0042 0.9757+0.0039

−0.0044

σi [Mpl] < 0.257 0.37+0.20
−0.17 0.55+0.13

−0.11

ξ < 0.02 (95% CL) < −0.026 (95% CL) < −0.031(95% CL)

H0 [km s−1Mpc−1] 68.05± 0.56 69.09+0.52
−0.69 70.23± 0.54

σ8 0.8247± 0.0061 0.8370+0.0072
−0.020 0.845+0.010

−0.018

rs [Mpc] 147.06± 0.28 146.96+0.39
−0.33 146.69+0.38

−0.43

ξσ4
i [M4

pl] −0.0010+0.0029
−0.0076 −0.013+0.021

−0.038 −0.035+0.038
−0.057

σ0 [Mpl] 0.18+0.39
−0.22 0.18+0.25

−0.17 0.20+0.21
−0.13

γPN − 1 > −1.72 · 10−4 > −1.65 · 10−4 > −2.34 · 10−4

βPN − 1
(
−0.8+11.0

−9.4

)
· 10−6

(
0.4+6.1
−3.8

)
· 10−6

(
2.5+7.4
−6.6

)
· 10−6

∆χ2 −0.58 −1.14 −9.42

Table 4.6: Constraints on main and derived parameters considering P18, P18 in
combination with BAO and SH0ES measurements and P18 in combination with BAO
and a combined prior which takes into account all the late time measurements for
n = 4. I report mean values and the 68% CL, except for the modified gravity derived
parameters in the third block, for which I report the 95% CL.
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Figure 4.17: [Left] Marginalized joint 68% and 95% CL regions 2D parameter space
using current versus previous releases of P18 data and BOSS BAO data from [221,222].
[Right] Marginalized joint 68% and 95% CL regions 2D parameter space using P18
(gray) in combination with BAO (blue) and BAO + R19 (red) for the IG model.
Figure taken from Ref. [4].

λF (σ)2/4 so that the theory is effectively massless and the motion of the scalar field

is entirely driven by the coupling to pressureless matter. Again, the results are stable

when switching to an exactly flat potential V (σ) = Λ, see Fig. 4.12.

Unlike the NMC model, here the scalar field undergoes a super-Planckian motion

so that it is never convenient to set initial conditions on σi like in Section 4.3 and one

is forced to use the procedure described in Section 4.2 and set the boundary condition

in Eq. (4.2.1) on the value of the scalar field today σ0. I now discuss the cosmological

constraints on the IG model obtained in Ref. [4] using such a procedure.

The constraint on the coupling parameter ξ obtained from the CMB alone is almost

half of the bound obtained with P15 which was ξ < 0.0017 at 95% CL. With the full

high-` polarization information and the new determination of τ I obtain ξ < 0.00098

at 95% CL. Adding the BAO data, I obtain ξ < 0.00055 at 95% CL, which is 25%

tighter compared to the limit obtained with P15 in combination with BAO DR10-11,

i.e. ξ < 0.00075 and half of the one obtained with P13 in combination with BAO

DR10-11, i.e. ξ < 0.0012, see the left panel of Fig. 4.17. As can be seen from Tab. 4.7,

BAO data strongly constrain the model and are useful to break the degeneracy in the

H0 − ξ parameter space.

Concerning the H0 tension, I find a higher value for the Hubble parameter, i.e.

H0 =
(
69.6+0.8

−1.7

)
km s−1Mpc−1 compared to the ΛCDM case, i.e. H0 = (67.36± 0.54)

km s−1Mpc−1, for P18. The addition of BAO drives the value for H0 to a lower

H0 =
(
68.78+0.53

−0.78

)
km s−1Mpc−1, but again larger than the corresponding ΛCDM
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P18 P18 + BAO P18 + BAO + R19

ωb 0.02244+0.00014
−0.00016 0.02239± 0.00013 0.02246± 0.00013

ωc 0.1198± 0.0012 0.1201± 0.0011 0.1200± 0.0011
H0 [km s−1Mpc−1] 69.6+0.8

−1.7 (2.7σ) 68.78+0.53
−0.78 (3.5σ) 70.06± 0.81 (2.4σ)

τ 0.0551+0.0065
−0.0078 0.0545+0.0063

−0.0071 0.0554+0.0064
−0.0073

ln
(
1010As

)
3.047+0.014

−0.015 3.046± 0.013 3.049± 0.013
ns 0.9680+0.0044

−0.0052 0.9662± 0.0038 0.9688± 0.0037
ζIG < 0.0039 (95% CL) < 0.0022 (95% CL) 0.00202+0.00090

−0.00100

ξ < 0.00098 (95% CL) < 0.00055 (95% CL) 0.00051+0.00043
−0.00046 (95% CL)

γPN > 0.9961 (95% CL) > 0.9978 (95% CL) 0.9980+0.0010
−0.0009

δGN/GN (z=0) > −0.029 (95% CL) > −0.016 (95% CL) −0.0149± 0.0068

1013ĠN/GN (z=0) [yr−1] > −1.16 (95% CL) > −0.66 (95% CL) −0.61± 0.28
GN/G (z=0) > 0.9981 (95% CL) > 0.9989 (95% CL) 0.99899+0.00050

−0.00045

Ωm 0.2940+0.0150
−0.0095 0.3013+0.0072

−0.0062 0.2903± 0.0068
σ8 0.8347+0.0074

−0.0130 0.8308+0.0067
−0.0096 0.840± 0.010

rs [Mpc] 146.37+0.79
−0.40 146.63+0.55

−0.34 146.03+0.67
−0.59

∆χ2 0.2 0.2 −3.1

Table 4.7: Constraints on main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO + R19 for the IG model.

value, i.e. H0 = (67.66± 0.42) km s−1Mpc−1.

Once R19 is included, I obtain H0 = (70.1± 0.8) km s−1Mpc−1 at 68% CL and a

constraint on the coupling of ξ = 0.00051+0.00043
−0.00046 at 95% CL for IG. Fig. 4.17 shows

how the degeneracy betweenH0 and ξ can easily accommodate for largerH0 value with

respect to the ΛCDM concordance model reducing the H0 tension from 4.4σ to 2.7σ

for P18 and 3.5σ including BAO. Again, as for the NMC model, the reduction of the

tension is due to the combination of having an higher mean and larger uncertainties

on H0 compared to the ΛCDM model. Note that H0 is about ∼ 0.5 km s−1Mpc−1

higher in the IG compared to the CC case for every choice of datasets combination,

see Section 4.2.

4.5 Summary of the results

In this Chapter, I have studied the evolution of NMC models described by the La-

grangian Eq. (2.2.3) with F (σ) = N2
pl + ξσ2 and a potential of the form V (σ) =

λF (σ)2/4 or V (σ) = Λ and constrained them with cosmological data. I explored two

possibilities to set the boundary conditions on the free parameters of the theory. The

first one, adopted in Refs. [2, 4], is to set the Newton constant G to be consistent

with laboratory measurements and the second one, adopted in Ref. [3], is instead to

leave the initial condition on σ deep in the radiation as a free input parameter with

Npl = Mpl. A particularly interesting case is the CC one, i.e. ξ = −1/6, justified by

theoretical arguments, therefore reducing to 1 the number of extra parameters with
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respect to the baseline ΛCDM model.

The results of this Chapter show that NMC models generically lead to a larger

H0, with interesting consequences on the H0 tension which is always alleviated within

these models, no matter what combination of data sets is considered. Although the

reduction in the tension is not as effective as in EDE models (see Chapter 4), the

bright side is the degree of fine tuning, which is considerably reduced within NMC

since the requirement of σ moving around recombination is naturally embedded in

this framework as triggered by its coupling to pressureless matter fields, unlike EDE

models, where the potential has to be finely tuned.

In the particular case of a negative coupling, for which σ decreases, the consistency

with both laboratory and Solar System experiments is recovered without the need of

any screening mechanism. It is very interesting to see that in this case, there is

no need to impose specific boundary conditions on the scalar field and cosmological

data alone seem to favour the negative branch of the coupling. Note that the results

obtained here for the CC case have recently been confirmed in Ref. [259], where also

weak lensing data and the full shape of the power spectrum have been used.

A relevant limit of the NMC model, i.e. the IG or eJBD model, which is the

archetypal example of ST theory, has also been discussed in Chapters 2 and 3. In this

model I consider only a positive coupling and therefore the analysis is limited to the

case in which the consistency of the Newton constant with laboratory experiments is

set. However, even imposing such a condition, Solar System constraints are tighter

than those from cosmology. Concerning the H0 tension, the value of H0 is always

∼ 0.5 km s−1 Mpc−1 larger than in NMC models. I end on noting that future galaxy

surveys in combination with CMB will further constrain the IG model [260,261], with

a precision comparable to Solar System tests.
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Chapter 5

Cosmological constraints on

Non-Minimally Coupled theories with a

small effective mass and consequences on

the H0 tension

5.1 Introducing a small effective mass

All the models studied in the previous Chapter had in common the feature of being

nearly massless, since the scalar field σ had a either a flat potential or V (σ) ∝ F (σ)2,

also very close to flat. In this Chapter, I explore the possibility that the scalar field

is endowed with a small effective mass, that I constrain with cosmological data.

A minimal realization of this model can be obtained by extending the model of

Section 4.3, by providing it with a small effective mass, which for the sake of simplicity

I consider as induced by a quartic potential. In this model, the scalar field starts

to move around the redshift of matter-radiation equality driven by the coupling to

non-relativistic matter, and then rolls faster when the effective mass become larger

than the Hubble parameter and ends in a regime of coherent oscillations around the

minimum of the potential. The choice of a quartic potential is dictated by the fact

that coherent oscillations of σ are in conformal time and therefore tractable by an

Einstein-Boltzmann code, without ad-hoc modifications, see e.g. Ref. [262]. Note also

that with this choice the model is described only by dimensionless couplings, i.e. ξ

and λ.

A peculiarity of the model is that, thanks to the fast rolling of σ towards the

bottom of the potential, the tight constraints on Geff from laboratory experiments

and Solar System measurements on post-Newtonian parameters are automatically

satisfied by the small cosmological values of σ within the EMG model, as it happens

in the range of ξ < 0 in the massless case where σ is decreased just by coupling

to non-relativistic matter (see previous Chapter). The small effective mass and the
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consequent naturally achieved consistency of cosmology with laboratory and Solar

System constraints are particularly important for positive values of the coupling,

since σ would grow for ξ > 0 for λ = 0, and therefore I mainly focus on this range.

Because of its similarity to EDE models (see Section 3.4), I denote this model as

Early Modified Gravity (EMG). Note, however, that the model differs from previously

introduced ones also named Early Modified Gravity [263–265].

Another interesting feature of this EMG is that the effective Newtonian constant

Geff grows with time, as opposed to nearly massless models (see e.g. Fig. 4.3), im-

plying a weaker gravity at early times. This effect, as shown below, implies different

predictions on Large Scale Structure (LSS) observables that can help disentangle EMG

and EDE. This is crucial, since, as mentioned in Section 3.4, EDE models have been

recently claimed not to be able to solve the H0 tension when LSS data are included

in the analysis [216–218].

This Chapter is based on the research work in Ref. [266] and the plots are produced

using a modified version of hiCLASS [246, 247] which allows to study consistently

oscillating scalar fields.

5.2 Background evolution

As mentioned above, the model is described by Eq. (2.2.3) with F (σ) = M2
pl + ξσ2

and V (σ) = Λ + λσ4/4, where Λ is a cosmological constant. Note that, with this

choice, the model reduces to the one studied in Section 4.3 for λ = 0 and to the

Rock’n’Roll EDE model of Ref. [199] for ξ = 0. For later convenience, it is useful to

define λ ≡ 102V0/(3.516× 10109)1.

The evolution of relevant background quantities is shown in Fig. 5.1. For a com-

parison, I consider the bestfit cosmological parameters given in Table 3 of Ref. [199],

that is

θs = 1.0417, 100ωb = 2.264, ωc = 0.1267, τreio = 0.081, ln 1010As = 3.105,

ns = 0.981, σi[Mpl] = 0.54, V0 = 2 (5.2.1)

for EMG, for which I vary the non-minimal coupling ξ according to the legend in the

figures, and

θs = 1.0422, 100ωb = 2.236, ωc = 0.1177, τreio = 0.077, ln 1010As = 3.080,

ns = 0.969 (5.2.2)

13.516× 10109 is the numerical value of M4
pl in eV4
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Figure 5.1: [Top] Evolution of the scalar field (left) and the energy injection Ωσ

defined in the main text. [Bottom] Evolution of the variation of the effective Newton
constant (Geff − G)/G (left) and of the post-Newtonian parameter γPN − 1 (right).
The model parameters used in the plot are σi = 0.54Mpl and V0 = 2 and the value
of the non-minimal coupling ξ is varied according to the legend in the top-left panel.
Figure taken from Ref. [266].
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for the ΛCDM model to which I compare the results. These values are only used

to build intuition and will be superseded the cosmological parameter estimation pre-

sented in the next Section. As can be seen from the top-left panel, the addition of the

effective mass makes EMG more similar to EDE models (see Fig. 3.6) with respect

to nearly massless NMC models [2, 3, 228]. Indeed, σ starts frozen deep in the radia-

tion era and, when its effective mass becomes larger than the Hubble flow, eventually

rolls down the potential and starts oscillating around its effective minimum located at

σ = 0. It is clear from Fig. 5.1, that the corrections to the effective mass of the scalar

field induced by the non-minimal coupling F (σ) modify the dynamics of σ, which, for

ξ ≥ 0, experiences a temporary growth before falling down the potential. Because of

this initial growth, the oscillations around σ = 0 have a visibly larger amplitude and

their phase is slightly shifted compared to the case with ξ = 0.

The importance of such a modification to the dynamics for ξ = 0 can be understood

by looking at the shape of Ωσ in the top-right panel of Fig. 5.1. For the same values of

{σi, V0}, a larger ξ sizeably increases the energy that the scalar field injects into the

cosmic fluid once it starts to roll down its potential, an effect which, at a fixed value

of ξ, can also be obtained by increasing the initial value of the scalar field σi. On

the other hand, for larger values of ξ, Ωσ becomes gradually more negative, therefore

suppressing H(z), with respect to the ξ = 0 case, before σ starts to thaw, reducing

the degeneracy of the non-minimal coupling ξ with the initial condition σi (see also

next Section). Therefore the EMG model offers a broader phenomenology than EDE

ones, which is interesting since the exact shape in redshift of the energy injection

plays a crucial role in physical models that aim at solving the H0 tension, as stressed

in Section 3.4.

Although the main focus of the following analysis will be on the ξ ≥ 0 regime, it

is also instructive to show the behavior of Ωσ when the coupling is negative. I take

the conformal coupling ξ = −1/6 as an example. For such a large and negative ξ,

the profile of the energy injection is continuous and resembles the one in models with

extra dark radiation, exactly as the massless case with λ = 0 in Section 4.3.

By the addition of the effective mass, consistency of Geff and PN parameters

with Cavendish-type measurements and Solar System constraints, respectively, can

be obtained without any fine tuning for ξ > 0, as can be seen from the bottom panels

of Fig. 5.1. Note also that, thanks to the potential V (σ), Geff now grows with time,

which is not possible in standard scalar-tensor models involving only the coupling

F (σ), for which Geff decreases with time regardless of the sign of the non-minimal

coupling, see Fig. 4.3. However, in the conformally coupled case, Geff decreases as in

the massless case [3].
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5.3 Imprints of the Non-Minimal coupling on CMB

and LSS

I now show the imprints of EMG on CMB and LSS observables. The temperature

and E-mode polarization CMB angular power spectra are shown in the top panels of

Fig. 5.2, from which it can be seen that the coupling sizeably affects the acoustic peaks

structure of the CMB spectra, as a consequence of the modification to gravity around

recombination. However, note that thanks to the potential V (σ) and the different

cosmological evolution of σ, the imprint of ξ is drastically reduced with respect to the

massless case with λ = 0. Indeed, in the latter case, relative changes in ∆C`/C` of

the same magnitude of the ones shown in the top panels of Fig. 5.2 can be obtained

with much smaller values of ξ, see e.g. Fig. 9 of Ref. [2]. It is also instructive to see

that the modifications to acoustic peaks for ξ = −1/6 are out of phase with respect

to the case of a positive coupling.

As discussed in the previous Subsection, the non-minimal coupling ξ enhances

the energy injection of the scalar field into the cosmic fluid, similarly to what can

be obtained with a larger σi. In order to compare the two effects, in the bottom

panels of Fig. 5.2, I fix ξ = 0 and plot the residual CMB spectra for a set of initial

conditions σi that give the same maximum energy injection of the curves presented

in the top panel. Although both parameters modify the acoustic structure of the

CMB, the pattern of the CMB residuals is different. In particular, given the same

energy injection obtained by varying ξ or σi with ξ = 0 respectively, the former has

a stronger impact on the CMB since, thanks to the non-minimal coupling, the scalar

field modifies the expansion history already while it is frozen, slightly decreasing H(z)

since its effective energy density is negative (see Fig. 5.1).

In the perspective of future experiments dedicated to CMB polarization, it is also

instructive to show the imprints of EMG on primordial B-mode polarization. These

are shown in Fig. 5.3, where I vary ξ in the left panel and fix ξ = 0 and vary σi in

the right one. As explained in Section 2.3.1, the non-minimal coupling modifies the

propagation equation for the two polarization states of the gravitational waves h+,×.

In the language of Eq. (2.3.2), in this model the non-minimal coupling contributes to

an additional friction term αM = Ḟ /HF .

As shown in Refs. [265, 267, 268], such an additional friction term induced by the

non-minimal coupling may leave interesting observational signatures. In the case of

V (σ) = 0, the impact on B-mode polarization was analyzed in Ref. [2], where it

was found the effects increase with |ξ|. In the EMG model, where the potential V (σ)
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Figure 5.2: [Top] Lensed CMB TT (left) and EE (right) angular power spectrum
as a function of the non-minimal coupling ξ. [Center] Lensed CMB TT (left) and EE
(right) angular power spectrum as a function of the initial condition on the scalar field
σi with ξ = 0. [Bottom] Lensed CMB TT (left) and EE (right) angular power spec-
trum as a function of the potential parameter V0 keeping the non-minimal coupling
fixed to ξ = 0.1. I utilize the set of parameters used to produce Fig. 5.1.
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Figure 5.3: CMB BB angular power spectrum due to tensor perturbations. In order
to clarify the distinction between effects due to the shift in cosmological parameters
and the genuine effects of the non-minimal coupling, I plot both the relative differences
between the EDE and ΛCDM baselines in Eq. (5.2.1) and (5.2.2) (left) and the ones
obtained by fixing the EDE parameters in Eq. (5.2.1) and varying ξ (right). I set the
tensor-to-scalar ratio to r0.05 = 0.05. The lensing spectra are almost unaffected by
the variation of these parameters, so the relative differences for the total spectra do
not change from the ones in the plots. Figure taken from Ref. [266].

enlarge the range of ξ which is compatible with the data (see next Section), the effects

can indeed be larger, as can be seen from the left panel of Fig. 5.3. The effect of an

increasing ξ is twofold. First it changes the acoustic structure of the C`’s for ` & 100,

with a pattern which cannot be mimicked by a change in σi, similarly to what happens

with the other CMB spectra, as can be appreciated by looking at the right panel of

Fig. 5.3. Second, it also decreases the power in the range 10 . ` . 100 compared to

the ΛCDM model. The plots also show a bump at very large scales. This, however,

is a feature which is not directly ascribed to the EMG model or the EDE one. In

fact, such a peak comes from the interplay of the different cosmological parameters in

Eqs. (5.2.1) and (5.2.2). Nevertheless, such a bump also occurs when considering the

relative differences between the bestfit values for ΛCDM and EMG/EDE cosmologies

shown in the next Section, and thus it may constitute an indirect signature of EMG

and EDE models that can be tested with future CMB B modes experiments.

Since EDE scenarios have been recently shown to be constrained by the matter

power spectrum at low redshift [216–218, 269, 270], it is important to investigate the

imprints of our model also on LSS and compare them to the ones of NMC and EDE

models. I plot the ratio between the linear matter power spectra for our EMG model

and the ΛCDM one in the left panel of Fig. 5.4. As previously studied in [2, 221–

224], the matter power spectrum is enhanced at small scales in effectively massless
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Figure 5.4: Ratio of the EMG and ΛCDM linear matter power spectra at z = 0
(left) and evolution of the dark matter perturbation δρc for k = 0.1 h/Mpc divided
by the one for the ΛCDM model (right) as a function of the non-minimal coupling ξ.
As in the previous plot, for solid lines, I utilize the set of parameters used to produce
Fig. 5.1 and I compute relative differences between the EDE and ΛCDM baselines in
Eq. (5.2.1) and (5.2.2). To make clear which are the effects due only to the variation
of ξ, I also plot in dashed lines P (k) by keeping fixed the EDE baseline parameters
in Eq. (5.2.1) and varying ξ in dashed lines. Figure taken from Ref. [266].

scalar-tensor models aiming at alleviating the H0 problem since gravity was relatively

stronger at early times. Analogously, EDE models also enhance the matter power

spectrum at small scales compared to the ΛCDM one, as can be seen from the orange

line in the plot. It is however important to understand that this effect is not due to

the EDE component itself, but rather by the shift towards a larger ωc that is needed

to maintain the fit to the CMB data, see Eqs. (5.2.1) and (5.2.2). In fact, the larger is

the fraction of EDE the greater is the suppression of the growth of the perturbations

within the horizon during the epoch when EDE is not negligible. From the right

panel of Fig. 5.4, it can be seen that, fixing all the other parameters, the non-minimal

coupling ξ goes instead in the direction of suppressing the power at small scales, as

it weakens the strength of gravity during the EMG epoch, see Fig. 5.1. This is not

true anymore for the ξ = −1/6 case in which a stronger gravity (Geff/G > 1) at early

times leads to an enhancement of the power at smaller scales. Again, the results are

completely different from the case with λ = 0, for which the Geff always decreases

with time, leading to a stronger gravity at early times and a consequent larger power

in P (k) at small scales [2].

The results in Fig. 5.4 can be better understood by looking at the evolution of

dark matter perturbations. For this purpose, the evolution of the ratio of the dark

matter perturbation δρc for the EMG and the ΛCDM model for the mode k = 0.1
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Figure 5.5: 1 loop ` = 0 (left) and ` = 2 (right) multipole moments of the galaxy
power spectrum as a function of the non-minimal coupling ξ. I utilize the set of
parameters used to produce Fig. 5.1. I also plot the ΛCDM results in magenta dotted
lines for a comparison. Figure taken from Ref. [266].

h/Mpc is plotted in the right panel of Fig. 5.4. As can be seen, for a positive ξ,

initially scalar field perturbations enhance the growth of dark matter perturbations

with respect to the ΛCDM case, overcoming the suppression factor due to having

Geff/G < 1. The opposite occurs for a negative value, as can be seen from the brown

line. On even smaller scales (larger k), there is also a fifth force (scale dependent)

contribution from the scalar field perturbations that further enhances the growth of

dark matter perturbations at very early times with respect to the ΛCDM case, which

explains the raise in the P (k) at small scales for ξ = 0.5 in the left panel of Fig. 5.4.

Once the scalar field starts to roll down the potential, however, the scalar field

perturbations become negligible and the only effect of the modification to gravity

is to suppress (enhance) the gravitational potentials by a factor of F (σ) < 1 (> 1)

depending on the sign of ξ, leading to the observed suppression (enhancement) in the

left panel of Fig. 5.4.

Furthermore, it is instructive to show the effects on the observed redshift-space

galaxy-spectrum. I plot the multipole moments in Fig. 5.5 where also the monopole

` = 0 (left panel) and the quadrupole ` = 2 (right panel) resummed at 1 loop order

in perturbation theory are shown. These spectra are produced with the publicly

available code PyBird1 [71]. Although PyBird works in the framework of a ΛCDM

effective field theory of LSS, the deviations from General Relativity at the relevant

redshift considered by PyBird are so small that its use in this context is safe (see

Fig. 5.1). As an example, I have considered the multipole moments at z = 0.38,

1https://github.com/pierrexyz/pybird
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which corresponds to the redshift of the low-z NGC BOSS data (see next Section).

Note that the effect of ξ is to reduce the amplitude of both P0(k) and P2(k). It is

very interesting to note that, starting from the parameters in Eqs. (5.2.1) and (5.2.2),

similar spectra for ΛCDM and the EMG model with ξ = 0.1 are recovered, suggesting

that the non-minimal coupling can help reconcile EDE models with LSS observations.

5.4 Constraints from cosmological data

In this Section, I report the constraints obtained from the the MCMC exploration of

the EMG model, see Ref. [266]. In this MCMC massless neutrinos (Neff = 3.046) are

assumed the I set the initial velocity of the scalar field to zero and adiabatic initial

conditions on the scalar field perturbations [2, 5].

For the extra parameters I consider flat priors ξ ∈ [0, 1], σi/Mpl ∈ [0, 0.9] and

V0 ∈ [0.6, 3.5]. Note that EDE models are usually parameterized with two parameters

describing the redshift at which the scalar field starts to roll down the potential,

usually denoted as critical redshift zc, and the maximum energy injection fscf [189,

199, 200]. For the particular case of the RnR model, the correspondence between

{V0, σi} and {zc, fscf} is unique under the assumption of the same initial velocity of

the scalar field. However, as explained in Section 5.2, this one to one correspondence

is not possible in our model, where also ξ contributes to the energy injection into the

cosmic fluid. For this reason, it is better to use the physical parameters describing

the EMG model as in Chapter 4. Nevertheless, I quote log10 zc and fscf ≡ Ωscf

as derived parameters. The non-linear power spectra is modelled using HALOFIT

[271,272]. In this respect, see also Ref. [215] for a comparison between of HALOFIT

and HMcode [273] in the context of EDE.

Differently from the previous Chapters, I also compute the best-fit values extracted

using the MINUIT algorithm [274] implemented in the IMINUIT python package1

and quote the difference in the model χ2 with respect to ΛCDM one, i.e. ∆χ2 =

χ2 − χ2(ΛCDM), where negative values indicate an improvement in the fit of the

given model with respect to the ΛCDM for the same dataset.

In addition, in order to quantify to what extent the improvement in the fit to

the data warrants the increase in the model complexity compared to the baseline

ΛCDM model, I compute the Bayes factor defined as the ratio of the evidences for

the extended model ME with respect to the baseline ML as [275]:

1https://iminuit.readthedocs.io/en/stable/

114

https://iminuit.readthedocs.io/


BEL ≡
∫
dθE π(θE|ME)L(x|θE,ME) ,∫
dθL π(θL|ML)L(x|θL,ML) ,

, (5.4.1)

where π(θE,L) is the prior for the parameters θE,L and L(x|θE,L) the likelihood of the

data given the modelME,L. The extent to what the extended modelME is preferred

over the baselineML can be qualitatively assessed using the Jeffreys scale reported in

Table 5.1 [276]. I compute the evidence directly from our MCMC using the method

introduced in Ref. [277] implemented in the MCEvidence code1.

lnB ≡ lnBEL Strength of preference for model Mi

0 ≤ lnB < 1 Weak
1 ≤ lnB < 3 Definite
3 ≤ lnB < 5 Strong

lnB ≥ 5 Very strong

Table 5.1: Revised Jeffreys scale used to interpret the values of lnB obtained when
comparing two competing models through their Bayesian evidence [276]. A value of
lnB > 0 indicates that the extended model is favoured with respect to the ΛCDM
baseline model.

I now present the results of our MCMC analysis performed using several combi-

nations of the data sets introduced in Chapter 1 and comment on each combination

in turn. For convenience, I collect in Section 5.8 all the Tables containing the mean

values and error on the cosmological parameters and their best-fit values, as well as

the χ2 for each data set and the Bayes factors.

I start by discussing the results obtained using the data set P18 + BAO +

FS + SN + H0, which are presented in Fig. 5.6 and Table 5.2. They clearly show

that in the EMG model a large value of H0 = 71.00+0.87
−0.79 km s−1Mpc−1 at 68% CL is

obtained, reducing the tension with SH0ES + H0LiCOW at 1.7σ, better than the 2.1

(4) σ reduction for the EDE (ΛCDM) obtained for H0 = 70.57+0.77
−0.98 (68.82± 0.39) km

s−1Mpc−1 at 68% CL. This reduction comes both from the larger mean value of H0

and the larger errors compared to ΛCDM. As for other models aiming at solving the

H0, I obtain a larger ωc and ns compared to the ΛCDM model.

It is interesting to note that EMG helps fitting CMB data better with respect

to EDE (and also to the ΛCDM). This is reflected in our 68 % CL estimate for

ξ = 0.15+0.06
−0.07, its 95 % CL upper limit ξ < 0.42, and a best-fit value of ξ = 0.178. I

1https://github.com/yabebalFantaye/MCEvidence
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also get σi = 0.49+0.11
−0.06 at 68%CL, or equivalently fscf = 0.084+0.030

−0.021. Note however the

remarks in Section 5.2 about the meaning of fscf in the context of EMG.

Compared to ΛCDM, both the EMG and the EDE model exacerbate the tension

with measurements of σ8 and S8. I get consistent results in terms of σ8 for EMG

and EDE, i.e. σ8 = 0.830 ± 0.008 at 68%CL for EMG and σ8 = 0.832+0.009
−0.011 at

68%CL for EDE. However, the larger ωc and H0 leads to essentially the same S8 =

0.829± 0.011(±0.13) at 68%CL for EMG (EDE).

Overall, the EMG models fits the data much better than the ΛCDM model with

an improvement of ∆χ2 = −16.0. Such an improvement (better than ∆χ2 = −9.3

for the EDE model) is largely due to the better fit to the H0 prior, but there is also

some improvement in the fit to CMB data, in particular to high-` TTTEEE data. As

for LSS data, there is only a very small degradation compared to ΛCDM due to the

∆χ2 = +2.5 in the fit to BAO DR12 FS + BAO, high-z NGC. The suppression of the

matter power spectrum given by the large positive coupling ξ helps fitting FS + BAO

data keeping the value of H0 large at the same time. This large improvement in the

fit corresponds to a Bayes factor of lnBij = +1.0 for EMG. The EDE model, which

leads to a smaller improvement in the fit , i.e. ∆χ2 = −9.3, has nevertheless a slightly

larger Bayes factor of lnBij = +1.5 due to the smaller number of extra parameters

compared to EMG. Note that, from its definition in Eq. (5.4.1), the Bayes factor

depends on the prior range of the extra parameter ξ and as such has to be interpreted

with some caution. In fact, especially if a parameter is not well constrained (as for the

case of some the EMG parameters as V0 and ξ, see next Section) one could enhance the

evidence for the EMG model by reducing the prior range and therefore the sampling

volume. For attempts towards model selection techniques which are less dependent

on the specific choice of the prior see e.g. Ref. [278].

With the choice of V0 prior as above, however, it is not possible to recover the

model studied in Ref. [3] as the particular λ→ 0 limit. The reason of this choice is to

make sure that for every possible combination of parameters the scalar field always

decreases toward σ = 0, so to be able to safely use the FS data. Indeed, for λ = 0,

the deviation from GR grows at late times, invalidating the use of the FS likelihood

and PyBird for a large portion of the parameter space.

On the other hand, it is instructive to study the effects of widening the V0 prior to

see if the data constrain the model with λ = 0. For this purpose I perform an MCMC

analysis with the data set P18 + BAO + SN + H0 that does not suffer from the

issue raised above and I set the prior range V0 ∈ [−4, 3.5]. I have checked that for

V0 ≤ −3, the potential is essentially negligible.

The posteriors obtained for this MCMCs analysis are shown as red contours in

116



Fig. 5.6 and they show that data do not prefer the small V0 region for which the scalar

field grows. The results also show another interesting feature of the EMG model, i.e.

there is only a small difference in constraints on the EMG model when using BAO in

place of the more complete BAO + FS data. As can be seen, the only effect of using

BAO is have slightly larger posteriors, but with the same mean as those obtained

with BAO + FS data. Note that this is in agreement for the findings of Ref. [210] in

the context of the New Early Dark Energy model.

In order to further assess the role of BAO + FS data, I also perform an MCMC

analysis without considering them, and use the data set P18 + SN + H0. The

results are presented in Fig. 5.7 and Table 5.3. As can be seen, removing BAO and

FS data leads to a somewhat larger value of H0 = 70.85± 0.92 km s−1Mpc−1 for the

EDE (and a much larger bestfit of H0 = 71.38 km s−1Mpc−1), confirming that BAO

+ FS have the power to constrain these models, as shown in Refs. [216–218]. On the

other hand, H0 for the EMG model increases only a bit to H0 = 71.21 ± 0.93 km

s−1Mpc−1, since BAO + FS data constrain it less than they constrain EDE models.

It is very interesting to note that the best-fit value for the coupling ξ = 0.17 is very

close to the one found including BAO + FS data. The EMG model fits most of the

data, with the exception of CMB lensing, better than both the EDE and the ΛCDM

model, leading to a ∆χ2 = −17.1. This time, however, the improvement in the fit

does not warrant the increase in the model complexity compared to ΛCDM and I

obtain a Bayes factor of lnBij = −0.2.

I have shown that the EMG model leads to a larger value of S8 compared to the

ΛCDM one. Therefore, it would be interesting to test it against weak lensing data.

Strictly speaking, this would require using data from e.g. the KiDS-VIKING galaxy

shear measurements. However, it was claimed in Refs. [216,217] that the same results

can be obtained by implementing weak lensing data through a Gaussian prior on the

parameter S8 = 0.770 ± 0.017 (see also Ref. [215] for a thorough comparison of this

method to the correct use of cosmic shear measurements). With these caveats, I follow

Refs. [216,217] and present in Fig. 5.8 and Table 5.4 the results for the data set P18

+ BAO + FS + SN + S8 + H0. Note, despite being far from a resolution to

the S8 tension, the EMG model shows now a much smaller S8 = 0.809± 0.009 and a

bestfit value of S8 = 0.807, lower than the one obtained for ΛCDM i.e. S8 = 0.811.

This confirms the conclusion of Ref. [215] for EDE models that, even though it is true

that the S8 tension is not resolved within this model, the same holds for the ΛCDM

model which, however, is not able to address the H0 tension, as opposed to the EMG

model, for which I obtain a mean H0 = 70.63+0.80
−1.00 and a best fit of H0 = 71.59 km

s−1Mpc−1.
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Even in this case, however, I note that the large improvement in the fit (not

followed by a preference from the model-selection point of view) is coming mainly

from the substantial improvement in the fit to H0. It is therefore natural to ask what

happens when the prior on H0 is removed from the data set.

I present the results obtained without the combined SHOES-Holicow determina-

tion of H0 in Fig. 5.9 and Table 5.5 for the data set P18 + BAO + FS + SN.

The results show that the mean value for H0 in the EMG model (and in the EDE

one) is only slightly larger then the one in ΛCDM, as also found in previous studies

of effectively massless models of scalar-tensor theories [221,222] . This can be appre-

ciated by looking at the larger posterior distributions of H0 and ωc for the EMG and

EDE models in Figs. 5.9. The incapability of EDE to solve the H0 tension when prior

information on H0 is not included, has been recently discussed in the literature [216].

A similar result holds for EMG. 1

Although the best-fit parameters shown in the third column of Table 5.5 do not

lead to a very large H0, I confirm the results of Refs. [215, 279] for EMG and find

some set of parameters exist that lead to a large H0 without a significant change in

∆χ2. For example, I find that 100ωb = 2.285, ωc = 0.1308, 100 ∗ θs = 1.04089,

τreio = 0.057, ln 1010As = 3.066 ns = 0.9840, ξ = 0.151, V0 = 2.19, and σi = 0.57

leads to ∆χ2 = 0.7, fitting the data very similarly to ΛCDM, with an improvement

in the fit to CMB data and a slight worsening to the fit to BAO DR12 FS + BAO,

high-z NGC data. Such a parameter set, leads to a large fscf = 0.081 and and a large

H0 = 70.15 km s−1Mpc−1.

5.5 Analysis of the 1 parameter extension

The ΛCDM model predictions can be recovered in both the EDE and the EMG models

when σi, or equivalently the energy injection of the scalar field into the cosmic fluid,

goes to zero. In this regime, both V0 and the coupling ξ essentially play no role.

When using the Metropolis-Hasting algorithm, as in this case, this can give rise to a

large portion of the parameter space that can artificially enhance the statistical weight

of ΛCDM models. This issue has been recently addressed, within EDE models, in

Refs. [198,202,203,208,218].

Here, I take a similar, but somewhat alternative approach, and follow the lines of

1However, it has also been proposed in Refs. [215,279] (see also next Section), that a distinction
should be made between looking at the posterior distributions and the fact that there are some
parameters that fit the data in a way that is statistically indistinguishable from ΛCDM and still lead
to a large H0.
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Figure 5.6: 1D and 2D posterior distributions of a subset of parameters for ΛCDM,
EDE and EMG obtained using the data set P18 + BAO + FS + SN + H0. Red
contours show the results obtained for EMG with a larger prior on V0 (see main text),
for which I use the data set P18 + BAO + SN + H0. 2D contours contain 68%
and 95% of the probability. I also plot the 68% and 95% CL for the priors on H0 and
S8 described in the main text. Figure taken from Ref. [266].
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Figure 5.7: 1D and 2D posterior distributions of a subset of parameters for ΛCDM,
EDE and EMG obtained using the data set P18 + SN + H0 . 2D contours contain
68% and 95% of the probability. I also plot the 68% and 95% CL for the priors on
H0 and S8 described in the main text. Figure taken from Ref. [266].
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Figure 5.8: 1D and 2D posterior distributions of a subset of parameters for ΛCDM,
EDE and EMG obtained using the data set P18 + BAO + FS + SN + H0 + S8.
2D contours contain 68% and 95% of the probability. I also plot the 68% and 95% CL
for the priors on H0 and S8 described in the main text. Figure taken from Ref. [266].
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Figure 5.9: 1D and 2D posterior distributions of a subset of parameters for ΛCDM,
EDE and EMG obtained using the data set P18 + BAO + FS + SN . 2D contours
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on H0 and S8 described in the main text. Figure taken from Ref. [266].
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Refs. [215,279], where it was shown that by fixing1 log10 zc (or V0 in our language) it

is possible to extend the fscf − H0 degeneracy even for a choice of datasets without

prior information on H0, avoiding problems related to the volume sampling and to the

choice of a prior that allows for a ΛCDM limit. Such a degeneracy is clearly disrupted

(see Fig. 5.9) when a prior on H0 is not included in the data set and a tight upper

bound on fscf is obtained.

Note, however, that in absence of theoretical motivations, this must be seen only as

a purely phenomenological approach, which is rather unorthodox from the standard

Bayesian point of view, for which all the parameters has to be varied altogether.

Nevertheless, in the class of MG considered here, there is however the possibility to

reduce the number of parameters by restricting to ξ = −1/6, which corresponds to

the theoretical value for conformal coupling [2] (see more in the following Section).

Based on the former argument, I perform an analysis similar to the one of Ref. [208,

215] for the EMG model, for which I fix V0 and ξ to their best-fit values in the third

column of Table 5.2 and leave σi free to vary. I do not include H0 data and I use the

P18 + BAO + FS + SN data set. The results are presented in Fig. 5.10, where

I confront our results to ones for EMG obtained in the previous section considering

the data sets P18 + BAO + FS + SN and P18 + BAO + FS + SN + H0.

From the plot, it is easy to see that the degeneracy between σi and H0 is now more

visible leading to a larger of H0 = 69.18+0.79
−1.00 km s−1Mpc−1 at 68% CL and slightly

reducing the tension with SH0ES+H0LiCOW (3.2σ vs 4.2σ in the 3 parameter case

using the same data set). However, the value of σi remains consistent with σi = 0

and most of the improvement in reducing the tension is ascribed to a larger error

on H0 compared to the 3 parameters case. In fact, the best-fit value for H0 that I

obtain is H0 = 68.79 km s−1Mpc−1, corresponding to σi = 0.30Mpl. The best-fit

cosmology for the 1 parameter EMG leads to a total χ2 of 4001.5, i.e. ∆χ2 = 1.8,

nearly indistinguishable from the 3 parameters one. Compared to the 3 parameters

models I have a ∆χ2 ∼ −1.3 and a ∆χ2 ∼ −0.9 gain in the fitting Planck high-`

TTTEEE data and BAO DR12 FS + BAO, low-z NGC and high-z SGC respectively,

whereas the fit to BAO DR12 FS + BAO, high-z NGC is worsen by a factor of ∼ +1.6,

all the other partial χ2s being essentially the same.

It is interesting to note that now there is only 1 extra parameter and the model

is not as penalized as for the case with 3 parameters. In fact, the Bayes factor is now

lnB = 1.4 and for the data set P18 + BAO + FS + SN, the model results slightly

preferred over ΛCDM according to the Jeffreys scale in Table 5.1.

1In the EDE model of Refs. [215,279] also a second parameter related to the axion decay constant
f , namely Θi, has to be fixed.
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Figure 5.10: 1D and 2D posterior distributions of a subset of parameters for the
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also plot the 68% and 95% CL for the prior on H0 described in the main text. Figure
taken from Ref. [266].

The conclusion is therefore that by fixing two parameters does not help much

alleviate the H0 tension, which is only addressed when additional prior information

from local measurements of the Hubble constant is added, as shown in the previous

Section. As in Section 5.4, though, I do find some choices of parameters for which

the fit to the data is not substantially different from the one in the ΛCDM model,

but lead to a larger H0, as in Refs. [215, 279], with which I qualitatively agree. A

fully quantitative comparison with Refs. [215, 279] is however not possible because

of the presence of the non-minimal coupling and the different potential considered.

Indeed, potentials with a different curvature such as those with flattened wings and

power-law minima are well known to lead to a larger value of H0 compared to the

simpler quartic potential [1, 189,198,202].
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5.6 The ξ = −1/6 case

So far, I have focused on the case of a positive coupling ξ ≥ 0 and only touched upon

negative couplings. As a representative example of the parameter space with ξ < 0,

I also show the results obtained by fixing ξ = −1/6 (see also Chapter 4.

From Fig. 5.1 in Section 5.2, it can be seen that the energy injection is not sharp

in redshift anymore, but rather a continuous energy injection in the early Universe is

observed, until the scalar field contribution redshits away. The similarity between the

background dynamics of this model and the one of a model with extra dark-radiation

parameterized by Neff and the consequent difficulty in constraining the coupling ξ

has been studied in Chapter 4. Here, the contribution of the scalar field to the total

energy budget is similar so significant differences between the results here and the

ones found in Chapter 4 are not expected. However, note that thanks to the small

effective mass, the scalar field decreases more rapidly compared to the massless case

with λ = 0, see e.g. Fig. 4.14.

For the MCMC analysis I use the data set P18 + BAO + FS + SN + H0

and I fix ξ = −1/6. The results are shown in Fig. 5.11, where I compare to results of

the previous section and show also the results for the case with ξ = −1/6 and λ = 0

obtained with the same prior on σi for a comparison (for simplicity I refer to it as

CC). Note that, for the λ = 0, I have used the data set P18 + BAO + SN + H0,

since for a large portion of the σi prior I have Geff/G − 1 ∼ 10−3 and the use of the

FS likelihood might be less accurate.

Fig. 5.11 shows that the EMG case with ξ = −1/6 leads to H0 = 70.11± 0.79 km

s−1Mpc−1 at 68% CL a value smaller than the one obtained in the EDE and EMG

model with ξ ≥ 0. This is expected, as the ability of the EDE and EMG model

with ξ ≥ 0 to alleviate the H0 tension relies on an energy injection very localized in

redshift, a feature that is not shared by the EMG model with ξ = −1/6. The bestfit

value of σi = 0.46Mpl leads to H0 = 70.30 km s−1Mpc−1, again smaller than the

ξ = 0 and ξ ≤ 0 case. The improvement in the fit is ∆χ2 = −9.0 accompanied by

a Bayes factor of lnBij = −1.4, as in the EDE case, which has the same number of

parameters. The main improvement in the ∆χ2 comes from a better fit to Planck

high-` data compared to the other EMG and EDE models, but it is compensated by

a degradation in the fit to LSS and H0 data.

On the other hand, in the latter model, the energy density of the scalar field

redshifts away much faster than for λ = 0, since the scalar field is driven towards

σ ' 0 by the quartic potential. This is the reason why the H0 in this model is larger

than H0 = 69.78 ± 0.66 km s−1Mpc−1 at 68% CL, obtained for λ = 0, for which
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the scalar field contribution is not completely negligible after recombination. For

the very same argument, note that a larger |ξσ2
i |, which is a measure of the scalar

field contribution to the fractional ∆H(z)/H(z) before recombination when ξ < 0, is

allowed in the EMG model compared to the CC one. Also, the value of γPN is orders

of magnitude larger in the CC model, i.e. γPN > −2.1 · 10−5 at 95%CL, compared to

the EMG case with ξ = −1/6 in which γPN > −3.5 · 10−9 at 95%CL. If the former is

comparable to Solar System experiments, the latter is much smaller.

Furthermore, as expected from the discussion in Section 5.2 and Fig. 5.4, the

negative coupling leads to larger σ8. I get σ8 = 0.837+0.013
−0.021 and σ8 = 0.835 ± 0.010

for λ 6= 0 and λ = 0, respectively, larger than the EDE or EMG model with a

positive coupling (see Table 5.2). However, this is accompanied by a comparable

S8 = 0.833+0.016
−0.022 for EMG with ξ = −1/6 and a smaller S8 = 0.822 ± 0.011 for

ξ = −1/6 , λ = 0, since H0 is smaller and therefore the shift in the value of ωc

necessary to restore the fit with CMB data is slightly smaller as well. This is again in

line with the observation that models that lead to a larger H0 modifying the sound

horizon inevitably lead to a larger ωc and therefore S8 [280].

5.7 Summary of the results

In this Chapter, I have presented a model of Early Modified Gravity (EMG) where a

scalar field with a non-minimal coupling to the Ricci scalar of the type M2
pl +ξσ

2 has a

self-interacting potential. In this model, which extends the massless one of Section 4.3

and reduces to the Rock’n’Roll Early Dark Energy (EDE) model of Ref. [199] for

ξ = 0, the scalar field σ, which is frozen during radiation era, grows around the time of

recombination driven by the coupling to pressureless matter and is subsequently driven

into damped oscillations around its minimum at σ = 0 by the small effective mass

induced by the quartic potential. The rolling of the field towards σ = 0 suppresses

the modification to gravity at late times, recovering an excellent agreement of the

laboratory experiments and Solar System tests with General Relativity. The addition

of the effective potential has the virtue of reconciling the ξ > 0 branch of the model

studied in Section 4.3 with GR without any fine tuning.

The modification to gravity at early times, however, has the important conse-

quence of alleviating the H0 tension as it modifies the redshift profile of the energy

injected into the cosmic fluid when the scalar field thaws. The MCMC analysis, per-

formed with a variety of cosmological data, shows that the tension can be reduced

substantially and at the same time a positive coupling ξ > 0 suppresses the small scale

matter power spectrum and thus helps fit the full Shape of the matter power spectrum
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Figure 5.11: 1D and 2D posterior distributions of a subset of parameters for the
EDE (orange), EMG (blue) and conformally coupled EMG (brown) using the data
set P18 + BAO + FS + SN + H0. I also show in green the results for the case
with ξ = −1/6 and λ = 0 for a comparison. Note that for the latter case the data set
P18 + BAO + SN + H0 is instead used. 2D contours contain 68% and 95% of the
probability. I also plot the 68% and 95% CL for the priors on H0 and S8 described in
the main text. Figure taken from Ref. [266].
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data, that has recently claimed to constrain the EDE resolution of the H0 tension. In

particular, the tension with the combination of recent SH0ES and H0LiCOW mea-

surements, i.e. H0 = 73.4 ± 1.1 km s−1Mpc−1, is reduced at the 1.7σ level when

this is added to Cosmic Microwave Background, SNe, Baryonic Acoustic Oscillations

and the Full Shape of the matter power spectrum data. For this data set, I obtain

H0 = 71.00+0.87
−0.79 km s−1Mpc−1 at 68 % CL which is larger than, but consistent with,

the one I get for EDE for ξ = 0 i.e. H0 = 70.57+0.77
−0.98 km s−1Mpc−1.

Performing the MCMC analysis with different combinations of the data mentioned

above helps trace the origin of the larger H0 back to the suppression of the power

spectrum caused by the non minimal coupling ξ, for which I get ξ = 0.15+0.06
−0.07 at

68% CL (ξ < 0.39 at 95%CL). In fact, for all the data set that are used, a similar

constrain on the parameter ξ is recovered. Although the fit to data is always improved

the Bayesian model selection for EMG depends on the data set considered, and is

penalized by the larger number (3) of extra parameters compared to ΛCDM, therefore

never resulting in a strong preference.

In order to confirm the argument above I have performed the same analysis fixing

ξ to the conformal coupling ξ = −1/6. In this case rather than a suppression there is

an enhancement of the matter power spectrum and the capability of the model to ease

the tension is therefore reduced, with H0 = 70.11± 0.79 km s−1Mpc−1, smaller than

the the ξ = 0 case, showing a clear hierarchy for negative, null and positive couplings.

Note, however, that the addition of the small effective mass to the ξ = −1/6 case

leads to larger H0 than the one for the conformally coupled massless case of Ref. [3]

for which H0 = 69.78± 0.66 km s−1Mpc−1 (see Section 5.6).

As a last comment, in this Chapter I have considered two dimensionless couplings

for a cosmological scalar field, which rule the coupling to the Ricci scalar (ξ) and

its self-interaction (λ). A quartic potential for the scalar field σ, implies that the

RnR model [199] is recovered for ξ = 0. However, it is known that potentials with

flattened wings that have a different curvature around the minimum at σ = 0, such

as those in the original EDE proposal of Ref. [189] or in the α-attractor EDE model

of Section 3.4, provide a better fit to Planck polarization data and lead to an even

larger H0. An exploration of different choices of the potential in the EMG framework

is currently ongoing.
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5.8 Tables

Here I collect the Tables containing the constraints from the MCMC analysis in Sec-

tion 5.4. Note that H0, σi, rs and ξσ2
i are given in units of [km s−1Mpc−1], Mpl, Mpc

and M2
pl respectively.

ΛCDM EDE EMG
102ωb 2.256± 0.013 (2.255) 2.280± 0.018 (2.286) 2.273± 0.017 (2.281)
ωc 0.1182± 0.0009 (0.1184) 0.1253+0.0033

−0.0038 (0.1242) 0.1282+0.0042
−0.0033 (0.1302)

100 ∗ θs 1.04209± 0.00028 (1.04216) 1.04152± 0.00036, (1.04170) 1.04118+0.00040
−0.00046 (1.04120)

τreio 0.058± 0.007 (0.052) 0.058+0.007
−0.008 (0.059) 0.056± 0.007 (0.057)

ln
(
1010As

)
3.049± 0.014 (3.038) 3.059± 0.016 (3.059) 3.061± 0.015 (3.067)

ns 0.9701± 0.0036 (0.9710) 0.9783+0.0054
−0.0061 (0.9813) 0.9782± 0.0055 (0.9849)

σi − < 0.70 (0.48) 0.49+0.11
−0.06 (0.53)

V0 − 2.21+0.07
−0.38 (2.09) 2.21+0.10

−0.15 (2.25)
ξ − − < 0.42 (0.18)

H0 68.82± 0.39 (68.74) 70.57+0.77
−0.98 (70.90) 71.00+0.87

−0.79 (71.59)
rs 147.37± 0.22 (147.33) 143.5± 1.8 (143.78) 142.2+1.5

−2.0 (141.21)
σ8 0.821± 0.006 (0.818) 0.832+0.009

−0.011 (0.831) 0.830± 0.008 (0.850)
S8 0.817± 0.010 (0.815) 0.829± 0.013 (0.820) 0.829± 0.011 (0.847)
log10 zc − 3.58+0.04

−0.16 (3.53) 3.60+0.06
−0.05 (3.63)

fscf − < 0.119 (0.057) 0.084+0.030
−0.021 (0.099)

ξσ2
i − − < 0.067 (0.050)

γPN − 1 − − > −1.7 · 10−9 (−8.9 · 10−9)
∆χ2 − -9.3 -16.0
lnBij − +1.5 +1.0

P18 + BAO + FS + SN + H0 ΛCDM EDE EMG

Planck high-` TTTEEE 2350.07 2352.08 2347.75
Planck low-` EE 395.70 396.69 396.37
Planck low-` TT 22.32 21.51 21.52
Planck lensing 9.37 9.36 9.17
BAO BOSS low-z 2.21 2.74 2.06
BAO DR12 FS + BAO, high-z NGC 65.13 65.15 67.64
BAO DR12 FS + BAO, high-z SGC 62.63 63.29 62.83
BAO DR12 FS + BAO, low-z NGC 70.06 70.53 69.89
Pantheon 1026.86 1026.93 1026.88
H0 18.57 5.35 2.81

Total 4022.94 4013.64 4006.92

Table 5.2: [Upper table] Constraints on main and derived parameters considering
the data set P18 + BAO + FS + SN + H0 for ΛCDM, ξ = 0 and ξ ≥ 0. I report
mean values and the 68% CL, except for the case of upper or lower limits, for which
I report the 95% CL. I also report the best-fit values in round brackets. [Lower table]
Best-fit χ2 per experiment for the data set P18 + BAO + FS + SN + H0 for
ΛCDM, EDE and EMG model.
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ΛCDM EDE EMG
102ωb 2.261± 0.014 (2.263) 2.283± 0.018 (2.292) 2.275± 0.018 (2.284)
ωc 0.1175± 0.0011 (0.1170) 0.1253+0.0036

−0.0044 (0.1285) 0.1288± 0.0046 (0.131)
100 ∗ θs 1.04216± 0.00029 (1.04200) 1.04153± 0.00038 (1.04135) 1.04114± 0.00048 (1.04107)
τreio 0.061+0.007

−0.008 (0.060) 0.060+0.007
−0.008 (0.061) 0.058+0.007

−0.008 (0.056)
ln
(
1010As

)
3.053+0.014

−0.016 (3.050) 3.062± 0.016 (3.072) 3.067± 0.016 (3.067)
ns 0.9707± 0.0040 (0.9733) 0.9788± 0.0061 (0.9849) 0.9800± 0.0059 (0.9870)
σi − 0.48+0.14

−0.09 (0.58) 0.50+0.12
−0.07 (0.56)

V0 − 2.23+0.10
−0.45 (1.97) 2.22+0.11

−0.13 (2.24)
ξ − − < 0.39 (0.17)
H0 69.13± 0.49 (69.25) 70.85± 0.92 (71.38) 71.21± 0.93 (71.87)
rs 147.49± 0.25 (147.61) 143.4± 1.9 (141.83) 141.9+1.9

−2.2 (140.70)
σ8 0.820± 0.006 (0.818) 0.833± 0.011 (0.842) 0.833± 0.008 (0.836)
S8 0.811± 0.011 (0.806) 0.827± 0.016 (0.838) 0.831± 0.014 (0.833)
log10 zc − 3.59+0.06

−0.19 (3.50) 3.60+0.06
−0.04 (3.64)

fscf − < 0.134 (0.083) 0.088+0.033
−0.025 (0.107)

ξσ2
i − − < 0.072 (0.053)

γPN − 1 − − > −1.7 · 10−9 (−1.8 · 10−9)
∆χ2 − −11.5 −17.1
lnBij − +1.8 −0.2

P18 + SN + H0 ΛCDM EDE EMG

Planck high-` TTTEEE 2351.75 2352.22 2349.25
Planck low-` EE 396.94 397.51 396.23
Planck low-` TT 22.08 21.41 21.29
Planck lensing 9.59 9.07 9.32
Pantheon 1026.96 1026.87 1026.86
H0 14.76 3.50 2.00

Total 3822.08 3810.58 3804.97

Table 5.3: [Upper table] Constraints on main and derived parameters considering
the data set P18 + SN + H0 for ΛCDM, ξ = 0 and ξ ≥ 0. I report mean values
and the 68% CL, except for the case of upper or lower limits, for which I report the
95% CL. I also report the best-fit values in round brackets. [Lower table] Best-fit χ2

per experiment for the data set P18 + SN + H0 for ΛCDM, EDE and EMG model.
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ΛCDM EDE EMG
102ωb 2.262± 0.013 (2.265) 2.277± 0.016 (2.276) 2.272± 0.016 (2.275)
ωc 0.1174± 0.0008 (0.1178) 0.1218+0.0022

−0.0034 (0.1228) 0.1234+0.0028
−0.0047 (0.1262)

100 ∗ θs 1.04213± 0.00029 (1.04229) 1.04160+0.00052
−0.00034 () 1.04154± 0.00043 (1.04148)

τreio 0.055± 0.007 (0.057) 0.055± 0.007 (0.058) 0.054± 0.007 (0.057)
ln
(
1010As

)
3.041± 0.014 (3.047) 3.044± 0.015 (3.042) 3.047± 0.015 (3.058)

ns 0.9716± 0.0035 (0.9719) 0.9756+0.0043
−0.0053 (0.9752) 0.9755+0.0046

−0.0054 (0.9791)
σi − < 0.60 (0.47) 0.39+0.15

−0.10 (0.50)
V0 − 2.59+0.72

−0.64 (3.21) 2.44+0.76
−0.50 (2.05)

ξ − − < 0.63 (0.14)

H0 69.17± 0.35 (69.09) 70.40± 0.76 (70.75) 70.63+0.80
−1.0 (71.59)

rs 147.51± 0.21 (147.38) 145.0+1.7
−1.3 (144.43) 144.3+2.3

−1.5 (142.75)
σ8 0.815± 0.005 (0.819) 0.819+0.006

−0.008 (0.81682) 0.819+0.006
−0.007 (0.820)

S8 0.805± 0.008 (0.811) 0.808± 0.010 (0.804) 0.809± 0.009 (0.807)
log10 zc − 3.72+0.37

−0.26 (4.12) 3.66+0.04
−0.20 (3.52)

fscf − < 0.101 (0.064) < 0.121 (0.085)
ξσ2
i − − < 0.054 (0.030)

γPN − 1 − − > −1.8 · 10−9 (−8.0 · 10−10)
∆χ2 − −11.0 −11.5
lnBij − −0.4 −0.12

P18 + BAO + FS + SN + H0 + S8 ΛCDM EDE EMG

Planck high-` TTTEEE 2351.17 2351.13 2351.51
Planck low-` EE 396.43 396.47 396.48
Planck low-` TT 22.36 21.70 22.19
Planck lensing 9.32 10.09 10.46
BAO BOSS low-z 2.65 2.96 2.91
BAO DR12 FS + BAO, high-z NGC 64.76 64.08 65.53
BAO DR12 FS + BAO, high-z SGC 63.11 63.23 63.00
BAO DR12 FS + BAO, low-z NGC 70.57 71.14 70.54
Pantheon 1026.89 1026.97 1026.98
H0 15.88 6.00 2.90
S8 5.66 4.02 4.82

Total 4028.81 4017.81 4017.35

Table 5.4: [Upper table] Constraints on main and derived parameters considering
the data set P18 + BAO + FS + SN + H0 + S8 for ΛCDM, ξ = 0 and ξ ≥ 0. I
report mean values and the 68% CL, except for the case of upper or lower limits, for
which I report the 95% CL. I also report the best-fit values in round brackets. [Lower
table] Best-fit χ2 per experiment for the data set P18 + BAO + FS + SN + H0

+ S8 for ΛCDM, EDE and EMG model.
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ΛCDM EDE EMG

102ωb 2.243± 0.013 (2.251) 2.245+0.015
−0.016 (2.240) 2.244± 0.015 (2.247)

ωc 0.1195± 0.0009 (0.1186) 0.1206+0.0008
−0.0019 (0.1200) 0.1206+0.0011

−0.0019 (0.1234)
100 ∗ θs 1.04193± 0.00029 (1.04199) 1.04182± 0.00032, (1.04181) 1.04181+0.00033

−0.00029 (1.04168)
τreio 0.054± 0.007 (0.059) 0.054± 0.007, (0.054) 0.054± 0.007 (0.54)
ln
(
1010As

)
3.043± 0.014 (3.050) 3.045± 0.014 (3.044) 3.045± 0.014 (3.0491)

ns 0.9666± 0.0037 (0.9699) 0.9678+0.0037
−0.0047 (0.9663) 0.9673± 0.0044 (0.9686)

σi − < 0.50 (0.05) < 0.45 (0.31)
V0 − 2.14± 0.78 (0.69) 2.47+0.86

−0.39 (2.28)
ξ − − < 0.81 (0.18)

H0 68.16± 0.41 (68.55) 68.46+0.42
−0.68 (67.90) 68.39+0.50

−0.67 (68.94)
rs 147.16± 0.22 (147.32) 146.53+0.94

−0.23 (147.08) 146.59+0.90
−0.38 (145.17)

σ8 0.822± 0.0058 (0.823) 0.823+0.006
−0.007 (0.824) 0.822± 0.007 (0.824)

S8 0.830± 0.010 (0.823) 0.831± 0.011 (0.836) 0.830± 0.011 (0.834)
log10 zc − 3.26+0.65

−0.72 (2.07) 3.44+0.52
−0.17 (3.54)

fscf − < 0.0617 (0.0004) < 0.0726 (0.037)
ξσ2
i − − < 0.0381 (0.0172)

γPN − 1 − − > −1.7 · 10−8 (−5.0 · 10−10)
∆χ2 − −1.2 −2.6
lnBij − −1.3 −2.7

P18 + BAO + FS+ SN ΛCDM EDE EMG

Planck high-` TTTEEE 2347.99 2346.77 2345.32
Planck low-` EE 396.89 396.00 396.04
Planck low-` TT 22.69 23.23 23.34
Planck lensing 8.82 8.86 8.80
BAO BOSS low-z 2.00 1.33 1.44
BAO DR12 FS + BAO, high-z NGC 65.78 67.86 67.91
BAO DR12 FS + BAO, high-z SGC 62.42 61.76 61.69
BAO DR12 FS + BAO, low-z NGC 69.82 69.25 69.17
Pantheon 1026.89 1027.09 1027.02

Total 4003.30 4002.15 4000.74

Table 5.5: [Upper table] Constraints on main and derived parameters considering
the data set P18 + BAO + FS + SN for ΛCDM, ξ = 0 and ξ ≥ 0. I report
mean values and the 68% CL, except for the case of upper or lower limits, for which
I report the 95% CL. I also report the best-fit values in round brackets. [Lower table]
Best-fit χ2 per experiment for the data set P18 + BAO + FS + SN for ΛCDM,
EDE and EMG model.
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Chapter 6

Scalar-tensor theories and neutrino

physics

In the previous Chapters, I have studied the dynamics of several models belonging

to the class of ST theories and constrained them with cosmological data. Except for

the introduction of a new degree of freedom, identified with the scalar field of ST

theories, I have not modified any of the other ΛCDM assumptions. In particular,

I have always assumed a standard neutrino physics1 and fixed all the parameters

describing the number of effective relativistic species and the neutrino masses. With

these assumptions, I have shown that a generic outcome of these ST theories is a

larger value of the Hubble constant compared to the one derived within the ΛCDM

model.

In the specific case of the models studied in Chapter 4, however, the mechanism

that drives a higher inferred H0 relies on a behavior of the scalar field contribution the

the expansion history at early times which resembles the one of relativistic species.

Therefore, it is interesting to investigate to what extent these simple scalar-tensor

theories are degenerate with effective number neutrinos and to any additional massless

particles produced well before recombination Neff . The current tight constraints from

the latest Planck 2018 data Neff = 2.89± 0.19 (Neff = 2.99± 0.17 including BAO) at

68% CL [21] can indeed be changed in modified gravity theories as previously shown

in the context of f(R) gravity in [281,282] for Planck DR1.

While changing Neff can lead to a higher value for H0 compared with the value

inferred in the ΛCDM model from CMB anisotropies measurements, in its extension

model with non-zero neutrino mass mν , the two parameters are instead anti-correlated

so lower values of H0 correspond to higher values of mν and viceversa. For instance,

the constraint from Planck 2018 data in combination with BAO data is mν < 0.12

eV at 95% CL [21, 283] and combining with the measurement from the SH0ES team

the limit further tightens to mν < 0.076 eV [284]. On the other hand in ST theories

1Note that I have always considered massless neutrinos with Neff = 3.046 in comparing the
models of Chapters 4 and 5 with cosmological data, whereas oftentimes the choice of one massive
neutrino with mν = 0.06 eV is adopted in the literature [21] (see discussions in Chapters 4 and 5
and in the following).
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of gravity, it is possible to keep fixed the angular diameter distance at decoupling or

even increase it in order to recover a higher H0 while increasing the total neutrino

mass [285]. Given that neutrino oscillations are the only evidence of physics beyond

the Standard Model of Particle Physics [286], a natural question is to explore how

the constraints on neutrino physics can be relaxed or tightened if the underlying

cosmological model is one of those analyzed in the previous Chapters, rather than the

ΛCDM one.

I also note that future CMB experiments, such as the Simons Observatory1 [287],

CMB-S42 [288], and future LSS surveys from DESI3 [289], Euclid4 [290, 291], LSST5

[292], SKA6 [293,294] will help improve the constraints on these extended cosmologies

[260,261,295] and limit the degeneracy of neutrino parameters Neff and mν with scalar-

tensor theories [296].

This Chapter is based on the research work in Ref. [4], in particular, I will focus on

the models studied in Chapter 4 and set boundary conditions on σ so that laboratory

experiments on the variation of G are automatically satisfied, as explained in Sec. 4.2.

All the results and plots are produced using the CLASSig code [2, 221].

6.1 Degeneracy with the number of effective rela-

tivistic degrees of freedom

As explained in Sec. 6.1, in the context of the ΛCDM model, the presence of extra

relativistic degrees of freedom in the Universe increases the expansion rate during the

radiation-dominated era and shifts the epoch of matter-radiation equality, the shape

of the matter power spectrum, and the history of recombination (see Refs. [182, 297]

for a review). The extra radiation is usually parameterized by ∆Neff ≡ Neff − 3.046

[298–301]. By reducing the size of the comoving sound horizon at baryon drag, a

larger value of Neff can ease the tension on H0, at the price of worsening the fit to

CMB polarization and BAO data [21,178], see Sec. 6.1.

In the context of modified gravity theories, however, there is an interplay (negative

correlation) between the contribution of extra radiation ∆Neff and the scalar field

coupling7 which acts as an additional source of radiation in the analogue Einstein

system at the background level. By decreasing the effective number of extra relativistic

1https://simonsobservatory.org/
2https://cmb-s4.org/
3http://desi.lbl.gov/
4http://sci.esa.int/euclid/
5http://www.lsst.org/
6http://www.skatelescope.org/
7See Refs. [281,282] for an application in the context of f(R) gravity.
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Figure 6.1: Differences with respect to the ΛCDM with (Neff = 3.046) with IG
(top panels) for ξ = 0.0008, 0.0016 (solid, dashed) and Neff = 2.846, 3.046, 3.246
(red, green, blue), and CC (bottom panels) for Npl = 1.00003, 1.00004 Mpl (solid,
dashed) and Neff = 2.846, 3.046, 3.246 (red, green, blue). D` ≡ `(` + 1)C`/(2π) are
the band-power angular power spectra. Figure taken from Ref. [4].
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Figure 6.2: Marginalized joint 68% and 95% CL regions 2D parameter space using
the P18 (gray) in combination with BAO (blue) and BAO + R19 (red) for the IG+Neff

model. In the central panel, I include the H0−Neff contours for the ΛCDM in green.
In the right panel, I include the H0−ξ contours for the IG with Neff = 3.046 in green.
Figure taken from Ref. [4].
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Figure 6.3: Marginalized joint 68% and 95% CL regions 2D parameter space using
the Planck legacy data (gray) in combination with DR12 (blue) and DR12 + R19
(red) for the CC+Neff model. Figure taken from Ref. [4].

species to Neff = 2.846 it is possible to obtain deviations of the CMB anisotropies

angular power spectra to the ΛCDM model of the same order of the ones obtained

with ξ halved and Neff = 3.046, see Fig. 6.1.

Therefore, preferring lower values of Neff , the datasets allow for larger values for ξ

compared to the case with Neff = 3.046 fixed. The constraints on the coupling change

from ξ < 0.00098 to ξ < 0.0019 at 95% CL with P18 alone (and from ξ < 0.00055 to

ξ < 0.00078 once BAO are included), see Tab. 6.1 and Tables in Chapter 4.

The mean of Neff moves around 1σ towards lower values with respect to the ΛCDM

case with a similar error. For IG, I get at 68% CL Neff = 2.79±0.20 for P18 compared

to Neff = 2.89 ± 0.19 in ΛCDM and Neff = 2.85 ± 0.17 in combination with BAO

compared to Neff = 2.99 ± 0.17 in ΛCDM. In Fig. 6.2 (central panel), I show the

enlarged H0−Neff parameter space in IG compared to the ΛCDM concordance model

(green contours) where it is possible to reach higher value of H0 without increasing

Neff in presence of a modification of gravity.

In the CC model, an analogous correlation in the Neff − Npl parameter space is

found, see Fig. 6.3. The constraints on Npl are larger, from Npl < 1.000028 Mpl (see

Chapter 4) to Npl < 1.000057 Mpl at 95% CL with P18 alone and from Npl < 1.000018

Mpl to Npl < 1.000019 Mpl at 95% CL once BAO are included, see Tab. 6.2.

While the Hubble constant is larger than in ΛCDM for the combination P18 +

BAO H0, i.e. H0 =
(
68.78+0.53

−0.78

)
km s−1Mpc−1 and H0 =

(
68.62+0.47

−0.66

)
km s−1Mpc−1,

for the IG and CC models respectively, the addition of R19 data leads to a closer

posterior distribution for H0 among the three cases, i.e. (70.1 ± 0.8) km s−1Mpc−1

for IG, (69.6 ± 0.7) km s−1Mpc−1 for CC, and H0 = (70.0± 0.9) km s−1Mpc−1 for

ΛCDM+Neff . I find a similar posterior distribution also for IG+Neff (CC+Neff), i.e.

(70.3± 0.9) km s−1Mpc−1 ((70.1± 0.9) km s−1Mpc−1), see Fig. 6.2.

The addition of BAO data reduces the degeneracy H0 − ξ (−Npl) increasing the
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one between Neff − ξ (−Npl) and H0 − Neff . In order to reduce the comoving sound

horizon and therefore accommodate a larger value of H0, in this case Neff is moved

towards larger values, i.e. 3.11± 0.19 for IG and 3.16± 0.19 for CC, see Tab. 6.1.

6.2 Degeneracy with Neutrino masses

As opposed to Neff , which mainly changes the early expansion of the Universe, the

changes in the background evolution caused by neutrino masses, under standard as-

sumptions and for a fixed set of standard cosmological parameters, are confined to late

times. In particular, the neutrino mass impact the angular diameter distance and zΛ

(the redshift of matter-to-cosmological-constant equality) (see Refs. [182,297,302–306]

for a review on neutrino mass in cosmology).

In the standard ΛCDM scenario, a larger value of mν results in a lower Hubble

rate inferred from the CMB, exacerbating the H0 tension. However, there is partial

correlation between the equation of state of dark energy (DE) w and the total neutrino

mass mν , as first noticed by [303]. When mν is increased (or more generally Ων), Ωm

can be kept unchanged by simultaneously decreasing w in order to keep the angular

diameter distance at decoupling fixed. In this case, the impact of neutrino mass on

the background is confined to variations of zΛ and of the late-time ISW effect.

Cosmological bounds on the neutrino masses can therefore be relaxed if a DE com-

ponent with wDE 6= −1 is used instead of a cosmological constant. Vice versa, cosmo-

logical constraints on the DE parameters become larger in comparison to cosmologies

with massless neutrinos or with the standard minimal assumption of mν = 0.06 eV.

Analogous conclusions were obtained in the context of Galileon gravity [285].

In Fig. 6.4, I show the combined effect on the CMB anisotropies of varying both ξ

and mν in the IG model. Note that my assumption, which is the one I adopt through-

out this Section is to have one massive and two massless neutrinos. For a fixed value

of the coupling parameter ξ = 0.0008, the differences with respect to the ΛCDM con-

cordance model are reduced by increasing the value of the neutrino mass mν from 0.1

eV to 0.3 eV. On the late-time observables, i.e. the weak lensing CMB anisotropies

and the linear matter power spectrum, the partial degeneracy between modified grav-

ity and the neutrino mass is still present but with differences concentrated on small

scales, see Fig. 6.5.

In this case the constraints on the coupling parameter ξ become tighter compared

to the case with mν = 0, i.e. from ξ < 0.00098 to ξ < 0.00094 at 95% CL for P18. The

CMB anisotropies data prefer to relax the upper bound on the neutrino mass which

becomes mν < 0.31 eV at 95% CL for P18 29% larger to the ΛCDM case mν < 0.24
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Figure 6.4: Differences with respect to the ΛCDM with mν = 0 eV with IG (top
panels) for ξ = 0.0008, 0.0016 (solid, dashed) and mν = 0.1, 0.2, 0.3 eV (red, green,
blue), and CC (bottom panels) for Npl = 1.00003, 1.00004 Mpl (solid, dashed) and
mν = 0.06, 0.1, 0.2 eV (red, green, blue). Figure taken from Ref. [4].
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Figure 6.5: Differences with respect to the ΛCDM with mν = 0 eV with IG (top
panels) for ξ = 0.0008, 0.0016 (solid, dashed) and mν = 0.1, 0.2, 0.3 eV (red, green,
blue), and CC (bottom panels) for Npl = 1.00003, 1.00004 Mpl (solid, dashed) and
mν = 0.06, 0.1, 0.2 eV (red, green, blue). Figure taken from Ref. [4].
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Figure taken from Ref. [4].
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Figure 6.7: Marginalized joint 68% and 95% CL regions 2D parameter space using
P18 (gray) in combination with BAO (blue) and BAO + R19 (red) for the CC+mν

model. Figure taken from Ref. [4].

eV. Including the BAO data, the total neutrino mass is constrained to mν < 0.17

eV at 95% CL, 42% larger to the ΛCDM case mν < 0.12 eV, and I find ξ < 0.00076

at 95% CL, see Tab. 6.3. The addition of R19 data leads to H0 = (70.1 ± 0.8) km

s−1Mpc−1 with an upper bound on the total neutrino mass mν < 0.19 eV at 95% CL,

2.5 times larger than the limit based on the ΛCDM model, with a 2σ detection of the

coupling parameter ξ = 0.00065± 0.00057 at 95% CL, see Fig. 6.6.

Analogously, for CC the constraint on Npl becomes tighter compared to the case

with mν = 0, i.e. Npl < 1.000026 Mpl for P18 and Npl < 1.000024 Mpl for P18 +

BAO at 95% CL, see Fig. 6.7. Also, for this model, the upper bound on the neutrino

mass becomes 30% larger compared to the ΛCDM case, see Tab. 6.4.
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measurement from R19 [145]. Figure taken from Ref. [4].
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Figure 6.9: Samples of the P18 + BAO chains in the H0 − Neff (H0 −mν) plane,
colour-coded by Npl for the CC+Neff+mν model. Dashed blue contours show the
constraints for CC+Neff+mν with P18 alone. Solid red contours show the constraints
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6.3 Joint constraints on Neff and neutrino mass

Finally, it is interesting to consider also the case where both Neff and mν are allowed

to vary. Despite the larger parameter space and the larger limits on the parameters,

the models do not accommodate higher values of the Hubble parameter compared to

the 7- and 8-parameters case analysed before, see Figs. 6.8-6.9. Moreover, contrary

to the case where Neff was fixed, the total neutrino mass is now almost uncorrelated

with the Hubble parameter. In this case, the modified gravity parameters ξ and Npl

are always compatible at 2σ with the GR limit due to the larger parameter space and

are given by (see Tabs. 6.5-6.6):
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ξ < 0.0018 (95% CL) , Neff = 2.74± 0.22 , mν < 0.26 eV (95% CL)

for IG and

Npl < 1.000050 Mpl (95% CL) , Neff = 2.73± 0.21 , mν < 0.26 eV (95% CL)

for the CC case. When BAO data are included, the constraints change to

ξ < 0.0012 (95% CL) , Neff = 2.77± 0.20 , mν < 0.19 eV (95% CL)

for IG and

Npl < 1.000042 Mpl (95% CL) , Neff = 2.75± 0.21 , mν < 0.17 eV (95% CL)

for the CC case. Further adding R19, I get

ξ < 0.0013 (95% CL) , Neff = 3.08± 0.20 , mν < 0.19 eV (95% CL)

for IG and

Npl < 1.000040 Mpl (95% CL) , Neff = 3.14± 0.20 , mν < 0.14 eV (95% CL)

for the CC case.

6.4 Summary of the results

In this Chapter, I have investigated the degeneracy of the ST theories studied in

Chapter 4 with the the physics of neutrinos [4]. To do so, I have extended the analysis

for the IG and CC models in Sections 4.2 and 4.4 respectively, to a general neutrino

sector by allowing the effective number of relativistic species Neff and the neutrino

mass mν to vary. Both Neff and mν are partially degenerate with the deviations from

GR, as happens in other modified gravity models [281,282,285]. Whereas Neff and the

scalar field act as an additional source of radiation in the early Universe, at late times

the background contribution to Ωm due to mν can be compensated from the scalar

field in order to keep the angular diameter distance at decoupling fixed, see Figs. 6.1-

6.4-6.5. However, I have shown that these are only partial degeneracies which could

be broken by combination of observations at different redshifts.
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In the case where Neff is left free to vary (Sec. 6.1) the limit on ξ becomes∼ 94% (∼
42%) larger with P18 (P18+BAO) while the mean on the number of neutrinos moves

around 1σ towards lower values compared to the ΛCDM case without significantly

degrading its uncertainty, i.e. Neff = 2.79 ± 0.20 (Neff = 2.85 ± 0.17). For CC the

limit on Npl becomes ∼ 104% (∼ 6%) larger with P18 (P18+BAO) and analogously

to IG I find Neff = 2.73+0.25
−0.22 (Neff = 2.81± 0.19).

The upper bound on the neutrino mass (Sec. 6.2) is ∼ 29% (∼ 42%) is also

degraded with P18 (P18+BAO) compared to the ΛCDM case, i.e. mν < 0.31 eV

(mν < 0.17 eV), whereas the constraint on ξ is slightly tighter with CMB data alone

in order to relax the constraint on mν . Analogously, for CC the limit on the neutrino

mass is ∼ 17% (∼ 33%) larger with P18 (P18+BAO) compared to the ΛCDM case.

When both Neff and mν are allowed to vary, the constraints on ξ and Npl degrade by a

factor two compared to the case with Neff = 3.046 and mν = 0 eV also in presence of

BAO data, i.e. ξ < 0.0012 and Npl < 1.000042 Mpl at 95% CL. For the data used, the

combination of the modification to gravity in our models to non-standard neutrino

physics does not lead to higher values of H0 compared to the case with standard

assumptions in the neutrino sector.

6.5 Tables

Here I collect the Tables containing the constraints from the MCMC analysis consid-

ered in this Chapter.
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P18 P18 + BAO P18 + BAO + R19

ωb 0.02227+0.00018
−0.00021 0.02225± 0.00019 0.02250± 0.00019

ωc 0.1161± 0.0031 0.1172± 0.0030 0.1210± 0.0029
H0 [km s−1Mpc−1] 69.2+1.5

−2.4 (2.3σ) 67.9+1.0
−1.2 (3.5σ) 70.28± 0.92 (2.2σ)

τ 0.0547± 0.0078 0.0526± 0.0069 0.0549± 0.0072
ln
(
1010As

)
3.038± 0.016 3.035± 0.015 3.050± 0.016

ns 0.9617+0.0049
−0.0088 0.9600+0.0045

−0.0079 0.9707± 0.0069
ζIG < 0.0076 (95% CL) < 0.0031 (95% CL) < 0.0040 (95% CL)
Neff 2.79± 0.20 2.85± 0.17 3.11± 0.19
ξ < 0.0019 (95% CL) < 0.00078 (95% CL) < 0.0010 (95% CL)
γPN > 0.9925 (95% CL) > 0.9969 (95% CL) > 0.9960 (95% CL)
δGN/GN (z=0) > −0.055 (95% CL) > −0.023 (95% CL) > −0.029 (95% CL)

1013ĠN/GN (z=0) [yr−1] > −2.2 (95% CL) > −0.93 (95% CL) > −1.2 (95% CL)
δGN/G (z=0) > 0.9962 (95% CL) > 0.9985 (95% CL) > −0.9980 (95% CL)

Ωm 0.290+0.022
−0.012 0.3022± 0.0074 0.2906± 0.0067

σ8 0.834+0.012
−0.018 0.825± 0.010 0.841± 0.010

rs [Mpc] 148.2+1.8
−1.5 148.4± 1.7 145.5± 1.5

∆χ2 1.7 −1.8 −3.0

Table 6.1: Constraints on main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO + R19 for the IG+Neff

model.

P18 P18 + BAO P18 + BAO + R19
ωb 0.02223± 0.00022 0.02215± 0.00022 0.02257± 0.00018
ωc 0.1151± 0.0033 0.1162± 0.0031 0.1213± 0.0030
H0 [km s−1Mpc−1] 67.9± 1.4 (3.1σ) 67.1± 1.2 (3.7σ) 70.10± 0.92 (2.0σ)

τ 0.0539+0.0060
−0.0074 0.0544+0.0061

−0.0074 0.0561+0.0063
−0.0075

ln
(
1010As

)
3.034± 0.017 3.035± 0.016 3.053+0.014

−0.016
ns 0.9598± 0.0084 0.9606± 0.0071 0.9736± 0.0062
Npl [Mpl] < 1.000057 (95% CL) < 1.000019 (95% CL) < 1.000032 (95% CL)

Neff 2.73+0.25
−0.22 2.81± 0.19 3.16± 0.19

γPN > 0.999943 (95% CL) > 0.999981 (95% CL) > 0.999968 (95% CL)
βPN < 1.0000048 (95% CL) < 1.0000015 (95% CL) < 1.0000027 (95% CL)
δGN/GN (z=0) > −0.052 (95% CL) > −0.018 (95% CL) > −0.030 (95% CL)

1013ĠN/GN (z=0) [yr−1] > −7.5× 10−9 (95% CL) > −2.5× 10−9 (95% CL) > −4.3× 10−9 (95% CL)
GN/G (z=0) > 0.999975 (95% CL) > 0.999991 (95% CL) > 0.999984 (95% CL)

Ωm 0.299+0.014
−0.011 0.3070± 0.0066 0.2929± 0.0062

σ8 0.827+0.011
−0.013 0.8204± 0.0099 0.8391± 0.0095

rs [Mpc] 149.5± 2.0 149.3± 2.0 145.5± 1.6
∆χ2 1.4 −0.2 −3.8

Table 6.2: Constraints on main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO + R19 for the CC+Neff

model.
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P18 P18 + BAO P18 + BAO + R19
ωb 0.02239± 0.00017 0.02241± 0.00014 0.02247± 0.00013
ωc 0.1205± 0.0013 0.1203± 0.0011 0.1203± 0.0012

H0 [km s−1Mpc−1] 68.5± 1.8 (2.4σ) 68.66+0.69
−0.87 (3.4σ) 70.12± 0.81 (2.4σ)

τ 0.0567+0.0065
−0.0082 0.0564+0.0066

−0.0080 0.0572+0.0063
−0.0080

ln
(
1010As

)
3.052−0.016

+0.013 3.051−0.016
+0.013 3.054+0.013

−0.016
ns 0.9668± 0.0053 0.9672± 0.0038 0.9700± 0.0038

ζIG < 0.0037 (95% CL) < 0.0030 (95% CL) 0.0026+0.0010
−0.0013

mν [eV] < 0.31 (95% CL) < 0.17 (95% CL) < 0.19 (95% CL)
ξ < 0.00094 (95% CL) < 0.00076 (95% CL) 0.00065± 0.00057 (95% CL)

γPN > 0.9963 (95% CL) > 0.9970 (95% CL) 0.9974+0.0013
−0.0010

δGN/GN (z=0) > −0.027 (95% CL) > −0.022 (95% CL) −0.0190+0.0093
−0.0075

1013ĠN/GN (z=0) [yr−1] > −1.1 (95% CL) > −0.93 (95% CL) −0.78+0.39
−0.31

GN/G (z=0) > 0.9981 (95% CL) > 0.9985 (95% CL) 0.9987+0.00064
−0.00051

Ωm 0.306+0.015
−0.018 0.3029± 0.0076 0.2905± 0.0068

σ8 0.815+0.025
−0.014 0.821+0.014

−0.010 0.832± 0.013

rs [Mpc] 146.18+0.78
−0.38 146.31+0.71

−0.37 145.56+0.78
−0.69

∆χ2 3.0 0.2 −3.3

Table 6.3: Constraints on main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO + R19 for the IG+mν

model.

P18 P18 + BAO P18 + BAO + R19
ωb 0.02240± 0.00016 0.02242± 0.00013 0.02252± 0.00013
ωc 0.1203± 0.0013 0.12011± 0.00097 0.1197± 0.0010

H0 [km s−1Mpc−1] 68.0± 1.4 (3.0σ) 68.31+0.62
−0.69 (3.7σ) 69.62 0.71 (2.8σ)

τ 0.0563+0.0063
−0.0080 0.0564+0.0065

−0.0077 0.0576+0.0067
−0.0077

ln
(
1010As

)
3.051+0.013

−0.016 3.047+0.013
−0.015 3.054+0.013

−0.016
ns 0.9674± 0.0053 0.9681± 0.0043 0.9720± 0.0041

Npl [Mpl] < 1.000026 (95% CL) < 1.000024 (95% CL) 1.000019+0.000017
−0.000018 (95% CL)

mν [eV] < 0.28 (95% CL) < 0.16 (95% CL) < 0.13 (95% CL)

γPN > 0.999926 (95% CL) > 0.999924 (95% CL) 0.9999192+0.000009
−0.000011 (95% CL)

βPN < 1.0000021 (95% CL) < 1.0000020 (95% CL) < 1.0000030 (95% CL)

δGN/GN > −0.024 (95% CL) > −0.023 (95% CL) −0.0181+0.0099
−0.0082

1013ĠN/GN (z=0) [yr−1] > −3.6× 10−9 (95% CL) > −3.3× 10−9 (95% CL) (−2.7+1.5
−1.2)× 10−9

GN/G (z=0) > 0.999987 (95% CL) > 0.9999988 (95% CL) 0.9999904+0.0000054
−0.0000043

Ωm 0.309+0.011
−0.015 0.3047± 0.0067 0.2935± 0.0064

σ8 0.814± 0.010 0.820+0.013
−0.010 0.831± 0.012

rs [Mpc] 146.52+0.47
−0.34 146.58+0.47

−0.31 146.26+0.55
−0.48

∆χ2 3.0 0.0 −1.5

Table 6.4: Constraints on main and derived parameters (at 68% CL if not otherwise
stated) considering P18 in combination with BAO and BAO + R19 for the CC+mν

model.
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P18 P18 + BAO P18 + BAO + R19

ωb 0.02218± 0.00022 0.02220+0.00022
−0.00019 0.02250± 0.00020

ωc 0.1162± 0.0034 0.1164± 0.0031 0.1208± 0.0030
H0 [km s−1Mpc−1] 67.7+2.0

−2.4 (2.6σ) 67.6± 1.2(3.5σ) 70.25± 0.92 (2.2σ)
τ 0.0556+0.0065

−0.0083 0.0554+0.0065
−0.0073 0.0576+0.0063

−0.0081

ln
(
1010As

)
3.039−0.018

+0.016 3.039± 0.016 3.056± 0.016
ns 0.9577± 0.0086 0.9582± 0.0076 0.9710± 0.0071
ζIG < 0.0070 (95% CL) < 0.0047 (95% CL) < 0.0053 (95% CL)
mν [eV] < 0.26 (95% CL) < 0.19 (95% CL) < 0.19 (95% CL)
Neff 2.74± 0.22 2.77± 0.20 3.08± 0.20
ξ < 0.0018 (95% CL) < 0.0012 (95% CL) < 0.0013 (95% CL)
γPN > 0.9931 (95% CL) > 0.9954 (95% CL) > 0.9948 (95% CL)
δGN/GN (z=0) > −0.050 (95% CL) > −0.034 (95% CL) > −0.038 (95% CL)

1013ĠN/GN (z=0) [yr−1] > −2.0 (95% CL) > −1.4 (95% CL) > 1.6 (95% CL)
GN/G (z=0) > 0.9966 (95% CL) > 0.9977 (95% CL) > 0.9974 (95% CL)

Ωm 0.303+0.022
−0.019 0.3035± 0.0081 0.2904± 0.0069

σ8 0.814+0.025
−0.019 0.815+0.015

−0.012 0.833+0.013
−0.011

rs [Mpc] 148.6± 1.9 148.6± 1.8 145.3± 1.6
∆χ2 1.1 0.5 −2.5

Table 6.5: Constraints on main and derived parameters (at 68% CL if not oth-
erwise stated) considering P18 in combination with BAO and BAO + R19 for the
IG+Neff+mν model.

P18 P18 + BAO P18 + BAO + R19
ωb 0.02217± 0.00022 0.02222± 0.00020 0.02257± 0.00018
ωc 0.1158± 0.0034 0.1158± 0.0032 0.1212± 0.0031
H0 [km s−1Mpc−1] 66.7± 1.8 (3.2σ) 67.2± 1.1(3.8σ) 69.96± 0.93 (2.1σ)

τ 0.0554+0.0064
−0.0076 0.0556+0.0063

−0.0075 0.0577+0.0069
−0.0082

ln
(
1010As

)
3.039± 0.017 3.039± 0.016 3.057± 0.016

ns 0.9582± 0.0084 0.9596± 0.0074 0.9745± 0.0064
Npl [Mpl] < 1.000050 (95% CL) < 1.000042 (95% CL) < 1.000040 (95% CL)
mν [eV] < 0.26 (95% CL) < 0.17 (95% CL) < 0.14 (95% CL)
Neff 2.73± 0.21 2.75± 0.21 3.14± 0.20
γPN > 0.999950 (95% CL) > 0.9958 (95% CL) > 0.9960 (95% CL)
βPN < 1.0000041 (95% CL) < 1.0000035 (95% CL) < 1.0000033 (95% CL)
δGN/GN (z=0) > −0.046 (95% CL) > −0.040 (95% CL) > −0.037 (95% CL)

1013ĠN/GN (z=0) [yr−1] > −6.7× 10−9 (95% CL) > −5.7× 10−9 (95% CL) > −5.5× 10−9 (95% CL)
GN/G (z=0) > 0.999975 (95% CL) > 0.999979 (95% CL) > 0.999980 (95% CL)

Ωm 0.310+0.016
−0.018 0.3056± 0.0074 0.2939± 0.0064

σ8 0.808+0.024
−0.015 0.814+0.015

−0.011 0.833± 0.012

rs [Mpc] 149.3+1.8
−2.1 149.2± 1.9 145.4± 1.7

∆χ2 3.0 0.4 −0.6

Table 6.6: Constraints on main and derived parameters (at 68% CL if not oth-
erwise stated) considering P18 in combination with BAO and BAO + R19 for the
CC+Neff+mν model.

145





Chapter 7

Isocurvature initial conditions in

scalar-tensor theories

7.1 Introduction

In the previous Chapters I have always assumed adiabatic initial conditions on the cos-

mological perturbations, following the discussion in Section 1.8. In the same Section,

though, I also discussed that the current constraints do not rule out completely isocur-

vature perturbations, but leave open the possibility of a small fraction of isocurvature

modes that can arise because of the multi-component nature of the cosmic fluid. In

the context of ST tensor theories, the scalar field σ is yet another component which

is active during the expansion of the Universe, and therefore additional isocurvature

modes can arise.

This fact is very well known in the case of quintessence models with F (σ) =

1, for which it was found that fluctuations are very close to be adiabatic during a

tracking regime in which the parameter of state of quintessence mimics the one of

the component dominating the total energy density of the Universe [307]. In the case

of thawing quintessence models, in which a tracking regime is absent, isocurvature

quintessence fluctuations are instead allowed [307, 308]. From the phenomenological

point of view, a mixture of curvature and quintessence isocurvature perturbations is

an interesting explanation of the low amplitude of the quadrupole and more in general

of the low-` anomaly of the CMB anisotropies pattern [308,309].

In this Chapter, I study the most general set of set of cosmological perturbations

produced in ST theories with the Lagrangian of the form (2.2.3), focusing in particular

on a new isocurvature mode exclusively due to the presence of σ and absent in Einstein

Gravity. I analytically derive the initial conditions for Einstein-Boltzmann codes and

analyze its imprints on the CMB spectra. I conclude by constraining the allowed

isocurvature fraction using the recent CMB data from the last Planck release to

constrain their allowed fraction.
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This Chapter is based on the research work in Ref. [5] and on the preliminary re-

sults that will be soon published in Ref. [6], where the phenomenology of isocurvature

modes is studied in the context of the IG. For this reason, in this Chapter, I focus

on the latter model, leaving the detailed analysis of isocurvature perturbations in ST

models described by the action in Eq. (2.2.3) for future studies.

7.2 Initial Conditions in Scalar-Tensor Theories

The initial conditions on the cosmological perturbations are usually expressed as a

series in power of kτ , where τ is the conformal time [37, 40]. To derive them, the

set of the perturbed Einstein-Boltzmann equations described in Chapters 1 and 3

has therefore to be expanded in powers of kτ → 0 and solved at every order in

kτ . This amounts to considering perturbations deep in the radiation era and in the

super-horizon limit.

In order to solve the perturbed equations, expressions for the background quan-

tities, such as the scale factor a and the Hubble parameter H = a′/a, need to be

derived in the τ → 0 limit too. In ST theories, also the scalar field σ is needed. By

expanding the background equations in Section 2.2.1 in powers of the conformal time

τ , the following solutions at the leading order in τ the are easily obtained:

a(τ) =

√
ρr0
3Fi

τ

[
1 +

ω

4
τ − 5

16

ξ2σ2
i (1 + 6ξ)

Fi + 6ξ2σ2
i

ω2τ 2

]
, (7.2.1)

H(τ) =
1

τ

[
1 +

ω

4
τ − 1

16

Fi + 4ξ2σ2
i (4 + 15ξ)

Fi + 6ξ2σ2
i

ω2τ 2

]
, (7.2.2)

σ(τ) = σi

[
1 +

3

2
ξωτ − 2Fi(1− 3ξ) + 27ξ2σ2

i (1 + 2ξ)

8(Fi + 6ξ2σ2
i )

ω2τ 2

]
, (7.2.3)

where I define ω as

ω =
ρm0√
3ρr0

√
Fi

Fi + 6ξ2σ2
i

(7.2.4)

and Fi = N2
pl + ξσ2

i . As can be seen from the solution above, the scalar field σ is

initially frozen and starts to thaw because of its coupling to non-relativistic matter,

as discussed in the previous Chapters.

Inserting these solutions in the perturbed Einstein-Boltzmann equations, it is pos-

sible to derive the most general set of initial conditions. As mentioned above, this

consists in the usual adiabatic and isocurvature modes discussed in Section 1.8 sup-

plemented with a new isocurvature mode caused by the presence of the field σ. The

results presented here are specific of the choice F (σ) = N2
pl + ξσ2, but can easily
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generalized to every functional form of F (σ).

I closely follow Ref. [40] in presenting the initial conditions, for which I explicitly

report the leading order in the kτ series expansion. To complete the characterization

of the initial conditions, I also report the leading order of the Newtonian potentials

and the curvature perturbation R. The latter is very important since, as discussed

in Section 1.8, adiabatic and isocurvature initial conditions are classified according to

their contribution to the comoving gauge curvature perturbation [35]. In particular,

the adiabatic mode leads R ' C at leading order in the kτ expansion, where C is a

normalization related to the primordial spectrum produced by inflation, whereas at

leading order R ' 0 for isocurvature modes.

I closely follow Ref. [40] in presenting the initial conditions, for which I explicitly

report the leading orders in a double expansion in kτ and ωτ . To complete the char-

acterization of the initial conditions, I also report the leading order of the Newtonian

potentials Φ and Ψ and the curvature perturbation Rrad = Φ + (Φ′/H + Ψ)/2 1.

For later convenience I define the quantities:

Rν ≡
ρν0

ρr0

, Rb ≡
ρb0
ρm0

, Rγ ≡ 1−Rν Rc ≡ 1−Rb. (7.2.5)

Adiabatic mode (ADI) The adiabatic mode in Einstein Gravity is slightly mod-

ified by the presence of the scalar field and becomes [2]:

δγ = δν =
4

3
δb =

4

3
δc = −2C

3
k2τ 2

[
1− ωτ

5

]
,

θγ = −Ck
4τ 3

36

[
1− 3ωτ

20

(5Rb +Rγ)Fi + 30ξ2σ2
i

RγFi

]
,

θν = −C
18
k4τ 3

[
4Rν + 23

4Rν + 15
− 3ωτ ((8R2

ν + 50Rν + 275)Fi + 60(5− 4Rν)ξ
2σ2

i )

20(2Rν + 15)(4Rν + 15)Fi

]
,

σν =
4Ck2τ 2

3(4Rν + 15)

[
1 +

(4Rν − 5)(Fi + 6ξ2σ2
i )

4(4Rν + 15)(2Rν + 15)
ωτ

]
,

h = Ck2τ 2
[
1− ωτ

5

]
,

η = 2C − Ck2τ 2

6

[
(4Rν + 5)

(4Rν + 15)
− ωτ 150(4Rν − 5)ξ2σ2

i + (16R2
ν + 280Rν + 325)Fi

10(2Rν + 15)(4Rν + 15)Fi

]
,

δσ

σi
= −Cξωk

2τ 3

4
+
Cξω2k2τ 4

40

[2ξ2σ2
i (24 + 45ξ) + (4− 9ξ)Fi]

(Fi + 6ξ2σ2
i )

. (7.2.6)

The Newtonian potentials are given by Ψ = 4C(2Rν+5)
(4Rν+15)

and Φ = 20
(4Rν+15)

at leading

order and the curvature perturbation is equal to R ' C.

1Note that Rrad coincides with the right hand side of Eq. (1.8.18) for wtot = 1/3
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Baryon Isocurvature mode (BI)

δγ = −2Rbωτ

3

[
1−

6N2
pl

16(Fi + 6ξ2σ2
i )
ωτ − 3ξ(1 + 6ξ)(15ξ + 2)σ2

i

16(Fi + 6ξ2σ2
i )

ωτ

]
,

δν = δγ,

θγ = −ωRb

12
k2τ 2 +

Rb
2ω2(Fi + 6ξ2σ2

i )

16RγFi
k2τ 3 +

Rbω
2
(
ξ(1 + 6ξ)(15ξ + 2)σ2

i + 2N2
pl

)

96(Fi + 6ξ2σ2
i )

k2τ 3,

δc = −Rbω

2
τ +

3Rbω
2τ 2

32(Fi + 6ξ2σ2
i )

[
ξ(1 + 6ξ)(15ξ + 2)σ2

i + 2N2
pl

]
,

δb = 1 + δc,

θν = θγ −
Rb

2ω2(Fi + 6ξ2σ2
i )

16RγFi
k2τ 3,

σν = −Rbω(Fi + 6ξ2σ2
i )

6(2Rν + 15)Fi
k2τ 3,

h = Rbωτ

[
1−

6N2
pl

16(Fi + 6ξ2σ2
i )
ωτ − 3ξ(1 + 6ξ)(15ξ + 2)σ2

i

16(Fi + 6ξ2σ2
i )

ωτ

]
,

η = −h
6
,

δσ

σi
=

3ξRbωτ

2

[
1−

(5− 12ξ)N2
pl

12(Fi + 6ξ2σ2
i )
ωτ − ξ(1 + 6ξ)(18ξ + 5)σ2

i

12(Fi + 6ξ2σ2
i )

ωτ

]
.

The Newtonian potentials are given by

Ψ = −
Rbω(15ξσ2

i (1− 6ξ) + 15N2
pl + 4RνFi)

8(2Rν + 15)Fi
τ,

Φ = −
Rbω

(
15ξσ2

i (1 + 8ξ) + 15N2
pl − 4RνFi

)

8(2Rν + 15)Fi
τ

at leading order and R ' 0.

CDM Isocurvature mode (CDI)

δγ = −2Rcωτ

3

[
1−

6N2
pl

16(Fi + 6ξ2σ2
i )
ωτ − 3ξ(1 + 6ξ)(15ξ + 2)σ2

i

16(Fi + 6ξ2σ2
i )

ωτ

]
,

δν = δγ,

θγ = −ωRc

12
k2τ 2 +

Rc
2ω2(Fi + 6ξ2σ2

i )

16RγFi
k2τ 3 +

Rcω
2
(
ξ(1 + 6ξ)(15ξ + 2)σ2

i + 2N2
pl

)

96(Fi + 6ξ2σ2
i )

k2τ 3,

150



δb = −Rcω

2
τ +

3Rcω
2τ 2

32(Fi + 6ξ2σ2
i )

[
ξ(1 + 6ξ)(15ξ + 2)σ2

i + 2N2
pl

]
,

δc = 1 + δb,

θν = θγ −
Rc

2ω2(Fi + 6ξ2σ2
i )

16RγFi
k2τ 3,

σν = −Rcω(Fi + 6ξ2σ2
i )

6(2Rν + 15)Fi
k2τ 3,

h = Rcωτ

[
1−

6N2
pl

16(Fi + 6ξ2σ2
i )
ωτ − 3ξ(1 + 6ξ)(15ξ + 2)σ2

i

16(Fi + 6ξ2σ2
i )

ωτ

]
,

η = −h
6
,

δσ

σi
=

3ξRcωτ

2

[
1−

(5− 12ξ)N2
pl

12(Fi + 6ξ2σ2
i )
ωτ − ξ(1 + 6ξ)(18ξ + 5)σ2

i

12(Fi + 6ξ2σ2
i )

ωτ

]
. (7.2.7)

The Newtonian potentials are given by

Ψ = −
Rcω(15ξσ2

i (1− 6ξ) + 15N2
pl + 4RνFi)

8(2Rν + 15)Fi
τ,

Φ = −
Rcω

(
15ξσ2

i (1 + 8ξ) + 15N2
pl − 4RνFi

)

8(2Rν + 15)Fi
τ

at leading order and, again, R ' 0.

Neutrino Density Isocurvature mode (NDI)

δγ = −Rν

Rγ

δν = −Rν

Rγ

+
k2Rντ

2

6Rγ

,

θγ = −k
2Rντ

4Rγ

+
3(Fi + 6ξ2σ2

i )k
2RbRνωτ

2

16R2
γFi

,

δb =
k2Rντ

2

8Rγ

, δc = −k
2RbRντ

3ω

80Rγ

+ k4τ 4 Rν

72(4Rν + 15)
,

θν =
k2τ

4
, and σν =

k2τ 2

2(4Rν + 15)
,

h =
k2RbRντ

3ω

40Rγ

, η = − Rνk
2τ 2

6(4Rν + 15)
,

δσ

σi
=

ξk2RbRντ
3ω

32Rγ

. (7.2.8)

The Newtonian potentials are given by

Ψ =
Rν

4Rν + 15
and Φ = − 2Rν

4Rν + 15
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at leading order and, again, R ' 0.

Neutrino Velocity Isocurvature mode (NIV)

δγ =
4Rν

3Rγ

kτ − RbRνωFi(Rγ + 2) + 12ξ2σ2
i

4R2
γFi

kτ 2,

θγ =− kRν

Rγ

+
3RbRνω(Fi + 6ξ2σ2

i )

4R2
γFi

kτ +

[
k3τ 2Rν

6Rγ

− 27(Rbωξσi)
2Rν(Fi + 6ξ2σ2

i )

8R3
γF

2
i

kτ 2

− 3RbRνω
2(Fi + 6ξ2σ2

i )(3Rb −Rγ)

16R3
γFi

kτ 2

]
,

δb =
Rν

Rγ

kτ − 3RbRνω(Fi(Rγ + 2) + 12ξ2σ2
i

16R2
γFi

kτ 2,

δc =− 3RbRνω

16Rγ

kτ 2,

δν =− 4

3
kτ − RbRνω

4Rγ

kτ 2,

θν =k − (4Rν + 9)

6(4Rν + 5)
k3τ 2,

σν =
4

3(4Rν + 5)
kτ +

4Rνω(Fi + 6ξ2σ2
i )

(4Rν + 5)(4Rν + 15)Fi
kτ 2,

h =
3RbRνω

8Rγ

kτ 2,

η =− 4Rν

3(4Rν + 5)
kτ − RbRνω

16Rγ

τ 2 +
5Rνω(Fi + 6ξ2σ2

i )

(4Rν + 5)(4Rν + 15)Fi
kτ 2,

δσ

σi
=
ξRbRνω

2Rγ

kτ 2 (7.2.9)

The Newtonian potentials are given by

Ψ =− Φ =
4Rν

k(4Rν + 5)τ

at leading order and, again, R ' 0.
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New Isocurvature mode (ISONMC) The initial conditions for the new isocurva-

ture mode, which unlike the previous ones is peculiar of ST theories, are the following:

δγ =δν = −ξσ
2
i

Fi
− 2ωτ

3

ξ(1 + 6ξ)σ2
i

Fi + 6ξ2σ2
i

+
k2τ 2

6

ξσ2
i

Fi
− ω2τ 2

16

ξ(1 + 6ξ)σ2
i

(Fi + 6ξ2σ2
i )

2

[
(15ξ − 4)N2

pl

− 2ξ(1 + 6ξ)(15ξ + 2)σ2
i

]
,

θγ =− ξσ2
i

4Fi
k2τ − ωk2τ 2

12

ξ(1 + 6ξ)σ2
i

Fi + 6ξ2σ2
i

+
3Rb(Fi + 6ξ2σ2

i )ξσ
2
i

RγF 2
i

ωk2τ 2

16
,

δc =− ωτ

2

ξ(1 + 6ξ)σ2
i

Fi + 6ξ2σ2
i

+
3ω2τ 2ξ(1 + 6ξ)σ2

i

32(Fi + 6ξ2σ2
i )

2

[
ξ(1 + 6ξ)(15ξ + 2)σ2

i −
(15ξ − 4)N2

pl

2

]
,

δb =δc +
k2τ 2

8

ξσ2
i

Fi
,

θν =− ξσ2
i

4Fi
k2τ − ωk2τ 2

12

ξ(1 + 6ξ)σ2
i

Fi + 6ξ2σ2
i

,

σν =
ξσ2

i

6(4Rν + 15)Fi
k2τ 2,

h =ωτ
ξ(1 + 6ξ)σ2

i

Fi + 6ξ2σ2
i

+ 3ω2τ 2 ξ(1 + 6ξ)σ2
i

32(Fi + 6ξ2σ2
i )

2

[
(15ξ − 4)N2

pl − 2ξ(1 + 6ξ)(15ξ + 2)σ2
i

]
,

η =− ωτ

6

ξ(1 + 6ξ)σ2
i

Fi + 6ξ2σ2
i

+
(Rν + 5)ξσ2

i

6(4Rν + 15)Fi
k2τ 2 +

ξ(1 + 6ξ)σ2
i ω

2τ 2

64(Fi + 6ξ2σ2
i )

2

[
(4− 15ξ)N2

pl

+ 2ξ(1 + 6ξ)(15ξ + 2)σ2
i

]

δσ

σi
=− 1

2
+

3ξωτ [ξ(1 + 6ξ)σ2
i −N2

pl]

4(Fi + 6ξ2σ2
i )

+
k2τ 2

12
− ω2τ 2ξ3(1 + 6ξ)2(27ξ + 8)σ4

i

16(Fi + 6ξ2σ2
i )

2

− ξ(ωτNpl)
2

16(Fi + 6ξ2σ2
i )

[
(6ξ − 2)N2

pl − 3ξ(6ξ + 1)(19ξ − 2)σ2
i

]
. (7.2.10)

The Newtonian potentials are given by

Ψ =− (Rν + 5)

(4Rν + 15)

ξσ2
i

Fi
,

Φ =
2(Rν + 5)

(4Rν + 15)

ξσ2
i

Fi

at leading order and R ' 0.

Note that in all the isocurvature modes above, for simplicity, I omitted an overall

multiplying constant D ≡ fISOC which represents the isocurvature power spectrum.

The new mode (7.2.10) has no analogue in Einstein Gravity. Crucial for the

existence and linear independence of this mode is the fact that the background scalar
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field is almost frozen deep in the radiation era, leading to a constant synchronous

gauge perturbation δσ. On the other hand, if the background scalar field is described

by a running or scaling solution, such a mode is negligible [310] and the set of initial

conditions is completely described by the ADI, CDI, BI, NDI and NIV modes [40].

Another feature of this new mode is that it is independent on the scalar field

potential, as can be read off from Eqs. (7.2.10), and is completely characterized by

the non-minimal coupling with the Ricci scalar. The choice of the potential affects

only higher orders in the kτ expansion which are negligible. Eqs. (7.2.10) show that,

in the limit ξ → 0, all the leading orders in the perturbations vanish except for the

constant and second order perturbations in the scalar field. Going to higher orders in

the expansion, it can be seen that the first non-vanishing ones are those dependent

on the potential of the scalar field would become only source term for the scalar

field perturbations. This confirms results in the literature, where it was proved that

isocurvature perturbations due to σ have only a small effect in minimally-coupled

quintessence models [307–309,311].

As discussed above, the new mode gives a vanishing contribution to the gauge-

invariant curvature perturbation in the comoving gauge R [312] and therefore can

be accounted as an isocurvature. As a cautionary remark, however, note that the

definition of the curvature perturbation R and its interpretation in the Jordan frame

are not obvious [313]. Independently on the interpretation, though, the mode in

Eqs. (7.2.10) is a growing one and regular and independent on the other modes and

as such can have interesting physical implications that I discuss in the following.

As discussed above, the new mode gives a vanishing contribution to Rrad and

therefore can be accounted as an isocurvature mode. The variable Rrad should be

the leading order contribution of a gauge-invariant curvature perturbation in the

comoving gauge in the Jordan frame. The search and the full definition of gauge-

invariant curvature perturbation in a multi-fluid system in the Jordan frame is in

progress, but beyond the scope of this thesis.

7.3 Correlated Isocurvature and Adiabatic Pertur-

bations

As already stressed, CMB measurements tightly constrain the nature of the initial con-

ditions and only allow for a small fraction of isocurvature ones. Moreover, constraints

change depending on the correlation between adiabatic and isocurvature initial condi-

tions, which ultimately depends on the specific inflationary mechanism that generated
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the primordial fluctuations [314,315]. Before discussing the imprints of the new mode

on the CMB spectra, it is therefore necessary to discuss the formalism to deal with

such a correlation [316,317].

Defining the transfer functions for the pure adiabatic and isocurvature modes as

Θad
l (k) and Θiso

l (k) respectively, it is useful to define the following quantities:

Cad
l =

∫
dk

k

(
k

k0

)nad−1

[Θad
l (k)]2, (7.3.1)

C iso
l =

∫
dk

k

(
k

k0

)niso−1

[Θiso
l (k)]2, (7.3.2)

Ccorr
l =

∫
dk

k

(
k

k0

)(nad+niso)/2−1

Θad
l (k)Θiso

l (k), (7.3.3)

which contribute to the total angular power spectrum as follows

Ctot
l = A2Cad

l +B2C iso
l + 2AB cos θCcorr

l . (7.3.4)

The equation above can be conveniently expressed as

Ctot
l = A2[Cad

l + f 2
isoC

iso
l + 2fiso cos θCcorr

l ]. (7.3.5)

Therefore the correlation is parameterized by the two parameters fiso and cos θ. An-

other possibility which is commonly used in the literature, see e.g. Refs. [317, 318],

is to identify α ≡ B2/(A2 + B2) and β ≡ cos θ, so that in order to α can run from

a purely adiabatic mode (α = 0) to a purely isocurvature one (α = 1). The two

parameterizations are related by α = f 2
iso/(1 + f 2

iso) so that Eq. (7.3.5) now reads:

Ctot
l = (A2 +B2)[(1− α)Cad

l + αC iso
l + 2β

√
α(1− α)Ccorr

l ]. (7.3.6)

Note that, since the isocurvature fraction allowed by data is usually very small, i.e.

fiso � 1, the dominant isocurvature contribution comes from the cross-correlation

with the adiabatic mode, which is in turn why the largest fraction of isocurvature

modes is allowed for uncorrelated modes with cos θ = 0 [54]. In the following I will

consider nISO = ns for simplicity.

7.4 Impact on CMB anisotropies

Armed with the formalism of Section 7.3, I now go on to analyze the imprints of the

new mode in Eq. (7.2.10) on the CMB power spectra, focusing on the IG model [5,6].
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Figure 7.1: CMB anisotropy angular power spectra in temperature, solid lines, and
E-mode polarization, dashed lines. The black curve is the adiabatic case, thin curves
represent the three standard ΛCDM isocurvature modes and the thick curve represent
the new isocurvature mode. In order to compare the spectrum shapes I have assumed
equal amplitude between isocurvatures and adiabatic mode, i.e. fISO = 1. Note that
blue and red lines are superimposed. Figure taken from Ref. [5].
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Figure 7.2: [Left] Temperature angular power spectrum of adiabatic+isocurvature
modes for the different correlation extrema. [Right] Relative differences to show the
impact of isocurvatures in IG. The difference between IG and the standard LCDM
corresponding model and the isocurvature contributions are plotted in pink and green,
gold and blue lines respectively. In particular I plot the change with respect to the
adiabatic case with the same coupling. Figure taken from Ref. [6].

In Fig. 7.1, I show the comparison of the new mode with the adiabatic and standard

isocurvature modes in the ΛCDM model within Einstein gravity. Fig. 7.1 also shows

the weak dependence of the new isocurvature mode on ξ (γ in the Figure) at least for

the small values consistent with the cosmological 95%CL upper bound ξ . 0.75×10−3

[222] (updated to the time Ref. [5] was published) and for Solar System constraints

γ . 0.6× 10−5 [134].

I show the total angular power spectra in temperature and polarization given by

the mixture of adiabatic and isocurvature, considering an isocurvature fISO = 0.5 in

the left panels of Figs. 7.2 and 7.3, and their relative differences in the right ones.

In order to isolate the effect of isocurvature perturbations, I show in pink the effect

of the adiabatic ST case with respect to the one in LCDM and in colored curves the

relative difference with respect to the IG adiabatic case with the same coupling. The

presence of the isocurvature perturbations has an impact on both intermediate and

small angular scales affecting also the acoustic peak region. In polarization, there is

also an evident effect on the reionization bump which represents an interesting target

for future CMB experiments dedicated to the large scale polarization measurements.

7.5 Constraints with Planck data

In this Section, I present Planck constraints on the new isocurvature mode.
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Figure 7.3: [Left] E-mode polarization angular power spectrum of adia-
batic+isocurvature modes for the different correlation extrema. [Right] Relative dif-
ferences to show the impact of isocurvatures in IG. The difference between IG and the
standard LCDM corresponding model and the isocurvature contributions are plotted
in pink and green, gold and blue lines respectively. Figure taken from Ref. [6].

Planck 2015. Constraints on this isocurvature mode were first obtained in Ref. [5]

and I start by discussing the results obtained therein. At the time of preparation of

Refs. [5] and [2], a serious bottleneck was a problem in the memory allocation of the

ClassIG code, which was responsible for a very limited capability to explore cosmo-

logical models by MCMC. For this analysis the value of the non-minimal coupling is

fixed to γ = 5× 10−4 to contain the computational cost of the MCMC investigation.

The only extra parameter with respect to the baseline adiabatic ΛCDM is therefore

the isocurvature fraction fISO, with a flat prior fISO ∈ [0, 0.8], but a smooth ΛCDM

limit cannot be recovered since the non-minimal coupling is not allowed to vanish by

construction. The three cases of correlation between adiabatic and isocurvature per-

turbations cos θ = −1, 0, 1 are considered separately as in Ref. [318]. Since at the time

of the publication of Ref. [5] P18 data were not public yet, the results discussed here

are obtained using P15 data, like in Section 4.2.2. In order to speed up the MCMC

exploration, the foreground marginalized PlikLite likelihood at high ` is used instead

of the full binned Plik one: the use of PlikLite should be a good approximation for one

parameter extensions of ΛCDM such as the model including a fraction of isocurvature

perturbations with fixed correlation and spectral index [319].

The results of Ref. [5] show no evidence at a statistical significant level for the new

isocurvature mode Eq. (7.2.10). The 95% CL bounds from the MCMC exploration

are fISO < 0.07 for the fully anti-correlated case cos θ = −1, fISO < 0.12 for the fully

correlated case cos θ = 1 and fISO < 0.31 for the uncorrelated case θ = π/2. These

allowed abundances are slightly larger than those of the known isocurvature modes
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in Einstein gravity, although scale similarly with the degree of correlation [318].

Planck 2018. As of the time I am writing this thesis, an update of the results

presented above is in preparation and I will now present some preliminar results.

The problem of memory allocation of the ClassIG code reported in the analysis with

Planck 2015 data has now been resolved by a significant update of the ClassIG code

which allowed an efficient MCMC exploration of cosmological models beyond ΛCDM

as in [4].

Differently from the previous analysis, now the coupling γ is varied together with

the six ΛCDM parameters and the isocurvature fraction fISO and now the Planck

2018 baseline likelihood, denoted as P18 in the previous Chapters, is used. Also here,

for simplicity, the relation nISO = ns is assumed and the extrema of the possible

correlations cos θ = −1, 1 are considered separately1, as in [54].

The results for the isocurvature fraction and the coupling γ are presented in Table

7.1. In Figure 7.4, I show the triangle plot representing the posterior distribution

Correlated Anti-Correlated
γIG < 0.00090 < 0.00105
fISO < 0.08 < 0.20

(=0.10+0.05
−0.07at 68% CL)

Table 7.1: Constraints on the amplitude of the isocurvature allowed and the non-
minimal coupling γ.

of the relevant parameters together with their correlation, and compare them to the

pure adiabatic case with fISO = 0.

Note that the presence of isocurvature perturbations has an almost negligible

impact on the constraints on the coupling γ. Nonetheless, introducing isocurvatures

changes the distribution of standard cosmological parameters, most notably the scalar

spectral index, as for other isocurvature modes [54].

In Table 7.2, I present the constraints on the cosmological parameters the stan-

dard cosmological parameters compared with the adiabatic case. Note that almost all

cosmological parameters are perfectly recovered in presence of isocurvature. The shift

in the amplitude of scalar primordial fluctuations is within at 1-σ as the differences

in the scalar spectral index. The only exception, although always compatible with

adiabatic initial conditions at one σ, is the anticorrelated case that shows a slight de-

generacy of both isocurvature and coupling parameters with the normalization power

spectrum of scalar fluctuations As.

1Note that here I am not presenting results for the uncorrelated case, as they are not ready yet.
I expect the results to be ready for the revised version of this thesis.
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Figure 7.4: Posterior distribution of cosmological+isocurvature parameters com-
pared with the adiabatic case. Preliminary results from Ref. [6].
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Correlated Anti-Correlated Adiabatic
10−2ωb 2.244± 0.015 2.242± 0.015 2.244± 0.015
ωcdm 0.120± 0.001 0.121± 0.001 0.120± 0.001
100θs 1.0417± 0.0003 1.0420± 0.0003 1.0418± 0.0003

ln(1010As) 3.044± 0.015 3.065± 0.017 3.050+0.014
−0.015

ns 0.9660± 0.0053 0.9784+0.0067
−0.0080 0.9687+0.0045

−0.0051

τreio 0.0557+0.0074
−0.0075 0.0555+0.0073

−0.0075 0.0555+0.0072
−0.0078

γIG < 0.00090 < 0.00105 < 0.00094

Table 7.2: Comparison of cosmological parameters with the adiabatic case. I report
68% CL constraints except for upper limits, for which I report 95% CL limits.

7.6 Summary of the results

In this Chapter, I have studied in details the most general set of initial conditions

for the cosmological perturbations in ST theories. In particular, I have derived a new

regular and growing isocurvature mode which is due to the presence of the nearly

frozen non-minimally coupled scalar field during the radiation era. The mode, which

is absent in GR, is characterized by constant perturbations to the density contrast of

photons and neutrinos and to the perturbation to the scalar field δσ.

Its imprints on the CMB spectra are much stronger than the ones of the corre-

sponding mode in minimally-coupled quintessence models and are enhanced by the

non-minimal coupling F (σ), at least in the IG model studied in this Chapter. Fur-

thermore, the CMB spectra for this new mode are completely different from the ones

derived assuming other known isocurvature initial conditions.

Assuming the three benchmark cases of fully correlated, fully anti-correlation and

uncorrelated adiabatic and isocurvature initial conditions, I have shown how current

Planck data constrain the contribution of this isocurvature mode to be significantly

subdominant with respect to the adiabatic one. This is in line with results in the

literature, although the bounds I find are slightly less tight then the ones derived for

other Einstein Gravity isocurvature modes.
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Chapter 8

Discussion and Outlook

During my PhD, the field of observational cosmology has seen important devel-

opments. The last release by the Planck team in 2018 has provided a map of the

Cosmic Microwave Background (CMB) anisotropies of a quality never reached before,

the BOSS team released extraordinary constraints on the matter power spectrum

and on the Baryon Acoustic Oscillations (BAO) and the list is still very long. Fur-

thermore, a special mention goes to nascent field of Gravitational Waves astronomy

which is already revolutionizing our understanding of the Universe. One one hand,

this lead to improved constraints on the cosmological parameters describing the stan-

dard ΛCDM cosmological model. On the other, the unprecedented precision (and the

growing number) of cosmological and astrophysical measurements have increased con-

siderably some of the already existing tensions between datasets, such as the tensions

on S8 = σ8

√
Ωm/0.3 and H0. The latter is a tension between the model dependent

inference of the H0 parameter from early Universe data such as the CMB and other

cosmological observations and its model independent local measurements. Given the

constraining power of cosmological data and the number of unanswered questions,

this is a great time to explore new physics beyond the ΛCDM model.

The aim of my thesis work is to use data to constrain cosmological models of Scalar-

Tensor (ST) theories where a scalar field σ is coupled to the Ricci scalar through a

function of the form F (σ) = N2
pl + ξσ2. In these models, also named Non-Minimally

Coupled (NMC) model, the modification to gravity manifests itself in a time-variation

of the Newton constant GN(σ) = 1/8πF (σ) and its derivatives, the so called Post

Newtonian (PN) parameters, with respect to General Relativity (GR). Despite these
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theories are very simple and only constitute a small corner in the more complex space

of theoretically and observationally viable ST theories, the functional form of F (σ)

introduced above, together with the freedom of choosing the potential V (σ), lead to

a vast phenomenology. I focus on those models in which the scalar field is frozen deep

in the radiation era and starts to move around the time of matter-radiation equality

and its energy density eventually redshifts away, leading to a late time evolution of

the Universe very close to ΛCDM. These peculiarities make these modified gravity

models candidates for early solutions to H0 tension. The latter has become more

and more pressing over the past few years and a series of recent works has shown

that the solutions which are most likely to work are ’early’ Universe ones that lower

the comoving sound horizon rs compared to ΛCDM. For this reason, throughout this

thesis, particular attention is given to the consequences of ST theories on the Hubble

tension.

The simplest scenario studied in this thesis is the one of a (nearly) massless scalar

field. This is implemented by choosing a potential of the form V (σ) ∝ F (σ)2 or simply

by setting it to a cosmological constant V (σ) = Λ, though cosmological data are not

able to tell the two choices apart, so they are effectively equivalent. When dealing

with these models, a strategy commonly used to deal with the tight constraints on the

Newton constant from laboratory experiments is to fix it to its measured value using a

shooting algorithm on one of the ST parameters. With this method I have contributed

to derive constraints the model parameters using a variety of cosmological data such

as Planck 2015 (P15) and 2018 (P18) measurements of the CMB anisotropies, BAO

and SH0ES measurements of H0 (R19). Although in the most general NMC models,

cosmological constraints on the PN parameters are in agreement with Solar System

ones, in the Induced Gravity (IG) model, which is a redefinition of the Jordan-Brans-

Dicke (JBD) one, Solar System constraints are much tighter than cosmological ones.

Within NMC, we can alternatively set Npl = Mpl, sample on the initial value of the

field σi and abandon the prior on the Newton constant. With these priors, the region

with ξ < 0, where the scalar field decreases in the matter dominated era, covers most

of the parameter space allowed by the data. As expected, all these possibilities lead to

an H0 significantly larger than the obtained in ΛCDM, regardless of particular choice

of dataset, although the Hubble tension is only alleviated.

A more complex situation is obtained when a small effective mass for the scalar

field σ is induced by a a quartic potential V (σ) = λσ4/4. In this case, dubbed Early

Modified Gravity (EMG) model, the scalar field eventually becomes massive compared

to the Hubble flow, rolls down its potential and undergoes damped oscillations around

its minimum in turn injecting a sharp amount of energy into the cosmic fluid, similarly
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to what happens in Early Dark Energy models. Specializing again to Npl = Mpl

the model is naturally in agreement with all the tests of gravity. An interesting

consequences of adding the potential is that the positive branch of the coupling ξ ≥ 0,

which is not allowed in the massless case, is now consistent with cosmological data

and actually helps fit Large Scale Structure (LSS) data such as measurements of the

full shape of the matter power spectrum. Furthermore, compared to the massless

models, the H0 tension is significantly reduced, although the price to pay is a higher

degree of fine tuning in λ.

A common consequence of many modified gravity theories is a radical change in

the cosmological constraints on neutrino masses mν and on the number of active

relativistic species Neff . This, together with the fact that a large Neff is very well

known to significantly ease the tension, as our models, naively suggests a degeneracy

between the physics of Neutrinos and the one of ST theories. To this purpose, I have

used several combinations of cosmological datasets in the context of NMC and IG to

analyze their interplay with Neutrino physics, by opening the Monte-Carlo-Markov-

Chain (MCMC) exploration to the parameters mν and Neff . I discuss that only small

degeneracies are left by current data and the tension on H0 is only mildly affected

and constraints on mν and Neff are relaxed with respect to the ones in the ΛCDM

context.

Finally, the presence of a nearly frozen scalar field deep in the radiation era could

justify a new isocurvature mode in the set of initial conditions for the linear cosmolog-

ical perturbations. For this new growing and regular mode the imprints on cosmologi-

cal observables are boosted by the non-minimal coupling compared to its counterpart

in minimally-coupled quintessence models. As for other isocurvature modes it leads to

a vanishing contribution to the curvature perturbations at leading order in expansion

in powers of kτ . An MCMC analysis with CMB P15 and P18 data shows that only

a small fraction of this new isocurvature mode (but slightly larger than other known

isocurvature modes in GR) is allowed in combination with the adiabatic one. The

latter fraction, quantified by the parameter fISO, depends on the specific correlation

between curvature and isocurvature modes and is found to be maximum when the

modes are uncorrelated, consistently with bounds on other isocurvature modes in the

literature.

The results of this thesis show that non-minimally coupled scalar field have a

wide range of implications for cosmology and are a very good candidate to address

the H0 tension. These are the simplest ST tensor theories that can be extended in

several ways from the model building point of view. It is therefore natural to expect

an even richer phenomenology by exploring, e.g. different shapes for the scalar field
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potential, an issue that I am currently exploring, and/or non-trivial kinetic terms or

self-interactions in the Horndeski framework. In particular, these terms can induce

a scale dependent modification to the growth of structure that can help solve the S8

tension, which is instead exacerbated in our models. This is also suggested by the

results for the EMG model, which show that the non-minimal coupling help improve

the fit to LSS data compared to minimally-coupled EDE ones. A necessary step in

this direction is also to analyze the models proposed in this thesis, and eventually

their extensions, in light of weak-lensing full likelihoods from collaborations such as

DES and KiDS.
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