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[…] εἰ γὰρ ἠδύνατο ἕκαστον τῶν
ὀργάνων κελευσθὲν ἢ
προαισθανόμενον ἀποτελεῖν τὸ
αὑτοῦ ἔργον, <καὶ> ὥσπερ τὰ
∆αιδάλου φασὶν ἢ τοὺς τοῦ
Ἡφαίστου τρίποδας, οὕς φησιν ὁ
ποιητὴς αὐτομάτους θεῖον δύεσθαι
ἀγῶνα, οὕτως αἱ κερκίδες ἐκέρκιζον
αὐταὶ καὶ τὰ πλῆκτρα ἐκιθάριζεν,
οὐδὲν ἂν ἔδει οὔτε τοῖς ἀρχιτέκτοσιν
ὑπηρετῶν οὔτε τοῖς δεσπόταις
δούλων.

[…] For if every instrument could
accomplish its own work, obeying or
anticipating the will of others, like the
statues of Daedalus, or the tripods of
Hephaestus, which, says the poet, “of
their own accord entered the assembly
of the Gods”; if, in like manner, the
shuttle would weave and the plectrum
touch the lyre without a hand to guide
them, chief workmen would not want
servants, nor masters slaves.

Arist. Pol. I.4, 1253b33-39





Abstract

A search for tt̄H(bb̄) events in the fully hadronic final state is performed
using data collected by the CMS experiment in proton-proton collisions at the
center-of-mass energy of 13 TeV corresponding to an integrated luminosity
of 35.9 fb−1. The analysis is based on the study of events in the boosted
topology, i.e., events in which the decay products of at least one particle
have a high Lorentz boost and are thus reconstructed in the detector as
a single, large-radius jet. In this search, the Higgs boson is required to
decay to a pair of well-separated jets. The observed (expected) upper limit
at 95% confidence level on the signal strength parameter µtt̄H, defined as
the ratio of the measured tt̄H production cross section to the one expected
from a standard model Higgs boson, is found to be 11.5 (15.8) times the
expectation from the standard model. By performing a combination with a
complementary search targeting decays of the Higgs boson to a large-radius
jet, the observed (expected) upper limit at 95% confidence level on the signal
strength parameter is found to be 7.1 (9.0) times the expectation from the
standard model.
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Chapter 1

Introduction

The Higgs boson (H) plays a fundamental role in the Standard Model of the
electroweak and strong interactions (SM), being the particle associated with
the field that gives mass to all the elementary particles. The discovery of the
Higgs boson in 2012 is among the most outstanding results obtained by the
ATLAS and CMS Collaborations [1, 2] and, since then, many analyses have
been developed in order to measure the Higgs boson mass and properties
as precisely as possible [3, 4, 5, 6]. Up to date, no deviations from the SM
predictions have been found.

At the CERN Large Hadron Collider (LHC), the SM Higgs boson, i.e., a
neutral, spinless, CP-even particle of measured mass of 125.38 ±0.14 GeV [7],
can mainly be created in four different processes or production modes: gluon-
gluon fusion (ggH), vector boson fusion (VBF), Higgs-strahlung (VH) and
top-antitop-Higgs (tt̄H) associated production. In the ggH production mode,
a gluon-induced fermionic loop, mostly dominated by top quarks, gives rise to
a Higgs boson with no other associated particles. This is the most probable
process, with a theoretical cross section at 13 TeV σggH = 48.6 ± 2.4 pb
[8]. In the VBF process, two initial-state quarks emit a couple of virtual
vector bosons, which annihilate to give rise to a Higgs boson. This process
shows the characteristic signature of two jets in the final state, which can
be used to target this particular production mode, and has a theoretical
cross section at 13 TeV σVBF = 3.78 ± 0.08 pb [8]. In the VH process, a
couple of quarks annihilates to produce a virtual vector boson, which then
irradiates a Higgs boson, resulting in a theoretical cross section at 13 TeV
σWH, ZH = 1.37 ± 0.03, 0.88 ± 0.04 pb [8]. Finally, in the tt̄H production
mode, which will be the main subject of this work, two gluons split in a top
quark-antiquark (tt̄) pair each, with one of such pairs annihilating to a Higgs
boson, resulting in a final state with a Higgs boson, a top quark and a top
antiquark. This process is the rarest, having a theoretical cross section at
13 TeV σtt̄H = 0.50+0.05

−0.07 pb [8]. The four, main production mechanisms are
depicted in Fig. 1.1, where the leading order Feynman diagrams for such

1
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Figure 1.1: Leading order Feynman diagrams for the main production modes
of the SM Higgs boson at the LHC: ggH (upper left), VBF (upper right),
VH (lower left) and tt̄H (lower right).

processes are reported.
Once produced, the SM Higgs boson can decay in several different ways.

As it will be described in detail in the following, the Higgs boson coupling
with SM particles is in general proportional to the mass of the particles.
If we take into account some limitations due to the kinematics, which
imply that the decays to a tt̄ pair and to a pair of real vector bosons are
forbidden, the dominant decay channel for the Higgs boson is predicted to
be the one to a pair of bottom quarks, H → bb̄, with a branching ratio
BR(H → bb̄) = (58.4 ± 1.9)% [8], which has been observed by the ATLAS
and CMS Collaborations [9, 10]. Even though it provides a high event
yield, searches in this decay channel are challenging, given the high level of
background which tends to mask the bb̄ decay.

The second most dominant decay mode is predicted to be the decay to
a couple of W bosons, H → WW∗, where, due to the kinematic limitations
mentioned above, one of the W bosons is produced off-shell. This channel has
a branching ratio BR(H → WW∗) = (21.4±0.8)% [8], and has been observed
by the ATLAS and CMS Collaborations [11, 12] in the case of a decay to
a lepton-neutrino pair for both the vector bosons. The H → WW∗ channel
benefits from a relatively high branching fraction but has the drawback of the
presence of neutrinos in the final state, which make the full reconstruction
of the final state impossible.

The subdominant decay channels are the H → ττ and H → ZZ∗ channels,
in which the Higgs boson decays to a pair of τ leptons and Z bosons respec-
tively. The search of the former process is relevant to investigate the coupling
of the Higgs boson with third generation fermions and is challenging in the



3

fact that many final states are possible, which cannot be fully reconstructed.
The search of the latter process is very important since, in the case of a
decay of the ZZ∗ pair to four leptons (sometimes referred to as the “golden
channel”), it gives a very clean, fully reconstructable signature with low
background. Both such decay modes have been observed by the ATLAS and
CMS Collaborations [13, 14, 15, 16].

Another important decay channel is the H → γγ, in which the Higgs
boson decays to a pair of photons. Being the photon a massless particle, the
H → γγ decay must proceed through a loop-level process, dominated by a
top quark loop. As in the case of the ZZ∗ decay mode, also the γγ decay
channel offers a clean, fully reconstructable final state, nevertheless having
a lower branching fraction. This decay channel has been observed by the
ATLAS and CMS Collaborations [17, 18].

Finally, even rarer decay modes are predicted by the SM, such as the
decay to a Z boson and a photon, H → Zγ and the decay to a pair of muons,
H → µµ. The former is interesting as it proceeds through loop processes
which could involve new physics, resulting in a modified rate with respect
to the SM one. The latter decay mode is important as it would be the fist
observation of the coupling of the Higgs boson to a second generation fermion.
None of these rare decay modes have been observed so far, due to the very
small branching fractions. However, the CMS Collaboration has recently
reported the first evidence for the H → µµ decay with a significance of 3.0
standard deviations [19].

The main results obtained by the ATLAS and CMS Collaborations in
the aforementioned production and decay modes are summarized in Table
1.1.

The discovery of the top quark dates back to 1995, when the two experi-
ments CDF and D0, operating at the Tevatron, announced independently
[20, 21] the observation of a particle compatible with a new quark. The
top quark plays a very important role in the SM due to its very large mass
mt = 173.0 ± 0.4 GeV [8], so that the precise knowledge of its properties is
critical for the general understanding of the theory. For example, it turns
out from SM calculations that the mass of the W boson can be computed as:

mW =
(

πα

GF
√

2

) 1
2 1

sin θW
√

1 − ∆r
,

where α is the fine-structure constant, GF is the Fermi constant, θW is the
Weinberg angle and ∆r is a function related to the radiative corrections of
the W propagator, see Fig. 1.2, of the form ∆r ∼ f(mt, logmH). Since the
parameters α, GF and θW are measured with very high precision, accurate
measurements of mt (and mW) led, in the past, to constraints on the value
of the Higgs boson mass mH [22] and, now that the Higgs boson has been
discovered, can be used to check the overall consistency of the SM.
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Decay mode ggH VBF VH tt̄H
bb̄ (A) – −3.9 ± 2.8 0.9 ± 0.27 0.83 ± 0.63
bb̄ (C) 2.3 ± 1.66 2.8 ± 1.5 1.2 ± 0.4 0.82 ± 0.43
WW∗ (A) 1.21 ± 0.22 0.62 ± 0.36 3.2 ± 4.3 1.50 ± 0.61
WW∗ (C) 1.38 ± 0.23 0.29 ± 0.48 3.27 ± 1.84 1.97 ± 0.67
ττ (A) 1.14 ± 0.44 0.98 ± 0.46 2.3 ± 1.6 1.36 ± 1.11
ττ (C) 1.2 ± 0.5 1.11 ± 0.34 −0.33 ± 1.02 0.28 ± 1.02
ZZ∗(4`) (A) 1.04 ± 0.17 2.8 ± 0.95 0.9 ± 1.0 < 1.8 68% CL
ZZ∗(4`) (C) 1.20 ± 0.22 0.05 ± 0.04 0.0 ± 1.5 < 1.3 68% CL
γγ (A) 0.81 ± 0.18 2.0 ± 0.6 0.7 ± 0.8 1.4 ± 0.4
γγ (C) 1.10 ± 0.19 0.8 ± 0.6 2.4 ± 1.1 2.3 ± 0.8
Zγ (A) < 6.6(5.2) Incl. – –
Zγ (C) < 3.9(2.9) Incl. Incl. –
µµ (A) < 3.0(3.1) Incl. – –
µµ (C) < 2.6(1.9) – – –

Table 1.1: Summary of the ATLAS (A) and CMS (C) measurements and
upper limits for different production modes and decay channels of the Higgs
boson. For observed channels, the measured cross section times branching
ratio, normalized to the expectation of the SM, is reported. For channels
which have not been observed yet, observed (expected) upper limits at 95%
CL on the same quantity are reported. In the case of rare decay modes,
results are reported as limits and secondary production mechanisms which
are included in the analyses are labeled as “Incl.”.

W W

t

b

W W

H

Figure 1.2: Radiative corrections to the W boson propagator. Top-bottom
quarks loop (left) and Higgs boson loop (right).
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Once produced, a t (t̄) quark decays in a time comparable to 10−24 s
to a W+b (W−b̄) pair, different decays being highly subdominant. Such a
short decay time is due to the large mass of the top quark and the related
wide phase space available for the decay, and does not allow the top quark
to form bounded states. Thus, three decay channels are available for a tt̄
pair: a leptonic decay channel, in which both the W bosons arising from
the top quarks decay to a lepton-neutrino pair, with a branching ratio of
about 5%; a semileptonic decay channel, in which one W boson decays to a
lepton-neutrino pair and the other decays to a pair of light quarks, with a
branching ratio of about 30%; and finally an all-hadronic decay channel, in
which both the W bosons decay to a pair of light quark, with a branching
ratio of about 46%.

Searches for the associated production of a Higgs boson and a tt̄ pair are
of crucial importance in the context of the SM. First of all, they complete
the measurements of the couplings of the Higgs boson with third generation
fermions. In the SM framework, the Higgs boson is predicted to couple to
fermions with a Yukawa-like interaction, the coupling being proportional to
the fermion mass. Since the top quark is the heaviest fermion, it shows the
greatest coupling to the Higgs boson. However, given the fact that the mass
of the top quark exceeds the mass of the Higgs boson, the direct decay H → tt̄
is kinematically forbidden. Indirect measurements of the top-Higgs coupling
can be performed in loop-level processes, such as the Higgs boson production
through gluon-gluon fusion reported in Fig. 1.1 or the Higgs boson decay to
photons; however, a direct measurement of the top-Higgs coupling exploiting
tree-level processes, such as in the case of the tt̄H associated production, is
crucial in order to exclude beyond standard model contributions which could
enter the loops unnoticed. Both the ATLAS and CMS Collaborations have
reported the observation of the tt̄H process with a significance above five
standard deviations [23, 24].

Also, the Higgs boson and top quark masses play a fundamental role
in determining the nature of the stability of the electroweak vacuum. A
crucial question is if it is possible to extend the spontaneous symmetry
breaking mechanism (see Chapter 2) up to high energy scales while keeping
the minimum of the scalar potential that breaks the electroweak symmetry
stable. Rather intriguingly, current measurements of the Higgs and top masses
lead to a metastable configuration for the electroweak vacuum [25, 26], that is,
it may exists a lower energy vacuum state available to which the electroweak
vacuum can decay into [27]. This has very important consequences at the
cosmological level, implying, among other things, a finite age for the universe
[28]. A deeper understanding of the top-Higgs Yukawa coupling, which is
related to the top mass, may lead to improvements in the comprehension of
this scenario.

Given the above description of the decay modes of the Higgs boson and
of the top quark, it appears evident that many different decay channels



6 CHAPTER 1. INTRODUCTION

b

b̄

b

q

q̄′

b̄

q

q̄′

g

g

t̄

t

t

t̄

H

W+

W−

Figure 1.3: Leading order Feynman diagram for the tt̄H production and the
subsequent decay in the FH channel. The final state is nominally composed
by eight partons, four of them which are bottom quarks.

are possible for a tt̄H triplet. The analysis described in this works targets
the so called fully hadronic (FH) final state, in which the Higgs boson
decays to a bb̄ pair and the tt̄ pair decays in the all-hadronic final state.
As a result, the final state is composed by at least eight partons (more
are possible due to initial/final state radiation), four of them which are
bottom quarks. Combining the branching ratios of the Higgs boson and
top quark decay modes, a total branching ratio for the FH tt̄H final state
BR(tt̄H → FH) = 0.58 × 0.46 ≈ 0.27 is found, making the FH one the most
probable among all the possible final states.

Even though it shows the highest branching fraction, the FH final state
turns out to be very challenging, having many particles that are difficult
to identify, such as the b quarks, and suffering from large contamination
from the main background at hadron colliders, namely the QCD multijet
production. Moreover, also the production of tt̄ pairs with additional jets
is found to be an overwhelming background for this kind of search. Given
the presence of many jets, measurements in the FH channel involve larger
uncertainties (coming from jet energy corrections and b tagging) than in
the leptonic channels, but offer the unique possibility to fully reconstruct
the tt̄H system, since no missing energy/momentum is present. The leading
order Feynman diagram for the tt̄H production and subsequent decay in the
FH channel is shown in Fig. 1.3

The standard approach adopted in the CMS Collaboration to search for
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Figure 1.4: Best fit values in the signal strength modifiers µ̂, and their
68% CL intervals as split into the statistical and systematic components
(left), and median expected and observed 95% CL upper limits on µ (right).
The expected limits are displyed with their 68% and 95% CL intervals, as
well as with the expectation for an injected SM signal of µ = 1. (Figures and
caption from [29]).

tt̄H events in the FH final state [29] is to look for events consisting of eight,
well separated jets (the so called resolved topology), four of them which are
supposed to be identified as coming from the hadronization of bottom quarks.
Due to the final state with high jet multiplicity, sophisticated methods such
as quark-gluon discrimination techniques [30, 31] and the matrix element
method [32, 33] must be exploited to discriminate quark-induced jets from
gluon-induced jets and to separate the tt̄H signal from the background. The
results of this search are reported in terms of the so called signal strength
parameter µtt̄H, which is defined as the ratio of the measured tt̄H production
cross section to the one expected from a SM Higgs boson with a mass equal
to 125 GeV. From a combined fit of the signal and background template
shapes to the data in all the event categories, observed and exepcted upper
limits µtt̄H < 3.8 and < 3.1 have been obtained at 95% CL, corresponding
to a best fit value µ̂tt̄H = 0.9 ± 0.7 (stat) ± 1.3 (syst). These results are
summarized in Fig. 1.4.

However, in the latest runs of the LHC at a centre-of-mass energy
√
s =

13 TeV, very high-pT top quarks and Higgs bosons can be produced. If
their Lorentz boost is sufficiently high (this typically happens for top quarks
with pT > 350 GeV and Higgs bosons with pT > 300 GeV), their decay
products are found to be very collimated and merge into a single, wide jet,
which is usually referred to as a boosted jet. The properties of the decaying
particles can then be studied by looking at the substructure of such wide jets,
which encodes the information about the decay products. Thus, the search
presented in this work exploits a novel approach by focusing on tt̄H events



8 CHAPTER 1. INTRODUCTION

t

W

b

q

q̄′

t
b

W

q

q̄′

Figure 1.5: Different fully hadronic decay topologies for a top quark: resolved
decay (left), in which three, well separated jets are reconstructed in the
detector, and boosted decay (right) in which, due to the high Lorentz boost
of the particle, the decay products are highly collimated and are reconstructed
as a single, large-radius jet.

in the boosted, FH final state, namely the FH final state in which at least
one boosted jet is present. In particular, it targets resolved decays of the
Higgs boson (resolved-Higgs channel, RHC), i.e., decays to a well separated
pair of jets identified to be the result of the hadronization of bottom quarks,
thus the boosted jets being supposed to come from the decay of top quarks.
The RHC is one of the two channels forming a wider search of tt̄H events in
the boosted, FH final state. The complementary channel, the boosted-Higgs
channel (BHC) targets, instead, decays of the Higgs boson to a boosted
jet. As it will be explained in the following chapters, the RHC presented in
this work has been constructed to be orthogonal to the BHC, in such a way
that the two channels can be safely combined to achieve a better sensitivity.
In the end of this work, the results of such a combination will be shown.
Both the searches in these mutually exclusive channels are performed using
proton-proton (pp) collisions collected by the CMS experiment during the
2016 data-taking period and corresponding to an integrated luminosity of
35.9 fb−1.

Analyses can evidently benefit from the novel approach involving boosted
jets: since the decay products of one or more particles are collected in a
single, wide jet, the combinatorics of the problem is sensibly reduced, and
the properties of the particles, such as masses or transverse momenta, can
be inferred by directly looking at such jets, as can be seen in the pictorial
representation of a boosted decay reported in Fig. 1.5. Also, the exploitation
of decays in the boosted regime makes possible to more than double the
spectrum of differential measurements as a function of the particles pT,
reaching the TeV frontier [34] (however, such measurements are still not
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possible for rare processes such as the tt̄H production, as more integrated
luminosity is needed).

On the other hand, as far as the tt̄H searches are concerned, such ad-
vantages are achieved at the price of a significantly lower signal acceptance,
as the resolved decay topology is found to be still favored at

√
s = 13 TeV.

However, since in the coming years the number of multiple pp collisions
within the same bunch crossing is expected to increase up to an average
of 60 during Run3 and of 140 in the context of the High-Luminosity LHC
project [35], low-pT jets are expected to become more difficult to trigger, and
searches will benefit for the inclusion of boosted jets in the final state.
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Chapter 2

The Standard Model of the
electroweak and strong
interactions

This chapter is devoted to the formal exposition of the theory describing
the interaction among elementary particles. Being the Higgs boson and its
interactions the subject of this thesis, a special focus on the spontaneous
simmetry breaking mechanism is provided. The material presented in the
following is a personal elaboration of the matter discussed in [36] and in the
notes for the Quantum Field Theories courses held by Prof. Roberto Soldati
at the Alma Mater Studiorum University of Bologna, whom I would like to
thank for the support in the computation of the full electroweak Lagrangian.

2.1 Gauge invariance in classical electrodynamics

As an introductory step, let us review the well known results concerning the
gauge arbitrariness in classical electrodynamics.

The Gauss’ theorem for the magnetic field B (second Maxwell’s equation)

∇ · B = 0, (2.1)

suggests the possibility of writing the magnetic field as the curl of some
vector potential A, i.e.

B = ∇ × A. (2.2)

In fact, the well known identity ∇ · (∇ × A) = 0, which is valid for every A,
guarantees that the B field is divergenceless.

In a similar fashion, the Faraday-Neumann-Lenz equation for the electric

11
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field E (Maxwell’s third equation)

∇ × E = −∂B
∂t

(2.3)

can be rewritten, making use of Eq. 2.2, as

∇ × (E + ∂A
∂t

) = 0, (2.4)

which suggests the possibility of writing E + ∂A/∂t as the gradient of some
scalar potential V , i.e.

E + ∂A
∂t

= −∇V. (2.5)

In fact, the well known identity ∇ × (∇V ) = 0, which is valid for every V ,
guarantees that Eq. 2.4 is satisfied. Let us now note that, if we add an
arbitrary gradient to the vector potential and an arbitrary time derivative
to the scalar potential, namely if we perform the transformations

A → A + ∇Λ
V → V − ∂Λ/∂t,

(2.6)

the electric and magnetic fields given by Eqs. 2.2 and 2.5 are unchanged.
All this can be summarized by adopting a covariant notation. First we

introduce the antisymmetric electromagnetic field-strength tensor

Fµν = −F νµ = ∂νAµ − ∂µAν =


0 E1 E2 E3

−E1 0 B3 −B2
−E2 −B3 0 B1
−E3 B2 −B1 0

 , (2.7)

which is build up starting from the four-vector potential

Aµ = (V ; A), (2.8)

and which is unchanged by the gauge transformation

Aµ → Aµ − ∂µΛ, (2.9)

where Λ(x) is an arbitrary function of the coordinates. The fact that many
different four-vector potentials lead to the same electric and magnetic fields,
and thus describe the very same physics, is known as the gauge invariance of
classical electrodynamics.

The introduction of the dual field-strength tensor
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∗Fµν = −1
2ε

µνρσFρσ =


0 B1 B2 B3

−B1 0 −E3 E2
−B2 E3 0 −E1
−B3 −E2 E1 0

 , (2.10)

where we used the convention that the Levi-Civita’s asymmetric symbol
εαβγδ is equal to ∓1 for even or odd permutations of {0, 1, 2, 3} and that
εαβγδ = −εαβγδ, leads to a very elegant and compact expression for the
Maxwell’s equations 2.1 and 2.3. In fact, they can be written as

∂µ
∗Fµν = 0. (2.11)

The remaining Maxwell’s equations, namely

∇ · E = ρ

∇ × B = J + ∂E
∂t
,

(2.12)

are obtained, in covariant notation, as

∂µF
µν = −Jν , (2.13)

where we have introduced the electromagnetic four-current

Jν = (ρ; J). (2.14)

As a final remark, let us point out two important and immediate con-
sequences of Eq. 2.13: first, given the completely antysimmetric nature
of the electromagnetic field-strength tensor, the electromagnetic current is
conserved, that is

∂νJ
ν = −∂ν∂µF

µν = 0. (2.15)

Also, by expanding them and in the Lorentz gauge ∂µA
µ = 0, these equations

become

�Aν = 0, (2.16)

where � ≡ ∂µ∂
µ is the D’Alembert operator, which means that each compo-

nent of the four-vector potential, which can be identified with the photon,
satisfies a massless Klein–Gordon equation. In such a way, a connection is
made between gauge invariance, current conservation and massless vector
fields.

Let us now explore in more detail this subject by switching to quantum
field theories.
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2.2 Phase invariance in quantum field theories
Let us consider the Lagrangian for a complex scalar field, namely

L = ∂µφ∂
µφ∗ −m2φφ∗. (2.17)

If we make use of the well known Euler–Lagrange equations for the field u(x)

∂µ
δL

δ∂µu(x) − δL
δu(x) = 0, (2.18)

and we compute them for φ and φ∗, we readily obtain the Klein–Gordon
equations

(� +m2)φ(x) = 0, (� +m2)φ∗(x) = 0. (2.19)

If we now perform a global (namely, coordinate-independent) phase
transformation of these fields, i.e.,

φ(x) → eiqαφ(x), φ∗(x) → e−iqαφ∗(x) (2.20)

and we make use of the well known results by Emmy Noether, we can
eventually identify a conserved Noether current of the form

jµ = −iq
[

δL

δ (∂µφ)φ− δL

δ (∂µφ∗)φ
∗
]

= iq [φ∗∂µφ− (∂µφ∗)φ] ≡ iqφ∗ ↔
∂µφ,

(2.21)

which satisfies

∂µj
µ = 0. (2.22)

With the identification of q as the electric charge, we can interpret Eq. 2.21
as the electromagnetic current of the charged scalar field. The connection
between global phase invariance and current conservation is guaranteed by the
Noether’s theorem [37], which states that to every continuous transformation
of coordinates and fields which makes the variation of the action equal to
zero, there always corresponds a constant of motion, i.e. a combination of
the fields and their derivatives which is constant in time.

Let us now make a step further and consider the consequences of imposing
a local (namely, coordinate-dependent) phase rotation to the scalar fields,
that is

φ(x) → eiqα(x)φ(x), φ∗(x) → e−iqα(x)φ∗(x). (2.23)

While the terms of the Lagrangian depending only on the fields are left
unchanged by the action of Eqs. 2.23, the transformation of gradient terms
involves more than a simple phase change, that is
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∂µφ(x) → eiqα(x) [∂µφ(x) + iq (∂µα(x))φ(x)] , (2.24)
with the presence of the gradient term of the local function α(x) actually
spoiling the local phase space invariance. We will now show that, eventually,
the local phase space invariance can be recovered by modifying the derivative
operator and introducing the electromagnetic field Aµ. In fact, let us first
replace the gradient ∂µ in the Lagrangian with the gauge-covariant derivative
defined by

Dµ = ∂µ + iqAµ(x). (2.25)
We also impose that, under the phase rotations 2.23, the vector field Aµ

transforms as

Aµ(x) → Aµ(x) − ∂µα(x), (2.26)
which does not change the physics at all by virtue of the gauge invariance of
electromagnetism, as explained in Section 2.1. Under these conditions, an
object such as Dµφ will simply transform with the same phase rotation as
the fields, that is

Dµφ → eiqα(x)Dµφ, (2.27)
and local gauge invariance is preserved.

To point out the consequences of the introduction of the covariant deriva-
tive, let us have a look at the Dirac Lagrangian for a free particle of spin
1/2, i.e.

Lfree = ψ (iγµ∂µ −m)ψ (2.28)
and replace the gradient operator with the covariant derivative. We get

L = ψ (iγµDµ −m)ψ
= ψ (iγµ∂µ −m)ψ − qAµψγ

µψ

= Lfree − JµAµ,

(2.29)

where we have obtained an interaction term in the Lagrangian between
the spinor and vector fields, which is −qAµψγ

µψ, containing the conserved
electromagnetic current in the familiar form

Jµ = qψ̄γµψ. (2.30)
Note that this form of the current is exactly the one that can be derived
from the global gauge invariance using the Noether’s theorem. Also, it is
easy to show that the Lagrangian of Eq. 2.29 is invariant under a local phase
rotation of the fields ψ and ψ and under the transformation of Eq. 2.26 for
the scalar field Aµ.
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We have thus shown that invariance under a local phase rotation can be
achieved at the price of introducing an electromagnetic interaction. This
shows the possibility of using local gauge invariance as a dynamical principle.

As a final remark, we shall obtain the complete Lagrangian for QED by
simply adding a kinetic energy term for the vector field to Eq. 2.29, which is
the well known, manifestly gauge invariant term −1

4FµνF
µν :

LQED = −1
4FµνF

µν + Lfree − JµAµ. (2.31)

Notice that a mass term for the photon would have the form 1
2m

2AµA
µ,

which is manifestly violating the gauge invariance. Thus, the requirement of
a gauge invariant Lagrangian leads to the existence of a massless photon.

2.3 Non-abelian gauge theories

We have just shown that the Lagrangian for the QED reported in Eq. 2.31
represents a gauge invariant theory, which means that is unchanged by the
action of the transformations

Aµ(x) → Aµ(x) − ∂µα(x)
ψ(x) → eiqα(x)ψ(x).

(2.32)

Non-abelian gauge theories consist in a generalization of the concepts devel-
oped for QED, which involves a non-abelian SU(N) transformation group
instead of the abelian U(1) group of phase rotations. The SU(N) group
effectively acts on N -dimensional objects of the kind

ψ(x) =


ψ1(x)
ψ2(x)

...
ψN (x)

 , (2.33)

where each of the ψi(x) is a four-component Dirac spinor. The action of
the symmetry group on the N -dimensional spinors is a generalization of the
abelian case and is now given by

ψ(x) → Uω(x)ψ(x), (2.34)

where

Uω = exp {igτa
Fω

a(x)} (2.35)

is a generic element of the group SU(N) in its exponential representation.
Here, the group index a runs from 1 to (N2 − 1) and identifies the (N2 − 1)
infinitesimal generators of the symmetry group, τa

F , while the ωa(x) are
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generic functions of the coordinates. Summation over repeated group indices
is understood in this formula and in the following. Finally, g plays the role of
a coupling constant. Let us recall that the non-abelian nature of the SU(N)
symmetry group is given by the commutation rules that exist among the
infinitesimal generators, i.e. [

τa
F , τ

b
F

]
= ifabcτ c

F , (2.36)

where fabc are completely anti-symmetrical, real quantites called the structure
constants of the group.

In order to proceed with the generalization of QED, we first need a
generalized covariant derivative. To this goal we define

Dµψ(x) =
(
1N×N∂µ + igτa

FA
a
µ(x)

)
ψ(x) ≡

(
∂µ + igAµ(x)

)
ψ(x), (2.37)

where 1N×N is the N -dimentional identity matrix and we have introduced
(N2 − 1), non-abelian vector fields Aa

µ(x). Note that, now, the quantity de-
noted with Aµ(x) is actually a matrix. To familiarize with this generalization,
we shall compute the form of Aµ(x) in the case of the symmetry group SU(2)
acting on a two-dimensional space. For such a group and representation, the
infinitesimal generators are the well known Pauli matrices

σ1 =
(

0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
; (2.38)

in such a way that we obtain

Aµ ≡ τa
FA

a
µ(x) =

(
0 A1

µ(x)
A1

µ(x) 0

)
+
(

0 −iA2
µ(x)

iA2
µ(x) 0

)
+

+
(
A3

µ(x) 0
0 −A3

µ(x)

)
=

=
(

A3
µ(x) A1

µ(x) − iA2
µ(x)

A1
µ(x) + iA2

µ(x) −A3
µ(x)

)
,

(2.39)

so that the matrix nature of Aµ has been made explicit.
As a second step, let us generalize the transformation for the vector

potential in the following way:

Aµ(x) → Uω(x)Aµ(x)U−1
ω (x) + i

g
[∂µUω(x)]U−1

ω (x). (2.40)
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First, we note that this transformation reduces to the previously described
transformation given by Eq. 2.26 in the case of a U(1) phase rotation eigα(x).
Also, most importantly, it is easily shown, using Eqs. 2.34 and 2.40, that
objects such as Dµψ(x) transform in an homogeneous way, in fact:

Dµψ(x) →
[
∂µ + ig

(
Uω(x)Aµ(x)U−1

ω (x) + i

g
(∂µUω(x))U−1

ω (x)
)]

Uω(x)ψ(x) =

= (∂µUω(x))ψ(x) + Uω(x)∂µψ(x) + igUω(x)Aµ(x)U−1
ω (x)Uω(x)ψ(x)+

− (∂µUω(x))U−1
ω (x)Uω(x)ψ(x) =

= (∂µUω(x))ψ(x) + Uω(x)∂µψ(x) + igUω(x)Aµ(x)ψ(x)+
− (∂µUω(x))ψ(x) =
= Uω(x) [∂µ + igAµ(x)]ψ(x),

which means that

Dµψ(x) → Uω(x)Dµψ(x). (2.41)

As a final step towards our generalization of the QED framework, we
need an expression for the Maxwell’s field-strength tensor Fµν . First, we
observe that, in the abelian case, the field-strength tensor can be written as

Fµν = − i

q
[Dν ,Dµ], (2.42)

with Dν given by Eq. 2.25, where the commutator term between the vector
fields vanishes in the case of a U(1) theory. Inspired by this, we can compute
the analogous commutator [Dν , Dµ] for the non-abelian case. This reads:

[Dν , Dµ] = [∂ν + igAν , ∂µ + igAµ] =
= (∂ν + igτa

FA
a
ν)(∂µ + igτ b

FA
b
µ) − (∂µ + igτ b

FA
b
µ)(∂ν + igτa

FA
a
ν) =

= ∂ν∂µ + igτ b
F∂νA

b
µ + igτ b

FA
b
µ∂ν + igτa

FA
a
ν∂µ − g2τa

FA
a
ντ

b
FA

b
µ+

− ∂µ∂ν − igτa
F∂µA

a
ν − igτa

FA
a
ν∂µ − igτ b

FA
b
µ∂ν + g2τ b

FA
b
µτ

a
FA

a
ν =

= ig(τ b
F∂νA

b
µ − τa

F∂µA
a
ν) − g2[τa

F , τ
b
F ]Aa

νA
b
µ =

= ig(∂νAµ − ∂µAν) − ig2fabcτ c
FA

a
νA

b
µ,

where in the last equality we have made use of Eq. 2.36. Note that the
equation above is similar in form to the previously defined abelian field-
strength tensor, since it contains the term (∂νAµ − ∂µAν), but it also has
an additional term depending on the structure constant of the symmetry
group. Thus, after multiplying by (−i) and dividing by g, we shall identify
the quantity
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− i

g
[Dν , Dµ] = (∂νA

c
µ − ∂µA

c
ν − gfabcAa

νA
b
µ)τ c

F =

= (∂νA
c
µ − ∂µA

c
ν + gfabcAa

µA
b
ν)τ c

F ≡
≡ F c

µντ
c
F ≡ Fµν

(2.43)

with the generalized Maxwell’s field-strength tensor, where we have actually
introduced a family of (N2 − 1) Maxwell’s field-strength tensors. Let us
note that, since the structure constants of a SU(N) are antisymmetric in
the indices a, b, c, the resulting quantity F c

µντ
c
F is antisymmetric in µ, ν as it

was the case for the Maxwell’s tensor of QED, Eq. 2.7. In a similar fashion
to what it was done for the generalized covariant derivative, it is possible to
explicitly compute how the generalized Maxwell’s tensor transforms under a
SU(N) rotation. Similar (but longer) calculations lead to

Fµν → Uω(x)FµνU
−1
ω , (2.44)

that is, the generalized field-strength tensor transforms in an homogeneous
way.

With all the generalized objects in hand, we can now write the Lagrangian
for a non-abelian theory, which was historically first obtained by C. Yang
and R. Mills [38] in order to describe the isospin conservation. According to
the general requirements of a local and gauge invariant Lagrangian, we are
led to the form

LY-M = −1
2tr [FµνF

µν ] + ψ(iγµDµ −M)ψ. (2.45)

In fact, the spinor part of the Lagrangian is manifestly invariant given the
transformation properties of ψ and Dµψ, while the vector part can be shown
to be gauge invariant by making use of the cyclic property of the trace:

−1
2tr [FµνF

µν ] → −1
2tr

[
Uω(x)FµνU

−1
ω (x)Uω(x)FµνU−1

ω (x)
]

=

= −1
2tr

[
Uω(x)Fµν(x)FµνU−1

ω (x)
]

=

= −1
2tr

[
U−1

ω (x)Uω(x)FµνF
µν
]

=

= −1
2tr [FµνF

µν ] .

(2.46)

By making use of Eqs. 2.37 and 2.43 in 2.45, and after some proper manipu-
lation, it can be shown that the Yang-Mills Lagrangian can be split into a
free quadratic part and a cubic and fourth-order interaction Lagrangian, i.e.
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LYM = Lfree + Lint

Lfree = −1
2g

µρgνσ
(
∂µA

a
ν − ∂νA

a
µ

)
∂ρA

a
σ+

+ ψ̄(iγµ∂µ −M)ψ
Lint = gψ̄γµτa

FψA
a
µ+

− gfabcgµρgνσAb
ρA

c
σ∂µA

a
ν+

− 1
4g

2fabcfadegµρgνσAb
µA

c
νA

d
ρA

e
σ,

(2.47)

where tensorial indices of the vector fields have been raised and lowered by
making use of the metric tensor gαβ for the ease of reading. In the interaction
Lagrangian we clearly see the presence of a non-abelian electromagnetic
current ψ̄(x)γµτa

Fψ(x)Aa
µ(x), as a generalization of Eq. 2.30, plus interaction

terms involving the vector fields. These addictional terms arise from the
non-abelian nature of the SU(N) group and can be interpreted as interaction
terms between the bosons of the theory.

As we shall point out in the following, non-abelian gauge theories are the
cornerstones of the Standard Model of the electroweak and strong interactions.
According to this model, the gauge symmetry group is the unitary group
SU(3) ⊗ SU(2) ⊗ U(1) of dimension 8 + 3 + 1 = 12. Thus, the fermion
multiplets which undergo strong interactions will posses three degrees of
freedom named colors (red, green and blue) in eight possible combinations,
associated to the SU(3) symmetry governing the strong interactions, while
the SU(2) spinor multiplets do exhibit two weak isospin degrees of freedom
named flavors, that will be attached to the weak interactions together with
the U(1) hypercharge that will be related to the electromagnetic interactions.

2.4 The Brout–Englert–Higgs mechanism

In the past sections we have fully explored the connection which exists be-
tween symmetries of the Lagrangian and conserved quantities, and we found
that the requirement of local gauge invariance can be used as a dynamical
principle to construct interacting theories. Although some degree of math-
ematical elegance has been achieved, such theories are still unsatisfactory,
because the gauge invariance principle led us to interactions which are medi-
ated by massless vector bosons (see, e.g., Eqs. 2.31 and 2.45), which is in
contrast with the experimental evidence concerning weak interactions.

In this section, we will focus on the difference existing between exact and
approximate symmetries of the Lagrangian. We shall see that there are cases
in which the Lagrangian is symmetric with respect to some transformation,
while the physical vacuum state, namely the state which corresponds to
the minimum potential energy, is not. In this case, the symmetry of the
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V (φ)

φ1

φ2

µ2 > 0 V (φ)

φ1

φ2

v

η

ξ

µ2 < 0

Figure 2.1: Effective potential for the Lagrangian of two scalar fields φ1 and
φ2. If the parameter µ2 is positive (left), the minimum is non degenerate
and we recover the usual Lagrangian; if the parameter µ2 is negative (right),
the potential assumes the so called “Mexican hat” shape, with a degenerate
set of minima lying on a circumference of radius v. In this latter case, the
vacuum in not invariant under the action of the SO(2) symmetry group and
spontaneous symmetry breaking occurs.

Lagrangian is said to be spontaneously broken and some very interesting
effects come to light.

2.4.1 Spontaneus symmetry breaking of a global symmetry

Let us first describe the spontaneous symmetry breaking of a continuous,
global symmetry by inspecting a model, first introduced by J. Goldstone
[39], which is based on the Lagrangian of two scalar fields φ1 and φ2,

L = 1
2 (∂µφ1∂

µφ1 + ∂µφ2∂
µφ2) − V (φ2

1 + φ2
2), (2.48)

written as a kinetic term plus an effective potential V . Such Lagrangian is
invariant under the action of the SO(2) group of rotations in the euclidean
plane

φ ≡
(
φ1
φ2

)
→
(

cos θ sin θ
− sin θ cos θ

)(
φ1
φ2

)
, (2.49)

and, in order to investigate the nature of the vacuum state, we define the
effective potential as

V (φ2) = 1
2µ

2φ2 + 1
4 |λ|(φ2)2, (2.50)

where φ2 = φ2
1 + φ2

2. We can now distinguish two cases, depending on the
sign of µ2.
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First, we shall examine the case µ2 > 0. A positive value for the parameter
µ2 corresponds to the ordinary case of an exact symmetry. The potential
energy has a single global minimum, as we can see in Fig. 2.1, and the value
of the fields corresponding to the minimum is

〈φ〉 =
(

0
0

)
, (2.51)

which is invariant under the SO(2) rotation. Thus, approximating the
Lagrangian for small oscillations, we get

LS.O. = 1
2(∂µφ1∂

µφ1 − µ2φ2
1) + 1

2(∂µφ2∂
µφ2 − µ2φ2

2), (2.52)

which is in every way equivalent to the Lagrangian in Eq. 2.17.
We shall now have a look at the µ2 < 0 case. This choice of the parameter

value indeed leads to a spontaneous symmetry breaking. In fact, the absolute
minimum of the potential, as we can see from Fig 2.1, is now degenerate, being
achieved for all the points of the (φ1, φ2) plane laying on the circumference
of equation

φ2
1 + φ2

2 = −µ2

|λ|
≡ v2. (2.53)

We can now choose a point belonging to this circumference as the vacuum
state, for example

〈φ〉 =
(
v
0

)
, (2.54)

which, note, is not invariant under the SO(2) rotation, and expand about
the vacuum configuration by a suitable change of coordinates,

φ − 〈φ〉 ≡
(
η
ξ

)
, (2.55)

which means (
φ1
φ2

)
=
(
η + v
ξ

)
. (2.56)

Trivial calculation yield to the following Lagrangian for small oscillations:

LS.O. = 1
2(∂µη∂

µη + 2µ2η2) + 1
2(∂µξ∂

µξ), (2.57)

where higher order terms in the fields and irrelevant constants have been
neglected. We see that two particles appeared in the spectrum. The η
particle, which may be thought to be associated with radial oscillations,
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has a squared mass of −2µ2 > 0, and thus behaves as any usual scalar we
encountered so far. The ξ particle, which may be thought to be associated
with angular oscillations, is instead massless. The mass of the η particle can
be interpreted as the result of the restoring force of the potential against
radial oscillations, while the zero mass of the ξ particle can be interpreted as
a consequence of the SO(2) invariance of the Lagrangian, meaning that there
is no restoring force against angular oscillations. The appearance of massless,
spin-zero particles is called the Goldstone phenomenon and such particles are
usually referred to as Goldstone bosons. In the general case, one Goldstone
boson will show up for each broken generator of the considered symmetry
group. Even though, from the point of view of unobserved massless particles,
the Goldstone phenomenon seems to double the trouble, adding massless,
scalar particles to the massless, vector particles that arose from the gauge
theories, we will see in the following that, if the broken symmetry is a local
symmetry, an astonishing result is obtained. In fact, the interplay between
the Goldstone bosons and the massless bosons coming from the gauge theory
will endow the gauge bosons with a mass and remove the Goldstone bosons
from the spectrum. This is known as the Brout–Englert–Higgs mechanism
[40, 41].

2.4.2 Spontaneus symmetry breaking of a local symmetry

Let us now consider a locally invariant Lagrangian which gives rise to
spontaneous symmetry breaking. A simple example can be the so called
abelian Higgs model, which is just the locally gauge-invariant extension
of the Goldstone model, namely a U(1)-invariant theory describing the
electrodynamics of a couple of scalar fields. The Lagrangian is

L = −1
4FµνF

µν + (Dµφ)∗(Dµφ) − µ2φφ∗ − |λ|(φ∗φ)2, (2.58)

where

φ = φ1 + iφ2√
2

(2.59)

is a complex scalar field and the usual definitions given in Eqs. 2.7 and 2.25
hold. This Lagrangian is invariant under both global U(1) rotations

φ → eiθφ (2.60)

and local gauge transformations

φ → eiqα(x)φ

Aµ → Aµ − ∂µα(x).
(2.61)
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As we discussed before, two cases, depending on the value of µ2, are possible.
If µ2 > 0, the effective potential has a single minimum at φ = 0 and the

symmetry of the Lagrangian is an exact symmetry. The spectrum of particles
is just the ordinary spectrum of scalar QED, with a massless photon Aµ and
two charged scalar particles, φ and φ∗, sharing a common mass µ.

On the other hand, the case µ2 < 0 corresponds to a spontaneous symme-
try breaking. The effective potential has a degenerate minimum consisting
of the points in the plane (<(φ),=(φ)) belonging to the circumference of
equation

|φ|2 = −µ2

2λ ≡ v2

2 . (2.62)

To explore the particle spectrum, we shall choose a minimum, such as

〈φ〉 = v√
2

(2.63)

and then shift the φ field by φ− 〈φ〉 to expand the Lagrangian in term of
displacements from the vacuum. As we shall see, the most useful parametriza-
tion to achieve this task is

φ = φ1 + iφ2√
2

= 1√
2
ei ξ

v (v + η) ' η + v + iξ√
2

, (2.64)

where, in the last equality, we have shown that this parametrization is
nothing but the one given by Eq. 2.56 that we used for the Goldstone model,
where quadratic terms in the fields have been neglected. If we insert the
parametrization for φ in the Lagrangian given by Eq. 2.58, we get:

L = 1
2(∂µη∂

µη + 2µ2η2) + 1
2

(
v + η

v

)2 (
∂µξ∂

µξ + q2v2AµA
µ + 2qvAµ∂

µξ
)

+

+ µ2

v
η3 + µ2

4v2 η
4.

(2.65)
As we already know from the discussion of the Goldstone phenomenon, a
Goldstone boson ξ has appeared in the spectrum. We also see a new feature,
namely, the field Aµ has acquired a mass term, but is also weirdly coupled
with the Goldstone boson in the term 2qvAµ∂

µξ. However, this can be fixed
by a proper choice of the gauge. In fact, we note that the terms in the
Lagrangian involving Aµ and ξ can conveniently be rewritten as

q2v2
(
Aµ + 1

qv
∂µξ

)(
Aµ + 1

qv
∂µξ

)
, (2.66)

which evidently inspires the gauge transformation

A′
µ = Aµ + 1

qv
∂µξ, (2.67)
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which corresponds to the phase rotation of the scalar field

φ′ = e−i ξ
vφ. (2.68)

Note that the gauge transformation for the vector field Aµ is not changing
the kinematic term −1

4FµνF
µν in Eq. 2.58. Thus, we obtain the crucial

result:

L = −1
4FµνF

µν + 1
2(∂µη∂

µη + 2µ2η2)+

+ q2v2

2 A′
µA

′µ + q2

2 A
′
µA

′µη2 + q2vA′
µA

′µη + µ2

v
η3 + µ2

4v2 η
4.

(2.69)

In this gauge the spectrum of particles contains:
• a massive scalar field η with mass

√
−2µ2;

• a massive vector field A′
µ with mass qv;

• no ξ field.
By a wise choice of the gauge, which is usually called the unitary gauge or
U-gauge, the unwanted Goldstone boson disappeared, was “gauged away”.
However, it was not simply cancelled, but it was rather absorbed by the
scalar field which acquired an additional degree of freedom. In fact, before
spontaneous symmetry breaking, the theory had two scalar fields φ and φ∗

plus the two helicity states of the massless field Aµ, for a total of four degrees
of freedom. After spontaneous symmetry breaking, we are left with one
scalar particle η plus the three helicity states of the massive field A′

µ, leading
again to four degrees of freedom. The η field appearing in the Lagrangian is
known as the Higgs boson.

The result we just obtained is truly remarkable, since it suggests the
possibility of constructing gauge theories (possibly non-abelian gauge theories)
in which the interactions are mediated by massive bosons, in agreement with
the experimental evidence. This will be briefly explored in the following
Subsection.

2.4.3 Spontaneous symmetry breaking of a non-abelian sym-
metry

In order to explore the consequences of spontaneous symmetry breaking in
non-abelian theories, we shall use, as example of a non-abelian symmetry,
the SU(2) group in its three-dimensional representation, which can act on
scalar fields triplets of the form

φ =

 φ1
φ2
φ3

 . (2.70)
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The generators of the three-dimensional representation of SU(2) are

T1 =

 0 0 0
0 0 1
0 −1 0

 ; T2 =

 0 0 −1
0 0 0
1 0 0

 ; T3 =

 0 1 0
−1 0 0
0 0 0

 ;

(2.71)
and satisfy the algebra

[T i, T j ] = iεijkT
k (2.72)

as a special case of Eq. 2.36, with the structure constants being the elements
of the Levi-Civita antysimmetric tensor. Having in hand the definitions for
the non-abelian covariant derivative and Maxwell’s tensor given by Eqs. 2.37
and 2.43, where now a ∈ {1, 2, 3}, we can immediately write the Lagrangian
as

L = −1
4FµνF

µν + 1
2(Dµφ)†(Dµφ) − V (φ · φ), (2.73)

where a generalized effective potential of the usual form has been introduced.
As we discussed in the previous examples, we have a case in which a

unique minimum in the effective potential is present, which is achieved when
φ = 0 and corresponds to an ordinary Yang-Mills theory describing three
massive scalar particles with mass µ and three massless gauge bosons Aa

µ.
Thus, the number of degrees of freedom of such a theory is 3 × 1 + 3 × 2 = 9.
We also have the spontaneously broken case, in which the vacuum state can
be choosen to be

〈φ〉 =

 0
0
v

 . (2.74)

In order to know how many of the three generators of SU(2) are broken,
let us recall that the vacuum is left invariant by a generator Ti if, using the
exponential representation given by Eq. 2.35,

exp{igTiωi(x)}〈φ〉 = 〈φ〉, (2.75)

which for an infinitesimal transformation becomes

(1 + igTiωi(x))〈φ〉 = 〈φ〉, (2.76)

in such a way that the condition for Ti for leaving the vacuum invariant is
simply

Ti〈φ〉 = 0. (2.77)



2.5. ELECTROWEAK INTERACTIONS OF LEPTONS 27

Using Eq. 2.77 it is immediate to verify that T1 and T2 are broken, while T3
is not. Thus, we can act in a similar fashion to what we did in Eq. 2.64 and
expand the Lagrangian about the minimum using

φ = exp
{
i

v
(ξ1T1 + ξ2T2)

} 0
0

(v + η)/
√

2

 ≡ U−1
ξ (x)

 0
0

(v + η)/
√

2

 ,
(2.78)

where we introduced the two Goldstone bosons ξ1 and ξ2 corresponding to
the two broken generators of SU(2). Following analogous steps to the ones
of the abelian theory, we move to the U-gauge by letting

A′
µ = Uξ(x)AµU

−1
ξ (x) + i

g
(∂µUξ(x))U−1

ξ (x). (2.79)

Inserting Eqs. 2.78 and 2.79 in the Lagrangian, we obtain:

L = −1
4FµνF

µν + 1
2(∂µη∂

µη + 2µ2η2)+

+ g2(v + η)2

2 (A1
µA

1µ +A2
µA

2µ) + µ2

v
η3 + µ2

4v2 η
4,

(2.80)

from which we see that:

• the η field has become a massive Higgs scalar with mass
√

−2µ2;

• the gauge bosons A1
µ and A2

µ, corresponding to the broken generators
T1 and T2, acquired a common mass gv;

• the gauge boson A3
µ, corresponding to the unbroken generator T3,

remains massless;

• the Goldstone bosons ξ1 and ξ2 are gauged away;

• after the spontaneous symmetry breaking, the number of degrees of
freedom is still 1 × 1 + 2 × 3 + 1 × 2 = 9.

Having all these powerful tools in our hands, we are now ready to introduce
the basic elements that give rise to the Standard Model of the electroweak
and strong interactions.

2.5 Electroweak interactions of leptons

In order to describe the Standard Model of particle physics, let us begin by
designating the spectrum of the fundamental leptons which enter the theory.
We start by introducing the leptons belonging to the first generation, namely
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the electron and its neutrino, which form a left-handed weak isospin doublet
and are described by the two, four-dimensional Dirac bispinors e and ν, i.e.

L ≡
(
νe

e

)
L

(2.81)

where the left-handed states, obtained by making use of the well known
chirality projectors, are

νL = 1
2 (1 − γ5) ν

eL = 1
2 (1 − γ5) e.

(2.82)

Neutrinos are known to have a very small mass [42], nevertheless it
is convenient to assume them to be exactly massless, in which case the
right-handed state

νR = 1
2 (1 + γ5) ν = 0 (2.83)

does not exist. Thus, we can identify the only right-handed fermion with
the right-handed electron,

R ≡ eR = 1
2 (1 + γ5) e, (2.84)

which is a weak-isospin singlet. Note that the different nature of L (a weak
isospin doublet) and R (a weak isospin singlet) implies different transforma-
tions for the two, that is:

L → exp {igσaωa(x)} L
R → R,

(2.85)

where σa are the infinitesimal generators of the two-dimensional representa-
tion of SU(2), namely the well known Pauli matrices of Eq. 2.38. We see
that the weak isospin doublet is transformed in the usual non-abelian way
given by Eq. 2.34, while the weak isospin singlet is left unchanged.

In order to include electromagnetism in the framework, let us first in-
troduce a weak hypercharge Y . Assuming the validity of the Gell-Mann–
Nishijima relation for the electric charge, which relates the weak-isospin
projection I3 and the weak hypercharge Y ,

Q = I3 + 1
2Y, (2.86)

we can derive values for the left and right weak hypercharges. In fact, νL and
eL belong to a weak isospin doublet, and thus we have I = 1/2, IνL

3 = 1/2
and IeL

3 = −1/2, which, using Eq. 2.86, leads to a value of weak hypercharge
equal to −1 for both the left-handed electron and neutrino; on the other
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hand, the right-handed electron is a weak isospin singlet, from which it
follows that I = 0, IeR

3 = 0 and thus the weak hypercharge is equal to −2.
In summary, the hypercharge operator acts as:

Y L = −1L
YR = −2R.

(2.87)

Now, we take the group of transformations generated by I and Y to be
the gauge group SU(2)L ⊗ U(1)Y of a non-abelian gauge theory. To build
up the theory, we first introduce the four gauge bosons

ba
µ(x) for SU(2)L,

Aµ(x) for U(1)Y .
(2.88)

where a ∈ {1, 2, 3}. Then, we write the Lagrangian of the theory as

L = Lgauge + Lleptons (2.89)

where the first term involves the gauge bosons, while the second involves the
leptons. The first term can be written in the usual form

Lgauge = −1
2tr [FµνF

µν ] − 1
4fµνf

µν =

= −1
4F

a
µνF

aµν − 1
4fµνf

µν
(2.90)

where we used the relation tr[σa, σb] = 1
2δ

ab and the Maxwell’s field-strength
tensors, as we have seen previously, are

F l
µν = ∂νb

l
µ − ∂µb

l
ν + gεjklb

j
µb

k
ν for SU(2)L,

fµν = ∂νAµ − ∂µAν for U(1)Y .
(2.91)

The form of the second term is driven by the experimental evidence. In fact,
the charged vector bosons of the weak interaction are found to couple only
with the left-handed components of the spinor fields, contrary to the photon
that couples with both left-handed and right-handed spinors. Eventually, we
shall write the second term as:

Lleptons = Riγµ
(
∂µ + ig′

2 AµY

)
R + Liγµ

(
∂µ + ig′

2 AµY + ig

2 σ
aba

µ

)
L.

(2.92)
The coupling constant of the SU(2) group is called g and the coupling
constant of the U(1) group is called g′, with some 1/2 factors added in the
Lagrangian to simplify calculations later on.

Even though it was inspired by the experimental evidence, the Lagrangian
we just wrote in unsatisfactory for two main reasons: first, it describes
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four massless gauge bosons b1
µ, b

2
µ, b

3
µ, Aµ, in contrast with the observation

of only one massless gauge boson, namely the photon; second, note that
the different transformations for L and R forbid to include a mass term
for the electron, which would result to be non-invariant under a SU(2)
transformation. However, what seems to be a troublesome bottleneck can be
avoided by exploiting the spontaneous symmetry breaking of the theory. In
order to see this explicitly, let us introduce in the theory a complex doublet
of scalar fields

φ =
(
φ+

φ0

)
, (2.93)

which transforms as an SU(2) doublet and thus has a weak hypercharge
Tφ = +1, given by the Gell-Mann–Nishijima relation. We then add to the
Lagrangian the term

Lscalar = (Dµφ)†(Dµφ) − µ2(φ†φ) − |λ|(φ†φ)2, (2.94)

where the covariant derivative is

Dµ = ∂µ + ig′

2 AµY + ig

2 σ
aba

µ, (2.95)

as in Eq. 2.92. We also add an interaction term, which is taken to be the
most general Yukawa term involving scalars and fermions which is invariant
under the action of SU(2)L ⊗ U(1)Y , namely

LYukawa = −Ge

[
R(φ†L) + (Lφ)R

]
, (2.96)

where Ge is a coupling constant. Let us now compute the consequences
of spontaneous symmetry breaking. We assume µ2 < 0 and choose as the
vacuum state the value of the scalar field

〈φ〉 =
(

0
v√
2

)
, (2.97)

which yields to very promising results. In fact, we readily see that all the
generators of SU(2)L ⊗ U(1)Y are individually broken:

σ1〈φ〉 =
(

0 1
1 0

)(
0
v√
2

)
6= 0

σ2〈φ〉 =
(

0 −i
i 0

)(
0
v√
2

)
6= 0

σ3〈φ〉 =
(

1 0
0 −1

)(
0
v√
2

)
6= 0

Y 〈φ〉 = +1〈φ〉 6= 0,

(2.98)
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while the linear combination corresponding to the electric charge is not:

Q〈φ〉 = 1
2(σ3 + Y )〈φ〉 = 0. (2.99)

This way, we will hopefully obtain that the photon will remain massless,
while the three remaining bosons will acquire a mass. As usual, we expand
the Lagrangian about the minimum of the effective potential by writing

φ = exp
{
iξaσa

2v

}( 0
(v + η)/

√
2

)
≡ U−1

ξ (x)
(

0
(v + η)/

√
2

)
(2.100)

and transform to the U-gauge:

σaba
µ ≡ bµ → b′

µ = Uξ(x)bµU
−1
ξ (x) + i

g
[∂µUξ(x)]U−1

ξ (x), (2.101)

Aµ → Aµ, (2.102)

L → L′ = Uξ(x)L, (2.103)

R → R. (2.104)

We can now express the Lagrangian in terms of the U-gauge fields and
investigate the consequences of spontaneous symmetry breaking.

Let us start with a closer look to the Yukawa term. We insert Eqs. 2.100
and 2.103 in Eq. 2.96 and obtain:

LYukawa = −Ge

{
R
[(

0 v+η√
2

)
Uξ(x)U−1

ξ (x)L′
]

+

+
[(
U−1

ξ (x)L′
)†
γ0U

−1
ξ (x)

(
0

v+η√
2

)]
R
}
,

(2.105)

which, after some trivial calculations becomes

LYukawa = −Ge(v + η)√
2

{eReL + eLeR} = −Ge(v + η)√
2

ee =

= −Gev√
2
ee− Ge√

2
eeη,

(2.106)

in such a way that the electron has clearly acquired a mass

me = Gev√
2
, (2.107)

and an interaction term between electrons and the Higgs boson has shown
up, where the coupling is found to be proportional to the fermion mass.
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As a second step, we shall inspect the scalar term. By making use of Eqs.
2.100 and 2.101, Dµφ assumes the form:

Dµφ = U−1
ξ (x)

[(
0

∂µη√
2

)
+ ig′

2 Aµ

(
0

v+η√
2

)
+ igb′

µ

(
0

v+η√
2

)]
, (2.108)

which shows that the Goldstone-like scalar fields ξa(x) can be factorized into
a unitary matrix and eventually decoupled from the other fields thanks to the
U-gauge. The form of the adjoint term (Dµφ)† and of the terms −µ2(φ†φ)
and −|λ|(φ†φ)2 is easily computed, so that we obtain:

Lscalar = 1
2
(
∂µη∂

µη + 2µ2η2
)

+

+ (v + η)2

8
[
g2(b1

µb
1µ + b2

µb
2µ) +

(
g′Aµ − gb3

µ

) (
g′Aµ − gb3µ

)]
+

+ µ2

v
η3 + µ2

4v2 η
4,

(2.109)
where we omitted primes to avoid notational clutter. We see that the η field
has acquired a mass mH =

√
−2µ2. Also, if we define the charged gauge

fields to be

W±
µ =

b1
µ ∓ ib2

µ√
2

, (2.110)

we can rearrange the term proportional to b1
µ and b2

µ as:

g2v2

8 (b1
µb

1µ + b2
µb

2µ) = g2v2

16 (b1
µb

1µ + b2
µb

2µ + b1
µb

1µ + b2
µb

2µ) =

= g2v2

16
[
2(W+

µ )†Wµ
+ + 2(W−

µ )†Wµ
−

]
=

= g2v2

8
[
(W+

µ )†Wµ
+ + (W−

µ )†Wµ
−

]
,

(2.111)

which is a mass term for the charged gauge bosons corresponding to the mass

mW ± = gv

2 . (2.112)

Also, defining the combinations

Zµ =
−g′Aµ + gb3

µ√
g2 + g′2 (2.113)

Aµ =
gAµ + g′b3

µ√
g2 + g′2 (2.114)
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we can rearrange the term proportional to Aµ and b3
µ as:

v2

8
(
g′Aµ − gb3

µ

) (
g′Aµ − gb3µ

)
= v2(g2 + g′2)

8 ZµZ
µ, (2.115)

which is a mass term for the neutral gauge boson corresponding to the mass

mZ = v
√
g2 + g′2

2 . (2.116)

Note that the neutral gauge boson Aµ, which is interpreted to be the photon,
is not present in the scalar term and thus is massless, as it should be. Note
also the presence of cubic and quartic self-interaction terms for the Higgs
boson and of interaction terms between the gauge bosons and the Higgs
boson.

The mixing between the Aµ and b3
µ vector fields that gives rise to the

neutral gauge bosons can be conveniently parametrized by means of a mixing
angle, which was first introduced by S. Glashow [43], although it is often
and curiously referred to as the Weinberg angle. That is:

Zµ = −Aµ sin θW + b3
µ cos θW

Aµ = Aµ cos θW + b3
µ sin θW ,

(2.117)

with

sin θW = g′√
g2 + g′2 , cos θW = g√

g2 + g′2 , tan θW = g′

g
. (2.118)

The use of the Weinberg angle makes it easier to interpret the term of
the Lagrangian involving the leptons given by Eq. 2.92. By making use of
Eqs. 2.104 and 2.103 we readily see that the part involving R is untouched
by the change to the U-gauge, while the covariant derivative involving L
assumes the form:

DµL′ = U−1
ξ (x)

[
∂µL′ − ig′

2 AµL′ + ig

2 b
′
µL′

]
, (2.119)

which once again shows that the Goldstone-like scalar fields ξa(x) can be
factorized into a unitary matrix and decoupled from the other fields thanks to
the U-gauge. After some manipulation, the leptonic term in the Lagrangian
becomes
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Lleptons = νLiγ
µ∂µνL + eiγµ∂µe+

− g√
2

(
W+

µ νLγ
µeL +W−

µ eLγ
µνL

)
−
√
g2 + g′2

2 ZµνLγ
µνL+

+ Zµ√
g2 + g′2

(
−g′2eRγ

µeR + g2 − g′2

2 eLγ
µeL

)
+ gg′√

g2 + g′2Aµeγ
µe,

(2.120)
where now are clearly present: two kinetic terms for electrons and neutrinos
respectively; interaction terms between the charged bosons and the left-
handed leptons; interaction terms between the Z boson and both left- and
right-handed leptons; an interaction term between the photon and left- and
right-handed electrons. The terms contracted with the gauge bosons can be
interpreted as weak and electromagnetic currents Jµ

±, Jµ
0 , Jµ, provided that

we identify the electric charge of the electron with

e = gg′√
g2 + g′2 . (2.121)

Note that, under this crucial identification, the coupling constants g and
g′, belonging to SU(2)L and U(1)Y respectively, are both found to be
proportional to the electric charge via the Weinberg angle, that is:

g = e

sin θW

g′ = e

cos θW
,

(2.122)

which shows that the different intensities of the electromagnetic and weak
interactions are now related by a single parameter and are thus now unified
in a single interaction, called the electroweak interaction.

Finally, we shall compute the form of the term involving the gauge bosons.
This will give rise to kinetic terms for the bosons of the theory, as well as
interaction terms between bosons, as already pointed out in Eq. 2.47. In
fact, if we define the abelian-like field-strength tensors for the gauge bosons
as

Γµν = ∂νAµ − ∂µAν

W±
µν = ∂νW

±
µ − ∂µW

±
ν

Zµν = ∂νZµ − ∂µZν ,

(2.123)

we obtain, after some degree of manipulation, the following expression:
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Lgauge = −1
4ΓµνΓµν − 1

2W
+
µνW

µν
− − 1

4ZµνZ
µν+

− i
[
W ν

−W
+
µν −W ν

+W
−
µν

]
[eAµ + g cos θWZµ]

− i [eΓµν + g cos θWZµν ]W−
µ W

+
ν

−W+
µ W

µ
− [eA + g cos θWZ]2

+W+
µ W

−
ν [eAµ + g cos θWZµ] [eAν + g cos θWZν(x)]

− 1
2g

2
[
W+

µ W
µ
−

]2
+ 1

2g
2
[
W+

µ W
−
ν

] [
Wµ

+W
ν
−
]

(2.124)

where the complex nature of the interaction between gauge bosons in a non-
abelian theory has been made explicit. In fact, we see that the spontaneous
symmetry breaking produces triple and quartic gauge interactions involving
gauge bosons, which effectively arise from many different combinations of
contracted spacetime indices.

Finally, in order for the electroweak theory of leptons to be complete, we
have to include the second and third generation leptons. This extension is
actually pretty straightforward, since one can simply add new left-handed
weak-isospin doublets

Lµ ≡
(
νµ

µ

)
L

Lτ ≡
(
ντ

τ

)
L
, (2.125)

and right-handed singlets

Rµ ≡ µR Rτ ≡ τR, (2.126)

in such a way that the “Yukawa-like” part of the Lagrangian given by Eq.
2.96 can readily be generalized as:

LYukawa =
∑

ι=e,µ,τ

−Gι

[
Rι(φ†Lι) + (Lιφ)Rι)

]
, (2.127)

namely by simply adding Yukawa terms for the second and third generation
fermions. In a similar fashion to what it was done for the electron, the
spontaneous symmetry breaking mechanism applied to this term will also
produce a mass term for the muon and the tau leptons, as well as interaction
terms between these leptons and the Higgs boson. Similarly, the term of the
Lagrangian involving the leptons given by Eq. 2.92 shall be generalized as:

Lleptons =
∑

ι=e,µ,τ

[
Rιiγ

µ
(
∂µ + ig′

2 AµY

)
Rι+

+ Lιiγ
µ
(
∂µ + ig′

2 AµY + ig

2 σ
aba

µ

)
Lι

]
,

(2.128)



36 CHAPTER 2. THE STANDARD MODEL

which, after spontaneous symmetry breaking, gives rise to kinetic terms for
the second and third generation fermions and interaction terms between the
gauge bosons and the second and third generation fermions.

2.6 Electroweak interactions of quarks

The extension of the previously developed model to quarks is to some degree
straightforward, even though it must be carried out with some care since the
leptonic and hadronic sectors show a couple of important differences. First
of all, we shall remark the experimental evidence which shows that all the
quarks have a non-zero mass. Secondly, let us recall the fact that individual
quark quantum numbers are not conserved by the weak interaction (e.g., in
the strangeness-violating decay K+ → π+π0).

To extend the model to account for the non-vanishing quark masses, we
must introduce right-handed singlets for both members of each family. That
is, an additional right-handed singlet will be present when quarks are taken
into account, together with the left-handed doublet and right-handed singlet
we have encountered so far. This can be written as:

qL,ι = 1
2(1 − γ5)

(
uι

dι

)

uR,ι = 1
2(1 + γ5)uι

dR,ι = 1
2(1 + γ5)dι,

(2.129)

where the index ι = 1, 2, 3 runs over the three families of quarks:

uι = {u, c, t} dι = {d, s, b}. (2.130)

An additional color index should be added to the quark fields, which are
sensitive to the strong interaction, but it will understood in the following for
the sake of clarity. The left-handed doublet and the right-handed singlets
that we just introduced transform in the usual way under the action of SU(2),
as given by Eq. 2.85. Also, given the well-known fractional electric charges
of the quarks, the hypercharge of the quark doublet and singlets are readily
found to be:

Y (qL,ι) = 1
3 Y (uR,ι) = 4

3 Y (dR,ι) = −2
3 . (2.131)

The presence of an additional, right-handed singlet implies that, for a
given generation, two distinct Yukawa terms can be built from the left-handed
doublet and right-handed singlets. Such Yukawa terms would be of the form:
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− yd

[
dR,ι(φ†qL,ι) + (qL,ιφ)dR,ι

]
+

− yu

[
uR,ι(φ̃

†
qL,ι) + (qL,ιφ̃)uR,ι

]
,

(2.132)

where an additional Higgs doublet φ̃ = iσ2φ∗ with hypercharge Y (φ̃) = −1
has been introduced to construct the second Yukawa term, in an indentical
fashion to what it was done for the leptonic sector. As a naive approach,
one could be now tempted to build the Lagrangian for the quark fields by
simply adding three terms such as Eq. 2.132 (one for each family) and also
by introducing three terms involving covariant derivatives of the fields such
as it was done in Eq. 2.92 (again, one for each family). Unfortunately, such
model is experimentally inconsistent. In fact, it turns out to be incompatible
with the observation made by N. Cabibbo [44] that the strange quark is
actually mixed with the down quark forming a weak eigenstate that differs
from the mass eigenstates. Indeed, incorporating the Cabibbo model in the
naive description of quarks would imply, for example, the presence of flavor-
changing neutral currents (FCNC), an hypothesis that has been strongly
rejected by the experimental evidence.

Thus, the correct form for the Yukawa term involving the quark fields is
found to be slightly more complicated, even though still quite familiar:

LYukawa = −
3∑

ι=1

3∑
=1

(
dR,Y

d∗
ι (φ†qL,ι) + (qL,ιφ)Y d

ιdR,+

+ uR,Y
u∗

ι (φ̃†
qL,ι) + (qL,ιφ̃)Y u

ι uR,

)
,

(2.133)

which is nothing more than a generalization of the naive Yukawa term, where
now the weak eigenstates for the quarks are mixed through two complex
matrices of elements Y u

ι and Y d
ι . This term can be readily expressed in the

U-gauge, by means of identical calculations to the ones of the leptonic sector,
to give:

LYukawa = −
3∑

ι=1

3∑
=1

v + η√
2

[
dR,Y

d∗
ι dL,ι + dL,ιY

d
ιdR,+

uR,Y
u∗

ι uL,ι + uL,ιY
u

ι uR,

]
,

(2.134)

where we see that the mass term coming from the spontaneously-broken
Yukawa term is actually non-diagonal in flavor, suggesting that the weak
eigenstates are not actually mass eigenstates, according to the experimental
evidence. In fact, we can recover the usual form for the mass terms by noting
that, in a similar fashion to what it is done with real, symmetric matrices, a
generic complex matrix like Y u

ι (or Y d
ι) can always be diagonalized by means
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of two unitary matrices. This means that we can always introduce 4 unitary
matrices V u

L , V
u

R , V
d

L , V
d

R in such a way that:

v√
2
V d†

L Y dV d
R = diag(md,ms,mb)

v√
2
V u†

L Y uV u
R = diag(mu,mc,mt).

(2.135)

Thus, if we define the weak eigenstates uL,ι,uR,ι,dL,ι,dR,ι to be a mixing of
the mass eigenstates UL,ι,UR,ι,DL,ι,DR,ι:

uL = V u
L UL

uR = V u
R UR

dL = V d
L DL

dR = V d
RDR,

(2.136)

we can readily insert Eqs. 2.136 into Eq. 2.134 to obtain a mass term of the
form

−
∑

ι=d,s,b

mιDιDι −
∑

=u,c,t

mU U , (2.137)

which appears to be an usual Dirac mass term for the spinor fields describing
the mass eigenstates of the quarks.

We shall conclude this section with a last but crucial remark. The mixing
between weak eigenstates has an important consequence on the charged
current for the quarks. In fact, we can add a Lquarks term in the Lagrangian,
with exactly the same approach that we used for leptons (see Eq. 2.128),
that is:

Lquarks =
3∑

ι=1

[
uR,ιiγ

µ
(
∂µ + ig′

2 AµY

)
uR,ι+

+ dR,ιiγ
µ
(
∂µ + ig′

2 AµY

)
dR,ι+

+ qL,ιiγ
µ
(
∂µ + ig′

2 AµY + ig

2 σ
aba

µ

)
qL,ι

]
,

(2.138)

and transform this term to the U-gauge. If we do so, we obtain the kinetic
terms for the quark mass eigenstates and we also see that the charged current
for quarks becomes:

Jµ
+ =

(
Jµ

−
)† = − g√

2

3∑
ι=1

UL,ιγ
µ
(
V u†

L V d
L

)
ι

DL,, (2.139)

where the quark mass eigenstates appear to be connected by the action of the
famous Cabibbo–Kobayashi–Maskawa (CKM) matrix [45] V u†

L V d
L ≡ V which
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describes the non-conservation of the flavor quantum number in the weak
charged interactions. On the contrary, the neutral currents associated with
the photon and the Z boson are found not to change the flavor of quarks, as
they read:

Jµ = e
3∑

ι=1

[
−2

3uιγ
µuι + 1

3dιγ
µdι

]

Jµ
0 = g sec θW

3∑
ι=1

{
−1

2uL,ιγ
µuL,ι + 1

2dL,ιγ
µdL,ι+

+ sin2 θW

[2
3uιγ

µuι − 1
3dιγ

µdι

]}
,

(2.140)

in such a way that the absence of FCNC is granted.

2.7 Electroweak Lagrangian

We have now all the ingredients needed in order to write the complete
Lagrangian for the electroweak interaction, which is internally consistent and
coherent with the experimental evidence. It is simply a matter of rearranging
the terms we have inspected so far to obtain the rather intriguing form:

LEW = −1
4ΓµνΓµν − 1

2W
+
µνW

µν
− − 1

4ZµνZ
µν+

− i
[
W ν

−W
+
µν −W ν

+W
−
µν

]
[eAµ + g cos θWZµ] +

− i [eΓµν + g cos θWZµν ]W−
µ W

+
ν +

−W+
µ W

µ
− [eA + g cos θWZ]2 +

+W+
µ W

−
ν [eAµ + g cos θWZµ] [eAν + g cos θWZν(x)] +

− 1
2g

2
[
W+

µ W
µ
−

]2
+ 1

2g
2
[
W+

µ W
−
ν

] [
Wµ

+W
ν
−
]
+

+ 1
2
(
∂µη∂

µη −m2
Hη

2
)

+ µ2

v
η3 + µ2

4v2 η
4+

+ 1
2
[
m2

W (W+
µ )†Wµ

+ +m2
W (W−

µ )†Wµ
− +m2

ZZµZ
µ
] (

1 + η

v

)2
+

+ i
3∑

ι=1

[
νL,ι�∂νL,ι + `ι�∂`ι + U ι�∂U ι + Dι�∂Dι

]
+

−
3∑

ι=1

[
m`

ι`ι`ι +mu
ι U ιU ι +md

ι DιDι

] (
1 + η

v

)
+

+ AµJ
µ + ZµJ

µ
0 +W+

µ J
µ
+ +W−

µ J
µ
−,

(2.141)
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where the Feynman slash notation �∂ ≡ γµ∂µ has been introduced and the
currents are the sum of the leptonic and hadronic parts, namely:

Jµ = e
3∑

ι=1

[
`ιγ

µ`ι − 2
3U ιγ

µU ι + 1
3Dιγ

µDι

]

Jµ
0 = 1

2g sec θW

3∑
ι=1

{
−νL,ιγ

µνL,ι + `L,ιγ
µ`L,ι − UL,ιγ

µUL,ι + DL,ιγ
µDL,ι+

+ sin2 θW

[
−2`ιγµ`ι + 4

3U ιγ
µU ι − 2

3Dιγ
µDι

]}

Jµ
+ = − g√

2

3∑
ι=1

[
νL,ιγ

µ`L,ι + UL,ιγ
µVιDL,

]
=
(
Jµ

−
)†
.

(2.142)

2.8 Strong interactions of quarks

After having deeply investigated the connection between local gauge in-
variance and electroweak interactions, we shall now spend a few words
concerning the strong interactions. The formalism of the theory will not
be developed here, but we shall point out the main differences between the
strong and electroweak interactions and give a qualitative description of the
theory describing the strong interaction among quarks, namely the quantum
chromodynamics (QCD).

Several piece of evidence point in the direction of the quarks being actually
triplets, rather than singlets. For example, the magnitude of the cross section
for electron-positron annihilation into hadrons (e+e− → qq) is experimentally
found to be three times higher than the theory prediction where quarks are
considered to be singlets. Thus, the quarks have been assigned a quantum
number, called color, which can take the three values red, blue and green
(R, B, G). The leptons, on the other side, are found not to interact via the
strong interaction. This distinction suggests the possibility that color plays
the role of a charge for the strong interactions.

An important difference between the strong and electroweak interactions
in due to the non-observation of free quarks, which suggests a theory in
which long-range forces mediated by massless gague bosons are present. In
this respect, the spontaneous symmetry breaking of the theory giving mass
to the gauge bosons is not needed in the case of QCD. Even though this
simplifies things with respect to the electroweak interaction, the picture is
dramatically complicated by the intensity of the strong interaction, which
does not guarantee the possibility of using perturbation theory to compute
observable quantities. However, in a general quantum field theory, the
effective value of the coupling constant is not actually constant, but it
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Figure 2.2: Complete set of the electroweak vertices and corresponding
Feynman rules that arise from the spontaneously broken Lagrangian of Eq.
2.141. The shortcut Sµν,αβ ≡ 2gµνgαβ − gαµgβν − gανgβµ has been used.
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depends on the momentum scale because of renormalization effects. A
peculiar property of non-abelian gauge theories, called asymptotic freedom,
is that the effective coupling decreases at high momentum scales. This raises
the possibility that, in the high momentum regime, perturbative methods
can be reliable for QCD.

In analogy with the electroweak theory, and taking into account the
evidence of the quark being color triplets, the QCD can be constructed to
be a non-abelian theory based on the SU(3) symmetry group. The group
will act on 3-dimensional Dirac spinors of the form

ψι =

 qι,R
qι,B
qι,G

 , (2.143)

where the index ι runs on the 6 quark flavors. The gauge bosons associated
with the theory are called gluons and, given the dimensionality of the group,
can appear in 8 different color combinations. A simplified Lagrangian of the
theory can evidently be written as

L = −1
2tr [GµνG

µν ] +
∑

ι

ψι (iγµDµ −mι)ψι, (2.144)

where the covariant derivative and the generalized Maxwell’s field-strength
tensor have the familiar form:

Dµ = ∂µ + ig

2 λ
aba

µ

Gµν = − i

g
[Dν , Dµ] ,

(2.145)

and the 8 matrices λa are know as the Gell–Mann matrices. As a final remark
to close this brief section, we shall have a closer look at the interaction term
arising from the QCD Lagrangian. For a given quark flavor, this term reads

Lint = −g

2b
a
µψαγ

µλa
αβψβ, (2.146)

which leads at once to the Feynman rule for the quark-gluon vertex − ig
2 γ

µλa
αβ

and to the 8 color combinations of the gluons. In fact, one can explicitly
compute the interaction term to see that the gluons can carry the color
combinations

(RB + BR)/
√

2 i(RB − BR)/
√

2
(RG + GR)/

√
2 i(RG − GR)/

√
2

(BG + GB)/
√

2 i(BG − GB)/
√

2
(RR − BB)/

√
2 (RR + BB − 2GG)/

√
6.

(2.147)
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Figure 2.3: Schematic view of the particles belonging to the Standard Model
of elctroweak and strong interactions.

2.9 Standard Model summary
As a summary and a partial integration of the matter developed in the
previous sections, in Fig. 2.3 we report a schematic view of all the particles
entering the SM framework, the symbols commonly used to label them,
their masses, their electric and color charges and their spins. Particles are
classified as bosons (fermions) based on their integer (half–integer) spin,
and are grouped based on the fundamental interactions they are subject
to. Fermions are further divided in quarks and leptons and split into the
well known three generations. Right beside the SM particles, a blank space
is left empty, as up to now no coherent way to include the gravitational
interaction in the SM has been found. The related carrier of the interaction,
the graviton, is yet unobserved.
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Chapter 3

Experimental apparatus: the
LHC machine and the CMS
experiment

This chapter is devoted to the description of the experimental apparatus
that made possible the data analysis presented in this work. In the following,
we shall describe the Large Hadron Collider, the particle accelerator which
provided the proton-proton collisions, and the Compact Muon Solenoid
experiment, the detector that recorded the collisions and provided the data
used in this work.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [46] is a double-ring, proton-proton, super-
conducting particle accelerator operating at CERN (Geneva, Switzerland).
The machine is placed in a 27 km-long, pre-existing, underground tunnel
which hosted, from 1989 to 2000, the Large Electron-Positron collider (LEP).

The approval of the LHC project was given by the CERN Council in
December 1994. In those early times, the plan was to first build a machine
capable of developing a center-of-mass energy of 10 TeV, to be upgraded
in a second stage up to 14 TeV. However, intense negotiations held with
non-member states in 1995–1996 secured substantial contributions to the
project and in December 1996 the CERN Council approved the construction
of the 14 TeV machine in a single stage.

The decision to build the LHC at CERN was highly influenced by the cost
saving coming from the reuse the LEP tunnel, its facilities and its injection
chain. The LEP tunnel is composed by eight arcs where the protons, bent
by magnetic fields, are free to circulate and eight straight sections, which are
used for various tasks, such as beam injection/dump, particle acceleration or
beam collisions. A schematic view of the LHC is shown in Fig. 3.1.

45
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Figure 3.1: Schematic representation of the Large Hadron Collider. The four
main experiments are depicted, together with other facilities such as the
radiofrequency cavities, the beam cleaning sections, the beam dump section
and the injection section.

The LHC is the last stage of a complex acceleration system, and a process
of pre-acceleration is needed before the beams are injected in the machine. As
a first step, protons are obtained by the ionization of hydrogen atoms; then
the Linear accelerator 2 (Linac2) transfers to the particles the first amount
of energy, accelerating them up to an energy of 50 MeV. Starting from Run3,
the Linac2 will be replaced by the Linac4, a new linear accelerator capable
to accelerate negative hydrogen ions (H−, consisting of hydrogen atoms with
an additional electron) up to 160 MeV. The Linac4 will be one of the key
elements in the project to increase the luminosity of the LHC. In this new
scenario, the ions will be stripped of their two electrons during the injection
in the second stage of the acceleration system.

In the following step, the protons enter the superimposition of four
synchrotron rings called the Proton Synchrotron Booster (PSB) and are
accelerated up to 1.4 GeV. Then, they enter the Proton Synchrotron (PS)
and the Super Proton Synchrotron (SPS) to reach an energy of 450 GeV.
Finally, they are injected in the LHC and accelerated for the last time to
the nominal energy. A scheme of this acceleration system is presented in Fig.
3.2.
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Figure 3.2: The acceleration system at CERN. The protons travel from the
Linac2 through the PSB, the PS and the SPS to finally reach the LHC, where
they undergo the final step of the accelerating process and they eventually
collide at the four interaction points where the experiments are placed.

3.1.1 Performance goals and limitations

One of the main goals of the LHC is to produce rare events, possibly coming
from physics beyond the SM. To achieve this, collisions must take place at
high rate R = σ · L, where σ is the cross section of the process of interest and
L is the instantaneous luminosity of the machine. Thus, a high instantaneous
luminosity is crucial for the success of the experimental program. The
instantaneous luminosity depends exclusively on the machine design and can
be written as

L = n2Nbγν

4πεnβ∗ F,

where n stands for the particle content per bunch; Nb is the number of bunches
per beam, γ is the relativistic factor, ν is the revolution frequency, εn is the
transverse beam emittance, β∗ is the beta function at the collision point and
F is the the so-called geometric luminosity reduction factor, which accounts
for the crossing angle at the interaction point. The maximum particle density
per bunch is limited by beam-beam interactions that particles experience
when the bunches of the two beams collide. This effect can be measured by
the linear tune shift

ξ = Nbrp

4πεn
,
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where rp = e2/4πε0mpc
2 is the classical radius of the proton. Given the

experience gained in previous hadron colliders, the total linear tune shift
summed over all the interaction points (IPs) should not exceed the value
ξ = 0.015. This means that, having the LHC three proton experiments
requiring head-on collisions, the linear tune shift at each IP must satisfy the
requirement ξ < 0.005.

The LHC hosts two, high-luminosity experiments: A Toroidal LHC
ApparatuS (ATLAS) [47] and Compact Muon Solenoid (CMS) [48], both
designed for a peak, nominal, instantaneous luminosity of 1034cm−2s−1

(reached for the first time on June 26, 2016 and exceeded during 2017 with
a peak value of 2.06 × 1034cm−2s−1 ); there is then a third, low-luminosity
experiment, LHCb [49], designed for studies on the physics of the bottom
quark (designed for a luminosity of 2×1029cm−2s−1) and a fourth experiment,
A Large Ion Collider Experiment (ALICE) [50], studying heavy-ions collisions
(designed for a luminosity of 1027cm−2s−1).

The LHC instantaneous luminosity is not constant during data-taking,
but it rather decreases due to effects such as the degradation of intensities
and emittances of the beams, the main reason for this being the beam loss
caused by collisions. It is found that the instantaneous luminosity decreases
with a decay factor

τdecay = N0
L0σtotk

,

where N0 is the initial beam intensity, L0 the initial luminosity, σtot is the
total cross section (σtot ≈ 1025cm2 at 14 TeV) and k is the number of IPs,
following a decay law of the form

L(t) = L0
(1 + t/τdecay)2 .

To quantify the amount of data collected during a run, the instantaneous
luminosity must be integrated over time to get the integrated luminosity:

L =
∫

L(t) dt.

When the instantaneous luminosity becomes too low, the beams must be
dumped and the accelerator refilled. Taking into account the filling time of
the injection chain, the minimum time required for ramping the LHC up to
the nominal 14 TeV energy and possible beam aborts, the total turnaround
time, defined as the time needed to establish stable beams conditions after
a beam dump has occurred, is estimated to be around 70 minutes, as a
theoretical minimum. In reality, up to seven hours can be needed, as on
average only one fill out of six leads to a successful fill at full energy.
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3.1.2 Magnets

The LHC relies on superconducting magnets that are at the edge of the
present technology. In particular, they exploit the technology based on
niobium-titanium (Nb-Ti) Rutherford cables, cooled by superfluid helium to
a temperature of 1.9 K. With such a design, a magnetic field of 8.33 T can
be achieved. Colliding two counter-rotating proton beams requires opposite
magnetic dipole fields in both rings. The LHC is therefore designed with
separate magnet fields and vacuum chambers in the main arcs. The LEP
tunnel has a diameter of 3.7 m, which made almost impossible to install two
completely separated proton beams with independent magnet system. Thus,
the twin-bore magnet design [51] was adopted, in which the two proton rings
are housed in a common cryostat, with the magnetic flux circulating in the
opposite sense through the two channels.

The LHC hosts 1232 main dipole magnets or cryodipoles. The core of a
cryodipole is the dipole cold mass, which contains all the components cooled
by superfluid helium. It is provided with two apertures for the bore tubes
in which the protons circulate. It has an overall length of about 16.5 m, a
diameter of 570 mm and a mass of about 27.5 t. The mass is also curved in
the horizontal plane with an angle of 5.1 mrad in order to correctly match
the particle trajectories. The manufacturing of these magnets has been very
challenging, as the successful operation of the LHC requires for them to
have practically identical characteristics, with relative variations in the field
strength that should not exceed ∼ 10−4. Such a high level of reproducibility
required a close control on the building parameters, such as the coil diameter
and length and the length ratio between the magnetic and non-magnetic
parts of the yoke.

In correspondence of the eight intersections along the LHC ring (four in
the experiment areas, two for the beam cleaning, one for the radiofrequency
cavities and one for the beam dumping, see Fig. 3.1), the main quadrupoles
are placed. These magnets accomplish many tasks, such as collimating the
beams in proximity of the experiments in order to maximize the probability
of pp collisions. A set of multipole correcting magnets are coupled with the
quadrupoles, giving rise to 10 different combinations of magnets used for a
fine tuning of the magnetic fields.

3.1.3 Radiofrequency cavities

To store and accelerate the beams that are injected in the LHC, radiofrequency
cavities (RFs) are used. Such RFs are split in two independent systems, one for
each beam, and work in a superconductive regime. In order for an RF cavity
to accelerate particles, an RF power generator supplies an electromagnetic
field. An RF cavity is designed in such a way that electromagnetic waves
become resonant and build up inside the cavity. Protons passing through
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the cavity feel the overall electromagnetic force of the resulting field and are
accelerated along the rings.

The field inside an RF cavity is oscillating in time and must be synchro-
nized with the revolution frequency of the beam. In order for this to happen,
the ratio between the frequency of the RF voltage, νRF, and the revolution
frequency, νrev, must be a constant integer, called harmonic number h. The
frequency at which the LHC RF operate is 400.8 MHz, the radius of the LHC
machine is approximately 4245 m and the particles circulate at approximately
the speed of light, so that we can write

h = νRF
νrev

= νRF2πR
c

≈ 35640.

This means that, in principle, there are 35640 spots along the LHC ring,
called buckets, in which the particles can be stored. However, not all the
buckets are filled with particles, as a certain number of buckets in a row
(the so called abort gap) is always left empty to give time to the magnets to
perform a beam dump, if needed. The number of actually occupied buckets
in the LHC is 2808.

Since the field inside an RF oscillates, a particle with exactly the right
energy will experience zero accelerating force when the LHC is at full energy.
Such a proton is called a synchronous particle. On the other hand, protons
with slightly higher energies than the synchronous particle will travel on
a longer orbit, thus arriving later and being decelerated, so that they stay
close to the energy of the ideal particle. An analogous reasoning can be
made for particles with slightly lower energies than the synchronous particle,
which in turn arrive early and are thus accelerated. Suppose that a particle
has a higher energy than the synchronous particle. Then, after a given
number of turns in which the particle is decelerated, it will reach the energy
of the synchronous particle, but still being late on the last turn. This way,
it will be decelerated under the optimal energy and it will experience an
accelerating force in the following turns. In a similar fashion, the particle
will then increase its energy and exceed again the the optimal energy. This
oscillating pattern takes the name of synchrotron oscillations and leads to
the splitting of the protons into bunches. This is visually shown in Fig. 3.3.

3.1.4 Vacuum system

The LHC exploits the properties of ultra-high vacuum in several different
ways. The use of ultra-high vacuum has two main goals: first, to insulate
the cryogenically-cooled parts of the machine, and second, to avoid collisions
between the beams and gas molecules, thus ensuring a high beam lifetime.
The system is split into three independent parts: one for insulating the
cryomagnets, one for insulating the helium distribution line and one for
the beam pipe. All the three vacuum systems are then subdivided into
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Figure 3.3: Time dependence of the potential difference inside a radiofre-
quency. A synchronous proton (A) will feel zero accelerating force; a proton
with a slightly lower energy (B) will arrive early, thus experiencing a negative
potential difference and being accelerated to approach the optimal energy; a
proton with a slightly higher energy (C) will arrive late, thus experiencing a
positive potential difference and being decelerated to approach the optimal
energy; if a proton is even more energetic and is very late, it arrives during
the second half period of the oscillation (D), thus experiencing a negative
potential difference, being accelerated and separated from the other particles,
forming a second bunch.

manageable sectors by the use of vacuum barriers in the insulating part and
vacuum valves for the beam pipe.

The design of the beam vacuum system is driven by the dynamic phe-
nomena that could spoil the beam insulation, such as synchrotron radiation,
which can hit and heat the beam pipe, and electron cloud, mainly caused by
the ionization of residual gas and synchrotron emission. In order to intercept
these sources of heat, a beam screen has been installed. The system is
actually split in two independent chambers, one for each beam pipe, which
merge into a single one in the collision regions.

The insulation vacuum systems includes the magnet cryostats and the
helium distribution line. Vacuum barriers are installed in such a way that
the two systems are kept separated and warming of individual machine cells
is possible.

3.1.5 Beam injection/dump

Beam injection is performed in sectors 2 and 8. In both insertions, the
beams approach the machine from outside and below the machine plane.
The beams are first directed by dipole magnets into the injection line; then, a
set of 5 septum magnets deflect the beam in the horizontal plane and finally
four, fast-pulsed kicker magnets deflect the beam vertically. To protect the
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Figure 3.4: Examples of leading-order Feynman diagrams for the associated
production of WIMPs (χ) and top quarks in the so called minimal flavor
violation scenario. In this framework, the interaction between DM and SM
particles is mediated by a scalar particle (φ or a) with a Yukawa-like coupling
identical in structure to that of the SM.

LHC from malfunctioning of the kickers, an injection beam stopper is placed
downstream. The design of the kickers is of particular interest, as they must
provide an intense magnetic field in a fast pulse. A total integrated field of
1.2 Tm and pulses with rise/fall time of the order of tens of ns are needed.
To achieve this, each magnet is powered by a separate pulse-forming network.

The dedicate beam dumping system is located in sector 6. The system
is made by extraction kicker magnets, septum magnets and dilution kicker
magnets. To protect the machine, the system is able to fast-extract the
beam in a single beam turn and direct it towards to an external absorber.
The absorbing material must be positioned sufficiently away to allow for
beam dilution in order not to overheat the absorbing material. Given the
destructive potential of the LHC beams, they cannot be dumped in a single
point but must rather be diluited in a “e” shape, in such a way that the
energy is deposited on a wider surface. The system is not only able to
dump ordinary beams, but it can also deal with beams outside of the normal
parameters, to prevent incidents due to equipment failures or abnormal optic
settings in the rings.

3.1.6 Scientific goals

The LHC machine, the most powerful particle accelerator ever built, has
been designed to accomplish several scientific goals. A first, important task,
was to confirm or discard the CDF and D0 results [52] which indicated the
evidence for a particle consistent with the Higgs boson in the mass range
115 < mH < 140 GeV with significance of 2.9 standard deviations. This
search ended successfully on July 4th, 2012 when the ATLAS and CMS
Collaborations announced independently the discovery of a new particle
compatible with the SM Higgs Boson.
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However, the experimental program of the machine goes far beyond the
Higgs boson discovery. For example, the LHC experiments could possibly
be able to determine the nature of dark matter (DM). Firstly postulated in
the 30s [53], the existence of DM is supported by indirect evidence coming
from astrophisical observations, such as galactic rotation velocity dispersion
curves [54], and could account for roughly 25% of the matter of the universe.
At the LHC, proton-proton collision could produce in a direct way DM
candidates, such as weakly interacting massive particles (WIMPs). An
example of processes that directly couple the SM and DM sectors is given in
Fig. 3.4.

Moreover, the LHC could possibly observe the production of supersym-
metric particles. The theory of supersymmetry (SUSY) [55, 56], if confirmed
by the experimental evidence, could shed light on aspects of grand unified
theories [57, 58], give an answer to the hierarchy problem [59] and solve the
puzzle of the radiative corrections to the Higgs boson mass [60, 61]. Through
the detailed study of the properties of b-flavored hadrons, the experiments
could be able to enhance our knowledge on the sources of CP violation [62].
Finally, exploiting data coming from ion-ion collisions, we may get an insight
into the properties of the exotic state of matter called quark-gluon plasma
[63].

3.2 The Compact Muon Solenoid detector

The CMS experiment [64] is a multi-purpose particle detector operating at
the CERN LHC. It is housed in sector 5 of the LHC ring, in the Point 5 LHC
area, about 100 m underground, near the French village of Cessy. In its basic
design, CMS is a 21.6 m long, 14.6 m high cylinder made of concentric layers,
each layer corresponding to a different subdetector or piece of equipment.

Being coupled with the most powerful particle accelerator ever, CMS has
to accomplish many challenging tasks. At design luminosity, approximately
one billion proton-proton collisions per second take place in the heart of the
detector, and thus a very effective online selection process must take place to
reduce the rate to around 100 events per second in order for data acquisition
and storage to be possible. The very short time of 25 ns between proton
bunches makes mandatory to have ultra-fast acquisition systems, in such a
way that collisions belonging to different bunches do not overlap during data
taking. The high flux of radiation coming from the interaction point hits the
front end electronic devices of the detector, which thus must be produced
with a radiation-hard design.

The coordinate system adopted by CMS has the origin centered at
the nominal collision point inside the experiment, with the y-axis pointing
vertically upward and the x-axis pointing radially inward toward the center
of the LHC. Thus, the z-axis points along the beam direction toward the
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Figure 3.5: Coordinate system adopted by the CMS experiment.

Jura mountains from LHC Point 5. Given the evident symmetry of the
detector, a cylindrical coordinate system is often used. The azimuthal angle
φ is measured from the x-axis in the x-y plane and the radial coordinate
in this plane is denoted by r. The polar angle θ is measured from the
z-axis. A visual representation of the coordinate system adopted by CMS is
reported in Fig. 3.5. The widely-used pseudorapidity variable is defined as
η = − ln [tan (θ/2)]. Also, the momentum transverse to the beam direction,
denoted by pT, is thus computed from the x and y components of the
momentum vector.

In the following subsections, we shall provide a description of all the
relevant CMS subdetectors, starting from the inner layers and going outwards.

3.2.1 Tracking system

The CMS tracking system has been designed to efficiently and precisely
measure the trajectories of charged particles emerging from the interaction
point, as well as to reconstruct secondary vertices. It is the closest subdetector
to the beam pipe and has a length of 5.8 m and a diameter of 2.5 m. Given
the high number of multiple proton-proton collisions within the same bunch
crossing and the 25 ns bunch spacing, a detector technology featuring high
granularity and fast response is required, in such a way that the trajectories
can be identified reliably and attributed to the correct bunch crossing. Also,
being so close to the interaction point, the intense particle flux can severely
damage the tracking system; thus, a radiation-hard technology is required.

All these challenging quality requirements have been addressed using a
silicon-based detector technology. The readout chips of the CMS tracking
system were found to be severely damaged by radiation at the end of 2016;
thus, during an extended end-of-year shutdown during winter 2016/2017, the
system has been fully replaced.

With respect to the previous design, the new tracker features an additional
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Figure 2.15: Performance of the Combined Secondary Vertex b-tagging algorithm for jets with
pT > 30 GeV in a tt̄ sample with (a) zero pileup, and (b) an average pileup of 50. The perfor-
mance for the current detector are shown by the open points while the solid points are for the
upgrade detector. The triangular points are for c-jets while the circle and square points are for
light quark jets.

b Jet Efficiency
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c/
lig

ht
 J

et
 E

ffi
ci

en
cy

-410

-310

-210

-110

1

(a)

light jet: Current Detector (no pileup) 
light jet: Upgrade Detector (50 pileup)
c-jet: Current Detector (no pileup)
c-jet: Upgrade Detector (50 pileup)

b Jet Efficiency
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c/
lig

ht
 J

et
 E

ffi
ci

en
cy

-410

-310

-210

-110

1

(b)

light jet: Current Detector (25 pileup) 
light jet: Upgrade Detector (50 pileup)
c-jet: Current Detector (25 pileup)
c-jet: Upgrade Detector (50 pileup)

Figure 2.16: Comparison of the performance of the Combined Secondary Vertex b-tagging algo-
rithm for jets with pT > 30 GeV in a tt̄ sample for the Phase 1 upgrade detector with an average
pileup of 50, and for (a) the current pixel detector with zero pileup, (b) the current pixel detec-
tor with an average pileup of 25. The performance for the current detector are shown by the
open points while the solid points are for the upgrade detector. The triangular points are for
c-jets while the circle and square points are for light quark jets.
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Figure 3.6: Performance of the combined secondary vertex b tagging algo-
rithm (see Section 4.2) for jets with pT > 30 GeV in a tt̄ sample with zero
pileup (left), and an average pileup of 50 (right). The plots are taken from the
CMS TDR for the pixel detector upgrade [65], which was published in 2012
and described the upgrade plans for the tracking system; thus, points labeled
as “Current Detector” actually refer to the previously-installed system, while
“Upgrade Detector” refers to the detector now present inside CMS. The
results show that the use of the new detector outperforms the old one in
terms of b tagging efficiency.

fourth layer of pixel modules in the barrel and a third disk per side in the
endcap region. The number of channels has almost doubled, reaching 124
million, giving a four-hit coverage in the whole tracking region up to |η| < 2.5.
To improve the vertex resolution and b tagging efficiency, the radius of the
innermost layer is now smaller, corresponding to 29 mm. This implied that a
new beam pipe was also needed, which was installed during Long Shutdown
1 in 2013/2014. As an example of a performance which is improved with the
new design, in Fig. 3.6 we report the gain in performance of an algorithm
used to identify jets produced by the hadronization of bottom quarks.

Moreover, the material budget of the new tracker has been significantly
reduced, firstly by switching from a C6F14 cooling system to a two-phase
CO2 cooling system, which allows lower coolant mass and smaller pipes, and
secondly by moving the electronic boards and connections out of the tracking
volume.

The basic design of pixels basically remained unchanged. A module
consists of 285 µm thick silicon sensor comprising 66540 pixels, each with
a size of 100 µm × 150 µm. A technique based on charge sharing between
neighboring pixels is used to get a single hit resolution of 5–7 µm.
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3.2.2 Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) is a hermetic, homogeneous calorime-
ter made of 61200 lead tungstate (PbWO4) scintillating crystals mounted in
the central barrel part, closed by 7324 crystals in each of the two endcaps.
Also, a preshower detector is placed in front of the endcap crystals.

The high density (8.28 g/cm3), short radiation length (0.89 cm) and small
Molière radius (2.2 cm) result in a compact, high-granularity calorimeter.
Avalanche photodiodes are used in the barrel as photodetectors, while vacuum
phototriodes are used in the endcaps. The use of high-density crystals gives
ECAL a fine granularity, a fast response and good radiation hardness. The
shape of the crystals is a truncated pyramid and they have a scintillation
decay time which is the same order of magnitude of the LHC bunch spacing,
with about 80% of the light being emitted in 25 ns.

The barrel part of the ECAL (EB) covers a pseudorapidity range of
|η| < 1.48, and the cross-section of the crystals in this region corresponds to
22 mm × 22 mm at the front face of the crystal, and to 26 mm × 26 mm at
the rear face. The crystal length is 230 mm, corresponding to 25.8 radiation
lenghts. The centers of the front faces of the crystals are at a radius 1.29 m.

The endcap part of the ECAL (EE) covers the range 1.48 < |η| < 3.0.
The longitudinal distance between the interaction point and the endcap
envelope is 3.15 m, which takes into account the estimated shift toward the
interaction point by about 2 cm when the magnetic field is switched on. The
crystal geometry in this region is identical to the one of the barrel region.

The number of scintillation photons emitted by the crystals and the
performance of the photodiodes are temperature dependent, both variations
being negative with the increase of temperature. The temperature of the
system must therefore be kept as constant as possible, requiring a cooling
system capable of extracting the heat from crystals, photodiodes and readout
electronics. The nominal operating temperatore of the ECAL is 18 °C. The
cooling system uses water to stabilize the detector.

The preshower detector is designed to identify pions in the endcap region,
to help the identification of electrons against minimum ionizing particles
and to improve the position determination of electrons and photons. It is
basically a sampling calorimeter made of two layers: first, lead radiators
initiate the shower induced by incoming photons or electrons, and then silicon
strip sensors placed after each radiator measure the energy deposit. The
preshower detector covers the region 1.65 < |η| < 2.6.

3.2.3 Hadron calorimeter

The hadron calorimeter (HCAL) is designed to measure the properties of
hadron jets and, indirectly, of neutrinos or exotic particles resulting in
missing transverse energy. It is composed by two half barrels (HB) covering
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Figure 5.1: Longitudinal view of the CMS detector showing the locations of the hadron barrel
(HB), endcap (HE), outer (HO) and forward (HF) calorimeters.

Table 5.1: Physical properties of the HB brass absorber, known as C26000/cartridge brass.

chemical composition 70% Cu, 30% Zn
density 8.53 g/cm3

radiation length 1.49 cm
interaction length 16.42 cm

(∆η ,∆φ) = (0.087,0.087). The wedges are themselves bolted together, in such a fashion as to
minimize the crack between the wedges to less than 2 mm.

The absorber (table 5.2) consists of a 40-mm-thick front steel plate, followed by eight 50.5-
mm-thick brass plates, six 56.5-mm-thick brass plates, and a 75-mm-thick steel back plate. The
total absorber thickness at 90◦ is 5.82 interaction lengths (λI). The HB effective thickness increases
with polar angle (θ ) as 1/sinθ , resulting in 10.6 λI at |η | = 1.3. The electromagnetic crystal
calorimeter [69] in front of HB adds about 1.1 λI of material.

Scintillator

The active medium uses the well known tile and wavelength shifting fibre concept to bring out the
light. The CMS hadron calorimeter consists of about 70 000 tiles. In order to limit the number of
individual elements to be handled, the tiles of a given φ layer are grouped into a single mechanical
scintillator tray unit. Figure 5.5 shows a typical tray. The tray geometry has allowed for construc-
tion and testing of the scintillators remote from the experimental installation area. Furthermore,
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Figure 3.7: Longitudinal view of the CMS detector, showing the locations
of the hadron barrel (HB), endcap (HE), outer (HO) and forward (HF)
calorimeters.

a pseudorapidity range of |η| < 1.3, completed by two endcaps (HE) which
cover the pseudorapidity range of 1.3 < |η| < 3.0. Beyond |η| = 3.0, a
forward hadron calorimeter (HF) placed about 11 m after the interaction
point extends the pseudorapidity coverage to |η| = 5.2, making the CMS
HCAL an almost hermetic calorimeter. Since the space for the barrel is
limited by the ECAL and the magnet coil, a complementary outer hadron
calorimeter (HO) is placed outside of the magnet. Figure 3.7 shows where
each of these components are placed inside of the CMS detector.

The HB calorimeter is a sampling calorimeter composed by 36 identical
azimuthal wedges which form the two half-barrels, each of them divided in
4 sectors. The absorber is made of alternating layers of stainless steel or
brass, while the active material is a plastic scintillator which exhibits long
term stability and a good radiation hardness. The scintillator is used in
the tile plus wavelength-shifting fibre design to collect the light produced in
the scintillating material. The light collected by the fibres is transferred to
photodiodes which enhance the signal and make possible its usage.

The forward region covered by HE calorimeter is expected to contain
about 34% of the particles produced in the final state of a collision. Given the
high luminosity delivered by the LHC, the HE must handle rates up to the
MHz and must have an excellent radiation tolerance. Also, since it is inserted
at the ends of a 4-T magnet, the absorber must be made of a non-magnetic
material and show good mechanical properties. These requirements led to
the choice of trapezoidal-shape plastic scintillators and cartridge brass as the
absorbing material. Plus, the absorber design is optimized to minimize the
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cracks between HB and HE, since the single-particle energy resolution would
be anyway spoiled by multiple interactions within the same bunch crossing,
fragmentation effects and so on.

In the central pseudorapidity region, the combined effect of the EB
and HB calorimeters is not enough to provide sufficient confinement of the
hadronic showers. To ensure an adequate sampling depth in the |η| < 1.3
region, the hadron calorimeter is extended outside of the magnet with the
HO calorimeter. This subdetector uses the magnet as an additional absorber
and is able to identify late showers. The presence of the HO prevents shower
leakage and leads to important improvements on the measurement of the
missing transverse energy.

The HF calorimeter undergoes very intense particle fluxes. After ten
years of operation of the LHC, the absorbed dose received by the HF in
the direction |η| = 5 has been estimated to be ≈ 10 MGy. This hostile
environment presents a considerable challenge to calorimetry, and the design
of the HF was mainly driven by the necessity to survive in these harsh
conditions. The calorimeter consists of an absorber composed by steel,
grooved plates. Quartz fibers are inserted in such grooves. The fibers
are divided in two sets, the first one running over the full depth of the
absorber, the second one starting at a depth of 22 cm from the front of the
detector. By reading out these two sets separately, the detector is able to
distinguish showers initiated by photons and electrons, which deposit most
of the energy in the first 22 cm of the detector, from showers initiated by
hadrons which on average produce equals signals in two regions. The HF
uses a Čerenkov-based technology. The signal is generated when particles
above the threshold generate Čerenkov light inside the fibers, which is then
read by photomultipliers.

3.2.4 Superconducting magnet

The superconducting magnet of the CMS experiment is designed to reach
a field of 4 T. The joint requirements of such an intense field, keeping at
the same time a contained size, presented severe technological challenges.
However, the choice of an intense magnetic field is crucial, as lower intensities
would correspond to higher Level-1 trigger rates, to a degradation in the
particles momentum resolution, and to more problematic calibrations of the
ECAL.

The solenoid has a diameter of 6 m and is 12.5 m long, making it the
biggest superconducting magnet ever built, and stores an energy of 2.6 GJ at
full current. In order to achieve such intense current, the magnet must operate
in a superconducting regime at a temperature of 4.6 K. The distinctive
features of the cold mass are the winding, which consists in 4 layers made
from Nb-Ti conductor, the high ratio between stored energy and cold mass,
which is 11.6 kJ/kg, and the thinness of the coil, with a radial extension ∆r
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which is small compared to the radius of the solenoid, ∆r/r ≈ 0.1.
The flux of the magnetic field is returned by a 10000-t iron yoke made

of 5 wheels and 2 endcaps, with the central wheel housing the coil and its
cryostat. The yoke is designed in a 12-sided structure that also houses the
muon chambers. The movement of such a heavy setup is granted by the
combined use of heavy-duty air pads and grease pads. This makes possible
to easily and quickly open the detector for maintenance tasks.

3.2.5 Muon system

An efficient detection of muons is a powerful tool to recognize signatures
of interesting events in a QCD-dominated environment such as the LHC
collisions. A decay to four muons is the golden decay channel for the Higgs
boson, and exotic theories such as SUSY also predict final states containing
muons. Therefore, as it is suggested by the name of the experiment, a great
attention has been payed in the design of the muon system in order to achieve
robust and precise muon measurements.

The muon system is devoted to three functions: muon identification,
momentum measuring and triggering. It is constructed by making use of
three different kinds of gaseous detectors and it is composed by a barrel
region plus two endcap regions.

In the barrel region, where the magnetic field is uniform and mostly
contained in the return yoke, drift chambers with rectangular drift cells are
used. These barrel drift tube (DT) chambers cover the pseudorapidity range
|η| < 1.2. Each of the five wheels composing the barrel is divided in 12
sectors, each of them containing 4 DT chambers. Each DT chamber is made
by 3 (or 2) superlayers (SLs), each made of 4 layers composed by 60–90
rectangular cells. This complex system, shown schematically in Fig. 3.8,
results in more than 172000 sensitive wires. The wires in inner and outer
SLs are parallel to the beam line and provide a track measurement in the
r–φ plane, while the wires in the middle SL are orthogonal to the beam line
and measure the z position along the beam.

The endcap region of the muons system is equipped with cathode strip
chambers (CSCs). The CSCs are trapezoidal, multiwire proportional cham-
bers comprised of 6 anode wire planes interleaved among 7 cathode panels,
covering the pseudorapidity range 0.9 < |η| < 2.4. The wires run in the
azimuthal direction and measure the radial coordinate of a track. Also, the
φ coordinate is obtained by interpolating charges induced on the strips. The
CSCs are a very versatile detector, since can operate at high rates, in non-
uniform magnetic fields and they do not require high-precision measurements
of gas temperature and pressure.

Finally, both the barrel and endcap regions are equipped with resistive
plate chambers (RPCs). The RPCs are gaseous parallel-plate detectors that
achive adequate spatial resolution with a time resolution comparable to that
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Figure 3.8: Layout of the barrel muon DT chambers. The segmentation in
12 sectors, each composed of 4 chambers (drawn in light blue) is shown.

of scintillators. An RPC is capable of tagging the time of a ionizing signal in
a time which is shorter than the 25 ns bunch spacing of the LHC. The RPC
basic design consists of two gaps operated in avalanche mode with common
pick-up read-out strips in between. The total signal collected by the RPC is
the sum of the signals produced in the two gaps, thus allowing the operation
at a lower gas gain, with an increase detector efficiency with respect to a
single-gap design.

3.2.6 Trigger

The LHC provides a very high rate of proton-proton collisions: with a
nominal bunch spacing of 25 ns, it corresponds to 40 MHz. Since no storage
capacity and computing power are available to save and analyze such a big
amount of data, a drastic reduction in rate must be achieved. This is done
by the trigger system, which is the starting point of the event selection. The
reduction in the rate of events is obtained in two steps: the Level-1 (L1)
trigger and the High Level Trigger (HLT).

The L1 trigger is hardware-based and consists of custom-designed, largely
programmable electronics. To achieve a good level of flexibility, the L1 hard-
ware is implemented in FPGA technology, when possible. The system uses
coarse information from the calorimeters and the muon system, while holding
the high-resolution data in pipelined memories in the front-end electronics.
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Figure 3.9: Layout of the Level-1 trigger.

The L1 trigger is composed by local, regional and global components. At the
bottom end, the local triggers, also known as the trigger primitive generators,
are based on calorimetric deposits and hits in the muon system. Then the re-
gional triggers combine this information using pattern logic to determine and
rank trigger objects such as electrons or muons, based on energy, momentum
and quality. The ranking reflects the level of confidence attributed to the L1
parameter measurements, based on detailed knowledge of the detectors and
trigger electronics and on the amount of information available. Finally, the
global calorimeter and muon triggers determine the highest-rank calorimeter
and muon objects and pass them to the global trigger, which is the top-level
entity of the L1 hierarchy. This last element takes the decision whether to
accept the event or reject it. This hierarchic structure of the L1 trigger is
shown in Fig. 3.9. The rate reduction capability of the L1 trigger is such
that the rate of collisions is reduced from the nominal 40 MHz developed by
the LHC to 100 kHz after the L1 selection has taken place.

The HLT is a software system implemented in a farm of about 1000
commercial processors. The HLT algorithms are very numerous, quickly
evolve in time and are related to the needs of specific fields of research. For
this reason, they cannot be investigated in full detail here. A description of
the HLT path used in the analysis described in this work will be given in
Section 4.3. However, in general, the HLT has access to the complete readout
data and can therefore perform complex calculations, similar to those that
are made during offline analyses, if required for specially interesting events.
The HLT is able to reduce the rate of collisions from the 100 kHz of the L1
trigger 100 Hz.
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Chapter 4

Data analysis

This chapter describes in detail the main steps of the data analysis procedure.
It is organized as follows: in Section 4.1, the data and Monte Carlo samples
used to perform the analysis are described, while in Section 4.2, the physical
objects entering the analysis are listed. After that, in Section 4.3, the
signal trigger path is presented, and in Section 4.4 all the steps forming
the event selection are described and justified. Subsequently, in Section 4.5,
several consistency checks concerning the selection procedure are shown. In
Sections 4.6 and 4.7, the estimation of the main backgrounds of the analysis
is described. Finally, in Sections 4.8 and 4.9, the template shapes used for the
extraction of the signal strength parameter and the systematic uncertainties
affecting the search are discussed.

4.1 Data and Monte Carlo samples

4.1.1 Data

The present analysis is based on pp collision events recorded during the
2016 data-taking period. All the different eras of data-taking, i.e., from B
to H, are used, taking into account only good runs and luminosity sections
which are present in the golden JSON. As far as era B is concerned, only
the version 2 dataset is used, since the version 1 dataset does not contain
events in the golden JSON. As far as era H is concerned, both version 2
and version 3 dataset are used, as they contain no overlapping events. This
results in a total integrated luminosity of 35.922 fb−1. Data events collected
by the CMS detector are first of all processed through the HLT. From there,
several HLT paths are designated to live inside specific primary datasets.
Events collected by the trigger paths included in the JetHT primary dataset
are used in this analysis. The different data-taking eras contributing to this
analysis, together with the corresponding run ranges and collected integrated
luminosities, are listed in Table 4.1.

63
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Sample Run range Luminosity (pb−1)
Run2016B_ver2 273150-275376 5750
Run2016C 275656-276283 2573
Run2016D 276315-276811 4242
Run2016E 276947-277420 4025
Run2016F 277932-278808 3105
Run2016G 278820-280385 7576
Run2016H_ver2 281613-284035 8435
Run2016H_ver3 284036-284044 216

Table 4.1: Data samples used in the analysis, along with the corresponding
run ranges and integrated luminosity.

4.1.2 Monte Carlo

The Monte Carlo (MC) samples used in this analysis include the simulation
of the signal process, as well as the simulation of all the backgrounds relevant
to the search.

The samples of tt̄H(bb̄) events, in which the Higgs boson decays to a bb̄
pair, and its complementary tt̄H(nobb̄) in which the Higgs boson decays to
any other particles, have been simulated with the MadGraph5_amc@nlo
generator [66] using the next-to-leading-order (NLO) merging scheme pro-
posed by Frederix-Frixione [67] interfaced with the pythia8 [68] parton
shower.

The dominant background, namely the QCD multijet production, has
been simulated with MadGraph, interfaced with pythia8. It has been
divided into six subsamples, each one corresponding to a given range in HT,
defined as the scalar sum of the transverse momenta of all the jets in the
event. The main background coming from the tt̄ associated production has
been simulated with the powheg generator [69], interfaced with pythia8.
In addition to this nominal sample, two additional tt̄ samples have been
used, which have a cut on the invariant mass of the tt̄ system at parton level
(mtt̄). These samples are obtained through powheg and pythia8 as well.
The usage of such samples will be discussed in the following. With the goal
of estimating the impact of the uncertainties affecting the MC parameters
of the tt̄ simulation, additional samples are used. The only difference with
respect to the nominal sample is the value of the MC parameters, which
are shifted according to their uncertainties. The irreducible background of
tt̄Z events has been simulated using MadGraph5_amc@nlo, once again
interfaced with pythia8.

Concerning the subdominant backgrounds, several sources are taken into
account: the production of a single top quark (or antiquark) in the t-channel
and in the tW channel, as well as the production of a pair of W bosons
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decaying to four quarks, have been simulated with powheg. Drell-Yan (DY)
events in which the virtual photon or Z boson decays to a pair of quarks,
as well as the production of a W boson decaying to quarks plus additional
jets, have been simulated with MadGraph. Finally, the tt̄W production, in
which the W boson decays to quarks, and the production of a pair of Z bosons
decaying to four quarks, have been simulated with MadGraph5_amc@nlo.
All the aforementioned generators have been coupled to pythia8 for the
simulation of the parton shower. A comprehensive list of all the MC samples
used in this analysis, together with the corresponding generator, theoretical
cross section and number of generated events, is reported in Table 4.2.

Next-to-leading-order predictions obtained with the use of the Mad-
Graph5_amc@nlo generator lead to weighted MC events. This means that,
when filling the distribution of a given observable, events do not actually
count as one, but rather count as their event weight, and the integral of the
resulting distribution will not be equal to the number of times the histogram
has been filled. For such kind of events, a comparison has been made between
weighted and unweighted shapes, the latter being the shapes obtained by
simply filling the distributions with events counting as one, i.e., neglecting
the event weight. As a result, the weighted and unweighted shapes have
generally been found to be compatible within the statistical uncertainties,
with the unweighted shapes showing smaller error bars. Therefore, in the
final fit performed in this analysis, for all the weighted samples, unweighted
shapes are used, which are normalized to the weighted yield (i.e., to the
yield of weighted shapes). An analogous argument holds for tt̄ events, where
the shapes obtained from the samples with the mtt̄ cut are found to be more
populated and to be compatible, within the uncertainties, with the shapes
obtained from the nominal file. Thus, tt̄ shapes included in the final fit are
obtained from the mtt̄ samples and normalized to the yield obtained from
the nominal file.

Monte Carlo samples are generated with distributions of the number of
pileup (PU) interactions, i.e., the number of multiple proton-proton collisions
within the same bunch crossing, which are meant to roughly cover, though
not exactly match, the actual conditions of a given data-taking period. The
distribution of the number of reconstructed primary vertices (PVs) is sensitive
to details in the PV reconstruction, to differences in the description of the
underlying event in data and MC, and potentially to effects coming from the
offline selection criteria. Thus, the PU distribution in MC must be reweighted
with a proper pileup scale factor (SF) to match the corresponding distribution
in data. In order to account for all the previously described effects, instead
of reweighting the MC by the number of reconstructed vertices, we choose
instead to reweight by the number of pileup true interactions, as stored in
the simulations. The corresponding distribution in data is obtained starting
from the instantaneous luminosity distribution and the total proton-proton
inelastic cross section, which is taken to be 69.4 mb. Finally, the SF is
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Sample Generator Events (×106) σ (pb)

tt̄H(bb̄) MadGraph5_amc@nlo 9.8912 0.2934
tt̄H(nobb̄) MadGraph5_amc@nlo 10.045 0.2151
QCD (300 < HT < 500 GeV) MadGraph 54.537 3.477 × 105

QCD (500 < HT < 700 GeV) MadGraph 62.271 3.21 × 104

QCD (700 < HT < 1000 GeV) MadGraph 45.412 6831
QCD (1000 < HT < 1500 GeV) MadGraph 15.127 1207
QCD (1500 < HT < 2000 GeV) MadGraph 11.827 119.9
QCD (2000 < HT < ∞ GeV) MadGraph 6.039 25.24
tt̄ powheg 77.0811 832
tt̄ (700 < mtt̄ < 1000) powheg 38.4226 69.64
tt̄ (1000 < mtt̄ < ∞) powheg 24.563 16.74
tt̄ (tune up) powheg 58.954 832
tt̄ (tune down) powheg 29.984 832
tt̄ (isr up) powheg 156.179 832
tt̄ (isr down) powheg 149.763 832
tt̄ (fsr up) powheg 152.618 832
tt̄ (fsr down) powheg 155.992 832
tt̄ (hdamp up) powheg 58.859 832
tt̄ (hdamp down) powheg 57.764 832
tt̄Z MadGraph5_amc@nlo 0.749 0.5297
Single-top (t-channel) powheg 67.241 136.02
Single-antitop (t-channel) powheg 38.811 80.95
Single-top (tW) powheg 6.953 35.6
Single-antitop (tW) powheg 6.933 35.6
Drell-Yan MadGraph 12.055 1460
W+jets MadGraph 22.402 3539
WW powheg 1.998 51.723
ZZ MadGraph5_amc@nlo 30.454 22.29
tt̄W MadGraph5_amc@nlo 0.833 0.4062

Table 4.2: Monte Carlo samples used in the analysis. The kind of process,
the generator used to simulate it, the number of simulated events and the
theoretical cross section are reported.

obtained as the ratio between the pileup distributions in data and in MC.

4.2 Object reconstruction

4.2.1 Jets

Given the targeted fully hadronic final state, jets are the most used and
important objects of the analysis. Since they are the result of the hadroniza-
tion of quarks, jets are effectively build up starting from large collections
of objects that are reconstructed in the detector. Indeed jets can first be
categorized based on the type of input objects and three different categories
of reconstructed jets exist in CMS:

1. Calorimetric jets (CaloJets): such jets are clustered starting from
calorimetric-only information;

2. Jet-plus-track jets (JPTJets): such jets are clustered starting from
calorimetric energy depositions, where an algorithm corrects the energy
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of a jet using the momentum of charged particles measured in the
tracker;

3. Particle-flow jets (PFJets): such jets are clustered starting from parti-
cles (often referred to as “candidates”) which have been reconstructed
by the particle-flow (PF) algorithm [70].

The analysis presented in this work uses jets clustered from PF candidates,
i.e., PFJets. In the PF event reconstruction all the stable particles, i.e.,
muons, electrons, photons and charged and neutral hadrons, are reconstructed
exploiting information coming from all the CMS subdetectors, resulting in
an optimal determination of energies, directions and types. The building
blocks of the PF event reconstruction are charged-particles tracks, calorimeter
clusters and muon tracks. In order for these object to be delivered with a
high efficiency and low fake rates even in high-density environments such as
the LHC collisions, advanced tracking and clustering algorithms are used.

As far as tracks are concerned, an iterative-tracking strategy is adopted,
where in the first step the tracks are reconstructed with tight criteria, which
lead to a moderate efficiency but low fake rates; then, in the following
iterations, hits unambiguously assigned to the tracks found in the previous
iterations are removed, and the track seeding criteria are progressively made
looser. This way, the efficiency increases and the fake rate is kept low, due
to the low combinatorics of the hits.

Moreover, a specific calorimeter clustering algorithm has been developed
for the PF event reconstruction. First, “cluster seeds” are formed from
local calorimetric deposits above a given energy threshold; then, “topological
clusters” are formed by aggregating cells with at least one side in common
with a seed already in the cluster. Finally, a “particle-flow cluster” is formed
from each seed and an iterative procedure determines the clusters energies
and positions.

A given particle is expected, in general, to give rise to more than one PF
object: one charged-particle track, and/or one or more calorimetric clusters,
and/or a muon tracks. These elements are connected by a link algorithm
to fully reconstruct each particle. The link algorithm is performed for each
pair of elements in the event and defines a distance between any two linked
elements to quantify the quality of the link. The algorithm then produces
“blocks” of elements linked directly or indirectly. Given the high granularity
of the CMS detectors, blocks typically contain only up to three elements,
and constitute simple inputs for the particle reconstruction and identification
algorithm which is described in full detail in [70].

A quantitative illustration of the performances of the PF algorithm
can be found in Fig. 4.1. Using simulations, reconstructed CaloJets and
PFJets are matched to the closest jet among the generated jets (GenJet),
i.e., jets clustered from all the stable particles, except for neutrinos. To
establish a match, a distance in the η-φ plane of less than 0.1 is required.
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Figure 4.1: Matching efficiency between reconstructed and generated jets
in the barrel region (upper left) and endcap region (upper right); mismatch
rate between between reconstructed and generated jets in the barrel region
(lower left) and endcap region (lower right).

The matching jet efficiency, i.e., the fraction of GenJets that give rise to a
matched reconstructed jet, and the mismatched jet rate, i.e., the fraction
of reconstructed jets that do not have a matched generated jet, are plotted,
as a function of the jet pT, in the barrel (0 < |η| < 1.5) and the end-cap
(1.5 < |η| < 2.5) regions. As a result of the usage of the PF algorithm,
jet matching efficiencies are found to be significantly higher than the ones
obtained by the simpler CaloJets, while at the same time the mismatch rate
is lower, especially in the barrel region.

For each given type of object which serves as an input to the jet clustering
procedure, different possible ways of performing such clustering exist. Jet
reconstruction algorithms are among the most useful tools used in particle
physics in order to analyze data from hadronic collisions. Theoretical QCD
calculations provide results in terms of quarks and gluons in the final state
which, once produced in the detectors, undergo hadronization and give rise
to the characteristic signature of QCD jets. A quantitative mapping between
hadrons in the form of jets and final state quarks and gluons is then required
in order to correctly interpret the theoretical results and compare them with
the experimental evidence. This mapping is provided by jet reconstruction
algorithms. A wide variety of algorithms has been developed over time,
differing from one another by the internal parameters used to reconstruct a
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jet. However, a good algorithm should show some fundamental properties:
it should be fast and easy to implement during data analysis and it should
show the key feature called infra-red and collinear (IRC) safety, meaning
that collinear gluon splitting and soft radiation should not change the set of
jets in the event. All the jet reconstruction algorithms widely used at the
present time in CMS are IRC safe and belong to the class of the so called
sequential recombination jet algorithms. They are based on some kind of
definition of how likely two partons arise from a QCD splitting, and they
proceed sequentially to construct a jet evaluating which partons are close in
this measure. Thus, jets can further be categorized based on the clustering
algorithm:

1. kT algorithm (KT) jets [71];

2. Anti-kT algorithm (AK) jets [72];

3. Cambridge-Aachen (CA) jets [73].

The jets used in this analysis are reconstructed with the anti-kT algorithm.
First, the following two quantities are defined:

dij = min(p−2
T,i, p

−2
T,j)

∆R2
ij

R2 ∆R2
ij = (yi − yj)2 + (φi − φj)2

diB = p−2
T,i,

(4.1)

where dij is the “distance” between particle i and particle j, diB is the distance
between particle i and the beam, R is the so called distance parameter, yi and
φi are the rapidity 1 and azimuthal angle of particle i. Then the procedure
starts and all the distances dij and diB are evaluated from the list of all
the final-state particles. The minimum distance is found and if it is a dij ,
particles i and j, are recombined together and the evaluation of distances is
repeated; if, instead, the minimum distance is found to be diB, particle i is
declared to be a jet, is removed from the final state and the procedure starts
again. The algorithm stops when no particles remain.

Depending on the distance parameter used to cluster the jets, AK jets
can further be categorized based on the jet size. The present analysis uses
AK jets clustered with distance parameters of 0.8 and 0.4, which are referred
to as AK8 and AK4 jets respectively. AK8 jets are well suited to collect
boosted decays of particles, whereas AK4 jets are used to collect resolved
decays. Since there is a non negligible probability for an AK4 jet to be
reconstructed as an AK8 jet (and vice versa), the geometrical matching of
AK4 and AK8 jets in the η − φ space is checked and any AK4 jet showing a
∆R =

√
(∆η)2 + (∆φ)2 < 0.4 from any accepted AK8 candidate is removed

1 The rapidity is defined as y = 0.5 × ln[(E + pz)/(E − pz)]
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from the AK4 collection. This way, the two jet collections are disjoint,
meaning that no object can be ambiguously counted twice.

The clustered jets, especially the large-radius ones, can suffer from con-
tamination of particles coming from PU. This contribution can be reduced
by using PU mitigation algorithms. In this analysis, the charged-hadron
subtraction (CHS) method [74] is used for both the AK4 and AK8 collections.
In this method, the interaction vertices are ordered by the quadratic sum
of the transverse momenta of their tracks, ∑ p2

T, and the vertex showing
the highest ∑ p2

T is considered to be the primary vertex, while the others
are considered to be PU vertices. Charged hadrons coming from PU are
removed from the list of PF candidates used to cluster the jets. In addition,
the jet pT is corrected to take into account the PU contribution coming from
photons, neutral hadrons and particles out of the tracker acceptance.

As it has been already pointed out, an important feature of analyses
in the boosted regime is that, for particles having enough Lorentz boost,
all the decay products can be collected in a single, large-radius jet, so that
the properties of the decaying particles can be inferred directly from the
substructure of such jets. A key feature of boosted decays is the pattern
of energy deposits inside a jet. In fact, decays coming, for example, from
top quarks decays, will mostly produce AK8 jets which contain three energy
deposits, while AK8 jets coming from QCD multijet production will more
likely contain a smaller number of such deposits. This suggests the possibility
of using the number of prongs inside an AK8 jet to discriminate between
ordinary QCD jets and jets coming from Higgs boson or top quark decays.
Thus, an important variable to study the substructure of AK8 jets is the
n-subjettiness variable τi [75], defined as:

τi = 1∑
k pT,kR

∑
k

pT,k min (∆R1k,∆R2k, ...∆Rik), (4.2)

where the index k enumerates the constituents of the input jet, pT,k is the pT
of the k-th constituent, R is the distance parameter of the original jet, and
∆Rik is the angular distance in the η−φ space between the i-th subjet and the
k-th constituent. The n-subjettiness variable τi measures the compatibility
of a jet with the hypothesis of containing i prongs. In the case of exactly
i prongs, the value of τi tends to zero. So, n-subjettiness ratios are found
to be powerful variables to discriminate between QCD jets and multi-prong
decays. Figure 4.2 shows the ratios τ3/τ2 and τ3/τ1 for simulated QCD and
tt̄ events, where some general selection criteria have been asked to select
boosted-, all-jets-like events. We see that both variables are found to have a
considerable discriminating power to reject the QCD background.

In order to compute the invariant mass of AK8 jets, the soft drop
declustering algorithm [76] is used. This method is able to perform jet
grooming by removing wide-angle, soft radiation from a jet thus mitigating
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Figure 4.2: n-subjettiness ratios for QCD and tt̄ events. Both τ3/τ2 and
τ3/τ1 are found to have a non-negligible discriminating power between QCD
and tt̄ jets.

effects from initial state radiation (ISR), underlying event (UE) and pileup.
In the soft drop procedure, the clustering algorithm that reconstructed a jet
j is reverted step by step, decomposing j into two subjets, j1 and j2, at each
iteration. If the subjets fulfill the soft drop condition

min(pT1 , pT2)
pT1 + pT2

> zcut

(∆R12
R

)β

, (4.3)

then j is declared to be the final jet; otherwise j is redefined to be the leading
subjet and the procedure is iterated. The degree of grooming is defined by the
two parameters of the algorithm, zcut and β, controlling the strength of the
fractional pT selection and the suppression of collinear radiation, respectively.
In this analysis, the default CMS values zcut = 0.1 and β = 0.0 are used.
Note that, given the nature of the soft drop condition, the action of the
algorithm always results in exactly two subjets.

Jets that are likely to come from the hadronization of bottom quarks are
identified with the combined secondary vertex version 2 (CSVv2) b tagging
algorithm [77]. This algorithm exploits the long mean life of b-flavored
hadrons present in jets originating from the hadronization of b quarks (b
jets) and is able to combine in an optimal way the information coming from
the tracking system, such as the number of tracks, their pseudorapidity and
impact parameters, to identify secondary vertices generated by the decay of
such b-flavored hadrons. A pictorial view of a b quark-induced jet is shown
in Fig. 4.3. The algorithm provides a continuous discriminator output, which
states how likely a jet is indeed a b jet. Cuts placed on the value of such
discriminator define several working points for the algorithm, corresponding
to different b tagging efficiencies and mistag probabilities (i.e., the probability
of tagging a light-flavored jet as a b jet); in the present analysis, the medium
working point is chosen. As far as large-radius jets are concerned, we consider
AK8 jets to be b tagged if we are able to find at least one b tagged subjet
inside them.
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secondary vertex

primary verteximpact
parameters

jet axis

Figure 4.3: Pictorial representation of a b jet. Due to its long mean life, a
b-flavored hadron leaves the primary vertex and travels some distance before
decaying, thus creating a displaced secondary vertex. The impact parameters
of the b hadron track are shown.

In general, the b tagging efficiency and the mistag probability are found
to be different when computed in data and in simulation. Thus, scale factors
are needed in order to correct the simulation to match the data. In this
analysis, the number of b tagged jets in the event is used to categorize
signal events; also, the multivariate methods that have been developed to
tag the candidates use CSVv2 scores as input variables. Thus, scale factors
describing the discrepancies in the b tagging algorithm performance between
data and simulations must affect both the MC expected yields and the overall
shape of the discriminators. This is achieved with a tag-and-probe approach
through the IterativeFit method [78]. This approach relies on samples of
events with two high-pT, charged leptons and exactly two AK4 jets. Requests
made on the lepton pair, event variables and one of the jets, called tag jet,
are exploited to select samples either enriched in dilepton tt̄ events, used
to derive a heavy-flavor SF, or Z+jets events, used to derive a light-flavor
SF. No requirements are made on the second jet, called probe jet, which is
used to extract the SF by comparing its CSVv2 distribution in data to that
predicted by MC. These SFs are determined separately for exclusive bins of
CSVv2 score, pT and η of the jet. In the absence of a data-driven calibration
sample for charmed jets, the scale factor for such jets is set to 1.0. Since
the present analysis uses both AK4 and AK8 jets, we apply the previously
described SF to AK4 jets and to the subjets which are found inside AK8
jets. That is, the total scale factor for the event is the product of all the
scale factors of all the AK4 jets and subjets:
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Figure 4.4: Consecutive stages of JEC, for data and MC simulation. All
corrections marked with MC are derived from simulation studies, RC stands
for random cone, and MJB refers to the analysis of multijet events. (Figure
and caption from [79]).

SFtotal =
Njets∏

i

SFjeti
=

NAK4jets∏
j

SFAK4jetj
×

Nsubjets∏
k

SFsubjetk
. (4.4)

Like all the experimentally-reconstructed objects, jets need to be cali-
brated to have the correct energy scale. The purpose of jet energy corrections
(JEC) is to relate, on average, the energy of jets measured in the detector to
the energy of true particle jets, i.e. jets originating from the clustering of all
stable particles coming from the fragmentation of partons. In fact, effects
of detection efficiencies, measurements resolution and systematic biases can
lead to non negligible differences between true jets and jets reconstructed
after the interaction of particles with the detector. Thus, corrections are
applied to the jets 4-momenta in order to calibrate the jet energy scale (JES).
Also, the simulated jet energy resolution (JER), namely the spread in the jet
response, defined as the ratio between the pT of reconstructed and GenJets,
is found to be better than the one measured in data using methods such as
the pT-asymmetry method in dijet events. Thus, a smearing of the jets pT
in the simulation must be performed in order for the MC events to match
the data.

The CMS Collaborations adopts a factorized approach to the problem
of JEC [79], where different levels of correction are used. Each level of
correction is basically a scaling of the jet four-momentum, which may depend
on different jet-related quantities, such as the pT, η, flavor, etc. The different
levels of correction are applied in a precise sequence, which is visually shown
in Fig. 4.4, with the output of each step being the input of the following one.

In the first level (L1) of corrections, PU offset corrections are applied in
order to remove the energy coming from PU particles. Such corrections are
determined from the simulation of a sample of QCD dijet events processed
with and without pileup overlay.

In the second level (L2L3), corrections to the simulated jet response
are determined by making use of QCD dijet events, by comparing the
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reconstructed pT to the particle-level one. The corrections are derived as a
function of the jet pT and η.

In the third step (L2L3 residuals), the remaining small differences in the
jet response between data and MC are accounted for. Such corrections are
obtained as a function of the jet pT and η by making use of dijet, Z/γ plus
jets and multijet events.

Finally, in the fourth step (flavor corrections), a correction related to the
difference in the jet flavor which is present in the samples used to compute
L2L3 residual corrections is applied. This takes into account the fact that
QCD dijet and multijet events are enriched in gluon-initiated jets, while Z/γ
plus jets events are enriched in quark-initiated jets.

A visualization of the effect of JEC is presented in Fig. 4.5. The average
value of the jet response at various stages of the JEC procedure is shown for
simulated QCD multijet events measured at central rapidities (|η| < 1.3) and
in bins of GenJet transverse momentum pT, ptcl. Distributions corresponding
to different average numbers of PU interactions, indicated by µ, are shown
separately, to display the dependence of the response on the level of PU. It
is evident that, without any correction, the responses diverge as a function
of the number of PU collisions, especially at low jet pT, where the fraction
of pileup particles inside a jet is expected to be higher; when PU corrections
are applied, the divergence is removed, even though the response is still
somewhat far from one, especially at low jet pT; after all the correction are
applied, the response is fairly equal to one over all the jet pT spectrum and
for all the levels of pileup.

4.2.2 Leptons

Even though no leptons are present in the final state targeted by this analysis,
isolated leptons are used for vetoing purposes. PF leptons (electrons and
muons) are reconstructed using the default collections present in the CMS
software. Electrons are identified with the so called tight electron ID, a set
of simple and robust cuts on ECAL variables. Muons are identified with
the so called medium muon ID, a set of identification criteria designed to be
highly efficient for prompt muons and for muons from heavy quark decays
and, at the same time, to keep the rejection of fake muons fairly high. To
select isolated leptons, the mini-isolation variable Irel

mini, originally suggested
in [80], is used, which is defined as the sum of the transverse energy of
charged hadrons, neutral hadrons and photons contained in a variable-size
cone around the lepton direction, divided by the lepton pT. The cone size
scales with the lepton pT as

∆R(pT,`) = 10 GeV
min

[
max [pT,`, 50 GeV] , 200 GeV

] . (4.5)
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Figure 4.5: Average value of the jet response, as a function of the GenJet
transverse momentum pT, ptcl and for different levels of pileup, at different
stages of the JEC procedure: before any corrections (upper panel), after the
pileup offset correction (middle panel) and after all the corrections (lower
panel).
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Both electrons and muons are requested to have a mini-isolation Irel
mini < 0.1.

Finally, in order to guarantee the lepton isolation, which could be spoiled by
the misidentification of leptons as jets, the lepton collection is cleaned from
the jet collections by removing each reconstructed lepton showing ∆R < 0.4
with either an AK8 or AK4 jet.

4.3 Signal trigger

The choice of a proper signal trigger is the first, crucial step towards a
successful analysis. The chosen trigger should guarantee a good background
rejection and, at the same time, an adequate signal efficiency. In order to find
the best trigger among all the unprescaled triggers available in the JetHT
menu, we use simulated events belonging to the tt̄H(bb̄) signal and to the
two dominant backgrounds, namely the QCD multijet production and the tt̄
associated production. A pretty general selection is applied to such events,
in order to pick boosted-, fully hadronic-like events: we request the presence
of at least one AK8 jet, with the leading one having pT > 300 GeV, and
we veto the presence of leptons. A useful quantity to perform this study is
found to be the selection efficiency given the request of trigger j, εj , which,
for every sample, is defined as

εj = Npass,j
Ngen

, (4.6)

where Npass,j is the number of simulated events that pass the aforementioned
selection requirements and the requirements of trigger j, while Ngen is the
number of generated events in a given sample. Since we are looking for a
trigger with high signal efficiency and, at the same time, low background
efficiency, we compute the efficiency given by Eq. 4.6 both for the signal and
background samples and we choose the ratio εj,sig/εj,bkg as a figure of merit for
the wanted trigger. Eventually, the trigger showing the highest εj,sig/εj,bkg
ratio is found to be HLT_AK8PFHT700_TrimR0p1PT0p03Mass50. At L1 it
is seeded by the logical OR of six trigger bits: L1_HTT240, L1_HTT255,
L1_HTT270, L1_HTT280, L1_HTT300 and L1_HTT320, which are satisfied if
the online HT exceeds the specified values (in GeV). At HLT, the decision is
performed in three steps: first, a CaloJet filter is applied, requiring for the
scalar sum of the momenta of AK8 jets in the event, HT, reconstructed from
calorimetric information only, to be greater than 600 GeV. For events passing
the CaloJet filter, the full PF algorithm is run and PFJets are reconstructed.
As a second step, the event HT, reconstructed from PFJets, is required to
be greater than 700 GeV. Finally, the presence of at least one AK8, PF jet
with trimmed mass greater than 50 GeV is required.

Once a signal trigger has been chosen, it is important to study its
properties, and in particular its efficiency as a function of event variables.
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The trigger efficiency could in principle be defined as the ratio between the
number of events passing the trigger requirements and some offline criteria and
the number of events passing the same offline criteria; however, this definition
does not make sense for data, which are always collected with a given trigger,
implying that the denominator would not be a meaningful quantity for data
events. Thus, it is customary to compute the trigger efficiency using events
collected with some reference trigger. This reference should collect events
with looser and, if possible, orthogonal criteria. Eventually, the following
formula is used to describe the trigger efficiency as a function of some event
variable x:

ε(x) = Ntrig., offl., ref.(x)
Noffl., ref.(x) , (4.7)

where Ntrig., offl., ref.(x) is the number of events passing the signal trigger
requirements, the offline criteria and the reference trigger requirements,
while Noffl., ref.(x) is the number of events passing the offline criteria and the
requirements of the reference trigger. As a set of offline selection requirements
for this study, we use the requests that were made for the selection efficiency
given by Eq. 4.6. The simulated events used here come from QCD and tt̄
production, mixed according to the corresponding theoretical cross sections
reported in Table 4.2. The trigger efficiency has been measured with respect
to the reference trigger HLT_AK8PFJet200, which requires the presence of
an AK8 jet with pT > 200 GeV, as a function of the event HT, the leading
AK8 jet pT and, for events showing at least two AK8 jets, the second-leading
AK8 jet pT. Figure 4.6 shows the outcome of the study. As a result, the
reference is found to be a kinematically unbiased reference, since the trigger
efficiency completely overlaps with the true (i.e., computed with respect to
no reference trigger) MC efficiency. Additionally, the trigger efficiency has
been measured in data with respect to the same reference trigger.

Once the unbiased nature of the reference has been verified, a final
study has been performed in order to find under which conditions the signal
trigger is fully efficient. Given the fully hadronic final state targeted by
this analysis, it is possible to find events with a large hadronic activity and
low AK8 multiplicity. In this sense, the previously-developed study of the
trigger efficiency as a function of HT does not seem to be optimal, while a
better choice can be to compute the efficiency as a function of the event ST,
namely the scalar sum of the momenta of all the jets present in the event:
ST = HT,AK8 + HT,AK4. Figure 4.7 shows such a final study. Once again,
the reference trigger is found to be unbiased; also, by superimposing the ST
distribution for the signal events to the trigger efficiency, we see that events
with ST > 900 GeV guarantee a high trigger efficiency and, at the same time,
constitute a great fraction of the signal. Thus, our analysis will place a cut
on the event ST considering only events with ST > 900 GeV. Finally, since a
small deviation is found in the trigger efficiency when computed using data
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Figure 4.6: Trigger efficiency as a function of the event HT (upper plot), the
leading AK8 jet pT (middle plot) and, for events showing at least two AK8
jets, the second-leading AK8 jet pT (lower plot). The efficiency is computed
in MC events with respect to the reference trigger HLT_AK8PFJet200 (green
line), in MC events with respect to no reference trigger (red line) and in
data (black dots). Since the true MC efficiency completely overlaps with
the efficiency computed with respect to the reference, we conclude that the
reference is unbiased.
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Figure 4.7: Trigger efficiency as a function of the event ST. The effi-
ciency is computed in MC events with respect to the reference trigger
HLT_AK8PFJet200 (green line), in MC events with respect to no reference
trigger (red line) and in data (black dots). The reference trigger is found
to be unbiased. The ST distribution of signal events (blue line) is shown as
well. The solid, vertical line corresponds to the offline ST > 900 GeV cut
which makes the trigger fully efficient. The bottom panel shows the ratio
between the efficiencies in data and MC, along with the fitting constant line
which is used as a scale factor for the simulation to match the data.

and MC, we fit the ratio plot in Fig. 4.7 to obtain a scale factor that can be
applied to the simulations to match the distribution of the data. Since the
ratio is almost flat, the fitting curve has been chosen to be a constant line.

4.4 Event selection

4.4.1 Baseline selection

As a first step towards a robust and complete event selection targeting
boosted, fully hadronic tt̄H events, a baseline selection is set up. In order
to enhance the efficiency on boosted events, we first request the presence
of at least one AK8 jet in the event with soft drop mass greater than 50
GeV; also, to ensure that genuine boosted events are selected, we request
the pT of the leading AK8 jet to be greater than 300 GeV. Secondly, to
select events in the fully hadronic final state, we veto on the presence of
leptons. Then, the events are required to fulfill the requirements of the signal
trigger described in Section 4.3. Given the studies presented above, the
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Requirement Purpose

NAK8 ≥ 1 Select boosted regime
Leading jet pT> 300 GeV Select boosted regime
Nleptons = 0 Select fully hadronic final state
Signal trigger Select boosted, fully hadronic final state
ST > 900 GeV Have a fully efficient trigger

Table 4.3: Summary of the baseline selection criteria.

events used in this analysis must also have ST > 900 GeV in order to make
the signal trigger fully efficient. A summary of the selection criteria forming
the baseline selection is reported in Table 4.3, where we also briefly highlight
the purpose of each requirement.

4.4.2 Boosted-jets BDTs

In the context of the boosted-Higgs channel, which makes part of the search
of tt̄H events using large-radius jets, an important task is to identify AK8
jets coming either from Higgs bosons or top quarks decays and separate them
by AK8 jets induced by ordinary QCD processes. This goal is achieved by
means of multivariate methods that look at substructure variables of AK8
jets since, as it was already pointed out in Subsection 4.2.1, such variables
have been found to be well suited for this task. Events passing the baseline
selection are used to create three collections of jets: a first one, composed by
AK8 jets that are matched with a Higgs boson in the tt̄H(bb̄) simulation; a
second one, composed by AK8 jets that are matched with a top quark in
the tt̄ simulation; a third one, composed by AK8 jets coming from the QCD
simulation. These jet collections are trained against each other to obtain
the three BDTs called BDT_HvsQCD, BDT_TvsQCD and BDT_HvsT,
which discriminate between Higgs-boson- and QCD-induced, top-quark- and
QCD-induced and Higgs-boson- and top-quark-induced jets respectively.

The variables used in all the trainings are the invariant masses of the
leading and second-leading subjets, their CSVv2 discriminant distributions
and the n-subjettiness variables τ1, τ2 and τ3.

Figure 4.8 shows the scores of the three BDTs for the “signal” and “back-
ground” distributions, where clearly the notion of “signal” and “background”
changes for each training, e.g., top-quark-induced jets are considered to be
signal in the BDT_TvsQCD training and background in the BDT_HvsT
training. In all the cases, a good discriminating power is found between
signal and background jets.

The aforementioned BDTs are used to identify a boosted Higgs candidate,
namely an AK8 jet induced by the boosted bb̄ decay of a Higgs boson. The
boosted Higgs candidate is defined to be the AK8 jet having the highest sum
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Figure 4.8: Signal and background distributions for the boosted-jets BDTs:
BDT_HvsQCD distribution (upper left), BDT_TvsQCD distribution (upper
right), BDT_HvsT distribution (lower row).

of the BDT_HvsQCD and BDT_HvsT scores; then, in order to enhance the
purity of the candidate, lower bounds are put on each score, requesting the
BDT_HvsQCD score to be greater than 0.8 and the BDT_HvsT score to
be greater than 0.1. Finally, the selected jet must have a pT greater than
300 GeV and a soft drop mass of at least 70 GeV.

Boosted Higgs candidates are used in the resolved-Higgs channel for
vetoing purposes. In fact, since the targeted final state has a resolved
decay of the Higgs boson, the logical negation of the aforementioned cuts is
preformed and the absence of a boosted Higgs candidate is requested. Since,
on the other side, events entering the boosted-Higgs channel must contain a
boosted Higgs candidate, thanks to this request the two channels composing
the search for tt̄H events in the boosted, fully hadronic final state are made
orthogonal by construction, thus making a combination possible.

4.4.3 Resolved-Higgs BDT

As we pointed out in the previous section, events entering this analysis must
not contain a boosted Higgs candidate. Then, a way to identify tt̄H(bb̄)
events containing a resolved decay of the Higgs boson must be found. The
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naive idea of just selecting events containing exactly two AK4, b tagged jets
does not seem to be the optimal choice. In fact, events in which both the
Higgs boson and one top quark decay in a resolved topology contain at least
three AK4, b tagged jets, and thus are lost if the naive selection is assumed.
This raises the problem of how to treat events with more than two AK4, b
tagged jets and how to identify, among all the possible combinations, the
correct pair of jets corresponding to the decay of the Higgs boson. As it will
be discussed in the following, this is dealt with by the use of a resolved-Higgs
BDT which makes possible, at the same time, to reject events belonging to
the main backgrounds of the analysis and to choose the correct pair of jets
arising from the decay of the Higgs boson.

Training

The simulated events used for the training of the BDT come from the tt̄H(bb̄)
signal sample and from the two dominant backgrounds of the analysis, i.e.
the QCD multijet production and the tt̄ associated production. Both the
signal and background events are requested to fulfill the baseline selection
criteria described in Subsection 4.4.1 and to show exactly two AK4, b tagged
jets. This selection is aimed to select boosted, all-jets -like events where
a Higgs boson can be reconstructed and, at the same time, to guarantee
an adequate background yield ensuring a sufficiently general training. The
tt̄H(bb̄) events in which the generated Higgs boson is matched to the system
of two AK4, b tagged jets within ∆R < 0.3 are considered to be signal
events. On the other hand, unmatched tt̄H(bb̄) events are considered to
be background events. All QCD and tt̄ events passing the aforementioned
selection are considered to be background events as well.

Once the training selection is set up, a set of training variables showing
high discriminating power between signal and background must be chosen.
First, variables concerning the pair of b tagged jets are considered. The
CSVv2 b tag scores of both the AK4 jets are used as input variables for the
resolved-Higgs BDT. Kinematic variables related to the jet pair, such as the
pT of both jets, their mass and their ∆R distance are found to be powerful
discriminating variables; nevertheless they are not used in the training as they
are directly correlated with the invariant mass of the dijet pair, which will
be the observable used to extract the final results of the analysis. This way
we prevent the BDT to create artificial biases and peaks in the background
distributions; also, the low correlation between the resolved-Higgs BDT score
and the invariant mass of the dijet pair will turn out to be useful in the
estimation of the QCD background, see Section 4.6. In any case, information
on the pT of the event is exploited by including the offline HT in the set
of training variables. Also, the number of AK8 and b tagged AK8 jets are
included. Moreover, since the tt̄H events contain more final state particles
than the dominant backgrounds, we expect the jets in the signal events to
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be closer to each other with respect to the background. Thus, the distances
between the first and second AK4, b tagged jet and the closest AK8 jet are
used as discriminating variables. We also exploit some event variables and
substructure variables of the leading AK8 jet. Eventually, the following set
of variables is used:

1. b tag score of the first AK4, b tagged jet;

2. b tag score of the second AK4, b tagged jet;

3. number of AK8 jets;

4. number of AK8, b tagged jets;

5. scalar sum of the pT of the AK8 jets;

6. minimum ∆R between the first AK4, b tagged jet and the AK8 jets;

7. minimum ∆R between the second AK4, b tagged jet and the AK8 jets;

8. event aplanarity;

9. event centrality;

10. event sphericity;

11. τ3/τ1 of the leading AK8 jet;

12. τ3/τ2 of the leading AK8 jet;

13. b tag score of the first subjet inside the leading AK8 jet;

14. b tag score of the second subjet inside the leading AK8 jet.

The centrality of the event is defined as the ratio of the scalar sum of the
transverse momenta of all the jets (AK4 and AK8) to the invariant mass
of the multijet system, ∑ pT/

√
ŝ. Starting from the spatial components of

the jets four-momenta, it is also possible to construct the sphericity tensor
Mab = ∑

j pjapjb, calculated in the centre-of-mass of the multijet system,
where a, b ∈ {x, y, z} and the index j runs over all the jets (AK4 and AK8)
of the event. The aplanarity of the event is defined as 3/2 Q1, where Q1
is the smallest of the three normalised eigenvalues of the sphericity tensor;
in a similar fashion, the sphericity of the event is defined as 3/2 (Q1 +
Q2). The distributions of the training variables are shown, both for signal
and background, in Fig. 4.9, while Fig. 4.10 shows the linear correlation
coefficients between the variables, both for signal and background.

The resolved-Higgs BDT has been trained using the TMVA package [81].
Many different combinations of BDT type, number of trees in the forest
and learning rate have been explored in order to find the most performing
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Figure 4.9: Distribution of the 14 training variables for signal and background
events.



4.4. EVENT SELECTION 85

100−

80−

60−

40−

20−

0

20

40

60

80

100

ak4jetBtag1

ak4jetBtag2

nJets
nBJets

ak8sumPt
ak8ak4deltaR1min

ak8ak4deltaR2min

Apla Cent
Spher

tau3/tau2
tau3/tau1

jetBtagSub0

jetBtagSub1

ak4jetBtag1

ak4jetBtag2

nJets

nBJets

ak8sumPt

ak8ak4deltaR1min

ak8ak4deltaR2min

Apla

Cent

Spher

tau3/tau2

tau3/tau1

jetBtagSub0

jetBtagSub1

Correlation Matrix (signal)

100   3   1   1  -6  -2

100   1   1   1

  3   1 100  23  72 -59 -52   1   4   4   1   3  -1

  1  23 100  20 -17 -12  -4   5  -2   2  -1  22  -2

  1  72  20 100 -44 -38 -20  14 -19 -12   2

 -6 -59 -17 -44 100  53  -2 -14   4  -2

 -2 -52 -12 -38  53 100 -17   1  -1  -2

  1  -4 -20  -2 100  -2  58  11   6  -2  -1

  1   4   5  14 -14 -17  -2 100  -6  -6  -5   1   1

  4  -2 -19   4   1  58  -6 100  11   3  -2  -2

  1   1   2 -12  -1  11  -6  11 100  39  -7  -4

  3  -1  -2  -2   6  -5   3  39 100   2  -1

 -1  22  -2   1  -2  -7   2 100  -3

 -2   2  -1   1  -2  -4  -1  -3 100

Linear correlation coefficients in %

100−

80−

60−

40−

20−

0

20

40

60

80

100

ak4jetBtag1

ak4jetBtag2

nJets
nBJets

ak8sumPt
ak8ak4deltaR1min

ak8ak4deltaR2min

Apla Cent
Spher

tau3/tau2
tau3/tau1

jetBtagSub0

jetBtagSub1

ak4jetBtag1

ak4jetBtag2

nJets

nBJets

ak8sumPt

ak8ak4deltaR1min

ak8ak4deltaR2min

Apla

Cent

Spher

tau3/tau2

tau3/tau1

jetBtagSub0

jetBtagSub1

Correlation Matrix (background)

100   9   3   1 -11   2   3   1  -1

  9 100  -1  -3  -1   4  -1

  3 100  12  66 -44 -30  11  -5  11   2   4

 -1  12 100  10  -4  -5  -1  -2  20

  1  66  10 100 -24 -16 -14  11 -14  -2  -2   1

-11  -3 -44  -4 -24 100  29 -17 -18 -15  -3  -1  -1

 -1 -30  -5 -16  29 100  -2 -19   1  -2  -1

  2  11 -14 -17  -2 100   1  55   2   3

  3   4  -5  -1  11 -18 -19   1 100  -2   3

  1  11 -14 -15   1  55 100   2   2

  2  -2   2  -2   2 100  24  -4   1

 -1  -1   4  -2  -2  -3  -2   3   2  24 100   4  -2

 20  -1  -4   4 100   4

  1  -1  -1   3   1  -2   4 100

Linear correlation coefficients in %

Figure 4.10: Linear correlation coefficients between the variables used to
train the resolved-Higgs BDT for signal (left) and background (right) events.
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Figure 4.11: Background rejection vs. signal efficiency ROC curve for the
resolved-Higgs BDT and the Fisher discriminant (left); signal and background
distribution for the resolved-Higgs BDT score (right).

one. In the end, a BDT based on the Adaptive Boost method, composed of
1200 trees and with learning rate of 0.3 has been chosen. A simple Fisher
discriminant has been trained as well, in order to check if there is a significant
gain in exploiting more complex multivariate methods. Figure 4.11, showing
the performance of the two discriminants expressed as a background rejection
vs. signal efficiency ROC curve, testifies that the use of a BDT is justified
by the enhanced performance. The performance of the BDT is quantified
by the area under the ROC curve, which is found to be 0.886. Finally, Fig.
4.11 also shows the resolved-Higgs BDT score for signal and background
events, where we see that a good discriminating power between signal and
background events is achieved.
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4.4.4 Higgs boson and top quark candidates

As a further step in the analysis selection, a way to identify jets corresponding
to the Higgs boson and top quark decays is developed. In order to do so, the
resolved-Higgs BDT and the BDTs which have been developed in the context
of the boosted-Higgs channel are extensively used. All the cuts reported
in the following have been optimized in order to maximize the analysis
sensitivity and, at the same time, obtain a good agreement (“closure”) in
the QCD background estimation procedure (see Section 4.6).

Higgs boson candidate

The resolved Higgs boson candidate targeted by this analysis is identified
through the resolved-Higgs BDT. First, events with at least two AK4, b
tagged jets are considered. All the possible combinations of two, b tagged
AK4 jets are taken into account and, for each of them, a resolved-Higgs
BDT score is computed. This way, the dijet combinations can be ordered
based on how likely they come from the resolved decay of a Higgs boson,
with combinations showing larger scores having a greater likelihood to be the
result of a Higgs boson decay, as Fig. 4.11 testifies. The resolved Higgs boson
candidate is defined to be the combination of two, b tagged AK4 jets showing
the highest resolved-Higgs BDT score, having it greater than 0.07 and lying in
the invariant mass window [70, 270] GeV. The Higgs booson candidate purity
obtained with this selection criteria is evaluated in the tt̄H(bb̄) simulated
sample and is defined as the ratio of the number of resolved Higgs boson
candidates matched to a Higgs boson to the total number of resolved Higgs
boson candidates. This purity is found to be ≈ 33% and is visually shown in
Fig. 4.12.

Since the observable used to perform the final fit is the mass of the Higgs
boson, events entering the signal selection of this analysis must contain a
reconstructed Higgs boson candidate.

Top quark candidate

The top quark candidate is identified by making use of the boosted BDTs. It
is defined to be the AK8 jet showing the highest BDT_TvsQ score, having
pT > 300 GeV, BDT_TvsQ > 0.2, BDT_HvsT < −0.2 and lying in the soft
drop mass (mSD) window [120, 240] GeV. The cut on the BDT_TvsQ score
is aimed at rejecting the QCD background, while the cut on the BDT_HvsT
score has been added in order to avoid the presence of a secondary Higgs
boson peak in the soft drop mass distribution. In fact, since a boosted
Higgs boson is required not to be present, actual boosted Higgs bosons that
failed the identification may become top quark candidates and contaminate
the invariant mass distribution of the top quark candidate. The top quark
candidate purity obtained with this selection criteria is evaluated in the
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Figure 4.12: Invariant mass distribution of the resolved Higgs boson candidate
(left), showing the fraction of resolved Higgs boson candidates which are
correctly matched to a Higgs boson (green, corresponding to ≈ 33% of the
total), matched to a top quark (blue) or unmatched (yellow); soft drop
mass distribution of the top quark candidate (right), showing the fraction
of top quark candidates which are correctly matched to a top quark (blue,
corresponding to ≈ 83% of the total), matched to a Higgs boson (green) or
unmatched (yellow area).

Higgs boson candidate Top quark cadidate

NAK4bjets ≥ 2 Highest BDT_TvsQCD score
Highest resBDT score combination pT > 300 GeV
resBDT score ≥ 0.07 BDT_TvsQCD > 0.2
70 < mjj < 270 GeV BDT_HvsT < −0.2

120 < mSD < 240 GeV

Table 4.4: Summary of the selection requirements defining the Higgs boson
and top quark candidates.

tt̄H(bb̄) simulated sample and is defined as the ratio of the number of top
quark candidates matched to a top quark to the total number of top quark
candidates. This purity is found to be ≈ 83% and is visually shown in Fig.
4.12.

A summary of the requirements defining the Higgs boson and top quark
candidates is given in Table 4.4.

4.4.5 Signal categories

To further enhance the analysis sensitivity, events that have reached this stage
of the selection are split into four, mutually-exclusive signal categories based
on the number of AK8 jets, top quark candidates and AK4 jets. Since the
Higgs boson decays in a resolved topology, boosted tt̄H events are expected
to contain up to two AK8 jets corresponding to boosted decays of top quarks.
Thus, categories with two and one AK8 jets are taken into account. In the
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following, a description of each category is given. The counting starts by
nine in order to avoid confusion with the categories of the BHC, when the
combination between the RHC and BHC will be presented.

Categories with two AK8 jets

– category 9: In this category, events in which at least one AK8
jet is tagged as a top quark candidate are selected. Given the
resolved decay of the Higgs boson and the boosted decays of the
top quarks, no additional AK4 jets are expected and no requests
are set concerning AK4 multiplicity. This category shows a purity
of reconstructed Higgs boson candidates of about 39% and a purity
of reconstructed top quark candidates of about 82%.

– category 10: Given that there is a non negligible probability for
a high-momentum top quark to fail the identification, in this
category we include events with two AK8 jets, with none of them
being identified as a top quark candidate. The same reasoning as
before concerning the AK4 multiplicity holds in this case. This
category shows a purity of reconstructed Higgs boson candidates
of about 30%.

Categories with one AK8 jet

– category 11: This category contains event with one AK8 jet which
is identified as a top quark candidate. The presence of only
one AK8 jet implies that the remaining top quark decays in the
resolved topology. Thus, a nominal number of five AK4 jets
is expected in the event, three of them being b tagged. Since
there is a finite probability for a jet to be misidentified with a
different object, a conservative request NAK4jets ≥ 4 is made. The
correct combination of AK4 jets that forms the Higgs candidate is
identified by making use of the resolved Higgs BDT as explained in
Section 4.4.3. This category shows a purity of reconstructed Higgs
boson candidates of about 39% and a purity of reconstructed top
quark candidates of about 81%.

– category 12: Given that there is a non negligible probability for
a high-momentum top quark to fail the identification, in this
category we include events with one AK8 jet which fails the top
quark candidate identification. The same reasoning as before
concerning the AK4 multiplicity holds in this case. This category
shows a purity of reconstructed Higgs boson candidates of about
28%.

A summary of the requirements that define each category is given in Table
4.5. As a general remark, we see that, while the top quark candidate purity is
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Category NAK8 Higgs-tagged Top-tagged NAK4

9 2 X X -
10 2 X × -
11 1 X X ≥ 4
12 1 X × ≥ 4

Table 4.5: Summary of the selection requirements defining the signal cate-
gories.

pretty stable across categories, the Higgs boson candidate purity is found to
be higher in categories where top quark candidates are found as well. This is
consistent with the resolved-Higgs BDT not being a Higgs tagger, but rather
an event-variable-based BDT which is able to identify tt̄H(bb̄) events in which
the Higgs boson decays in the resolved topology. Thus, events containing
top quark candidates are expected to be more likely tt̄H(bb̄) events and the
Higgs boson candidate purity is increased for such events. In Fig. 4.13 the
sample purity of the reconstructed Higgs boson candidates is shown for each
signal category. The percentage of real reconstructed Higgs boson candidates
in each category varies between 28% in category 12 and 39% in categories 9
and 11. Figure 4.13 also shows the sample purity of reconstructed top quark
candidates for categories in which a top quark candidate is identified. The
percentage of real top quarks reconstructed as top quark candidates is around
80% for each category. Finally, Fig. 4.14 shows the expected yields in each
signal category, corresponding to an integrated luminosity of 35.9 fb−1, as
predicted by the simulations. We clearly see that QCD multijet production
contributes in a dominant way in all categories. The same figure also shows
the background composition of each category, where we note the expected
behavior of categories with a top quark candidate being more contaminated
by the tt̄ background with respect to categories where a top quark candidate
is not found.

Eventually, events passing the signal selection of this analysis must fulfill
selection requirements that can be summarized as follow:

• pass the baseline selection;

• do not find a boosted Higgs boson candidate;

• consider events with NAK4bjets ≥ 2;

• find a resolved Higgs boson candidate;

• split events in signal categories.
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Figure 4.13: Composition of the reconstructed Higgs boson candidate for the
signal categories (first and second row); composition of the reconstructed top
quark candidate for the signal categories in which a top candidate is found
(third row).
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Figure 4.14: Expected yields in each signal category (left) and background
composition in each signal category (right).
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B Etrain Etest

0.99 0.276 0.265
0.9 0.677 0.669
0.7 0.882 0.878

Table 4.6: Overtraining check for the resolved-Higgs BDT. The BDT efficiency
is measured for different background rejection values in two independent
samples.

4.5 Validation

In this section several checks are presented, which are aimed at demonstrating
the consistency of the previously developed event selection. First, we perform
sanity checks concerning the BDT-based identification of resolved Higgs boson
decays; then, data-MC comparisons are extensively used to test the goodness
and coherence of the signal selection.

4.5.1 Resolved-Higgs BDT consistency checks

In order to test the overall sanity of the resolved-Higgs BDT, several checks
have been performed. First, we performed an overtraining check. The most
evident symptom of overtraining is a seemingly increased performance in
the classification over the objectively achievable one, if measured on the
training sample, and an effective performance decrease when measured with
an independent test sample. Thus, the resolved-Higgs BDT efficiency E
has been measured, in correspondence of different values of the background
rejection B, for the training and test samples. The results of this checks
are reported in Table 4.6. Since only small deviations are found in the
efficiency when computed in the two independent samples, we conclude that
the resolved-Higgs BDT does not suffer from substantial overtraining.

As a second check regarding the resolved-Higgs BDT performance, we
computed the shapes of the observable for the tt̄H(bb̄) signal and the QCD
main background using the simulations. This check is aimed at showing
whether the cut on the resolved-Higgs BDT score introduces unwanted biases
and distortions in the distributions. Since we took care of excluding variables
which are strongly correlated with the dijet invariant mass from the training,
no such biases are found. This is testified by Fig. 4.15 which shows that,
in each category, the tt̄H shape peaks around the Higgs boson mass value,
while the QCD shape shows a smooth, decreasing behavior.

As a third check, we filled the scatter plot highest resolved-Higgs BDT
score vs. corresponding invariant mass, both for the tt̄H(bb̄) signal and QCD
background, right before splitting events in categories, as shown in Fig. 4.16.
As expected, while in both cases the BDT score profile shows a smooth
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Figure 4.15: Comparisons between simulated tt̄H and QCD observable shapes
for category 9 (upper left), category 10 (upper right), category 11 (lower
left) and category 12 (lower right). The distributions show the expected
behaviors, with tt̄H peaking around the Higgs mass and QCD showing a
decreasing pattern.

increasing-decreasing trend, the Higgs boson candidate mass shows a peak
around the Higgs boson mass for the tt̄H(bb̄) signal and is instead smoothly
decreasing for the QCD multijet background.

Finally, in Fig. 4.17 we plot the decay mode of the tt̄H system before
and after the cut on the resolved-Higgs BDT score using the tt̄H(bb̄) and
tt̄H(nobb̄) simulated samples. More precisely, we first plot the decay mode for
events that pass the baseline selection only; then, we plot the same variable
for events in which a resolved Higgs boson candidate is also reconstructed.
As a result of the cut, the fraction of events decaying to an all-jets final state
becomes significantly higher.

4.5.2 Data vs. Monte Carlo comparisons

In order to demonstrate the overall consistency of the data and of the selection
requirements, we present data vs. MC comparisons for various variables of
interest. In all cases the tt̄H signal, the tt̄ background, the tt̄Z irreducible
background and the subdominant backgrounds are normalized to the 2016
integrated luminosity using the corresponding theoretical cross sections
reported in Table 4.2. The QCD multijet background is first normalized to
the 2016 integrated luminosity, using the cross section of each HT slice; then
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Figure 4.16: Resolved-Higgs BDT score vs. invariant mass of the resolved
Higgs candidate for tt̄H signal (up) and QCD multijet background (down).
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Figure 4.17: Decay modes for the tt̄H system before (left) and after (right)
the cut on the resolved-Higgs BDT score. The bin labeled “all-jets” contains
the fraction of tt̄H events in which the Higgs boson decays to a bb̄ pair and
the tt̄ pair decays hadronically; the bin labeled “non all-jets” contains all
the other decays.
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a global k-factor is applied in such a way that the total simulated yield is
equal to the number of events in data. We must point out that the QCD
simulation is used here with the only purpose of checking the goodness of
the signal selection, but it will not enter the final fit as the QCD multijet
background will be estimated from data, as it will be described in Section
4.6. The comparisons presented here are performed both before and after
events are split into categories.

First, as a further validation of the resolved-Higgs BDT performance, we
report the data-MC agreement for the variables used in the training and
for the resolved-Higgs BDT score itself. Figures 4.18, 4.19 and 4.20 show
such comparisons for events that pass the baseline selection and show a
resolved reconstructed Higgs boson candidate. In general, an overall good
agreement between data and simulations is found, which justifies the use of
the resolved-Higgs BDT on the data. A good agreement is also found in the
resolved-Higgs BDT distribution, which is shown prior to any cut on it.

Next, we show data vs. simulations comparisons for some variables of
interest after the event categorization. Figure 4.21 shows a set of such
variables for category 9. The soft drop mass of the leading jet clearly shows
a peak corresponding to the top quark mass; the bump in the mass window
[120, 240] GeV corresponds to leading jets which are identified as top quark
candidates, while values outside of this range correspond to leading jets
which fail the top quark candidate identification. The mass of the leading
subjet within the leading AK8 jet clearly shows the W boson resonance, as a
result of highly collimated decay products of the W boson that end up being
collected in a single subjet. On the other hand, the mass of the second-leading
subjet within the leading AK8 jet does not show such behavior. The same
set of variables is shown in Figs. 4.22, 4.23 and 4.24 for categories 10, 11 and
12 respectively. In category 10, where no top quark candidates are found,
the top quark resonant peak in the leading jet soft drop mass in not present
anymore. Similarly, no resonances are found in the mass distributions of the
subjets. In category 11, where a top quark candidate is found, we clearly see
the top quark and W boson mass peaks in the leading jet soft drop mass
and leading subjet mass distributions. In a similar fashion, no resonances
are found in category 12.

4.6 QCD background estimation

As we already highlighted in the previous sections, the dominant background
to the tt̄H associated production in the fully hadronic decay channel is the
QCD multijet production. In fact, there is a non negligible probability for
events produced by generic QCD interactions to mimic the tt̄H(bb̄) topology
and enter the signal categories. Due to the very large cross section of such
events in proton-proton collisions, this background becomes by far the most
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Figure 4.18: Data vs. simulations for the variables used to train the resolved-
Higgs BDT. The b tag score of the first AK4 b jet and the b tag score of the
second AK4 b jet (upper row), the number of AK8 jets and the number of
AK8 b tagged jets (middle row), the scalar sum of the pT of the AK8 jets
and the minimum ∆R between the first AK4, b tagged jet and the AK8 jets
(lower row) are shown.
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Figure 4.19: Data vs. simulations for the variables used to train the resolved-
Higgs BDT. The minimum ∆R between the second AK4, b tagged jet and
the AK8 jets and the event aplanarity (upper row), the event centrality and
the event sphericity (middle row), the τ3/τ1 of the leading AK8 jet and the
τ3/τ2 of the leading AK8 jet (lower row) are shown.
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Figure 4.20: Data vs. simulations for the variables used to train the resolved-
Higgs BDT and resolved-Higgs BDT score distribution. The b tag score of
the first subjet inside the leading AK8 jet and the b tag score of the second
subjet inside the leading AK8 jet are shown, as well as the distribution of
the resolved-Higgs BDT scores prior to any cut on it.
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Figure 4.21: Data vs.simulations for some variables of interest in category 9.
The resolved-Higgs BDT score and the soft drop mass of the leading AK8
jet (upper row), the mass of the first subjet inside the leading AK8 jet and
the mass of the second subjet inside the leading AK8 jet (middle row), the b
tag score of the leading AK4, b tagged jet forming the resolved Higgs boson
candidate and the pT of the resolved Higgs boson candidate jets (lower row)
are shown.
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Figure 4.22: Data vs.simulations for some variables of interest in category 10.
The resolved-Higgs BDT score and the soft drop mass of the leading AK8
jet (upper row), the mass of the first subjet inside the leading AK8 jet and
the mass of the second subjet inside the leading AK8 jet (middle row), the b
tag score of the leading AK4, b tagged jet forming the resolved Higgs boson
candidate and the pT of the resolved Higgs boson candidate jets (lower row)
are shown.
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Figure 4.23: Data vs.simulations for some variables of interest in category 11.
The resolved-Higgs BDT score and the soft drop mass of the leading AK8
jet (upper row), the mass of the first subjet inside the leading AK8 jet and
the mass of the second subjet inside the leading AK8 jet (middle row), the b
tag score of the leading AK4, b tagged jet forming the resolved Higgs boson
candidate and the pT of the resolved Higgs boson candidate jets (lower row)
are shown.
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Figure 4.24: Data vs.simulations for some variables of interest in category
12. The resolved-Higgs BDT score and the soft drop mass of the leading
AK8 jet (upper row), the mass of the first subjet inside the leading AK8 jet
and the mass of the second subjet inside the leading AK8 jet (middle row),
the b tag score of the leading AK4, b tagged jet forming the resolved Higgs
boson candidate pT of the resolved Higgs boson candidate jets (lower row)
are shown.
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abundant one. Unfortunately, MC predictions of QCD processes cannot be
safely used. First of all, they suffer from big theoretical uncertainties on
the cross sections and on next-to-leading order corrections, which lead to a
poor description of the data, especially for events with high jet multiplicity
such as the ones targeted by this analysis; second, despite the big number
of generated events, the efficiency after the selection is usually very low,
resulting in small usable samples. Given these limitations, the yields and
shapes of the QCD multijet background are obtained with a data-driven
approach, which makes possible to avoid the big theoretical uncertainties
related to the simulated events and also guarantees a good population in the
template histograms used in the final fit.

4.6.1 QCD shapes - QCD control region

In order to estimate the QCD shapes, we define a control region (CR) enriched
in QCD events. This CR should show two important properties: first, it
should be as kinematically close as possible to the signal region defined
in Section 4.4, in such a way that events falling in this region belong to
a phase space sufficiently similar to the one used in the analysis; second,
it should be orthogonal to the signal region, so that double counting of
events is avoided. In order to find the selection criteria defining a proper
CR, we note that the critical request to identify signal events is to find a
resolved Higgs boson candidate. This is achieved through the resolved-Higgs
BDT, performing a cut on the BDT score distribution. This cut helps in
rejecting the QCD background and selecting tt̄H(bb̄) events. Reverting this
cut, a QCD-enriched sample is obtained, in which the events are expected to
show similar kinematic properties to the events in the signal region. Also,
since the BDT cut is reverted, orthogonality between the two regions is
obviously achieved. Thus, in order to define the CR, events passing the
baseline selection and in which a boosted Higgs boson candidate is not
found are considered. Then, events with at least two AK4, b tagged jets are
considered and the combination showing the highest resolved-Higgs BDT
score is selected. If this score is found to be less than 0.07, the event enters
the CR. Then, events are split in categories with the same critera that were
discussed in Subsection 4.4.5, in such a way that a QCD shape is obtained
for each category.

Eventually, events passing the control selection of this analysis must fulfill
selection requirements that can be summarized as follow:

• pass the baseline selection;

• do not find a boosted Higgs boson candidate;

• consider events with NAK4bjets ≥ 2;

• find a “reverted” resolved Higgs boson candidate;



4.6. QCD BACKGROUND ESTIMATION 103

2000

4000

6000

8000

10000

12000

14000

16000

18000-1
N

um
be

r 
of

 e
ve

nt
s 

/ 3
5.

86
 fb 2016 data

QCD
tt

W->qq + jets
Drell-Yan
Single Top
VV->4q

H(bb)tt
Ztt
Wtt
H(nobb)tt

 (13 TeV)-135.9 fbCMS Private work

100 150 200 250
Invariant mass of JJ system [GeV]

0.5
1

1.5

D
at

a/
M

C

Figure 4.25: Invariant mass of the resolved Higgs boson candidate for events
in the QCD CR. The multijet events are found to be 93% of the total number
of events.

• split events in categories.

To testify that these cuts effectively lead to a QCD-dominated region, in
Fig. 4.25 we report the invariant mass of the resolved Higgs boson candidate
for events entering the CR, before the splitting into categories. Indeed, the
fraction of multijet events with respect to the total is found to be 93%.

To check that the control selection is indeed kinematically close to the
signal selection, a closure test is performed. Using the simulation, we
compare the QCD distribution of the invariant mass of the dijet pair with
the highest resolved-Higgs BDT score for the signal and control selections.
The outcome of such study is shown in Fig. 4.26, where we see that an
overall good agreement is found between the signal and control shapes in all
the categories. In order to account for residual kinematic differences between
the two selections, a transition factor is computed as the ratio between the
distributions of the dijet invariant mass in the signal and control regions.
The transition factor is then fitted with a smooth curve to obtain a transition
function which is used to switch from the control region to the signal region.
Eventually, the following formula is used:

Bdata
signal(mjj) =

BMC
signal

BMC
control

(mjj)Bdata
control(mjj), (4.8)

where “signal” and “control” refer to the selection with regular and reverted
resolved-Higgs BDT cut respectively. The lower panels in Fig. 4.26 show the
transition factors and the fitting transition functions. In all the cases, the
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Figure 4.26: Closure test for the estimation of the QCD shapes in category 9
(upper left), category 10 (upper right), category 11 (lower left) and category
12 (lower right). Transition factors, along with the fitting transition functions
are shown as well.

transition factor trend is approximately linear, so that the fitting functions
have been chosen to be straight lines.

Once the selection criteria are validated by the closure test, the QCD
shapes are computed from data events entering the CR. Then, the shapes are
corrected with the transition functions as described in Eq. 4.8. To show the
goodness of this procedure, the corrected distributions in data are compared
with the simulated QCD shapes in the signal region. Such comparisons are
shown in Fig. 4.27, where we see that the method results in a good agreement
between the two distributions.

4.6.2 QCD yields - ABCD method

The QCD background yields in each signal category are obtained from data
with an ABCD-like method. The ABCD method is a widely used procedure
which provides a way to estimate the number of background events in the
signal region by exploiting the discriminating power, in the phase space of
the analysis, of two loosely correlated variables. To apply the method, events
passing the baseline selection and having at least two AK4, b tagged jets
are used. The two loosely correlated variables are chosen to be the highest
resolved-Higgs BDT score among all the possible combinations, and the
corresponding invariant mass. The degree of correlation between these two
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Figure 4.27: Comparison between simulated QCD shapes in the signal region
and corrected distributions in data in category 9 (upper left), category 10
(upper right), category 11 (lower left) and category 12 (lower right).

variables has been checked and a correlation coefficient of −0.18 has been
found. In the phase space defined by the two variables, four orthogonal
regions A, B, C and D are defined, with region A being the region containing
signal events, while regions B, C and D mostly contain background events.
Region A is identified by a resolved-Higgs BDT score greater than 0.07 and an
invariant mass lying in the window [70, 270] GeV, in such a way that events
falling in each signal category effectively correspond to subsets of the events
falling in region A. If the cuts defining the background-enriched regions are
properly chosen, and given that the variables are loosely correlated, the ratio
of events NA/NB should be equal to the ratio NC/ND and the number of
signal events can be estimated as

NA = NBNC

ND
. (4.9)

Since the analysis phase space is pretty complicated, with multiple signal
categories, two extended categories corresponding to events with one and two
AK8 jets are defined, and for each of them four regions are defined, which
are shown in Fig. 4.28.

As a first step towards the estimation of the QCD yields, a closure test
is performed using the MC QCD events. In such a check, we count the
simulated events falling in region A and compare this number with the result
coming from Eq. 4.9 both for the extended categories with two and one AK8
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Figure 4.28: Extended categories used in the ABCD method for events with
two AK8 jets (left) and one AK8 jet (right).

NAK8 jets MC prediction ABCD prediction

2 8015 ± 174 8308 ± 1290
1 4363 ± 128 4316 ± 326

Table 4.7: MC closure test for the ABCD method. The second column
reports the number of events falling in region A, while the third column
reports the prediction obtained by making use of Eq. 4.9. The errors on the
predictions reflect the statistical uncertainties.

jets. The outcome of the counting is reported in Table 4.7. The reported
uncertainties are statistical, where we assumed that the yields in regions
B, C and D are independent, in such a way that the uncertainty on the
ABCD prediction simply comes by linear error propagation. Since both the
predictions from ABCD and simple counting are in agreement within the
uncertainties, we argue that the method closes and can be applied to the
data. The QCD simulation is also used to compute the fractions of events
falling in the A regions of the extended categories that also fall in the signal
categories of the analysis.

Once the method is validated in the simulation, we apply it to the data.
Before using Eq. 4.9, we subtract the contributions of the tt̄ and subdominant
backgrounds from regions B, C and D in data using the simulation, in such a
way that the outcome numbers will genuinely predict the QCD yields, without
contamination. To make sure that the method is consistent in data as well,
we compare the ABCD yield with the number of data events falling in region
A after the subtraction of tt̄ and subdominant backgrounds. The resulting
numbers are found to be compatible within the uncertainties for data events
as well. Finally, we use the fractions of events falling in the A regions of the
extended categories that also fall in the signal categories, computed from the
simulation, to obtain the expected QCD yields in each signal category. The



4.7. tt̄ BACKGROUND ESTIMATION 107

NAK8 jets Data prediction ABCD prediction Fraction Yield
C9 2 8406 ± 114 8698 ± 942 0.137229 1194
C10 0.794051 6906
C11 1 4934 ± 84 4757 ± 212 0.162647 774
C12 0.52327 2489

Table 4.8: Summary of the results obtained from the application of the ABCD
method on data. For each category, we report: the number of events falling in
region A, after the subtraction of background contributions (second column),
the prediction obtained by making use of Eq. 4.9 after the subtraction of
background contributions (third column), the fractions of events falling in
the A regions of the extended categories that also fall in the signal categories,
obtained from simulated QCD (fourth column) and the yield in each category
which is obtained from the multiplication of the two previous columns (fifth
column).

aforementioned procedure and its results are summarized in Table 4.8.

4.6.3 Final QCD estimation

Eventually, the estimation of the QCD background in each signal category is
obtained by combining the previously described methods: shapes obtained
from the data events in the CR are normalized to the expected yields (fifth
row of Table 4.8) coming from the ABCD method applied to data. Thus,
the dominant background of this analysis is entirely estimated from data, in
such a way that the big theoretical uncertainties related to the simulated
QCD events are avoided. Nevertheless, the simulation is used to compute
the fraction of ABCD events falling in each signal category. This is found to
introduce a small uncertainty, as it will be shown in Subsection 4.9.1.

4.7 tt̄ background estimation
The second dominant background of the search is the tt̄ associated production,
with additional jets produced together with the top quark-antiquark pair.
The all-jets decay of the tt̄ pair is expected to produce six partons in the final
state; in the case of gluon emission and/or splitting, additional partons can
be produced and the final state can mimic the one targeted by this analysis.
Moreover, given the relatively large cross section of the process, considerable
yields are expected.

This source of background is estimated entirely using MC events. However,
some care must be used when dealing with the simulated tt̄ events, since
some degree of mismodelling in the description of the data has notoriously
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been found in previous analyses. In the following, we describe the procedure
used to deal with such mismodelling and the strategy used to reduce the
uncertainty on the modelling of the process.

4.7.1 Loose tt̄ validation region

Several analyses [34, 82] previously developed by the CMS Collaboration
found the pT spectrum of top quarks in data to be significantly softer than
the one predicted by LO and NLO generators interfaced with parton showers.
Since the origin of this suboptimal description is yet unclear, a general
procedure has been developed inside the collaboration to reweight the top
quark pT in the simulation to better describe the data. This procedure works
for low-pT top quarks, while no special recommendation holds for highly
boosted top quarks. Thus, we derive a corrective factor for the tt̄ cross
section which is used to account for the pT and any other possible sources of
mismodelling in the simulations.

We start by defining a highly boosted tt̄-enriched region, which we will
call in the following loose tt̄ validation region (loose VR). Events belonging
to the loose VR must first pass the requirements of the signal trigger; also,
they must contain no isolated leptons in the final state and have at least
two AK8 jets. Subsequently, requests are made on the nature of the leading
and subleading AK8 jets: both should have a pT greater than 300 GeV and
have at least one b tagged subjet. Finally, to select a leading jet with a
tight top quark-like topology, cuts are placed on the boosted BDTs asking
for the BDT_TvsQCD score to be greater than 0.7 and for the BDT_HvsT
score to be less than 0.1. The selection requirements that form the loose
VR selection are summarized in Table 4.9. Since strong requirements on the
top quark-like nature of the leading jet have been made, we assume it to be
the top quark candidate in the loose VR and we use its soft drop mass to
derive the corrective factor. The data vs. simulation plot for the invariant
mass of the leading jet is shown in Fig. 4.29. We see that the loose VR is
effectively dominated by tt̄ events but, without a corrective factor for the tt̄
cross section, the data-MC agreement is not optimal.

The dominant background in the loose VR is the QCD multijet production.
The shape of such background is treated in an analogous way as it has been
done in Section 4.6: a control region in data, enriched in QCD events, is
defined and used to estimate the distribution of the soft drop mass of the
leading jet for multijet events. Since one of the critical requests to identify
boosted jets induced by the decay of top quarks is the presence of b tagged
subjets, we first revert this condition asking for events with AK8 jets with
no b tagged subjets. Then, in order to enhance the purity in QCD events,
we revert the cut on TvsQCD for the leading jet, asking for it to be in the
window [0.5, 0.7]. This cut also makes the CR orthogonal to the requirements
of the loose VR. The selection requirements that form the QCD CR for the
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Figure 4.29: Soft drop mass of the leading jet in the loose VR without
corrective factor on the tt̄ cross section. The data-MC agreement is not
optimal.

loose VR selection are summarized in Table 4.9. The data vs. simulation
plot for the invariant mass of the leading jet for events in the CR is shown
in Fig. 4.30, where we see that the CR is effectively dominated by QCD
events. Following the same steps that we developed for the QCD estimation
in the signal categories, we perform a closure test in order to verify that the
loose VR and the related CR are kinematically close, comparing the shape
of the soft drop mass of the leading jet for the loose VR and CR selections.
Such test is shown in Fig. 4.30, where we see that a good agreement is
achieved between the two distributions. The residual kinematic differences
are accounted for by fitting the ratio plot with a straight line, which is used
as a transition function to correct the CR distribution in data to match the
distribution in the loose VR. This is shown in Fig. 4.30, where we see that a
reasonably good agreement is obtained between the corrected QCD shape
and the simulated shape.

Having in hand the shapes of the soft drop mass of the leading jet for
the tt̄ signal (from the simulation) and for the QCD dominant background
(from the data), we set up the procedure to correct the tt̄ cross section. First
we note that the expected tt̄ yield obtained using the nominal cross section
σtt̄ = 832 pb, and given the selection efficiency ε and the 2016 luminosity L,
is found to be

N exp
tt̄ = σtt̄ · L · ε = 5188. (4.10)

Then, the idea is to use the tt̄ and QCD shapes to fit the soft drop mass
distribution of the leading jet in data with a function of the form

D(mSD) = Nfit
tt̄ · S(mSD) +Nfit

QCD ·B(mSD), (4.11)
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Observable Loose VR CR

- Signal trigger Signal trigger
Nleptons = 0 = 0
NAK8jets ≥ 2 ≥ 2

Leading jet pT > 300 GeV > 300 GeV
Second-leading jet pT > 300 GeV > 300 GeV
Leading jet Nb-subjet > 0 = 0

Second-leading jet Nb-subjet > 0 = 0
Leading jet TvsQCD > 0.7 [0.5, 0.7]

Leading jet HvsT < 0.1 < 0.1

Table 4.9: Summary of the requirements defining the loose tt̄ VR and its
CR.
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Figure 4.30: Data-MC agreement for events in the CR of the loose tt̄ VR
(upper left); closure test for the QCD estimation in the loose tt̄ VR (upper
right); comparison between corrected QCD shape in data and MC simulation
in the loose tt̄ VR (lower panel).
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where S(mSD) and B(mSD) are two probability density functions (pdf)
describing the signal and background shapes respectively, while Nfit

tt̄ and
Nfit

QCD are the free parameters which are fitted from the data. Once the
number of tt̄ events actually observed Nfit

tt̄ is obtained, we can compare it
with the expected number of events coming from Eq. 4.10 and obtain the
corrective factor for the cross section.

All the maximum-likelihood fits described in the following have been
performed using the RooFit toolkit [83]. As a first step, we fit the soft drop
mass distribution of the leading jet for the tt̄ simulated events in order to
obtain the pdf S(mSD) describing the signal process. The signal model is
chosen to be the sum of a Crystal Ball function and a third-order Bernstein
polynomial. As a second step, we fit the soft drop mass distribution of the
leading jet for the QCD events in data, corrected with the transition function,
in order to obtain the pdf B(mSD) describing the background process. The
background model is chosen to be the sum of a Crystal Ball function and
a fifth-order Bernstein polynomial. The outcome of this two fits is shown
in Fig. 4.31, upper row. Finally, keeping frozen the parameters describing
the signal and background models, we use such models to perform a final
maximum-likelihood fit to the data, where the data model is given by Eq.
4.11. The outcome of this final fit is shown in Fig. 4.31, lower row. The
fitted values for the number of signal and background events are found to be

Nfit
tt̄ = 4084 ± 106

Nfit
QCD = 2836 ± 97.

(4.12)

By comparing the fitted number of tt̄ events with the expected one from
simulation with nominal cross section, we obtain a correction factor

r =
σfit

tt̄
σexp

tt̄
=

Nfit
tt̄

N exp
tt̄

= 0.787. (4.13)

This result is found to be in agreement with the results found in [34, 82]. By
comparing this value with similar studies performed in the boosted-Higgs
decay channel, we assume a correction factor r = 0.75 for the tt̄ cross section,
which translates in an effective cross section of 0.75 × 832 pb = 624 pb.
Whenever the tt̄ simulation is used in this analysis, the effective cross section
is implied, unless otherwise stated.

Figure 4.32 reports the data vs. simulation plot for the invariant mass
of the leading jet in the loose VR, where the effective cross section is used
to normalize the tt̄ shape. We see that the data-MC agreement is enhanced
with respect to Fig. 4.29.
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Figure 4.31: Maximum-likelihood fits used to derive the corrective factor for
the tt̄ cross section.
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Figure 4.32: Soft drop mass of the leading jet in the loose tt̄ VR with
corrective factor on the tt̄ cross section.
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4.7.2 Tight tt̄ validation region

A widely used strategy in the CMS Collaboration, aimed at reducing the
impact of systematic uncertainties affecting a given background, is to define
a background-enriched region and to include it as an additional category into
the final simultaneous fit used to extract the signal strength parameter. If
the nuisance parameters affecting the background process are assumed to be
correlated between the categories, a constraint on such nuisance parameters is
expected (see Chapter 5 for a detailed description of the statistical treatment
of the data employed in this analysis). Thus, a tt̄-enriched region is defined,
which will enter the simultaneous fit, with the purpose of constraining the
uncertainties related to the tt̄ simulation. We will refer to this region as
tight VR, as it is inspired by the selection criteria given in Subsection 4.7.1
but assumes somewhat more stringent cuts.

The selection criteria defining the tight VR are identical to the ones listed
in Table 4.9, with the exception of the number of AK8 jets, which is required
to be exactly equal to two, and with the additional request for the number
of AK4, b tagged jets to be exactly zero. This latter cut makes the tight VR
orthogonal to the signal categories, making it possible to include it in the
simultaneous fit, and is also a natural request since in the highly boosted
topology selected by the VR, both the b quarks are expected to be collected
inside the two AK8 jets.

In an identical fashion to what it has been done in Subsection 4.7.1, the
shape of the QCD multijet production in the tight VR is estimated from a
CR in data. The cuts defining the CR are unchanged with respect to the
ones introduced previously. The selection requirements that form the tight
VR and the corresponding CR are summarized in Table 4.10. Figure 4.33
shows the checks used to validate the choice of the CR, namely the closure
test evaluating the agreement between the signal and control selections and
the comparison between the corrected shape in data and the signal selection.
Also, the soft drop mass of the leading jet in the tight VR is shown both for
data and simulated events.

Concerning the estimation of the QCD yield in the tight VR, we once
again proceed in an analogous fashion to what it has been done in the
previous sections: the ABCD method is used to extract the QCD yield from
data. The variables used to set up the procedure are the BDT_TvsQCD
score and the number of b tagged AK4 jets, which show a low degree of
correlation, since no information regarding AK4 jets is used in the training of
the boosted-jets BDTs. Events fulfilling the requirements of Table 4.10, first
column, are used, except for the cuts on the TvsQ score and the number of
b tagged AK4 jets, which are not applied in order to define the four regions
A, B, C and D shown in Fig. 4.34. Events in region A effectively fulfill the
requirements of the aforementioned table and thus belong to the tight VR.
This means that no fractions of events are needed in this case. Identical
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Observable Tight VR CR

- Signal trigger Signal trigger
Nleptons = 0 = 0
NAK8jets = 2 = 2
NAK4b-jets = 0 = 0

Leading jet pT > 300 GeV > 300 GeV
Second-leading jet pT > 300 GeV > 300 GeV
Leading jet Nb-subjet > 0 = 0

Second-leading jet Nb-subjet > 0 = 0
Leading jet TvsQCD > 0.7 [0.5, 0.7]

Leading jet HvsT < 0.1 < 0.1

Table 4.10: Summary of the requirements defining the tight tt̄ VR and its
CR.
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Figure 4.33: Data-MC agreement for events in the tight VR (upper left);
closure test for the QCD estimation in the tight VR (upper right); comparison
between corrected QCD shape in data and MC simulation in the tight VR
(lower panel).
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Figure 4.34: ABCD regions for the QCD yield estimation in the tight VR.

steps to the ones developed before lead to an expected QCD yield in the
tight VR of 2683 ± 91 events.

For ease of reading, in the following we will simply refer to the tight tt̄
VR as the “tt̄ VR”, since this region is the one entering the final fit used to
extract the signal. The loose tt̄ VR, on the other hand, is only exploited to
extract the correction to the tt̄ cross section and will not be further used.

4.8 Template shapes

The value of the signal strength modifier µtt̄H is obtained by performing a
binned maximum-likelihood fit to the data. Such kind of method is called
shape analysis, and is described in full detail in Chapter 5. The observable
used in the fit is the invariant mass of the resolved Higgs boson candidate in
the four signal categories; in addition, the soft drop mass of the leading jet
in the tt̄-enriched VR is added to the fitting procedure, in order to constrain
the systematic uncertainties related to the tt̄ events, as it will be discussed
in Subsection 4.9.2. The estimation of the composition of the data sample is
achieved taking into account the following processes:

1. tt̄H(bb̄);

2. tt̄H(nobb̄);

3. QCD;

4. tt̄;

5. tt̄Z(bb̄);

6. subdominant backgrounds.
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The tt̄H(bb̄) and tt̄H(nobb̄) processes are both considered to contribute
to the signal and are estimated using the simulations, while QCD and tt̄
are the main backgrounds of the analysis. As it has been described in the
previous sections, the former is entirely estimated from data, while the latter
is estimated from simulation. In addition, minor backgrounds are considered.

The tt̄Z(bb̄) process is an irreducible background of this search, since its
topological signature in the detector cannot be distinguished from the one
of signal events. Also, its theoretical cross section is comparable to that of
tt̄H(bb̄), and thus it is included in the fit as an independent template. Such
background is estimated completely from simulation.

Finally, we consider the subdominant backgrounds. They consist of nine
processes: single top quark and top antiquark production in the t-channel
and in association with a W boson, Drell-Yan events with the production
of a qq̄ pair and additional jets, W → qq̄ and additional jets, WW → qq̄qq̄,
ZZ → qq̄qq̄, tt̄W(qq̄). Such processes show in general a low selection efficiency
but can have a large cross section compared to the tt̄H(bb̄) one. This can
lead to spikes in the distribution due to poorly populated distributions of
events with high cross section. In order to partially mitigate this effect, the
subdominant backgrounds are added together to form a single template,
taking into account the proportions given by the theoretical cross sections.
The subdominant backgrounds are all modeled using the simulations. As
an example of template shapes entering the maximum-likelihood fit, in Fig.
4.35 we present the distributions of the mass of the resolved Higgs boson
candidate in category 9. As a result of the signal selection, a sharp peak
around the Higgs boson mass in the tt̄H(bb̄) template and, to a less extent,
in the tt̄H(nobb̄) template, is found. On the other hand, background events
show smoother behaviors, in such a way that a good discriminating power
between signal and background is found in the shapes used in the fit. The set
of all the template shapes entering the maximum-likelihood fit is presented
in Appendix A.

4.9 Systematic uncertainties

This section describes in full detail the sources of systematic uncertainty
affecting the measurement and the way they are treated. All the sources
described in the following are implemented as nuisance parameters entering
the likelihood function which is used to compute the signal strength value
and the corresponding upper limit. For an exhaustive description of how
nuisance parameters enter the likelihood and how they impact on it, we refer
to the matter described in Chapter 5 of this work.

In general, the sources of systematic uncertainty can be categorized based
on their effect on the template shapes entering the final fit. First, we have
rate uncertainties, which are supposed to change the expected yield of a given
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Figure 4.35: Template shapes for events in category 9. Signal processes
are shown in the upper row, while middle and lower rows show background
processes. Each template is normalized to the expected yield in the 2016
data-taking period.
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Figure 4.36: Log-normal pdf, as a function of θ/θ̃, for different values of the
parameter κ. As κ becomes larger, the pdf broadens, reflecting the increased
change induced in the observable affected by the lnN uncertainty.

process leaving the shape of the related distribution untouched. In order to
parameterize this kind of effect, a nuisance parameter θ is assumed to follow
a pdf ρ(θ) of type log-normal (lnN), which is best suited for uncertainties
affecting positively defined observables like yields, cross sections, efficiencies,
etc. The variable θ follows a lnN pdf if and only if the variable N = ln θ
follows a normal distribution with expected value θ̃. The expression of the
lnN distribution reads

ρ(θ) = 1√
2π ln κ

exp

−

[
ln
(
θ/θ̃

)]2
2 (ln κ)2

 1
θ

(4.14)

where the width of the log-normal pdf is characterized by κ. The width is
used to state by which factor a given observable can change, e.g., κ = 1.10
implies that the observable can be larger or smaller than the nominal value
by a factor 1.10, with both deviations having a chance of 16%. The behavior
of the lnN pdf for different values of the parameter κ is shown in Fig. 4.36.

On the other side, we have shape uncertainties, which are supposed
to change the actual shape of the observable. These uncertainties are
implemented in the simultaneous fit by providing alternative shapes to
the framework. If the change in shape also implies a change in yield, this is
again treated with a lnN uncertainty.

The sources of uncertainties taken into account in this analysis can be
split in two main categories: experimental uncertainties and theoretical
uncertainties. The former group can be essentially described as the group
of uncertainties which arise from differences that are found between the
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simulation and the actual data in the description of the detector perfor-
mance. These uncertainties can in principle be partially reduced with the
increased integrated luminosity collected by the experiments, which leads to
a better understanding of the detectors, enhanced calibrations of objects and
algorithms, etc. The latter group is instead related to uncertainties in the
theoretical parameters describing the physical processes, which cannot be
reduced (at least, not directly) by collecting more data, but should rather be
constrained by developments at the theory level. In the following, we list all
the sources of systematic uncertainty affecting the measurements and, in the
coming subsections, we will investigate more deeply some of such sources. A
summary of the systematic uncertainties is given at the end of the section,
in Table 4.11.

Experimental uncertainties

– Jet energy corrections: several strategies have been developed
inside the CMS Collaboration [79, 84] to implement corrective
procedures for the jet energy scale and resolution, which have
associated uncertainties that translate to systematic uncertainties
on the observable of this analysis. Therefore, in MC simulations,
jets belonging to the tt̄H(bb̄) and tt̄H(nobb̄) signal samples and
to the tt̄ dominant background are shifted (smeared) according to
the JES (JER) η-dependent uncertainties and new templates are
obtained. Since such uncertainties affect the pT of jets, which is
extensively used in the event selection, a change in yield, as well
as a change in shape, is expected. Given the above reasoning, the
JES and JEC uncertainties are included in the simultaneous fit
as rate+shape uncertainties;

– QCD background prediction: both shapes and yields for the QCD
dominant background are estimated from data. Nevertheless,
some degree of uncertainty is related to the shapes, since they are
extracted from a control region using transition functions resulting
from a fitting procedure. Thus, the parameters describing the
transition functions have an uncertainty coming from the fit,
which translates into an uncertainty on the shape. Also, in the
final estimation of the yields, QCD simulation is used in order to
compute the fractions of events obtained by the ABCD method
that fall in the signal categories. This will introduce an uncertainty
on the yields, as it will be discussed in Subsection 4.9.1;

– tt̄ background modeling uncertainties: in order to achieve a good
modeling of tt̄ events, the parameters entering the MC simulation
need to be properly tuned. The tuning of such parameters is
achieved with some degree of uncertainty, which reflects on the
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shapes and rates of tt̄ events. This subject is described in more
detail in Subsection 4.9.2;

– tt̄Z and subdominant backgrounds modeling: a systematic uncer-
tainty of type lnN is assigned to the rates of minor backgrounds,
based on how well the simulations are known to predict the various
processes. Since these rate uncertainties are supposed to cover a
wide range of possible mismodellings and the correlation among
them is unclear, we assume them to be uncorrelated between
categories. A 20% uncertainty (i.e., κ = 1.20) is associated with
the tt̄Z production, while a 50% uncertainty (i.e., κ = 1.50) is
associated with the subdominant backgrounds;

– b tagging scale factors: since differences in the performance of
the CSVv2 b tagging algorithm in MC events have been found
with respect to data events, scale factors must be applied to the
simulations to enhance the description of the data. The extraction
of such SF is obtained with the method summarized in Subsection
4.2.1, which is affected by several sources of systematic uncertainty.
This matter is described in detail in Subsection 4.9.3;

– Trigger scale factor: differences in the description of the signal
trigger efficiency in data and MC are taken into account by fitting
the ratio plot in in Fig. 4.7 with a constant straight line. The
y-intercept resulting from the fit comes with an uncertainty, which
in principle translates to an uncertainty on the SF. However, the
relative uncertainty on this parameter is very small, in such a way
that no meaningful change in rates or shapes is found by shifting
up or down the y-intercept within its uncertainty. For this reason,
the trigger scale factor uncertainty is neglected and eventually
does not contribute to the experimental uncertainties;

– Pileup scale factor: the distribution of the number of PU interac-
tions in the simulation shows discrepancies with respect to the one
obtained from actual data events. Therefore, the PU distribution
in MC events needs to be corrected to match the data. This is
done by taking the ratio between the PU distributions in data and
simulation and by applying the resulting weight distribution on a
per-bin basis to each event. In order to assess the uncertainty on
this procedure, which is described in more detail in Subsection
4.1.2, the total inelastic proton-proton cross section is shifted up
and down by its uncertainty, which is found to be 4.6%, and new
distributions for the number of PU interactions in data are ob-
tained, which translate in upwards and downwards shifted pileup
SFs. The results of this procedure are presented in Fig. 4.37. The
shifted SFs are then applied to the simulations to obtain upwards
and downwards shifted shapes. This uncertainty is assumed to
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Figure 4.37: Distributions of the number of pileup interactions in data and
MC (left) and pileup scale factors (right). The upwards (downwards) shifted
distributions in data are obtained by shifting up (down) the nominal, total
inelastic proton-proton cross section by 4.6%. The ratios between the data
distributions and the MC distribution result in the scale factors.

impact both the rate and the shape of processes and is considered
to be correlated between processes and categories;

– Luminosity uncertainty: since the overall uncertainty on the value
of the integrated luminosity for the 2016 data-taking period has
been estimated to be 2.5% [85], we assign a rate uncertainty
of type lnN corresponding to this value (κ = 1.025) to all the
processes, except for QCD, which is estimated directly from data.
This uncertainty is assumed to be correlated between processes
and categories;

– Finite size of the MC samples: the simultaneous fit used in this
analysis to extract the value of the signal strength involves the
estimation of the composition of the data sample based on MC
events. In a shape analysis (see Section 5.1), data are binned,
so that a few MC events can be found in some regions of the
observable, leading to high fluctuations. In order to incorporate
the finite statistics of simulated samples, the Barlow–Beeston
method [86] is used. This method assigns a single nuisance param-
eter to scale the sum of process yields in a given bin, instead of
requiring separate parameters, one for each process, thus reducing
the number of parameters required in the maximum-likelihood fit.

Theoretical uncertainties

– PDFs: parton distribution functions (PDFs) describe the internal
structure of protons in terms of their quark and gluon constituents
and of the momentum fraction carried by each of them. A precise
knowlege of PDFs is crucial ingredient of precision measurements
at the LHC. PDFs are described in terms of several parameters
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that should be extracted by looking at the data; for example one
parametrization among many possible can be

xf(x) = a0x
a1(1 − x)a2 exp

{
a3x+ a4x

2 + a5
√
x+ a6x

−a7
}

where f(x) is the PDF, x is the fraction of the total momentum
carried by the parton and ~a is a set of parameter describing
the PDF. To account for uncertainties on the set of parameters,
the approach used by the NNPDF collaboration is used. In this
method, called MC replicas method [87], a set ofNrep = 100 replica
copies of the vector of parameters ~a is given, and the observable
used in this analysis is then computed repeating its determination
Nrep times, each time using a different parameter replica. Then,
the root mean square (RMS) of these 100 histograms with respect
to the nominal is computed on a per-bin basis. The up and
down shifted shapes used in the final fit are finally computed as
nominal+RMS and nominal−RMS for each bin, respectively. This
uncertainty is assumed to affect the tt̄H(bb̄) and tt̄H(nobb̄) signal
and the tt̄ dominant background as a rate+shape uncertainty,
which is taken to be correlated between processes and categories;

– Renormalization and factorization scales: when computing cross
sections for processes arising from pp collisions, the amplitude of
such processes may often be affected by ultraviolet and infrared
divergences. Such divergences are cured by introducing in the cal-
culations the renormalization scale µR and the factorization scale
µF respectively. Evidently, µR and µF are fictitious parameters
that are introduced ad hoc, and physical observables should ideally
not depend on them. The community of theoretical physicists has
developed ways to treat this problem and to assess the theoretical
uncertainty arising from this procedure. In the simulation, weights
are applied to the events corresponding to different µR and µF
choices. Once again, the RMS of the resulting histograms with
respect to the nominal is used to obtain up and down shifted
shapes as nominal+RMS and nominal−RMS for each bin. This
uncertainty is assumed to affect the tt̄H(bb̄) and tt̄H(nobb̄) signal
and the tt̄ dominant background as a rate+shape uncertainty,
which is taken to be correlated between processes and categories;

– Strong coupling: weights are applied to the simulated events
which reflect the theoretical uncertainty on the strong coupling
αS . The RMS method is used to obtain the shifted shapes. This
uncertainty is assumed to affect the tt̄H(bb̄) and tt̄H(nobb̄) signal
and to the tt̄ dominant background as a rate+shape uncertainty,
which is taken to be correlated between processes and categories.
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4.9.1 Uncertainties on the QCD prediction

The shapes for the dominant QCD background are obtained, both for the
signal categories and for the VR, from control samples in data. Transition
functions, which are taken to be straight lines, are then applied in order
to translate these shapes into the signal regions. Such transition functions
are obtained by fits to the ratios in Figs. 4.26 and 4.33, each one giving as
a result two parameters, the y-intercept q and slope m of the straight line.
These two parameters come with an uncertainty, which translates into an
uncertainty on the shape of the QCD observable. In general, the covariance
matrix V of the fit is not diagonal, meaning that there is some degree of
correlation between the two parameters. In order to properly take this into
account, the following procedure is used. Since the covariance matrix is a real,
symmetric matrix, it can always be diagonalized by means of an orthogonal
transformation O. Starting from the “real” parameters, described by the
vector pT = (q,m), we first transform them to some auxiliary parameters
p̃T = (q̃, m̃):

p̃ = Op, (4.15)

where the orthogonal matrix O has the eigenvectors of V as columns. In
this auxiliary space, the covariance matrix D of the auxiliary parameters is
diagonal, is computed as

D = O−1VO = OT VO (4.16)

and has the eigenvalues of V as diagonal elements, which can be interpreted
as the variances of the parameters in the auxiliary space:

D =
[
σ̃2

q̃ 0
0 σ̃2

m̃

]
. (4.17)

Since in this auxiliary space the two parameters are fully decorrelated,
they can be shifted up and down freely and independently. Thus, we define
the upwards (downwards) shifted transition function in the auxiliary space
as the transition function described by p̃T

up = (q̃ + σ̃q̃, m̃ + σ̃m̃) (p̃T
down =

(q̃ − σ̃q̃, m̃ − σ̃m̃)). Finally, the real parameters describing the upwards
(downwards) shifted transition function in the real parameter space are
obtained by performing the inverse transformation:

pup = O−1p̃up pdown = O−1p̃down. (4.18)

The transition functions described by pup and pdown are applied to the
QCD distributions in the control region to obtain upwards and downwards
shifted shapes that are included as a shape uncertainty in the simultaneous
fit. Since the parameters describing the transition functions come from five
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Figure 4.38: Shape uncertainty for the QCD background in category 9 and
10 (upper row), category 11 and 12 (middle row) and in the VR (lower row).

independent fits, the QCD shape uncertainty is assumed to be uncorrelated
between categories. Figure 4.38 shows the nominal QCD shapes together
with the upwards and downward shifted shapes for each signal category and
for the VR. The discrepancy between nominal and shifted shapes is bigger
in categories 9 and 11, where the smaller MC population translates to bigger
error bars in the ratios of Fig. 4.26 and subsequently to larger uncertainties
on the fit parameters.

The QCD yields are estimated from data using the ABCD method.
However, MC QCD events are used to determine the fractions of events
falling in region A that also fall into signal categories. In order to assess
the degree of uncertainty introduced by the use of the simulation, we check
the data-MC agreement for the variables that are used to split events in
categories, namely the number of AK8 jets, the number of AK4 jets and
the number of AK4, b tagged jets. From the result of this check, shown in
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Figure 4.39: Data-MC agreement for the variables used to categorize the
events. The AK8 and AK4 multiplicities are shown in the upper row, while
the multiplicity of AK4, b tagged jets is shown in the lower row.

Fig. 4.39, we argue that the simulation describes pretty well the variables
under investigation and thus, the fraction of events are well modeled. In
order to account for the small disagreement between data and MC events,
a 10% uncertainty on the QCD yield of each category is introduced. This
uncertainty is assumed to be uncorrelated between categories. Also, an
additional uncertainty is assumed to affect the QCD yields, coming from
the number of events obtained by making use of the ABCD method. Such
numbers come with an uncertainty, as we shown in Table 4.8 and Subsection
4.7.2. Thus, a lnN rate uncertainty equal to the relative error on such
numbers is assigned, which affects categories with the same AK8 multiplicity
in a correlated way. Based on the numbers reported in the previous sections,
we assign a 11% uncertainty to categories 9 and 10, a 4% uncertainty to
categories 11 and 12, and a 3% uncertainty to the VR.

4.9.2 Uncertainties on the tt̄ production tune

An accurate modelling of the tt̄ pair production is a crucial aspect to many
analyses. This is particulary true at the LHC, where the large integrated
luminosity collected by the experiments leads to measurements in which
modelling uncertainties dominate over the statistical uncertainties. Thus, a
proper tuning of the MC parameters must be performed in order to improve
the description of the data. The tt̄ simulated samples used in this analysis rely
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on the so called CUETP8M2T4 tune, which has been developed to address
some mismodellings in the jet multiplicity of previous tunes to correctly
describe differential measurements. Several parameters describing the tune
are extracted from 8 and 13 TeV data [88] by fitting differential distributions
of several quantities of interest. The most relevant parameters of the tune
are shifted up and down according to their uncertainties to obtain new MC
samples which are subsequently used to compute new tt̄ template shapes.
The parameters taken into account are:

• hdamp, controlling the matrix element to parton shower (PS) matching
and regulating the high-pT radiation by damping real emission in
powheg with a factor h2

damp/(p2
T + h2

damp)

• ISR, controlling the initial state radiation at PS level

• FSR, controlling the final state radiation at PS level

• Tune, controlling global parameters of the tuning

The uncertainties on the tt̄ tune are expected to change both the expected
rates and shapes. However, we keep the two effects separated in the following
way: first, we scale the shifted shapes to the nominal yields, in such a way
that the yield-changing effect is factored out. This shape uncertainty is
assumed to be correlated between categories. As an example, Fig. 4.40
shows the comparisons between nominal and shifted template shapes for
category 10. Then, we introduce a rate uncertainty of type lnN affecting
the yield in each category by 20%, which is intended to cover the changes
in rate coming for the four sources taken into account, and we assume this
uncertainty to be correlated between categories in order to constrain it by
fitting simultaneously the signal categories with the VR.

4.9.3 Uncertainties on the b tagging scale factors

The method used to extract the b tagging scale factors relies on a tag-and-
probe approach. Dijet events are selected and, applying a selection on event
variables and on the properties of one of such jets, samples either enriched
in tt̄ events or in Z+jets are obtained. The tt̄ events, given the top quark
decay to a bottom quark, are used to extract a heavy-flavor (HF) scale factor,
while events in which a Z boson is produced with additional light jets are
used to extract a light-flavor (LF) scale factor. In order to account for light-
(heavy-) flavor contamination in the selected heavy (light) flavor samples,
simulated events are used. Eventually, the scale factors are obtained as the
ratio of CSVv2 distributions in data and MC events, where the non-relevant
contamination in data is subtracted using the simulation:

SF (CSV, pT, η) = Data − MCA

MCB
, (4.19)
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Figure 4.40: Shape uncertainties for the tt̄ background in category 10.
Changes in shape related to hdamp (upper left), ISR (upper right), FSR
(lower left) and tune (lower right) are show, along with the nominal shape.
Shifted shapes are normalized to the nominal yields, in such a way that
differences in the distributions reflect changes in shapes only.

where A,B is the HF or LF component. As Eq. 4.19 testifies, such scale
factors are obtained for exclusive bins in CSVv2 score, pT and η of the jet.

As a first source of systematic uncertainty, JES is considered. Instead
of nominal MC samples, JES shifted samples are used to recompute the SF.
Shifts in the JES change the pT of jets, which could cause events to migrate
out of the selected samples or to migrate to different pT bins. The b tagging
uncertainty related to the JES is considered to be fully correlated with the
“overall” JES described above, which means that, when the JES for the jet
kinematics is shifted up or down by one standard deviation, the SF is shifted
in the same direction.

As a second source of systematic uncertainty, the purity of the samples
used to extract the SF is considered. In both HF and LF calculations,
MC is used for the purpose of subtracting the nonrelevant part. Thus, the
uncertainty on the MC predictions used in Eq. 4.19 and their propagation
to SF must be taken into account. This leads effectively to two sources of
systematic uncertainty, one for the HF and one for the LF scale factors.

As a third source of systematic uncertainty, the size of the samples used
to extract the SF must be taken into account. To address this problem, two
sources of uncertainty are introduced for each flavor, the first assessing for
statistical fluctuations that would tend to tilt the SF distribution, while the
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Figure 4.41: Higgs boson (left) and top quark (right) reconstruction efficien-
cies, before (black line) and after (red line) the application of b tagging scale
factors, as a function of the generated pT. The shaded regions corresponds
to the nine independent sources of b tagging uncertainty, added together in
quadrature.

second accounting for fluctuations that increase or decrease the SF value in
the center of the CSVv2 distribution.

Charm-flavored jets are treated separately. For such jets, the scale factor
is set to 1.0 and twice the relative uncertainty of b-flavored jets is used.
Following the same approach as before, two sources of uncertainty related to
the statistical fluctuations are introduced.

Eventually, nine independent sources of systematic uncertainty arise from
the extraction of b tagging scale factors. Each of them is assumed to be
correlated between different processes and categories. All the processes
involved in this analysis are affected by such uncertainties, except for QCD,
which is estimated from data and thus has no SF applied. Even though the
aforementioned procedure is not supposed to induce any migration of events
from one b tag multiplicity bin to another, as each event gets a weight based
on a per jet basis, it is nevertheless possible for the global scale factor to
be different from one. This is why the sources of uncertainty related to the
b tagging procedure are assumed to change both the expected rates and
shapes. Since the identification of jets coming from the hadronization of
bottom quarks is one of the most important steps in the signal selection
of this analysis, studies have been performed to assess the impact of the b
tagging scale factors and of the related systematic uncertainties on the Higgs
boson and top quark candidates.

First, we consider the Higgs boson and top quark reconstruction efficien-
cies as a function of the generated pT. Such quantities are defined as the ratio
between the number of events in which a generated Higgs boson or top quark
is matched with a reconstructed Higgs boson or top quark candidate and
the total number of Higgs bosons or top quarks. To perform these studies,
we use events passing the signal selection just before the splitting into signal
categories.
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The reconstruction efficiencies are reported in Fig. 4.41, in which we
show that no substantial changes are found in both the distributions when SF
are applied. The contributions of the nine independent sources of systematic
uncertainty are summed in quadrature and reported as shaded, gray regions.
Note the decrease in the Higgs boson reconstruction efficiency at around
300 GeV in the parton pT, which is indeed generally considered to be the
threshold between the resolved and boosted decays of Higgs bosons. When
boosted decays become dominant, the reconstruction efficiency as a bb̄ system
becomes steadily worse.

Second, we study the impact of b tagging SF and related uncertainties
on the Higgs boson candidates. This check has been performed both before
and after splitting events in categories. Figure 4.42 shows the Higgs boson
candidate for events passing the signal selection just before the splitting
into signal categories. No considerable changes or distortions are found to
be induced by the application of scale factors. The same conclusions can
be drawn regarding the Higgs boson candidates for events belonging to the
signal categories, which are shown in Fig. 4.42 as well. Given the overall
consistency between the distributions before and after the application of b
tagging scale factors, we conclude that scaled shapes and yields can be safely
used.
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Figure 4.42: Reconstructed Higgs boson candidate before splitting the events
into signal categories (upper row) and for events entering the signal categories
(middle and lower rows), before (black) and after (red) the application
of b tagging scale factors. The shaded regions corresponds to the nine
independent sources of b tagging uncertainty, added together in quadrature.
The simulated tt̄H events are scaled to the luminosity of the data, in such
a way that differences in the distributions reflect both the change in yields
and shapes.
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Source Type Correlation
JES rate lnN + shape X X
JER rate lnN + shape X X
QCD shape shape ×
QCD fractions rate lnN ×
QCD ext. yields rate lnN X
tt̄ norm rate lnN ×
hdamp rate lnN + shape X
ISR rate lnN + shape X
FSR rate lnN + shape X
Tune rate lnN + shape X
tt̄Z norm rate lnN ×
subBkg norm rate lnN ×
b tagging JES rate lnN + shape X X
b tagging HF purity rate lnN + shape X X
b tagging LF purity rate lnN + shape X X
b tagging HF stats1 rate lnN + shape X X
b tagging HF stats2 rate lnN + shape X X
b tagging LF stats1 rate lnN + shape X X
b tagging LF stats2 rate lnN + shape X X
b tagging CF stats1 rate lnN + shape X X
b tagging CF stats2 rate lnN + shape X X
Pileup rate lnN + shape X X
Luminosity rate lnN X X
MC statistics Barlow–Beeston ×
PDF rate lnN + shape X X
αS rate lnN + shape X X
µF , µR rate lnN + shape X X

Table 4.11: Summary of the systematic uncertainties affecting the measure-
ment. All the sources of uncertainty are listed, together with their type and
their kind of correlation. A cross symbol (×) means that the uncertainty
is uncorrelated between processes and categories, a single checkmark (X)
means that the uncertainty is correlated between different categories only,
while a double checkmark (X X) indicates that the uncertainty is correlated
between categories and processes.
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Chapter 5

Statistical methods for the
search of new phenomena in
particle physics

This chapter is devoted to the description of the statistical techniques used
in the context of the search of new phenomena in particle physics. The
procedure to correctly claim for a discovery and to set upper limits on
parameters of interest will be discussed. The material presented in the
following is a personal elaboration of the matter discussed in [89] and [90].

5.1 Statistical formalism of a search

The search for new phenomena in particle physics is most usually done in the
context of a frequentist statistical test. The goal of a statistical test is to give
a quantitative description of how well the observed data agree with some
given hypothesis. The hypothesis under consideration is traditionally called
the null hypothesis, H0, and a statement about the validity of H0 usually
involves the comparison with some alternative hypotheses, denoted by H1,
H2, . . ., Hn. If the goal of the test is to discover a signal associated to a
new process, one takes the null hypothesis as the one describing only known
processes, which can be referred to as the background. This is to be tested
against an alternative hypothesis which includes both the new signal and the
background. In order for a new signal to be found, the null hypothesis must
be rejected with some degree of confidence. On the other hand, if the goal
of the test is to set limits on a given parameter of interest (POI), namely
to exclude some regions of the parameter space, the signal+background
hypothesis plays the role of the null hypothesis, which is tested against the
background-only hypothesis. Also in this case, regions in the parameter
space are excluded if the null hypothesis is rejected with some degree of
confidence.

133
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To summarize the outcome of such searches, it is customary to quantify
the level of agreement between the observed data and a given hypothesis H
by computing the p-value p of the observation, i.e., the probability, under
the assumption of H, to observe data of equal or greater incompatibility
with the expectation from H. In particle physics p-values are often converted
to equivalent significances, Z. Considering a variable following a standard
Gaussian distribution, Z is defined in such a way that when this variable
is found Z standard deviations above its mean value, it has an upper tail
probability equal to p. Eventually, the following formula can be written,

Z = Φ−1(1 − p), (5.1)

where Φ−1 is the quantile of the standard Gaussian. As a simple example,
suppose that one wants to check whether a coin has been fixed or not. Then,
one can take the null hypothesis H0 to be “the coin is fair” and check if this
hypothesis can be rejected. For a fair coin, the probabilities of head and tail
are both equal to 1/2, so that one can simply take the number of heads nh

as a statistical test, which is supposed to follow a binomial distribution with
probability P = 1/2, namely:

B(nh;N) = N !
nh!(N − nh)!

(1
2

)nh
(1

2

)(N−nh)
, (5.2)

where N is the number of times the coin has been tossed. Suppose that N =
20 tosses are made and nh = 17 heads are observed. Since the expected vale
for nh is E[nh] = NP = 10, then the probability, assuming that the coin is
fair, to observe an outcome with equal or greater incompatibility (the p-value)
is the sum of the binomial probabilities for nh = 0, 1, 2, 3, 17, 18, 19, 20. Using
Eq. 5.2 one gets p = 0.0026, which making use of Eq. 5.1 translates to a
significance of Z = 2.79. One should now decide if the level of disagreement
which has been found is sufficient to reject the null hypothesis.

In the context of particle physics searches, there is a general agreement
to regard the rejection of background hypotheses with a significance of at
least Z = 5, corresponding to a p-value of 2.87 × 10−7, as an appropriate
level to claim a discovery. On the other hand, for purposes of setting limits,
a threshold p-value of 0.05 (corresponding to the so called 95% confidence
level) is usually adopted, which corresponds to Z = 1.64.

In particle physics, the problem of assessing discovery or exclusion is
usually treated with a frequentist statistical test using a likelihood ratio as a
test statistic. The likelihood ratio will, in general, be a function of some POI
of the signal process (such as rates, cross sections, signal strengths) and will
also contain a set of nuisance parameters which are not known a priori but
rather must be fitted from the data. The impact of systematic uncertainties
on experimental measurements is generally treated assuming that each source
of systematic uncertainty enters the likelihood ratio as a nuisance parameter.
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To illustrate the use of the profile likelihood ratio, consider a so called shape
analysis, namely an experiment where for each selected event one measures
the values of some kinematic quantities which can be stored in one or more
histograms. Suppose that, for each event in the signal sample, the variable x
is measured and the corresponding values are used to construct an histogram
n = (n1, n2, . . . , nN ) composed by N bins. The expectation values of each
ni can be written as

E[ni] = µsi + bi, (5.3)

where µ is the so called signal strength parameter, with µ = 0 corresponding
to the background-only hypothesis and µ = 1 corresponding to the nominal
signal hypothesis. The mean number of entries in the ith bin from signal
and background, si and bi, can be written as

si = stot

∫
bin i

fs (x; θs) dx,

bi = btot

∫
bin i

fb (x; θb) dx.
(5.4)

The functions fs (x; θs) and fb (x; θb) are the probability density functions
of the variable x for signal and background events, the integrals in Eq.
5.4 thus representing the probabilities for an event to be found in bin i.
Note that from Eq. 5.4 follows that the expected values for the number of
entries in each bin depend on the nuisance parameters θs and θb, meaning
that systematic uncertainties can smear these expected values, as they are
supposed to do. While the quantity btot can be regarded as a nuisance
parameters as well, note that instead the quantity stot is not an adjustable
parameter but is rather fixed to the value predicted by the nominal signal
model. In the following we will denote as θ = (θs,θb, btot) the full set of
nuisance parameters.

In addition to the measured histogram n, one may also want to make
further subsidiary measurements in order to constrain the nuisance param-
eters. For example, many data analyses select a control sample which is
mostly populated by background events and, from them, an histogram of
some kinematic variable is constructed. This then gives a set of values
m = (m1,m2, . . . ,mM ) for the number of entries in each of the M bins of
the histogram. In a similar fashion to Eq. 5.3 the expectation value for each
mi can be written as

E[mi] = ui(θ), (5.5)

where the ui are calculable quantities that depend on the nuisance parameters.
The likelihood function of observing exactly the histograms n and m is

the product of Poisson probabilities for all bins:
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L(µ,θ) =
N∏

j=1

(µsj + bj)nj

nj ! e−(µsj+bj)
M∏

k=1

umk
k

mk! e
−uk . (5.6)

To test some value for µ, one can consider the likelihood ratio

λ(µ) = L(µ, ˆ̂θ)
L(µ̂, θ̂)

, (5.7)

where ˆ̂
θ in the numerator denotes the value of θ that maximizes the likelihood

for the µ being tested, namely it is the conditional maximum-likelihood (ML)
estimator for θ (and is thus a function of µ). The denominator is instead
the maximized likelihood function, namely µ̂ and θ̂ are their ML estimators.
Notice once again the presence of nuisance parameters which smear and
broaden the profile likelihood as a function of µ, relative to what one would
have if they were fixed. This reflects the loss of information about µ due
to the impact of systematic uncertainties. From the definition of λ(µ) one
easily sees that 0 ≤ λ(µ) ≤ 1, with values near to 1 implying good agreement
between the data and the tested value of µ.

5.1.1 Test statistic tµ = −2 ln λ(µ)

A convenient and indeed equivalent statistic to λ(µ) is obtained by computing

tµ = −2 lnλ(µ). (5.8)

Given the properties of λ(µ), one easily sees that 0 ≤ tµ ≤ +∞, with greater
values of tµ corresponding to greater incompatibility between the data and
the tested µ. It is now possible to define a test for µ by using the statistic tµ
itself as a measure of the discrepancy between the data and the hypothesis.
To quantify the level of disagreement, a p-value is needed, which can be
computed as

pµ =
∫ ∞

tµ, obs
f (tµ|µ) dtµ, (5.9)

where tµ, obs is the value of the test statistic tµ observed from the data,
and f (tµ|µ) is the pdf of tµ under the assumption of data being distributed
according to a signal strength µ. In Section 5.2 we will point out that is
perfectly fine and possible to compute the pdf of tµ under the assumption
of data being distributed with respect to a different value µ′ 6= µ, f (tµ|µ′);
however, in order to compute a p-value, one needs the pdf of the test statistic
under the assumption of data being distributed with the very same value of
µ that is being tested.
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5.1.2 Test statistic t̃µ for processes with µ ≥ 0

In many particle physics searches, one can safely assume that a signal process
can only enhance the rate of measured events beyond the expectation coming
from background alone, which means that the signal strength is bounded in
the region µ ≥ 0 1. For such a signal model, if data is found such that the
observed signal strength µ̂ is below zero, then the best level of agreement
between the data and any allowed value of µ is obtained for the lowest
possible µ, namely µ = 0. Thus, a modified likelihood ratio λ̃(µ) can be
defined:

λ̃(µ) =


L(µ,

ˆ̂
θ(µ))

L(µ̂,θ̂) µ̂ ≥ 0,
L(µ,

ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0.
(5.10)

In a similar fashion with what has been done in Eq. 5.8, the variable λ̃(µ)
can be used to obtain the corresponding test statistic, which we denote with
t̃µ, that is

t̃µ = −2 ln λ̃(µ) =


−2 ln L(µ,

ˆ̂
θ(µ))

L(µ̂,θ̂) µ̂ ≥ 0,

−2 ln L(µ,
ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0.
(5.11)

As it was done in Eq. 5.9 for the test statistic tµ, it is possible to assess
the level of disagreement between the data and the signal strength being
tested by computing the p-value.

5.1.3 Test statistic q0 for the discovery of a positive signal

An important special case of the test statistic t̃µ is the one where the value
µ = 0 is tested, since rejecting the background hypothesis µ = 0 leads to the
discovery of a new signal process. For this special case, the notation q0 ≡ t̃0
is adopted. The definition given by Eq. 5.11, evaluated for µ = 0, greatly
simplifies and leads to

q0 =
{

−2 lnλ(0) µ̂ ≥ 0,
0 µ̂ < 0, (5.12)

where λ(µ) is the likelihood ratio as defined in Eq. 5.7. Notice that, if data
fluctuate such that the observed signal strength is found below zero, the
maximum agreement between the data and the background-only hypothesis
is set, q0 = 0. This means that, even though a negative value for the
observed signal strength indicates some discrepancy between the data and

1Note, however, that there are important exceptions, such as searches for neutrino
oscillations, where neutrinos of a given flavor can oscillate and “disappear”.
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the background-only hypothesis, this does not come from an excess in
signal events, but most likely comes from some kind of systematic error. If,
instead, the data yield increases above the expected background, increasingly
large values for q0 are obtained, corresponding to an increasing level of
incompatibility between the data and the µ = 0 hypothesis. As usual, to
quantify this level of incompatibility, a p-value has to be computed in the
same manner as done with tµ, namely

p0 =
∫ ∞

q0,obs
f (q0|0) dq0, (5.13)

where f (q0|0) is the pdf of the test statistic q0 under the assumption of the
background only hypothesis. A useful approximation of this pdf will be given
in Section 5.2.

5.1.4 Test statistic qµ for upper limits setting

In order to establish an upper limit on the signal strength parameter, it is
possible to define the test statistics

qµ =
{

−2 lnλ(µ) µ̂ ≤ µ,
0 µ̂ > µ,

(5.14)

where λ(µ) is the likelihood ratio as defined in Eq. 5.7. Notice that, if data
fluctuate such that the observed signal strength is found above the tested
signal strength, the maximum agreement between the data and the tested
hypothesis is set, qµ = 0. This means that, in the context of upper limits
setting, one does not regard values greater and greater than the tested value
for µ as representing less and less compatibility with µ. It is also important
to note that the test statistic q0 defined previously is not a special case of
qµ as they have different and, in some sense, opposite definitions: q0 is zero
when data fluctuate downwards (µ̂ < 0), while qµ is zero if data fluctuate
upwards (µ̂ > µ). With this caveat in mind, in the following sections we may
often refer to qµ, meaning either q0 or qµ depending on the context.

As usual, to assess the level of agreement between the data and the tested
value of µ, a p-value has to be computed,

pµ =
∫ ∞

qµ,obs
f (qµ|µ) dqµ, (5.15)

where f (qµ|µ) is the pdf of qµ assuming the hypothesis µ. A useful approxi-
mation of this pdf will be given in Section 5.2.

For the case in which a positive signal is considered (µ > 0), the variable
λ̃(µ) can be used in Eq. 5.14 to obtain the corresponding test statistic
q̃(µ). However, the difference between tests based on qµ and q̃(µ) are usually
found to be negligible, while the use of qµ leads to important algebraic
simplifications and will thus be assumed in the following.
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5.2 Approximate formulae for sampling distribu-
tions

In order to find the p-value of a hypothesis using, e.g., Eqs. 5.13 or 5.15,
the sampling distributions for the corresponding test statistics are needed.
In the case of discovery, since the value being tested is µ = 0, we need the
sampling distribution for the test statistic q0 under the hypothesis of data
being distributed according to µ = 0, f(q0|0). In the case of the setting
of upper limits, when a nonzero value of µ is being tested, we need the
sampling distribution of the test statistic qµ under the assumption of data
being distributed according to the very same value of µ, f(qµ|µ). For the
sake of clarity, let us recall that, in this notation, the subscript of q refers
to the value of the signal strength being tested, while the second argument
in f(qµ|µ) refers to the value of the signal strength hypothesized in the
distribution of the data.

In the context of particle physics experiments, it may also be useful to
report the significance and upper limit that one would obtain for a variety
of signal hypothesis, the so called expected (or, more precisely, median)
significance and upper limit. In order to do so, we also need the distribution
f(qµ|µ′) with µ′ 6= µ which describes how the test statistic is distributed if
the data correspond to a strength parameter different from the one being
tested. Note that the sampling distributions needed in order to compute the
p-values can always be obtained as a special case of f(qµ|µ′) by setting µ′

equal to the signal strength being tested.

5.2.1 Wald approximation for the distribution of the profile
likelihood ratio

Let us consider a test of the strength parameter µ, which can either be zero
in the case of discovery or nonzero in the case of upper limit setting. Also,
suppose that data are distributed according to a strength parameter µ′. A.
Wald showed [91] that, in the case of a single parameter of interest and in
the large sample limit, the likelihood ratio is Gaussian distributed and can
be written as

− 2 lnλ(µ) = (µ− µ̂)2

σ2 + O(1/
√
N), (5.16)

where µ̂ follows a Gaussian distribution with mean µ′ and standard deviation
σ, and N represents the data sample size. The standard deviation σ of µ̂ can
be obtained from the covariance matrix of the estimators of all parameters
(including POI), Vij = cov[θ̂i, θ̂j ]. In the large sample limit, the bias of ML
estimators tends to zero and the Rao-Cramer-Frechet (RCF) bound holds,
in such a way that the covariance matrix can be estimated by computing
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V −1
ij = −E

[
∂2 lnL
∂θi∂θj

]
, (5.17)

where the expectation value assumes a strength parameter µ′.

5.2.2 Approximate distribution for q0

Assuming the validity of the Wald approximation of Eq. 5.16 and starting
from Eq. 5.12 one easily gets

q0 =
{
µ̂/σ2 µ̂ ≥ 0,
0 µ̂ < 0, (5.18)

where µ̂ follows a Gaussian distribution with mean µ′ and standard deviation
σ. From this, it can be shown that the pdf of q0 takes the form

f(q0|µ′) =
(

1 − Φ
(
µ′

σ

))
δ(q0) + 1

2
1√
2π

1
√
q0

exp
[
−1

2

(√
q0 − µ′

σ

)2]
. (5.19)

For the important case of µ′ = 0, which serves as a baseline to compute
p-values, the equation above reduces to

f(q0|0) = 1
2δ(q0) + 1

2
1√
2π

1
√
q0
e−q0/2. (5.20)

From Equation 5.19 it can be shown that the corresponding cumulative
function is

F (q0|µ′) = Φ
(√

q0 − µ′

σ

)
, (5.21)

which in the special case µ′ = 0 simplifies to

F (q0|0) = Φ(√q0). (5.22)

Given that the p-value of the µ = 0 hypothesis is

p0 = 1 − F (q0|0), (5.23)

therefore the significance, using Eq. 5.1, simply becomes

Z0 = Φ−1(1 − p0) = √
q0. (5.24)
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5.2.3 Approximate distribution for qµ

Assuming the validity of the Wald approximation of Eq. 5.16 and starting
from Eq. 5.14 one easily gets

qµ =
{

(µ−µ̂)2

σ2 µ̂ < µ,
0 µ̂ > µ,

(5.25)

where again µ̂ follows a Gaussian distribution with mean µ′ and standard
deviation σ. The pdf f(qµ|µ′) is found to be

f(qµ|µ′) = Φ
(
µ′ − µ

σ

)
δ(qµ) + 1

2
1√
2π

1
√
qµ

exp
[
−1

2

(
√
qµ − µ− µ′

σ

)2]
,

(5.26)
so that for the special case µ = µ′ we get

f(qµ|µ) = 1
2δ(qµ) + 1

2
1√
2π

1
√
q0
e−qµ/2. (5.27)

The cumulative distribution is

F (qµ|µ′) = Φ
(

√
qµ − µ− µ′

σ

)
, (5.28)

thus leading to a special case µ′ = µ that has the same form as what was
found for q0, namely,

F (qµ|µ) = Φ(√qµ). (5.29)

The p-value of the µ being tested is given by

pµ = 1 − F (qµ|µ) = 1 − Φ(√qµ), (5.30)

and the corresponding significance is

Zµ = Φ−1(1 − pµ) = √
qµ. (5.31)

If pµ is found below a give threshold α, which is usually taken to be α = 0.05,
then the tested value of µ is said to be excluded at a confidence level (CL)
of 1 − α. The observed upper limit on the signal strength parameter is the
smallest tested µ with pµ < α. An explicit formula for the upper limit can
be obtained by simply setting pµ = α and solving for µ:
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pµ = α

1 − Φ(√qµ) = α

1 − Φ
(
µ− µ̂

σ

)
= α

Φ−1(1 − α) = µ− µ̂

σ

thus leading to

µup = µ̂+ σΦ−1(1 − α). (5.32)
As an important point, it should be noted that some of the formulae

given above require the standard deviation σ of µ̂. We already gave a method
to estimate the variance using the RCF bound (see Eq. 5.17); however, in
many situations, it turns out to be impractical to compute the RCF bound
analytically, since it requires the expectation value of the second derivatives
of the log-likelihood function (i.e., an integration over the variable x). In
the following, we will show a way to overcome this bottleneck which relies
on the use of a special, artificial data set that we call the “Asimov data set”.

5.2.4 The Asimov data set and the variance of µ̂

First, let us give a definition of the Asimov data set and show how it is
constructed in some interesting cases.

Asimov data set. An Asimov data set is a data set constructed in such
a way that, when one uses it to evaluate all the ML estimators of all the
parameters, one gets their true values.

As a first important example of Asimov data set, let us suppose we are
performing a simple counting experiment: we measure some number of events
n with E[n] = µs + b, where the expected signal and background yields s
and b are assumed to be known with negligible uncertainty. The observed
number of events n is taken to be a Poisson variable and so the likelihood
can be written as

L(µ) = (µs+ b)n

n! e−(µs+b).

In this simple case, the only parameter entering the likelihood is the signal
strength µ and the Asimov data set is the expected signal+background yield
µs+ b. Let us demonstrate this statement by computing the ML estimator
for µ. The ML estimator for µ is found by setting the partial derivative
∂L/∂µ = 0. Straightforward calculations lead to

µ̂ = n− b

s
. (5.33)
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If we impose the Asimov condition µ̂ = µ and solve for n we obtain:

nA = µs+ b. (5.34)

As a second example, let us move to a slightly more complex case, namely
a shape analysis which is described by the likelihood reported in Eq. 5.6.
Let θ0 ≡ µ, in such a way that the full set of parameters (the POI µ and
the nuisance parameters) can be written as θ. In order to maximize this
likelihood let us compute the partial derivatives of the log-likelihood with
respect to the parameters and set them equal to zero:

lnL = ln
(

N∏
i=1

(µsi + bi)ni

ni!
e−(µsi+bi)

M∏
j=1

u
mj

j

mj ! e
−uj

)
=

=
N∑

i=1
ln
(

(µsi + bi)ni

ni!
e−(µsi+bi)

)
+

M∑
j=1

ln
(
u

mj

j

mj ! e
−uj

)
=

=
N∑

i=1

[
ni ln (µsi + bi)︸ ︷︷ ︸

νi

− lnni! − (µsi + bi)︸ ︷︷ ︸
νi

]
+

+
M∑

j=1

[
mj ln uj − lnmj ! − uj

]
.

∂ lnL
∂θk

=
N∑

i=1

[
ni

∂

∂θk
ln νi − 0 − ∂νi

∂θk

]
+

M∑
j=1

[
mj

∂

∂θk
ln uj − 0 − ∂uj

∂θk

]
=

=
N∑

i=1

(
ni

νi
− 1

)
∂νi

∂θk
+

M∑
j=1

(
mj

uj
− 1

)
∂uj

∂θk
= 0.

(5.35)

Notice that now we cannot proceed as we did previously, because we are
now dealing with more than one parameter. It is not correct to perform the
partial derivative of the likelihood with respect to θ0 and find the n0 and m0
that give θ̂0 = E[θ0], then perform the partial derivative of the likelihood
with respect to θ1 and find the n1 and m1 that give θ̂1 = E[θ1] etc., because
the Asimov data set is a single data set nA, mA that, when used to evaluate
all the ML estimators, gives the true values for the parameters. We can
nevertheless note that condition (5.35) holds for every k (namely, for all the
parameters) if ni = νi and mj = uj . This means that the Asimov data set
in the case of a shape analysis is the set of N values ni,A and M values mi,A

fulfilling:

ni,A = E[ni] = νi = µsi + bi,

mj,A = E[mj ] = uj ,
(5.36)
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namely an N -bins histogram made of the expected signal+background yields
for each of the observable bins and a M -bins histogram made of the expected
background yields for each of the subsidiary measurement bins.

As previously stated, we can use the Asimov data set to find an estimation
for the variance of µ̂, σ. As a first step, let us exploit the Asimov data set to
compute an “Asimov likelihood” LA and the corresponding profile likelihood
λA:

λA(µ) = LA(µ, ˆ̂θ)
LA(µ̂, θ̂)

= LA(µ, ˆ̂θ)
LA(µ′,θ) , (5.37)

where the last equality follows by the very same definition of Asimov data set.
As we already mentioned, a standard way to find σ is to use the prescription
of the RCF bound, namely to estimate the matrix of second derivatives of
the log-likelihood to obtain the inverse of the covariance matrix, then to
invert it and finally to extract the element V00 corresponding to the variance
σ of µ̂. The second derivative of the log-likelihood is

∂2 lnL
∂θk∂θ`

=
N∑

i=1

[(
ni

νi
− 1

)
∂2νi

∂θk∂θ`
− ∂νi

∂θk

∂νi

∂θ`

ni

ν2
i

]
+

+
M∑

j=1

[(
mj

uj
− 1

)
∂2uj

∂θk∂θ`
− ∂uj

∂θk

∂uj

∂θ`

mj

u2
j

]
.

(5.38)

The equation above shows that the second derivative of the log-likelihood
depends linearly on the data values ni and mj , which means that its expecta-
tion value can be found by simply evaluating it with the expectation values
of the data, which, given Eq. 5.36, are simply the Asimov data. Therefore,
the inverse of the covariance matrix can be obtained as

V −1
k` = −E

[
∂2 lnL
∂θk∂θ`

]
= −∂2 lnLA

∂θk∂θ`
=

N∑
i=1

∂νi

∂θk

∂νi

∂θ`

1
νi

+
M∑

j=1

∂uj

∂θk

∂uj

∂θ`

1
uj
. (5.39)

In practical cases, one can evaluate the derivatives of lnLA numerically, use
them to find the inverse of the covariance matrix, invert it and extract the
variance of µ̂.

5.3 Median discovery and exclusion significances
In order to state the sensitivity of a given experiment, one is not only
interested in the significance obtained from the observed data set, but
also in the expected (more precisely, median) significance with which one
would be able to reject different values of the tested µ. Specifically, in the
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Figure 5.1: Pictorial representation of the p-value corresponding to the
median qµ assuming an alternative hypothesis µ′.

case of discovery one may be interested in the median significance, under
the assumption of the nominal signal hypothesis (µ′ = 1) with which the
background-only hypothesis (µ = 0) can be rejected. On the other hand,
in the case of exclusion, one may be interested in the median significance,
assuming the background-only hypothesis (µ′ = 0), with which a nonzero
value of µ (usually µ = 1) can be rejected. The median significance of an
experiment is illustrated in Fi. 5.1, where the pdfs for qµ are shown for
both an hypothesized value of µ and µ′. Note that the distribution f(qµ|µ′)
is shifted towards higher values of qµ, as it should be, since some level of
disagreement between the data and the tested value of the signal strength
is expected when data are distributed with respect to a different signal
strength value. The sensitivity of an experiment can be characterized by the
p-value corresponding to the median qµ assuming the alternative hypothesis
µ′, namely the shaded region in Fig. 5.1.

In the following we will describe how to obtain simple expressions for the
experimental sensitivity (i.e., the median discovery or exclusion significance)
by making use of the previously defined Asimov data sample.

5.3.1 Expected significance for a discovery

As a starting point in order to obtain the expected significance in the case of
a discovery, let us note that the observed significance reported in Eq. 5.24 is
a monotonic function of the test statistic q0. Thus, the expected significance
is obtained by simply evaluating the function for the median value of q0
for a hypothesized value µ′. Since the Wald approximation is assumed, q0
follows approximately a Gaussian distribution, for which the median can be



146 CHAPTER 5. STATISTICAL METHODS

approximated with the expectation value, which in turn can be approximated
by its Asimov value, i.e.:

med[Z0|µ′] = √
q0,A. (5.40)

The Asimov data set must obviously be chosen in such a way that the
evaluation of µ̂ using this data set gives µ′ as a result. Given the form of
q0 in the Wald approximation that was found in Eq. 5.18, we can readily
obtain the following expression for the expected significance in the case of
discovery:

med[Z0|µ′] = √
q0,A = µ′

σ
. (5.41)

Notice that the µ̂ < 0 part of Eq. 5.18 is not taken into account since using
the Asimov data set we obtain µ̂ = µ′ and the hypothesized µ′ value is
greater than zero.

By exploiting the important properties of the Asimov data set, we were
able to find the median significance, assuming some strength parameter µ′,
for rejecting the background-only hypothesis. However, it is also useful to
know by how much the expected significance would vary, given the expected
fluctuations in data. To achieve this, it is convenient to compute error bars
for the median significance corresponding to ±Nσ variations of µ̂. Let us go
through the two cases separately:

• Positive variation +Nσ. Combining the results of Eqs. 5.18 and 5.24,
we can write the following expression for the observed significance:

Z0(µ̂+Nσ) =


µ̂+Nσ

σ
µ̂+Nσ ≥ 0,

0 µ̂+Nσ < 0.

If we evaluate this using the Asimov data set to find the median
significance we readily obtain:

Z0(µ′ +Nσ) =


µ′

σ
+N µ′ +Nσ ≥ 0,

0 µ′ +Nσ < 0,

where the only possible case is actually the first one, since µ′ ≥ 0. Thus,
the median significance for a +Nσ variation is found to be

Z0(µ′ +Nσ) = µ′

σ
+N = med[Z0|µ′] +N. (5.42)
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• Negative variation −Nσ. In this case, the significance takes the form

Z0(µ̂−Nσ) =


µ̂−Nσ

σ
µ̂−Nσ ≥ 0,

0 µ̂−Nσ < 0.

Following the same reasoning as before and using the Asimov data set,
we get:

Z0(µ′ −Nσ) =


med[Z0|µ′] −N µ′ −Nσ ≥ 0,

0 µ′ −Nσ < 0.

Notice that now µ′ −Nσ has not a definite sign, so both of the cases
are possible. Moreover, med[Z0|µ′]−N may be negative and a negative
significance does not have a physical meaning. For this reason we take
the higher of the possible values for the expected significance as the
median significance corresponding to a −Nσ variation:

Z0(µ′ −Nσ) = max
[
med[Z0|µ′] −N, 0

]
. (5.43)

We can summarize the results obtained for the median discovery signifi-
cance and its error bands as follows:

med[Z0|µ′] = √
q0,A

Z0(µ′ +Nσ) = med[Z0|µ′] +N

Z0(µ′ −Nσ) = max
[
med[Z0|µ′] −N, 0

]
(5.44)

5.3.2 Expected significance for exclusion

As a starting point in order to obtain the expected significance in the case of
exclusion, let us note that the observed significance reported in Eq. 5.31 is
a monotonic function of the test statistic qµ. Thus, we can repeat the very
same reasoning of the previous subsection and find the expected significance
by evaluating Eq. 5.31 with the Asimov data set, obtaining:

med[Zµ|µ′] = √
qµ,A = µ− µ′

σ
. (5.45)

where in the last equality we used the asymptotic expression for qµ, Eq. 5.25
and the Asimov data set must be chosen in such a way that the evaluation
of µ̂ using this data set gives µ′ as a result. In order to find the expected
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upper limit, let us start from the approximate form of the observed upper
limit given by Eq. 5.32 and find the median value by evaluating it with an
Asimov data set corresponding to µ′:

med[µup|µ′] = µ′ + σΦ−1(1 − α). (5.46)

In a similar fashion, one can compute the observed upper limit for µ̂±Nσ
and evaluate it using the Asimov data set, obtaining the error bands for the
median upper limit:

bandNσ = µ′ + σ
[
Φ−1(1 − α) ±N

]
. (5.47)

Note, as highlighted at the beginning of Section 5.3, that the usual procedure
to state expected exclusion significances and expected upper limits uses
µ′ = 0. This means that one usually computes the limit that one would
obtain if the most probable (more precisely: median) value of the test statistic
qµ in the background only hypothesis was measured.

5.3.3 Combination of multiple channels

In most of the cases, data analyses split the phase space of the search in many
channels, often referred to as categories, in order to enhance the sensitivity of
the measurement. For each channel i there is a likelihood function Li(µ,θi),
where θi stands for the set of nuisance parameters for the ith channel, some
of which may be shared between channels. The signal strength parameter
is assumed to be the same for all channels. If the channels are statistically
independent (which can be easily arranged), then the full likelihood can be
written as the product of the likelihoods over all the channels,

L(µ,θ) =
∏

i

Li (µ,θi) , (5.48)

where θ stands for the full set of nuisance parameters. Thus, the profile
likelihood ratio λ(µ) becomes:

λ(µ) =
∏

i Li(µ, ˆ̂θi)∏
i Li(µ̂, θ̂i)

. (5.49)

Because the Asimov data set has no statistical fluctuations, one has
µ̂ = µ′ for each channel in such a way that, when using an Asimov data set
corresponding to a signal strength parameter µ′, one finds that the global
Asimov likelihood ratio factorizes in the product of the Asimov likelihood
ratios over all channel, that is:

λA(µ) =
∏

i Li(µ, ˆ̂θi)∏
i Li (µ′,θ) =

∏
i

λA,i(µ). (5.50)
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This greatly simplify the task of computing Eqs. 5.40 and 5.45 in the case
of multiple channels, since the global likelihood can be obtained as the
product of separate likelihoods for each channel. Nevertheless, in order to
find observed significances or upper limits, one needs to construct the full
likelihood function, which cannot be factorized, and perform a ML fit to
construct the likelihood ratio.

5.4 Goodness of the asymptotic formulae

In this final section, let us show with a simple example the goodness of the
asymptotic formulae given above. We consider a shape analysis in which one
is looking for a peak in some invariant mass distribution. The background is
assumed to follow a Rayleigh distribution, while the signal is modeled with
a Gaussian with known mean and width. To simplify things, no subsidiary
measurement is performed. We assume the likelihood function to have the
form

L(µ, θ) =
N∏

i=1

(µsi + θfb,i)ni

ni!
e−(µsi+θfb,i), (5.51)

where the mean signal yield in each bin, si, and the probability to find a
background event in bin i, fb,i, are assumed to be known, while the total
expected number of background events, θ, is a nuisance parameter. For a
given data set n = (n1, n2, . . . , nN ) we can now evaluate the likelihood and
from this determine any of the previously discussed test statistics. If we
focus on the test statistic qµ used to set an upper limit on µ and compute
the distribution f(qµ|µ′) a first time by generating Monte Carlo toys and
a second time using the asymptotic formula in Eq. 5.26, we obtain the
results that are shown in Fig. 5.2, where the distributions f(qµ|0) (red)
and f(qµ|µ) (blue) are plotted for both the MC toys, as histograms, and
for the approximated formulae, as functions. We see pretty clearly that the
asymptotic formulae agree well with the MC predictions.

If one has only the MC histograms, the expected upper limit at 1 − α on
the signal strength parameter can be found by testing different values of µ
and finding the one for which the p-value, assuming that the median qµ in
the background-only hypothesis is measured, is equal to α (see Fig. 5.2). As
a final remark, we will show that having the asymptotic formulae in hand,
this procedure reduces to the formula that was given in Eq. 5.46 evaluated
for µ′ = 0. Indeed, following the given procedure we must find a µup such
that pµup = α. This means

pµup =
∫ +∞

med[qµup |0]
f(qµup |µup) dqµup = α
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Figure 5.2: The distributions f(qµ|0) (red) and f(qµ|µ) (blue) for both MC
toys and asymptotic formulae. The shaded, green area under the curve
f(qµ|µ) is the median p-value under the assumption of the background-only
hypothesis. The value of the tested µ for which pµ = α is said to be the
expected upper limit at 1 − α CL.

which can also be written as
pµup = 1 − F (qµup |µup) = α. (5.52)

Equation 5.52 can be written, making use of the expression in Eq. 5.29 for
F (qµ|µ) given by the Wald approximation, as

pµup = 1 − Φ
(√
qµup

)
=

= 1 − Φ
(√

med[qµup |0]
)

= α,
(5.53)

which means √
med[qµup |0] = Φ−1(1 − α). (5.54)

Recall that median[qµup |0] is the specific q̃µup value that gives F (q̃µup |0) = 1
2 .

Using Eq. 5.28 for F (qµ|µ′) in the case µ′ = 0 we get

Φ
(√

q̃µup − µup
σ

)
= 1

2√
q̃µup − µup

σ
= Φ−1

(1
2

)
√
q̃µup − µup

σ
= 0√

q̃µup ≡
√

med[qµup |0] = µup
σ
.

(5.55)

So, in the end, putting Eq. 5.55 into Eq. 5.54, we get
µup
σ

= Φ−1(1 − α)

µup = σΦ−1(1 − α),
(5.56)

which corresponds to Eq. 5.46 when µ′ = 0.



Chapter 6

Results

6.1 Upper limit in the CLs prescription

In order to compute the upper limit on the signal strength parameter µtt̄H,
the test statistic introduced in Eq. 5.14 is used. As we discussed in Subsection
5.2.3, a possible way to compute the upper limit at (1 − α) CL is to find the
smallest value of the tested µ that gives pµ < α, where pµ is given by Eq.
5.30. However, a more refined procedure, which is discussed in full detail in
[92], can be implemented by defining, together with pµ, the p-value 1 − pb

associated with the observation for the background-only hypothesis, i.e.,

1 − pb =
∫ ∞

qµ,obs
f (qµ|0) dqµ. (6.1)

Both the p-values are shown schematically in Fig. 6.1. Then, we can introduce
the quantity CLs(µ) by taking the ratio of these two probabilities,

CLs(µ) = pµ

1 − pb
, (6.2)

and find the smallest value of the tested µ for which CLs < α.
This way, one can get small values of CLs(µ) (and thus, eventually,

exclude the tested µ) for either small values of pµ, i.e., in the case of great
incompatibility between the signal+background hypothesis and the observed
data, or in the case of large values for 1 − pb, i.e., in the case of great
compatibility between the background-only hypothesis and the observed
data. Also, as 1 − pb is always less than or equal to unity, the exclusion
criterion based on CLs(µ) is more conservative than the usual criterion
pµ < α, and the actual coverage probability of the corresponding intervals
will exceed the nominal confidence level 1 −α. In this work, we report upper
limits obtained with the CLs prescription.

Using the asymptotic formulae given by Eqs. 5.28, 5.30 and 5.45, it is
possible to obtain a rather simple form for CLs, that is
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Figure 6.1: p-values pµ (red area) and 1 − pb (blue, dashed area) used in the
CLs prescription for the computation of upper limits.

CLs =
1 − Φ

(√
qµ

)
Φ
(√

qµ,A − √
qµ

) , (6.3)

which can be used to impose CLs = α to find the observed and median upper
limits. Using Eq. 5.25 and doing similar calculations to the ones performed
in Subsection 5.2.3 one finds that the formula for the observed upper limit
reads

µup = µ̂+ σΦ−1
[
1 − αΦ

(
µ̂

σ

)]
. (6.4)

Also, with identical steps to the ones developed in Subsection 5.3.2, one
finds that the formulae for the median upper limit and the related error
bands are

med[µup|0] = σΦ−1
(

1 − 1
2α
)

(6.5)

and

bandNσ = σ
{

Φ−1 [1 − αΦ (±N)] ±N
}

(6.6)

respectively.

6.2 Blinded results
The CMS Collaboration performed, and still performs, many searches of new
processes by looking for signals amidst the background of already-discovered
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processes. If the indication for a new signal emerges, more data should be
collected in order to make the measurement statistically more significant and
to confirm or reject the existence of the sought-after signal.

However, a well-known tendency of the human beings, present at conscious
or unconscious level, is to influence and optimize analyses based on what
has been seen previously. Historically, several ways have been developed to
prevent this from happening. In this work, the method of “keeping the signal
box closed” is adopted, i.e., the analysis is developed and optimized without
looking at the data distributions in the signal region. More precisely, we
do not have access to the distribution of the invariant mass of the resolved
Higgs candidate for the events entering the signal categories.

The metric used to optimize the performances of the blinded analysis is the
median (expected) upper limit at 95% CL on the signal strength parameter
µtt̄H, computed in the CLs prescription. Even though the observed signal
strength cannot be extracted at the level of the blinded analysis, since no
data in the signal region is available to perform the ML fit, it is nevertheless
convenient and recommended, before reporting the final value of the expected
upper limit, to perform sanity checks for the fitting procedure by making
use of an Asimov dataset. We perform such checks using an Asimov dataset
corresponding to the signal+background (S+B) hypothesis. The CMS Higgs
Physics Analysis Group suggests some useful quantities to be monitored in
order to assess the consistency of the procedure. These quantities are:

• The fitted value of the signal strength. By the very definition of an
Asimov dataset corresponding to the S+B hypothesis, a consistent fit
should return the fitted value µtt̄H, A = 1;

• The pulls on the nuisance parameters. The pull on a given NP is
defined as the difference between the post-fit and pre-fit values θ and
θ0 of the NP, normalized to the prefit uncertainty ∆θ0, i.e.,

θ − θ0
∆θ0

. (6.7)

Since we are fitting an Asimov dataset, the expected behavior for all
the parameters is not to be pulled, i.e., the pulls are all expected to
be zero. Also, a related useful information is the ratio between the
post-fit and pre-fit uncertainties on the NP, with values smaller than 1
implying that the NP is constrained by the fitting procedure;

• The impacts of the nuisance parameters on the signal strength µtt̄H.
The impact of a NP θ on the signal strength is defined as the shift
∆µtt̄H that is induced by a shift of ±∆θ on the NP, where ∆θ is the
post-fit uncertainty, while the remaining NPs are profiled as usual. The
impact reflects the level of correlation between the NP and the signal
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Figure 6.2: Pulls and impacts for the 30 nuisance parameters that affect the
most the signal strength µtt̄H in the RHC, as the result of the fit to the S+B
Asimov dataset.

strength and is useful to understand which NPs have the largest effect
on the signal strength uncertainty.

All such information is summarized in the pulls and impacts plot which
is shown in Fig. 6.2. In the upper right corner, the fitted value of µtt̄H is
reported. The left column shows the names of the 30 nuisance parameters
impacting the most on the signal strength parameter µtt̄H, sorted in decreasing
order of the impact. The central column shows the pull of each NP, along with
the error bars corresponding to the ratio of post-fit and pre-fit uncertainties.
Finally, the third column shows the impact of each NP on the signal strength,
with red bands standing for a positive shift of the NP and blue bands standing
for a negative shift of the NP. Based on the orientation of such bars, one can
deduce if a give NP is correlated or anticorrelated with µtt̄H.

As a first remark, we shall note that the fitted value for the signal strength
is 1, as expected from a fit to a S+B Asimov dataset.

Secondly, among the nuisance parameters having the biggest impact on
the signal strength parameter, we find the renormalization and factorization
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scales, the b tagging uncertainty related to c-flavored jets, the MC statistics of
the second bin of category 9, the shape uncertainty for the QCD background
in category 10 and the uncertainty on the QCD normalization of categories
with two AK8 jets. As expected, the prediction of the dominant background
plays a major role in determining the uncertainty on µtt̄H, even though
by estimating its contribution with a data-driven method we are able to
obtain lower impacts with respect to different scenarios in which, for example,
the normalization was obtained from the MC prediction and the related
uncertainty was freely floating.

Finally, we see that all the pulls are equal to zero, as expected, and
that some nuisance parameters are somewhat constrained. No indication of
artificial overconstrain is found in any of the NP. In particular, we note that
the NP related to the tt̄ normalization is found to be constrained, which is
the desired behavior achieved by including in the fit the tt̄ VR. The pulls
and impacts for the full set of nuisance parameters entering the analysis can
be found in Appendix B.1.

Once the fitting procedure has been validated, we proceed in computing
the expected upper limit at 95% CL on the signal strength parameter. By
performing a fit to the four signal categories and to the tt̄ VR simultaneously,
the expected upper limit at 95% CL on µtt̄H is found to be 15.9 times the
expectation from the SM, i.e.,

med[µtt̄H, up|0] = 15.9. (6.8)

6.3 Unblinded results

Once the diagnostic of the fitting procedure has been carried out, we proceed
in the extraction of the signal strength value. A comparison between the
pre-fit template shapes and the observed data is reported in Fig. 6.3 for the
signal categories and for the tt̄-enriched VR.

By performing a simultaneous ML fit to the data sample in the signal
categories and in the tt̄ VR, the observed signal strength is found to be

µ̂tt̄H = −7+8
−7, (6.9)

a value which is compatible with the SM expectation.
Since the fitted value is also compatible with the background-only hypoth-

esis, we additionally set an exclusion limit at 95% CL using the asymptotic
approximation of the CLs prescription. Combining all the signal categories
and the tt̄ VR, the observed and expected upper limits on µtt̄H are found to
be µtt̄H < 11.5 and < 15.8, respectively. The observed and expected upper
limits in each signal category, together with the observed and expected upper
limit which result from the combination, are shown in Fig. 6.4.
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Figure 6.3: Comparison between the pre-fit template shapes and the observed
data for the signal categories and for the tt̄ VR. The sum of all the background
processes is shown as a stacked plot, while the signal distributions are
superimposed. The observed data are shown as black dots. The pre-fit
uncertainties on the total background are reported as shaded regions. The
ratio between the observed data and the total background is shown in the
bottom panels.
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Figure 6.4: Observed and expected upper limits at 95% CL in each signal
category, together with the observed and expected upper limit which result
from the combination. Also, the observed and expected upper limits which
result from the combination of categories with 2 and 1 AK8 jets are reported.
The expected limits are displayed with the 68% and 95% CL intervals. In all
the cases, the fit has been performed simultaneously with the VR in order
to constrain the uncertainties related to the tt̄ process.

In order to check the sanity of the fitting procedure also in the case of
a fit to the observed data sample, we plot the pulls of the NPs and their
impacts on the signal strength parameter. The result of such a check is
shown in Fig. 6.5.

In the ideal case in which the pre-fit prediction perfectly describes the
observed data, the NPs should not be pulled. As this is not, obviously, the
real-life case, we rather expect the pulls to spread in a roughly Gaussian way
around the value of zero. Also, considering the definition of the pulls given
by Eq. 6.7, we expect the standard deviation of this distribution to be 1,
i.e., 95% of the NPs should lie in the pull mass window [−2, 2]. By having
a look at Fig. 6.5, we see that this is indeed the case, with an important
exception which we shall describe below.

The NP called “CMS_subBkgnormC12”, which is related to the uncer-
tainty on the normalization of the subdominant backgrounds in category
12, is strongly pulled, with a fitted value of 4.16. This can be explained by
checking the pre-fit prediction of the data sample given in Fig. 6.3. We
shall note that, in category 12, our pre-fit prediction underestimates the
data yield, and thus, the fit accommodates this by strongly increasing the
normalization of the subdominant backgrounds.

Regarding the constraints on the nuisance parameters, we shall give
below an explanation for the NPs which are found to impact the most on
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Figure 6.5: Pulls and impacts for the 30 nuisance parameters that affect
the most the signal strength µtt̄H in the RHC, as the result of the fit to the
observed data sample.

the signal strength. As far as the NPs related to the uncertainties on the
shape of the QCD background are concerned (“CMS_QCDshapeuncC9” and
“CMS_QCDshapeuncC10”), several methods have been tested in order to
estimate this source of uncertainty and, eventually, the most conservative
one has been chosen. Thus, our choice is probably over-conservative and the
fit is constraining this uncertainty to its effective magnitude. The NP which
deals with the uncertainty on the profile of the PU distribution (“CMS_pu”)
is assumed to be correlated between categories and processes, thus leading to
a moderate constraint. Similarly, the NP which treats the uncertainty on the
QCD yield for categories with 2AK8 jets (“CMS_QCDnorm2AK8_resolved”)
is assumed to be correlated between categories, thus leading to a moderate
constraint. Finally, the NP which deals with the uncertainty on the final
state radiation in the tt̄ process (“CMS_TTfsr”) is assumed to be correlated
between categories, and the inclusion of the tt̄-enriched VR in the fit leads
to a significant constraint. The pulls and impacts for the full set of nuisance
parameters entering the analysis can be found in Appendix B.2.

The final distributions for the invariant mass of the Higgs boson candidate,
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resulting after the combined fit to the data, are shown in Fig. 6.6.

6.4 Combination of the RHC and BHC

As it was pointed out in Chapter 1, the RHC described in this work, where
the Higgs boson decays to a couple of well-separated, b tagged jets, is part of
a wider tt̄H search which also involves a second channel, the BHC, in which
the Higgs boson decays to a large-radius jet with peculiar substructure. We
described in Subsection 4.4.2 that the two channel have been designed to
be mutually exclusive, and thus, a combination can be easily performed in
order to enhance the overall analysis sensitivity.

The BHC consists of nine, mutually exclusive signal categories targeting
tt̄H events in which the decay of the Higgs boson is collected using an AK8
jet. The soft drop mass of the AK8 jet which is identified to be the Higgs
candidate is the observable used in this channel to perform the final fit. In a
similar fashion to what has been discussed in Subsection 4.4.5, the signal
categories belonging to the BHC are determined based on the AK8 and AK4
multiplicities, as well as the number of top quark candidates. The same
tt̄ validation region that has been described in Subsection 4.7.2 is used to
obtain a constraint on the uncertainties related to the tt̄ process.

Also, whenever it is possible, the systematic uncertainties are treated
in the same way in the two channels, in order to guarantee a simple and
coherent combination procedure. The same sanity checks concerning the
blinded results that we showed in this work have been performed in the BHC
as well.

By performing a simultaneous ML fit to the data sample in the signal
categories and in the tt̄ VR, the observed signal strength in the BHC is
found to be µ̂tt̄H = −1.5+5.3

−5.4, a value which is compatible with the SM expec-
tation. Since the fitted value is also compatible with the background-only
hypothesis, additionally, an exclusion limit at 95% CL using the asymptotic
approximation of the CLs prescription is set. The combination of all the
signal categories and the tt̄ VR leads to observed and expected upper limits
on µtt̄H which are found to be µtt̄H < 9.4 and < 10.4, respectively.

By combining the RHC and BHC, the final tt̄H analysis results in 13,
mutually exclusive signal categories which are simultaneously fitted together
with the tt̄ VR. As a result of the fit, the observed value for the signal
strength parameter is found to be

µ̂comb
tt̄H = −3+4

−5, (6.10)

a value which is consistent with the SM expectation. Since the fitted value is
also compatible with the background-only hypothesis, we additionally set an
an exclusion limit at 95% CL using the asymptotic approximation of the CLs

prescription. Combining all the signal categories and the tt̄ VR, the observed
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Figure 6.6: Comparison between the post-fit distributions of the invariant
mass of the Higgs boson candidate and the observed data for the signal
categories and for the tt̄ VR. The sum of all the background processes is
shown as a stacked plot, while the signal distributions are superimposed.
The observed data are shown as black dots. The pre-fit uncertainties on
the total background are reported as shaded regions. The ratio between the
observed data and the total background is shown in the bottom panels.
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Figure 6.7: Observed and expected upper limits at 95% CL resulting from
the combination of the RHC and the BHC, together with the observed and
expected upper limits which result from the combination of categories with at
least one top candidate, exactly one top candidate and no top candidates. As
expected, the presence of top candidates makes the categories more sensitive.
The expected limits are displayed with the 68% and 95% CL intervals. In all
the cases, the fit has been performed simultaneously with the VR in order
to constrain the uncertainties related to the tt̄ process.

and expected upper limits on µtt̄H are found to be µtt̄H < 7.1 and < 9.0,
respectively. These combined limits are shown in Fig. 6.7, where we also
show the expected and observed upper limits obtained by the combination
of categories with at least one top candidate, exactly one top candidate and
no top candidates.

In Fig. 6.8 we show the pulls of the NPs and their impacts on the signal
strength parameter as the result of the combination of the RHC and the
BHC. As expected, the NPs impacting the most on the signal strength are
the ones which are related to the normalization of the dominant background
of the search. The pulls and impacts for the full set of nuisance parameters
entering the combined analysis can be found in Appendix B.3.

6.5 Conclusions and prospects
In this work, we developed a new approach to the searches for fully hadronic
tt̄H events, which can be considered to be complementary to the searches
that are currently performed by the CMS Collaboration. In fact, we explored
a different (or at least, partially different) phase space by looking for event
containing at least one large-radius jet. This strategy makes possible to
reduce the large number of combinatorial permutations of jets in the event,
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Figure 6.8: Pulls and impacts for the 30 nuisance parameters that affect the
most the signal strength µtt̄H in the combination of the RHC and the BHC,
as the result of the fit to the observed data sample.

which is expected to show at least eight small-radius jets, and to infer the
properties of the decaying particles by looking at the substructure of large-
radius jets. Properties such as the number of energy prongs inside a jet, or
the kinematic variables of subjets created by the soft drop algorithm, can
be successfully used to separate the tt̄H signal from the overwhelming QCD
multijet background. The analysis is split in two orthogonal channels, the
resolved Higgs channel and the boosted Higgs channel, with the former being
the focus of this work.

As a first step, we have developed a coherent trigger strategy by finding
the best performing trigger in terms of the ratio between the trigger efficiency
in data and background events. Also, a study of the trigger efficiency as a
function of several variables of interest has been performed in order to find
selection cuts that make the signal trigger fully efficient.

A baseline selection has been developed, aimed at selecting tt̄H events
in the FH final state and in the boosted topology. The key features of this
baseline selection are the absence of isolated leptons in the final state, which
selects FH decays of the tt̄H triplet, the presence of at least one AK8 jet,
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which defines boosted topologies, and the request for the scalar sum of the
transverse momenta of all the jets in the event to be greater than 900 GeV,
which makes the signal trigger fully efficient.

On top of the baseline selection, we have developed multivariate methods
to identify Higgs boson and top quark candidates. Boosted-jets BDT are used
to tag boosted Higgs boson and top quark candidates, which are reconstructed
as AK8 jets with peculiar substructure properties, while a resolved-Higgs
BDT has been developed to identify tt̄H events in which a Higgs boson
decays to a pair of well-resolved, b tagged AK4 jets. The invariant mass of
the pair which has been identified as the resolved Higgs candidate has been
chosen as the target observable in the resolved Higgs channel. To make the
RHC and BHC mutually exclusive channels, the absence or presence of a
boosted Higgs candidate has been requested, respectively.

Events have been then split into four, mutually exclusive signal categories
in order to enhance the sensitivity of the analysis. The split has been made
based on the AK8 and AK4 multiplicities, as well as on the presence or
absence of top quark candidates.

As a crucial step of the analysis, the main backgrounds of the search
have been estimated. In order to avoid the large theoretical uncertainties
involved in the simulation of the QCD multijet processes, this background
has been estimated completely from data. Concerning the shapes of the
invariant mass of the resolved Higgs candidate, they have been estimated
by setting up a dedicated, QCD-enriched control region. Data distributions
in this region have been corrected with transition functions to match the
expected distributions in the signal region. Concerning the expected yields,
they have been estimated using the ABCD method. In order to account for
possible mismodellings in the tt̄ simulation, a corrective factor for the tt̄ cross
section in the boosted regime has been derived. Also, a tt̄-enriched validation
region has been implemented, which is used to constrain the systematic
uncertainties related to the tt̄ process.

Six kind of processes have been considered in this analysis and trans-
lated to template shapes. First, both the tt̄H(bb̄) and tt̄H(nobb̄) processes
have been considered to contribute to the signal; then, we have taken into
account the QCD multijet dominant background, the tt̄ background, the
tt̄Z irreducible background and the subdominant backgrounds (coming from
processes such as Drell–Yan, single top quark production, diboson production,
etc.), which are added together to form a single template shape.

The effect of systematic uncertainties on both the shapes and normal-
izations of the template shapes has been fully taken into account. Several
sources of uncertainty required a customized treatment, such as the uncer-
tainties related to the shape of the QCD templates, or the uncertainties
on the QCD yield coming from the ABCD method. Alternatively, in every
case in which a commonly agreed procedure exists, the standard methods
recommended by the CMS Collaboration have been used to estimate the
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impact of the systematic uncertainties.
A simultaneous, maximum-likelihood fit to the data collected by the

CMS experiment during the 2016 data-taking period, and corresponding to
an integrated luminosity of 35.9 fb−1, has been performed, including the
four signal categories and the tt̄ validation region, in order to extract the
signal strength parameter µtt̄H, defined as the ratio of the measured tt̄H
production cross section to the one expected from SM calculations. As a
result, the fitted value for the signal strength parameter has been found to
be µ̂tt̄H = −7+8

−7, a value which is consistent with the expectation from the
standard model, but also with the background-only hypothesis. For this
reason, we have also set an observed (expected) upper limit on the signal
strength parameter, which is found to be 11.5 (15.8) times the expectation
from the standard model.

The combination of the RHC and the BHC resulted in the simultaneous
fit of 13 signal categories, together with the tt̄ validation region. As a result,
the fitted value for the signal strength parameter has been found to be
µ̂tt̄H = −3+4

−5, a value which is consistent with the expectation from the
standard model, but also with the background-only hypothesis. For this
reason, we have also set an observed (expected) upper limit on the signal
strength parameter, which is found to be 7.1 (9.0) times the expectation from
the standard model. By performing the combination, the uncertainty on
the signal strength value is reduced with respect to the values found in the
individual channels, and the upper limit is found to be lower. This results in
the first search for tt̄H events in the FH final state using large-radius jets
performed by the CMS Collaboration.

In the future, several sources of improvement are expected for this analysis.
First, we shall mention the obvious reduction in statistical uncertainties that
would come from the analysis of the 2017 and 2018 datasets, which would
increase the integrated luminosity by almost a factor of four. A simple way
to get an estimation of the gain that would result from the processing of
the full Run2 data is to scale the expected yields of all the template shapes
entering the ML fit to the integrated luminosity collected during Run2 (140
fb−1) and perform a new fit to the corresponding Asimov dataset. By doing
so, the expected (blinded) upper limit on the signal strength, corresponding
to the full Run2 integrated luminosity, is found to be

med[µtt̄H, up|0]Run2 = 12.3, (6.11)

to be compared with the value of 15.9 found for the 2016 dataset only (see
Eq. 6.8). The exploitation of the full Run2 dataset leads, in the RHC, to
a roughly 25% lower expected limit on the signal strength. An analogous
test can be made for the combination of RHC and BHC, which results in an
expected (blinded) upper limit on the signal strength of 6.9, to be compared
with the corresponding value obtained using the 2016 dataset only, which
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Figure 6.9: Performance of the resolved-Higgs BDT, expressed as a back-
ground rejection vs. signal efficiency ROC curve, when trained with CSVv2,
DeepCSV and DeepJet discriminants as input variables. Fisher discriminants
have been trained as well, as a reference.

is found to be 8.5. The exploitation of the full Run2 dataset leads, for the
combination of RHC and BHC, to a roughly 20% lower expected limit on
the signal strength.

Moreover, the analysis has been developed using robust and well-understood
methods, and improvements may arise from the exploitation of more ad-
vanced algorithms. For example, b tagging techniques based on deep neural
networks could be exploited, such as DeepCSV [93] or DeepJet [94]. Figure
6.9 shows the results, expressed in terms of the ROC curve, of the retraining
of the resolved-Higgs BDT, where the b tagging discriminators that are
used as input variables come from the standard CSVv2 algorithm, from
DeepCSV and from DeepJet. As a result, we see that the performance of
the BDT is comparable with the standard approach when using DeepCSV
and slightly increased when using DeepJet. Also, even more advanced b
tagging algorithms, based on graph neural networks, are currently under
development and are expected to become available in the future.

As a second example of advanced techniques that could improve the
analysis performance, we shall mention the novel jet tagging algorithms that
have been developed inside the CMS Collaboration. For example, DeepAK8
[95] is a multi-class identification algorithm, based on AK8 jets, which is able
to identify the hadronic decays of top quarks, Higgs bosons and vector bosons.
Also in this case, intense work is ongoing inside the CMS Collaboration in
order to develop even more advanced techniques based on graph neural
networks, such as ParticleNet [96].

Finally, in the future runs of the LHC, the PU conditions are expected
to change. While we faced an average number of PU interaction per bunch
crossing 〈nPU〉 ≈ 30 during Run2, this value is expected to increase up to
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〈nPU〉 ≈ 60 during Run3 and up to 〈nPU〉 ≈ 140 during the High-Luminosity
LHC project. This will result in a very crowded environment, which will
require more advanced PU mitigation techniques and which will make it more
difficult to trigger AK4 jets, that could be masked by the overwhelming PU.
In this context, boosted topologies are expected to become more important
as they will enhance the chance of selecting tt̄H events at trigger level.
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Appendix A

Template shapes

A.1 Template shapes for category 9
In Fig. A.1, we list the template shapes entering the final fit for events
belonging to category 9.
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Figure A.1: Template shapes for events in category 9. Each template is
normalized to the expected yield in the 2016 data-taking period.
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A.2 Template shapes for category 10
In Fig. A.2, we list the template shapes entering the final fit for events
belonging to category 10.
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Figure A.2: Template shapes for events in category 10. Each template is
normalized to the expected yield in the 2016 data-taking period.
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A.3 Template shapes for category 11
In Fig. A.3, we list the template shapes entering the final fit for events
belonging to category 11.
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Figure A.3: Template shapes for events in category 11. Each template is
normalized to the expected yield in the 2016 data-taking period.
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A.4 Template shapes for category 12
In Fig. A.4, we list the template shapes entering the final fit for events
belonging to category 12.
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Figure A.4: Template shapes for events in category 12. Each template is
normalized to the expected yield in the 2016 data-taking period.
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A.5 Template shapes for the tt̄ VR
In Fig. A.5, we list the template shapes entering the final fit for events
belonging to the tt̄ VR.
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Figure A.5: Template shapes for events in the tt̄ VR. Each template is
normalized to the expected yield in the 2016 data-taking period.
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Appendix B

Pulls and impacts plots

B.1 Blinded results

In Figs. B.1 and B.2 we report the full list of the nuisance parameters
entering the fit to the Asimov dataset in the S+B hypothesis, with the
corresponding pulls and impacts on the signal strength parameter.
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Figure B.1: Pulls and impacts for nuisance parameters in the RHC, as the
result of the fit to the S+B Asimov dataset.
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Figure B.2: Pulls and impacts for nuisance parameters in the RHC as the
result of the fit to the S+B Asimov dataset.
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B.2 Unblinded results
In Figs. B.3 and B.4 we report the full list of the nuisance parameters
entering the fit to the observed data sample, with the corresponding pulls
and impacts on the signal strength parameter.
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Figure B.3: Pulls and impacts for nuisance parameters in the RHC, as the
result of the fit to the observed data sample.
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Figure B.4: Pulls and impacts for nuisance parameters in the RHC as the
result of the fit to the observed data sample.
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B.3 Combination
In Figs. B.5, B.6 and B.7 we report the full list of the nuisance parameters
entering the fit to the observed data sample for the combination of the
RHC and the BHC, with the corresponding pulls and impacts on the signal
strength parameter.
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Figure B.5: Pulls and impacts for nuisance parameters in the combination of
the RHC and the BHC as the result of the fit to the observed data sample.
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Figure B.6: Pulls and impacts for nuisance parameters in the combination of
the RHC and the BHC as the result of the fit to the observed data sample.
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Figure B.7: Pulls and impacts for nuisance parameters in the combination of
the RHC and the BHC as the result of the fit to the observed data sample.
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