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Abstract: The decomposition-based multi-objective evolutionary algorithm (MOEA/D) has shown
remarkable effectiveness in solving multi-objective problems (MOPs). In this paper, we integrate the
quantum-behaved particle swarm optimization (QPSO) algorithm with the MOEA/D framework in
order to make the QPSO be able to solve MOPs effectively, with the advantage of the QPSO being
fully used. We also employ a diversity controlling mechanism to avoid the premature convergence
especially at the later stage of the search process, and thus further improve the performance of our
proposed algorithm. In addition, we introduce a number of nondominated solutions to generate
the global best for guiding other particles in the swarm. Experiments are conducted to compare the
proposed algorithm, DMO-QPSO, with four multi-objective particle swarm optimization algorithms
and one multi-objective evolutionary algorithm on 15 test functions, including both bi-objective and
tri-objective problems. The results show that the performance of the proposed DMO-QPSO is better
than other five algorithms in solving most of these test problems. Moreover, we further study the
impact of two different decomposition approaches, i.e., the penalty-based boundary intersection (PBI)
and Tchebycheff (TCH) approaches, as well as the polynomial mutation operator on the algorithmic
performance of DMO-QPSO.

Keywords: decomposition; multi-objective optimization; quantum-behaved particle swarm opti-
mization; premature convergence; diversity control

1. Introduction

The particle swarm optimization (PSO) algorithm, originally proposed by Kennedy
and Eberhart in 1995, is a population-based metaheuristic that imitates the social behavior
of birds flocking [1]. In PSO, each particle is treated as a potential solution, and all particles
follow their own experiences and the current optimal particle to fly through the solution
space. As it requires fewer parameters to adjust and can be easily implemented, PSO has
been rapidly developed in solving real-world optimization problems, including circuit
design [2], job scheduling [3], data mining [4], path planning [5,6] and protein-ligand
docking [7]. In 1999, Moore and Chapman extended PSO to solve multi-objective problems
(MOPs) for the first time in [8]. Since then, a great interest has been aroused among
researchers from different communities to tackle MOPs by using PSO. For example, Coello
and Lechuga [9] introduced a proposal for multi-objective PSO, noted as MOPSO, which
determines particles’ flight directions by using the concept of Pareto dominance and adopts
a global repository to store previously found nondominated solutions. Later in 2004,
Coello et al. [10] presented an enhanced version of MOPSO which employs a mutation
operator and a constraint-handling mechanism to improve the algorithmic performance
of the original MOPSO. Raquel and Prospero [11] proposed the MOPSO-CD algorithm
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that selects the global best and updates the external archive of nondominated solutions
by calculating the crowding distance of particles. In 2008, Peng and Zhang developed a
new MOPSO algorithm adopting a decomposition approach, called MOPSO/D [12]. It is
based on a framework, named as MOEA/D [13], which converts an MOP into a number of
single-objective optimization sub-problems and then simultaneously solves all these sub-
problems. In MOPSO/D, the particle’s global best is defined by the solutions located within
a certain neighborhood. Moubayed et al. [14] proposed a novel smart MOPSO based on
decomposition (SDMOPSO) that realizes the information exchange between neighboring
particles with fewer objective function evaluations and stores the leaders of the whole
particle swarm using a crowding archive. dMOPSO, proposed by Martinez and Coello [15],
selects the global best from a set of solutions according to the decomposition approach
and thus update each particle’s position. Moubayed et al. [16] realized a MOPSO, called
D2MOPSO, which hybrids the approach of dominance and decomposition and introduces
an archiving technique using crowding distance. There have also been some other MOPSOs
proposed in recent years that have proved to be effective in solving complex MOPs, such
as MPSO/D [17], MMOPSO [18], AgMOPSO [19], CMOPSO [20] and CMaPSO [21].

The quantum-behaved PSO (QPSO), proposed by Sun et al. [22], is a variant of PSO
inspired by quantum mechanics and the trajectory analysis of PSO. The trajectory analysis
clarified the idea that each particle in PSO is in a bound state. Specifically, each particle
in PSO oscillates around and converges to its local attractor [23]. In QPSO, the particle is
assumed to have quantum behavior and further assumed to be attracted by a quantum
delta potential well centered on its local attractor. Additionally, the concept of the mean
best position was defined and employed in this algorithm to update particles’ positions.
In the terms of the update equation, which is different from that of PSO, on the one hand,
QPSO has no velocity vectors for each particle to update, on the other hand, QPSO requires
fewer parameters to adjust [24]. Due to these advantages of QPSO, we incorporate it into
the original MOEA/D framework for the purpose of obtaining a more effective algorithm
for solving MOPs than other decomposition-based MOPSOs that uses the canonical PSO.

QPSO and other PSO variants generally have fast convergence speed due to more
information exchange among particles. This is why such kinds of algorithms are more
efficient to solve optimization problems than other population-based random search algo-
rithms. Fast convergence speed means rapid diversity decline, which is desirable for the
algorithm to find satisfying solutions quickly during the early stage of the search process.
However, rapid diversity decline during the later stage of the search process results in
aggregation of particles around the global best position and in turn the stagnation of the
whole particle swarm (i.e., premature convergence).

Diversity maintenance is also essential when extending PSO to solve MOPs. During
the past decade, researchers have done a lot of work on developing novel techniques to
maintain diversity in their MOPSOs. For example, Qiu et al. [25] introduced a novel global
best selection method, which is based on proportional distribution and K-means algorithm,
to make particles converge to the Pareto front in a fast speed while maintaining diversity.
Cheng et al. [26] presented the IMOPSO-PS algorithm, in which the preference strategy is
applied for optimal distributed generation (DG) integration into the distribution system.
This algorithm uses a circular nondominated selection of particles from one iteration to
the next and performs mutation on particles to enhance the swarm diversity during the
search process.

In this paper, we propose a multi-objective quantum-behaved particle swarm opti-
mization algorithm based on decomposition, named DMO-QPSO, which integrates the
QPSO with the original MOEA/D framework and uses a strategy of diversity control.
As in the literature [12,13], a neighborhood relationship is defined according to distances
between the weight vectors of different sub-problems. Each sub-problem is solved utilizing
the information only from its neighboring sub-problems. However, with the increasing
number of iterations, the current best solutions to the neighbors of a sub-problem may get
close to each other. This may result in a diversity loss of the new population produced
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in the next iteration, particularly at the later stage of the search process. Therefore, in
DMO-QPSO, we do not adopt the neighborhood relationship described in the framework
of MOEA/D and MOPSO/D. Meanwhile, we introduce a two-phased diversity controlling
mechanism to make particles alternate between attraction and explosion states according
to the swarm diversity. Particles move through the search space in the phase of attraction
unless the swarm diversity declines to a threshold value that triggers the phase of explo-
sion. Additionally, unlike MOPSO/D in which the global best is updated according to a
decomposition approach, the proposed DMO-QPSO uses a vector set to store a pre-defined
number of nondominated solutions and then randomly picks one as the current global best.
All solutions in this vector set would have a chance to guide the movement of the whole
particle swarm. The penalty-based boundary intersection (PBI) approach [27] is used in
the algorithm owing to its advantage over other decomposition methods including the
weighted sum (WS) and the Tchebycheff (TCH) [13].

The rest of this paper is organized as follows. Some preliminaries of MOP, PSO, QPSO
and the framework of MOEA/D are given in Section 2. Section 3 describes the procedure of
our proposed DMO-QPSO algorithm in detail. Section 4 presents the experimental results
and analysis. Some further discussion on DMO-QPSO are introduced in Section 5. Finally,
the paper is concluded in the last section.

2. Preliminaries

In this section, we first state the definition of MOPs and then describe the basic
principles of the canonical PSO and QPSO. After that, some of the most commonly used
decomposition methods and the original MOEA/D framework are presented.

2.1. Multi-Objective Optimization

A multi-objective optimization problem (MOP) can be stated as follows.

minimize F(x) = ( f1(x), . . . , fm(x))
s.t. x ∈ Ω

(1)

where x is the decision variable vector, Ω is the decision (variable) space, and m is the
number of the real-valued objective functions. F : Ω→ Rm is the objective function vector,
where Rm is the objective space. The objectives in an MOP are mutually conflicting, so
no one solution can minimize all the objectives at the same time. Improvement of one
objective may lead to deterioration of another. In this situation, the Pareto optimal solutions
become the best tradeoffs among different objectives. Therefore, most of multi-objective
optimization algorithms are designed to find a finite number of Pareto optimal solutions
to approximate the Pareto front (PF), which could be good representatives of the whole
PF [28–31]. In order to better understand the concept of Pareto optimality [32], some
definitions are provided as follows.

Definition 1. Let x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm. For all i = 1, . . . , m and x 6= y,
if and only if fi(x) ≤ fi(y), then x dominates y, denoted as x ≺ y.

Definition 2. Let x∗ ∈ Ω. If no solution x exists in Ω such that F(x) dominates F(x∗) ,
then x∗ is a Pareto optimal solution to MOP in Equation (1), and F(x∗) is a Pareto optimal
(objective) vector. The set of all the Pareto optimal solutions is called the Pareto set (PS), denoted
by PS = {x ∈ Ω|x is a Pareto optimal solution}. The set of all the Pareto optimal (objective)
vectors is called the Pareto front (PF), denoted by PF = {F(x)|x ∈ PS}.

2.2. Particle Swarm Optimization

In the canonical PSO algorithm with N particles, each particle i (i = 1, . . . , N) has
a position vector Xi = (Xi,1, . . . , Xi,D) and a velocity vector Vi = (Vi,1, . . . , Vi,D). D is the
dimension of the search space. During each iteration t, particle i in the swarm is updated
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according to its personal best (pbest) position Pi = (Pi,1, . . . , Pi,D) and the global best (gbest)
position Pg =

(
Pg,1, . . . , Pg,D

)
found by the whole swarm. The update strategies are

presented as follows.

Vi,j(t + 1) = wVi,j(t) + c1r1
(

Pi,j(t)− Xi,j(t)
)
+ c2r2

(
Pg,j(t)− Xi,j(t)

)
(2)

Xi,j(t + 1) = Xi,j(t) + Vi,j(t + 1) (3)

for i = 1, 2, · · · , N; j = 1, 2, · · · , D, where w is the inertia weight, c1, c2 are the learning
factors, r1, r2 are two random variables uniformly distributed on (0, 1).

2.3. Quantum-Behaved Particle Swarm Optimization

In the quantum-behaved PSO (QPSO) algorithm with N particles, each particle
i (i = 1, . . . , N) has a position vector Xi = (Xi,1, . . . , Xi,D) and a personal best (pbest)
position Pi = (Pi,1, . . . , Pi,D). D is the dimension of the search space. During each iteration
t, particle i in the swarm is updated as follows.

Xi,j(t + 1) = qi,j(t)± α
∣∣Cj(t)− Xi,j(t)

∣∣· ln(1/ui,j(t)
)

(4)

for j = 1, 2, · · · , D, where ui,j is a random number distributed on (0, 1) uniformly, qi =
(qi,1, . . . , qi,D) is the local attractor of particle i, calculated by

qi = ϕ·Pi + (1− ϕ)·Pg, (5)

ϕ is a random number distributed on (0, 1) uniformly and Pg =
(

Pg,1, . . . , Pg,D
)

is the
global best (gbest) position found by particles during the search process. The contraction-
expansion coefficient α was designed to control the convergence speed of the QPSO algo-
rithm. C is the mean of the personal best positions of all the particles, namely, the mbest
position, and it can be calculated as below.

C =
1
N

N

∑
i=1

Pi =

(
1
N

N

∑
i=1

Pi,1,
1
N

N

∑
i=1

Pi,2, . . . ,
1
N

N

∑
i=1

Pi,D

)
(6)

2.4. The Decomposition Approaches

In the state-of-the-art multi-objective optimization algorithms based on decomposi-
tion, the most commonly used decomposition approaches are the Tchebycheff (TCH), the
weighted sum (WS), and the penalty-based boundary intersection (PBI) approaches [13,28].
These methods are supposed to decompose an MOP into a finite group of single-objective
optimization sub-problems, so that a certain algorithm can solve these sub-problems
effectively and efficiently. Let λi = (λi

1, . . . , λi
m)

T be a weight vector for the ith sub-
problem (i = 1, . . . , N), satisfying ∑m

j=1 λi
j = 1 and λi

j > 0 for all j = 1, 2, . . . , m; and

z∗ = (z∗1 , . . . , z∗m)
T be a reference point. Below are the definitions of TCH and PBI ap-

proaches which will be used later in this paper.

• Tchebycheff (TCH) approach:

In the TCH approach, the sub-problem i is defined as

minimize gtch(x∣∣λi, z∗
)
= max

1≤j≤m

{
λi

j

∣∣∣ f j(x)− z∗j
∣∣∣}

s.t. x ∈ Ω
(7)

• Penalty-based boundary intersection (PBI) approach:

In PBI approach, the sub-problem i is defined as
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minimize gpbi(x∣∣λi, z∗
)
= d1 + θd2

where d1 = ‖(F(x)− z∗)Tλi‖/‖λi‖
d2 = ‖F(x)− z∗ −

(
di

1/‖λi‖
)
λi‖

s.t. x ∈ Ω

(8)

where ‖·‖means the L2 − norm, and θ > 0 is a penalty parameter.

2.5. MOEA/D

MOEA/D divides an MOP into N single-objective optimization sub-problems and
attempts to simultaneously optimize all these sub-problems rather than directly solving the
MOP. These sub-problems are linked together by their neighborhoods. The neighborhood
of sub-problem i is defined as the sub-problems whose weight vectors are the T closest
ones to its weight vector λi and thus the neighborhood size of sub-problem i is T.

The MOEA/D algorithm maintains a population of N solutions x1, . . . , xN ∈ Ω,
where xi (i = 1, . . . , N) is a feasible solution to the sub-problem i. FVi is the F-value
(i.e., the fitness value) of xi, that is, FVi = F

(
xi). z = (z1, . . . , zm)

T is a reference point
and zj (j = 1, . . . , m) is the minimal value of objective f j found so far. EP is an external
population used to tore non-dominated solutions found during the search process. The
main framework of MOEA/D is described in Algorithm 1.

Algorithm 1 Framework of MOEA/D

Input: The number of sub-problems, i.e., the population size, N; The set of weight vectors,
λ1, λ2, . . . , λN ; The neighborhood size, T;
Output: EP;
1: EP = ∅;
2: Calculate the Euclidean distances between any two weight vectors;

3:
Successively select T weight vectors which are the closest to the weight vector λi and store
the indexes of these T weight vectors in B(i) = {i1, . . . , iT}, i = 1, . . . , N;

4: Generate an initial population randomly;
5: Evaluate FVi, i = 1, . . . , N;
6: Initialize z = (z1, . . . , zm)

T ;
7: while termination criterion is not fulfilled do
8: for i = 1, . . . , N do
9: Select two indexes k, l randomly from B(i);
10: Use the genetic operators to produce a new solution y from xk and xl ;
11: Repair y;
12: for j = 1, . . . , m do
13: if zj > f j(y) then
14: zj = f j(y);
15: end if
16: end for
17: for each j ∈ B(i) do
18: if g

(
y
∣∣∣λi, z

)
≤ g

(
xj
∣∣∣λi, z

)
then

19: xj = y; FVi = F(y);
20: end if
21: end for
22: end for
23: Update EP;
24: end while

3. The Proposed DMO-QPSO

In this section, we propose an improved multi-objective quantum-behaved particle
swarm optimization algorithm based on decomposition, named as DMO-QPSO, which
integrates the QPSO algorithm with the MOEA/D framework and adopts a mechanism to
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control the swarm diversity during the search process so as to avoid premature convergence
and escape the local optimal area with a higher probability.

At the beginning of the proposed algorithm DMO-QPSO, we need to define a set of
well-distributed weight vectors and then use a certain approach to decompose the original
MOP into a group of single objective sub-problems. More precisely, let λ1, λ2, . . . , λN

to be the weight vectors, and the PBI approach is employed in this paper owing to its
advantage over other decomposition approaches.

In DMO-QPSO, the swarm P with N particles is randomly initialized. Each particle i
has a position vector Xi and a personal best position Pi. Pi is initially set to be equal to Xi.
Then the mean best position of all particles can be easily obtained according to Equation (6).
The global best position Pg is produced in a natural way according to the Pareto dominance
relationship among different personal best positions. More specifically, we firstly define a
vector set GS, and the size of GS is pre-set, denoted as nGS. Then, the fast nondominated
sorting approach [33] is applied to sort the set of all the personal best positions and GS.
The lower nondomination rank of a solution is, the better it is. Therefore, we only select
the ones in the lower nondomination ranks and then store them in GS. All of the solutions
in GS are regarded as candidates for the global best employed in the next iteration for
updating particles’ positions.

It should be noted that the neighborhood in the original MOEA/D framework is
formed according to distances between the weight vectors of different sub-problems. That
is to say, the neighborhood of a sub-problem includes all sub-problems with the closest
weight vectors. Hence, on the basis of this definition, solutions to neighboring sub-problems
would be close in the decision space. It may enable the algorithm to converge faster at the
early stage but brings the risk of diversity loss and premature convergence at the later stage.
For this reason, we do not adopt in DMO-QPSO the neighborhood relationship stated in
the original MOEA/D framework.

Furthermore, we measure the swarm diversity during the search process and make
the swarm alternate between two phases, i.e., attraction and explosion, according to its
diversity. At each iteration, the diversity of the particle swarm is calculated as below.

diversity(P) = 1
|P| ·

1
|A| ·

|P|

∑
i=1

√√√√ D

∑
j=1

(
Xi,j − Xj

)2 (9)

where D is the dimensionality of the problem, |A| is the length of longest diagonal in the
search space, P is the particle swarm, |P| = N is the population size, Xi,j is the jth value of
particle i and Xj is the jth value of the average point. According to the literature [34,35],
the particle converges when the contraction-expansion coefficient α is less than 1.778 and
otherwise it diverges. Therefore, we set a threshold, denoted as dlow, to the swarm diversity.
When the diversity drops below dlow (i.e., in the explosion phase), the value of α will be
reset to a constant α0, larger than 1.778, to make particles diverge and thus increase the
swarm diversity. Otherwise, α linearly decreases between the predefined interval [a, b]
(i.e., in the attraction phase).

Like MOEA/D, we also use an external population EP in the DMO-QPSO to store the
nondominated solutions found during the search process. In each iteration step, we check
the Pareto dominance relationship between the new generated solutions and the solutions
in EP. Solutions in EP dominated by a new generated solution will be removed from EP
and this new generated solution will be added to EP if no one in EP dominates it. The
main process of the DMO-QPSO algorithm is presented in Algorithm 2.
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Algorithm 2 DMO-QPSO

Input: The number of sub-problems, i.e., the population size, N; The set of weight vectors,
λ1, λ2, . . . , λN ; The maximal number of iterations, MaxIter;
Output: EP;
1: EP = ∅, GD = ∅;
2: for i = 1, · · · , N do
3: Randomly initialize the position vector Xi of particle i;
4: Set the personal best position Pi of particle i as Pi = Xi;
5: Evaluate the fitness value F(Xi);
6: end for
7: Update GS;
8: Initialize z = (z1, . . . , zm)

T ;
9: for t = 1, · · · , MaxIter do
10: Compute the mean best position C of all the particles according to Equation (6);
11: Measure diversity(P);
12: if diversity(P) < dlow do
13: α = α0;
14: else
15: Set α linearly decreasing between the interval [a, b];
16: end if
17: for i = 1, · · · , N do
18: Update the position vector Xi(t + 1) using Equation (4);
19: Repair Xi(t + 1);
20: Evaluate F(Xi(t + 1));
21: for j = 1, · · · , m do
22: if zi > f j(Xi(t + 1)) then
23: zi = f j(Xi(t + 1));
24: end if
25: end for
26: if g(Xi(t + 1)

∣∣∣λi, z) ≤ g(Pi(t)
∣∣∣λi, z) then

27: Pi(t + 1) = Xi(t + 1);
28: end if
29: end for
30: Update GS;
31: Update EP;
32: end for

4. Experimental Studies

This section presents the experiments conducted to investigate the performance of our
proposed DMO-QPSO algorithm. Firstly, we introduce a set of MOPs used as benchmark
functions. Next, the parameter settings for different algorithms and two performance
metrics are described in detail. Finally, the comparison experiments and results analysis are
presented. More precisely, we compared the DMO-QPSO with two recently proposed multi-
objective PSOs (i.e., MMOPSO and CMOPSO) and other three multi-objective optimization
algorithms, namely, MOPSO, MOPSO/D and MOEA/D-DE [36]. The PBI approach is
used in four decomposition-based algorithms (i.e., DMO-QPSO, MOPSO/D, MOEA/D-DE
and MMOPSO).

4.1. Test Functions

We selected 15 test functions whose PFs have different characteristics including con-
cavity, convexity, multi-frontality and disconnections. Twelve of these test functions are
bi-objective (i.e., F1, F2, F3, F4, F5, F7, F8, F9 from the F test set [36], UF4, UF5, UF6, UF7
from the UF test set [37]) and the rest of them are tri-objective (i.e., F6 from the F test set
and UF9, UF10 from the UF test set). As shown in references [36,37], the F test set and the
UF test set are two sets of test instances for facilitating the study of the ability of MOEAs to
solve problems with complicated PS shapes. Besides, we used 30 decision variables for the
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UF test set, problems from F1 to F5, and F9. Problems from F6 to F8 were tested by using
10 decision variables.

4.2. Parameter Setting

The setting of weight vectors λ1, λ2, . . . , λN is decided by an integer H [36]. More
precisely, each individual weight in λ1, λ2, . . . , λN takes a value from

{
0
H , 1

H , . . . , H
H

}
.

Therefore, the population size N can be presented by N = Cm−1
H+m−1, where m is the number

of objectives. H was 299 for the bi-objective test functions and 33 for the tri-objective ones.
Consequently, the population size N was 300 for the bi-objective test functions and 595
for the tri-objective ones. The maximal number of iterations MaxIter was 500 and each
algorithm runs 30 independent times for each test function. The size of external population
nEP was set to be 100. Besides, the penalty factor θ in PBI was 5.0.

The polynomial mutation [29] was employed in MOPSO, MOPSO/D, MOEA/D-DE,
MMOPSO and CMOPSO. Two parameters ηm, pm in this mutation operator were 20 and
1/D, respectively.

For DMO-QPSO, the size of GS was 10, and the contraction-expansion coefficient
α in the attraction phase varied linearly from 1.0 to 0.5. The value of the lower bound
of diversity dlow was set to be 0.05. When the diversity drops below dlow, we set the
parameter α = α0 = 2.0.

The details are listed in Table 1.

Table 1. Parameters setting for different algorithms.

Algorithms Parameters Setting

MOPSO ω = 0.5, c1 = c2 = 1.0, ηm = 20, pm = 1
D , 30 divisions for the adaptive grid

MOPSO/D ω = 0.4, c1 = c2 = 2.0, ηm = 20, pm = 0.05, T = 20

MOEA/D-DE ηm = 20, pm = 1
D , T = 20, CR = 1.0, F = 0.5

MMOPSO ω ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.0], ηm = 20, pm = 1
D , ηc = 20, pc = 0.9, δ = 0.9

CMOPSO ηm = 20, pm = 1
D , γ = 10

DMO-QPSO α = 1.0− > 0.5, α0 = 2.0, dlow = 0.05, nGS = 10

4.3. Performance Metrics

In our experiments, the following performance metrics were used.

• The inverted generational distance (IGD) [36]: It is proposed as a method of estimating
the distance between the elements in a set of nondominated vectors and those in the
Pareto optimal set, and can be stated as:

IGD(P∗, P) = ∑v∈P∗ d(v, P)/|P∗ | (10)

where P∗ is a number of points which are evenly distributed in the objective space
along the PF, and P is an approximation to the PF. d(v, P) is the minimal Euclidean
distance between v and the points in P, and |P∗| is the size of the set P∗. P must be as
close as possible to the PF of a certain test problem and cannot miss any part of the
whole PF, so as to obtain a low value of IGD(P∗, P). It can reflect both the diversity
and the convergence of the obtained solutions to the real PF.

• Coverage (C-metric) [13]: It can be stated as:

C(A, B) = |{u ∈ B|∃v ∈ A : v dominants u}|/|B| (11)

where A, B are two approximations to the real PF of an MOP, C(A, B) is defined as
the proportion of the solutions in B that are dominated by at least one solution in A.
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4.4. Results and Discussion

Tables 2 and 3 present the average, minimum and standard deviation (SD) of the IGD
values of 30 final populations on different test functions that were produced by MOPSO,
MOPSO/D, MOEA/D-DE, MMOPSO, CMOPSO and DMO-QPSO. It is clear that our
proposed algorithm, DMO-QPSO, performed better than the other five algorithms on most
of the test problems. It yielded the best mean IGD values on all the problems except on
F7, F8, UF4, UF6 and UF10. According to Tables 2 and 3, both the mean and minimal IGD
values on F7, F8, UF4 and UF10 obtained by DMO-QPSO are worse than those obtained by
MOEA/D-DE. It should be noted that the performance of DMO-QPSO is still acceptable on
UF6. The mean IGD value of DMO-QPSO on UF6 are slightly worse than that of MMOPSO,
but DMO-QPSO got the lowest minimal IGD value among all of these algorithms. Besides,
it is obvious that MOPSO/D performed the worst on almost all of the test problems except
on F6 and UF4.

Table 2. The mean, minimum and standard deviation of IGD values on F problems, where the best value for each test case
is highlighted with a bold background.

IGD F1 F2 F3 F4 F5 F6 F7 F8 F9 Total Final
Rank

MOPSO

0.0816 0.4617 0.1897 0.1832 0.1401 0.6410 0.5036 0.3653 0.4299
0.0661 0.3105 0.1378 0.1442 0.1118 0.4491 0.3329 0.3041 0.1763
0.0108 0.1070 0.0412 0.0226 0.0213 0.0533 0.2048 0.0490 0.1221

3− 5− 3− 4− 2− 4− 3− 2+ 4− 30 4

MOPSO/D

0.2313 1.0223 0.5754 0.5748 0.5558 0.9781 1.5032 1.1271 1.0358
0.2159 0.8869 0.5013 0.5030 0.4757 0.6580 1.0491 0.8681 0.8319
0.0084 0.0757 0.0449 0.0331 0.0351 0.1810 0.2076 0.1334 0.0964

6− 6− 6− 6− 6− 5− 6− 6− 6− 53 6

MOEA/D-DE

0.1180 0.2394 0.1987 0.1702 0.1405 1.5602 0.2139 0.3046 0.1982
0.0820 0.1492 0.1464 0.1159 0.0891 1.4111 0.0792 0.2053 0.0971
0.0175 0.0775 0.0357 0.0294 0.0324 0.0577 0.0734 0.0645 0.0498

4− 3− 4− 3− 3− 6− 1+ 1+ 2− 27 3

MMOPSO

0.0481 0.1615 0.1761 0.1626 0.2365 0.3007 0.5140 0.4509 0.2285
0.0369 0.1156 0.0815 0.1072 0.0942 0.1632 0.3255 0.2344 0.1135
0.0102 0.0625 0.0784 0.0233 0.0688 0.0856 0.1059 0.1238 0.1574

2≈ 2− 2− 2− 4− 2− 4− 3≈ 3− 24 2

CMOPSO

0.1769 0.4350 0.3142 0.3467 0.2820 0.4895 0.6141 0.6237 0.4303
0.1540 0.3675 0.2762 0.2876 0.2626 0.3850 0.5204 0.5402 0.3003
0.0087 0.0365 0.0207 0.0269 0.0133 0.0643 0.0635 0.0542 0.0426

5− 4− 5− 5− 5− 3− 5− 5− 5− 42 5

DMO-QPSO

0.0404 0.1023 0.0884 0.0898 0.0696 0.2608 0.4283 0.4676 0.0938
0.0359 0.0962 0.0787 0.0810 0.0635 0.1634 0.2210 0.2686 0.0803
0.0030 0.0036 0.0071 0.0088 0.0035 0.0248 0.1160 0.0907 0.0108

1 1 1 1 1 1 2 4 1 13 1

+,−,≈ denote that the performance of the corresponding algorithm is significantly better than, worse than, and similar to DMO-QPSO
respectively by Wilcoxon rank sum test with α = 0.05.



Mathematics 2021, 9, 1959 10 of 20

Table 3. The mean, minimum and standard deviation of IGD values on UF problems, where the best value for each test case
is highlighted with a bold background.

IGD UF4 UF5 UF6 UF7 UF9 UF10 Total Final
Rank

MOPSO

0.1640 2.8297 2.8264 0.5303 0.6590 1.6258
0.1483 2.2756 2.3398 0.2036 0.5393 1.0761
0.0057 0.3514 0.3608 0.1343 0.0644 0.3764

4− 5− 5− 4− 4− 2+ 24 4

MOPSO/D

0.1672 4.3807 4.3793 1.0652 2.5708 12.7750
0.1592 3.1642 3.1732 0.7175 2.0591 10.8881
0.0035 0.3636 0.3645 0.1386 0.2999 0.9072

5− 6− 6− 6− 6− 6− 35 6

MOEA/D-DE

0.0994 1.7532 1.7616 0.1817 0.5971 1.4303
0.0879 0.9801 0.9003 0.0883 0.4705 1.0272
0.0052 0.5473 0.5481 0.0717 0.0640 0.3025

1+ 3− 3− 2− 3− 1+ 13 2

MMOPSO

0.7820 0.9039 0.8107 0.2905 0.4661 2.3204
0.5234 0.6526 0.5599 0.1019 0.3527 1.7783
0.0993 0.1261 0.1336 0.1706 0.0500 0.4342

6− 2− 1≈ 3− 2− 4− 18 3

CMOPSO

0.1582 2.7759 2.7580 0.5738 1.4510 8.1102
0.1491 2.2412 2.1983 0.5187 0.9924 6.0312
0.0031 0.1728 0.1794 0.0343 0.1715 0.7816

3− 4− 4− 5− 5− 5− 25 5

DMO-QPSO

0.1108 0.8548 0.8562 0.0765 0.3002 1.8106
0.1052 0.2345 0.2400 0.0602 0.2049 1.5177
0.0029 0.6681 0.6658 0.0216 0.0552 0.1658

2 1 2 1 1 3 10 1

+,−,≈ denote that the performance of the corresponding algorithm is significantly better than, worse than, and similar to DMO-QPSO
respectively by Wilcoxon rank sum test with α = 0.05.

In addition, the statistics by the Wilcoxon rank sum tests in Tables 2 and 3 also indicate
that DMO-QPSO outperformed other five algorithms. The MMOPSO was the second best
on F problems and the third best on UF problems respectively, while the CMOPSO was
the second worst on both F and UF problems. Table 4 illustrates the total ranks of these
algorithms on F and UF problems and gives their final ranks in the last column of the table.
As shown in this table, MOEA/D-DE is the second-best algorithm, followed by MMOPSO.
In contrast, MOPSO/D is the worst algorithm, followed by CMOPSO.

Table 4. The final rank of different algorithms on F and UF problems.

Algorithms F a UF b Total c Final Rank

MOPSO 30 24 54 4
MOPSO/D 53 35 88 6

MOEA/D-DE 27 13 40 2
MMOPSO 24 18 42 3
CMOPSO 42 25 67 5

DMO-QPSO 13 10 23 1
a The numbers in this column are derived from those in column “Total” in Table 4. b The numbers in this column
are derived from those in column “Total” in Table 5. c The numbers in this column are the sum of columns “F”
and “UF”.
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Table 5. Average C-metric between DMO-QPSO (A) and MOPSO (B).

DMO-QPSO MOPSO

Problems

F1 0.0676 0
F2 0.5282 0
F3 0.0195 0.0027
F4 0.0381 0.0025
F5 0.0445 0.0033
F6 0.0200 0.0075
F7 0.1795 0.0995
F8 0 0.2179
F9 0.3643 0

UF4 0.0692 0
UF5 0.7500 0
UF6 0.7320 0
UF7 0.2573 0
UF9 0.0250 0.0230
UF10 0.0256 0.1763

The average C-metric values are shown in Tables 5–9 which confirm the results above.
It can be seen from these tables that the final solutions obtained by DMO-QPSO is better
than those obtained by MOPSO, MOPSO/D, MOEA/D-DE, MMOPSO and CMOPSO for
most of the test functions.

Table 6. Average C-metric between DMO-QPSO (A) and MOPSO/D (B).

DMO-QPSO MOPSO/D

Problems

F1 0.1900 0
F2 0.8125 0
F3 0.5473 0
F4 0.3550 0
F5 0.5248 0
F6 0.5165 0
F7 0.5589 0
F8 0.2445 0
F9 0.7254 0

UF4 0.0800 0
UF5 0.8675 0
UF6 0.8537 0
UF7 0.7155 0
UF9 0.9965 0
UF10 0.9970 0

Table 7. Average C-metric between DMO-QPSO (A) and MOEA/D-DE (B).

DMO-QPSO MOEA/D-DE

Problems

F1 0.0440 0.0066
F2 0.1405 0.0024
F3 0.0345 0.0020
F4 0.0179 0.0085
F5 0.0250 0.0045
F6 0.9265 0
F7 0.0005 0.1944
F8 0 0.2444
F9 0.1930 0

UF4 0.0005 0.0426
UF5 0.4765 0.1103
UF6 0.4628 0.1054
UF7 0.0870 0.0079
UF9 0.0170 0.0010
UF10 0.0010 0.2475
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Table 8. Average C-metric between DMO-QPSO (A) and MMOPSO (B).

DMO-QPSO MMOPSO

Problems

F1 0.0151 0.0135
F2 0.1031 0.0132
F3 0.1200 0.0732
F4 0.1053 0.0779
F5 0.0400 0.0065
F6 0.0235 0.0020
F7 0.1595 0.1459
F8 0.0005 0.0687
F9 0.2510 0.0662

UF4 0.0505 0.0010
UF5 0.2351 0.1693
UF6 0.1398 0.1720
UF7 0.1042 0.0299
UF9 0.2505 0.0025
UF10 0.0280 0.0171

Table 9. Average C-metric between DMO-QPSO (A) and CMOPSO (B).

DMO-QPSO CMOPSO

Problems

F1 0.1290 0.0045
F2 0.3180 0
F3 0.2517 0
F4 0.1511 0.0139
F5 0.2698 0
F6 0.1811 0
F7 0.2605 0.0050
F8 0.0619 0.0406
F9 0.2874 0

UF4 0.0420 0
UF5 0.8011 0
UF6 0.7857 0
UF7 0.3145 0
UF9 0.8122 0
UF10 0.9210 0

The results of the trial runs which have the lowest IGD values on 15 test functions
produced by MOPSO, MOPSO/D, MOEA/D-DE, MMOPSO, CMOPSO and DMO-QPSO
are selected, respectively, and then plotted in Figures 1 and 2. The figures in Figures 1 and 2
clearly show the evolution of the IGD values for different algorithms versus the number of
iterations on both F and UF problems. It can be seen that the results in these figures are in
consistence with those in Tables 2 and 3. For the F problems, DMO-QPSO performed the best
except on F6, F7 and F8. As we can see in Figure 1, MOEA/D-DE was the best on problems F7
and F8, the IGD values of which drop quickly at the early stage and then converge to values
close to 0.08 and 0.20, respectively. MMOPSO obtained the second minimal IGD value on
F8, followed by DMO-QPSO, but it declines even faster than MOEA/D-DE during the first
200 iteration steps. On F6, the IGD value of DMO-QPSO fluctuates for about 400 iteration
steps during the whole search process and then reaches the value (0.1634) just slightly larger
than that of MMOPSO (0.1632), which may be related to the variation of the swarm diversity.
MOPSO/D had the worst performance on all of F problems except on F6.
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Figure 1. Cont.
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Figure 1. Evolution of the IGD values of MOPSO, MOPSO/D, MOEA/D-DE, MMOPSO, CMOPSO
and DMO-QPSO versus the number of iterations on F problems.

Figure 2. Evolution of the IGD values of MOPSO, MOPSO/D, MOEA/D-DE, MMOPSO, CMOPSO
and DMO-QPSO versus the number of iterations on UF problems.
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For the UF problems, DMO-QPSO still performed the best except on UF4 and UF10. It
can be seen that the MOEA/D-DE was the best on UF4, the IGD value of which decreases
rapidly to a value just below 0.1 while the value of DMO-QPSO is larger than 0.1. By
contrast, MMOPSO had the worst performance on UF4, the IGD value of which fluctuates
significantly between 0.5 and 0.9. On UF10, MOEA/D-DE and MOPSO had the similar
performance, for the IGD values of them decrease rapidly during the first 80 iteration
steps and then gradually converge to values around 1.0. DMO-QPSO was the third-best,
followed by MMOPSO. MOPSO/D had the worst performance on all of UF problems
except on UF4. Additionally, from all the figures in Figures 1 and 2, we can observe that
within the same iteration steps, the IGD value of DMO-QPSO declines slowly at the early
stage on several test problems compared to MOEA/D-DE but gets to a much smaller value
at the later stage. If we perform a greater amount of iterations, the DMO-QPSO may obtain
much better results than the other compared algorithms.

In summary, DMO-QPSO has better performance on most of the test functions compared
to other tested algorithms, and it is promising in solving MOPs with complicated PS shapes.

5. Further Discussions

In this section, we further study the impact of different decomposition approaches (i.e.,
TCH and PBI) and the polynomial mutation on DMO-QPSO. Some comparison experiments
were also conducted.

5.1. The Impact of Different Decomposition Approaches

As described in Section 2.4, TCH and PBI are two commonly used approaches for
decomposition-based multi-objective optimization algorithms. In terms of solution uniform-
ness, the TCH approach may perform worse than the PBI approach, especially for the problems
having more than two objectives. Therefore, we tested MOPSO/D, MOEA/D-DE and DMO-
QPSO using TCH or PBI as the decomposition method respectively. The parameter settings
for each algorithm are the same as those presented in Section 4.2. Tables 10 and 11 present
the average, minimum and standard deviation (SD) of the IGD values of 30 final popu-
lations on different test functions that were produced by each algorithm. In these tables,
MOPSO/D-TCH, MOEA/D-DE-TCH and DMO-QPSO-TCH stand for the variants of algo-
rithms MOPSO/D, MOEA/D-DE and DMO-QPSO using the TCH approach, respectively.

Table 10. The mean, minimum and standard deviation of IGD values for different algorithms with TCH or PBI on
F problems.

IGD MOPSO/D-TCH MOPSO/D MOEA/D-DE-TCH MOEA/D-DE DMO-QPSO-TCH DMO-QPSO

F1
0.2300 0.2313 0.1074 0.1180 0.0435 0.0404
0.2066 0.2159 0.0763 0.0820 0.0405 0.0359
0.0102 0.0084 0.0169 0.0175 0.0022 0.0030

F2
0.9740 1.0223 0.1396 0.2394 0.1015 0.1023
0.7179 0.8869 0.0896 0.1492 0.0863 0.0962
0.0904 0.0757 0.0295 0.0775 0.0132 0.0036

F3
0.5624 0.5754 0.1399 0.1987 0.0862 0.0884
0.4750 0.5013 0.0885 0.1464 0.0816 0.0787
0.0416 0.0449 0.0317 0.0357 0.0029 0.0071

F4
0.5712 0.5748 0.1313 0.1702 0.0922 0.0898
0.5041 0.5030 0.0981 0.1159 0.0851 0.0810
0.0320 0.0331 0.0217 0.0294 0.0043 0.0088

F5
0.5616 0.5558 0.1070 0.1405 0.0695 0.0696
0.4807 0.4757 0.0786 0.0891 0.0635 0.0635
0.0388 0.0351 0.0196 0.0324 0.0033 0.0035

F6
1.0426 0.9781 1.1151 1.5602 0.2699 0.2608
0.7149 0.6580 0.9453 1.4111 0.1326 0.1634
0.1945 0.1810 0.1279 0.0577 0.0572 0.0248
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Table 10. Cont.

IGD MOPSO/D-TCH MOPSO/D MOEA/D-DE-TCH MOEA/D-DE DMO-QPSO-TCH DMO-QPSO

F7
1.4695 1.5032 0.1696 0.2139 0.4544 0.4283
0.9858 1.0491 0.0306 0.0792 0.2444 0.2210
0.2208 0.2076 0.0708 0.0734 0.1042 0.1160

F8
1.1057 1.1271 0.3246 0.3046 0.4861 0.4676
0.8696 0.8681 0.1830 0.2053 0.3763 0.2686
0.0949 0.1334 0.0668 0.0645 0.0602 0.0907

F9
0.9959 1.0358 0.1489 0.1982 0.1061 0.0938
0.8894 0.8319 0.0916 0.0971 0.0964 0.0803
0.0620 0.0964 0.0566 0.0498 0.0103 0.0108

Table 11. The mean, minimum and standard deviation of IGD values for different algorithms with TCH or PBI on
UF problems.

IGD MOPSO/D-TCH MOPSO/D MOEA/D-DE-TCH MOEA/D-DE DMO-QPSO-TCH DMO-QPSO

UF4
0.1633 0.1672 0.0972 0.0994 0.1092 0.1108
0.1535 0.1592 0.0865 0.0879 0.1030 0.1052
0.0045 0.0035 0.0075 0.0052 0.0041 0.0029

UF5
4.3795 4.3807 1.7784 1.7532 0.9481 0.8548
3.5695 3.1642 0.9730 0.9801 0.1929 0.2345
0.2964 0.3636 0.3492 0.5473 0.6835 0.6681

UF6
4.3849 4.3793 1.7752 1.7616 0.9482 0.8562
3.5693 3.1732 0.9120 0.9003 0.1989 0.2400
0.2963 0.3645 0.3462 0.5481 0.6848 0.6658

UF7
1.0646 1.0652 0.1278 0.1817 0.0706 0.0765
0.8402 0.7175 0.0902 0.0883 0.0584 0.0602
0.1267 0.1386 0.0293 0.0717 0.0225 0.0216

UF9
2.7186 2.5708 0.5259 0.5971 0.4036 0.3002
2.1546 2.0591 0.4504 0.4705 0.3203 0.2049
0.3487 0.2999 0.0608 0.0640 0.0549 0.0552

UF10
13.368 12.7750 1.7087 1.4303 2.3519 1.8106
11.118 10.8881 1.0282 1.0272 2.0301 1.5177
0.9952 0.9072 0.4163 0.3025 0.1609 0.1658

According to Tables 10 and 11, algorithms (i.e., MOPSO/D and DMO-QPSO) using
PBI performed better than those using TCH, particularly for solving tri-objective problems.
As for DMO-QPSO, using PBI, to some extent, could help the algorithm to acquire better
Pareto optimal solutions to approximate the entire PF. However, applying PBI to MOEA/D-
DE does not show significant improvement compared to MOEA/D-DE using TCH. It may
be related to the unique characteristics of the DE operators employed in MOEA/D-DE.

5.2. The Impact of Polynomial Mutation

Polynomial mutation was adopted in both MOPSO/D, MOEA/D-DE, MMOPSO
and CMOPSO for producing new solutions as well as maintaining the population diver-
sity, as stated in the literature [12,18,20,36]. In order to investigate the impact of polyno-
mial mutation on DMO-QPSO, we tested four DMO-QPSO variants, i.e., DMO-QPSO,
DMO-QPSO-TCH, DMO-QPSO-pm and DMO-QPSO-TCH-pm, on different problems here.
DMO-QPSO and DMO-QPSO-TCH used PBI and TCH as the decomposition method,
respectively. DMO-QPSO-pm and DMO-QPSO-TCH-pm are two variants using the poly-
nomial mutation operator on the basis of DMO-QPSO and DMO-QPSO-TCH respectively.
The parameter settings for each algorithm are the same as those presented in Section 4.2.
Tables 12 and 13 present the average, minimum and standard deviation (SD) of the IGD
values of 30 final populations on different test functions that were produced by different
variants of DMO-QPSO.



Mathematics 2021, 9, 1959 17 of 20

Table 12. The mean, minimum and standard deviation of IGD values for four DMO-QPSO variants on F problems.

IGD DMO-QPSO-TCH DMO-QPSO-TCH-pm DMO-QPSO DMO-QPSO-pm

F1
0.0435 0.2766 0.0404 0.0407
0.0405 0.2739 0.0359 0.0371
0.0022 0.0016 0.0030 0.0028

F2
0.1015 0.0971 0.1023 0.0974
0.0863 0.0862 0.0962 0.0815
0.0132 0.0069 0.0036 0.0049

F3
0.0862 0.0845 0.0884 0.0836
0.0816 0.0748 0.0787 0.0775
0.0029 0.0045 0.0071 0.0042

F4
0.0922 0.0952 0.0898 0.0944
0.0851 0.0859 0.0810 0.0791
0.0043 0.0073 0.0088 0.0130

F5
0.0695 0.0697 0.0696 0.0688
0.0635 0.0646 0.0635 0.0643
0.0033 0.0027 0.0035 0.0030

F6
0.2699 0.2781 0.2608 0.2480
0.1326 0.1395 0.1634 0.1315
0.0572 0.0579 0.0248 0.0486

F7
0.4544 0.4231 0.4283 0.3838
0.2444 0.2020 0.2210 0.2104
0.1042 0.1469 0.1160 0.1201

F8
0.4861 0.5126 0.4676 0.4673
0.3763 0.3843 0.2686 0.3712
0.0602 0.0589 0.0907 0.0618

F9
0.1061 0.1025 0.0938 0.0919
0.0964 0.0905 0.0803 0.0789
0.0103 0.0065 0.0108 0.0074

‘pm’ in the table stands for the polynomial mutation, ‘DMO-QPSO’ means DMO-QPSO using PBI, and ‘DMO-QPSO-pm’ means the
DMO-QPSO using both PBI and polynomial mutation.

Table 13. The mean, minimum and standard deviation of IGD values for four DMO-QPSO variants on UF problems.

IGD DMO-QPSO-TCH DMO-QPSO-TCH-pm DMO-QPSO DMO-QPSO-pm

UF4
0.1092 0.1080 0.1108 0.1117
0.1030 0.0978 0.1052 0.1068
0.0041 0.0043 0.0029 0.0025

UF5
0.9481 1.1249 0.8548 0.6837
0.1929 0.2737 0.2345 0.2278
0.6835 0.6946 0.6681 0.6642

UF6
0.9482 1.1217 0.8562 0.6886
0.1989 0.2738 0.2400 0.2260
0.6848 0.6896 0.6658 0.6654

UF7
0.0706 0.1134 0.0765 0.0767
0.0584 0.0577 0.0602 0.0628
0.0225 0.1043 0.0216 0.0416

UF9
0.4036 0.4015 0.3002 0.3029
0.3203 0.3204 0.2049 0.2151
0.0549 0.0542 0.0552 0.0480

UF10
2.3519 2.3720 1.8106 1.7806
2.0301 1.9064 1.5177 1.4807
0.1609 0.2306 0.1658 0.1562

‘pm’ in the table stands for the polynomial mutation, ‘DMO-QPSO’ means DMO-QPSO using PBI, and ‘DMO-QPSO-pm’ means the
DMO-QPSO using both PBI and polynomial mutation.

As we can see from Tables 12 and 13, the DMO-QPSO variants using PBI, i.e., DMO-
QPSO and DMO-QPSO-pm, outperformed the DMO-QPSO variants using TCH, i.e., DMO-
QPSO-TCH and DMO-QPSO-TCH-pm, on most of the test problems. These results also
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confirm the conclusion presented in Section 5.1. Besides, DMO-QPSO-pm shows an
advantage over DMO-QPSO on several test problems. It should be pointed out that
adopting the PBI approach and the polynomial mutation at the same time can effectively
improve the algorithmic performance of DMO-QPSO.

6. Conclusions

This paper has proposed a multi-objective quantum-behaved particle swarm opti-
mization algorithm based on decomposition, named DMO-QPSO, which integrates the
QPSO algorithm with the original MOEA/D framework and adopts a strategy to control
the swarm diversity. Without using the neighboring relationship defined in the MOEA/D
framework, we employed a two-phased diversity controlling mechanism to avoid the pre-
mature convergence and make the algorithm escape sub-optimal solutions with a higher
probability. In addition, we used a set of nondominated solutions to produce the global
best so as to update the particle’s position. The comparison experiments were carried out
among six algorithms, namely, MOPSO, MOPSO/D, MOEA/D-DE, MMOPSO, CMOPSO
and DMO-QPSO, on 15 test functions with complicated PS shapes. The experimental
results show that the proposed DMO-QPSO algorithm has an advantage over other five
algorithms on most of the test problems. It has a slower convergence speed than MOEA/D-
DE on some test problems at the early stage, but has better balance between exploration
and exploitation, finally obtaining better solutions to an MOP. In addition, we further
investigated the impact of different decomposition approaches, i.e., the TCH and PBI
approaches, as well as the polynomial mutation on DMO-QPSO. It was shown that using
PBI and the polynomial mutation can enhance the algorithmic performance of DMO-QPSO,
particularly when the tri-objective problems were being solved.

In the future, we will focus on studying new methods for generating a set of weight
vectors that are as uniformly distributed as possible, modifying the mechanism of diversity
control in the DMO-QPSO algorithm for dealing with more complicated test problems, and
improving the quality of the solutions obtained. In addition, we will extend the proposed
algorithm to problems having more than three objectives.
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