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Abstract: Electronic noses (e-nose) offer potential for the detection of cancer in its early stages. The
ability to analyse samples in real time, at a low cost, applying easy–to-use and portable equipment,
gives e-noses advantages over other technologies, such as Gas Chromatography-Mass Spectrometry
(GC-MS). For diseases such as cancer with a high mortality, a technology that can provide fast results
for use in routine clinical applications is important. Colorectal cancer (CRC) is among the highest
occurring cancers and has high mortality rates, if diagnosed late. In our study, we investigated the
use of portable electronic nose (PEN3), with further analysis using GC-TOF-MS, for the analysis of
gases and volatile organic compounds (VOCs) to profile the urinary metabolome of colorectal cancer.
We also compared the different cancer stages with non-cancers using the PEN3 and GC-TOF-MS.
Results obtained from PEN3, and GC-TOF-MS demonstrated high accuracy for the separation of
CRC and non-cancer. PEN3 separated CRC from non-cancerous group with 0.81 AUC (Area Under
the Curve). We used data from GC-TOF-MS to obtain a VOC profile for CRC, which identified
23 potential biomarker VOCs for CRC. Thus, the PEN3 and GC-TOF-MS were found to successfully
separate the cancer group from the non-cancer group.

Keywords: electronic nose; colorectal cancer; PEN3; GC-TOF-MS; VOCs

1. Introduction

Cancer remains a leading cause of death worldwide, with approximately 19.3 million
new cases and 10 million deaths in 2020 [1]. Survival rates depend on early detection; how-
ever, many current methods do not provide the means to achieve this or are not applied [2].
One potential method to support cancer detection is through the measurement of Volatile
Organic Compounds (VOCs) that reflect the biological process of disease. These bodily
VOCs are the reflection of the physiological effects and metabolism of the individual and
the environment surrounding them. They are generated as the products of the biological ac-
tivities inside the body and can be released from saliva, urine, breath, blood, or faeces [3–6].
Cancer causes changes in these biological pathways leading to the emission or omission of
specific VOCs [7].

Colorectal cancer (CRC) is the second leading cause of the cancer-related deaths and
third leading cause of cancer-related deaths among men and women, respectively, in
Europe [8]. As such, screening using faecal immunochemical testing for haemoglobin
(FIT) has been introduced but still can miss up to 10% of cancers [9–11]. More recently,
there is evidence to suggest addition of VOC to FIT can further improve diagnosis of
CRC [12]. Colonoscopy is considered the most reliable way of detecting CRC at both early
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and advanced stages, but the rate of detection depends upon the operator performing
the procedure. Furthermore, colonoscopy is an invasive, expensive, and uncomfortable
procedure with a small risk of bowel injury [13,14].

Several techniques are available for the detection and analysis of VOCs. Gas
Chromatography–Mass Spectrometry (GC-MS) is considered as the gold standard method
for the detection of VOCs with high sensitivity and specificity. However, these analytical
methods may be unsuitable for practical implementation as they are expensive, have long
analysis times, and require highly trained personnel. An alternative is the electronic nose
(e-nose), which can be used as a non-invasive, rapid, portable piece of equipment that may
also provide results at a lower cost per test. An e-nose is an instrument that is designed
to sense odours, rather than individually, and typically differentiates them using an array
of diverse chemical sensors. There is a wide range of different sensing technologies that
can be used inside an e-nose, including surface acoustic wave (SAW) [15,16] quartz crys-
tal microbalance (QCM) [17,18], metal oxide semiconductors (MOS) [19–21], conducting
polymers (CP) [22], and carbon nanofiber (CNF) [23]. However, MOS-based electronic
noses are by far the most common. E-nose technology has previously been used in di-
verse areas, such as environmental [24,25], food [26,27], pharmaceutical [28,29], biomedical
applications [20,30–32], and many other fields of applied science.

Many diseases have their own chemical fingerprint, which can be detected by an
electronic nose. If we know the chemical fingerprint of a disease, it could be potentially used
as a means to identify undiagnosed patients [33–35]. Several studies have demonstrated
that the e-nose has the ability to detect, differentiate, and identify different cancers. A
study was conducted by Di Natale et al. to differentiate between 42 lung cancer patients
and 18 healthy controls using breath samples using e-nose based on quartz microbalance
(QMB). They were able to identify 100% lung cancer patients and 94% healthy controls [36].
Another study conducted by Westenbrink et al. using a custom e-nose consisting of 13
sensors. They were able to successfully distinguish CRC from Irritable Bowel Syndrome
(IBS) using urine samples with a sensitivity of 78% and specificity of 79% [37]. Several
other studies have been conducted evaluate the potential of e-nose to differentiate and
detect lung cancer [15,38–41], breast cancer [42], CRC [43,44] and prostate cancer [45,46].

The present study aimed to evaluate the use of PEN3 (Portable Electronic Nose) as
a potential e-nose for detection and discrimination between cancer groups and healthy
controls. Simultaneously, Gas Chromatography–Time of Flight–Mass Spectrometry (GC-
TOF-MS) was used to differentiate cancer group (CRC) from healthy controls and different
cancer stages from healthy controls and to determine urinary odour volatile chemical-
print for CRC by using the volatile chemical print obtained from urine samples. Urine is
commonly used for detection as it is non-invasive and easily obtained from patients. To
our knowledge, this is the first study undertaken using the PEN3 applied to the testing of
CRC urine samples.

2. Materials and Methods
2.1. Urine Samples

This study includes the analysis of 96 urine samples acquired at University Hospital
Coventry and Warwickshire NHS Trust, after patients provided written informed consent.
Out of the 96 samples, there were 58 CRC urine samples and 38 non-cancerous samples.
A total of 58 CRC samples were further distributed into 24 early-stage CRC sample and
34 late-stage CRC samples based on TNM (tumour/node/metastasis) staging. We assigned
T1 and T2 stage as early-stage and T3 and T4 as late-stage samples. The samples were
contained in standard universal sterile specimen containers and frozen within 2 h at
−80 ◦C. This was to allow batch testing of all the samples once they had been collected.
The study was approved by Coventry and Warwickshire and North-East Yorkshire NHS
Ethics Committees (Ref 18717 and Ref 260179). The samples were later analysed at the
University of Warwick. The samples were shipped to the University on dry ice and then
stored at −20 ◦C until analysed, which was within a few days of arrival. For analysis, the
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samples were defrosted and transferred into 20 mL glass vials with crimp caps. A total of
5 mL of each urine sample was used for the analysis using PEN3 and GC-TOF-MS. The
demographic information of the subjects recruited into this study are provided in Table 1.

Table 1. Clinical characteristics of the recruited study participants at time of obtaining the
urine samples.

Group CRC Non-Cancerous

Number of samples 58 (24 early stage and 34 late stage) 38
Mean Age (years) 74.7 (92–46) 63.2 (90–32)
Sex: Male/Female 40:18 25:13

Avg. BMI 27.7 (34.1–17) 30.5 (37.3–22.4)
Current Smoker

(Number and % of patients) 3 (5.2%) 3 (8.3%)

2.2. PEN3 Electronic Nose (Airsense Analytics GmbH, Schwerin, Germany)

PEN3 (Airsense Analytics GmbH, Schwerin, Germany) is a portable (92 × 190 × 255 mm)
olfactory system used for the identification of chemicals and gases. It is a combination of a
gas sampling unit and a sensor array. In our case the PEN3 is fitted with an autosampler
(HT2000H Dynamic Headspace Auto-sampler, Brescia (BS), Italy), which interfaces directly
with the PEN 3 software (WinMuster PEN v 1.6.2.18).

The sensor arrays consist of 10 different thick film metal oxide sensors, operating
between 250 and 550 ◦C. Information available about these sensors are included in Table 2.

Table 2. Description of the sensors used in PEN3 e-nose provided by Airsense Analytical.

Sensor No. Sensors Substances for Sensing

S1 W1C Sensitive to aromatic compounds
S2 W5S Broad range
S3 W3C Sensitive to aromatic compounds
S4 W6S Sensitive to hydrogen
S5 W5C Sensitive to aromatic and aliphatic compounds
S6 W1S Sensitive to methane in the environment, with broad range
S7 W1W Sensitive to Sulphur and organic compounds
S8 W2S Sensitive to alcohol and broad range
S9 W2W Sensitive to Sulphur compounds
S10 W3S Sensitive to methane and aliphatic compounds

The PEN3 contains two pumps, one is used for pulling the sample gas through the
sensor array and the other transfers filtered reference air or zero air into the sensor array.
The zero air is also used to clean the system. Zero air is used as a baseline or reference gas,
and the sensor response from the sample gas are measured in comparison to the reference
gas. Vials containing urine samples were placed in a sample tray of the auto-sampler.
These samples were transferred one by one from the sample tray to an internal oven and
were heated to increase concentration above the detection limit of the e-nose. Different
over and incubation periods were tested, and it was found that with the oven set to 80 ◦C
and the incubation period set to 8 min gave the most consistent results. The oven was
equipped with an orbital shaker. After heating up the sample, the headspace was sampled
by a syringe at a pressure of 5 bar (max.) and a volume of 2.5 mL. The sample was then
analysed for 5 min.

2.3. Markes GC-TOF-MS

Markes GC-TOF-MS is a combination of TRACE 1300 GC (Thermo Fisher Scientific,
Loughborough, UK) and Bench TOF-HD TOF-MS (Markes Intl., Llantrisant, UK). It consists
of a high-throughput autosampler and thermal desorption unit, ULTRA-xr and UNITY-xr,
respectively (Markes Intl.). The operating principle of GC-TOF-MS is it analyses the Time
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of Flight of ions. The GC component separates chemicals according to their interaction
with the stationary phase of the column (liquid) and mobile phase (gas) inside the column.
TOF-MS separates fragment ions inside the TOF ‘flight box’ and detects them according to
the mass-to-charge ratio of the ions after passing through the drift tube.

The sample was transferred on to the TD tube (C2-AXXX-5149, Markes Intl., Llantrisant,
UK), by heating 5 mL of urine in a 20 mL glass vial with a crimp cap. The TD is inserted
through the septum and into the headspace of the vial. The urine sample is then heated
40 ◦C for 10 min. After 10 min, a pump (Markes Intl.) is attached to the other end of the
TD tube and pulls the urine headspace gas onto the TD tube at a rate of 20 mL/min for a
further 10 min. The samples were then analysed by placing the tubes in the autosampler.
The analysis was initiated with ULTRA-xr with a stand-by split set to 150 ◦C and GC run
time 25 min with a programmed temperature ramp from 40 ◦C to 280 ◦C at 20 ◦C/min. For
each sample, the pre-purge time was 1 min, followed by desorption for 10 min at 250 ◦C
and trap purge for 1 min. These traps were then cooled at −30 ◦C followed by purging
them for 3 min at a temperature of 300 ◦C [47]. The temperature for both transfer line
and ion source was 250 ◦C. The data obtained was analysed using the national institute of
standards and technology (NIST) list (2011).

2.4. Statistical Analysis

The data obtained from PEN3 was analysed using MultiSens Analyzer (v2.0.0.22, JLM
Innovation GmbH, Germany). MultiSens Analyzer is used to evaluate measurement data
from multi sensor instruments, such as electronic noses. MultiSens Analyzer classified the
data into different groups and then performed feature extraction. The feature used was
the maximum deviation of the signal from the baseline to the response. The resultant data
matrix was then analyzed using a 10-fold cross-validation, undertaken using a bespoke R
program (version 3.6.2). In a 10-fold cross-validation the dataset is divided into 10 groups.
Keeping one of the groups as a test set, the remaining 9 are used as a training set, to
which classification models are created and then applied to the test set. For our study, this
was Random Forest (using the “Ranger” function in the ‘kernlab’ R package’) and Neural
Network (using the “nnet” package). Random forest consists of many decision trees where
each tree produces class prediction and the class with the most prediction is assigned as
model’s prediction [48]. Neural network classifier consists of layers where first layer is the
input, last layer is output, and middle layers are hidden layers. Each layer consists of nodes
which converts input into the output [49]. This process was repeated 10 times until all the
data had been a test set. These classifiers were chosen as they showed good performance
in previous studies [50]. From the resultant probabilities, final statistical results including a
Receiver Operator Characteristic (ROC) curve, sensitivity, selectivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) were calculated.

For GC-TOF-MS data analysis, the data was processed using the TOF-DS software. A
background correction was applied, and the chromatogram was integrated using TOF-DS.
The peaks from the chromatogram were identified using the NIST (National Institute of
Standards and Technology) list. The TOF-DS software is used to identify chemicals and
their abundance in the sample. The chemical identification for GC-TOF-MS data was done
based on a p-value less than 0.05. These chemicals were then compared with published
papers and PubChem. For R analysis, the data obtained from GC-TOF-MS was converted
into text files. These files were then used to generate statistical probabilities using R
program (version 3.6.2) in a similar process as for the PEN3 and chemical components
of discriminative power were identified. Figure 1 illustrates the step taken for analysing
the data.
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3. Results
3.1. Evaluation by Electronic Nose Detection Method

The PEN3 contains 10 gas sensors, the raw output of each of the sensors to a late CRC
urine sample is shown in Figure 2. Each coloured line in the output represents the response
curve of one of the sensors.
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Radar plot shown in Figure 3 represents the average response of PEN3 sensors to the
two groups. Radar plot compared sensors response for CRC (red line) and non-cancerous
sample (yellow line).
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The results obtained from statistical analysis of PEN3 data validated the separation of
the CRC and non-cancerous group based upon the chemicals present in the samples. The
results are shown in Table 3.

Table 3. Statistical Results for PEN3 with 95% confidence intervals in brackets.

Classifiers Comparisons AUC Sensitivity Specificity PPV NPV

Neural
Network

CRC vs.
Non-Cancerous

0.81
(0.73–0.88)

0.91
(0.85–0.97)

0.55
(0.41–0.69)

0.76
(0.61–0.84)

0.81
(0.67–0.93)

Random
Forest

CRC vs.
Non-Cancerous

0.80
(0.72–0.87)

0.82
(0.74–0.90)

0.55
(0.41–0.68)

0.74
(0.65–0.83)

0.68
(0.53–0.82)

The receiver operating characteristics curves (ROC) of the two models used to obtain
highest AUC are shown in Figure 5. The results from R analysis on PEN3 output differenti-
ated CRC from Non-cancerous group with a high sensitivity of 0.91 (0.85–0.97), specificity
of 0.55 (0.41–0.69), and AUC of 0.81 (0.73–0.88) using a Neural Network.
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3.2. Evaluation by GC-TOF-MS Detection Method

Figure 6 provides an example output from the GC-TOF-MS. Here, the x-axis refers to
the retention time, and the y-axis, the total ion count.

GC-TOF-MS shows a very high separation among the two groups, as shown in Table 4.
The results illustrate that GC-TOF-MS was able to separate cancer and non-cancerous
groups with a very high sensitivity and specificity.
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Table 4. Statistical Results for GC-TOF-MS with 95% confidence intervals in brackets.

Classifiers Comparisons AUC Sensitivity Specificity PPV NPV

Neural
Network

CRC vs.
Non-Cancerous

0.93
(0.89–0.97)

0.86
(0.79–0.93)

0.81
(0.77–0.95)

0.91
(0.84–0.97)

0.79
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0.93
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(0.83–0.96)

0.75
(0.62–0.86)
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(0.71–0.93)

For CRC and non-cancerous group with Neural network classifier, the sensitivity was
0.86 (0.78–0.93), specificity was 0.86 (0.77–0.95), and AUC was 0.93 (0.89–0.97). Figure 7
represents the ROC curves for GC-TOF-MS.
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In addition, data obtained from GC-TOF-MS was used to identify the unknown VOCs
in the urine sample headspace. The TOF-DS software identified the chemicals based on
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NIST list using a criterion of p-value < 0.05. We were able to identify 23 VOCs for CRC and
non-cancer comparison shown in Table 5. We were able to cross-verify a total of 11 CRC
VOCs from different studies and PubChem as shown in Table 5.

Table 5. VOCs obtained from GC-TOF-MS data analysis using the TOF-DS software.

S. No. Chemicals Retention time (s) p-Value

1 Octanal a 6.5851 <0.001
2 Nonanal a 7.4723 <0.001
3 Decanal a 7.5505 <0.001
4 2,4-Di-tert-butylphenol 10.6607 <0.001
5 Heptanal a 5.6302 <0.001
6 Heptadecane 10.3784 <0.001
7 Undecanal 9.08 <0.001
8 3,4-Dimethylcyclohexanol 9.6693 <0.001
9 5-Hepten-2-ol, 6-methyl- 9.7753 <0.001

10 Hexanal a 4.6015 <0.001
11 Acetone a 1.6974 <0.001
12 2-Pentanone a 3.4864 0.001
13 Biphenyl 9.7844 0.003
14 2-Heptanone a 5.5489 0.00429
15 Cyclopentanone, 2-methyl- 5.772 0.00453
16 Ethylbenzene a 5.107 0.00499
17 Methane, isocyanato- 1.4175 0.00666
18 Acetophenone 7.3934 0.00888
19 1-Undecanol 9.6614 0.01307
20 p-Xylene a 5.197 0.01478

21 Benzene,
1-methyl-3-(1-methylethyl)- 6.6649 0.01602

22 Naphthalene a 8.3504 0.02613
23 Octane, 2,2,6-trimethyl- 5.8677 0.04052

a represents the chemicals for the identification of CRC cross-verified using PubChem and published papers.

Comparisons were also performed on the CRC samples according to the stage of
cancer for the quantitative determination of VOCs among the stages. Table 6 illustrates
the statistical result obtained for different stages of CRC and non-cancer samples using R
analysis using the data obtained from PEN3. Both Random Forest and Neural Network
classifiers were used. These gave similar results, with the best result provided in Table 6.

Table 6. Statistical Results for CRC stage comparisons with 95% confidence intervals in brackets using PEN3.

Classifiers Comparisons AUC Sensitivity Specificity PPV NPV

Neural
Network

Early vs.
Non-Cancer

0.67
(0.54–0.79)

0.48
(0.30–0.65)

0.84
(0.74–0.93)

0.65
(0.44–0.83)

0.73
(0.61–0.83)

Random
Forest

Early vs.
Non-Cancer

0.78
(0.66–0.87)

0.61
(0.43–0.76)

0.84
(0.74–0.94)

0.70
(0.52–0.86)

0.78
(0.67–0.88)

Neural
Network

Late vs.
Non-Cancerous

0.85
(0.78–0.92)

0.65
0.51–0.78)

0.82
(0.71–0.92)

0.76
(0.63–0.89)

0.72
(0.61–0.83)

Random
Forest

Late vs.
Non-Cancerous

0.76
(0.66–0.84)

0.74
(0.61–0.85)

0.66
(0.53–0.79)

0.66
(0.53–0.79)

0.74
(0.61–0.85)

Neural
Network

Early vs. Late
CRC

0.61
(0.49–0.73)

0.68
(0.54–0.81)

0.39
(0.22–0.56)

0.62
(0.49–0.75)

0.45
(0.26–0.64)

Random
Forest

Early vs. Late
CRC

0.59
(0.45–0.71)

0.71
(0.57–0.83)

0.39
(0.22–0.56)

0.63
(0.50–0.76)

0.48
(0.28–0.67)

These results represent that PEN3 was able to distinguish early-stage CRC from non-
cancer samples and late-stage CRC from non-cancer samples. Out of 24 early-stage CRC
samples, PEN3 was able to identify 14 samples correctly, hence, obtaining a sensitivity of
0.70. While for non-cancer samples, PEN3 recognized 32 out of 38 samples, obtaining a
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specificity of 0.53. AUC obtained for late-stage CRC and non-cancer samples comparison
was 0.85 with a sensitivity and specificity of 0.65 and 0.82, showing that PEN3 identified
22 CRC samples out of 34 and 31 out of 38 non-cancer samples. However, the results for
early-stage CRC and late-stage CRC were moderate with 0.61 AUC, 0.68 sensitivity, and
0.39 specificity. The ROC curves for the statistical analysis of different stages of CRC using
the data from PEN3 is shown in Figure 8.
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classifiers, (b) late-stage CRC vs. non-cancer using Neural Network, and (c) early-stage CRC vs. late-stage CRC using
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The results obtained for the comparison of early-stage CRC, late-stage CRC, and
non-cancer samples for GC-TOF-MS data are shown in Table 7.

For the early-stage CRC vs. non-cancer comparison using GC-TOF-MS, results show
that out of 24 early-stage CRC samples, 16 were correctly diagnosed as CRC samples giving
sensitivity of 0.67 and out of 38 non-cancer samples, 34 samples were correctly recognized
as non-cancer samples giving specificity of 0.94. As for late-stage CRC vs. non-cancer sam-
ples, 26 samples out of 34 were correctly diagnosed as CRC samples giving 0.79 sensitivity
and 32 samples were correctly recognized as non-caner samples out of 38 giving speci-
ficity of 0.89. However, the results obtained for the comparison between early-stage
vs. late-stage were moderate. The sensitivity obtained was 0.46 signifying that 11 early-
stage samples were correctly diagnosed, and specificity obtained was 0.61 indicating that
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20 late-stage CRC samples were correctly diagnosed. Figure 9 shows the ROC curves for
these comparisons.

Table 7. Statistical Results for CRC stage comparisons with 95% confidence intervals in brackets using GC-TOF-MS.

Classifiers Comparisons AUC Sensitivity Specificity PPV NPV

Neural
Network

Early vs.
Non-Cancer

0.9
(0.83–0.96)

0.75
(0.59–0.89)

0.86
(0.76–0.95)

0.78
(0.64–0.92)

0.84
(0.73–0.93)

Random
Forest

Early vs.
Non-Cancer

0.93
(0.87–0.96)

0.67
(0.5–0.82)

0.94
(0.88–1)

0.89
(0.75–1)

0.81
(0.71–0.90)

Neural
Network

Late vs.
Non-Cancerous

0.89
(0.81–0.96)

0.79
(0.67–0.90)

0.89
(0.79–0.97)

0.87
(0.76–0.97)

0.82
(0.72–0.92)

Random
Forest

Late vs.
Non-Cancerous

0.86
(0.78–0.93)

0.73
(0.59–0.83)

0.81
(0.68–0.91)

0.77
(0.64–0.89)

0.76
(0.65–0.8)

Neural
Network

Early vs. Late
CRC

0.56
(0.43–0.69)

0.46
(0.29–0.63)

0.61
(0.46–0.74)

0.46
(0.29–0.62)

0.61
0.43–0.74)

Random
Forest

Early vs. Late
CRC

0.56
(0.43–0.69)

0.38
(0.22–0.55)

0.69
(0.56–0.83)

0.47
(0.29–0.67)

0.61
(0.43–0.74)
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A quantitative comparison of the chemical’s concentration was performed for different
stages of CRC and non-cancer samples. Figure 10 illustrates the result obtained. The result
shows that the chemicals follow a pattern for early-stage CRC, late-stage CRC, and non-
cancer samples.
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4. Discussion

A number of studies have previously demonstrated the use of urinary headspace
VOCs for the detection of different cancers, as well as other diseases [51,52]. Detection of
cancer using VOCs is of great interest as it is non-invasive and potentially inexpensive. In
this study, we have determined that cancer group can be differentiated from a non-cancer
group based on their chemical fingerprints. We used two approaches for distinguishing
CRC and the non-cancer group, specifically PEN3 e-nose and GC-TOF-MS. Both methods
demonstrated a high accuracy of separation between the groups. We also identified the
chemical compounds in the urinary VOC profile for CRC using GC-MS-TOF data.

PEN3 showed promising results with high sensitivity and specificity. The PEN3
was able to differentiate CRC and non-cancer group using Neural Network classifier
with AUC of 0.81 and very high sensitivity of 0.91 and specificity of 0.55. The separation
between CRC and non-cancer group using Random Forest classifier was reported 0.80 AUC,
0.82 sensitivity and 0.55 specificity.

The AUC obtained by GC-TOF-MS for CRC and non-cancer group was 0.93 with both
the classifiers. The sensitivity obtained between the groups was 0.86 for Neural Network
classifier and 0.89 for Random Forest. These are very high values showing that GC-TOF-MS
was able to recognise and separate CRC and non-cancer urine samples.

Table 5 shows all the chemicals identified by TOF-DS software of which, octanal,
nonanal, decanal, heptanal, hexanal, and acetone had the highest significance with a p-
value of <0.001. Other possible significant biomarkers were 2-pentanone, 2-heptanone,
ethylbenzene, p-xylene, naphthalene.

Octanal is a human metabolite present in cell membrane and generally reported in
saliva or faeces [53]. It was reported by Batty et al. on analysis of faecal samples of CRC
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with PLS-DA following feature selection with Wilcoxon T test [54]. Nonanal is a toxic
compound and has been found related with several diseases. It may lead to kidney disease,
comas, uraemia, seizures, nausea, confusion, and cardiovascular diseases and has been
found in faeces, blood, and saliva from humans [53]. Nonanal has frequently been reported
as a breath biomarker for CRC in different studies [55–57]. Decanal is another important
biomarker observed in our study, which has been reported as a CRC biomarker in several
studies as a breath biomarker [55,57] and in cell culture studies [58–60]. Heptanal has
been identified as a faecal and urinary biomarker for CRC in two different studies [54,61].
Hexanal [55,58] and acetone [44,58,62] were also reported as significant biomarker for CRC.

2-Pentanone is generally present in milk [61,63] and different foods and found in
cytoplasm and extracellular places in human body. 2-Pentanone has been reported as
CRC biomarkers by Arasaradnam et al. in their study of colorectal cancer using urinary
samples [62]. 2-Heptanone exists at cell membrane level inside living species including
humans, and outside, it can be found in milk, corns, and peppermints. It causes hepatic
encephalopathy [64] and can be found in saliva, faeces, urine, and cerebrospinal fluid [53].
It has been identified as a significant CRC biomarker using cell culture in two different
studies [58,60]. Another important biomarker we found was p-Xylene. p-Xylene has several
physiological effects such as drowsiness, paralysis, coma, dizziness, anaemia, hypertension,
pain, fatigue, headache, depression, and anxiety. It is an air pollutant and environmental
contaminant [53]. It is reported as a CRC VOC in three different studies [55,57,65].

Ethylbenzene is a human metabolite present in subcellular level (membrane) in the
human body. It causes dizziness, pain, headache, cough, hepatitis, and drowsiness. It is
present in tobacco smoke and is water and air pollutant [53]. De Vietro et al. found that
ethylbenzene was present in four out of the seven CRC patients breath samples and tissue
samples [56]. Furthermore, study conducted by Altomare et al. showed that ethylbenzene
was associated with chemical fingerprint of CRC [66]. Naphthalene has also been suggested
as a CRC biomarker in PubChem.

For the PEN3, it is not possible to identify specific chemical biomarkers for CRC. It is
worth noting that the sensors which are likely to comprise the PEN3 will be sensitive to
both inorganic gases as well as VOCs. In fact, one of the sensors that show a significant
difference has increased sensitivity to sulphur compounds. In is worth noting that the pre-
concentration approach used here for GC-TOF-MS analysis, limits our range of detection to
molecules with more than three carbon atoms. Therefore, the chemical components being
measured by the PEN3 and by GC-TOF-MS may not be the same. Furthermore, the gas
sensors used in the PEN3 are likely to have cross-sensitivity to a range of inorganic gases.
Therefore, the response could be associated with VOCs, inorganic gases, or a combination
of both. In the future, we hope to analyse further these chemicals to understand their
contribution to the instrument’s diagnostic potential.

A comparison was performed between the different stages of CRC in this study. CRC
samples were divided into early-stage CRC and late-stage CRC depending on the TNM
staging of each sample. Each sample was assigned T1 to T4 stage depending upon the size
and/or extent of the tumour. T1 and T2 were grouped as early-stage cancer and T3 and T4
were grouped as late-stage cancer. These comparisons were performed for both PEN3 and
GC-TOF-MS data. The results illustrate that PEN3 was able to separate early-stage CRC and
late-stage CRC from non-cancer samples with higher statistical output in comparison to the
early-stage CRC versus late-stage CRC. A similar pattern was observed for GC-TOF-MS
data. Though the results obtained by GC-TOF-MS data showed greater separation with
higher sensitivity and specificity.

However, the results from the comparison of two stages based on concentration of
chemicals found in the study demonstrate high capability of GC-TOF-MS to distinguish the
two stages of CRC. Figure 9 illustrates that early-stage, late-stage, and non-cancer samples
have different level of concentrations of VOCs. The statistically significant chemicals for
this separation, i.e., chemicals with a p-value of <0.05, were represented by the * mark. This
signifies that the detection of the cancer and the stages of the CRC based on VOCs profile
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may be a possible diagnosis method. The PEN3 was unable to accurately separate early
from late-stage cancer. This may be associated with ability of this system to measure the
subtle differences between early and late-stage cancer.

The study limitations were relatively small sample size/single centre study and lack of
comparison with healthy control group. We compared cancer group with non-cancer group
(patients with history of bowel symptoms suggestive of cancer but subsequently excluded).
Another limitation was that no chemical identification was undertaken with calibration
standards, and we did not attempt to quantify these chemicals. However, many of the
chemicals were reported in other studies and therefore, suggests consistency in reporting.

5. Conclusions

In our study, we investigated the use of PEN3 and GC-TOF-MS for the analysis of
urinary headspace biomarkers for colorectal cancer. We found that both PEN3 and GC-TOF-
MS were successful in separating the groups with high AUC. For the PEN3, the highest
AUC was seen for CRC and non-cancer group, AUC was 0.81 (0.73–0.88) and GC-TOF-MS
demonstrated relatively higher sensitivity and specificity with AUC for CRC and non-
cancer group 0.93 (0.89–0.97). The TOF-DS software was then used to investigate the VOCs
linked with both the cancers using GC-TOF-MS data. We found a total of 23 VOCs, out
of which 11 were cross verified using published papers and PubChem. This VOC profile
may support the use of VOCs for the screening of cancer and confirm clinical diagnostic
assessments. This will help in avoiding inefficient analytical methods currently used for
screening and give better, cheaper, and non-invasive approach for cancer diagnosis and
detection. Further, we verified that e-nose can be used for the detection and diagnosis of
cancer as it demonstrates high sensitivity and specificity.
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