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Abstract

Coronavirus disease (COVID-19) pandemic is instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
As of March 13, 2021, more than 118.9 million cases were infected with COVID-19 worldwide. SARS-CoV-2 is a posi-
tive-sense single-stranded RNA beta-CoV. Most COVID-19 infected individuals recover within 1-3 weeks. Nevertheless,
approximately 5% of patients develop acute respiratory distress syndrome and other systemic complications, leading to
death. Structural genetic analyses of SARS-CoV-2 have shown genomic resemblances but a low evolutionary correlation to
SARS-CoV-1 responsible for the 2002-2004 outbreak. The S glycoprotein is critical for cell adhesion and the entrance of
the virus into the host. The process of cell entry uses the cellular receptor named angiotensin-converting enzyme 2. Recent
evidence proposed that the CD147 as a SARS-CoV-2's potential receptor. The viral genome is mainly held by two non-
structural proteins (NSPs), ORF1la and ORF1ab, along with structural proteins. Although NSPs are conserved among the
BCoVs, mutations in NSP2 and NSP3 may play critical roles in transmitting the virus and cell tropism. To date, no specific/
targeted anti-viral treatments exist. Notably, more than 50 COVID-19 candidate vaccines in clinical trials, and a few being
administered. Preventive precautions are the primary strategy to limit the viral load transmission and spread, emphasizing
the urgent need for developing significant drug targets and vaccines against COVID-19. This review provides a cumulative
overview of the genomic structure, transmission, phylogeny of SARS-CoV-2 from Indian clusters, treatment options, updated
discoveries, and future standpoints for COVID-19.
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Introduction

The coronavirus disease (COVID-19), which started in

Wuhan, China, has spread across the world, affecting 218
countries and territories (Huang et al. 2020a; Wang et al.
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2020a; Li et al. 2020b; WHO 2020a). The novel severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is responsible for the infection. The virus mainly affects the
respiratory system leading to flu-like symptoms, includ-
ing high temperature, coughing, and in more severe cases,
breathing difficulty (Zou et al. 2020). Most patients recover
in a period of 1-3 weeks; however, approximately 5%
develop severe symptoms that may progress to acute res-
piratory distress syndrome (ARDS) and respiratory failure,
which may cause death. Besides, in patients at high risk,
COVID-19 may lead to systemic inflammation, putting
patients at risk of sepsis, cardiac injury, and organ dysfunc-
tion (Wang et al. 2020a). Older people (> 60 years) and peo-
ple with other morbidities are at a higher risk of mortality
(Wang et al. 2020a).

Coronaviruses (CoVs) belong to the family of Coronavir-
idae that encompass four genera that include alpha-, beta-,
gamma-, and delta-CoVs. Alpha- and beta-CoVs infect
mammals and humans, while gamma-CoVs infect birds and
delta-CoVs infect birds and mammals. The two most known
types of human CoVs are the beta-CoV OC43 and the alpha-
CoV 229E, both of which typically cause minor disease
conditions, usually mild upper respiratory diseases that are
self-limiting in individuals with a tolerable immune system
(Sahin et al. 2020). Other human coronaviruses include the
Middle East respiratory syndrome coronavirus (MERS-CoV,
2013), SARS-CoV-1 (2002), and the novel SARS-CoV-2,
all of them belong to beta-CoVs, are transmitted through
zoonotic transmission (from animals to humans), then spread
among humans via close contact causing severe diseases (Li
et al. 2020a). Genomic characterization revealed that the
sequences of SARS-CoV-2 exhibit high homology with that
of the previously identified SARS-CoV-1 and weaker homol-
ogy with MERS-CoV (Jaimes et al. 2020).

Nevertheless, the clinical and epidemiological char-
acteristics of SARS-CoV-2 are not precisely the same as
that of SARS-CoV-1. SARS-CoV-2 is highly transmittable
compared to SARS-CoV-1, with a 2.6 primary reproduc-
tion number (RO) of spread, implying that the number of
SARS-COV-2 positive cases increases exponentially (Hel-
lewell et al. 2020). Moreover, SARS-CoV-2 has lower-level
mortality compared to SARS-CoV-1. CoVs are enveloped
viruses and have the most abundant RNA viral genome, with
a length of 26 to 32 kb (Lu et al. 2020). The replication
mechanism of CoVs is quite complicated to ease virus repro-
duction (Chen and Guo, 2016). The virion’s primary con-
nection with the host cell takes place between the S protein
and its receptor. The positions of receptor binding domains
(RBD) vary depending on the structural changes (Fehr and
Perlman 2015). SARS-CoV-2 is spreading much faster than
any other respiratory viruses. The incubation period of the
virus ranges from 2—14 days, and a fraction of people likely
transmit the infection without manifesting any symptoms of
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the disease (Martinez 2020). Currently, there are no effec-
tive treatments for COVID-19. Mutations in the genome of
SARS-CoV-2 pose a significant challenge to researchers in
drug and vaccine development (Xu et al. 2020a, b). Cur-
rently, there are more than 118.9 million cases have been
recorded worldwide, with India listed in the 2nd place of
the most confirmed cases (Table 1) (Kumar et al. 2020;
Udhaya Kumar et al. 2020; MOHFW 2020; WHO 2020a).
The top five states with the highest cases in India are pro-
vided in Table 1. Besides, we provided a country-wise full
case report, cumulative total per 1 million population, the
total number of deaths, and classification of transmission till
March 13, 2021 (Supplementary Table 1) (WHO 2020a).
This review aims to provide comprehensive insights into the
genomic structure, transmission, treatment options, recent
findings, and future standpoints towards COVID-19.

Genomic structure

CoVs are known to possess the largest genomes among all
known RNA viruses, with a length ranging from 25 to 31 kb.
SARS-CoV-2 is a spherical enveloped consisting of single-
stranded positive-sense RNA linked with a nucleoprotein
inside a capsid comprising a matrix protein. The envelope
has glycoprotein projections in a bear club-shape. The viral
diameter is approximately 150-160 nm. The SARS-CoV-2
exhibits high sequence similarity with the bat-SL-CoVZC45

Table 1 Confirmed COVID-19 cases along with the list of countries
and states in India with the highest cases (https://covid19.who.int;
https://mygov.in/covid-19/)

Confirmed cases over the date of 13th March, 2021—

118,268,575
Deaths over date 13th March, 2021—2,624,677
Americas 52,386,995
South-East Asia 13,819,871
Europe 40,640,050
Eastern Mediterranean 6,793,641
Africa 2,932,557
Western Pacific 1,694,716
Highest number of cases recorded across the globe
United States of America 28,940,137
India 11,308,846
Brazil 11,202,305
Russia Federation 4,370,617
The United Kingdom 4,241,681
Highest number of cases recorded across India
Maharashtra 22,66,374
Kerala 10,85,663
Karnataka 9,57,584
Andhra Pradesh 8,91,178
Tamil Nadu 8,57,602
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and bat-SL-CoVZXC2 (~ 88% and 87%, respectively) while
being less similar to SARS-CoV-1 and MERS-CoV (= 79%
and 50%, respectively) (Lu et al. 2020).

A typical CoV genome contains protein-encoding
domains (5’ non-basic) consisting of two-third of genome
replicase genes and 3’ structural and non-essential accessory
protein-coding domains (Masters 2006). The cells that con-
tain the virus produce seven to nine viral-specific messen-
ger RNAs with ends of 3’ co-terminal (Masters 2006). The
mRNAS’ entirety conveys similar master sequences that span
70-90 nucleotides at the end of 5’ (Lai et al. 1984, 1985).
At their 5' ends, CoVs mRNAs have a leader sequence,
which is common among them (Spaan et al. 1983), which
comprises a transcription regulatory sequence (TRS-L) at
the 3" end that arranges part of the signal for transcription
of the sub-genomic mRNA (Budzilowicz et al. 1985). The
transcriptional regulatory sequences (TRSs) of all CoVs
incorporated the conserved core sequences (CS), consisting
of 6-8 nucleotides, along with 5’ and 3’ flanking sequences
(Sola et al. 2005). Beta-CoVs comprise 5'-UCUAAAC-3', a
heptameric consensus sequence. Replication occurs shortly
after the virus enters the infective cell, followed by virion
transfection via the generation of entire-length genomic and
sub-genomic intermediate negative strands (Yount et al.
2000). There is a minimum of 6 open reading frames (ORFs)
in the CoV structures’ genomic and subgenomic regions.
The SARS-CoV-2 genome contains 14 ORFs. The most
significant part of the whole genome length is known to be
the ORFa/b, the first of the ORFs, which encodes NSP1-
16 (non-structural proteins), apart from Gamma-CoVs with
the absence of NSP1. The polypeptides ppla and pplab
produced by — 1 frameshift among ORF1a and ORF1b are
processed virally determined main protease (MP™) or chy-
motrypsin-like protease (3CLP™) and other minor proteases
into 16 NSPs (Masters 2006).

As revealed by the whole-genome sequence alignment of
the NSP-coding regions, there is approximately 58% identity
among the varying CoV strains. About 43% identity in the
structural protein-coding regions implies that NSPs form the
genome’s conserved regions, while structural proteins are
more diverse (Chen et al. 2020). The NSPs aid in replica-
tion of the genome, proteolytic cleavage, and development
of sub-genomic mRNA (14-16 final products prepared for
coronaviruses) are inscribed on gene one inside the 5'- proxi-
mate, which is two-third; whereas the structural proteins are
inscribed on eight-nine genes inside the 3'- proximate, which
is one-third of the coronavirus genome. The structural genes
are positioned in the order of 5' to 3’; they encode for viral
proteins that include spike (S), envelope (E), membrane (M),
and nucleocapsid (N) proteins. Overall, the SARS-CoV-2
genome is about 25-31 kb in size with a spherical struc-
ture containing 9,860 amino acids. The genome encodes
for 13 ORF’s, out of which the first one-third codes for

NSPs, and the remaining make up the structural proteins.
The CoV strains’ identity varies in terms of the protein
structure, where structural proteins show diverse structural
characteristics.

SARS-CoV-2 detection

Nucleotide detection assays (NDA) such as Next Generation
Sequencing (NGS) and RT-PCR detection technologies were
implemented to detect SARS-CoV-2 (Shey et al. 2020; NGS
2020, p. 19). Compared to the sequencing/NGS technolo-
gies, RT-PCR remains a cheaper method to detect SARS-
CoV-2 infection (Ai et al. 2020). The results can be achieved
by assessing the expectorated sputum, bronchoalveolar lav-
age, or endotracheal aspirate samples acquired from the res-
piratory tracts (Lambert-Niclot et al. 2020). The tests are
repeated for re-verification in positive results and negative
cases with strong clinical suspicions (Hassan et al. 2020).
The genetic material obtained from the mucus or salivary
samples is amplified in the laboratory using RT-PCR. After
retrieving a sufficient amount of the genetic material, the
conserved regions of the CoV are determined. The probes
have been used based on existing gene sequences published
on Virological.org by the Shanghai Public Health Clinical
Center & Public Health School, Fudan University, Shang-
hai, China, and subsequently confirmed by other labs. In the
COVID-19 positive cases, the tests are repeated to confirm
the viral particles’ clearance before the patient’s discharge.
The testing for the infection will differ based on the country
(Dong et al. 2020). Several biosensors have been developed
and identified for early SARS-CoV-2 detection (Behera et al.
2020).

Commercial NDA such as SARS-CoV-2 RNA detection
kits was discovered, and nearly 37 commercial detection
kits were approved by FDA (Health 2020). Non-commer-
cial NDA, such as Loop-mediated isothermal amplifica-
tion (LAMP) and RT-LAMP, is recognized as an optimistic
method than PCR. It provides more sensitivity, specific-
ity, product yield, and reaction efficiency (Ji et al. 2020).
Consequently, several other detection methods have been
employed, such as NP antigen detection assay, Antibody
detection assays targeting SP and NP viral proteins (Ejazi
et al. 2020; Li et al. 2020c; Guo et al. 2020). CT findings
have been used controversially as a surrogate diagnostic test.
Chest CT has a vital role in diagnosing COVID-19. COVID-
19 occurs with pneumonia symptoms in the initial stage,
including dry cough, fever, chest congestion, and fatigue.
Therefore, chest scan aids in the assessment of the disease
extent condition and its follow-ups as it shows the patchy
or diffuse asymmetric airspace opacities, which is an acute
symptom of COVID-19. The initial scans showed a bilateral
lung development pattern for around 40 patients out of 41
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ICU patients (Hosseiny et al. 2020). The multifocal periph-
eral ground glass imaging results are highly suspicious of
COVID-19, which might show a rapid change in a short
duration (Table 2) (Li et al. 2020d).

Structural proteins

SARS-CoV-2 encompasses four types of structural proteins,
namely S, E, M, and N proteins. These four structural pro-
teins share high sequence identity to that of SARS-CoV-1
and MERS-CoV. It is incorporated with hemagglutination
(HE) and glycoprotein acetyl esterase, making SARS-
CoV-2 distinct from other CoVs (Cascella et al. 2020). The
S proteins lie in the outermost sessions of the viral particle,
ACE?2, which is known to have an essential part in the action
of transmembrane receptor recognition, which is used by
the CoVs to make an entry into the host cell. Therefore,
the host specificity and infectious nature of CoVs are deter-
mined chiefly by the S proteins (Letko et al. 2020). Among
all proteins within the virus structure, M protein is perhaps
the most effective and is present in considerably various
extents; it also provides the virus’s shape. Figure 1 depicts
the SARS-CoV-2 mechanism in the host cell.

On the other hand, inside the virion, E protein exists in
the least quantity and helps release the infected cells’ viral
particles (Nal et al. 2005; Ashour et al. 2020). Simultane-
ously, the N protein attaches to the viral RNA, which is
obligatory during viral assembly for wrapping the viral RNA
into the viral components (Parameshwar et al. 2020). On
the beta-CoV surface, the HE is located. It is similar to the
influenza virus hemagglutinin. It provokes acetyl-esterase
activity, characteristics of HE might enhance the pathogen-
esis and entrance of CoVs that involve proteins at its viral
structure (Klausegger et al. 1999). CoVs use the S proteins
to initiate the binding with the host cell. The binding activa-
tion is carried out by furin, an enzyme in several humans’
organs, including the lungs, small intestine, and liver (Calla-
way et al. 2020). The S protein and the furin enzyme activa-
tion are not the only factors; other human cells’ elements
make them more vulnerable to new SARS-CoV-2 infection.
In human cells, it was shown that the S protein needs to bind
to ACE2, which allows SARS-CoV-2 to cause infection in
human cells (Wrapp et al. 2020).

Experts suggested that furin inhibitors might be an effec-
tive therapeutic against COVID-19. Meanwhile, it is also
recommended that blocking ACE2 might also be another
feasible solution, stopping the CoV from cell entry (Coutard
et al. 2020). In CoV, the RNA genome is enclosed in the N
protein, further embedded into an envelope (Fan et al. 2005;
McBride et al. 2014). The structural and NSPs are produced
by sub-genomic + sense RNAs translation. After the forma-
tion of viral RNA components, the assembling of structural
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viral protein occurs in the virions. The budding and viral
assembly occur in the endoplasmic reticulum-Golgi inter-
mediate (Zhang et al. 2020).

Common drug targets
Spike protein (S)

The S protein is a 150 KDa class I fusion transmembrane
protein found in its outer portion. The protein contains an
alpha-helical coiled structure and is highly glycosylated as
it includes N-glycosylation sites from 21 to 35. It gathers
as trimers giving a crown shape (corona; crown in Latin).
They usually contain two N-terminal spaces labeled S1
that are liable for binding the receptor and a C-terminal
S2 space essential for fusion. The S1 spaces comprise two
sub-domains: N-terminal space and C-terminal space. Both
subdomains work as receptor restricting spaces and tie an
assortment of protein and sugar (Robson 2020). The SARS-
CoV-2's S protein attaches ten to multiple times more stur-
dily to the receptor ACE2 in people in contrast to that of the
S protein of SARS-CoV-1 infection from 2002, which is
liable for the simple spread of COVID-19 from individual to
individual than different CoVs. The antibodies used against
SARS-CoV-1 could not bind to the new SARS-CoV-2 S pro-
tein successfully; therefore, the vaccines or the antibody-
based treatment should be unique for COVID-19. It is note-
worthy that the proteases in host cells cleave the S1 domain
instantly after the upstream of the S2 fusion peptide, which
is anticipated to be the reason for protein activation through
irreversible conformational changes (Walls et al. 2020).

Envelope protein (E)

The E protein is a small integral membrane protein but per-
haps the most enigmatic. It is primarily expressed in infected
cells during the replication cycle, and only a minute frac-
tion is integrated with the virus envelope. The E protein is
essential in virus assembly and maturation (Schoeman and
Fielding 2019). They have three domains: hydrophilic amino
acid terminus consist of 7—12 amino acids, the transmem-
brane hydrophobic domain containing 25 amino acids, and
a long C-terminal end with the majority of proteins. The
transmembrane domain (TMD) comprises two nonpolar,
impartial amino acids: Leu and Val give solid hydrophobic-
ity to E-protein. The central region [TMD] is uncharged,
which is flanked towards one side by the amino acid nega-
tively charged and on the opposite side via carboxy end of
variable charges, which together give the E peptide gross
net charge of zero (Schoeman and Fielding 2019). The E
protein of SARS-CoV contains a restricting theme called
postsynaptic thickness protein 95 (PSD95), Drosophila plate
enormous tumor silencer (DIgl), Zonula occludes-1 protein
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Fig. 1 The SARS-CoV-2 life
cycle inside its host cell; starts
when the S protein binding
occurs with the ACE2 receptor.
After the binding process, the

S protein changes enable the
fusion of the viral envelope via
the cell membrane’s endoso-
mal pathway. Then the RNA is
released from the SARS-CoV-2
inside the host cell. The transla-
tion of the RNA genome into
the viral replicase polyproteins,
which produces various viral
particles. A sequence of sub-
genomic mRNAs are produced
by discontinuous transcrip-

tion and, at last, get translated
into viral proteins. These viral
proteins and RNA genome are
organized in the endoplasmic
reticulum and Golgi’s virions,
which are further transported
through the vesicles, and finally,
exocytosis occurs
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Translation of viral
polymerase protein

Exocytosis

RNA -dependent RNA
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Transcription Replication

|

Sequence of sub genomic mRNAs are
produced by discontinuous transcription
and at last gets translated into viral
proteins |

Rough ER

‘ # - Spike protein; 4 - Envelope protein;

- Membrane protein; ® - Nucleocapsid l

(zo-1), PBM found in the last four amino corrosive of the
C end. PDZ area can tie to the C-end of the cell connector
protein engaged with have cell process that brings about
the viral disease (Schoeman and Fielding 2019; Chan et al.
2020; Bianchi et al. 2020). Genetic analysis of the E protein
revealed that the protein sequences in SARS-CoV-2 exhibit
high identity from Pangolin and Bat isolate. Besides, evi-
dence revealed a distinctive feature of E variants of SARS-
CoV-2 in the presence of Arg at position 69, which replaces
Asp, Glu, and Gln in SARS-CoV-1 E homologous proteins.
Besides, there is a deletion at position 70, which corre-
sponds to Cys or Gly in the other homologous proteins and
other existing variations at positions 37, 55 to 56, and at 72
(Bianchi et al. 2020).

Membrane protein (M)

The M protein is considered the most extensive protein in
CoV’s structural membrane. The membrane bilayer has the
domain of short NH2-terminal in the outer part of the virus.
It constitutes the cytoplasmic domain, i.e., the long COOH-
terminus in the viral particle’s internal part. It has a vital
role in forming the intracellular viral structures without the
S protein (Mousavizadeh and Ghasemi 2020). It does not
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appear to have an enzymatic function, and it is not an ideal
target either. Recent evidence revealed structural differences
distinctive for SARS-CoV-2M protein that might be linked to
the cross-species transmission and viral properties. Several
variants were identified in SARS-CoV-2 M protein, includ-
ing Ser2, Gly3, Val57, Arg89, 11e70, Ser85, and Metl175
(Bianchi et al. 2020). Although multiple sequence alignment
revealed high structural similarity (~98%) between M pro-
tein variants in SARS-CoV-2 and counterparts from Pango-
lin and Bats, the N-terminal position exhibited a variation in
position four of the SARS-CoV-2's M protein, consisting of
an insertion of a Ser residue. In contrast, in the homologous
proteins, there was a deletion in the RaTG13 Bat and an
Asp residue in Bat CoVZC45, CoVZXC21, and Pangolin
MP789 isolates.

Nucleocapsid protein (N)

The N protein is primarily involved in binding to the virus’s
RNA genome, forming a shell around the nucleic acid.
During the viral assembly process, there is a connection
between the N-protein and M-protein, assisting the RNA
synthesis and folding, which is vital in the viral budding
and disturbs the responses like cell cycle and translation in
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host cells. Recent evidence revealed that the SARS-CoV-2 N
protein manifests high sequence similarity to SARS-CoV-1
(~90.5%) (Zeng et al. 2020). Nevertheless, structural differ-
ences that are distinctive for SARS-CoV-2 were reported.
Most of the variants identified in the N protein of SARS-
CoV-2 were missense mutations (such as 203_204delinsKR,
S194L, P13L, and S197L) and synonymous mutations (such
as D128D and L139L), and fewer were deletion and inser-
tion mutations (Koyama et al. 2020).

Non-structural proteins (NSPs)

The SARS-CoV genome encodes many proteins, includ-
ing the replicase gene, a vital element of the genome CoV,
encoding for 16 NSPs that constitute two large polypeptides,
PPla PPlab. Two types of cysteine proteases function on
those PPs to activate the NSPs. Chymotrypsin-like cysteine
protease cleaves the C-terminal end of these PPs, and the
MP™ processes the N-terminal end, which is called papain-
like protease (PLP™). PLP™ excises the first three cleavage
sites in the PPs, while CLP™ cleaves the remaining 11 sites,
resulting in 16 NSPs release (Prajapat et al. 2020a, b).
Researchers in Gladstone Institute, US, have identified
SARS-CoV-2 protein-human protein interactions using affin-
ity purification mass spectroscopy. They discovered 332
SARS-CoV-2 protein-human protein interactions, of which
66 druggable human proteins were identified to be targeted
by 69 compounds, of which some are already FDA-approved
and in clinical trials (Gordon et al. 2020). According to a
recent study, the SARS-CoV-2 genome encodes 14 ORFs.
In particular, 5" Orfla/Orflab encodes polyprotein, which is
autoproteolytically processed to 16 NSPs [NSP1-NSP16].
These form the replicase/transcriptase complex (RTC) such
as NSP1, the main protease (NSP5), 2'O-methyltransferases
(NSP10/NSP16), the primase complex (NSP7-NSP8),
papain-like protease (NSP3), a helicase/triphosphatase
(NSP13), an exoribonuclease (NSP14), the primary RdRp
(NSP12), and an endonuclease (NSP15) (Li 2016). The
NSP1 interacts with the DNA replication of the host path-
way. The NSP5, NSP8, NSP13 interact with the epigenetic
and gene expression regulatory pathway of the host. NSP6,
NSP7, NSP10, NSP13, NSP15 interact with vesicle traffick-
ing. NSP8 interacts with RNA processing and regulation
of the host pathway. NSP9 interacts with the extracellular
matrix and NSP8; NSP13 interacts with the host signaling
pathway of the infection’s replication mechanism that makes
duplicates of its RNA genome (Chen et al. 2020). The origi-
nal CoV’ RdRp exists as mind-boggling with polymerase
called NSP12 and some small proteins NSP7 and NSPS.
It consists of a shape such as the right hand. The RdRp
from SARS-CoV (2002) and SARS-CoV-2 having a similar
dynamic site of RNA polymerization and indistinguishable
amino corrosive arrangements. Scientists hypothesized that

remdesivir drug inhibits the RdRp of SARS-CoV-2, for
which the clinical trials have started to test the ability of this
drug to the patients infected with SARS-CoV-2. However,
it is not clear that how the mutant RdRp works with remde-
sivir, and a recent study found a potential compound with a
higher affinity for both the native and mutant RdRp through
virtual screening strategies (Thirumal et al. 2021). The S,
M, and E proteins form the envelope and protect the viral
particle from external factors (Bianchi et al. 2020; Huang
et al. 2020b; Thomas 2020). In short, protein structures play
a crucial role in drug targets. The S glycoprotein structure of
SARS-CoV-2 utilizes the ACE2 receptor of the host for cell
entry, followed by other viral proteins exhibiting their role
for the viral mechanism inside the host cell.

Evolution and phylogenetic analysis
of COVID-19 genomes

A phylogenetic relationship of SARS-CoV-2's genome was
reported in many studies; this method was applied to inves-
tigate the phylogenetic relationships among the genomes
of CoVs, which investigate the developmental pathways
and their ancestral/hereditary genome in the host organism
(Forster et al. 2020; Jaimes et al. 2020; Nie et al. 2020). It
is mainly applied to investigate human evolution; however,
it was applied less in viral evolution (Forster et al. 2020).
SARS-CoV-2 is an ancestry of beta-SARS-CoV that belongs
to the Coronaviridae family. Unlike SARS-CoV, SARS-
CoV-2 possess a distinct evolution and proteolytically-sen-
sitive activation loop, which is believed to be responsible
for its high contagiousness and pathogenicity (Jaimes et al.
2020). Recent phylogenetic analyses demonstrated that
SARS-CoV-2 was phylogenetically close to the RaTG13,
accompanied by GD Pangolin SARSr-CoV, and by GX Pan-
golin SARSr-CoVs, and now by ZC45 and ZXC21, then by
human SARS-CoV, and last by BM48-31 (Tang et al. 2020).
As of March 13, 2021, more than 3,12,463 SAR-CoV-2
genome sequences are identified globally and available in
the public domain. Based on the mutation marker, globally,
six phylogenetic clades of SARS-CoV-2 were categorized
(GH, S, GR, V, G, and L)) (Jacob et al. 2020). Since the phy-
logenetic analysis of the SARS-CoV-2 genome was reported
by Jacob et al. (2020), our review focused on discussing the
relationship between the phylogeny from Indian clusters to
understand the genomic evolution (Jacob et al. 2020). The
sequences of SARS-CoV-2's genomes reported in India,
which belong to the genus Coronaviridae, were extracted
from the GISAID initiative. Many national institutions col-
lected the SARS-CoV-2 samples from different regions of
India; their genomes were sequenced and deposited in the
GISAID initiative (GISAID 2020). For our phylogenetic
study, alignments of nucleotides were constructed with the
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help of Multiple Alignment using Fast Fourier Transform
(MAFFT), and Block Mapping and Gathering with Entropy
(BMGE) algorithm was applied to compute the appropri-
ate locations for phylogenetic analysis in the query multiple
sequence alignment and followed by FastME to compute
the pairwise distances and tree (Desper and Gascuel 2002;
Junier and Zdobnov 2010; Criscuolo and Gribaldo 2010;
Katoh and Standley 2013; Lefort et al. 2015; Lemoine et al.
2019). For further visualization of the output tree, we used

Tree scale: 0.0001 ——

Fig.2 Analysis of phylogeny relationship between the Indian SARS-
CoV-2 genomes of Coronaviridae from GISAID (https://www.gisaid.
org/epiflu-applications/hcov-19-genomic-epidemiology/). Nearly 775
high-quality genomes were retrieved and conducted the phylogenetic
analysis with NGPhylogeny (https://ngphylogeny.fr/). An interactive
view of phylogeny was plotted using Interactive Tree Of Life (iTOL)

jllate ¢llodl ay .
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the Interactive Tree Of Life (iTOL) (Letunic and Bork 2019)
(Fig. 2). The SARS-CoV-2 genomes from Indian isolates
exhibited a common PANGOLIN lineage, which is highly
transmissible (B.1/B.1.1/B.1.36) with mutation (D614G);
whereas, the B.6 lineage reported as a second common and
least transmissible owing to the absence of mutation in S
protein (Jacob et al. 2020; Banu et al. 2020; Koyama et al.
2020). Intriguingly, the Gujarat dominant linage B.1.36 con-
tains one-three S protein mutations that would lead to higher
infection rates.

(https://itol.embl.de/). The genome names (nodes) are displayed in
red font, branch length from the root was provided in red font for each
circle (blue and gray) with designated values. The internal node sym-
bols were depicted in black dots (Display mode: Circular; Gap Pen-
alty=— 1.53,4+0.00, — 0.12; Tree scale: 0.0001)


https://www.gisaid.org/epiflu-applications/hcov-19-genomic-epidemiology/
https://www.gisaid.org/epiflu-applications/hcov-19-genomic-epidemiology/
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https://itol.embl.de/
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Therapeutic management of COVID-19

COVID-19 treatment requires clinical care, including aid
in oxygen, fluid therapy, and support for other internal
organs affected. Current potential therapeutics used against
COVID-19 include antibodies, anti-virals, cell-based
compounds, RNA-based compounds, anti-inflammatory
agents, antimalarial agents, and protein-based antibiotics
(Lu 2020). Figure 3 Summarizes current pre-clinical and
clinical treatments available to treat COVID-19 (Milken
Institute 2020). Table 3 includes a comprehensive descrip-
tion of the clinical evidence for the therapies being studied
and Supplementary Table 2. Evidence showed that out-
patients could be benefited from acquiring monoclonal
antibodies against SARS-CoV-2 early. Bamlanivimab
and casirivimab plus imdevimab monoclonal antibodies
as anti-SARS-CoV-2 are provided via EUA for patients at
high risk of disease progression.

Remdesivir (Veklury), an anti-viral agent, is the only
FDA-approved drug for the COVID-19 treatment. The
course of therapy of remdesivir was found to be effec-
tively tolerated but is not efficacious in critical COVID-
19 cases (Ko et al. 2020; Wang et al. 2020b, c). Other
anti-viral agents, including hydroxychloroquine and
chloroquine, umifenovir, lopinavir-ritonavir, favipiravir,
and oseltamivir, are currently being analyzed in vivo and
in vitro (Table 3, Supplementary Table 2) (Wu et al. 2020;
Biorender 2020). Oseltamivir joined with direct anti-
infection utilization, has been utilized to treat patients
with SARS-CoV-2 (Huang et al. 2020a). The adequacy

RNA-based treatments

Device

Scanning compounds to repurpose
Antivirals

Cell-based therapies

Antibodies

Other

and safety measures of lopinavir-ritonavir and interferon-a
2b in COVID-19 patients are still being investigated
(Habibzadeh and Stoneman 2020). In vitro evidence using
the antiparasitic drug, ivermectin has effectively worked
as a potential therapeutic against SARS-CoV-2 in 48 h.
However, the safety and applicability in humans remain to
be investigated (Caly et al. 2020). In hospitalized patients
who need supplemental oxygen, corticosteroids, including
dexamethasone, have been shown to enhance longevity,
with the overall benefit seen in patients requiring mechani-
cal ventilation. Hence, dexamethasone usage in this condi-
tion is highly recommended (Horby et al. 2020; Jeronimo
et al. 2020; Angus et al. 2020; Tomazini et al. 2020).

Why protease of COVID-19 be the best drug
target?

The crystal structures are always more reliable than compu-
tational models (Forrest et al. 2006). The crystal structure
of the MP* (PDB ID- 6LU7) could be the potential drug
target with this aspect. It was not limited to this availability,
but protease was essential in replicating the virus (Patick
and Potts 1998). Replication occurs within the cytoplasm of
the host cells that are infected. The coronaviruses’ single-
stranded RNA genome is released in the cytoplasm, where
it is translated to form a replicase complex, which is then
processed proteolytically into NSPs by viral proteases (van
Boheemen et al. 2012; Kilianski et al. 2013). This makes
it an excellent choice to inhibit the replicating virus and
henceforth the viral assembly and its release. Coronavirus

Bl Pre-clinical
I Clinical

Fig.3 COVID-19 therapeutic candidates in both clinical and pre-
clinical development. Diverse categories of pre-clinical and clinical
research COVID-19 therapeutic candidates are currently in develop-

1 . 1 s I L) 1 L4 1 b 1
60 80 100 120 140 160
Number of candidate treatments

ment— source: COVID-19 vaccine and treatments tracker, Milken
Institute (Milken Institute 2020)
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Table 3 COVID-19 candidate drug treatments in clinical trials (Phase III-1V)

Drug Candidate Organization Technology Stage
Valsartan Radboud Universit, National University of Ire- Other Phase IV

land, Galway, Ireland
Ebastine® Mianyang Central Hospital Antivirals Phase IV
Danoprevir® Ascletis Pharmaceuticals Co., Ltd., The Ninth Antivirals Phase IV

Hospital of Nanchang
Bivalirudin Hamad Medical Corporation Other Phase IV
Somatotropin ClinAmygate Dormant/Discontinued Phase IV
Darunavir® Multiple organizations Antivirals Phase III/IV
Novaferon Multiple organizations Other Phase III/IV
Ravulizumab Multiple organizations Antibodies Phase III/IV
Carrimycin Multiple organizations Other Phase III/IV
Nintedanib Multiple organizations Other Phase III/IV
Telmisartan Multiple organizations Other Phase II/IIV/IV
Tocilizumab? Multiple organizations Antibodies Phase II/II/IV
Corticosteroid Therapy® Multiple organizations Other Phase II/II/IV
Tissue plasminogen activator Multiple organizations Other Phase I/ITI/IV
Granulocyte—Macrophage Colony-Stimulating Multiple organizations Other Phase I/III/IV

Factor

Anakinra® Multiple organizations Other Phase II/III/IV
Nitazoxanide® Multiple organizations Other Phase II/III/IV
Eicosapentaenoic Acid Free Fatty Acid Multiple organizations Other Phase II/III/IV
Rivaroxaban® Multiple organizations Other Phase II/I/IV
Interferon beta-1a® Multiple organizations Other Phase II/I/IV
Baricitinib® Multiple organizations Other Phase II/I/TV
Candesartan® Multiple organizations Other Phase II/I/IV
Doxycycline? Multiple organizations Other Phase II/I/IV
Sofosbuvir® Multiple organizations Antivirals Phase II/II/IV
Ledipasvir® Multiple organizations Antivirals Phase II/I/IV
(Hydroxy)Chloroquine® Multiple organizations Other Phase VI/III/IV
Lopinavir® Multiple organizations Antivirals Phase VI/III/TV
Favipiravir® Multiple organizations Antivirals Phase VII/II/IV
Sarilumab? Multiple organizations Antibodies Phase VI/III/IV
Convalescent plasma Multiple organizations Antibodies Phase VI/III/IV
Intravenous Immunoglobulin Multiple organizations Antibodies Phase VI/III/IV
Ritonavir* Multiple organizations Antivirals Phase VII/II/IV
Camostat Mesylate? Multiple organizations Other Phase VII/III/IV
Interferon alpha Multiple organizations Other Phase VII/II/IV
Losartan® Multiple organizations Other Phase VI/III/IV
Ivermectin® Multiple organizations Other Phase VII/III/IV
Azithromycin® Multiple organizations Other Phase VII/II/IV
Low Molecular Weight Heparin® Multiple organizations Other Phase V/I/III/IV
Bamlanivimab Multiple organizations Antibodies Phase I/II/II/IV
N-acetylcysteine Multiple organizations Other Phase V/II/III/TV
Povidone-lodine Multiple organizations Other Phase I/II/II/IV
Dexamethasone? Multiple organizations Other Phase I/I/III/IV
Otilimab GlaxoSmithKline Antibodies Phase 111
ASC09? Multiple organizations Antivirals Phase 111
Azvudine Multiple organizations Antivirals Phase 111
Remestemcel-L Mesoblast, Inc, Icahn School of Medicine at Cell-based therapies Phase III

Mount Sinai
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Table 3 (continued)

Drug Candidate Organization Technology Stage
CD24Fc Oncolmmune, Inc Other Phase III
INOpulse Bellerophon Device Phase I1I
Cobicistat® Multiple Organizations Antivirals Phase III
Tradipitant Vanda Pharmaceuticals Other Phase I1I
Brensocatib Insmed Inc., University of Dundee Other Phase III
Pacritinib CTI Biopharma Other Phase I1I
Almitrine Multiple organizations Other Phase I1I
Levilimab Biocad Antibodies Phase III
Prasugrel Azienda Ospedaliera Universitaria Integrata Other Phase I1I
Verona, University of Milan
NK-1R antagonist University of Lahore, Bahria International Other Phase I1I
Hospital
Rosuvastatin® Yale University Other Phase 111
XC221 RSV Therapeutics LLC Antivirals Phase I1I
Broncho-Vaxom Multiple organizations Other Phase 111
Bucillamine Revive Therapeutics, Ltd Other Phase 111
Losmapimod Fulcrum Therapeutics Other Phase 111
Edoxaban® University Hospital Inselspital, Berne, Daiichi Other Phase I1I
Sankyo Europe, GmbH, a Daiichi Sankyo
Company
Brexanolone Sage Therapeutics Other Phase 111
NA-831?2 NeuroActiva, Inc., Biomed Industries, Inc Other Phase 111
Nicotine Assistance Publique—H®opitaux de Paris Other Phase 111
Lidocaine Multiple Organizations Other Phase 111
Fenofibrate Hebrew University of Jerusalem, Barzilai Medi- ~ Other Phase 111
cal Center
Fluvoxamine Washington University School of Medi- Other Phase II/II1
cine, Covid-19 Early Treatment Fund
Tranexamic Acid University of Alabama at Birmingham Other Phase II/111
Lenzilumab Multiple organizations Antibodies Phase II/I1T
Bevacizumab Multiple organizations Antibodies Phase II/I1T
Siltuximab® Multiple organizations Antibodies Phase II/111
Eculizumab Multiple organizations Antibodies Phase II/111
Canakinumab Multiple organizations Antibodies Phase II/I1T
Emapalumab Swedish Orphan Biovitrum Antibodies Phase II/I1T
IFX-1 Multiple organizations Antibodies Phase II/111
Truvada® Multiple organizations Antivirals Phase II/111
VIR-7831 Vir Biotechnology, Inc., GlaxoSmithKline Antibodies Phase 1I/111
Multipotent Adult Progenitor Cells Athersys, Inc Cell-based therapies Phase II/111
Ifenprodil Algernon Pharmaceuticals, Novotech Other Phase II/111
Nafamostat Multiple organizations Other Phase I1/111
Colchicine® Multiple organizations Other Phase II/I11
Selinexor Karyopharm therapeutics, Peter MacCallum Other Phase 1I/11I
Cancer Centre, Australia
Vazegepant Biohaven Pharmaceuticals, Inc Other Phase II/I1T
Dapagliflozin® Multiple organizations Other Phase II/I1T
Imatinib® Multiple organizations Other Phase II/I1T
DASI181 Multiple organizations Antivirals Phase II/I1T
Dipyridamole Multiple organizations Other Phase II/I1T
ABX464 Abivax S.A Other Phase II/111
Dociparastat sodium Chimerix Other Phase II/I1T
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Table 3 (continued)

Drug Candidate Organization Technology Stage
EDP1815 Cambridge University Hospitals NHS Foundation Other Phase II/I1T
Trust, Evelo Biosciences, Inc
Mavrilimumab Multiple organizations Antibodies Phase II/I1T
Levamisole® Multiple organizations Other Phase II/I1T
Secukinumab Assistance Publique—HO0pitaux de Paris, Antibodies Phase II/11
Lomonosov Moscow State University Medical
Research and Educational Center
RTB101 Restorbio Inc., National Institute on Aging Other Phase II/I1T
Tacrolimus?® Hospital Universitari de Bellvitge, Institut Other Phase II/I11
d’Investigacié Biomedica de Bellvitge
Hyperbaric chamber Multiple organizations Device Phase II/111
Opaganib RedHill Biopharma Limited, Shaare Zedek Medi- Other Phase II/I1T
cal Center
Lactoferrin Multiple organizations Other Phase 1I/I1I
Clazakizumab Multiple organizations Antibodies Phase 1I/I1I
Ambrisentan® Cambridge University Hospitals NHS Foundation Other Phase II/I1T
Trust
PTC299 PTC therapeutics Other Phase II/I1T
Daclatasvir® Multiple organizations Antivirals Phase II/I1T
BDB-001 Staidson (Beijing) Biopharmaceuticals Co., Ltd,  Other Phase II/I1T
Beijing Defengrui Biotechnology Co. Ltd
Olokizumab Multiple organizations Antibodies Phase II/111
NA-831? NeuroActiva, Inc Other Phase II/IIT
Atazanavir® Multiple organizations Antivirals Phase II/I1I
RPH-104 Multiple organizations Other Phase II/I1I
RESP301 Thirty respiratory limited Other Phase II/I11
Atorvastatin Multiple organizations Other Phase II/I1I
Acetylsalicylic acid Multiple organizations Other Phase II/I11
BIO101 Biophytis Other Phase II/111
TD139 University of Edinburgh, University of Oxford Other Phase II/I11
Melatonin Multiple Organizations Other Phase II/I11
Itolizumab Biocon Limited, Equillium Antibodies Phase 1I/111
Apremilast® QuantumLeap Healthcare Collaborative, Amgen  Other Phase II/I1T
Bardoxolone methyl NYU Langone Health, Reata Pharmaceuticals, Other Phase II/I1T
Inc
INMO005 Inmunova S.A. Antibodies Phase II/I11
Bicalutamide University of Florida, Sidney Kimmel Compre- Other Phase II/I1T
hensive Cancer Center at Johns Hopkins
Metformin* Multiple organizations Other Phase II/111
IMU-838* Multiple organizations Other Phase II/I1T
Triazavirin Multiple organizations Antivirals Phase II/111
Furosemide Queen’s University, University Health Network,  Other Phase II/111
Toronto
Recombinant Nematode Anticoagulant Protein c2 ARCA Biopharma, Inc., Colorado Prevention Other Phase II/I1T
Center
Remdesivir® Multiple Organizations Antivirals Phase I/II/IIT
Thymosin Multiple Organizations Other Phase I/II/IIT
Meplazumab Tang-Du Hospital, Jiangsu Pacific Meinuoke Bio  Antibodies Phase I/II/IIT
Pharmaceutical Co Ltd
Ribavirin Multiple organizations Antivirals Phase I/II/IIT
Ruxolitinib Multiple organizations Other Phase I/II/IIT
Nitric Oxide Multiple organizations Other Phase I/II/IIT
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Table 3 (continued)

Drug Candidate Organization Technology Stage
Aviptadil Multiple organizations Other Phase I/II/IIT
Niclosamide® Multiple organizations Other Phase I/II/IIT
Interferon beta-1b* Multiple organizations Other Phase I/II/IIT
Molnupiravir Multiple organizations Antivirals Phase I/IV/IIT
Angiotensin 1-7 Multiple organizations Other Phase I/IV/IIT
DNases Multiple organizations Other Phase I/IV/IIL
REGN-COV2 Regeneron Pharmaceuticals Antibodies Phase I/I/IIT
SCTAO1 Sinocelltech Ltd Antibodies Phase I/II/IIT
Fostamatinib Multiple organizations Other Phase I/IV/IIL
CT-P59 Celltrion Antibodies Phase I/II/IIT
Umifenovir® Multiple organizations Antivirals Phase I/IV
Oseltamivir® Multiple organizations Antivirals Phase I/III/IV
Famotidine Multiple organizations Other Phase I/III/IV
Cyclosporine Multiple organizations Other Phase VI/IV
TYO027 Tychan Pte Ltd Antibodies Phase /11
Bromhexine® Multiple organizations Other Phase I/III/IV
Therapeutic Plasma Exchange Multiple organizations Other Phase II/IV
Chlorhexidine NYU Langone Health, Ohio State University Other Phase II/IV
AZD7442 Multiple organizations Antibodies Phase I/I11

“May be used in combination with other therapeutics. Clinical trials mentioned contain this included drug in the regimen

"EDA approved for COVID—19 treatment. This Table was last updated on December 14, 2020. Treatments that have not reached phase III clini-
cal trials are not shown in this Table— source BioRender Vaccine and therapeutics Tracker (Biorender 2020)

proteases are known to be multifunctional. Studies have
shown that coronavirus has the DUB and deISGylating to
evade innate immune systems (Komander et al. 2009; Jeon
et al. 2010). Some of the mechanisms that the virus adapts to
evade the immune system include (1) inhibition of the poly
I: C by the protease leading to the activation of the TRIF
and further the NF-xB signaling. (2) Downregulation of
the IFR3 phosphorylation, thereby preventing its dimeriza-
tion, results in the signal cascade’s termination. (3) Protease
is also known to repress the IFN signalling. (4) Protease
can stabilize the Ik Ba, in turn, inactivating the NF-kB, a
transcription factor for the activation of the inflammatory
cytokines. (5) Activation of NF-xkB by TNFa is blocked by
protease (Devaraj et al. 2007; Frieman et al. 2009; Clementz
et al. 2010). Protease inhibitors can bind to the protease,
thereby activating the signaling pathway and release of pro-
inflammatory cytokines, and hence are an excellent choice
for the anti-viral agent.

The main protease of SARS-CoV-2, referred to as the
3C-like protease (3CLP™), was identified as a target for post-
infection drugs in March 2020. 3CLP™ enzyme plays a cru-
cial role in the replication and life cycle of the virus. The
human immunodeficiency viruses (HIV) protease inhibitors
lopinavir and ritonavir have evidence of activity against the
coronaviruses, including SARS-CoV and MERS-CoV (Li and
Clercq 2020; Kupferschmidt et al. 2020). They have recently

been proposed as a potential combination therapy against
COVID-19 (Table 3 and Supplementary Table 2) (Kupfer-
schmidt et al. 2020; Mullard 2020; Mishra et al. 2020). Nev-
ertheless, a recent preliminary study in China of lopinavir/
ritonavir combination therapy found no effect in people hos-
pitalized for COVID-19 (Cao et al. 2020). Efforts are currently
directed towards identifying novel protease inhibitors that
target the protease 3CLP™, such as GC376 (Supplementary
Table 2) (Ramajayam et al. 2011; Morse et al. 2020; Liu et al.
2020). Other protease inhibitors include bromhexine hydro-
chloride (Table 3), which reduced patients’ mortality rate with
COVID-19 (Ansarin et al. 2020). Besides, it can reduce infec-
tion, which could be used to treat COVID-19 as a prophylac-
tic treatment (Ansarin et al. 2020). Oral camostat mesylate is
another prophylactic option for treatment COVID-19 treatment
(Table 3 and Supplementary Table 2). Research findings have
shown that it prevents the SARS-CoV-2 entry into the hosts,
indicating its potential effectiveness in treatment (Hoffmann
et al. 2020).
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Role of drug repurposing in the field of drug
discovery

The global pharmaceutical industries face many chal-
lenges, including attenuation of the drugs and higher cost
due to an increased number of years to bring a drug to
the market and changes in the regulatory requirements
(Pammolli et al. 2011; Waring et al. 2015). Drug repur-
positioning is also known as the reprofiling or reposition-
ing of drugs. It is an approach to identify novel uses of
the already established or approved drug to treat a new
disease other than the first indication (Ashburn and Thor
2004). In the early days, drug repurposing has been mostly
expedient; once a drug is discovered, and the drug shows
its effect on different sites other than the targeted site, it
was taken for commercial manipulation (Pushpakom et al.
2019). The advantages of the drug repurposing approaches
are: (1) the risk of drug failure is shallow because the
drug used for repositioning was already proven to be rea-
sonably safe enough in pre-clinical, experimental models
and also in the clinical trials; (2) the time entailed for the
development of a drug can also be reduced because of
the pre-clinical testing and safety assessment, which has
already been completed; and (3) only less fund is required
for the development of a repurposing drug, depending on
the stage and also the procedure of development (Brecken-
ridge and Jacob 2019). The regulatory and phase III trial
cost may remain the same, but the cost of phase I and II
trial can be reduced or saved.

Drug repurposing approach to treat
COVID-19

Researchers have started testing existing anti-viral drugs
that are widely used to treat HIV in hopes that they might
be able to fight the COVID-19 (Supplementary Table 2).
A randomized controlled trial of the combination of
ritonavir and lopinavir, an anti-HIV drug, is also being
tested (Huang et al. 2020a). The trials with other identi-
fied anti-viral drugs against other viral diseases like Ebola
may benefit from another anti-viral testing. The use of
marketed drugs whose safety profile is known could be
used as adjuncts to monotherapy. Combinatorial therapies
with cyclosporin, ribavirin, lopinavir-ritonavir, interferon
beta-1b, remdesivir, monoclonal antibodies can be tested
to prevent or curb the infection (Beigel et al. 2019; Singh
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et al. 2020). The replication of coronavirus and release
in cytoplasm forms a replicase complex that is then pro-
cessed proteolytically into NSPs by viral proteases (van
Boheemen et al. 2012; Kilianski et al. 2013). This makes
it an excellent choice to inhibit replicating the virus and
henceforth the viral assembly and its release. Since no
specific drug or vaccine is identified and approved when
we wrote the manuscript for COVID-19 treatment, the best
medication to be followed is a repurposing of anti-viral
drugs. There must be an imminent need to control the
widespread SARS-CoV-2 transmission repurposing as an
effective treatment to prevent the rapid spread.

Current COVID-19 vaccine candidates

Several promising candidate vaccines have been developed
by researchers, which have shown efficacy in phase trials II
and III; 166 candidate vaccines are in pre-clinical evaluation,
and 56 vaccines are in the clinical evaluation as of Decem-
ber 16, 2020. Figure 4 Summarizes candidate COVID-19
vaccines in pre-clinical and clinical trials (WHO 2020b). A
detailed description of the vaccines can be found in Table 4
and Supplementary Table 3. Four candidate vaccines have
cleared phase III trials (Moderna’s mRNA-1273, Pfizer/
BioNTech’s BNT162b2, Gamaleya’s Sputnik V vaccine Uni-
versity-Oxford & AstraZeneca’s AZD1222). On December
11, 2020, and December 18, 2020, the U.S. Food and Drug
Administration (FDA) issued emergency use authorization
(EUA) for the Pfizer-BioNTech and Moderna COVID-19
Vaccines, respectively (Table 4, Supplementary Table 3).

Future outlook

The on-going outbreak of COVID-19 induced by the novel
SARS-CoV-2 has put the world on red caution as it con-
tinues spreading and causing more fatalities. Exploration
endeavors are being completed to diminish the SARS-CoV-2
and its variants from spreading. Discovering medications is
commonly known as a long process that takes time. Different
computer-aided drug designs (CADD) are assessed as prom-
ising strategies among all these structure-based medication
plans. Ligand-based medication configuration approaches
are known as valuable and ground-breaking procedures in
tranquilize revelation advancement. These strategies can be
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Fig.4 Candidate COVID-19 vaccines in both clinical and pre-clinical
development. Diverse categories of pre-clinical and clinical research
COVID-19 vaccine candidates are currently in development. APC:

applied with atomic docking to virtual screening for poten-
tial lead identification and enhancement. Currently, compu-
tational instruments are utilized in pharmaceutical ventures
and examination regions to improve the medication disclo-
sure and advancement pipeline’s viability and adequacy. On
the other hand, understanding the host-virus relationships
and transcriptomic profiles of COVID-19 patients will pri-
oritize gene targets that will lead to developing therapeutic
drugs (Alsamman and Zayed 2020).

Conclusion

The COVID-19 outbreak has put health systems on a red
alert as it quickly spreads globally. Old individuals and
patients with chronic diseases are at high risk of develop-
ing severe symptoms and potential death from COVID-19.
Researchers worldwide are struggling and trying hard to

1 - L = U

40 60 80 100
No. of vaccine candidates

antigen-presenting cells. Source: World Health Organization (WHO).
The COVID-19 Candidate Vaccine Landscape (WHO 2020b)

find effective treatments for COVID-19. In addition, drug
repurposing can be achieved using existing FDA-approved
anti-viral drugs for COVID-19. Since the described drugs
are FDA-approved, their efficacy in treating the infection is
expected to be less toxic to patients. This could lower the
disease’s severity in elderly patients and protect lives. The
MP™_ S glycoproteins, PLP™, RdRp, and 3CLP™ of COVID-
19 can be targeted using novel inhibitors or existing drug
inhibitors to disable its infection ability altogether. Fur-
thermore, the nanoemulsions, nanospheres, nanoparticles,
nano-gels, liposomes, and nanosuspensions can be used for
anti-viral drug delivery. This also defines and proposes an
approach to address existing key challenges, thus directing
scientists worldwide to perhaps refining the delivery of
nano-based drugs as a strategy to combat virus outbreaks
successfully. Further understanding of the molecular
pathology of COVID-19 is expected to help in the discov-
ery and development of drugs against COVID-19.
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