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ABSTRACT 

GASMI, SOUMIA, A., Masters : January : [2021:], Material Science and Technology 

Title: Relationship between Structure, Properties and UV/heat Protection Behaviour of 

Two Different Types of Polyethylene Manufactured in Qatar 

Supervisors of Project: Dr. Igor Krupa and Prof. Adriaan S. Luyt. 

Accelerated (artificial) weathering and thermal ageing tests were performed 

to investigate the effectiveness of different UV/HALS formulations in reducing the 

UV/heat degradation effect for two different low-density polyethylene grades with 

different structures because of production through two different production 

methods (autoclave and tubular reactors). Combinations of two commercial-grade 

HALS (Chimassorb 944 and Sabostab 119) and two UV absorbers (Chimasorb 81 

and Tinuvin 1577) were introduced to both the LDPE grades at different loadings. 

The morphologies, as well as thermal and mechanical properties, of the 

investigated samples were determined through tensile and impact testing, gel 

permeation chromatography (GPC), scanning electron microscopy (SEM), 

Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry 

(DSC), and thermogravimetric analysis (TGA). All the results from the different 

characterization techniques showed a significant degradation for the unstabilized 

neat samples of both LDPEs, while little or no degradation was observed for the 

stabilized ones, confirming the effectiveness of the selected UV/HALS systems in 

improving the weathering resistance of the two LDPE grades and enhancing their 

useful lifetime. The GPC results showed that the LDPE-A contained significantly 

more long-chain branching (LCB) than the LDPE-T, implying that the LDPE-A 

was much more compact than the LDPE-T. Young’s modulus values for LDPE-T 



  

iv 

 

were much higher than those of LDPE-A, indicating a higher crystallinity of the 

LDPE-T samples. For the heat exposed samples, more brittle behaviour was 

observed for the LDPE-T samples. There was very little difference in the maximum 

tensile stress values of LDPE-A and LDPE-T, except for LDPE-T/UV3 where the 

σ value increased by about 9% after 12 months. LDPE-T was found to be thermally 

more stable than LDPE-A, even after long UV exposure times. For stabilized 

formulations, LDPE-A/UV8 seems to be the best formulation in terms of thermal 

stability whereas LDPE-T/UV8 was the least promising formulation. Generally, 

the UV/heat stabilized LDPE-A samples were thermally more stable than LDPE-T 

The carbonyl indices were similar for the two polymers, which means that the 

differences in polymer structure had little influence on the formation of carbonyl 

groups during the oxidative degradation process. 
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Chapter 1: Introduction 

 

With the excessive use of polyolefins in domestic and industrial sectors, polyolefins, 

specifically polyethylenes (PEs), have received substantial attention and became a 

fundamental topic of research. Their demand has been reported to increase globally 

with an estimated annual production of 24 million tonnes [1]. Due to their unique and 

outstanding properties such as their toughness and flexibility, even at low 

temperatures, excellent chemical resistance, easy processability, freedom from odour 

and toxicity, and their low cost [2], polyethylenes have been widely used for numerous 

applications such as packaging, buildings, electrical fittings, and agricultural piping 

[2]. However, PEs like all organic materials suffer from poor weathering resistance 

under the influence of the different environmental factors such as heat, moisture, solar 

radiation, weather pollutants, and ultraviolet radiation [3], leading to an inevitable 

degradation which limits their service lifetime and severely restricts their performance 

for the outdoors applications [4].  

Photodegradation of polymers is a combination of the oxidative effect of 

atmospheric oxygen with the photochemical and photophysical effects of ultraviolet 

radiation photons. The combined effect of oxygen and light radiation induces a 

complex set of processes that can cause undesirable changes on the appearance of the 

polymer’s surface, such as discoloration, embrittlement, tackiness, loss of surface 

gloss, and crazing or chalking of the surface [5]. Due to the low diffusion coefficient 

of oxygen in most polymers, degradation is generally more sever at the outer surface 

of the polymer than in its bulk [5]. 

The development of highly effective and environmentally friendly UV 

stabilizing systems is crucial in the polyethylene industry. Antioxidants, UV absorbers, 
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and free radical scavengers are the most commonly used additives in the plastics 

industry. They are added to polymers designed purposely for outdoor applications to 

protect them from the synergistic effect of UV radiation and oxygen, as well as to 

improve their mechanical, processability, and miscibility behaviour. Antioxidants are 

chemical compounds that are commonly added to the polymer to protect it from the 

thermal and photooxidative processes caused by the various environmental factors 

during their outdoor natural ageing [6]. For example, phosphites (or phosphonites), 

secondary antioxidants, are extremely effective ‘green’ stabilizers during processing. 

Their role is simply to decompose peroxides and hydroperoxides resulting from the 

photooxidation process into stable, nonradical products [6]. UV absorbers, one the 

commonly used photostabilizers, protect the polymer from photo-oxidation by 

absorbing the harmful UV radiation (300-400 nm) during the first step of the photo-

oxidation process, and preventing its interaction with the photoactive chromophoric 

species in the polymer molecule [6]. Hindered amine light stabilizers (HALS), that are 

long-term thermal stabilizers, have the ability to scavenge radicals created by UV 

absorption during the photo-oxidation processes by forming nitroxyl radicals through 

a cyclic mechanism known as the Denisov Cycle, and hence restricting the 

photodegradation process [6]. HALS are considered as one of the best and most 

efficient groups of UV stabilizers for most polyolefins, and they all share the 2,2,6,6-

tetramethylpiperidine ring structure [6]. 

Tubular and autoclave reactor technologies are employed nowadays in the 

production of low-density polyethylene (LDPE) at high pressures and temperatures in 

the presence of specific chemical initiators via free radical reaction mechanisms [7]. 

In this work, the overall performance of diffferent UV formulations was compared for 

two different polyethylenes produced using different technologies; LDPE-A was 
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manufactured in an autoclave (batch process) and LDPE-T in a tubular reactor 

(continuous process). The main differences between the two polyethylene grades are 

the level and type of long-chain branching, as well as their molecular shape (Figure 1) 

[8,9]. LDPE-A is produced at constant temperature in well-stirred autoclave vessels 

under practically ideal mixing and presents broad molecular weight distributions with 

a bias towards the low molecular weight ends [8,9]. They are characterized by a simple 

structure of long chain branching, a globular molecular shape, tree-like branching, and 

low tensile strength. LDPE-T, produced in a very long and small diameter tubular 

reactor through a continuous tubular process [2], shows a narrower molecular weight 

distribution with a bias towards the high molecular weight end. LDPE-T displays a 

higher degree of long chain branching, and it is characterized by a linear molecular 

shape, comb-like branching and a high tensile strength [8-10]. 

 

 

 

 

 

Figure 1. (a) Autoclave produced LDPE (LDPE-A) and (b) tubular reactor produced 

LDPE (LDPE-T). 
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Polymer weathering for combinations of different polyolefins with different 

HALS through natural (outdoor) or accelerated (artificial) modes have been performed 

and reported in different studies [11-15,19]. The synergistic and antagonistic effect of 

HALS and UV absorbers for stabilizing LDPE films was examined [11], where films 

containing a combination of HALS and UV absorbers reached 50% tensile strength 

retention within 590 days, whereas films containing a single HALS reached 50% 

tensile strength retention within only 205 days. The UV stability of the LDPE films 

was significantly improved by combining a HALS (Tinuvin 1577) with a UV absorber 

(Chimassorb 2020) [14]. The high molecular weight HALS was found to be effective 

for polyolefins not only as a UV stabilizer, but also as a long-term thermal stabilizer 

[13,16-19]. Several studies proved that HALS-3 or Chimassorb 944 is efficient as a 

UV and thermal stabilizer for LLDPE and LDPE films [13,17,19]. It was reported that 

Chimassorb 944 was successful in reducing the carbonyl index, which is considered 

as one of the main indicators of photodegradation [56]. The efficiency of HALS as a 

free radical scavenger during photo-oxidation processes was also studied and reported 

through multiple weathering studies [11,13,19]. 

Most published weathering studies examined the UV and thermal stability of one 

PE type and grade. However, in this study, we compared the effectiveness of different 

UV/HALS formulations in two different LDPEs with different structures as a result of 

different production methods, something we could not find in any previously published 

literature. We prepared the same UV absorber (Chimasorb 81 and Tinuvin 1577) and 

commercial grade HALS (Chimassorb 944 and Sabostab 119) combination 

formulations for both LDPEs, and we exposed samples of these formulations to 

accelerated weathering in a commercial weatherometer. The morphologies, as well as 

thermal and mechanical properties, of the investigated samples was determined 
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through tensile and impact testing, gel permeation chromatography (GPC), scanning 

electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, 

differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). 
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Chapter 2: Materials and Methods 

2.1 Materials 

 

Two commercial low-density polyethylene (LDPE) grades (LDPE-A and LDPE-T) 

were provided by Qatar Petrochemical Company (QAPCO, Doha, Qatar). LDPE-A 

(density = 920 kg m-3, MFI = 0.3 g/10 min) refers to an LDPE manufactured in an 

autoclave (batch process) and LDPE-T (density = 923 kg m-3, MFI = 0.3 g/10 min) to 

an LDPE manufactured in a tubular reactor (continuous process). Both polymers were 

received as pellets and powderized by Weaver Trading Company in South Africa.   

 

 

 

 

 

Figure 2. Conformation plot for (a) LDPE-A and (b) LDPE-T. The green line is a linear 

fit of the data. 
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 The weight average molar masses and dispersities of the samples were 

characterized by gel permeation chromatography with multi angle laser light scattering 

(HT-GPC-MALS) and found to be Mw = 334.4 kg/mol / Ð = 4.4 (LDPE-A) and Mw = 

155.1 kg/mol / Ð = 2.8 (LDPE-T). Their long-chain branching (LCB) content was 

similarly characterized and LDPE-A was found to contain significantly more LCB than 

LDPE-T. This is evident from the plots of the radius of gyration (Rg) of the samples as 

a function of molar mass (conformation plots) shown in Figure 2. The conformation 

plot for a linear polymer shows a slope of about 0.57, and with increasing LCB content 

smaller slopes are found as the molecules become more compact. LDPE-A is therefore 

much more compact than LDPE-T. 

Chimassorb 944, Chimassorb 81, and Tinuvin 1577 were all supplied by BASF 

as HALS and UV absorbers. Sabostab 119 was supplied by Sabo as a HALS. Calcium 

stearate was supplied by Scientific Global Lab Supplies W.L.L.   

2.2 Sample preparation 

The formulations were prepared through thorough 20 min. bag-mixing of the specified 

amounts of powdered LDPEs and the selected additives. Table 1 summarizes the 

compositions used in preparing the UV protection formulations for LDPE-A and 

LDPE-T. 0.05 wt.% calcium stearate was added to all the formulations. 
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Table 1. Compositions of UV formulations in wt.%. All the formulations contained 

0.05 wt.% calcium stearate. 

 

LDPE Chimassorb 81 Chimassorb 944 Sabostab 119 Tinuvin 1577 

 UV absorber HALS HALS UV absorber 

UV3 99.75 0.1 0.1   

UV8 99.75   0.1 0.1 

 

 

 

 

 A twin-screw extruder KETSE 20/40 EC (Model no. 838106) was used to melt 

extrude the polymer/additive powder mixtures at a speed of 90 rpm and across a 

temperature range of 170-195 °C from feeder to die. The extruded mixture was then 

pelletized to ensure a smooth injection molding process. Impact and tensile specimens 

were prepared by injection molding using an ARBURG All-Rounder 570 C injection 

molding machine, across a 180-215 °C temperature range. The impact testing samples 

were produced with dimensions of 63.5 mm long x 12.7 mm wide x 3 mm thick (ASTM 

D256 standard), while the tensile testing samples were injection molded as dumbbell 

shaped specimens with dimensions of 160 mm long x 13 mm wide (at the neck) x 3 

mm thick (ISO 527 standard).  

2.3 UV- and heat-exposure conditions  

The thermal ageing of the tensile- and impact testing samples was done in an air 

circulating oven at 100 °C, with sampling times of 1, 2, 3, 4, 6, 8, 10 and 12 months. 

 The artificially simulated (accelerated) weathering was carried out in a QUV-se 

machine equipped with solar eye irradiance control and a UV-A lamp. The testing 

programme was set according to the ISO 4892-3 standard, and the conditions were 

chosen in accordance with Qatar’s climatic conditions. The samples were exposed to 
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repetitive cycles of UV exposure and condensation. UV radiation was set for 8 hours 

with an irradiance level of 0.76 W m-2 at a wavelength of 340 nm. The maximum 

temperature used was 60 °C and the condensation was applied for 4 hours at a 

temperature of 50 °C.  Samples were collected after 0, 1000, 1500 and 2000 hours for 

both LDPE-A and LDPE-T. All the samples were turned around after each 250 h to 

ensure equal UV exposure on both sample sides.  

2.4 Sample characterization 

The molar mass distributions (MMD) of the samples were determined by HT-SEC. The 

measurements were realized with a PL 220 high-temperature size exclusion 

chromatograph (Polymer Laboratories, Church Stretton, UK). The temperature of the 

autosampler and the column compartment was set to 150 °C. A mobile phase flow rate 

of 1 mL/min was used. The polymer samples were dissolved for 4 h in TCB (containing 

1 g/L butylated hydroxytoluene as stabilizer) at 160 °C. A sample concentration of 2 

g/L was used. 200 μL of polymer solution were injected per analysis. Each sample was 

analyzed twice and results were averaged. A guard column (PLgel Olexis, 50 x 7.5 mm 

(L x I.D.)) and three analytical columns (3 x PLgel Olexis, 300 x 7.5 mm (L x I.D.), 

with particle size 13 µm, Agilent, Waldbronn, Germany)) were used for separation. An 

infrared detector (IR4, PolymerChar, Valencia, Spain) was used for detection. Data 

were collected and processed using WinGPC-software (version 7) from PSS (Mainz, 

Germany). Molar masses were calibrated with polystyrene (PS) standards (Polymer 

Standards Services, PSS, Mainz, Germany). 

Scanning electron microscopy (SEM) was performed on the surfaces of the 

dumbbell specimens, before and after tensile testing, in an FEI Quanta 200 electron 

microscope (Thermo Fischer Scientific, Hillsboro, USA) at an accelerating voltage of 

2–5 kV. The samples were sputter gold coated for 30 s using an Agar sputter coater. 
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 Fourier transform infrared (FTIR) spectra were obtained at room temperature 

using a PerkinElmer Frontier Spectrum 400 FTIR spectrometer connected to a 

MIRACLE ATR detector with a ZnSe crystal. Sixteen scans in the range of 4000-550 

cm-1 were done on each sample. The carbonyl index (CI) was calculated using Equation 

1 [20].  

  

   CI =
Absorption of carbonyl species 1650−1800 cm−1

Absorption of C−H peak 1420−1480 cm−1
   (1) 

 

 Non-isothermal crystallization analysis was performed in a Perkin Elmer 

DSC8500 differential scanning calorimeter under nitrogen atmosphere. Samples (5–10 

mg) were sealed in aluminum sample pans and were initially heated from 30 to 180 C 

at 20 C min-1 (1st heating), cooled to 30 C at the same rate, and re-heated to 180 C 

at the same rate (2nd heating). The melting enthalpy (Hm) and peak temperature of 

melting (Tm) were obtained from the melting peaks in the first and second heating 

curves, while the crystallization temperature (Tc) and the crystallization enthalpy (Hc) 

were obtained from the crystallization peak in the cooling curve.  

 Thermal decomposition was studied via thermogravimetric analysis in a 

PerkinElmer TGA-4000 TGA/DSC instrument. Approximately 5-10 mg of sample was 

heated from 30 to 600 C at a heating rate of 20 C min-1 under nitrogen atmosphere. 

The onset of decomposition temperature was defined as the temperature at 5% weight 

loss (Td,5%) and the temperature at the maximum rate of decomposition (Td) was the 

temperature at the maximum of the peak in the derivative TGA curve. 

 The tensile properties were measured using a ‘Lloyd LR50K plus’ universal tester 

according to the ISO 527 standard where no pre-load was applied to the sample. An 
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elongation speed of 10 mm min-1 and a gauge length of 50 mm were used. The Young’s 

modulus (E) was manually calculated from the slope of the stress-strain curve between 

strain values of 0.2 and 2.2%. A minimum of five specimens were tested for each 

sample. The impact properties of the samples were investigated using an Instron 

Wolpert PW5 impact tester according to ASTM D256. Specimens with dimensions of 

63.5 mm x 12.7 mm x 3 mm were notched at the center (45° notch and 2 mm depth). 

The Izod impact strength (in kJ m-2) was calculated according to Equation 2 [21].  

    

   𝑎𝑖𝑁 =
𝐸𝑐

ℎ x 𝑏𝑁
     (2) 

 

where 𝐸𝑐 is the corrected measured absorbed energy during impact in J, ℎ is the 

thickness of the tested specimen in mm, and 𝑏𝑁 is the remaining width of the tested 

specimen in mm. 
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Chapter 3: Results and Discussion 

3.1 Microscopic analysis 

The surface morphology of the neat and stabilized samples before and after UV 

exposure was studied through SEM analysis. The samples were examined before and 

after tensile testing to investigate the effect of tensile forces on the developed cracks 

under UV exposure. All the SEM micrographs of LDPE-A and LDPE-T samples are 

presented in Figures 3 and 4. A significant degradation with many cracks was observed 

for both the neat LDPE-A and LDPE-T after 2000h exposure (Figure 3(c,d) and Figure 

4(b,c)). 
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Figure 3. SEM images of: neat LDPE-A unexposed (a) and 2000 h exposed (c) before 

tensile testing, as well as unexposed (b) and 2000 h exposed (d) after tensile testing; 

LDPE-A/UV3 unexposed (e) and 2000 h exposed (g) before tensile testing, as well as 

unexposed (f) and 2000 h exposed (h) after tensile testing; LDPE-A/UV8 unexposed 

(i) and 2000 h exposed (k) before tensile testing, as well as unexposed (j) and 2000 h 

exposed (l) after tensile testing. 

 

 

 

 

 The crack size increased for both polymers after tensile testing, but not 

significantly. The most probable reason is that the cracks did not penetrate deep enough 

into the relatively thick sample during the duration of the UV exposure, and that the 

non-degraded part of the samples below the cracks to some extent maintained the 

sample integrity. The situation was very different for all the stabilized samples, where 
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much better surface integrity and almost no cracks was observed, even after long UV-

exposure periods (Figure 2 (e)-(l) and Figure 3(d)-(k)). This is good indication that the 

additives were effective in protecting the samples from UV-initiated degradation. 

 

 

 

 

                                          

    

    

Figure 4. SEM images of: neat LDPE-T unexposed after tensile testing (a), as well as 

2000 h exposed before (b) and after (c) tensile testing; LDPE-T/UV3 unexposed (d) 

and 2000 h exposed (f) before tensile testing, as well as unexposed (e) and 2000 h 

exposed (g) after tensile testing; LDPE-T/UV8 unexposed (h) and 2000 h exposed (j) 

before tensile testing, as well as unexposed (i) and 2000 h exposed (k) after tensile 

testing. 
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3.2 Molecular weight determination 

Gel permeation chromatography (GPC) was used to observe changes in the molecular 

weight (MW) and MW distribution of the investigated samples as function of UV 

exposure time. A summary of the GPC results is shown in Tables 2 and 3. For the neat 

LDPE-A and LDPE-T, a significant decrease in average molecular weight was 

observed after the first 1000 h of UV exposure, followed by a slight further decrease 

after longer UV exposure periods. One would have expected a more significant 

reduction in molecular weight for neat LDPE-A than for neat LDPE-T, because LDPE-

A has more tertiary carbons that are unstable and where chain scission can occur more 

easily, but it seems as if the UV exposure conditions were harsh enough for the two 

polymers to degrade at similar rates. It is further clear from Tables 4.3.1 and 4.3.2 that 

the molecular weight changed little for the stabilized samples of both polymers, 

confirming the effectiveness of both the UV3 and UV8 formulations. 
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Table 2. Results from the GPC analyses of all the investigated LDPE-A samples. 

Sample Mn / g mol-1 Mw / g mol-1 D 

Neat LDPE-A (unexposed) 29764 ± 2441 345085 ± 4137 12 ± 1 

LDPE-A/UV3 (unexposed) 27062 ± 3886 447215 ± 20131 17 ± 2 

LDPE-A/UV8 (unexposed) 32238 ± 1505 441985 ± 14347 14 ± 1 

Neat LDPE-A (1000 h UV exposed) 1436 ± 78 38325 ± 495 27 ± 2 

LDPE-A/UV3 (1000 h UV exposed) 22281 ± 1271 405020 ± 12629 18 ± 1 

LDPE-A/UV8 (1000 h UV exposed) 30921 ± 1718 427635 ± 7884 14 ± 1 

Neat LDPE-A (1500 h UV exposed) 493 ± 127 50983 ± 34044 98 ± 44 

LDPE-A/UV3 (1500 h UV exposed) 23143 ± 922 373975 ± 5112 16 ± 0 

LDPE-A/UV8 (1500 h UV exposed) 29799 ± 1547 437715 ± 827 15 ± 1 

Neat LDPE-A (2000 h UV exposed) 922 ± 1016 32783 ± 17539 64 ± 51 

LDPE-A/UV3 (2000 h UV exposed) 22562 ± 2122 314285 ± 19099 14 ± 1 

LDPE-A/UV8 (2000 h UV exposed) 25970 ± 1462 416665 ± 4151 16 ± 1 
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Table 3. Results from the GPC analyses of all the investigated LDPE-T samples. 

Sample Mn / g mol-1 Mw / g mol-1 D 

Neat LDPE-T (unexposed) 29715 ± 1093 312385 ± 7686 11 ± 0 

LDPE-T/UV3 (unexposed) 33002 ± 674 297505 ± 4094 9 ± 0 

LDPE-T/UV8 (unexposed) 28716 ± 689 293885 ± 5650 10 ± 0 

Neat LDPE-T (1000 h UV exposed) 2205 ± 123 38275 ± 6430 18 ± 4 

LDPE-T/UV3 (1000 h UV exposed) 34362 ± 5330 320915 ± 8973 10 ± 2 

LDPE-T/UV8 (1000 h UV exposed) 30548 ± 127 296540 ± 1810 10 ± 0 

Neat LDPE-T (1500 h UV exposed) 2961 ± 810 50404 ± 10625 17 ± 1 

LDPE-T/UV3 (1500 h UV exposed) 28929 ± 2481 338735 ± 12990 12 ± 2 

LDPE-T/UV8 (1500 h UV exposed) 32721 ± 2943 294390 ± 11158 9 ± 1 

Neat LDPE-T (2000 h UV exposed) 466 ± 84 31552 ± 7403 70 ± 29 

LDPE-T/UV3 (2000 h UV exposed) 27146 ± 1945 264855 ± 11533 10 ± 0 

LDPE-T/UV8 (2000 h UV exposed) 31016 ± 1369 296510 ± 5671 10 ± 1 

 

 

 

 

3.3 Mechanical properties 

3.3.1 Tensile testing 

Tensile testing and impact testing were conducted to investigate the impact of 

UV- ageing on the mechanical properties of the neat and UV stabilized LDPEs. 

Figure 5, as well as Tables S1 and S2 in the Supplementary Information, 

summarizes the tensile properties of all the investigated samples. For neat LDPE-

T, the Young’s modulus increased almost linearly with increasing UV exposure 

time, while for LDPE-T it increased significantly up to 1000 h UV exposure, after 

which it did not change significantly within experimental error (Figure 5(a)). 
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Figure 5. Comparison of the tensile and impact properties of LDPE-A, LDPE-T and 

their UV-protection formulations as function of UV exposure time. 

 

 

 

 

 These increasing modulus values are the result of the UV exposed samples being 

more crystalline, because UV initiated degradation will give rise to chain scission and 

the re-crystallization of the shorter chains. The LDPE-T samples further show much 

higher Young’s modulus values than the LDPE-A samples, suggesting higher 

crystallinities for the LDPE-T samples. 

However, the change in Young’s modulus as a function of UV exposure time 
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for the stabilized samples of both polymers was negligible, and the values remained 

approximately the same with increasing UV exposure time. This is a strong indication 

that chain scission and re-crystallization into more crystalline polymers was absent 

during the UV exposure of these  samples, which proves the effectiveness of the 

‘green’ additives in protecting the LDPEs from UV initiated degradation. 

The tensile strength and the strain at break for both neat LDPE-A and neat 

LDPE-T decreased significantly after 1000 h UV exposure, whereafter these values 

showed only slight further decreases with increasing UV exposure time (Figures 

5(b,c)). This is to be expected because of the degradative chain scission taking place 

during UV exposure. It further seems as if there was very little difference between the 

two LDPEs regarding their tensile strength and strain at break values, which is in line 

with the observed changes in molecular weight. 

There was almost no change in the tensile strength and strain at break of both the 

UV3 and UV8 stabilized LDPEs with increasing UV exposure time, and very little 

difference between the quantitative values of these two properties for the two different 

LDPEs. This is a further confirmation of the effectiveness of the formulations used to 

UV stabilize the LDPEs. 

The tensile testing results of the heat exposed samples are summarized in Figure 

6 and in Tables S3 and S4 in the Supplementary Information. All the LDPE-T 

compounds showed a higher modulus of elasticity (Ε) value, in the range of 180-242 

MPa, while for LDPE-A the values ranged from 127 to 160 MPa. Lower strain at break 

(εmax) values were recorded for LDPE-T, indicating a more brittle behaviour of the 

former. Finally, the tensile strength (σmax) was determined in the range of 17-18 MPa, 

again slightly higher for the case of LDPE-T, but in accordance with literature [22]. 

The tensile results of the UV/heat stabilized compounds of LDPE-A (Figure 6, Table 
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S3 in Supplementary Information) indicate that for both LDPE-A/UV-3 and LDPE-

A/UV-8 the values of  σmax and εmax are very close to those of the neat LDPE-A, i.e. a 

variation of less than 7%. This should be expected since the loading level of the UV 

additives is very low, i.e. 0.2 wt%, therefore no significant variation in the mechanical 

behaviour is anticipated. However, it seems that the incorporation of the UV/heat 

additives resulted in a decrease in the E modulus values up to approximately 20%, 

rendering the particular materials more ductile. Regarding the tensile results of the 

UV/heat stabilized compounds of LDPE-T (Figure 6, Table S4 in Supplementary 

Information), it seems that for both LDPE-T/UV-3 and LDPE-T/UV-8 the values of 

σmax are very close to those of neat LDPE-T, or within the error margin. However, the 

εmax values are significantly higher, i.e. up to 35%, with a corresponding decrease in E 

modulus of up to 27%. Similarly, as in the case of LDPE-A, the incorporation of the 

UV/heat additives resulted in more ductile materials. 
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Figure 6. Comparison of the tensile properties of LDPE-A, LDPE-T and their UV/heat-

protection formulations as function of heat exposure time. 

 

 

 

 

For the oven-aged samples (1-12 months of exposure at 100 °C), neat LDPE-A 

and the respective UV/heat stabilized compounds show insignificant variations in the 

maximum strength and maximum strain values after ageing, with no clear trend. More 

specifically, σmax was found to increase by 1.1 and 4.2% for LDPE-A/UV3 and LDPE-

A/UV8, respectively from 0 to 12 months of exposure. On the other hand, εmax was 

found decreased by 2.1% only for neat LDPE-A after 12 months of exposure. The 
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tensile strain values were found significantly increased by 24.3 and 18.8% for LDPE-

A/UV3 and LDPE-A/UV8, respectively. The E modulus values after heat ageing 

increased, with the values from 0 to 12 months increasing by 81.8 and 91.8% for LDPE-

A/UV3 and LDPE-A/UV8, respectively. This is an important observation, since it 

proves that all the materials became more brittle after ageing. All the LDPE-T and the 

respective UV/heat stabilized compounds showed a stabilized behaviour against heat 

in terms of maximum stress and strain. No clear trend was observed as in the case of 

LDPE-A. Once again, very low variations in maximum tensile stress were observed, 

except for LDPE-TR/UV3 where the σmax increased by about 9% after 12 months. The 

tensile strain of neat LDPE-T d increased by 17.5%, while the UV/heat stabilized 

LDPE-T showed a decrease in tensile strain in the range of 2.8-6.9%. The E modulus 

of neat LDPE-T showed a significant decrease of about 26% after the initial 3 months 

of exposure, and then increased again to the final value of 310 MPa after 12 months of 

exposure (about 28% increase). For the rest of the UV/heat stabilized samples, the E 

modulus showed an increasing trend right from the first month of exposure, and the 

total increase after completion of the heat ageing was determined at 59.3 and 65.2% for 

LDPE-T/ UV3 and LDPE-T/UV8, respectively.  

3.3.2 Impact testing 

The impact strength for both LDPE-A and LDPE-T remained fairly constant up to 

1000 h UV (Figure 5(d) and Table S5), but decreased fairly significantly up to 2000 

h UV exposure. There was also little difference between the values for LDPE-A 

and LDPE-T. As with the other mechanical properties, there were no real changes 

in the impact strength of the stabilized samples for both polymers within 

experimental error. This again proves the effectiveness of the UV stabilization 

formulations. 
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3.4 Thermal analysis 

3.4.1 Thermogravimetric analysis (TGA) 

The thermal decomposition behaviour of the neat and UV-aged samples was 

investigated through TGA to determine their thermal stability. Figure 7 shows the 

TGA curves of all the samples, and the degradation temperatures are summarized in 

Table S6 in the Supplementary Information. All the samples showed a one-step 

decomposition. 
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Figure 7. TGA curves in nitrogen atmosphere of (a) neat LDPE-A, (b) LDPE-A/UV3, 

(c) LDPE-A/UV8, (d) neat LDPE-T, (e) LDPE-T/UV3, and (f) LDPE-T/UV8 before 

and after UV exposure for different time periods. 
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For the unexposed polymers the maximum rate of mass loss was observed at 

479 and 487 C respectively for LDPE-A and LDPE-T, which indicates that LDPE-T 

is thermally more stable than LDPE-A. This can be attributed to the higher branching 

degree of LDPE-A, which causes this polymer to have more thermally unstable 

tertiary carbons. Similarly, the temperatures at maximum mass loss rate for the UV 

exposed neat samples showed higher values for LDPE-T in the range of 491 to 495 

C compared to those of LDPE-A, that are in the range of 472 to 482 C. This indicates 

that LDPE-T is still thermally more stable than LDPE-A, even after long UV exposure 

times. 

The unexposed UV3 and UV8 formulations of LDPE-A and LDPE-T generally 

showed better thermal stability than the neat polymers (Table S6). Among the four 

UV-stabilized formulations, LDPE-A/UV8 seems to be the best formulation in terms 

of thermal stability as it maintained a good stability even after long exposure periods. 

On the other hand, LDPE-T/UV8 was the least promising formulation in terms of 

thermal stability, because its thermal stability decreased significantly after only 1000 

h of accelerated UV ageing (Figure 7(f)). Generally, the UV/heat stabilized LDPE-A 

samples were thermally more stable, and the thermal stability was less influenced by 

UV exposure than the stabilized LDPE-T samples, which is contrary to our 

observation for the neat polymers. This implies that the thermal stability of LDPE-A 

was enhanced more by the addition of the UV-stabilizers. 

3.4.2 Differential scanning calorimetry (DSC) 

DSC analyses were performed to follow the melting behaviour and crystallinity of 

the neat and UV/heat stabilized LDPEs. The DSC first heating and cooling curves of 

all the investigated samples are shown in Figure 8 and Figure S1. In this paper we 

shall discuss the first heating results for all the samples, because we are interested in 
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the initial influence of UV exposure on the melting behaviour and crystallinity of the 

different samples.   

        The melting temperatures of the main fractions of all the samples are very 

similar within experimental error. However, the melting enthalpies increased 

significantly after UV exposure for both the neat and stabilized samples (Tables S7 

and S8). This indicates increased crystallinities as a result of degradative chain 

scission and re-crystallization of the neat samples, but it is not clear why increases 

in the enthalpies (crystallinities) were also observed for the UV3 and UV8 stabilized 

samples after accelerated UV exposure, because all the other results indicated very 

effective stabilization of the samples against UV initiated degradation. Generally, 

the differences between the corresponding enthalpies for the LDPE-A and LDPE-T 

based samples were within experimental error (Tables S7 and S8). 
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Figure 8. DSC first heating curves in nitrogen atmosphere of (a) neat LDPE-A, (b) 

LDPE-A/UV3, (c) LDPE-A/UV8, (d) neat LDPE-T, (e) LDPE-T/UV3, and (f) LDPE-

T/UV8 before and after UV exposure for different time periods. 
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 The first heating curves of the neat LDPEs showed a slight appearance of a lower 

temperature shoulder for the UV exposed samples, which was not observed for the 

unexposed samples. This could indicate the formation of a smaller crystal fraction as a 

result of UV initiated degradation and re-crystallization. For UV3 and UV8 stabilized 

samples of both LDPEs, the first heating curves all showed the development of a much 

more resolved lower temperature peak shoulder after accelerated UV exposure. This 

could be the result of the formation of smaller crystals around the UV stabilization 

additives, that acted as nucleation centres in both LLDPEs.  

3.5 Fourier-transform infrared spectroscopy (FTIR) 

FTIR analysis of all the samples were done in order to prove that oxidative degradation 

only occurred in the neat LDPE samples, and not in the UV3 and UV8 stabilized 

samples. Figure S2 clearly shows that there was no formation of carbonyl groups in 

the UV stabilized samples, while the neat LDPE-A and LDPE-T clearly show the 

formation of carbonyl groups on the LDPE chains after only 1000 h of accelerated UV 

exposure. The carbonyl indices reported in Table 4 are very similar for LDPE-A and 

LDPE-T, which indicates that the differences in polymer structure had little influence 

on the formation of carbonyl groups during the oxidative degradation process. 
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Table 4. Carbonyl index values of all the investigated samples before and after different 

periods of accelerated UV exposure. 

Sample Carbonyl 

index 

Sample Carbonyl 

index 

LDPE-A (unexposed) - LDPE-T (unexposed) - 

LDPE-A/UV3 (unexposed) - LDPE-T/UV3 (unexposed) - 

LDPE-A/UV8 (unexposed) - LDPE-T/UV8 (unexposed) - 

LDPE-A (1000 h UV) 0.88 LDPE-T (1000 h UV) 0.85 

LDPE-A/UV3 (1000 h UV) - LDPE-T/UV3 (1000 h UV) - 

LDPE-A/UV8 (1000 h UV) - LDPE-T/UV8 (1000 h UV) - 

LDPE-A (1500 h UV) 0.85 LDPE-T (1500 h UV) 0.79 

LDPE-A/UV3 (1500 h UV) - LDPE-T/UV3 (1500 h UV) - 

LDPE-A/UV8 (1500 h UV) - LDPE-T/UV8 (1500 h UV) - 

LDPE-A (2000 h UV) 0.93 LDPE-T (2000 h UV) 0.87 

LDPE-A/UV3 (2000 h UV) - LDPE-T/UV3 (2000 h UV) - 

LDPE-A/UV8 (2000 h UV) - LDPE-T/UV8 (2000 h UV) - 
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Conclusions 

 

The morphology, thermal and mechanical properties of two different UV/HALS 

stabilizer formulations incorporated in two different low-density polyethylene grades 

with different structures were investigated using SEM, GPC, DSC, TGA, FTIR, tensile 

and impact testing after exposing them to artificial UV/heat conditions through 

accelerated (artificial) weathering and thermal ageing tests. The SEM micrographs 

showed a significant degradation for neat LDPE-A and LDPE-T after 2000 h exposure, 

whereas almost no cracks were observed for all the stabilized samples. The GPC results 

confirmed the observed SEM morphologies where a significant decrease in average 

molecular weight was detected for the neat LDPEs, while only a little change was 

observed for the stabilized samples of the two polymers. GPC results also showed that 

LDPE-A is much more compact than LDPE-T. LDPE-T was found to have much higher 

Young’s modulus values than LDPE-A. The TGA results for the neat polymers showed 

that LDPE-T is thermally more stable than LDPE-A, even after long UV exposure 

times. However, LDPE-A was thermally more stable than LDPE-T for the stabilized 

samples, which indicates that the addition of the UV-stabilizers more effectively 

enhanced the thermal stability of LDPE-A. The carbonyl indices for both LDPE-A and 

LDPE-T were very similar, which reveals that the differences in polymer structure had 

little influence on the formation of carbonyl groups during the oxidative degradation 

process. Generally, the UV stabilization formulations were effective in maintaining 

good mechanical and thermal properties for both polymers. The results of this study 

show clearly the efficiency of the selected UV absorbers in absorbing the harmful UV 

radiation, and they also prove that the used HALS additives were successful in trapping 

the radicals and slowing down the photo- and thermal degradation processes.  
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Supplementary Information 

Table S 1. Tensile testing results for all the investigated LDPE-A samples 

Sample E / MPa  / MPa  / % 

Neat LDPE-A (unexposed) 122 ± 12 17.3 ± 0.4 135 ± 8 

LDPE-A/UV3 (unexposed) 143 ± 10 19.5 ± 0.2 134 ± 3 

LDPE-A/UV8 (unexposed) 133 ± 5 18.1 ± 0.2 145 ± 6 

Neat LDPE-A (1000 h UV exposed) 297 ± 24 9.7 ± 0.3 37.3 ± 9.1 

LDPE-A/UV3 (1000 h UV exposed) 146 ± 5 20.7 ± 0.4 143 ± 7 

LDPE-A/UV8 (1000 h UV exposed) 139 ± 4 18.9 ± 0.8 140 ± 2 

Neat LDPE-A (1500 h UV exposed) 336 ± 49 8.5 ± 0.3 24.1 ± 1.3 

LDPE-A/UV3 (1500 h UV exposed) 142 ± 5 20.2 ± 0.2 140 ± 3 

LDPE-A/UV8 (1500 h UV exposed) 129 ± 6 18.5 ± 0.5 139 ± 7 

Neat LDPE-A (2000 h UV exposed) 289 ± 37 6.6 ± 0.7 21.1 ± 2.0 

LDPE-A/UV3 (2000 h UV exposed) 155 ± 12 20.7 ± 0.6 151 ± 6 

LDPE-A/UV8 (2000 h UV exposed) 132 ± 12 17.7 ± 0.6 140 ± 4 
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Table S 2. Tensile testing results for all the investigated LDPE-T samples 

Sample E / MPa  / MPa  / % 

Neat LDPE-T (unexposed) 128 ± 5 17.8 ± 0.2 130 ± 3 

LDPE-T/UV3 (unexposed) 144 ± 12 17.3 ± 1.8 154 ± 23 

LDPE-T/UV8 (unexposed) 138 ± 10 17.1 ± 0.3 139 ± 8 

Neat LDPE-T (1000 h UV exposed) 346 ± 110 7.9 ± 0.8 25.6 ± 5.0 

LDPE-T/UV3 (1000 h UV exposed) 155 ± 10 17.5 ± 0.4 144 ± 4 

LDPE-T/UV8 (1000 h UV exposed) 133 ± 18 16.8 ± 0.4 143 ± 7 

Neat LDPE-T (1500 h UV exposed) 388 ± 97 6.9 ± 0.9 27.7 ± 8.2 

LDPE-T/UV3 (1500 h UV exposed) 134 ± 19 15.2 ± 3.5 139 ± 13 

LDPE-T/UV8 (1500 h UV exposed) 155 ± 4 17.2 ± 0.8 140 ± 6 

Neat LDPE-T (2000 h UV exposed) 354 ± 102 5.9 ± 1.1 23.0 ± 7.8 

LDPE-T/UV3 (2000 h UV exposed) 160 ± 14 15.9 ± 1.2 131 ± 15 

LDPE-T/UV8 (2000 h UV exposed) 152 ± 16 17.1 ± 0.9 139 ± 5 
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Table S 3. Tensile testing results for all the investigated LDPE-A samples (heat 

exposure) 

Sample  / MPa  / % E / MPa 

Neat LDPE-A (unexposed) 17.7 ± 0.2 82.2 ± 2.2 160 ± 2 

LDPE-A/UV3 (unexposed) 17.5 ± 0.1 74.0 ± 3.4 133 ± 2 

LDPE-A/UV8 (unexposed) 16.8 ± 0.3 76.6 ± 4.0 127 ± 2 

Neat LDPE-A (1 month heat exposed) 16.6 ± 0.5 75.8 ± 3.7 158 ± 8 

LDPE-A/UV3 (1 month heat exposed) 18.2 ± 0.4 80.4 ± 4.0 243 ± 13 

LDPE-A/UV8 (1 month heat exposed) 17.5 ± 0.4 93.5 ± 8.3 226 ± 23 

Neat LDPE-A (2 months heat exposed) 16.8 ± 0.2 77.6 ± 3.4 144 ± 3 

LDPE-A/UV3 (2 months heat exposed) 18.3 ± 0.3 87.4 ± 0.5 242 ± 7 

LDPE-A/UV8 (2 months heat exposed) 17.8 ± 1.3 86.6 ± 2.5 234 ± 21 

Neat LDPE-A (3 months heat exposed) 16.4 ± 0.9 79.5 ± 2.2 148 ± 10 

LDPE-A/UV3 (3 months heat exposed) 18.8 ± 0.3 87.5 ± 7.5 209 ± 9 

LDPE-A/UV8 (3 months heat exposed) 19.0 ± 0.7 84.7 ± 3.3 202 ± 3 

Neat LDPE-A (4 months heat exposed) 18.3 ± 0.4 82.1 ± 3.5 265 ± 38 

LDPE-A/UV3 (4 months heat exposed) 18.0 ± 0.4 90.6 ± 4.8 237 ± 13 

LDPE-A/UV8 (4 months heat exposed) 18.1 ± 0.3 93.6 ± 2.0 205 ± 27 

Neat LDPE-A (6 months heat exposed) 17.7 ± 0.3 86.1 ± 4.3 241 ± 18 

LDPE-A/UV3 (6 months heat exposed) 19.3 ± 0.7 93.4 ± 5.4 213 ± 24 

LDPE-A/UV8 (6 months heat exposed) 18.2 ± 0.2 89.0 ± 6.8 200 ± 30 

Neat LDPE-A (8 months heat exposed) 17.1 ± 2.1 91.1 ± 12.3  225 ± 12 

LDPE-A/UV3 (8 months heat exposed) 18.1 ± 0.4 91.9 ± 6.1 223 ± 9 

LDPE-A/UV8 (8 months heat exposed) 17.5 ± 0.3 94.4 ± 5.6 229 ± 8 

Neat LDPE-A (10 months heat exposed) 17.7 ± 0.6 88.1 ± 8.3 236 ± 9 

LDPE-A/UV3 (10 months heat exposed) 18.2 ± 0.6 93.2 ± 16.5 234 ± 5 

LDPE-A/UV8 (10 months heat exposed) 17.4 ± 0.9 87.1 ± 2.3 233 ± 5 

Neat LDPE-A (12 months heat exposed) 16.8 ± 0.1 80.5 ± 3.6 245 ± 3 

LDPE-A/UV3 (12 months heat exposed) 17.7 ± 0.2 92.0 ± 15.0 241 ± 11 

LDPE-A/UV8 (12 months heat exposed) 17.5 ± 0.3 91.0 ± 8.8 244 ± 2 
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Table S 4. Tensile testing results for all the investigated LDPE-T samples (heat 

exposure) 

Sample  / MPa  / % E / MPa 

Neat LDPE-T (unexposed) 18.4 ± 0.9 62.1 ± 1.3 242 ± 16 

LDPE-T/UV3 (unexposed) 17.3 ± 2.3 80.0 ± 8.0 205 ± 33 

LDPE-T/UV8 (unexposed) 18.1 ± 0.3 79.0 ± 3.1 176 ± 5 

Neat LDPE-T (1 month heat exposed) 17.7 ± 0.3  69.4 ± 4.2 183 ± 2 

LDPE-T/UV3 (1 month heat exposed) 18.6 ± 1.7 79.8 ± 6.6 293 ± 36 

LDPE-T/UV8 (1 month heat exposed) 18.7 ± 0.5 76.1 ± 5.2 303 ± 14 

Neat LDPE-T (2 months heat exposed) 17.5 ± 1.0 63.8± 13.1 186 ± 9 

LDPE-T/UV3 (2 months heat exposed) 19.3 ± 0.3 78.7 ± 1.4 304 ± 41 

LDPE-T/UV8 (2 months heat exposed) 18.9 ± 0.4 80.5 ± 7.6 236 ± 5 

Neat LDPE-T (3 months heat exposed) 17.6 ± 0.3 74.3 ± 1.5 178 ± 4 

LDPE-T/UV3 (3 months heat exposed) 19.4 ± 0.3 80.2 ± 6.4 241 ± 12 

LDPE-T/UV8 (3 months heat exposed) 18.0 ± 0.1 82.8 ± 2.7 263 ± 5 

Neat LDPE-T (4 months heat exposed) 17.3 ± 0.1 78.3 ± 3.2 255 ± 8 

LDPE-T/UV3 (4 months heat exposed) 19.1 ± 1.0  86.4 ± 5.3 253 ± 42 

LDPE-T/UV8 (4 months heat exposed) 18.2 ± 0.5 81.0 ± 5.8 215 ± 42 

Neat LDPE-T (6 months heat exposed) 17.4 ± 0.1 77.5 ± 1.7 255 ± 13 

LDPE-T/UV3 (6 months heat exposed) 18.6 ± 0.4 87.2 ± 2.8 245 ± 40 

LDPE-T/UV8 (6 months heat exposed) 18,0 ± 0.3 86.3 ± 9.1 263 ± 26 

Neat LDPE-T (10 months heat exposed) 18.5 ± 0.2 63.5 ± 5.0 314 ± 8 

LDPE-T/UV3 (10 months heat exposed) 19.3 ± 0.4 73.4 ± 2.4 309 ± 12 

LDPE-T/UV8 (10 months heat exposed) 18.9 ± 0.2 77.2 ± 3.9 295 ± 20 

Neat LDPE-T (12 months heat exposed) 18.4 ± 0.1 72.9 ± 2.0 310 ± 6 

LDPE-T/UV3 (12 months heat exposed) 18.7 ± 0.3 77.4 ± 3.4 326 ± 3 

LDPE-T/UV8 (12 months heat exposed) 18.7 ± 0.1 76.8 ± 4.1 291 ± 40 
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Table S 5. Impact testing results for all the investigated LDPE-A and LDPE-T samples 

Sample Izod impact 

strength / kJ m2 

Sample Izod impact 

strength / kJ m2 

Neat LDPE-A 

(unexposed) 

19.1 ± 4.9 Neat LDPE-T 

(unexposed) 

17.3 ± 2.0 

LDPE-A/UV3 

(unexposed) 

15.9 ± 0.6 LDPE-T/UV3 

(unexposed) 

21.7 ± 3.3 

LDPE-A/UV8 

(unexposed) 

19.0 ± 2.4 LDPE-T/UV8 

(unexposed) 

17.1 ± 2.1 

Neat LDPE-A (1000 

h UV exposed) 

21.3 ± 2.1 Neat LDPE-T (1000 

h UV exposed) 

17.9 ± 3.2 

LDPE-A/UV3 (1000 

h UV exposed) 

17.6 ± 2.5 LDPE-T/UV3 (1000 

h UV exposed) 

22.6 ± 2.3 

LDPE-A/UV8 (1000 

h UV exposed) 

18.9 ± 2.1 LDPE-T/UV8 (1000 

h UV exposed) 

21.2 ± 2.0 

Neat LDPE-A (1500 

h UV exposed) 

16.5 ± 1.4 Neat LDPE-T (1500 

h UV exposed) 

13.7 ± 0.9 

LDPE-A/UV3 (1500 

h UV exposed) 

18.8 ± 1.9 LDPE-T/UV3 (1500 

h UV exposed) 

19.7 ± 1.7 

LDPE-A/UV8 (1500 

h UV exposed) 

21.1 ± 2.9 LDPE-T/UV8 (1500 

h UV exposed) 

21.2 ± 3.8 

Neat LDPE-A (2000 

h UV exposed) 

10.3 ± 1.6 Neat LDPE-T (2000 

h UV exposed) 

10.2 ± 1.4 

LDPE-A/UV3 (2000 

h UV exposed) 

17.1 ± 1.5 LDPE-T/UV3 (2000 

h UV exposed) 

21.5 ± 1.4 

LDPE-A/UV8 (2000 

h UV exposed) 

19.7 ± 4.1 LDPE-T/UV8 (2000 

h UV exposed) 

19.4 ± 1.2 
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Table S 6. TGA onset of mass loss (Td,5%) and maximum mass loss rate (Td,max) 

temperatures for all the investigated samples. 

LDPE-A Td,5% / C Td,max/ C LDPE-T Td,5% / C Td,max/ C 

Neat 

(unexposed) 

422.8 478.7 Neat 

(unexposed) 

426.2 487.0 

UV3 

(unexposed) 

426.7 480.1 UV3 

(unexposed) 

399.0 477.1 

UV8 

(unexposed) 

432.0 486.2 UV8 

(unexposed) 

443.4 495.6 

Neat (1000 h 

UV) 

409.0 472.0 Neat (1000 h 

UV) 

424.7 490.9 

UV3 (1000 h 

UV) 

438.7 484.7 UV3 (1000 h 

UV) 

416.5 480.4 

UV8 (1000 h 

UV) 

436.9 490.5 UV8 (1000 h 

UV) 

424.7 487.4 

Neat (1500 h 

UV) 

403.4 485.6 Neat (1500 h 

UV) 

414.6 490.4 

UV3 (1500 h 

UV) 

419.5 480.2 UV3 (1500 h 

UV) 

403.8 478.9 

UV8 (1500 h 

UV) 

435.4 480.6 UV8 (1500 h 

UV) 

412.4 482.3 

Neat (2000 h 

UV) 

381.0 482.6 Neat (2000 h 

UV) 

396.9 495.3 

UV3 (2000 h 

UV) 

421.9 473.8 UV3 (2000 h 

UV) 

405.8 480.4 
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Table S 7. DSC melting and crystallization temperatures and enthalpies of LDPE-A and 

its UV/heat stabilization formulations after different times of UV exposure. 

Sample First heating Cooling Second heating 

 Tm / C Hm / J g-1 Tc / C Hc / Jg-1 Tm / C Hm / Jg-1 

Neat 

(unexposed) 

116.6 62.6 95.8 -78.1 113.3 67.0 

UV3 

(unexposed) 

111.1 60.0 94.3 -70.2 111.1 55.9 

UV8 

(unexposed) 

115.7 60.6 92.8 -74.5 112.6 58.2 

Neat (1000 h 

UV) 

114.8 87.6 90.0 -72.7 113.1 50.8 

UV3 (1000 h 

UV) 

115.2 89.9 92.7 -71.8 113.9 59.5 

UV8 (1000 h 

UV) 

114.4 92.6 92.4 -73.9 113.5 52.6 

Neat (1500 h 

UV) 

114.8 107.4 89.6 -76.2 113.8 59.4 

UV3 (1500 h 

UV) 

116.8 90.1 92.7 -71.8 115.1 56.0 

UV8 (1500 h 

UV) 

113.8 86.0 93.1 -74.3 112.2 56.9 

Neat (2000 h 

UV) 

118.4 108.1 90.7 -81.6 115.7 66.9 

UV3 (2000 h 

UV) 

112.1 101.5 94.1 -73.2 111.2 65.7 

UV8 (2000 h 

UV) 

111.3 97.4 94.4 -71.3 110.5 52.7 
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Table S 8. DSC melting and crystallization temperatures and enthalpies of LDPE-T and 

its UV/heat stabilization formulations after different times of UV exposure. 

Sample First heating Cooling Second heating 

 Tm / C Hm / J g-1 Tc / C Hc /Jg-1 Tm / C Hm / Jg-1 

Neat 

(unexposed) 

111.3 60.1 94.0 -78.9 113.0 59.6 

UV3 

(unexposed) 

113.1 65.6 94.6 -78.6 112.5 59.0 

UV8 

(unexposed) 

113.8 69.6 94.1 -78.0 113.5 64.5 

Neat (1000 h 

UV) 

115.4 110.6 91.5 -86.2 112.6 69.1 

UV3 (1000 h 

UV) 

112.9 93.2 94.6 -79.2 112.6 60.5 

UV8 (1000 h 

UV) 

112.8 96.2 94.7 -78.6 112.7 60.1 

Neat (1500 h 

UV) 

117.7 115.2 93.0 -90.8 114.6 71.3 

UV3 (1500 h 

UV) 

113.8 99.9 93.7 -78.5 113.9 61.0 

UV8 (1500 h 

UV) 

113.0 92.6 94.6 -79.4 112.8 61.7 

Neat (2000 h 

UV) 

112.9 127.0 94.5 -97.4 111.7 80.4 

UV3 (2000 h 

UV) 

113.8 99.7 94.5 -78.4 113.7 62.7 

UV8 (2000 h 

UV) 

114.5 97.7 94.1 -78.1 114.0 60.8 
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Figure S 1. DSC cooling curves in nitrogen atmosphere of (a) neat LDPE-A, (b) LDPE-
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A/UV3, (c) LDPE-A/UV8, (d) neat LDPE-T, (e) LDPE-T/UV3, and (f) LDPE-T/UV8 

before and after UV exposure for different time periods. 

 

 

 

Figure S 2. FTIR spectra of (a) LDPE-A, (b) LDPE-A/UV3, (c) LDPE-A/UV8, (d) 

LDPE-T, (e) LDPE-T/UV3, and (f) LDPE-T/UV8 before UV exposure and after 
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different times of UV exposure. The peaks in these spectra were used for the calculation 

of the carbonyl index values in Table 3 of the paper. 

 


