

SEPTEMBER 21st TO 27th, 2020 IN RENNES AT THE COUVENT DES JACOBINS • RENNES MÉTROPOLE CONFERENCE CENTRE www.owc.ifoam.bio/2020

OWC 2020 Paper Submission - Science Forum

Topic 3 - Transition towards organic and sustainable food systems

OWC2020-SCI-216

NUTRITIONAL VALUE AND CONTENT OF BIOACTIVE COMPOUNDS IN RASPBERRY FRUIT FROM ORGANIC, BIODYNAMIC AND CONVENTIONAL FARMS

Ewa Rembialkowska^{*}¹, Alicja Ponder¹, Ewelina Hallmann¹, Dominika Średnicka-Tober¹, Renata Kazimierczak¹ ¹Department of Functional & Organic Food, WULS, Warsaw, Poland

Preferred Presentation Method: Oral or poster presentation

Full Paper Publication: No

Abstract: Organic farming is very popular in the world. Biodynamic farming is less recognized both by practice and science. There is very sparse data about the nutritional value of biodynamic plant crops. The aim of the study was to investigate if there are significant differences in the nutritional value and content of bioactive compounds in raspberry fruit produced in biodynamic (BIOD), organic (ORG) and conventional (CONV) systems. The results were divergent - in 2016 ORG raspberries contained more bioactive compounds than CONV. In 2017 the results were opposite - CONV fruits had significantly higher level of bio compounds than ORG ones. Composition differences between BIOD and ORG raspberries were also not consistent and showing various trends in the subsequent study years. There is a need for long lasting studies looking for the main factors deciding about the composition of fruits in dependence on the cultivation system. This shows a strong need for a more sustainable alternatives. Organic and biodynamic farming apeared to be one of such alternatives. Moreover, demand for organic and biodynamic foods is also strongly driven by perception of consumers that they are more nutritional differences between organic and conventional foods. In addition, available studies results on the health effects of the organic foods are limited and there is a lack of research undertaking the topic of the health-related quality of biodynamic compared to the organic and conventional products [2].

Raspberries are among the most commonly consumed berry fruit worldwide. As there is an increasing market demand for organically produced raspberries, organic acreage is also increasing. Poland became the largest producer of raspberries in both organic and conventional system in the world [3].

Material and methods: Raspberry fruit samples 'Polka' cultivar were collected from biodynamic, organic and conventional farms matched for location in 2016 and 2017. Number of farms/plots (samples collected) in 2016 were 10 (3 CONV, 4 ORG, 3 BIOD) and 8 (2 CONV,3 ORG, 3 BIOD) in 2017. Fruit samples (each sample = 1.5 kg) were collected in the full maturity phase. The collected fruit samples were immediately refrigerated and transported to the laboratory of the WULS. Part of each sample (0.5 kg) was immediately used for sensory analyses (fresh fruit). The remaining 1.0 kg was freeze-

dried, ground in a laboratory mill and stored in -80°C before further analyses, to prevent loss of biologically active compounds. The fruit samples were analyzed in terms of selected important parameters of their nutritional value. **Results:** Table 1 shows the content of raspberries cultivated in 2016 and 2017. Comparing CONV and ORG fruits (ORG as a whole so ORG + BIOD together) from 2016 we can see that organically grown raspberries contained more total sugars, total polyphenols, total phenolic acids, total flavonoids and total anthocyanins than conventionally grown fruits. However, anti-oxidant activity was higher for the CONV fruits. Comparing the quality of BIOD and ORG fruits we can see that for parameters as total phenolic acids and anti-oxidant activity the results were more profitable in the case of BIOD fruits. However, for other parameters as total sugars and total flavonols the results were opposite. Therefore it is difficult to judge which production system is causing better nutritive quality of fruits.

In 2017 the results are completely different than in 2016 and indicate that CONV fruits had significantly higher level of most analyzed compounds than ORG ones (taken as a whole so ORG and BIOD together). On the other hand, comparison of the quality of ORG and BIOD fruits points that nutritive value of BIOD fruits was better, because most analyzed compounds were significantly more abundant in BIOD raspberries than ORG ones.

Table 1. Chemical composition of raspberries from biodynamic, organic and conventional agriculture in 2016 and 2017											
	2016				2017					p-value	
	Biodyna	Organic	Convent	Biodyna	Biodyna	Organic	Convent	Biodyna	20	20	
	mic		ional	mic	mic		ional	mic	16	17	
				+Organi				+Organi			
				с				с			
dry matter (g/100 g	13.77±0	13.00±1	13.42±0	13.33±1	15.33±1	12.70±0	14.77±0	14.02±1	0.	<0	
FW)	.79¹a²	.03a	.74a	.01a	.05a	.43c	.52ab	.54b	20	.0	
									85	00	
										1	
vitamin C (mg/100 g	38.90±8	36.21±8	31.38±2	37.37±8	31.57±1	30.59±5	36.01±1	31.08±3	0.	0.	
FW)	.26a	.67a	.73a	.60a	.85b	.24b	.25a	.96b	13	03	
									74	0	
dehydroascorbic	16.93±8	13.80±6	10.45±4	15.14±7	18.36±1	15.25±1	16.12±1	16.80±2	0.	0.	
acid	.60a	.67a	.09a	.71a	.02a	.98c	.85c	.22bc	20	00	
									92	24	
I-ascorbic acid	21.98±3	22.42±3	20.93±2	22.23±3	13.21±1	15.35±3	19.89±1	14.28±2	0.	0.	
	.44a	.29a	.61a	.36a	.37b	.59b	.10a	.92b	61	00	
									98	02	
total sugars (g/100 g	5.16±0.	7.38±1.	6.24±1.	6.43±1.	4.77±0.	3.32±0.	5.60±0.	4.05±0.	0.	<0	
FW)	52b	53a	18ab	63a	29b	55d	95a	85c	00	.0	
									09	00	
										1	
glucose	2.02±0.	2.52±0.	2.38±0.	2.31±0.	1.31±0.	0.84±0.	1.25±0.	1.08±0.	0.	<0	
	21b	46a	42ab	45ab	16a	13c	14a	28b	25	.0	
									80	00	

										1
saccharose	0.39±0.	1.54±0.	0.45±0.	1.05±0.	1.152±0	0.659±0	1.151±0	0.91±0.	<0	<0
	12c	50a	23c	69b	.18a	.11b	.27a	29c	.0	.0
									00	00
									1	1
fructose	2.75±0.	3.31±0.	3.40±0.	3.07±0.	2.31±0.	1.83±0.	3.20±0.	2.07±0.	0.	<0
	25a	59a	87a	55a	16bc	35c	60a	36bc	09	.0
									12	00
										1
total organic acids	1.57±0.	1.50±0.	1.48±0.	1.53±0.	1.77±0.	1.53±0.	1.67±0.	1.65±0.	0.	0.
(g/100 g FW)	10a	13a	08a	13a	14a	04c	07ab	16b	31	00
									46	3
citric acid	1.54±0.	1.46±0.	1.45±0.	1.50±0.	1.73±0.	1.49±0.	1.64±0.	1.61±0.	0.	0.
	10a	13a	08a	13a	14a	04c	07ab	16b	29	00
									67	2
malic acid	0.03±0.	0.03±0.	0.03±0.	0.03±0.	0.040±0	0.035±0	0.035±0	0.04±0.	0.	0.
	00a	00a	00a	00a	.00a	.00b	.00b	00ab	76	00
									97	99
total polyphenols	95.56±8	97.23±1	79.21±9	96.51±9	129.30±	120.65±	133.83±	124.97±	0.	0.
(mg/100 g FW)	.59a	0.47a	.72b	.74a	15.77a	12.82a	7.23a	15.01a	00	21
									03	6
total phenolic acids	25.26±2	13.14±5	6.12±0.	18.33±7	7.80±0.	4.91±0.	11.20±3	6.35±1.	<0	<0
(mg/100 g FW)	.77a	.25c	71d	.42b	74b	62c	.32a	60bc	.0	.0
									00	00
									1	1
ellagic acid	0.46±0.	0.47±0.	0.49±0.	0.46±0.	1.033±0	0.869±0	1.028±0	0.95±0.	0.	0.
	03a	07a	07a	06a	.12a	.14b	.14a	15ab	69	04
									86	1
gallic acid	0.75±0.	0.75±0.	0.66±0.	0.75±0.	0.84±0.	0.55±0.	0.74±0.	0.69±0.	0.	<0
	07a	27a	03a	21a	07a	07c	14ab	16b	46	.0
									34	00
		1.00.0	1.00.0	1.00.0		0.70.0	0.40.0			1
chlorogenic acid	1.54±0.	1.08±0.	1.06±0.	1.28±0.	1.21±0.	0.79±0.	6.12±2.	1.00±0.	0.	<0
	16a	23b	43c	30ab	096	12b	62a	23b	00	.0
									18	00
	0.4410	4.50.1	0.4010	4.0414	0.4010	0.0010	0.07.0	0.0010		1
carreic acid	0.44±0.	1.50±1.	2.43±0.	1.04±1.	0.40±0.	0.32±0.	0.3/±0.	0.36±0.	<0	<0
	U/C	150	258	UZDC	04a	UIC	010	050	.0	.0
									00	00
									1	1

p-coumaric acid	22.07±3	9.34±5.	1.48±0.	14.80±8	4.31±0.	2.38±0.	2.93±0.	3.35±1.	<0	<0
	.03a	98c	18d	.00b	75a	41c	69bc	14b	.0	.0
									00	00
									1	1
total flavonoids	95.10±8	96.76±1	78.72±9	96.05±9	121.50±	115.74±	122.63±	118.62±	0.	0.
(mg/100 g FW)	.57a	0.41a	.69b	.70a	16.19a	12.41a	4.94a	14.71a	00	67
									03	5
total flavonols	0.82±0.	1.23±0.	1.25±0.	1.05±0.	1.51±0.	1.00±0.	1.24±0.	1.26±0.	0.	0.
(mg/100 g FW)	06b	36a	38a	34ab	29a	18c	33abc	35b	00	00
									65	26
luteolin	0.40±0.	0.42±0.	0.59±0.	0.41±0.	0.14±0.	0.18±0.	0.17±0.	0.16±0.	0.	0.
	03b	16b	14a	12b	01c	02a	03ab	03b	00	00
									89	18
quercetin	0.14±0.	0.20±0.	0.45±0.	0.17±0.	0.25±0.	0.28±0.	0.10±0.	0.26±0.	<0	0.
	02b	09b	23a	07b	12a	07a	04b	10a	.0	00
									00	16
									1	
kaempferol-3-O-	0.23±0.	0.46±0.	0.16±0.	0.36±0.	1.04±0.	0.51±0.	0.94±0.	0.78±0.	0.	<0
glucoside	02b	27a	03b	23ab	13a	13b	34a	30ab	00	.0
									12	00
										1
kaempferol	0.04±0.	0.16±0.	0.05±0.	0.11±0.	0.08±0.	0.03±0.	0.02±0.	0.05±0.	0.	0.
	02a	16a	07a	13a	05a	02b	01b	04ab	09	00
									13	66
total anthocyanins	94.28±8	95.53±1	77.47±9	95.00±9	119.99±	114.74±	121.39±	117.36±	0.	0.
(mg/100 g FW)	.54a	0.36a	.61b	.64a	16.26a	12.51a	4.80a	14.75a	00	71
									02	6
cyanidin-3,5-O-di-	46.57±3	56.63±1	45.00±4	52.32±1	82.96±1	77.24±8	85.90±4	80.10±1	0.	0.
glucoside	.94ab	3.99a	.81b	1.97ab	6.21a	.69a	.32a	3.32a	03	49
									44	3
pelargonidin-3,5-di-	26.67±8	18.88±4	18.55±4	22.22±7	12.73±1	11.28±1	11.70±0	12.00±1	0.	0.
O-glucoside	.05a	.04b	.71b	.21ab	.13a	.86a	.37a	.70a	01	19
									11	6
delphinidin-3,5-di-O-	21.04±2	20.03±7	13.91±0	20.46±5	24.30±1	26.22±3	23.79±1	25.26±3	0.	0.
glucoside	.50a	.45a	.76b	.88a	.95a	.70a	.32a	.11a	00	26
									64	3
procyanidins (g/kg	2.78±0.	2.45±0.	2.35±0.	2.59±0.	1.35±0.	1.06±0.	1.16±0.	1.20±0.	0.	0.
FW)	23a	10a	25a	24a	67a	28b	08a	54ab	16	00
									20	75
ABTS µMol	2850.44	2787.63	2821.53	2724.99	2958.35	2572.91	3017.43	2765.63	0.	0.

Trolox/100 g FW	±170.34	±199.52	±122.07	±207.03	±387.44	±115.34	±205.53	±344.74	00	92
	а	b	а	b	а	а	а	а	01	4

¹Data are presented as the mean ± SD with ANOVA p-value

² Means in rows followed by the same letter are not significantly different at the 5% level of probability (p<0.05)

Discussion: Kazimierczak et al. [4] compared the contents of antioxidant compounds in two varieties of raspberry fruits came from certified organic and conventional production. Organic raspberries contained more total phenolic acids (18.34 vs. 15.89 mg/100 g), total flavonoids (19.11 vs. 14.57 mg/100 g) and total anthocyanins (174.69 vs. 109.59 mg/100 g) in comparison to conventional ones. This is confirmed by research of Skupień et al. [5] in which total anthocyanins content amounted 28.1-48.1 mg/100 g in organic-group and 26.7-43.6 for conventional raspberies fruits. The aim of the study conducted by Ponder and Hallmann [6] was to compare the content of bioactive compounds in organic vs. conventional raspberries. The organic raspberries samples contained significantly more total phenolic acids (62.9 vs. 44.3 mg/100 g), total flavonoids (93.53 vs. 82.65 mg/100 g) and total anthocyanins (82,53 vs. 73.83 mg/100 g) than conventional fruits. **Conclusion:** In 2016 ORG raspberries contained more bioactive compounds than CONV. In 2017 the results were opposite - CONV fruits had significantly higher level of bio compounds than ORG ones. Composition differences between BIOD and ORG raspberries were also not consistent and showing various trends in the subsequent study years. There is a need for long lasting studies looking for the main factors deciding about the composition of fruits in dependence on the cultivation system.

Aknowledgements: we are very thankful to the EKHAGASTIFTELSEN for the finacial suport for a project nr 2015-76. **References:**

Hughner R.S. et al. 2007. Who are organic food consumers? A compilation and review of why people purchase organic food. J Consum Behav 6, 94.

Baranski M. et al. 2014. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr 112, 794.

GUS 2014. Agricultural and horticultural crops production in 2013.

Kazimierczak R. et al. 2016. Biocompounds content in organic and conventional raspberry fruits. Acta Fytotechnica et Zootechnica, 18(5), 40.

Skupien K. et al. 2012. Nutrients, antioxidants, and antioxidant activity of organically and conventionally grown raspberries. J of Appl Bot Food Qual 84, 85.

Ponder A. & Hallmann E. 2019. The effects of organic and conventional farm management and harvest time on the polyphenol content in different raspberry cultivars. Food Chem, 301.

Disclosure of Interest: None Declared

Keywords: bio compounds, biodynamic, conventional, organic, raspberry