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Resolving multiple rescatterings in high-order-harmonic generation
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We explore the conditions for resolving high-order electronic recollisions in high-order-harmonic spectroscopy.
We identify intrinsic phase mismatch and time-frequency uncertainty as the two fundamental limitations against
the spectral distinguishability of these multiple rescatterings. Our numerical computations show that flat-top
mid-infrared driving fields are the optimal candidates for the study of multiple recollision phenomena.
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I. INTRODUCTION

High-order-harmonic generation (HHG) [1,2] is considered
one of the most suitable methods to generate coherent light
from the extreme-ultraviolet (XUV) to the x-ray regime [3].
It is a highly nonlinear process that can be nicely ex-
plained in semiclassical terms, with the so-called three-step
model [4,5]. In the first step, the atomic electron is tunnel
ionized through the Coulomb potential barrier, deformed
by the intense laser field. After the release, the electronic
wave packet is accelerated by the laser field and driven back
towards the parent ion. In a final step, upon rescattering with
the parent ion, the kinetic energy acquired by the electron
during its excursion is released in the form of harmonics.
Interestingly, this coherent high-frequency radiation is known
to be emitted in the form of ultrashort pulses of attosecond
duration [6–8].

The emission of radiation at a given harmonic order is built
from the coherent addition of a set of rescattering events of
the same energy [9,10]. From these, the most efficient are
those corresponding to first-time recollisions, as the electron
excursion times are shorter and, therefore, the electronic wave
packet is less spread. Every half cycle of the driving laser
pulse, two paths lead to first-time recollisions of the same
energy, named according to their particular excursion time as
short and long. High-order recollisions (HOR) take place after
excursion times longer than the laser period and, hence, they
have a secondary weight in the overall harmonic spectrum.
Figure 1(a) shows the rescattering trajectories corresponding
to electrons ionized during half cycle of the laser field. The
trajectory highlighted in blue leads to the most energetic
recollision, and it is responsible for the emission of the highest
frequency harmonics. Note that trajectories involving multiple
rescatterings correspond to electronic wave packets ionized
before those leading to the most energetic path.

There are different reasons why HOR are potentially
interesting. It has been demonstrated recently that multiple-
path interference introduces an ultrafast modulation in the
attosecond pulses, that can reach the zeptosecond time scale
when using mid-infrared (mid-IR) driving fields [11]. For
instance, there is a great interest in the development of
ultrafast mid-IR sources [12–14], which allow extension of the
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HHG radiation into the x-ray regime [3,15–18]. On the other
hand, longer excursion times make these trajectories more
sensitive to the details of the Coulomb potential, through the
accumulated phase, extending the time interval for sampling,
and thus allowing capture of the multifemtosecond dynamics
through high-order-harmonic spectroscopy [19]. HOR are
also known to contribute to the structure of the low-energy
part of the non-angle-resolved photoelectron spectra induced
by mid-IR fields [20–23], and recent experiments reported
their signature in the photoelectron angular distributions [24].
Although the influence of HOR in the HHG process has been
long discussed [25–27], there is still no experimental evidence
of them. A recent study points out that HOR are particularly
sensitive to phase matching during harmonic propagation in
macroscopic targets and that, when using Gaussian driving
beams, their contribution is suppressed [28]. On the other hand,
it has been pointed out that HOR will have an increasingly
distinct role in the high-order-harmonic spectrum as the driving
wavelength is shifted to the mid-IR [11,29,30].

The aim of this paper is to identify the conditions under
which HOR can be resolved in a HHG experiment. To this end,
we present in Sec. II the signatures of HOR in HHG and per-
form macroscopic HHG simulations using Gaussian, Bessel,
and flat-top driving beams. Our results indicate that flat-top
beams are optimal for resolving HOR. Afterwards, in Sec. III,
we analyze the effect of different driving wavelengths and
perform a quantitative analysis to show that long-wavelength
driving lasers are required to identify HOR in HHG. Finally, we
show that HOR imprint a clear signature in the HHG spectrum
of isolated attosecond pulses.

II. OPTIMIZED PHASE MATCHING
OF HIGH-ORDER RESCATTERINGS

A. Contribution of HOR to the high-order-harmonic spectrum

Figure 1(b) presents the results of a single-atom HHG
calculation, using a time-frequency description of the har-
monic emission [31]. The data shown correspond to the
numerical integration of the three-dimensional (3D) time-
dependent Schrödinger equation (TDSE) in helium for a
6-cycle (full-width) cos2 envelope of a sin carrier wave of
2 μm wavelength and peak intensity of 5 × 1014 W/cm2.
The calculations consider a single active electron interacting
with an effective potential obtained from density functional
computations [32,33].
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FIG. 1. (a) Sample of electronic trajectories in a 6-cycle (full
width) laser field with a cos2-envelope. The grey-dashed line
represents the electric field in arbitrary units and the green line
indicates the core position. Four pairs of trajectories are represented
for energies at first-order recollision of 2.9Up (purple), 2.5Up (dark
pink), 1.5Up (pink), and Up (light pink), whereas the most energetic
trajectory, raising 3.17Up at the first recollision, is represented in blue.
The vertical axis represents the distance from the core in atomic units
(a0). (b) Time-frequency analysis for the HHG spectrum obtained
solving TDSE in helium (color background). The laser pulse is
modeled as in panel (a) with a wavelength of 2 μm and peak intensity
of 5 × 1014 W/cm2. We use a Gaussian window with spectral FWHM
of �ω = 10ω0, (where ω0 is the fundamental frequency), which
corresponds to a temporal FWHM of �t = T/11.4, where T is the
laser period. The photon energy of the harmonics is given in terms
of the rescattering energy (in units of Up , left vertical axis), and
in terms of the harmonic order (right vertical axis). The classical
returning kinetic energies at the instant of recollision are shown in
black dots for the electrons ionized in the temporal interval between
-0.75T and -0.5T. The labels in different colors represent the families
of rescattering events that correspond to the wave-packet that was
ionized during the same half-cycle.

The time-frequency analysis shows the instants when a
particular region of the spectrum has been emitted. The FWHM
widths of the spectral and temporal amplitude windows,
�ω and �t , which determine the resolution in frequency
and time respectively, are related by �t = 5.55/�ω. As is
usually observed in HHG calculations, the time evolution of
the harmonic emission follows faithfully the distribution of
rescattering energies of classical trajectories [black dots in
Fig. 1(b)], allowing identification of the different contributions
to the harmonic emission of classical paths in Fig. 1(a). The
contribution of rescatterings of increasing order appears in a
time-ordered sequence, as the excursion time associated to
each order increases monotonically. After a few cycles, the
harmonic radiation contains the contribution of rescatterings
of different orders, at different energies. Note that the classical
rescattering energies are scale invariant in ponderomotive
energy units (in atomic units, UP = Ic2λ2/16π2, with I being
the laser intensity, c being the velocity of light, and λ being
the laser wavelength).

B. Spatial beam profiles for optimized HOR phase-matching:
Bessel and flat-top beams

HHG from macroscopic targets can be intricate, as it
depends not only on the single-atom response but also on how
the harmonics from the elementary radiators interfere [34,35].
Phase matching plays an essential role, limiting the volume
at the target in which the harmonics are generated efficiently.
The phase of the high-order harmonics is known to depend on
the details of the electron paths. In particular, the sensitivity of
the phase to changes in the driving field increases for longer
excursion times. Therefore HOR contributions to HHG can
be easily phase mismatched, and their contribution to the
macroscopic harmonic signal becomes marginal in a typical
experiment (tightly focused Gaussian beam). Therefore, any
HHG experiment aimed to resolve their signature must seek
the conditions where the macroscopic emission retains the
details of the single-radiator spectra with enough fidelity.
Due to its nonperturbative origin, high-order harmonics are
emitted with phases that depend on the phase as well as
on the intensity of the driving field [36–38]. Hence, optimal
phase matching will occur when the spatial variations of these
two parameters are minimal. As has been recently pointed
out, phase matching is a two-dimensional problem, where not
only phase variations along the longitudinal but also along the
transversal direction play a role [39,40]. In this sense, Bessel
beams (BB) constitute an optimal choice for phase matching,
due to their constant phase profile along the two dimensions.
They appear naturally in HHG experiments in hollow wave
guides, and they are excellent to reach optimal longitudinal
phase matching conditions [3,41–43]). On the other hand,
flat-top beams (FTB) are special beams for which the intensity
and phase remains almost constant in a limited spatial volume
around the focus and, therefore, are especially attractive to
reduce phase mismatch due to intensity gradients found in
nonperturbative harmonic generation. FTB can be generated
through spatial shaping of intense femtosecond beams and
their potential to generate efficiently high-order harmonics has
been reported recently [44,45].

Figures 2(a) and 2(b) show the transversal and longitudinal
profiles (amplitude in solid lines and phase in dashed lines) of a
BB (green), a Gaussian beam (blue), and a FTB (red). The BB
is represented by a plane wave modulated by the slowly varying
transverse amplitude (written in cylindrical coordinates) [46]:

A(ρ,z) = E0J0(2.405ρ/a) exp (ikz), (1)

where E0 is the field amplitude, J0 is the zero-order Bessel
function, and a is the transversal width of the beam, equivalent
to the radius of the waveguide in which the beam propagates.
We implement the FTB as a superposition of Gaussian
beams [47], propagating along the z axis as a plane wave
modulated by the slowly varying transverse amplitude (written
in cylindrical coordinates)

AM (ρ,z) = E0 exp (ikz)
M∑

m=1

αm

W0,m

Wm(z)
exp

[
− ρ2

W 2
m(z)

]

× exp

[
ik

ρ2

2Rm(z)
− iζm(z)

]
, (2)
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FIG. 2. (a) Transversal and (b) longitudinal spatial field (solid
lines) and phase (dashed lines) profiles at λ = 2.0 μm, for a BB
with a = 95 μm (green), a Gaussian beam (M = 1, blue), and a
FBM (M = 20, red), using a beam waist of W0,1 = 63.2 μm that
gives a Rayleigh distance of z0,1 = 6.28 mm for the later two cases.
(c) Time-frequency analysis of the HHG radiation from the single-
atom SFA+ calculation for a laser pulse of 2.0 μm, using �ω = 10ω0.
The rest of parameters of the laser pulse are as in Fig. 1. In panels
(d) to (f) we show the results including macroscopic 3D propagation
when using a Gaussian beam (d), a BB (e), and a FTB (f). The 3D
propagated harmonics are generated in a helium gas cell of thickness
(L) of 0.1 mm (Gaussian beam), 2 mm (BB), and 1 mm (FTB), at
a pressure of 5 torr (gas density of 1.7 × 1017 atoms/cm3). In the
Gaussian beam case (d), the gas cell is placed 3 mm after the focus to
achieve favorable phase-matching conditions, and the time-frequency
yield is multiplied by a factor of 20 for better comparison with panels
(e) and (f). In the case of the FTB (f), the gas cell is placed at the
focus.

where M is the total number of Gaussian beams considered,
Wm(z) = W0,m[1 + (z/z0,m)2]1/2 is the beam width, W0,m is
the beam waist of the mth component given by W0,m =
W0,1(mβ)−1/2, with W0,1 = (λz0,1/π )1/2. Correspondingly, the
Rayleigh range of the mth order is given by z0,m = πW 2

0,mλ−1.

The scaling factor β is given by β = ∑M
m=1 αm/m, where αm

is the binomial coefficient [47]. Rm(z) = z[1 + (z0,m/z)2] is
the wavefront radius of curvature and ζm(z) = tan−1(z/z0,m)
is the Gouy phase. Note that if M = 1 we recover the standard
Gaussian beam expression. The spatial profiles plotted in
Figs. 2(a) and 2(b) show that phase variations of BB and
FTB around the focus are less significant than those shown
by Gaussian beams. Also the transversal intensity variations
are less pronounced near the focus, becoming BB and FTB the
natural choices to obtain high-order harmonics under optimal
phase-matching conditions.

C. Macroscopic HHG simulations

We compute harmonic propagation using the electromag-
netic field propagator [48]. We discretize the target (gas cell
or gas jet) into a set of elementary radiating volumes and
propagate the emitted field Ej (rj ,t) to the far-field detector,

Ej (rd ,t) = qj sd

c2|rd − rj | ×
[

sd × aj

(
t − |rd − rj |

c

)]
, (3)

where sd is the unitary vector pointing to the detector and
rd and rj are the position vectors of the detector and of
the elementary radiator j , respectively. Equation (3) assumes
the harmonic radiation to propagate with the vacuum phase
velocity, which is a reasonable assumption for high-order
harmonics. Finally, the total field at the detector is computed
as the coherent addition of these elementary contributions.
Propagation effects in the fundamental field, such as the
production of free charges, the refractive index of the neutrals,
the group velocity walk-off [49], as well as absorption in the
propagation of the harmonics, are also taken into account.

For the case of intense fields the computation of the
dynamics of the elementary radiators is not trivial, as the
interaction is nonperturbative. Because of the large number
of radiators, using the exact numerical integration of the
TDSE becomes extremely expensive, especially for mid-IR
driving fields. Therefore, the use of simplified models is
almost mandatory. For the case of intense fields, S-matrix
approaches combined with the strong-field approximation
(SFA) [50–52] are demonstrated to retain most of the features
of the HHG [53,54]. We have recently developed an extension
of the standard SFA; hence we will refer it as SFA+. The
total acceleration of the j radiator (aj ) is found from two
contributions, ab and ad , the first being the standard SFA
expression and the latter being a correction due to the instan-
taneous dressing of the ground state. Our method computes
the dipole acceleration directly from the superposition of the
contributions of each Volkov wave, and each can be integrated
separately as an ordinary 1D equation, leading to a very
efficient algorithm [55,56].

Figure 2(c) shows the time-frequency analysis from the
single-atom SFA+ calculation in helium for the same case
as the TDSE results in Fig. 1(b). Both figures may be used
as a benchmark for our SFA+ method. The photon energies
and emission times, and therefore the harmonic phases, are
well reproduced. On the other hand, the efficiency of the long
trajectories relative to the short is underestimated in SFA+.
Also, the yield of the cutoff harmonics compared to that of
the plateau harmonics is higher in the TDSE calculations,
and the the yield of the HOR compared to that of the first

023402-3
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rescattering is substantially higher in the TDSE calculations.
These differences should be attributed to the absence of
Coulomb focusing of the electronic wave packet in the SFA
formulation, as discussed in Ref. [29]. Note that the color
scaling of Figs. 1(b) and 2(c) is different, as the lower bound
is set to the background noise level (that is lower in SFA+
calculations).

In Figs. 2(d) to 2(f), we show the results after propagation
for the three beam profiles considered in this paper: (d)
Gaussian beam with W0,1 = 63.2 μm, (e) BB with a = 95 μm,
and (f) FTB, using M = 20 and W0,1 = 63.2 μm. The 3D
propagated harmonics are generated in a helium gas cell
of thickness (L) of 0.1 mm (Gaussian beam), 2 mm (BB),
and 1 mm (FTB), and at a pressure of 5 torr (gas density
of 1.7 × 1017 atoms/cm3). Note that the longitudinal phase
variation of the Gaussian beam [Fig. 2(b)] limits the selection
of the ratio between the target thickness and the Rayleigh
range, α = L/z0,1. In our case, z0,1 = 6.28 mm, and then α =
1.6%. The use of larger α limits dramatically the efficiency of
the high-order harmonics due to longitudinal phase matching
for the laser pulse parameters considered. In addition, in the
Gaussian beam case, the gas cell is placed 3 mm after the

focus, so favorable longitudinal phase-matching conditions
are met due to the compensation of the Gouy and the intrinsic
harmonic-phase gradients [36,37]. On the other hand, in the
case of the FTB, according to Fig. 2(b), the gas cell thickness
is chosen to be L = 1 mm and it is placed at the focus, where
the longitudinal variations of the amplitude and phase are
minimal.

The results clearly show how phase matching modifies the
macroscopic buildup of high-order harmonics. First, the use
of Gaussian beams limits substantially the efficiency of the
generated harmonics due to the transverse and longitudinal
phase and amplitude variations of the driving field. As has
been showed previously, HOR are strongly suppressed due to
phase matching [28]. Note that the maximum photon energy
obtained is lower than the other cases as the gas cell is placed
3 mm after the focus position.

Second, the use of BB [Fig. 2(d)]allows for the gener-
ation of brighter harmonics, although it introduces phase
mismatch through the variations of the transversal intensity
profile [39], since the beam phase is constant. In this case,
short trajectory contributions (positive slope of the time-
frequency structure) survive phase matching, as has been

FIG. 3. HHG spectra (first row) and time-frequency analysis (second to fourth rows) driven in helium at 0.8 μm (first column) and 2 μm
(second column). The laser pulse is modeled by a cos2 envelope, 6 cycles full width, and peak intensity of 5 × 1014 W/cm2. From row to row,
the spectral (�ω) and corresponding temporal (�t) FWHM of the Gaussian windows in the TFA are (3.5ω0, T/4), (7ω0, T/8), and (14ω0,
T/16), with ω0 being the fundamental frequency and T being the laser period. Note that both the spectra and TFA are in logarithmic scale.
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reported previously [3], and the signature of HOR is also
diminished.

Finally, the use of focalized FTB [Fig. 2(e)] has a reduced
spatial intensity variation (keeping the phase variation small as
compared to a Gaussian beam) and, consequently, phase mis-
match is strongly weakened. In this case, the macroscopic yield
retains the details of the single-source emission [Fig. 2(c)].
Note that the quantitative comparison of the HHG yield
between Figs. 2(d) to 2(f) depends on the particular choices of
the transversal (a in the BB, and W0,1 in the Gaussian beam
and FTB), and longitudinal (target length, L) beam parameters.
Our calculations show that the single-source features in the
macroscopic target emission with FTB are preserved to the
point to retain the spectral contributions of HOR.

III. TIME-FREQUENCY UNCERTAINTY:
MID-IR PREFERENCE FOR HIGH-ORDER

RESCATTERING DETECTION

A second important aspect when resolving HOR is the
choice of the driving wavelength. It has already been pointed
out that at the single-radiator level, HOR seem to emerge
more distinctly using mid-IR driving fields [11,29,30]. To
explore this point we have compared the results from the TDSE
calculation at 2-μm wavelength, already shown in Fig. 1(b),
with the same case at 0.8 μm. We show the respective harmonic
spectra in Figs. 3(a) and 3(b). The rescattering energies scale
linearly with the electron’s ponderomotive energy UP ∝ Iλ2.
Therefore, the harmonic spectra extends deeper into XUV
wavelengths with increasing the driving field’s wavelength.
Figures 3(c) to 3(e) and 3(f) to 3(h) show the time-frequency
analysis of the harmonic signals for the two wavelengths
considered, for different widths of the spectral amplitude
window (�ω). It is quite evident that HOR can not be
properly resolved for the 0.8-μm driving field with any choice
of spectral window, while they are clearly resolved for the
2-μm driving field if sufficiently wide spectral windows are
used. This is a natural consequence of the time-frequency
indetermination.

Let us now explore this phenomena in quantitative terms.
Assuming a Gaussian window profile, the minimum time
resolution (separation of the Gaussian distributions needed
to have a 1/e contrast) is of 1.56�, with � being the FWHM
of the Gaussian (�t for the temporal window and �ω for
the spectral one). Note in Fig. 1 that a given harmonic is
typically emitted during a half-cycle of the driving field by
a pair of trajectories for each rescattering order. Therefore,
if up to n rescattering orders are to be resolved in time,
the visibility criterium for rescatterings during one-fourth
of a cycle leads to n × 1.56�t � T/4, and therefore �t �
T/6.24n. As presented in Sec. II, the uncertainty relation for
the FWHM of the Gaussian windows reads �t�ω = 5.5, and
therefore �ω � 34.32n/T .

On the other hand, the application of the same visibility
criterium in the spectral domain requires an energy resolution
in the harmonic spectrum of �E � 1.56��ω = 53.54n/T .
If the maximum rescattering energy over one half-cycle of
the driving field is Emax, the observation of n rescattering
orders in the harmonic spectrum requires �E � Emax/n.
When expressing Emax in UP units, the wavelength in μm,

FIG. 4. (a) Single-atom HHG attosecond pulse train obtained
from the Fourier transform of the single-atom harmonic spectrum
presented in Fig. 3(b). Panels (b) and (c) show the propagated
spectra (in logarithmic scale) of two individual harmonic bursts
(b, 0.75 < t0/T < 1.25 and c, 1.25 < t0/T < 1.75) for the Bessel
(green) and flat-top (green) beams considered before at 2 μm. The
rest of parameters are the same as in Figs. 2(e) and 2(f).

and the intensity in W/cm2, the driving wavelength required
to resolve n rescattering orders is

λμm > 4.9 × 104n2/3(EmaxI )−1/3. (4)

For instance, for the case of Fig. 3, in order to resolve the
three rescattering orders that take place at the time interval
from 0.7 to 1.2 T, a driving laser with wavelength of λ � 1 μm
is needed (in this case, Emax = 2.19UP which corresponds
to ∼700th harmonic order, I = 5 × 1014 W/cm−2, and n =
3). This lower limit illustrates that long mid-IR-wavelength
driving lasers are required in order to resolve HOR.

Finally, even though the proper choice of beam profile
and wavelength provides the physical conditions for the
observation of HOR radiation, unraveling their signature in
the harmonic spectrum [Figs. 3(a) and 3(b)] is far from trivial.
HOR harmonics present energies in the middle of the spectrum
(plateau) and, thus, their observation is hindered by the
contributions of the lowest order rescatterings over the whole
interaction history. On the other hand, the identification of
HOR in the temporal domain turns out to be also very difficult,
as depicted in Fig. 4(a), where we show the attosecond pulse
train obtained from the Fourier transform of the single-atom
harmonic spectrum presented in Fig. 3(b). Nevertheless, it is
possible to obtain a distinct spectral signature by selecting
only those temporal events occurring over half a cycle of the
driving field. In such case, the energy distribution of the HOR
is ordered enough to leave a clear imprint in the harmonic
signal.

Figures 4(b) and 4(c) show the propagated spectra of the
individual harmonic bursts (on a linear scale) for the BB
(green) and FTB (red) considered before at 2 μm. These
results correspond to the spectra of the bursts generated within
(b) 0.7 < t0/T < 1.2 and (c) 1.2 < t0/T < 1.7 in Figs. 2(d)
and 2(e), for the BB (green) and FTB (red) respectively. We can
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identify different peaks corresponding to the first, second, and
third rescattering energies, that can only be macroscopically
resolved when using the FTB. As commented above, note
that if TDSE is used when computing HHG, the yield of the
higher-order rescatterings would be higher.

It has been shown in recent experiments that the harmonic
bursts can be angularly isolated from the attosecond train in the
far field, an effect termed attosecond lighthouse [57,58]. The
discrimination power is known to increase with the wavelength
and to be optimal for short pulses; therefore, it is an optimal
technique for measuring the spectra of the separated bursts and
for identifying HOR signatures. In addition, another technique
has recently been proposed to identify HOR by using a VUV
pump to temporally control the emergence of HHG radiation
and thus the relevance of HOR [59].

In conclusion, we have shown that mid-IR flat-top
laser beams are ideal candidates to identify the signa-
tures of high-order rescatterings in HHG, in order to
overcome the limitations imposed by phase matching and
by the time-frequency uncertainty. We provide a route to

experimentally identify HOR, opening the prospective for
their possible applications. In this sense, we should stress
that recent developments of flat-top beams in fibers [60,61]
combine the optimal longitudinal phase-matching properties
of Bessel beams with the transversal ones of flat-top beams, a
promising perspective to obtain high-flux multiple-rescattering
emission.
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[55] J. A. Pérez-Hernández, L. Roso, and L. Plaja, Opt. Express 17,

9891 (2009).
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Becker, Phys. Rev. A 90, 053409 (2014).

[60] C. Valentin, P. Calvet, Y. Quiquempois, G. Bouwmans, L. Bigot,
Q. Coulombier, M. Douay, K. Delplace, A. Mussot, and E.
Hugonnot, Opt. Express 21, 23250 (2013).

[61] F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn,
M. T. Kalichevsky-Dong, K. Wei, B. Samson, and L. Dong, Opt.
Express 21, 32371 (2013).

023402-7

http://dx.doi.org/10.1103/PhysRevLett.113.033001
http://dx.doi.org/10.1103/PhysRevLett.113.033001
http://dx.doi.org/10.1103/PhysRevLett.113.033001
http://dx.doi.org/10.1103/PhysRevLett.113.033001
http://dx.doi.org/10.1103/PhysRevLett.98.013901
http://dx.doi.org/10.1103/PhysRevLett.98.013901
http://dx.doi.org/10.1103/PhysRevLett.98.013901
http://dx.doi.org/10.1103/PhysRevLett.98.013901
http://dx.doi.org/10.1103/PhysRevA.89.053417
http://dx.doi.org/10.1103/PhysRevA.89.053417
http://dx.doi.org/10.1103/PhysRevA.89.053417
http://dx.doi.org/10.1103/PhysRevA.89.053417
http://dx.doi.org/10.1103/PhysRevA.51.R1750
http://dx.doi.org/10.1103/PhysRevA.51.R1750
http://dx.doi.org/10.1103/PhysRevA.51.R1750
http://dx.doi.org/10.1103/PhysRevA.51.R1750
http://dx.doi.org/10.1103/PhysRevA.55.3406
http://dx.doi.org/10.1103/PhysRevA.55.3406
http://dx.doi.org/10.1103/PhysRevA.55.3406
http://dx.doi.org/10.1103/PhysRevA.55.3406
http://dx.doi.org/10.1088/0953-4075/38/15/001
http://dx.doi.org/10.1088/0953-4075/38/15/001
http://dx.doi.org/10.1088/0953-4075/38/15/001
http://dx.doi.org/10.1088/0953-4075/38/15/001
http://dx.doi.org/10.1088/0953-4075/41/13/132001
http://dx.doi.org/10.1088/0953-4075/41/13/132001
http://dx.doi.org/10.1088/0953-4075/41/13/132001
http://dx.doi.org/10.1088/0953-4075/41/13/132001
http://dx.doi.org/10.1038/nphoton.2010.256
http://dx.doi.org/10.1038/nphoton.2010.256
http://dx.doi.org/10.1038/nphoton.2010.256
http://dx.doi.org/10.1038/nphoton.2010.256
http://dx.doi.org/10.1103/PhysRevLett.74.3776
http://dx.doi.org/10.1103/PhysRevLett.74.3776
http://dx.doi.org/10.1103/PhysRevLett.74.3776
http://dx.doi.org/10.1103/PhysRevLett.74.3776
http://dx.doi.org/10.1103/PhysRevA.55.3204
http://dx.doi.org/10.1103/PhysRevA.55.3204
http://dx.doi.org/10.1103/PhysRevA.55.3204
http://dx.doi.org/10.1103/PhysRevA.55.3204
http://dx.doi.org/10.1088/0953-4075/45/7/074021
http://dx.doi.org/10.1088/0953-4075/45/7/074021
http://dx.doi.org/10.1088/0953-4075/45/7/074021
http://dx.doi.org/10.1088/0953-4075/45/7/074021
http://dx.doi.org/10.1103/PhysRevA.88.043848
http://dx.doi.org/10.1103/PhysRevA.88.043848
http://dx.doi.org/10.1103/PhysRevA.88.043848
http://dx.doi.org/10.1103/PhysRevA.88.043848
http://dx.doi.org/10.1364/OE.23.021497
http://dx.doi.org/10.1364/OE.23.021497
http://dx.doi.org/10.1364/OE.23.021497
http://dx.doi.org/10.1364/OE.23.021497
http://dx.doi.org/10.1073/pnas.0903748106
http://dx.doi.org/10.1073/pnas.0903748106
http://dx.doi.org/10.1073/pnas.0903748106
http://dx.doi.org/10.1073/pnas.0903748106
http://dx.doi.org/10.1126/science.280.5368.1412
http://dx.doi.org/10.1126/science.280.5368.1412
http://dx.doi.org/10.1126/science.280.5368.1412
http://dx.doi.org/10.1126/science.280.5368.1412
http://dx.doi.org/10.1103/PhysRevLett.83.2187
http://dx.doi.org/10.1103/PhysRevLett.83.2187
http://dx.doi.org/10.1103/PhysRevLett.83.2187
http://dx.doi.org/10.1103/PhysRevLett.83.2187
http://dx.doi.org/10.1103/PhysRevA.84.063406
http://dx.doi.org/10.1103/PhysRevA.84.063406
http://dx.doi.org/10.1103/PhysRevA.84.063406
http://dx.doi.org/10.1103/PhysRevA.84.063406
http://dx.doi.org/10.1364/OL.36.002486
http://dx.doi.org/10.1364/OL.36.002486
http://dx.doi.org/10.1364/OL.36.002486
http://dx.doi.org/10.1364/OL.36.002486
http://dx.doi.org/10.1002/j.1538-7305.1964.tb04108.x
http://dx.doi.org/10.1002/j.1538-7305.1964.tb04108.x
http://dx.doi.org/10.1002/j.1538-7305.1964.tb04108.x
http://dx.doi.org/10.1002/j.1538-7305.1964.tb04108.x
http://dx.doi.org/10.1016/S0030-4018(02)01412-8
http://dx.doi.org/10.1016/S0030-4018(02)01412-8
http://dx.doi.org/10.1016/S0030-4018(02)01412-8
http://dx.doi.org/10.1016/S0030-4018(02)01412-8
http://dx.doi.org/10.1103/PhysRevA.82.033432
http://dx.doi.org/10.1103/PhysRevA.82.033432
http://dx.doi.org/10.1103/PhysRevA.82.033432
http://dx.doi.org/10.1103/PhysRevA.82.033432
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1103/PhysRevA.56.645
http://dx.doi.org/10.1103/PhysRevA.56.645
http://dx.doi.org/10.1103/PhysRevA.56.645
http://dx.doi.org/10.1103/PhysRevA.56.645
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1364/OE.17.009891
http://dx.doi.org/10.1364/OE.17.009891
http://dx.doi.org/10.1364/OE.17.009891
http://dx.doi.org/10.1364/OE.17.009891
http://dx.doi.org/10.1103/PhysRevLett.108.113904
http://dx.doi.org/10.1103/PhysRevLett.108.113904
http://dx.doi.org/10.1103/PhysRevLett.108.113904
http://dx.doi.org/10.1103/PhysRevLett.108.113904
http://dx.doi.org/10.1038/nphoton.2012.284
http://dx.doi.org/10.1038/nphoton.2012.284
http://dx.doi.org/10.1038/nphoton.2012.284
http://dx.doi.org/10.1038/nphoton.2012.284
http://dx.doi.org/10.1103/PhysRevA.90.053409
http://dx.doi.org/10.1103/PhysRevA.90.053409
http://dx.doi.org/10.1103/PhysRevA.90.053409
http://dx.doi.org/10.1103/PhysRevA.90.053409
http://dx.doi.org/10.1364/OE.21.023250
http://dx.doi.org/10.1364/OE.21.023250
http://dx.doi.org/10.1364/OE.21.023250
http://dx.doi.org/10.1364/OE.21.023250
http://dx.doi.org/10.1364/OE.21.032371
http://dx.doi.org/10.1364/OE.21.032371
http://dx.doi.org/10.1364/OE.21.032371
http://dx.doi.org/10.1364/OE.21.032371



