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REVIEW Open Access

International society of sports nutrition
position stand: caffeine and exercise
performance
Nanci S. Guest1* , Trisha A. VanDusseldorp2, Michael T. Nelson3, Jozo Grgic4, Brad J. Schoenfeld5,
Nathaniel D. M. Jenkins6, Shawn M. Arent7,8, Jose Antonio9, Jeffrey R. Stout10, Eric T. Trexler11,
Abbie E. Smith-Ryan12, Erica R. Goldstein10, Douglas S. Kalman13,14 and Bill I. Campbell15

Abstract

Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN)
position regarding caffeine intake is as follows:

1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance
in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular
endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as
a wide range of aerobic and anaerobic sport-specific actions.

2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits
from caffeine use, although the magnitude of its effects differs between individuals.

3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3–6 mg/
kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg
body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and
do not seem to be required to elicit an ergogenic effect.

4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of
caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules,
caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise
session.

5. Caffeine appears to improve physical performance in both trained and untrained individuals.
6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of
anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism,
and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in
between-individual response variation.

7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most
(Continued on next page)
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individuals.
8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep
deprivation.

9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when
dosages range from 3 to 6 mg/kg and 4–6 mg/kg, respectively.

10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have
been shown to improve performance, primarily in aerobic exercise.

11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both
anaerobic and aerobic performance.

Introduction
Caffeine is the world’s most widely consumed psycho-
active substance and naturally occurs in dozens of plant
species, including coffee, tea and cocoa. Caffeine is
ingested most frequently in the form of a beverage such
as coffee, soft drinks and tea, although the consumption
of many functional beverages, such as energy drinks, has
been on a steady rise in the past two decades [1]. In
Western countries, approximately 90% of adults con-
sume caffeine on a regular basis, with dietary caffeine
consumption of U.S. adult men and women estimated at
approximately 200 mg/day in a 2009–2010 survey [2–4].
In young adults and exercising individuals, there has also
been a rise in the consumption of other caffeine-
containing products, including energy drinks [1, 3], ‘pre-
workout supplements’, chewing gum, energy gels and
chews, aerosols, and many other novel caffeinated food
products [5]. Caffeine-containing products have a range
of doses per serving, from 1mg in milk chocolate up to
> 300 mg in some dietary supplements [6].
Caffeine and its effects on health have been a long-

standing topic of interest, and caffeine continues to be a
dietary compound of concern in public health, as indi-
cated by extensive investigations [7–10]. At the same
time, caffeine has become ubiquitous in the sporting
world, where there is keen interest in better understand-
ing the impact of caffeine on various types of exercise
performance. Accordingly, caffeine has dominated the
ergogenic aids and sport supplement research domain
over the past several decades [11–13].

Caffeine in sport: a brief history
In the early days (1900s) of modern sport, concoctions
of plant-based stimulants, including caffeine and other
compounds such as cocaine, strychnine, ether, heroin
and nitroglycerin, were developed secretly by trainers,
athletes and coaches, in what appears to be evidence for
early day ergogenic aids designed to provide a competi-
tive advantage [14]. The use of various pharmaceutical
cocktails by endurance athletes continued until heroin
and cocaine became restricted to prescriptions in the

1920s, and further when the International Olympic
Committee (IOC) introduced anti-doping programs in
the late 1960s [15].
Some of the earliest published studies on caffeine

came from two psychologists and colleagues William
Rivers and Harald Webber, at Cambridge University,
who both had an interest in disentangling the psycho-
logical and physiological effects of substances like caf-
feine and alcohol. Rivers and Webber, using themselves
as subjects, investigated the effects of caffeine on muscle
fatigue. The remarkable well-designed studies carried
out from 1906 to 1907 used double-blinded placebo-
controlled trials and standardization for diet (i.e. caf-
feine, alcohol), and were described in a 1907 paper in
the Journal of Physiology [16]. Significant research on
the effects of caffeine on exercise performance with
more subjects, different sports, and exploring variables
such as the effects between trained and untrained indi-
viduals, began and continued through the 1940s [14, 17].
However, it was the series of studies investigating the
benefits of caffeine in endurance sports in the Human
Performance Laboratory at Ball State University in the
late 1970s, led by David Costill [18, 19] and others [20],
that sparked a generation of research on the effects of
caffeine in exercise metabolism and sports performance.

Caffeine sources
Along with naturally occurring sources, such as coffee,
tea and cocoa, caffeine is also added to many foods, bev-
erages and novelty products, such as jerky, peanut but-
ter, and candy, in both synthetic (e.g. powder) and
natural (e.g. guarana, kola nut) forms. Synthetic caffeine
is also an ingredient in several over-the-counter and pre-
scription medications, as it is often used in combination
with analgesic and diuretic drugs to amplify their
pharmacological potency [21].
Approximately 96% of caffeine consumption from bev-

erages comes from coffee, soft drinks and tea [22]. Add-
itionally, there are varying levels of caffeine in the beans,
leaves and fruit of more than 60 plants, resulting in great
interest in herbal and other plant-based supplements
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[23–26]. Caffeine-containing energy drink consumption
[27–31] and co-ingestion of caffeine with (e.g. “pre-
workouts”), or in addition to, other supplements (e.g. caf-
feine + creatine) is also popular among exercising individ-
uals [32–39]. To date, the preponderance of caffeine and
exercise performance literature has utilized anhydrous caf-
feine (in a capsule) [40–46] for simpler dose
standardization and placebo creation. There is also a
growing body of literature studying the effects of using al-
ternate delivery methods of caffeine during exercise [5]
such as coffee [18, 47–56], energy drinks, herbal formulas
[57] and ‘pre-workout’ formulas, among others. A review
of alternate caffeine forms may be found in the Alternative
caffeine sources section and Tables 4, 5, 6, 7 and 8.

Caffeine legality in sport
Anti-doping rules apply to most sports, especially in
those where athletes are competing at national and
international levels. The IOC continues to recognize that
caffeine is frequently used by athletes because of its re-
ported performance-enhancing or ergogenic effects
[109]. Caffeine was added to the list of banned sub-
stances by the IOC in 1984 and the World Anti-Doping
Agency (WADA) in 2000. A doping offense was defined
as having urinary caffeine concentrations exceeding a
cut-off of 15 μg/ml. In 1985, the threshold was reduced
to 12 μg/ml [110]. The cut-off value was chosen to ex-
clude typical amounts ingested as part of common diet-
ary or social coffee drinking patterns, and to
differentiate it from what was considered to be an aber-
rant use of caffeine for the purpose of sports perform-
ance enhancement [111].
The IOC and WADA removed the classification of

caffeine as a “controlled” substance in 2004, leading to a
renewed interest in the use of caffeine by athletes. How-
ever, caffeine is still monitored by WADA, and athletes
are encouraged to maintain a urine caffeine concentra-
tion below the limit of 12 μg/ml urine which corre-
sponds to 10 mg/kg body mass orally ingested over
several hours, and which is more than triple the intake
reported to enhance performance [112, 113]. Interest-
ingly, caffeine is also categorized as a banned substance
by the National Collegiate Athletic Association (NCAA),
if urinary caffeine concentration exceeds 15 μg/ml,
which is greater than the “monitored substance” level set
for WADA [114], and also well above amounts that are
deemed ergogenic.
A comparison of caffeine concentrations obtained dur-

ing in-competition doping control from athletes in sev-
eral sports federations pre− 2004 versus post-2004,
indicated that average caffeine concentrations decreased
in 2004 after removal from the prohibited substance list
[110]. Reports on over 20,000 urine samples collected
and analyzed after official national and international

competitions between 2004 and 2008, and again in 2015
using 7500 urine samples found overall prevalence of
caffeine use across various sports to be about 74% in the
2004 to 2008 time period and roughly 76% in 2015. The
highest use of caffeine was among endurance athletes in
both studies [115, 116]. Urinary caffeine concentration
significantly increased from 2004 to 2015 in athletics,
aquatics, rowing, boxing, judo, football, and weightlift-
ing; however, the sports with the highest urine caffeine
concentration in 2015 were cycling, athletics, and rowing
[116].

Caffeine pharmacokinetics
Caffeine or 1,3,7-trimethylxanthine, is an odorless white
powder that is soluble in both water and lipids and has a
bitter taste. It is rapidly absorbed from the gastrointes-
tinal tract, mainly from the small intestine but also in
the stomach [117]. In saliva, caffeine concentration
reaches 65–85% of plasma levels, and is often used to
non-invasively monitor compliance for ingestion or ab-
stinence of caffeine [118]. Caffeine is effectively distrib-
uted throughout the body by virtue of being sufficiently
hydrophobic to allow easy passage through most, if not
all biological membranes, including the blood-brain bar-
rier [119]. When caffeine is consumed it appears in the
blood within minutes, with peak caffeine plasma concen-
trations after oral administration reported to occur at
times (Tmax) ranging from 30 to 120 min [43, 120–122].
The absolute bioavailability of caffeine is very high and
reaches near 100% as seen in studies reporting areas
under the plasma concentration-time curves (AUC)
[120]. Once caffeine is absorbed, there appears to be no
hepatic first-pass effect (i.e., the liver does not appear to
remove caffeine as it passes from the gut to the general
circulation), as evidenced by similar plasma concentra-
tion curves when administered by either oral or intra-
venous routes [123]. Caffeine absorption from food and
beverages does not seem to be dependent on age, gen-
der, genetics or disease, or the consumption of drugs, al-
cohol or nicotine. However, the rates of caffeine
metabolism and breakdown appear to differ between in-
dividuals through both environmental and genetic influ-
ences [3, 124, 125].
Over 95% of caffeine is metabolized in the liver by the

Cytochrome P450 1A2 (CYP1A2) enzyme, a member of
the cytochrome P450 mixed-function oxidase system,
which metabolizes and detoxifies xenobiotics in the body
[126]. CYP1A2 catalyzes the demethylation of caffeine
into the primary metabolites paraxanthine (1,7-dimethyl-
xanthine), theobromine (3,7-dimethylxanthine) and
theophylline (1,3-dimethylxanthine), which account for
approximately 84, 12, and 4%, of total caffeine elimin-
ation, respectively [127, 128]. These three caffeine me-
tabolites undergo further demethylations and oxidation
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to urates in the liver with about 3–5% remaining in caf-
feine form when excreted in the urine [129, 130]. While
the average half-life (t1/2) of caffeine is generally reported
to be between 4 and 6 h, it varies between individuals
and even may range from 1.5 to 10 h in adults [120].
The wide range of variability in caffeine metabolism is
due to several factors. The rate of caffeine metabolism
may be inhibited or decreased with pregnancy or use of
hormonal contraceptives [125], increased or induced by
heavy caffeine use [131] cigarette smoking [132] or
modified in either direction by certain dietary factors
[133] and/or variation in the CYP1A2 gene, which will
be discussed later [125, 132–134].
Several studies have also shown that the form of caf-

feine or its vehicle for entry into the body can modify
the pharmacokinetics [58, 81, 119, 122]. One small trial
(n = 3) evaluated Tmax for a variety of beverages that all
included 160 mg of caffeine but in different volumes of
solution, and reported that Tmax occurs at 0.5, 0.5, and
2 h for coffee, tea and cola, respectively [135]. In another
study involving seven participants, caffeine plasma con-
centrations peaked rapidly at 30 min for capsule form,
whereas caffeine absorption from cola and chocolate was
delayed and produced lower plasma concentrations that
peaked at roughly 90–120 min after consumption. This
study also did not control for volume of administered
solution (capsules and chocolate ingested with 360ml
water and 800 ml cola) [122]. Liguori et al. [136] evalu-
ated a 400 mg dose of caffeine in 13 subjects and re-
ported salivary caffeine Tmax values of 42, 39 and 67
min, for coffee, sugar-free cola and caffeine capsules, re-
spectively. However, fluid volume was again not stan-
dardized (coffee – 12 oz., sugar-free cola – 24 oz.,
capsules – volume of administered fluid not reported).
The impact of temperature or rate of ingestion of caf-
feine has also been investigated, amidst concerns that
cold energy drinks might pose a danger when chugged
quickly, compared to sipping hot coffee. One study [121]
compared five conditions that included: slow ingestion
(20 min) of hot coffee, and fast (2-min) or slow (20-min)
ingestion for both cold coffee and energy drinks. Similar
to other caffeine pharmacokinetic studies [122, 135],
White et al. [121] reported that although the rate of con-
sumption, temperature, and source (coffee vs. energy
drink) may be associated with slight differences in phar-
macokinetic activity, these differences are small.
Chewing gum formulations appear to alter pharmaco-

kinetics, as much of the caffeine released from the gum
through mastication can be absorbed via the buccal cav-
ity, which is considered faster due to its extensive
vascularization, especially for low molecular weight
hydrophobic agents [137]. Kamimori et al. [58] com-
pared the rate of absorption and relative caffeine bio-
availability from chewing gum compared to a capsule

form of caffeine. Although caffeine administered in the
chewing gum formulation was absorbed at a significantly
faster rate, the overall bioavailability was comparable to
the capsuled 100 and 200 mg caffeine dose groups.
These pharmacokinetic findings are useful for military
and sport purposes, where there is a requirement for
rapid and maintained stimulation over specific periods
of time. Chewing gum may also be advantageous due to
reduced digestive requirements, where absorption of caf-
feine in other forms (capsule, coffee etc.) may be hin-
dered by diminished splanchnic blood flow during
moderate to intense exercise. Finally, there is a growing
prevalence of caffeinated nasal and mouth aerosols ad-
ministered directly in the mouth, under the tongue or
inspired may affect the brain more quickly through sev-
eral proposed mechanisms [5], although there are only a
few studies to date to support this claim. The adminis-
tration of caffeine via aerosol into the oral cavity appears
to produce a caffeine pharmacokinetic profile compar-
able to the administration of a caffeinated beverage [81].
Nasal and mouth aerosols will be discussed further in
another section.

Mechanism of Action (MOA)
Although the action of caffeine on the central nervous
system (CNS) has been widely accepted as the primary
mechanism by which caffeine alters performance, several
mechanisms have been proposed to explain the ergo-
genic effects of caffeine, including increased myofibrillar
calcium availability [138, 139], optimized exercise me-
tabolism and substrate availability [45], as well as stimu-
lation of the CNS [140–142]. One of the earlier
proposed mechanisms associated with the ergogenic ef-
fects of caffeine stemmed from the observed adrenaline
(epinephrine)-induced enhanced free-fatty acid (FFA)
oxidation after caffeine ingestion and consequent glyco-
gen sparing, resulting in improved endurance perform-
ance [18, 45, 143]. However, this substrate-availability
hypothesis was challenged and eventually dismissed,
where after several performance studies it became clear
that the increased levels of FFAs appeared to be higher
earlier in exercise when increased demand for fuel via
fat oxidation would be expected [141, 144, 145]. Further-
more, this mechanism could not explain the ergogenic
effects of caffeine in short duration, high-intensity exer-
cise in which glycogen levels are not a limiting factor.
Importantly, several studies employing a variety of exer-
cise modalities and intensities failed to show a decrease
in respiratory exchange ratio (RER) and/or changes in
serum FFAs, which would be indicative of enhanced fat
metabolism during exercise when only water was
ingested [144, 146–148]. Ingestion of lower doses of caf-
feine (1–3 mg/kg of body mass), which do not result in
significant physiological responses (i.e. RER, changes in
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blood lactate, glucose), also appear to deliver measurable
ergogenic effects, offering strong support for the CNS as
the origin of reported improvements [43, 149, 150]. As
such, focus has shifted to the action of caffeine during
exercise within the central and peripheral nervous sys-
tems, which could alter the rate of perceived exertion
(RPE) [151–154], muscle pain [151, 155–157], and pos-
sibly the ability of skeletal muscle to generate force
[151].
Caffeine does appear to have some direct effects on

muscle which may contribute to its ergogenicity. The
most likely pathway that caffeine may benefit muscle
contraction is through calcium ion (Ca2+) mobilization,
which facilitates force production by each motor unit
[138, 139, 150, 158]. Fatigue caused by the gradual re-
duction of Ca2+ release may be attenuated after caffeine
ingestion [139, 159]. Similarly, caffeine may work, in
part, in the periphery through increased sodium/potas-
sium (Na+/K+) pump activity to potentially enhance
excitation-contraction coupling necessary for muscle
contraction [160]. Caffeine appears to employ its effects
at various locations in the body, but the most robust evi-
dence suggests that the main target is the CNS, which is
now widely accepted as the primary mechanism by
which caffeine alters mental and physical performance
[141]. Caffeine is believed to exert its effects on the CNS
via the antagonism of adenosine receptors, leading to in-
creases in neurotransmitter release, motor unit firing
rates, and pain suppression [151, 155–157, 161]. There
are four distinct adenosine receptors, A1, A2A, A2B and
A3, that have been cloned and characterized in several
species [162]. Of these subtypes, A1 and A2A, which are
highly concentrated in the brain, appear to be the main
targets of caffeine [163]. Adenosine is involved in nu-
merous processes and pathways, and plays a crucial role
as a homeostatic regulator and neuromodulator in the
nervous system [164]. The major known effects of ad-
enosine are to decrease the concentration of many CNS
neurotransmitters, including serotonin, dopamine,
acetylcholine, norepinephrine and glutamate [163–165].
Caffeine, which has a similar molecular structure to ad-
enosine, binds to adenosine receptors after ingestion and
therefore increases the concentration of these neuro-
transmitters [163, 165]. This results in positive effects on
mood, vigilance, focus, and alertness in most, but not all,
individuals [166, 167].
Researchers have also characterized aspects of adeno-

sine A2A receptor function related to cognitive processes
[168] and motivation [169, 170]. In particular, several
studies have focused on the functional significance of
adenosine A2A receptors and the interactions between
adenosine and dopamine receptors, in relation to aspects
of behavioral activation and effort-related processes
[168–171]. The serotonin receptor 2A (5-HT2A) has

also been shown to modulate dopamine release, through
mechanisms involving regulation of either dopamine
synthesis or dopaminergic neuron firing rate [172, 173].
Alterations in 5-HTR2A receptors may therefore affect
dopamine release and upregulation of dopamine recep-
tors [174, 175]. A possible mechanism for caffeine’s
ergogenicity may involve variability in 5-HTR2A recep-
tor activity, which may modulate dopamine release and
consequently impact alertness, pain and motivation and
effort [141]. 5-HTR2A receptors are encoded by the
HTR2A gene, which serves as a primary target for sero-
tonin signaling [176], and variations in the gene have
been shown to affect 5-HTR2A receptor activity [177,
178]. This may therefore modulate dopamine activity,
which may help to elucidate some of the relationships
among neurotransmitters, genetic variation and caffeine
response, and the subsequent impact on exercise
performance.
Muscle pain has been shown to negatively affect motor

unit recruitment and skeletal muscle force generation
proportional to the subjective scores for pain intensity
[179, 180]. In one study, progressively increased muscle
pain intensity caused a gradual decrease in motor firing
rates [179]. However, this decrease was not associated
with a change in motor unit membrane properties dem-
onstrating a central inhibitory motor control mechanism
with effects correlated to nociceptive activity [179].
Other studies also indicate that muscle force inhibition
by muscle pain is centrally mediated [181]. Accordingly,
caffeine-mediated CNS mechanisms, such as dopamine
release [182], are likely imputable for pain mitigation
during high-intensity exercise [155–157, 181, 183–186].
Although there appears to be strong evidence supporting
the analgesic effects of caffeine during intense exercise,
others have found no effect [185, 187].
The attenuation of pain during exercise as a result of

caffeine supplementation may also result in a decrease
in the RPE during exercise. Two studies [183, 184] have
reported that improvements in performance were ac-
companied by a decrease in pain perception as well as a
decrease in RPE under caffeine conditions, but it is un-
clear which factor may have contributed to the ergo-
genic effect. Acute caffeine ingestion has been shown to
alter RPE, where effort may be greater under caffeine
conditions, yet it is not perceived as such [12, 152–154].
A meta-analysis [12] identified 21 studies using mostly
healthy male subjects (74%) between the ages of 20 and
35 years and showed a 5.6% reduction in RPE during ex-
ercise following caffeine ingestion. An average improve-
ment in performance of 11% was reported across all
exercise modalities. This meta-analysis established that
reductions in RPE explain up to 29% of the variance in
the improvement in exercise performance [12]. Others
have not found changes in RPE with caffeine use [187].
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A more recent study by Green et al. [188] also showed
that when subjects were instructed to cycle at specific
RPE (effort) levels under caffeine conditions, the higher
perceived intensity did not necessarily result in greater
work and improved performance in all subjects equally.
The authors noted that individual responses to caffeine
might explain their unexpected findings.
In the last decade, our understanding of CNS fatigue

has improved. Historically, it is well- documented that
“psychological factors” can affect exercise performance
and that dysfunction at any step in the continuum from
the brain to the peripheral contractile machinery will re-
sult in muscular fatigue [189, 190]. The role of the CNS
and its ‘motor drive’ effect was nicely shown by Davis
et al. [191] who examined the effect of caffeine injected
directly into the brains of rats on their ability to run to
exhaustion on a treadmill. In this controlled study, rats
were injected with either vehicle (placebo), caffeine, 5′-
N-Ethylcarboxamido adenosine (NECA), an adenosine
receptor agonist, or caffeine NECA together. Rats ran
80min in the placebo trial, 120 min in the caffeine trial
and only 25 min with NECA. When caffeine and NECA
were given together, the effects appeared to cancel each
other out, and run time was similar to placebo. When
the study was repeated with peripheral intraperitoneal
(body cavity) injections instead of brain injections, there
was no effect on run performance. The authors con-
cluded that caffeine increased running time by delaying
fatigue through CNS effects, in part by blocking adeno-
sine receptors [191]. Caffeine also appears to enhance
cognitive performance more in fatigued than well-rested
subjects [192–194]. This phenomenon is also apparent
in exercise performance [195] both in the field [196] and
in the lab [60, 63, 149].

The placebo effect
The placebo effect is a beneficial outcome that cannot
be attributed to a treatment or intervention but is
brought about by the belief that one has received a posi-
tive intervention. For example, an individual may ingest
a capsule with sugar or flour (a small amount of non-
active ingredient) but believes that he/she ingested caf-
feine and experiences improvements in performance be-
cause of this belief [197]. The nocebo effect is directly
opposite to this in that a negative outcome occurs fol-
lowing the administration of an intervention or lack of
an intervention (e.g. knowingly ingesting a placebo)
[198]. For example, the nocebo may be a substance with-
out medical effects, but which worsens the health status
of the person taking it by the negative beliefs and expec-
tations of the patient. Similarly, the nocebo may be a
‘caffeine placebo’, where an individual’s performance is
worse based on the belief that they did not ingest
caffeine.

Several studies have provided evidence for placebo ef-
fects associated with caffeine ingestion [199–201] or
other “beneficial” interventions [202] during exercise. An
example of this was reported in a study [200] where
well-trained cyclists exhibited a linear dose–response re-
lationship in experimental trials from baseline to a mod-
erate (4.5 mg/kg) and high dose (9 mg/kg) of caffeine
respectively. Athletes improved as the perceived caffeine
doses increased; however, a placebo was used in all in-
terventions. Similarly, Saunders et al. [201] found that
correct identification of caffeine appears to improve cyc-
ling performance to a greater extent than the overall ef-
fect of caffeine, where participants who correctly
identified placebo showed possible harmful effects on
performance. Therefore, readers are encouraged to con-
sider whether studies that have explored the effects of
caffeine on exercise have examined and reported the ef-
ficacy of the blinding of the participants.

Caffeine and endurance exercise
Less than a 1% change in average speed is enough to
affect medal rankings in intense Olympic endurance
events lasting ~ 45 s to 8 min [203]. In other events, such
as the men’s individual road race, the difference between
the top three medalists was < 0.01% [204]. At the highest
level of sports, competitors will be near their genetic po-
tential, will have trained intensively, followed prudent re-
covery protocols, and will have exploited all strategies to
improve their performance—the use of an ergogenic aid,
when legal, safe and effective, is an alluring opportunity.
Caffeine has consistently been shown to improve en-

durance by 2–4% across dozens of studies using doses of
3–6 mg/kg body mass [13, 195, 205–207]. Accordingly,
caffeine is one of the most prominent ergogenic aids and
is used by athletes and active individuals in a wide var-
iety of sports and activities involving aerobic endurance.
Caffeine has been shown to benefit several endurance-
type sports including cycling [60, 206, 208], running [91,
209, 210] cross-country skiing [211] and swimming
[212].
Much of the caffeine-exercise body of literature has fo-

cused on endurance-type exercise, as this is the area in
which caffeine supplementation appears to be more
commonly used and likely beneficial in most, but not all,
athletes [11–13]. For example, the caffeine concentration
in over twenty thousand urine samples obtained for dop-
ing control from 2004 to 2008 was measured after offi-
cial national and international competitions [110, 115].
The investigations concluded that roughly 74% of elite
athletes used caffeine as an ergogenic aid prior to or
during a sporting event, where endurance sports are the
disciplines showing the highest urine caffeine excretion
(and therefore prevalence) after competition [110, 115].
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A recent meta-analysis reporting on 56 endurance time
trials in athletes (79% cycling), found the percent differ-
ence between the caffeine and placebo group ranged from
− 3.0 to 15.9% [195]. This wide range in performance out-
comes highlights the substantial inter-individual variability
in the magnitude of caffeine’s effects as reported. These
inter-individual differences might be due to the methodo-
logical differences between the studies, habitual caffeine
intake of the participants, and/or partly due to variation in
genes that are associated with caffeine metabolism and
caffeine response [213].
A recent systematic review was carried out on rando-

mised placebo-controlled studies investigating the effects
of caffeine on endurance performance and a meta-
analysis was conducted to determine the ergogenic effect
of caffeine on endurance time-trial performance [205].
Forty-six studies met the inclusion criteria and were in-
cluded in the meta-analysis. This meta-analysis found
that caffeine has a small but significant effect on endur-
ance performance when taken in moderate doses (3–6
mg/kg) as well as an overall improvement following caf-
feine compared to placebo in mean power output of
2.9 ± 2.2% and a small effect size of 0.22 ± 0.15. Time-
trial completion time showed improvements of 2.3 ±
2.6% with a small effect size of 0.28 ± 0.12. However,
there was some variability in outcomes with responses
to caffeine ingestion, with two studies reporting slower
time-trial performance, and five studies reporting lower
mean power output during the time–trial [205].
In summary, caffeine has been consistently shown to

be effective as an ergogenic aid when taken in moderate
doses (3–6 mg/kg), during endurance-type exercise and
sport. Dozens of endurance studies are highlighted
through this review is various sections, showing consist-
ent yet wide-ranging magnitudes of benefit for endur-
ance performance under caffeine conditions.

Caffeine and muscular endurance, strength and
power
Strength and power development through resistance ex-
ercise is a significant component of conditioning pro-
grams for both fitness and competitive sport. The most
frequently consumed dose of caffeine in studies using
strength tasks with trained or untrained individuals usu-
ally ranges from 3 to 6 mg/kg body mass (with 2 mg to
11mg representing the entire range), ingested in the
form of pills or capsules 30 to 90min before exercise. In
resistance exercise, strength is most commonly assessed
using 1 repetition maximum (1RM) [214], or different
isometric and isokinetic strength tests [215]. Muscular
endurance assesses the muscle’s ability to resist fatigue
and is an important quality in many athletic endeavors
(e.g., swimming, rowing). Muscular endurance may be
tested with repetitions of squats, maximal push-ups,

bench press exercises (load corresponding to 60–70% of
1RM) to momentary muscular failure, or by isometric
exercises such as the plank or static squat [216, 217].
Although several studies exploring the effects of caf-

feine on strength performance have been published since
the 2010 ISSN caffeine position stand [40], some uncer-
tainty surrounding the benefits of caffeine in activities
involving muscular endurance, strength and power
remains.
Caffeine was shown to be ergogenic for muscular en-

durance in two meta-analyses reporting effect sizes ran-
ging from 0.28 to 0.38 (percent change range: 6 to 7%)
[158, 218]. However, others have shown that it enhances
strength but not muscular endurance [219, 220], and
when studies have examined multiple strength-muscular
endurance tasks, there were benefits across the board
[67, 221], none at all [98, 222], or even impairments in
muscular endurance with caffeine use [222, 223]. Ingest-
ing caffeine prior to a muscular endurance task is likely
to delay muscular fatigue, but these effects are not con-
sistent among all studies.
Three meta-analyses explored the acute effects of caf-

feine on strength, and all reported ergogenic effects
[158, 224, 225]. However, the effects in these meta-
analyses were small, ranging from 0.16 to 0.20 (percent
change: 2 to 7%). Such small improvements in muscular
strength likely have the greatest practical meaningfulness
for athletes competing in strength-based sports, such as
powerlifting and weightlifting (athletes which already
seem to be among the highest users of caffeine [110]).
Power output is often measured during a single-bout

sprinting task using the Wingate test, which generally
consists of ‘all-out’ cycling for 30 s performed at specific
external loads (e.g., 7.5% of body mass). Power output is
also assessed during different protocols of intermittent-
sprinting and repeated-sprints often with the Wingate
cycling test as well as assessments during running [226]
or swimming repeated sprints [212].
The data for repeated sprint and power performance

using Wingate data has been mixed. In an older study,
10 male team-sport athletes performed 18, 4-s sprints
with 2-min active recovery [227]. Here, caffeine inges-
tion (6 mg/kg) enhanced mean power output and sprint
work by 7 and 8.5%, respectively [227]. A more recent
study examining the effects of acute caffeine ingestion
on upper and lower body Wingate performance in 22
males did not report significant findings when measur-
ing lower body mean and peak power using the Wingate
test [228]. An older study by Greer et al. [229] also failed
to report caffeine benefits on power output during a 30-
s high-intensity cycling bout using the Wingate test.
One meta-analysis reported that caffeine ingestion en-
hances mean and peak power during the Wingate test
[230], although the effect sizes of 0.18 (+ 3%) and 0.27
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(+ 4%), respectively are modest. In contrast, another
meta-analysis that examined the effects of caffeine on
muscle power as assessed with the Wingate test for three
of the studies, and repeated sprints for a maximum of
10-s for the fourth, did not report benefits from inges-
tion of caffeine [231]. An average caffeine dose of 6.5
mg/kg of body mass was used across the four studies
with no improvements in muscle power under caffeine
conditions (effect size = 0.17, p = 0.36) compared to pla-
cebo trials, although the data collected spanned only 5
years [231]. A study by Lee et al. [232] reported that caf-
feine ingestion enhanced sprint performance involving a
90-s rest interval (i.e., intermittent-sprinting) but did not
benefit repeated-sprints with a 20-s rest interval. This
might suggest that the rest interval between sprints may
modulate the ergogenic effects of caffeine. Indeed, a re-
cent meta-analysis that focused on the effects of caffeine
on repeated-sprint performance reported that total work,
best sprint, and last sprint performance was not affected
by caffeine ingestion [226].
Several studies have also shown substantial variability

in outcomes. For example, one study [63] found that
only 13 of 20 cyclists improved their performance with
~ 3–4 mg/kg of caffeine, while the remaining partici-
pants either worsened or did not alter their performance.
Similarly, Woolf et al. [233] found that 5 mg/kg of caf-
feine improved overall peak power performance on the
Wingate Test in 18 elite or professional athletes. How-
ever, 4 (28%) of the participants did not improve their
performance with caffeine. Average power, minimum
power, and power drop were not significantly different
between treatments, but 72% of the participants ob-
tained a greater peak power during the caffeine trial than
during the placebo trial. There was also no overall im-
provement in average power or fatigue index, despite 13
(72%), and 9 (50%) of the participants, respectively, im-
proving their performance. In summary, caffeine inges-
tion may be beneficial to enhance single and
intermittent-sprint performance, while caffeine’s effects
on repeated-sprint performance are inconsistent and re-
quire further research to draw stronger conclusions on
the topic.
Ballistic movements (such as throws and jumps) are

characterized by high motor unit firing rates, brief con-
traction times, and high rates of force development
[234]. Many studies have explored the effects of caffeine
on jumping performance [225, 235]. The body of evi-
dence has indicated that caffeine supplementation in-
creases vertical jump height during single and repeated
jumps; however, the magnitude of these effects is rather
modest, with effect sizes ranging from 0.17 to 0.22 (2 to
4%) [225, 235]. Besides jumping, several studies have ex-
plored the effects of caffeine on throwing performance.
These studies reported that: (a) caffeine ingestion

enhanced maximal shot put throwing distance in a
group of 9 nine inter-collegiate track and field athletes
[65]; and (b) caffeine ingestion at a dose of 6 mg/kg of
body mass administered 60min pre-exercise increased
maximal medicine ball throwing distance [236]. Overall,
the current body of evidence indicates that caffeine sup-
plementation may be useful for acute improvements in
ballistic exercise performance in the form of jumps and
throws. However, more research is needed to explore
the effects of caffeine on different throwing exercise
tests, as this has been investigated only in a few studies.
Generally, the primary sports-related goal of strength

and power-oriented resistance training programs is to
move the force-velocity curve to the right, indicating an
ability of the athlete to lift greater loads at higher veloci-
ties [237]. Several studies have explored the effects of
caffeine on movement velocity and power in resistance
exercise using measurement tools such as linear position
transducers [238]. These studies generally report that
caffeine ingestion provides ergogenic effects of moderate
to large magnitudes, with similar effects noted for both
mean and peak velocity, and in upper and lower-body
exercises [67, 221, 239]. Even though this area merits
further research to fill gaps in the literature, the initial
evidence supports caffeine as an effective ergogenic aid
for enhancing velocity and power in resistance exercise.

Caffeine and sport-specific performance
Even though caffeine ingestion may enhance perform-
ance in the laboratory, there has been a paucity of evi-
dence to support that these improvements transfer
directly to sport-specific performance. To address this
issue, several studies have also explored the effects of
caffeine on sport-specific exercise tasks using sport
simulation matches. Many studies conducted among
athletes competing in team and individual sports, report
that caffeine may enhance performance in a variety of
sport tasks. However, there are also several studies that
report no effects as outlined below:

� Basketball – increased jump height, but only in
those with the AA version of the CYP1A2 gene
[240], increased number of free throws attempted
and free throws made, increased number of total
and offensive rebounds [241], but did not improve
sprint time [240], nor dribbling speed [242]

� Soccer – increased total distance covered during the
game, increased passing accuracy, and jumping
height [94, 243, 244], but the consumption of a
caffeinated energy drink did not enhance
performance in the “T test” in female soccer players
[245], nor during match play in young football
players [246]
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� Volleyball – increased number of successful
volleyball actions and decreased the number of
imprecise actions [247, 248], although caffeine did
not improve physical performance in multiple sport-
specific tests in professional females [249], nor per-
formance in volleyball competition [250]

� Football - did not improve performance for
anaerobic exercise tests used at the NFL Combine
[251]

� Rugby – increased the number of body impacts,
running pace, and muscle power during jumping
[252, 253], but did not impact agility [254]

� Field hockey – increased high-intensity running and
sprinting [255], and may offset decrements in skilled
performance associated with fatigue [256]

� Ice-hockey - has limited impact on sport-specific
skill performance and RPE, but may enhance physic-
ality during scrimmage [257]

� Combat sports – increased number of offensive
actions and increased the number of throws [258]

� Cross-country skiing – reduced time to complete a
set distance [259] and improved time to task failure
[211]

In summary, although reviews of the literature show
that caffeine ingestion is, on average, ergogenic for a
wide range of sport-specific tasks, its use might not be
appropriate for every athlete. Specifically, the use of caf-
feine needs to be balanced with the associated side-
effects and therefore experimentation is required in
order to determine the individual response before asses-
sing whether the benefits outweigh the costs for the ath-
lete. Athletes should gauge their physical response to
caffeine during sport practice and competition in
addition to monitoring mood state and potentially dis-
rupted sleep patterns.

Interindividual variation in response to caffeine
There is a lack of research examining potential interindi-
vidual differences in strength or anaerobic power-type
exercise, but this is not the case for endurance exercise.
In the myriad of studies examining caffeine on endur-
ance performance, the benefits of caffeine do not appear
to be influenced by sex, age, VO2 max, type of sport, or
the (equivalent) dose of caffeine [13, 195, 260]. Never-
theless, there appears to be substantial interindividual
variability in response to caffeine under exercise condi-
tions, which may be attributed to several factors outlined
below.

Genetics
Genetic variants affect the way we absorb, metabolize, and
utilize and excrete nutrients, and gene-diet interactions
that affect metabolic pathways relevant to health and

performance are now widely recognized [261]. In the field
of nutrigenomics, caffeine is the most widely researched
compound with several randomized controlled trials in-
vestigating the modifying effects of genetic variation on
exercise performance [75, 208, 262, 263].
Numerous studies have investigated the effect of sup-

plemental caffeine on exercise performance, but there is
considerable inter-individual variability in the magnitude
of these effects [11, 13, 44] or in the lack of an effect
[264, 265], when compared to placebo. Due to infre-
quent reporting of individual data it is difficult to deter-
mine the extent to which variation in responses may be
occurring. The performance of some individuals is often
in stark contrast to the average findings reported, which
may conclude beneficial, detrimental, or no effect of caf-
feine on performance. For example, Roelands et al. [265]
reported no ergogenic effect of caffeine in a study in-
volving trained male cyclists. The authors concluded
that inter-individual differences in response to caffeine
might be responsible for the lack of overall performance
improvement, as 50% of subjects improved while 50%
worsened, in the caffeine compared to the placebo trial.
These inter-individual differences appear to be partly

due to variations in genes such as CYP1A2 and possibly
ADORA2A, which are associated with caffeine metabol-
ism, sensitivity and response [213]. Over 95% of caffeine
is metabolized by the CYP1A2 enzyme, which is
encoded by the CYP1A2 gene and is involved in the de-
methylation of caffeine into the primary metabolites
paraxanthine, theophylline and theobromine [127]. The
-163A > C (rs762551) single nucleotide polymorphism
(SNP) has been shown to alter CYP1A2 enzyme induc-
ibility and activity [132, 134], and has been used to
categorize individuals as ‘fast’ or ‘slow’ metabolizers of
caffeine. In the general population, individuals with the
AC or CC genotype (slow metabolizers) have an elevated
risk of myocardial infarction [266], hypertension and ele-
vated blood pressure [267, 268], and pre-diabetes [269],
with increasing caffeinated coffee consumption, whereas
those with the AA genotype show no such risk. Add-
itionally, regular physical activity appears to attenuate
the increase in blood pressure induced by caffeine inges-
tion, but only in individuals with the AA genotype [268].
The largest caffeine, genetics and exercise study to

date [208] examined the effects of caffeine and CYP1A2
genotype on 10-km cycling time trial performance in
competitive male athletes (both endurance and power
sports) after ingestion of placebo, and caffeine doses of
2 mg (low dose) or 4 mg (moderate dose) per kg body
mass. There was a 3% improvement in cycling time with
the moderate dose in all subjects, which is consistent
with previous studies using similar doses [13, 206]. How-
ever, there was a significant caffeine-gene interaction;
improvements in performance were seen at both caffeine
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doses, but only in those with the AA genotype who are
‘fast metabolizers’ of caffeine. In that group, a 6.8% im-
provement in cycling time was observed at 4 mg/kg,
which is greater than the 2–4% mean improvement seen
in several other studies using cycling time trials and
similar doses [13, 201, 206, 207, 270–272]. Among those
with the CC genotype (i.e., “slow metabolizers”), 4 mg/kg
caffeine impaired performance by 13.7%, whereas no dif-
ference was observed between the placebo and 2mg/kg
caffeine trials. In those with the AC genotype there was
no effect of either dose [208]. The findings are consist-
ent with a previous study [263] that observed a caffeine-
gene interaction indicating improved time trial cycling
performance following caffeine consumption only in
those with the AA genotype.
In contrast, previous studies either did not observe any

impact of the CYP1A2 gene in caffeine-exercise studies
[273, 274], or reported benefits only in slow metabolizers
[75]. There are several reasons that may explain discrep-
ancies in study outcomes. These include smaller samples
sizes with few and/or no subjects in one genotype [75,
273, 274], as well as shorter distances or different types
of performance test (power versus endurance) [75] com-
pared to the aforementioned trials, which reported im-
proved endurance after caffeine ingestion in those with
the CYP1A2 AA genotype [208, 263]. The effects of
genotype on performance might be the most prominent
during training or competition of longer duration or an
accumulation of fatigue (aerobic or muscular endurance)
[149], where caffeine appears to provide its greatest ben-
efits, and where the adverse effects to slow metabolizers
are more likely to manifest [195, 260]. Indeed, in a study
of performance in elite basketball players [240], only in
those with the AA genotype caffeine improved repeated
jumps which requires maintaining velocity at take-off re-
peatedly as an athlete fatigues throughout a game (mus-
cular endurance) - even though there was no caffeine-
genotype interaction effect for this outcome. However,
caffeine similarly improved performance in those with
the both AA and C-genotypes during a simulated bas-
ketball game [240]. In a cross-over design of 30
resistance-trained men, caffeine ingestion resulted in a
higher number of repetitions in repeated sets of three
different exercises, and for total repetitions in all resist-
ance exercises combined, which resulted in a greater vol-
ume of work compared to placebo conditions, but only
in those with the CYP1A2 AA genotype [262]. Although
more research is warranted, there is a growing body of
evidence to support the role of CYP1A2 in modifying
the effects of caffeine ingestion on aerobic or muscular
endurance-type exercise, which helps to determine
which athletes are most likely to benefit from caffeine.
The ADORA2A gene is another genetic modifier of the

effects of caffeine on performance. The adenosine A2A

receptor, encoded by the ADORA2A gene, has been
shown to regulate myocardial oxygen demand and in-
crease coronary circulation by vasodilation [275, 276].
The A2A receptor is also expressed in the brain, where it
has significant roles in the regulation of glutamate and
dopamine release, with associated effects on insomnia
and pain [277, 278]. The antagonism of adenosine recep-
tors after caffeine ingestion is modified by the
ADORA2A gene, which may allow greater improvements
in dopamine transmission and lead to norepinephrine
and epinephrine release due to increased neuronal firing
[168] in some genotypes versus others. Dopamine has
been associated with motivation and effort in exercising
individuals, and this may be the mechanism by which
differences in response to caffeine are manifested [141,
168, 169].
Currently, only one small pilot study has examined the

effect of the ADORA2A gene (rs5751876) on the ergo-
genic effects of caffeine under exercise conditions [279].
Twelve female subjects underwent a double-blinded,
crossover trial comprising two 10-min cycling time trials
following caffeine ingestion or placebo. Caffeine benefit-
ted all six subjects with the TT genotype, but only one
of the six C allele carriers. Further studies are needed to
confirm these preliminary findings and should include a
large enough sample to distinguish any effects between
the different C allele carriers (i.e. CT vs. CC genotypes)
and potential effects related to sex.
The ADORA2A rs5751876 genotype has also been im-

plicated, by both objective and subjective measures, in
various parameters of sleep quality after caffeine inges-
tion in several studies [280–283]. Adenosine promotes
sleep by binding to its receptors in the brain, mainly A1

and A2A receptors, and caffeine exerts an antagonist ef-
fect, blocking the receptor and reversing the effects of
adenosine and promoting wakefulness [280]. This action,
as well as the potency of caffeine to restore performance
(cognitive or physical) in ecological situations, such as
highway-driving during the night [284], supports the no-
tion that the adenosine neuromodulator/receptor system
is significantly involved in sleep–wake regulation. This
action of caffeine may also serve athletes well under con-
ditions of jetlag, and irregular or early training or com-
petition schedules. Psychomotor speed relies on the
ability to respond, rapidly and reliably, to randomly oc-
curring stimuli which is a critical component of, and
characteristic of, most sports [285]. Genetic variation in
ADORA2A has been shown to be a relevant determinant
of psychomotor vigilance in the rested and sleep-
deprived state and modulates individual responses to
caffeine after sleep deprivation [282]. Those with the CC
genotype of ADORA2A rs5751876 consistently per-
formed on a higher level on the sustained vigilant atten-
tion task than T-allele -carriers; however, this was tested
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in ADORA2A haplotypes that included combinations of
8 SNPs. This work provides the basis for future genetic
studies of sleep using individual ADORA2A SNPs.
As mentioned, the ADORA2A genotype has also been

implicated in sleep quality and increases in sleep dis-
turbance [283]. Consistent with the “adenosine hypoth-
esis” of sleep where the accumulation of adenosine in
the brain increases sleep propensity, caffeine prolongs
time to fall asleep, decreases the deep stages of non-
rapid-eye movement (nonREM) sleep, reduces sleep effi-
ciency, and alters the waking and sleep electroenceph-
alogram (EEG) frequencies, which reliably reflect the
need for sleep [286–288]. Increased beta activity in non-
REM sleep may characterize individuals with insomnia
when compared with healthy good sleepers [289]. A
functional relationship between the ADORA2A genotype
and the effect of caffeine on EEG beta activity in non-
REM sleep has previously been reported [281], where
the highest rise was in individuals with the CC genotype,
approximately half in the CT genotype, whereas no
change was present in the TT genotype. Consistent with
this observation, the same study found individuals with
the CC and TC genotypes appeared to confer greater
sensitivity towards caffeine-induced sleep disturbance
compared to the TT genotype [281]. This suggests that a
common variant in ADORA2A contributes to subjective
and objective responses to caffeine on sleep.

Caffeine, genetics and anxiety
In elite athletes, 50% face mental health issues sometime
during their career [290]. Given that anxiety may be nor-
malized in elite sports even at clinical levels, factors that
contribute to anxiety should be mitigated whenever pos-
sible. Anxiety may be caused by stress-related disorders
(burnout), poor quality sleep patterns (often related to caf-
feine intakes) and possibly as a response to caffeine inges-
tion due to genetic variation, even at low levels [109].
As previously mentioned, caffeine blocks adenosine re-

ceptors, resulting in the stimulating effects of caffeine
[213]. A common variation in the ADORA2A (adenosine
A2A receptor) gene contributes to the differences in sub-
jective feelings of anxiety after caffeine ingestion [291,
292], especially in those who are habitually low caffeine
consumers [293]. This may be particularly relevant to
athletes who possess the TT variant of rs5751876 in the
ADORA2A gene. These individuals are likely to be more
sensitive to the stimulating effects of caffeine and experi-
ence greater increases in feelings of anxiety after caffeine
intake than do individuals with either the CT or CC
variant [291–293].
Sport psychologists commonly work with athletes to

help them overcome anxiety about performance during
competitions. Anxiety before or during athletic competi-
tions can interfere not only in performance, but also in

increased injury risk [294]. Athletes who are more prone
to performance anxiety may exacerbate their risk for
feelings of anxiety depending on their caffeine use and
which variant of the ADORA2A gene they possess. Mon-
itoring the actions of caffeine in those individuals who
are susceptible, may alleviate some of the related feelings
of anxiety with caffeine use. Given that anxiety may dis-
rupt concentration and sleep and negatively impact so-
cial interactions, athletes with higher risks and
prevalence for anxiety, may want to limit or avoid caf-
feine consumption (if caffeine is a known trigger) during
times where they are feeling anxious or stressed, such as
at sporting competitions or social gatherings or other
work and school events.
The importance of both sleep and caffeine (as an ergo-

genic aid) to athletes highlights the importance of opti-
mizing rest and recovery through a better understanding
of which athletes may be at greater risk of adverse effects
of caffeine on mood and sleep quality, possibly due to
genetic variation. This information will allow athletes
and coaching staff to make informed decisions on when
and if to use caffeine when proximity to sleep is a factor.
These considerations will also be in conjunction with
the possibility that an athlete will benefit from caffeine
in endurance-based exercise as determined in part, by
their CYP1A2 genotype, albeit with a clear need for fu-
ture research.

Habitual caffeine intake
The quantification of habitual caffeine intake is difficult,
which is problematic for studies aiming to compare per-
formance outcomes following caffeine ingestion in habit-
ual versus non-habitual caffeine users. This concern is
highlighted by reports showing large variability in the
caffeine content of commonly consumed beverages, e.g.
~ 8- to 9-fold differences in caffeine content have been
reported in coffee beverages purchased from similar re-
tail shops [295] and in pre-workout supplements [296].
Self-reported intakes may therefore be unreliable. Newly
discovered biomarkers of coffee consumption may be
more useful for quantifying intakes in the future, but
currently, these are not widely available [297]. Different
protocols for the length of the caffeine abstinence period
preceding data collection is also a relevant factor in de-
termining variability in performance outcomes. For ex-
ample, in shorter caffeine abstinence periods e.g., 12–48
h, reversal of caffeine withdrawal effects by acute caf-
feine supplementation may have positive effects on per-
formance, i.e. alleviating the negative symptoms of
withdrawal, which in itself may improve performance
[298]. These effects may be more pronounced in those
genetically predisposed to severe withdrawal effects
[299]. However, in one study 3mg/kg caffeine signifi-
cantly improved exercise performance in trained cyclists
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(n = 12), irrespective of whether a 4-day withdrawal
period was imposed on habitual caffeine users [300]. An-
other study also reported increased endurance in habit-
ual caffeine users (n = 6) regardless of a 0, 2- or 4-day
abstinence period. The authors concluded that improved
performance under caffeine conditions at 6 mg/kg is not
related to prior caffeine habituation in recreational ath-
letes [301]. Although genes have been associated with
habitual caffeine intake using GWAS research [302,
303], it is important to highlight that these associations
are not directly applicable to determining differences in
performance outcomes in response to acute caffeine
doses for regular or habitual caffeine users versus non-
habitual users. The “caffeine habits” of individuals are
more likely related to their personal experience with ad-
verse effects such as feel jittery, experiencing tachycardia
or insomnia. Furthermore, associations between genes
and habitual caffeine intake do not elucidate potential
mechanisms by which caffeine intake behaviors may in-
fluence subsequent performance following caffeine sup-
plementation [304, 305]. In animal model studies,
regular consumption of caffeine has been associated with
an upregulation of the number of adenosine receptors in
the vascular and neural tissues of the brain [306]. Al-
though, this did not appear to modify the effects of caf-
feine in one study [307], in another, chronic caffeine
ingestion by mice caused a marked reduction in loco-
motor exploratory activity [308]. Changes in adenosine
receptor number or activity have not been studied in
humans.
There does not appear to be a consistent difference in

the performance effects of acute caffeine ingestion be-
tween habitual and non-habitual caffeine users, and
study findings remain equivocal. In one study, habitual
stimulation from caffeine resulted in a general dampen-
ing of the epinephrine response to both caffeine and ex-
ercise; however, there was no evidence that this
impacted exercise performance [309]. Another study
[310] examined the effect of 4 weeks of caffeine supple-
mentation on endurance performance in 18 low-habitual
caffeine consumers who were randomly assigned to in-
gest caffeine or placebo for 28 days. Four weeks of caf-
feine ingestion resulted in increased tolerance to acute
caffeine supplementation in previously low habitual caf-
feine consumers, with the ergogenic effect of acute caf-
feine supplementation no longer apparent [310]. These
results are in contrast with a recent study in which 20
days of consecutive supplementation with caffeine main-
tained an ergogenic effect, even though the effect size at-
tenuated over time [311]. More recently, a double-blind,
crossover, counterbalanced study was performed [312],
where 40 endurance-trained male cyclists were allocated
into tertiles according to their daily caffeine intake: low
(58 ± 29mg), moderate (143 ± 25mg), and high

consumers (351 ± 139 mg). Participants completed three
trials in which they performed simulated cycling time-
trials under three conditions: caffeine (6 mg/kg), placebo,
and no supplement (control). Caffeine ingestion im-
proved performance as compared to placebo and con-
trol, with no influence of habitual caffeine intake.
Additionally, no correlation was observed between habit-
ual caffeine intake and absolute changes in a ~ 30 min
cycling time-trial performance with caffeine [312]. How-
ever, a limitation of this study is the short 24-h caffeine
withdrawal period in all groups which may have resulted
in performance improvements due to the reversal of caf-
feine withdrawal effects, rather than impact of acute-on-
chronic caffeine administration and the effects of habitu-
ation to caffeine on exercise performance [298, 313]. In
addition, habitual caffeine intake was estimated using a
food frequency questionnaire, which might be a limita-
tion given the already mentioned variation of caffeine in
coffee and different supplements.
There is wide variability in caffeine content of com-

monly consumed items, and as such, an objective meas-
ure (e.g., caffeine or metabolite levels) might be
considered to reported caffeine intakes [297, 313]. Based
on these observations, the assumption that habitual and
nonhabitual caffeine consumers will or will not respond
differently to caffeine supplementation during exercise,
requires further study.

Caffeine timing
The most common timing of caffeine supplementation
is 60 min before exercise. This timing is used given that
it is believed that 60 min post-ingestion, plasma levels of
caffeine are at maximal values [314]. However, caffeine
appears to be most beneficial during times or in sports
where there is an accumulation of fatigue, i.e., exercise
over a longer continuous or intermittent duration [64].
Therefore, ingestion of caffeine during exercise (mid/
later stages) may be more beneficial than ingestion be-
forehand for some individuals depending upon the
length of the event. A recent review [195] reported that
the effect size of caffeine benefits increase with the in-
creasing duration of the time trial event, meaning that
timing caffeine intake closer to a time of greater fatigue,
i.e., later in the race, may be most beneficial. This sup-
ports the notion that endurance athletes (with longer
races) may benefit most from caffeine for performance
enhancement since they have the greatest likelihood of
being fatigued. This also supports findings in other in-
vestigations that show ingesting caffeine at various time
points including late in exercise may be most beneficial
[196].
For example, an early study [196] aimed to understand

whether or not there were benefits to a common prac-
tice among endurance athletes, such as those
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participating in marathons and triathlons, which is to
drink flat cola toward the end of an event. When re-
searchers investigated the ingestion of a low dose of caf-
feine toward the end of a race (e.g., in the form of flat
cola) it was found to have comparable effects as ingest-
ing higher doses, such as ~ 5 or 6 mg/kg, ingested ~ 60
min before the race. The study also demonstrated that
the effect was due to the caffeine and not the carbohy-
drate, which may also aid performance as fuel stores be-
come depleted [196].
More recently, caffeine gum ingestion enhanced cyc-

ling performance when it was administered immediately
prior to exercise, but not when administered 1 or 2 h be-
forehand. This may have been due to the faster absorp-
tion with caffeinated gum consumption, and due to the
continued increase in plasma caffeine concentrations
during the cycling time trial, when athletes may become
fatigued (i.e. 30 +minutes into exercise), as the trials also
included a 15min steady-state cycling bout prior to the
time trial [60]. Similarly, in a lab setting, a study of ath-
letes completing 120min of steady-state cycling followed
by a time trial under conditions of placebo and caffeine,
found that the ingestion of both low and moderate doses
of caffeine later in exercise were beneficial [149]. How-
ever, there was significant interindividual variability,
highlighting the need for athletes to experiment with
their own strategies as far as dosing and timing are
concerned.
The optimal timing of caffeine ingestion may depend

on the source of caffeine. As stated earlier, some of the
alternate sources of caffeine such as caffeine chewing
gums may absorb more quickly than caffeine ingested in
caffeine-containing capsules [60]. Therefore, individuals
interested in supplementing with caffeine should con-
sider that timing of caffeine ingestion will likely be influ-
enced by the source of caffeine.

Training status
Training status may mediate the magnitude of caffeine’s
ergogenic effect, but studies have reported mixed results.
Although a 2010 meta-analysis [158] did not find differ-
ences (p = 0.08) in caffeine’s ability to enhance muscle
endurance in untrained subjects versus trained subjects,
these results were not derived from direct comparisons
between trained and untrained subjects. Currently, only
a few investigations [96, 210, 315–318] have included
both trained and untrained subjects in their study
design.
In a study of elite and occasional swimmers [318], it

was reported that 250 mg of supplemental caffeine was
ergogenic only for competitive swimmers and not recre-
ational swimmers. A limitation of this study is that the
swimming exercise task differed between the trained and
untrained participants. Specifically, the study utilized

1600-m swimming for the trained swimmers and 400-m
for the untrained swimmers, which is a likely explan-
ation for these findings. However, some have also postu-
lated that this is because athletes perform more reliably
on a given task than nonathletes, and increased test-
retest reliability might prevent type II errors [319]. In
contrast to the above evidence regarding the importance
of training status, other research has shown that training
status does not moderate the ergogenic effects of caf-
feine on exercise performance. One study [210] showed
similar performance improvements (1.0 and 1.1%) in 15
well-trained and 15 recreational runners performing an
outdoor 5 km time trial after 5 mg/kg caffeine intake
compared to the placebo trial. Similarly, Astorino et al.
[96] found that overall, acute caffeine intake improved
10 km time-trial performance in both endurance-trained
athletes and active men, with no differences seen be-
tween groups. Likewise, an investigation concluded that
there was no ergogenic effect of caffeine at a dose of 5
mg/kg on time to exhaustion in either endurance trained
or untrained men [315].
More recently, a small study by Boyett et al. [317] in-

vestigated the interactions of 6 mg/kg caffeine on train-
ing status and time of day in 20 male subjects. Subjects
completed four experimental trials consisting of a 3-km
cycling time trial performed in randomized order for
each combination of time of day (morning and evening)
and treatment. They reported that both untrained and
trained subjects improved performance with caffeine
supplementation in the morning; however, only the un-
trained subjects improved when tested in the evening.
Although there were some limitations to this study,
these observations indicate that trained athletes are
more likely to experience ergogenic effects from caffeine
in the morning, while untrained individuals appear to re-
ceive larger gains from caffeine in the evening than their
trained counterparts. This may further complicate the
training status data with a possible temporal effect [317].
The concentration of adenosine receptors (the primary
target of caffeine) do appear to be higher in trained
compared to untrained individuals, but this has only
been reported in animal studies [320]. Boyett et al. [317]
speculated that the higher concentration of adenosine
receptors may increase tissue sensitivity to any given
concentration of adenosine.
Although some studies comparing training status of

subjects support the notion [318] that training influences
response to caffeine during exercise, most do not [96,
210, 315] and this was also the finding in a subsequent
meta-analysis [158]. It is possible that the only difference
between trained and untrained individuals is that trained
individuals likely have the mental discipline to exercise
long or hard enough to benefit more from the caffeine
stimulus, which might provide an explanation for why in
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some studies, trained individuals respond better to caf-
feine [314]. Currently, it seems that trained and un-
trained individuals experience similar improvements in
performance following caffeine ingestion; however, more
research in this area is warranted.

Caffeine and sleep
The impacts of caffeine on sleep and behavior after sleep
deprivation are widely reported [321]. Sleep is recog-
nized as an essential component of physiological and
psychological recovery from, and preparation for, high-
intensity training in athletes [322, 323]. Chronic mild to
moderate sleep deprivation in athletes, potentially attrib-
uted to caffeine intakes, may result in negative or altered
impacts on glucose metabolism, neuroendocrine func-
tion, appetite, food intake and protein synthesis, as well
as attention, learning and memory [323]. These factors
can all influence an athlete’s nutritional, metabolic, and
endocrine status negatively and hence potentially affect
energy levels, muscle repair, immunity, body compos-
ition, memory and learning and result in diminished ath-
letic performance [324, 325].
Objective sleep measures using actigraphy or carried

out in laboratory conditions with EEG have shown that
caffeine negatively impacts several aspects of sleep qual-
ity such as: sleep latency (time to fall asleep), WASO
(wake time after sleep onset), sleep efficiency and dur-
ation [321]. Studies in athletes have also shown adverse
effects in sleep quality and markers for exercise recovery
after a variety of doses of caffeine ingestion [326–328].
Although caffeine is associated with sleep disturbances,
caffeine has also been shown to improve vigilance and
reaction time and improved physical performance after
sleep deprivation [282, 329–332]. This may be beneficial
for athletes or those in the military who are traveling or
involved in multiday operations, or sporting events and
must perform at the highest level under sleep-deprived
conditions [192, 194, 330, 332].
Even though caffeine ingestion may hinder sleep qual-

ity, the time of day at which caffeine is ingested will
likely determine the incidence of these negative effects.
For example, in one study that included a sample size of
13 participants, ingestion of caffeine in the morning
hours negatively affected sleep only in one participant
[333]. However, ingestion of caffeine in the late after-
noon (18:00 h) resulted in insomnia effects among 6 par-
ticipants. These results are likely explained by the half-
life of caffeine, which is generally around 4 to 6 h (even
though it varies between individuals). Unfortunately, ath-
letes and those in the military are unlikely to be able to
make adjustments to the timing of training, competition
and military exercises or the ability to be combat ready.
However, to help avoid negative effects on sleep, athletes
may consider using caffeine earlier in the day whenever

possible. Pronounced individual differences have also
been reported where functional genetic polymorphisms
have been implicated in contributing to individual sensi-
tivity to sleep disruption [280, 281] and caffeine impacts
after sleep deprivation [282] as discussed in the Interin-
dividual variation in response to caffeine: Genetics sec-
tion of this paper.

Side-effects associated with caffeine intake
As with any supplement, caffeine ingestion is also associ-
ated with certain side-effects. Some of the most commonly
reported side-effects in the literature are tachycardia and
heart palpitations, anxiety [281, 291], headaches, as well as
insomnia and hindered sleep quality [239, 326]. For ex-
ample, in one study, caffeine ingestion before an evening
Super Rugby game resulted in a delay in time at sleep on-
set and a reduction in sleep duration on the night of the
game [327]. Caffeine ingestion is also associated with in-
creased anxiety; therefore, its ingestion before competi-
tions in athletes may exacerbate feelings of anxiety and
negatively impact overall performance (see caffeine and
anxiety section). Increased jitters/anxiety/arousal associ-
ated with caffeine ingestion also needs to be considered
within the specific demands of each sport, and even the
position within a given sport. For example, athletes com-
peting in sports that heavily rely on the skill component
(e.g., tennis players, biathlon shooting) would likely not
benefit from caffeine-induced jitters and arousal. How-
ever, athletes in sports that depend more on physical cap-
abilities, such as strength and endurance (e.g., football
lineman), might actually benefit from increased jitters and
arousal before games. These aspects are less explored in
research but certainly warrant consideration in the prac-
tical context to optimize the response to caffeine supple-
mentation. The primary determinant in the incidence and
severity of side-effects associated with caffeine ingestion is
the dose used. Side-effects with caffeine seem to increase
linearly with the dose ingested [239]. Therefore, they can
be minimized—but likely not fully eliminated—by using
smaller doses, as such doses are also found to be ergogenic
and produce substantially fewer side-effects [112]. In sum-
mary, an individual case-by-case basis approach is war-
ranted when it comes to caffeine supplementation, as its
potential to enhance performance (benefit) needs to be
balanced with the side-effects (risk).

Caffeine and cognitive performance
In addition to exercise performance, caffeine has also
been studied for its contribution to athletes of all types
(including Special Forces operators in the military) who
are routinely required to undergo periods of sustained
cognitive function and vigilance due to their job require-
ments (Table 1). A 2016 review [344] concluded that
caffeine in doses from 32 to 300 mg (for a 75 kg
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individual) enhanced specific aspects of cognitive per-
formance, such as attention, vigilance, and reaction time.
Spriet [112] also concluded that lower doses of caffeine
(approximately 200 mg) improved cognitive processes
associated with exercise including vigilance, alertness,
and mood. Hogervorst et al. [82] studied 24 well-trained
cyclists that were randomized to 3 groups: (1) consumed
a bar containing 45 g of carbohydrate and 100 mg of caf-
feine; (2) an isocaloric non-caffeine performance bar; or,
(3) a placebo beverage (non-caloric flavored water) im-
mediately before performing a 2.5-h ride followed by a
time to exhaustion trial. They found that caffeine in a
carbohydrate-containing performance bar significantly
improved both endurance performance and complex
cognitive ability during and after exercise [82]. Antonio
et al. [345] assessed the effects of an energy drink on
psychomotor vigilance in a small cohort of 20 exercise-
trained men and women. The acute consumption of 300
mg of caffeine in a commercially available energy drink
produced a significant improvement in psychomotor
vigilance mean reaction time in these subjects compared
to the placebo trial. This matches a 2001 IOM report
[346] that the effects of caffeine supplementation include
increased attention and vigilance, complex reaction time,
and problem-solving and reasoning.
One confounding factor on cognitive effects of caffeine

is the role of sleep. Special Forces military athletes con-
duct operations where sleep deprivation is common. A
series of different experiments [42, 329, 330, 332, 334,
335, 346, 347] have examined the effects of caffeine in
real-life military conditions. In three of the studies [329,
330, 334], soldiers performed a series of tasks such as a
4 or 6.3 km run and a marksmanship test, which is a task
that requires fine motor coordination and steadiness, ob-
servation/reconnaissance, and requires long periods of
no movement coupled with alertness and psychomotor
vigilance over several days, where opportunities for sleep
became more infrequent. Caffeine was provided at doses
ranging from 600 to 800 mg in the form of chewing
gum, owing to its practicality, i.e., rapid absorption and
portability [58]. The investigators found that vigilance
was either maintained or enhanced under the caffeine
conditions (vs. placebo), in addition to improvements in
run times and obstacle course completion [329, 330,
334]. Similarly, Lieberman et al. [42] examined the ef-
fects of caffeine on cognitive performance during sleep
deprivation in U. S. Navy Seals. During this investiga-
tion, there were multiple doses of caffeine ingested, 100
mg, 200 mg, or 300 mg, in capsule form. Once again, re-
sults were also significant for the assessments related to
vigilance and reaction time in both the 200 and 300 mg
caffeine intervention, suggesting smaller successive doses
of caffeine are more beneficial than large boluses, for im-
proving focus and vigilance.

The positive effects of caffeine on cognitive function
were further supported by work from Kamimori et al.
[332] where 20 special forces operators were randomly
assigned to receive four 200-mg doses of caffeine or pla-
cebo during a period of low sleep over three successive
days. The caffeine intervention maintained psychomotor
speed, improved event detection, increased the number
of correct responses to stimuli, and increased response
speed during logical reasoning tests. Under similar con-
ditions of sleep deprivation, Tikuisis et al. [335] demon-
strated that the cognitive component of a shooting task
(i.e., target detection) benefited from caffeine. These
studies [42, 329, 330, 332, 334, 335, 346, 347] demon-
strate the effects of caffeine on vigilance and reaction
time in a sleep deprived state, in a distinct and highly
trained population, usually with repeated ‘lower’ doses,
~ 200 mg of caffeine ingestion. When subjects are not
sleep deprived, the effects of caffeine on cognition ap-
pear to be less effective. For example, Share et al. [336]
did not show any difference in shooting accuracy, reac-
tion time, or target tracking times among the three
intervention trials using 2 escalating doses of caffeine at
2 mg/kg and 4mg/kg.
In addition to the ability of caffeine to counteract the

stress from sleep deprivation, it may also play a role in
combatting other stressors. Gillingham et al. [339]
showed that in 12 reservists who ingested 5mg/kg body
mass of caffeine or placebo 1 h pre- and post-strenuous
exercise, that caffeine ingestion mediated stress from
sleep deprivation cited above. However, these benefits
were not observed during more complex operations
[339]. With a different stressor (a simulated firefight), no
cognitive effect was seen with a caffeine dose of 400mg
[340]. Crowe et al. [341] examined the effects of caffeine
(6 mg/kg dose) on cognitive parameters (visual reaction
time and number recall tests) via two maximal 60-s
bouts of cycling over three conditions (caffeine, placebo,
control). Again, no cognitive benefit was observed.
Other studies [244, 338, 342, 343] support the effects

of caffeine on the cognitive aspects of sport perform-
ance, even though with some mixed results [348, 349].
Foskett et al. [244] determined that a moderate dose (6
mg/kg) of caffeine enhanced the fine motor skills in soc-
cer players as measured by improved ball passing accur-
acy and control. This was supported by Stuart et al.
[342] who examined the effects of the same dose of caf-
feine (6 mg/kg) and found a 10% improvement in ball-
passing accuracy. Equivocal results were reported for
distance covered, agility, and accuracy in a review of 19
studies where caffeine ingestion before exercise was be-
tween 3 and 6mg/kg [348]. Data on reactive agility time
is split, with one study demonstrating a benefit [343]
and another one [349] did not showing any benefit, des-
pite using the same dose of caffeine (6 mg/kg). Finally,
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Table 1 Summary of studies that explored the effects of caffeine on cognitive function

Author Participants Protocol Outcome

Sleep Deprived

Hogervorst
et al. 2008
[82]

Well-trained
cyclists (n = 24)

• Bar with 100mg caffeine and 45.0 g CHO
• Bar with only 45.0 g CHO
• 300mL non-caloric beverage

*↑Stroop and Rapid Visual Information Processing tests
after 140 min and time to exhaustion exercise trial at
75% VO2max

McLellan
et al. 2007
[334]

Soldiers (n = 20) • 600mg total caffeine in 200mg does over 6 h
period

• Placebo

*↑ Increased vigilance

McLellan
et al. 2005
[329]

Soldiers (n = 31) • 200mg caffeine (gum) mg doses over 5 h
• Placebo

Maintained vigilance in control observation and
reconnaissance vigilance task

McLellan
et al. 2005
[330]

Soldiers (n = 30) • 600mg total caffeine in 100mg and 200mg
doses over a 6 h period

• Placebo

Sustained marksmanship vigilance and accuracy
*less decrease in urban operations vigilance

Lieberman
et al. 2002
[42]

U.S. Navy SEAL
trainees (n = 68)

• 100mg caffeine
• 200mg caffeine
• 300mg caffeine
• Placebo

*↑improved vigilance and reaction time in both the
200 and 300mg caffeine interventions following 72 h
sleep deprivation

Kamimori
et al. 2015
[332]

Special Forces
Operators (n = 20)

• Four 200mg doses of caffeine
• Placebo

*maintained psychomotor speed, improved event
detection, increased the number of correct responses
to stimuli, and increased response speed during logical
reasoning tests.
⬌Live-fire marksmanship was not altered by caffeine.

Tikuisis
et al. 2004
[335]

Young Military
Subjects (n = 20)

• 400mg caffeine
• 100mg caffeine
• 100mg of caffeine
• Placebo

*increased cognitive component of shooting task

Not Sleep Deprived

Share et al.
2009 [336]

Elite male shooters
(n = 7)

• 2 mg/kg caffeine
• 4 mg/kg caffeine
• Placebo

⬌ shooting accuracy, reaction time, or target tracking
time between groups

Pomportes
et al. 2019
[337]

Modern
pentathlon
national team
athletes (n = 10)

• Four counterbalanced sessions with:
• 30 g CHO
• 300mg guarana complex
• 200mg caffeine
• Placebo

* enhanced speed of information processing w CHO,
and caffeine and guarana complex
* lower RPE w caffeine and gaurana complex

Duncan
et al. 2019
[228, 338]

Younger males
(n = 12)

• 5mg/kg dose caffeine
• Placebo
60 min before 30 s upper body Wingate anaerobic test

*Readiness to invest physical effort, and cognitive
performance
*Reduced rating of perceived exertion
⬌Response accuracy

Other Stressors

Share et al.
2009 [336]

Elite male shooters
(n = 7)

• 2 mg/kg caffeine
• 4 mg/kg caffeine
• Placebo

⬌ shoot accuracy, reaction time, or target tracking
time between groups

Gillingham
et al. 2004
[339]

Military reservists
(n = 12)

• 5mg/kg caffeine or placebo dosed before 2.5 h
loaded march plus 1 h sandbag wall construction task
then re-dose of 2.5mg/kg caffeine or placebo

*↑ marksmanship performance (engagement time and
number of shots fired)
⬌friend-foe discrimination

Zhang
et al. 2014
[340]

Firefighters (n = 10) • 400mg caffeine
• Menthol lozenges
• Placebo

⬌ Change in perceived exertion, mood reaction time,
short-term memory, or retrieval memory

Crowe
et al. 2006
[341]

Healthy subjects:
male (n = 12)
female (n = 5)

• 6 mg/kg caffeine
• Placebo

⬌ rating of perceived exertion

Foskett
et al. 2009
[244]

Male soccer
players (n = 12)

• 6mg/kg of caffeine
• Placebo

* Enhanced fine motor skills via improved ball passing
accuracy and control

Stuart et al.
2005 [342]

Competitive male
rugby (n = 9)

• 6mg/kg caffeine
• Placebo

*Increased ball-passing accuracy

Duvnjak- Moderately trained • 6 mg/kg caffeine *Main effect for condition on decision time
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caffeine (5 mg/kg) was shown to enhance cognitive per-
formance after an upper-body Wingate test, which may
be beneficial in sports or occupational activities where
there is a need for anaerobic performance concurrent
with decision making (e.g. firefighting, military related
tasks, wheelchair basketball) [338].
The exact mechanism of how caffeine enhances cogni-

tion in relation to exercise is not fully elucidated and ap-
pears to work through both peripheral and central
neural effects [350]. In a study by Lieberman et al. [42],
8 h after caffeine administration, caffeine continued to
enhance motor learning and short-term memory via per-
formance of repeated acquisition. Repeated acquisition
are behavioral tests in which subjects are required to
learn new response sequences within each experimental
session [351]. The researchers [42] speculated that caf-
feine exerted its effects from an increased ability to sus-
tain concentration, as opposed to an actual effect on
working memory. Other data [352] were in agreement
that caffeine reduced reaction times via an effect on
perceptual-attentional processes (not motor processes).
This is in direct contrast to earlier work that cited pri-
marily a motor effect [353]. Another study with a sugar
free energy drink showed similar improvements in reac-
tion time in the caffeinated arm; however, they attrib-
uted it to parallel changes in cortical excitability at rest,
prior, and after a non-fatiguing muscle contraction
[354]. The exact cognitive mechanism(s) of caffeine have
yet to be elucidated.
Based on some of the research cited above, it appears

that caffeine is an effective ergogenic aid for individuals
either involved in special force military units or who
may routinely undergo stress including, but not limited
to, extended periods of sleep deprivation. Caffeine in
these conditions has been shown to enhance cognitive
parameters of concentration and alertness. It has been
shown that caffeine may also benefit sport performance
via enhanced passing accuracy and agility. However, not
all of the research is in agreement. It is unlikely that caf-
feine would be more effective than actually sleeping, i.e.
you cannot ‘outcaffeinate’ poor sleep.

Environmental influences on response to caffeine
Physical activity and exercise in extreme environments
are of great interest as major sporting events (e.g. Tour
de France, Leadville 100, Badwater Ultramarathon) are

commonly held in extreme environmental conditions.
Events that take place in the heat or at high altitudes
bring additional physiological challenges (i.e., cardiovas-
cular strain, thermoregulation, diuresis) for athletes,
which may be potentially compounded if caffeine is con-
sumed prior to and/or during training or competition in
such environments [355]. Nonetheless, caffeine is widely
used by athletes as an ergogenic aid when exercising or
performing in extreme environmental situations. The
current understanding of caffeine’s impact on exercise
performance is based largely on the findings of analyses
conducted in controlled, temperate environments,
whereas data collected on the ergogenic effect of caffeine
consumption by individuals performing in the heat or at
altitude are limited and have resulted in inconsistent
findings.

Heat
The ability to perform prolonged exercise is impaired in
hot and/or humid environments [355, 356]. The use of
caffeine in conjunction with exercise in the heat has
been proposed to increase the risk for various heat-
related illnesses with particular concerns regarding caf-
feine’s effect on body temperature and hydration status
[357]. Ely et al. [358] concluded that caffeine dosages as
high as 9 mg/kg did not substantially alter body heat bal-
ance during endurance exercise performance at 40 °C.
Further, a recent study demonstrated that while caffeine
ingestion increased blood lactate and heart rate during
exercise in the heat (42 °C and 20% relative humidity),
endurance capacity and thermoregulation were un-
affected in both male and female participants [359]. Al-
though caffeine may induce mild fluid loss, the majority
of research has confirmed that caffeine consumption
does not significantly impair hydration status, exacerbate
dehydration, or jeopardize thermoregulation (i.e., body
temperature regulation) when exercising in the heat
[360, 361].
Several trials have observed no benefit of acute caf-

feine ingestion on cycling and running performance in
the heat (Table 2) [265, 362, 364]. However, Ganio and
colleagues [365] found caffeine (2 dosages of 3 mg/kg) to
be similarly ergogenic under both cool (12 °C) and warm
(33 °C) environmental conditions. Likewise, others [366]
have reported a non-significant, yet notable, improve-
ment in cycling time trial performance in the heat (35 °C

Table 1 Summary of studies that explored the effects of caffeine on cognitive function (Continued)

Author Participants Protocol Outcome

Zaknich
et al. 2011
[343]

male athletes (n =
10)

• Placebo

Outcomes are bold caffeine group specific; * = significant difference, ↑ = improved performance, ⬌ no change, mg/kg =milligram per
kilogram, CHO = carbohydrate

Guest et al. Journal of the International Society of Sports Nutrition            (2021) 18:1 Page 17 of 37



and 25% relative humidity) after caffeine consumption
(3 mg/kg) compared with placebo ingestion. While caf-
feine’s effect on performance in the heat remains some-
what unclear to date, positive support exists for dosages
between 3 and 6mg/kg. Further, there does not appear
to be sufficient evidence to interdict the use of caffeine
by individuals who exercise in heat if consumed in dos-
ages of 9 mg/kg or less.

Altitude
It is well established that caffeine improves performance
and perceived exertion during exercise at sea level [260,
314, 368, 369]. Despite positive outcomes at sea level,
minimal data exist on the ergogenic effects or side ef-
fects of caffeine in conditions of hypoxia, likely due to
accessibility of this environment or the prohibitive costs
of artificial methods. To date, only four investigations
(Table 3) have examined the effects of caffeine on exer-
cise performance under hypoxic conditions [211, 370–
372]. In an initial study by Berglund and colleagues
[370], caffeine (6 mg/kg) significantly improved 21 km
time trial performance 2300 m above sea level in 14
well-trained cross-country skiers. Likewise, [371] positive

outcomes were reported after caffeine (4 mg/kg) inges-
tion on endurance performance in acute hypoxic condi-
tions of 4300 m above sea level. Specifically, significant
improvements in time to exhaustion in eight young
adults cycling at 80% of their altitude specific VO2max

was reported. More recently, 13 skiers were examined at
an altitude of 2000m above sea level and it was reported
that caffeine (4.5 mg/kg) significantly improved time to
exhaustion while double poling during cross-country ski-
ing at 90% of altitude-specific VO2max [211]. In a more
recent double-blind, randomized, counterbalanced
cross-over investigation [372], seven adult males signifi-
cantly improved time to exhaustion by 12% following
consumption of 4 mg/kg caffeine. Overall, results to date
appear to support the beneficial effects of caffeine sup-
plementation that may partly reduce the negative effects
of hypoxia on the perception of effort and endurance
performance [211, 370–372].

Alternate caffeine sources
Sources other than commonly consumed coffee and caf-
feine tablets have garnered interest, including caffeinated
chewing gum, mouth rinses, aerosols, inspired powders,

Table 2 Summary of studies that explored the effects of caffeine on exercise performance in the heat

Author Participants Protocol Outcome

Cohen et al.
1996 [362]

Endurance trained
competitive road racers
(male = 5; female = 2)

• Placebo
• 5mg/kg caffeine
• 9mg/kg caffeine

⬌ Running performance

Del Coso
et al. 2008
[363]

Endurance trained male
cyclists (n = 7)

• No fluid
• Water
• 6%CHO Solution
• No fluid + 6mg/kg caffeine capsule
• Water + 6mg/kg caffeine capsule
• 6%CHO solution + 6mg/kg caffeine capsule

⬌ Maximal voluntary contraction in
heat
*↑ Maximal cycling power in heat
*↑ Maximal leg force via voluntary
activation ONLY in water + caffeine
and 6%CHO+ caffeine

Cheuvront
et al. 2009
[364]

Healthy males (n = 10) • 9.0mg/kg caffeine
• Placebo

⬌ TT performance
⬌ RPE

Ganio et al.
2011 [365]

Male cyclists (n = 11) • Participants consumed either 3 mg/kg caffeine or placebo
60min prior to and after 45 min of the following trials (4
trials total; total 6 mg/kg):

• Warm environment (33 °C): 90 min cycling followed by 15
min performance trial

• Cool environment (12 °C): 90 min cycling followed by 15
min performance trial

Caffeine *↑ increased performance
versus placebo independent of
temperature

Roelands
et al. 2011
[265]

Trained male cyclists or
triathletes (n = 8)

• 6mg/kg caffeine
• Placebo

⬌ Acute cycling TT performance

Pitchford
et al. 2014
[366]

Well-trained males (n = 9) • 3mg/kg caffeine
• Placebo

⬌cycling TT performance in heat

Suvi et al.
2017 [359]

Healthy males (n = 13) and
females (n = 10)

• 6mg/kg caffeine
• Placebo

⬌ Time to walking exhaustion

Beaumont
et al. 2017
[310, 367]

Recreationally active males
(n = 8)

• 6mg/kg caffeine
• Placebo

*↑ Endurance cycle performance in heat
*↓ RPE during initial 60 min of exercise

Outcomes are bold caffeine group specific; * = significant difference, ⬌ = no change, ↑ = improved performance, TT = time trial, mg/kg =milligram per kilogram,
CHO = carbohydrate, min =minutes, RPE = rating of perceived exertion
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energy bars, energy gels and chews, among others. While
the pharmacokinetics [18, 373–376] and effects of caf-
feine on performance when consumed in a traditional
manner, such as coffee [47, 49, 55, 153, 368, 377, 378] or
as a caffeine capsule with fluid [55, 203, 379, 380] are
well understood, curiosity in alternate forms of delivery
(as outlined in pharmacokinetics section) have emerged
due to interest in the speed of delivery [81]. A recent re-
view by Wickham and Spriet [5] provides an overview of
the literature pertaining to caffeine use in exercise, in al-
ternate forms. Therefore, here we only briefly summarize
the current research.

Caffeinated chewing gum
Several investigations have suggested that delivering caf-
feine in chewing gum form may speed the rate of caf-
feine delivery to the blood via absorption through the
extremely vascular buccal cavity [58, 381]. Therefore,
caffeine via chewing gum may be absorbed via two pas-
sageways: the buccal mucosa in the oral cavity and/or
gut absorption due to the swallowing of caffeine-
containing saliva [58, 381, 382]. Kamimori and col-
leagues [58] compared the rate of absorption and relative
caffeine bioavailability from caffeinated chewing gum
and caffeine in capsule form. The results suggest that
the rate of drug absorption from the gum formulation
was significantly faster. In the groups ingesting 100 and
200 mg, both gum and capsule formulations provide
near comparable plasma caffeine concentrations to the
systemic circulation. These findings suggest that there
may be an earlier onset of pharmacological effects from
caffeine delivered through the gum formulation. Further,
while no data exist to date, it has been suggested that in-
creasing absorption via the buccal cavity may be prefer-
ential over oral delivery if consumed closer to or during
exercise, as splanchnic blood flow is often reduced [383],
potentially slowing the rate of caffeine absorption.
To date, five studies [59–63] have examined the po-

tential ergogenic impact of caffeinated chewing gum on

aerobic performance, commonly administered in mul-
tiple sticks (Table 4). To note, all studies have been con-
ducted using cycling interventions, with the majority
conducted in well-trained cyclists. Results from these in-
vestigations suggest that caffeinated chewing gum deliv-
ered in total dosages ranging 200–300 mg, closer to
initiation of exercise or during a prolonged endurance
event may be most beneficial, specifically for individuals
with a higher training status. However, more research is
needed, especially in physically active and recreationally
training individuals.
Four studies [64, 66, 68, 384] have examined the effect

of caffeinated chewing gum on more anaerobic type ac-
tivities (Table 4). Specifically, Paton et al. [64] adminis-
tered 3 mg/kg caffeinated gum to male cyclists during
repeat sprint cycling, resulting in greater attenuation of
fatigue, compared to a placebo. The reduced fatigue in
the caffeine trials equated to a 5.4% performance en-
hancement in power during sprints, in favor of caffein-
ated gum. A study [384] assessing 100 mg caffeinated
chewing gum on shot-put performance during an early
morning trial resulted in overall improvements in shot-
put distance thrown compared to a placebo. Caffeinated
gum consumption also positively influenced perform-
ance in two out of three soccer-specific (Yo-Yo Intermit-
tent Recovery Test and CMJ) tests used in the
assessment of performance in soccer players [66]. A re-
cent study also explored the effects of 300 mg of caffeine
provided in caffeine chewing gum and found that its
consumption 10 min pre-exercise resulted in ergogenic
effects on jumping performance, isokinetic peak torque,
upper body movement velocity and whole-body power
output during a rowing test [68]. These results suggest
that caffeine chewing gums may provide ergogenic ef-
fects across a wide range of exercise tasks. To date, only
Bellar et al. [384] has examined chewing gum with caf-
feine on cognitive function, specifically reporting im-
proved alertness as assessed by a psychomotor vigilance
test. Future studies may consider comparing the effects

Table 3 Summary of studies that explored the effects of caffeine on exercise performance at altitude

Author Participants Protocol Outcome

Berglund et al. 1982
[370]

Well-trained cross-country skiers
(n = 14)

• 6mg/kg
caffeine

• Placebo

*↑ 21 km TT 2900m above sea level

Fulco et al. 1994
[371]

Young adult cyclists (n = 8) • 4mg/kg
caffeine

• Placebo

*↑ Time to exhaustion at 80% of their altitude-specific VO2max at 4300
m above sea level

Stadheim et al. 2015
[211]

Male sub-elite cross-country skiers
(n = 13)

• 4.5 mg/kg
caffeine

• Placebo

*↑ Double-poling time to task failure at 2000m above sea level

Smirmaul et al. 2017
[372]

Adult male volunteers (n = 7) • 4.0 mg/kg
caffeine

• Placebo

*↑ Time to exhaustion during cycling by 12%

Outcomes are bold caffeine group specific; * = significant difference, ↑ = improved performance, TT = time trial, m =meters, mg/kg =milligram per kilogram
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of caffeine in chewing gums to caffeine ingested in
capsules.

Caffeine mouth rinsing
Caffeine mouth rinsing (CMR; 5–20 s in duration) may
have the potential to enhance exercise performance due
to the activation of sensorimotor brain cortices [79].
Specifically, the mouth contains bitter taste sensory re-
ceptors that are sensitive to caffeine [385]. It has been
proposed that activation of these bitter taste receptors
may activate neural pathways associated with informa-
tion processing and reward within the brain [385–387].
Physiologically, caffeinated mouth rinsing may also re-
duce gastrointestinal distress potential that may be
caused when ingesting caffeine sources [388, 389].
Few investigations on aerobic [69, 74–76, 390] and an-

aerobic [72, 73, 78] changes in performance, as well as

cognitive function [70, 71] and performance [77], follow-
ing CMR have been conducted to date (Table 5). One
study [390] demonstrated ergogenic benefits of CMR on
aerobic performance, reporting significant increases in
distance covered during a 30-min arm crank time trial
performance. Likewise, in a separate study [74], a 5 s
CMR (containing 32 mg of caffeine dissolved in 125 ml
water) improved 30min cycling performance, without
concurrent increases in ratings of perceived exertion or
heart rate. With regard to anaerobic trials, other re-
searchers [72] have also observed improved perform-
ance, where recreationally active males significantly
improved their mean power output during repeated 6-s
sprints after rinsing with a 1.2% caffeine solution. A
follow-up study [73] reported that recreationally active
males who were deemed ‘glycogen depleted’ increased
mean and peak power during the 3rd sprint of repeat

Table 4 Investigations examining the effects of caffeinated chewing gum on caffeine absorption and exercise performance

Author Participants Protocol Results

Kamimori
et al. 2002
[58]

Healthy males (n = 84; 12
per group)

• 50 mg caffeine capsule
• 50 mg caffeine gum
• 100mg caffeine capsule
• 100mg caffeine gum
• 200mg caffeine capsule
• 200mg caffeine gum
• Placebo

Both 100 and 200mg of caffeine in gum and capsule formualtions
provide comparable amounts of caffeine to the systemic circulation.
Mean Tmax for the gum groups ranged from 44.2 to 80.4 min as
compared with 84.0–120.0 min for the capsule groups

Ryan et al.
2012 [59]

College-aged, physically
active males (n = 8)

• 200mg caffeinated gum
• Placebo gum

⬌ cycling TTE

Ryan et al.
2013 [60]

Well-trained male cyclists
(n = 8)

• 300mg caffeine gum
• Placebo gum

*↑ cycling TT performance when 300mg caffeine chewing gum was
administered 5 min pre-TT

Lane et al.
2014 [61]

Well-trained males (n =
12) and females (n = 12)

• 3mg/kg caffeine gum 40
min prior + 1mg/kg 10min
prior

• Placebo gum
• Beet root juice
• Beet root juice w/ caffeine

*↑ cycling TT performance by 3–4%
Note: participant’s sex was accounted for during testing (female: 29.35
km; male: 43.83 km)

Oberlin-Brown
et al. 2016
[62]

Well-trained male cyclists
(n = 11)

• 200mg caffeine gum
• 200mg caffeine + CHO
gum

• CHO gum
• Placebo gum

⬌ cycling TT performance

Paton et al.
2015 [63]

Well-trained male (n = 10)
and female (n = 10)
cyclists

• ~ 3–4mg/kg caffeine gum
• Placebo gum

~ 3–4 mg/kg enhanced both endurance (> 5 min) and sprint power
output (< 30 s) by similar amounts (~ 4%) during the final 10 km of a 30-
km race

Paton et al.
2010 [64]

Competitive male cyclists
(n = 9)

• 3mg/kg caffeine gum
• Placebo gum

*↓ power output decline in 3rd & 4th sprints

Bellar et al.
2012 [65]

Collegiate shot-put ath-
letes (n = 9)

• 100mg caffeine gum
• Placebo gum

*↑ shot-put performance

Ranchordas
et al. 2018
[66]

Collegiate male soccer
players (n = 10)

• 200mg caffeine gum
• Placebo gum

*↑ Yo-Yo Intermittent Recovery Test level 1 and countermovement
jump

Venier et al.
2019 [67, 68]

Resistance-trained men
(n = 19)

• 300mg caffeine gum
• Placebo gum

*↑ Jumping height
*↑ Isokinetic strength and power
*↑ Movement velocity in the bench press
*↑ Whole-body power output

Bold text associated with reported trial outcomes; * delineates a significant change, NS = non-significant change, TT = Time Trial, TTE = time to exhaustion, ⬌ = no
improvement/change, ↑ = improved performance, ↓ = decreased, min =minute, CHO = carbohydrate, seg = segment, Tmax =maximum
concentration, km = kilometers
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Table 5 Investigations examining the effects of caffeine mouth rinsing (CMR) on exercise performance

Author Participants Protocol Results

Doering et al.
2014 [69]

Well-trained cyclists (n = 10) • 10 s rinse 35mg caffeine/
25mL X 8

• Placebo rinse

⬌ plasma caffeine levels
⬌ cycling TT Performance

De Pauw et al.
2015 [70]

Healthy males (n = 10) • 20 s- 25mL Rinse 1.2%
caffeine

• 20 s- 25 mL Rinse 6.4% CHO
• Placebo Rinse

*↑ stroop task performance

Pomportes
et al. 2017 [71]

Physically active males (n = 16)
and females (n = 6)

• 20 s- 25mL rinse 67mg
caffeine

• 20 s- 25mL rinse 7.0%
CHO

• 20 s- 25mL rinse 0.4 g
guarana

• Placebo rinse

⬌ variability or production durations
⬌ errors made

Beaven et al.
2013 [72]

Recreationally active males
(n = 12)

• 5 s- 25mL rinse 1.2%
caffeine

• 5 s- 25 mL rinse 6% CHO
• Placebo rinse

*↑ mean power in first sprint for caffeine and CHO rinses
NS ↑ maximal power in first two sprints

Beaven et al.
2013 [72]

Recreationally active males
(n = 12)

• 5 s- 25 mL rinse 1.2%
caffeine

• 5 s- 25 mL rinse 6.0% CHO
• 5 s- 25mL rinse 1.2%
caffeine

+ 6.0% CHO

*↑ peak power in first sprint
*↑ mean power in fifth sprint

Kizzi et al.
2016 [73]

Glycogen depleted,
recreationally active males
(n = 8)

• 10 s- 25mL rinse 2.0%
caffeine

• Placebo rinse

⬌ mean and peak power in 4th and 5th sprint

Sinclair and
Bottoms 2014
[74]

Healthy males (n = 12) • 5 s- 25mL rinse 0.032%
caffeine

• 5 s- 25mL rinse 6.4% CHO
• Placebo rinse

*↑ arm crank TT performance

Bottoms et al.
2014 [74]

Healthy males (n = 12) • 5 s- 125mL rinse w/ 32mg
of caffeine

• 5 s – 6.4% CHO solution
• Placebo rinse

*↑ distance cycled during the caffeine mouth rinse trial (16.2 ± 2.8
km) was significantly greater compared to placebo trial (14.9 ± 2.6
km).
There was no difference between CHO and caffeine trials

Pataky et al.
2016 [75]

Recreationally trained male
(n = 25) and female (n = 13)
cyclists

• Placebo rinse + 6mg/kg
caffeine capsule

• 25 mL rinse 300 mg caffeine
+ placebo capsule

• 25mL rinse 300mg
caffeine + 6mg/kg caffeine
capsule

*↑ 3 km cycling TT performance

Lesniak et al.
2016 [76]

Recreationally active females
(n = 7)

• 5 s- 25 mL rinse 1.2%
caffeine

• 5 s- 25 mL rinse 6.0% CHO
• 5 s- 25 mL rinse 1.2%
caffeine

+ 6% CHO

⬌ cycling TT performance

Dolan et al.
2017 [77]

College lacrosse players (n =
10)

• 5 s- 25 mL Rinse 1.2%
caffeine

• 5 s- 25 mL Rinse 6.0% CHO
• 5 s- 25 mL Rinse 1.2%
caffeine

+ 6.0% CHO
• Placebo rinse
• No rinse

⬌ intermittent sport performance

Clarke et al.
2015 [78]

Recreationally resistance-
trained males (n = 15)

• 5 s- 25 mL rinse 1.2%
caffeine

• 5 s- 25 mL rinse 6.0% CHO
• 5 s- 25 mL rinse 1.2%
caffeine

+ 6.0% CHO

⬌ total weight lifted
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cycling, as well as decreased perception of pain during
the 4th and 5th sprints following a 10 s rinse of a 2% caf-
feine rinse. While CMR has demonstrated positive out-
comes for cyclists, another study [78] in recreationally
resistance-trained males did not report any significant dif-
ferences in the total weight lifted by following a 1.2% caf-
feine rinse. CMR appears to be ergogenic in cycling to
include both longer, lower-intensity and shorter high-
intensity protocols. The findings on the topic are equivo-
cal likely because caffeine provided in this source does not
increase caffeine plasma concentration and increases in
plasma concentration are likely needed to experience an
ergogenic effect of caffeine [69]. Details of these studies, as
well as additional studies may be found in Table 5.

Caffeinated nasal sprays and inspired powders
The use of caffeinated nasal sprays and inspired powders
are also of interest. Three mechanisms of action have
been hypothesized for caffeinated nasal sprays. Firstly,
the nasal mucosa is permeable, making the nasal cavity a
potential route for local and systemic substance delivery;
particularly for caffeine, a small molecular compound
[11, 12, 30, 31]. Secondly, and similar to CMR, bitter
taste receptors are located in the nasal cavity. The use of
a nasal spray may allow for the upregulation of brain ac-
tivity associated with reward and information processing
[391]. Thirdly, but often questioned due to its unknown
time-course of action, caffeine could potentially be
transported directly from the nasal cavity to the CNS,
specifically the cerebrospinal fluid and brain by intracel-
lular axonal transport through two specific neural path-
ways, the olfactory and trigeminal [392, 393].
In two separate trials [79, 80], the effects of caffeinated

nasal sprays containing 15 mg of caffeine per mL were
examined. No significant improvements were reported
in either anaerobic and aerobic performance outcome
measures despite the increased activity of cingulate, in-
sular, and sensory-motor cortices [79]. Laizure et al. [81]
compared the bioavailability and plasma concentrations
of 100mg caffeine delivered via an inspired powder
(AeroShot) and an oral solution. Both were found to
have similar bioavailability and comparable plasma con-
centrations with no differences in heart rate or blood
pressure (Table 6).

Caffeinated gels
While caffeinated gels are frequently consumed by runners,
cyclists and triathletes, plasma caffeine concentration

studies have yet to be conducted and only three experimen-
tal trials have been reported. Cooper et al. [83] and Scott
et al. [84] examined the effects of carbohydrate-caffeinated
gels, which both included 100mg caffeine dosages along-
side 25 g and 21.6 carbohydrate, respectively. In the study
by Cooper et al. the consumption of caffeinated gels 60min
pre-exercise did not enhance intermittent sprint perform-
ance. In contrast, Scott et al. utilized a shorter time period
from consumption to the start of the exercise (i.e., 10min
pre-exercise) and found significant improvements in 2000-
m rowing performance after consumption of caffeinated
gels. Another recent study utilized caffeine gels and found
that 300mg of caffeine, provided 10min pre-exercise in-
creased vertical jump performance, strength, and power in
a sample of 17 resistance-trained men [67]. These results
tentatively suggest that timing of consumption is important
when it comes to caffeinated gels with ergogenic effects
found when consuming caffeine gels 10min but not 60min
before exercise. However, these ideas are based on results
from independent studies and therefore, future studies may
consider exploring the optimal timing of caffeine gel inges-
tion in the same group of participants. More details on
these studies may be found in (Table 7).

Caffeinated bars
Similar to caffeinated gels, no studies measured plasma caf-
feine concentration following caffeinated bar consumption;
however, absorption and delivery likely mimic that of coffee
or caffeine anhydrous capsule consumption. While caffein-
ated bars are commonly found in the market, research on
caffeinated bars is scarce. To date, only one study [82]
(Table 7) has examined the effects of a caffeine bar on exer-
cise performance. Specifically, participants that consumed a
carbohydrate-bar containing 100mg of caffeine significantly
improved their time to exhaustion during cycling compared
to a carbohydrate bar and placebo with no differences
found in ratings of perceived exertion, average heart rate
and relative exercise intensity. Furthermore, cyclists signifi-
cantly performed better on complex information processing
tests following the time trial to exhaustion after caffeine bar
consumption when compared to the carbohydrate only
trial. As there is not much data to draw from, future work
on this source of caffeine is needed.

Caffeine in combination with other ingredients
Caffeine and Creatine
A review by Trexler and Smith-Ryan comprehensively
details research on caffeine and creatine co-ingestion

Table 5 Investigations examining the effects of caffeine mouth rinsing (CMR) on exercise performance (Continued)

Author Participants Protocol Results

• Placebo rinse

Bold text associated with reported trial outcomes; s = seconds, mL =milliliters, CHO = carbohydrate, TT time trial, * = significant difference, NS = non-significant
difference, ↑ = improved performance, ↓ = decreased, ⬌ = no improvement/change, mg =milligrams
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[32]. With evidence to support the ergogenic benefits of
both creatine and caffeine supplementation on human
performance—via independent mechanisms—interest in
concurrent ingestion is of great relevance for many ath-
letes and exercising individuals [32]. While creatine and
caffeine exist as independent supplements, a myriad of
multi-ingredient supplements (e.g., pre-workouts) con-
taining both caffeine and creatine are available. It has
been reported that the often-positive ergogenic effect of
acute caffeine ingestion prior to exercise is unaffected by
creatine when a prior creatine loading protocol had been
completed by participants [394, 395]. However, there is
some ambiguity with regard to the co-ingestion of caf-
feine during a creatine-loading phase (e.g., co-ingestion
of coffee and creatine) [396–399]. Studies available to
date suggest that high-dose chronic caffeine (> 9 mg/kg)
and creatine co-ingestion should be employed cau-
tiously, as counteracting mechanisms on Ca2+ clearance
and release, and muscle relaxation time have been hy-
pothesized [396, 398]. While favorable data exist on
muscular performance outcomes and adaptations in in-
dividuals utilizing multi-ingredient supplements (e.g.,

pre-workouts), these results may be confounded by
other ingredients (e.g., beta-alanine, citrulline malate,
amino acids) in the supplement [34, 95, 400, 401]. Until
future investigations are available, it may be prudent to
consume caffeine and creatine separately, or avoid high
caffeine intakes when utilizing creatine for muscular
benefits [402].

Caffeine and carbohydrate
To date, investigations examining the co-ingestion of
carbohydrate and caffeine compared with carbohydrate
alone prior to and/or during exercise have produced in-
consistent results [196, 264, 403–405]. This is likely due
to the heterogeneity of experimental protocols that have
been implemented and examined. Nonetheless, a 2011
systematic review and meta-analysis of 21 investigations
[406] concluded the co-ingestion of carbohydrate and
caffeine significantly improved endurance performance
when compared to carbohydrate alone. However, it
should be noted that the magnitude of the performance
benefit that caffeine provides is less when added to
carbohydrate (i.e., caffeine + carbohydrate vs.

Table 6 Investigations examining the effects of caffeine nasal sprays on exercise and cognitive performance

Author Participants Protocol Results

De Pauw et al. 2017
[79]

Healthy males (n = 10) • Nasal spray 15mg/mL caffeine
• Nasal spray 80mg/mL glucose
• Placebo nasal spray

*↑ activity of cingulate, insular, and sensory-motor
cortices
⬌ stroop task performance

De Pauw et al. 2017
[80]

Moderately trained males
(n = 11)

• Nasal spray 15mg/mL caffeine
• Nasal spray 80mg/mL glucose
• Placebo nasal spray

⬌ plasma caffeine levels
⬌ wingate performance
⬌ 30min cycling TT performance
⬌ stroop task performance

Laizure et al. 2017
[81]

Healthy adults (n = 17) • Inspired powder 100 mg/mL caffeine
(AeroShot)

• Oral solution 100mg/248mL caffeine

⬌ peak plasma caffeine levels
⬌ bioavailability

mg/mL =milligram per milliliter, TT = time trial, * = significant difference, ⬌ = no improvement/change, ↑ = increased, ↓ = decreased, min =minute

Table 7 Investigations examining the effects of caffeinated bars and gels on exercise performance

Author Participants Protocol Results

Hogervorst et al.
2008 [82]

Well-trained male
cyclists (n = 24)

• Bar with 100mg caffeine
and 45.0 g CHO

• Bar with only 45.0 g CHO
• 300mL non-caloric
beverage

*↑Stroop and Rapid Visual Information Processing tests after 140 min and
time to exhaustion exercise trial at 75% VO2max

Cooper et al.
2014 [83]

Recreationally trained
males (n = 12)

• Gel with 100mg caffeine
and 25.0 g CHO

• Gel with 25 g CHO
• Gel placebo

*↓ fatigue and RPE during 3rd sprint set
NS: sprint performance

Scott et al. 2015
[84]

Male college athletes
(n = 13)

• Gel with 21.6 g CHO and
100mg caffeine

• Gel with 21.6 g CHO

*↑ performance in 2000m rowing task

Venier et al.
2019 [67, 68]

Resistance-trained
men (n = 17)

• Gel with 88 g CHO and
300mg caffeine

• Gel with 88 g CHO

*↑ jumping height
*↑ isokinetic strength and power
*↑ movement velocity in the bench press
NS: whole-body power output

Bold text associated with reported trial outcomes; mg =milligrams, g = grams, CHO = carbohydrate, * = significant, NS = non-significant difference, VST = visual
sensitivity test, ↑ = improved performance, ↓ = decreased, m =meters, RPE = rating of perceived exertion, mL =milliliters
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carbohydrate) than when isolated caffeine ingestion is
compared to placebo [404]. Since the 2011 publication
[406], results remain inconclusive, as investigations re-
lated to sport-type performance measures [83, 250, 407–
411], as well as endurance performance [84, 367, 412]
continue to be published. Overall, to date it appears caf-
feine alone, or in conjunction with carbohydrate is a su-
perior choice for improving performance, when
compared to carbohydrate supplementation alone.
While the majority of training or performing individ-

uals would choose to supplement with caffeine prior to
exercise or during competition, interest in caffeine’s ef-
fect on muscle glycogen repletion during the post-
exercise period has garnered interest. Few studies to date
have investigated the effect of post-exercise caffeine con-
sumption on glucose metabolism [413, 414]. While the
delivery of exogenous carbohydrate can increase muscle
glycogen alone, Pedersen et al. [413] report faster glyco-
gen repletion rates in athletes who co-ingested caffeine
(8 mg/kg body mass) and carbohydrate (4 g/kg body
mass), compared to carbohydrate alone (4 g/kg body
mass). In addition, it has been demonstrated that co-
ingestion of caffeine with carbohydrate after exercise im-
proved subsequent high-intensity interval-running cap-
acity compared with ingestion of carbohydrate alone.
This effect may be due to a high rate of post-exercise
muscle glycogen resynthesis [415]. The data to date indi-
cate that caffeine may potentiate glycogen resynthesis
when high dosages of caffeine (~ 8mg/kg body mass)
are consumed during the recovery phase of exercise;
though, when adequate carbohydrate is provided post-
exercise, caffeine may not provide any glycogen-
resynthesizing benefit [414]. Practically, caffeine inges-
tion in close proximity to sleep, coupled with the neces-
sity to speed glycogen resynthesis, should be taken into
consideration, as caffeine before bed may cause sleep
disturbances.

Caffeine within brewed coffee
The genus of coffee is Coffea, with the two most com-
mon species Coffea arabica (arabica coffee) and Coffea
canephora (robusta coffee) used for global coffee pro-
duction. While coffee is commonly ingested by exercis-
ing individuals as part of their habitual diet, coffee is
also commonly consumed pre-exercise to improve en-
ergy levels, mood, and exercise performance [11, 40]. In-
deed, a recent review on coffee and endurance
performance, reported that that coffee providing be-
tween 3 and 8.1 m/kg of caffeine may benefit endurance
performance, such as time trial performance or time to
exhaustion [11]. To date, research has only examined
coffee’s effects on cycling and running exercise perform-
ance. Specifically, Higgins et al. [11] highlight that sig-
nificant improvements over control conditions were

found with doses up to 8.1 mg/kg; however, performance
benefits were similar to 3 mg/kg servings. Since the re-
lease of the Higgins et al. review, three additional studies
have been published, examining the effects of coffee on
exercise performance. Specifically, Niemen et al. [416]
assessed the impact of high chlorogenic acid coffee on
performance. Cyclists were asked to consume coffee or
placebo (300 ml/day) for 2 weeks prior to completing a
50-km time-trial. Chlorogenic acid coffee provided 1066
mg chlorogenic acid plus 474 mg caffeine, while the pla-
cebo consisted of 187 mg chlorogenic acid and 33 mg
caffeine. Fifty-km cycling time performance and power
did not differ between trials. Participant’s heart rate and
ventilation were higher with chlorogenic acid coffee dur-
ing the time-trial, potentially provoking the non-
significant performance outcomes. Regarding resistance
exercise performance, only two studies [55, 56] have
been conducted to date. One study [56] reported that
coffee and caffeine anhydrous did not improve strength
outcomes more than placebo supplementation. On the
other hand, Richardson et al. [55] suggested that coffee
consumption may improve lower-body muscular endur-
ance performance similarly as isolated caffeine ingestion.
The results between studies differ likely because it is
challenging to standardize the dose of caffeine in coffee
as differences in coffee type and brewing method may
alter caffeine content [417]. Even though coffee may en-
hance performance, due to the difficulty of standardizing
caffeine content most sport dietitians and nutritionists
use anhydrous caffeine with their athletes due to the dif-
ficulty of standardizing caffeine content.

Caffeine containing energy drinks and pre-workouts
Consumption of energy drinks has become more com-
mon in the last decade, and several studies have exam-
ined the effectiveness of energy drinks as ergogenic aids
(Table 8). Souza and colleagues [418] completed a sys-
tematic review and meta-analysis of published studies
that examined energy drink intake and physical perform-
ance. Studies including endurance exercise, muscular
strength and endurance, sprinting and jumping, as well
as sport-type activities were reviewed. Dosages of caf-
feine ranged from 40 to 325 mg among the studies, with
the majority of drinks also containing taurine. While it
was concluded that energy drink consumption increased
performance in the aforementioned performance activ-
ities, the ergogenic effect was not solely attributed to the
amount of caffeine administered, but improved also as a
result of taurine content (dosages ranged 71 to 3105 mg)
[418]. This is similar to data from another study, report-
ing that Red Bull (500 ml serving; 160 mg of caffeine/
2.25 mg/kg), also containing taurine, glucose, glucurono-
lactone, and B vitamins, improved 5-km run perform-
ance in recreationally athletes [91]. It has been suggested
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Table 8 Energy drinks and pre-workout supplements

Author Participants Protocol Results Other supplements

Endurance
Exercise
Performance

Alford
et al.
2001 [85]

Young adults
(n = 36)

-250mL Energy drink
with 80mg caffeine
and 26 g CHO
-Carbonated placebo
-No drink

*↑ Aerobic Endurance -26 g CHO

Candow
et al.
2009 [86]

Young men
(n = 9) and
women (n = 8)

-CHO free energy
drink with 2mg/kg
caffeine
-Non-caffeinated
version of energy drink

⬌ High-intensity Run Time to
Exhaustion

Walsh
et al.
2010 [87]

Recreationally
active men (n =
9) and women
(n = 6)

-26 g Pre-workout
with unknown
amount of caffeine
(ingredients listed in
column 5)
-Placebo

*↑ Mod-intensity Run Time to
Exhaustion

−2.05 g taurine, caffeine, and
gluconolactone, 7.9 g L-leucine, L-
isoleucine, L-valine, L-arginine and
L-glutamine, 5 g of di-creatine cit-
rate, and 2.5 g of βalanine

Ivy et al.
2009 [88]

Trained cyclists
men (n = 6) and
women (n = 6)

-Energy drink with
160mg caffeine
-Placebo

*↑ Cycle Time Trial Performance by
4.7%

-2.0 g taurine, 1.2 g
glucuronolactone, 54 g
carbohydrate, 40 mg niacin, 10mg
pantothenic acid, 10mg vitamin
B6, and 10 microg vitamin B12

Sanders
et al.
2015 [89]

Healthy
participants
(n = 15)

−12 oz. Placebo (Squirt)
− 8.4 oz. Red Bull®
− 16 oz. Monster
Energy®
− 2 oz. 5-h ENERGY®

⬌ RPE on Treadmill at 70% VO2 max
⬌ Oxygen Consumption at 70% VO2

max

Al-Fares
et al.
2015 [90]

Healthy female
students (n =
32)

-Energy drink with
160mg caffeine
-Placebo with similar
CHO content

⬌ VO2 max −2.0 g taurine, 1.2 g
glucuronolactone, 54 g
carbohydrate, 40 mg niacin, 10mg
pantothenic acid, 10mg vitamin
B6, and 10 μg vitamin B12

Prins et al.
2016 [91]

Recreation
endurance male
(n = 13) and
female (n = 5)
runners

-Energy drink with
160mg caffeine
-Placebo

*↑ 5 k Time Trial −2.0 g taurine, 1.2 g
glucuronolactone, 54 g
carbohydrate, 40 mg niacin, 10mg
pantothenic acid, 10mg vitamin
B6, and 10 microg vitamin B12

Kinsinger
et al.
2016 [92]

Recreational
male athletes
(n = 23)

−1.93 oz Energy shot
with 100mg caffeine
− 1.93 oz. Placebo

⬌ RPE on Treadmill VO2 max Test
⬌ Treadmill VO2 max

-1870mg (taurine, glucuronic acid,
malic acid, N-acetyl L-tyrosine, L-
phenylalanine and citicoline)

Resistance/
Sprint
Performance

Forbes
et al.
2007 [93]

Young men
(n = 11) and
women (n = 40

-Energy drink with 2
mg/kg caffeine
-Non-caffeinated
version of energy drink

*↑ Bench-Press Repetitions by 6%

Del Coso
et al.
2012 [94]

Healthy men
(n = 9) and
women (n = 3)

-Energy drink with 1
mg/kg caffeine
-Energy drink with 3
mg/kg caffeine
-Non-caffeinated
version of energy drink

*↑ Half-Squat Maximal Power by 7%
*↑ Bench-Press Maximal Power by 7%

Gonzalez
et al.
2011 [95]

Resistance-
trained college
males (n = 8)

−26 g Pre-workout
with unknown
amount of caffeine
(ingredients listed in
column 5)
-Placebo

*↑ # of Bench-Press and Squat Repeti-
tions at 80% 1RM by 11.8%
*↑ Average Power Output for the
Workout

-2.05 g taurine, caffeine, and
gluconolactone, 7.9 g L-leucine, L-
isoleucine, L-valine, L-arginine and
L-glutamine, 5 g of di-creatine cit-
rate, and 2.5 g of βalanine

Astorino
et al.
2011 [96]

Collegiate
female soccer
players (n = 15)

-255mL energy drink
with 1.3 mg/kg
caffeine + 1 g taurine
-Placebo

⬌ Sprint-based Exercise Performance -1 g taurine

Campbell
et al.
2016 [97]

College men
(n = 8) and
women (n = 11)

-37mL Energy shot
with 2.4 mg/kg
caffeine

⬌ Vertical Jump
⬌ YMCA Bench-Press
NS↑ Curl-up Endurance

Guest et al. Journal of the International Society of Sports Nutrition            (2021) 18:1 Page 25 of 37



Table 8 Energy drinks and pre-workout supplements (Continued)

Author Participants Protocol Results Other supplements

-37 mL Placebo

Eckerson
et al.
2013 [98]

Resistance-
trained men
(n = 17)

−500mL Energy drink
with 160mg
caffeine + 2 g taurine
− 500mL Energy drink
with 160 mg caffeine
− 500mL Placebo

⬌ 1RM Bench-Press Strength
⬌ Total Volume Lifted

−2 g Taurine

Astley
et al.
2018 [99]

Resistance-
trained men
(n = 15)

-Energy drink with
2.5 mg/kg caffeine
-Non-caffeinated
version of energy drink

*↑ Knee Extensions in Dominant Leg
*↑ 80% 1RM Bench-Press Reps
*↑ Isometric Grip Strength

Magrini
et al.
2016
[100]

Healthy men
(n = 23) and
women (n = 8)

-4 oz Energy drink
with 158mg caffeine
-4 oz. Placebo

⬌ Total Push-ups

Anaerobic
Exercise
Performance
for Power

Forbes
et al.
2007 [93]

Young men
(n = 11) and
women (n = 4)

-Energy drink with 2
mg/kg caffeine
-Non-caffeinated
version of energy drink

⬌ Wingate Peak Power
⬌ Wingate Average Power

Campbell
et al.
2010
[101]

Recreationally
active young
men (n = 9) and
women (n = 6)

-Energy drink with
2.1 mg/kg caffeine
-Non-caffeinated
version of energy drink

⬌ Wingate Peak Power

Hoffman
et al.
2009
[102]

Male strength/
power athletes
(n = 12)

-Energy drink with
1.8 mg/kg caffeine
-Non-caffeinated
version of energy drink

⬌ Wingate Power Performance

Alford
et al.
2001 [85]

Young adults
(n = 36)

−250mL Energy drink
with 80mg caffeine
and 26 g CHO
-Carbonated placebo
-No drink

*↑ Maximum Speed on Cycle
Ergometer

-26 g CHO

Campbell
et al.
2016 [97]

College men
(n = 8) and
women (n = 11)

-37mL Energy shot
with 2.4 mg/kg
caffeine
-37 mL Placebo

⬌ Repeated Sprint Speed

Mood/
Reaction
Time/
Alertness

Alford
et al.
2001 [85]

Young adults
(n = 36)

-250mL Energy drink
with 80mg caffeine
and 26 g CHO
-Carbonated placebo
-No drink

*↑ Choice Reaction Time
*↑ Concentration
*↑ Memory

-26 g CHO

Walsh
et al.
2010 [87]

Recreationally
active men (n =
9) and women
(n = 6)

-26 g Pre-workout
with unknown
amount of caffeine
(ingredients listed in
column 5)
-Placebo

*↑ Focus and Energy in 1st 10 min of
Exercise
⬌ Energy, Fatigue, and Focus
Immediately Post-exercise

-2.05 g taurine, caffeine, and
gluconolactone, 7.9 g L-leucine, L-
isoleucine, L-valine, L-arginine and
L-glutamine, 5 g of di-creatine cit-
rate, and 2.5 g of βalanine

Hoffman
et al.
2009
[102]

Male strength/
power athletes
(n = 12)

-Energy drink with
1.8 mg/kg caffeine
-Non-caffeinated
version of energy drink

*↓ Reaction Time
*↑ Feelings of Energy and Focus
NS↑ Alertness

Seidl et al.
2000
[103]

Male (n = 4) and
female (n = 6)
graduate
students

-Energy drink with
160mg caffeine
-Placebo

*↓ Reaction Time at Night
⬌ Vitality Scores at Night
[[when compared to the Placebo
Group who saw a significant decline
in vitality and response time]]

2.0 g taurine, 1.2 g
glucuronolactone, 54 g
carbohydrate, 40 mg niacin, 10mg
pantothenic acid, 10mg vitamin
B6, and 10 microg vitamin B12

Scholey
et al.
2004
[104]

Healthy
volunteers (n =
20)

-250ml Energy drink
with 75mg caffeine
-Non-caffeinated
version of energy drink
-Placebo

*↑ Secondary Memory
*↑ Speed of Attention

−37.5 g glucose, ginseng, and
Ginkgo biloba

Guest et al. Journal of the International Society of Sports Nutrition            (2021) 18:1 Page 26 of 37



that the additional taurine to caffeine containing energy
drinks or pre-workout supplements, as well as the
addition of other ergogenic supplements such as beta-
alanine, B-vitamins, and citrulline, may potentiate the ef-
fectiveness of caffeine containing beverages on athletic
performance endeavors [419]. However, other suggest
that the ergogenic benefits of caffeine containing energy
drinks is likely attributed to the caffeine content of the
beverage [420]. For a thorough review of energy drinks,
consider Campbell et al. [419]. Table 8 provides a review
of research related to energy drinks and pre-workout
supplements.

Summary
Caffeine in its many forms is a ubiquitous substance fre-
quently used in military, athletic and fitness populations
which acutely enhance many aspects of exercise per-
formance in most, but not all studies.
Supplementation with caffeine has been shown to

acutely enhance many aspects of exercise, including pro-
longed aerobic-type activities and brief duration, high-
intensity exercise. Caffeine is ergogenic when consumed
in doses of 3–6 mg/kg body mass. The most commonly
used timing of caffeine supplementation is 60 min pre-
exercise. The optimal timing of caffeine ingestion likely
depends on the source of caffeine. Caffeine’s effects seem
to be similar in both trained and untrained individuals.
Studies that present individual participant data

commonly report substantial variation in caffeine inges-
tion responses. Inter-individual differences may be asso-
ciated with habitual caffeine intake, genetic variations,
and supplementation protocols in a given study. Caffeine
may be ergogenic for cognitive function, including atten-
tion and vigilance. Caffeine may improve cognitive and
physical performance in some individuals under condi-
tions of sleep deprivation. Caffeine at the recommended
doses does not appear significantly influence hydration,
and the use of caffeine in conjunction with exercise in
the heat and at altitude is also well supported. Alterna-
tive sources of caffeine, such as caffeinated chewing
gum, mouth rinses, and energy gels, have also been
shown to improve performance. Energy drinks and
pre-workouts containing caffeine have been demon-
strated to enhance both anaerobic and aerobic per-
formance. Individuals should also be aware of the
side-effects associated with caffeine ingestion, such as
sleep disturbance and anxiety, which are often linearly
dose-dependent.
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Table 8 Energy drinks and pre-workout supplements (Continued)

Author Participants Protocol Results Other supplements

Smit et al.
2004
[105]

Healthy
volunteers (n =
271)

-Caffeine + CHO +
Carbonation
-Placebo with
carbonation
-Placebo without
carbonation

⬌ Mood and Performance (during
fatiguing and cognitively demanding
tasks)

-CHO

Rao et al.
2005
[106]

Healthy
volunteers (n =
40)

-Caffeine + CHO
-Placebo

*↑ Event Related Potentials in ECGs
*↑ Behavioral Performance in
Accuracy and Speed of Performance

-CHO

Howard
et al.
2010
[107]

College
students (n =
80)

-Energy drink with 1.8
ml/kg caffeine**
-Energy drink with
3.6 ml/kg caffeine
-Energy drink with
5.4 ml/kg caffeine
-Non-caffeinated
version of energy drink
-No drink

Compared with the placebo and no
drink conditions, the energy drink
doses decreased reaction times on
the behavioral control task, increased
subjective ratings of stimulation and
decreased ratings of mental fatigue.
Greatest improvements in reaction
times and subjective measures were
observed with the lowest dose (1/8
mg/kg).

Taurine, sucrose and glucose, B-
group vitamins

Wesnes
et al.
2016
[108]

Young
volunteers (n =
24)

-250mL Energy drink
with 80mg caffeine +
27 g glucose
-250 mL Energy drink
with 80 mg caffeine
-250 mL Placebo

*↑ Working and Episodic Memory -27 g Glucose

Outcomes are bold group specific; * = significant difference, ⬌ = no change, ↑ = improved performance, ↓ = decrease, TT = time trial, RPA = rating of perceived
exertion, NS = non-significant improvement, mg/kg =milligram per kilogram, g = grams, CHO = carbohydrate, min =minutes, VO2 = aerobic capacity, m =meters,
ml = milliliters, RPE = rating of perceived exertion
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