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Abstract  

Electronic and plasmonic band structure engineering of graphene using superlattices  

Yutao Li  

  

  Patterning graphene with a spatially periodic potential provides a powerful means to 

modify its electronic properties. In particular, in twisted bilayers, coupling to the resulting 

moiré́ superlattice yields an isolated flat band that hosts correlated many-body phases. 

However, both the symmetry and strength of the effective moiré́ potential are constrained 

by the constituent crystals, limiting its tunability. Here, we have exploited the technique of 

dielectric patterning6 to subject graphene to a onedimensional electrostatic superlattice 

(SL). We observed the emergence of multiple Dirac cones and found evidence that with 

increasing SL potential the main and satellite Dirac cones are sequentially flattened in the 

direction parallel to the SL basis vector, behavior resulting from the interaction between the 

one-dimensional SL electric potential and the massless Dirac fermions hosted by graphene. 

Our results demonstrate the ability to induce tunable anisotropy in high-mobility two-

dimensional materials, a long-desired property for novel electronic and optical applications. 



 

Moreover, these findings offer a new approach to engineering flat energy bands where 

electron interactions can lead to emergent properties.   

The photon analog of electronic superlattice is photonic crystals. Efficient control of 

photons is enabled by hybridizing light with matter. The resulting light-matter 

quasiparticles can be readily programmed by manipulating either their photonic or matter 

constituents. Here, we hybridized infrared photons with graphene Dirac electrons to form 

surface plasmon polaritons (SPPs) and uncovered a previously unexplored means to control 

SPPs in structures with periodically modulated carrier density. In these photonic crystal 

structures, common SPPs with continuous dispersion are transformed into Bloch polaritons 

with attendant discrete bands separated by bandgaps. We explored directional Bloch 

polaritons and steered their propagation by dialing the proper gate voltage. Fourier analysis 

of the near-field images corroborates that this on-demand nano-optics functionality is 

rooted in the polaritonic band structure. Our programmable polaritonic platform paves the 

way for the much-sought benefits of on-the-chip photonic circuits.  
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Chapter 1. Superlattices and band structure engineering 

1.1 Superlattices and photonic crystals 

The concept of “superlattice” was first developed by L.Esaki and R.Tsu in 1970 by 

considering a one-dimensional periodic potential within a 3D semiconductor system [1]. 

Specifically, they considered a superlattice formed by a periodic variation of alloy 

composition or of impurity density introduced during epitaxial growth of semiconductors like 

Ge, Si, Ge-Si alloys and GaAs. When the period of the superlattice is on the order of ~100 Å 

(which is about 20 times the lattice constant of the host crystal) and is shorter than the 

electron mean free path, the band structure of the electron is divided into a series of allowed 

and forbidden minibands, with negative differential conductivity possible near the top edges 

of the allowed bands. Shortly later, Esaki and Chang demonstrated transport signatures from 

quantum states in an 85Å period GaAs-AlAs superlattice device. [2] Since then the concept 

of superlattice has been extended from 1D superlattice (1DSL) to 2D[3, 4], 3D[5], or even 

non-periodic superlattices[6], and the host crystals range from semiconductors[1, 2], 

2DEGs[4, 7], and later 2D materials[8, 9, 10, 11, 12], resulting in exotic engineered band 

structure features including satellite Dirac cones[10, 11, 12] and flat bands related to 

superconductivity and Mott insulators[13, 14], Chapters 1~4 of this dissertation discuss 

further efforts to engineer transport anisotropy and Dirac cone flattening/unflattening cycles 

in a graphene 1D superlattice system.  

A closely related concept is photonic crystals, which are periodic nanostructures engineered 

for the purpose of controlling the motion of photons. Although photonic crystals occur 

naturally in opals[15] and certain butterfly wings [16]; have long been studied and used in the 

form of diffraction gratings (an example of a 1D photonic crystal), the term “photonic 

crystal” was first coined by Eli Yablonovitch [17]and Sajeev John[18] in 1987 as they 

proposed a 3D photonic crystal that exhibits a full photonic band gap. The concept of 
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photonic crystals has recently been extended to surface plasmon polaritons (SPPs)[19], which 

are hybrid excitations of infrared photons and Dirac electrons with wavelengths much shorter 

than that of the incident photons. Just like electronic superlattices that may engineer novel 

band structure features not present in the host crystal, photonic crystals can tune the 

plasmonic band structure of SPPs hosted in graphene, leading the way to programmable SPP 

switches that will be further explored in Chapter 5. 

 

1.2 Superlattices based on 2D materials 

1.2.1 2D Materials and their heterostructures 

In Richard Feynman’s talk “There’s Plenty of Room at the Bottom” in 1959, he envisioned a 

“great future” where “we can arrange all the atoms the way we want” and where there are 

“layered structures with just the right layers”. [20]The latter has been at least partially 

realized with the advent of 2D materials and their heterostructures.  

Graphene is the first 2D material to be unambiguously produced and identified[21]. It is a 

two-dimensional sheet of carbon atoms arranged in a honeycomb pattern. Tight-binding 

calculations show that graphene hosts Dirac points in its band structure where the energy 

dispersion is linear, indicating a carrier effective mass of zero. This is a crucial difference 

between graphene and semiconductor based two-dimensional electron gas (2DEGs), where 

the carriers have a parabolic band structure and therefore nonzero effective mass. As a result, 

graphene-based 1DSL systems feature flattening/unflattening cycles of their Dirac cones as 

superlattice modulation increases, which are not seen in 2DEG-based 1DSLs. (Chapters 2 and 

4) 

Numerous other classes of 2D materials, with one or few layers of atoms, have been 

discovered since the advent of graphene in 2004: hexagonal boron nitride (hBN), transition 

metal dichalcogenides (TMDCs), 2D magnets (CrI3,Cr2Ge2Te6) [22], and phosphorene [23]. 
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They, along with graphene, can be stacked on each other thanks to interlayer van der Waals 

interactions, forming 2D heterostructures, or Feynman’s “layered structures with just the 

right layers”. Some of these heterostructures, such as magic angle twisted bilayer graphene 

and graphene-hBN moiré structures, are themselves interesting superlattice systems without 

the need of imposing further superlattice potentials. In my studies on the transport and optical 

properties of graphene subject to patterned superlattice potential detailed in this dissertation, 

hBN-graphene-hBN heterostructures are used to enhance carrier mobilities of graphene[24] 

and facilitate carrier density tuning by field effect, as hBN functions as a dielectric between 

graphene and device gates.   

 

1.2.2 Moiré superlattices 

A moiré pattern can be formed by a nonzero twisted angle or the mismatch in lattice 

constants between two adjacent layers of 2D materials.  

The first moiré superlattice device based on 2D materials was made by Li et al[8] where 

graphene is placed on monolayer graphite at a nonzero twist angle, resulting in extra Dirac 

points that produce dI/dV peaks.   

The twisted bilayer graphene (tBLG) band structure changes dramatically as a function of 

twist angle, and at the so-called “magic angle” of 1.1° a pair of isolated flat bands appear near 

zero Fermi energy, leading the way to Mott-like insulating behavior and superconductivity 

near half-filling of the flat band. [13]A similar effect was later discovered in twisted bilayer 

WSe2 with transport signatures of correlated states seen at flat band half filling over a 

relatively wider range of twist angles from 4° to 5.1°[14].. 
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Figure 1.1 Twisted bilayer graphene and twisted WSe2 moiré superlattices (a) Reprinted 

from [13] showing the band structure of tBLG at twist angle 𝜃 = 1.1°, the “magic angle” 

where flat bands forms at zero Fermi energy (b) Reprinted from [13] showing the 

conductance of a 𝜃 = 1.16° device measured at 𝑇 = 70𝑚𝐾. (c) Reprinted from [13] 

showing the longitudinal resistance 𝑅**	as a function of temperature and carrier density, for 

the same 𝜃 = 1.16° device as in (b). At the half-filling of the valence flat band ( IJK
L
= −2) 

Mott-like insulating behavior and superconductivity are seen. (d) Reprinted from [14] 

showing the longitudinal resistance 𝑅**	as a function of temperature and carrier density, for 

a 𝜃 = 5.1°	twisted WSe2 device at displacement field 𝐷 = 0.45𝑉/𝑛𝑚. It shows Mott-like 

insulating behavior and superconductivity similar to those in tBLG. 

 

The first graphene/hexagonal boron nitride (hBN) moiré superlattice device was made by 

Xue et al in a graphene-hBN system in 2011[9]. By superposing graphene and hBN lattices 

on each other at a twist angle of near zero, a moiré pattern is formed with wavelength on the 

order of 10nm, about 40 times those of the BLG or hBN crystals. The existence of the moiré 
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pattern can be confirmed by scanning tunneling microscopy (STM). One year later, 

Yankowitz et al confirmed that the moiré pattern acts as a superlattice modulation potential, 

as measurement of dI/dV shows satellite peaks at nonzero gate voltages that correspond to 

nonzero carrier densities, indicating local density of states (LDOS) minima and the existence 

of satellite Dirac cones.[10] Later, Dean et al discovered similar effects in a bilayer graphene 

(BLG)-hBN system by demonstrating the existence of satellite longitudinal resistance 

peaks.[11]  

 
Figure 1.2 hBN/Graphene moiré superlattices (a) Reprinted from [11]. A sketch showing 

the emergence of a hBN/Graphene moiré superlattice. The moiré wavelength depends on the 

twist angle 𝜃. (b) Reprinted from [9]. An STM topographic image of a hBN/Graphene moiré 
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superlattice. Scale bar: 2μm. Inset is a zoomed in view with a scale bar of 0.3μm. (c) 

Reprinted from [10]. dI/dV of two hBN/graphene moiré samples, shown in red (13.4nm 

wavelength) and black (9.0nm wavelength) respectively, as a function of sample voltage, 

which determines the carrier density in graphene. Arrows indicate dips in dI/dV curves that 

correspond to the emergence of satellite Dirac cones. (d) Reprinted from [11]. Longitudinal 

resistance in a hBN/bilayer graphene device at	𝑇 = 0.3𝐾 as a function of gate bias that 

determines the carrier density in graphene. Inset shows the change of longitudinal 

conductivity versus temperature, indicating that the satellite features disappear at 𝑇 > 100𝐾. 

 

Although moiré superlattices have enabled these remarkable feats of band structure 

engineering, the geometries of moiré patterns, and thus of the superlattice modulation 

potentials, are limited to triangular and certain quasicrystal patterns with wavelengths ~10nm. 

In addition, the physical nature of moiré superlattice modulation is a complicated mixture of 

electrostatic and strain modulations [25], with no easy way to separate contributions of these 

two effects. Furthermore, the strength of superlattice modulation cannot be independently 

tuned. These restrictions severely limit the application of moiré superlattices in engineering 

electronic structures. 

 

1.2.3 Patterned superlattices 

The idea of patterned superlattices is to directly pattern the desired geometry of the 

superlattice modulation onto the device using nanolithography techniques. Patterned 

superlattices is an established technique in the field of 2DEG superlattice research but 

remains a burgeoning subfield in 2D material superlattices. Due to the relative ease of 

making electrical contacts to graphene than TMDCs, all the experimental work on patterned 

superlattices in 2D materials so far are made on graphene.  
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There are three main routes to patterned superlattices: Patterning the 2D material itself, gate 

patterning and dielectric patterning. In 2019, Jessen et al directly dug out a 35nm-pitch 

triangular hole pattern out of a graphene sheet encapsulated between two hBN layers.[26] 

Despite the direct patterning on graphene, their device still has a carrier mobility around 800 

cm-2 V-1 s-1, ensuring ballistic transport on the scale of the minimum feature size of ~10nm. 

Multiple resistance peaks unseen in pristine graphene are seen in this nanopatterned graphene 

device, and they diminish as temperature increases, suggesting modifications to the graphene 

band structure. Furthermore, signatures of semiclassical “skipping orbit states” around the 

etched hole sites are extracted from magnetotransport data.  
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Figure 1.3 Lithographically patterned graphene Reprinted from [26]. (a) SEM image of a 

hBN-graphene-hBN heterostructure patterned by etching away the graphene (and the hBN on 

top of it) in a triangular array of holes with period 35nm. Minimum feature size = 12~15nm. 

(b) Schematics of a Hall bar device used for transport measurement. Data from pristine 

graphene and patterned graphene can be measured simultaneously. (c) Longitudinal 

resistivity versus gate voltage, thus the carrier density, at various temperatures. At low 

temperature nanostructured graphene exhibits resistivity peaks that are smoothed out at high 

temperature. The side peaks at 𝑉/ = ±7.6𝑉 are attributed to moiré superlattice. (d) In a 

semiclassical picture, under finite magnetic field the charge carriers form “skipping orbits” 

around the perimeters of the etched holes. Magnetoresistance therefore is expected to show 

oscillation with a period Δ𝐵 = 8ℏ/𝑒(2𝜋𝑅V)X where 𝑅V is the hole radius. This oscillation 

is confirmed with 𝜕𝜌**/𝜕𝑉/  data. 

 

The direct patterning on graphene, while allowing for arbitrary geometries of superlattice 

modulation, is unable to provide a knob to tuning the strength of modulation once the device 

is fabricated. Since parts of the graphene itself is etched, the Hamiltonian of the patterned 

graphene system is very different from that of graphene (as can be corroborated by the 

presence of “skipping orbit states”), and cannot be understood as simply adding a position 

dependent superlattice modulation potential term to the pristine graphene Hamiltonian.  

Both gate patterning and dielectric patterning preserve the graphene itself, while 

electrostatically inducing a carrier density distribution pattern 𝑛(𝑟) on graphene surface 

with a pitch of ~40nm. The induced carrier density can be broken into two parts, 𝑛(𝑟) = 𝑛] +

Δ𝑛(𝑟), where 𝑛] is the average carrier density in graphene and Δ𝑛(𝑟) is the periodic 

modulation. Δ𝑛(𝑟) results in a local variation in Dirac point energies 𝐸`a𝑛(𝑟)c =

−𝑠𝑔𝑛a𝑛(𝑟)cℏ𝑣gh𝜋|𝑛(𝑟)| where 𝑣g is the Fermi velocity of pristine graphene. The 
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Hamiltonian of the modulated graphene system can thus be expressed as the sum of a pristine 

graphene Hamiltonian term 𝐻klmnopIp = ±ℏ𝑣g𝒑 ∙ 𝝈 and the effective superlattice potential 

term 𝑈01(𝑟) = 𝐸`a𝑛(𝑟⃗)c − 𝐸`(𝑛]).  

 

Figure 1.4 Origin of the effective superlattice potential 𝑼𝑺𝑳 Reprinted from Dr. Carlos 

Forsythe’s dissertation Fractal Hofstadter Band Structure in Patterned Dielectric 

Superlattice Graphene Systems, Fig. 3.11. 

 

For both gate patterning and dielectric patterning schemes, two electrostatics gates are 

necessary to tune two parameters, namely the average carrier density in graphene 𝑛] and 

superlattice potential 𝑈01. In the case of gate patterning, one of the gates (called the SL gate) 

is nanopatterned, and the application of gate voltages on this gate induces Δ𝑛(𝑟). In the case 

of dielectric patterning, a nanopattern is etched onto the dielectric materials 

(SiO2/hBN/hydrogen silsesquioxane, etc..) that separate graphene and one of the two gates 

(also called the SL gate). Air takes over the etched sites, resulting in a local dielectric 

constant inhomogeneity that translates into Δ𝑛(𝑟) at nonzero SL gate voltages. Notice that 

in both schemes, although the SL gate itself mostly dictates the strength of superlattice 

modulation 𝑈01, by the parallel capacitor model both the SL gate and the non-SL gate 
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contribute to the average carrier density 𝑛] of the grounded graphene sheet. 𝑛] is therefore a 

linear combination of the voltages of both gates.  

Gate patterning and dielectric patterning are able to achieve superlattice modulation on the 

order of tens of meV, for a 40nm-pitch 2D superlattice on graphene, while maintaining 

relatively high carrier mobilities compared to directly patterning graphene. The relative 

strengths of these two schemes are still up to debate. More in-depth discussions on 

electrostatically engineered graphene 2D superlattices will be continued in Section 1.3.  

 

1.3 Graphene under electrostatically engineered 2D superlattice potentials 
In a 2018 paper Forsythe et al investigated a graphene device subject to a 40nm-pitch 

triangular superlattice potential made by dielectric patterning. [12] Transport data was taken 

at temperature T=220~250 mK. Besides a main longitudinal resistance peak at the charge 

neutrality point (CNP), when the superlattice potential is turned on by setting 𝑉01 = ±50𝑉 

three pairs of side resistance peaks appear at carrier densities 𝑛/𝑛8 = ±4,±7,±12 

respectively. (𝑛8 is the carrier density at which there is one electron per superlattice unit cell) 

These side resistance peaks disappear when the superlattice modulation is turned off with 

𝑉01 = 0𝑉. Plotting resistance as a function of 𝑉01 and carrier density 𝑛 also show blobs of 

resistance maxima in addition to the 𝑛 = 0 blob that already exists in pristine graphene. 

These blobs happen at fixed carrier densities 𝑛/𝑛8 = ±4, showing that 𝑉01, which 

determines the strength of superlattice modulation, has no effect on the carrier densities at 

which the side resistance peaks occur.    

The presence of these extra resistance maxima can be explained by the band structure of the 

graphene 2DSL system. The cone-shaped pristine graphene band structure is folded at the 

edges of the superlattice 1st Brillouin zone, forming superlattice minibands, and resulting in 

density of states (DOS) minima and thus resistance maxima. The 1st miniband, colored 

yellow in Fig. 1.5c, covers almost all the superlattice 1st Brillouin zone. Given the 4-fold 
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degeneracy in graphene, two from spin and two from valley, the upper edge of the yellow 

band happens at 𝑛/𝑛8 = 4. The 𝑛/𝑛8 = 12 resistance maximum correspond to DOS 

minimum at the upper edge of the 3rd miniband and the lower edge of the 4th miniband. There 

is significant overlap between the 2nd and 3rd minibands, nevertheless DOS maxima exist at 

𝑛/𝑛8 = 6~7, explaining the resistance maxima at 𝑛/𝑛8 = ±7. 

 
Figure 1.5 Graphene under patterned dielectric 2DSL Reprinted from [12]. (a) 

Schematics of a device. A triangular hole array with pitch 40nm is etched on SiO2. The 

strength of the superlattice modulation is mostly controlled by the Si gate, while both the 

metal gate and Si gate control the carrier density. (b) Simulation of electric field and carrier 
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density modulation ∆𝑛 at nonzero Si gate bias. (c) Longitudinal resistance as a function of 

Si gate bias and carrier density. (d) Measured longitudinal resistance at three different Si gate 

biases. The locations of the side resistance peaks match the locations of DOS minima. (e) 

Calculated band structure of the graphene 2DSL system with 𝑉01 = 50𝑉. The miniband 

colors in (e) match the colors in (d). 

 

Under finite magnetic field perpendicular to the sample surface, graphene develops Landau 

levels that exhibit as Landau fans emanating from CNP in longitudinal magnetoresistance 

data versus magnetic field and carrier density. In addition to this main fan, two side fans 

emanate from 𝑛/𝑛8 = ±4, as mini-Dirac cones formed by the 1st and 2nd minibands develop 

their own Landau levels. The interplay of magnetic field and a periodic structure provided by 

the superlattice give rise to fractal energy gaps called Hofstadter minigaps [27], and the 

existence of side Landau fans confirm the presence of such Hofstadter minigaps.  

 

Figure 1.6 Magnetotransport of graphene under patterned dielectric 2DSL Reprinted 

from [12]. (a) Longitudinal resistance 𝑅** as a function of magnetic field, expressed in 

terms of both B and 𝜙/𝜙8, the number of flux quanta in a superlattice unit cell, and carrier 

density 𝑛/𝑛8, the number of electrons in a superlattice unit cell. 𝑇 ≈ 250𝑚𝐾.	Hofstadter’s 

fractal spectrum can be described by two topological integers (𝑠, 𝑡) satisfying 𝑛/𝑛8 =

𝑡(𝜙/𝜙8) + 𝑠. Besides the main Landau fan that already exists in pristine graphene (𝑠 = 0), 
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features related to side Landau fans (𝑠 = ±4) are also visible. (b) Tracing of 

magnetoresistance minima from plot (a). Hofstadter minigaps associated with satellite Dirac 

cones are colored in red (𝑠 = −4) and blue (𝑠 = 4) .   

 

In 2020, Huber et al were able to replicate most of the results above by measuring a 40nm-

pitch square superlattice graphene device made by gate patterning. [28] Their reported carrier 

mobility is 40,000 cm-2 V-1 s-1, about one order of magnitude smaller than the 300,000 cm-2 V-

1 s-1 result achieved in Forysthe’s patterned dielectric device. In addition to side longitudinal 

resistance peaks at zero magnetic field and side Landau fans at finite magnetic fields already 

present in the data from the patterned dielectric device, it was shown experimentally that 

quantum Hall resistance can be a non-monotonic function of carrier density, unlike a 

monotonically decreasing sequence as expected in pristine graphene. The non-monotonicity 

of quantum Hall resistance can be explained by the competition between Hofstadter minigaps 

associated with different Landau fans, as a lower Landau level from an energetically higher 

Dirac cone (𝑠 = +4, 𝑡 = 6	in Fig 1.7c) can have a higher energy than a higher Landau level 

from an energetically lower Dirac cone (𝑠 = −4, 𝑡 = 10 in Fig 1.7c). This is a long-

predicted property of Hofstadter’s fractal energy spectra[29].  
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Figure 1.7 Magnetotransport of graphene under patterned gate 2DSL Reprinted from 

[28]. (a) Device schematics. One of two back gates of this device is patterned with a 

superlattice. Compare with the patterned dielectric scheme in Fig. 1.6(a). (b) Longitudinal 

magnetoresistance as a function of magnetic field and carrier density. T=1.5K. Side fan 

features related to 𝑠 = ±4 and 𝑠 = −8 can be resolved. (c) Hall resistance non-

monotonicity at 𝑉7k = 70𝑉, 𝐵 = 3.7𝑇. Blue line is the measured Hall resistance 𝑅*+ as a 

function of electron filling factor 𝜈 = 𝑛ℎ/𝑒𝐵. Red dotted line shows the ideal nonmonotonic 

quantum Hall sequence.  

 

Graphene 2DSL systems are the first steps towards artificial band structure engineering in 

graphene, but at zero magnetic field there are few significant novel features other than 
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satellite Dirac cones. The strength of superlattice modulation also does not have a significant 

effect on the shape of the band structure. Owing to the dimensionality mismatch between a 

1D superlattice and a 2D material in graphene, more exciting possibilities await in the quest 

for band structure engineering. 

   

1.4 Summary 
Superlattices can engineer electronic or optical/plasmonic band structure in 2D materials. In 

the latter case superlattices are often referred as photonic crystals. Both are explored in this 

dissertation. 

Superlattice hosted on 2D materials can be formed by moiré patterns that naturally occur in 

neighboring 2D layers with different lattice constant or nonzero twist angle, or by artificial 

patterning. Artificial superlattice patterning is a more versatile approach of band structure 

engineering, with more control on geometry and modulation strength. Among the three 

artificial patterning methods, gate patterning and dielectric patterning does not invade the 2D 

material itself and provide higher carrier mobilities. 

Graphene subject to patterned 2D superlattice potential develop additional Dirac cones at 

zero magnetic field and Hofstadter minigaps at finite magnetic field. But there are even more 

exotic opportunities of band structure engineering. 
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Chapter 2. Band structure of a graphene 1D superlattice system 

2.1 Dimensional mismatch 

Graphene 1D superlattices provide more opportunities of band structure engineering than 

graphene 2D superlattices, owing to the fact that graphene is a 2D material. The difference 

between 1D and 2D gives rise to two unique aspects of graphene 1DSL not found in graphene 

2DSL: transport anisotropy and heavy dependence of band structure shape (and thus carrier 

densities of resistance maxima) on the strength of superlattice modulation. 

1DSL can be described as an effective superlattice potential 𝑈01(𝑟) that depend on only one 

of the two spatial variables allowed in the graphene plane, which we call x by convention. 

Experimentally 1DSL can be produced by etching a series of equally spaced parallel lines on 

a gate or on the dielectric. It is easy to imagine that the band structure of graphene 1DSL 

would be highly anisotropic and may lead to difference in transport behaviors along x and y 

directions. As it will turn out, even the main Dirac point at CNP would be highly anisotropic 

under certain strengths of SL modulation, creating resistance maxima in the x direction while 

minima in the y direction.  

In 2DSL the strength of SL modulation has limited effects on the shape of the band structure. 

For 2nd miniband and higher, stronger SL modulation tends to push neighboring minibands 

apart, reducing possible overlapping. (The overlapping between 2nd and 3rd miniband is 

responsible for the resistance peak at 𝑛/𝑛8 = ±7 in the graphene 2DSL by Forsythe et al, 

without which the peak should occur at 𝑛/𝑛8 = ±8). But the 1st miniband always start from 

the K point in the k-space at CNP as a cone and touches all edges of the SL 1st Brillouin zone, 

regardless of SL modulation strength. Therefore the 1st miniband always covers most of the 

SL 1st Brillouin zone, guaranteeing 𝑛/𝑛8 = ±4 resistance maxima[1] (See Fig. 1.5c)   

There is no such guarantee in graphene 1DSL, as the SL 1st Brillouin zone has dimensions 

X~
1
× X~

m������J�
 , where L, the 1DSL lattice constant, is about 50nm and the lattice constant of 
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graphene is only 0.246nm! Therefore, effectively the SL 1st Brillouin zone has size X~
1
× ∞ 

and the 1st miniband, or any miniband, has no hope of covering it completely, and there is no 

equivalent “𝑛/𝑛8 = ±4 resistance maxima” argument in graphene 1DSL. In fact, the carrier 

densities of all the resistance maxima would change as SL modulation changes.  

So here is the bigger question: Does the dimensionally mismatch in 1DSL or 2DSL systems 

hosted in 3D materials result in even more exciting band structure engineering possibilities? 

 

2.2 The Hamiltonian  

Park et al [2] first investigated the band structure of a graphene 1DSL system in 2008. More 

detailed theoretical studies on this system were later done by Barbier et al[3]. Here we 

describe the Hamiltonian of the system, using notations from [3], as 𝐻 = ±ℏ𝑣g𝒌 ∙ 𝝈 + 𝕀𝑽 

where 𝝈 is the Pauli matrix vector, 𝒌 = (𝑘*, 𝑘+) is the momentum measured from K-point 

of the graphene Brillouin zone, 𝕀 is the 2x2 identity matrix. V(x) is a 1D square-wave 

potential satisfying 𝑉(𝑥 + 𝐿) = 𝑉(𝑥). Each period consists of a “well” region and a 

“barrier” region with width 𝑊" and 𝑊7 respectively. The well region has V(x)=0 while the 

barrier region has 𝑉(𝑥) = 𝑉8 > 0. The task is therefore solving the Schrödinger Equation 

𝐻Ψ = 𝐸Ψ with 𝐻 = �
𝑉 −𝑖𝑣gℏ(𝜕* − 𝑖𝜕+)

−𝑖𝑣gℏ(𝜕* + 𝑖𝜕+) 𝑉 � 

 

 



  
 

21 

Figure 2.1 Schematics of the superlattice V(x) and the definitions of 𝑳,𝑾𝒘,𝑾𝒃, 𝑽𝟎 

Reprinted from [3] 

 

We hereby define the following dimensionless variables: 𝜖 = �1
��ℏ

, 𝑢(𝑥) = �(*)1
��ℏ

, 𝑢 = ��1
��ℏ

, 

𝑠(𝑥) = sgn[𝜖 − 𝑢(𝑥)], 𝜆(𝑥) = �a𝜖 − 𝑢(𝑥)cX − 𝐿X𝑘+X 
¡
¢, tan𝜙(𝑥) = ¥¦§

¨(*)
, 𝜆 =

©ª𝜖 + «¬­
1
®
X
− 𝐿X𝑘+X¯

V/X
, Λ = ©ª𝜖 − «¬±

1
®
X
− 𝐿X𝑘+X¯

V/X
, 𝐺 = �ª𝜖 + «¬­

1
® ª𝜖 − «¬±

1
® −

𝐿X𝑘+X  /𝜆Λ 

Then eigenstates of the Hamiltonian 𝐻	have the form 𝜓(𝑥)𝑒´µ¶+ with  

𝜓(𝑥) = ·
1

𝑠(𝑥)𝑒´¸(*)¹
𝑒´¨(*)*/1, 𝜓(𝑥) = ·

1
−𝑠(𝑥)𝑒º´¸(*)¹

𝑒º´¨(*)*/1 (1) 

And the eigenenergies 𝜖 at a given a𝑘*, 𝑘+c can be found by solving the following 

equation: ([3], Eq. 7) 

cos 𝑘*𝐿 = cos ·
𝜆𝑊"
𝐿 ¹ cos ·

Λ𝑊7

𝐿 ¹ − 𝐺 sin ·
𝜆𝑊"
𝐿 ¹ sin ·

Λ𝑊7

𝐿 ¹			 (2) 

Detailed discussions on the solution of (2) will be the focus of the remainder of this chapter. 

Before doing this, we note that the dimensionless strength of SL modulation 𝑢 = ��1
��ℏ

 is 

proportional to the SL pitch 𝐿. In a patterned dielectric superlattice device, the maximum 

value of effective SL potential in the barrier regions, 𝑉8,¾m*, is mostly determined by the 

breakdown voltage of the patterned dielectric, with very little dependence on 𝐿 and the 

depth of etched SL trenches once the depth reaches about 10nm. To be able to see more 

features of graphene 1DSL in transport data, we need a higher 𝑢¾m* and therefore a higher 

SL pitch 𝐿. This is very different from the case in graphene 2DSL where we strive for a pitch 

as small as allowed by the e-beam lithography system in order to increase the carrier density 

at which the first satellite Dirac cones appear at 𝑛/𝑛8 = 4, lest the side resistance peaks get 

mired in the width of the main peak. 
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2.3 The case of Ww=0.5L  

2.3.1 Evolution of band structure as 𝒖 changes 

 

Figure 2.2 Calculated band structures for a 𝑳 = 𝟓𝟓𝒏𝒎, 𝑾𝒘 = 𝟎. 𝟓𝑳 graphene 1DSL 

system at six different strengths of SL modulation 𝒖 Dirac points that have linear 

dispersion relations in both 𝑘* and 𝑘+ are called “unflattened” and labelled by circles. 

Other Dirac points have linear dispersions in 𝑘* but higher order dispersion in 𝑘+ are 

called “partially flattened”, or just “flattened” and labelled by rectangles. At small 𝑢 certain 

higher order DPs are not very developed with nonlinear dispersion in 𝑘+, but their 

mechanism and resulting transport signatures are different from those labelled by rectangles, 

so they are still labelled by circles.  
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We first consider the case of 𝑊" = 0.5𝐿, where the “well” and “barrier” regions have the 

same length. In this scenario the band structure is symmetric about E=0 so we need only 

consider the conduction bands.  

Figure 2.2a shows graphene 1DSL band structure at 𝑢 = 2𝜋. Besides the main Dirac point 

labelled in green, a sequence of satellite DPs labelled in red appear at nonzero energies. The 

1st ,3rd,5th … satellite DPs occur at a𝑘*, 𝑘+c = (0,0) while the main DP, as long as the 

2nd,4th,6th… satellite DPs occur at a𝑘*, 𝑘+c = (± ~
1
, 0). This alternating of DP locations will 

turn out to hold true for all	𝑢. All the DPs, main or satellite, faithfully replicate the 𝐸 =

±ℏ𝑘𝑣g dispersion in the 𝑘+ direction but the Fermi velocity in the 𝑘* direction is smaller 

than that of pristine graphene. (Fig. 2.3) For 2nd and higher satellite DPs, the Dirac point 

features are not fully developed, as there is very little energy difference between the upper 

and lower bands that constitute the DPs, to the point that these “Dirac points” are not very 

different from the simple band crossings between two Dirac cones centered at 𝐾 and 𝐾 +

𝑛𝑮 (𝑛 ≥ 2, 𝑮 is the reciprocal lattice vector of the 1DSL), resulting in less conspicuous 

DOS minima than the main and 1st satellite DP.  
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Figure 2.3 Band dispersion at certain Dirac points in graphene 1DSL Colors of the bands 

correspond to the classification of DPs as explained in the legend in Figure 2.2. Dashed lines 

indicate the dispersion relation of pristine graphene 𝐸 = ±ℏ𝑘𝑣g. 

 

Figure 2.2b shows graphene 1DSL band structure at 𝑢 = 4𝜋. The most striking feature is the 

anisotropic flattening of the main Dirac point, labelled by rectangles in Figure 2.2 and 2.5. 

The dispersion relations become 𝐸~𝑘+Å at small 𝑘+ [3] while preserving the pristine 

graphene 𝐸 = ±ℏ𝑘𝑣g relation in the 𝑘* direction. All the satellite Dirac points do not 

show anisotropic flattening. In addition, the 2nd satellite DP becomes fully developed.  

Figure 2.2c shows graphene 1DSL band structure at 𝑢 = 6𝜋. Now the main DP is back to a 

cone shape again, but it is accompanied by two side DPs at 𝐸 = 0, 𝑘* = 0,	𝑘+ ≠ 0. Side 
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DPs associated with the main DP are labelled by blue. The band dispersions of the main DPs, 

side DPs and pristine graphene are different from one another. The main DP preserves the 

pristine graphene dispersion in 𝑘+ but has a much smaller Dirac velocity in 𝑘*. For the side 

DPs, the Dirac velocity in 𝑘* and 𝑘+ are both smaller than 𝑣g. (Figure 2.3) The 

renormalization of Dirac velocity in 𝑘+ is a hallmark of side DPs .The 1st satellite DP 

becomes anisotropically flattened in 𝑘+. But unlike the case in the flattening of the main DP 

at 𝑢 = 4𝜋 the band structure is not symmetric in energy about the DP, with the upper band 

being “flatter” than the lower band. 

 
Figure 2.4 Band structure energy contours of graphene 1DSL at 𝒖 = 𝟐𝝅, 𝟒𝝅, 𝟔𝝅 Notice 

that the 𝑘* range shown here is wider than 2𝜋/𝐿. The anisotropically flattened bands at 

𝑢 = 4𝜋, 6𝜋 can be easily identified. Also, it is worth noticing that the main and satellite DPs 

do not have isotropic dispersion seen in pristine graphene, as shown by the elliptical shape of 

the contour lines around the DPs. This plot also shows the existence of open orbits at high 𝑘+ 

along the 𝑘* direction. The two side DPs at 𝑢 = 6𝜋	are not shown. 

 

At 𝑢 = 8𝜋 the main DP is anisotropically flattened, but still accompanied by two side DPs 

like the case in 𝑢 = 6𝜋. The 1st satellite DP is unflattened and also accompanies by two side 

DPs labelled by black in Figure 2.2. Unlike the case of the “blue” side DPs accompanying 

the main DP, the “black” side DPs occur at a slightly lower energies than the satellite DP they 
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accompany. The 2nd satellite DP is also being anisotropically flattened, with the upper band 

being flatter than the lower band, as we have seen in the 1st satellite DP at 𝑢 = 6𝜋. At 𝑢 =

10𝜋 we have 4 side DPs for the main DP which is unflattened, the 1st and 3rd satellite DPs 

are anisotropically flattened, the 1st and 2nd satellite DPs have 2 side DPs each. At 𝑢 = 12𝜋 

we have 4 side DPs for the main DP. The main DP and 2nd,4th satellite DPs are 

anisotropically flattened. The 1st satellite DP has 4 side DPs and the 2nd and 3rd satellite DPs 

have 2 side DPs each. 

 

Figure 2.5 Slices of graphene 1DSL band structures at 𝒖 = 𝟐𝝅, 𝟒𝝅, 𝟔𝝅, 𝟖𝝅, 𝟏𝟎𝝅 along 

𝒌𝒙 = 𝟎 (top row) and 𝒌𝒚 = 𝟎 (bottom row) Dirac points are labelled by circles 

(unflattened) or rectangles (flattened in 𝑘+). For the meaning of colors see legend in Figure 

2.2. Roman numerals indicate the order of satellite DPs. Notice that not all DPs are shown, as 

the side DPs of odd-ordered satellite DPs have nonzero 𝑘* and 𝑘+. For example, the side 

DPs associated with the 1st order satellite DP at 𝑢 = 8𝜋, 10𝜋, though shown in Figure 2.2, 

are not shown here 
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 Main DP Satellite DP Side DP of 
Main DP 

Side DP of 
Satellite DP 

𝑘* 0 ±𝜋/𝐿 for odd 
𝑙, 0 for even 𝑙 

0 ±𝜋/𝐿 for odd 
𝑙, 0 for even 𝑙 

𝑘+ 0 0 ≠ 0 ≠ 0 
Energy 0 

(𝑙𝜋)
𝑉8𝐿
ℏ𝑣g

 
0 

< (𝑙𝜋)
𝑉8𝐿
ℏ𝑣g

 

Ï
𝜕𝐸
𝜕𝑘*

Ï 
= ℏ𝑣g = ℏ𝑣g < ℏ𝑣g < ℏ𝑣g 

Ð
𝜕𝐸
𝜕𝑘+

Ð 
< ℏ𝑣g < ℏ𝑣g < ℏ𝑣g < ℏ𝑣g 

Anisotropic 
Flattening 

May happen May happen No No 

Range of 𝑢 
that such DP 

exists 

[0, +∞) (0, +∞) (4𝜋,+∞) (6𝜋,+∞) 

Table 2.1 Summary of the properties of the four types of DPs available in the graphene 

1DSL system 𝑙 refers to the order of the satellite DP and is assumed to be positive.  

 

The anisotropic flattening of main and satellite DPs is a key feature of graphene 1DSL that 

are not found in graphene 2DSL or semiconductor 2DEG 1DSL systems. Generally, the 

scaling factor of 𝑣+ of l-th Dirac cone |𝑓Ò| = Ó𝑣+/𝑣gÓ for a given SL modulation 𝑢 is 

given by  

|𝑓Ò| = Ï
𝑢
2𝜋𝑙 ©1 −

(−1)Ò𝑒
´«
X ¯ ·

1
𝑢 − 2𝜋𝑙 −

1
𝑢 + 2𝜋𝑙¹Ï	

(3) 

From this formula, by setting |𝑓Ò| = 0 we can easily show that the flattening of general l-th 

satellite Dirac cone (𝑙 = 0 for the main Dirac cone) occurs when 

𝑢 = Ô 4𝜋𝑁, (even	𝑙,	including	𝑙 = 0)
4𝜋𝑁 + 2𝜋, (odd	𝑙) , (4) 

except 𝑢 = 2𝜋𝑙. 𝑁 is a positive integer. Therefore, a main/satellite Dirac point 

flattens/unflattens in a periodicity of Δ𝑢 = 4𝜋. Each time anisotropic band flattening 

happens, a pair of side Dirac points starts to appear. (Figure 2.6, 2.7)  



  
 

28 

 

Figure 2.6 Scaling factor of Dirac velocity in the 𝒌𝒚 direction of the 𝒍-th Dirac cone 
|𝑓Ö| = ×𝑣+/𝑣u× (Eq. 3) and the number of pairs of its side cones, as a function of 𝑢.  
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Figure 2.7 Electron energy versus 𝒌𝒚 with 𝒌𝒙 = 𝟎 for various strengths of SL 

modulation. Reprinted from [4]. Here 𝑈8 =
��1
��ℏ

= 𝑢 in our notation. 𝜖1 is an energy unit 

defined by 𝜖1 =
1
��ℏ

 

 

Finally, it is worth mentioning that for all values of SL modulation 𝑢, the band structure of 

graphene 1DSL exists in an “envelope” that “contains” the satellite Dirac points. As a result, 

open orbits along the 𝑘* direction exist at high enough energies (Figure 2.4) and have 

repercussions on the transport properties of the graphene 1DSL system. 

2.3.2 Simulated 𝑹𝒙𝒙 and 𝑹𝒚𝒚 

Based on the band structures investigated above, we calculated the conductivity in the 

framework of Boltzmann transport theory with the relaxation time approximation [5] 

𝜎´´ = −
𝑒X

2𝜋Þß𝐤𝑑𝐤·
𝜕𝑓I𝐤
𝜕𝜖I𝐤

¹ 𝜏𝐤𝑣´,I𝐤X

I

	 (5) 

where 𝑖 = (𝑥, 𝑦), n is the band index, 𝐤 = a𝑘*, 𝑘+c is the wave number, 𝑓I𝐤 and 𝜖I𝐤 are 

Fermi-Dirac distribution and band energies, respectively, 𝜏𝐤 is the electron relaxation time, 

and 𝑣´,I𝐤 =
V
ℏ
äåJ𝐤
æµç

 is the electron velocity of n-th band. The relaxation time approximation 

introduces a single time scale 𝜏𝐤 for the relaxation from non-equilibrium to equilibrium 

distribution, and it is a valid approximation in most of the diffusive regime, such as weakly 

disordered graphene, where conductance occurs due to elastic scattering. In this calculation, 

we further assumed an isotropic relaxation time, i.e., 𝜏𝐤 = 𝜏, since detailed studies have 

shown that the relaxation time is direction independent to a good approximation, even in the 

substantially anisotropic systems.[6]  

From the calculated conductivity, we plot the resistance (𝑅´´ ∝ 1/𝜎´´) of the graphene 1D SL 

system as a function of carrier density 𝑛 and SL modulation strength 𝑢 in Figure 2.8. We 
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can clearly see the suppression of the resistance 𝑅** by the flattening of the main (labelled 

by A,C), as well as the satellite-Dirac points (labelled by B) as band flattening results in an 

increase in the density of states. In contrast, 𝑅** reaches maximum when the DP is 

unflattened. As we trace along the dashed line corresponding to the main DP, 𝑅** goes from 

maximum at 𝑢 = 2𝜋 (unflattened) to minimum at 𝑢 = 4𝜋 (flattened,”A”) to another 

maximum at 𝑢 = 6𝜋 (unflattened) to another minimum at 𝑢 = 8𝜋	(flattened,”C”). Then we 

trace along the dashed line corresponding to the 1st satellite DP, 𝑅** goes from maximum at 

𝑢 = 4𝜋 (unflattened) to minimum at 𝑢 = 6𝜋 (flattened,”B”), then to maximum at 𝑢 =

8𝜋.In both cases, the maximum/minimum cycle has a Δ𝑢 = 4𝜋 periodicity, echoing the 

Δ𝑢 = 4𝜋 periodicity in the flattening/unflattening of DPs as explained in Eq. 4 and Figure 

2.6. The higher order DPs have no conspicuous transport features at low 𝑢 as the SL 

modulation is too weak for higher-order satellite DP features to develop.  

Compared to the scale-like pattern of 𝑅**, 𝑅++ is mostly featureless outside 𝑛 = 0. The 

lack of transport features corresponding to satellite DPs can be attributed to the presence of 

open orbits that, as shown in a contour plot of band structure (Figure 2.4), happen at fixed, 

finite 𝑘+, providing transport channels in the y direction that are unrelated to the 

flattening/unflattening of satellite DPs. At 𝑛 = 0, 𝑅++ shows a maximum at 𝑢 = 4𝜋, the 

SL modulation strength at which 𝑅** shows a minimum. Band flattening in 𝑘+ direction 

(but not in 𝑘* direction) results in a nearly zero carrier group velocity along the 𝑘+ 

direction 𝑣+~
æ�
æµ¶

= 0 and a 𝑅++ maxima. However, we don’t see another 𝑅++ maximum 

at 𝑢 = 8𝜋, despite the main DP being anisotropically flattened as well. This is explained by 

the presence of 2 side DPs associated with the main DP at 𝑘* = 0,	𝑘+ ≠ 0 at CNP (Figure 

2.7d). As these side Dirac cones are not flattened like the main Dirac cone does, we should 

not expect 𝑅++ maxima at 𝑢 = 8𝜋, 12𝜋… as in 𝑢 = 4𝜋. 
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In summary, based on simulations of 𝑅** and 𝑅++ we should expect transport data of a 

graphene 1DSL device to be highly anisotropic and provide evidence for novel band structure 

features including the cyclic flattening/unflattening of main and 1st satellite Dirac cones, open 

orbits at finite energies, and side DPs associated with the main DP.  

 

Figure 2.8 Calculated 𝑹𝒙𝒙 and 𝑹𝒚𝒚 for a 𝑳 = 𝟓𝟓𝒏𝒎 graphene 1DSL device with 

𝑾𝒘 = 𝟎. 𝟓𝑳 using relaxation time approximation Dashed Lines indicate 𝑅** features 

that correspond to the same main/satellite DP.  

2.4 The case of Ww≠0.5L  

2.4.1 Evolution of band structure as 𝒖 and Ww changes 

Although 𝑊" = 0.5𝐿 is a relatively simple system with particle-hole symmetry, making it 

the prime target for the first step in a graphene 1DSL experimental study, it is difficult to 

ensure that the superlattice potential applied on to graphene exactly matches the 𝑊" = 0.5𝐿 

condition in a real-life device. Therefore, it is important to know how band structures features 

at 𝑊" = 0.5𝐿 would change in cases where 𝑊" ≠ 0.5𝐿. 

Figure 2.9 shows the band structures of graphene 1DSL at 𝑊" = 0.5𝐿, 0.6𝐿, 0.7𝐿, 0.8𝐿 at 

𝑢 = 2𝜋, 4𝜋, 6𝜋. Figure 2.10 shows the slices of these band structures along 𝑘* = 0. For 

𝑊" ≠ 0.5𝐿 we do not expect the conduction and valence bands to be symmetric about each 
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other. Nevertheless, for 𝑢 = 2𝜋 the band structure at 𝑊" = 0.6𝐿, 0.7𝐿, 0.8𝐿 are almost 

identical to that of 𝑊" = 0.5𝐿 with band structure highly symmetrical about 𝐸 = 0. 

 

 
Figure 2.9 Band structure of a graphene 1DSL with 𝑳 = 𝟓𝟓𝒏𝒎	at 𝒖 = 𝟐𝝅, 𝟒𝝅, 𝟔𝝅	for 

𝑾𝒘/𝑳 = 𝟎. 𝟓, 𝟎. 𝟔, 𝟎. 𝟕, 𝟎. 𝟖. 

For 𝑢 = 4𝜋 the particle-hole asymmetry is more visible in the band structure at 𝑊" ≠ 0.5𝐿. 

At 𝑊" = 0.6𝐿, although the main DP is anisotropically flattened as in the case of 𝑊" =

0.5𝐿, the 1st valence band is “flatter” than the 1st conduction band at the main DP. At 𝑊" =
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0.7𝐿 the 1st conduction band becomes even less flat, such that at the main DP has 

discontinuous æ�
æµ¶

 at the CNP. At 𝑊" = 0.8𝐿 both the 1st conduction and valence bands 

have discontinuous æ�
æµ¶

 at the CNP, and the main DP resembles more of a (albeit very 

distorted) unflattened Dirac cone than the classic anisotropically flattened Dirac cone in 

𝑊" = 0.5𝐿. It is also worth noticing that for 𝑊" > 0.5𝐿 the 3rd valence satellite DP 

becomes less and less developed as 𝑊"/𝐿 increases. 

 

Ww=0.6L Ww=0.7L Ww=0.8L

L L L L

Ww=0.5L

u=
2π

u=
4π

u=
6π
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Figure 2.10 Slices of graphene 1DSL band structures at 𝒖 = 𝟐𝝅, 𝟒𝝅, 𝟔𝝅	along 𝒌𝒙 = 𝟎 

for 𝑾𝒘/𝑳 = 𝟎. 𝟓, 𝟎. 𝟔, 𝟎. 𝟕, 𝟎. 𝟖  

For 𝑢 = 6𝜋, 𝑊" = 0.6𝐿 the two side DPs associated with the main DP in the 𝑊" = 0.5𝐿 

case still exist, but the two side DPs occur at slightly higher energies than the main DP, 

which still lies at E=0. Moreover, the 𝑘+ locations of the side DPs become closer to the 

main DP than in the 𝑊" = 0.5𝐿 case. As 𝑊"/𝐿 increases the side DPs and the main DP 

move closer in 𝑘+. At 𝑊" = 0.8𝐿 the side DPs have disappeared and the 1st conduction and 

1st valence bands become flat at E=0! As in the 𝑢 = 4𝜋 case, we also notice that for 𝑊" >

0.5𝐿 the 3rd valence satellite DP (and to some extent, the 2nd valence satellite DP) becomes 

less and less developed as 𝑊"/𝐿 increases. 

2.4.2 Simulated 𝑹𝒙𝒙 and 𝑹𝒚𝒚 

Based on the band structures above, we further calculate 𝑅** and 𝑅++ as a function of 

carrier density 𝑛 and SL potential 𝑢 for cases where 𝑊" ≠ 0.5𝐿. Electron-hole symmetry 

is broken in these cases, as seen in the lack of symmetry about the 𝑛 = 0 line in the 𝑅** 

and 𝑅++ maps. At 𝑢 = 6𝜋	and 𝑊" ≠ 0.5𝐿, the 𝑅** maximum at CNP (marked by “a”), 

does not occur at zero carrier density, and at 𝑊" = 0.8𝐿 it is hard to distinguish such a 

feature at all. This agrees with the shape of the band structure in Figure 2.10 where the 1st 

mini Dirac points get “flattened” at 𝑢 = 6𝜋,𝑊" = 0.8𝐿. 
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Figure 2.11 Calculated 𝑹𝒙𝒙 and 𝑹𝒚𝒚 for a	𝑳 = 𝟓𝟓𝒏𝒎 graphene 1DSL device with 

𝑾𝒘 = 𝟎. 𝟓𝑳, 𝟎. 𝟔𝑳, 𝟎. 𝟕𝑳, 𝟎. 𝟖𝑳 using relaxation time approximation Dashed Lines 

indicate 𝑅** features that correspond to the same main/satellite DP. Notice that the CNP 

does not coincide with zero carrier density for 𝑊" ≠ 0.5𝐿 .  

 
2.5 Summary 
Dimensional mismatch between a 1D superlattice and a 2D material (graphene) results in 

transport anisotropy and heavy dependence of band structure geometry on strength of 

superlattice modulation. Both are unseen in 2D superlattice on graphene. This could inspire 

studies of 1DSL and 2DSL hosted on 3D materials. 

At equal widths of 1DSL “well” and “barrier”, or 𝑊" = 0.5𝐿, four types of Dirac points can 

be identified: main DPs, satellite DPs, side DPs of main DP and side DPs of satellite DP. The 

former two undergo anisotropic flattening and unflattening cycles in 𝑘+ as SL modulation 

increases with periodicity Δ𝑢 = 4𝜋. Simulated resistances 𝑅** and 𝑅++ are highly 

anisotropic, and 𝑅** data shows a scale-like pattern related to the cyclic 

flattening/unflattening of main and satellite DPs. 

Ww=0.5L Ww=0.6L Ww=0.7L Ww=0.8L
R x

x
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At unequal widths of 1DSL “well” and “barrier”, or 𝑊" ≠ 0.5𝐿, particle-hole symmetry is 

broken. The flat bands and side DPs at CNP may evolve into exotic shapes, resulting in 

asymmetrical 𝑅** and 𝑅++ maps. 
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Chapter 3. Previous studies on 2D systems with anisotropic 

transport 

3.1 Low-symmetry 2D materials 

As discussed in Chapter 2, one of the greatest promises of graphene 1DSL is the ability to 

induce transport anisotropy, a property that occur naturally in a class of 2D materials called 

“low-symmetry 2D materials”.[1] Unlike the common 2D materials, such as graphene, 

hexagonal boron nitride (hBN) and certain TMDCS like molybdenum disulfide (MoS2) that 

have similar electrical, optical and phonon properties along different in-plane crystal 

directions, low-symmetry 2D materials that include black phosphorous (also called 

phosphorene in single-layer form) and its alloys with arsenic, as well as monochalcogenides 

of group IV elements such as SnSe and certain low-symmetry TMDCs like ReS2, show 

different electrical, optical, thermal and piezoelectric properties along different in-plane 

crystal directions with numerous potential applications. .[1] In particular, transport anisotropy 

has been proposed as a route to bio-inspired electronics, neuromorphic computing [2] and to 

observing anisotropic quantum Hall effects.  

The first low-symmetry 2D material to be widely studied is black phosphorus, which was 

previously explored as a bulk semiconductor in the 1980s [3] and later rediscovered from the 

perspective of a 2D material in 2014. [4] Black phosphorous has a puckered orthorhombic 

crystal structure. Compared to graphene that hosts a six-fold in-plane rotational symmetry 

(D6h), this symmetry is reduced to two-fold in black phosphorus (D2h). As a result, there is 

significant transport anisotropy between current travelling in the armchair and zigzag 

directions, with the carrier conductivity in the armchair direction to be about one order of 

magnitude higher than in the zigzag direction[5].  
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Figure 3.1 Crystal structure of black phosphorus Reprinted from [6]. (A) Side view of the 

black phosphorus crystal lattice. Interlayer spacing = 0.53nm. (B) Top view of single layer 

black phosphorus, also known as phosphorene. The armchair and zigzag directions are 

labelled.   

 

Unlike graphene which is a zero-gap semimetal, few-layer black phosphorus is a direct band 

gap semiconductor with band gap varying from 0.33eV for 10-layer to 2.0eV for 

monolayer.[7] Besides number of layers, external electric field[8], doping[9], pressure[10] 

and uniaxial strain[11] are also able to tune the band gap in black phosphorous and even 

change it to an indirect band gap semiconductor, semimetal or metal. Few-layer high quality 

black phosphorus sandwiched between two hBN flakes is able to achieve hole mobility of 

around 5000cm2V-1s-1 at room temperature at about 20000cm2V-1s-1 at ~10K[7], making it 

possible to design field-effect transistors with on/off ratio up to 105.[6]  
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Figure 3.2 Transport anisotropy in black phosphorus Reprinted from [6]. (a) Calculated 

band structure of suspended monolayer phosphorene, showing a direct band gap. (b) Carrier 

conductance of monolayer black phosphorus calculated by the Drude model. (c)(d) Effective 

mass of electrons and holes versus spatial direction. The effective mass along the armchair 

direction is about one order of magnitude smaller than that along the zigzag direction. 

 

Another group of materials called group IV monochalcogenides also have the puckered 

orthorhombic crystal structure in black phosphorous, allowing for anisotropic transport 

between armchair and zigzag directions.[1] Group IV monochalcogenides consist of the 
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compound MX where M =Ge, Sn and X= S, Se. The difference in the M and X atoms means 

that in Group IV monochalcogenides the inversion symmetry is broken, reducing the point 

group to C2v and allowing for the occurrence of spontaneous in-plane electric polarization 

that is predicted to enable 2D ferroelectricity[12]. 

Group 7 transitional metal dichalcogenides such has ReS2[13] and ReSe2 [14]have unique 

crystal structures that are different from the puckered orthorhombic seen in black phosphorus 

and group IV monochalcogenides, yet also different from their more common Group 6 

counterparts such as MoS2 and WSe2. ReS2 and ReSe2 host “Re chains” arranged in parallel, 

and experiments have shown transport anisotropy between directions along and perpendicular 

to the “Re chains” in ReS2 .[15] 

 

Figure 3.3 Crystal structure of ReS2 versus MoS2 (a) Ball-and-stick model of ReS2 

monolayer with direction of the “Re chain” represented by the black double row. Reprinted 

from[16]. (b) Ball-and-stick model of MoS2 monolayer. 

 

Despite the wide-ranging promises of these low-symmetry 2D materials, they suffer from 

numerous practical issues including oxidation susceptibility[17, 18], relatively low carrier 

mobilities compared to graphene [7] and difficulty in fabricating electric contacts to 

metal.[19] Therefore, graphene 1DSL demonstrates a viable path towards realizing transport 
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anisotropy with high electron mobility and dynamically tunable anisotropy that could 

invigorate and motivate new thinking in the quest for low-symmetry 2D materials. 

 

Figure 3.4 Degradation of black phosphorous in air Reprinted from [17](A) Optical 

microscope image of the same black phosphorous flake immediately after exfoliation, 1h 

later, and 24h later. Bubble-like features have formed 24h after exfoliation. (B) AFM 

topography images of the same flake in (A), taken at the same time intervals, showing 

increased surface roughness as atmospheric exposure time increases.  

 

3.2 Dubey et al’s work on Graphene 1DSL system  

The first experimental study on graphene 1DSL system was done by Dubey et al in 2013.[20] 

A graphene Hall bar device is fabricated using the gate patterning scheme as explained in 

Chapter 1.3 with a silicon back gate and a top gate defined by a sequence of equally spaced 

palladium lines that are ~27nm wide and 150nm apart. Graphene is sandwiched between a 

thermally grown SiO2 bottom dielectric and an Al2O3 top dielectric made by atomic layer 

deposition.  

Figure 3.5(b) shows the measured resistance along the wave vector direction of 1DSL (in the 

language of Chapter 2, 𝑅**), as a function of top and back gate voltages, measured at 
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T=300mK. Two scale-like resistance patterns symmetrical about a𝑉ëk, 𝑉7kc = (0𝑉, 0𝑉)	can 

be seen, as predicted by the band structure calculations in Figure 2.8 .In addition, there is a 

vertical white line indicating the presence of resistance maximum at 𝑉7k = −2𝑉. Fig. 3.5(c) 

shows resistance at two constant 𝑉ëk values as a function of 𝑉7k. At 𝑉ëk = −0.1𝑉 where 

the superlattice modulation is not turned on, the resistance profile looks like that of pristine 

graphene with one single, narrow peak at CNP. At 𝑉ëk = 2.6𝑉 the resistance shows some 

oscillation at 𝑉7k < 0, but the amplitude of the oscillation is very small compared to the 

background resistance. Fig 3.5 (d) shows the evolution of the resistance oscillation at three 

different temperatures. The oscillations become largely smoothed out at around 100K that 

corresponds to 8.3meV, which is on the same order of magnitude as the SL modulation 

energy scale of 𝐸01 =
ℏ��
ì
= 4.4	meV, suggesting that the oscillations arise from the effects 

of the 1DSL potential. Dubey et al attributed these resistance oscillations to band structure 

modifications brought by 1DSL and specifically made a contrast between band structure 

modifications versus Fabry-Pérot resonance of SL, which is seen in some graphene p-n 

junction devices [21]. The argument against Fabry-Pérot resonance is as follows: the phase 

coherence length at 300mK is only 0.6μm, or 4 times the SL periodicity, and would be even 

shorter at higher temperatures. Since the device measures 40 periods of SL, it is unlikely that 

resistance measurement would contain any information about phase coherence. The existence 

of resistance oscillation at 100K, though very weak, is further confirmation that the 

oscillations cannot come from coherent Fabry-Pérot resonances. 
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Figure 3.5 Transport measurements from Dubey’s device Reprinted from [20]. (a) Device 

Schematics. Doped Si is the back gate (𝑉7k	) and the Pd lines is the top gate (𝑉ëk). (b) 

Resistance 𝑅** measured as a function of 𝑉ëk and 𝑉7k at 300mK. (c) Resistance 𝑅** 

along the green and blue traces in (b). Notice that along this trace neither carrier density nor 

strength of SL modulation 𝑢 is constant. (d) Line plot of 𝑅** as a function of 𝑉7k at three 

different temperature with 𝑉ëk = 2.6𝑉 (green line in (b,c)) 

 

Having established that the resistance oscillations are caused by band structure modification, 

Dubey et al tried to compare their experimental data with the theoretical model of graphene 

1DSL developed by Barbier et al[22]. In a gate patterned superlattice device, the strength of 

SL modulation depends on the voltages of both gates, and equi-𝑢 contours in the (𝑉ëk, 𝑉7k) 

space are curved. Figs 3.6(b,c) shows the measured conductance as a function of Fermi 

energy at 𝑢 = 6𝜋 and 𝑢 = 26𝜋 respectively. While the 𝑢 = 26𝜋 data shows significant 

a b

c d
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conductance oscillation, there are no conductance features in the 𝑢 = 6𝜋 data other than a 

minimum at CNP, which disagrees with the predictions in Figure 2.8 that suggest the 

existence of 𝑅** peaks, and thus conductance minima, at the 2nd satellite DP at 𝑢 = 6𝜋. 

This suggests possible error in estimating SL modulation strength 𝑢 from (𝑉ëk, 𝑉7k), or 

limitations to the data quality as seen by the carrier mobility of only 6000 cm2V-1s-1, 

corresponding to a mean free path of ~70nm which is shorter than the SL period of 150nm. 

Furthermore, Dubey et al erroneously believed that the resistance oscillation at constant SL 

modulation versus Fermi energy is a result of the side Dirac points associated to the main 

Dirac point, instead of the satellite Dirac points. Although side Dirac points do have effects 

on resistance, these effects are only seen in 𝑅++ data where an absence of resistance maxima 

at 𝑢 = 8𝜋 is expected (See Chapter 2.3.2), not in 𝑅** data. By relating the increase in the 

number of 𝑅** peaks as a function of 𝑢 directly to the number of side DPs at charge 

neutrality point, the authors show a superficial understanding of the rich band structure 

features available in the graphene 1DSL system. 

 
Figure 3.6 Conductance versus Fermi energy at fixed SL modulation strength Reprinted 

from [20]. (a) Calculated height of potential barrier (𝑢/𝜋) as a function of 𝑉ëk and 𝑉7k. 

Notice that the equi-	𝑢 contours are not linear. (b)(c) Measured conductance as a function of 

Fermi energy at “𝑢 = 6𝜋” and “𝑢 = 26𝜋”, respectively, according to the calculations in (a). 

 

3.3 Drienovsky et al’s work on Graphene 1DSL system  

a b c
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In 2014, Drienovsky et al did another experimental study on graphene 1DSL. [23]The device 

architecture is similar to that of Dubey’s device, with Al2O3 as top dielectric, SiO2 as bottom 

dielectric, and a superlattice pitch of 100nm. Unlike Dubey’s device with 40 periods of SL, 

Drienovsky’s device has only 4 periods. In addition, large chunks of the transport channel are 

not affected by superlattice potential.  

Figure 3.8 shows the resistance 𝑅** as a function of gate biases. Scale-like patterns of 𝑅** 

maxima and minima are seen in this device inside the “bipolar” regime (colored purple in Fig 

3.7(b)), just as in Dubey’s data. However, there are also some resistance features inside the 

“intermediate” regime (colored green in Fig 3.7(b)) that are not present in Dubey’s data. 

These features are attributed to the ungated regions in the transport channel. Drienovsky et al 

explained the scale-like resistance pattern not as effects of band structure modification but as 

Fabry-Pérot resonance, as they calculated transmission function by the recursive Green’s 

function method, in the fully phase coherent limit, at every point in the (𝑉./, 𝑉ï/) space, 

and the resulting pattern is similar to the experimental data. According to Drienovsky et al, 

electrons will transmit or reflect at the boundaries between the “well” and “barrier” regions of 

the superlattice. If the phase difference between directly transmitted and twice reflected 

electron waves is a multiple of 2𝜋, constructive interference happens. The constructive 

interference condition can be written as 

2ß h𝜋|𝑛(𝑥)|𝑑𝑥 = 2𝑗𝜋
"pÒÒ	ñl	7mll´pl

, 𝑗 = 1,2… (1) 

and curves corresponding to such condition in the (𝑉./, 𝑉ï/) space are drawn as white 

dashed lines in Fig 3.8(a), ,and the authors believe that these lines agree with the scale-like 

experimental data very well.  
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Figure 3.7 Drienovsky’s theory of Fabry-Pérot resonance Reprinted from [23]. (a) 

Schematics of the 1DSL viewed as a series of pn junctions. When the device is in “bipolar 

regime” as defined in (b), increased reflectivity for ballistic carriers would yield resonances if 

Eq.(1) is satisfied, as the author argues. (b) Sketch of the predicted resistance regions in the 

(𝑉./, 𝑉ï/) space. The purple region is the “bipolar” regime where neighboring 1DSL “well” 

and “barriers” have opposite carrier types. Scale-like resistance oscillations happen in this 

region. The green region is the “intermediate” regime where the carriers inside the 1DSL 

region have the same type, which is different from the carrier type outside the 1DSL region. 

This regime is not expected to exist if there are no ungated regions in the channel. The white 

region is the “unipolar” regime where all carriers in the channel are of the same type. (c) 

Local carrier density profile 𝑛(𝑥) for the three regimes.  
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Figure 3.8 Drienovsky’s 𝑹𝒙𝒙 measurement and calculated transmission function 

Reprinted from [23]. (a)	𝑅** measured from a device with pitch 𝐿 = 100𝑛𝑚, as a function 

of 𝑉./  and 𝑉ï/ . White dashed lines indicate the (𝑉./, 𝑉ï/) values at which Fabry-Pérot 

resonance is expected to happen according to Eq.(1). (b) The inverse of the calculated 

transmission function in fully phase coherence limit.  

 

The above analysis based on Fabry-Pérot interference assumes that phase coherence across 

the channel, which is not the case in their device, as the carrier mobility is only 7000 cm2V-1s-

1, corresponding to a mean free path of 100nm, which is the length scale of the 1DSL pitch 

but not the length scale of the channel length. The authors tried to explain this discrepancy 

away by declaring that “the multibarrier system can be understood as independent FP cavities 

stringed together, giving rise to a single barrier pattern in the locally ballistic limit”, and 

therefore “phase coherence over the whole top gated area is not required to reproduce the 

general behavior”. The authors even used their observation that resistance oscillation persists 

at T=100K as evidence that “clearly proves” local ballistic Fabry-Pérot interference 

originates in the barriers, while ignoring that the same evidence can be, and has been, used to 

argue for the existence of band structure modification. The authors concluded by arguing that 
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“there is no evidence of an artificial band structure and thus a superlattice effect in our 

multibarrier system”. 

In 2018 Drienovsky et al repeated this study by encapsulating graphene in boron nitride 

flakes[24, 25], thus increasing carrier mobility to ~45000 cm2V-1s-1, corresponding to a mean 

free path of ~800nm, which is longer than the SL periodicity of 100nm but still shorter than 

the channel length of >5μm. They still attributed resistance oscillation in the transport data 

with Fabry-Pérot resonance, instead of band structure modification. In addition, they noticed 

“fine resonance patterns” within the rhombic mesh of Fabry-Pérot oscillations, and they 

attributed them to “ballistic transport across several potential barriers.” They further 

investigated the oscillation of 𝑅** as a function of perpendicular magnetic field at a given 

carrier density and SL modulation strength. 𝑅** minima appear when the semiclassical 

diameters of the carriers 2𝑟ò become an integer (up to a 1/4 difference) multiple of the 1DSL 

periodicity L: 

2𝑟ò = ·𝜆 −
1
4¹𝐿,

(2) 

with 𝜆 being an integer. This oscillation is called commensurability oscillation, or Weiss 

oscillation, as Weiss first discovered it on a 2DEG-1DSL system[26]. In the 

magnetotransport data they are able to identify commensurability oscillation minima up to 

𝜆 = 6. Although commensurability oscillation exists alongside, and is dwarfed by, 

Shubnikov-de Haas (sdH) oscillations and quantum Hall oscillations, to the point that at 𝜆 =

1	𝑅** can even be a local maximum,, the authors are still able to extract commensurability 

oscillation from the sdH-QHE envelope and observe that it persists to 150K. [25]It is 

interesting to note that the authors acknowledge the formation of minibands in graphene 

Landau levels by the superlattice modulation in the quantum explanation of 

commensurability oscillation (to be explained in Chapter 4), but refuse to acknowledge the 

existence of minibands, or any band structure modification, at zero magnetic field. 
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Figure 3.9 Drienovsky’s further work on graphene 1DSL Reprinted from [24, 25]. (a) 

𝑅** measured from a hBN-encapsulated graphene 1DSL device with pitch 𝐿 = 100𝑛𝑚. (b) 

𝑅** inside the black box in (a), showing the “fine resonance patterns” within the rhombic 

mesh of Fabry-Pérot oscillations. (c) 𝑅** along the white dashed line at 𝑉n = 2.0𝑉 (d) 𝑅** 

versus vertical magnetic field B at fixed SL modulation, carrier density and temperature in a 

L=80nm device. Expected 𝑅** minima as predicted by Eq. (2) are labelled by blue dashed 

lines with 𝜆. Commensurability oscillation is dwarfed by sdH and quantum Hall oscillations. 

(e) Extraction of commensurability oscillation (blue) from raw 𝑅** data (black) after 

subtracting sdH oscillation (red).  

 

It should be noted that a later work in 2020 by Kang et al, from the same group as 

Drienovsky, acknowledged the existence of minibands in graphene 1DSL systems.[27] 

 

3.4 Summary 

d

e 
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Anisotropy is 2D materials can be found in a class of materials called “low-symmetry 2D 

materials” that include black phosphorous and its arsenic alloy, monochalcogenides of group 

IV elements and certain group 7 TMDCs. They have exotic anisotropic electrical, optical, 

thermal and piezoelectric properties, but also suffer from practical issues such as high 

oxidation susceptibility compared to graphene. 

Previous work on graphene 1DSL has not investigated transport anisotropy, which contains 

important information on band structure not available from 𝑅**. In addition, there used to be 

an unsettled debate on the nature of 𝑅** oscillations as a function of gate voltages in 

graphene 1DSL devices. Dubey et al attribute them to band structure modification, and 

Drienovsky et al attribute them to Fabry-Pérot resonance. Dubey has a relatively more solid 

argument for band structure modification, but she misattributes 𝑅** features to the number 

of side Dirac cones at CNP. Drienovsky’s work is notable for his magnetotransport 

measurements that revealed commensurability oscillations, but his arguments for Fabry-Pérot 

resonance and against band structure modification is dubious. Therefore, a more detailed 

study on graphene 1DSL is warranted. 
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Chapter 4. Electrical measurements of graphene 1D superlattice 

devices 

4.1 Device fabrication 

4.1.1 Device Schematics 

An improved graphene 1DSL device needs to have high carrier mobilities and ability to 

conduct transport measurements in both 𝑅** and 𝑅++. Therefore, I design new graphene 

1DSL devices based on the schematics of Figure 4.1. The device is based on 2D materials 

except for the superlattice and the back gate, and is made into an L-shaped double Hall bar, 

allowing measurements on transport anisotropy.  

 

Figure 4.1 Device schematics of the new graphene 1DSL devices Not to scale. (a) View of 

the device along the x-z plane. (b) View of the device along the x-y plane, showing the L-

shaped Hall bar. Green region: graphene channel. Yellow region: graphene to metal contacts. 

Red arrow: Direction of current flow. Black lines: Lines of 1DSL. 𝑅** = 𝑉**/𝐼 and 𝑅++ =

𝑉++/𝐼 where 𝐼 is the current in the channel. 

 

4.1.2 A step-by-step guide to fabrication 

hBN
Few Layer graphene (!"#)
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Monolayer graphene (! = 0)
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In our devices, the van der Waals heterostructure and the patterned dielectric superlattice 

(PDSL) are first fabricated separately before being brought together. 

The vdW heterostructure consists of hBN-Few layer graphene (FLG) -hBN-monolayer 

graphene (MLG) -hBN. Dry transfer techniques using a glass slide containing a PDMS stamp 

covered by a polypropylene carbonate (PPC) film are used to assemble the stack. Before 

assembling the stack, the hBN/FLG/MLG flakes are exfoliated on SiO2/Si chips and checked 

under optical microscope to ensure that they are free from major defects such as step edges, 

cracks and wrinkles. The PPC film is brought to contact with the region of SiO2 chip 

containing the desired flake on a transfer station at T=40°C~50°C and the PPC slide is then 

raised up such that the desired flake sticks to the PPC. The top hBN, though not participating 

in gate biasing nor carrier transport, is necessary as the top layer of the stack since it is much 

easier to pick up hBN than FLG using PPC. Once the top hBN is picked up the other layers 

can be easily picked up due to van der Waals attraction. The FLG acts as the top gate of the 

device. The mid hBN with thickness 30~50nm acts as the top dielectric. The bottom hBN 

flake, acting as bottom dielectric along with SiO2, is as thin as ~5nm to maximize the amount 

of SL modulation felt by the MLG. After picking up all the 5 layers (Fig 4.2 Left), the stack 

is dropped onto an empty SiO2/Si chip. During this dropping process, bubbles formed 

between the individual vdW layers are squeezed out of the stack at a temperature around 

80°C. At 120°C the PPC slide is slowly raised up, leaving PPC and the stack on the SiO2/Si 

chip. Vacuum annealing of the chip for 20 min at 360°C is used to remove PPC, leaving only 

the desired stack on the chip (Fig 4.2 Center) 
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Figure 4.2 Assembled van der Waals heterostructure Left: Optical microscope image of 

the vdW heterostructure assembled for making the L=47nm device. The stack is attached to 

the PPC slide. Many bubbles that are trapped between individual vdW layers can be seen. 

Center: Optical microscope image of the same stack after being dropped onto a SiO2/Si chip 

with most of the bubbles pushed out. Right: Optical microscope image of the same stack after 

being picked up again and dropped onto a SiO2/Si chip with 1D PDSL. The green square in 

the middle of the stack is the 10μm × 10μm region with 1D PDSL lines inside. Scale bar = 

10μm. 

 

The fabrication of 1D PDSL on a SiO2/Si substrate is based on the 2D PDSL fabrication 

techniques developed by Carlos Forsythe[1, 2]. PMMA 495 A2 is spun onto a SiO2/Si chip at 

3500rpm and baked at 180°C for 2 minutes, forming a PMMA layer about 50nm thick. A 

sequence of straight lines separated by 47nm or 55nm are written using the e-beam 

lithography system NanoBeam (Nanobeam Ltd. Cambridge, UK) at a dose of ~340 C/m2 and 

a beam current at 0.3nA. All these lines are confined in a 10μm × 10μm region. After e-beam 

writing the chip undergoes sonicated development in IPA:MIBK (3:1) at 3°C for 30 seconds. 

A very short (~10 seconds, depending on power) O2 plasma helps etch undeveloped PMMA 

at the line sites. Then the chip is etched with CHF3 (40 sccm) + Ar (5 sccm) with 60W 
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forward power and 0W ICP power for 12 cycles. Each cycle consists of a 30 second etch and 

a 30 second cooling period. This results in an etch of roughly 40nm deep. Afterwards, 3 

minutes of O2 plasma is used to remove the PMMA that remains on the chip. Finally, the chip 

is cleaned in 160°C Piranha solution (sulfuric acid: 30% H2O2 = 3:1 in volume) for 15 min, 

followed by a 3-minute rinse in DI water and N2 blow dry.  

Using an optimal dose for e-beam lithography is critical to the success of PDSL patterning. 

Generally, the width of the etched straight lines increases as the e-beam dose increases. But a 

dose too high can introduce unwanted breaks in the etched lines. Because it is difficult to 

predict the correct dose beforehand, at each PDSL writing an array of 20 regions named Dose 

1, Dose 2…. Dose 20 that are sized 10μm × 10μm, each written with the same line pattern at 

different doses arranged in a geometric sequence, with (𝐷𝑜𝑠𝑒	𝑛) = (𝐷𝑜𝑠𝑒	1) ∗ 1.05IºV. 

Furthermore, this array is written at two locations on the 1cm-by-1cm SiO2/Si chips. 

Assuming the consistency of the e-beam writer, the two regions that have the same dose 

should be identical, so I can dice the chip in two halves and use one half for scanning electron 

microscope (SEM) imaging to find out the optimal dose to use. The corresponding dose on 

the other half is used in the actual device. As seen in the SEM image insets of Figure 4.3, 

even in the overdosed situation the width of the etched region is still less than one half of the 

SL pitch 𝐿. Since I want to strive for the case where 𝑊"/𝐿 = 0.5, the optimal dose to use is 

the largest dose at which there are no unwanted breaks in etched lines. In both of my 𝐿 =

47𝑛𝑚 and 𝐿 = 55𝑛𝑚 devices the etched region width is only 13nm. 
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Figure 4.3 Dose testing This is a schematics diagram (not to scale) showing the process of 

dose testing. Electron dose increases from Dose 1 to Dose 20, each “dose” is a 10μm × 10μm 

square inside which parallel lines are drawn by the e-beam writer. Inset shows SEM images 

of fabricated 1D PDSL at three different doses. At Dose 17 the etched black lines are the 

widest possible without causing any unwanted breaks as in Dose 20. Therefore, Dose 17 on 

the other half of the chip is used in the actual device. Scale bar=200nm. 

 

With both the vdW heterostructure and the 1D PDSL chip prepared, we use a PPC/PDMS 

slide to pick up the vdW heterostructure and drop it on top of the 10μm × 10μm region 

patterned with 1D SL lines. Standard nanolithography techniques are used to define the top 

gate, shape the Hall bars and fabricate metal-to-graphene edge contacts[3].  
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4.2 Determination of carrier density n, 𝑽𝑻𝑮 and 𝑽𝑺𝑳 offsets, and carrier 

mobility 𝝁 

During a graphene 1DSL device transport measurement, the graphene sheet is kept grounded 

while the FLG top gate and the doped Si back gate, separated from graphene sheet by 

dielectric materials, are subject to voltage biases 𝑉./,lm" and 𝑉01,lm" respectively. Using a 

simple parallel plate capacitor model, we calculate the average carrier density according to 

𝑛 = (𝐶.//𝑒)(𝑉./,lm" − 𝑉./,8) + (𝐶01/𝑒)(𝑉01,lm" − 𝑉01,8)	. The geometric capacitances 𝐶./  

and 𝐶01 are determined by from zero field transport (Fig. 4.4a) and Hall response in 𝑅++ 

(Fig. 4.4b), where a Landau fan emanates from the CNP, enabling us to convert from 𝑉./,lm" 

to 𝑛 based on the fact that in graphene subject to magnetic field, 𝑅++ reaches minimum at 

filling factors 𝜈 = ±2,±6,±10,±14…. The gate voltage offsets 𝑉./,8 and 𝑉01,8 are 

determined by requiring that zero field transport should be symmetric about 𝑛 = 0	and 

𝑉01 = 0. In both the 𝐿 = 47𝑛𝑚 and	𝐿 = 55𝑛𝑚 devices 𝑉./,8 for the 𝑅** and 𝑅++  data 

differ by 1~2V. The 𝑉01 used in this paper is 𝑉01,lm" − 𝑉01,8. 

The strength of carrier density modulation in the channel due to the existence of 1D SL is 

mostly determined by the SL gate bias 𝑉01. Therefore, in a dual-gated PDSL device we 

achieve independent tuning of two variables, namely average carrier density 𝑛 and strength 

of carrier density modulation	Δ𝑛, using two experimentally controllable parameters, 𝑉./  and 

𝑉01.   
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Figure 4.4 Determination of carrier density n, 𝑽𝑻𝑮 and 𝑽𝑺𝑳 offsets, and carrier 

mobility 𝝁 (a) 𝑅** as a function of 𝑉./,lm" and 𝑉01,lm" at 𝐵 = 0𝑇 for the	𝐿 = 55𝑛𝑚 

device. The gate voltage offsets 𝑉./,8 and 𝑉01,8 are located at the “origin” where 𝑛 =

0	and the SL modulation is zero. The ratio of capacitances can be found using the slope of the 

𝑅** maximum near the “origin”, as this 𝑅** maximum should lie on 𝑛 = 0. (b) 𝑅++ as a 

function of 𝑉./,lm" and magnetic field at 𝑉01,lm" = 25𝑉 (𝑉01 = 41𝑉) for the	𝐿 = 55𝑛𝑚 

device. White dashed lines trace the Landau fan originating from CNP, enabling us to relate 

gate voltages to carrier density n. (c,d) Conductance vs. carrier density plots for the 𝐿 =

!" = 79423	*+,/(/ ∗ 1)
!3 =
92742	*+,/
(/ ∗ 1)

!" = 71711	*+,/(/ ∗ 1)

!3 =
168520	*+,/
(/ ∗ 1)
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47𝑛𝑚 devices at two different back gate voltages. Electron/hole mobilities calculated from 

the slope of these curves are annotated next to them.  

 

Given that 𝑅++ data is largely featureless aside from the CNP, the carrier mobilities in our 

devices are estimated using 𝑅++ data. Fig. 4.4c shows the conductance vs. carrier density 

plot for the 𝐿 = 47𝑛𝑚 device at 𝑉01 = 0𝑉, showing a linear relationship at |𝑛| <

5 × 10VV𝑐𝑚ºX. The electron and hole carrier mobilities can be extracted from the slope of the 

conductance vs n curve, according to the equation	𝜎 = 𝑛𝑒𝜇, and are much larger than the 

carrier mobilities in previously studied 1DSL devices. 

4.3 𝑹𝒙𝒙 and 𝑹𝒚𝒚 at 𝑩 = 𝟎𝑻 

4.3.1 Low temperature measurements  

Two graphene 1DSL devices with pitches 𝐿 = 55𝑛𝑚 and 𝐿 = 47𝑛𝑚 are measured at 𝑇 =

1.7𝐾 and	𝑇 = 2𝐾 respectively. While the 𝐿 = 47𝑛𝑚 device has all metal-to-graphene 

contact working, the 𝐿 = 55𝑛𝑚 device has multiple contacts that failed. As a result, the 

𝑅++ for the 𝐿 = 55𝑛𝑚 device cannot be measured in the usual way, and the measured 𝑅++ 

would include some unknown resistance offset.  

 

Figure 4.5 Image of a finished device and contact issues (a) Optical microscope image of 

the 𝐿 = 47𝑛𝑚 device. Yellow: metal contracts and leads. Scale bar = 5μm .Green: Regions 
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with hBN-FLG-hBN-MLG-hBN. Blue: Regions with hBN-MLG-hBN with the topmost two 

layers etched away. Electrical contacts to graphene can only be laid on the blue region to 

avoid any leakage to the top gate (b) Schematics of the	𝐿 = 55𝑛𝑚 device showing the 

locations of good (green) and bad (red) contacts and the method of measuring 𝑅** =

𝑉**/𝐼,	𝑅*+ = 𝑉*+/𝐼, and	𝑅++ = 𝑉++/𝐼. Because the drain is located in the middle of the 

transport channel, the measured 𝑅++ would include an unknown amount of offset. The inset 

shows the definitions of x and y directions in 1DSL.  

 

Figure 4.6a,b shows measured 𝑅** and 𝑅++ from the 𝐿 = 55𝑛𝑚 device, respectively. 

Figure 4.6c,d shows the calculated 𝑅** and 𝑅++ from the 𝐿 = 55𝑛𝑚 device as seen in 

Figure 2.8 .Overall, the features between experiment and calculation agree very well with 

each other. In particular, 𝑅**	data is highly symmetric about 𝑛 = 0, suggesting that despite 

the width of the etched SL lines being less than 𝐿/2, the actual SL potential felt by graphene 

in the device is very close to 𝑊"/𝐿 = 0.5. In Figure 4.6a,c, dashed curves trace along 

𝑅**	features related to the same mains/satellite Dirac point. Along the curves corresponding 

to the main and 1st satellite Dirac points, 𝑅**	undergoes cycles of maxima and minima, with 

the 𝑅**	minima achieved when the main/satellite Dirac point is anisotropically flattened. 

(Figure 4.6h,i). 𝑅++ shows a maximum at 𝑛 = 0, 𝑉0Ò~40𝑉, at which shows 𝑅** a 

minium. The existence of this 𝑅++ maximum is due to the flattening of main CNP at 

𝑢~4𝜋	in the 𝑘+	direction. The absence of 𝑅++ maximum at 𝑢~4𝜋	is due to side DPs at 

CNP. The absence of 𝑅++ features outside n=0 is due to the presence of open orbits. More 

detailed explanation on the relationship between band structure and resistance can be found 
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in Section 2.3.2. 

 

Figure 4.6 Comparison between measured vs calculated 𝑹𝒙𝒙, 𝑹𝒚𝒚 (a) Device resistance 

𝑅** as a function of carrier density 𝑛 and back gate voltage 𝑉01, measured from an 𝐿 =

55𝑛𝑚 device (b) Calculated 𝑅** for 𝐿 = 55𝑛𝑚 device plotted as a function of 

dimensionless SL strength 𝑢 and carrier density 𝑛. In (a,b) gray dashed lines trace along 

features related to the same main/satellite Dirac point. (c) 𝑅++ measured from the same 𝐿 =

55𝑛𝑚 device. (d) Calculated 𝑅++ for 𝐿 = 55𝑛𝑚 device (e~i) Band structures at 𝑢 =

2𝜋, 4𝜋, 6𝜋 sliced along 𝑘+ = 0 (e,g,i), 𝑘* = 0 (f,h,j), and 𝑘* = ±𝜋/𝐿 (insets). 

Throughout this figure, select 𝑅** and 𝑅++ extrema are related to the anisotropically 

flattened Dirac cones by letters A and B. 

 

Figure 4.7 compares data taken from the 𝐿 = 47𝑛𝑚 (a,b) and the	𝐿 = 55𝑛𝑚 (c,d) devices. 

The 𝑅** data from the 𝐿 = 47𝑛𝑚 device looks similar to the 𝑅** data from the L=55nm 

device except that the dimensionless strength of SL modulation, 𝑢 = 𝑉8𝐿/ħ𝑣g, is only about 

5π at the maximum 𝑉01 = 100𝑉, while in the 𝐿 = 55𝑛𝑚 device 𝑢 ≈ 7𝜋 at maximum 

𝑉01 = 75𝑉. This is a natural consequence of the fact that for the same strength of SL 
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modulation 𝑉8 measured in meV, the shorter the SL line spacing L, the smaller the 

dimensionless strength of SL modulation, 𝑢 = 𝑉8𝐿/ħ𝑣g. Therefore, in the	𝐿 = 47𝑛𝑚 𝑅** 

data we don’t have enough SL modulation to see the flattening of the 1st satellite Dirac cone 

(𝑢 = 6𝜋, labelled by B,C in Fig 4.7c) as well as the un-flattening of the main cone (𝑢 = 6𝜋, 

labelled by δ in Fig 4.7c). The 𝑅++ data from the 𝐿 = 47𝑛𝑚 device (Fig. 4.7a) feature a 

pair of maxima at 𝑢 ≈ ±4𝜋. However, the 𝑅++ data from the L=55nm device shows only a 

maximum at 𝑢 ≈ 4𝜋 (𝑉01 ≈ 40𝑉) but not at 𝑢 ≈ −4𝜋	(𝑉01 ≈ −40𝑉). Although it is 

tempting to explain the lack of 𝑅++ data symmetry about 𝑉01 = 0𝑉 by claiming that the 

𝑅++ for 𝐿 = 55𝑛𝑚 is measured in the wrong configuration and is not the “correct” 𝑅++, it 

should be noted that even for the	𝐿 = 47𝑛𝑚 device 𝑅++ at 𝑉01 ≈ 40𝑉 is higher than at 

𝑉01 ≈ −40𝑉. In the graphene 1DSL Hamilton, a 𝑉01 → −𝑉01 transformation corresponds to 

a swap between the “well” and “barrier” regions in the superlattice. [4] Therefore, it is likely 

that V(x), the 1DSL potential that the graphene sheet actually feels in the device, is not a 

centrosymmetric function about 𝑥 = 0, 𝑉8/2 (Figure 2.1), where we define 𝑥 = 0 as the 

location of a well-barrier boundary. 
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Figure 4.7 Comparison between L=47nm and L=55nm data. (a)	𝑅** for	𝐿 = 47𝑛𝑚 (b) 

𝑅++ for 𝐿 = 47𝑛𝑚 (c) 𝑅** for 𝐿 = 55𝑛𝑚 (d) 𝑅++ for 𝐿 = 55𝑛𝑚. Throughout this 

figure 𝑅** minima (maxima) that correspond to the same band structure feature are 

indicated by Latin (Greek) letters, respectively. 

 

4.3.2 Temperature dependence measurements  

Figure 4.8 shows the 𝑅** data at T=2K, 20K and 130K for the 𝐿 = 55𝑛𝑚. Very little 

difference is seen between T=2K and T=20K. At T=130K, an “X” shaped region of 𝑅** 

maxima is seen. In fact, remnants of the “X” shaped region still show as bumps in 𝑅** at 

T=235K. This behavior is in stark contrast to the case of graphene 2DSL, where most of the 

side resistance peaks associated with the superlattice has been smeared out at T=95.5K[1]  

d !!!(Ω)
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Figure 4.8 Temperature dependence of 𝑹𝒙𝒙 in graphene 1DSL and 2DSL (a~c) 𝑅** in 

the 𝐿 = 55𝑛𝑚 graphene 1DSL device at T=1.7K, 20K and 130K, respectively. (d) 𝑅** in 

the same device with fixed 𝑉01 = 76𝑉 at several different temperatures (e) Temperature 

dependence of superlattice induced satellite peaks in a graphene 2DSL device for 𝑉01	. Lines 

plotted with various offsets for clarity. Reprinted from [1] 

 

In Drienovsky et al’s interpretation of graphene 1DSL as a sequence of pn junctions, the “X” 

shaped region corresponds to the transition between “bipolar” and “unipolar” regimes [5] 

T=1.7 K T=20 K T=130 Ka b c

d

e
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(Figure 3.7c and 4.9c), and they did measure a similar persistence of 𝑅** maximum at high 

temperature. In contrast, the region “δ” in Figure 4.7c, deep inside the “bipolar” regime, is 

mostly smeared out at 130K. Similarly, in Drienovsky’s data the resistance peak at the 

transition between “unipolar” and “polar” regimes are stable against the temperature up to 

100K and was explained as “single barrier resonance”. [5]The oscillation features inside the 

“bipolar” regimes are smeared out at 100K.  

 
Figure 4.9 Drienovsky’s temperature dependence measurements and the pn junction 

interpretation Reprinted from [5]. (a) Resistance vs top gate voltage in Drienovsky’s 

graphene 1DSL device at various temperatures . (b)(c) Explanation of the terms “bipolar” and 

“unipolar”. In the unipolar regime all carriers in the channel are of the same type, while in the 

bipolar regime the 1DSL can be seen as a sequence of pn junctions. Same as Figure 3.7(b)(c) 

 

Figure 4.10 (b) shows the 𝑅++ measured along the CNP versus 𝑉01 at various temperatures. 

As temperature increases, the peak values of 𝑅++ decreases and tend to move towards 

𝑉01 = 0. The 𝑉01 < 0 peak collapses at around T=4K while the  𝑉01 > 0 peak still 

survives at T=100K. Therefore, the absence of 𝑅++ maximum in the L=55nm device could 

be explained by the 𝑉01 < 0 peak having a “flattening temperature” less than 2K, the 

temperature at which the measurement took place. A measurement at an even lower 

temperature could have revealed the existence of the 𝑉01 < 0 peak. 

bipolar

unipolar
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Figure 4.10 Temperature dependence of 𝑹𝒚𝒚 at CNP (a)	𝑅++ for the 𝐿 = 47𝑛𝑚 device, 

same as Figure 4.7b. Dashed gray line trace along the CNP at various 𝑉01. (b) 𝑅++ at CNP 

as a function of 𝑉01 at various temperatures. 

 

4.4 𝑹𝒙𝒙 and 𝑹𝒚𝒚 at 𝑩 ≠ 𝟎𝑻 

Magnetotransport response of a graphene 2DSL system consists of the main Dirac fan as 

expected in pristine graphene, which consists of quantum Hall and Shubnikov-de Haas (sdH) 

oscillations, and several side fans related to the satellite Dirac cones. In addition to these 

features, graphene 1DSL also shows commensurability oscillations in its magnetoresistance 

𝑅** and 𝑅++.  

Figure 4.11(a)(b) shows 𝑅** and 𝑅++ in the	𝐿 = 47𝑛𝑚 device, as a function of vertical 

magnetic field B and carrier density n, respectively. In these measurements 𝑉01 = 48V, 

corresponding to 𝑢 ≈ 3𝜋. 𝑅** versus magnetic field shows a Landau fan of integer 

quantum Hall states emanating from the CNP at 𝑛 = 0 with filling factors identical to those 

of pristine graphene (𝜈 = 4𝑁 + 2, 𝑁 integer). In addition, two satellite fan-like features are 

also visible, emanating from 𝑛 = ±2.7 × 10VV	𝑐𝑚ºX (Fig. 4.11a, red arrows), the carrier 

densities at which satellite Dirac cones emerge as predicted by band structure simulation. 

-80

a b
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𝑅** minima features emanating from the 𝑛 = −2.7 × 10VV	𝑐𝑚ºX satellite fan are indicated 

in the fan tracing diagram shown in Fig. 4c. The existence of side Landau fans is a further 

confirmation that band structure modification has happened in out graphene 1DSL system. 

Notice that the side fans in graphene 1DSL, unlike the case in graphene 2DSL, are not related 

to “Hofstadter butterfly”[1, 2, 6], as it is not related to the cancellation of Aharonov-Bohm 

phase across several SL unit cells. 

In contrast, side fans are missing in 𝑅++. We can interpret this as an overlap of the transport 

channel from the Landau levels of the satellite Dirac cones and that from the open orbits. Due 

to the magnetic breakdown across the Brillouin zone boundaries of 1DSL, the first bands 

beyond the van Hove singularity can no longer form well-quantized orbits. Instead, they 

make open orbits[7] which have nearly continuous energy levels and small conductivities 

under magnetic fields.  

Along the direction parallel to the SL basis vector, the magnetoconductivity (𝑅ýý ∝ 𝜎þþ) from 

the Landau levels of the satellite Dirac cones is much higher than that from the open orbits, 

due to the finite energy dispersion of the Landau levels. Thus, we can clearly see the side fans 

in Rxx. In Ryy (∝ 𝜎ýý), on the other hand, the contribution from each channel, either from each 

open orbit or from each Landau level of the satellite Dirac cones, is infinitesimal since the 

wavefunctions under B are localized along x. Note that, although 𝜎ýý from the satellite Dirac 

cones is quite small, it is not completely zero since there are small inter-Landau level 

contributions, i.e., ⟨𝑛|𝑣*|𝑛′⟩ ≠ 0 for 𝑛 ≠ 𝑛′. Thus, the conductivity 𝜎ýý mainly scales with 

the density of levels. Since the energy spacing between the open orbits is much smaller than 

that between the Landau levels of the satellite Dirac cones, the conductivity from the side 

fans is buried to that from the open orbits. This is the reason why we cannot see side fans in 

Ryy.  
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Note that, unlike the fans from the satellite Dirac cones, we can clearly see the Landau fans 

from the main Dirac cone in Ryy, since the first bands below the van Hove singularity form 

well-quantized orbits.  

 

Figure 4.11 Magnetotransport in the 𝑳 = 𝟒𝟕𝒏𝒎 graphene 1DSL device (a) Measured 

longitudinal resistance 𝑅** as a function of carrier density 𝑛 and magnetic field 𝐵, in a 

𝐿 = 47𝑛𝑚 device with 𝑉01 = 48𝑉. Red arrows indicate the density locations of the where 

satellite Landau fans converge. (b) 𝑅++ measured from the same devices. In a and b dashed 

white lines trace along 2𝑟ò = ª𝜆 − V
#
® 𝐿, with 𝜆 being an integer and 𝑟ò = ℏ√𝜋𝑛/𝑒𝐵 the 

cyclotron radius (see text). (c) Fan tracing diagram highlighting traces of 𝑅** minima from 

Fig. 4a. The 𝑅** minima features associated with the main (satellite) Dirac point are colored 

in black (red), respectively. Numbers indicate the filling fractions associated with the main or 
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satellite fan. (d) 𝑅** and 𝑅++ as a function of magnetic field 𝐵 at carrier density 𝑛 =

6.53 × 10VX𝑐𝑚ºX.  

 

Dashed lines indicate the magnetic field at which the corresponding oscillation is 

theoretically expected (see text). In order to suppress the quantum Hall oscillations and 

highlight the commensurability oscillations, the plotted curves are obtained by averaging the 

measured resistance over a small density window of (6.53 ± 0.23) × 10VX𝑐𝑚ºX.  

It is also worth noticing that the magnitude of the magnetoresistance Rxx is about 2 orders 

higher than Ryy, a sign of transport anisotropy. In a crude approximation, the conductivities 

𝜎ýý and 𝜎þþ are proportional to the square of the expectation value of vx and vy, 

respectively. At moderate magnetic field strength B, the SL potential V(x) lifts the degeneracy 

of LLs and give an energy dispersion along ky. This makes the intra-Landau level 

contribution to vy (%𝑛Ó𝑣þÓ𝑛&, where n is the Landau level index) finite, while that to vx 

(⟨𝑛|𝑣ý|𝑛⟩) vanishes since the wavefunction under B is localized along x [8, 9]. Thus, we 

expect 𝜎þþ ≫ 𝜎ýý. The magnetoresistance 𝑅ýý = 𝜎þþ/(𝜎ýý𝜎þþ − 𝜎ýþ𝜎þý) can be 

approximately expressed as 𝑅ýý~𝜎þþ/𝜎ýþX , since Ó𝜎ýý𝜎þþÓ ≪ Ó𝜎ýþÓ
X in our system. Likewise, 

𝑅þþ~𝜎ýý/𝜎ýþX . Thus, the theoretically predicted 𝜎þþ ≫ 𝜎ýý is consistent with the 

experimentally observed 𝑅ýý ≫ 𝑅þþ. Such dramatic asymmetry between Rxx and Ryy cannot 

be observed either in the conventional 1DSL with a weak potential V and a long superlattice 

period L or in the 2DSL. In 1DSL, %𝑛Ó𝑣þÓ𝑛& is roughly proportional to the energy width 𝛥𝐸 

of LLs and inversely proportional to the SL Brillouin zone size along ky, Δ𝑘þ. Since 𝛥𝐸 is 

proportional to V, and 𝛥𝑘þ = 𝐿/𝑙ïX = 𝑒𝐵𝐿/ℏ, where 𝑙* = hℏ/𝑒𝐵 is the magnetic length, 

the anisotropy between the magnitude of Rxx and Ryy in 1DSL approximately scales with V/L. 

And in usual 2D SL with Lx ~ Ly, the magnetic minibands exhibit energy dispersion in both kx 

and ky directions, aka Hofstadter butterfly. Thus, ⟨𝑛|𝑣ý|𝑛⟩ no longer vanishes, and Ryy 
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becomes comparable to Rxx. Thus, the 1DSL developed in this dissertation, which has a 

strong potential V and a very short period L, provides a unique opportunity to show the 

dramatic anisotropy between the magnetotransport Rxx and Ryy. 

At high enough carrier density 𝑛, both 𝑅** and 𝑅++ show curved features roughly 

following 𝐵~√𝑛. White dashed lines in Fig. 4.11a and b trace along (B,n) pairs satisfying 

the condition 2𝑟ò = ª𝜆 − V
#
® 𝐿, and these lines follow neatly with the curved features at high 

𝑛. It is also evident that for 𝑅**, the white dashed lines trace along 𝑅** minima while for 

𝑅++, maxima. Figure 4.11d shows 𝑅** and 𝑅++ as functions of magnetic field B at fixed 

carrier density 𝑛 = 6.53 × 10VX𝑐𝑚ºX. To suppress contributions from quantum Hall 

oscillations that may mask the commensurability oscillations[8, 10, 11], the plotted curves 

are actually obtained by averaging the measured resistance over a small density window of 

(6.53 ± 0.23) × 10VX𝑐𝑚ºX. In our measurements, the data resolution in carrier density is 

Δ𝑛 = 3.34 × 10V8𝑐𝑚ºX. Therefore V
V+
∑ 𝑅**(𝑛 + 𝑘Δ𝑛, 𝐵)-
µ.º-  and V

V+
∑ 𝑅++(𝑛 +-
µ.º-

𝑘Δ𝑛, 𝐵) are the quantities being plotted in Figure 4.11d. Figure 4.12a shows the 𝑅** and 

𝑅++ at 𝑛 = 6.53 × 10VX𝑐𝑚ºX without taking any average over a neighboring 𝑛 range. 

While we can still see 𝑅** minima and 𝑅++ maxima happening at the predicted magnetic 

fields values satisfying 2𝑟ò = ª𝜆 − V
#
® 𝐿 marked by dashed lines, there are obscured by the 

more prominent and frequent quantum Hall oscillations. 

 

Figure 4.12 Averaging over a small window of carrier density 𝒏 to smooth out 

quantum Hall oscillations (a) 𝑅** and 𝑅++ as a function of magnetic field B at 𝑛 =

a b c
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6.53 × 10VX𝑐𝑚ºX without taking average values in a neighboring carrier density range, for 

the L=47nm graphene 1DSL device. (b) The average 𝑅** and 𝑅++ from the carrier density 

range 𝑛 = (6.53 ± 0.13) × 10VX𝑐𝑚ºX. (c) The average 𝑅** and 𝑅++ from the carrier 

density range 𝑛 = (6.53 ± 0.23) × 10VX𝑐𝑚ºX, same as Figure 4.11d. Dashed lines indicate 

magnetic fields at which commensurability oscillation minima in 𝑅** (and thus maxima in 

𝑅++) are predicted to occur based on Equation 2 in the main text. 

 

Commensurability oscillations can be understood both semi-classically and quantum 

mechanically. In the semiclassical picture, the guiding centers of the cyclotron orbits of 

carriers in 1DSL drift along the y	direction. Drifting velocity is proportional to the local 

electric field E(x), which is modulated by the 1DSL potential. It follows that drifting velocity 

is enhanced or reduced depending on whether 𝐸(𝑋 + 𝑟ò) and 𝐸(𝑋 − 𝑟ò) have the same or 

opposite sign, where 𝑋 is the x-coordinate of the guiding center. Further analysis shows that 

𝑅++ minima and 𝑅** maxima are achieved when the resonance condition 2𝑟ò 	= ª𝜆 + V
#
® 𝐿 

(notice the plus sign instead of minus) is satisfied[12].  

 

Figure 4.13 Semiclassical explanation of commensurability oscillation Reprinted from 

[12]. According to Beenakker, in a 1DSL system under vertical magnetic field, the guiding 
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center of the cyclotron orbits tends to move along the y axis. The drift velocity is greatest 

when 2𝑟ò 	= ª𝜆 + V
#
® 𝐿 is satisfied.  

 

Alternatively, commensurability oscillations can be understood quantum mechanically by a 

1/𝐵-periodic oscillation in the Landau level bandwidth, which reaches zero when 2𝑟ò 	=

ª𝜆 − V
#
® 𝐿 is satisfied. We note that the commensurability oscillations along the two 

measured directions appear out of phase such that when 𝑅** fades, 𝑅++ grows, and vice 

versa. The Landau level degeneracies are lifted by the 1DSL potential with each Landau level 

acquiring a dispersion in 𝑘+ only. Thus, when the LL width in the direction of 𝑘+ is large, 

𝑅** is large, since 𝑅** ∝ 	𝑣+X where 𝑣+ =
V
	ℏ	

ì�
ìµ¶

. Conversely, 𝑅++ ∝ 	𝑣*X and so is less 

sensitive to variation of the intraband scattering and instead varies directly with the DOS, 

causing 𝑅++ to scale inversely with the level width. Therefore, zero LL bandwidth (zero 

dispersion in 𝑘+, corresponding to the condition in (2) ) leads to an 𝑅** minimum, 

simultaneous with an 𝑅++ maximum.  

Figure 4.14 shows commensurability oscillation in 𝑅** as three different temperatures. We 

notice that the commensurability oscillation envelope persists at T=20K while quantum Hall 

oscillation have been largely smoothed out. This agrees with Drienovsky’s measurement.[11] 

 

Figure 4.14 Temperature dependence of commensurability oscillation in 𝑹𝒙𝒙 (a) 𝑅** 

as a function of magnetic field B at fixed carrier density 𝑛 = 7.97 × 10VX𝑐𝑚ºX for three 

(a)
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different temperatures. 𝐿 = 55𝑛𝑚, 𝑉01 = 76𝑉. (b)	𝑅** versus B at 𝑛 = 1.4 × 10VX𝑐𝑚ºX 

at various temperatures in Drienovsky’s measurement. Reprinted from [11].  

 

4.5 Summary 

Two graphene 1DSL devices with pitch L=47nm and L=55nm respectively are made and 

achieved higher carrier mobilities than previous devices. These devices are L-shaped, 

enabling measurements of transport anisotropy.  

The 𝑅** and 𝑅++ measurements at zero magnetic field reproduces the calculated values in 

Figure 2.8 and are strong evidence for the periodic flattening/unflattening of main and 1st 

satellite Dirac cones. 𝑅** and 𝑅++ are very symmetric about n=0 but not symmetric 

enough about 𝑉01 = 0, suggesting that the true 1DSL potential has even symmetry but not 

odd symmetry. At high temperature an “X”-shaped 𝑅** feature still exists, and can be 

explained by Drienovsky’s modelling of 1DSL as a series of pn junctions.  

Magnetotransport data in 𝑅** show satellite Landau fans that further corroborate the 

existence of band structure modification. Commensurability oscillation in 𝑅** and 𝑅++ are 

also seen.  
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Chapter 5. Plasmonic band structure engineering in a graphene 

2D superlattice system 

5.1 Surface plasmon polaritons (SPPs) 

In this chapter I discuss my research efforts related to the band structure engineering of 

surface plasmon polaritons (SPPs). 

Just like phonons that are the quasiparticles of mechanical vibrations of atoms in a crystal, 

plasmons are quasiparticles of plasma oscillation of electrons. Surface plasmons can be 

excited by light at a metal-dielectric interface. This hybrid excitation of light and mobile 

electrons is called surface plasmon polariton.  

The origin of plasma oscillation in solids can be described by the following model: Consider 

a chain of N equally spaced atoms with each electron displaced from the corresponding 

nucleus by a distance of 𝛿𝑥. This displacement introduces an electric field 𝐸2 =

𝑁𝑒(𝛿𝑥)/𝜖8		pointing in the direction of the electron displacement, which pulls the electrons 

back to their original positions. Because of their inertia, the electrons will overshoot and 

oscillate around their equilibrium positions with a characteristic frequency known as the 

plasma frequency. Suppose at any given time t, the electron displacement is given by 𝛿𝑥 =

𝛿𝑥8exp	(−𝑖𝜔n𝑡), plug into the equation of motion 𝑚ì¢(6*)
ìë¢

= (−𝑒)𝐸2 we have the plasma 

frequency 𝜔n = h𝑁𝑒X/𝑚𝜖8. In Drude model, dielectric constant in metal is given by 

𝜖(𝜔) = ª1 − 7�¢

7¢
® + 𝑖 7�

¢8
79

 where 𝛾 is a damping factor. Note that the above discussion 

assumes electrons to be “free”, and the electron is not bound to a nucleus by virtue of its 

atomic structure. In certain materials such as gold, we need to take contributions from bound 

electrons into account when calculating the dielectric constant 𝜖(𝜔). 

In bulk metal the dispersion relation of electromagnetic waves can be found by 𝑘X = |𝒌|X =

𝜖𝜔X/𝑐X. Ignoring the imaginary part of 𝜖 that approaches zero at large 𝜔, we get 
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𝜔(𝑘) = ;𝜔nX +
𝑘X

𝑐X
	 (1) 

However, this is a longitudinal excitation mode with 𝒌 ∥ 𝑬 that cannot be excited by light, a 

transverse wave.  

Another type of plasmon polariton is the surface plasmon polaritons that propagate along the 

interface between a metal and a dielectric medium. Consider the following ansatz for the 

electromagnetic fields in metal and dielectric near such an interface: 

>
𝑯ì = a0, 𝐻+ì, 0ce@(¦ABýC¦DBEºFG)

𝑬ì = (𝐸*ì, 0, 𝐸Hì)e@(¦ABýC¦DBEºFG)
	for	z > 0	(in	dielectric)	 (2) 

>
𝑯ì = a0, 𝐻+¾, 0ce@(¦ALýC¦DLEºFG)

𝑬ì = (𝐸*¾, 0, 𝐸H¾)e@(¦ALýC¦DLEºFG)
	for	z < 0	(in	metal)	 (3) 

At the interface, 𝐸*¾ = 𝐸*ì,	𝐻+¾ = 𝐻+ì, and 𝜖¾𝐸H¾ = 𝜖ì𝐸Hì. Plug in (2)(3) to the 

interface boundary conditions and Maxwell’s equations, we get 𝑘*¾ = 𝑘*ì =
7
ò M

åNåO
åNCåO

. 

Unifying the notations 𝑘*¾ and 𝑘*ì into 𝑘*, and noting that 𝜖¾(𝜔) = 1 − 𝜔nX/𝜔X in 

metal if we ignore the damping factor 𝛾, the dispersion relation for surface plasmons can be 

described as 𝑘* =
7
ò
;

a7¢º7�¢cåO
(VCåO)7¢º7�¢

. Notice that if we consider the imaginary part of 𝜖¾(𝜔) 

due to the damping factor 𝛾 then 𝑘*, just like 𝑘Hì and 𝑘H¾, carries an imaginary part and 

therefore SPP propagation attenuates exponentially along the x direction.   

Figure 5.1 shows the dispersion relations of photon, surface plasmon, bulk (volume) plasmon 

and their polaritons. Although unlike bulk plasmon polaritons, SPPs are a transverse wave, 

they do not have the same dispersion relation as photons and at a given frequency 𝜔 there is 

always a nonzero mismatch in wave vector between photon and SPP that this photon is 

supposed to excite. Total internal reflection, diffraction gratings and near-field optics can be 

used to bridge the wave vector mismatch. 
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Figure 5.1 Surface plasmon polaritons (SPPs) and its dispersion relations Reprinted from 

[1] (a) Schematics of electric field and charge distribution due to SPP at a dielectric-metal 

interface (b) Dispersion relations of bulk plasmon polaritons (purple), surface plasmon 

polaritons (red), bulk plasmons that are not coupled to light (green dashed), surface plasmons 

that are not coupled to light (black dashed), and photons (black solid), assuming damping 

factor 𝛾 = 0.  

 

Scattering-type scanning near-field optical microscopy (s-SNOM) is a technique that 

efficiently excites and detects SPPs. In SNOM, the excitation laser is focused through an 

aperture with a diameter smaller than the laser wavelength, resulting in an evanescent field 

that contains Fourier components whose wave vectors are larger than that of the incoming 

laser. Laser beam #1 (yellow arrows in Figure 5.2) is directly backscattered by the metalized 

a

b
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AFM tip with radius ~30nm and positioned ~30nm above the sample device and registered 

on the detector, while laser beam #2 (red arrows in Figure 5.2) first reaches a metal launcher 

with thickness ~60nm, excites plasmons in the metal-dielectric interface which travels to and 

scatters on the AFM tip as well. Both the scattering on the AFM tip and the propagation of 

light across the metal launcher edge causes diffraction that bridges the wave vector mismatch. 

The two beams interfere on the detector with a phase difference of Δ𝜙 = 2𝜋𝑥/𝜆n		where x is 

the extra distance travelled by beam #2 on the sample surface. This phase difference causes 

oscillatory fringes in the near-field image 𝑠(𝒓,𝜔), which measures |Ez| directly above the 

sample surface, with wavelength 𝜆n. 

 
Figure 5.2 Detection of SPP fringes Reprinted from [2]. The detected signal is the 

interference between the scattered Beam #1 (yellow) and Beam #2 (red). The phase shift 

between the two beams induces oscillatory fringes in the near-field image 𝑠(𝒓,𝜔) with 

wavelength 𝜆n.  

 

Because the wavelength of SPP is shorter than that of light at the same frequency, controlling 

the propagation of SPP modes effectively controls the propagation of light at a length scale 
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shorter than its wavelength. Therefore, SPPs have recently received considerable interest in 

the field of opto-electronics. 

 

5.2 Plasmonic band structure of a graphene 2DSL system 

2D materials have received considerable interest for the studying of SPPs due to long SPP 

propagation lengths[3], the ease of carrier density tuning by gating[4], and the large SPP 

confinement ratios 𝜆8/𝜆n in these materials. For graphene the confinement ratio can be as 

high as 66. [3] 

As a result of the isotropic optical conductivity tensor in graphene, graphene SPPs have a 

circular wavefront.(Figure 5.3d) [5]. By solving Maxwell’s equations and imposing boundary 

conditions just like what we did for the metal-dielectric interface model in Section 5.1, we 

can calculate the SPP dispersion relation in a graphene sheet sandwiched by two semi-infinite 

thick hBN slabs.[6] (Figure 5.3a) The dispersion relation has two band gaps at 90~100meV 

and 150~190meV respectively, where no  SPP modes are allowed. In a realistic device the 

thicknesses of the encapsulating hBN flakes are finite. In particular, the top hBN needs to be 

thinner than ~10nm such that the AFM tip in the s-SNOM system can be as close to the top 

hBN-graphene interface as possible in order to boost signal-to-noise ratio. Figure 5.3b shows 

the calculated SPP dispersion relationship in encapsulated graphene with top BN thickness 

7nm and bottom BN thickness 46nm. As a result of thin film effects, certain phonon polariton 

modes exist in the energy regimes labelled by orange.  
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Figure 5.3 SPP dispersion relations in graphene (a) SPP dispersion in hBN encapsulated 

graphene as calculated by the Drude model, assuming that the hBN flakes are semi-infinite in 

the direction perpendicular to graphene (b) Same as (a) but taking thin film effects into 

account with top hBN thickness = 7nm and bottom hBN thickness = 46nm (c) Same as (b) 

but taking nonlocal conductance into account. For (b) and (c) certain modes in the orange 

regime are phonon polariton modes and unrelated to SPP. (a~c) reprinted from [6]. (d) 

d
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Schematics of SPP wavefront launched from a metal launcher disk on top of graphene, 

showing the isotropic nature of SPP in graphene. Reprinted from [5]. 

 

The rotational symmetry of the graphene SPP dispersion relation can be broken by imposing 

a 2D dielectric superlattice consisting of an array of pillars. Furthermore, the Si gate voltage 

𝑉k	tunes both the average carrier density in graphene 𝑛] and the amount of carrier density 

modulation between the pillar regions and the non-pillar regions. Figure 5.4K shows the 

three-dimensional SPP dispersion in graphene under 2DSL as a function of 𝒌 and 𝑛], as long 

as the vertical cut along fixed carrier density 𝑛] = 4.1 × 10VX𝑐𝑚ºX and the horizontal cut 

along 𝜔 = 890	𝑐𝑚ºV. Figures 5.4B,E,H shows more cuts along three different values of 𝑛]. 

At 𝑛] = 3.6 × 10VX𝑐𝑚ºX(Fig 5.4B) SPP modes are allowed near the M direction of the 

superlattice Brillouin zone at 𝜔 = 890	𝑐𝑚ºV, and the simulated |Ez| map (Fig. 5.4D) predicts 

SPP propagation along the M direction but not in the K direction. At 𝑛] = 4.8 × 10VX𝑐𝑚ºX 

(Fig 5.4E) SPP modes are allowed near the K direction at 𝜔 = 890	𝑐𝑚ºV, and the simulated 

|Ez| map (Fig. 5.4G) predicts SPP mode propagation along the K direction but not the M 

direction. At 𝑛] = 6.0 × 10VX𝑐𝑚ºX (Fig. 5.4H), SPP modes are allowed along both the M 

and K directions, and the simulated |Ez| map (Fig. 5.4J) predicts a mostly isotropic SPP 

propagation map as seen in pristine graphene. (Fig. 5.3d). Therefore, the presence of 2DSL 

has engineered an anisotropic band gap in the dispersion relation of SPP that allows us to 

control the propagation direction of SPP solely by adjusting 𝑉k, which controls 𝑛]. From now 

on we use the terms “dispersion relation” and “band structure” interchangeably in the context 

of SPPs but bear in mind that unlike elections, polaritons in general are bosonic quasiparticles 

and thus Pauli exclusion is not applicable. Therefore, there is no “Fermi sea” in SPPs and the 

SPP band structure merely tells us which modes are allowed and which are not. 
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Figure 5.4 SPP dispersion relation in graphene 2DSL system (A) Schematics of a 

graphene 2DSL device. Inset shows the carrier density modulation between the pillar and 

non-pillar regions (B,E,H) SPP dispersion sliced along three different values of average 

carrier densities 𝑛]. (C,F,I) Equi-energy contours in the k-space along 𝜔 = 890	𝑐𝑚ºV at 

three different values of 𝑛]. (D,G,J) simulated |Ez| map in real space for SPP launched from 

the center, at three different values of 𝑛]. (K) SPP dispersion as a function of 𝒌 and 𝑛], and 

the slice along a fixed frequency (red) and a fixed 𝑛] (black). 

 

5.3 A previous study on graphene 2DSL plasmonics 

In 2018 Xiong et al investigated the propagation of SPPs along K direction in a graphene 

2DSL device.[2] Two mirroring regions of triangular superlattice are separated by a one-

dimensional domain wall composing of two parallel arrays of pillars. The 2DSL has 85nm 

pitch and its plasmonic dispersion relation is shown in Figure 5.5e. The laser frequency and 

thus the SPP frequency is fixed at 𝜔 = 904	𝑐𝑚ºV. At 𝑉k = −90𝑉, according to the 

calculated dispersion relations (Fig. 5.5e, red curves), SPP propagation is allowed in both M 

and K directions, and near field images confirm the existence of SPP fringes along the K 

direction (Fig 5.5c,d). At 𝑉k = −40𝑉,−60𝑉 and −70𝑉, SPP fringes are very faint and, at 

least in the case of 𝑉k = −60𝑉, SPP propagation in the 2DSL region along the K direction 

(Fig. 5.5d, purple curve) is suppressed compared to in the pristine graphene region (Fig. 5.5d, 

purple dashed curve). Near the SPP band gap around 𝑉k = −65𝑉, no SPP modes are allowed 

to propagate along any direction in the regions subject to 2D triangular superlattice potential, 

K
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and only propagation along the 1D domain wall is allowed, as seen in the very bright near 

field signal along the domain wall at 𝑉k = −70𝑉. (Fig. 5.5c) 

 

Figure 5.5 Gate-tunable plasmonic response in a graphene 2DSL device along the K 

direction Reprinted from [2]. (a) Schematics of a photonic crystal structure with pitch 80nm 

and an artificial domain wall in the middle. K and M directions are labelled. (b) Simulated 

local density of state (LDOS) maps for the upper and lower plasmonic bands. (c) 

Experimental near field images 𝑠(𝒓,𝜔) acquired at different 𝑉k. Scale bar: 400nm. (d) Line 

profiles of measured 𝑠(𝒓,𝜔) taken in a photonic crystal region away from the domain wall. 

Dotted lines indicate the corresponding line profiles in the unpatterned region (e) Plasmonic 

dispersion relations of a graphene 2DSL system with pitch 80nm along with its slices along 

𝜔 = 904	𝑐𝑚ºV (red) and 𝑉k = −65𝑉 (black). 

 

5.4 Device fabrication 

Despite these early signs of gate-controlled SPP propagation in this graphene 2DSL device, it 

is unable to measure SPP propagation along the M direction due to the extremely limited 

amount of usable device area available in the M direction of the metal launcher. The most 

challenging part of fabricating a graphene 2DSL device is the making of the hBN-graphene-

hBN stack, a stack composing of three layers of thin (<10nm) 2D materials while maintaining 

both high device quality (no breaks, folds, wrinkles, interlayer bubbles and few polymer 

e
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residues) and a relatively large device area. The top hBN needs to be thin to maximize the 

detected near field signal, and the bottom hBN also needs to be thin to avoid screening out 

the carrier density modulation in graphene due to the superlattice pillars. Thin layers of 2D 

materials tend to break, fold, wrinkle much more easily than their thicker counterparts during 

the van der Waals transfer process, causing defects in the assembled heterostructure. 

Polypropylene carbonate (PPC) does not tend to easily stick to thin layers of 2D materials 

and it is very challenging to pick up the topmost layer of our stack using a PPC slide, as what 

we did in the graphene 1DSL device in Chapter 4. Since the bottom hBN is also thin, it does 

not help to reverse the order of assembly, start from the bottom layer and flip the stack. Using 

other polymers such as polycarbonate (PC) that picks up thin flakes more easily than PPC 

does for stack assembly is also not an option as they introduce too much residue on the 

device surface even after vacuum annealing.  

Xiong et al’s device in 2018[2] fabricated the stack by first picking up a thick (>20nm) layer-

of hBN using PPC. Then, the top thin hBN is positioned between the PPC touchdown point 

and the picked-up thick hBN flake, with partial overlap between the thin and thick hBN 

flakes. As the PPC wavefront is slowly pulled back, the thick hBN, already on the PPC, 

would lift the thin hBN flake up thanks to the overlapping region. Once the entire thin hBN 

flake is picked up, the graphene and the bottom hBN flake can also be picked up due to van 

der Waals forces. I improved this method by pre-patterning the thick hBN by etching a hole 

with 7μm~12μm diameter. After this pre-patterned thick hBN flake is picked up using PPC, 

thin flakes are positioned such that the thick hBN hole lies inside the thin flake entirely. 

Because the thin flakes now feel van der Waals attraction to the thick hBN everywhere 

outside the hole, the transfer process is generally smoother and tends to produce larger usable 

areas compared to the 2018 method.  
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Figure 5.6 Stacking a thin hBN-graphene-thin hBN stack (a,b) Schematics of the 2018 

and new methods of thin stack assembly, respectively. Blue arrows indicate that the 

PPC/SiO2 interface region contracts during the pick up process. © Optical microscope image 

of a thin hBN-graphene-thin hBN stack made using the new method after being transferred 

onto a SiO2/Si substrate with 2DSL pillars. Scale bar=10μm. Disks labelled by orange 

indicate regions with 2DSL pillar inside. The disk labelled by blue in b,c,d indicate the etched 

hole in the top thick hBN inside which the thin hBN-graphene-thin hBN stack exists. (d) 

AFM amplitude error image of the stack shown in (c). Besides a fold that bisects the thin 
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stack region and a bubble on the lower-left, the stack is very clean and smooth. Scale 

bar=2μm  

 

It is also worth noting that for both the 2018 device and my new device, h11BN which is 

isotopically pure in boron, is used instead of the usual hBN. Boron has two naturally 

occurring stable isotopes, 10B (abundance 20%) and 11B (abundance 80%) with different 

atomic mass. It has been shown experimentally [7] that for phonon polaritons propagating on 

an hBN surface, the propagation length increases from ~4μm in hBN with natural boron 

abundance to >10μm in hBN with 99.2% 11B abundance. Although no studies have been 

made on the effect of isotopically purity of boron in hBN on SPP propagation, we have 

decided to use h11BN flakes for both the top and bottom thin hBN in an attempt to maximize 

SPP propagation length. 

The fabrication of 2DSL pillars on a SiO2/Si substrate is very similar to the fabrication of 

1DSL lines explained in Section 4.1.2. To make pillars, regions inside hexagonal tiles shown 

in Figure 5.7a has their top ~50nm of SiO2 etched away, leaving the regions outside these 

tiles as SiO2 pillars. Because Nanobeam e-beam lithography system only recognizes 

displacement up to 1nm, special care is taken such that the origin of each SL unit cell has its 

x and y coordinates rounded to the nearest integer nanometer to ensure that the resulting 

pillars have homogenous pillar diameters. 



  
 

91 

 

Figure 5.7 Fabrication of 2DSL pillars (a) AutoCAD design of the array of hexagon 

regions marked in red that would have their top ~50nm of SiO2 etched away, leaving pillars 

behind. The unit cell of this array is highlighted. The origin of each unit cell, marked by the 

white dot, have their x and y coordinates rounded to the nearest integer nanometer. Scale 

bar=100nm (b) SEM image of a finished 2DSL pillar array. Gray region: Pillars. Scale 

bar=200nm 

 

After both the stack and the 2DSL are fabricated, the stack is transferred onto 2DSL and at 

least 2 metal-to-graphene electric contacts are made. Two contacts are necessary to determine 

the gate voltage offset in the device by finding the 𝑉k at which the two-point resistance of 

graphene reaches maximum. Finally, metal launchers shaped as seen in Figure 5.4A are 

deposited on top of the stack to allow for SPP propagation in directions other than K. 

 

5.5 Measurement results 

Figure 5.8C,D,E shows near field signal from a graphene 2DSL pillar device at 𝜔 =

890	𝑐𝑚ºV	with 𝑉k = 47.5𝑉, 52.5𝑉, 72.5𝑉, respectively. The SPPs are launched from a 

pentagon shaped launcher that have two edges 30° apart, allowing simultaneous launching in 

85nm

33n
m

12nm

a b
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both K and M directions. Figure 5.8F shows the line profiles along the K and M directions 

acquired from Figure 5.8 C,D,E. At 𝑉k = 47.5𝑉, SPP fringes appear in the M direction but 

not in the K direction, agreeing with the calculation that SPP has modes near M but not near 

K at 𝑛] = 3.5 × 10VX𝑐𝑚ºX (Figure 5.8B). At 𝑉k = 52.5𝑉, SPP fringes appear in the K 

direction but not in the M direction, agreeing with the calculation that SPP has modes near K 

but not near M at 𝑛] = 4.7 × 10VX𝑐𝑚ºX (Figure 5.8B). At 𝑉k = 72.5𝑉, SPP fringes appear 

in both K and M directions, agreeing with the calculation that SPP has both modes near K 

and modes near M at 𝑛] = 6.0 × 10VX𝑐𝑚ºX. Therefore, 𝑉k acts as a tunable switch that can 

turn SPP transport in K and M directions on and off.  

 

Figure 5.8 Gate bias as a SPP switch (A) Schematics of the device with the scanned region 

in the dashed box.(B). Plasmonic band structure of graphene subject to a 2DSL pillar 

superlattice with pitch L=85nm, sliced along constant frequency 𝜔 = 890	𝑐𝑚ºV. (C,D,E) 

Near field signal at 𝑉k = 47.5𝑉 (𝑛] = 3.5 × 10VX𝑐𝑚ºX), 𝑉k = 52.5𝑉 (𝑛] = 4.7 ×

10VX𝑐𝑚ºX) and 𝑉k = 72.5𝑉 (𝑛] = 6.0 × 10VX𝑐𝑚ºX), respectively. (F) Averaged line profiles 

along K and M directions from the near field images in (C,D,E). 

By modifying the shape of the launcher into a needle, SPPs are able to launch into almost any 

direction in the xy plane. The cropped near-field images near the launcher apex are Fourier 

transformed using a Hann window and then symmetrized to get an image in reciprocal space. 
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(Figure 5.9C,F,I) More specifically, we consecutively rotated the raw Fourier images in 60° 

intervals, leading to 6 transformed images. We then applied the mirror operation to these 6 

transformed images, resulting in 6 additional images. All 12 transformed images were 

averaged and result in the Fourier images shown in Figure 5.9C,F,I. Figure 5.9C shows 

Fourier transform maxima around M point. Figure 5.9F shows Fourier transform maxima 

around K point. Figure 5.9I shows a mostly isotropic Fourier transform map. These Fourier 

transform maps can be seen as equi-energy contours in the graphene 2DSL SPP band 

structure, as they fit neatly into the calculated SPP band structure in Figure 5.9K. If we 

measure near field images at more values of 𝑉k we can effectively probe and map the entire 

SPP band structure of the device. 

 
Figure 5.9 Fourier analysis of polaritonic images A. Device schematics showing needle-

like launcher. B,E,H. Near field images taken for an 80nm pitch graphene 2DSL pillar device 

at three different gate biases. At 𝑉k = −45𝑉 (B) SPP propagation is predominately along 

the M direction. At 𝑉k = −52.5𝑉 (E) SPP propagation is predominately along the K 

direction. At 𝑉k = −60𝑉 (H) SPP propagation is mostly isotropic. (C,F,I) Symmetrized 

Fourier transform of (B,E,H) respectively. (D,G,J) Simulated Fourier transform of near field 

images at 𝑉k = −45𝑉,−52.5𝑉,−60𝑉, respectively. (K) Calculated SPP band structure for 

an 80nm pitch graphene 2DSL pillar device with Fourier transformed images (C,F,I) 

overlayed at the corresponding 𝑉k values, showing that the Fourier transform of near-field 
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images can be understood at equi-𝑉k contours of SPP band structure. 

 

5.6 Summary 

Surface plasmon polaritons (SPPs) can be excited by light on a metal-dielectric interface. 

They have shorter wavelength than light at the same given frequency, allowing for control of 

light propagation at a sub-wavelength length scale.  

SPPs in hBN-encapsulated graphene propagate isotropically. When graphene is subject to 

2DSL modulation, SPP dispersion relationship depends on the SL gate voltage 𝑉k. At certain 

values of 𝑉k, only SPP modes along M (or K) direction are allowed.  

The fabrication of a graphene 2DSL device for SPP detection is challenging due to the need 

to make high quality stacks with large area composing of two thin hBN layers and a 

monolayer graphene sheet. The stacking process can be streamlined by picking up a thick 

hBN flake with a hole etched away first, and then picking up the thin flakes using the thick 

hBN flake. 

Experimentally we have shown that 𝑉k can indeed change the K vs M direction of SPP 

propagation in a graphene 2DSL device, acting as a programmable switch. When the shape of 

the SPP launcher is changed to a needle, we are able to map the SPP band structure equi-𝑉k 

contour by taking the Fourier transform of near-field images. 
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Chapter 6. Future outlook 

6.1 Towards a perfectly symmetric 1DSL potential 

One of the most exciting promises of a graphene 1DSL system is the ability to induce Landau 

level degeneracy at CNP thanks to the existence of side Dirac cones at certain strengths of SL 

modulation 𝑢.[1] The most experimentally attainable case is where 𝑢 = 6𝜋 and 3 Dirac 

cones exist at CNP. In a 1DSL modulation potential with both perfect even and odd 

symmetries, the Landau levels at CNP are expected to be 3 × 4 = 12 fold degenerate at 

𝑢 = 6𝜋, leading to the absence of states with 𝜎*+ = ±2. [1] However, as seen in Figure 4.15 

the measurement results from my device are inconclusive.  

Kang et al [2] has recently suggested creating a 1DSL modulation potential with both perfect 

even and odd symmetries by using two pairs of periodic local gates with geometries 

described in Figure 6.1(a). When the gate biases satisfy 𝑉V = −𝑉X, both even and odd 

symmetries of 1DSL modulation potential are achieved. According to Kang et al, 1DSL 

potential induced by patterned dielectric superlattice would always be unable to achieve odd 

symmetry, therefore gate patterning has to be used. 
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Figure 6.1 Creating a perfectly symmetric 1DSL potential by a pair of local gates 

Reprinted from [2]. (a) Schematics of the pair of local gates. Dashed lines indicate the extent 

of the Hall bar. (b) Calculated electric potential distribution (bottom), carrier density profiles 

(middle), and on-site energy profile (top) for a 1DSL potential with perfect even and odd 

symmetries (c) Calculated two-terminal conductance (red) and number of side DP pairs at 

CNP (blue) as a function of 𝑉V = −𝑉X, assuming a 5nm hBN thickness between graphene 

and periodic back gate. (d) Band structure of graphene 1DSL corresponding to the star 

marked by (c). Up to 6 pairs of side Dirac points at CNP are seen.  

 

6.2 Corbino measurement of graphene under a concentric ring SL potential 
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Bulk conductance data measured from a graphene device with Corbino geometry has been 

shown to outperform Hall bar measurements, with improved resolution observed for both the 

integer and fractional quantum Hall states (Figure 6.2b,c). [3] Therefore it is natural to make 

and measure a graphene Corbino device with concentric circles etched on SiO2 substrate as 

the SL modulation. The lack of any edge transport in Corbino devices could suppress off-

angle scattering seen in Hall bar devices and allow ballistic transport at high temperature 

scales.   

 
Figure 6.2 Corbino devices (a) Schematics of a graphene Corbino device with concentric 

rings centered at the center electrode etched on the SiO2 dielectric substrate. (b) Longitudinal 

conductivity of a graphene Hall bar device as a function of filling fraction 𝜈 measured at 

B=15T and T=300mK. (c) Bulk conductance of a graphene Corbino device as a function of 

filling fraction 𝜈 measured at B=15T and T=300mK. (b,c) reprinted from [3]. 

 

6.3 Combination of patterned superlattice and moiré SL 

In magic angle twisted bilayer graphene, flat bands result in many-body effects such as Mott-

like insulators[4] and superconductivity[5]. Unlike the flattened bands in graphene 1DSL, flat 

bands in magic angle tBLG are separated from neighboring bands in energy. It is natural to 

ask what would happen when we combine these two types of band flattening in one system. 

~B
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One possibility is that the flat bands in tBLG may fold at the edges of the superlattice 

Brillouin zone, creating replicated mini-flat bands.   

 

6.4 Graphene subject to a quasicrystal superlattice potential 

A quasicrystal is a structure that is ordered but not periodic. Quasicrystal structure occur in 

tBLG with twist angle 30° where multiple Dirac cones replicated with a 12-fold rotational 

symmetry exist.[6] However, these cones exist at energies about 1.7eV above CNP, which is 

too high to be reached by field-effect gating. Figure 6.3 shows the “band structure” of 

monolayer graphene under an 8-fold quasicrystal potential at two different strengths of SL 

modulation. The band structure features related to the quasicrystals happen at ~0.1meV above 

CNP, making it realistic to probe these features by transport measurements. 

 

Figure 6.3 “Band” structure of monolayer graphene under and 8-fold quasicrystal 

potential. Lattice constant=50nm. Energy unit on the vertical axis is meV.  

 

 

 

 

V = 10 meV V = 30 meV
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