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Abstract 1 

Drought is of global concern for society but it originates as a local problem. It has a significant 2 

impact on water quantity and quality and influences food, water, and energy security. The 3 

consequences of drought vary in space and time, from the local scale (e.g. county level) to 4 

regional scale (e.g. state or country level) to global scale. Within the regional scale, there are 5 

multiple socio-economic impacts (i.e., agriculture, drinking water supply, and stream health) 6 

occurring individually or in combination at local scales, either in clusters or scattered. Even 7 

though the application of aggregated drought information at the regional level has been useful in 8 

drought management, the latter can be further improved by evaluating the structure and evolution 9 

of a drought at the local scale. This study addresses a local-scale agricultural drought anatomy in 10 

Story County in Iowa, USA. This complex problem was evaluated using assimilated AMSR-E 11 

soil moisture and MODIS-LAI data into a crop model to generate surface and sub-surface 12 

drought indices to explore the anatomy of an agricultural drought. Quantification of moisture 13 

supply in the root zone remains a grey area in research community, this challenge can be partly 14 

overcome by incorporating assimilation of soil moisture and leaf area index into crop modeling 15 

framework for agricultural drought quantification, as it performs better in simulating crop yield. 16 

It was noted that the persistence of subsurface droughts is in general higher than surface 17 

droughts, which can potentially improve forecast accuracy. It was found that both surface and 18 

subsurface droughts have an impact on crop yields, albeit with different magnitudes, however, 19 

the total water available in the soil profile seemed to have a greater impact on the yield. Further, 20 

agricultural drought should not be treated equal for all crops, and it should be calculated based 21 

on the root zone depth rather than a fixed soil layer depth. We envisaged that the results of this 22 

study will enhance our understanding of agricultural droughts in different parts of the world.  23 
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1. Introduction 25 

There is a continuous rise in water demand in many parts of the world in order to satisfy the 26 

needs of growing population, rising agricultural demand, and increasing energy and industrial 27 

sectors (Mishra and Singh, 2010; Singh et al., 2014). These growing water demands are further 28 

challenged by the impact of droughts. Drought propagates through water resources systems in 29 

virtually all climatic zones, as it is driven by the stochastic nature of hydroclimatic variables.  30 

Based on the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 31 

2013), the atmospheric temperature measurements show an estimated warming of 0.85 degree 32 

Celsius since 1880 and each of the last three decades has been successively warmer at the Earth’s 33 

surface than any preceding decade. It is anticipated that future global warming and climate 34 

change will have impact on average precipitation, evaporation, and runoff, that happen to be 35 

controlling factors for different types of droughts. Drought is well considered to be a global 36 

concern, since about half of the earth’s terrestrial surfaces are susceptible (Kogan, 1997), and it 37 

had the greatest detrimental impact among all natural hazards during the 20th century (Bruce, 38 

1994; Obasi, 1994).  39 

Meteorological records indicated that  major droughts have been observed in all continents, 40 

affecting large areas in Europe, Africa, Asia, Australia, South America, Central America, and 41 

North America (Mishra and Singh, 2010). A number of drought studies have been carried out to 42 

investigate drought characteristics using data from multiple sources at the global scale (Sheffield 43 

and Wood, 2007;   Dai, 2010; Vicente-Serrano et al., 2010 ; Van Lanen et al., 2013; Wada et al., 44 

2013 ), national and regional scales (Rajsekhar et al., 2014; Hao and Aghakouchak, 2014; Zhang 45 

et al., 2014; Houborg  et al., 2012; Li et al., 2012; Svoboda et al., 2012; Wang et al., 2011), and 46 



river basin levels (Tallaksen et al., 2009; Mishra and Singh, 2009; Madadgar and Moradkhani, 47 

2011; Van Loon et al., 2014; Zhang et al., 2012).  48 

Over the past several decades, there has been a significant improvement in the development of 49 

drought indices to quantify drought events, each with its own strengths and weaknesses (Mishra 50 

and Singh, 2010). The commonly used indices are: Palmer Drought Severity Index (PDSI; 51 

Palmer, 1965), Crop Moisture Index (CMI; Palmer, 1968), Bhalme and Mooly Drought Index 52 

(BMDI; Bhalme and Mooley, 1980), Surface Water Supply Index (SWSI; Shafer and Dezman, 53 

1982), Standardized Precipitation Index (SPI; McKee et al., 1993), Reclamation Drought Index 54 

(RDI; Weghorst, 1996),  Soil Moisture Drought Index (SMDI; Hollinger et al., 1993), Vegetation 55 

Condition Index (VCI; Liu and Kogan, 1996), and Drought Monitor (Svoboda et al., 2002). 56 

Comprehensive reviews of drought indices can be found in Heim (2002) and Mishra and Singh 57 

(2010). However, the challenge still remains for deriving drought indices because of the 58 

uncertainty due to scaling issues to capture detailed information instead of aggregated 59 

information within spatial units. In a real-world scenario, it is often noticed that within the 60 

regional scale, there are multiple socio-economic impacts (i.e., agriculture, drinking water 61 

supply, ecosystem health, hydropower, waste disposal, and stream health) occurring at local 62 

scales individually or in combination, either located in clusters or scattered. Therefore, to reduce 63 

the socio-economic impacts of a drought, the anatomy of drought needs to be understood at a 64 

local scale for near real-time drought management.    65 

1.1 Importance of local-scale drought studies 66 

With the advancement in technology (e.g., remote sensing, climate forecasts), significant 67 

improvement is made in drought identification, monitoring, and with reasonable accuracy in 68 

forecasting (Mishra and Singh, 2010) at a regional to global scale by aggregating hydroclimatic 69 



fluxes as well as land surface characteristics. However, drought management can be improved by 70 

understanding and quantifying the triggering variables at a local scale. The local-scale drought 71 

analysis can partly overcome large amounts of uncertainties due to scale issues, model 72 

parameter, data quality, non-availability of socio-economic information, missing microscale 73 

climate, and catchment information. The local-scale drought is a subset of regional- or global-74 

scale drought, that needs special attention to improve water management. For example, drought 75 

varies with space and time within a river basin (Mishra and Singh, 2009); and there are specific 76 

sub-basins where drought is frequent, that needs local-scale treatment to improve water 77 

management within the watershed. Similarly, agricultural drought is mainly driven by stochastic 78 

and heterogeneous soil moisture, that poses a challenge to generate subsurface drought (soil 79 

moisture) information. However, with recent development of Soil Moisture Active and Passive 80 

(SMAP) mission products, it is expected that the robustness of agricultural drought monitoring 81 

and forecasting information will improve. Our focus in this study is limited to local-scale 82 

agricultural drought analysis to improve agricultural water management.  83 

Application to agricultural drought: Different crops are grown in different parts of the world, 84 

regions, and even within the same watershed. When compared with that of other types of 85 

drought, agricultural drought quantification is not as straightforward due to several reasons, for 86 

example, crop water requirements are different for different crops, which make it complex to 87 

quantify drought appropriately. Here, crop water requirement is defined as the amount of water 88 

needed by the crop to grow optimally and to compensate for the loss through evapotranspiration.  89 

Given a drought situation, different crops will behave differently, which means the drought for 90 

one type of crop may not represent the same condition for other types of crop (i.e., drought for 91 

crop may not be a drought condition for another crop). The agricultural drought will differ 92 



between crops because of  two major factors (demand and supply),  that are discussed in the 93 

following section: 94 

(A) Crop water demand: The agricultural drought index should be represented by the crop 95 

water availability during the growing season, that varies among crops and seasons. This is 96 

governed by several factors (FAO; http://www.fao.org/docrep/s2022e/s2022e07.htm): 97 

(a) Climate factors: Comparatively higher crop water needs are found in areas that are 98 

hot, dry, windy, and sunny. Climate factors also influence the duration of the total 99 

growing period and the various growth stages; 100 

(b) Crop type: Higher leaf area (example: maize) will be able to transpire and, thus, use 101 

more water than the reference grass crop; 102 

(c) Growth type: Crops that are fully developed will require more water than those at 103 

growth stages; 104 

(d) Total growing period: This is an important variable, as it mostly depends on local 105 

circumstances (e.g. local crop varieties). The growing periods largely differ, depending 106 

on the type of crops, for example, sugarcane (270–365 days), maize grain (125–180 107 

days), cotton (180–195 days), and sunflower (125–130 days). The total growing period 108 

(T) also determines crop growth stages, that include initial stage (0.1 T), crop 109 

development stage (0.7 to 0.8 T), and mild to late season stage (0.1 to 0.2 T); 110 

(e) Crop water needs: This information needs to be collected at local scale, as it is driven 111 

by several factors (a–d). For example, maize needs 500–800 mm of water, sunflower 112 

needs 600–1000 mm of water, whereas sugarcane needs 1500–2500 mm of water; and 113 



(f) Drought resistance: Some of the crops are more sensitivity to drought in comparison 114 

to others, for example, crops with low sensitivity (cotton), medium to high sensitivity 115 

(maize), and high sensitivity (potato and sugarcane).  116 

(B) Crop water supply: The water is supplied to crops by the soil moisture available in the 117 

root zone. Therefore, to quantify an agricultural drought index, the relationship between water 118 

extraction and root zone needs to be understood. In general, more water is extracted from the top 119 

layer in comparison to the bottom layers. For example, in the case of corn (Figure 1), the typical 120 

extraction pattern follows 4-3-2-1 rule (Kranz et al., 2008). This means that the top 1/4th of the 121 

root zone supplies 40% of the water, the next 1/4th of the root zone supplies 30% of the water, 122 

and so on. Typically, the corn root depth can reach up to 180 cm, however, in some cases during 123 

late season the conservative management assumes a 90 cm effective root zone. The root depth, 124 

that supplies moisture for crop growth, differs between crops; therefore, soil moisture commonly 125 

used for agricultural drought monitoring should be driven by the root zone depth instead of a 126 

fixed depth. This means, identifying the number of layers will play an important role for 127 

quantifying agricultural droughts. 128 

Previous agricultural drought research considered uniform depth of soil moisture for all types of 129 

available crops to quantify agricultural drought scenarios. However, as discussed above, the 130 

moisture available in different layers and root zone depth will play an important role for the 131 

quantification of agricultural drought. The other advancement that will be made in this study is to 132 

explore the improvement made by a data assimilation-crop modeling framework by including 133 

remotely-sensed soil moisture and leaf area index for agricultural drought research. Therefore, 134 

the overall aim of this study is to evaluate the anatomy of a local-scale drought. This is done 135 

through the following specific objectives: (a) identification of the best data assimilation-crop 136 



modeling framework under different schemes for agricultural drought quantification; (b) 137 

generation of surface and subsurface drought indices useful for local-scale drought analysis; (c) 138 

characterization of the behavior of surface and subsurface droughts and  extraction of useful 139 

information for future agricultural water management; and (d) quantification of the impact of 140 

surface and subsurface drought properties. Here, the agricultural drought was analyzed, 141 

considering maize as a crop product. 142 

2. Experimental set up 143 

This experiment uses a combination of models (Figure 2a) to help us mine the possible 144 

relationship that may exist between the different variables and to quantify the physical process in 145 

the local scale agricultural droughts. For this study, we applied our modeling framework  to 146 

study the anatomy of a local-scale agricultural drought and its impact on maize yields in Story 147 

County, Iowa, USA. The following section briefly describes different components used to 148 

develop the modeling framework.  149 

2.1 Crop model-data assimilation framework  150 

Assimilating remote sensing data into a crop simulation model by means of in-season filtering 151 

(e.g., Kalman or particle filters) is a relatively new area of research in agricultural modeling (de 152 

Wit & van Diepen, 2007; Vazifedoust et al., 2009; Ines et al., 2013). Remote sensing data of soil 153 

moisture and vegetation (e.g., LAI – Leaf Area Index, NDVI – Normalized Difference 154 

Vegetation Index, etc.) are now available at regular time intervals and spatial resolutions that can  155 

be used effectively in a crop model to better estimate aggregate yields. Assimilation of remote 156 

sensing data helps improve the water- and energy-budget simulation in the crop model. 157 

However, assimilation of remote sensing data into a physiologically-based crop model is not  as 158 

straightforward as it seems, because when one variable is adjusted the other dependent variables 159 

must be also updated. For example, when remotely sensed LAI data is assimilated into the crop 160 



model, other model variables, like biomass and leaf weight, need to be adjusted as well. In the 161 

case soil profile moisture, which is physically connected with the surface soil moisture, nudging 162 

is also needed when remotely-sensed near-surface soil moisture data is assimilated in the crop 163 

model. 164 

To accommodate the above-mentioned requirements for a crop model-data assimilation, it is 165 

essential to customize the crop model to work in a data assimilation framework. This includes 166 

stopping the model at daily time step or when remote sensing data is available for assimilation 167 

and then restarting it for the next day (the so-called the ‘stop-and-start mechanism’) without 168 

going back to the time the seed was sown. This stop-and-start mechanism requires saving all the 169 

relevant variables in physical files, such that the model can remember their current values when 170 

invoked to run again by accessing these auxiliary files and reading the variables’ values on run-171 

time. This capability enables the assimilation of remote sensing data whenever available and also 172 

allows the updating of the related model variables by the remote sensing variable subsequently. 173 

We developed a variant of the Ensemble Kalman Filter (EnKF), called Ensemble Square Root 174 

Filter (Whitaker and Hamill, 2002), to simplify the use of remotely-sensed data in the data 175 

assimilation procedure. The square root filter allows data assimilation without perturbing the 176 

observed data; this is particularly appealing when assimilating growth variables, e.g., LAI. 177 

Details of the crop model-data assimilation framework are provided in Ines et al. (2013) and the 178 

data flow and assimilation steps are illustrated in Figure 2b. Forty ensemble members were 179 

created for the data assimilation experiments using observed variability in soils and crop cultivar 180 

characteristics. Planting density and management practices (i.e., planting and fertilizer) were 181 

kept fixed based on publications for maize in Central Iowa. The crop model-data assimilation 182 

framework consists of EnKF and a modified DSSAT-CSM-Maize (Jones et al., 2003; Ines et al., 183 



2013). 184 

Four major cases were explored in the crop model-data assimilation: open-loop (no data 185 

assimilation); and three runs using remotely-sensed (RS) data – soil moisture (SM) assimilation 186 

only, LAI assimilation only, and assimilating both SM and LAI data. Results of these 187 

experiments allow us to assess the utility of RS data assimilation for better estimation of 188 

aggregate yields, as compared to open-loop simulation alone, as well as to evaluate the utilities 189 

of those RS variables in the data assimilation and in the study of local scale drought. 190 

Data used: Remote sensing data that were used in the experiments include MODIS-LAI (1 x 1 191 

km-2, 8-day composite resolution; http://reverb.echo.nasa.gov/reverb/), AMSR-E near-surface 192 

soil moisture (Njoku et al., 2003; 25 x 25 km-2, daily resolution (only descending); 193 

http://nsidc.org/data/amsre/); county maize yield data were derived from USDA-NASS 194 

(http://www.nass.usda.gov); soil data were derived from SSURGO (http://www.nrcs.usda.gov); 195 

weather and auxiliary data were taken from Iowa State University AgClimate mesonet 196 

(http://mesonet.agron.iastate.edu/agclimate/) and their Extension and Outreach office’s 197 

publications for maize in Central Iowa (http://www.extension.iastate.edu). Simulations were 198 

done for the 2003–2009 period.  199 

2.2 Drought indices  200 

The drought indices are the prime variable for assessing the effect of a drought and for defining 201 

different drought parameters, which include intensity, duration, severity, and spatial extent. The 202 

most commonly used timescale for drought analysis is a month, however, we have used weekly 203 

timescale during crop periods to evaluate the agricultural drought. The drought indices are 204 

calculated based on fitting a suitable probability density function for the time series, which is 205 

then transformed to a normal distribution so that the mean SPI for the location and desired period 206 



is zero (McKee et al., 1993). The drought indices are classified in two categories: (a) surface 207 

drought indices, and (b) subsurface drought indices. A brief discussion of these is provided next.   208 

Surface drought indices: The surface drought indices are derived by surface hydroclimatic 209 

fluxes (i.e., precipitation, evapotranspiration and runoff), as shown in Figure 3. When 210 

precipitation is standardized to quantify a drought, it is called Standardized Precipitation Index 211 

(SPI). To develop a drought index, relatively longer data sets will be useful. Here, we have used 212 

weekly timescale due to two reasons: (i) it will better quantify the dynamics of moisture supply 213 

and demand for an agricultural drought scenario; and (ii) it will overcome some limitations of 214 

length of data, which are often witnessed in the application of remote sensing products (Njoku et 215 

al., 2003). The derivation of SPI based on weekly rainfall at different temporal resolution (1, 2, 216 

3, 4 weeks) leads to the generation of corresponding SPI time series, SPI1, SPI2, SPI3 and SPI4.  217 

Subsurface drought indices: The subsurface drought indices are derived by subsurface 218 

hydrologic fluxes, which are mostly quantified by the soil moisture available at different layers 219 

(Figure 3). The soil profiles were set up in the crop model-data assimilation using nine layers (0–220 

5, 5–15, 15–30, 30–45, 45–60, 60–90, 90–120, 120–150, and 150–180 cm) for a depth of 180 cm 221 

sampled in a Monte Carlo way from two dominant soil types in the county based on SSURGO 222 

data. Subsurface drought indices are relatively complex in comparison to the surface drought 223 

indices due to challenges involved in determining: (a) moisture available in different layers; and 224 

(b) root zone depth is different between crops – this makes it difficult to identify depths of soil 225 

layers corresponding to the root zone depth for agricultural drought analysis. We have selected 226 

different subsurface drought indices, that vary with soil layer depth (i.e., 1st layer, 2nd layer, …) 227 

as well as with temporal resolution (i.e., 1- to 4-week temporal scale). The selected drought 228 

indices are:  229 



(a) Standardized Soil Moisture Index for Layer 1 (SSMI_L1): This corresponds to the 230 

amount of soil moisture available in the top layer (0 to 5 cm). The SSMI_L1 is calculated 231 

for 1 to 4 weeks of temporal resolution, that are denoted by SSMI1_L1, SSMI2_L1, 232 

SSMI3_L1, and SSMI4_L1. 233 

(b) Standardized Soil Moisture Index for Layer 2 (SSMI_L2): This corresponds to the 234 

amount of soil moisture available in the 2nd layer (5 to 15 cm). The SSMI_L2 is 235 

calculated for 1 to 4 weeks of temporal resolution, that are denoted by SSMI1_L2, 236 

SSMI2_L2, SSMI3_L2 and SSMI4_L2. 237 

(c) Standardized Soil Moisture Index for Layer 3 (SSMI_L3): This corresponds to the 238 

amount of soil moisture available in the 3rd layer (15 to 30 cm). The SSMI_L3 is 239 

calculated for 1 to 4 weeks of temporal resolution, that are denoted by SSMI1_L3, 240 

SSMI2_L3, SSMI3_L3 and SSMI4_L3. 241 

(d) Standardized Soil Water Availability Index (SSWI): This corresponds to the amount of 242 

soil water available in all the soil layers (0 to 180 cm) considered for the analysis. The 243 

SSWI is calculated for 1 to 4 weeks of temporal resolution, that is denoted by SSWI1, 244 

SSWI2, SWI3 and SSWI4. The soil water varies for different layers and there is also a 245 

feedback mechanism that works to supply moisture from the bottom layer to the top layer 246 

due to the suction properties of root system and the pressure differentials caused by 247 

atmospheric demand. Therefore, using higher depth (180 cm) may provide aggregated 248 

information of soil moisture, which could be used during drought scenarios. 249 

2.3 Analysis of drought and yield relationship 250 

Drought-yield relationship is non-linear because of the complexity of water-yield relationship. 251 

Crop sensitivities to water stress vary by crop development stage (Doorenbos and Kassam, 1979; 252 

Steduto et al., 2012; Mishra et al., 2013). When a drought event occurs at the non-sensitive stage 253 



of crop growth, the impact may not be as substantial as when the drought event happened at the 254 

sensitive crop growth stage (e.g., during flowering). The severity and duration of a drought event 255 

may also define the extent of impact to the crops. For this local-scale drought analysis, we focus 256 

on the impact of drought severity, duration, maximum severity, maximum duration, number of 257 

events, and the temporal scales of these drought indices to maize yields in Story County, Iowa. 258 

The uniqueness of this study lies in the parameters used to analyze the agricultural drought. 259 

Agricultural drought indices were derived from soil moisture values of the first (SSMI_L1), 260 

second (SSMI_L2) and third (SSMI_L3) soil layers and the total available water (SSWI) 261 

simulated by the aggregate-scale crop model, while assimilating SM + LAI. Since the NASS 262 

yield data were reported based only on average values, we opted to perform the drought-yield 263 

analysis using the forty ensemble yield results from SM + LAI data assimilation, considering that 264 

the results for 2008, which was a very wet year, may be excluded. Using the time series of yield 265 

ensembles is important, because not all the spectra of yields may show the sensitivities to 266 

drought events. We decomposed the yearly yield distributions, therefore, to 5th percentile, 50th 267 

percentile, and 95th percentile, wherein we hypothesized that those lying in the 5th percentile 268 

category will show strong response to drought events. Correlation analysis was conducted to 269 

determine the relationships among the drought indices mentioned above with yield categories at 270 

different temporal scales (1, 2, 3 and 4 weeks). 271 

2.4 Application of statistical methods 272 

In this study, statistical methods were used to analyze the information generated from the 273 

experiment. A brief discussion of the statistical methods employed is provided here: 274 

Cross correlation analysis: A linear relationship between two sets of variables can be obtained 275 

using cross-correlation analysis at different lags. In this study, cross-correlation analysis was 276 



employed to denote the influence of weekly rainfall on both surface and subsurface drought 277 

indices at different temporal resolutions. 278 

Mutual information: Mutual information (MI) measures the amount of information that can be 279 

obtained about one random variable by observing another (Singh, 1997). For example, The 280 

estimation of MI between two variables (X and Y) depends on three probability distributions 281 

p(x), p(y), and p(x,y).  In this study, MI was calculated, based on the kernel density estimation, 282 

that has several advantages over the traditional histogram based method (Mishra and Coulibaly, 283 

2014). A high value of MI score would indicate a strong dependence between two variables. MI 284 

can measure both linear and nonlinear dependency between variables.  285 

Copulas: Multivariate analyses are often constrained by limitations of conventional functional 286 

multivariate frequency distributions that assume that the marginals are from the same family of 287 

multivariate distributions. The advantage of copula (Sklar, 1959) over classical multivariate 288 

distributions is that it is not constrained by the statistical behavior of individual variables. In 289 

hydrology, copula has been successfully used in flood studies (e.g. Chowdhary et al., 2011; 290 

Zhang and Singh, 2007), multivariate drought frequency analysis (e.g. Khedun et al., 2012; 291 

Shiau and Modarres, 2009), spatial mapping of drought variables (Rajsekhar et al., 2012),  and in 292 

modeling the influence of climate variables on precipitation (e.g. Khedun et al., 2013). The 293 

methodology for copula selection and simulation adopted in this paper follows the one presented 294 

by Genest and Favre (2007). 295 

Wavelet analysis: There has been an extensive application of wavelet analysis to hydroloclimatic 296 

time series (Kumar and Foufoula-Georgiou, 1997; Torrence and Compo, 1998; Labat, 2005; 297 

Ozger et al., 2009; Mishra et al., 2011). In this study, the Continuous Wavelet Transform (CWT) 298 

was used to decompose a signal into wavelets and generate frequency information at different 299 



temporal resolutions. Similarly, the cross wavelet transform (XWT) was used to detect the 300 

interactions between weekly rainfall and drought indices over multiple timescales by exposing 301 

the common power in time-frequency space.  302 

Hurst exponent: The Hurst exponent (H) is used to measure the persistence of a time series, that 303 

either regresses to a longer term mean value or ‘cluster’ in a particular direction (Sakalauskienne, 304 

2003; Mishra et al., 2009). The value of H ranges between 0 and 1, and it can be categorized into 305 

two major categories: (a) a value between 0 to 0.5 indicates a random walk, where there is no 306 

correlation between two present and future elements and there is a 50% probability that future 307 

values will go either up or down – any series of this type are hard to predict; and (b) the value of 308 

H between 0.5 and 1 indicates persistent behavior, which means the time series is trending. 309 

3. Results and discussions 310 

3.1 Performance of data assimilation schemes 311 

The data used in this study is the most readily available source of maize yield estimate for 312 

aggregate modeling in the study area. The NASS mean yield for maize in Story Co., Iowa for the 313 

2003–2009 period was 11.1 Mgha-1 (standard Deviation of 0.7 Mgha-1). The performance of 314 

assimilation schemes is shown in Table 1. Without data assimilation (open-loop), it is apparent 315 

that the crop model, even if applied in a Monte Carlo way, cannot estimate well the aggregate 316 

yields, although it captures some of the interannual yield variability. For these experiments, we 317 

intended to use data from only one station to represent the climate in the county, so that we can 318 

test the hypothesis that assimilation of remotely-sensed soil moisture or vegetation could correct 319 

the deficiencies contributed by model forcing, in this case, the scale effect of station rainfall. 320 

Assimilation of remotely-sensed LAI alone did improve the yield performance from open-loop. 321 

Assimilation of remotely-sensed SM did not improve the correlation from the LAI assimilation 322 



performance, but improved substantially the mean bias error in aggregate yield estimates. Ines et 323 

al. (2013) noted that AMSR-E SM data assimilation during very wet years (e.g., 2008) tended to 324 

completely minimize the water stress experienced by crops but had caused too much leaching of 325 

nitrogen from the soil profile resulting in unrealistic reduction in yields. They attributed this crop 326 

model-data assimilation behavior to the bias in AMSR-E soil moisture data, which new 327 

generation soil moisture satellites may be able to address, e.g., the upcoming SMAP mission. 328 

Assimilating both SM and LAI substantially improved the estimation of aggregate yields, 329 

suggesting that correcting both the hydrologic and plant components of a field-scale crop model 330 

applied at the aggregate scale to estimate aggregate processes is very important. If we apply a 331 

composite of the data assimilation schemes (e.g., assimilating LAI or SM+LAI when they are 332 

performing better), a better estimate of aggregate yield can be achieved with the crop data-333 

assimilation scheme. The mutual information between weekly rainfall and subsequent soil 334 

moisture available at different layers was calculated using four schemes (open loop, SM 335 

assimilation, LAI assimilation, and SM+LAI assimilation), as shown in Figure 4. It was observed 336 

that SM+LAI assimilation comparatively captured more information between weekly rainfall and 337 

soil moisture in different layers and it is expected that this information could be potentially used 338 

for drought propagation from surface to subsurface layers. Therefore, for this local-scale drought 339 

analysis, we focused on analyzing the soil water fluxes generated by assimilating SM + LAI 340 

(normal mode).  341 

3.2 Selection of drought indices 342 

The cumulative sum of precipitation during the crop growing periods of 2003–2009 is shown in 343 

Figure 5. Based on visual inspection, three different patterns are noticed: (a) excess rainfall 344 

during 2008; (b) deficit rainfall during 2006 and 2009; and (c) normal rainfall for 2003, 2004, 345 



2005, and 2007. The precipitation pattern differs between the years and this difference becomes 346 

more prominent during the growing stages of crops. This precipitation variability generates a 347 

series of wet and dry spells, that will impact the moisture availability for crop growth (Mishra et 348 

al., 2013). This study extends the analysis to improve drought indices associated with subsurface 349 

soil moisture, which evolves with precipitation variability during the crop period.  350 

The standardized drought indices were derived from precipitation and hydrologic fluxes 351 

generated from the crop model-data assimilation (SM+LAI) framework consisting of the EnKF 352 

and a modified DSSAT-CSM-Maize crop model. Before deriving drought indices, it is important 353 

to identify suitable probability density functions (pdf) that fit the selected hydroclimatic 354 

variables. The pdfs of weekly precipitation and soil moisture generated for layer 1 of the soil 355 

profile are shown in Figure 6. Only a limited number of runoff events were generated at a weekly 356 

time scale, i.e., 16 weeks witnessed runoff out of a total of 200 weeks used in the study. 357 

Therefore, considering the limited number of runoff events as well as non-suitability of proper 358 

pdfs, we have neglected the hydrologic drought in our analysis. Considering that our focus is 359 

limited to the anatomy of a local-scale agricultural drought, we focused more on meteorological 360 

and agricultural drought indices. Using three statistical tests (Kolmogorov-Smirnov, Anderson-361 

Darling, and Chi-square test), the gamma distribution was selected for precipitation and normal 362 

distribution was selected for soil moisture to derive standardized drought indices for further 363 

analysis. 364 

Results revealed that drought indices did not respond equally to a drought condition, which 365 

means different drought conditions are likely to be observed from surface and subsurface 366 

drought indices at the same time. The drought indices based on 1-week and 3-week temporal 367 

scale is plotted in Figure 7. It is observed that there are often mismatches between drought 368 



severities occurring during growing periods over different years. This suggests that even when 369 

there is a meteorological drought, there may not be an agricultural drought, and vice versa. This 370 

characteristic may likely be due to the small temporal resolution (i.e., weeks), since at such a 371 

resolution there may be a continuous feedback of soil moisture from the lower layer to the upper 372 

layer because of suction properties of root zones. The drought characteristics also vary along the 373 

soil layers. For example, in 2009, the drought based on SPI3 continued towards the end, whereas 374 

based on SSMI3_L1, the drought conditions improved and reached a normal condition because 375 

of the assimilation of RS soil moisture. Therefore, despite the fact that meteorological drought 376 

dominated during 2009, a satisfactory crop yield was obtained due to the moisture supply 377 

available in layer 1 of the soil profile.   378 

The box plot of the drought severity considering all the drought indices at a 1-week temporal 379 

scale is shown in Figure 8. The drought events were selected at the zero threshold level to 380 

include near- normal to extreme drought conditions. It is observed that: (a) the mean of drought 381 

severity for SPI1 and SSMI1_L1 remain nearly same, although higher range is observed for 382 

SSMI1_L1; (b) the mean of drought severity increases with depth from layer 1 to layer 2, and 383 

maximum mean was noticed for SSWI1; (c) the extreme meteorological drought that occurred 384 

during 2009 according to station rainfall data was also reflected for different soil layers as well 385 

as total soil water availability up to 180 cm; and (d) a higher range was observed for soil layer 2 386 

in comparison to layer 1. These findings were also observed when the temporal scale was 387 

increased from 1 week to 3 weeks. 388 

3.3 Co-evolution of rainfall and drought indices 389 

The co-evolution between rainfall and drought indices was quantified using both cross 390 

correlation and wavelet analysis. The cross-correlation analysis between weekly rainfall and 391 



drought indices can provide their linear strength at different lag times, which can improve 392 

agricultural water management by forecasting drought information at greater lead times. Some of 393 

the findings highlighted the relationship between rainfall and drought indices; however, the 394 

relationship was not evaluated for agricultural droughts considering soil moisture availability for 395 

crop growth at subsurface scenarios. The cross-correlation plot between weekly rainfall and 396 

drought indices of different temporal scales is shown in Figure 9. As expected, weekly rainfall 397 

has comparatively higher correlation strength with its direct product SPI time series in the 398 

sequence SPI1, SPI2, SPI3, and SPI4. However, the pattern changes for the soil moisture 399 

droughts beneath the surface, with maximum correlation observed at a temporal scale of two 400 

weeks. This suggests, using weekly rainfall, one can predict SSMI2_L1 and SSMI2_L2, and it 401 

may be expected that the forecasting performance might decrease with the increase in depth. The 402 

maximum correlation between weekly rainfall and drought indices were observed at different lag 403 

times. For example, the lag time between weekly precipitation and SSMI3_L1 and SSMI4_L1 404 

happens to be 2 and 3 weeks, respectively. The soil moisture available in different layers will be 405 

used at different lag times for crop growth in case the meteorological drought creeps in at the 406 

weekly timescale. 407 

Wavelet analysis was carried out for weekly rainfall and drought indices at different temporal 408 

scales. Based on weekly rainfall, the significant power was observed at 3 to 8 weeks during 409 

2008, which happens to be a wet year (Figure 10a). Similar observations were also made when 410 

weekly rainfall was translated to SPI1 and SPI2. However, additional significant power was 411 

observed during 2003 (normal year) based on the SPI3 and SPI4 analysis. This suggests that the 412 

significant power of meteorological drought signal could not be captured by the SPI time series, 413 

based on a weekly temporal scale. However, significant power could possibly be captured at 414 



lower temporal scales (e.g., months). The subsurface drought indices could capture the drought 415 

periods with significant powers. For example, using SSMI1_L1, the significant powers were 416 

observed for both wet and dry years, whereas using coarser temporal resolution at 4 weeks 417 

(SSMI4_L1), the significant powers were observed for all conditions: normal years (2003 to 418 

2005) with significant power at 8–12 weeks, wet year (2008) at two significant powers (5–10 and 419 

16–20 weeks), and drought year (2009) with significant power observed at 20–30 weeks (Figure 420 

10b). The temporal scale length also plays an important role in capturing significant power, that 421 

was observed in subsurface drought indices. The significant powers also differed when surface 422 

and subsurface drought indices were compared. 423 

The cross-spectral power was also investigated between weekly rainfall and drought indices to 424 

evaluate their evolution over different time periods. The cross-wavelet analysis generates cross-425 

spectral power, which was calculated against a red noise background and indicated by plotting 426 

black outline at the 5% significant level (Figure 11). The cross-wavelet transform also detects 427 

cross magnitude and significant periods. It was observed that all the surface and subsurface 428 

drought indices evolved with weekly rainfall, however, their evolution varies with different crop 429 

periods. For example, SPI evolves with weekly rainfall and significant powers scattered between 430 

1 and 9 weeks for different time periods, with more prominence during 2008 (Figure 11a). 431 

Similarly, the weekly rainfall influences the subsurface drought indices, however, the difference 432 

is observed with respect to surface drought. For example, the weekly rainfall acts differently on 433 

the transition of drought from space to the top soil layer (i.e., transition from SPI1 to 434 

SSMI1_L1), the cross wavelet properties change as significant powers in the range of 1–6 weeks 435 

were no longer observed during 2003–2005 for SSMI1_L1 (Figure 11b). This means that the 436 

weekly rainfall has high interactivity with SPI at comparatively shorter timescales in comparison 437 



to SSMI1_L1. The other additional observations of significant power at 32 weeks may not 438 

provide useful information as our objective is to focus on crop periods at shorter time intervals. 439 

These observations could significantly predict agricultural drought conditions by combining a 440 

forecasting method with the cross wavelet information (Ozger et al., 2012 ). 441 

3.4 Persistence properties of drought indices 442 

The Hurst exponent (H) of SPI, SSMI_L1, SSMI_L2, SSMI_L3 and SSWI at different temporal 443 

scales were calculated and compared (Figure 12). The value of H greater than 0.5 indicates that 444 

the drought index time series is persistent, which are essentially black noise processes and often 445 

occurs in nature (Mishra et al., 2009). It is noted that the persistence of precipitation-based SPI 446 

series at a temporal resolution of 1 week is comparatively less than that at longer temporal scales 447 

(2–4 weeks). Considering a 1-week temporal scale, higher persistence in soil moisture drought in 448 

layer 1 is observed to be higher than SPI1; however, with increase in temporal scale to 4 weeks, 449 

both the indices have similar persistent properties. Interestingly, the persistence of soil moisture 450 

drought in layers 2 and 3 and total soil water availability do not change, based on their 451 

aggregated temporal scale. This means that both shorter (1 week) and longer (4 week) temporal 452 

scales will have similar persistence of drought progression and recession in bottom layer drought 453 

indices (SSMI_L2, SSMI_L3 and STSWI). The persistence dynamics were mostly observed for 454 

the SPI time series followed by the soil moisture drought in layer 1 (SSMI_L1).  455 

3.5 Probabilistic analysis of surface and subsurface drought indices 456 

Copulas were used to evaluate the probabilistic properties of surface and subsurface droughts. In 457 

order to study the relationship between duration and severity of drought events, we first 458 

examined the association between these two variables graphically through Kendall’s plot (K-459 

plot) and chi-plots and then selected suitable copulas that capture the dependence structure 460 



between these variables for different time periods, and for precipitation, soil moisture across the 461 

soil horizon, and total soil water. Data for the 2-week temporal resolution is used for illustration.  462 

Dependence structure between drought duration and severity 463 

Figure 13 shows the K-plots for SPI2 and SSMI2_L1. A K-plot is similar to a Q-Q plot with the 464 

exception that data points falling on the diagonal line are deemed independent and points above 465 

(below) the diagonal indicate positive (negative) dependence. As expected, we note a positive 466 

dependence between duration and severity for precipitation, soil moisture, and total water 467 

availability, i.e. as drought duration lengthens, the severity of the event also increases. A similar 468 

behavior is noted also for SMI2_L2, SMI2_L3, and SSWI2 (not shown here). 469 

Chi-plots allow a visual assessment of the dependence structure of the whole dataset and the 470 

upper and lower tails separately. Chi-plots are based on the chi-square statistics for independence 471 

in a two-way table. In the case of independence, the data point will fall within the two control 472 

lines. Lower (upper) tail values are those that are smaller (larger) than the mean. The first 473 

column of Figure 14 shows the chi-plots for the whole dataset, and the second and third columns 474 

show the lower and upper tails, respectively. Significant positive association can be noted 475 

between duration and severity. The dependence appears slightly stronger in the upper tail than in 476 

the lower tail. This is particularly the case for precipitation and soil moisture in soil layer 1, 477 

which implies that longer drought events have more severe impacts. The behavior of 478 

precipitation and soil moisture in soil layer 1 is very similar, an indication that the topmost layer 479 

responds to changes in the atmospheric conditions. 480 

Modeling and simulation of duration and severity 481 

Copula permits modeling of the dependence between duration and severity, even though the 482 

marginals do not belong to the same family of distributions; for example, the duration of drought 483 



events for SPI2 follows the Frechet distribution, while severity follows a lognormal distribution. 484 

Copula parameters were estimated using the maximum pseudo-likelihood method from the 485 

following suite of copulas: Elliptical family (Gaussian and Student’s t), Archimedean (Clayton, 486 

Gumbel, Frank, Joe, BB 1, BB 6, BB 7, and BB 8). The BB copulas are from the two-parameter 487 

families, which can capture different degrees of dependence between the variables in the body or 488 

at the tails. 489 

In order to study the relationship between duration and severity of drought events, we first 490 

examine the association between these two variables graphically through Kendall’s plot (K-plot) 491 

and chi-plots and then select suitable copulas that capture the dependence structure between 492 

these variables for different time periods, and for precipitation, soil moisture across the soil 493 

horizon, and total soil water. A combination of graphical and analytical methods (Akaike 494 

Information Criteria) were used for the copula selection. Data for 2-week average is used for 495 

illustration. The most suitable copula that deemed to capture the dependence between drought 496 

duration and severity varies both across timescales and depths (Table 2). For a temporal scale of 497 

2 weeks, the dependence structure for precipitation and soil moisture in the first layer can be 498 

modeled via the Joe copula, and the Gaussian and Frank copulas are deemed most appropriate 499 

for layer 2 and 3, respectively. Figure 15 allows a visual comparison of observed data 500 

superimposed over randomly generated values from the chosen copula for SPI2 (Fig. 15(a)) and 501 

SSMI2_L2 (Fig. 15(b)). 502 

Averaging over timescale (i.e. going from 1 week to 4 weeks), we note that the Joe copula is the 503 

preferred copula for precipitation for 1-week and 2-week scales, while the Gumbel copula is 504 

better suited to model the dependence structure for 3-week and 4-week scales. Both the Joe and 505 

Gumbel copulas exhibit upper tail dependence. Note that such upper tail dependence is due to the 506 



one extreme event (duration of 23 weeks and associated severity of 34.6 for SPI2 and duration of 507 

20 weeks and severity of 22.5 for SSMI2_L2), that dictates the behavior of the upper tail and 508 

guides the choice of copula. The presence of this one extreme event is interesting, as it suggests 509 

that the occurrence of extremely severe long duration drought is not impossible, and thus events 510 

with intermediate characteristics is not improbable. It is also important to note that when 511 

averaging over longer time scales, the tail behavior becomes less dominant. 512 

Moving from the topmost soil layer to the lower layers, we note that the choice of copula again 513 

changes. The topmost layer exhibits upper tail dependence, as it responds faster to the changes in 514 

atmospheric conditions; that is, lack of rainfall quickly leads to soil moisture deficit and as the 515 

drought lingers, it leads to the depletion of moisture in the topmost soil layer. The subsurface 516 

layers respond slower to drought events. Often, even before any depletion of soil moisture starts, 517 

the upper layer drought has ended. In fact, such tail behavior, as demonstrated via the K-plots 518 

and chi-plots, is present in the upper tail in the precipitation and upper soil moisture data and 519 

slowly disappears with depth. This behavior is further visible in the choice of copula. The copula 520 

deemed suitable for the subsurface layers are the ones that do not exhibit strong upper tail 521 

dependence (e.g. Gaussian and Frank). 522 

3.6.  Impact of drought on maize yields 523 

Here we present the impact of drought severity, duration, maximum severity, maximum duration 524 

and number of events only to aggregated maize yields at different temporal scales. The scatter 525 

plot and correlation coefficient were used to evaluate the causal effect of drought properties on 526 

aggregated maize yields. It is interesting to note that drought severity does not have a strong 527 

signal to the 5th percentile yields from the 1st and 2nd soil layer soil moisture (SSMI_L1, 528 

SSMI_L2), although a negative slope was observed from the drought-yield relationship at 529 



different temporal scales, suggesting that the higher the severity the lower the yield that can be 530 

achieved at the 5th precentile category (Figure 16). However, soil moisture drought severity in  531 

the 3rd soil layer (SSMI_L3) at coarser temporal scales (i.e., 2, 3 and 4 weeks) has a significant 532 

impact on the 5th percentile yields, which is consistent with the analysis of Mishra et al. (2013) in 533 

regards to the timing of water stress and yield relationship. More importantly, the drought 534 

severity index for the total available water (SSWI) exercised the greatest impact on the 5th 535 

percentile yields at different temporal scales. This suggests that of the four agricultural drought 536 

parameters studied, the total profile soil moisture is the best indicator of the level of yields at 537 

least at the 5th percentile based on the severity of drought. Likewise, it is important to note that 538 

the temporal scale of drought severity can also compound the analysis, as for the 3-week 539 

timescale, for example, lower correlation coefficient showed lesser sensitivity compared to the 1-540 

, 2-, and 4-week scales with the 2-week timescale having the strongest effect, again highlighting 541 

the non-linearity of crop response to water stress, if a drought event occurred at the non-sensitive 542 

period of crop growth the impact to crop yield is less severe as to when the drought occurred at 543 

the sensitive period of crop growth.  544 

As expected, the drought duration index for the total profile soil moisture (SSWI) gave 545 

the strongest signal to impact the 5th percentile yields (Figure 17). At the 3-week timescale, this 546 

signal was dampened compared to the 1-, 2-, and 4-week scales, again suggesting the non-547 

linearity in drought-yield response. The signal strength for the 3rd soil layer soil moisture 548 

(SSMI_L3) actually vanished compared to drought severity. The duration of drought posed to 549 

have more direct effect on the 5th percentile yields from the 1st soil layer soil moisture 550 

(SSMI_L1) at timescales of 1, 2, and 3 weeks, with the last one posing the strongest signal. This 551 



suggests that long duration droughts can deplete heavily the surface soil moisture and its signal 552 

could be felt by the crops as this the most active layer for crop consumptive water use. 553 

 The maximum severity index further confirms the effectiveness of the SSWI as the best 554 

index for agricultural drought (Figure 18). The strength is exceptional with r ranging from 0.86 555 

to 0.94, with the strength highest for the 1-week timescale, followed by 2 and 3 weeks. The 556 

SSMI_L3 also retained the significant signal in regards to the maximum severity and 5th 557 

percentile yield relationship, while SSMI_L1 and SSMI_L2 were not significant, although 558 

posing negative slopes as well. As regards the maximum duration index, SSWI showed the most 559 

significant signal (Figure 19). In the case of the SSMI_L3, higher correlation coefficient was 560 

observed in comparison to other temporal scale. The strengths for SSMI_L1 for timescales of 2–561 

4 weeks show some significant signal strengths as well. With respect to the relationship between 562 

the number of events and 5th percentile yields, we found that except for SSWI at the 3- and 4-563 

week timescales, there were no significant negative relationships observed (not shown). For the 564 

50th and 95th percentile yields, there were no significant negative relationships found among the 565 

drought indices examined at different temporal scales, although some negative slope was 566 

determined at a higher time scale (not shown). 567 

4. Conclusions 568 

Among different types of droughts, agricultural drought seems to be the most complex, as it is 569 

driven by both surface (i.e., evapotranspiration) and subsurface hydroclimatic fluxes (i.e., soil 570 

moisture) at a local scale. Therefore, improving our understanding of the evolution of 571 

agricultural drought is necessary to develop measures to reduce the impact of drought on food 572 

security. This study utilizes the assimilated AMSR-E soil moisture and MODIS-LAI data in a 573 



crop model to investigate the anatomy of a local scale drought using surface and subsurface 574 

hydrologic fluxes. The following conclusions are drawn from this study: 575 

a) Agricultural drought differs from one crop to another. Understanding the anatomy of an 576 

agricultural drought will remain a challenge due to our limited understanding of moisture 577 

demand and supply for crop growth. The moisture demand is influenced by several 578 

factors, and not limited to crop type, climate pattern, growing period, and their resilience 579 

to drought. Quantification of moisture supply in the root zone remains a grey area in 580 

research community due to the difference in root zone depth between crops and non-581 

uniform moisture supply from different soil layers. Agricultural drought monitoring 582 

should be driven by the root depth instead of a fixed depth. 583 

b) Assimilation of soil moisture and leaf area index into crop modeling framework might be 584 

more suitable for agricultural drought quantification, as it performs better in simulating 585 

crop yield. This assimilation scheme is also able to capture better information between 586 

weekly precipitation and subsurface soil moisture in different layers and scale processes.  587 

c) Surface and subsurface drought indices do not respond equally to a similar drought 588 

condition at shorter temporal resolutions (e.g., weeks), which suggests different drought 589 

conditions are likely to be observed from surface and subsurface drought indices at the 590 

same time. This information is critical in evaluating the soil moisture available in  591 

different soil layers for crop growth during drought periods. 592 

d)  The persistence of subsurface droughts is in general higher than surface droughts. The 593 

dynamics in persistence were observed in SPI and soil moisture drought at 0 to 5 cm soil 594 

thickness. The soil moisture drought in layers 2 and 3 and total soil water availability do 595 

not change, based on their aggregated temporal scale. 596 



e) Positive association between duration and severity was observed in surface and 597 

subsurface drought events at all timescales. The dependence is slightly stronger at the 598 

upper tail. The dependence structure, especially the presence of one long-duration high-599 

severity event, determines the choice of copula. This extreme event is more pronounced 600 

in precipitation and the top soil layer but is dampened in lower layers. 601 

f) It is found that the total water available in the soil profile is the best parameter for 602 

describing the agricultural drought in the study region. However, it changes with crops 603 

(short vs. longer root zone), climatic zones, and type of soil to retain soil moisture in  604 

different layers.  605 
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Figure 1. Variation of soil water extraction by Corn with respect to depth and plant root 794 

development patterns (Kranz et al., 2008). 795 

 796 

 797 

 798 

0

25

50

75

100

0 30 60 90 120

D
EP
TH

 (
%
)

DAYS AFTER EMERGENCE

20%

30%

40%

10

PERCENT OF WATER 



 799 

 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

Crop model – Data 
Assimilation 
Framework 
(Figure 2b)

Statistical Models 
Correlation analysis, 

Entropy, Copula, Wavelet,   
Hurst exponent

 Drought related outputs 
Co‐evolution of rainfall and drought indices 
Persistence properties of drought indices 
Probabilistic analysis of drought indices 

Impact of drought on crop yields 

Selection of data 
assimilation  
schemes 



 824 

Figure 2a. Framework for local scale drought study using combination of models. 825 
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Figure 2b. Crop model-data assimilation framework (Ines et al. 2013). 840 
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Figure 3. Distinction between surface and subsurface drought variables 853 
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Figure 4. Mutual information between weekly rainfall and soil moisture at different layers based 870 

on different assimilation schemes.  871 
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Figure 5. Cumulative precipitation pattern during crop periods for different years. 885 
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Figure 6. Probability density function of weekly rainfall and soil moisture (layer 1) 907 
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(b) Temporal scale 3 weeks 
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(a) Temporal scale 1 week 
Figure 7. Time series plot of different drought indices during crop period for 2003-2009. [Note 920 

that x-axis represents duration of crop periods for different years: 2003 (1-30 weeks), 2004 (31-921 

61 weeks), 2005 (62-87 weeks), 2006 (88-112 weeks), 2007 (113-137 weeks), 2008 (138-167 922 

weeks), and 2009 (168-200 weeks)]. 923 
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Figure 8. Box plot of the drought severity of drought indices at 1 week temporal scale. 933 
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Figure 9. Cross correlation plot between weekly rainfall and drought indices of different 957 

temporal scales. 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

STSWISSMI_L2 SSMI_L3SSMI_L1SPI

C
o

rr
el

at
io

n
  c

o
ef

fi
ci

en
t

Drought  indices

 1 week
 2 weeks
 3 weeks
 4 weeks



 974 

 975 

 976 

 977 

 978 

 979 

 980 

Time scale (weeks) 
(a) Weekly rainfall 

Time scale (weeks) 
(b) SSMI4_L1 

Figure 10. Wavelet analysis of weekly rainfall and standardized soil moisture index for layer 1 981 

at temporal scale of 4 week (SSMI4_L1). [Note that x-axis represents duration of crop periods 982 

for different years: 2003 (1-30 weeks), 2004 (31-61 weeks), 2005 (62-87 weeks), 2006 (88-112 983 

weeks), 2007 (113-137 weeks), 2008 (138-167 weeks), and 2009 (168-200 weeks)]. 984 

 985 

 986 

 987 

 988 

 989 

 990 

 991 

 992 

 993 

P
er
io
d
 (
w
ee
ks
) 

P
er
io
d
 (
w
ee
ks
) 



 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

Time scale (weeks) 
(a) SPI 

Time scale (weeks) 
(b) SSMI1_L1 

Figure 11. Cross wavelet analysis between: (a) weekly rainfall and SPI1 standardized soil 1002 

moisture index for layer 1 at temporal scale of 4 weeks (SSMI4_L1). [Note that x-axis represents 1003 

duration of crop periods for different years: 2003 (1-30 weeks), 2004 (31-61 weeks), 2005 (62-1004 

87 weeks), 2006 (88-112 weeks), 2007 (113-137 weeks), 2008 (138-167 weeks), and 2009 (168-1005 

200 weeks)]. 1006 
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Figure 12. The Hurst exponent (H) of drought indices at different temporal scale. 1027 
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Figure 13. Kendall’s plots exploring the dependence structure between drought duration and 1048 

severity for (a) SPI2, (b) SSMI2_L1, (c) SMI2_L2 1049 
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Figure 14. Chi-plots exploring the dependence structure between drought duration and severity 1069 

for (a) SPI2, (b) SSMI2_L1. The first column shows the complete set of data and the second and 1070 

third column shows the lower and upper tail respectively.  1071 
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   1087 

 Figure 15. Comparison of observed (red dots) and simulated values (gray dots) from the 1088 

most suitable copula for (a) SPI2, and (b) SSMI2_L2. 1089 

 1090 

 1091 

 1092 

 1093 

 1094 

 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

0 5 10 15 20 25

0

10

20

30

40

Duration

S
ev

er
ity

(a)

0 5 10 15 20 25

0

5

10

15

20

25

Duration

S
ev

er
ity

(b)



 1102 

Figure 16. Maize yields (5th %-tile) and drought severity index relationship. The correlation coefficient 1103 
values are provided in parenthesis.  1104 
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Figure 17. Maize yields (5th %-tile) and drought duration index relationship. 1115 
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 1118 
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Figure 18.  Maize yields (5th %-tile) and drought maximum severity index relationship. 1121 
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Figure 19. Maize yields (5th %-tile) and drought maximum duration index relationship. 1135 
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 1143 

Table 1. Performance (average) of the crop model-data assimilation (DA) system for simulating 1144 

maize yields, Story County, Iowa (after Ines et al., 2013).  1145 

Experiment R MBE, Mg ha-1 RMSE, Mg ha-1 
Openloop: 0.47 -3.7 4.7 
DA with LAI: 0.51 -3.2 4.2 
DA with SM: 0.50 -1.9 3.6 
DA with SM + LAI: 0.65 -2.0 2.9 
Composite best (SM + LAI, 
LAI): 

 
0.80 

 
-1.2 

 
1.4 

R – Pearson’s correlation 1146 
MBE – Mean Bias Error 1147 
RMSE – Root Mean Squared Error  1148 
 1149 

 1150 

 1151 

Table 2. Most appropriate copula for SPI, SSMI and SSWI 1152 

Variable 1 week 2 weeks 3 weeks 4 weeks 

SPI Joe Joe Gumbel Gumbel 

SSMI_L1 Joe Joe Gaussian Gaussian 

SSMI_L2 Frank Gaussian Gaussian Clayton 

SSMI_L3 Frank Frank Clayton Gaussian 

SSWI Gaussian Clayton Student t Joe 

 1153 

 1154 

 1155 

 1156 


