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Abstract

Sphere Partition Functions and Quantum De Sitter Thermodynamics

Yuk Ting Albert Law

Driven by a tiny positive cosmological constant, our observable universe asymptotes into a

casual patch in de Sitter space in the distant future. Due to the exponential cosmic expansion, a

static observer in a de Sitter space is surrounded by a horizon. A semi-classical gravity analysis by

Gibbons and Hawking implies that the de Sitter horizon has a temperature and entropy, obeying

laws of thermodynamics. Understanding the statistical origin of these thermodynamic quantities

requires a precise microscopic model for the de Sitter horizon. With the vision of narrowing the

search of such a model with quantum-corrected macroscopic data, we aim to exactly compute the

leading quantum (1-loop) corrections to the Gibbons-Hawking entropy, mathematically defined as

the logarithm of the effective field theory path integral expanded around the round sphere saddle,

i.e. sphere partition functions. This thesis discusses sphere partition functions and their relations

to de Sitter (dS) thermodynamics. It consists of three main parts:

The first part addresses the subtleties of 1-loop partition functions for totally symmetric tensor

fields on Sd+1, and generalizes all known results to arbitrary spin s ≥ 0 in arbitrary dimensions

d ≥ 1. Starting from a manifestly covariant and local path integral on the sphere, we carry out a

detailed analysis for any massive, shift-symmetric, massless, and partially massless fields. For any

field with spin s ≥ 1, we find a finite contribution from longitudinal modes; for any massless and

partially massless fields, there is a residual group volume factor due to modes generating constant



gauge transformations; for any massless and partially massless fields with spin s ≥ 2, we derive

the phase factor resulted from Wick-rotating negative conformal modes, generalizing the phase

factor first obtained by Polchinski for the case of massless spin 2 to arbitrary spins.

The second part presents a novel formalism for studying 1-loop quantum de Sitter thermo-

dynamics. We first argue that the Harish-Chandra character for the de Sitter group SO(1, d + 1)

provides a manifestly de Sitter-invariant regularization for normal mode density of states in the

static patch, without introducing boundary ambiguities as in the traditional brick wall approach.

These characters encode quasinormal mode spectrums in the static patch. With these, we write

down a simple integral formula for the thermal (quasi)canonical partition function, which straight-

forwardly generalizes to arbitrary spin representations. Then, we derive a universal formula for

1-loop sphere partition functions in terms of the SO(1, d + 1) characters. We find a precise rela-

tion between these and the (quasi)canonical partition function mentioned earlier: they are equal

for scalars and spinors; for any fields with spin s ≥ 1, they differ by “edge” degrees of free-

dom living on the de Sitter horizon. This formalism allows us to efficiently compute the exact

1-loop corrected de Sitter horizon entropy, which as we argue provides non-trivial constraints on

microscopic models for the de Sitter horizon. In three dimensions, higher-spin gravity can be alter-

natively formulated as an sl(n) Chern-Simons theory, which as we show possesses an exponentially

large landscape of de Sitter vacua. For each vacuum, we obtain the all-loop exact sphere partition

function, given by the absolute value squared of a topological string partition function. Finally,

our formalism elegantly proves the relations between generic dS, AdS, and conformal higher-spin

partition functions.

The last part extends our studies in the previous part to grand (quasi)canonical partition func-

tions on the dS static patch, where we generalize the (quasi)canonical partition functions by al-

lowing non-zero chemical potentials in some of the angular directions. For these, we derive a

generalized character integral formula in terms of the full SO(1, d + 1) characters. In three dimen-

sions, we relate them to path integrals on Lens spaces. Similar to its sphere counterpart, the Lens

space path integral exhibits a “bulk-edge” structure.
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Chapter 1: Introduction and Background

1.1 De Sitter static patch: our ultimate fate

It is well-known that our universe is expanding1. What is more, observations of distant su-

pernovae [1–3] strongly indicate that we are entering a phase of accelerating expansion, due to

a remarkably small and, crucially, positive cosmological constant Λ appearing in the Einstein’s

equations

Rµν −
1
2
gµνR + Λgµν = 8πGNTµν . (1.1)

Fitting the ΛCDM model with current observational data [4–6], we find that today Λ accounts

for roughly ΩΛ ∼ 70% of the critical density, from which we infer Λ ∼ 10−52 m−2 ∼ 10−122`−2
pl ,

`pl =
√
~GN/c3 being the Planck length. As tiny as such, however, because of its uniform energy

density Λ will increasingly dominate over other forms of matter as the space expands. Eventually

it will completely take over, so that our universe becomes indistinguishable from a causal patch of

a de Sitter space [7, 8]. See figure 1.1.

1Throughout this thesis whenever we say “our universe” we mean the observable universe.

1



SN

Figure 1.1: From left to right: Due to the exponential expansion driven by Λ, signals from distant galaxies

would appear more and more red-shifted. Eventually these galaxies will fall outside of our horizon, and the

observable universe will look like a de Sitter static patch [7, 8]. Right: The Penrose diagram of the global

de Sitter space. The causal diamond for a static observer sitting at the south pole (the right vertical line) is

labeled by “S”. This patch is bounded by the observer’s past and future horizons (the diagonal lines). The

generator HS for the time flow (shown by the blue arrows) within the southern static patch generates an

inverse time flow in the northern patch (labeled by “N”), while it generates spacelike isometries (red arrows)

in the past and future triangles.

1.1.1 De Sitter horizon and the Gibbons-Hawking entropy

It is thus desirable to consider an observer siting inside a de Sitter universe (some basic facts of

de Sitter space are collected in appendix A). Because of the exponential cosmic expansion, there

is only a finite portion of the entire global de Sitter space where the observer can receive signals

from and send signals to, namely their causal patch. See figure 1.1. In a (d + 1)-dimensional de

Sitter space dSd+1, this patch is conveniently parametrized by the static coordinates, with metric

ds2 = −

(
1 −

r2

`2
dS

)
dt2 +

dr2

1 − r2

`2
dS

+ r2dΩ2
d−1 , 0 < r < `dS. (1.2)

Here `dS =
√

d(d − 1)/2Λ is the de Sitter length. In these coordinates, the static observer sits at

r = 0. The de Sitter horizon corresponds to the coordinate singularity at r = `dS and has area

Ac = Ωd−1`
d−1
dS with Ωd−1 the area of the unit round sphere Sd−1. Analogous to black holes, there

is a temperature and entropy associated with this horizon [9, 10]. Taking into account quantum
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effects, one can indeed show [9, 10] that the global de Sitter Euclidean vacuum looks thermal to

the static observer, with temperature TdS = 1/2π`dS and the tree-level Gibbons-Hawking entropy2

SGH =
Ac

4GN
. (1.3)

What is the microscopic origin of the entropy (1.3)? Can it be computed as the logarithm of

the number of microstates?3 The answers to these questions will require a precise microscopic

model of de Sitter quantum gravity or at least of the de Sitter horizon. Despite the enormous

efforts such as [11–24], no such model has been constructed at present. For a review of some

aspects of the challenges, see for instance [25]. In this thesis, we do not make any assumption

about the underlying microscopic theory, and proceed strictly from a macroscopic, low energy

EFT perspective.

From an EFT point of view, the tree-level formula (1.3) will be modified by quantum fluctu-

ations of gravitons and matter fields living in this background. Computing quantum corrections

to macroscopic data proves to be useful in testing microscopic proposals. On the one hand, when

there is a microscopic theory for which the low energy EFT is known, the agreement between the

EFT and microscopic computations of the quantum corrections can serve as a consistency check.

For instance, for some special black holes in string theory [26–29], the microscopic computation

of the logarithmic correction to the Bekenstein-Hawking entropy have been shown to match the

prediction from the macroscopic analysis.

On the other hand, quantum corrections can bring further support to or additional constraints

on candidate microscopic models. For a holographic example, the matching of AdS bulk HS par-

tition functions with the boundary CFT partition functions at 1-loop or O(N0) provides strong

evidence for the HS/CFT duality [30–33]. Sometimes the constraint from the quantum-corrected

EFT data is strong enough to rule out a microscopic model, as demonstrated in [34]: loop quan-

tum gravity proposals for the Schwarzschild black hole horizon are invalidated by their failure to
2For an observer in the distant future of our universe, the temperature is roughly TdS ∼ 10−30K, much lower than

the current CMB temperature of 2.73K.
3The entropy (1.3) for our universe accounts for a gigantic number ∼ 1010122

of microstates.
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reproduce the correct logarithmic correction to the Bekenstein-Hawking entropy predicted by the

macroscopic Euclidean gravity analysis. This last example illustrates the power of EFT quantum

corrections: they impose stringent universal constraints on candidate microscopic models, without

any knowledge of the true underlying model.

These ideas raise the interesting prospect of narrowing our search of the correct microscopic

model for de Sitter horizon using quantum-refined macroscopic data: a candidate model is ruled

out if it fails to reproduce the 1-loop corrections to the Gibbons-Hawking entropy (1.3). This

motivates the central goal of this thesis: exactly computing the 1-loop corrected de Sitter horizon

entropy for any gravity plus matter effective field theory.

1.2 1-loop corrections to the Gibbons-Hawking entropy

The quantum-corrected de Sitter horizon entropy is given by [10]

S = logZ (1.4)

where Z is the gravity plus matter EFT Euclidean path integral expanded about the round sphere

Sd+1 saddle. In 1-loop approximation, we keep the metric and matter fluctuations up to quadratic

order.

As reviewed in more detail in section (1.2.2), a path integral for a quantum field Φ with Eu-

clidean action SE [Φ] on a space of the product form S1
β ×Md , where S1

β a circle of circumference β

and Md a d-dimensional manifold, is equal to a QFT thermal canonical partition function at inverse

temperature β

Tr e−βH =

ˆ
DΦ e−SE [Φ] on S1

β × Md . (1.5)

Here the Hamiltonian H generates time translation in the spacetime R×Md . The trace Tr runs over

the entire QFT Hilbert space. In 1-loop approximation, we have a free action in the exponent of the

weight in the path integral; in the canonical picture this corresponds to an ideal gas approximation.
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The ideal gas canonical partition function (1.5) can then be computed by canonically quantizing

the free QFT on R×Md and summing over the multiparticle Fock space, which is computationally

easier than evaluating the functional determinants in the path integral picture reviewed in section

1.2.3.

As reviewed in section 1.2.2, while the sphere Sd+1 does not take the form S1
β×Md , it is obtained

from the static patch (1.2) by periodically identifying the time t in the imaginary direction. One

then naturally wonders if a 1-loop sphere path integral can be computed in the canonical framework

through the relation (1.5), with H being the free static patch Hamiltonian and trace Tr over the

associated Fock space. Because of its computational simplicity, we will first discuss this thermal

canonical ideal gas picture in the following. After that we will go back to sphere path integral

itself, and point out that in the present case the relation (1.5) should in fact be modified by “edge”

modes living on the de Sitter horizon. The last part of this section is devoted to describing the

subtleties one encounters when computing sphere path integrals.

1.2.1 Thermal canonical partition function

An initial attempt to obtain the 1-loop quantum corrections to (1.3) is by trying to evaluate the

canonical ideal gas partition function

Zbulk = Tr e−βH, (1.6)

where H is the Hamiltonian for the free static patch QFT and the trace Tr runs over the associated

multiparticle Fock space. The subscript “bulk” means that (1.6) captures the quanta living in the

bulk of the static patch, as opposed to the “edge” degrees of freedom living on the horizon to

be discussed in the next section. With (1.6), one can calculate the entropy using the standard

thermodynamic relations at the inverse de Sitter temperature β = 2π`dS. For the rest of this chapter

we set `dS = 1.

As a simple concrete example, we consider a free massive scalar field φ with mass m2 =
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∆(d − ∆) on the static patch of dSd+1. Following standard steps for bosonic fields, we write (1.6)

as

log Zbulk = −

ˆ ∞
0

dω ρ(ω)

(
log

(
1 − e−βω

)
+
βω

2

)
, (1.7)

where

ρ(ω) ≡ tr δ(ω − H) (1.8)

is the density of states for the single-particle normal mode spectrum. In (1.8), the trace tr runs over

the single-particle Hilbert space.

One then proceeds to solve for the positive-frequency solutions to the equation of motion

0 =
[
−

1
1 − r2 ∂

2
t + (1 − r2)∂2

r +

(
−(d + 1)r +

d − 1
r

)
∂r +
∇̃2

r2 − m2
]
φ . (1.9)

Here −∇̃2 is the Laplacian on the unit round sphere Sd−1. Now, for every frequency ω > 0, one

obtains the normal modes that are regular everywhere within the static patch (in particular at r = 0,

the location of the observer):

φω`σ(t,Ω, r) ∝ e−iωt Ỳ σ(Ω) r`
(
1 − r2

) iω/2
2F1

(
`+∆+iω

2 , `+d−∆+iω
2 ; d

2 + `; r2), (1.10)

where Ỳ σ(Ω) is a basis of spherical harmonics on Sd−1 labeled by the total SO(d) angular momen-

tum quantum number ` and the magnetic quantum numbers collectively denoted as σ. Hence, we

have a continuous set of basis |ω`σ) labeled by energy ω and SO(d) angular momentum numbers

` and σ, which satisfies (ω`σ |ω′`′σ′) = δ(ω −ω′) δ``′ δσσ′. Evaluating (1.8) in this basis leads to

the divergent result

ρS(ω) =

ˆ
dω′

∑̀
σ

(ω′`σ |δ(ω − ω′)|ω′`σ) =
∑̀
σ

δ(0) . (1.11)
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The appearance of a continuous normal mode spectrum and divergent density of states is ubiq-

uitous for spacetimes with a horizon. The physical reason is that modes with arbitrary energies are

allowed to exist because of the unlimited redshift near the horizon. One can cure this by putting

a t’Hooft brick wall [35] slight away from the horizon, on which one puts an additional boundary

condition so that the spectrum is discretized. In the current case, one can cut off the static patch at

r = 1−ε as in figure 1.2. However, this approach suffers from a few unappealing features including

broken de Sitter invariance, or dependence on the choice of the boundary condition (for example

Dirichlet or Neumann) at the brick wall. Other ideas [36, 37] to get rid of the divergence (1.11)

include for instance Pauli-Villars or dimension regularizations. While these avoided some of the

problems such as broken general covariance, they are generally difficult to implement, making it

challenging to make progress beyond the simplest massive scalar case.

Figure 1.2: We can discretize the continuous normal mode spectrum by imposing an extra boundary

condition at a brick wall (green line) put at a location r = 1− ε slightly away from the horizon. In this figure

ε = 0.03. The placement of such a wall clearly breaks de Sitter invariance.

Is there an alternative way to cure the divergent density of states (1.11)? Can we do so without

breaking de Sitter invariance or introducing boundary ambiguities? In chapter 3, we re-examine the
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computation leading to (1.11) and introduce a novel approach to make sense of the density of states

using the mathematically well-defined Harish-Chandra character for the de Sitter group SO(1, d +

1). Eventually we will derive an integral formula for (1.6) that allows seamless generalization to

arbitrary spin representations.

1.2.2 De Sitter static patch and the sphere

Now we go back to the path integral formulation. The standard argument leading to the relation

(1.5) goes as follows [10]. First, we recall that an amplitude of the form 〈φ f | e−i(t f −ti)H |φi〉 can be

expressed as a path integral

〈φ f | e−i(t f −ti)H |φi〉 = 〈φ f , t f |φi, ti〉 =
ˆ
DΦ

���Φ(t f ,x)=φ f (x)

Φ(ti,x)=φi(x)
eiS[Φ] , (1.12)

where S[Φ] is the Lorentzian action on the spacetime R×Md , and the path integration over Φ(t, x)

includes all field configurations with initial value φi(x) and final value φ f (x).

Now, we view the operator e−βH in (1.5) as an evolution in the imaginary time direction τ = it

by amount β. The Euclidean amplitude 〈φ f | e−βH |φi〉 then admits a similar path integral represen-

tation as (1.12) but on a Euclidean space

〈φ f | e−βH |φi〉 = 〈φ f , β |φi, 0〉 =
ˆ
DΦ

���Φ(β,x)=φ f (x)

Φ(0,x)=φi(x)
e−SE [Φ] , (1.13)

where the field variable Φ now lives on a Euclidean space, and the weight e−SE of the path integral

is conventionally defined so that there is a minus sign in front of the Euclidean action SE [Φ]. We
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can depict (1.13) as

〈φ f | e−βH |φi〉 = (1.14)

meaning it is a Euclidean path integral over Md times a Euclidean time interval of width β, with

the boundary conditions shown.

Finally, the trace Tr in (1.5) identifies the initial and final field configurations φi(x) = φ f (x)

in (1.13) and integrates over all possible φi(x). To summarize, the Euclidean path integral for a

thermal canonical partition function at inverse temperature β is defined on a geometry related to

the original spacetime by

t → −iτ with τ ∼ τ + β , (1.15)

establishing the relation (1.5), pictorially summarized as

Tr e−βH = = . (1.16)

Now let us go back to the de Sitter static patch. After the Wick-rotation and periodic identifi-

cation (1.15) with β = 2π, the static patch becomes a sphere4:

4The simplest way to see this is to go to the parametrization (A.22) of the embedding space coordinates. Upon
(1.15) with β = 2π and taking X0 → −iX0, the embedding space coordinates XA cover the entire round sphere X2 = 1.
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Figure 1.3: After Wick-rotating t → −iτ and identifying τ ∼ τ + 2π, the de Sitter static patch (left) turns

into a sphere (right). The Euclidean time τ becomes an angular variable on the sphere. The horizon (yellow

dot) at r = 1 is mapped to the origin of the sphere.

Because of this, one might wonder if the following relation is true:

Zbulk
?
= ZPI . (1.17)

where Zbulk is the thermal canonical ideal gas partition function (1.6) on the dSd+1 static patch and

ZPI =

ˆ
DΦ e−SE [Φ] . (1.18)

is a 1-loop Euclidean path integral on the round sphere Sd+1. While the argument leading to (1.5)

is valid for spacetimes of the product form R ×Md (Wick-rotated to S1
β ×Md), there are reasons to

expect that they fail for a spacetime with a horizon such as the de Sitter static patch. For example,

one observation is that the horizon is mapped to the origin of the sphere (the yellow dot in figure

1.3) which is a fixed point of the static patch Hamiltonian H. At that point the interpretation of

e−βH as a Euclidean time evolution becomes obscure.
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In chapter 3, we provide more sophisticated arguments for why the relation (1.17) is expected

to break down and requires substantial modifications. Indeed, we will see in chapter 3 that while

(1.17) is valid for scalar and spinor fields, it will be corrected by “edge” degrees of freedom living

on the horizon for any field with spin s ≥ 1. In the analogous case of Rindler space, the qualita-

tive string theory picture for these edge contributions was first discussed in [38]. They were later

computed explicitly for the case of massless spin-1 fields in [39]. Recent works such as [40–48]

interpret the edge modes found in [39] as arising from the non-factorization of the QFT Hilbert

space due to the Gauss law constraint satisfied by the vector field. The existing approach [43,

44, 48, 49] of computing these edge modes involves introducing a brick wall near the entangling

surface, which again breaks symmetries of the problem and introduces boundary ambiguities. Fur-

thermore, the complexity of such computation grows quickly for fields with higher spins, making

it very difficult to generate explicit results.

Quite remarkably, with our approach in chapter 3, it is straightforward to obtain the edge mod-

ification to the relation (1.17) for arbitrary field contents on the de Sitter static patch. But before

we achieve that, we need to attack head-on the subtleties of the sphere path integral computation

itself. We turn to this next.

1.2.3 The sphere is beautiful but subtle

The study of the 1-loop sphere path integral (1.18) is not new. However, as innocuous as (1.18)

might look (it is just a free QFT on a sphere), its computation turns out to be quite intricate. One

can see for instance the long history [50–59] for the case of pure gravity. In this section we briefly

review some of the key subtleties. As a warm-up, let us recall how the computation of 1-loop

partition functions such as (1.18) typically proceeds with the simplest example: a free real massive

scalar φ(x), with sphere path integral

ZPI =

ˆ
Dφ e−S[φ] , S[φ] =

1
2

ˆ
Sd+1

φ (−∇2 + m2) φ . (1.19)
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Here
´
Dφ =

´ ∏
x dφ(x) is an infinite product of integrals of the field φ(x) over every point x on

the round sphere Sd+1, and we are using the shorthand notation
´

Sd+1 ≡
´

Sd+1
√
g dd+1x. Varying

φ in the action results in the equation of motion: (−∇2 + m2) φ = 0. One can think of φ(x) as

an infinite-dimensional vector with a continuous label x and the kinetic operator −∇2 + m2 as an

infinite-dimensional matrix acting on this vector. Naturally we expand φ(x) =
∑

n cnφn(x) in terms

of eigenfunctions φn of −∇2 + m2 with eigenvalue λn + m2:

(
−∇2 + m2

)
φn(x) =

(
λn + m2

)
φn(x),

ˆ
Sd+1

φnφn′ = δnn′ (1.20)

For Sd+1, we have λn = n(n + d) and n = 0, 1, 2, · · · . Upon substituting these, the action becomes

a simple sum

S[φ] =
1
2

ˆ
Sd+1

φ (−∇2 + m2) φ =
1
2

∑
n

(
λn + m2

)
c2

n , (1.21)

and the integration of the field φ over every point x turns into the integration over the expansion

coefficients cn:

ˆ
Dφ =

ˆ ∏
n

dcn
√

2π
. (1.22)

The path integral (1.19) then becomes an infinite product of Gaussian integrals

ZPI =

ˆ ∏
n

dcn
√

2π
e−

1
2
∑

n(λn+m2) c2
n =

∏
n

1√
λn + m2

=

(∏
n

(
λn + m2

))−1/2

. (1.23)

Inside the bracket is the product of all eigenvalues of −∇2 + m2, which we denote formally as the

determinant of the latter:

∏
n

(
λn + m2

)
= det

(
−∇2 + m2

)
. (1.24)
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To summarize we have

ZPI = det
(
−∇2 + m2

)−1/2
. (1.25)

Since it involves an infinite product of arbitrarily large eigenvalues of −∇2 + m2, this functional

determinant is UV-divergent and requires regularization such as heat kernel [60] or zeta function

[61] regularization. In chapter 3, after expressing sphere path integrals in terms of a simple integral

formula, we provide an efficient algorithm to explicitly evaluate (1.25) and its generalizations to

other field contents.

The longitudinal modes of tensor fields

The discussion above for the real massive scalar might lead one to think that the analogous

computation for free fields with spins s ≥ 1 should not be too difficult. After all, the Laplace-

type operator in the final answer (1.25) is simply the kinetic operator appearing in the equation of

motion. However, this is not the case. For an illustration let us consider a free massive vector field

Aµ. The problem for massive higher-spin fields is more complicated but works analogously. The

path integral for Aµ is

ZPI =

ˆ
DA e−S[A] , S[A] =

ˆ
Sd+1

(1
4

FµνFµν +
m2

2
AµAµ

)
. (1.26)

The equations of motion resulted from the Proca action S[A] are

(
−∇2 + m2 + d

)
Aµ = 0 , ∇λAλ = 0. (1.27)

The second statement says that the on-shell degrees of freedom are transverse. One might naively

think that the result for path integral (1.26) is simply

ZPI = det
(
−∇2
(1) + m2 + d

)−1/2
(wrong) (1.28)
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where −∇2
(1) is the Laplacian acting on transverse vector fields on Sd+1. This turns out to be wrong

[62]. Note that for the path integral (1.26) to be manifestly local, in the integration we include

all smooth unconstrained vector fields Aµ on Sd+1. In particular, the vector fields have both the

transverse and longitudinal parts

Aµ = AT
µ + AL

µ , ∇λAT
λ = 0. (1.29)

Upon substituting these into (1.26), the transverse part will result in the functional determinant

(1.28), while it is not immediately clear that the longitudinal part will give a trivial contribution.

After a closer examination in chapter 2, we will see that it does not. Fortunately, the contribu-

tion from the longitudinal part amounts to modifying the naive result (1.28) and its higher-spin

generalizations in a simple way.

The residual group volume for massless gauge fields

For massless and partially massless gauge fields, there will be additional complications because

of gauge invariance. The simplest example is the free Maxwell theory, with action given by putting

m2 = 0 in the Proca action (1.26):

S[A] =
ˆ

Sd+1

1
4

FµνFµν . (1.30)

This action is invariant under the gauge transformations

Aµ → Aµ + ∇µφ . (1.31)

Therefore, if we simply replace the Proca action in the path integral (1.26) with the Maxwell action,

we will be including field configurations related by gauge transformations (1.31) in the integration.

To compensate for this over-counting of gauge-equivalent orbits, we divide the path integral by the

14



volume of the space of gauge transformations

ZPI =
1

Vol(G)

ˆ
DA e−S[A] , Vol(G) =

ˆ
Dα =

∏
n

dαn
√

2π
, (1.32)

where α is a scalar field. To proceed we have to gauge fix. There are many approaches, such as

the standard Faddeev–Popov or BRST gauge fixing, or the “geometric approach” [63–65] that we

will use extensively in chapter 2. Each of these has its own advantages but ultimately they are

equivalent. Whichever approach one takes, after gauge fixing there will be an integral over gauge

parameters

ˆ
D′φ. (1.33)

On the sphere, there is a normalizable constant scalar mode φ0. The prime in (1.33) means that

we are excluding this mode. The reason is that this mode does not generate a non-trivial gauge

transformation (1.31), as φ0 is a constant and ∇µφ0 = 0. If we take into account the possible

interactions of the Maxwell field Aµ with other matter fields, this mode generates global U(1)

symmetries on the matter fields. The integration over the mode φ0 is therefore the volume of the

global symmetry group.

A puzzle then arises. Usually5 we expect the factor (1.33) cancels exactly with the factor

Vol(G) in (1.32). Now, should we include the integration over the constant mode φ0 (i.e. n = 0 in

the product (1.32)) in Vol(G)? If not, Vol(G) will cancel out (1.33). The price to pay is that Vol(G)

is now a non-local factor, since the field α being integrated over satisfies a non-local constraint:
´

Sd+1 α = 0. This apparently contradicts the fact that the path integral (1.32) is defined by a local

QFT. However, if we do include this residual group volume factor

Vol(G) =
ˆ

dα0
√

2π
(1.34)

5for example when computing flat space scattering amplitudes
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in Vol(G), how do we determine its correct value? What is the correct metric on this space of global

symmetries? For Maxwell theory on curved spacetimes, a careful treatment [66] shows that the

factor (1.34) has to be included for consistency with locality and unitarity. We wish to generalize

these considerations to non-Abelian gauge theories, pure gravity and higher-spin theories.

1.3 Outline and results of the thesis

The previous section shows that computing 1-loop corrections to the Gibbons-Hawking en-

tropy (1.3) is quite challenging: in the canonical approach one encounters the divergent normal

mode density of states, while in the path integral approach one is faced with various subtle issues

associated with normalizable zero or negative modes on the sphere. What is more, the usual equiv-

alence of the two pictures is expected to be modified. We want to resolve these puzzles, relate

the two pictures precisely, and develop an efficient method for exact evaluations. Quite pleasingly,

we managed to achieve all of these, and in fact much more. This thesis is the product of this

comprehensive study. It consists of three chapters:

1.3.1 A compendium of sphere path integrals (chapter 2)

This chapter is based on the work [67], where we present an extensive analysis for totally

symmetric tensor fields on a sphere. Starting from a manifestly covariant and local path integral,

we carefully examine the subtleties for free QFTs on Sd+1, and make broad generalizations to

all massive, shift-symmetric, massless and partially massless totally symmetric tensor fields of

arbitrary spins in arbitrary dimensions. To give an example, after a lengthy derivation in gory

detail, we obtain the following expression for massless higher-spin theories:

ZHS
PI =i−P γdim G

Vol(G)can

∏
s

((d + 2s − 2)(d + 2s − 4))
NKT
s−1
2

det′
−1

���−∇2
(s−1) − λs−1,s−1

���1/2
det′
−1

���−∇2
(s) − λs−2,s

���1/2 (1.35)
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with

P =
∑

s

(NCKT
s−2 + NCKT

s−1 − NKT
s−1), γ =

√
8πGN

Vol(Sd−1)
, dim G =

∑
s

NKT
s−1 (1.36)

Here NCKT
s and NKT

s denote respectively the numbers of spin-s conformal Killing tensors and

Killing tensors on Sd+1. The operator −∇2
(s) is the Laplacian acting on spin-s symmetric transverse

traceless fields on Sd+1, with eigenvalues λn,s = n(n + d) − s, n ≥ s. The primes in the functional

determinants mean that we exclude the zero modes of the differential operators; absolute values

are taken for each eigenvalue so that the functional determinants are positive definite. G denotes

the global higher-spin group. Here we comment on several features of (1.35):

1. The subscript −1 in the functional determinants denote an extension of the eigenvalue prod-

uct to n = −1, 0, · · · , s − 1. These correspond to the longitudinal mode contributions for any

spinning fields mentioned in section 1.2.3.

2. As mentioned at the end of section 1.2.3, for any massless and partially massless gauge

fields, the residual group volume factor Vol(G)can has to be included in the path integral

for consistency with locality and unitarity. The subscript “can” means that the volume is

measured with respect to a theory-independent “canonical” metric that we define building

upon the ideas of [68–71]. Closely related are the coupling dependence γdim G and the factor

((d + 2s − 2)(d + 2s − 4))
NKT
s−1
2 for each s, which capture the cubic interaction structures of

the parent theory to which we performed the 1-loop approximation.

3. The phase factor i−P is present for any massless and partially massless gauge fields with spin

s ≥ 2. In their actions, all but finite number of the trace modes have negative kinetic terms

[72]. A standard procedure [72] is to Wick-rotate these modes in field space so that the path

integral is well-defined. Applying this procedure on the round sphere Sd+1, Polchinski [59]

first obtained an overall phase i−d−3 for a massless spin-2 field. Here we generalize it to

arbitrary massless higher-spin fields.
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Expressions analogous to (1.35) are obtained for all massive, shift-symmetric and partially mass-

less totally symmetric tensor fields of arbitrary spin in arbitrary dimensions.

1.3.2 Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological

string partition functions (chapter 3)

This long chapter is based on the work [73] with Dionysios Anninos, Frederik Denef and Zimo

Sun. We present a novel approach to make sense of the canonical thermal partition function (1.6).

We also precisely relate this with the sphere path integral (1.18). What is more, our formalism

provides a systematic method for exact evaluations of (1.6) and (1.18). Along the way we uncovers

a lot of interesting physics about low-energy EFTs in the de Sitter static patch. Here we highlight

a few key results:

SO(1, d + 1) character and density of states We point out the physics of the Harish-Chandra

character [74, 75] for the de Sitter group SO(1, d + 1):

χ[∆,s](t) ≡ trG e−iHt . (1.37)

Here ∆ labels the SO(1, 1) weight and s = (s1, s2, · · · , sr) with r = b d
2 c labels the SO(d) highest

weight for the unitary irreducible SO(1, d + 1) representation [76–78] of interest. The Hamiltonian

H generates time flows in the static patch. The subscript G means that we are tracing over the

global de Sitter single-particle Hilbert space. For example, a massive scalar has m2 = ∆(d−∆) and

s = 0 = (0, 0, · · · , 0), and character [78]

χ[∆,0](t) =
e−∆t + e−∆̄t

|1 − e−t |d
, (1.38)

where ∆̄ = d − ∆. The character for a massive bosonic spin-s field with m2 = ∆(d − ∆) − s

and s = (s, 0, · · · , 0) is simply given by the scalar character (1.38) multiplied by the SO(d) spin-s

degeneracy Dd
s .
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Expanding (1.37) in powers of e−it ,

χ[∆,s](t) =
∑
λ

Nλ e−iλt , (1.39)

the sum is found to run over the quasinormal mode (QNM) spectrum and Nλ is the degeneracy of

the QNM of frequency λ. With the mathematically well-defined object (1.37) we make sense of the

density of states mentioned in section 1.2.1 and obtain the simple formula for the (quasi)canonical

ideal gas partition function on the southern static patch at general inverse temperature β

log Zbulk(β) ≡ log TrS e−βHS =

ˆ ∞
0

dt
2t

(
1 + e−2πt/β

1 − e−2πt/β
χ(t)bos −

2 e−πt/β

1 − e−2πt/β
χ(t)fer

)
(1.40)

where χ(t)bos and χ(t)fer are the characters for the bosonic and fermionic fields respectively. The

subscripts S emphasize that we are tracing over the southern Hilbert space. Compared to the

traditional brick wall approach and its variants [35–37], our approach has numerous advantages

such as manifest de Sitter invariance and independence of boundary artifacts. Also, our formalism

straightforwardly generalizes to arbitrary field contents in any dimensions.

Canonical vs path integral As discussed in section 1.2.2, the relation (1.17) between the canon-

ical partition functions and Euclidean path integrals is expected to be modified by “edge” modes

living on the de Sitter horizon. Without introducing a brick wall [43, 44, 48, 49], we obtain the pre-

cise edge contributions for general field contents. For instance, we derive the following universal

character integral formula for massive bosonic fields

log ZPI = log Zbulk − log Zedge =

ˆ ∞
0

dt
2t

1 + e−t

1 − e−t

(
χbulk(t) − χedge(t)

)
. (1.41)

Here log Zbulk is exactly the bosonic part of the (quasi)canonical partition function (1.40) at β = 2π,

whereas log Zedge is present only for fields with spin s ≥ 1. To give an example, χbulk and χedge
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for a massive spin-s boson are explicitly given by

χbulk ≡ Dd
s

e−∆t + e−∆̄t

(1 − e−t)d
, χedge ≡ Dd+2

s−1
e−(∆−1)t + e−(∆̄−1)t

(1 − e−t)d−2 (1.42)

where ∆̄ = d−∆. Notice that the edge character χedge is a character living in two lower dimensions

than the bulk character χbulk, indicating that these capture the edge degrees of freedom on the de

Sitter horizon.

Quantum gravitational thermodynamics Taking into account dynamical gravity and possible

matter fields, we compute the exact renormalized 1-loop de Sitter horizon entropy. For instance,

with our character formalism we obtain for pure gravity

d S

2 S(0) − 3 logS(0) + 5 log(2π)

3 S(0) − 5 logS(0) − 571
90 log

(
`0
L

)
− log

(
8π
3

)
+ 715

48 −
47
3 ζ
′(−1) + 2

3 ζ
′(−3)

4 S(0) − 15
2 logS(0) + log(12) + 27

2 log(2π) + 65 ζ(3)
48 π2 +

5 ζ(5)
16 π4

(1.43)

where S(0) is the tree-level entropy. We have absorbed local UV-divergences into gravitational cou-

plings. In the d = 3 (S4) example, `0 is the tree-level radius of the sphere and L a renormalization

scale in the minimal subtraction scheme.

3D higher-spin gravity In three dimensions, higher-spin theory can be alternatively formulated

as an sl(n) Chern-Simons theory. We discover an exponentially large landscape of de Sitter vacua,

labeled by partitions of n =
∑

a ma. These correspond to different embeddings of of sl(2) into sl(n)

as n-dimensional representations R = ⊕ama.

For the vacuum labeled by R, we obtain the all-loop quantum-corrected Euclidean partition

function of the dS3 static patch by analytically continuing the exact SU(n)k+ × SU(n)k− partition

20



function on S3 to k± → l ± iκ with l ∈ N, κ ∈ R+. Explicitly,6

Z(R)0 =
���� 1
√

n
1

(n + l + iκ)
n−1

2

n−1∏
p=1

(
2 sin

πp
n + l + iκ

) (n−p)
����2 · e2πκTR , (1.44)

where TR =
1
6
∑

a ma(m2
a − 1), `/GN and κ are related as

κTR =
2π`

8πGN
. (1.45)

Using the large-n duality between U(n)k Chern-Simons theory on S3 and closed topological string

theory on the resolved conifold [79, 80], the HS gravity partition function (1.44) in vacuum R can

be re-cast into the absolute value squared of a weakly-coupled topological string partition function.

Partition functions made easy Our formalism reduces statements about partition functions to

statements about characters. This allows us to relate partition functions by manipulating characters

algebraically, without evaluating the partition functions themselves. For example, the relation

between AdS±d+1 (± : standard/alternative boundary conditions) massless spin-s and conformal

spin-s sphere partition functions [62, 81, 82]

ZCHS
s (Sd) =

ZHS
s (AdS−d+1)

ZHS
s (AdS+d+1)

(1.46)

is neatly proved by noting the algebraic character relation

χs (CdSd) = χs
(
AdS−d+1

)
− χs

(
AdS+d+1

)
(1.47)

where χs (CdSd) is the bulk-edge character for a conformal spin-s field in dSd while χs

(
AdS±d+1

)
are the bulk-edge characters for a massless spin-s field on AdSd+1 [83] with standard and alternative

boundary conditions respectively.

6As reviewed in chapter 3, the definition of the Chern-Simons theory as a QFT involves a choice of “framing”. The
result (1.44) assumes the canonical framing, denoted by the subscript 0.
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1.3.3 Grand partition functions and Lens space path integrals (chapter 4)

This chapter contains results recently obtained by the author. We make a broad generalization

of our formalism in chapter 3 by allowing non-zero chemical potentials. We consider the grand

(quasi)canonical partition functions on the dSd+1 static patch:

Zbulk(β, µ) = Tr e−β(H+iµ·J) . (1.48)

where J = (J1, · · · , Jr) is a maximal set of commuting angular momenta (i.e. the Cartan generators

for SO(d)) and µ = (µ1, · · · , µr) are the corresponding chemical potentials. Here r = b d
2 c is the

rank of the subgroup SO(d). For βµ = 2πq
p , p ∈ N, q ∈ Zr , we write down a generalized character

formula. For example, the result for bosonic fields is

log Zbulk

(
β,

2πq
pβ

)
=

ˆ ∞
0

dt
2pt

∑
m∈Zp

sinh 2πt
pβ

cosh 2πt
pβ − cos 2πm

p

χbulk

(
t,

2πmq

p

)
(1.49)

where χbulk(t, θ) = χbulk(t, θ1, · · · , θr) is the full SO(1, d + 1) character. For example, a massive

spin-s particle has [78]

χ[∆,s](t, θ) = χd
s (x)

(
Q∆ +Q∆̄

)
Pd(Q, x) (1.50)

where Q = e−t, x = (x1, · · · , xr) = (eiθ1, · · · , eiθr ), χd
s (x) is the SO(d) spin-s character, and

Pd(Q, x) =
r∏

i=1

1
(1 −Qxi)(1 −Qx−1

i )
×


1 if d = 2r

1
1−Q if d = 2r + 1

. (1.51)

Note that (1.50) evaluated at θ = 0 recovers the reduced massive spin-s character (1.42).
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Lens space path integrals In three dimensions, we relate the grand (quasi)canonical partition

function at β = 2π
p and µ = q

Zbulk

(
2π
p
, q

)
= Tr e−

2π
p (H+iqJ) (1.52)

where p and q are two coprime integers: (p, q) = 1, to path integrals on Lens spaces L(p, q). These

are smooth quotients of S3 and thus arise as saddle points of the gravitational path integral with

a positive cosmological constant. Compared to the S3 saddle, the contribution from a single Lens

space L(p, q) is exponentially suppressed. The relevance of Lens spaces to dS3 quantum gravity is

discussed in [84]. Here we obtain the Lens space generalization of the sphere result (1.41) for a

massive spin-s boson

log ZPI =

ˆ ∞
0

dt
2pt


∑

m∈Zp

sinh t
cosh t − cos mτ2

χbulk(t,mτ1) −
∑

m∈Zp

sinh t
cosh t − cos mτ1

χedge(t, τ1, τ2)

 .
(1.53)

Here τ1, τ2 are related to p, q as

τ1 =
2πq

p
, τ2 =

2π
p
, (1.54)

while the bulk and edge characters are

χbulk(t, θ) = 2 cos sθ
e−(∆−1)t + e−(∆̄−1)t

2(cosh t − cos θ)
, χedge(t, τ1, τ2) =

cos smτ1 − cos smτ2
cos mτ1 − cos mτ2

(e−(∆−1)t + e−(∆̄−1)t).

(1.55)

1.3.4 Other work of the author

It should be mentioned that some of the author’s work has not been included in the present

thesis for the sake of self-coherence.

This includes the series of work [85–87] with Michael Zlotnikov in celestial holography. Scat-
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tering amplitudes in asymptotically flat space can be mapped onto a celestial sphere (known as

celestial amplitudes or celestial correlators) at the null infinity, on which they transform as con-

formal correlators under the Lorentz transformations. The ultimate goal of this program is to

construct a holographic Celestial Conformal field theory (CCFT) for flat space quantum gravity.

In [85], we study the universal constraints imposed by bulk Poincaré symmetries on massless and

massive celestial amplitudes. These results were subsequently extended to amplitudes involving

massive spinning bosons in [86]. Analogous to the usual flat space non-gravitational amplitudes,

celestial amplitudes can be expanded in terms of relativistic partial waves, making the underlying

Poincaré symmetries manifest. In [87], we derive relativistic partial waves directly on the celestial

sphere, and perform the partial wave expansions explicitly for scalars, gluons, gravitons and open

superstring gluons for demonstration.

Another work [88] with Janna Levin and Kshitij Gupta concerns the study of electromagnetic

Penrose process around a charged spinning black hole immersed in a uniform magnetic field. In

the traditional Penrose process, particles can attain negative energies within the ergosphere of a

spinning black hole, making it possible to extract rotational energy from it. With the inclusion of

black hole charge and a magnetic field, the energetics for charged particles becomes more com-

plicated yet very interesting. For example, we find that the region(s) with negative energies can

be much larger than the ordinary ergosphere; in some cases they can be totally detached from the

horizon.
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Chapter 2: A Compendium of Sphere Path Integrals

This chapter is a based on the work [67], where we study 1-loop path integrals on Sd+1 for

general massive, shift-symmetric and (partially) massless totally symmetric tensor fields. After

reviewing the cases of massless fields with spin s = 1, 2, we provide a detailed derivation for path

integrals of massless fields of arbitrary integer spins s ≥ 1. Following the standard procedure of

Wick-rotating the negative conformal modes, we find a higher spin analog of Polchinski’s phase

for any integer spin s > 2. The derivations for low-spin (s = 0, 1, 2) massive, shift-symmetric and

partially massless fields are also carried out explicitly. Finally, we provide general prescriptions for

general massive and shift-symmetric fields of arbitrary integer spins and general partially massless

fields of arbitrary integer spins and depths.

2.1 Introduction

Sphere partition functions are of interest in the study of quantum gravity with a positive cos-

mological constant [10, 50–59, 73]. In a recent work [73], a character formula for 1-loop sphere

path integrals has been derived, which for rank-s symmetric tensor fields with generic mass m2 on

Sd+1 takes the form

log ZPI =

ˆ ∞
0

dt
2t

1 + e−t

1 − e−t (χbulk − χedge). (2.1)

Here χbulk and χedge are

χbulk = Dd
s

e−∆t + e−∆̄t

(1 − e−t)d
, χedge = Dd+2

s−1
e−(∆−1)t + e−(∆̄−1)t

(1 − e−t)d−2 , (2.2)
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characters of the isomatry group SO(1, d + 1) of the (d + 1)-dimensional de Sitter space dSd+1.

The scaling dimension ∆ is related to the mass m2 and spin s through m2 = (∆ + s − 2)(∆̄ + s − 2)

and ∆̄ = d − ∆. With formula (2.1) we can compute exact 1-loop results for Euclidean de Sitter

thermodynamics.

Massless spinning fields are more subtle. Their character formula takes the form [73]

log ZPI = log ZG + log ZChar, (2.3)

where the character part log ZChar is (2.1) but with the characters (2.2) replaced with their massless

counterparts, and the first term takes the general form

ZG = i−P (2πγ)dimG

Vol(G)can
. (2.4)

The second factor is associated with the group G of trivial gauge transformations. γ is related to the

coupling constant of the theory, while Vol(G)can is what we call canonical group volume in [73].

Later we will define these quantities more precisely. It was emphasized in [66] that the inclusion of

this factor is crucial for consistency with locality and unitarity. The phase factor i−P is only present

only for fields with spin s ≥ 2, whose origin is the negative conformal modes in the Euclidean path

integral [72] that naively makes the path integral divergent. The standard prescription [72] to cure

this problem is to Wick rotate the problematic conformal modes. Polchinski later [59] found that

on Sd+1 this procedure led to a finite number of i factors (with P = d + 3 in that case) that could

render the Euclidean path integral positive, negative or imaginary depending on the dimensions.

Let us go back to the starting point of the character formula, the left hand sides of (2.1) and

(2.3). That is, the 1-loop sphere path integrals

ZPI =

ˆ
Dφe−S[φ] (2.5)

where S[φ] is the quadratic action of the field φ. For massless fields, there will be a division by an
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infinite gauge group volume factor to compensate for the over-counting of gauge-equivalent field

configurations. In this paper, we will perform detailed derivations for the determinant expressions

of (2.5) for several classes of fields. We focus on symmetric tensor fields on Sd+1 with d ≥ 2.

For massless fields, we will see how the factor ZG arises explicitly from the manifestly local

path integral. More generally, such a factor is present for any partially massless gauge fields. We

directly check it for the spin-2 depth-0 field, and then provide a prescription for general bosonic

partially massless fields. Another class of theories that are of interest involves shift-symmetric

fields [89]. These can be thought of as the longitudinal modes decoupled from partially massless

gauge fields. Working out explicitly the low-spin cases, we find that their path integrals contain a

factor analogous to ZG.

All of our results will be expressed in terms of functional determinants of the symmetric trans-

verse traceless (STT) Laplacians on Sd+1. Their relevant properties are summarized in appendix

B.2.

Plan of the paper: We first review the computations for massless spin-1 and spin-2 fields in

sections 2.2 and 2.3. We then turn to our complete derivation for massless fields of arbitrary

integer spins in section 2.4. In section 2.5, we study fields with generic mass. In sections 2.6

and 2.7, we study general shift-symmetric fields and partially massless fields respectively. We

conclude in section 2.8. All conventions are summarized in appendix B.1. Relevant properties of

the STT Laplacians on Sd+1 and their eigenfunctions are collected in appendix B.2. The higher

spin invariant bilinear form is reviewed in appendix B.3.

2.2 Review of massless vectors

We start with a pedagogical review of the case of massless vectors. The object of interest is the

1-loop approximation to the full Euclidean path integral

ZPI =
1

Vol(G)

ˆ
DAaDΦe−SE [Aa,Φ] (2.6)
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for a theory that involves a collection of massless vector (for example U(1) or Yang-Mills) gauge

fields interacting with some matter fields, denoted as Aa
µ and collectively as Φ respectively, living

on Sd+1.

U(1) with a complex scalar The simplest example involves a single U(1) gauge field Aµ inter-

acting with a complex scalar φ (studied in [53]):

SE [A, φ] =
ˆ

Sd+1

[
1

4g2 FµνFµν + Dµφ(Dµφ)∗ + m2φφ∗
]
, (2.7)

where

Fµν ≡ ∂µAν − ∂νAµ, Dµφ ≡ (∂µ − iAµ)φ (2.8)

are the field strength and the covariant derivative of the scalar. This action is invariant under the

local U(1) gauge transformations

φ(x) → eiα(x)φ(x), Aµ(x) → Aµ(x) + ∂µα(x). (2.9)

The normalization adopted here is to emphasize the presence of the coupling constant g. In this

convention g does not show up in the gauge transformation.

Yang-Mills Another example is Yang-Mills (YM) theory with a Lie algebra

[La, Lb] = f abcLc (2.10)

generated by some standard basis of anti-hermitian matrices and f abc is real and totally antisym-

metric. The YM action is

SE [A, φ] =
1

4g2

ˆ
Sd+1

TrF2 =
1

4g2

ˆ
Sd+1

Fa
µνFa,µν, (2.11)
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where the curvature is Fµν ≡ ∂µAν − ∂νAµ + [Aµ, Aν] with Aµ = Aa
µLa. Here the overall normal-

ization for the trace (or Killing form) is defined such that the generators La are unit normalized:

Tr(LaLb) ≡ δab. (2.12)

For SU(2) YM, La = − iσa

2 satisfying [La, Lb] = εabcLc, and the trace (2.12) would be Tr ≡ −2tr

with tr being the matrix trace. The YM action is invariant under the non-linear gauge transforma-

tions α = αaLa

Aµ → Aµ + ∂µα + [Aµ, α]. (2.13)

In both the U(1) and YM examples, the corresponding path integral in (2.6) clearly overcounts

gauge equivalent configurations. A factor Vol(G) is thus inserted in (2.6) to quotient out configura-

tions connected by gauge transformations. This factor is formally the volume of the space of gauge

transformations G (the measure with respect to which the volume is defined will be discussed in

later subsection) and is theory dependent. For the U(1) example, Vol(G) is simply a path integral

over a single local scalar field

Vol(G)U(1) =

ˆ
Dα, (2.14)

while for SU(2) YM it would be a path integral over 3 local scalar fields

Vol(G)SU(2) =

ˆ
Dα1Dα2Dα3. (2.15)

More generally, Vol(G) is an integral over N = dimG local scalar fields for a gauge group G.

1-loop approximation Now, suppose the equation of motion admits the trivial solution Aa
µ =

0 = Φ, around which we perform a saddle point approximation for (2.6). Then at the quadratic (1

29



loop) level the vector and matter fields decouple:

Z1-loop
PI = ZδA

PI ZδΦ
PI . (2.16)

In the following, we focus on the vector part of the 1-loop path integral (with Aa understood as the

fluctuations around the background)

ZδA
PI =

1
Vol(G)

ˆ dimG∏
a=1
DAae−

∑dimG
a=1 SE [Aa]. (2.17)

where SE [Aa] is simply a Maxwell action

SE [Aa] =
1

4g2

ˆ
Sd+1

Fa
µνFa,µν, Fµν = ∂µAa

ν − ∂νAa
µ. (2.18)

A careful analysis of the Euclidean path integral for the U(1) theory on arbitrary manifolds has

been presented in [66], where the authors point out the importance of taking care of zero modes,

large gauge transformations and non-trivial bundles for consistency with locality and unitarity.

In the following we will express Z0
PI in terms of functional determinants and stress the relevant

subtleties in our case of Sd+1 along the way.

2.2.1 Transverse vector determinant and Jacobian

Geometric approach and change of variables

Since the path integrations over Aa in (2.17) are decoupled, we can focus on one of the factors,

and we will suppress the index a. Traditional ways to proceed include Faddeev-Popov or BRST

gauge fixing (as done in [66] for example). Here instead we take the “geometric approach” [63–

65], which manifests its advantages when we deal with massless higher spin fields later. In this

approach one changes the field variables by decomposing

Aµ = AT
µ + ∂µχ (2.19)
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where AT
µ is the transverse or on-shell part of Aµ satisfying ∇µAT

µ = 0, and χ is the longitudinal

or pure gauge part of Aµ. Since Sd+1 is compact, the scalar Laplacian has a normalizable constant

(0, 0) mode, which must be excluded from the path integration for the change of variables (2.19)

to be unique

DA = JDATD′χ (2.20)

where prime denotes the exclusion of the (0, 0) mode. We will find the Jacobian J for the change

of variables (2.19) below.

Action for AT
µ

Because the gauge invariance of the action, χ simply drops out upon substituting (2.19)

SE [AT, χ] =
1

2g2

ˆ
Sd+1
[AT

µ(−∇
2
(1) + d)Aµ

T ] (2.21)

where −∇2
(1) is the trasnverse Laplacian on Sd+1. Now we expand AT

µ in terms of spin-1 transverse

spherical harmonics (see App.B.2 for their basic properties):

AT
µ =

∞∑
n=1

cn,1 fn,µ (2.22)

and the integration measure in our convention is

DAT =

∞∏
n=1

dcn,1
√

2πg
. (2.23)

Performing the path integration over these modes we have

ˆ
DAe−SE [A] = J det

(
−∇2
(1) + d

)−1/2
ˆ
D′χ (2.24)
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Jacobian

We find the Jacobian J by requiring consistency with the normalization condition

1 =
ˆ
DAe

− 1
2g2 (A,A) =

ˆ
JDATD′χe

− 1
2g2 (A

T+∇χ,AT+∇χ)
. (2.25)

Since AT is transverse, we have

(AT + ∇χ, AT + ∇χ) = (AT, AT ) + (∇χ,∇χ). (2.26)

We can then path integrate AT trivially. We expand χ in terms of scalar spherical harmonics:

χ =

∞∑
n=1

cn,0 fn (2.27)

with path integration measure

D′χ =

∞∏
n=1

dcn,0
√

2πg
. (2.28)

Plugging this into (2.25) results in

J = det′(−∇2
(0))

1/2, (2.29)

where the prime denotes the omission of the constant (0, 0) mode.

2.2.2 Residual group volume

Let us go back to the full 1-loop path integral (2.17). So far we have

ZδA
PI =

´ ∏dimG
a=1 D

′χa

Vol(G)

©«
det′(−∇2

(0))
1/2

det
(
−∇2
(1) + d

)1/2

ª®®¬
dimG

(2.30)
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where we have restored the color index a. Now we focus on the factor

´ ∏dimG
a=1 D

′χa

Vol(G)
. (2.31)

As explained above, the factor Vol(G) is theory dependent and is formally an integral over N =

dimG local scalar fields

Vol(G) =
ˆ dimG∏

n=1
Dαn. (2.32)

In particular, the integral includes integrations over constant scalar modes. As explained in [66],

the inclusion of zero modes is crucial for consistency with locality and unitarity. Thus, this factor

does not cancel completely with the integrations over χ, leaving a factor

´ ∏dimG
a=1 D

′χa

Vol(G)
=

1
Vol(G)PI

, Vol(G)PI ≡

ˆ dimG∏
a=1

dαa
0

√
2πg

. (2.33)

where αa
0 is the expansion coefficient of the (0, 0) mode of αa (a is the color index)

αa =

∞∑
n=0

αa
n fn. (2.34)

These constant scalar modes correspond to the gauge transformations that leave the background

Aµ = 0 invariant, or equivalently whose linear part is trivial. If the original full theory contains

matter fields, these act non-trivially on the latter. G is therefore the group of global symmetries of

the theory and Vol(G)PI is the volume of G. Note that the precise value of Vol(G)PI depends on the

metric on G. We have been using a specific choice of metric

ds2
PI =

1
2πg2

ˆ
Sd+1

Tr(δαδα) (2.35)

induced by our convention for the path integral measure. Note that had we normalized the gener-

ators La in a different way: La → λLa (or equivalently choosing a different overall normalization
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for the trace in the action (2.11): Tr → λ2Tr), the path integral describes the same physics if we

rescale g → λg. In particular, the metric (2.35) remains the same. We want to relate the volume

Vol(G)PI measured in this metric to a “canonical volume” Vol(G)can, defined as follows. A general

group element in G takes the form

eθ·L̂ = eθ
a L̂a

(2.36)

where L̂a are unit-normalized. We define Vol(G)can to be the volume of the space spanned by θ.

In our convention, La are unit-normalized, and therefore the relation between the metric (2.35)

(restricted to the subspace of trivial gauge transformations) and the canonical metric is simply

ds2
PI =

1
2πg2

∑
a

(dαa
0 )

2 =
1

2πg2

∑
a

(
dθa

f0

)2
=

Vol(Sd+1)

2πg2 ds2
can, ds2

can ≡ dθ · dθ. (2.37)

Thus we can express the group volume as

Vol(G)PI =

(
Vol(Sd+1)

2πg2

) dim(G)
2

Vol(G)can =

(
Vol(Sd−1)

dg2

) dim(G)
2

Vol(G)can, (2.38)

where we have used Vol(Sd+1) = 2π
d Vol(Sd−1) in the last step. The canonical volume Vol(G)can so

defined is evidently independent of the coupling. To summarize, the full 1-loop path integral is

ZδA
PI =ZGZChar

ZG =
γdimG

Vol(G)can
, γ =

g√
(d − 2)Vol(Sd−1)

ZChar = (d(d − 2))
1
2 dimG

©«
det′(−∇2

(0))

det
(
−∇2
(1) + d

) ª®®¬
1
2 dimG

(2.39)

In retrospect, the coupling dependence of the result is precisely encoded in the group volume factor

Vol(G)PI. In the G = U(1) example, Vol(G)can = Vol(U(1))c = 2π, and the full 1 loop vector path
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integral is therefore

ZU(1)
PI =

g√
2πVol(Sd+1)

det′(−∇2
(0))

1/2

det
(
−∇2
(1) + d

)1/2 , (2.40)

which reproduces eq.(2.6) in [90]. For G = SU(2), dimG = 3 and Vol(G)can = 16π2, and thus

ZSU(N)
PI =

1
16π2

(
2πg2

Vol(Sd+1)

) 3
2 ©«

det′(−∇2
(0))

det
(
−∇2
(1) + d

) ª®®¬
3/2

. (2.41)

Local gauge algebra, global symmetry and invariant bilinear form

For the later discussions on spin 2 and massless higher spin fields, and to make connection with

the work in [68], we offer another perspective for the non-abelian case.

Local gauge algebra Recall that the original Yang-Mills action (2.11) is invariant under the full

non-linear infinitesimal gauge transformations

δαAµ = δ
(0)
α Aµ + δ

(1)
α Aµ

δ
(0)
α Aµ = ∂µα, δ

(1)
α Aµ = [Aµ, α]. (2.42)

Here the superscript (n) denotes the power in fields. This generates an algebra

δαδα′Aµ − δα′δαAµ = δ[[α,α′]]Aµ (2.43)
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where we have defined a bracket [[·, ·]] on the space of gauge parameters, which in our convention

is equal to the negative of the matrix commutator1

[[α, α′]] = −[α, α′]. (2.44)

Global symmetry algebra from the gauge algebra The constant (0, 0) modes ᾱ generate back-

ground (Aµ = 0) preserving gauge transformations satisfying

δ
(0)
ᾱ = 0, (2.45)

which form a subalgebra g of the local gauge algebra, with the bracket [[·, ·]] naturally inherited

from the local gauge algebra

[[ᾱ, ᾱ′]] = −[ᾱ, ᾱ′]. (2.46)

This global symmetry algebra g is clearly isomorphic to the original Lie algebra (2.10). On g, the

path integral metric (2.35) corresponds to the bilinear form with a specific normalization:

〈ᾱ |ᾱ′〉PI =
1

2πg2

ˆ
Sd+1

ᾱaᾱ′a =
Vol(Sd+1)

2πg2 ᾱaᾱ′a. (2.47)

We define a theory independent “canonical” invariant bilinear form 〈·|·〉c on g as follows.

1. Pick a basis Ma of g such that they satisfy the same commutation relation as La: [[Ma, Mb]] =

f abcMc. This fixes the relative normalizations of Ma.

1One should keep in mind that [[·, ·]] is defined using the gauge transformations of Aµ, whose precise form depends
on the normalization conventions, while the commutator on the right hand side is the matrix commutator [A, B] = AB−
BA. Had we normalized Aµ canonically, so that the action takes the form − 1

4
´
Sd+1 TrF2, the gauge transformations

will be instead δαAµ = ∂µα + g[Aµ, α] and the local gauge algebra will become [δα, δα′] = δ−g[α,α′] and the bracket
will read [[ᾱ, ᾱ′]] = −g[α, α′].
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2. Fix the overall normalization of 〈·|·〉c by requiring Ma to be unit-normalized:

〈Ma |Mb〉c = δ
ab (2.48)

In the current case, this means that we should take Ma = La and

〈α |α′〉c = ᾱ
aᾱ′a. (2.49)

Comparing this with (2.47), we see that the path integral and canonical metrics are related as in

(2.37), leading to the same result (2.38).

2.3 Review of massless spin 2

Next we review the computation for linearized Einstein gravity on Sd+1, which has a long and

dramatic history [50–59]. The Euclidean path integral for a massless spin-2 particle on Sd+1 is

ZPI =
1

Vol(G)

ˆ
Dhe−S[h] (2.50)

where the action is2

S[h] =
1

2g2

ˆ
Sd+1

hµν
[
(−∇2 + 2)hµν + 2∇(µ∇λhν)λ + gµν(∇2h λ

λ − 2∇σ∇λhσλ) + (D − 3)gµνh λ
λ

]
,

(2.51)

where g =
√

32πGN . (2.51) is invariant under the linearized diffeomorphisms3

hµν → hµν +
√

2∇(µΛν) = hµν +
1
√

2
(∇µΛν + ∇νΛµ). (2.52)

2This is obtained by expanding gµν = gS
d+1

µν + hµν in the Einstein-Hilbert action 1
16πGN

´
Sd+1 (2Λ − R).

3The insertion of the factor 1√
2

is for later convenience.
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The volume factor Vol(G) is the volume of the space of diffeomorphisms inserted to compensate

for the over-counting of gauge equivalent orbits connected by (2.52).

Change of variables

As in the case of massless vectors, we decompose hµν as

hµν = hTT
µν +

1
√

2
(∇µξν + ∇νξµ) +

gµν
√

d + 1
h̃ (2.53)

where hTT
µν is the transverse-traceless part of hµν satisfying ∇λhλµ = 0 = hλλ , ξµ is the pure gauge

part of hµν, and h̃ is the trace of hµν. For (2.53) to be unique, we require ξν to be orthogonal to all

Killing vectors (KVs) on Sd+1

(ξ, ξKV) = 0, ∇µξ
KV
ν + ∇νξ

KV
µ = 0 (2.54)

and h̃ to be orthogonal to divergence of the rest of all conformal Killing vectors (CKVs)

(h̃,∇ · ξCKV) = 0, ∇µξ
CKV
ν + ∇νξ

CKV
µ =

1
2(d + 1)

gµν∇
λξCKV
λ . (2.55)

The path integral measure then becomes

Dh = JDhTTD′ξD′h̃ (2.56)

where the Jacobian J will be found below. The primes indicate that we exclude the integrations

over the (1, 1) and (1, 0) modes excluded due to conditions (2.54) and (2.55).

38



2.3.1 Transverse tensor and trace mode determinants

Action for hTT
µν

Due to the gauge invariance (2.52), we have

S[h] = S[hTT + h̃] = S[hTT] + S[h̃]. (2.57)

S[hTT] can be easily obtained as

S[hTT] =
1

2g2

ˆ
Sd+1

hTT
µν (−∇

2
(2) + 2)hµνTT. (2.58)

where −∇2
(2) is the spin-2 STT Laplacian. The integration over hTT thus gives

ZTT
h =

ˆ
DhTTe−S[hTT] = det

(
−∇2
(2) + 2

)−1/2
. (2.59)

Action for h̃ and the conformal factor problem

Similarly, after a bit more work, the quadratic action for h̃ can be obtained as

S[h̃] = −
d(d − 1)

2(d + 1)g2

ˆ
Sd+1

h̃(−∇2
(0) − (d + 1))h̃

= −
d(d − 1)

2(d + 1)g2

∑
n,1
(n(n + d) − (d + 1))c2

n,0 (2.60)

where in the second line we have inserted the mode expansion

h̃ =
∑
n,1

cn,0 fn, ( fn, fm) = δn,m. (2.61)

Here the sum runs over the spectrum of the scalar Laplacian except the (1, 0) modes, which cor-

responds to the CKVs. Notice that (2.60) has a wrong overall sign for all positive modes of the

operator −∇2
(0)−(d+1). This is the well-known conformal factor problem [72] in Euclidean gravity
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method. We follow the standard prescription: we replace cn,0 → icn,0
4 for all n ≥ 2, which leads

to the change in the path integral measure

D′h̃ =
∏
n,1

dcn,0
√

2πg
→

( ∞∏
n=2

i
) ∏

n,1

dcn,0
√

2πg
= i−d−3

(
∞∏

n=0
i

) ∏
n,1

dcn,0
√

2πg
. (2.62)

The factor in the last step runs through the spectrum of −∇2
(0) and is thus a local infinite constant

that can be absorbed into bare couplings. Doing this the path integral becomes

Zh̃ =

ˆ
D′h̃eS[h̃] = i−d−3Z+

h̃
Z−

h̃

Z+
h̃
=

ˆ
D+ h̃e

−
d(d−1)

2(d+1)g2
´
Sd+1 h̃(−∇2

(0)−(d+1))h̃

Z−
h̃
=

ˆ
D− h̃e

d(d−1)
2(d+1)g2

´
Sd+1 h̃(−∇2

(0)−(d+1))h̃
(2.63)

where ± indicate the contribution from positive and negative modes respectively. The overall phase

factor i−d−3 was first obtained by Polchinski [59]. Later we will see the generalization of this phase

factor for all massless higher spin fields.

2.3.2 Jacobian

Again, we find the Jacobian J by requiring consistency with the normalization condition

1 =
ˆ
Dhe

− 1
2g2 (h,h). (2.64)

Since hTT is transverse and traceless, we have

(h, h) = (hTT, hTT) + (
√

2∇ξ +
gh̃
√

d + 1
,
√

2∇ξ +
gh̃
√

d + 1
). (2.65)

To proceed we separate ξµ = ξ′µ + ξ
CKV
µ , where ξCKV

µ is a linear combination of the CKVs and

ξ′µ is the part of ξµ that is orthogonal to the CKVs, that is (ξ′, ξCKV) = 0. Note that while gh̃ is

4The sign in front of the i is a matter of convention.
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orthogonal to ξCKV
µ because of (2.55), gh̃ and ∇ξ′ are not orthogonal to each other. To remove the

off-diagonal terms, we shift

h̃′ = h̃ +

√
2

d + 1
∇λξ′λ. (2.66)

Since it is just a shift, the Jacobian is trivial. It is then easy to compute

(
√

2∇ξ +
gh̃
√

d + 1
,
√

2∇ξ +
gh̃
√

d + 1
) = (h̃′, h̃′) +

1
2
(Kξ′,Kξ′) + 2(∇ξCKV,∇ξCKV) (2.67)

where we have defined the differential operator

(Kξ)µν ≡ ∇µξν + ∇νξµ −
2

d + 1
gµν∇

λξλ. (2.68)

Now the integrations over hTT and h̃′ become trivial. To proceed, we first simplify

(Kξ′,Kξ′) = 2
ˆ

Sd+1

[
ξ′ν

(
− ∇2 − d

)
ξ′ν − ξ

′ν
(d − 1

d + 1
∇ν∇

λξ′λ

)]
. (2.69)

Then we decompose ξ′ into its transverse and longitudinal parts: ξ′ν = ξT
ν + ∇νσ. Once again

this change of variables leads to a Jacobian factor which is easily found as before. With this

decomposition we can further simplify

1
2
(Kξ′,Kξ′) = S[ξT ] +

2d
d + 1

S[σ], (2.70)

where

S[ξT ] =

ˆ
Sd+1

ξT
ν (−∇

2
(1) − d)ξνT, S[σ] =

ˆ
Sd+1

σ(−∇2
(0))(−∇

2
(0) − (d + 1))σ. (2.71)
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We therefore arrive at

J =
W+σ

YT
ξ Y+σ

1
YCKV
ξ

YT
ξ =

ˆ
D′ξT e

− 1
2g2 (ξ

T ,(−∇2
(1)−d)ξT )

Y+σ =
ˆ
D+σe

− 1
2g2

2d
d+1 (σ,(−∇

2
(0))(−∇

2
(0)−(d+1))σ)

W+σ =
ˆ
D+σe

− 1
2g2 (σ,(−∇

2
(0))σ)

YCKV
ξ =

ˆ
DξCKVe

− 1
g2 (∇ξ

CKV,∇ξCKV)

(2.72)

Here W+σ is the Jacobian corresponding to the change of variables {ξ′ν} → {ξ
T
ν + ∇νσ}. The +’s

denote the positive modes for the operator (−∇2
(0) − (d + 1)) 5.

2.3.3 Residual group volume

As in the massless vector case, we have a factor

´
D′ξ

Vol(G)
(2.73)

in the path integral. Here the factor Vol(G) is a path integral over a local vector field αµ

Vol(G) =
ˆ
Dα. (2.74)

This does not cancel completely with the integration over ξµ, and we are left with a factor (restoring

the label a for degenerate modes with same quantum number (1, 1))

´
D′ξ

Vol(G)
=

1
Vol(G)PI

, Vol(G)PI ≡

ˆ (d+1)(d+2)
2∏

a=1

dα(a)1,1
√

2πg
. (2.75)

5The zero modes of the operator (−∇2
(0) − (d + 1)) are excluded because σ satisfies (σ, f0) = 0 = (σ,∇ξCKV).
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where α(a)1,1 is the expansion coefficient in the expansion

αµ =

∞∑
n=1

αn,1 fn,µ +
∞∑

n=1
αn,0T̂ (0)n,µ . (2.76)

These (1, 1) modes are diffeomorphisms that leave the background Sd+1 metric invariant, so they

in fact correspond to the Killing vectors of Sd+1. G is therefore the isometry group SO(d + 2) of

Sd+1. As in the massless vector case, we want to relate Vol(G)PI to a canonical volume, following

the argument in Sec.2.2.2.

Local gauge algebra Recall that the original Einstein-Hilbert action is invariant under non-linear

diffeomorphisms generated by any vector field α = 1√
2
αµ∂µ, which reads

δαhµν =δ
(0)
α hµν + δ

(1)
α hµν +O(h2)

δ
(0)
α hµν =

1
√

2
(∇µαν + ∇ναµ)

δ
(1)
α hµν =

1
√

2
(αρ∇ρhµν + ∇µαρhρν + ∇ναρhµρ), (2.77)

where the superscript (n) again denotes the power in fields. This generates the algebra

[δα, δα′] = δ[[α,α′]]. (2.78)

In this case, the bracket is proportional to the usual Lie derivative6

[[α, α′]] = −
1
√

2
[α, α′]L, [α, α′]L = (α

µ∂µα
′ν − α′µ∂µα

ν)∂ν . (2.79)

6If we had worked with canonical normalization, obtained by replacing hµν → ghµν , the bracket will read instead
[[α, α′]] = −

g
√

2
[α, α′]L = −

√
16πGN [α, α

′]L . This relation can be viewed as a definition of the Newton constant GN

in any gauge theory with a massless spin 2 field.
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Isometry algebra from the local gauge algebra The background (Sd+1) preserving gauge trans-

formations or isometries generated by the Killing vectors satisfying

δ
(0)
ᾱ = 0 (2.80)

and form a subalgebra of the local gauge algebra, which inherits a bracket from the latter

[[ᾱ, ᾱ′]] = −
1
√

2
[ᾱ, ᾱ′]L . (2.81)

To define the canonical volume, we again first find a set of generators MI J that satisfy the standard

so(d + 2) commutation relation under the bracket (2.81):

[[MI J, MKL]] = ηJK MIL − ηJL MIK + ηIL MJK − ηIK MJL . (2.82)

One such basis is MI J = −
√

2(XI∂XJ − XJ∂X I ) where X I XI = 1, X I ∈ Rd+2, I = 1 · · · d + 2 are the

coordinates of on Sd+1 represented in the ambient space. Its norm in the invariant bilinear form

induced by the path integral is (it suffices to consider only one of the generators)

〈M12 |M12〉PI =
1

2πg2

ˆ
Sd+1
(M12)

I J(M12)I J =
2

2πg2

ˆ
Sd+1
(X2

1 + X2
2 ) =

2
2πg2

2
d + 2

Vol(Sd+1).

(2.83)

Since the canonical bilinear form is defined such that 〈M12 |M12〉c = 1, the path integral metric on

G is related to the canonical metric as

ds2
PI =

2
2πg2

2
d + 2

Vol(Sd+1)ds2
can =

1
8πGN

Vol(Sd−1)

d(d + 2)
ds2

can (2.84)
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where we have used Vol(Sd+1) = 2π
d Vol(Sd−1) and substituted g =

√
32πGN in the last step.

Therefore

Vol(G)PI =

(
1

8πGN

Vol(Sd−1)

d(d + 2)

) (d+1)(d+2)
4

Vol(G)can. (2.85)

The canonical volume Vol(G)can = Vol(SO(d + 2))can is well-known7:

Vol(SO(d + 2))c =
d+1∏
n=1

Vol(Sn) =

d+1∏
n=1

2π n+1
2

Γ(n+1
2 )

(2.86)

2.3.4 Final result

So far we have

ZPI =
i−d−3

Vol(G)PI

( ZTT
h

YT
ξ

) ( Z+
h̃

W+σ
Y+σ

) Z−
h̃

YCKV
ξ

. (2.87)

Note that the factor

ZTT
h

YT
ξ

=
det′(−∇2

(1) − d)1/2

det
(
−∇2
(2) + 2

)1/2 (2.88)

is the usual ratio of determinants. Next, the factors in the second bracket in (2.87) cancel up to an

infinite product

Z+
h̃

W+σ
Y+σ

=

ˆ
D+ h̃e

− d−1
4g2
´
Sd+1 h̃2

=

∞∏
n=2

(d − 1
2

)−Dd+2
n,0
2
=

(d − 1
2

) d+3
2
∞∏

n=0

(d − 1
2

)−Dd+2
n,0
2
, (2.89)

where in the last line we have complete the product so that it runs through the spectrum of the scalar

Laplacian. The infinite product can then be absorbed into bare couplings. Finally, the factors in

7This follows from the fact that SO(n + 1)/SO(n) = Sn, which implies that Vol(SO(n + 1)) = Vol(SO(n))Vol(Sn)
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the last bracket in (2.87) can be explicitly evaluated to be

Z−
h̃
=

(
1

d(d − 1)

)1/2
, YCKV

ξ = 2−
d+2

2 . (2.90)

Putting everything together, we conclude

ZPI =ZG ZChar,

ZG =i−d−3 γ
(d+1)(d+2)

2

Vol(SO(d + 2))c
, γ =

√
8πGN

Vol(Sd−1)

ZChar =

(
d(d + 2)

) (d+1)(d+2)
4 (d − 1) d+2

2

(2d)1/2
det′(−∇2

(1) − d)1/2

det
(
−∇2
(2) + 2

)1/2 . (2.91)

As a check, we note that except for the inclusion of the phase factor i−d−3, for d = 3 we agree

exactly with the 1-loop part of (5.43) in [58]8.

2.4 Massless higher spin

Now we are ready for the 1-loop path integrals for higher spin (HS) theories on Sd+1. Although

the equations of motion for this theory have been constructed [91–93], the full action from which

these are derived remain elusive9. However, since the interactions are at least cubic, their 1-loop

partition functions (around the trivial saddle) decouple into a product of free partition functions.

ZHS
PI =

∏
s

Z (s,m
2=0)

PI , (2.92)

where Z (s,m
2=0)

PI is the 1-loop path integral for a massless spin-s field to be described below. The

precise range over s in the product depends on the specific higher spin theory we are interested

in. In AdS, the determinant expressions for Z (s,m
2=0)

PI are obtained in [96] and [97], which are

8Note that our expression agrees with the first line of (5.43) in [58], while the authors made an error in evaluating
the determinants, so their second line is incorrect, as already noted in [73].

9See also [94, 95] for arguments against the existence for consistent interacting HS theories.
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subsequently used in 1-loop tests of HS/CFT dualities [30–33]. In the following, we perform a

careful computation for Z (s,m
2=0)

PI on Sd+1, whose early stage has some overlap with [96]. In fact,

the following can be viewed as a derivation for the AdS case as well, except that the latter does not

contain the subtleties of phases and group volume that appear on Sd+1.10

2.4.1 Operator formalism

It is much simpler to carry out the entire computation in terms of generating functions, which

significantly simplifies tensor manipulations. Here we adopt the convention of [98] but on Sd+1.

In this formalism, the tensor structure of a totally symmetric spin-s field φµ1···µs in Sd+1 is encoded

in a constant auxiliary (d + 1)-dimensional vector uµ:

φ(s)(x) = φµ1···µs (x) → φs(x, u) ≡
1
s!
φµ1···µs (x)u

µ1 · · · uµs . (2.93)

In the following we will suppress the position argument x, and interchangeably refer to a rank-s

tensor with φ(s) or its generating function φs(u). Since the original covariant derivative ∇µ acts on

both φµ1···µs and uµ, we modify the covariant derivative as

∇µ → ∇µ + ω
ab
µ ua

∂

∂ub, (2.94)

where ua = e a
µ uµ with vielbein e a

µ (x) and ω ab
µ is the spin connection. With this modification

the actions of covariant derivatives on uµ offset each other, and we can work as if no derivative is

acting on uµ. In the following we will only work in the contracted variables uµ = eµaua and the

associated derivative ∂uµ = e a
µ ∂ua . As a consequence of vielbein postulate we have

[∇µ, uν] = 0 = [∇µ, ∂uν ]. (2.95)

In this formalism all tensor manipulations are translated to an operator calculus. For instance,

10This is because the modes that cause these subtleties are non-normalizable in AdS and are excluded from the
beginning.
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tensor contraction:

φµ1···µs χ
µ1···µs = s!φs(∂u)χs(u). (2.96)

In particular, the inner product (B.7) is represented as

(φs, χs) = s!
ˆ

Sd+1
φs(∂u)χs(u). (2.97)

List of operations:

divergence: ∇ · ∂u, sym. gradient: u · ∇, Laplacian: ∇2,

sym. metric: u2, trace: ∂2
u, spin: u · ∂u. (2.98)

One of the biggest advantages of this formalism is that we can work algebraically with these

operators without explicitly referring to the tensor. For example, to define the de Donder operator,

we can either state explicitly its action on a spin-s field φ(s)

D̂φ(s) = D̂φµ1···µs = ∇
λφµ1···µs−1λ −

1
2
∇(µ1φ

λ
µ2···µs−1)λ

(2.99)

or simply in terms of its generating function

D̂(∇, u, ∂u) =∇ · ∂u −
1
2
(u · ∇)(∂2

u ). (2.100)

In the following we will use these two kinds of notations interchangeably.
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On Sd+1, the operators (2.98) satisfy the following operator algebra

[∇µ,∇ν] =uµ∂uν − uν∂uµ (2.101)

[∇2, u · ∇] =u · ∇(2u · ∂u + d) − 2u2∇ · ∂u (2.102)

[∇ · ∂u,∇
2] =(2u · ∂u + d)∇ · ∂u − 2u · ∇∂2

u (2.103)

[∇ · ∂u, u · ∇] =∇2 + u · ∂u(u · ∂u + d − 1) − u2∂2
u (2.104)

[∇ · ∂u, u2] =2u · ∇ (2.105)

[∂2
u, u · ∇] =2∇ · ∂u (2.106)

[∂2
u, u

2] =2(d + 1 + 2u · ∂u) (2.107)

where we have denoted ∂2
u ≡ ∂u · ∂u, u2 ≡ u · u.

2.4.2 Fronsdal action on Sd+1

The 1-loop partition function for a free bosonic spin-s massless gauge field on Sd+1 is

Z (s)PI =
1

Vol(Gs)

ˆ
Dφ(s)e−S[φ(s)] (2.108)

where the quadratic Fronsdal action [99] in the operator language is given by

S[φ(s)] =
s!

2g2
s

ˆ
Sd+1

φs(∂u)

(
1 −

1
4

u2∂2
u

)
F̂s(∇, u, ∂u)φs(u) (2.109)

with F̂s(∇, u, ∂u) is the Fronsdal operator

F̂s(∇, u, ∂u) = − ∇
2 + M2

s − u2∂2
u + u · ∇D̂(∇, u, ∂u) (2.110)

D̂(∇, u, ∂u) =∇ · ∂u −
1
2
(u · ∇)(∂2

u ), (2.111)
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where

M2
s = s − (s − 2)(s + d − 2) (2.112)

and D̂ is the de Donder operator. An s-dependent factor g2
s is inserted as an overall factor. Canon-

ical normalization corresponds to setting gs = 1. We will choose a particular value for gs when we

discuss the issue of group volume. (2.109) is invariant under the gauge transformations

φs(u) 7→ φs(u) +
1
√

s
u · ∇Λs−1(u). (2.113)

In this off-shell formalism φs(u) satisfies a double-tracelessness condition (trivial for s ≤ 3)

(∂2
u )

2φs(u) = 0, (2.114)

which implies that the gauge parameter Λ(s−1) must be traceless (imposed even for s = 3)

∂2
uΛs−1(u) = 0. (2.115)

The division by the gauge group volume Vol(Gs) in (2.108) compensates for the overcounting of

gauge equivalent configurations connected by (2.113).

Change of variables

To proceed, we change field variables

φs(u) = φTT
s (u) +

1
√

s
u · ∇ξs−1(u) +

1√
2s(s − 1)(d + 2s − 3)

u2χs−2(u). (2.116)

Here φTT
(s) is the transverse traceless piece of φ(s) for which

∇ · ∂uφ
TT
s (u) =0 = ∂2

uφ
TT
s (u). (2.117)
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Next, ξ(s−1) is the symmetric traceless spin-(s − 1) gauge parameters which are required to be

orthogonal to all spin-(s − 1) Killing tensors εKT
(s−1) (which generate trivial gauge transformations)

so that it is uniquely fixed:

∂2
u ξs−1(u) =0, (ξ(s−1), ε

KT
(s−1)) = 0 (2.118)

Finally, χ(s−2) is the spin-(s − 2) piece which carries all the trace information of φ(s). The double-

tracelessness condition (2.114) implies that χ(s−2) is traceless:

∂2
u χs−2(u) =0. (2.119)

Note that if εCKT
(s−1) is a conformal Killing tensor (CKT) satisfying

K̂s(∇, u, ∂u)ε
CKT
s−1 (u) ≡ u · ∇εCKT

s−1 (u) −
u2

d + 2s − 3
(∇ · ∂u)ε

CKT
s−1 (u) = 0, (2.120)

then any new set of variables related by the transformation

ξs−1(u) → ξs−1(u) + εCKT
s−1 (u) (2.121)

χs−2(u) → χs−2(u) −
u2

d + 2s − 3
(∇ · ∂u)ε

CKT
s−1 (u) (2.122)

will result in the same φ(s). To uniquely fix χ(s−2), we thus impose

(χ(s−2), (∇ · ε
CKT )(s−2)) = 0 (2.123)

for all the spin-(s − 1) CKTs εCKT
(s−1). The path integral measure then becomes

Dφs = J(s)DφTT
(s)D

′ξ(s−1)D
′χ(s−2) (2.124)
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where the Jacobian J(s) will be found below. The primes indicate that we exclude the (s − 1,m)

(0 ≤ m ≤ s − 1) modes excluded due to conditions (2.118) and (2.123).

2.4.3 Quadratic actions for φTT
(s) and χ(s−2)

Action for S[φTT
(s) ]

The quadratic action for φTT
(s) is

S[φTT
(s) ] =

s!
2g2

s

ˆ
Sd+1

φTT
s (∂u)(−∇

2
(s) + M2

s )φ
TT
s (u) =

1
2g2

s
(φTT
(s), (−∇

2
(s) + M2

s )φ
TT
(s) ). (2.125)

which leads to the path integral

Z (s)
φTT =

ˆ
DφTT

(s) e
− 1

2g2
s
(φTT
(s)
,(−∇2

(s)
+M2

s )φ
TT
(s)
)
= det

(
−∇2
(s) + M2

s

)−1/2
(2.126)

Action for S[χ(s−2)] and the HS conformal factor problem

From (2.109) we have

S[χ(s−2)] =
(s − 2)!

8g2
s

ˆ
Sd+1

χs−2(∂u)(∂
2
u )

(
1 −

1
4

u2∂2
u

)
F̂s(∇, u, ∂u)u2χs−2(u)

= −
(s − 2)!(d + 2s − 5)

8(d + 2s − 3)g2
s

ˆ
Sd+1

χs−2(∂u)(∂
2
u )F̂s(∇, u, ∂u)u2χs−2(u) (2.127)

where we have used (2.107) and the tracelessness of χ(s−2) (2.119). Using the operator algebras,

one easily finds that

F̂s(∇, u, ∂u)u2

=u2
(
− ∇2 − s(−1 + d + s) + 2

)
+ u2(u · ∇)(∇ · ∂u) − (d + 2s − 5)(u · ∇)2 + · · · (2.128)

52



where and henceforth · · · denotes terms that will not contribute because of the tracelessness con-

dition (2.119): ∂2
u χs−2(u) = 0 or χs−2(∂u)u2 = 0. Then we have

(∂2
u )F̂s(∇, u, ∂u)u2 =4(d + 2s − 4)

(
− ∇2 − (s − 1)(s + d − 2) − 1

)
− 2(d + 2s − 7)(u · ∇)(∇ · ∂u) + · · · . (2.129)

Defining the differential operator

Q̂(∇, u, ∂u) ≡2
d + 2s − 4
d + 2s − 3

(
− ∇2 − (s − 1)(s + d − 2) − 1

)
−

d + 2s − 7
d + 2s − 3

(u · ∇)(∇ · ∂u), (2.130)

the quadratic action for χ(s−2) is simply

S[χ(s−2)] = −
d + 2s − 5

4g2
s
(χ(s−2), Q̂ χ(s−2)). (2.131)

To proceed, we expand χ(s−2) (see App.B.2 for the properties of the induced symmetric traceless

spherical harmonics)

χ(s−2) =

s−2∑
m=0

As−2,mT̂ (m)s−2,(s−2) +

s−2∑
m=0

∞∑
n=s

An,mT̂ (m)n,(s−2), (2.132)

where the modes (n,m) = (s − 1,m), 0 ≤ m ≤ s − 2 are excluded because of the condition (2.123).

It is easy to verify that Q̂ is negative for the modes in the first sum and positive in the second.

This is the HS generalization of the conformal factor problem. To make the integrals converge, we

replace An,m → iAn,m for 0 ≤ m ≤ s − 2, s ≤ n < ∞, leading to the change in the path integral

measure

D′χ(s−2) =

s−2∏
m=0

dAs−2,m
√

2πgs

s−2∏
m=0

∞∏
n=s

dAn,m
√

2πgs
→

( s−2∏
m=0

∞∏
n=s

iDd+2
n,m

) s−2∏
m=0

dAs−2,m
√

2πgs

s−2∏
m=0

∞∏
n=s

dAn,m
√

2πgs
. (2.133)
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We complete the product so that it runs through the spectrum for the unconstrained spin-(s − 2)

Laplacian, i.e.

s−2∏
m=0

∞∏
n=s

iDd+2
n,m = i−NCKT

s−2 −NCKT
s−1 +NKT

s−1

s−2∏
m=0

∞∏
n=s−2

iDd+2
m,n (2.134)

where NCKT
s =

∑s
m=0 Dd+2

s,m and NKT
s = Dd+2

s,s are the number of spin-s CKTs and spin-s KTs

respectively. The local infinite product can then be absorbed into bare couplings. The remaining

phase factor is the HS generalization of the Polchinski’s phase. We can then write the path integral

over χ(s−2) as

Z (s)χ =i−NCKT
s−2 −NCKT

s−1 +NKT
s−1 Z (s)

χ+
Z (s)χ−

Z (s)
χ+
=

ˆ
D+χ(s−2)e

− d+2s−5
4g2

s
(χ(s−2),Q̂ χ(s−2))

Z (s)χ− =
ˆ
D−χ(s−2)e

d+2s−5
4g2

s
(χ(s−2),Q̂ χ(s−2)) (2.135)

where the superscripts ± denotes integrations over the positive (negative) modes of Q̂.

2.4.4 Jacobian

Again, we find the Jacobian in (2.124) by the normalization condition

ˆ
Dφ(s)e

− 1
2g2

s
(φ(s),φ(s))

= 1. (2.136)

We plug in (2.124) and (2.116) to find J(s). Notice that φTT
(s) is orthogonal to gχ(s−2) and ∇ξ(s−1) with

respect to the inner product (·, ·); on the other hand, when ξ’s are orthogonal to the spin-(s − 1)

CKTs (denoted as ξ′), gχ(s−2) and ∇ξ′
(s−1) are not orthogonal, and we remove the off-diagonal

terms by shifting

χ′s−2(u) = χs−2(u) +

√
s(s − 1)

2(d + 2s − 3)
(∇ · ∂u)ξ

′
s−1(u). (2.137)
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The Jacobian corresponding to this shift is trivial. We then have

(φ(s), φ(s)) = (φ
TT
(s), φ

TT
(s) ) + (χ

′
(s−2), χ

′
(s−2)) +

1
s
(K̂sξ

′
(s−1), K̂sξ

′
(s−1)) +

1
s
(∇ξCKT
(s−1),∇ξ

CKT
(s−1)). (2.138)

where K̂s is the operator appearing in (2.120). It is useful to note that acting on any symmetric

traceless tensor ε(s−1),

∂2
u K̂s(∇, u, ∂u)εs−1(u) = 0 = K̂s(∇, ∂u, u)εs−1(∂u)u2. (2.139)

The path integrals over φTT
(s) and χ′

(s−2) are trivial, and therefore J(s) can be expressed as

J−1
(s) =Y (s)ξ ′ Y (s)

ξCKT (2.140)

Y (s)ξ ′ ≡
ˆ
Dξ′
(s−1)e

− 1
2sg2

s
(Kξ ′
(s−1),Kξ

′
(s−1)) (2.141)

Y (s)
ξCKT ≡

ˆ
DξCKT
(s−1)e

− 1
2sg2

s
(∇ξCKT
(s−1) ,∇ξ

CKT
(s−1) ). (2.142)

Expressing Yξ ′ in terms of functional determinants

To proceed, we use the operator algebra and (2.139) and simplify

1
s
(K̂sξ

′
(s−1), K̂sξ

′
(s−1)) =(ξ

′
(s−1),

(
− ∇2

(s−1) − (s − 1)(s + d − 2)
)
ξ′
(s−1))

+
d + 2s − 5
d + 2s − 3

(ξ′
(s−1),−∇∇ · ξ′

(s−1)). (2.143)

We then perform the change of variables

ξ′
(s−1) = ξ

′TT
(s−1) + K̂s−1σ(s−2), (2.144)

where ξ′TT
(s−1) is the transverse traceless part of ξ′(s−1), σ(s−2) is a spin-(s − 2) symmetric traceless

field and the differential operator K̂s−1(∇, u, ∂u) is defined in (2.120). We require σ(s−2) to be or-

thogonal to the kernel of K̂s−1, i.e. the spin-(s−2) CKTs. Also, ξ′TT
(s−1) and σ(s−2) are automatically
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orthogonal to the spin-(s − 1) CKTs.

Plugging in these, we have two decoupled pieces

1
s
(K̂sξ

′
(s−1), K̂sξ

′
(s−1)) =S[ξ′TT

(s−1)] + S[σ(s−2)]. (2.145)

Here the first term is the ghost action

S[ξ′TT
(s−1)] =(ξ

′TT
(s−1),

(
− ∇2

(s−1) + m2
s−1,s + M2

s−1

)
ξ′TT
(s−1)) (2.146)

with M2
s−1 as defined in (2.112) and we have defined

m2
s,t = (s − 1 − t)(d + s + t − 3), (2.147)

which is exactly the mass for a partially massless field with spin-s and depth t for 0 ≤ t ≤ s − 1.

The second term in (2.145) is the action of a spin-(s − 2) field

S[σ(s−2)] =(K̂s−1σ(s−2), P̂K̂s−1σ(s−2)) (2.148)

P̂(∇, u, ∂u) = − ∇
2
(s−1) − (s − 1)(s + d − 2) −

d + 2s − 5
d + 2s − 3

(u · ∇)(∇ · ∂u) (2.149)

To proceed, we commute P̂ and K̂s−1. This requires the relation

∇2
(s−1)K̂s−1(∇, u, ∂u) − K̂s−1(∇, u, ∂u)∇

2
(s−2) = (d + 2s − 4)u · ∇ + · · · (2.150)

and the commutator

[(u · ∇)(∇ · ∂u), K̂s−1(∇, u, ∂u)]

=[(u · ∇)(∇ · ∂u), u · ∇] −
1

d + 2s − 5
[(u · ∇)(∇ · ∂u), u2∇ · ∂u] (2.151)
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which can be computed using

[(u · ∇)(∇ · ∂u), u · ∇] =(u · ∇)
(
∇2 + (s − 2)(s + d − 3)

)
+ · · · (2.152)

[(u · ∇)(∇ · ∂u), u2∇ · ∂u] =2(u · ∇)2(∇ · ∂u) + · · · (2.153)

where and henceforth · · · denotes terms that will not contribute to (2.148) because of the trace-

lessness condition (2.139) of the operator K̂s−1. We have also used the fact that u · ∂uσs−2(u) =

(s − 2)σs−2(u). To briefly summarize,

P̂(∇, u, ∂u)K̂s−1(∇, u, ∂u)

=K̂s−1(∇, u, ∂u)P̂(∇, u, ∂u) − (d + 2s − 4)u · ∇

+
d + 2s − 5
d + 2s − 3

(u · ∇)
[(
− ∇2 − (s − 2)(s + d − 3)

)
+

2
d + 2s − 5

(u · ∇)(∇ · ∂u)

]
+ · · · . (2.154)

Now, observe that because of (2.139), u · ∇ can be replaced by the operator K̂s−1

u · ∇ = K̂s−1(∇, u, ∂u) + · · · (2.155)

up to trace terms that do not contribute to (2.148). Therefore we have

P̂(∇, u, ∂u)K̂s−1(∇, u, ∂u) = K̂s−1(∇, u, ∂u)Ŵ(∇, u, ∂u) + · · · , (2.156)

with

Ŵ(∇, u, ∂u) =P̂(∇, u, ∂u) − (d + 2s − 4)

+
d + 2s − 5
d + 2s − 3

[(
− ∇2 − (s − 2)(s + d − 3)

)
+

2
d + 2s − 5

(u · ∇)(∇ · ∂u)

]
(2.157)

Amazingly, one can show that this operator is exactly equal to Q̂ defined in (2.130), that is
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Ŵ(∇, u, ∂u) = Q̂(∇, u, ∂u). So we have found

S[σ(s−2)] = (K̂s−1σ(s−2), K̂s−1Q̂σ(s−2)) = (σ(s−2), K̂
†

s−1K̂s−1Q̂σ(s−2)). (2.158)

To conclude, we have

Y (s)ξ ′ =
Y (s)
ξTTY (s)

σ+

W (s)
σ+

(2.159)

Y (s)
ξTT ≡

ˆ
Dξ′TT

(s−1)e
− 1

2g2
s
(ξ ′TT
(s−1),

(
−∇2
(s−1)+m2

s−1,s+M2
s−1

)
ξ ′TT
(s−1)) (2.160)

Y (s)
σ+
≡

ˆ
D+σ(s−2)e

− 1
2g2

s
(σ(s−2),K†KQ̂σ(s−2)) (2.161)

W (s)
σ+
=

ˆ
D+σ(s−2)e

− 1
2g2

s
(σ(s−2),K†Kσ(s−2)) (2.162)

Here the superscript + emphasizes the fact that we are integrating over modes orthogonal to the

spin-(s − 1) and spin-(s − 2) CKTs. In particular, this is the part of spectrum that coincides with

the “+” integral in (2.135). Here (W (s)
σ+
)−1 is the Jacobian associated with the change of variables

(2.144).

2.4.5 Residual group volume

Recall that after the change of variables (2.116), the integration over the pure gauge modes ξ

decoupled from the φTT
(s) and χ(s−2) path integrals, and we are left with a factor (we have restored

the label a for degenerate modes with same quantum number (s − 1, s − 1))

´
D′ξ(s−1)

Vol(Gs)
=

1
Vol(Gs)

, Vol(Gs) =
ˆ NKT

s−1∏
a=1

dα(a)s−1,s−1
√

2πgs
. (2.163)
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due to the integration over the spin-(s − 1) Killing tensor modes. This leads to a product in the

original path integral (2.92):

Vol(G)PI =
∏

s

Vol(Gs). (2.164)

HS symmetries typically form infinite dimensional groups. Therefore there is an issue of making

sense of (2.164), which we are not going to attempt in this paper.

HS invariant bilinear form Instead, we are going to do a more modest task. As in the warm-up

examples, the volume Vol(G)PI is defined with a particular metric, namely

ds2
PI =

1
2π

∑
s

1
g2

s
dα2

s−1,s−1. (2.165)

Again we want to express this in terms of a canonical metric with respect to which we define a

canonical volume Vol(G)can. There are however complications compared to the massless spin-1

and spin-2 cases:

1. As opposed to the case for Yang-Mills or Einstein gravity, we do not know the full nonlinear

actions for Vasiliev theories that give rise to the interacting equations of motion and the full

nonlinear gauge transformations in the metric-like formalism. This implies that we do not

know the full local HS gauge algebra. Fortunately, the global part of the algebra does not

require this knowledge, but only the lowest order ones, which only requires the information

of the cubic couplings.

2. Another complication is that since HS symmetries mix different spins, the HS invariant bilin-

ear form depends on the relative normalizations of fields withe different spins in the action.

Once this is fixed, the bilinear form is uniquely determined up to an overall normalization.

All of these have been worked out in the case of a negative cosmological constant [68]. To go to the

case of a positive cosmological constant is a simple matter of analytic continuation. In App.B.3,
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we translate the relevant results from [68] to the case of Sd+1. The final result is that upon choosing

g2
s = s!, (2.166)

the HS invariant bilinear form is determined to be

〈ᾱ1 |ᾱ2〉can =
8πGN

Vol(Sd−1)

∑
s

(d + 2s − 2)(d + 2s − 4) 〈ᾱ1,(s−1) |ᾱ2,(s−1)〉PI (2.167)

where the overall normalization is again fixed by requiring the canonical spin-2 generators to be

unit-normalized with respect to (2.167). This implies that the group volume (2.164) is related to

the canonical volume as

Vol(G)PI = Vol(G)can

∏
s

(
Vol(Sd−1)

8πGN

1
(d + 2s − 2)(d + 2s − 4)

) NKT
s−1
2

. (2.168)

2.4.6 Final result

So far we have

ZHS
PI =

i−P

Vol(G)PI

∏
s

(
Z (s)
φTT

Y (s)
ξTT

) (
Z (s)
χ+

W (s)
σ+

Y (s)
σ+

) (
Z (s)χ−

Y (s)
ξCKT

)
(2.169)

where P =
∑

s(NCKT
s−2 + NCKT

s−1 − NKT
s−1). In the infinite product, the first factor is the usual ratio of

determinants of physical and ghost operators

Z (s)
φTT

Y (s)
ξTT

=
det′(−∇2

(s−1) + m2
s−1,s + M2

s−1)
1/2

det
(
−∇2
(s) + M2

s

)1/2 . (2.170)
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In the second factor, Z+χ,W
+
σ,Y

+
σ run over the exact same spectrum and cancel almost completely

up to an infinite constant

Z+χW+σ
Y+σ

=

ˆ
D χ+

(s−2)e
− d+2s−5

4gs (χ
+
(s−2), χ

+
(s−2))

=

´
D χ(s−2)e

− d+2s−5
4gs (χ(s−2), χ(s−2))

´
D χ0

(s−2)D χ−
(s−2)e

− d+2s−5
4gs (χ(s−2), χ(s−2))

(2.171)

where in the denominator χ0
(s−2) denotes the modes excluded due to (2.123). The infinite constant in

the numerator is a path integral over the entire spectrum of an unconstrained spin-(s−2) symmetric

traceless field and therefore can be absorbed into bare couplings. To proceed, we plug in explicit

mode expansions

χ0
(s−2) =

s−1∑
m=0

As−1,mT̂ (m)s−1,(s−2), χ−
(s−2) =

s−2∑
m=0

As−2,mT̂ (m)s−2,(s−2), ξCKT
(s−1) =

s−2∑
m=0

As−1,mT̂ (m)s−1,(s−1),

(2.172)

which lead to

Z (s)
χ+

W (s)
σ+

Y (s)
σ+

=

s−2∏
m=0

s−1∏
n=s−2

[
2

d + 2s − 5

]Dd+2
n,m/2

(2.173)

Z (s)χ− =
s−2∏
m=0

[ 2
(d + 2s − 5)m2

s+1,m

] Dd+2
s−2,m

2
(2.174)

Y (s)
ξCKT =

s−2∏
m=0

[ 2m2
s,m

d + 2s − 5

]−Dd+2
s−1,m

2

. (2.175)

We therefore have (
Z (s)
χ+

W (s)
σ+

Y (s)
σ+

) (
Z (s)χ−

Y (s)
ξCKT

)
=

s−2∏
m=0
(m2

s+1,m)
−

Dd+2
s−2,m

2

s−2∏
m=0
(m2

s,m)
Dd+2
s−1,m

2 . (2.176)
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Together with the determinant factor, this can be further written as

(
Z (s)
φTT

Y (s)
ξTT

) (
Z (s)
χ+

W (s)
σ+

Y (s)
σ+

) (
Z (s)χ−

Y (s)
ξCKT

)
=

det′
−1 | − ∇

2
(s−1) − λs−1,s−1 |

1/2

det′
−1 | − ∇

2
(s) − λs−2,s |1/2

. (2.177)

Here the subscript −1 means that we extend the eigenvalue product from n = s to n = −1. The

primes denote omission of the zero modes from the determinants. In the numerator we omitted

the n = s − 1 mode while in the denominator we omitted the n = s − 2 mode.11 To obtain this

expression we used the relation

λt−1,s + M2
s = −m2

s,t (2.178)

and the fact that Dd+2
s−1,t = −Dd+2

t−1,s (implying Dd+2
s−1,s = 0). This extension of the eigenvalue product

from n = s to n = −1 is exactly the prescription described in [73]. Putting everything together, we

finally obtain the expression

ZHS
PI =ZGZChar

ZG =i−P γdimG

Vol(G)can
, ZChar =

∏
s

Z (s)Char

Z (s)Char =

(
(d + 2s − 2)(d + 2s − 4)

M4

) NKT
s−1
2

det′
−1

����−∇2
(s−1)−λs−1,s−1

M2

����1/2
det′
−1

����−∇2
(s)
−λs−2,s

M2

����1/2 , (2.179)

with

P =
∑

s

(NCKT
s−2 + NCKT

s−1 − NKT
s−1), γ =

√
8πGN

Vol(Sd−1)
, dimG =

∑
s

NKT
s−1 (2.180)

Note that we have restored the dimensionful parameter M . As noted in [73], the factor (d + 2s −

2)(d + 2s − 4) gets nicely canceled after evaluating the character integrals for the determinants.

11Originally λn,s and Dd+2
n,s were defined only for n ≥ s, which are now extended to all n ∈ Z.
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2.5 Massive fields

Now let us turn to fields with generic masses. In this case we do not have a group volume

factor, and thus no coupling dependence. We will work with canonical normalizations.

2.5.1 Massive scalars and vectors

Massive scalars The path integral for a scalar φ with mass m2 > 0 is simply

Z (s=0,m2)
PI =

ˆ
Dφe−

1
2
´
Sd+1 φ(−∇

2+m2)φ = det
(
−∇2 + m2

)−1/2
(2.181)

Massive vectors Massive vectors are described by the Proca action

S[A] =
ˆ

Sd+1

(1
4

FµνFµν +
m2

2
AµAµ

)
. (2.182)

Similar to the massless case, to proceed we make a change of variables (2.19) with Jacobian (2.29),

so that the action becomes

S[A] = S[AT ] + S[χ]

S[AT ] =
1
2
(AT, (−∇2

(1) + m2 + d)AT ), S[χ] =
m2

2
(χ, (−∇2

(0))χ). (2.183)

For m2 > 0 that corresponds to unitary de Sitter representations, the result is

Z (s=1,m2)
PI = det

(
−∇2
(1) + m2 + d

)−1/2
(m2)1/2 = det−1(−∇

2
(1) + m2 + d)−1/2. (2.184)

The presence of the factor (m2)1/2 originates from the fact that the (0, 0)mode is excluded from the

integration over the longitudinal mode. In the last equality we again note that the multiplication of

the factor (m2)1/2 is equivalent to extending the product to n = −1.
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2.5.2 Massive spin 2 and beyond

Massive s = 2

The action for a free massive spin-2 field on Sd+1 is (see for example [100])

S[h] =
1
2

ˆ
Sd+1

hµν
[
(−∇2 + 2)hµν + 2∇(µ∇λhν)λ + gµν(∇2h λ

λ − 2∇σ∇λhσλ) + (d − 2)gµνh λ
λ

+ m2(hµν − gµνh λ
λ )

]
. (2.185)

If we put m = 0 we recover the action (2.51) (with g = 1) for linearized gravity. To proceed, we

again change the variables (2.53). It is convenient to further decompose ξµ into its transverse and

longitudinal parts: ξµ = ξT
µ + ∇µσ, so that the full decomposition for hµν is

hµν =hTT
µν +

1
√

2
(∇µξ

T
ν + ∇νξ

T
µ ) +
√

2∇µ∇νσ +
gµν
√

d + 1
h̃. (2.186)

For this decomposition to be unique, we impose

(ξT, f1,(1)) = 0 , (h̃, f1) = 0 and (σ, f0) = 0. (2.187)

The first two constraints are equivalent to (2.54) and (2.55) while the last one ensures ∇µσ , 0.

With a slight modification of the steps in Sec.2.3.2, the Jacobian for the (2.186) is obtained as

Dh =JDhTTD′ξTD+σD′h̃

J =
1

YT
ξ Y+σYCKV

ξ

YT
ξ =

ˆ
D′ξT e−

1
2 (ξ

T ,(−∇2
(1)−d)ξT )

Y+σ =
ˆ
D+σe−

1
2

2d
d+1 (σ,(−∇

2
(0))(−∇

2
(0)−(d+1))σ)

Y0
σ =

ˆ
D0σe−(σ,(−∇

2
(0))(−∇

2
(0)−d)σ)

=

ˆ
D0σe−(d+1)(σ,σ).

(2.188)
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Here D+σ (D0σ) involves integrations over only the positive (zero) modes for the operator

(−∇2
(0) − (d + 1)). After substituting (2.186) the action decouples into

S[h] = S[hTT ] + S[ξT ] + S[σ, h̃]. (2.189)

The quadratic actions for hTT and ξT are simply

S[hTT] =
1
2

ˆ
Sd+1

hTT
µν (−∇

2
(2) + m2 + 2)hµνTT, (2.190)

and

S[ξT ] =
m2

2
(ξT, (−∇2

(1) − d)ξT ) (2.191)

respectively. Since σ and h̃ are not orthogonal, they mix in the action

S[σ, h̃] = −
(d − 1)d
2(d + 1)

(h̃, (−∇2
(0) + (d + 1)(

m2

d − 1
− 1))h̃) −

√
2

d + 1
dm2(∇2

(0)σ, h̃)

+
m2

2
(∇σ, (−∇2

(0) − d)∇σ) −
m2

2
(∇2
(0)σ,∇

2
(0)σ). (2.192)

To diagonalize S[σ, h̃], we make a shift (with a trivial Jacobian)12

σ′ = σ −
1√

2(d + 1)
h̃ (2.193)

for all scalar modes fn with n ≥ 2, so that S[σ, h̃] = S[σ′, h̃] = S[σ′] + S[h̃], with

S[σ′] = −dm2(σ′,−∇2
(0)σ

′) and S[h̃] =
d(m2 − (d − 1))

2(d + 1)
(h̃, (−∇2

(0) − (d + 1))h̃). (2.194)

Notice that S[σ′] and S[h̃] vanishes identically when m2 = 0 and m2 = d − 1 respectively. These

are the cases when we have gauge symmetries. The massless case has already been discussed in

12Because of the constraints (2.187), the (0, 0) and (1, 0) modes do not mix in (2.192)
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Sec.2.3. The case of m2 = d − 1 will be considered in Sec.2.7.

Depending on the precise value of m2 > −2(d +2)13, some of the modes in (2.191) and (2.194)

might acquire an overall negative sign. We Wick rotate the negative modes, absorbing local infinite

constants into bare couplings. This will induce a phase factor. Below we give a summary for

different cases (n.m. stands for negative modes):

Range of m2 n.m. in S[ξT ] n.m. in S[σ′] n.m. in S[h̃] Phase

−2(d + 2) < m2 < 0 fn,µ, n ≥ 1 None fn, n ≥ 2 i−Dd+2
1,1 −Dd+2

1,0 = i−
(d+3)(d+2)

2

0 < m2 < d − 1 None fn, n ≥ 1 fn, n ≥ 2 i−2Dd+2
0,0 −Dd+2

1,0 = i−d−4

m2 > d − 1 None fn, n ≥ 1 f0 i0 = 1

The last case (m2 > d − 1) is precisely the case when the corresponding de Sitter representations

are unitary14. We will focus on this case from now on.

Putting everything together, we have

Z (s=2,m2)
PI = ZTT

h

( ZT
ξ

YT
ξ

) ( Z+σ′Z
+

h̃

Y+σ

) (
Z0
σ′

Y0
σ

)
Z−

h̃
(2.195)

Here ZTT
h , ZT

ξ , Z±σ′, Z0
σ′, Z±

h̃
are the path integrals with actions (2.190), (2.191) and (2.194). The

labels ± and 0 denote the positive (negative) and zero modes for the scalar operator −∇2
(0)−(d+1).

13This is the range where the kinetic operator in (2.190) is positive definite. The case m2 < −2(d + 2) will be
considered when we discuss the shift-symmetric spin-2 fields in Sec.2.6.

14Principal series for m2 > ( d2 )
2 and complementary series for d − 1 < m2 < ( d2 )

2 [101].
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Every factor can be easily evaluated:

ZTT
h = det

(
−∇2
(2) + m2 + 2

)−1/2

ZT
ξ

YT
ξ

=

ˆ
D′ξT e−

m2
2 (ξ

T ,ξT )

Z+σ′Z
+

h̃

Y+σ
=

ˆ
D+σ′e−

m2
2 (σ

′,σ′)

ˆ
D+ h̃e−

d(m2−(d−1))
2 (h̃,h̃)

Z0
σ′

Y0
σ

=

ˆ
D0σ′e−

dm2
2 (σ

′,σ′)

Z−
h̃
=

ˆ
D− h̃e−

d(m2−(d−1))
2 (h̃,h̃).

(2.196)

Observe that all factors but ZTT
h can be combined in the following way:

( ZT
ξ

YT
ξ

) ( Z+σ′Z
+

h̃

Y+σ

) (
Z0
σ′

YCKV
ξ

)
Z−

h̃
=

´
Dξe−

m2
2 (ξ,ξ)

´
D h̃e−

d(m2−(d−1))
2 (h̃,h̃)

´
D0σ′e−

(m2−(d−1))
2 (σ′,σ′)

´
D0ξT e−

m2
2 (ξ

T ,ξT )
. (2.197)

In the numerator, the path integrations are over local unconstrained fields and thus can be absorbed

into bare couplings. In the denominator D0ξT denotes integration over the modes f1,µ. The inte-

grals in the denominator can be easily evaluated. To conclude, we have

Z (s=2,m2)
PI = det

(
−∇2
(2) + m2 + M2

2

)−1/2
(m2 − m2

2,0)
Dd+2

1,0
2 (m2 − m2

2,1)
Dd+2

1,1
2

= det−1(−∇
2
(2) + m2 + M2

2 )
−1/2 (2.198)

where we recall that m2
s,t is defined in (2.147).

Massive arbitrary spin s ≥ 1

In principle, one starts with the full manifestly local and covariant action [102], which involves

a tower of spin t < s Stueckelberg fields, and repeat the derivation above. However, having worked

out the cases for s = 1, 2, the pattern is clear. For a free massive spin-s field, its path integral is
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simply

Z (s,m
2)

PI = det−1

(
−∇2
(s) + m2 + M2

s

M2

)−1/2

. (2.199)

Note that we have restored the dimensionful parameter M . Recall that the scaling dimension ∆ is

related to the mass m2 as

m2 = (∆ + s − 2)(d + s − 2 − ∆) (2.200)

so that

λn,s + m2 + M2
s = (n + ∆)(d + n − ∆) =

(
n +

d
2

)2
−

(
∆ −

d
2

)2
. (2.201)

The requirement that λn,s + m2 + M2
s is positive for all n ≥ −1 is equivalent to the unitary bounds

on ∆ [101]:

∆ =
d
2
+ iν, ν ∈ R (Principal series) or 1 < ∆ < d − 1 (Complementary series) (2.202)

Outside of this bound, a finite number of λn,s + m2 + M2
s will become negative, which leads to the

presence of some power of i, as we have seen in the s = 2 case. Also, as we take m2 → m2
s,t ,

(2.199) becomes ill-defined, signaling a gauge symmetry. The case of t = s − 1 is the massless

case discussed in Sec.2.4. We will comment on the general (s, t) case in Sec.2.7.

2.6 Shift-symmetric fields

In (A)dS space, when massive fields attain certain mass values, they can have shift symme-

tries [89] that generalize the shift symmetry, galileon symmetry, and special galileon symmetry

of massless scalars in flat space. In AdS, these theories are unitary; in dS, these theories do not

fall into the classifications of dS UIRs [101]. In the following we study their 1-loop (free) path

68



integrals on Sd+1, which contain analogous subtleties as the massless case, namely the phases and

group volumes.

2.6.1 Shift-symmetric scalars

Let us start with a free scalar φ with generic mass m, with action

S[φ] =
1
2

ˆ
Sd+1

φ(−∇2 + m2)φ. (2.203)

When m2 takes values of the negative the eigenvalues of the scalar Laplacian −∇2
(0), i.e.

m2 = −λk,0 = −k(k + d) = m2
0,k+1 + M2

0 = m2
k+2,1 = −m2

2,k+1 ≤ 0, k ≥ 0, (2.204)

(recall that m2
s,t is defined in (2.147)), the action is invariant under a shift symmetry (of level k in

the terminology of [89])

δφ = fk (2.205)

where fk is the (k, 0) eigenmodes of −∇2
(0) with eigenvalue λk . The case k = 0 corresponds to a

massless scalar[103, 104]. For any k ≥ 1, the scalar is tachyonic. See for example [105] and [106]

for the study of such tachyonic scalars. The k = 1 and k = 2 cases are the dS analogs for the

Galileon and special Galileon theories in flat space [89] respectively. While these k ≥ 0 scalars

do not fall into the standard classification of dS UIRs [101], there are arguments that they can be

cured to become unitary [89]. Note that the action is negative for all (n, 0) modes with n < k, and

vanishes for the (k, 0)modes. To make sense of the path integral, we again perform Wick rotations

for all (n, 0) modes with n < k, so that

ˆ
D<kφe−S<k [φ] → i

∑k−1
n=0 Dd+2

n,0

ˆ
D<kφeS<k [φ] = i

∑k−1
n=0 Dd+2

n,0

k−1∏
n=0
|λn,0 − λk,0 |

−1/2, (2.206)
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and interpret the integration over the (k, 0) modes as a residual group volume

Vol(Gk)PI ≡

ˆ Dd+2
k,0∏

a=1

dA(a)k,0
√

2π
. (2.207)

The modes with n > k can be integrated as usual. The final result is

Z
(s=0,m2

k+2,1)

PI = i
∑k−1

n=0 Dd+2
n,0 Vol(Gk)PI det′ | − ∇2

(0) − λk,0 |
−1/2. (2.208)

Note that absolute value is taken in the determinant. The prime denotes the omission of the (k, 0)

modes from the functional determinant. Unlike the massless case, the residual group volume

Vol(Gk)PI is multiplying the determinant instead of being divided. As stressed in the massless

case, Vol(Gk)PI should depend on the non-linear completion of the theory. There will be a problem

of relating Vol(Gk)PI to a canonical volume Vol(Gk)can and the determination of Vol(Gk)can itself.

Also, we expect there will be a dependence on coupling constants of the interacting theory.15

2.6.2 Shift-symmetric vectors

When the mass takes values

m2 = −λk+1,1 − d = −(k + 2)(k + d) = m2
k+3,0 = −m2

1,k+2 ≤ −2d, k ≥ 0, (2.211)

15An example for which we can make sense of these issues is that of a compact scalar. They are scalars subject to
the identification

φ ∼ φ + 2πR (2.209)

so that they take values on a circle of radius R. In this case the integration range for the (0,0) mode is restricted to the
fundamental domain 0 < A0,0 < 2πR

√
Vol(Sd+1) and therefore

Zcompact scalar
PI =

√
2πR2Vol(Sd+1) det′(−∇2

(0))
−1/2. (2.210)

Here the (inverse of) radius R plays the role of the coupling constant.
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the Proca action (2.182) is invariant under a level-k shift symmetry generated by the (k + 1, 1)

modes

δAµ = fk+1,µ. (2.212)

Following analogous steps as for the scalars, it is straightforward to work out the path integral

Z
(s=1,m2

k+3,0)

PI = i
∑k

n=−1 Dd+2
n,1 Vol(Gk+1,1)PI det′−1 | − ∇

2
(1) − λk+1,1 |

−1/2 (2.213)

where the prime denotes the omission of the (k + 1, 1) modes and

Vol(Gk+1,1)PI ≡

ˆ Dd+2
k+1,1∏

a=1

dA(a)k+1,1
√

2π
. (2.214)

Note that in the phase factor we have used the fact that Dd+2
−1,1 = −Dd+2

0,0 and Dd+2
0,1 = 0.

2.6.3 Shift-symmetric spin s ≥ 2

Shift-symmetric spin 2 fields

The massive spin-2 action (2.185) with

m2 = −λk+2,2 − 2 = m2
k+4,1 = −m2

2,k+3 ≤ 2(d + 2), k ≥ 0, (2.215)

is invariant under a level-k shift symmetry generated by the (k + 2, 2) modes

δhµν = fk+2,µν . (2.216)

It is straightforward to work out the path integral

Z
(s=2,m2

k+4,1)

PI = i
∑k+1

n=−1 Dd+2
n,2 Vol(Gk+2,2)PI det′−1 | − ∇

2
(2) − λk+2,2 |

−1/2 (2.217)
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where the prime denotes the omission of the (k + 2, 2) modes and

Vol(Gk+2,2)PI ≡

ˆ Dd+2
k+2,2∏

a=1

dA(a)k+2,2
√

2π
. (2.218)

Note that in the phase factor we have used the fact that Dd+2
−1,2 = −Dd+2

1,0 and Dd+2
0,2 = −Dd+2

1,1 .

Shift-symmetric arbitrary spins s ≥ 0

Now the pattern is clear. When the mass for a spin-s field φ(s) (s ≥ 0) reaches the values

m2 = −λ2
k+s,s − M2

s = m2
k+s+2,s−1 = −m2

s,s+k+1, k ≥ 0, (2.219)

there will be a level-k shift symmetry generated by the (k + s, s) modes

δφ(s) = fk+s,(s). (2.220)

The path integral is

Z
(s,m2

k+s+2,s−1)

PI = i
∑k+s−1

n=−1 Dd+2
n,s Vol(Gk+s,s)PI det′−1

�����−∇2
(s) − λk+s,s

M2

�����−1/2

(2.221)

where

Vol(Gk+s,s)PI ≡

ˆ Dd+2
k+s,s∏

a=1

M
√

2π
dA(a)k+s,s . (2.222)

Note that we have restored the dimensionful parameter M . Such a shift-symmetric field can be

thought of as the longitudinal mode decoupled from a massive spin-(k + s + 1) field as its mass

approaches m2
k+s+1,s. Note that for k = 0, it can be thought of as the ghost part of the spin-

(s+1)massless path integral. We will see more connections of shift-symmetric fields with general

partially massless fields in the next section.
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2.7 Partially massless fields

In (A)dS space, there exist “partial massless” (PM) representations [100, 102, 107–115]. Ex-

cept for the massless case, they are not unitary in AdS. In dSd+1 with d ≥ 4, they correspond to the

unitary exceptional series representations, while for d = 3 they correspond to the discrete series

representations [101]. A PM spin-s field of depth t has a gauge symmetry16

δφ(s) = ∇
(s−t)ξ(t) + · · · (2.223)

where · · · stand for terms with fewer derivatives [115]. The massless case corresponds to t = s−1.

In the following we first work out the case of spin-2 depth-0 field. Then we will provide a general

prescription for general PM fields.

2.7.1 Spin-2 depth-0 field

The action for a spin-2 depth-0 field is (2.185) with mass

m2 = m2
2,0 = d − 1, (2.224)

in which case there is a gauge symmetry

δhµν = ∇µ∇ν χ + gµν χ. (2.225)

This can be seen by first substituting (2.193) into (2.186) so that the decomposition becomes

hµν =hTT
µν +

1
√

2
(∇µξ

T
ν + ∇νξ

T
µ ) +
√

2∇µ∇νσ′ +
1

√
d + 1

(
∇µ∇ν h̃ + gµν h̃

)
(2.226)

16We adopt the convention that depth t is equal to the spin of the gauge parameter.
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and noting that S[h̃] defined in (2.194) vanishes identically for m2 = d − 1. Spin-2 field with such

a mass was first considered in [100]. This gauge invariance implies that there is an integration

ˆ
D′h̃ (2.227)

that must be canceled by a gauge group volume factor Vol(G) divided by hand. To be consistent

with locality, this gauge group factor must take the form of a path integral of a local scalar field α

Vol(G) =
ˆ
Dα. (2.228)

Due to mismatch of modes excluded due to (2.187), we have a residual group volume

´
D′h̃

Vol(G)
=

1
Vol(G1,0)PI

, Vol(G1,0)PI ≡

ˆ Dd+2
1,0∏

a=1

dA(a)1,0
√

2π
. (2.229)

The rest of the computation proceeds as before, and the final result is

Z
(s=2,m2

2,0)

PI =
i−1

Vol(G1,0)PI

det′
−1 | − ∇

2
(0) − (d + 1)|1/2

det′
−1

(
−∇2
(2) + d + 1

)1/2 . (2.230)

2.7.2 General PM fields

We now provide a prescription to obtain the path integral expression for a general spin-s depth-

t field. First, take the spin-s path integral (2.199) with generic mass and take the limit m2 → m2
s,t

while omitting the (t − 1, s) modes:

Z
(s,m2→m2

s,t )

PI → i
∑t−2

m=−1 Dd+2
m,s det′−1 | − ∇

2
(s) − λ

2
t−1,s |

−1/2 (2.231)
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where we have used (2.178). The phases appear because the mode with n = −1, 0, · · · , t − 2

becomes negative. Then we exchange s and t and flip i → −i to obtain another expression

Z
(t,m2→m2

t,s)

PI → i−
∑s−2

m=−1 Dd+2
m,t det′−1 | − ∇

2
(t) − λ

2
s−1,t |

−1/2. (2.232)

We propose that the final result is simply given by the ratio between these two expressions, divided

by a group volume factor:

Z
(s,m2=m2

s,t )

PI =
i
∑t−2

m=−1 Dd+2
m,s +

∑s−2
m=−1 Dd+2

m,t

Vol(Gs−1,t)PI

det′
−1

����−∇2
(t)
−λ2

s−1,t
M2

����1/2
det′
−1

����−∇2
(s)
−λ2

t−1,s
M2

����1/2 (2.233)

where

Vol(Gs−1,t)PI ≡

ˆ Dd+2
s−1,t∏

a=1

M2
√

2π
dAs−1,t (2.234)

Note that we have restored the dimensionful parameter M . One can easily verify that (2.233)

reduces to the massless case when t = s − 1 and the spin-2 depth-0 case when s = 2, t = 0.

The division by Z
(t,m2→m2

t,s)

PI can be thought of as the decoupling of the spin-t level-(s − 1 − t)

shift-symmetric field from the massive spin-s field as we take m2 → m2
s,t . Note that the ratio of

determinants (without the extension to n = −1 modes) in (2.233) and the relations between PM

and conformal higher spin partition functions were first discussed in [82] for S4 and [62] for S6.

As we stressed repeatedly, the determination of the group volume factor Vol(Gs−1,t)PI requires

knowledge of the interactions of the parent theory. In the current case, a natural class of parent

theories would be the PM generalizations of higher spin theories [116], which include a tower

of PM gauge fields and a finite number of massive fields. These theories gauge the PM algebras

studied in [117] and are holographic duals to �k CFTs [118]. Their 1-loop path integrals would
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take the form

ZPM HS
PI =

iP

Vol(G)PI

∏
s,t

det′
−1

����−∇2
(t)
−λ2

s−1,t
M2

����1/2
det′
−1

����−∇2
(s)
−λ2

t−1,s
M2

����1/2 (2.235)

where

P =
∑
s,t

(
t−2∑

m=−1
Dd+2

m,s +

s−2∑
m=−1

Dd+2
m,t

)
, Vol(G)PI =

∏
s,t

Vol(Gs−1,t)PI (2.236)

There will be analogous problem of relating Vol(G)PI to a canonical volume Vol(G)can (and making

sense of the volume itself) as in the massless case, which will give us the dependence on the

Newton’s constant GN . If we demand log ZPM HS
PI to be consistent with a universal form as in the

massless case [73], we should take

Vol(G)PI = Vol(G)can

∏
s,t

(
Vol(Sd−1)

8πGN

M4

(d + 2s − 2)(d + 2t − 2)

) Dd+2
s−1,t
2

(2.237)

so that the factor (d + 2s − 2)(d + 2t − 2) gets nicely canceled upon evaluating the character

integrals for the determinants. To verify this, one has to repeat the analysis of [68] and App.B.3

and express the PM HS invariant bilinear form in terms of the bilinear form induced by the path

integral measure. Provided that (2.237) is valid, we note that except the phase and Vol(G)can, the

expression (2.235) becomes the inverse of itself upon exchanging s and t. We leave the validation

of (2.233), (2.237) and the implication of the suggestive s↔ t symmetry for future work.

2.8 Discussion and outlooks

In this work, we derive the determinant expressions of the 1-loop path integrals for massive,

shift-symmetric and partially massless fields on Sd+1. We conclude with some open problems and

generalizations for future investigations:
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First is the Polchinski’s phase. While we generalize the original massless spin-2 result to other

classes of fields, their physical interpretations remain elusive. One is tempted to say perhaps these

phases indicate non-unitarity. While this seems to be natural for massive fields with masses outside

the unitary bounds (including shift-symmetric fields), the phases are present for PM fields which

are perfectly unitary irreducible representations. Without other physical inputs, it is not clear

whether we should ignore or retain these phases. However, we stress that these phases deserve

our attentions. Perhaps a better understanding of these phases will lead us to the correct statistical

interpretation of the path integral17. Also, Sd+1 is only one of the many saddle points of the

Euclidean gravitational path integral with a positive cosmological constant. If one considers other

saddle points such as S2×Sd−1, since they have different amount of symmetries, after Wick rotating

the conformal modes there will be relative phases between different saddle points. In any case,

our results provide infinite number of data points for further investigations.

Another mystery is the residual group volume factor present for PM gauge fields and shift-

symmetric fields. Such a factor is present for a manifestly local path integral and depends on the

non-linear completion of the theory. Higher spin groups are typically infinite-dimensional and

there is an issue of making sense of the group volume. The group volume may be more well-

defined in theories gauging finite dimensional higher spin algebras studied in [117].

Let us mention the context in which both subtleties of phases and group volume are sharpest,

namely in d + 1 = 3 dimension [73]. In this case one can check that for any PM fields, the

determinants for the on-shell kinetic operator and the ghost operator cancel completely, so that the

group volume and phases are the only non-trivial contributions to the 1-loop path integral. Also, on

S3 there is an alternative formulation of massless HS gravity as a SU(N) × SU(N) Chern-Simons

theory. As noted in [73], one finds that their 1-loop results agree only if we identify the residual

group volume with the SU(N) × SU(N) HS group volume, further supporting the claim that this

factor depends on the interactions of the full theory. Also, the phases will match exactly for odd

framing.

17For example, one might guess that these i’s are precisely the i’s present in the inverse Laplace transform to extract
microcanonical entropies from the partition function.
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One natural generalization of this work is to study path integrals involving fermionic PM gauge

fields. The free actions for massless fermionic fields are presented in [119]. Since fermionic fields

are Grassman-valued, no Wick rotation is needed to make the path integral convergent. However,

there is still a group volume factor corresponding to trivial fermionic gauge transformations, whose

physical interpretations are even more obscure than their bosonic counterparts, because the Grass-

man integrals are formally zero. Perhaps we need to combine bosonic and fermionic higher spin

fields into a supersymmetric HS theory [120] so that we can make sense of the super-higher-spin

group volume.
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Chapter 3: Quantum de Sitter horizon entropy from quasicanonical bulk,

edge, sphere and topological string partition functions

This chapter is a based on the work [73]. Motivated by the prospect of constraining microscopic

models, we calculate the exact one-loop corrected de Sitter entropy (the logarithm of the sphere

partition function) for every effective field theory of quantum gravity, with particles in arbitrary

spin representations. In doing so, we universally relate the sphere partition function to the quotient

of a quasi-canonical bulk and a Euclidean edge partition function, given by integrals of characters

encoding the bulk and edge spectrum of the observable universe. Expanding the bulk character

splits the bulk (entanglement) entropy into quasinormal mode (quasiqubit) contributions. For 3D

higher-spin gravity formulated as an sl(n) Chern-Simons theory, we obtain all-loop exact results.

Further to this, we show that the theory has an exponentially large landscape of de Sitter vacua with

quantum entropy given by the absolute value squared of a topological string partition function.

For generic higher-spin gravity, the formalism succinctly relates dS, AdS± and conformal results.

Holography is exhibited in quasi-exact bulk-edge cancelation.

3.1 Introduction

As seen by local inhabitants [7–10, 121–123] of a cosmology accelerated by a cosmological

constant, the observable universe is evolving towards a semiclassical equilibrium state asymptoti-

cally indistinguishable from a de Sitter static patch, enclosed by a horizon of area A = Ωd−1`
d−1,

` ∝ 1/
√
Λ, with the de Sitter universe globally in its Euclidean vacuum state. A picture is shown in

fig. 3.1b, and the metric in (3.26)/(C.96)S. The semiclassical equilibrium state locally maximizes
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b ca

Figure 3.1: a: Cartoon of observable universe evolving to its maximal-entropy equilibrium state. The
horizon consumes everything once seen, growing until it reaches its de Sitter equilibrium area A. (The spiky
dot is a reference point for b,c; it will ultimately be gone, too.) b: Penrose diagram of dS static patch. c:
Wick-rotated (b) = sphere. Metric details are given in appendix C.4.3 + fig. C.5c,d.

the observable entropy at a value S semiclassically given by [10]

S = logZ , (3.1)

where Z =
´

e−SE [g,··· ] is the effective field theory Euclidean path integral, expanded about the

round sphere saddle related by Wick-rotation (C.98) to the de Sitter universe of interest. At tree

level in Einstein gravity, the familiar area law is recovered:

S(0) =
A

4GN
. (3.2)

The interpretation of S as a (metastable) equilibrium entropy begs for a microscopic understand-

ing of its origin. By aspirational analogy with the Euclidean AdS partition function for effective

field theories with a CFT dual (see [124] for a pertinent discussion), a natural question is: are

there effective field theories for which the semiclassical expansion of S corresponds to a large-N

expansion of a microscopic entropy? Given a proposal, how can it be tested?

In contrast to EAdS, without making any assumptions about the UV completion of the effec-

tive field theory, there is no evident extrinsic data constraining the problem. The sphere has no

boundary, all symmetries are gauged, and physically meaningful quantities must be gauge and
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field-redefinition invariant, leaving little. In particular there is no invariant information contained

in the tree-level S(0) other than its value, which in the low-energy effective field theory merely

represents a renormalized coupling constant; an input parameter. However, in the spirit of [26–34,

124–126], nonlocal quantum corrections to S do offer unambiguous, intrinsic data, directly con-

straining models. To give a simple example, discussed in more detail under (3.168), say someone

posits that for pure 3D gravity, the sought-after microscopic entropy is Smicro = log d(N), where

d(N) is the number of partitions of N . This is readily ruled out. Both macroscopic and microscopic

entropy expansions can uniquely be brought to a form

S = S0 − a logS0 + b +
∑

n cn S
−2n
0 + O(e−S0/2) , (3.3)

characterized by absence of odd (=local) powers of 1/S(0). The microscopic theory predicts

(a, b) =
(
2, log

(
π2/6
√

3
) )

, refuted by the macroscopic one-loop result (a, b) =
(
3, 5 log(2π)

)
.

Some of the models in [11–24] are sufficiently detailed to be tested along these lines.

In this work, we focus exclusively on collecting macroscopic data, more specifically the exact

one-loop (in some cases all-loop) corrected S = logZ. The problem is old, and computations for

s ≤ 1 are relatively straightforward, but for higher spin s ≥ 2, sphere-specific complications crop

up. Even for pure gravity [50–54, 57–59, 61, 127], virtually no complete, exact results have been

obtained at a level brining tests of the above kind to their full potential.

Building on results and ideas from [43, 62, 66, 68–71, 81, 101, 128, 129], we obtain a universal

formula solving this problem in general, for all d ≥ 2 parity-invariant effective field theories, with

matter in arbitrary representations, and general gauge symmetries including higher-spin:

S(1) = log
K∏

a=0

(
2πγa)

dim Ga

vol Ga
+

ˆ ∞
0

dt
2t

(
1 + q
1 − q

χbos
tot −

2√q
1 − q

χfer
tot

)
+ Sct (3.4)

q ≡ e−t/`. Below we explain the ingredients in sufficient detail to allow application in practice.

A sample of explicit results is listed in (3.12). We then summarize the content of the paper by
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section, with more emphasis on the physics and other results of independent interest.

G0 is the subgroup of (possibly higher-spin) gravitational gauge transformations acting trivially

on the Sd+1 saddle. This includes rotations of the sphere. vol G0 is the volume for the invariant

metric normalized such that the standard rotation generators have unit norm, implying in particular

vol SO(d + 2) = (C.93). The other Gi, i = 1, . . . ,K are Yang-Mills group factors, with vol Gi the

volume in the metric defined by the trace in the action, as in (C.94). The γa are proportional to the

(algebraically defined) gauge couplings:

γ0 ≡

√
8πGN
Ad−1

=

√
2π
S(0)

, γi ≡

√
g2

i

2πAd−3
, (3.5)

with An ≡ Ωn`
n, Ωn = (C.92) for n ≥ 0, and A−1 ≡ 1/2π` for γi in d = 2.

The functions χtot(t) are determined by the bosonic/fermionic physical particle spectrum of the

theory. They take the form of a “bulk” minus an “edge” character:

χtot = χbulk − χedge . (3.6)

The bulk character χbulk(t) is defined as follows. Single-particle states on global dSd+1 furnish a

representation R of the isometry group SO(1, d + 1). The content of R is encoded in its Harish-

Chandra character χ̃(g) ≡ tr R(g) (appendix C.1). Restricted to SO(1, 1) isometries g = e−itH

acting as time translations on the static patch, χ̃(g) becomes χbulk(t) ≡ tr e−itH . For example for a

massive integer spin-s particle it is given by (C.14):

χbulk,s = Dd
s

q
d
2+iν + q

d
2−iν

(1 − q)d
, q ≡ e−|t |/` , (3.7)

where Dd
s is the spin degeneracy (C.15), e.g. D3

s = 2s + 1, and ν is related to the mass:

s = 0 : ν2 = m2`2 −
( d

2
)2
, s ≥ 1 : ν2 = m2`2 −

( d
2 + s − 2

)2
. (3.8)
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For arbitrary massive matter χbulk is given by (C.16). Massless spin-s characters are more intricate,

but can be obtained by applying a simple “flipping” recipe (3.100) to (3.98), or from the general

formulae (C.164) or (C.194) derived from this. Some low (d, s) examples are

(d, s) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2)

χbulk,s
2 q
(1 − q)2

0
6 q2 − 2 q3

(1 − q)3
10 q3 − 6 q4

(1 − q)3
6 q2

(1 − q)4
10 q2

(1 − q)4

(3.9)

The q-expansion of χbulk gives the static patch quasinormal mode degeneracies, its Fourier trans-

form gives the normal mode spectral density, and the bulk part of (3.4) is the quasicanonical ideal

gas partition function at β = 2π`, as we explain below (3.15).

The edge character χedge(t) is inferred from path integral considerations in sections 3.3-3.5. It

vanishes for spin s < 1. For integer s ≥ 1 we get (3.85):

χedge,s = Ns ·
q

d−2
2 +iν + q

d−2
2 −iν

(1 − q)d−2 , Ns = Dd+2
s−1 , (3.10)

e.g. N1 = 1, N2 = d + 2. Note this is the bulk character of Ns scalars in two lower dimensions.

Thus the edge correction effectively subtracts the degrees of freedom of Ns scalars living on Sd−1,

the horizon “edge” of static time slices (yellow dot in fig. 3.1). (3.91) yields analogous results for

more general matter; e.g. bulk field→ edge field, bulk→ (d + 2) × edge. For massless

spin-s, use (3.98)-(3.100) or (C.196). The edge companions of (3.9) are

(d, s) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2)

χedge,s 0 0
2 q

1 − q
10 q2 − 2 q3

1 − q
2 q
(1 − q)2

10 q
(1 − q)2

(3.11)

The edge correction extends observations of [38–43, 45–48, 130–137], reviewed in appendix C.5.5.

The general closed-form evaluation of the integral in (3.4) is given by (C.57) in heat kernel

regularization. In even d, the finite part is more easily obtained by summing residues.

Finally, Sct in (3.4) is a local counterterm contribution fixed by a renormalization condition
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Figure 3.2: Contributions to dS3 one-loop entropy from gravity and massive s = 0, 1, 2.

specified in section 3.8, which in practice boils down to Sct(`) canceling all divergences and finite

terms growing polynomially with ` in S(1)(`).

For concreteness here are some examples readily obtained from (3.4):

content S(1)

3D grav −3 logS(0) + 5 log(2π)

3D (s,m) π
3
(
ν3 − (m`)3 + 3(s−1)2

2 m`
)
− 2

∑2
k=0

νk

k!
Li3−k (e−2πν )
(2π)2−k − s2 (π(m` − ν) − log

(
1 − e−2πν ) )

4D grav −5 logS(0) − 571
45 log(`/L) − log 8π

3 +
715
48 −

47
3 ζ
′(−1) + 2

3 ζ
′(−3)

5D su(4) ym − 15
2 log

(
`/g2) − log 256π9

3 +
75 ζ (3)
16 π2 +

45 ζ (5)
16 π4

5D ( ,m) −15 log(2πm`) + 5 ζ (5)
8π4 +

65 ζ (3)
24π2 (m` → 0) , 5

12 (m`)
4 e−2πm` (m` →∞)

11D grav −33 logS(0) + log
( 4! 6! 8! 10!

24 (2π)63) + 1998469 ζ (3)
50400 π2 +

135619 ζ (5)
60480 π4 −

34463 ζ (7)
3840 π6 +

11 ζ (9)
6π8 −

11 ζ (11)
256 π10

3D HSn −(n2 − 1) logS(0) + log
[ 1
n

( n(n2−1)
6

)n2−1
G(n + 1)2 (2π)(n−1)(2n+1)]

(3.12)

Comparison to previous results for 3D and 4D gravity is discussed under (3.120).1

The second line is the contribution of a 3D massive spin-s field, with ν given by (3.8). The

term ∝ s2 is the edge contribution. It is negative for all m` and dominates the bulk contribution

(fig. 3.2). It diverges at the unitarity/Higuchi bound m` = s − 1.

In the 4D gravity example, L is a minimal subtraction scale canceling out of S(0) + S(1). In

this case, constant terms in S(1) cannot be distinguished from constants in S(0) and are as such

1In the above and in (3.4) we have dropped Polchinski’s phase [59] kept in (3.120) and generalized in (3.112).
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Figure 3.3: Regularized dS2 scalar mode density with ν = 2, Λuv` ≈ 4000. Blue line = Fourier transform of
χbulk: ρ(ω)/` = 2

π log(Λuv`) −
1

2π
∑
ψ
( 1

2 ± iν ± iω`). Red dots = inverse eigenvalue spacing of numerically
diagonalized 4000×4000 matrix H in globally truncated model (appendix C.2.2). Rightmost panel = |ρ(ω)|
on complex ω-plane, with quasinormal mode poles at ω` = ±i(12 ± iν + n).

physically ambiguous.2 The term α4 log(`/L) with α4 = −
571
45 arises from the log-divergent term

α4 log(`/ε) of the regularized character integral.

For any d, in any theory, the coefficient αd+1 of the log-divergent term can simply be read off

from the t → 0 expansion of the integrand in (3.4):

integrand = · · · +
αd+1

t
+O(t0) (3.13)

For a 4D photon, this gives α4 = α4,bulk + α4,edge = −
16
45 −

1
3 = −

31
45 . The bulk-edge split in this

case is the same as the split investigated in [132, 137, 138]. Other illustrations include (partially)

massless spin s around (3.116), the superstring in (3.192), and conformal spin s in (3.193).

3D HSn = higher-spin gravity with s = 2, 3, . . . , n (section 3.6). G is the Barnes G-function.

Overview

We summarize the content of sections 3.2-3.9, highlighting other results of interest, beyond

(3.4).
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Quasicanonical bulk thermodynamics of the static patch (section 3.2)

The global dS bulk character χbulk(t) = tr e−itH locally encodes the quasinormal spectrum and

normal mode density of the static patch ds2 = −(1 − r2/`2)dT2 + (1 − r2/`2)−1dr2 + r2dΩ2 on

which e−itH acts as a time translation T → T + t. Its expansion in powers of q = e−|t |/`,

χbulk =
∑

r

Nr qr , (3.14)

yields the number Nr of quasinormal modes decaying as e−rT/`, in resonance with [139–141]. The

density of normal modes ∝ e−iωT is formally given by its Fourier transform

ρ(ω) ≡
1

2π

ˆ ∞
−∞

dt χbulk(t) eiωt . (3.15)

Because χbulk is singular at t = 0, this is ill-defined as it stands. However, a standard Pauli-Villars

regularization of the QFT renders it regular (3.40), yielding a manifestly covariantly regularized

mode density, analytically calculable for arbitrary particle content, including gravitons and higher-

spin matter. Some simple examples are shown in figs. 3.3, 3.6. Quasinormal modes appear as

resonance poles at ω = ±ir , seen by substituting (3.14) into (3.15).

This effectively solves the problem of making covariant sense of the formally infinite normal

mode density universally arising in the presence of a horizon [35]. Motivated by the fact that

semiclassical information loss can be traced back to this infinity, [35] introduced a rough model

getting rid of it by shielding the horizon by a “brick wall” (reviewed together with variants in

C.5.3). Evidently this alters the physics, introduces boundary artifacts, breaks covariance, and is,

unsurprisingly, computationally cumbersome. The covariantly regularized density (3.15) suffers

none of these problems.

2Comparing different saddles, unambiguous linear combinations can however be extracted, cf. (C.345).

86



In particular it makes sense of the a priori ill-defined canonical ideal gas partition function,

log Zcan(β) =

ˆ ∞
0

dω
(
−ρbos(ω) log

(
eβω/2 − e−βω/2

)
+ ρfer(ω) log

(
eβω/2 + e−βω/2

) )
. (3.16)

Substituting (3.15) and integrating out ω, this becomes

log Zbulk(β) =

ˆ ∞
0

dt
2t

(
1 + e−2πt/β

1 − e−2πt/β
χbos

bulk(t) −
2 e−πt/β

1 − e−2πt/β
χfer

bulk(t)
)

(3.17)

At the static patch equilibrium β = 2π`, this is precisely the bulk contribution to the one-loop

Euclidean partition function logZ(1) in (3.4). Although Zbulk is not quite a standard canonical

partition function, calling it a quasicanonical partition function appears apt.

From (3.17), covariantly regularized quasicanonical bulk thermodynamic quantities can be an-

alytically computed for general particle content, as illustrated in section 3.2.3. Substituting the

expansion (3.14) expresses these quantities as a sum of quasinormal mode contributions, general-

izing and refining [142]. In particular the contribution to the entropy and heat capacity from each

physical quasinormal mode is finite and positive (fig. 3.8).

Sbulk can alternatively be viewed as a covariantly regularized entanglement entropy between

two hemispheres in the global dS Euclidean vacuum (red and blue lines in figs. 3.5, C.5). In the

spirit of [140], the quasinormal modes can then be viewed as entangled quasiqubits.

Sphere partition functions (sections 3.3,3.4,3.5)

In sections 3.3-3.5 we obtain character integral formulae computing exact heat-kernel regular-

ized one-loop sphere partition functions Z (1)PI for general field content, leading to (3.4).

For scalars and spinors (section 3.3), this is easy. For massive spin s (section 3.4), the presence

of conformal Killing tensors on the sphere imply naive reduction to a spin-s Laplacian determinant

is inconsistent with locality [62]. The correct answer can in principle be obtained by path integrat-

ing the full off-shell action [102], but this involves an intricate tower of spin s′ < s Stueckelberg

fields. Guided by intuition from section 3.2, we combine locality and unitary constraints with path
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Figure 3.4: One- and all-loop entropy corrections, and dual topological string t, gs, for 3D HSn theory in
its maximal-entropy de Sitter vacuum, for different values of n at fixed S(0) = 108, l = 0.

integral considerations to find the terms in log Z missed by naive reduction. They turn out to be

obtained simply by extending the spin-s Laplacian eigenvalue sum to include its “subterranean”

levels with formally negative degeneracies, (3.83). The extra terms capture contributions from un-

matched spin s′ < s conformal Killing tensor ghost modes in the gauge-fixed Stueckelberg path

integral. The resulting sum yields the bulk−edge character integral formula (3.84). Locality and

unitarity uniquely determine the generalization to arbitrary parity-symmetric matter representa-

tions, (3.91).

In the massless case (section 3.5), new subtleties arise: negative modes requiring contour ro-

tations (which translate into the massless character “flipping” recipe mentioned above (3.9)), and

ghost zeromodes which must be omitted and compensated by a carefully normalized group volume

division. Non-universal factors cancel out, yielding (3.112) modulo renormalization.

3D de Sitter HSn quantum gravity and the topological string (section 3.6)

The sl(2) Chern-Simons formulation of 3D gravity [143, 144] can be extended to an sl(n)

Chern-Simons formulation of s ≤ n higher-spin (HSn) gravity [145–148]. The action for positive

cosmological constant is given by (3.121). It has a real coupling constant κ ∝ 1/GN, and an integer

coupling constant l ∈ {0, 1, 2, . . .} if a gravitational Chern-Simons term is included.

This theory has a landscape of dS3 vacua, labeled by partitions ®m = {m1,m2, . . .} of n. Different
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vacua have different values of `/GN, with tree-level entropy

S
(0)
®m =

2π`
4GN

����
®m
= 2πκ · T®m , T®m = 1

6
∑

a ma(m2
a − 1) . (3.18)

The number of vacua grows as Nvac ∼ e2π
√

n/6. The maximal entropy vacuum is ®m = {n}.

We obtain the all-loop exact quantum entropy S ®m = logZ®m by analytic continuation k± →

l ± iκ of the SU(n)k+ × SU(n)k− Chern-Simons partition function on S3, (3.127). In the weak-

coupling limit κ →∞, this reproduces S(1) as computed by (3.4) in the metric-like formulation of

the theory, given in (3.12) for the maximal-entropy vacuum ®m = {n}.

When n grows large and reaches a value n ∼ κ, the 3D higher-spin gravity theory becomes

strongly coupled. (In the vacuum ®m = {n} this means n4 ∼ `/GN.) In this regime, Gopakumar-

Vafa duality [79, 80] can be used to express the quantum de Sitter entropy S in terms of a weakly-

coupled topological string partition function on the resolved conifold, (3.128):

S ®m = log
���Z̃top(gs, t) e−πT ®m·2πi/gs

���2 (3.19)

where gs =
2π

n+l+iκ , and the conifold Kähler modulus t ≡
´

S2 J + iB = igsn = 2πin
n+l+iκ .

Euclidean thermodynamics of the static patch (section 3.7)

In section 3.7 we consider the Euclidean thermodynamics of a QFT on a fixed static patch/sphere

background. The partition function ZPI is the Euclidean path integral on the sphere of radius `, the

Euclidean energy density is ρPI = −∂V log ZPI, where V = Ωd+1`
d+1 is the volume of the sphere,

and the entropy is SPI = log ZPI + 2π`UPI = log ZPI + V ρPI = (1 − V∂V ) log ZPI, or

SPI =
(
1 − 1

d+1`∂`
)

log ZPI (3.20)

Using the exact one-loop sphere partition functions obtained in sections 3.3-3.5, this allows general

exact computation of the one-loop Euclidean entropy S(1)PI , illustrated in section 3.7.2. Euclidean
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Rindler results are recovered in the limit m` →∞. The sphere computation avoids introducing the

usual conical deficit angle, varying the curvature radius ` instead.

For minimally coupled scalars, S(1)PI = Sbulk, but more generally this is false, due to edge (and

other) corrections. Our results thus provide a precise and general version of observations made in

the work reviewed in appendix C.5.5. Of note, these “corrections” actually dominate the one-loop

entropy, rendering it negative, increasingly so as s grows large.

Quantum gravitational thermodynamics (section 3.8)

In section 3.8 (with details in appendix C.9), we specialize to theories with dynamical gravity.

Denoting ZPI, ρPI and SPI by Z, % and S in this case, (3.20) trivially implies % = 0, S = logZ,

reproducing (3.1). All UV-divergences can be absorbed into renormalized coupling constants,

rendering the Euclidean thermodynamics well-defined in an effective field theory sense.

Integrating over the geometry is similar in spirit to integrating over the temperature in statistical

mechanics, as one does to extract the microcanonical entropy S(U) from the canonical partition

function.3 The analog of this in the case of interest is

S(ρ) ≡ log
ˆ
Dg · · · e−SE [g,...]+ ρ

´√
g , (3.21)

for some suitable metric path integration contour. In particular S(0) = S. The analog of the

microcanonical β ≡ ∂US is V ≡ ∂ρS, and the analog of the microcanonical free energy is the

Legendre transform log Z ≡ S − V ρ, satisfying ρ = −∂V log Z . If we furthermore define ` by

Ωd+1`
d+1 ≡ V , the relation between log Z , ρ and S is by construction identical to (3.20).

Equivalently, the free energy Γ ≡ − log Z can be thought of as a quantum effective action for

the volume. At tree level, Γ equals the classical action SE evaluated on the round sphere of radius

3Along the lines of S(U) = log
( 1

2πi
´ dβ

β Tr e−βH+βU
)
, with contour β = β∗ + iy, y ∈ R, for any β∗ > 0.
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`. For example for 3D Einstein gravity,

log Z (0) =
2π2

8πG
(
−Λ `3 + 3 `

)
, S(0) =

(
1 − 1

3`∂`
)

log Z (0) =
2π`
4G

. (3.22)

The tree-level on-shell radius `0 maximizes log Z (0), i.e. ρ(0)(`0) = 0.

We define renormalized Λ,G, . . . from the `d+1, `d−1, . . . coefficients in the ` → ∞ expansion

of the quantum log Z , and fix counterterms by equating tree-level and renormalized couplings for

the UV-sensitive subset. For 3D Einstein, the renormalized one-loop correction is

log Z (1) = −3 log
2π`
4G
+ 5 log(2π) . (3.23)

The quantum on-shell radius ¯̀ = `0 + O(G) maximizes log Z , i.e. ρ( ¯̀) = 0. The on-shell entropy

can be expressed in two equivalent ways to this order:

S = S(0)( ¯̀) + S(1) = S(0)(`0) + log Z (1) (3.24)

This clarifies why the one-loop correction S(1) ≡ S − S(0) to the dS entropy is given by log Z (1)

rather than S(1): the extra term −V ρ(1) accounts for the change in entropy of the reservoir (=

geometry) due to energy transfer to the system (= quantum fluctuations).

The final result is (3.4). We work out several examples in detail. We consider higher-order cur-

vature corrections and discuss invariance under local field redefinitions, identifying the invariants

S
(0)
M = −SE [gM] for different saddles M as and their large-` expanded quantum counterparts SM

as the Λ > 0 analogs of tree-level and quantum scattering amplitudes, defining invariant couplings

and physical observables of the low-energy effective field theory.

dS, AdS±, and conformal higher-spin gravity (section 3.9)

Massless g = hs(so(d + 2)) higher-spin gravity theories on dSd+1 or Sd+1 [91–93] have infinite

spin range and infinite dim g, obviously posing problems for the one-loop formula (3.4):
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1. Spin sum divergences untempered by the UV cutoff, for example dim G = 1
3
∑

s s(4s2 − 1)

for d = 3 and χtot =
∑

s (2s + 1) 2q2

(1−q)4 −
∑

s
s(s+1)(2s+1)

6
2q
(1−q)2 for d = 4.

2. Unclear how to make sense of vol G.

We compare the situation to analogous one-loop expressions [83, 129] for Euclidean AdS with

standard (AdS+d+1) [30–33, 125] and alternate (AdS−d+1) [81] gauge field boundary conditions, and

to the associated conformal higher-spin theory on the boundary Sd (CHSd) [62, 82]. For AdS+

the above problems are absent, as g is not gauged and ∆s > s. Like a summed KK tower, the

spin-summed bulk character has increased UV dimensionality dbulk
eff = 2d − 2. However, the edge

character almost completely cancels this, leading to a reduced deff = d − 1 in (3.181)-(3.183). This

realizes a version of a stringy picture painted in [38] repainted in fig. C.9. A HS “swampland” is

identified: lacking a holographic dual, characterized by deff > d − 1.

For AdS− and CHS, the problems listed for dS all reappear. g is gauged, and the character spin

sum divergences are identical to dS, as implied by the relations (3.187):

χs(CHSd) = χs(AdS−d+1) − χs(AdS+d+1) = χs(dSd+1) − 2 χs(AdS+d+1) (3.25)

The spin sum divergences are not UV. Their origin lies in low-energy features: an infinite number of

quasinormal modes decaying as slowly as e−2T/` for d ≥ 4 (cf. discussion below (C.167)). We see

no justification for zeta-regularizing such divergences away. However, in certain supersymmetric

extensions, the spin sum divergences cancel in a rather nontrivial way, leaving a finite residual

as in (3.194). This eliminates problem 1, but leaves problem 2. Problem 2 might be analogous

to vol G = ∞ for the bosonic string or vol G = 0 for supergroup Chern-Simons: removed by

appropriate insertions. This, and more, is left to future work.
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Figure 3.5: a: Penrose diagram of global dS, showing flows of SO(1, 1) generator H = M0,d+1, S =
southern static patch. b: Wick-rotated S = sphere; Euclidean time = angle. c: Pelagibacter ubique inertial
observer in dS with ` = 1.2 µm finds itself immersed in gas of photons, gravitons and higher-spin particles
at a pleasant 30◦C. More details are provided in fig. C.5 and appendix C.4.3.

3.2 Quasicanonical bulk thermodynamics

3.2.1 Problem and results

From the point of view of an inertial observer, such as Pelagibacter ubique in fig. 3.5c, the

global de Sitter vacuum appears thermal [9, 10, 149]: P. ubique perceives its universe, the southern

static patch (S in fig. 3.5a),

ds2 = −(1 − r2/`2)dT2 + (1 − r2/`2)−1dr2 + r2dΩ2
d−1, (3.26)

as a static ball of finite volume, whose boundary r = ` is a horizon at temperature T = 1/2π`, and

whose bulk is populated by field quanta in thermal equilibrium with the horizon. P. ubique wishes

to understand its universe, and figures the easiest thing to understand should be the thermodynam-

ics of its thermal environment in the ideal gas approximation. The partition function of an ideal

gas is

Tr e−βH = exp
ˆ ∞

0
dω

(
−ρ(ω)bos log

(
eβω/2 − e−βω/2

)
+ ρ(ω)fer log

(
eβω/2 + e−βω/2

) )
, (3.27)
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where ρ(ω) = ρ(ω)bos + ρ(ω)fer is the density of bosonic and fermionic single-particle states at

energy ω. However to its dismay, it immediately runs into trouble: the dS static patch mode

spectrum is continuous and infinitely degenerate, leading to a pathologically divergent density

ρ(ω) = δ(0)
∑
`m···. It soon realizes the unbounded redshift is to blame, so it imagines a brick

wall excising the horizon, or some variant thereof (appendix C.5.3). Although this allows some

progress, it is aware this alters what it is computing and depends on choices. To check to what

extent this matters, it tries to work out nontrivial examples. This turns out to be painful. It feels

there should be a better way, but its efforts come to an untimely end 4.

Here we will make sense of the density of states and the static patch bulk thermal partition

function in a different way, manifestly preserving the underlying symmetries, allowing general

exact results for arbitrary particle content. The main ingredient is the Harish-Chandra group char-

acter (reviewed in appendix C.1) of the SO(1, d + 1) representation R furnished by the physical

single-particle Hilbert space of the free QFT quantized on global dSd+1. Letting H be the global

SO(1, 1) generator acting as time translations in the southern static patch and globally as in fig.

3.5a, the character restricted to group elements e−itH is

χ(t) ≡ trG e−itH . (3.28)

Here trG traces over the global dS single-particle Hilbert space furnishing R. (More generally we

denote tr ≡ single-particle trace, Tr ≡multi-particle trace, G ≡ global, S ≡ static patch. Our default

units set the dS radius ` ≡ 1 .)

For example for a scalar field of mass m2 = ( d2 )
2 + ν2, as computed in (C.13),

χ(t) =
e−t∆+ + e−t∆−

|1 − e−t |d
, ∆± =

d
2 ± iν . (3.29)

For a massive spin-s field this simply gets an additional spin degeneracy factor Dd
s , (C.14). Mass-

4Burdened by broken symmetry and recalcitrant regularization, desperate for help with its cumbersome computa-
tion, it decides to engage in self-duplication, unfortunately unaware of a classical equation. Tidal forces trigger tragic
disintegration. P. ubique is now part of that pesky radiation.
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less spin-s characters take a similar but somewhat more intricate form, (C.164)-(C.166).

As mentioned in the introduction, (3.14), the character has a series expansion

χ(t) =
∑

r

Nr e−r |t | (3.30)

encoding the degeneracy Nr of quasinormal modes ∝ e−rT of the dS static patch background. For

example expanding the scalar character yields two towers of quasnormal modes with rn± =
d
2±iν+n

and degeneracy Nn± =
(n+d−1

n

)
.

Our main result, shown in 3.2.2 below, is the observation that

log Zbulk(β) ≡

ˆ ∞
0

dt
2t

(
1 + e−2πt/β

1 − e−2πt/β
χ(t)bos −

2 e−πt/β

1 − e−2πt/β
χ(t)fer

)
, (3.31)

suitably regularized, provides a physically sensible, manifestly covariant regularization of the static

patch bulk thermal partition. The basic idea is that ρ(ω) can be obtained as a well-defined Fourier

transform of the covariantly UV-regularized character χ(t), which upon substitution in the ideal gas

formula (3.27) yields the above character integral formula. Arbitrary thermodynamic quantities at

the horizon equilibrium β = 2π can be extracted from this in the usual way, for example Sbulk =

(1− β∂β) log Zbulk |β=2π, which can alternatively be interpreted as the “bulk” entanglement entropy

between the northern and southern Sd hemispheres (red and blue lines fig. 3.5a).5 We work out

various examples of such thermodynamic quantities in section 3.2.3. General exact solution are

easily obtained. The expansion (3.30) also allows interpreting the results as a sum over quasinormal

modes along the lines of [142].

We conclude this part with some comments on the relation with the Euclidean partition func-

tion. As reviewed in appendix C.5, general physics considerations, or formal considerations based

on Wick-rotating the static patch to the sphere and slicing the sphere path integral along the lines

of fig. 3.5b, suggests a relation between the one-loop Euclidean path integral Z (1)PI on Sd+1 and the

5In part because subregion entanglement entropy does not exist in the continuum, an infinity of different notions
of it exist in the literature [150]. Based on [138], Sbulk appears perhaps most akin to the “extractable”/“distillable”
entropy considered there. Either way, our results are nomenclature-independent.
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Figure 3.6: Regularized scalar ρ(ω), d = 2, ν = 2, i/2, 0.9 i; top: ω ∈ R; bottom: ω ∈ C, showing
quasinormal mode poles. See figs. C.1, C.4 for details.

bulk ideal gas thermal partition function Zbulk at β = 2π. More refined considerations suggest

log Z (1)PI = log Zbulk + edge corrections , (3.32)

where the edge corrections are associated with the Sd−1 horizon edge of the static patch time

slices, i.e. the yellow dot in fig. 3.5. The formal slicing argument breaks down here, as does

the underlying premise of spatial separability of local field degrees of freedom (for fields of spin

s ≥ 1). Similar considerations apply to other thermodynamic quantities and in other contexts,

reviewed in appendix C.5 and more specifically C.5.5.

In sections 3.3-3.5 we will obtain the exact edge corrections by direct computation, logically

independent of these considerations, but guided by the physical expectation (3.32) and more gen-

erally the intuition developed in this section.
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3.2.2 Derivation

We first give a formal derivation and then refine this by showing the objects of interest become

rigorously well-defined in a manifestly covariant UV regularization of the QFT.

Formal derivation

Our starting point is the observation that the thermal partition function Tr e−βH of a bosonic

resp. fermionic oscillator of frequency ω has the integral representation (C.112):

− log
(
eβω/2 − e−βω/2

)
= +

ˆ ∞
0

dt
2t

1 + e−2πt/β

1 − e−2πt/β

(
e−iωt + eiωt )

log
(
eβω/2 + e−βω/2

)
= −

ˆ ∞
0

dt
2t

2 e−πt/β

1 − e−2πt/β

(
e−iωt + eiωt ) . (3.33)

with the pole in the factor f (t) = c t−2 +O(t0) multiplying e−iωt + eiωt resolved by

t−2 →
1
2
(
(t − iε)−2 + (t + iε)−2) . (3.34)

Now consider a free QFT on some space of finite volume, viewed as a system S of bosonic

and/or fermionic oscillator modes of frequencies ω with mode (or single-particle) density ρS(ω) =

ρS(ω)bos + ρS(ω)fer. The system is in thermal equilibrium at inverse temperature β. Using the

above integral representation, we can write its thermal partition function (3.27) as

log TrS e−βHS =

ˆ ∞
0

dt
2t

(
1 + e−2πt/β

1 − e−2πt/β
χS(t)bos −

2 e−πt/β

1 − e−2πt/β
χS(t)fer

)
, (3.35)

where we exchanged the order of integration, and we defined

χS(t) ≡
ˆ ∞

0
dω ρS(ω)

(
e−iωt + eiωt ) (3.36)

We want to apply (3.35) to a free QFT on the southern static patch at inverse temperature β, with

the goal of finding a better way to make sense of it than P. ubique’s approach. To this end, we note
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that the global dSd+1 Harish-Chandra character χ(t) defined in (3.28) can formally be written in a

similar form by using the general property (C.4), χ(t) = χ(−t):

χ(t) = trG e−iHt =

ˆ ∞
−∞

dω ρG(ω) e−iωt =

ˆ ∞
0

dω ρG(ω)
(
e−iωt + eiωt ) , (3.37)

This looks like (3.36), except ρG(ω) = trG δ(ω − H) is the density of single-particle excitations

of the global Euclidean vacuum, while ρS(ω) is the density of single-particle excitations of the

southern vacuum. The global and southern vacua are very different. Nevertheless, there is a

simple kinematic relation between their single-particle creation and annihilation operators: the

Bogoliubov transformation (C.108) (suitably generalized to d > 0 [149]). This provides an explicit

one-to-one, inner-product-preserving map between southern and global single-particle states with

H = ω > 0. Hence, formally,

ρS(ω) = ρG(ω) (ω > 0) , ρS(ω) = 0 (ω < 0) . (3.38)

While formal in the continuum, this relation becomes precise whenever ρ is rendered effectively

finite, e.g. by a brick-wall cutoff or by considering finite resolution projections (say if we restrict

to states emitted/absorbed by some apparatus built by P. ubique).

At first sight this buys us nothing though, as computing ρG(ω) = trG δ(ω − H) for say a scalar

in dS4 in a basis |ω`m〉G immediately leads to ρG(ω) = δ(0)
∑
`m, in reassuring but discouraging

agreement with P. ubique’s result for ρS(ω). On second thought however, substituting this into

(3.37) leads to a nonsensical χ(t) = 2πδ(t)δ(0)
∑
`m, not remotely resembling the correct expres-

sion (3.29). How could this happen? As explained under (C.17), the root cause is the seemingly

natural but actually ill-advised idea of computing χ(t) = trG e−iHt by diagonalizing H: despite

its lure of seeming simplicity, |ω`m〉G is in fact the worst possible choice of basis to compute the

character trace. Its wave functions on the global future boundary Sd of dSd+1 are singular at the

north and south pole, exactly the fixed points of H at which the correct computation of χ(t) in

appendix C.1.2 localizes. Although |ω`m〉 is a perfectly fine basis on the cylinder obtained by
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a conformal map from sphere, the information needed to compute χ is irrecoverably lost by this

map.

However we can turn things around, and use the properly computed χ(t) to extract ρG(ω) as its

Fourier transform, inverting (3.37). As it stands, this is not really possible, for (3.29) implies χ(t) ∼

|t |−d as t → 0, so its Fourier transform does not exist. Happily, this problem is automatically

resolved by standard UV-regularization of the QFT, as we will show explicitly below. For now let

us proceed formally, as at this level we have arrived at our desired result: combining (3.38) with

(3.37) and (3.36) implies χS(t) = χ(t), which by (3.35) yields

TrS e−βHS = Zbulk(β) (formal) (3.39)

with Zbulk(β) as defined in (3.31). The above equation formally gives it its claimed thermal inter-

pretation. In what follows we will make this a bit more precise, and spell out the UV regularization

explicitly.

Covariant UV regularization of ρ and Zbulk

We begin by showing that ρG(ω) in (3.37) becomes well-defined in a suitable standard UV-

regularization of the QFT. As in [36], it is convenient to consider Pauli-Villars regularization,

which is manifestly covariant and has a conceptually transparent implementation on both the path

integral and canonical sides. For e.g. a scalar of mass m2 = ( d2 )
2 + ν2, a possible implementation is

adding
(k
n

)
, n = 1, . . . , k ≥ d

2 fictitious particles of mass m2 = ( d2 )
2+ ν2+nΛ2 and positive/negative

norm for even/odd n,6 turning the character χν2(t) of (3.29) into

χν2,Λ(t) = trGΛ
e−itH =

k∑
n=0
(−1)n

(k
n

)
χν2+nΛ2(t). (3.40)

This effectively replaces χ(t) ∼ |t |−d by χΛ(t) ∼ |t |2k−d with 2k − d ≥ 0, hence, assuming χ(t)

falls off exponentially at large t, which is always the case for unitary representations [76–78], χΛ(t)

6This is equivalent to inserting a heat kernel regulator f (τΛ2) =
(
1 − e−τΛ

2 )k in (3.66), with k ≥ d
2 + 1.
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has a well-defined Fourier transform, analytic in ω:

ρG,Λ(ω) =
1

2π

ˆ ∞
−∞

dt χΛ(t) eiωt =
1

2π

ˆ ∞
0

dt χΛ(t)
(
eiωt + e−iωt ) . (3.41)

The above character regularization can immediately be transported to arbitrary massive SO(1, d+1)

representations, as their characters χs,ν2 (C.16) only differ from the scalar one by an overall spin

degeneracy factor.7

Although we won’t need to in practice for computations of thermodynamic quantities (which

are most easily extracted directly as character integrals), ρG,Λ(ω) can be computed explicitly. For

the dSd+1 scalar, using (3.29) regularized with k = 1, we get for ω � Λ

d = 1 : ρG,Λ(ω) =
2
π

logΛ −
1

2π

∑
±,±

ψ
( 1

2 ± iν ± iω) +O(Λ−1)

d = 2 : ρG,Λ(ω) = Λ −
1
2

∑
±

(ω ± ν) coth
(
π(ω ± ν)

)
+O(Λ−1)

(3.42)

where ψ(x) = Γ′(x)/Γ(x). Denoting the Λ-independent parts of the above ω � Λ expansions by

ρ̃ν2(ω), the exact ρG,Λ(ω) for general ω and k is ρG,Λ(ω) =
∑k

n=0(−1)n
(k
n

)
ρ̃ν2+nΛ2(ω), illustrated

in fig. 3.7 for k = 1, 2. The ω � Λ result is independent of k up to rescaling of Λ. The result for

massive higher-spin fields is the same up to an overall degeneracy factor Dd
s from (C.14).

To make sense of the southern static patch density ρS(ω) directly in the continuum, we define

its regularized version by mirroring the formal relation (3.38), thus ensuring all of the well-defined

features and physics this relation encapsulates are preserved:

ρS,Λ(ω) ≡ ρG,Λ(ω) = (3.41) (ω > 0) . (3.43)

This definition of the regularized static patch density evidently inherits all of the desirable proper-

ties of ρG(ω): manifest general covariance, independence of arbitrary choices such as brick wall

7For massless spin-s, the PV-regulating characters to add to the physical character (e.g. (3.102),(C.165)) are χ̂s,n =
χs,ν2

φ+nΛ
2 − χs−1,ν2

ξ+nΛ
2 where ν2

φ = −(s − 2 + d
2 )

2 and ν2
ξ = −(s − 1 + d

2 )
2, based on (3.95) and (3.97).
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⇢G ⇢G

d = 1

k = 1

k = 2 k = 2

k = 1

d = 2

Figure 3.7: ρG,Λ(ω) for dSd+1 scalar of mass m2 = ( d2 )
2 + ν2, ν = 10, for d = 1, 2 in k = 1, 2 Pauli-

Villars regularizations (3.40). Faint part is unphysical UV regime ω & Λ. The peaks/kinks appearing at
ω =
√
ν2 + nΛ2 are related to quasinormal mode resonances 〈C.2.3〉.

boundary conditions, and exact analytic computability. The physical sensibility of this identifica-

tion is also supported by the fact that the quasinormal mode expansion (3.30) of χ(t) produces the

physically expected static patch quasinormal resonance pole structure ρS(ω) =
1

2π
∑

r,±
Nr

r±iω , cf.

appendix C.2.3.

Putting things together in the way we obtained the formal relation (3.39), the correspondingly

regularized version of the static patch thermal partition function (3.35) is then

log Zbulk,Λ(β) ≡

ˆ ∞
0

dt
2t

(
1 + e−2πt/β

1 − e−2πt/β
χΛ(t)bos −

2 e−πt/β

1 − e−2πt/β
χΛ(t)fer

)
(3.44)

Note that if we take k ≥ d
2 + 1, then χΛ(t) ∼ t2k−d with 2k − d ≥ 2 and we can drop the

iε prescription (3.34). Zbulk (or equivalently χ) can be regularized in other ways, including by

cutting off the integral at t = Λ−1, or as in (C.21), or by dimensional regularization. For most of

the paper we will use yet another variant, defined in section 3.3, equivalent, like Pauli-Villars, to a

manifestly covariant heat-kernel regularization of the path integral.

In view of the above observations, Zbulk,Λ(β) is naturally interpreted as a well-defined, co-

variantly regularized and ambiguity-free definition of the static patch ideal gas thermal partition

in the continuum. However we refrain from denoting Zbulk(β) as TrS,Λ e−βHS , because it is not

constructed as an actual sum over states of some definite regularized static patch Hilbert space
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HS,Λ. This (together with the role of quasinormal modes) is also why we referred to Zbulk(β) as a

“quasi”-canonical partition function in the introduction.

3.2.3 Example computations

In this section we illustrate the use and usefulness of the character formalism by computing

some examples of bulk thermodynamic quantities at the equilibrium inverse temperature β = 2π

of the static patch. The precise relation of these quantities with their Euclidean counterparts will

be determined in 3.3-3.5 and 3.7.

Character formulae for bulk thermodynamic quantities at β = 2π

At β = 2π, the bulk free energy, energy, entropy and heat capacity are obtained by taking the

appropriate derivatives of (3.31) and putting β = 2π, using the standard thermodynamic relations

F = − 1
β log Z , U = −∂β log Z , S = log Z + βU, C = −β∂βS. Denoting q ≡ e−t ,

log Zbulk =

ˆ ∞
0

dt
2t

(
1 + q
1 − q

χbos −
2√q
1 − q

χfer

)
, (3.45)

2πUbulk =

ˆ ∞
0

dt
2

(
−

2√q
1 − q

√
q

1 − q
χbos +

1 + q
1 − q

√
q

1 − q
χfer

)
, (3.46)

and similarly for Sbulk and Cbulk. The characters χ for general massive representation are given

by (C.16), for massless spin-s representations by (C.164)-(C.166), and for partially massless (s, s′)

representations by (C.194). Regularization is implicit here.

Leading divergent term

The leading t → 0 divergence of the scalar character (3.29) is χ(t) ∼ 2/td . For more general

representations this becomes χ(t) ∼ 2n/td with n the number of on-shell internal (spin) degrees of

freedom. The generic leading divergent term of the bulk (free) energy is then given by Fbulk,Ubulk ∼

− 1
π (nbos − nfer)

´ dt
td+2 ∼ ±Λ

d+1`d , while for the bulk heat capacity and entropy we get Cbulk, Sbulk ∼

(13nbos+
1
6nfer)

´ dt
td ∼ +Λ

d−1`d−1, where we reinstated the dS radius `. In particular Sbulk ∼ +Λ
d−1×
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horizon area, consistent with an entanglement entropy area law. The energy diverges more strongly

because we included the QFT zero point energy term in its definition, which drops out of S and C.

Coefficient of log-divergent term

The coefficient of the logarithmically divergent part of these thermodynamic quantities is uni-

versal. A pleasant feature of the character formalism is that this coefficient can be read off trivially

as the coefficient of the 1/t term in the small-t expansion of the integrand, easily computed for

any representation. In odd d + 1, the integrand is even in t, so log-divergences are absent. In even

d + 1, the integrand is odd in t, so generically we do get a log-divergence = a logΛ. For example

the log Z integrand for a dS2 scalar is expanded as

1
2t

1 + e−t

1 − e−t
e−t( 12+iν) + e−t( 12−iν)

1 − e−t =
2
t3 +

1
12 − ν

2

t
+ · · · ⇒ a = 1

12 − ν
2 . (3.47)

For a ∆ = d
2 + iν spin-s particle in even d + 1, the logΛ coefficient for Ubulk is similarly read off as

aUbulk = −Dd
s

1
π(d+1)!

∏d
n=0(∆ − n). For a conformally coupled scalar, ν = i/2, so aUbulk = 0. Some

examples of aSbulk = alog Zbulk in this case are

d + 1 2 4 6 8 10 · · · 100 · · · 1000 · · ·

aSbulk
1
3 −

1
90

1
756 −

23
113400

263
7484400 · · · −8.098 × 10−34 · · · −3.001 × 10−306 · · ·

Finite part and exact results

• Energy: For future reference (comparison to previously obtained results in section 3.7), we

consider dimensional regularization here. The absence of a 1/t factor in the integral (3.46) for

Ubulk then allows straightforward evaluation for general d. For a scalar of mass m2 = ( d2 )
2 + ν2,

Ufin
bulk =

m2 cosh(πν) Γ( d2 + iν) Γ( d2 − iν)

2π Γ(d + 2) cos
(
πd
2

) (dim reg) . (3.48)
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For example for d = 2, this becomes

Ufin
bulk = −

1
12
(ν2 + 1)ν coth(πν) . (3.49)

• Free energy: The UV-finite part of the log Zbulk integral (3.45) for a massive field in even d can

be computed simply by extending the integration contour to the real line avoiding the pole, closing

the contour and summing residues. For example for a d = 2 scalar this gives

log Zfin
bulk =

πν3

6
−

2∑
k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k , (3.50)

where Lin is the polylogarithm, Lin(x) ≡
∑∞

k=1 xk/kn. For future reference, note that

Li1(e−2πν) = − log
(
1 − e−2πν

)
, Li0(e−2πν) =

1
e2πν − 1

= 1
2 coth(πν) − 1

2 . (3.51)

For odd d, the character does not have an even analytic extension to the real line, so a different

method is needed to compute log Zbulk. The exact evaluation of arbitrary character integrals, for

any d and any χ(t) is given in (C.57) in terms of Hurwitz zeta functions. Simple examples are

given in (C.59)-(C.60). In (C.57) we use the covariant regularization scheme introduced in section

3.3. Conversion to PV regularization is obtained from the finite part as explained below.

• Entropy: Combined with our earlier result for the bulk energy Ubulk, the above also gives the

finite part of the bulk entropy Sbulk = log Zbulk + 2πUbulk. In the Pauli-Villars regularization (3.40),

the UV-divergent part is obtained from the finite part by mirrorring (3.40). For example for k = 1,

Sbulk,Λ = Sfin
bulk |ν2 − Sfin

bulk |ν2+Λ2 . For the d = 2 example this gives for ν � Λ

Sbulk,Λ =
π

6
(Λ − ν) −

π

3
ν Li0(e−2πν) −

3∑
k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k , (3.52)

where we used (3.51). Sbulk decreases monotonically with m2 = 1 + ν2. In the massless limit m→

0, it diverges logarithmically: Sbulk = − log m+· · · . For ν � 1, Sbulk =
π
6 (Λ−ν) up to exponentially
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small corrections. Thus Sbulk > 0 within the regime of validity of the low-energy field theory,

consistent with its quasi-canonical/entanglement entropy interpretation. For a conformally coupled

scalar ν = i
2 , this gives Sfin

bulk =
3ζ(3)
16π2 −

log(2)
8 .

Quasinormal mode expansion

Substituting the quasinormal mode expansion (3.30),

χ(t) =
∑

r

Nr e−rt (3.53)

in the PV-regularized log Zbulk(β) (3.44), rescaling t → β
2π t, and using (C.69) gives

log Zbulk(β) =
∑

r

Nbos
r log

Γ(br + 1)
(bµ)br

√
2πbr

− N fer
r log

Γ(br + 1
2 )

(bµ)br
√

2π
, b ≡

β

2π
. (3.54)

Truncating the integral to the IR part (C.69) is justified because the Pauli-Villars sum (3.40) cancels

out the UV part. The dependence on µ likewise cancels out, as do some other terms, but it is useful

to keep the above form. At the equilibrium β = 2π, log Zbulk is given by (3.54) with b = 1.

This provides a PV-regularized version of the quasinormal mode expansion of [142]. Since it is

covariantly regularized, it does not require matching to a local heat kernel expansion. Moreover it

applies to general particle content, including spin s ≥ 1.8

QNM expansions of other bulk thermodynamic quantities are readily derived from (3.54) by

taking derivatives β∂β = b∂b = µ∂µ + r∂r . For example Sbulk = (1 − β∂β) log Zbulk |β=2π is

Sbulk =
∑

r

Nbos
r sbos(r) + N fer

r sfer(r) (3.55)

8The expansion of [142] pertains to ZPI for s ≤ 1
2 . In the following sections we show ZPI = Zbulk for s ≤ 1

2 but not
for s ≥ 1. Hence in general the QNM expansion of [142] computes Zbulk, not ZPI.
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sbos(r)/ log 2 sfer(r)/ log 2 cfer(r)cbos(r)

Figure 3.8: Contribution to β = 2π bulk entropy and heat capacity of a quasinormal mode ∝ e−rT , r ∈ C,
Re r > 0. Only the real part is shown here because complex r come in conjugate pairs rn,± = d

2 + n ± iν.
The harmonic oscillator case corresponds to the imaginary axis.

where the entropy s(r) carried by a single QNM ∝ e−rT at β = 2π is given by

sbos(r) = r + (1 − r∂r) log
Γ(r + 1)
√

2πr
, sfer(r) = −r − (1 − r∂r) log

Γ(r + 1
2 )

√
2π

. (3.56)

Note the µ-dependence has dropped out, reflecting the fact that the contribution of each individual

QNM to the entropy is UV-finite, not requiring any regularization. For massive representations,

r can be complex, but will always appear in a conjugate pair rn± =
d
2 + n ± iν. Taking this

into account, all contributions to the entropy are real and positive for the physical part of the PV-

extended spectrum. The small and large r asymptotics are

r → 0 : sbos →
1
2

log
e

2πr
, sfer →

log 2
2

, r →∞ : sbos →
1

6 r
, sfer →

1
12 r

. (3.57)

The QNM entropies at general β are obtained simply by replacing

r →
β

2π
r . (3.58)

The entropy of a normal bosonic mode of frequencyω, s̃(ω) = − log
(
1−e−βω

)
+

βω
eβω−1 , is recovered
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for complex conjugate pairs r± in the scaling limit β→ 0, βν = ω fixed, and likewise for fermions.

At any finite β, the n → ∞ UV tail of QNM contributions is markedly different however. Instead

of falling off exponentially, if falls off as s ∼ 1/n. PV or any other regularization effectively cuts

off the sum at n ∼ Λ`, so since Nn ∼ nd−1, Sbulk ∼ Λ
d−1`d−1.

The bulk heat capacity Cbulk = −β∂βSbulk, so the heat capacity of a QNM at β = 2π is

c(r) = −r∂r s(r) . (3.59)

The real part of s(r) and c(r) on the complex r-plane are shown in fig. 3.8.

An application of the quasinormal expansion

The above QNM expansions are less useful for exact computations of thermodynamic quanti-

ties than the direct integral evaluations discussed earlier, but can be very useful in computations

of certain UV-finite quantities. A simple example is the following. In thermal equilibrium with

a 4D dS static patch horizon, which set of particle species has the largest bulk heat capacity: (A)

six conformally coupled scalars + graviton, (B) four photons? The answer is not obvious, as both

have an equal number of local degrees of freedom: 6 + 2 = 4 × 2 = 8. One could compute each in

full, but the above QNM expansions offers a much easier way to get the answer. From (3.29) and

(C.165) we read off the scalar and massless spin-s characters:

χ0 =
q + q2

(1 − q)3
, χs =

2(2s + 1) qs+1 − 2(2s − 1) qs+2

(1 − q)3
, (3.60)

where q = e−|t |. We see χA − χB = χ2 + 6 χ0 − 4 χ1 = 6 q, so χA and χB are almost exactly equal:

A has just 6 more quasinormal modes than B, all with r = 1. Thus, using (3.59),

CA
bulk − CB

bulk = 6 · cbos(1) = π2 − 9 . (3.61)
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Pretty close, but π > 3 9, so A wins. The difference is ∆C ≈ 0.87. Along similar lines, ∆S =

6 sbos(1) = 3(2γ + 1 − log(2π)) ≈ 0.95.

Another UV-finite example: relative entropies of graviton, photon, neutrino

Less trivial to compute but more real-world in flavor is the following UV-finite linear combi-

nation of the 4D graviton, photon, and (assumed massless) neutrino bulk entropies:

Sgraviton +
60
7 Sneutrino −

37
7 Sphoton =

48
7 ζ
′(−1) − 60

7 ζ
′(−3) + 6γ + 149

56 −
33
14 log(2π) ≈ 0.61 (3.62)

Finiteness can be checked from the small-t expansion of the total integrand computing this, and

the integral can then be evaluated along the lines of (C.53)-(C.54). We omit the details.

Vasiliev higher-spin example

Non-minimal Vasiliev higher-spin gravity on dS4 has a single conformally coupled scalar and

a tower of massless spin-s particles of all spins s = 1, 2, 3, . . .. The prospect of having to compute

bulk thermodynamics for this theory by brick wall or other approaches mentioned in appendix

C.5.3 would be terrifying. Let us compare this to the character approach. The total character

obtained by summing the characters of (3.60) takes a remarkably simple form:

χtot = χ0 +

∞∑
s=1

χs = 2 ·
(

q1/2 + q3/2

(1 − q)2

)2
−

q
(1 − q)2

=
q + q3

(1 − q)4
+ 3 ·

2q2

(1 − q)4
. (3.63)

The first expression is two times the square of the character of a 3D conformally coupled scalar,

plus the character of 3D conformal higher-spin gravity (3.188).10 The second expression equals

the character of one ν = i and three ν = 0 scalars on dS5. Treating the character integral as such,

9As reviewed in D. Bailey, S. Plouffe, P. Borwein and J. Borwein, “The quest for pi,” The Mathematical Intelli-
gencer 19, 1 (1997): According to the Old Testament’s π, it’s a tie, but the ancient Baylonians and Egyptians measured
π = 3.14 ± 0.02, and Archimedes proved π > 3 + 10

71 . So A wins.
10 For AdS4, the analogous χtot equals one copy of the 3D scalar character squared, reflecting the single-trace

spectrum of its holographic dual U(N) model 〈3.9.2〉. The dS counterpart thus encodes the single-trace spectrum of
two copies of this 3D CFT + 3D CHS gravity, reminiscent of [151]. This is generalized by (3.187).
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we immediately get, in k = 3 Pauli-Villars regularization (3.40),

log Zdiv
bulk = a0Λ

5 + a2Λ
3 − a4Λ , log Zfin

bulk =
ζ(5)
4π4 −

ζ(3)
24π2

Sdiv
bulk =

25
4 a2Λ

3 − 103
20 a4Λ , Sfin

bulk =
ζ(5)
4π4 −

ζ(3)
24π2 +

1
20 .

(3.64)

where a0 =
1−4
√

2+3
√

3
10 π ≈ 0.17, a2 = −

1−2
√

2+
√

3
12 π ≈ 0.025, and a4 =

3−3
√

2+
√

3
48 π ≈ 0.032. The

tower of higher-spin particles alters the bulk UV dimensionality much like a tower of KK modes

would. (We will later see edge “corrections” rather dramatically alter this.)

3.3 Sphere partition function for scalars and spinors

3.3.1 Problem and result

In this section we consider the one-loop Gaussian Euclidean path integral Z (1)PI of scalar and

spinor field fluctuations on the round sphere. For a free scalar of mass m2 on Sd+1,

ZPI =

ˆ
Dφ e−

1
2
´
φ(−∇2+m2)φ , (3.65)

A convenient UV-regularized version is defined using standard heat kernel methods [60]:

log ZPI,ε =

ˆ ∞
0

dτ
2τ

e−ε
2/4τ Tr e−τ(−∇

2+m2) . (3.66)

The insertion e−ε
2/4τ implements a UV cutoff at length scale ∼ ε . We picked this regulator for

convenience in the derivation below. We could alternatively insert the PV regulator of footnote

6, which would reproduce the PV regularization (3.40). However, being uniformly applicable to

all dimensions, the above regulator is more useful for the purpose of deriving general evaluation

formulae, as in appendix C.3.

In view of (3.32) we wish to compare ZPI to the corresponding Wick-rotated dS static patch

bulk thermal partition function Zbulk(β) (3.31), at the equilibrium inverse temperature β = 2π.
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Here and henceforth, Zbulk by default means Zbulk(2π):

log Zbulk ≡

ˆ ∞
0

dt
2t

(
1 + e−t

1 − e−t χ(t)bos −
2 e−t/2

1 − e−t χ(t)fer

)
(3.67)

Below we show that for free scalars and spinors,

ZPI = Zbulk (3.68)

with the specific regularization (3.66) for ZPI mapping to a specific regularization (3.73) for Zbulk.

The relation is exact, for any ε . This makes the physical expectation (3.32) precise, and shows that

for scalars and spinors, there are in fact no edge corrections.

In appendix C.3 we provide a simple recipe for extracting both the UV and IR parts in the

ε → 0 limit in the above regularization, directly from the unregularized form of the character

formula (3.67). This yields the general closed-form solution (C.57) for the regularized ZPI in

terms of Hurwitz zeta functions. The heat kernel coefficient invariants are likewise read off from

the character using (C.58). For simple examples see (C.59), (C.60), (C.70)-(C.71).

3.3.2 Derivation

The derivation is straightforward:

Scalars:

The eigenvalues of −∇2 on a sphere of radius ` ≡ 1 are λn = n(n + d), n ∈ N, with degeneracies

Dd+2
n given by (C.15), that is Dd+2

n =
(n+d+1

d+1
)
−

(n+d−1
d+1

)
. Thus (3.66) can be written as

log ZPI =

ˆ ∞
0

dτ
2τ

e−ε
2/4τe−τν

2
∞∑

n=0
Dd+2

n e−τ(n+
d
2 )

2
, ν ≡

√
m2 − d2

4 . (3.69)
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Figure 3.9: Integration contours for ZPI. Orange dots are poles, yellow dots branch points.

To perform the sum over n, we use the Hubbard-Stratonovich trick, i.e. we write

∞∑
n=0

Dd+2
n e−τ(n+

d
2 )

2
=

ˆ
A

du
e−u2/4τ
√

4πτ
f (u) , f (u) ≡

∞∑
n=0

Dd+2
n eiu(n+ d

2 ) . (3.70)

with integration contour A = R + iδ, δ > 0, as shown in fig. 3.9. The sum evaluates to

f (u) =
1 + eiu

1 − eiu

ei d2 u

(1 − eiu)d
, (3.71)

We first consider the case m > d
2 , so ν is real and positive. Then, keeping Im u = δ < ε , we can

perform the τ-integral first in (3.69) to get

log ZPI =

ˆ
A

du

2
√

u2 + ε2
e−ν
√

u2+ε2
f (u) . (3.72)

Deforming the contour by folding it up along the two sides of the branch cut to contour B in fig.

3.9, changing variables u = it and using that the square root takes opposite signs on both sides of

the cut, we transform this to an integral over C in fig. 3.9:

log ZPI =

ˆ ∞
ε

dt

2
√

t2 − ε2

1 + e−t

1 − e−t
e−

d
2 t+iν

√
t2−ε2
+ e−

d
2 t−iν

√
t2−ε2

(1 − e−t)d
, (3.73)

The result for 0 < m ≤ d
2 , i.e. ν = iµ with 0 ≤ µ < d

2 can be obtained from this by analytic
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continuation. Putting ε = 0, this formally becomes

log ZPI =

ˆ ∞
0

dt
2t

1 + e−t

1 − e−t χ(t) , χ(t) =
e−(

d
2−iν)t + e−(

d
2+iν)t

(1 − e−t)d
, (3.74)

which we recognize as (3.67) with χ(t) the scalar character (3.29). Thus we conclude that for

scalars, ZPI = Zbulk, with ZPI regularized as in (3.66) and Zbulk as in (3.73).

Spinors:

For a Dirac spinor field of mass m we have ZPI =
´
Dψ e−

´
ψ̄(/∇+m)ψ . The relevant formulae

for spectrum and degeneracies for general d can be found in appendices C.4.1 and C.6.2. For

concreteness we just consider the case d = 3 here, but the conclusions are valid for Dirac spinors in

general. The spectrum of /∇+m on S4 is λn = m±(n+2)i, n ∈ N, with degeneracy D5
n+ 1

2 ,
1
2
= 4

(n+3
3

)
,

so ZPI regularized as in (3.66) is given by

log ZPI = −

ˆ ∞
0

dτ
τ

e−ε
2/4τ

∞∑
n=0

4
(n+3

3
)

e−τ((n+2)2+m2) (3.75)

Following the same steps as for the scalar case, this can be rewritten as

log ZPI = −

ˆ ∞
ε

dt

2
√

t2 − ε2

2 e−t/2

1 − e−t · 4 ·
e−

3
2 t+im

√
t2−ε2
+ e−

3
2 t−im

√
t2−ε2

(1 − e−t)3
. (3.76)

Putting ε = 0, this formally becomes

log ZPI = −

ˆ ∞
0

dt
2t

2 e−t/2

1 − e−t χ(t) , χ(t) = 4 ·
e−(

3
2+im)t + e−(

3
2−im)t

(1 − e−t)3
, (3.77)

which we recognize as the fermionic (3.67) with χ(t) the character of the ∆ = 3
2 + im unitary

SO(1, 4) representation carried by the single-particle Hilbert space of a Dirac spinor quantized on

dS4, given by twice the character (C.16) of the irreducible representation (∆, S) with S = (12 ). Thus

we conclude ZPI = Zbulk. The comment below (3.93) generalizes this to all d.
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3.4 Massive higher spins

We first formulate the problem, explaining why it is not nearly as simple as one might have

hoped, and then state the result, which turns out to be much simpler than one might have feared.

The derivation of the result is detailed in appendix C.6.1.

3.4.1 Problem

Consider a massive spin-s ≥ 1 field, more specifically a totally symmetric tensor field φµ1···µs

on dSd+1 satisfying the Fierz-Pauli equations of motion:

(
−∇2 + m2

s
)
φµ1···µs = 0 , ∇νφνµ1···µs−1 = 0 , φννµ1···µs−2 = 0 . (3.78)

Upon quantization, the global single-particle Hilbert space furnishes a massive spin-s representa-

tion of SO(1, d + 1) with ∆ = d
2 + iν, related to the effective mass ms appearing above (see e.g.

[152]), and to the more commonly used definition of mass m (see e.g. [115]) as

m2
s = (

d
2 )

2 + ν2 + s , m2 = ( d2 + s − 2)2 + ν2 = (∆ + s − 2)(d + s − 2 − ∆) . (3.79)

Then m = 0 for the photon, the graviton and their higher-spin generalizations, and for s = 1, m is

the familiar spin-1 Proca mass.

The massive spin-s bulk thermal partition function is immediately obtained by substituting the

massive spin-s character (C.14) into the character formula (3.67) for Zbulk. For d ≥ 3,11

log Zbulk =

ˆ ∞
0

dt
2t

1 + q
1 − q

Dd
s ·

q
d
2+iν + q

d
2−iν

(1 − q)d
, q = e−t , (3.80)

with spin degeneracy factor read off from (C.15) or (C.89).

11For d = 2, the single-particle Hilbert space splits into (∆,±s) with D2
±s = 1, so D2

s →
∑
± D2
±s = 2.
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The corresponding free massive spin-s Euclidean path integral on Sd+1 takes the form

ZPI =

ˆ
DΦ e−SE [Φ]. (3.81)

where Φ includes at least φ. However it turns out that in order to write down a local, manifestly

covariant action for massive fields of general spin s, one also needs to include a tower of auxiliary

Stueckelberg fields of all spins s′ < s [102], generalizing the familiar Stueckelberg action (C.146)

for massive vector fields. These come with gauge symmetries, which in turn require the introduc-

tion of a gauge fixing sector, with ghosts of all spins s′ < s. The explicit form of the action and

gauge symmetries is known, but intricate [102].

Classically, variation of the action with respect the Stueckelberg fields merely enforces the

transverse-traceless (TT) constraints in (3.78), after which the gauge symmetries can be used to

put the Stueckelberg fields equal to zero. One might therefore hope the intimidating off-shell ZPI

(3.81) likewise collapses to just the path integral ZTT over the TT modes of φ with kinetic term

given by the equations of motion (3.78). This is easy to evaluate. The TT eigenvalue spectrum on

the sphere follows from SO(d + 2) representation theory. As detailed in eqs. (C.127)-(C.129), we

can then follow the same steps as in section 3.3, ending up with12

log ZTT =

ˆ ∞
0

dt
2t

(
qiν + q−iν ) ∑

n≥s

Dd+2
n,s q

d
2+n . (3.82)

Here Dd+2
n,s is the dimension of the SO(d+2) representation labeled by the two-row Young diagram

(n, s), given explicitly by the dimension formulae in appendix C.4.1.

Unfortunately, ZTT is not equal to ZPI on the sphere. The easiest way to see this is to consider

an example in odd spacetime dimensions, such as (C.130), and observe the result has a logarithmic

divergence. A manifestly covariant local QFT path integral on an odd-dimensional sphere cannot

possibly have logarithmic divergences. Therefore ZPI , ZTT. The appearance of such nonlocal

divergences in ZTT can be traced to the existence of (normalizable) zeromodes in tensor decom-

12For d = 2, D4
n,s →

∑
± D4

n,±s = 2D4
n,s .
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positions on the sphere [52, 62]. For example the decomposition φµ = φT
µ + ∇µϕ has the constant

ϕ mode as a zeromode, φµν = φTT
µν + ∇(µϕν) + gµνϕ has conformal Killing vector zeromodes, and

φµ1···µs = φ
TT
µ1···µs +∇(µ1ϕµ2···µs) + g(µ1µ2ϕµ3···µs) has rank s− 1 conformal Killing tensor zeromodes.

As shown in [52, 62], this implies log ZTT contains a nonlocal UV-divergent term cs logΛ, where

cs is the number of rank s − 1 conformal Killing tensors. This divergence cannot be canceled by

a local counterterm. Instead it must be canceled by contributions from the non-TT part. Thus, in

principle, the full off-shell path integral must be carefully evaluated to obtain the correct result.

Computing ZPI for general s on the sphere is not as easy as one might have hoped.

3.4.2 Result

Rather than follow a brute-force approach, we obtain ZPI in appendix C.6.1 by a series of

relatively simple observations. In fact, upon evaluating the sum in (3.82), writing it in a way that

brings out a term log Zbulk as in (3.80), and observing a conspicuous finite sum of terms bears full

responsibility for the inconsistency with locality, the answer suggests itself right away: the non-TT

part restores locality simply by canceling this finite sum. This turns out to be equivalent to the

non-TT part effectively extending the sum n ≥ s in (3.82) to n ≥ −1:13

log ZPI =

ˆ ∞
0

dt
2t

(
qiν + q−iν ) ∑

n≥−1
Dd+2

n,s q
d
2+n , (3.83)

where Dd+2
n,s is given by the explicit formulae in appendix C.4.1, in particular (C.90). For n < s,

this is no longer the dimension of an SO(d + 2) representation, but it can be rewritten as minus

the dimension of such a representation, as Dd+2
n,s = −Dd+2

s−1,n+1. This extension also turns out to be

exactly what is needed for consistency with the unitarity bound (C.145) and more refined unitarity

considerations. A limited amount of explicit path integral considerations combined with the ob-

servation that the coefficients Dd+2
s−1,n+1 count conformal Killing tensor mode mismatches between

ghosts and longitudinal modes then suffice to establish this is indeed the correct answer. We refer

13For d = 2 use (3.91): D4
n,s →

∑
± D4

n,±s = 2D4
n,s for n > −1, and D4

−1,s →
∑
±

1
2 D4
−1,±s = D4

−1,s = D4
s−1.
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to appendix C.6.1 for details.

Using the identity (C.135), we can write this in a rather suggestive form:

log ZPI = log Zbulk − log Zedge =

ˆ ∞
0

dt
2t

1 + q
1 − q

(
χbulk − χedge

)
, (3.84)

where χbulk and χedge are explicitly given by14

χbulk ≡ Dd
s

q
d
2+iν + q

d
2−iν

(1 − q)d
, χedge ≡ Dd+2

s−1
q

d−2
2 +iν + q

d−2
2 −iν

(1 − q)d−2 (3.85)

The log Zbulk term is the character integral for the bulk partition function (3.80). Strikingly, the

correction log Zedge also takes the form a character integral, but with an “edge” character χedge

in two lower dimensions. By our results of section 3.3 for scalars, Zedge effectively equals the

Euclidean path integral of Dd+2
s−1 scalars of mass m̃2 =

( d−2
2

)2
+ ν2 on Sd−1:

Zedge =
´
Dφ e−

1
2
´
Sd−1 φ

a(−∇2+m̃2)φa , a = 1, . . . ,Dd+2
s−1 , (3.86)

In particular this gives 1 scalar for s = 1 and d+2 scalars for s = 2. The Sd−1 is naturally identified

as the static patch horizon, the edge of the global dS spatial Sd hemisphere at time zero, the yellow

dot in fig. 3.5. Thus (3.84) realizes in a precise way the somewhat vague physical expectation

(3.32). Notice the relative minus sign here and in (3.84): the edge corrections effectively sub-

tract degrees of freedom. We do not have a physical interpretation of these putative edge scalars

for general s along the lines of the work reviewed in appendix C.5.5. Some clues are that their

multiplicity equals the number of conformal Killing tensor modes of scalar type appearing in the

derivation in appendix C.6.1 (the -modes for s = 4 in (C.141)), and that they become massless

at the unitarity bound ν = ±i( d2 − 1), eq. (C.145), where a partially massless field emerges with a

scalar gauge parameter.

14For d = 2, D2
s →

∑
± D2

s = 2 in χbulk as in (3.80). χedge remains unchanged.
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Independent of any interpretation, we can summarize the result (3.84)-(3.85) as

log Zd+1
PI (s) = log Zd+1

bulk(s) − Dd+2
s−1 log Zd−1

PI (0) . (3.87)

Examples

For a d = 2 spin-s ≥ 1 field of mass m2 = (s − 1)2 + ν2, log ZPI =
´ dt

2t
1+q
1−q (χbulk − χedge) with

χbulk = 2
q1+iν + q1−iν

(1 − q)2
, χedge = s2(qiν + q−iν) . (3.88)

That is, ZPI = Zbulk/Zedge, with the finite part of log Zbulk explicitly given by twice (3.50), and with

Zedge equal to the Euclidean path integral of D4
s−1 = s2 harmonic oscillators of frequency ν on S1,

naturally identified with the S1 horizon of the dS3 static patch, with finite part

Zfin
edge =

(
e−πν

1 − e−2πν

) s2

. (3.89)

The heat-kernel regularized ZPI is then, restoring ` and recalling ν =
√

m2`2 − (s − 1)2,

log ZPI = 2
(
πν3

6
−

2∑
k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k −
πν2`

4ε
+
π`3

2ε3

)
− s2

(
−πν − log

(
1 − e−2πν

)
+
π`

ε

)
(3.90)

The d = 3 spin-s case is worked out as another example in (C.65).

General massive representations

(3.83) has a natural generalization, presented in appendix C.6.2, to arbitrary parity-invariant

massive SO(1, d + 1) representations R = ⊕a(∆a, Sa), ∆a =
d
2 + iνa, Sa = (sa1, . . . , sar):

log ZPI =

ˆ ∞
0

dt
2t

∑
a

(−1)Fa
(
qiνa + q−iνa

) ∑
n∈ Fa2 +Z

Θ
( d

2 + n
)

Dd+2
n,Sa q

d
2+n (3.91)
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where Θ(x) is the Heaviside step step function with Θ(0) ≡ 1
2 , and Fa = 0, 1 for bosons resp.

fermions. This is the unique TT eigenvalue sum extension consistent with locality and unitarity

constraints. As in the S = (s) case, this can be rewritten as a bulk-edge decomposition log ZPI =

log Zbulk − log Zedge. For example, using (C.91) and the notation explained above it, the analog of

(3.87) for an S = (s, 1m) field becomes

log Zd+1
PI (s, 1

m) = log Zd+1
bulk(s, 1

m) − Dd+2
s−1 log Zd−1

PI (1
m) , (3.92)

so here Zedge is the path integral of Dd+2
s−1 massive m-form fields living on the Sd−1 edge. In partic-

ular this implies the recursion relation log Zd+1
PI (1

p) = log Zd+1
bulk(1

p) − log Zd−1
PI (1

p−1). Similarly for

a spin s = k + 1
2 Dirac fermion, in the notation explained under table (C.89)

log Zd+1
PI (s,

1
2 ) = log Zd+1

bulk(s,
1
2 ) −

1
2 Dd+2

s−1, 12
log Zd−1

PI (
1
2 ) , (3.93)

where Zbulk now takes the form of the fermionic part of (3.67), with χbulk as in (C.16) with Dd
S =

2 Dd
s, 12

, the factor 2 due to the field being Dirac. The edge fields are Dirac spinors. Note that

because Dd+2
− 1

2 ,
1
2
= 0, the above implies in particular ZPI(

1
2 ) = Zbulk(

1
2 ).

We do not have a systematic group-theoretic or physical way of identifying the edge field

content. For evaluation of ZPI using (C.57), this identification is not needed however. Actually the

original expansions (3.83), (3.91) are more useful for this, as illustrated in (C.61)-(C.65).

3.5 Massless higher spins

3.5.1 Problems

Bulk thermal partition function Zbulk

Massless spin-s fields on dSd+1 are in many ways quite a bit more subtle than their massive

spin-s counterparts. This manifests itself already at the level of the characters χbulk,s needed to

compute the bulk ideal gas thermodynamics along the lines of section 3.2. The SO(1, d + 1)
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unitary representations furnished by their single-particle Hilbert space belong to the discrete series

for d = 3 and to the exceptional series for d ≥ 4 [101]. The corresponding characters, discussed

in appendix C.7.1, are more intricate than their massive (principal and complementary series)

counterparts. A brief look at the general formula (C.164) or the table of examples (C.165) suffices

to make clear they are far from intuitively obvious — as is, for that matter, the identification of

the representation itself. Moreover, [101] reported their computation of the exceptional series

characters disagrees with the original results in [76–78].

As noted in section 3.2 and appendix C.2.3, the expansion χbulk(q) =
∑

q Nk qk can be in-

terpreted as counting the number Nk of static patch quasinormal modes decaying as e−kT/`. This

gives some useful physics intuition for the peculiar form of these characters, explained in appendix

C.7.1. The characters χbulk,s(q) can in principle be computed by explicitly constructing and count-

ing physical quasinormal modes of a massless spin-s field. This is a rather nontrivial problem,

however.

Thus we see that for massless fields, complications appear already in the computation of Zbulk.

Computing ZPI adds even more complications, due to the presence of negative and zero modes in

the path integral. Happily, as we will see, the complications of the latter turn out to be the key to

resolving the complications of the former. Our final result for ZPI confirms the identification of the

representation made in [101] and the original results for the corresponding characters in [76–78].

This is explicitly verified by counting quasinormal modes in [141].

Euclidean path integral ZPI

We consider massless spin-s fields in the metric-like formalism, that is to say totally symmetric

double-traceless fields φµ1···µs , with linearized gauge transformation

δ
(0)
ξ φµ1···µs = αs∇(µ1ξµ2···µs) , (3.94)
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with ξ is traceless symmetric in its s′ = s − 1 indices, and αs picked by convention.15

We use the notation s′ ≡ s − 1 as it makes certain formulae more transparent and readily general-

izable to the partially massless (0 ≤ s′ < s) case. The dimensions of φs and ξs′ are

d
2 + iνφ = ∆φ = s′ + d − 1 , d

2 + iνξ = ∆ξ = s + d − 1 . (3.95)

Note that this value of νφ assign a mass m = 0 to φ according to (3.79). The Euclidean path integral

of a collection of (interacting) gauge fields φ on Sd+1 is formally given by

ZPI =

´
Dφ e−S[φ]

vol(G)
(3.96)

where G is the group of local gauge transformations. At the one-loop (Gaussian) level S[φ] is the

quadratic Fronsdal action [99]. Several complications arise compared to the massive case:

1. For s ≥ 2, the Euclidean path integral has negative (“wrong sign” Gaussian) modes, gener-

alizing the well-known issue arising for the conformal factor in Einstein gravity [72]. These

can be dealt with by rotating field integration contours. A complication on the sphere is that

rotations at the local field level ensuring positivity of short-wavelength modes causes a finite

subset of low-lying modes to go negative, requiring these modes to be rotated back [59].

2. The linearized gauge transformations (3.94) have zeromodes: symmetric traceless tensors

ξ̄µ1...µs−1 satisfying ∇(µ1 ξ̄µ2···µs) = 0, the Killing tensors of Sd+1. This requires omitting

associated modes from the BRST gauge fixing sector of the Gaussian path integral. As

a result, locality is lost, and with it the flexibility to freely absorb various normalization

constants into local counterterms without having to keep track of nonlocal residuals.

3. At the nonlinear level, the Killing tensors generate a subalgebra of the gauge algebra. The

structure constants of this algebra are determined by the TT cubic couplings of the inter-

acting theory [68]. At least when it is finite-dimensional, as is the case for Yang-Mills,
15As explained in appendix C.7.4, for compatibility with certain other conventions we adopt, we will pick αs ≡

√
s

with symmetrization conventions such that φ(µ1 · · ·µs ) = φµ1 · · ·µs .
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Einstein gravity and the 3D higher-spin gravity theories of section 3.6, the Killing tensor

algebra exponentiates to a group G. For example for Einstein gravity, G = SO(d + 2). To

compensate for the zeromode omissions in the path integral, one has to divide by the volume

of G. The appropriate measure determining this volume is inherited from the path integral

measure, and depends on the UV cutoff and the coupling constants of the theory. Precisely

relating the path integral volume vol(G)PI to the “canonical” vol(G)c defined by a theory-

independent invariant metric on G requires considerable care in defining and keeping track

of normalization factors.

Note that these complications do not arise for massless spin-s fields on AdS with standard boundary

conditions. In particular the algebra generated by the (non-normalizable) Killing tensors in this

case is a global symmetry algebra, acting nontrivially on the Hilbert space.

These problems are not insuperable, but they do require some effort. A brute-force path integral

computation correctly dealing with all of them for general higher-spin theories is comparable to

pulling a molar with a plastic fork: not impossible, but necessitating the sort of stamina some might

see as savage and few would wish to witness. The character formalism simplifies the task, and the

transparency of the result will make generalization obvious.

3.5.2 Ingredients and outline of derivation

We derive an exact formula for ZPI in appendix C.7.2-C.7.4. In what follows we merely give

a rough outline, just to give an idea what the origin is of various ingredients appearing in the final

result. To avoid the d = 2 footnotes of section 3.4 we assume d ≥ 3 in what follows.

Naive characters

Naively applying the reasoning of section 3.4 to the massless case, one gets a character formula

of the form (3.84), with “naive” bulk and edge characters χ̂ given by

χ̂ ≡ χφ − χξ , (3.97)
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where χφ, χξ are the massive bulk/edge characters for the spin-s, ∆ = s′ + d − 1 field φ and the

spin-s′, ∆ = s + d − 1 gauge parameter (or ghost) field ξ, recalling s′ ≡ s − 1. The subtraction −χξ

arises from the BRST ghost path integral. More explicitly, from (3.85),

χ̂bulk,s = Dd
s

qs′+d−1 + q1−s′

(1 − q)d
− Dd

s′
qs+d−1 + q1−s

(1 − q)d

χ̂edge,s = Dd+2
s−1

qs′+d−2 + q−s′

(1 − q)d−2 − Dd+2
s′−1

qs+d−2 + q−s

(1 − q)d−2 .

(3.98)

For example for s = 2 in d = 3,

χ̂bulk,2 =
5 (q3 + 1) − 3 (q4 + q−1)

(1 − q)3
, χ̂edge,2 =

5 (q2 + q−1) − (q3 + q−2)

1 − q
. (3.99)

Because of the presence of non-positive powers of q, χ̂bulk is manifestly not the character of any

unitary representation of SO(1, d + 1). Indeed, the character integral (3.84) using these naive χ̂ is

badly IR-divergent, due to the presence of non-positive powers of q.

Flipped characters

In fact this pathology is nothing but the character integral incarnation of the negative and zero-

mode mode issues of the path integral mentioned under (3.96). The zeromodes must be omitted,

and the negative modes are dealt with by contour rotations. These prescriptions turn out to trans-

late to a certain “flipping” operation at the level of the characters. More specifically the flipped

character [ χ̂]+ is obtained from χ̂ =
∑

k ck qk by flipping ck qk → −ck q−k for k < 0 and dropping

the k = 0 terms:

[
χ̂
]
+
=

[∑
k

ck qk
]
+
≡

∑
k<0
(−ck) q−k +

∑
k>0

ck qk = χ̂ − c0 −
∑
k<0

ck
(
qk + q−k ) . (3.100)
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For example for s = 2 in d = 3, starting from (3.99) and observing χ̂bulk = −3 q−1 − 4 + · · · and

χ̂edge = −q−2 + 4 q−1 + 4 + · · · , we get

[
χ̂bulk,2

]
+
= χ̂bulk,2 + 3(q−1 + q) + 4 =

10 q3 − 6 q4

(1 − q)3[
χ̂edge,2

]
+
= χ̂edge,2 + (q−2 + q2) − 4(q−1 + q) − 4 =

10 q2 − 2 q3

1 − q
. (3.101)

Explicit expressions for general d and s are given by [ χ̂bulk]+ = (C.194) and [ χ̂edge]+ = (C.196).

Some simple examples are

d s
[
χ̂bulk,s

]
+
· (1 − q)d

[
χ̂edge,s

]
+
· (1 − q)d−2

2 ≥ 2 0 0

3 ≥ 1 2(2s + 1) qs+1 − 2(2s − 1) qs+2 1
3 s(s + 1)(2s + 1) qs − 1

3 (s − 1)s(2s − 1) qs+1

4 ≥ 1 2(2s + 1) q2 1
3 s(s + 1)(2s + 1) q

≥ 3 1 d (qd−1 + q) − qd + 1 + (1 − q)d qd−2 + 1 − (1 − q)d−2

(3.102)

Contributions to ZPI

To be more precise, after implementing the appropriate contour rotations and zeromode sub-

tractions, we get the following expression for the path integral:

ZPI =
1

vol(G)PI

∏
s

(
As i−Ps Zchar,s

)ns
. (3.103)

where ns is the number of massless spin-s fields in the theory, and the different factors appearing

here are defined as follows:

1. Zchar,s is defined by the character integral

log Zchar,s ≡

ˆ ×
0

dt
2t

1 + q
1 − q

( [
χ̂bulk,s

]
+
−

[
χ̂edge,s

]
+
− 2 Dd+2

s−1,s−1

)
, (3.104)
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where
´ ×

0 means
´ ∞

0 with the IR divergence due to the constant term removed:

ˆ ×
0

dt
t

f (t) ≡ lim
L→∞

ˆ ∞
0

dt
t

f (t) e−t/L − f (∞) log L . (3.105)

The flipped
[
χ̂bulk,s

]
+

turns out to be precisely the massless spin-s exceptional series char-

acter χbulk,s: (C.194) = (C.164). Thus the χbulk contribution = ideal gas partition function

Zbulk, pleasingly consistent with the physics picture. The second term is an edge correction

as in the massive case. The third term has no massive counterpart, tied to the presence of

gauge zeromodes: Dd+2
s−1,s−1 counts rank s − 1 Killing tensors on Sd+1.

2. As is due to the zeromode omissions. Denoting M = 2e−γ/ε as in (C.68),

logAs ≡ Dd+2
s−1,s−1

ˆ ×
0

dt
2t

(
2 + q2s+d−4 + q2s+d−2) = 1

2
Dd+2

s−1,s−1 log M4

(2s+d−4)(2s+d−2)

(3.106)

This term looks ugly. Happily, it will drop out of the final result.

3. i−Ps is the spin-s generalization of Polchinski’s phase of the one-loop path integral of Ein-

stein gravity on the sphere [59]. It arises because every negative mode contour rotation adds

a phase factor −i to the path integral. Explicitly,

Ps =

s−2∑
n=0

Dd+2
s−1,n +

s−2∑
n=0

Dd+2
s−2,n = Dd+3

s−1,s−1 − Dd+2
s−1,s−1 + Dd+3

s−2,s−2 . (3.107)

In particular P1 = 0, P2 = Dd+2
1 + Dd+2

0 = d + 3 in agreement with [59]. For d + 1 = 4,

Ps =
1
3 s

(
s2 − 1

)2 and i−Ps = 1,−1, 1, 1, 1,−1, 1, 1, . . .. For d + 1 = 2 mod 4, i−Ps = 1.

4. vol(G)PI is discussed below.
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Volume of G

As mentioned under (3.96), G is the subgroup of gauge transformations generated by the

Killing tensors ξ̄s−1 in the parent interacting theory on the sphere. Equivalently it is the sub-

group of gauge transformations leaving the background invariant. For Einstein gravity, we have

a single massless s = 2 field φ2. The Killing vectors ξ̄1 generate diffeomorphisms rigidly rotat-

ing the sphere, hence G = SO(d + 2). For SU(N) Yang-Mills, we have N2 − 1 massless s = 1

fields φa
1. The N2 − 1 Killing scalars ξ̄a

0 generate constant SU(N) gauge transformations, hence

G = SU(N).16 For the 3D higher-spin gravity theories introduced in section 3.6, we have massless

fields φs of spin s = 2, . . . , n. The Killing tensors ξ̄s−1 turn out to generate G = SU(n)+ × SU(n)−.

vol(G)PI is the volume of G according to the QFT path integral measure. We wish to relate it to

a “canonical” vol(G)c. We use the word “canonical” in the sense of defined in a theory-independent

way. We determine vol(G)PI/vol(G)c given our normalization conventions in appendix C.7.4. Be-

low we summarize the most pertinent definitions and results.

For Einstein gravity, the Killing vector Lie algebra is g = so(d + 2). Picking a standard basis

MI J satisfying [MI J, MKL] = δIK MJL + δJL MIK − δIL MJK − δJK MIL , we define the “canonical”

bilinear form 〈·|·〉c on g to be the unique invariant bilinear normalized such that

〈MI J |MI J〉c ≡ 1 (I , J, no sum) . (3.108)

This invariant bilinear on g = so(d + 2) defines an invariant metric ds2
c on G = SO(d + 2). Closed

orbits generated by MI J then have length
¸

dsc = 2π, and vol(G)c is given by (C.93).

For higher-spin gravity, the Killing tensor Lie algebra g contains so(d + 2) as a subalgebra with

generators MI J . We define 〈·|·〉c on g to be the unique g-invariant bilinear form [68, 69] normalized

by (3.108). vol(G)c is defined using the corresponding metric ds2
c on G.

The Killing tensor commutators are determined by the local gauge algebra [δξ, δξ ′] = δ[ξ,ξ ′] as

in [68]. For Einstein or HS gravity, in our conventions (canonical φ + footnote 15), this gives for

16or a quotient thereof, such as SU(N)/ZN , depending on other data such as additional matter content. Here and in
other instances, we will not try to be precise about the global structure of G.

125



the so(d + 2) Killing vector (sub)algebra of g

[ξ̄1, ξ̄
′
1] =

√
16πGN [ξ̄

′
1, ξ̄1]Lie , (3.109)

where [·, ·]Lie is the standard vector field Lie bracket. In Einstein gravity, GN is the Newton con-

stant. In Einstein + higher-order curvature corrections (section 3.8) or in higher-spin gravity we

take it to define the Newton constant. It is related to a “central charge” C in (C.224).

Building on [68, 71], we find the bilinear 〈·|·〉c determining vol(G)c can then be written as

〈
ξ̄ |ξ̄

〉
c =

4GN
Ad−1

∑
s

ns∑
α=1
(2s + d − 4)(2s + d − 2)

ˆ
Sd+1

ξ̄
(α)
s−1 · ξ̄

(α)
s−1 , (3.110)

where Ad−1 = vol(Sd−1) is the dS horizon area. On the other hand, the path integral measure

computing vol(G)PI is derived from the bilinear 〈ξ |ξ̄〉PI =
M4

2π
´
ξ̄ · ξ̄. From this we can read off the

ratio vol(G)c/vol(G)PI: an awkward product of factors determined by the HS algebra. This turns

out to cancel the awkward eigenvalue product of (3.106), up to a universal factor:

vol(G)c
vol(G)PI

∏
s

A
ns
s =

(
8πGN
Ad−1

) 1
2 dim G

, (3.111)

for all theories covered by [68], i.e. all parity-invariant HS theories consistent at cubic level.

For Yang-Mills, vol(G)c is computed using the metric ds2
c on g defined by the canonically

normalized YM action S =: 1
4
´
〈F |F〉c. For example for SU(N) YM with S = −1

4
´

TrN F2, this

gives vol(G)c = vol(SU(N))TrN = (C.94). A similar but simpler computation gives the analog of

(3.111). See appendix C.7.4 for details on all of the above.
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3.5.3 Result and examples

Thus we arrive at the following universal formula for the one-loop Euclidean path integral for

parity-symmetric (higher-spin) gravity and Yang-Mills gauge theories on Sd+1, d ≥ 3:

Z (1)PI = i−P
K∏

a=0

γdim Ga
a

vol Ga
· exp

ˆ ×
0

dt
2t

1 + q
1 − q

(
χbulk − χedge − 2 dim G

)
(3.112)

• G = G0 × G1 × · · ·GK is the subgroup of (higher-spin) gravitational and Yang-Mills gauge

transformations acting trivially on the background,

γ0 ≡

√
8πGN
Ad−1

, γ1 ≡

√
g2

1
2πAd−3

, · · · (3.113)

where An ≡ Ωn`
n, Ωn = (C.92), the gravitational and YM coupling constants GN and g1, . . . , gK

are defined by the canonically normalized so(d + 2) and YM gauge algebras as explained around

(3.109), and vol Ga is the canonically normalized volume of Ga, defined in the same part.

• For a theory with ns massless spin-s fields

χ =
∑

s

ns χs , dim G =
∑

s

nsDd+2
s−1,s−1 , P =

∑
s

nsPs , (3.114)

where χs = [ χ̂s]+ are the flipped versions (3.100) of the naive characters (3.98), with examples in

(3.102) and general formulae in (C.194) and (C.196), and Ps = (3.107) is the spin-s generalization

of the s = 2 phase P2 = d + 3 found in [59].

• The heat-kernel regularized integral can be evaluated using (C.57), as spelled out in appendix

C.3.3. For odd d + 1, the finite part can alternatively be obtained by summing residues.
´ ×

0 means integration with the IR log-divergence from the constant −2 dim G term removed as in

(3.105). The constant term contribution is then dim G ·
(
c ε−1 + log(2π)

)
, so when keeping track of
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linearly divergent terms is not needed, one can replace (3.112) by

Z (1)PI = i−P
∏

a

(2πγa)
dim Ga

vol Ga
· exp

ˆ ∞
0

dt
2t

1 + q
1 − q

(
χbulk − χedge

)
(mod ε−1) (3.115)

• The case d = 2 requires some minor amendments, discussed in appendix C.8.1: for s ≥ 2,

nothing changes except Ps, and χ = 0, resulting in (C.229). Yang-Mills gives (C.232), or mod ε−1

(C.233), equivalent to putting A−1 ≡ 1/2π` in (3.113), and Chern-Simons (C.235).

• The above can be extended to more general theories. For examples (s, s′) partially massless gauge

fields have characters given by (C.194) and (C.196), and contribute Dd+2
s−1,s′ to dim G. Fermionic

counterparts can be derived following the same steps, with χ̂edge given by (3.93). Fermionic (s, s′)

PM fields give negative contributions −Dd+2
s−1,s′, 1

2 ,...,
1
2

to dim G.

Example: coefficient αd+1 of log-divergent term

The heat kernel coefficient αd+1, i.e. the coefficient of the log-divergent term of log Z , can

be read off simply as the coefficient of the 1/t term in the small-t expansion of the integrand.

As explained in C.3.3, we can just use the original, naive integrand F̂(t) = 1
2t ( χ̂bulk − χ̂edge) for

this purpose, obtained from (3.98). For e.g. a massless spin-s field on S4 this immediately gives

α
(s)
4 = −

1
90

(
75 s4 − 15 s2 + 2

)
, in agreement with eq. (2.32) of [62]. For s = 1, 2,

d 3 5 7 9 11 13 15

α
(1)
d+1 −31

45 −1271
1890 −4021

6300 −456569
748440 −1199869961

2043241200 − 893517041
1571724000 −17279945447657

31261590360000

α
(2)
d+1 −

571
45 −3181

140 −198851
5670 −74203873

1496880 −75059846731
1135134000 −114040703221

1347192000 −821333912103503
7815397590000

(3.116)

Another case of general interest is a partially massless field with (s, s′) = (42, 26) on S42:

α
(42,26)
42 = −5925700837995152105818399547396345088821635783305199815444602762021561970991151947221547

5348867203248512743202760066455665920000000000 ∼ −1042
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Example: SU(4) Yang-Mills on S5

As a simple illustration and test of (3.112), consider SU(4) YM theory on S5 of radius ` with

action S = 1
4g2

´
Tr4 F2, so G = SU(4), n1 = dim G = 15, vol(G)c =

(2π)9
6 as given by (C.94),

γ =
√

g2

(2π)2` , and P = 0. Bulk and edge characters are read off from table (3.102). Thus

log Z (1)PI = log
(
g/
√
`
)15

(2π)15 · (2π)
9

6

+ 15 ·
ˆ ×

0

dt
2t

1 + q
1 − q

(
6 q2

(q − 1)4
−

2 q
(q − 1)2

− 2
)
. (3.117)

The finite part can be evaluated by simply summing residues, similar to (3.50):

log Zfin
PI = log

(
g/
√
`
)15

1
6 (2π)9

+ 15 ·
( 5 ζ(3)

16 π2 +
3 ζ(5)
16 π4

)
. (3.118)

The U(1) version of this agrees with [90] eq. (2.27). We could alternatively use (C.57) as in C.3.3,

which includes the UV divergent part: log Z (1)PI = log Zfin
PI + 15

( 9π
8 ε
−5`5 − 5π

8 ε
−3`3 − 7π

16 ε
−1`

)
.

Example: Einstein gravity on S3, S4 and S5

The exact one-loop Euclidean path integral for Einstein gravity on the sphere can be worked

out similarly. The S3 case is obtained in (C.231). The S4 and S5 cases are detailed in C.3.3, with

results including UV-divergent terms given in (C.229), (C.82), (C.85). The finite parts are:

Zfin
PI = i−P ·

1
vol(G)c

(
8πGN
Ad−1

) 1
2 dim G

· Zfin
char , (3.119)

Sd+1 i−P vol(G)c Ad−1 dimG log Zfin
char

S3 −i (2π)4 2π` 6 6 log(2π)

S4 −1 2
3 (2π)

6 4π`2 10 −571
45 log(`/L) + 715

48 − log 2 − 47
3 ζ
′(−1) + 2

3 ζ
′(−3)

S5 i 1
12 (2π)

9 2π2`3 15 15 log(2π) + 65 ζ(3)
48 π2 +

5 ζ(5)
16 π4

(3.120)

Checks: We rederive the S3 result in the Chern-Simons formulation of 3D gravity [143] in appendix
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C.8.2, and find precise agreement, with the phase matching for odd framing of the Chern-Simons

partition function (it vanishes for even framing). The coefficient −571
45 of the log-divergent term of

the S4 result agrees with [51]. The phases agree with [59]. The powers of GN agree with zeromode

counting arguments of [81, 128]. The full one-loop partition function on S4 was calculated using

zeta-function regularization in [58]. Upon correcting an error in the second number of their equa-

tion (A.36) we find agreement. As far as we know, the zeta-function regularized Z (1)PI has not been

explicitly computed before for Sd+1, d ≥ 4.

Higher-spin theories

Generic Vasiliev higher-spin gravity theories have infinite spin range and dim G = ∞, evidently

posing problems for (3.112). We postpone discussion of this case to section 3.9. Below we consider

a 3D higher-spin gravity theory with finite spin range s = 2, . . . , n.

3.6 3D HSn gravity and the topological string

As reviewed in appendix C.8.2, 3D Einstein gravity with positive cosmological constant in

Lorentzian or Euclidean signature can be formulated as an SL(2,C) resp. SU(2) × SU(2) Chern-

Simons theory [143].17 This has a natural extension to an SL(n,C) resp. SU(n) × SU(n) Chern-

Simons theory, discussed in appendix C.8.3, which can be viewed as an s ≤ n dS3 higher-

spin gravity theory, analogous to the AdS3 theories studied e.g. in [145–148, 153, 154]. The

Lorentzian/Euclidean actions SL/SE are

SL = iSE = (l + iκ) SCS[A+] + (l − iκ) SCS[A−] , l ∈ N, κ ∈ R+ , (3.121)

where SCS[A] =
1

4π
´

Trn
(
A ∧ dA + 2

3A ∧ A ∧ A
)

and A± are sl(n)-valued connections with

reality condition A∗± = A∓ for the Lorentzian theory and A†± = A± for the Euclidean theory.

The Chern-Simons formulation allows all-loop exact results, providing a useful check of our

17Or more precisely an SO(1, 3) = SL(2,C)/Z2 or SO(4) =
(
SU(2) × SU(2)

)
/Z2 CS theory. For the higher-spin

extensions, we could similarly consider quotients. We will use the unquotiented groups here.
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result (3.112) for Z (1)PI obtained in the metric-like formulation. Besides this, we observed a number

of other interesting features, collected in appendix C.8.3, and summarized below.

Landscape of vacua (C.8.3)

The theory has a set of dS3 vacua (or round S3 solutions in the Euclidean theory), corresponding

to different embeddings of sl(2) into sl(n), labeled by n-dimensional representations

R = ⊕ama , n =
∑

a

ma . (3.122)

of su(2), i.e. by partitions of n =
∑

a ma. The radius in Planck units `/GN and Z (0) = e−SE depend

on the vacuum R as

log Z (0) =
2π`
4GN

= 2πκ TR , TR =
1
6

∑
a

ma(m2
a − 1) . (3.123)

Note that S(0) = log Z (0) takes the standard Einstein gravity horizon entropy form. The entropy is

maximized for the principal embedding, i.e. R = n, for which Tn =
1
6n(n2 − 1). The number of

vacua equals the number of partitions of n:

Nvac ∼ e2π
√

n/6 . (3.124)

For, say, n ∼ 2 × 105, we get Nvac ∼ 10500, with maximal entropy S(0) |R=n ∼ 1015κ.

Higher-spin algebra and metric-like field content (C.8.3)

As worked out in detail for the AdS analog in [153], the fluctuations of the Chern-Simons

connection for the principal embedding vacuum R = n correspond in a metric-like description to

a set of massless spin-s fields with s = 2, 3, . . . , n. The Euclidean higher-spin algebra is su(n)+ ⊕

su(n)−, which exponentiates to G = SU(n)+ × SU(n)−. The higher-spin field content of the R = n

vacuum can also be inferred from the decomposition of su(n) into irreducible representations of
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su(2), with S ∈ su(2) acting on L ∈ su(n) as δL = ε[R(S), L], to wit,

(n2 − 1)su(n) =

n−1∑
r=1
(2r + 1)su(2) . (3.125)

The (2r + 1, 1) and (1, 2r + 1) of so(4) = su(2)+ ⊕ su(2)− correspond to rank-r self-dual and anti-

self-dual Killing tensors on S3, the zeromodes of (3.94) for a massless spin-(r+1) field, confirming

R = n has ns = 1 massless spin-s field for s = 2, . . . , n. For different vacua R, one gets decompo-

sitions different from (3.125), associated with different field content. For example for n = 12 and

R = 6 ⊕ 4 ⊕ 2, we get n1 = 2, n2 = 7, n3 = 8, n4 = 6, n5 = 3, n6 = 1.

One-loop and all-loop partition function (C.8.3-C.8.3)

In view of the above higher-spin interpretation, we can compute the one-loop Euclidean path

integral on S3 for l = 0 from our general formula (3.112) for higher-spin gravity theories in the

metric-like formalism. The dS3 version of (3.112) is worked out in (C.228)-(C.230), and applied

to the case of interest in (C.267), using (3.123) to convert from `/GN to κ. The result is

Z (1)PI = in2−1 ·

(
2π/
√
κ
)dim G

vol(G)Trn
, (3.126)

where vol(G)Trn =
(√

n
∏n

s=2(2π)
s/Γ(s)

)2 as in (C.94).

This can be compared to the weak-coupling limit of the all-loop expression (C.269)-(C.271),

obtained from the known exact partition function of SU(n)k+ × SU(n)k− Chern-Simons theory on

S3 by analytic continuation k± → l ± iκ,

Z(R)r = eirφ ·

������ 1
√

n
1

(n + l + iκ)
n−1

2

n−1∏
p=1

(
2 sin

πp
n + l + iκ

) (n−p)

������
2

· e2πκTR . (3.127)

Here φ = π
4
∑
± c(l±iκ)with c(k) ≡ (n2−1)

(
1− n

n+k

)
, and r ∈ Z labels the choice of framing needed

to define the Chern-Simons theory as a QFT, discussed in more detail below (C.249). Canonical

framing corresponds to r = 0. Z(R) is interpreted as the all-loop quantum-corrected Euclidean
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partition function of the dS3 static patch in the vacuum R.

The weak-coupling limit κ →∞ of (3.127) precisely reproduces (3.126), with the phase match-

ing for odd framing r . Alternatively this can be seen more directly by a slight variation of the

computation leading to (C.235). This provides a check of (3.112), in particular its normalization

in the metric-like formalism, and of the interpretation of (3.121) as a higher-spin gravity theory.

Large-n limit and topological string dual (C.8.3)

Vasliev-type hs(so(d + 2)) higher-spin theories (section 3.9) have infinite spin range but finite

`d−1/GN. To mimic this case, consider the n → ∞ limit of the theory at l = 0. The semiclassical

expansion is reliable only if n � κ. Using `/GN ∼ κTR, this translates to n TR � `/GN, which

becomes n4 � `/GN for the principal vacuum R = n, and n � `/GN at the other extreme for

R = 2 ⊕ 1 ⊕ · · · ⊕ 1. Either way, the Vasiliev-like limit n→∞ at fixed S(0) = 2π`/4GN is strongly

coupled.

However (3.127) continues to make sense in any regime, and in particular does have a weak

coupling expansion in the n → ∞ ’t Hooft limit. Using the large-n duality between U(n)k Chern-

Simons on S3 and closed topological string theory on the resolved conifold [79, 80], the partition

function (3.127) of de Sitter higher-spin quantum gravity in the vacuum R can be expressed in

terms of the weakly-coupled topological string partition function Z̃top, (C.274):

Z(R)0 =
���Z̃top(gs, t) e−πTR ·2πi/gs

���2 (3.128)

where (in the notation of [80]) the string coupling constant gs and the resolved conifold Kähler

modulus t ≡
´

S2 J + iB are given by

gs =
2π

n + l + iκ
, t = igsn =

2πin
n + l + iκ

. (3.129)

Note that
��e−πTR ·2πi/gs

��2 = e2πκTR = eS
(0)

, and that κ > 0 implies
´

S2 J > 0 and Im gs , 0. The

dependence on n at fixed S(0) is illustrated in fig. 3.4. We leave further exploration of the dS

133



quantum gravity - topological string duality suggested by these observations to future work.

3.7 Euclidean thermodynamics

In section 3.2.3 we defined and computed the bulk partition function, energy and entropy of the

static patch ideal gas. In this section we define and compute their Euclidean counterparts, building

on the results of the previous sections.

3.7.1 Generalities

Consider a QFT on a dSd+1 background with curvature radius `. Wick-rotated to the round

sphere metric gµν of radius ` 〈C.4.3〉, we get the Euclidean partition function:

ZPI(`) ≡
´
DΦ e−SE [Φ] (3.130)

where Φ collectively denotes all fields. The quantum field theory is to be thought of here as a

(weakly) interacting low-energy effective field theory with a UV cutoff ε .

Recalling the path integral definition (C.116) of the Euclidean vacuum |O〉 paired with its dual

〈O | as ZPI = 〈O |O〉, the Euclidean expectation value of the stress tensor is

〈Tµν〉 ≡
〈O |Tµν |O〉
〈O |O〉

= −
2
√
g

δ

δgµν
log ZPI = −ρPI gµν , (3.131)

The last equality, in which ρPI is a constant, follows from SO(d+2) invariance of the round sphere

background. Denoting the volume of the sphere by V = vol(Sd+1
`
) = Ωd+1`

d+1,

−ρPIV = 1
d+1
´√

g
〈
T µ
µ

〉
= 1

d+1`∂` log ZPI = V∂V log ZPI (3.132)

Reinstating the radius `, the sphere metric in the S coordinates of (C.98) takes the form

ds2 = (1 − r2/`2)dτ2 + (1 − r2/`2)−1dr2 + r2dΩ2 , (3.133)
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where τ ' τ + 2π`. Wick rotating τ → iT yields the static patch metric. Its horizon at r = `

has inverse temperature β = 2π`. On a constant-T slice, the vacuum expectation value of the

Killing energy density corresponding to translations of T equals ρPI at the location r = 0 of the

inertial observer. Away from r = 0, it is redshifted by a factor
√

1 − r2/`2. The Euclidean vacuum

expectation value UPI of the total static patch energy then equals ρPI
√

1 − r2/`2 integrated over a

constant-T slice:

UPI = ρPIΩd−1

ˆ `

0
dr rd−1 = ρPI v , v =

Ωd−1`
d

d
=

V
2π`

. (3.134)

Note that v is the volume of a d-dimensional ball of radius ` in flat space, so effectively we can

think of UPI as the energy of an ordinary ball of volume v with energy density ρPI.

Combining (3.132) and (3.134), the Euclidean energy on this background is obtained as

2π`UPI = V ρPI = −
1

d+1 `∂` log ZPI (3.135)

and the corresponding Euclidean entropy SPI ≡ log ZPI + βUPI is

SPI =
(
1 − 1

d+1`∂`
)

log ZPI =
(
1 − V∂V

)
log ZPI (3.136)

SPI can thus be viewed as the Legendre transform of log ZPI trading V for ρPI:

d log ZPI = −ρPI dV, SPI = log ZPI + V ρPI , dSPI = VdρPI . (3.137)

The above differential relations express the first law of (Euclidean) thermodynamics for the system

under consideration: using V = βv and ρPI = UPI/v, they can be rewritten as

d log ZPI = −UPI dβ − βρPI dv , dSPI = β dUPI − βρPI dv . (3.138)

Viewing v as the effective thermodynamic volume as under (3.134), these take the familiar form
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of the first law, with pressure p = −ρ, the familiar cosmological vacuum equation of state.

The expression (3.136) for the Euclidean entropy and (3.137) naturally generalize to Euclidean

partition functions ZPI(`) for arbitrary background geometries gµν(`) ≡ `2g̃µν with volume V(`) =

`d+1Ṽ . In contrast, the expression (3.135) for the Euclidean energy is specific to the sphere. A

generic geometry has no isometries, so there is no notion of Killing energy to begin with. On the

other hand, the density ρPI appearing in (3.137) does generalize to arbitrary backgrounds. The

last equality in (3.131) and the physical interpretation of ρPI as a Killing energy density no longer

apply, but (3.132) remains valid.

3.7.2 Examples

Free d = 0 scalar

To connect to the familiar and to demystify the ubiquitous Lin(e−2πν) =
∑

k e−2πkν/kn terms

encountered later, consider a scalar of mass m on an S1 of radius `, a.k.a. a harmonic oscillator of

frequency m at β = 2π` = V . Using (C.70) and applying (3.135)-(3.136) with ν(`) ≡ m`,

log ZPI =
π`

ε
− πν + Li1(e−2πν)

2π`UPI = V ρPI = −
π`

ε
+ πν coth(πν)

SPI = Li1(e−2πν) + 2πν Li0(e−2πν) ,

(3.139)

Mod ∆E0 ∝ −ε
−1, these are the textbook canonical formulae turned into polylogs by (3.51).

Free scalar in general d

The Euclidean action of a free scalar on Sd+1 is

SE [φ] =
1
2

ˆ
√
g φ

(
−∇2 + m2 + ξR

)
φ, (3.140)
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with R = d(d + 1)/`2 the Sd+1 Ricci scalar. The total effective mass m2
eff =

(
( d2 )

2 + ν2)/`2 is

m2
eff = m2 + ξR ⇒ ν =

√
(m`)2 − η , η ≡

( d
2
)2
− d(d + 1) ξ . (3.141)

Neither ZPI nor the bulk thermodynamic quantities of section 3.2 distinguish between the m2 and

ξR contributions to m2
eff , but UPI and SPI do, due to the ∂` derivatives in (3.135)-(3.136). This

results in an additional explicit dependence on ξ, as

`∂` log ZPI =
(
−ε∂ε + J · ν∂ν

)
log ZPI , J =

`∂`ν

ν
=
(m`)2

ν2 =
ν2 + η

ν2 . (3.142)

For the minimally coupled case ξ = 0, the Euclidean and bulk thermodynamic quantities agree,

but in general not if ξ , 0. To illustrate this we consider the d = 2 example. Using (3.50) and

(C.60), restoring `, and putting ν ≡
√
(m`)2 − η with η = 1 − 6ξ,

log ZPI =
π`3

2ε3 −
πν2`

4ε
+
πν3

6
−

2∑
k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k . (3.143)

The corresponding Euclidean energy UPI = ρPI π`
2 (3.135) is given by

2π`UPI = V ρPI = −
π`3

2ε3 +
π(ν2 + 2

3η)`

4ε
−
π

6
(ν2 + η)ν coth(πν) (3.144)

where V = vol(S3
`
) = 2π2`3. For minimal coupling ξ = 0 (i.e. η = 1), Ufin

PI equals Ufin
bulk (3.49),

but not for ξ , 0. For general d, ξ, Ufin
PI is given by (3.48) with the overall factor m2 the mass m2

appearing in the action rather than m2
eff , in agreement with [155] or (6.178)-(6.180) of [156]. The

entropy SPI = log ZPI + 2π`UPI (3.136) is

SPI =
πη

6

( `
ε
− ν coth(πν)

)
−

3∑
k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k , (3.145)
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where we used coth(πν) = 1 + 2 Li0(e−2πν) (3.51). Since ZPI = Zbulk in general for scalars and

UPI = Ubulk for minimally coupled scalars, SPI = Sbulk for minimally coupled scalars. Indeed, after

conversion to Pauli-Villars regularization, (3.145) equals (3.52) if η = 1. As a check on the results,

the first law dSPI = VdρPI (3.137) can be verified explicitly.

In the m` → ∞ limit, SPI →
π
6η(ε

−1 − m)`, reproducing the well-known scalar one-loop

Rindler entropy correction computed by a Euclidean path integral on a conical geometry [38, 39,

130, 131, 135, 157]. Note that SPI < 0 when η < 0. Indeed as reviewed in the Rindler context

in appendix C.5.5, SPI does not have a statistical mechanical interpretation on its own. Instead it

must be interpreted as a correction to the large positive classical gravitational horizon entropy. We

discuss this in the de Sitter context in section 3.8.

A pleasant feature of the sphere computation is that it avoids replicated or conical geometries:

instead of varying a deficit angle, we vary the sphere radius `, preserving manifest SO(d + 2)

symmetry, and allowing straightforward exact computation of the Euclidean entropy directly from

ZPI(`), for arbitrary field content.

Free 3D massive spin s

Recall from (3.90) that for a d = 2 massive spin-s ≥ 1 field of mass m, the bulk part of

log ZPI is twice that of a d = 2 scalar (3.143) with ν =
√
(m`)2 − η, η = (s − 1)2, while the edge

part is −s2 times that of a d = 0 scalar, as in (3.139), with the important difference however that

ν =
√
(m`)2 − η instead of ν = m`. Another important difference with (3.139) is that in the case

at hand, (3.135) stipulates V ρPI = 2π`UPI = −
1

d+1`∂` log ZPI with d = 2 instead of d = 0. As a

result, for the bulk contribution, we can just copy the scalar formulae (3.144) and (3.145) for UPI

and SPI setting η = (s− 1)2, while for the edge contribution we get something rather different from

the harmonic oscillator energy and entropy (3.139):

V ρPI = 2 × (3.144) − s2 (− π3 1
ε ` +

π
3
(
ν2 + η

)
ν−1 coth(πν)

)
(3.146)

SPI = 2 × (3.145) − s2 ( 2π
3 (

1
ε ` − ν) +

π
3ην

−1 coth(πν) + Li1(e−2πν) + 2π
3 ν Li0(e−2πν)

)
(3.147)
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The edge contribution renders SPI negative for all `. In particular, in the m` → ∞ limit, SPI →

π
3
(
(s − 1)2 − 2s2) (

ε−1 − m
)
` → −∞: although the bulk part gives a large positive contribution for

s ≥ 2, the edge part gives an even larger negative contribution. Going in the opposite direction, to

smaller m`, we hit the d = 2, s ≥ 1 unitarity bound at ν = 0, i.e. at m` =
√
η = s − 1. Approaching

this bound, the bulk contribution remains finite, while the edge part diverges, again negatively. For

s = 1, SPI → log(m`), due to the Li1(e−2πν) term, while for s ≥ 2, more dramatically, we get a

pole SPI → −
s2(s−1)

6
(
m` − (s− 1)

)−1, due to the ην−1 coth(πν) term. Below the unitarity bound, i.e.

when ` < (s − 1)/m, SPI becomes complex. To be consistent as a perturbative low-energy effective

field theory valid down to some length scale ls, massive spin-s ≥ 2 particles on dS3 must satisfy

m2 > (s − 1)2/l2
s .

Massless spin 2

From the results and examples in section 3.5.3, log Z (1)PI = log Z (1)PI,div + log Z (1)PI,fin −
(d+3)π

2 i,

log Z (1)PI,fin(`) = −
Dd

2
log

A(`)
4GN

+ α
(2)
d+1 log

`

L
+ Kd+1 (3.148)

Dd = dim so(d + 2) = (d+2)(d+1)
2 , A(`) = Ωd−1`

d−1, α(2)d+1 = 0 for even d and given by (3.116) for

odd d. L is an arbitrary length scale canceling out of the sum of finite and divergent parts, and

Kd+1 an exactly computable numerical constant. Explicitly for d = 2, 3, 4, from (3.120):

d log Z (1)PI,div log Z (1)PI,fin

2 0 − 9π
2

1
ε ` −3 log

(
π

2GN
`
)
+ 5 log(2π)

3 8
3

1
ε4 `

4 − 32
3

1
ε2 `

2 − 571
45 log

(
2e−γ
ε L

)
−5 log

(
π

GN
`2

)
− 571

45 log
(

1
L `

)
− log

(
8π
3

)
+ 715

48 −
47 ζ ′(−1)

3 +
2 ζ ′(−3)

3

4 15π
8

1
ε5 `

5 − 65π
24

1
ε3 `

3 − 105π
16

1
ε ` −15

2 log
(
π2

2GN
`3

)
+ log(12) + 27

2 log(2π) + 65 ζ(3)
48 π2 +

5 ζ(5)
16 π4

(3.149)

The one-loop energy and entropy (3.135)-(3.136) are split accordingly. The finite parts are

S(1)PI,fin = log Z (1)PI,fin + V ρ(1)fin , V ρ(1)fin =
1
2

d−1
d+1 Dd −

1
d+1α

(2)
d+1 , (3.150)
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where as always 2π`U = V ρ with V = Ωd+1`
d+1. For d = 2, 3, 4:

d V ρ(1)div V ρ(1)fin S(1)PI,div

2 0 + 3π
2

1
ε ` 1 −3π 1

ε `

3 −8
3

1
ε4 `

4 + 16
3

1
ε2 `

2 5
2 +

571
180 −16

3
1
ε2 `

2 − 571
45 log

(
2e−γ
ε L

)
4 −15π

8
1
ε5 `

5 + 13π
8

1
ε3 `

3 + 21π
16

1
ε `

9
2 −13π

12
1
ε3 `

3 − 21π
4

1
ε `

(3.151)

Like their quasicanonical bulk counterparts, the Euclidean quantities obtained here are UV-divergent,

and therefore ill-defined from a low-energy effective field theory point of view. However if the

metric itself, i.e. gravity, is dynamical, these the UV-sensitive terms can be absorbed into standard

renormalizations of the gravitational coupling constants, rendering the Euclidean thermodynamics

finite and physically meaningful. We turn to this next.

3.8 Quantum gravitational thermodynamics

In section 3.7 we considered the Euclidean thermodynamics of effective field theories on a

fixed background geometry. In general the Euclidean partition function and entropy depend on

the choice of background metric; more specifically on the background sphere radius `. Here we

specialize to field theories which include the metric itself as a dynamical field, i.e. we consider

gravitational effective field theories. We denote ZPI, ρPI and SPI byZ, % and S in this case:

Z =

´
Dg · · · e−SE [g,...] , SE [g, . . .] =

1
8πG

ˆ
√
g

(
Λ − 1

2 R + · · ·
)
. (3.152)

The geometry itself being dynamical, we have ∂`Z = 0, so (3.135)-(3.136) reproduce (3.1):

% = 0 , S = logZ , (3.153)

We will assume d ≥ 2, but it is instructive to first consider d = 0, i.e. 1D quantum gravity coupled

to quantum mechanics on a circle. Then Z =
´ dβ

2β Tr e−βH , where β is the circle size and H is
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the Hamiltonian of the quantum mechanical system shifted by the 1D cosmological constant. To

implement the conformal factor contour rotation of [72] implicit in (3.153), we pick an integration

contour β = 2π` + iy with y ∈ R and ` > 0 the background circle radius. Then Z = πiN(0)

where N(E) is the number of states with H < E . This being `-independent implies % = 0. A

general definition of microcanonical entropy is Smic(E) = logN(E). Thus, modulo the content-

independent πi factor inZ, S = logZ is the microcanonical entropy at zero energy in this case.

Of course d = 0 is very different from the general-d case, as there is no classical saddle of

the gravitational action, and no horizon. For d ≥ 2 and Λ → 0, the path integral has a semi-

classical expansion about a round sphere saddle or radius `0 ∝ 1/
√
Λ, and S is dominated by the

leading tree-level horizon entropy (3.2). As in the AdS-Schwarzschild case reviewed in C.5.5, the

microscopic degrees of freedom accounting for the horizon entropy, assuming they exist, are in-

visible in the effective field theory. A natural analog of the dual large-N CFT partition function on

S1× Sd−1 microscopically computing the AdS-Schwarzschild free energy may be some dual large-

N quantum mechanics coupled to 1D gravity on S1 microscopically computing the dS static patch

entropy. These considerations suggest interpreting S = logZ as a macroscopic approximation to

a microscopic microcanonical entropy, with the semiclassical/low-energy expansion mapping to

some large-N expansion.

The one-loop corrected Z is obtained by expanding the action to quadratic order about its

sphere saddle. The Gaussian Z (1)PI was computed in previous sections. Locality and dimensional

analysis imply that one-loop divergences are ∝
´

Rn with 2n ≤ d + 1. Picking counterterms

canceling all (divergent and finite) local contributions of this type in the limit `0 ∝ 1/
√
Λ→∞, we

get a well-renormalized S = logZ to this order. Proceeding along these lines would be the most

straightforward path to the computational objectives of this section. However, when pondering

comparisons to microscopic models, one is naturally led to wondering what the actual physics

content is of what has been computed. This in turn leads to small puzzles and bigger questions,

such as:

1. A natural guess would have been that the one-loop correction to the entropy S is given by a
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renormalized version of the Euclidean entropy S(1)PI (3.136). However (3.153) says it is given

by a renormalized version of the free energy log Z (1)PI . In the examples given earlier, these

two look rather different. Can these considerations be reconciled?

2. Besides local UV contributions absorbed into renormalized coupling constants determining

the tree-level radius `0, there will be nonlocal IR vacuum energy contributions (pictorially

Hawking radiation in equilibrium with the horizon), shifting the radius from `0 to ¯̀ by grav-

itational backreaction. The effect would be small, ¯̀ = `0 +O(G), but since the leading-order

horizon entropy is S(`) ∝ `d−1/G, we have S( ¯̀) = S(`0) +O(1), a shift at the one-loop order

of interest. The horizon entropy term in (3.153) is S(0) = S(`0), apparently not taking this

shift into account. Can these considerations be reconciled?

3. At any order in the large-`0 perturbative expansion, UV-divergences can be absorbed into a

renormalization of a finite number of renormalized coupling constants, but for the result to be

physically meaningful, these must be defined in terms of low-energy physical “observables”,

invariant under diffeomorphisms and local field redefinitions. In asymptotically flat space,

one can use scattering amplitudes for this purpose. These are unavailable in the case at hand.

What replaces them?

To address these and other questions, we follow a slghtly less direct path, summarized below, and

explained in more detail including examples in appendix C.9.

Free energy/quantum effective action for volume

We define an off-shell free energy/quantum effective action Γ(V) = − log Z(V) for the volume, the

Legendre transform of the off-shell entropy/moment-generating function S(ρ):18

S(ρ) ≡ log
´
Dg e−SE [g]+ρ

´√
g , log Z(V) ≡ S − V ρ, V = ∂ρS =

〈 ´√
g
〉
ρ
. (3.154)

At large V , the geometry semiclassically fluctuates about a round sphere. Parametrizing the mean

18Non-metric fields in the path integral are left implicit. Note “off-shell” = on-shell for c.c. Λ′ = Λ − 8πG ρ.
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volume V by a corresponding mean radius ` as V(`) ≡ Ωd+1`
d+1, we have

Z(`) =
´

tree
dρ
´
Dg e−SE [g]+ρ(

´√
g−V(`)) , (3.155)

where
´

tree dρ means saddle point evaluation, i.e. extremization. The Legendre transform (3.154)

is the same as (3.137), so we get thermodynamic relations of the same form as (3.135)-(3.137):

dS = Vdρ, d log Z = −ρ dV , ρ = − 1
d+1`∂` log Z /V , S =

(
1 − 1

d+1`∂`
)

log Z . (3.156)

On-shell quantities are obtained at ρ = 0, i.e. at the minimum ¯̀ of the free energy − log Z(`):

% = ρ( ¯̀) = 0 , S = S( ¯̀) = log Z( ¯̀) ,
〈 ´√

g
〉
= Ωd+1 ¯̀d+1 . (3.157)

Tree level

At tree level (3.155) evaluates to

log Z (0)(`) = −SE [g`] , g` = round Sd+1 metric of radius ` , (3.158)

readily evaluated for any action using Rµνρσ = (gµρgνσ − gµσgνρ)/`
2, taking the general form

log Z (0) =
Ωd+1`

d+1

8πG
(
−Λ +

d(d+1)
2 `−2 + z1 l2

s `
−4 + z2 l4

s `
−6 + · · ·

)
. (3.159)

The zn are Rn+1 coupling constants and ls � ` is the length scale of UV-completing physics. The

off-shell entropy and energy density are obtained from log Z (0) as in (3.156).

S(0) =
Ωd−1`

d−1

4G
(
1 + s1 l2

s `
−2 + · · ·

)
, ρ(0) =

1
8πG

(
Λ −

d(d−1)
2 `−2 + ρ1 l2

s `
−4 + · · ·

)
(3.160)
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where sn, ρn ∝ zn and we used Ωd+1 =
2π
d Ωd−1. The on-shell entropy and radius are given by

S(0) = S(0)(`0) , ρ(0)(`0) = 0 , (3.161)

either solved perturbatively for `0(Λ) or, more conveniently, viewed as parametrizing Λ(`0).

One loop

The one-loop order, (3.155) is a by construction tadpole-free Gaussian path integral, (C.306):

log Z = log Z (0) + log Z (1) , log Z (1) = log Z (1)PI + log Zct , (3.162)

with Z (1)PI as computed in sections 3.4-3.5 and log Zct(`) = −SE,ct[g`] a polynomial counterterm.

We define renormalized coupling constants as the coefficients of the `d+1−2n terms in the ` → ∞

expansion of log Z , and fix log Zct by equating tree-level and renormalized coefficients of the

polynomial part, which amounts to the renormalization condition

lim
`→∞

∂` log Z (1) = 0 , (3.163)

in even d + 1 supplemented by log Zct(0) ≡ −αd+1 log(2e−γL/ε), implying L∂L log Z (0) = αd+1.

Example: 3D Einstein gravity + minimally coupled scalar (C.9.4), putting ν ≡
√

m2`2 − 1,

log Z (1) = −3 log
2π`
4G
+ 5 log(2π) −

2∑
k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k +
πν3

6
−

πm3`3

6
+
πm`

4
. (3.164)

The last two terms are counterterms. The first two are nonlocal graviton terms. The scalar part is

O(1/m`) for m` � 1 but goes nonlocal at m` ∼ 1, approaching − log(m`) for m` � 1.

Defining ρ(1) and S(1) from log Z (1) as in (3.156), and the quantum on-shell ¯̀ = `0 + O(G) as in
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(3.157), the quantum entropy can be expressed in two equivalent ways, (C.313)-(C.314):

A : S = S(0)( ¯̀) + S(1)( ¯̀) + · · · , B : S = S(0)(`0) + log Z (1)(`0) + · · · (3.165)

where the dots denote terms neglected in the one-loop approximation. This simultaneously answers

questions 1 and 2 on our list, reconciling intuitive (A) and (3.153)-based (B) expectations. To make

this physically obvious, consider the quantum static patch as two subsystems, geometry (horizon)

+ quantum fluctuations (radiation), with total energy ∝ ρ = ρ(0) + ρ(1) = 0. If ρ(0) = 0, the

horizon entropy is S(0)(`0). But here we have ρ = 0, so the horizon entropy is actually S(0)( ¯̀) =

S(0)(`0) + δS(0), where by the first law (3.156), δS(0) = Vδρ(0) = −V ρ(1). Adding the radiation

entropy S(1) and recalling log Z (1) = S(1) − V ρ(1) yields S = A = B. Thus A = B is just the usual

small+large = system+reservoir approximation, the horizon being the reservoir, and the Boltzmann

factor e−V ρ(1) = e−βU(1) in Z (1) accounting for the reservoir’s entropy change due to energy transfer

to the system.

Viewing the quantum contributions as (Hawking) radiation has its picturesque merits and cor-

rectly conveys their nonlocal/thermal character, e.g. Li(e−2πν) ∼ e−βm for m` � 1 in (3.164), but

might incorrectly convey a presumption of positivity of ρ(1) and S(1). Though positive for mini-

mally coupled scalars (fig. C.12), they are in fact negative for higher spins (figs. C.13, C.14), due

to edge and group volume contributions. Moreover, although the negative-energy backreaction

causes the horizon to grow, partially compensating the negative S(1) by a positive δS(0) = −V ρ(1),

the former still wins: S(1) ≡ S − S(0) = S(1) − V ρ(1) = log Z (1) < 0.

Computational recipe and examples

For practical purposes, (B) is the more useful expression in (3.165). Together with (3.161) comput-

ing S(0), the exact results for Z (1)PI obtained in previous sections (with γ0 =
√

2π/S(0), see (3.167)

below), and the renormalization prescription outlined above, it immediately gives

S = S(0) + S(1) + · · · , S(0) = S(0)(`0) , S(1) = log Z (1)(`0) (3.166)
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in terms of the renormalized coupling constants, for general effective field theories of gravity

coupled to arbitrary matter and gauge fields.

For 3D gravity, this gives S = S(0) − 3 logS(0) + 5 log(2π) + O(1/S(0)). We work out and

plot several other concrete examples in appendix C.9.4: 3D Einstein gravity + scalar (C.9.4, fig.

C.12), 3D massive spin s (C.9.4, fig. C.13), 2D scalar (C.9.4), 4D massive spin s (C.9.4, fig. C.14),

and 3D,4D,5D gravity (including higher-order curvature corrections) (C.9.4). Table 3.12 in the

introduction lists a few more sample results.

Local field redefinitions, invariant coupling constants and physical observables

Although the higher-order curvature corrections to the tree-level dS entropy S(0) = S(0)(`0) (3.160)

seem superficially similar to curvature corrections to the entropy of black holes in asymptotically

flat space [158], there are no charges or other asymptotic observables available here to endow them

with physical meaning. Indeed, they have no intrinsic low-energy physical meaning at all, as they

can be removed order by order in the ls/` expansion by a metric field redefinition, bringing the

entropy to pure Einstein form (3.2). In Z (0)(`) (3.159), this amounts to setting all zn ≡ 0 by a

redefinition ` → `
∑

n cn`
−2n (C.296). The value of S(0) = max`�ls log Z (0)(`) remains of course

unchanged, providing the unique field-redefinition invariant combination of the coupling constants

G,Λ(or `0), z1, z2, . . ..

Related to this, as discussed in C.9.4, caution must be exercised when porting the one-loop

graviton contribution in (3.112) or (3.148): GN appearing in γ0 =
√

8πGN/A is the algebraically

defined Newton constant (3.109), as opposed to G defined by the Ricci scalar coefficient 1
8πG in the

low-energy effective action. The former is field-redefinition invariant; the latter is not. In Einstein

frame (zn = 0) the two definitions coincide, hence in a general frame

γ0 =

√
2π/S(0) . (3.167)

Since logS(0) = log A
4G + log

(
1 +O(l2

s /`
2
0)

)
, this distinction matters only at O(l2

s /`
2
0), however.

In d = 2, S(0) is in fact the only invariant gravitational coupling: because the Weyl tensor van-
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ishes identically, any 3D parity-invariant effective gravitational action can be brought to Einstein

form by a field redefinition. In the Chern-Simons formulation of C.8.2, S(0) = 2πκ. In d ≥ 3, the

Weyl tensor vanishes on the sphere, but not identically. As a result, there are coupling constants

not picked up by the sphere’s S(0) = −SE [g`0]. Analogous S(0)M ≡ −SE [gM] for different saddle ge-

ometries gM , approaching Einstein metrics in the limit Λ ∝ `−2
0 → 0, can be used instead to probe

them, and analogous SM ≡ logZM expanded about gM provide quantum observables. Section

C.9.5 provides a few more details, and illustrates extraction of unambiguous linear combinations

of the 4D one-loop correction for 3 different M .

This provides the general picture we have in mind as the answer, in principle, to question 3 on

our list below (3.153): the tree-level S(0)M are the analog of tree-level scattering amplitudes, and the

analog of quantum scattering amplitudes are the quantum SM .

Constraints on microscopic models

For pure 3D gravity S(0) = 2π
4G

(
`0 + s1`

−1
0 + s2 `

−3
0 + · · ·

)
, and to one-loop order we have (C.337):

S = S(0) − 3 logS(0) + 5 log(2π) + · · · . (3.168)

Granting19 (C.248) with l = 0 gives the all-loop expansion of pure 3D gravity, taking into account

G ≡ SO(4) here while G ≡ SU(2) × SU(2) there, to all-loop order,

S = S0 + log
����√ 4

2+i S0/2π sin
(

π
2+i S0/2π

) ����2 = S0 − 3 logS0 + 5 log(2π) +
∑

n cn S
−2n
0 (3.169)

where S0 ≡ S
(0) to declutter notation. Note all quantum corrections are strictly nonlocal, i.e. no

odd powers of `0 appear, reflected in the absence of odd powers of 1/S0.

Though outside the scope of this paper, let us illustrate how such results may be used to con-

strain microscopic models identifying large-`0 and large-N expansions in some way. Say a mod-

eler posits a model consisting of 2N spins σi = ±1 with H ≡
∑

i σi = 0. The microscopic

19This does not affect the 1-loop based conclusions below, but does affect the cn. One could leave l general.
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entropy is Smic = log
(2N

N

)
= 2 log 2 · N − 1

2 log(πN) +
∑

n c′nN1−2n. There is a unique identifi-

cation of S0 bringing this in a form with the same analytic/locality structure as (3.169), to wit,

S0 = log 4 · N +
∑

n c′nN1−2n, resulting in

Smic = S0 −
1
2 logS0 + log

(
π

2 log 2

)
+

∑
n c′′n S

−2n
0 , (3.170)

where c′′1 = −
1
8 log 2, c′′2 =

3
64 (log 2)2+ 1

48 (log 2)3, . . ., fully failing to match (3.169), starting at one

loop. The model is ruled out.

A slightly more sophisticated modeler might posit Smic = log d(N), where d(N) is the N-

th level degeneracy of a chiral boson on S1. To leading order Smic ≈ 2π
√

N/6 ≡ K . Beyond,

Smic = K − a′ log K + b′ +
∑

n c′nK−n + O(e−K/2), where a′ = 2, b′ = log
(
π2/6
√

3
)

and c′n given

by [159]. Identifying S0 = K +
∑

n c′2n−1K−(2n−1) brings this to the form (3.169), yielding Smic =

S0 − a′ logS0 + b′ +
∑

n c′′nS
−2n
0 +O(e−S0/2), with c′′1 = −

5
2 , c′′2 =

37
12 , . . . — ruled out.

We actually did not need the higher-loop corrections at all to rule out the above models. In

higher dimensions, or coupled to more fields, one-loop constraints moreover become increasingly

nontrivial, evident in (3.12). For pure 5D gravity (C.337),

S = S(0) −
15
2

logS(0) + log(12) +
27
2

log(2π) +
65 ζ(3)
48 π2 +

5 ζ(5)
16 π4 . (3.171)

It would be quite a miracle if a microscopic model managed to match this.

3.9 dS, AdS±, and conformal higher-spin gravity

Vasiliev higher-spin gravity theories [91–93] have infinite spin range and an infinite-dimensional

higher-spin algebra, g = hs(so(d+2)), leading to divergences in the one-loop sphere partition func-

tion formula (3.112) untempered by the UV cutoff. In this section we take a closer look at these

divergences. We contrast the situation to AdS with standard boundary conditions (AdS+), where

the issue is entirely absent, and we point out that, on the other hand, for AdS with alternate HS

boundary conditions (AdS−) as well as conformal higher-spin (CHS) theories, similar issues arise.
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We end with a discussion of their significance.

3.9.1 dS higher-spin gravity

Nonminimal type A Vasiliev gravity on dSd+1 has a tower of massless spin-s fields for all s ≥ 1

and a ∆ = d − 2 scalar. We first consider d = 3. The total bulk and edge characters are obtained by

summing (3.102) and adding the scalar, as we did for the bulk part in (3.63):

χbulk = 2 ·
(

q1/2 + q3/2

(1 − q)2

)2
−

q
(1 − q)2

, χedge = 2 ·
(

q1/2 + q3/2

(1 − q)2

)2
. (3.172)

Quite remarkably, the bulk and edge contributions almost exactly cancel:

χbulk − χedge = −
q

(1 − q)2
. (3.173)

For d = 4 however, we see from (3.102) that due to the absence of overall qs suppression factors,

the total bulk and edge characters each diverge separately by an overall multiplicative factor:

χbulk =
∑

s

(2s + 1) ·
2 q2

(1 − q)4
, χedge =

∑
s

1
6 s(s + 1)(2s + 1) ·

2 q
(1 − q)2

. (3.174)

This pattern persists for all d ≥ 4, as can be seen from the explicit form of bulk and edge characters

in (C.165), (C.194), (C.196). For any d, there is moreover an infinite-dimensional group volume

factor in (3.112) to make sense of, involving a divergent factor (`d−1/GN)
dim G/2 and the volume of

an object of unclear mathematical existence [160].

Before we continue the discussion of what, if anything, to make of this, we consider AdS± and

CHS theories within the same formalism. Besides independent interest, this will make clear the

issue is neither intrinsic to the formalism, nor to de Sitter.
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3.9.2 AdS± higher-spin gravity

AdS characters for standard and alternate HS boundary conditions

Standard boundary conditions on massless higher spin fields ϕ in AdSd+1 lead to quantization

such that spin-s single-particle states transform in a UIR of so(2, d) with primary dimension ∆ϕ =

∆+ = s + d − 2. Higher-spin Euclidean AdS one-loop partition functions with these boundary

conditions were computed in [30–33, 125]. In [81], the Euclidean one-loop partition function

for alternate boundary conditions (∆ϕ = ∆− = 2 − s) was considered. In the EAdS+ case, the

complications listed under (3.96) are absent, but for EAdS− close analogs do appear.

EAdS path integrals can be expressed as character integrals [83, 129], in a form exactly paral-

leling the formulae and bulk/edge picture of the present work [83].20 The AdS analog of the dS

bulk and edge characters (3.85) for a massive spin-s field ϕ with ∆ϕ = ∆± is [83]

χAdS±
bulk,ϕ ≡ Dd

s
q∆±

(1 − q)d
, χAdS±

edge,ϕ ≡ Dd+2
s−1

q∆±−1

(1 − q)d−2 , (3.175)

where ∆− = d − ∆+. Thus, as functions of q,

χdS
ϕ = χAdS+

ϕ + χAdS−
ϕ . (3.176)

The AdS analog of (3.97) for a massless spin-s field φs with gauge parameter field ξs′ is

χ̂AdS±
s ≡ χAdS±

φ − χAdS±
ξ , (3.177)

20In this picture, EAdS is viewed as the Wick-rotated AdS-Rindler wedge, with dSd static patch boundary metric,
as in [161, 162]. The bulk character is χ ≡ trG qiH , with H the Rindler Hamiltonian, not the global AdS Hamiltonian.
Its q-expansion counts quasinormal modes of the Rindler wedge. The one-loop results are interpreted as corrections
to the gravitational thermodynamics of the AdS-Rindler horizon [83, 161, 162].
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where ∆φ,+ = s′ + d − 1, ∆ξ,+ = s + d − 1, s′ ≡ s − 1. More explicitly, analogous to (3.98),

χ̂AdS+
bulk,s =

Dd
s qs′+d−1 − Dd

s′ q
s+d−1

(1 − q)d
, χ̂AdS+

edge,s =
Dd+2

s−1 qs′+d−2 − Dd+2
s′−1 qs+d−2

(1 − q)d−2 (3.178)

χ̂AdS−
bulk,s =

Dd
s q1−s′ − Dd

s′ q
1−s

(1 − q)d
, χ̂AdS−

edge,s =
Dd+2

s−1 q−s′ − Dd+2
s′−1 q−s

(1 − q)d−2 . (3.179)

The presence of non-positive powers of q in χAdS− has a similar path integral interpretation as

in the dS case summarized in section 3.5.2. The necessary negative mode contour rotation and

zeromode subtractions are again implemented at the character level by flipping characters. In

particular the proper χs to be used in the character formulae for EAdS± are

χAdS−
s =

[
χ̂AdS−

s
]
+
, χAdS+

s =
[
χ̂AdS+

s
]
+
= χ̂AdS+

s , (3.180)

with [ χ̂]+ defined as in (3.100). The omission of Killing tensor zeromodes for alternate boundary

conditions must be compensated by a a division by the volume of the residual gauge group G

generated by the Killing tensors. Standard boundary conditions on the other hand kill these Killing

tensor zeromodes: they are not part of the dynamical, fluctuating degrees of freedom. The group

G they generate acts nontrivially on the Hilbert space as a global symmetry group.

AdS+

For standard boundary conditions, the character formalism reproduces the original results of

[30–33, 125] by two-line computations [83]. We consider some examples:

For nonmimimal type A Vasiliev with ∆0 = d − 2 scalar boundary conditions, dual to the free

U(N) model, using (3.178) and the scalar χ0 = qd−2/(1 − q)d , the following total bulk and edge

characters are readily obtained:

χAdS+
bulk =

∞∑
s=0

χAdS+
bulk,s =

(
q

d
2−1 + q

d
2

(1 − q)d−1

)2
, χAdS+

edge =

∞∑
s=0

χAdS+
edge,s =

(
q

d
2−1 + q

d
2

(1 − q)d−1

)2
. (3.181)

The total bulk character takes the singleton-squared form expected from the Flato-Fronsdal theo-
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rem [163]. More interestingly, the edge characters sum up to exactly the same. Thus the generally

negative nature of edge “corrections” takes on a rather dramatic form here:

χAdS+
tot = χAdS+

bulk − χ
AdS+
edge = 0 ⇒ log ZAdS+

PI = 0 . (3.182)

As ZAdS+
bulk has an Rindler bulk ideal gas interpretation analogous to the static patch ideal gas of

section 3.2 [83], the exact bulk-edge cancelation on display here is reminiscent of analogous one-

loop bulk-edge cancelations expected in string theory according to the qualitative picture reviewed

in appendix C.5.5.

For minimal type A, dual to the free O(N) model, the sum yields an expression which after

rescaling of integration variables t → t/2 is effectively equivalent to the so(2, d) singleton char-

acter, which is also the so(1, d) character of a conformally coupled (ν = i/2) scalar on Sd . Using

(3.74), this means ZAdS+
PI equals the sphere partition function on Sd , immediately implying the

N → N − 1 interpretation of [30–33, 125].

For nonminimal type A with ∆0 = 2 scalar boundary conditions, dual to an interacting U(N)

CFT, the cancelation is almost exact but not quite:

χAdS+
tot =

∑d−3
k=2 qk

(1 − q)d−1 . (3.183)

AdS+ higher-spin swampland

In the above examples it is apparent that although the spin-summed χbulk has increased effec-

tive UV-dimensionality dbulk
eff = 2d−2, as if we summed KK modes of a compactification manifold

of dimension d − 2, the edge subtraction collapses this back down to a net deff = d − 1, decreasing

the original d. Correspondingly, the UV-divergences of Z (1)PI are not those of a d + 1 dimensional

bulk-local theory, but rather of a d-dimensional boundary-local theory. In fact this peculiar prop-

erty appears necessary for quantum consistency, in view of the non-existence of a nontrivially

interacting local bulk action [95]. It appears to be true for all AdS+ higher spin theories with a
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known holographic dual [83], but not for all classically consistent higher-spin theories. Thus it

appears to be some kind of AdS higher-spin “swampland” criterion:

AdSd+1 HS theory has holographic dual ⇒ deff = d − 1 . (3.184)

Higher-spin theories violating this criterion do exist. Theories with a tower of massless spins

s ≥ 2 and an a priori undetermined number n of real scalars can be constructed in AdS3 [164,

165]. Assuming all integer spins s ≥ 2 are present, the total character sums up to

χtot =
2 q2

(1 − q)2
−

4 q
(1 − q)2

+

n∑
i=1

q∆i

(1 − q)3
. (3.185)

For t → 0 diverges as χHS ∼ (n− 2)/t2 +O(1/t). To satisfy (3.184), the number of scalars must be

n = 2. This is inconsistent with the n = 4 AdS3 theory originally conjectured in [165] to be dual

to a minimal model CFT2, but consistent with the amended conjecture of [166, 167].

AdS−

For alternate boundary conditions, one ends up with a massless higher-spin character formula

similar to (3.112). The factor γdim G in (3.112) is consistent with log ZAdS−
PI ∝ (GN)

1
2
∑

s NKT
s−1 found

in [81]. (3.176) implies the massless AdS± and dS bulk and edge characters are related as

χAdS−
s = χdS

s − χ
AdS+
s (3.186)

hence we can read off the appropriate flipped χAdS−
s = [ χ̂AdS−

s ]+ characters from our earlier explicit

results (C.194) and (C.196) for χdS
s . Just like in the dS case, the final result involves divergent spin

sums when the spin range is infinite.
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3.9.3 Conformal higher-spin gravity

Conformal HS characters

Conformal (higher-spin) gravity theories [168] have (higher-spin extensions of) diffeomor-

phisms and local Weyl rescalings as gauge symmetries. If one does not insist on a local action, a

general way to construct such theories is to view them as induced theories, obtained by integrating

out the degrees of freedom of a conformal field theory coupled to a general background metric and

other background fields. In particular one can consider a free U(N) CFTd in a general metric and

higher-spin source background. For even d, this results in a local action, which at least at the free

level can be rewritten as a theory of towers of partially massless fields with standard kinetic terms

[62, 82]. Starting from this formulation of CHS theory on Sd (or equivalently dSd), using our

general explicit formulae for partially massless higher-spin field characters (C.194) and (C.196),

and summing up the results, we find

χCdSd
s = χAdSd+1−

s − χAdSd+1+
s = χdSd+1

s − 2 χAdSd+1+
s (3.187)

where χCdSd
s are the CHS bulk and edge characters and the second equality uses (3.186). Since we

already know the explicit dS and AdS HS bulk and edge characters, this relation also provides the

explicit CHS bulk and edge characters. For example

d s χCdSd
bulk,s · (1 − q)d χCdSd

edge,s · (1 − q)d−2

2 ≥ 2 −4qs(1 − q) −2
(
s2qs−1 − (s − 1)2qs)

3 ≥ 1 0 0

3 0 −q(1 − q) 0

4 ≥ 0 2(2s+1) q2 + 2s2qs+3 − 2(s+1)2qs+2 s(s+1)(2s+1)
3 q + (s−1)s2(s+1)

6 qs+2 − s(s+1)2(s+2)
6 qs+1

5 ≥ 0 (s+1)(2s+1)(2s+3)
3 q2(1 − q) s(s+1)(s+2)(2s+1)(2s+3)

30 q(1 − q)
(3.188)
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The bulk SO(1, d) q-characters χCdSd
bulk,s computed from (3.187) agree with the so(2, d) q-characters

obtained in [169]. Edge characters were not derived in [169], as they have no role in the thermal

S1 × Sd−1 CHS partition functions studied there.21

The one-loop Euclidean path integral of the CHS theory on Sd is given by (3.112) using the bulk

and edge CHS characters χCdSd
s and with G the CHS symmetry group generated by the conformal

Killing tensors on Sd (counted by Dd+3
s−1,s−1). The coefficient of the log-divergent term, the Weyl

anomaly of the CHS theory, is extracted as usual, by reading off the coefficient of the 1/t term

in the small-t expansion of the integrand in (3.112), or more directly from the “naive” integrand

1
2t

1+q
1−q χ̂. For example for conformal s = 2 gravity on S2 coupled to D massless scalars, also known

as bosonic string theory in D spacetime dimensions, we have dim G =
∑
± D4

1,±1 = 6, generating

G = SO(1, 3), and from the above table (3.188),

χtot = D ·
1 + q
1 − q

−
4q2

1 − q
+ 2(4q − q2) . (3.189)

The small-t expansion of the integrand in (3.112) for this case is

1
2t

1 + q
1 − q

(
χtot − 12

)
→

2(D − 2)
t3 +

D − 26
3 t

+ · · · , (3.190)

reassuringly informing us the critical dimension for the bosonic string is D = 26. Adding a

massless s = 3
2 field, we get 2D conformal supergravity. For half-integer conformal spin s, χbulk =

−4qs/(1−q) and χedge = −2
(
(s− 1

2 )(s+
1
2 )q

s−1−(s− 3
2 )(s−

1
2 )q

s) . Furthermore adding D′ massless

Dirac spinors, the total fermionic character is

χfer
tot = D′ ·

2 q1/2

1 − q
−

4 q3/2

1 − q
+ 4 q1/2 . (3.191)

The symmetry algebra has
∑
± D4

1
2 ,±

1
2
= 4 fermionic generators, contributing negatively to dim G

21A priori the interpretation of the bulk characters in (3.188) and those in [169] is different. Their mathematical
equality is a consequence of the enhanced so(2, d) symmetry allowing to map Sd → R × Sd−1.
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in (3.112). Putting everything together,

1
2t

1 + q
1 − q

(
χbos

tot − 2(6 − 4)
)
−

1
2t

√
q

1 − q
χfer

tot →
2(D − D′)

t3 +
2D + D′ − 30

6 t
+ · · · , (3.192)

from which we read off supersymmetry + conformal symmetry requires D′ = D = 10.

More systematically, the Weyl anomaly αd,s can be read off by expanding 1
2t

1+q
1−q χ̂

CSd
with

χ̂CSd
= χ̂AdSd+1− − χ̂AdSd+1+ given by (3.178)-(3.179) for integer s. For example,

d −αd,s

2 2(6s2−6s+1)
3

4 s2(s+1)2(14s2+14s+3)
180

6 (s+1)2(s+2)2(22s6+198s5+671s4+1056s3+733s2+120s−50)
151200

8 (s+1)(s+2)2(s+3)2(s+4)(150s8+3000s7+24615s6+106725s5+261123s4+351855s3+225042s2+31710s−14560)
2286144000

(3.193)

This reproduces the d = 2, 4, 6 results of [62, 82] and generalizes them to any d.

Physics pictures

Cartoonishly speaking, the character relation (3.187) translates to one-loop partition function

relations of the form ZCSd
∼ ZEAdSd+1−/ZEAdSd+1+ and ZSd+1

∼ ZCSd (
ZEAdSd+1+

)2. The first

relation can then be understood as a consequence of the holographic duality between AdSd+1

higher-spin theories and free CFTd vector models [62, 81, 82], while the second relation can be

understood as an expression at the Gaussian/one-loop level of ZSd+1
∼
´
Dσ

��ψHH(σ)
��2, where

ψHH(σ) = ψHH(0) e−
1
2σKσ+··· is the late-time dS Hartle-Hawking wave function, related by ana-

lytic continuation to the EAdS partition function with boundary conditions σ [170]. The factor(
ZEAdSd+1+

)2 can then be identified with the bulk one-loop contribution to |ψHH(0)|2, and Zcnf Sd

with
´
Dσ e−σKσ, along the lines of [81]. Along the lines of footnote 10, perhaps another inter-

pretation of the spin-summed relation (3.187) exists within the picture of [151].
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3.9.4 Comments on infinite spin range divergences

Let us return now to the discussion of section 3.9.1. Above we have seen that for EAdS+, sum-

ming spin characters leads to clean and effortless computation of the one-loop partition function.

The group volume factor is absent because the global higher-spin symmetry algebra g generated

by the Killing tensors is not gauged. The character spin sum converges, and no additional regular-

ization is required beyond the UV cutoff at t ∼ ε we already had in place. The underlying reason

for this is that in AdS+, the minimal energy of a particle is bounded below by its spin, hence a

UV cutoff is effectively also a spin cutoff. In contrast, for dS, AdS− and CHS theories alike, g

is gauged, leading to the group volume division factor, and moreover, for d ≥ 4, the quasinormal

mode levels (or energy levels for CHS on R × Sd−1) are infinitely degenerate, not bounded below

by spin, leading to character spin sum divergences untempered by the UV cutoff. The geometric

origin of quasinormal modes decaying as slowly as e−2T/` for every spin s in d ≥ 4 was explained

below (C.167).

One might be tempted to use some form of zeta function regularization to deal with divergent

sums
∑

s χs such as (3.174), which amounts to inserting a convergence factor ∝ e−δs and discarding

the divergent terms in the limit δ → 0. This might be justified if the discarded divergences were

UV, absorbable into local counterterms, but that is not the case here. The divergence is due to low-

energy features, the infinite multiplicity of slow-decaying quasinormal modes, analogous to the

divergent thermodynamics of an ideal gas in a box with an infinite number of different massless

particle species. Zeta function regularization would give a finite result, but the result would be

meaningless.

As discussed at the end of section 3.6, the Vasiliev-like22 limit of the 3D HSn higher-spin grav-

ity theory, n → ∞ with l = 0 and S(0) fixed, is strongly coupled as a 3D QFT. Unsurprisingly,

the one-loop entropy “correction” S(1) = log Z (1) diverges in this limit: writing the explicit ex-

pression for the maximal-entropy vacuum R = n in (3.12) as a function of dim G = 2(n2 − 1),

one gets S(1) = dim G · log
(
dim G/

√
S(0)

)
+ · · · → ∞. The higher-spin decomposition (C.265)

22“Vasiliev-like” is meant only in a superficial sense here. The higher-spin algebras are rather different [69].
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might inspire an ill-advised zeta function regularization along the lines of dim G = 2
∑∞

r=1 2r +1 =

4 ζ(−1) + 2 ζ(0) = −4
3 . This gives S(1) = 2

3 logS(0) + c with c a computable constant — a finite

but meaningless answer. In fact, using (3.127), the all-loop quantum correction to the entropy can

be seen to vanish in the limit under consideration, as illustrated in fig. 3.4. As discussed around

(3.128), there are more interesting n→∞ limits one can consider, taking S(0) →∞ together with

n. In these cases, the weakly-coupled description is not a 3D QFT, but a topological string theory.

Although these and other considerations suggest massless higher-spin theories with infinite

spin range cannot be viewed as weakly-coupled field theories on the sphere, one might wonder

whether certain quantities might nonetheless be computable in certain (twisted) supersymmetric

versions. We did observe some hints in that direction. One example, with details omitted, is the

following. First consider the supersymmetric AdS5 higher-spin theory dual to the 4D N = 2

supersymmetric free U(N) model, i.e. the U(N) singlet sector of N massless hypermultiplets, each

consisting of two complex scalars and a Dirac spinor. The AdS5 bulk field content is obtained from

this following [171]. In their notation, the hypermultiplet corresponds to the so(2, 4) representation

Di+2 Rac. Decomposing (Di+2 Rac) ⊗ (Di+2 Rac) into irreducible so(2, 4) representations gives

the AdS5 free field content: four ∆ = 2 and two ∆ = 3 scalars, one ∆ = 3, S = (1,±1) 2-form field,

six towers of massless spin-s fields for all s ≥ 1, one tower of massless S = (s,±1) fields for all

s ≥ 2, one ∆ = 5
2 Dirac spinor, and four towers of massless spin s = k+ 1

2 fermionic gauge fields for

all k ≥ 1. Consider now the same field content on S5. The bulk and edge characters are obtained

paralleling the steps summarized in section 3.5.2, generalized to the present field content using

(3.92) and (3.93). Each individual spin tower gives rise to a badly divergent spin sum similar to

(3.174). However, a remarkable conspiracy of cancelations between various bosonic and fermionic

bulk and edge contributions in the end leads to a finite, unambiguous net integrand:23

ˆ
dt
2t

(
1 + q
1 − q

χbos
tot −

2√q
1 − q

χfer
tot

)
= −

3
4

ˆ
dt
2t

1 + q
1 − q

q
(1 − q)2

. (3.194)

23The spin sums are performed by inserting a convergence factor such as e−δs , but the end result is finite and
unambiguous when taking δ→ 0, along the lines of limδ→0

∑
s∈ 1

2N
(−1)2s(2s + 1) e−δs = 1

4 .
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Note that the effective UV dimensionality is reduced by two in this case.

An analogous construction for S4 starting from the 3DN = 2 U(N)model, gives two ∆± = 1, 2

scalars, a ∆ = 3
2 Dirac spinor and two massless spin-1, 3

2, 2,
5
2, . . . towers, as in [120, 172]. The

fermionic bulk and edge characters cancel and the bosonic part is twice (3.173). In this case we

moreover get a finite and unambiguous dim G = limδ→0
∑∞

s∈ 1
2N
(−1)2s 2 D5

s−1,s−1 e−δs = 1
4 .

The above observations are tantalizing, but leave several problems unresolved, including what

to make of the supergroup volume vol G. Actually supergroups present an issue of this kind already

with a finite number of generators, as their volume is generically zero. In the context of supergroup

Chern-Simons theory this leads to indeterminate 0/0 Wilson loop expectation values [173]. In this

case the indeterminacy is resolved by a construction replacing the Wilson loop by an auxiliary

worldline quantum mechanics [173]. Perhaps in this spirit, getting a meaningful path integral on

the sphere in the present context may require inserting an auxiliary “observer” worldline quantum

mechanics, with a natural action of the higher-spin algebra on its phase space, allowing to soak up

the residual gauge symmetries.

One could consider other options, such as breaking the background isometries, models with

a finite-dimensional higher-spin algebra [117, 118, 174, 175], models with an α′-like parameter

breaking the higher-spin symmetries, or models of a different nature, perhaps along the lines of

[176], or bootstrapped bottom-up. We leave this, and more, to future work.
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Chapter 4: Grand Partition Functions and Lens Space Path Integrals

In most of this thesis, we have been studying (quasi)canonical partition functions for the south-

ern static patch in dSd+1, which at the inverse de Sitter temperature β = 2π (with the de Sitter

length `dS set to 1) is related to the Euclidean path integral on Sd+1. In this section, we would like

to generalize our considerations in chapter 3 by including non-zero chemical potentials. We will

focus on d ≥ 2. If we turn on the chemical potential µ in one of the angular directions J, the grand

canonical partition function at general inverse temperature β is

Zbulk(β, µ) = TrS e−β(H+iµJ) . (4.1)

Here the trace TrS is over the southern QFT Hilbert space. The factor i is inserted so that the

corresponding Euclidean path integral is defined on a space with a real metric. In the first part of

this chapter, we write down a generalized character formula for (4.1) and its generalization to the

case of multiple non-zero chemical potentials. In the second half of this chapter, we restrict our

attention to the case of three dimensions, where we relate the grand canonical partition function

(4.1) with a Euclidean path integral on the Lens spaces, which are smooth quotients of S3. We find

that the Lens space path integral for a massive spinning field exhibits a bulk-edge structure as its

S3 counterpart.

4.1 Grand quasicanonical bulk thermodynamics

In the following we will formally derive a character formula for both bosonic and fermionic

grand quasicanonical partition functions.
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4.1.1 Bosons

We first focus on the bosonic case. Analogous to the formal derivation in section 3.2.2, our

starting point is the grand canonical partition function for a single bosonic oscillator of frequency

ω and angular momentum m at inverse temperature β and chemical potential µ:

− log
(
eβω/2 − e−β(ω/2+iµm)

)
. (4.2)

Due to the extra factor e−iβµm, there is no simple integral representation for this expression as

(3.33). However, we can still proceed as such and write for a free QFT on the southern static patch

log Zbulk(β, µ) =
∑
m∈Z

ˆ ∞
0

dωρS
m(ω)

[
− log

(
1 − e−β(ω+iµm)

)
−
βω

2

]
(4.3)

where ρS
m(ω) is the density of states of frequency ω and angular momentum m.

Density of states and the full SO(1, d + 1) character Following the discussions in appendix

C.2.1, we argue that the density of states ρS
m(ω) can be regularized by the Harish-Chandra character

of the de Sitter group SO(1, d + 1). This time we will need the full character

χdS(t, θ) ≡ trG e−iHt+iθ ·J . (4.4)

Again G means that we are tracing over the global de Sitter Hilbert space. For example, a massive

spin-s particle has [78]

χ[∆,s](t, θ) = χd
s (x)

(
Q∆ +Q∆̄

)
Pd(Q, x) (4.5)
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where Q = e−t, x = (x1, · · · , xr) = (eiθ1, · · · , eiθr ), χd
s (x) is the SO(d) spin-s character, and

Pd(Q, x) =
r∏

i=1

1
(1 −Qxi)(1 −Qx−1

i )
×


1, if d = 2r

1
1−Q if d = 2r + 1

. (4.6)

Note that (4.5) evaluated at θ = 0 recovers the reduced massive spin-s character (C.14). Analogous

to (C.27), we then regularize the density of states ρS
m(ω) through

ρS
m(ω) =

ˆ ∞
0

dt
π

cosωt
ˆ 2π

0

dθ
2π

e−imθ χS(t, θ) (4.7)

where θ is the angular variable in the chosen angular direction and the other suppressed angular

variables are set to zero. Note that we have used the properties for bosonic characters

χS(−t, θ) = χS(t, θ) , χS(t, θ + 2π) = χS(t, θ) (bosons) . (4.8)

Character formula for the grand partition function We substitute (4.7) into (4.3) and Taylor-

expand the logarithm − log(1 − x) =
∑∞

k=1 xk/k, so that the right hand side of (4.3) becomes

ˆ ∞
0

dt
π

ˆ 2π

0

dθ
2π

χS(t, θ)
∑
m∈Z

ˆ ∞
0

dω cosωte−imθ

[
∞∑

k=1

1
k

e−kβ(ω+iµm) −
βω

2

]
. (4.9)

For a fixed k, the sum over m leads to a Dirac delta function δ(θ + kβµ) which collapses the θ

integral. The ω integral is also easy to compute. Putting these together we have

log Zbulk(β, µ) =

ˆ ∞
0

dt
2π

∑
k∈Z

β

t2 + k2β2 χS(t, kβµ) . (4.10)
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Note that we have used the property χS(t,−θ) = χS(t, θ) to extend the sum to all k ∈ Z. Also, the

k = 0 term corresponding to zero-point energy has a pole at t = 0 for which we resolve by

−
1
t2 → −

1
2

(
1

(t + iε)2
+

1
(t − iε)2

)
. (4.11)

For generic real values of β and µ, the sum (4.10) is difficult to evaluate. However, if the combi-

nation βµ equals 2π times a rational number, i.e.

βµ =
2πq

p
, p ∈ N q ∈ Z , (4.12)

it becomes possible to perform the sum (4.10), thanks to the periodic condition in (4.8). In such a

special case we can write k = pn + m, n ∈ Z,m ∈ Zp, and the sum in (4.10) is equivalent to a sum

over n and m. The key simplification is

χS

(
t,

2πq(pn + m)
p

)
= χS

(
t,

2πqm
p

)
, (4.13)

allowing an exact evaluation of the sum over n:

1
2π

∑
n∈Z

β

t2 + (pn + m)2β2 =
1

2pt

sinh 2πt
pβ

cosh 2πt
pβ − cos 2πm

p

. (4.14)

Putting everything together, the twisted character formula for bosonic fields at inverse temperature

β and chemical potentials (4.12) is thus

Boson: log Zbulk

(
β,

2πq
pβ

)
=

ˆ ∞
0

dt
2pt

∑
m∈Zp

sinh 2πt
pβ

cosh 2πt
pβ − cos 2πm

p

χS

(
t,

2πqm
p

)
. (4.15)

It is easy to check that for q = 0, (4.15) reduces to the bosonic part of the untwisted formula (3.35).
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4.1.2 Fermion

For a free fermionic QFT on the southern static patch, we have

log Zbulk(β, µ) =
∑
m∈Z

ˆ ∞
0

dωρS
m(ω)

[
log

(
1 + e−β(ω+iµm)

)
+
βω

2

]
. (4.16)

The derivation proceeds similarly as in the previous section. That is, we express the density of

states in terms of SO(1, d + 1) characters and expand the logarithm log(1 + x) = −
∑∞

k=1(−x)k/k.

After doing the sum over m and performing the ω integral, we obtain

log Zbulk(β, µ) = −

ˆ ∞
0

dt
2π

∑
k∈Z

(−)k
β

t2 + k2β2 χS(t, kβµ) . (4.17)

Note that the crucial extra factor (−)k compared to the bosonic case. Again, we can perform the

sum over k for the special case (4.12). However, since fermionic characters are 4π-periodic instead

of 2π-periodic: χS(t, θ + 4π) = χS(t, θ), we will write instead k = 2pn + m, , n ∈ Z,m ∈ Z2p and

perform the sum as in (4.14) with p→ 2p. The final result is

Fermion: log Zbulk

(
β,

2πq
pβ

)
= −

ˆ ∞
0

dt
4pt

∑
m∈Z2p

(−)m
sinh πt

pβ

cosh πt
pβ − cos πm

p
χS

(
t,

2πqm
p

)
. (4.18)

It is easy to check that for q = 0, this reduces to the fermionic part of the untwisted formula

(3.35). In fact, since the bosonic characters are automatically 4π-periodic, we can slightly modify

our bosonic derivation and summarize our results at inverse temperature β and chemical potentials

(4.12) in a single formula

log Zbulk =

ˆ ∞
0

dt
4pt

∑
m∈Z2p

sinh πt
pβ

cosh πt
pβ − cos πm

p

[
χS

(
t,

2πqm
p

)
bos
+ (−)m+1χS

(
t,

2πqm
p

)
fer

]
. (4.19)
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4.1.3 Turning on all chemical potentials

For a static patch in dSd+1, the maximum number of independent chemical potentials equals

the rank r = b d
2 c of the subgroup SO(d), so that the most general canonical partition function takes

the form

log Zbulk(β, µ) = Tr e−β(H+iµ·J) , (4.20)

where J = (J1, · · · , Jr) is a maximal set of commuting angular momenta (i.e. the Cartan generators

for SO(d)) and µ = (µ1, · · · , µr) are the corresponding chemical potentials. It turns out that the

previous formal derivation straightforwardly extends to the more general special case

βµ =
2πq

p
, p ∈ N q ∈ Zr . (4.21)

The result is that at inverse temperature β and chemical potentials (4.21)

log Zbulk =

ˆ ∞
0

dt
4pt

∑
m∈Z2p

sinh πt
pβ

cosh πt
pβ − cos πm

p

[
χS

(
t,

2πmq

p

)
bos
+ (−)m+1χS

(
t,

2πmq

p

)
fer

]
(4.22)

where χS(t, θ1, · · · , θr) is the full SO(1, d + 1) character (4.4). We conclude this part with some

comments on the relation of (4.1) with Euclidean partition functions. Recall that the canonical

partition function at β = 2π is related to the path integral on a sphere (with edge mode corrections

for spinning fields). Here the Euclidean space relevant to the grand canonical partition function

(4.1) is not the sphere, but a sphere subject to further quotients. In general, such a quotient does

not lead to a smooth manifold, and the resulting space generically contains conical singularities.

In the next section we will see a special case in three dimensions where (4.1) is related to a path

integral on a smooth quotient of S3.
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4.2 Euclidean path integrals on Lens spaces

In three dimensions, it turns out that the static patch grand partition function1

Zbulk = TrS e−
2π
p (H+iqJ) (4.23)

at β = 2π
p and µ = q is related to a Euclidean path integral on a smooth manifold for some specific

integer values of p and q. In particular, when q and p satisfies a coprime condition (q, p) = 1, a

class of smooth manifolds called Lens spaces L(p, q) can be obtained by quotienting S3. Looking

locally the same as S3, Lens spaces arise as saddle points of the full gravitational path integrals

other than S3. Compared to the S3 saddle, the contribution from a single Lens space L(p, q) is

exponentially suppressed. The relevance of Lens spaces to dS3 quantum gravity is discussed in

[84]. Here our goal is simply to make a precise connection between Lens space path integrals to

the grand partition function (4.23), generalizing our considerations in chapter 3. We expect the

following discussions have straightforward generalizations to higher dimensions.

4.2.1 The Lens spaces L(p, q)

The simplest way to describe a Lens space L(p, q) is to make use of the fact that S3 is the SU(2)

group manifold. Recall that there is a 1-1 mapping between points on S3 and elements of SU(2):

XA ∈ S3 7→ g(X) = X0I + iXiσ
i =

©«
X0 + X3 iX1 + X2

iX1 − X2 X0 − X3

ª®®¬ ∈ SU(2) . (4.24)

where det(g(X)) = XAXA = X2
0 + X2

1 + X2
2 + X2

3 = 1. Here we are setting the radius of the 3-sphere

to 1. Isometries correspond to the left and right matrix multiplications

g(X) 7→ Mg(X)N with Mg(X)N ∈ SU(2) . (4.25)

1In three dimensions, d = 2 and the rank of SO(2) is 1. Therefore we can turn on the chemical potential only in
one angular direction.
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preserving the determinant det(g(X)) = 1. Then we see that M, N ∈ SU(2) and thus the isometry

group is SU(2) × SU(2)/Z2. The Z2 quotient arises because the element (M, N) = (−1,−1) acts

trivially.

Now we can give a description of the Lens spaces. A Lens space L(p, q) is given by quotienting

S3 through the identification

g(X) ∼ Lg(X)R , L =
©«
ω

1+q
2

p 0

0 ω
−

1+q
2

p

ª®®¬ , R =
©«
ω

1−q
2

p 0

0 ω
−

1−q
2

p

ª®®¬ (4.26)

where ωp = e2πi/p. As discrete isometries, (4.26) act freely on S3 and thus the identification results

in a smooth manifold. Clearly (4.26) generates a Zp quotient since (L, R) ∈ SU(2) × SU(2)/Z2

is a p-th root of unity. The isometry groups of L(p, q) can be seen as the subgroup of matrix

multiplications (4.25) that commute with the identification (4.26). Therefore, the isometry group

is SU(2) × SU(2)/Z2 for (p, q) = (2, 1), U(1) × SU(2)/Z2 for q = ±1 mod p, and U(1) ×U(1)/Z2

for q , ±1 mod p.

The Hopf parametrization To make connection to static patch physics, we parametrize S3 with

the Hopf coordinates (τ, ψ, ϕ), which are related to the embedding space coordinates by

X0 = cosψ sin τ , X1 = sinψ cos ϕ, X2 = sinψ sin ϕ, X3 = cosψ cos τ , (4.27)

where 0 < ψ < π/2. For the 3-sphere, we have the periodicity condition

(τ, ϕ) ∼ (τ, ϕ) + 2π(m, n) , m, n ∈ Z . (4.28)

The Hopf metric is

ds2 = cos2 ψdτ2 + dψ2 + sin2 ψdϕ2 . (4.29)
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We recover the dS3 static patch metric if we Wick-rotate to real time τ → it and take r = sinψ.

Now, we can parametrize a Lens space L(p, q) with the same coordinates, as long as we modify

the identification (4.28) to

(τ, ϕ) ∼ (τ, ϕ) + 2π
(

n
p
,

nq
p
+ m

)
, ∀n,m ∈ Z . (4.30)

It is straightforward to check that this identification is equivalent to (4.26).

4.2.2 Massive scalar

We now consider Euclidean path integrals on Lens spaces. The simplest case is a free real

scalar with mass m2 = ∆(2 − ∆) = ∆∆̄ on L(p, q):2

ZPI =

ˆ
Dφ e−

1
2
´
φ(−∇2+m2)φ = det

(
−∇2 + m2

)−1/2
. (4.31)

As usual, the logarithm of this functional determinant can be expressed in terms of the heat kernel

of the Laplace operator −∇2 + m2. Since L(p, q) is simply a quotient of S3, the heat kernel on the

former can be obtained from the latter using the method of images [177]. We simple employ the

result obtained in [177] and write

log ZPI =

ˆ ∞
0

dλ
2λ

e−ε
2/4λK (0)

∆
(λ) (4.32)

where the scalar heat kernel is3

K (0)
∆
(λ) =

∞∑
n=1

1
p

d(0)n e−(n−1+∆)(n−1+∆̄)λ , d(0)n =
∑

m∈Zp

cos(nmτ2) − cos(nmτ1)

cos(mτ2) − cos(mτ1)
. (4.33)

2As in section 3.3.2, we first consider ∆ = 1 + iν, ν ∈ R and extend our final formula by analytic continuation.
3Note that the expressions in this chapter are related to those in previous chapters by a n → n + 1 shift. This will

turn out to be a more natural convention in the current context.
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Here τ1, τ2 are related to p, q as

τ1 =
2πq

p
, τ2 =

2π
p
. (4.34)

Following the steps in the derivation in section 3.3.2, we have

log ZPI =

ˆ ∞
ε

dt

2
√

t2 − ε2
(e−(∆−1)

√
t2−ε2
+ e−(∆̄−1)

√
t2−ε2
)

∞∑
n=1

1
p

d(0)n e−nt . (4.35)

The sum over n in (4.35) can be performed explicitly:

∞∑
n=1

1
p

d(0)n e−nt =
1

2p

∑
m∈Zp

sinh t
(cosh t − cos mτ2) (cosh t − cos mτ1)

. (4.36)

Plugging this into (4.35) yields

log ZPI =

ˆ ∞
ε

dt

2p
√

t2 − ε2

∑
m∈Zp

sinh t
cosh t − cos mτ2

e−(∆−1)
√

t2−ε2
+ e−(∆̄−1)

√
t2−ε2

2(cosh t − cos mτ1)
. (4.37)

Putting ε = 0, this formally becomes

log ZPI =

ˆ ∞
0

dt
2pt

∑
m∈Zp

sinh t
cosh t − cos mτ2

χ(t,mτ1) , χ(t, θ) =
e−(∆−1)t + e−(∆̄−1)t

2(cosh t − cos θ)
. (4.38)

which we recognize as (4.15) with β = 2π
p and the scalar character χ(t, θ). Thus we conclude that

for scalars, ZPI = Zbulk.

4.2.3 Massive higher spins

Now we consider a massive field with integer spin s ≥ 1 and mass m2 = (∆ + s − 2)(s − ∆) on

L(p, q). We first note that the discussions in appendix C.6.1 remains valid. In particular, we expect
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the full, manifestly covariant, local path integral takes the form

ZPI = ZTT · Znon-TT = Zbulk · Z−1
edge . (4.39)

Again, the heat kernel for the TT part has been computed in [177] using the method of images, so

that we have

log ZTT =

ˆ ∞
0

dλ
2λ

e−ε
2/4λK (s)

∆,TT(λ) , K (s)
∆,TT(λ) =

∞∑
n=s+1

1
p

d(s)n e−(n−1+∆)(n−1+∆̄)λ (4.40)

where for n ≥ s + 1

d(s)n = 2
∑

m∈Zp

cos(smτ1) cos(nmτ2) − cos(smτ2) cos(nmτ1)

cos(mτ2) − cos(mτ1)
, (4.41)

with τ1, τ2 defined as in (4.34). To figure out the non-TT part, we are again guided by the locality

constraint that there cannot be any logarithmic divergence in odd dimensions. From what we saw

in the sphere case, we expect the non-TT part amounts to extending the eigenvalue sum (4.40) of

the TT heat kernel appropriately as in (C.144). This turns out to be the case, as long as we modify

the definition of d(s)n for all s, n ≥ 0:

d(s)n =2
(
1 −

δs,0

2

) (
1 −

δn,0

2

) ∑
m∈Zp

cos(smτ1) cos(nmτ2) − cos(smτ2) cos(nmτ1)

cos(mτ2) − cos(mτ1)
. (4.42)

For s = 0, n ≥ 1, this matches the degeneracies (4.33) for the scalar harmonics. Now, we simply

state the result, namely that the full path integral takes the form

log ZPI =

ˆ ∞
0

dλ
2λ

e−ε
2/4λK (s)

∆
(λ) , K (s)

∆
(λ) =

∞∑
n=0

1
p

d(s)n e−(n−1+∆)(n−1+∆̄)λ . (4.43)

The non-TT part corresponds to the terms with n = 0, 1, · · · , s.
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Bulk and edge part Starting from (4.43), we again follow the steps in the derivation in section

3.3.2, leading to

log ZPI =

ˆ ∞
ε

dt

2
√

t2 − ε2

(
e−(∆−1)

√
t2−ε2
+ e−(∆̄−1)

√
t2−ε2

) ∞∑
n=0

1
p

d(s)n e−nt . (4.44)

At this point, we recall that there was a key relation (C.135) in our derivation for the sphere, which

eventually led to the bulk-edge split. The analog for (C.135) in the present case is, for s ≥ 1:

d(s)n =
∑

m∈Zp

2 cos(smτ1)
cos(nmτ2) − cos(nmτ1)

cos(mτ2) − cos(mτ1)
+

∑
m∈Zp

cos(smτ1) − cos(smτ2)

cos(mτ2) − cos(mτ1)

(
2 − δn,0

)
cos(nmτ1) .

(4.45)

Putting this back in (4.44) and summing over n, we have the final result for the 1-loop partition

function for a massive spin-s field on L(p, q)

log ZPI = log Zbulk − log Zedge

log Zbulk =

ˆ ∞
ε

dt

2p
√

t2 − ε2

∑
m∈Zp

sinh t
cosh t − cos mτ2

2 cos sθ
e−(∆−1)

√
t2−ε2
+ e−(∆̄−1)

√
t2−ε2

2(cosh t − cos mτ1)

log Zedge =

ˆ ∞
ε

dt

2p
√

t2 − ε2

∑
m∈Zp

sinh t
cosh t − cos mτ1

cos smτ1 − cos smτ2
cos mτ1 − cos mτ2

(
e−(∆−1)

√
t2−ε2
+ e−(∆̄−1)

√
t2−ε2

)
.

(4.46)

If we put ε = 0, this takes the form of a character formula

log ZPI =

ˆ ∞
0

dt
2pt


∑

m∈Zp

sinh t
cosh t − cos mτ2

χbulk(t,mτ1) −
∑

m∈Zp

sinh t
cosh t − cos mτ1

χedge(t, τ1, τ2)


(4.47)
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where the bulk and edge characters are respectively

χbulk(t, θ) = 2 cos sθ
e−(∆−1)t + e−(∆̄−1)t

2(cosh t − cos θ)
, χedge(t, τ1, τ2) =

cos smτ1 − cos smτ2
cos mτ1 − cos mτ2

(e−(∆−1)t + e−(∆̄−1)t) .

(4.48)

As a check, let us consider (4.47) for the case (p, q) = (1, 0). In this case the sum collapses

into one single term with m = 0 and the ratio appearing in the edge character seems not well-

defined. However, if we think of this as a limit m → 0, then applying the L’ Hospital rule twice

reproduces (3.84) with the massive spin-s characters (3.88) in dS3. Again, at this point we do not

have a systemic group-theoretic or physical way of identifying the edge field content, but such an

identification is not needed for the evaluation of (4.46).
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[182] P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Chaos: Classical and
Quantum. Copenhagen: Niels Bohr Inst., 2016.

[183] R. Dashen, S.-k. Ma, and H. J. Bernstein, “S-matrix formulation of statistical mechanics,”
Phys. Rev., vol. 187, pp. 345–370, 1 1969.

185

http://arxiv.org/abs/astro-ph/0210603
http://arxiv.org/abs/1802.03232
http://arxiv.org/abs/1709.06024
http://arxiv.org/abs/1410.1175
http://arxiv.org/abs/1107.1872
http://arxiv.org/abs/1304.7988
http://arxiv.org/abs/1711.10037
http://arxiv.org/abs/0911.5085
http://arxiv.org/abs/hep-th/0106113
http://arxiv.org/abs/hep-th/0106113
http://arxiv.org/abs/1108.5735
http://arxiv.org/abs/1108.5735


[184] J. S. Dowker, “Massive sphere determinants,” Apr. 2014. arXiv: 1404.0986 [hep-th].

[185] H. Ooguri and C. Vafa, “World sheet derivation of a large N duality,” Nucl. Phys. B,
vol. 641, pp. 3–34, 2002. arXiv: hep-th/0205297.

[186] J. B. Hartle and S. W. Hawking, “Wave function of the universe,” Phys. Rev. D, vol. 28,
pp. 2960–2975, 12 1983.

[187] B. S. DeWitt, “Quantum theory of gravity. i. the canonical theory,” Phys. Rev., vol. 160,
pp. 1113–1148, 5 1967.

[188] E. Witten, “A Note On Boundary Conditions In Euclidean Gravity,” May 2018. arXiv:
1805.11559 [hep-th].

[189] ——, “APS Medal for Exceptional Achievement in Research: Invited article on entangle-
ment properties of quantum field theory,” Rev. Mod. Phys., vol. 90, no. 4, p. 045 003, 2018.
arXiv: 1803.04993 [hep-th].

[190] ——, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,”
Adv. Theor. Math. Phys., vol. 2, L. Bergstrom and U. Lindstrom, Eds., pp. 505–532, 1998.
arXiv: hep-th/9803131.

[191] J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP, vol. 04, p. 021, 2003. arXiv:
hep-th/0106112.

[192] S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in anti-De Sitter Space,”
Commun. Math. Phys., vol. 87, p. 577, 1983.

[193] T. G. Mertens, H. Verschelde, and V. I. Zakharov, “Revisiting noninteracting string parti-
tion functions in Rindler space,” Phys. Rev. D, vol. 93, no. 10, p. 104 028, 2016. arXiv:
1511.00560 [hep-th].

[194] A. Dabholkar, “Strings on a cone and black hole entropy,” Nucl. Phys. B, vol. 439, S. R.
Das, G. Mandal, S. Mukhi, and S. R. Wadia, Eds., pp. 650–664, 1995. arXiv: hep-th/
9408098.

[195] D. A. Lowe and A. Strominger, “Strings near a Rindler or black hole horizon,” Phys. Rev.
D, vol. 51, pp. 1793–1799, 1995. arXiv: hep-th/9410215.

[196] E. Witten, “Open Strings On The Rindler Horizon,” JHEP, vol. 01, p. 126, 2019. arXiv:
1810.11912 [hep-th].

[197] V. Balasubramanian and O. Parrikar, “Remarks on entanglement entropy in string theory,”
Phys. Rev. D, vol. 97, no. 6, p. 066 025, 2018. arXiv: 1801.03517 [hep-th].

186

http://arxiv.org/abs/1404.0986
http://arxiv.org/abs/hep-th/0205297
http://arxiv.org/abs/1805.11559
http://arxiv.org/abs/1803.04993
http://arxiv.org/abs/hep-th/9803131
http://arxiv.org/abs/hep-th/0106112
http://arxiv.org/abs/1511.00560
http://arxiv.org/abs/hep-th/9408098
http://arxiv.org/abs/hep-th/9408098
http://arxiv.org/abs/hep-th/9410215
http://arxiv.org/abs/1810.11912
http://arxiv.org/abs/1801.03517


[198] A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” Mar.
2017. arXiv: 1703.05448 [hep-th].

[199] R. Camporesi and A. Higuchi, “Spectral functions and zeta functions in hyperbolic spaces,”
Journal of Mathematical Physics, vol. 35, no. 8, pp. 4217–4246, 1994. eprint: https:
//doi.org/10.1063/1.530850.

[200] M. G. Eastwood, “Higher symmetries of the Laplacian,” Annals Math., vol. 161, pp. 1645–
1665, 2005. arXiv: hep-th/0206233.

[201] D. Lüst and E. Palti, “A Note on String Excitations and the Higuchi Bound,” Phys. Lett. B,
vol. 799, p. 135 067, 2019. arXiv: 1907.04161 [hep-th].

[202] T. Noumi, T. Takeuchi, and S. Zhou, “String Regge trajectory on de Sitter space and im-
plications to inflation,” Phys. Rev. D, vol. 102, p. 126 012, 2020. arXiv: 1907.02535
[hep-th].

[203] X. Bekaert and M. Grigoriev, “Higher order singletons, partially massless fields and their
boundary values in the ambient approach,” Nucl. Phys. B, vol. 876, pp. 667–714, 2013.
arXiv: 1305.0162 [hep-th].

[204] G. Goon, K. Hinterbichler, A. Joyce, and M. Trodden, “Shapes of gravity: Tensor non-
Gaussianity and massive spin-2 fields,” JHEP, vol. 10, p. 182, 2019. arXiv: 1812.07571
[hep-th].

[205] P. Kovtun and A. Ritz, “Black holes and universality classes of critical points,” Phys. Rev.
Lett., vol. 100, p. 171 606, 2008. arXiv: 0801.2785 [hep-th].

[206] I. R. Klebanov, S. S. Pufu, S. Sachdev, and B. R. Safdi, “Entanglement Entropy of 3-
d Conformal Gauge Theories with Many Flavors,” JHEP, vol. 05, p. 036, 2012. arXiv:
1112.5342 [hep-th].

[207] E. Witten, “Quantum field theory and the jones polynomial,” Communications in Mathe-
matical Physics, vol. 121, no. 3, pp. 351–399, 1989.

[208] M. Marino, “Lectures on localization and matrix models in supersymmetric Chern-Simons-
matter theories,” J. Phys. A, vol. 44, p. 463 001, 2011. arXiv: 1104.0783 [hep-th].

[209] A. Achucarro and P. K. Townsend, “A Chern-Simons Action for Three-Dimensional anti-
De Sitter Supergravity Theories,” Phys. Lett. B, vol. 180, A. Salam and E. Sezgin, Eds.,
p. 89, 1986.

[210] J. Cotler, K. Jensen, and A. Maloney, “Low-dimensional de Sitter quantum gravity,” JHEP,
vol. 06, p. 048, 2020. arXiv: 1905.03780 [hep-th].

187

http://arxiv.org/abs/1703.05448
https://doi.org/10.1063/1.530850
https://doi.org/10.1063/1.530850
http://arxiv.org/abs/hep-th/0206233
http://arxiv.org/abs/1907.04161
http://arxiv.org/abs/1907.02535
http://arxiv.org/abs/1907.02535
http://arxiv.org/abs/1305.0162
http://arxiv.org/abs/1812.07571
http://arxiv.org/abs/1812.07571
http://arxiv.org/abs/0801.2785
http://arxiv.org/abs/1112.5342
http://arxiv.org/abs/1104.0783
http://arxiv.org/abs/1905.03780


[211] S. Carlip, “The Sum over topologies in three-dimensional Euclidean quantum gravity,”
Class. Quant. Grav., vol. 10, pp. 207–218, 1993. arXiv: hep-th/9206103.

[212] E. Guadagnini and P. Tomassini, “Sum over the geometries of three manifolds,” Phys. Lett.
B, vol. 336, pp. 330–336, 1994.

[213] E. Witten, “Analytic Continuation Of Chern-Simons Theory,” AMS/IP Stud. Adv. Math.,
vol. 50, J. E. Andersen, H. U. Boden, A. Hahn, and B. Himpel, Eds., pp. 347–446, 2011.
arXiv: 1001.2933 [hep-th].

[214] S. Gukov, M. Marino, and P. Putrov, “Resurgence in complex Chern-Simons theory,” May
2016. arXiv: 1605.07615 [hep-th].

[215] E. Witten, “Three-Dimensional Gravity Revisited,” Jun. 2007. arXiv: 0706.3359 [hep-th].

[216] V. Periwal, “Topological closed string interpretation of Chern-Simons theory,” Phys. Rev.
Lett., vol. 71, pp. 1295–1298, 1993. arXiv: hep-th/9305115.

[217] E. Witten, “Chern-Simons gauge theory as a string theory,” Prog. Math., vol. 133, pp. 637–
678, 1995. arXiv: hep-th/9207094.

[218] G. R. Jensen, “Einstein metrics on principal fibre bundles,” Journal of Differential Geom-
etry, vol. 8, no. 4, pp. 599 –614, 1973.

[219] C. Böhm, “Inhomogeneous einstein metrics on low-dimensional spheres and other low-
dimensional spaces,” Inventiones mathematicae, vol. 134, no. 1, pp. 145–176, 1998.

[220] G. W. Gibbons, S. A. Hartnoll, and C. N. Pope, “Bohm and Einstein-Sasaki metrics, black
holes and cosmological event horizons,” Phys. Rev. D, vol. 67, p. 084 024, 2003. arXiv:
hep-th/0208031.

[221] C. P. Boyer, K. Galicki, and J. Kollar, “Einstein metrics on spheres,” Sep. 2003. arXiv:
math/0309408.

[222] G. W. Gibbons, “Topology change in classical and quantum gravity,” Oct. 2011. arXiv:
1110.0611 [gr-qc].

[223] R. L. Bishop, “A relation between volume, mean curvature and diameter,” in Euclidean
Quantum Gravity, pp. 161–161. eprint: https://www.worldscientific.com/
doi/pdf/10.1142/9789814539395_0009.

[224] G. Lopes Cardoso, B. de Wit, and T. Mohaupt, “Corrections to macroscopic supersym-
metric black hole entropy,” Phys. Lett. B, vol. 451, pp. 309–316, 1999. arXiv: hep-th/
9812082.

188

http://arxiv.org/abs/hep-th/9206103
http://arxiv.org/abs/1001.2933
http://arxiv.org/abs/1605.07615
http://arxiv.org/abs/0706.3359
http://arxiv.org/abs/hep-th/9305115
http://arxiv.org/abs/hep-th/9207094
http://arxiv.org/abs/hep-th/0208031
http://arxiv.org/abs/math/0309408
http://arxiv.org/abs/1110.0611
https://www.worldscientific.com/doi/pdf/10.1142/9789814539395_0009
https://www.worldscientific.com/doi/pdf/10.1142/9789814539395_0009
http://arxiv.org/abs/hep-th/9812082
http://arxiv.org/abs/hep-th/9812082


[225] J. M. Maldacena, A. Strominger, and E. Witten, “Black hole entropy in M theory,” JHEP,
vol. 12, p. 002, 1997. arXiv: hep-th/9711053.

[226] P. H. Ginsparg and G. W. Moore, “Lectures on 2-D gravity and 2-D string theory,” in
Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles,
Oct. 1993. arXiv: hep-th/9304011.

[227] S. Weinberg, The Quantum Theory of Fields. Cambridge University Press, 1996, vol. 2.

[228] G. A. Vilkovisky, “The Unique Effective Action in Quantum Field Theory,” Nucl. Phys. B,
vol. 234, pp. 125–137, 1984.

[229] A. O. Barvinsky and G. A. Vilkovisky, “The Generalized Schwinger-Dewitt Technique in
Gauge Theories and Quantum Gravity,” Phys. Rept., vol. 119, pp. 1–74, 1985.

[230] C. O. Dib and O. R. Espinosa, “The Magnetized electron gas in terms of Hurwitz zeta
functions,” Nucl. Phys. B, vol. 612, pp. 492–518, 2001. arXiv: math-ph/0012010.

[231] M. T. Anderson, “A survey of Einstein metrics on 4-manifolds,” arXiv e-prints, arXiv:0810.4830,
arXiv:0810.4830, Oct. 2008. arXiv: 0810.4830 [math.DG].

[232] G. Tian and S.-T. Yau, “Kähler-einstein metrics on complex surfaces withc1>0,” Commu-
nications in Mathematical Physics, vol. 112, no. 1, pp. 175–203, 1987.

[233] G. Tian, “On calabi’s conjecture for complex surfaces with positive first chern class,” In-
ventiones mathematicae, vol. 101, no. 1, pp. 101–172, 1990.

189

http://arxiv.org/abs/hep-th/9711053
http://arxiv.org/abs/hep-th/9304011
http://arxiv.org/abs/math-ph/0012010
http://arxiv.org/abs/0810.4830


Appendix A: Basics of de Sitter space and spheres

In this appendix we collect some basic facts about de Sitter space and spheres.

A.1 Classical de Sitter geometry

A.1.1 Definition and basic geometric properties

A (d+1)-dimensional de Sitter (dS) space dSd+1 is a maximally symmetric solution to Einstein

equation with a positive cosmological constant,

Gµν + Λgµν = 0, Λ > 0 . (A.1)

The simplest way to describe the geometry of dSd+1 is as a (d+1)-dimensional hyperbloid embed-

ded in a (d + 2)-dimensional Minkowski space R1,d+1:

ηAB X AXB = −(X0)2 + (X1)2 + · · · + (Xd+1)2 = `2
dS , (A.2)

where `dS is the de Sitter length related to the cosmological constant through

Λ =
d(d − 1)

2`2
dS

. (A.3)

We will call the line with X i = 0, i = 1, . . . , d and Xd+1 < 0 (Xd+1 > 0) the south (north) pole. The

de Sitter metric is induced from the embedding space one

ds2 = ηABdX AdXB . (A.4)
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Some basic geometric properties:

1. It is clear that dSd+1 has an O(1, d + 1) isometry, which comprises

(a) the SO(1, d+1) component connected to the identity, generated by (d+1)(d+2)
2 generators

LAB = XA∂B − XB∂A, A, B = 0, 1, · · · , d + 1, which satisfy the commutation relation

[LAB, LCD] = ηBC LAD − ηBDLAC + ηADLBC − ηAC LBD. (A.5)

(b) discrete symmetries: T = diag(−1, 1, · · · , 1), SI = diag(1, 1, · · · ,−1, · · · , 1)

(c) antipodal transformation A = (−1,−1, · · · ,−1). For a given point X , we denote XA as

its antipodal counterpart.

2. A bit abstractly dSd+1 can be thought of as the homogeneous space SO(1, d + 1)/SO(1, d).

3. There is no Killing vector that is timelike everywhere. For example, a generator

L10 = X1
∂

∂X0 − X0
∂

∂X1 (A.6)

can move us towards increasing or decreasing X0 depending on the sign of X1. This implies

that there is no globally conserved positive energy. Consequences of this seemingly innocu-

ous fact includes the non-existence of unbroken supersymmetry in de Sitter space, and that

there is no unique dS-invariant vacuum in a global dS QFT.

4. A geodesic on de Sitter can be visualized in the embedding space as the intersection of the

hyperbloid (A.2) and a plane passing through the origin. Note that not all pairs of points

can be connected through a geodesic. In particular, a point X cannot be connected with a

geodesic to any point lying the future or past light cone of its antipodal counterpart XA.

5. It is useful to express dS-invariant quantities (such as the Wightman function) in terms of the
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O(1, d + 1)-invariant distance

P(X,Y ) = ηAB X AY B . (A.7)

This is related to the geodesic distance through

d(X,Y ) = `dS cos−1 P(X,Y ) , (A.8)

which is real for spacelike geodesics and imaginary for timelike geodesics.

6. We can obtain AdSd+1 from (A.2) by a double Wick rotation1

Xd+1 → iXd+1, `dS → i`AdS . (A.9)

A.2 Various coordinate systems and the Penrose diagram

In this section we collect some common coordinate systems that parametrize de Sitter space.

We will set `dS = 1 throughout.

A.2.1 Global sphere slicing

These are coordinates that slice dSd+1 with global d-dimensional spatial spheres Sd , so that the

maximal compact subgroup SO(d+1) of the de Sitter group SO(1, d+1) becomes manifest. These

will cover the entire global de Sitter space.

Global proper time coordinates

These are given by the following intrinsic parametrization of embedding coordinates

X0 = sinh τ, X I = ωI
d cosh τ, −∞ < τ < ∞, ω2

d = 1 (A.10)

1Strictly speaking AdS is the universal covering of the Wick-rotated hyperbloid.
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where I = 1, · · · , d+1. The coordinates ωI
d parametrize the global spatial Sd , which can be chosen

to be the standard angular coordinates or the stereographic coordinates, reviewed in App. A.3. The

metric in these coordinates is

ds2 = −dτ2 + cosh2 τdΩ2
d . (A.11)

Note that under the Wick rotation τ → −iτE and demanding τE ∼ τE + 2π, this becomes the

metric on Sd+1. This observation allows us to interpret the path integral on sphere as computing

the normal of wave function in global de Sitter, at least for simple enough theories like a massive

scalar.

Global conformal time coordinates and the Penrose diagram

Next, we introduce the global conformal time T̄ , related to the proper time τ through

cosh τ =
1

cos T̄
, −

π

2
< T̄ <

π

2
. (A.12)

This has metric

ds2 =
−dT̄2 + dω2

d

cos2 T̄
, (A.13)

which is related by a Weyl rescaling to the metric ds2 = −dT̄2 + dω2
d on a cylinder with a finite

length. This provides a mapping of the entire de Sitter space onto a finite diagram while preserving

its casual structures (since light rays are preserved by a Weyl rescaling). This is the so-called

Penrose diagram, illustrated in figure C.5.

A.2.2 Planar (inflationary) slicing

Next, we can slice a de Sitter space with Euclidean planes Rd , so that the ISO(d) subgroup of

the full isometry group SO(1, d + 1) becomes manifest.
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Poincaré time

These are given by the following intrinsic parametrization of embedding coordinates

X0 = −
1 + x2 − η2

2η
, X i = −

xi

η
, Xd+1 =

1 − x2 + η2

2η
, η < 0, xi ∈ Rd (A.14)

for which

ds2 =
−dη2 + dx2

η2 . (A.15)

Note that this coordinate system does not cover the entire de Sitter space. Specifically, it only

covers the region with Xd+1 < X0, the causal future of an observer sitting at the south pole. Other

than the Poincaré symmstries that are trivially manifest, the metric is also clearly invariant under

the rescaling

η→ λη, xi → λxi . (A.16)

This is why η is sometimes referred to as conformal time (not to be confused with the global

conformal time in (A.12)).

FLRW time

Changing the Poincaré time η to the proper time t

η = −e−t, −∞ < t < ∞ , (A.17)

we can put the metric into the FLRW form

ds2 = −dt2 + e2t dx2 (A.18)
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with Hubble parameter H = 1/ldS = 1. This is why it is also called inflationary slicing. Note that

the rescaling (A.16) of η is mapped to a time translation in t: t → t − log λ.

A.2.3 Hyperbolic slicing

We can also slice a de Sitter space with hyperbolic planes Hd , so that the SO(1, d) subgroup of

the full isometry group SO(1, d + 1) becomes manifest. These are given by the following intrinsic

parametrization of embedding coordinates

X0 = sinh τ̄ coshψ, X i = ωi
d−1 sinh τ̄ sinhψ, Xd+1 = cosh τ̄ (A.19)

where

0 < τ̄ < ∞, 0 < ψ < ∞, ω2
d−1 = 1 . (A.20)

The metric reads

ds2 = −dτ̄2 + sinh2 τ̄
(
dψ2 + sinh2 ψdΩ2

d−1

)
. (A.21)

Surfaces of constant τ̄ are d-dimensional hyperbolic planes Hd . Note that these coordinates cover

only a portion of the entire de Sitter space.

A.2.4 The static patch

To understand the physics from the perspective of a local inertial observer, it is natural to

introduce coordinates that adapt to the causal diamond of such an observer.
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Static coordinates

The static coordinates parametrize the embedding coordinates as follows

X0 =
√

1 − r2 sinh t, X i = rωi
d−1, Xd+1 =

√
1 − r2 cosh t (A.22)

where

−∞ < t < ∞, 0 < r < 1, ω2
d−1 = 1 . (A.23)

From this parametrization it is clear that it only cover part of the global de Sitter space. Specifically,

it covers only the causal diamond of the observer sitting at the north pole (r = 0), as shown in figure

C.5. In these coordinates the metric takes a static form

ds2 = −(1 − r2)dt2 +
dr2

1 − r2 + r2dΩ2
d−1 . (A.24)

Analogous to static black holes, the coordinate singularity at r = 1 corresponds to a horizon.

However, unlike the black hole case, this cosmological horizon is observer-dependent. There is

no way the observer can “fall into” it. Another notable feature of the static patch is that there

is a timelike Killing vector ∂t , which means we can define a conserved positive energy within

this patch. The last comment crucial to this thesis is that under the Wick rotation t → −itE and

demanding tE to be periodic in 2π, (A.24) becomes the metric on Sd+1. The simplest way to see

this is to note that after this procedure and taking X0 → −iX0, the embedding space coordinates

X A cover the entire round sphere X2 = 1. This allows us to interpret a sphere path integral as

computing a thermal ensemble for a static patch observer.
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Eddington-Finkelstein coordinates

Analogous to black holes, we can construct coordinates that are convenient for studying light

rays. For outgoing light rays we construct the outgoing Eddington-Finkelstein coordinates through2

dt = dx+ +
dr

1 − r2 (A.25)

solving which gives

x+ = t +
1
2

ln
1 + r
1 − r

. (A.26)

Outgoing light rays are characterized by x+ = constant. In these coordinates the metric is

ds2 = −(1 − r2)(dx+)2 − 2dx+dr + r2dΩ2
d−1 . (A.27)

We can also define the ingoing Eddington-Finkelstein coordinates

x− = t −
1
2

ln
1 + r
1 − r

(A.28)

so that ingoing light rays are characterized by x− = constant. We can put the metric into a more

symmetric form:

ds2 = −

(
1 − tanh2

(
x+ − x−

2

))
dx+dx− + r2dΩ2

d−1 . (A.29)

Kruskal coordinates

We can also define the Kruskal coordinates

x− = ln U, x+ − ln (−V) (A.30)

2Note that outgoing (ingoing) direction corresponds to decreasing (increasing) r .
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so that

r =
1 +UV
1 −UV

. (A.31)

These coordinates cover the entire de Sitter space. The north and south poles correspond to UV =

−1, the horizons UV = 0 and the past and future infinities UV = 1. In these coordinates the metric

is

ds2 =
1

(1 −UV)2

(
−4dUdV + (1 +UV)2dΩ2

d−1

)
. (A.32)

de Sitter slicing

Finally, a static patch of dSd+1 can be foliated with de Sitter dSd slices, which makes the

SO(1, d) subgroup of the full isometry group SO(1, d +1)manifest. These are given by the follow-

ing intrinsic parametrization of embedding coordinates

X0 = sinw sinh τ̃, X i = ωi
d−1 sinw cosh τ̃, Xd+1 = cosw (A.33)

where

−∞ < τ̃ < ∞, 0 < w < π, ω2
d−1 = 1 . (A.34)

The metric takes the form

ds2 = dw2 + sin2 w
(
−dτ̃2 + cosh2 τ̃dΩ2

d−1

)
. (A.35)

Surfaces of constant w are d-dimensional de Sitter spaces dSd . In these coordinates the horizon

is at w = 0 and w = π, where the warp factor sin2 w vanishes. This metric (A.35) takes exactly

the same form as a Rindler-AdS metric. To obtain the latter one simply replaces the warp factor
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sin2 w → sinh2 w and extend the range of w to 0 < w < ∞. This observation is one of the starting

points of the dS/dS correspondence [151].

A.3 Coordinates on round spheres

A.3.1 Angular coordinates

In Rd+1 the unit sphere Sd is given by the submanifold ω2 = ωiω
i = 1. The standard angular

parametrization

ω1 = cos θ1,

ω2 = sin θ1 cos θ2,

...

ωd = sin θ1 · · · sin θd−1 sin θd,

ωd+1 = sin θ1 · · · sin θd−1 cos θd , (A.36)

where 0 ≤ θi < π for 1 ≤ i ≤ d − 1 and 0 ≤ θd < 2π, leads to the metric

dΩ2
d = dωidωi = dθ2

1 + sin2 θ1dθ2
2 + · · · + sin2 θ1 · · · sin2 θd−1dθ2

d . (A.37)

A.3.2 Stereographic projection

Another common parametrization of Sd is by mapping its points to a plane va ∈ Rd through

ωa =
2va

1 + v2 , ωd+1 = −
1 − v2

1 + v2 (A.38)

where v2 = vav
a. Note that the point ωi = (0, · · · , 0,−1) is mapped to the origin while the point

ωi = (0, · · · , 0, 1) is mapped to infinity. We can also define another patch

ωa =
2ṽa

1 + ṽ2 , ωd+1 =
1 − ṽ2

1 + ṽ2 (A.39)
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so that the point ωi = (0, · · · , 0, 1) is mapped to the origin while the point ωi = (0, · · · , 0,−1) is

mapped to infinity. The metric in these coordinates reads

dΩ2
d =

4dv2

(1 + v2)2
=

4dṽ2

(1 + ṽ2)2
. (A.40)
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Appendix B: Appendix for chapter 2

B.1 Conventions and definitions

Symmetrization We symmetrize a rank-s tensor φµ1···µs by summing all the permutations fol-

lowed by a division by s!. That is

φ(µ1···µs) =
1
s!

∑
σ:perm

φµσ(1)···µσ(s) (B.1)

Shorthand notations Throughout this paper we denote

ˆ
Sd+1
≡

ˆ
Sd+1

dd+1x
√
g. (B.2)

When dealing with a rank-s totally symmetric tensor, we sometimes use the notations:

A(s) ≡Aµ1···µs (B.3)

gk∇(n−2k)A(s) ≡g(µ1µ2 · · · gµ2k−1µ2k∇µ2k+1 · · · ∇µn Aµn+1···µs+n) (B.4)

∇ · A(s) ≡∇λAµ1···µs−1λ (B.5)

TrA(s) ≡gλρAλρµ1···µs−2 (B.6)

For two spin-s fields ψ(s) and ψ′
(s), we define the inner product

(ψ(s), ψ
′
(s)) ≡

ˆ
Sd+1

ψµ1···µsψ′µ1···µs . (B.7)
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Path integral measure Path integrals for a spin-s bosonic field φ(s) take the form

ˆ
Dφ(s)e

− 1
2g2 (φ(s),−Qφ(s)) (B.8)

where Q is a Laplace type operator. The measure Dφ(s) is defined as follows. Suppose φ(s) has

mass dimension d−2p
2 and an expansion in terms of orthonormal modes fn,(s), i.e.

φ(s) =
∑

n

an,s fn,(s), ( fn,(s), fm,(s)) = δnm. (B.9)

We define the path integration measure for φ to be

Dφ(s) ≡
∏

n

Mp
√

2πg
dan,s . (B.10)

Here are some comments:

• M is a parameter with mass dimension 1, and the power p is determined by dimension

analysis so that the partition function remains dimensionless. In most of this paper we will

set M = 1 and restore it by dimension analysis when necessary.

• The factors of
√

2πg are inserted such that the path integration results in a determinant with-

out any extra factor other than the dimensionful parameter M:

ˆ
Dφe−S[φ] = det

(
−
Q

M2p

)−1/2
. (B.11)

• The multiplication of the factor Mp
√

2πg
only affects UV divergent terms of the resulting free

energy and thus can be absorbed into the bare couplings of the local curvature densities.

This can be seen as follows. In heat kernel regularization, the path integral is expressed as

an integral transform

log ZPI =

ˆ ∞
0

dτ
2τ

e−
ε2
4τ Tre−Dτ (B.12)
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of the trace heat kernel for an unconstrained differential operator D. Here for concreteness

we have chosen a specific UV regulator e−
ε2
4τ . The result takes the form

log ZPI =
1
2
ζ ′(0) + αd+1 log

(
2

eγE ε

)
+

1
2

∑
k=0

αkΓ

(
d + 1 − k

2

) (
2
ε

)d+1−k

. (B.13)

Here ζ(z) is the spectral zeta function for the operator D. The heat kernel coefficients αi are

given by integrals of local curvature densities (see for example [60] for explicit formulas).

The term αd+1 is present only for odd d. Now, the multiplication by a local infinite constant

is equivalent to rescaling the differential operator by a constant,

log ZPI → log Z′PI =

ˆ ∞
0

dτ
2τ

e−
ε2
4τ Tre−τ

(−∇2+σ)
g =

ˆ ∞
0

dτ
2τ

e−
ε2
4gτ Tre−τ(−∇

2+σ), (B.14)

which alters only the divergent terms as ε → 0.

• With these conventions we also see that the field φ satisfies the normalization condition

ˆ
Dφe

− 1
2g2 (φ,φ) = 1. (B.15)

• We can think of the measure (B.10) as putting the following metric on the field space

ds2 =
M2p

2πg2

ˆ
Sd+1
(δφ)2 =

M2p

2πg2

∑
n

da2
n (B.16)

Commutator In our convention the commutator of two covariant derivatives acts on a totally

symmetric rank-s tensor as

[∇µ,∇ν]φ
ρ1···ρs =

s∑
j=1

Rρj
λµνφ

ρ1···ρ̂j ···ρs, Rλρµν =
gλµgρν − gλνgρµ

l2 . (B.17)

where ρ̂ j means that ρ j is excluded. l is the radius of the sphere and will be set to 1 for most of

this paper.
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B.2 Symmetric transverse traceless Laplacians and symmetric tensor spherical harmonics

on Sd+1

Here we collect some useful facts from [178] and [179] about spin-s symmetric transverse

traceless (STT) Laplacians and symmetric tensor spherical harmonics (STSH) on Sd+1.

Definition, eigenvalues and degeneracies

STSHs fn,(s) ≡ fn,µ1···µs are labeled by their spin s and angular momentum number n ≥ s. These

are the STT eigenfunctions of the STT Laplacian −∇2
(s) on Sd+1

−∇2
(s) fn,(s) =λn,s fn,(s), ∇ · fn,(s) = 0, Tr fn,(s) = 0 (B.18)

with eigenvalues and degeneracies

λn,s =n(n + d) − s, n ≥ s (B.19)

Dd+2
n,s =gs

(n − s + 1)(n + s + d − 1)(2n + d)(n + d − 2)!
d!(n + 1)!

(B.20)

gs =
(2s + d − 2)(s + d − 3)!

(d − 2)!s!
. (B.21)

These furnish SO(d + 2) irreducible representations corresponding to two-row Young diagrams

with n boxes in the first row and s boxes in the second row. We sometimes call them (n, s) modes

in the paper. We normalize them with respect to (B.7), i.e.

( fn,(s), fm,(s)) = δnm (B.22)

When we use a double labeling such as fn,(s) for the spin-s STSHs or λn,s for its eigenvalues, the

n automatically labels the spectrum of −∇2
(s). Also, when we write

∑
n or

∏
n, there is an implied

sum or product over degenerate spin-s STSHs with the same label n.
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Killing tensors A spin-s Killing tensor (KT) ε(s) is a totally symmetric traceless tensor satisfying

the Killing equation

∇(µ1εµ2···µs+1) = 0. (B.23)

Taking the trace of this equation shows that they are divergenceless, while taking the divergence

we recover (B.18) with n = s and thus they are in fact spanned by the (s, s) modes.

Induced spin-s symmetric traceless spherical harmonics

Given a STSH fn,(s), one can construct the m-th induced symmetric traceless tensors

T (s)n,(s+m) = ∇(µ1 · · · ∇µm fn,µm+1···µm+s) − trace terms, (B.24)

where the subtraction of trace terms is such that the expression is traceless. From its definition, it

is clear that T (s)n,(s) = fn,(s). There are two important facts to note:

1. T (m)n,(s) satisfy an orthogonality condition under the inner product (B.7).

2. T (m)n,(s) vanishes identically for s > n.

The more familiar lower spin examples include the orthonormal modes for the longitudinal part of

a vector field

T (0)n,µ =∇µ fn

or the orthonormal modes for the symmetric traceless part of a spin-2 tensor constructed from

scalar spherical harmonics

T (0)n,µν =∇µ∇ν fn +
λn,0

d + 1
gµν fn.
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We might use the notation (n, s) to refer to a spin-(s + m) symmetric traceless spherical harmonics

T (s)n,(s+m) induced from the STSH fn,(s) when the context is clear.

Mode expansions for symmetric traceless tensors In general, a spin-s symmetric traceless (not

necessarily transverse) field V(s) on Sd+1 has the mode expansion

V(s) =
s∑

m=0

∞∑
n=s

An,mT̂ (m)n,(s), (B.25)

where T̂ (m)n,(s) is the normalized version of T (m)n,(s), i.e.

T̂ (m)n,(s) ≡
T (m)n,(s)

| |T (m)n,(s) | |
(B.26)

where the norm | |·, ·| | ≡
√
(·, ·) is defined with respect to (B.7).

Useful identities In this work we make use of the following identities for T (m)n,(s)

−∇2T (m)n,(s) = a(m)s,n T (m)n,(s) (B.27)

∇ · T (m)n,(s) = b(m)s,n T (m)n,(s−1) (B.28)

where

a(m)s,n = λn,m − (s − m)(s + m + d − 1) (B.29)

b(m)s,n =
(s − m)(d + s + m − 2)

2
(λs−1,s − λn,s). (B.30)

Norms For our purpose, we do not need to know the norm of T (m)n,(s) (with respect to (B.7)), but we

need the relative normalizations between T (m)n,(s), T (m)n,(s−1) and ∇ ·T (m)n,(s), which can be easily computed:

(∇ · T (m)n,(s),∇ · T
(m)
n,(s)) = (b

(m)
s,n )

2(T (m)n,(s−1),T
(m)
n,(s−1)) = −b(m)s,n (T

(m)
n,(s),T

(m)
n,(s)). (B.31)
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Conformal Killing tensors A spin-s conformal Killing tensor (CKT) ε(s) is a totally symmetric

traceless tensor satisfying the conformal Killing equation

∇(µ1εµ2···µs+1) −
s

d + 2s − 1
g(µ1µ2∇

λεµ3···µs+1)λ = 0. (B.32)

The solution space to this equation is spanned by T (m)s,(s) with m = 0, 1, · · · , s. Notice that the modes

T (s)s,(s) = fs,(s) correspond to spin-s KTs.

B.3 Higher spin invariant bilinear form

In this appendix, we relate the HS invariant bilinear form in [68] to the one induced by our path

integral measure.

The Noether approach

Suppose we have a quadratic action S(2) of a collection of fields ϕ that is invariant under the

linear gauge symmetries δ(0)ξ ϕ, which we want to deform into an interacting action

S = S(2) + S(3) + S(4) + · · · (B.33)

invariant under the non-linear gauge symmetries

δξϕ = δ
(0)
ξ ϕ + δ

(1)
ξ ϕ + δ

(2)
ξ ϕ + · · · . (B.34)

Here the superscript (n) denotes the power in fields (or coupling constants). Requiring full gauge

invariance, i.e.

δξS = 0, (B.35)
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we have a system of equations relating deformations and the gauge transformations at particular

orders:

δ
(0)
ξ S(2) = 0

δ
(0)
ξ S(3) + δ(1)ξ S(2) = 0

δ
(0)
ξ S(4) + δ(1)ξ S(3) + δ(2)ξ S(2) = 0 (B.36)

· · ·

This can be solved as follows:

1. We solve the second equation on the solutions of the first equation δS(2) = 0 to infer the

cubic interaction S(3).

2. From this we can infer δ(1)ξ by solving the second equation again without imposing the first

equation δS(2) = 0.

3. Proceed in a similar fashion for all higher order S(n≥3) and the field-dependent part of the

gauge transformations δ(n≥1)
ξ . That is, we solve for S(n) using by the (n − 1)-th constraint

with the (n− 1)-th order equation of motion imposed, and then for the deformation δ(n−1)
ξ by

solving the same equation without imposing equations of motion.

Local gauge algebra The full non-linear gauge transformations (B.34) are required to form an

(open) algebra

δξ1δξ2 − δξ2δξ1 = δ[[ξ1,ξ2]] + (on-shell trivial) (B.37)

where (as illustrated in the Yang Mills and Einstein gravity case) the precise form of the bracket

[[·, ·]] depends on how gauge transformations act on ϕ. In particular, it can be field dependent and
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can be expanded as

[[·, ·]] = [[·, ·]](0) + [[·, ·]](1) + [[·, ·]](2) + · · · . (B.38)

The full algebra (B.37) can then be perturbatively expanded in powers of fields.

Global symmetry algebra We are interested in the global symmetry algebra, the subalgebra of

the full local gauge algebra satisfying

δ(0) = 0. (B.39)

To determine this, it suffices to consider the lowest order:

δ
(1)
ξ1
δ
(0)
ξ2
− δ
(1)
ξ2
δ
(0)
ξ1
= δ
(0)
[[ξ1,ξ2]](0)

. (B.40)

To summarize, the idea is that once the cubic interaction S(3) is determined, we can deduce the

deformation of the gauge symmetry δ(1)ξ ϕ and the gauge algebra [[ξ1, ξ2]]
(0):

S(3) =⇒ δ
(1)
ξ ϕ =⇒ [[ξ1, ξ2]]

(0), (B.41)

which then completely fixes the global symmetry algebra and the invariant bilinear form on the

algebra (up to an overall normalization). In Sec.2.2 and 2.3 we see how it works for Yang-Mills

and Einstein theories. Following a similar line of reasoning, the global HS algebra and the HS

invariant form has been determined in [68] for massless higher spin gauge theories. To correctly

apply their results in our setting, we are going to make suitable identifications carefully.

Embedding space formalism

The relevant results in [68] are expressed in the embedding space formalism. The starting point

is to realize Sd+1 as a (d + 1)-dimensional hypersurface embedded in an ambient Euclidean space
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Rd+2:

X2 = (X1)2 + · · · + (Xd+2)2 = l2
Sd+1 (B.42)

with lSd+1 being the radius of the sphere. Symmetric spin-s fields φµ1···µs (x) intrinsic to this sub-

manifold are described by an ambient avatar ΦI1···Is (X) subject to homogeneity and tangentiality

constraints

(X · ∂X −U · ∂U + 2 + µ)Φ(X,U) = 0, X · ∂UΦ(X,U) = 0, (B.43)

where we have packaged all the Φ(s)(X) into a generating function

Φ(X,U) =
∑

s

1
s!
ΦI1···Is (X)U

I1 · · ·U Is (B.44)

with an ambient auxiliary vector U A. The homogeneity degree µ in (B.43) is related to the mass

of the field. The massless case of interest corresponds to µ = 0, in which case we have a gauge

symmetry

δEΦ(U) = U · ∂X E(X,U) +O(Φ) (B.45)

where the field-dependent part is to be determined by the cubic couplings. The gauge parameter1

E(X,U) =
∑

s

√
s

s!
EI1···Is−1(X)U

I1 · · ·U Is−1 (B.46)

satisfies the homogeneity and tangentiality conditions to be consistent with (B.43):

(X · ∂X −U · ∂U)E = 0, X · ∂U E = 0. (B.47)

1There is an extra factor of 1√
s

compared to [68], so that we can identify EI1 · · ·Is−1 (X) = ΛI1 · · ·Is−1 (X), with
ΛI1 · · ·Is−1 (X) being the embedding space representative of Λµ1 · · ·µs−1 (x).
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In this framework, the quadratic action invariant under the linear gauge symmetries (B.45) is given

by

S(2) TT
= −

1
2

ˆ
Sd+1

e∂U1 ·∂U2Φ(U1)∂
2
XΦ(U2)

����
Ui=0

, (B.48)

where the notation TT
= means equivalence up to trace and divergence terms. and we are going to

construct the cubic vertices following the program described in App.B.3. Note that this normaliza-

tion is equivalent to choosing

g2
s = s! (B.49)

in (2.109).

Killing tensors and global HS algebra

Killing Tensors Global HS symmetries are generated by traceless gauge parameters satisfying

the Killing equation

U · ∂X Ē(X,U) = 0, ∂2
U Ē(X,U) = 0. (B.50)

Together with the homogeneity and tangentiality conditions (B.47) on the gauge parameter, one

can also conclude that the Killing tensors satisfy

∂U · ∂X Ē(X,U) = 0, ∂2
X Ē(X,U) = 0. (B.51)

It is straightforward to write down the general solution to these equations:

Ē(X,U) =
∑

r

1
√

r + 1
Ē (r+1)(X,U)

Ē (r+1)(X,U) =
1
r!

Ē (r+1)
I1···Ir
(X)U I1 · · ·U Ir =

1
(r!)2

ĒI1 J1,··· ,Ir Jr X [I1U J1] · · · X [IrU Jr ]. (B.52)
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The HS generators are the duals of the parameters ĒI1 J1,··· ,Ir Jr , which due to the complete traceless-

ness of the latter are defined as equivalence classes

T I1···Ir,J1···Jr = X [I1U J1] · · · X [IrU Jr ] + · · · (B.53)

modulo trace terms X2, X ·U,U2 denoted by · · · in the equation.

Global HS algebra Following the framework described in sec.B.3, one can determine the full

global HS algebra. What is most relevant to us is the bracket for the spin-2 generators (i.e. Killing

vectors), which generate the isometry subalgebra so(d + 2):2

[[Ē (2), Ē′(2)]] = −
g
√

2
(Ē I∂I Ē′J − Ē′I∂I ĒJ)U J, (B.54)

where g is the coupling constant of the theory, which can be identified with the Newton’s constant

through

g2 = 32πGN . (B.55)

To obtain (B.54), one can recall the footnote around (2.79), and note that there is an extra factor of

1√
2

because of the non-canonical normalization due to the identification (B.49). Canonical genera-

tors are those satisfying the standard so(d + 2) commutation relation under the bracket (B.54):

[[MI J, MKL]] = ηJK MIL − ηJL MIK + ηIL MJK − ηIK MJL . (B.56)

One such basis is MI J = −
√

2
g (XIUJ − XJUI) with I, J = 1, · · · , d + 2, with which we will fix

the overall normalization of the canonical metric. In general, the higher spin commutators mix

Killing tensors with different spins. For example, a commutator of two spin-3 generators is a

2We omit the superscript (0) because it is the complete bracket for the global so(d + 2) algebra.
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linear combination of a spin-2 and a spin-4 generator

[[Ē (3), Ē′(3)]] ∼ Ē (2) + Ē (4). (B.57)

Fortunately, upon the identifications (B.49), the HS invariant bilinear form obtained in [68] is

uniquely related to our path integral metric (up to an overall normalization), and therefore the

knowledge of the brackets for all higher spin generators is not needed.

HS invariant bilinear form

The HS bilinear form takes the general form3

〈Ē1 |Ē2〉 =
∑

s

bs

s
(∂U1 · ∂U2)

s−1

(s − 1)!
(∂X1 · ∂X2)

s−1

(s − 1)!
Ē1(X1,U1)Ē2(X2,U2)

����
Xi=Ui=0

=
∑

s

bs

s!
(∂X1 · ∂X2)

s−1

(s − 1)!
Ē (s)1 (X1)Ē

(s)
2 (X2)

����
Xi=0

(B.58)

where the constant bs is fixed by requiring the cyclic property

〈Ē1 |[[Ē2, Ē3]]〉 = 〈Ē2 |[[Ē3, Ē1]]〉 = 〈Ē3 |[[Ē1, Ē2]]〉 . (B.59)

For AdSd+1 it was determined to be [68]4

bAdSd+1
s =

bAdSd+1
2 (−l2

AdS)
s−2Γ( d2 )

2s−2Γ( d2 + s − 2)
=

bAdSd+1
2 (−l2

AdS)
s−2

d(d + 2) · · · (d + 2s − 8)(d + 2s − 6)
(B.60)

where bAdSd+1
2 is an overall s-independent normalization constant and we have restored the AdS

length lAdS. Wick rotating this to Sd+1 mounts to replacing lAdS = ilSd+1 and thus

bSd+1

s =
bSd+1

2 (lSd+1)s−2Γ( d2 )

2s−2Γ( d2 + s − 2)
=

bSd+1

2 (l2
Sd+1)

s−2

d(d + 2) · · · (d + 2s − 8)(d + 2s − 6)
. (B.61)

3The factor of 1√
s

came from (B.46).
4As noted in [73], we have corrected what we believe to be a typo in [68].

213



From now on we set lSd+1 = 1.

Relation to path integral metric In the current notations, the bilinear form for a particular spin

induced by the path integral measure is simply

〈Ē (s)1 |Ē
(s)
2 〉PI =

(s − 1)!
2πg2

s

ˆ
Sd+1

Ē (s)1 (X, ∂U)Ē
(s)
2 (X,U). (B.62)

The HS invariant form (B.58) is a linear combination of these

〈Ē1 |Ē2〉 =
∑

s

Bs 〈Ē
(s)
1 |Ē

(s)
2 〉PI . (B.63)

We want to determine the s-dependence of the coefficient Bs. To that end we note that the contrac-

tion in (B.58) can be written as5

(∂X1 · ∂X2)
s−1

(s − 1)!
Ē (s)1 (X1)Ē

(s)
2 (X2)

����
Xi=0
=

´
Rd+2 e−X2/2Ē (s)1 (X, ∂U)Ē

(s)
2 (X,U)´

Rd+2 e−X2/2
. (B.64)

Computing the integral on the right hand side in the radial coordinates, we have

ˆ
Rd+2

e−X2/2Ē (s)1 (X, ∂U)Ē
(s)
2 (X,U) = 2s+ d

2−1
Γ

(
d
2
+ s

) ˆ
Sd+1

Ē (s)1 (X, ∂U)Ē
(s)
2 (X,U) (B.65)

Now, with the identification (B.49), comparing (B.58) with (B.63), we conclude

Bs ∝ (d + 2s − 2)(d + 2s − 4) (B.66)

up to a s-independent overall normalization constant.

5To see this, note that

ˆ
Rd+2

e−X
2/2XI1 · · · XIs−1 XJ1 · · · XJs−1 =

(2π) d+2
2

2s−1(s − 1)!

(
δI1J1 · · · δIs−1Js−1 + perm

)
.

Here “perm” includes all permutations among {I1, J1, I2, J2, · · · , Is−1, Js−1}. In particular, it includes terms like
δI1I2 · · · , which do not contribute in the inner product (B.64) since Ē1 and Ē2 are traceless. Therefore, among the
(2s − 2)! permutations, only 2s−1((s − 1)!)2 of them gives non-zero contributions in (B.64).
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Canonical isometry generators What we have so far is the HS invariant bilinear form up to an

overall normalization factor

〈Ē1 |Ē2〉can = C
∑

s

(d + 2s − 2)(d + 2s − 4) 〈Ē (s)1 |Ē
(s)
2 〉PI . (B.67)

We fix C by requiring the canonical isometry generators MI J = −
√

2
g (XIUJ − XJUI) to be unit-

normalized. Evaluating

1 = 〈M12 |M12〉can = 2Cd(d + 2) 〈M12 |M12〉PI =
4C
g2 Vol(Sd−1), (B.68)

we fix

C =
8πGN

Vol(Sd−1)
(B.69)

upon the identification (B.55). To conclude, we have found

〈Ē1 |Ē2〉can =
8πGN

Vol(Sd−1)

∑
s

(d + 2s − 2)(d + 2s − 4) 〈Ē (s)1 |Ē
(s)
2 〉PI , (B.70)

which leads to the relation (2.168).
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Appendix C: Appendix for chapter 3

C.1 Harish-Chandra characters

C.1.1 Definition of χ

A central ingredient in this work is the Harish-Chandra group character for unitary representa-

tions R of Lie groups G,

χ̃R(g) ≡ tr R(g) , g ∈ G . (C.1)

More rigorously this should be viewed as a distribution to be integrated against smooth test func-

tions f (g) on G. The smeared operators
´
[dg] f (g)R(g) are trace-class operators, and χ̃R(g) is

always a locally integrable function on G, analytic away from its poles [74, 75].

The group of interest to us is SO(1, d+1), the isometry group of global dSd+1, generated by MI J

as defined under (C.95). The representations of SO(1, d + 1) were classified and their characters

explicitly computed in [76–78]. For a recent review and an extensive dictionary between fields and

representations, see [101].

For our purposes in this work we only need to consider characters restricted to group elements

of the form g = e−itH , where H = M0,d+1 generates global SO(1, 1) transformations acting as time

translations T → T + t on the southern static patch (fig. 3.5):

χ(t) ≡ tr e−itH . (C.2)

For example for a spin-0 UIR corresponding to a scalar field of mass m2 = ∆(d − ∆), as we will
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explicitly compute below, this takes the form

χ(t) = tr e−itH =
e−t∆ + e−t∆̄

|1 − e−t |d
, ∆̄ ≡ d − ∆ . (C.3)

Putting ∆ = d
2 + iν, we get m2 = ( d2 )

2 + ν2, so m2 > 0 if ν ∈ R (principal series) or ν = iµ with

|µ| < d
2 (complementary series). Since ∆̄ = d − ∆ = d

2 − iν, this implies χ(t) = χ(t)∗, as follows

more generally from H† = H. The absolute value signs moreover ensure χ(t) = χ(−t) for all d.

The latter property holds for any SO(1, d + 1) representation:

χ(−t) = χ(t) . (C.4)

This follows from the fact that the SO(1, 1) boost generator H = M0,d+1 can be conjugated to a

boost −H in the opposite direction by a 180-degree rotation: −H = uHu−1 for e.g. u = eiπMd,d+1 ,

implying χ(−t) = tr eiHt = tr u e−iHtu−1 = tr e−iHt = χ(t).

C.1.2 Computation of χ

Here we show how characters χ(t) = tr e−itH can be computed by elementary means. The full

characters χ(t, φ) = tr e−itH+iφ·J can be computed similarly, but we will focus on the former.

Simplest example: d = 1, s = 0

We first consider a d = 1, spin-0 principal series representation with ∆ = 1
2+iν, ν ∈ R. This cor-

responds to a massive scalar field on dS2 with mass m2 = 1
4 + ν

2. This unitary irreducible represen-

tation of SO(1, 2) can be realized on the Hilbert space of square-integrable wave functions ψ(ϕ) on

S1, with standard inner product. The circle can be thought of as the future conformal boundary of

global dS2 in global coordinates (cf. (C.96)), which for dS2 becomes ds2 = (cos ϑ)−2(−dϑ2+dϕ2).

Kets |ϕ〉 can be thought of as states produced by a boundary conformal field1 O(ϕ) of dimension

∆ = 1
2 + iν acting on an SO(1, 2)-invariant global vacuum state |vac〉 such as the global Euclidean

1O(ϕ) arises from the bulk scalar φ(ϑ, ϕ) as φ( π2 − ε, ϕ) ∼ O(ϕ) ε
∆ + Ō(ϕ) ε ∆̄ in the infinite future ε → 0
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vacuum:

|ϕ〉 ≡ O(ϕ)|vac〉 , 〈ϕ|ϕ′〉 = δ(ϕ − ϕ′) . (C.5)

This pairing is SO(1, d + 1) invariant. Normalizable states |ψ〉 are then superpositions

|ψ〉 =

ˆ π

−π
dϕ ψ(ϕ) |ϕ〉 , 〈ψ |ψ〉 =

ˆ ∞
−∞

dϕ |ψ(ϕ)|2 < ∞ . (C.6)

In conventions in which H, P and K are hermitian, the Lie algebra of so(1, 2) is

[H, P] = iP , [H,K] = −iK , [K, P] = 2iH , (C.7)

the action of these generators on kets |ϕ〉 in the above representation is

H |ϕ〉 = i
(
sin ϕ ∂ϕ + ∆ cos ϕ

)
|ϕ〉 (C.8)

P |ϕ〉 = i
(
(1 + cos ϕ)∂ϕ − ∆ sin ϕ

)
|ϕ〉

K |ϕ〉 = i
(
(1 − cos ϕ)∂ϕ + ∆ sin ϕ

)
|ϕ〉 .

Note that his implies that the action of for example H on wave functions ψ(ϕ) is given by H |ψ〉 =
´

dϕHψ(ϕ) |ϕ〉 where Hψ(ϕ) = −i
(
sin ϕ ∂ϕ + ∆̄ cos ϕ

)
ψ(ϕ), with ∆̄ = 1 − ∆ = 1

2 − iν. One gets

simpler expressions after conformally mapping this to planar boundary coordinates x = tan ϕ
2 , that

is to say changing basis from |ϕ〉S1 to |x〉R, x ∈ R, where

|x〉R ≡
( ∂ϕ
∂x

)∆��ϕ(x)〉S1 =
( 2

1+x2

)∆ ��2 arctan x
〉

S1 , 〈x |x′〉 = δ(x − x′) . (C.9)

Then H, P,K take the familiar planar dilatation, translation and special conformal form:

H |x〉 = i(x∂x + ∆)|x〉 P |x〉 = i∂x |x〉 , K |x〉 = i(x2∂x + 2∆x)|x〉 . (C.10)
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In particular this makes exponentiation of H easy:

e−itH |x〉 = et∆ |et x〉 . (C.11)

However one has to keep in mind that planar coordinates miss a point of the global boundary, here

the point ϕ = π. This will actually turn out to be important in the computation of the character.

Let us first ignore this though and compute

χ(t)|planar =

ˆ
dx 〈x |e−itH |x〉 = et∆

ˆ
dx δ

(
x − et x

)
= et∆

ˆ
dx

δ(x)
|1 − et |

=
et∆

|1 − et |
.

We see that the computation localizes at the point x = 0, singled out because it is a fixed point of

H. Actually there is another fixed point, which we missed here because it is exactly the point at

infinity in planar coordinates. This is clear from the global version (C.8): one fixed point of H is

at ϕ = 0, which maps to x = 0 and was picked up in the above computation, while the other fixed

point is at ϕ = π, which maps to x = ∞ and so was missed.

This is easily remedied though. The most straightforward way is to repeat the computation in

the global boundary basis |ϕ〉, which is sure not to miss any fixed points. It suffices to consider an

infinitesimally small neighborhood of the fixed points. For ϕ = y → 0, we get H ≈ i(y∂y + ∆),

which coincides with the planar expression, while for ϕ = π + y with y → 0, we get H ≈

−i(y∂y + ∆), which is the same except with the opposite sign. Thus we obtain

χ(t) =
ˆ

dϕ 〈ϕ|e−itH |ϕ〉 =
et∆

|1 − et |
+

e−t∆

|1 − e−t |
=

e−t∆ + e−t∆̄

|1 − e−t |
, (C.12)

where ∆̄ = 1 − ∆ = 1
2 − iν, reproducing (C.3) for d = 1.

For the complementary series 0 < ∆ < 1, we have ∆∗ = ∆ instead of ∆∗ = ∆̄ ≡ 1 − ∆, so

the conjugation properties of H, D, K are different. As a result they are no longer hermitian with

respect to the inner product (C.5), but rather with respect to 〈ϕ|ϕ′〉 ∝
(
1−cos(ϕ − ϕ′)

)−∆. However

we can now define a “shadow” bra (ϕ| ∝
´

dϕ′
(
1−cos(ϕ − ϕ′)

)−∆̄
〈ϕ′| satisfying (ϕ|ϕ′〉 = δ(ϕ−ϕ′)
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and compute the trace as χ(t) =
´

dϕ (ϕ|e−itH |ϕ〉. The computation then proceeds in exactly the

same way, with the same result (C.12).

General dimension and spin

The generalization to d > 1 is straightforward. Again the trace only picks up contribu-

tions from fixed points of H. The fixed point at the origin in planar coordinates contributes

et∆
´

dd x δd(x − et x) = et∆
|1−et |d , while the fixed point at the other pole of the global boundary

sphere gives a contribution of the same form but with t → −t. Together we get

χ0,∆(t) =
e−t∆ + e−t∆̄

|1 − e−t |d
, (C.13)

where ∆̄ = d − ∆.

For massive spin-s representations, the basis merely gets some additional SO(d) spin labels,

and the trace picks up a corresponding degeneracy factor, so2

χs,∆(t) = Dd
s

e−t∆ + e−t∆̄

|1 − e−t |d
, (C.14)

where ∆̄ = d−∆ as before, and Dd
s is the spin degeneracy, for example D3

s = 2s+1. More generally

for d > 2 it is the number of totally symmetric traceless tensors of rank s:

Dd
s =

(s+d−1
d−1

)
−

(s+d−3
d−1

)
(C.15)

(For d = 2 we get spin ±s irreps of SO(2) with D2
±s = 1. However both of these appear when

quantizing a Fierz-Pauli spin-s field.) Explicit low-d spin-s degeneracies are listed in (C.89).

The most general massive unitary representation of SO(1, d + 1) is labeled by an irrep S =

(s1, . . . , sr) of SO(d) (cf. appendix C.4.1) and ∆ = d
2+iν, ν ∈ R (principal series) or ∆ = d

2+µ, |µ| <

2 Here ∆ = d
2 + iν with either ν ∈ R (principal series) or ν = iµ with |µ| < d

2 for s = 0 and |µ| < d
2 − 1 for

s ≥ 1 (complementary series). For s = 0 the mass is m2 = ( d2 )
2 + ν2 = ∆(d − ∆) while for s ≥ 1 it is given by (3.79):

m2 = ( d2 + s − 2)2 + ν2 = (∆ + s − 2)(d − ∆ + s − 2).
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µmax(S) ≤ d
2 (complementary series) [76–78, 101]. The spin-s case discussed above corresponds

to S = (s1, 0, . . . , 0). The character for general S is

χS,∆(t) = Dd
S

e−t∆ + e−t∆̄

|1 − e−t |d
, (C.16)

where the generalized spin degeneracy factor Dd
S is the dimension of the SO(d) irrep S, explicitly

given for general S in appendix C.4.1.

Massless and partially massless representations

(Partially) massless representations correspond to higher-spin gauge fields and are in the ex-

ceptional or discrete series. These representations and their characters χ(t) are considerably more

intricate. We give the general expression and examples in appendix C.7.1 for the massless case.

Guided by our path integral results of section 3.5, we are led to a simple recipe for constructing

these characters from their much simpler “naive” counterparts, spelled out in (3.100). This gen-

eralizes straightforwardly to the partially massless case, leading to the explicit general-d formula

(C.194).

C.1.3 Importance of picking a globally regular basis

Naive evaluation of the character trace χ(t) = tr e−itH by diagonalization of H results in non-

sense. In this section we explain why: emphasizing the importance of using a basis on which finite

SO(1, d + 1) transformations act in a globally regular way.

Failure of computation by diagonalization of H

Naively, one might have thought the easiest way to compute χ(t) = tr e−itH would be to di-

agonalize H and sum over its eigenstates. The latter are given by |ωσ〉, where H = ω ∈ R, σ

labels SO(d) angular momentum quantum numbers, and 〈ωσ |ω′σ′〉 = δ(ω − ω′) δσσ′. However
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this produces a nonsensical result,

χ(t) = tr e−itH naive
=

ˆ
dω

∑
σ

〈ωσ |e−itH |ωσ〉 = 2π
∑
σ

δ(0) δ(t) (naive) , (C.17)

not even remotely resembling the correct χ(t) as computed earlier in C.1.2.

Our method of computation there also illuminates why this naive computation fails. To make

this concrete, let us go back to the d = 1 scalar example with ∆ = 1
2 + iν, ν ∈ R. Recalling the

action of H on wave functions ψ(ϕ) mentioned below (C.8), it is straightforward to find the wave

functions ψωσ(ϕ) of the eigenkets |ωσ〉 =
´ π
−π dϕ ψωσ(ϕ) |ϕ〉 of H:

ψωσ(ϕ) =
Θ(σ sin ϕ)
√

2π
| sin ϕ|−∆̄

���tan
ϕ

2

���iω , ω ∈ R , σ = ±1 . (C.18)

where Θ is the step function. Alternatively we can first conformally map S1 to the “cylinder”

R × Sd−1 = R × S0 parametrized by (T,Ω), T ∈ R, Ω ∈ {−1,+1} = S0, that is to say change basis

|ϕ〉S1 → |TΩ〉R×S0 .3 Then H generates translations of T , so the wave functions of |ωσ〉 in this

basis are simply

ψωσ(T,Ω) =
1
√

2π
δΩ,σ eiωT . (C.19)

The cylinder is the conformal boundary of the future wedge, F in fig. C.5 (which actually splits in

two wedges at Ω = ±1 in the case of dS2), and the |ω±〉 are the states obtained by the usual free

field quantization corresponding to the natural modes φω±(T, r) in this patch.

It is now clear why the naive computation (C.17) of χ(t) in the basis |ωσ〉 fails to produce the

correct result: the wave functions ψωσ(ϕ) are singular precisely at the fixed points ϕ = 0, π of H

(top corners of Penrose diagram in fig. 3.5), which are exactly the points at which the character

trace computation of section C.1.2 localizes. Closely related failure would be met in the basis

|TΩ〉: H acts as by translating T , seemingly without fixed points, oblivious to their actual presence

3 Explicitly T = log | tan ϕ
2 |, Ω = sign ϕ, which analogously to the global→ planar map (C.9) yields

��T±〉
R×S0 =

(cosh T)−∆
��±2 arctan eT

〉
S1 , satisfying 〈TΩ|T ′Ω′〉 = δ(T − T ′) δΩΩ′ and H |TΩ〉 = i∂T |TΩ〉.
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at T = ±∞. In other words, despite their lure as being the bases in which the action of H is

maximally simple, |TΩ〉 or its Fourier dual |ωσ〉 are in fact the worst possible choice one could

make to compute the trace.

Similar observations hold for in higher dimensions. The wave functions diagonalizing H take

the form ψωσ(T,Ω) ∝ eiωTYσ(Ω) in R × Sd−1 cylinder coordinates. Transformed to global Sd co-

ordinates, these are singular precisely at the fixed points of H, excluded from the cylinder, making

this frame particularly ill-suited for computing tr e−itH .

Globally regular bases

More generally, to ensure correct computation of the full Harish-Chandra group character

χR(g) = tr R(g), g ∈ SO(1, d + 1), we must use a basis on which finite SO(1, d + 1) transfor-

mations g act in a globally nonsingular way. This is the case for a global dSd+1 boundary basis

|Ω̄〉Sd , Ω̄ ∈ Sd , generalizing the d = 1 global S1 basis |ϕ〉S1 , but not for a planar basis |x〉Rd

or a cylinder basis |TΩ〉R×Sd−1 . Indeed generic SO(d + 1) rotations of the global Sd move the

poles of the sphere, thus mapping finite points to infinity in planar or cylindrical coordinates. This

singular behavior is inherited by the corresponding Fourier dual bases |p〉 ∝
´

dd x eipx |x〉 and

|ωσ〉 ∝
´

dT dΩ eiωTYσ(Ω) |TΩ〉. From a bulk point of view these are the states obtained by stan-

dard mode quantization in the planar patch resp. future wedge. The singular behavior is evident

here from the fact that these patches have horizons that are moved around by global SO(d + 1)

rotations. Naively computing χ(g) in these frames will in general give incorrect results. More pre-

cisely the result will be wrong unless the fixed points of g lie at finite position on the corresponding

conformal boundary patch.

On the other hand the normalizable dual basis |σ̄〉 =
´

dΩ̄Yσ̄(Ω̄) |Ω̄〉 inherits the global reg-

ularity of |Ω̄〉Sd . Here Yσ̄(Ω) is a basis of spherical harmonics on Sd , with σ̄ labeling the global

SO(d+1) angular momentum quantum numbers, and 〈σ̄ |σ̄′〉 = δσ̄σ̄′. (From the bulk point of view

this is essentially the basis obtained by quantizing the natural mode functions of the global dSd+1

metric in table C.96.) Although in practice much harder than computing χ(t) =
´

dΩ̄ 〈Ω̄|e−iHt |Ω̄〉
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as in section C.1.2, computing

χ(t) = tr e−itH =
∑̄
σ

〈σ̄ |e−itH |σ̄〉 (C.20)

gives in principle the correct result. Note that this suggests a natural UV regularization of χ(t) for

t → 0, by cutting off the global SO(d + 1) angular momentum. For example for a scalar on dS3

with SO(3) angular momentum cutoff L, this would be

χL(t) ≡
L∑̀
=0
〈`m|e−itH |`m〉 . (C.21)

C.2 Density of states and quasinormal mode resonances

The review in appendix C.1 focuses mostly on mathematical and computational aspects of the

Harish-Chandra character χ(t) = tr e−itH . Here we focus on its physics interpretation, in partic-

ular the density of states ρ(ω) obtained as its Fourier transform. We define this in a general and

manifestly covariant way using Pauli-Villars regularization in section 3.2. Here we will not be

particularly concerned with general definitions or manifest covariance, taking a more pedestrian

approach. At the end we briefly comment on an “S-matrix” interpretation and a possible general-

ization of the formalism including interactions.

In C.2.1, we contrast the spectral features encoded in the characters of unitary representations

of the so(1, d + 1) isometry algebra of global dSd+1 with the perhaps more familiar characters of

unitary representations of the so(2, d) isometry algebra of AdSd+1: in a sentence, the latter encodes

bound states, while the former encodes scattering states. In C.2.2 we explicitly compare ρ(ω)

obtained as the Fourier transform of χ(t) for dS2 to the coarse-grained eigenvalue density obtained

by numerical diagonalization of a model discretized by global angular momentum truncation, and

confirm the results match at large N . In C.2.3 we identify the poles of ρ(ω) in the complex ω

plane as scattering resonances/quasinormal modes, counted by the power series expansion of the

character. As a corollary this implies the relation ZPI = Zbulk of (3.68) can be viewed as a precise
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version of the formal quasinormal mode expansion of log ZPI proposed in [142].

C.2.1 Characters and the density of states: dS vs AdS

We begin by highlight some important differences in the spectrum encoded in the characters of

unitary so(1, d+1) representations furnished by global dSd+1 single-particle Hilbert spaces and the

characters of unitary so(2, d) representations furnished by global AdSd+1 single-particle Hilbert

spaces. Although the discussion applies to arbitrary representations, for concreteness we consider

the example of a scalar of mass m2 = ( d2 )
2 + ν2 on dSd+1. Its character as computed in (C.13) is

χdS(t) ≡ tr e−itH =
e−∆+t + e−∆−t

|1 − e−t |d
, ∆± =

d
2 ± iν , t ∈ R. (C.22)

where tr traces over the global single-particle Hilbert space and we recall H = M0,d+1 is a global

SO(1, 1) boost generator, which becomes a spatial momentum operator in the future wedge and

the energy operator in the southern static patch (cf. fig. C.5c). This is to be contrasted with the

familiar character of the unitary lowest-weight representation of a scalar of mass m2 = −( d2 )
2 + µ2

on global AdSd+1 with standard boundary conditions:

χAdS(t) ≡ tr e−itH =
e−i∆+t

(1 − e−it)d
, ∆+ =

d
2 + µ, Im t < 0 . (C.23)

Here the so(2) generator H is the energy operator in global AdSd+1. Besides the occurrence of

both ∆± in (C.22), another notable difference is the absence of factors of i in the exponents.

The physics content of χAdS is clear: χAdS(−iβ) = tr e−βH is the single-particle partition func-

tion at inverse temperature β for a scalar particle trapped in the global AdS gravitational potential

well. Equivalently for Im t < 0, the expansion

χAdS(t) =
∑
λ

Nλ e−itλ , λ = ∆+ + n , n ∈ N , (C.24)

counts normalizable single-particle states of energy H = λ, or equivalently global normal modes
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Figure C.1: Density of states ρΛ(ω) for dS3 scalars with ∆ = 1 + 2i, ∆ = 1
2 , ∆ = 1

10 , and UV cutoff
Λ = 100, according to (C.28). The red dotted line represents the term 2Λ/π. The peak visible at ∆ = 1

10 is
due to a resonance approaching the real axis, as explained in section C.2.3.

of frequency λ. The corresponding density of single-particle states is

ρAdS(ω) =

ˆ ∞
−∞

dt
2π

χAdS(t) eiωt =
∑
λ

Nλ δ(ω − λ) . (C.25)

For dS, we can likewise expand the character as in (C.24). For t > 0,

χdS(t) =
∑
λ

Nλ e−itλ , λ = −i(∆± + n) = −i( d2 + n) ± ν , n ∈ N . (C.26)

However λ is now complex, so evidently Nλ does not count physical eigenstates of the hermitian

operator H. Rather, as further discussed in section C.2.3, it counts resonances, or quasinormal

modes. The density of physical states with H = ω ∈ R is formally given by

ρdS(ω) =

ˆ ∞
−∞

dt
2π

χdS(t) eiωt =

ˆ ∞
0

dt
2π

χdS(t)
(
eiωt + e−iωt ) , (C.27)

where ω can be interpreted as the momentum along the T-direction of the future wedge (F in fig.

C.5 and table C.96). Alternatively for ω > 0 it can be interpreted as the energy in the southern

static patch, as discussed in section 3.2.2. A manifestly covariant Pauli-Villars regularization of

the above integral is given by (3.41). For our purposes here a simple t > Λ−1 cutoff suffices. For
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Figure C.2: Density of states for a ∆ = 1
2 + iν scalar with ν = 2 in dS2. The red dots show the local

eigenvalue density ρ̄N (ω), (C.31), of the truncated model with global angular momentum cutoff N = 2000,
obtained by numerical diagonalization. The blue line shows ρ(ω) obtained as the Fourier transform of χ(t),
explicitly (C.29) with e−γΛ ≈ 4000. The plot on the right zooms in on the IR region. The peaks are due to
the proximity of quasinormal mode poles in ρ(ω), discussed in C.2.3.

example for dS3,

ρdS3,Λ(ω) ≡

ˆ ∞
Λ−1

dt
2π

e−(1+iν)t + e−(1−iν)t

(1 − e−t)2
(
eiωt + e−iωt ) (C.28)

=
2Λ
π
−

1
2

∑
±

(ω ± ν) coth
(
π(ω ± ν)

)
.

Some examples are illustrated in fig. C.1. In contrast to AdS, ρdS(ω) is continuous. Indeed energy

eigenkets |ωσ〉 of the static patch form a continuum of scattering states, coming out of and going

into the horizon, instead of the discrete set of bound states one gets in the global AdS potential

well. Note that although the above ρdS3,Λ(ω) formally goes negative in the large-ω limit, it is

positive within its regime of validity, that is to say for ω, ν � Λ.

C.2.2 Coarse-grained density of states in globally truncated model

For a ∆ = 1
2 + iν scalar on dS2, the density of states regularized by as in (C.28) is

ρ(ω) =
2
π

log(e−γΛ) −
1

2π

∑
±,±

ψ
( 1

2 ± iν ± iω)
)
, (C.29)
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where γ is the Euler constant, ψ(x) = Γ′(x)/Γ(x) is the digamma function, and the sum is over the

four different combinations of signs. To ascertain it makes physical sense to identify this as the

density of states, we would like to compare this to a model with discretized spectrum of eigenvalues

ω.

An efficient discretization — which does not require solving bulk equations of motion and is

quite natural from the point of view of dS-CFT approaches to de Sitter quantum gravity [170, 180,

181] — is obtained by truncating the global dSd+1 angular momentum SO(d + 1) of the single-

particle Hilbert space, considering instead of H a finite-dimensional matrix

hσ̄σ̄′ ≡ 〈σ̄ |H |σ̄′〉 , (C.30)

where σ̄ are SO(d + 1) quantum numbers, as in (C.20). For dS2 this is SO(2) and σ̄ = n ∈ Z,

truncated e.g. by |n| ≤ N . The matrix h is sparse and can be computed either directly using

|n〉 ∝
´

dϕ einϕ |ϕ〉 and the explicit form of H given in (C.8), or algebraically.

The algebraic way goes as follows. A normalizable basis |n〉 of the global dS2 scalar single-

particle Hilbert space can be constructed from the SO(1, 2) conformal algebra (C.7), using a basis

of generators L0, L± related to H, K and P as L0 =
1
2 (P + K), L± = 1

2 (P − K) ± iH. Then L0 is the

global angular momentum generator i∂φ along the future boundary S1 and L± are its raising and

lowering operators. In some suitable normalization of the L0 eigenstates |n〉, we have L0 |n〉 = n|n〉,

L± |n〉 = (n ± ∆)|n ± 1〉. Cutting off the single-particle Hilbert space at −N < n ≤ N ,4 the operator

H = i
2 (L− − L+) acts as a sparse 2N × 2N matrix on the truncated basis |n〉.

A minimally coarse-grained density of states can then be defined as the inverse spacing of its

4The asymmetric choice here allows us to use the simple coarse graining prescription (C.31) and keep this discus-
sion short. A symmetric choice |n| ≤ N would lead to an enhanced Z2 and two families of eigenvalues distinguished
by their Z2 parity, inducing persistent microstructure in the level spacing. The most efficient way to proceed then is to
compute ρ̄N,±(ω) as the inverse level spacing for these two families separately and then add the contributions together
as interpolated functions. For dS3 with SO(3) cutoff ` ≤ N one similarly gets 2N + 1 families of eigenvalues, labeled
by SO(2) angular momentum m, and one can proceed analogously. Alternatively, one can compute ρ̄N (ω) directly by
binning and counting, but this requires larger N .
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Figure C.3: Comparison of d = 1 character χ(t) defined in (C.22) (blue) to the coarse-grained discretized
character χ̄N,δ(t) defined in (C.32) (red), with δ = 0.1 and other parameters as in fig. C.2. Plot on the right
shows wider range of t. Plot in the middle smaller range of t, but larger χ.

eigenvalues ωi, i = 1, . . . , 2N , obtained by numerical diagonalization:

ρ̄N (ωi) ≡
2

ωi+1 − ωi−1
. (C.31)

The continuum limit corresponds to N → ∞ in the discretized model, and to Λ → ∞ in (C.29).

To compare to (C.29), we adjust Λ, in the spirit of renormalization, to match the density of states

at some scale ω, say ω = 0. The results of this comparison for ν = 2, N = 2000 are shown in fig.

C.2. Clearly they match remarkably well indeed in the regime where they should, i.e. well below

the UV cutoff scale.

We can make a similar comparison directly at the (UV-finite) character level. The discrete

character is
∑

i e−iωit , which is a wildly oscillating function. At first sight this seems very different

from the character χ(t) = tr e−iHt in (C.27). However to properly compare the two, we should

coarse grain this at a small but finite resolution δ. We do this by convolution with a Gaussian

kernel, that is to say we consider

χ̄N,δ(t) ≡
1
√

2πδ

ˆ ∞
−∞

dt′ e−(t−t ′)2/2δ2 ∑
i

e−iωit ′ =
∑

i

e−itωi−δ
2ω2

i /2 . (C.32)

A comparison of χ̄N,δ to χ is shown in fig. C.3 for δ = 0.1. The match is nearly perfect for |t |

not too large and not too small. For small t, the χ̄N,δ(t) caps off at a finite value, the number
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Figure C.4: Plot of |ρ(ω)| in complex ω-plane corresponding to the dS3 examples of fig. C.1, that is
∆± = {1+ 2i, 1− 2i}, { 1

2,
3
2 }, {0.1, 1.9}, and 2Λ/π ≈ 64. Lighter is larger with plot range 58 (black) < |ρ| <

67 (white). Resonance poles are visible at ω = ∓i(∆± + n), n ∈ N.

of eigenvalues |ωi | . 1/δ, while χ(t) ∼ 1/|t | → ∞. The approximation gets better here when

δ is made smaller. For larger values of t, χ̄N,δ(t) starts showing some oscillations again. These

can be eliminated by increasing δ, at the cost of accuracy at smaller t. In the N → ∞ limit,

the discretized approximation gets increasingly better over increasingly large intervals of t, with

limδ→0 limN→∞ χ̄N,δ(t) = χ(t).

Note that there is no reason to expect any discretization scheme will converge to χ(t) or ρ(ω).

For example it is not clear a brick wall discretization along the lines described in section C.5.3

would. On the other hand, the convergence of the above global angular momentum cutoff scheme

to the continuum χ(t) was perhaps to be expected, given (C.20) and the discussion preceding it.

C.2.3 Resonances and quasinormal mode expansion

Substituting the expansion (C.26) of the dS character,

χ(t) =
∑
λ

Nλ e−itλ (t > 0) , (C.33)

230



into (C.27), ρ(ω) = 1
2π
´ ∞

0 dt χ(t) (eiωt + e−iωt), we can formally express the density of states as

ρ(ω) =
1

2πi

∑
λ

Nλ

( 1
λ − ω

+
1

λ + ω

)
, (C.34)

From this we read off that ρ(ω) analytically continued to the complex plane has poles at ω = ±λ

which for massive representations means ω = ∓i(∆± + n). This can also be checked from explicit

expressions such as the dS3 scalar density of states (C.28), illustrated in fig. C.4. These values of

ω are precisely the frequencies of the (anti-)quasinormal field modes in the static patch, that is to

say modes with purely ingoing/outgoing boundary conditions at the horizon, regular in the interior.

If we think of the normal modes as scattering states, the quasinormal modes are to be thought of

as scattering resonances. Indeed the poles of ρ(ω) are related to the poles/zeros of the static patch

S-matrix S(ω), cf. (C.35) below. Thus we see the coefficients Nλ in (C.33) count resonances (or

quasinormal modes), rather than states (or normal modes) as in AdS. This expresses at the level of

characters the observations made in [139]. It holds for any SO(1, d + 1) representation, including

massless representations, as explored in more depth in [141] (see also appendix C.7.1). Some

corresponding quasinormal mode expansions of bulk thermodynamic quantities are given in (3.56)

and (3.59), and related there to the quasinormal mode expansion of [142] for scalar and spinor path

integrals.

“S-matrix” formulation

The appearance of resonance poles in the analytically continued density of states is well-

known in quantum mechanical scattering off a fixed potential V . They are directly related to the

poles/zeros in the S-matrix S(ω) at energy ω through the relation [182]

ρ(ω) − ρ0(ω) =
1

2πi
d

dω
tr log S(ω) , (C.35)

where ρ0(ω) is the density of states at V = 0.

Using the explicit form of the dS2 dimension-∆ scalar static patch mode functions (C.122)
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φ∆
ω`
(r,T), expanding these for r =: tanh X → 1 as

φ∆ω`(r) → A∆` (ω) e
−iω(T+X) + B∆` (ω) e

−iω(T−X) , (C.36)

and defining S∆
`
(ω) ≡ B∆

`
(ω)/A∆

`
(ω), one can check that ρ∆(ω) as obtained in (C.29) satisfies

ρ∆(ω) − ρ0(ω) =
1

2πi
d

dω

∑
`=0,1

log S∆` (ω) , (C.37)

where ρ0(ω) =
1
π (ψ(iω) + ψ(−iω)) + const. does not depend on ∆. This can be viewed as a rough

analog of (C.35), although the interpretation of ρ0(ω) in the present setting is not clear to us.

Similar observations can be made in higher dimensions.

In [183], a general (flat space) S-matrix formulation of statistical mechanics for interacting

QFTs was developed. In this formulation, the canonical partition function is expressed as

log Z − log Z0 =
1

2πi

ˆ
dE e−βE d

dE
[
Tr log S(E)

]
c , (C.38)

where the subscript c indicates restriction to connected diagrams (where “connected” is defined

with the rule that particle permutations are interpreted as interactions [183]). Combined with the

above observations, this hints at a possible generalization of our free QFT results to interacting

theories.

C.3 Evaluation of character integrals

The most straightforward way of UV-regularizing character integrals is to simply cut off the

t-integral at some small t = ε . However to compare to the standard heat kernel (or spectral zeta

function) regularization for Gaussian Euclidean path integrals [60], it is useful to have explicit

results in the latter scheme. In this appendix we give an efficient and general recipe to compute

the exact heat kernel-regularized one-loop Euclidean path integral, with regulator e−ε
2/4τ as in

(3.66), requiring only the unregulated character formula as input. For concreteness we consider
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the scalar case in the derivation, but because the scalar character χ0(t) provides the basic building

block for all other characters χS(t), the final result will be applicable in general. We spell out the

derivation is some detail, and summarize the final result together with some examples in section

C.3.2. Application to the massless higher-spin case is discussed in section C.3.3, where we work

out the exact one-loop Euclidean path integral for Einstein gravity on S4 as an example. In section

C.3.4 we consider different regularizations, such as the simple t > ε cutoff.

C.3.1 Derivation

As shown in section 3.3, the scalar Euclidean path integral regularized as

log Zε =
ˆ ∞

0

dτ
2τ

e−
ε2
4τ FD(τ) , FD(τ) ≡ Tr e−τD =

∑
n

Dd+2
n e−(n+

d
2+iν)(n+ d

2−iν) , (C.39)

where D = −∇2 + d2

4 + ν
2, can be written in character integral form as

log Zε =
ˆ ∞
ε

dt

2
√

t2 − ε2

∑
n

Dd+2
n

(
e−(n+

d
2 )t−iν

√
t2−ε2
+ e−(n+

d
2 )t+iν

√
t2−ε2

)
(C.40)

=

ˆ ∞
ε

dt

2
√

t2 − ε2

1 + e−t

1 − e−t
e−

d
2 t−iν

√
t2−ε2
+ e−

d
2 t+iν

√
t2−ε2

(1 − e−t)d
, (C.41)

Putting ε = 0 we recover the formal (UV-divergent) character formula

log Zε=0 =

ˆ ∞
0

dt
2t

Fν(t) ,

Fν(t) ≡
∑

n

Dd+2
n

(
e−(n+

d
2+iν)t + e−(n+

d
2−iνn)t

)
=

1 + e−t

1 − e−t
e−(

d
2+iν)t + e−(

d
2−iν)t

(1 − e−t)d
. (C.42)

To evaluate (C.41), we split the integral into UV and IR parts, each of which can be evaluated in

closed form in the limit ε → 0.
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Separation into UV and IR parts

The separation of the integral in UV and IR parts is analogous to the usual procedure in heat

kernel regularization, where one similarly separates out the UV part of the τ integral by isolating

the leading terms in the τ → 0 heat kernel expansion

FD(τ) := Tr e−τD →

d+1∑
k=0

αk τ
−(d+1−k)/2 =: Fuv

D (τ) . (C.43)

Introducing an infinitesimal IR cutoff µ→ 0, we may write log Zε = log Zuv
ε + log Z ir where

log Zuv
ε ≡

ˆ ∞
0

dτ
2τ

e−
ε2
4τ Fuv

D (τ) e
−µ2τ , log Z ir ≡

ˆ ∞
0

dτ
2τ

(
FD(τ) − Fuv

D (τ)
)

e−µ
2τ . (C.44)

Dropping the UV regulator in the IR integral is allowed because all UV divergences have been

removed by the subtraction. The factor e−µ
2τ serves as an IR regulator needed for the separate

integrals when Fuv has a term αd+1
2τ , 0, that is to say when d + 1 is even. The resulting log µ terms

cancel out of the sum at the end. Evaluating this using the specific UV regulator of (C.39) gives

log Zε =
1
2
ζ ′D(0) + αd+1 log

( 2
eγε

)
+

1
2

d∑
k=0

αk Γ
( d+1−k

2
) (

2
ε

)d+1−k
, (C.45)

where ζD(z) = Tr D−z = 1
Γ(z)

´ dτ
τ τ

z Tr e−τD is the zeta function of D and αd+1 = ζD(0).

We can apply the same idea to the square-root regulated character formula (C.41) for Zε . The

latter is obtained from the simpler integrand of the formal character formula (C.42) for Zε=0 by

dividing it by r(ε, t) ≡
√

t2 − ε2/t and replacing ν by νr(ε, t):

log Zε=0 =

ˆ ∞
0

dt
2t

Fν(t) ⇒ log Zε =
ˆ ∞
ε

dt
2rt

Frν(t) , r ≡

√
t2 − ε2

t
. (C.46)

Note that 0 < r < 1 for all t > ε , r ∼ O(1) for t ∼ ε and r → 1 for t � ε . Therefore, given the
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t → 0 behavior of the integrand in the formal character formula for Zε=0,

1
2t

Fν(t) →
1
t

d+1∑
k=0

bk(ν) t−(d+1−k) =:
1
2t

Fuv
ν (t) , bk(ν) =

k∑̀
=0

bk` ν
` , (C.47)

we get the t ∼ ε → 0 behavior of the integrand for the exact Zε :

1
2rt

Frν(t) →
1

2rt
Fuv

rν (t) =
1
rt

∑
k,`

bk` ν
` r` t−(d+1−k) . (C.48)

Thus we can separate log Zε = log Z̃uv
ε + log Z̃ ir, with

log Z̃uv
ε ≡

ˆ ∞
ε

dt
2rt

Fuv
rν (t) e

−µt , log Z̃ ir ≡

ˆ ∞
0

dt
2t

(
Fν(t) − Fuv

ν (t)
)
e−µt . (C.49)

Again the limit µ→ 0 is understood. We were allowed to put ε = 0 in the IR part because it is UV

finite.

Evaluation of UV part

Using the expansion (C.48), the UV part can be evaluated explicitly as

log Z̃uv
ε =

1
2

∑
`,k≤d

bk` B
( d+1−k

2 , `+1
2

)
ν` ε−(d+1−k) −

∑̀
bd+1,`

(
H` −

1
2 H`/2 + log

(
eγ ε µ

2

) )
ν` (C.50)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Euler beta function and Hx = γ +

Γ′(1+x)
Γ(1+x) which for integer x is the

x-th harmonic number Hx = 1 + 1
2 + · · · +

1
x . For example for d = 3, we get

log Z̃uv
ε =

4
3 ε
−4 − 4ν2+1

12 ε−2 −
(
ν4

9 +
ν2

24
)
−

(
ν4

12 +
ν2

24 −
17

2880
)

log
( eγε µ

2
)
. (C.51)

This gives an explicit expression for the part of log Z denoted Pol(∆) in [142], without having to

invoke an independent computation of the heat kernel coefficients. Indeed, turning this around,

by comparing (C.50) to (C.45), we can express the heat kernel coefficients αk explicitly in terms
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of the character coefficients bk,`. In particular the Weyl anomaly coefficient is simply given by

the coefficient bd+1 =
∑
` bd+1,`ν

` of the 1/t term in the integrand of the formal character formula

(C.42). More generally,

αk =
∑̀ Γ( `+1

2 )

2d+1−kΓ( d+1−k+`+1
2 )

bk` ν
` . (C.52)

For example for d = 3, this becomes α0 =
1
12 b00, α2 =

1
2 b20 +

ν2

6 b22 and α4 = b4. From

the small-t expansion 1
2t Fν(t) →

∑
k bk t3−k in (C.42) we read off b0 = 2, b2 = −

1
12 − ν

2 and

b4 = −
17

2880 +
1

24ν
2 + 1

12ν
4. Thus α0 =

1
6 , α2 = −

1
24 −

1
6ν

2 and α4 = −
17

2880 +
1

24ν
2 + 1

12ν
4.

Evaluation of IR part

As we explain momentarily, the IR part can be evaluated as

log Z̃ ir =
1
2
ζ ′ν(0) + bd+1 log µ, ζν(z) ≡

1
Γ(z)

ˆ ∞
0

dt
t

tz Fν(t) , (C.53)

where like for the spectral zeta function ζD(z), the “character zeta function” ζν(z) is defined by

the above integral for z sufficiently large and by analytic continuation for z → 0. This zeta

function representation of log Z ir follows from the following observations. If we define ζ ir
ν (z) ≡

1
Γ(z)

´ ∞
0

dt
t tz (Fν(t)−Fuv

ν (t)
)

e−µt , then since the integral remains finite for z → 0, while Γ(z) ∼ 1/z

and ∂z(1/Γ(z)) → 1, we trivially have 1
2∂zζ

ir
ν (z)|z=0 = log Z̃ ir. Moreover for z sufficiently large

we have in the limit µ → 0 that 1
2 ζ

uv(z) ≡ 1
Γ(z)

´ ∞
0

dt
2t tzFuv

ν (t) e
−µt = bd+1µ

−z, so upon analytic

continuation we have 1/2∂zζ
uv(z)|z=0 = −bd+1 log µ, and (C.53) follows.

In contrast to the spectral zeta function, the character zeta function can straightforwardly be

evaluated in terms of Hurwitz zeta functions. Indeed, denoting ∆± = d
2 ± iν, we have FD(t) =∑

n Q(n) e−t(n+∆+)(n+∆−) where the spectral degeneracy Q(n) is some polynomial in n, and ζD(z) =∑∞
n=0 Q(n)

(
(n+∆+)(n+∆−)

)−z, which is quite tricky to evaluate, whereas Fν(t) =
∑

n Q(n)
(
e−t(n+∆+)+

e−t(n+∆−)
)
, and we can immediately express the associated character zeta function as a finite sum
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of Hurwitz zeta functions ζ(z,∆) =
∑∞

n=0(n + ∆)
−z:

ζν(z) =
∑
±

∞∑
n=0

Q(n)(n + ∆±)−z =
∑
±

Q(δ̂ − ∆±) ζ(z,∆±) . (C.54)

Here δ̂ is the unit z-shift operator acting as δ̂nζ(z,∆) = ζ(z − n,∆); for example if Q(n) = n2 we

have Q(δ̂ − ∆) ζ(z,∆) = (δ̂2 − 2∆δ̂ + ∆2)ζ(z,∆) = ζ(z − 2,∆) − 2∆ζ(z − 1,∆) + ∆2ζ(z,∆).

C.3.2 Result and examples

Result

Altogether we conclude that given a formal character integral formula

log ZPI =

ˆ ∞
0

dt
2t

Fν(t) , (C.55)

for a field corresponding to a dSd+1 irrep of dimension d
2 + iν, with IR and UV expansions

Fν(t) =
∑
∆

∞∑
n=0

P∆(n) e−(n+∆)t ,
1
2t

Fν(t) =
1
t

d+1∑
k=0

bk(ν) t−(d+1−k) + O(t0) , (C.56)

where bk(ν) =
∑
` bk` ν

`, we obtain the exact ZPI with heat kernel regulator e−ε
2/4τ as

log ZPI,ε =
1
2

∑
∆

P∆(δ̂ − ∆) ζ ′(0,∆) −
d+1∑̀
=0

bd+1,`
(
H` −

1
2 H`/2

)
ν` + bd+1(ν) log(2e−γ/ε)

+
1
2

d∑
k=0

k∑̀
=0

bk` B
( d+1−k

2 , `+1
2

)
ν` ε−(d+1−k) .

(C.57)

Here B(x, y) = Γ(x)Γ(y)
Γ(x+y) , Hx = γ +

Γ′(1+x)
Γ(1+x) , which for integer x is the x-th harmonic number Hx =

1+ 1
2+· · ·+

1
x , and δ̂ is the unit shift operator acting on the first argument of the Hurwitz zeta function

ζ(z,∆): the polynomial P∆(δ̂ − ∆) is to be expanded in powers of δ̂, setting δ̂nζ ′(0,∆) ≡ ζ ′(−n,∆).
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Finally the heat kernel coefficients are

αk =
∑̀ Γ( `+1

2 )

2d+1−kΓ( d+1−k+`+1
2 )

bk` ν
` . (C.58)

If we are only interested in the finite part of log Z , only the first three terms in (C.57) matter.

Note that the third and the second termMν ≡
∑
` bd+1,`

(
H` −

1
2 H`/2

)
is in general nonvanishing

for even d + 1. By comparing (C.57) to (C.45), say in the scalar case discussed earlier, we see

that ζ ′D(0) = ζ ′ν(0) + 2Mν. Thus 2Mν can be thought of as correcting the formal factorization∑
n log(n + ∆+)(n + ∆−) =

∑
n log(n + ∆+) +

∑
n log(n + ∆−) in zeta function regularization. For

this reason Mν is called the multiplicative “anomaly”, as reviewed in [184]. The above thus

generalizes the explicit formulae in [184] forMν to fields of arbitrary representation content.

Examples

1. A scalar on S2 (d = 1) with ∆± = 1
2±iν has Fν(t) = 1+e−t

1−e−t
e−∆+t+e−∆−t

1−e−t so the IR and UV expansions

are Fν(t) =
∑
±

∑∞
n=0(2n + 1)e−(∆±+n)t and 1

2t Fν(t) = 2
t3 +

1
12−ν

2

t + O(t0). Therefore according to

(C.57)

log ZPI,ε =
∑

∆= 1
2±iν

(
ζ ′(−1,∆) − (∆ − 1

2 )ζ
′(0,∆)

)
+ ν2 +

( 1
12 − ν

2) log
(
2 e−γ/ε

)
+

2
ε2 . (C.59)

The heat kernel coefficients are obtained from (C.58) as α0 = 1 and α2 =
1

12 − ν
2.

2. For a scalar on S3, Fν(t) =
∑
±

∑∞
n=0(n + 1)2e−(∆±+n)t , 1

2t Fν(t) → 2
t4 −

ν2

t2 + O(t0), so

log ZPI,ε =
∑
±

(
1
2 ζ
′(−2, 1 ± iν) ∓ iνζ ′(−1, 1 ± iν) − 1

2ν
2ζ ′(0, 1 ± iν)

)
−
πν2

4ε
+

π

2ε3 . (C.60)

The heat kernel coefficients are α0 =
√
π

4 , α2 = −
√
π

4 ν
2. In particular for a conformally coupled

scalar, i.e. ∆ = 1
2,

3
2 or equivalently ν = i/2, we get for the finite part the familiar result log ZPI =

3ζ(3)
16π2 −

log(2)
8 . For ∆ = 1, i.e. ν = 0, we get log ZPI = −

ζ(3)
4π2 . Notice that the finite part looks
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quite different from (3.50) obtained by contour integration. Nevertheless they are in fact the same

function.

3. A more interesting example is the massive spin-s field on S4 with ∆± = 3
2 ± iν. In this case,

(3.83) combined with (C.135) or equivalently (3.84) gives Fν = Fbulk − Fedge with

Fbulk(t) =
∑

∆= 3
2±iν

∞∑
n=−1

D3
s D5

n e−(n+∆)t = D3
s

1 + e−t

1 − e−t
e−(

3
2+iν)t + e−(

3
2−iν)t

(1 − e−t)3
, (C.61)

Fedge(t) =
∑

∆= 1
2±iν

∞∑
n=−1

D5
s−1D3

n+1 e−(n+∆)t = D5
s−1

1 + e−t

1 − e−t
e−(

1
2+iν)t + e−(

1
2−iν)t

(1 − e−t)
, (C.62)

where D3
p = 2p + 1, D5

p =
1
6 (2p + 3)(p + 2)(p + 1). In particular note that with gs ≡ D3

s = 2s + 1,

we have D5
s−1 =

1
24gs(g

2
s − 1). The small-t expansions are

1
2t Fbulk(t) → gs

(
2 t−5 −

(
ν2 + 1

12
)
t−3 +

(
ν4

12 +
ν2

24 −
17

2880
)
t−1 + O(t0)

)
(C.63)

1
2t Fedge(t) → 1

24gs(g
2
s − 1)

(
2 t−3 +

( 1
12 − ν

2)t−1 + O(t0)
)
. (C.64)

Thus the exact partition function for a massive spin-s field is

log ZPI,ε = gs

∑
∆= 3

2±iν

(
1
6 ζ
′(−3,∆) ∓ 1

2iνζ ′(−2,∆) −
( 1

2ν
2 + 1

24
)
ζ ′(−1,∆) ± i

( 1
24ν +

1
6ν

3)ζ ′(0,∆))
− 1

24gs(g
2
s − 1)

∑
∆= 1

2±iν

(
ζ ′(−1,∆) ∓ iνζ ′(0,∆)

)
− 1

24g
3
s ν

2 − 1
9gsν

4 (C.65)

+
(
g3

s
( 1

24ν
2 − 1

288
)
+ gs

( 1
12ν

4 − 7
2880

) )
log(2 e−γ/ε) −

( 1
12g

3
s +

1
3gsν

2)ε−2 + 4
3gsε

−4 .

Finally the heat kernel coefficients are

α0 =
1
6gs , α2 = −

1
24g

3
s −

1
6gsν

2 , α4 = g3
s
( 1

24ν
2 − 1

288
)
+ gs

( 1
12ν

4 − 7
2880

)
. (C.66)
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Single-mode contributions

Contributions from single path integral modes and contributions of single quasinormal modes

are of use in some of our derivations and applications. These are essentially special cases of the

above general results, but for convenience we collect some explicit formulae here:

• Path integral single-mode contributions: For our choice of heat-kernel regulator e−ε
2/4τ, the

contribution to log ZPI,ε from a single bosonic eigenmode with eigenvalue λ is

Iλ =
ˆ ∞

0

dτ
2τ

e−ε
2/4τ e−τλ = K0(ε

√
λ) → −

1
2

log
λ

M2 , M ≡
2e−γ

ε
, (C.67)

Different regulator insertions lead to a similar result in the limit ε → 0, with M = c/ε for some

regulator-dependent constant c. A closely related formula is obtained for the contribution from an

individual term in the sum (C.40) or equivalently in the IR expansion of (C.56), which amounts to

computing (C.55) with Fν(t) ≡ e−ρt , ρ = a±iν. The small-t expansion is 1
2t Fν(t) = 1

2t+O(t
0), so the

UV part is given by the log term in (C.57) with coefficient 1
2 , and the IR part is 1

2 ζ
′
ν(0) = −1

2 log ρ

as in (C.53). Thus

I′ρ =
ˆ ∞

0

dt
2t

e−ρt → −
1
2

log
ρ

M
, M =

2e−γ

ε
, (C.68)

where the integral is understood to be regularized as in (C.40), I′ρ =
´ ∞
ε

dt
2
√

t2−ε2 e−ta−iν
√

t2−ε2 , left

implicit here. The similarities between (C.67) and (C.68) are of course no accident, since in our

setup, the former splits into the sum of two integrals of the latter type: writing λ = a2 + ν2 =

(a + iν)(a − iν), we have Iλ = I′a+iν + I′a−iν.

•Quasinormal mode contributions: Considering a character quasinormal mode expansion χ(t) =∑
r Nr e−r |t | as in (3.14), the IR contribution from a single bosonic/fermionic QNM is

ˆ ∞
0

dt
2t

1 + e−t

1 − e−t e−r t
����
IR
= log

Γ(r + 1)
µr
√

2πr
, −

ˆ ∞
0

dt
2t

2e−t/2

1 − e−t e−r t
����
IR
= − log

Γ(r + 1
2 )

µr
√

2π
(C.69)
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• Harmonic oscillator: The character of a d = 0 scalar of mass ν is χ(t) = e−iνt + eiνt , hence

log ZPI,ε =

ˆ ∞
0

dt
2t

1 + e−t

1 − e−t

(
e−iνt + eiνt ) = π

ε
− log

(
eπν − e−πν

)
. (C.70)

The finite part gives the canonical bosonic harmonic oscillator thermal partition function Tr e−βH =∑
n e−βν(n+

1
2 ) =

(
eβν/2 − e−βν/2

)−1 at β = 2π. The fermionic version is

log ZPI,ε = −

ˆ ∞
0

dt
2t

2e−t/2

1 − e−t

(
e−iνt + eiνt ) = −π

ε
+ log

(
eπν + e−πν

)
. (C.71)

C.3.3 Massless case

Here we give a few more details on how to use (C.57) to explicitly evaluate ZPI in the massless

case, and work out the exact ZPI for Einstein gravity on S4 as an example.

Our final result for the massless one-loop ZPI = ZG · Zchar is given by (3.112):

ZPI = i−P γdimG

vol(G)c
· exp

ˆ × dt
2t

F , F =
1 + q
1 − q

( [
χ̂bulk

]
+
−

[
χ̂edge

]
+
− 2 dim G

)
, (C.72)

where for s = 2 gravity γ =
√

8πGN
Ad−1

, P = d + 3, G = SO(d + 2) and vol(G)c = (C.93).

• UV part: As always, the coefficient of the log-divergent term simply equals the coefficient of

the 1/t term in the small-t expansion of the integrand in (C.72). For the other UV terms in (C.57)

(including the “multiplicative anomaly”), a problem might seem to be that we need a continuously

variable dimension parameter ∆ = d
2 + iν, whereas massless fields, and our explicit formulae for

χ̂ → [ χ̂]+, require fixed integer dimensions. This problem is easily solved, as the UV part can

actually be computed from the original naive character formula (C.170):

log ZPI
��
UV =

ˆ
dt
2t

F̂
���
UV
, F̂ =

1 + q
1 − q

(
χ̂bulk − χ̂edge

)
, (C.73)

Indeed since F̂ → F = {F̂}+ in (C.172) affects just a finite number of terms ck qk → ck q−k , it does

not alter the small-t (UV) part of the integral. Moreover χ̂s = χ̂s,νφ − χ̂s,νξ , where χ̂s,ν is a massive
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spin-s character. Thus the UV part may be obtained simply by combining the results of (C.57) for

general ν and s, substituting the values νφ, νξ set by (3.95).

• IR part: The IR part is the ζ ′ part of (C.57), obtained from the q-expansion of F(q) in (C.72).

This can be found in general by using

1 + q
1 − q

q∆

(1 − q)k
=

∞∑
n=0

P(n) qn+∆ , P(n) = Dk+2
n , (C.74)

with Dk+2
n the polynomial given in (C.15). For k = 0, (C.69) is useful. In particular, using the

´ ×
prescription (C.178), the IR contribution from the last term in (C.72) is obtained by considering

the r → 0 limit of the bosonic formula in (C.69):

ˆ × dt
2t

1 + q
1 − q

(
−2 dim G

) ����
IR
= dim G · log(2π) . (C.75)

Example: Einstein gravity on S4

As a simple application, let us compute the exact one-loop Euclidean path integral for pure

gravity on S4. In this case G = SO(5), dim G = 10, d = 3 and s = 2. From (3.95) we read off

iνφ = 3
2 , iνξ = 5

2 , and from (3.102) we get

χbulk =
[
χ̂bulk

]
+
=

10 q3 − 6 q4

(1 − q)3
, χedge =

[
χ̂edge

]
+
=

10 q2 − 2 q3

1 − q
. (C.76)

The small-t expansion of the integrand in (C.72) is 1
2t F = 4 t−5 − 47

3 t−3 − 571
45 t−1 + O(t0). The

coefficient of the log-divergent part of log ZPI is the coefficient of t−1:

log ZPI |log div = −
571
45

log
(
2e−γε−1) , (C.77)
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in agreement with [51]. The complete heat-kernel regularized UV part of (C.57) can be read off

directly from our earlier results for massive spin-s in d = 3 as

log ZPI
��
UV = log ZPI(s = 2, ν = 3

2i)
��
UV − log ZPI(s = 1, ν = 5

2i)
��
UV

=
8
3
ε−4 −

32
3
ε−2 −

571
45

log
(
2e−γε−1) + 715

48
. (C.78)

HereM = 715
48 is the “multiplicative anomaly” term. The integrated heat kernel coefficients are

similarly obtained from (C.66): α0 =
1
3 , α2 = −

16
3 , α4 = −

571
45 .

The IR (ζ ′) contributions from bulk and edge characters are obtained from the expansions

1 + q
1 − q

(
χbulk − χedge

)
=

∑
n

Pb(n)
(
10 q3+n − 6 q4+n) −∑

n

Pe(n)
(
10 q2+n − 2 q3+n) , (C.79)

where Pb(n) = D5
n =

1
6 (n + 1)(n + 2)(2n + 3), Pe(n) = D3

n = 2n + 1. According to (C.57) this gives

a contribution to log Zchar |IR equal to

5 Pb(δ̂ − 3) ζ ′(0, 3) − 3 Pb(δ̂ − 4) ζ ′(0, 4) − 5 Pe(δ̂ − 2) ζ ′(0, 2) + Pe(δ̂ − 3) ζ ′(0, 3) , (C.80)

where the polynomials are to be expanded in powers of δ̂, putting δ̂nζ ′(0,∆) ≡ ζ ′(−n,∆). Working

this out and adding the contribution (C.75), we find

log Zchar
��
IR = − log 2 −

47
3
ζ ′(−1) +

2
3
ζ ′(−3) . (C.81)

Combining this with the UV part and reinstating `, we get5

log Zchar =
8
3
`4

ε4 −
32
3
`2

ε2 −
571
45

log
2e−γL
ε

−
571
45

log
`

L
+

715
48
− log 2 −

47
3
ζ ′(−1) +

2
3
ζ ′(−3) , (C.82)

5This splits as log Zchar = 10 log(2π) + log Zbulk − log Zedge where log Zbulk =
8`4

3ε4 −
8`2

3ε2 −
331
45 log 2e−γ`

ε + 475
48

− 23
3 ζ
′(−1) + 2

3 ζ
′(−3) − 5 log(2π) and log Zedge =

8`2

ε2 +
16
3 log 2e−γ`

ε − 5 + 8ζ ′(−1) + log 2 + 5 log(2π).
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where L is an arbitrary length scale introduced to split off a finite part:

log Zfin
char = −

571
45

log(`/L) +
715
48
− log 2 −

47
3
ζ ′(−1) +

2
3
ζ ′(−3) , (C.83)

To compute the group volume factor ZG in (C.72), we use (C.93) for G = SO(5) to get vol(G)c =
2
3 (2π)

6, and γ =
√

8πGN/4π`2. Finally, i−P = i−(d+3) = −1. Thus we conclude that the one-loop

Euclidean path integral for Einstein gravity on S4 is

ZPI = −
(8πGN/4π`2)5 Zchar

2
3 (2π)6

, (C.84)

where Zchar is given by (C.82).

Example: Einstein gravity on S5

For S5 an analogous (actually simpler) computation gives ZPI = i−7ZG Zchar with

log Zchar =
15 π

8
`5

ε5 −
65 π
24

`3

ε3 −
105 π

16
`

ε
+

65 ζ(3)
48 π2 +

5 ζ(5)
16 π4 + 15 log(2π)

log ZG =
15
2

log
8πGN

2π2`3 − log
(2π)9

12
.

(C.85)

C.3.4 Different regularization schemes

If we simply cut off the character integral at t = ε , we get the following instead of (C.57):

log Zε =
1
2

∑
∆

P∆(δ̂ − ∆) ζ ′(0,∆) + bd+1(ν) log(e−γ/ε) +
d∑

k=0

bk(ν)

d + 1 − k
ε−(d+1−k) , (C.86)

with bk(ν) defined as before, 1
2t Fν(t) =

∑d+1
k=0 bk(ν) t−(d+2−k) + O(t0). Unsurprisingly, this differs

from (C.57) only in its UV part, more specifically in the terms polynomial in ν, including the

“multiplicative anomaly” term discussed below (C.58). The transcendental (ζ ′) part and the log ε

coefficient remain unchanged. This remains true in any other regularization.

If we stick with heat-kernel regularization but pick a different regulator f (τ/ε2) instead of
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e−ε
2/4τ (e.g. the f = (1 − e−τΛ

2
)k PV regularization of section 3.2) or use zeta function regular-

ization, more is true: the same finite part is obtained for any choice of f provided logarithmically

divergent terms (arising in even d + 1) are expressed in terms of M defined as in (C.67) with

e−ε
2/4τ → f . The relation M(ε) will depend on f , but nothing else.

In dimensional regularization, some polynomial terms in ν will be different, including the

“multiplicative anomaly” term. Of course no physical quantity will be affected by this, as long

as self-consistency is maintained. In fact any regularization scheme (even (C.86)) will lead to the

same physically unambiguous part of the one-loop corrected dS entropy/sphere partition function

of section 3.8. However to go beyond this, e.g. to extract more physically unambiguous data by

comparing different saddles along the lines of (C.342) and (C.345), a portable covariant regular-

ization scheme, like heat-kernel regularization, must be applied consistently to each saddle. A

sphere-specific ad-hoc regularization as in (C.86) is not suitable for such purposes.

C.4 Some useful dimensions, volumes and metrics

C.4.1 Dimensions of representations of SO(K)

General irreducible representations of SO(K) with K = 2r or K = 2r + 1 are labeled by r-row

Young diagrams or more precisely a set S = (s1, . . . , sr) of highest weights ordered from large

to small, which are either all integer (bosons) or all half-integer (fermions). When K = 2r , sr

can be either positive of negative, distinguishing the chirality of the representation. For various

applications in this paper we need the dimensions DK
S of these SO(K) representations S. The Weyl

dimension formula gives a general expression for the dimensions of irreducible representations of

simple Lie groups. For the SO(K) this is

• K = 2r:

DK
S = N

−1
K

∏
1≤i< j≤r

(
ì + ` j

) (
ì − ` j

)
, ì ≡ si +

K
2 − i (C.87)

with NK independent of S, hence fixed by DK
0 = 1, i.e. NK =

∏
1≤i< j≤r(K − i − j)( j − i).
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• K = 2r + 1:

DK
S = N

−1
K

∏
1≤i≤r

(2 ì)
∏

1≤i< j≤r

(
ì + ` j

) (
ì − ` j

)
, ì ≡ si +

K
2 − i , (C.88)

where NK is fixed as above: NK =
∏

1≤i≤r(K − 2i)
∏

1≤i< j≤r(K − i − j)( j − i).

For convenience we list here some low-dimensional explicit expressions:

K DK
s DK

n,s DK
k+ 1

2 ,
1
2

2 1 1

3 2s + 1 2
(k+1

1
)

4 (s + 1)2 (n − s + 1) (n + s + 1) 2
(k+2

2
)

5 (s+1)(s+2)(2s+3)
6

(2n+3)(n−s+1)(n+s+2)(2s+1)
6 4

(k+3
3

)
6 (s+1)(s+2)2(s+3)

12
(n+2)2(n−s+1)(n+s+3)(s+1)2

12 4
(k+4

4
)

7 (s+1)(s+2)(s+3)(s+4)(2s+5)
120

(n+2)(n+3)(2n+5)(n−s+1)(n+s+4)(s+1)(s+2)(2s+3)
720 8

(k+5
5

)
8 (s+1)(s+2)(s+3)2(s+4)(s+5)

360
(n+2)(n+3)2(n+4)(n−s+1)(n+s+5)(s+1)(s+2)2(s+3)

4320 8
(k+6

6
)

(C.89)

Here (k + 1
2,

1
2 ) means (s1, . . . , sr) = (k + 1

2,
1
2, . . . ,

1
2 ), i.e. the spin s = k + 1

2 representation.

For general d ≥ 3, we can use (C.15) and (C.135) to compute

DK
s =

(s+K−1
K−1

)
−

(s+K−3
K−1

)
, DK

n,s = DK
n DK−2

s − DK
s−1DK−2

n+1 . (C.90)

Denoting 1 repeated m times by 1m, e.g. (5, 12) = (5, 1, 1) = , we furthermore have

Dd
1p =

(d
p

)
(p < d

2 ), D2p
1p−1,±1 =

1
2
(2p

p

)
, Dd+2

n,s,1m = Dd+2
n Dd

s,1m − Dd+2
s−1 Dd

n+1,1m . (C.91)
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C.4.2 Volumes

The volume of the unit sphere Sn is

Ωn ≡ vol(Sn) =
2 π n+1

2

Γ
( n+1

2
) = 2π

n − 1
· Ωn−2 (C.92)

The volume of SO(d + 2) with respect to the invariant group metric normalized such that minimal

SO(2) orbits have length 2π is

vol
(
SO(d + 2)

)
c =

d+2∏
k=2

vol(Sk−1) =

d+2∏
k=2

2π k
2

Γ( k2 )
. (C.93)

This follows from the fact that the unit sphere Sn−1 = SO(n)/SO(n−1), which implies vol(SO(n))c =

vol(Sn−1) vol(SO(n − 1))c in the assumed normalization.

The volume of SU(N) with respect to the invariant metric derived from the matrix trace norm

on the Lie algebra su(N) viewed as traceless N × N matrices is (see e.g. [185])

vol
(
SU(N)

)
TrN =

√
N

N∏
k=2

(2π)k

Γ(k)
=
√

N
(2π) 1

2 (N−1)(N+2)

G(N + 1)
. (C.94)

C.4.3 de Sitter and its Wick rotations to the sphere

Global dSd+1 has a convenient description as a hyperboloid embedded in R1,d+1,

X I XI ≡ ηI J X I X J ≡ −X2
0 + X2

1 + · · · + X2
d+1 = `

2 , ds2 = ηI J dX I dX J . (C.95)
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Figure C.5: Penrose diagrams of dSd+1 and Sd+1 with coordinates C.96, C.98. Each point corresponds to
an Sd−1, contracted to zero size at thin-line boundaries. a: Global dSd+1 in slices of constant T̄ . b: Wick
rotation of global dSd+1 to Sd+1. c: S/N = southern/northern static patch, F/P = future/past wedge; slices
of constant T (gray) and r (blue/red) = flows generated by H. Yellow dot = horizon r = 1. d: Wick-rotation
of static patch S to Sd+1; slices of constant τ and constant r .

Below we set ` ≡ 1 . The isometry group is SO(1, d + 1), with generators MI J = XI∂J − XJ∂I .

Various coordinate patches are shown in fig. C.5a,c, with coordinates and metric given by

co embedding (X0, . . . , Xd+1) coordinate range metric ds2 = ηIJdX IdXJ

G (sinh T̄, cosh T̄ Ω̄) T̄ ∈ R, Ω̄ ∈ Sd −dT̄2 + cosh2 T̄ dΩ̄2

S (
√

1 − r2 sinh T, rΩ,
√

1 − r2 cosh T) T ∈ R, 0 ≤ r < 1, Ω ∈ Sd−1 −(1 − r2)dT2 + dr2

1−r2 + r2dΩ2

F (
√

r2 − 1 cosh T, rΩ,
√

r2 − 1 sinh T) T ∈ R, r > 1, Ω ∈ Sd−1 − dr2

r2−1 + (r
2 − 1)dT2 + r2dΩ2

(C.96)

illustrated in fig. C.5a,c. N is obtained from S by Xd+1 → −Xd+1, and P from F by X0 → −X0.

The southern static patch S is the part of de Sitter causally accessible to an inertial observer at the

south pole of the global spatial Sd . The metric in this patch is static, with the observer at r = 0

and a horizon at r = 1. The SO(1, 1) generator H = M0,d+1 acts by translation of the coordinate T ,

which is timelike in S, N and spacelike in F, P. From the direction of the flow lines in fig. C.5c,

it can be seen that the positive energy operator is H in S, whereas it is −H in N . In F/P, r is the

time coordinate, and H is the operator corresponding to spatial momentum along the T-axis of the

R × Sd−1 spatial slices.
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A Wick rotation X0 → −iX0 maps (C.95) to the round sphere Sd+1:

δI J X I X J = `2 , ds2 = δI J dX I dX J . (C.97)

The full Sd+1 can be obtained either from global dS G by Wick rotating global time T̄ → −iτ̄, or

from a single static patch S by Wick rotating static time T → −iτ, as illustrated in fig. C.5b,d.

The corresponding sphere coordinates and metric are, again setting ` ≡ 1

co embedding (X0, X1, . . . , Xd+1) coordinate range metric ds2 = δIJdX IdXJ

G (sin τ̄, cos τ̄, Ω̄) − π2 ≤ τ̄ ≤
π
2 , Ω̄ ∈ Sd dτ̄2 + cos2 τ̄ dΩ̄2

S (
√

1 − r2 sin τ, rΩ,
√

1 − r2 cos τ) 0 ≤ r < 1, τ ' τ + 2π, Ω ∈ Sd−1 (1 − r2)dτ2 + dr2

1−r2 + r2dΩ2

(C.98)

C.5 Euclidean vs canonical: formal & physics expectations

Given a QFT on a static spacetime R × M with metric ds2 = −dt2 + ds2
M , Wick rotating

t → −iτ yields a Euclidean QFT on a space with metric ds2 = dτ2 + ds2
M . The Euclidean path

integral ZPI(β) =
´
DΦ e−S[Φ] on S1

β × M obtained by identifying τ ' τ + β equals the thermal

partition function: ZPI(β) = Tr e−βH , as follows from cutting the path integral along constant-τ

slices and viewing e−τH as the Euclidean time evolution operator.

At least for noninteracting theories, it is in practice much more straightforward to compute

the partition function as the state sum Tr e−βH of an ideal gas in a box M than as a one-loop

path integral ZPI =
´
DΦ e−S[Φ] on S1

β × M , in particular for higher-spin fields. In view of this,

it is reasonable to wonder if a free QFT path integral on the sphere could perhaps similarly be

computed as a simple state sum, by viewing the sphere as the Wick-rotated static patch (fig. C.5d),

with inverse temperature β = 2π given by the period of the angular coordinate τ:

ZPI
?
= TrS e−2πH . (C.99)

Below we review the formal path integral slicing argument suggesting the above relation and why
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it fails, emphasizing the culprit is the presence of a fixed-point locus of H, the yellow dot in fig.

C.5. At the same formal level, we show the above relation is equivalent to ZPI
?
= Zbulk, with Zbulk

defined as a character integral as in section 3.2. This improves the situation, but is still incorrect

for spin s ≥ 1. In more detail, the content is as follows:

In C.5.1 we consider the d = 0 case: a scalar of mass ω on dS1 in its Euclidean vacuum state,

i.e. an entangled pair of harmonic oscillators. Though surely superfluous to most readers, we use

the occasion to provide a pedagogical introduction to some standard constructions.

In C.5.2 we formally apply the same template to general d, ignoring yellow-dot issues, leading

to the standard formal “thermofield double” description of the static patch of de Sitter [149], and

more specifically to ZPI ' Tr e−2πH ' Zbulk. We review the pathological divergences that ensue

when one attempts to evaluate the trace, and some of its proposed fixes such as the “brick-wall”

cutoff [35] and refinements thereof. We contrast these to Zbulk defined as a character integral.

In C.5.5, we turn to the edge corrections missed by such formal arguments, explaining from

various points of view why they are to be expected.

C.5.1 S1

Though slightly silly, it is instructive to first consider the d = 0 case: a free scalar field of mass

ω on dS1 (fig. C.6). Global dS1 is the hyperbola X2
0 − X2

1 = 1 according to (C.95), which consists

of two causally disconnected lines, globally parametrized according to table C.96 by (T̄, Ω̄) where

Ω̄ ∈ S0 = {−1,+1} ≡ {N, S}. The pictures of fig. C.5 still apply, except there are no interior

points, resulting in fig. C.6. Putting a free scalar of mass ω on this space just means we consider

two harmonic oscillators φS and φN , with action

SL =
1
2

ˆ ∞
−∞

dT̄
(
Ûφ2
S − ω

2φ2
S +
Ûφ2
N − ω

2φ2
N
)
. (C.100)

The dS1 isometry group is SO(1, d + 1) = SO(1, 1), generated by H ≡ M01, which acts as for-

ward/backward time translations on φS/φN , to be contrasted with the global Hamiltonian H′, which
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Figure C.6: dS1 version of fig. C.5 (in c we only show S here). Wick rotation of global time T̄ → −iτ̄
maps a→ b while wick rotation of static patch time T → −iτ maps c→ d. Coordinates are as defined in
tables C.96 and C.98 with d = 0.

acts as forward time translations on both. The southern and northern static patch are parametrized

by T , and each contains one harmonic oscillator, respectively φS and φN . Introducing creation and

annihilation operators aS
ω, a

S†
ω , aN

−ω, a
N†
−ω satisfying [a, a†] = 1, we have

H = HS − HN , H′ = HS + HN , HS = ω
(
aS†
ω aS

ω +
1
2
)
, HN = ω

(
aN†
−ωaN

−ω +
1
2
)
. (C.101)

The subscript ±ω refers to the H eigenvalue: [H, a†±ω] = ±ω a†±ω, [H, a±ω] = ∓ω a±ω. The

southern and northern Hilbert spaces HS, HN each have a positive energy eigenbasis |n) with

energies En = (n + 1
2 )ω. In QFT language, |0) is the static patch “vacuum”, and each patch has

one “single-particle” state, |1) = a† |0). The global Hilbert space is HG = HS ⊗ HN , with basis

|nS, nN〉 = |nS) ⊗ |nN ) satisfying H |nS, nN〉 = ω(nS − nN )|nS, nN〉.

Wick-rotating dS1 produces an S1 of radius ` = 1. If we consider this as the Wick rotation

of the static patch as in fig. C.5d/C.6d, S in table (C.98), the S1 is parametrized by the periodic

Euclidean time coordinate τ ' τ + 2π. The corresponding Euclidean action for the scalar is

SE =
1
2

ˆ 2π

0
dτ

(
Ûφ2 + ω2φ2) φ(2π) = φ(0) . (C.102)

The Euclidean path integral ZPI on S1 is most easily computed by reverting to the canonical for-

malism with e−τHS = e−τH as the Euclidean time evolution operator, which maps it to the harmonic
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oscillator thermal partition function at inverse temperature β = 2π:

ZPI =

ˆ
Dφ e−SE [φ] = TrHS

e−2πH =
∑

n

e−2πω(n+ 1
2 ) =

e−2πω/2

1 − e−2πω . (C.103)

We can alternatively consider the S1 to be obtained as the Wick rotation of global dS1 as in fig.

C.5b/C.6b, G in (C.98), parametrizing the S1 by (τ̄, Ω̄), − π2 ≤ τ̄ ≤
π
2 , Ω̄ ∈ S0 = {S, N}, identifying

(± π2, S) = (±
π
2, N). The global action (C.100) then Wick rotates to

SE =
1
2

ˆ π/2

−π/2
dτ̄

(
Ûφ2
S + ω

2φ2
S +
Ûφ2
N + ω

2φ2
N
)
, φS(±

π
2 ) = φN (±

π
2 ) , (C.104)

which is identical to (C.102), just written in a slightly more awkward form. This form naturally

leads to an interpretation of ZPI as computing the norm squared of the Euclidean vacuum state |O〉

of the scalar on the global dS1 Hilbert space HG, by cutting the path integral at the S0 = {N, S}

equator τ̄ = 0 of the S1 (cf. fig. C.6b):

ZPI =

ˆ
d2φ0 〈O |φ0〉〈φ0 |O〉 ≡ 〈O |O〉 , 〈φ0 |O〉 ≡

ˆ
τ̄≤0
Dφ|φ0 e−SE [φ] , (C.105)

where φ0 = (φS,0, φN,0). The notation
´
τ̄≤0Dφ|φ0 means the path integral of φ = (φS, φN ) is

performed on the lower hemicircle τ̄ ≤ 0 (orange part in fig. C.6b), with boundary conditions

φ|τ̄=0 = φ0. 〈O |φ0〉 is similarly defined as a path integral on the upper hemicircle (green part). It is

not too difficult to explicitly compute |O〉 in the |φS,0, φN,0〉 basis, but it is easier to compute it in

the oscillator basis |nS, nN〉, noticing that slicing the path integral defining |O〉 allows us to write it

as 〈nS, nN |O〉 = (nS |e−πH |nN ) = e−πω(nS+
1
2 ) δnS,nN . Thus

|O〉 =
∑

n

e−πω(n+
1
2 ) |n, n〉 = e−πω/2 exp

(
e−πωaS†

ω aN†
−ω

)
|0, 0〉 . (C.106)

In the Schrödinger picture, |O〉 is to be thought of as an initial state at T̄ = 0 for global dS1:

pictorially, we are gluing the bottom half of fig. C.6b to the top half of fig. C.6a. This state evolves
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Figure C.7: Global time evolution of PT̄ (φS, φN ) =
��〈φS, φN |e−iH

′T̄ |O〉
��2 for free ω = 0.1 scalar on dS1,

from T̄ = 0 to T̄ = π/ω. P(φS) =
´

dφN PT̄ (φS, φN ) is thermal and time-independent.

nontrivially in global time T̄ : though invariant under SO(1, 1) generated by H = HS − HN , it is

not invariant under forward global time translations generated by the global Hamiltonian H′ =

HS + HN . For viewing pleasure this is illustrated in fig. C.7, which also visually exhibits the

north-south entangled nature of |O〉.

Note that ZPI = 〈O |O〉 =
∑

n e−2πω(n+ 1
2 ), reproducing the dS1 static patch thermal partition

function (C.116). Indeed from the point of view of the static patch, the global Euclidean vacuum

state looks thermal with inverse temperature β = 2π: the southern reduced density matrix %̂S

obtained by tracing out the northern degree of freedom φN in the global Euclidean vacuum |O〉 is

%̂S =
∑

n e−2πω(n+ 1
2 ) |n)(n| = e−2πHS . In contrast to the global |O〉, the reduced density matrix is

time-independent.

The path integral slicing arguments we used did not rely on the precise form of the action. In

particular the conclusions remain valid when we add interactions:

|O〉 =
∑

n

e−βEn/2 |n, n〉 , %̂S = e−βHS , ZPI = 〈O |O〉 = TrS e−βH (β = 2π) (C.107)

Actually in the d = 0 case at hand, we can generalize all of the above to arbitrary values of β. (For

d > 0 this would create a conical singularity at r = 1 on Sd+1, but for S1 the point r = 1 does

not exist.) Note that since the reduced density matrix is thermal, the north-south entanglement

entropy in the Euclidean vacuum |O〉 equals the thermal entropy: Sent = −trS %S log %S = Sth =

(1 − β∂β) log Z , where %S ≡ %̂S/Z , Z = TrS %̂S.

Despite appearing distinctly non-vacuous from the point of view of a local observer, and being
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globally time-dependent, the state |O〉 does deserve its “vacuum” epithet. As already mentioned,

it is invariant under the global SO(1, 1) isometry group: H |O〉 = 0. Moreover, for the free scalar,

(C.106) implies |O〉 is itself annihilated by a pair of global annihilation operators aG related related

to aS, aS†, aN and aN† by a Bogoliubov transformation:

aG
±ω |O〉 = 0 , aG

ω ≡
aS
ω − e−πωaN†

−ω
√

1 − e−2πω
, aG

−ω ≡
aN
−ω − e−πωaS†

ω
√

1 − e−2πω
, (C.108)

normalized such that [aG
±ω, a

G†
±ω] = δ±,±. From (C.101) we get H = ω aG†

ω aG
ω − ω aG†

−ωaG
−ω. Thus we

can construct the global Hilbert spaceHG as a Fock space built on the Fock vacuum |O〉, by acting

with the global creation operators aG†
±ω. The Hilbert space H (1)G of “single-particle” excitations of

the global Euclidean vacuum is two-dimensional, spanned by

|±ω〉 ≡ aG†
±ω |O〉, H |±ω〉 = ±ω |±ω〉 . (C.109)

The character χ(t) of the SO(1, 1) representation furnished byH (1)G is

χ(t) ≡ trG e−itH = e−itω + eitω . (C.110)

The above constructions are straightforwardly generalized to fermionic oscillators. The character

of a collection of bosonic and fermionic oscillators of frequencies ωi and ω′j is

χ(t) = trG e−iHt = χ(t)bos + χ(t)fer =
∑
i,±

e±iωi +
∑
j,±

e±iω′j . (C.111)

Character formula

For a single bosonic resp. fermionic oscillator of frequency ω, log Tr e−βH has the following inte-
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gral representation:6

log
(
e−βω/2

(
1 − e−βω

)−1
)
= +

ˆ ∞
0

dt
2t

1 + e−2πt/β

1 − e−2πt/β

(
e−iωt + eiωt )

log
(
e+βω/2

(
1 + e−βω

) )
= −

ˆ ∞
0

dt
2t

2 e−πt/β

1 − e−2πt/β

(
e−iωt + eiωt ) . (C.112)

Combining this with (C.111) expresses the thermal partition function of a collection of bosonic

and harmonic oscillators as an integral transform of its SO(1, 1) character:

log Tr e−βH =

ˆ ∞
0

dt
2t

(
1 + e−2πt/β

1 − e−2πt/β
χ(t)bos −

2 e−πt/β

1 − e−2πt/β
χ(t)fer

)
. (C.113)

The Euclidean path integral on an S1 of radius ` = 1 for a collection of free bosons and fermions

(the latter with thermal, i.e. antiperiodic, boundary conditions) is then given by putting β = 2π in

the above:

log ZPI =

ˆ ∞
0

dt
2t

(
1 + e−t

1 − e−t χ(t)bos −
2 e−t/2

1 − e−t χ(t)fer

)
. (C.114)

C.5.2 Sd+1

The arguments in this section will be formal, following the template of section C.5.1 while

glossing over some important subtleties, the consequence of which we discuss in section C.5.5.

Wick-rotating a QFT on dSd+1 to Sd+1, we get the Euclidean path integral

ZPI =

ˆ
DΦ e−SE [Φ] , (C.115)

where Φ collects all fields in the theory. Just like in the d = 0 case, the two different paths from

dSd+1 to Sd+1, i.e. Wick-rotating global time T̄ or static patch time T (cf. fig. C.5 and table C.98),

naturally give rise to two different dS Hilbert space interpretations: one involving the global Hilbert

6 The t−2 pole of the integrand is resolved by the iε-prescription t−2 → 1
2
(
(t − iε)−2 + (t + iε)−2) , left implicit here

and in the formulae below. The integral formula can be checked by observing the integrand is even in t, extending the
integration contour to the real line, closing the contour, and summing residues.
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spaceHG and one involving the static patch Hilbert spaceHS.

The global Wick rotation of fig. C.5b leads to an interpretation of ZPI as computing 〈O |O〉,

analogous to (C.105), by cutting the path integral on the globlal Sd equator τ̄ = 0:

ZPI =

ˆ
τ̄=0

dΦ0 〈O |Φ0〉〈Φ0 |O〉 ≡ 〈O |O〉 , 〈Φ0 |O〉 ≡
ˆ
τ̄≤0
DΦ|Φ0 e−SE [Φ] , (C.116)

where
´
τ̄≤0Dφ|φ0 means the path integral is performed on the lower hemisphere τ̄ ≤ 0 of Sd+1

(orange region in fig. C.5b) with boundary conditions Φ|τ̄=0 = Φ0. 〈O |Φ0〉 is similarly de-

fined as a path integral on the upper hemisphere τ̄ ≥ 0 (green region). This defines the Hartle-

Hawking/Euclidean vacuum state |O〉 [186] of global dSd+1, with ZPI computing the natural pair-

ing of |O〉 with 〈O |.7

The static patch Wick rotation of fig. C.5d on the other hand leads to an interpretation of ZPI as

a thermal partition function at inverse temperature β = 2π, analogous to (C.103): slicing the path

integral along constant-τ slices as in fig. C.5d, and viewing e−τH with H = M0,d+1 as the Euclidean

time evolution operator acting onHS, we formally get8

ZPI ' TrHS
e−βH (β = 2π) . (C.117)

Like in the d = 0 case, this interpretation can be related to the global interpretation (C.116).

Picking suitable bases of HS and HN diagonalizing H, and applying a similar slicing argument,

7For kind enough theories, such as a scalar field theory, this pairing can be identified with the Hilbert space inner
product. However not all theories are kind enough, as is evident from the negative-mode rotation phase i−(d+3) in the
one-loop graviton contribution to ZPI = 〈O |O〉 according to (3.112) and [59]. Indeed for gravity this pairing is not in
an obvious way related to the semiclassical inner product of [187]. On the other hand, in the CS formulation of 3D
gravity it appears to be framing-dependent, vanishing in particular for canonical framing (cf. (C.252) and discussion
below it). The phase also drops out of 〈A〉 ≡ 〈O |A|O〉/〈O |O〉.

8 The notation ' means “equal according to these formal arguments”. Besides the default deferment of dealing
with divergences, we are ignoring some additional important points here, including in particular the fixed points of H:
the Sd−1 at r = 1 (yellow dot in fig. C.5), where the equal-τ slicing of (C.117) degenerates, and the HG = HN ⊗ HS

factorization implicit in (C.118) breaks down. We return to these points in section C.5.5.
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we formally get the analog of (C.107):

|O〉 ' “
∑

n

”e−βEn/2 |En, En〉 , %̂S ' e−βHS (β = 2π) , (C.118)

where we have put the sum in quotation marks because the spectrum is actually continuous, as we

will describe more precisely for free QFTs below. Granting this, we conclude that an inertial ob-

server in de Sitter space sees the global Euclidean vacuum as a thermal state at inverse temperature

β = 2π, the Hawking temperature of the observer’s horizon [9, 10, 149].

Applying (C.117) to a free QFT on dSd+1, we can write the corresponding Gaussian ZPI on

Sd+1 as the thermal partition function of an ideal gas in the southern static patch:

log ZPI ' log TrS e−2πH =
∑
±

∓

ˆ ∞
0

dω ρS(ω)±
(
log

(
1 ∓ e−2πω

)
+ 2πω/2

)
, (C.119)

where ρS(ω) ≡ trS δ(ω − H) is the density of single-particle states at energy ω > 0 above the

vacuum energy in the static patch, split into bosonic and fermionic parts as ρS = ρS+ + ρS−. Using

(C.4), we can write the character for arbitrary SO(1, d + 1) representations as

χ(t) = trG e−itH =

ˆ ∞
0

ρG(ω)
(
e−iωt + eiωt ) (C.120)

where ρG(ω) ≡ trG δ(ω − H). The Bogoliubov map (C.108) formally implies ρG(ω) ' ρS(ω) for

ω > 0, hence, following the reasoning leading to (C.114),

log ZPI ' log Zbulk ≡

ˆ ∞
0

dt
2t

(
1 + e−t

1 − e−t χ(t)bos −
2 e−t/2

1 − e−t χ(t)fer

)
. (C.121)

C.5.3 Brick wall regularization

Here we review how attempts at evaluating the ideal gas partition function (C.119) directly hit

a brick wall. Consider for example a scalar field of mass m2 on dSd+1. Denoting ∆± = d
2 ±

(
( d2 )

2 −
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m2)1/2, the positive frequency solutions on the static patch are of the form

φωσ(T,Ω, r) ∝ e−iωT Yσ(Ω) r`
(
1 − r2

) iω/2
2F1

( `+∆++iω
2 , `+∆−+iω

2 ; d
2 + `; r2), (C.122)

where ω > 0, and Yσ(Ω) is a basis of spherical harmonics on Sd−1 labeled by σ, which includes

the total SO(d) angular momentum quantum number `. A basis of energy and SO(d) angular

momentum eigenkets is therefore given by |ωσ) satisfying (ωσ |ω′σ′) = δ(ω − ω′) δσσ′. Naive

evaluation of the density of states in this basis gives a pathologically divergent result ρS(ω) =´
dω′

∑
σ(ω

′σ |δ(ω − ω′)|ω′σ) =
∑
σ δ(0), and commensurate nonsense in (C.119).

Pathological divergences of this type are generic in the presence of a horizon. Physically they

can be thought of as arising from the fact that the infinite horizon redshift enables the existence of

field modes with arbitrary angular momentum and energy localized in the vicinity of the horizon.

One way one therefore tries to deal with this is to replace the horizon by a “brick wall” at a distance

δ away from the horizon [35], with some choice of boundary conditions, say φ(T,Ω, 1− 1
2δ

2) = 0 in

the example above. This discretizes the energy spectrum and lifts the infinite angular momentum

degeneracy, allowing in principle to control the divergences as δ → 0. However, inserting a

brick wall alters what one is actually computing, introduces ambiguities (e.g. Dirichlet/Neumann),

potentially leads to new pathologies (e.g. Dirichlet boundary conditions for the graviton are not

elliptic [188]), and breaks most of the symmetries in the problem.

A more refined version of the idea considers the QFT in Pauli-Villars regularization [36]. This

eliminates the dependence on δ in the limit δ → 0 at fixed PV-regulator scale Λ. It was shown

in [36] that for scalar fields the remaining divergences for Λ → ∞ agree with those of the PV-

regulated path integral.9 A somewhat different approach, reviewed in [37, 135], first maps the

equations of motion in the metric ds2 = gµνdxµdxν by a (singular) Weyl transformation to formally

equivalent equations of motion in the “optical” metric ds̄2 = |g00 |
−1ds2. In the case at hand this

would be ds̄2 = −dT2 + (1 − r2)−2dr2 + (1 − r2)−1r2dΩ2, corresponding to R × hyperbolic d-ball.

The thermal trace is then mapped to a path integral on the Euclidean optical geometry with an

9This work directly inspired the use of Pauli-Villars regularization in section 3.2.
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S1 of constant radius β and a Weyl-transformed action. (This is not a standard covariant path

integral. In the case at hand, unless the theory happens to be conformal, non-metric r-dependent

terms break the SO(1, d) symmetry of the hyperbolic ball to SO(d).) This path integral can be

expressed in terms of a heat kernel trace
´

x 〈x |e
−τD̄ |x〉. The divergences encountered earlier now

arise from the fact that the optical metric ds̄2 has infinite volume near r = 1. This is regularized by

cutting the
´

x integral off at r = 1 − δ, analogous to the brick wall cutoff, though computationally

more convenient. For scalars and spinors, Pauli-Villars or dimensional regularization again allows

trading the δ→ 0 divergences for the standard UV divergences [37].

Unfortunately, certainly for general field content and in the absence of conformal invariance,

none of these variants offers any simplification compared to conventional Euclidean path integral

methods. In the case of interest to us, the large underlying SO(1, d + 1) symmetry is broken, and

with it one’s hope for easy access to exact results. Generalization to higher-spin fields, or even just

the graviton, appears challenging at best.

C.5.4 Character regularization

The character formula (C.121) is formally equivalent to the ideal gas partition function (C.119),

and indeed at first sight, naive evaluation in a global single-particle basis |ωσ〉 = aG†
ωσ |0〉 diago-

nalizing H = ω ∈ R, obtained e.g. by quantization of the natural cylindrical mode functions of

the future wedge (F in fig. C.5 and table C.96), gives a similarly pathological χ(t) = trG e−iHt =

´ ∞
−∞

dω
∑
σ〈ωσ |e−iωt |ωσ〉 = 2πδ(t)

∑
σ δ(0); hardly a surprise in view of the Bogoliubov relation

ρG(ω) ' ρS(ω) and our earlier result ρS(ω) =
∑
σ δ(0). Thus the conclusion would appear to be

that the situation is as bad, if not worse, than it was before.

However this is very much the wrong conclusion. As reviewed in appendix C.1, χ(t), properly

defined as a Harish-Chandra character, is in fact rigorously well-defined, analytic in t for t , 0,

and moreover easily computed. For example for a scalar of mass m2 on dSd+1, we get (C.3):

χ(t) =
e−t∆+ + e−t∆−

|1 − e−t |d
∆± ≡

d
2 ±

√( d
2
)2
− m2 (C.123)

259



as explicitly computed in appendix C.1.2. The reason why naive computation by diagonalization

of H fails so badly is explained in detail in appendix C.1.3: it is not the trace itself that is sick, but

rather the basis |ωσ〉 used in the naive computation.

Substituting the explicit χ(t) into the character integral (C.121), we still get a UV-divergent

result, but this divergence is now easily regularized in a standard, manifestly covariant way, as ex-

plained in section 3.2.2. Keeping the large underlying symmetry manifest allows exact evaluation,

for arbitrary particle content.

In section 3.3 we show that for scalars and spinors, the Euclidean path integral ZPI on Sd+1,

regularized as in (3.66), exactly equals Zbulk as defined in (C.121), regularized as in (3.73):

ZPI,ε = Zbulk,ε (scalars and spinors) , (C.124)

One might wonder how it is possible the switch to characters makes such a dramatic difference.

After all, (C.119) and (C.121) are formally equal. Yet the former first evaluates to nonsense and

then hits a brick wall, while the latter somehow ends up effortlessly producing sensible results upon

standard UV regularization. The discussion in C.1.3, in particular (C.20), provides some clues:

character regularization can be thought of, roughly speaking, as being akin to a regularization

cutting off global SO(d + 1) angular momentum.

This goes some way towards explaining why the character formalism fits naturally with the

Euclidean path integral formalism on Sd+1, as covariant (e.g. heat kernel) regularization of the

latter effectively cuts off the SO(d + 2) ⊃ SO(d + 1) angular momentum.

It also goes some way towards explaining what happened above. One way of thinking about

the origin of the pathological divergences encountered in section C.5.3 is that, as mentioned in

footnote 8, the formal argument implicitly starts from the premise that the QFT Hilbert space can

be factorized as HG = HS ⊗ HN , like in the S1 toy model. However this cannot be done in the

continuum limit of QFT: locally factorized states, such as the formal state |O) ⊗ |O) in which both

the southern and the northern static patch are in their minimal energy state, are violently singular
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objects [189]. Cutting off the global SO(d + 1) angular momentum does indeed smooth out the

sharp north-south divide: SO(d + 1) is the isometry group of the global spatial slice at T̄ = 0 (fig.

C.5b). The angular momentum cutoff means we only have a finite number of spherical harmonics

available to build our field modes. This makes it impossible in particular to build field modes

sharply localized in the southern or northern hemisphere: the harmonic expansion of a localized

mode always has infinitely many terms. Cutting off this expansion will necessarily leave some

support on the other hemisphere. Quite similar in this way again to the Euclidean path integral,

this offers some intuition on why the UV-regularized character integral avoids the pathological

divergences induced by sharply cutting space.

C.5.5 Edge corrections

In view of all this and (C.124), one might be tempted at this point to jump to the conclusion that

the arguments of section C.5.2, while formal and glossing over some subtle points, are apparently

good enough to give the right answer provided we use the character formulation, and that likewise

Z (1)PI on the sphere for a field of arbitrary spin s, despite its off-shell baroqueness, is just the ideal gas

partition function Zbulk on the dS static patch, calculable with on-shell ease: mission accomplished.

As further evidence in favor of declaring footnote 8 overly cautious, one might point to the fact that

in the context of theories of quantum gravity, identifying Zgrav
PI = TrH e−βH elegantly reproduces

the thermodynamics of horizons inferred by other means [10], and that such identifications are

moreover known to be valid in a quantitatively precise way in many well-understood cases in string

theory and AdS-CFT. If the formal argument is good enough for quantum gravity, then surely it is

good enough for field theory, one might think.

These naive considerations are wrong: the formal relation ZPI ' Zbulk for fields of spin s ≥ 1

receives “edge” corrections. In sections 3.4 and 3.5, we determine these for massive resp. massless

spin-s fields on Sd+1 by direct computation. The results are eqs. (3.84) and (3.112). The corrections

we find exhibit a concise and suggestive structure: again taking the form of a character formula

like (C.121), but encoding instead a path integral on a sphere in two lower dimensions, i.e. on Sd−1
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rather than Sd+1. This Sd−1 is naturally identified with the horizon r = 1, i.e. the edge of the static

patch hemisphere, the yellow dot in fig. C.5. The results of section 3.7 then imply SPI ' Sbulk

likewise receives edge corrections (besides corrections due to nonminimal coupling to curvature,

which arise already for scalars).

Similar edge corrections, to the entropy SPI ' Sbulk in the conceptually analogous case of

Rindler space, were anticipated long ago in [38] and explicitly computed shortly thereafter for

massless spin-1 fields in [39]. The result of [39] was more recently revisited in several works

including [43, 48], relating it to the local factorization problem of constrained QFT Hilbert spaces

[40–42, 45–47] and given an interpretation in terms of the edge modes arising in this context.

We leave the precise physical interpretation of the explicit edge corrections we obtain in this

paper to future work. Below we will review why they were to be expected, and how related

corrections can be interpreted in analogous, better-understood contexts in quantum gravity and

QFT. We begin by explaining why the quantum gravity argument was misleading and what its

correct version actually suggests, first from a boundary CFT point of view in the precise framework

of AdS-CFT, then from a bulk point of view in a qualitative picture based on string theory on

Rindler space. Finally we return to interpretations within QFT itself, clarifying more directly why

the caution expressed in footnote 8 was warranted indeed.

AdS-CFT considerations

As mentioned above, there are reasons to believe that in theories of quantum gravity, the iden-

tification Zgrav
PI = TrH e−βH is exact as a semiclassical (small-GN) expansion.

However, the key point here is thatH is the Hilbert space of the fundamental microscopic de-

grees of freedom, not the Hilbert space of the low energy effective field theory. This can be made

very concrete in the context of AdS-CFT, whereH has a precise boundary CFT definition. For ex-

ample for asymptotically Euclidean AdSd+1 geometries with S1
β×Sd−1 conformal boundary, certain

analogs of the formal relations (C.117) and (C.118) then become exact in the semiclassical/large-N
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bc d

Figure C.8: AdS-Schwarzschild analogs of c,b,d in fig. C.5. Black dotted line = singularity. Thick brown
line = conformal boundary.

expansion [190, 191]:

Zgrav
PI = TrH e−βH = 〈O |O〉 , |O〉 =

∑
n

e−βEn/2 |En)H ⊗ |En)H . (C.125)

Crucially, H here is the complete boundary CFT Hilbert space, and |O〉 is the Euclidean vacuum

state of two disconnected copies of the boundary CFT, constructed exactly like in the dS1 toy

model of section C.5.1, but with the hemicircle 1
2 S1 replaced by 1

2 S1 × Sd−1. From a semiclassical

bulk dual point of view this can be viewed as the Euclidean vacuum of two disconnected copies

of global AdS or of the eternal AdS-Schwarzchild geometry [191], depending on whether β lies

above or below the Hawking-Page phase transition point βc [192].

When β > βc, where βc ∼ O(1) assuming the low-energy gravity theory is approximately

Einstein with GN � `d−1 = 1, Zgrav
PI is dominated by the thermal EAdS saddle [192], with on-shell

action SE ≡ 0, so in the limit GN → 0, Zgrav
PI = Z (1)PI . Thus in this case, the relation Zgrav

PI =

TrH e−βH of (C.125) indeed implies Z (1)PI equals a statistical mechanical partition function. There

is no need to invoke quantum gravity to see this, of course: the thermal S1 is noncontractible in

the bulk geometry, so the bulk path integral slicing argument is free of subtleties, directly implying

Z (1)PI equals the partition function Tr e−βH of an ideal gas in global AdS.

On the other hand if β < βcrit, the dominant saddle is the Euclidean Schwarzschild geometry

(fig. C.8), with on-shell action S̃E ∝ −
1

GN
, so in the limit GN → 0, Zgrav

PI = Z (0)PI = e−S̃E . In

this case the identification Zgrav
PI = TrH e−βH of (C.125) no longer implies the one-loop correction
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Z (1)PI can be identified as a statistical mechanical partition function. In particular the bulk one-loop

contributions S(1) = (1 − β∂β) log Z (1)PI to the entropy need not be positive. (More specifically its

leading divergent term, which in a UV-complete description of the bulk theory would become finite

but generically still dominant, need not be positive.) From the CFT point of view, these are just

O(1) corrections in the large-N expansion of the statistical entropy. Although the total entropy

must of course be positive, corrections can come with either sign. From the bulk point of view,

since the Euclidean geometry is the Wick-rotated exterior of a black hole, the thermal circle is

contractible, shrinking to a point analogous to the yellow dot in fig. C.5d, leading to the same

issues as those mentioned in footnote 8.

Strings on Rindler considerations

To gain some insight from a bulk point of view, we consider the simplest example of a space-

time with a horizon: the Rindler wedge ds2 = −ρ2dt2 + dρ2 + dx2
⊥ of Minkowski space. While not

quite at the level of AdS-CFT, we do have a perturbative theory of quantum gravity in Minkowski

space: string theory. In fact, that Z (1)PI on a Euclidean geometry with a contractible thermal circle

cannot be interpreted as a statistical mechanical partition function in general, even if the full Zgrav
PI

has such an interpretation, was anticipated long ago in [38], in an influential attempt at developing

a string theoretic understanding of the thermodynamics of the Rindler horizon. Rindler space Wick

rotates to

ds2 = ρ2dτ2 + dρ2 + dx2
⊥, τ ' τ + β, β = 2π − ε . (C.126)

with the conical defect ε = 0 on-shell. The argument given in [38] is based on the point of view

developed in their work that loop corrections in the semiclassical expansion of the Rindler entropy

SPI ≡ (1 − β∂β) log Zgrav
PI |β=2π are equivalent to loop corrections to the Newton constant, ensuring

the entropy S = A/4GN involves the physically measured GN rather than than the bare GN. InN =

4 compactifications of string theory to 4D Minkowski space (and in N = 4 supergravity theories
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Figure C.9: Closed/open string contributions to the total Euclidean Rindler (ds2 = ρ2dτ2 + dρ2 + dx2)
partition function according to the picture of [38]. τ = angle around yellow axis ρ = 0; blue|red plane is
τ = π |0. a,b,c contribute to the entropy. Sliced along Euclidean time τ, a and b can be viewed as free
bulk resp. edge string thermal traces contributing positively to the entropy, while c can be viewed as an edge
string emitting and reabsorbing a bulk string, contributing a (negative) interaction term.

more generally), loop corrections to the Newton constant vanish. By the above observation, this

implies loop corrections to SPI vanish as well. Hence there must be cancelations between different

particle species, and in particular the one-loop contribution to the entropy of some fields in the

supergravity theory must be negative. Since statistical entropy is always positive, the one-loop

Z (1)PI of such fields cannot be equal to a statistical mechanical partition function.

In the same work [38], a qualitative stringy picture was sketched giving some bulk intuition

about the nature of such negative contributions to SPI when the total SPI is a statistical entropy. In

this picture, all relevant microscopic fundamental degrees of freedom are presumed to be realized

in the bulk quantum gravity theory as weakly coupled strings. More specifically it is presumed

that Zgrav
PI = TrH e−βH where H is the string Hilbert space on Rindler space and H is the Rindler

Hamiltonian, so SPI = S, the statistical entropy. Tree level and one-loop contributions to log ZPI

are shown in fig. C.9. Diagrams d,e do not contribute to the entropy SPI = (1 − β∂β) log ZPI as

their log ZPI ∝ β. Cutting b along constant-τ slices gives it an interpretation as a thermal trace

over “bulk” string states away from ρ = 0 (closed strings in top row).10 Similarly, a can be viewed

10As a simple analog of what is meant here, consider a free scalar field on S1 parametized by τ ' τ + β. Then
log ZPI =

´ ∞
0

ds
2s Tr e−s

1
2 (−∂

2
τ+m

2) =
∑

n

´
ds
2s
´
Dτ |n exp

[
− 1

2
´ s

0 ( Ûτ
2 + m2)

]
=

∑
n

1
2 |n | e

−|n |βm. Here n labels the wind-
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as a thermal trace over “edge” string states stuck to ρ = 0 (open strings in top row). On the other

hand c represents an interaction between bulk and edge strings, with no thermal or state counting

interpretation on its own. Being statistical mechanical partition functions, a and b contribute

positively to SPI, whereas c may contribute negatively. In fact in the N = 4 case discussed above,

c must be negative, canceling b to render S(1)PI = 0. From an effective field theory point of view, b

and e correspond to the bulk ideal gas partition function inferred from formal arguments along the

lines of section C.5.2, while c represents “edge” corrections missed by such arguments.

This picture is qualitative, as the individual contributions corresponding to a sharp split of the

worldsheet path integrals along these lines are likely ill-defined/divergent [193]. Moreover, even

without any splitting, an actual string theory calculation of SPI = (1− β∂β) log ZPI |β=2π is problem-

atic, as Euclidean Rindler with a generic conical defect ε = 2π − β is off-shell. Shortly after [38],

[194] proposed to compute ZPI on the orbifold R2/ZN for general integer N and then analytically

continue the result to N → 1+ ε . Unfortunately such orbifolds have closed string tachyons leading

to befuddling IR-divergences [194, 195]. Recently, progress was made in resolving some of these

issues: in an open string version of the idea, arranged in type II string theory by adding a suffi-

ciently low-dimensional D-brane, it was shown in [196] that upon careful analytic continuation,

the tachyon appears to disappear at N = 1 + ε .

QFT considerations

The problem of interest to us is really just a problem involving Gaussian path integrals in free

quantum field theory, so there should be no need to invoke quantum gravity to gain some insight

in what kind of corrections we should expect to the naive ZPI ' Zbulk. Indeed the above stringy

Rindler considerations have much more straightforwardly computable low-energy counterparts in

QFT.

Motivated by [38], [39] computed Z (1)PI for scalars, spinors and Maxwell fields on Rindler space.

ing number sector of the particle worldline path integral with target space S1. Discarding the UV-divergent 1
0 term,

this sums to log ZPI = − log
(
1 − e−βm

)
− 1

2 βm = log Tr e−βH as in (C.103). b is analogous to the |n| = 1 contribution
e−βm, e is analogous to n = 0, and higher winding versions of b correspond to |n| > 1.
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Figure C.10: Tree-level and one-loop contributions to log ZPI for massless vector field in Euclidean Rindler
(C.126). These can be viewed as field theory limits of fig. C.9, with verbatim the same comments applicable
to a-e. The worldline path integral c appears with a sign opposite to b in log Z (1)PI [39].

For scalars and spinors, this was found to coincide with the ideal gas partition function, whereas

for Maxwell an additional contact term was found, expressible in terms of a “edge” worldline

path integral with coincident start and end points at ρ = 0, fig. C.10c. This term contributes

negatively to S(1)PI = (1 − β∂β) log ZPI |β=2π and thus has no thermal interpretation on its own. In

fact it causes the total S(1)PI to be negative in less than 8 dimensions. The results of [39] and more

generally the picture of [38] were further clarified by low-energy effective field theory analogs

in [130], emphasizing in particular that whereas SPI remains invariant under Wilsonian RG, the

division between contributions with or without a low-energy statistical interpretation does not, the

former gradually turning into the latter as the UV-cutoff Λ is lowered. At Λ = 0, only the tree-level

contribution S = A/4GN of fig. C.10a is left.

The contact/edge correction of fig. C.10c to log ZPI can be traced to the presence of a curvature

coupling X linear in the Riemann tensor in SE =
´

A(−∇2+X)A+ · · · [130, 131, 135]. Such terms

appear for any spin s ≥ 1 field, massless or not. Hence, as one might have anticipated from the

stringy picture of fig. C.9, they are the norm rather than the exception.

The result of [39] was more recently revisited in [43], relating the appearance of edge correc-

tions to the local factorization problem of QFT Hilbert spaces with gauge constraints [40–42, 45–

47] like Gauss’ law ∇ · E = 0 in Maxwell theory. This problem arises more generally when con-

templating the definition of entanglement entropy SR = −Tr %R log %R of a spatial subregion R in

gauge theories. In principle %R is obtained by factoring the global Hilbert spaceHG = HR ⊗ HRc
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X ⇥ ⇥X

Rc R

Figure C.11: Candidate classical initial electromagnetic field configurations (phase space points), with
A0 = 0, Ai = 0, showing electric field Ei = Πi = ÛAi. Gauss’ law requires continuity E⊥ across the
boundary, disqualifying the two candidates on the right.

and tracing out HRc . As mentioned at the end of C.5.4, local factorization is impossible in the

continuum limit of any QFT, including scalar field theories, but the issue raised there can be dealt

with by a suitable regularization. However for a gauge theory such as free Maxwell theory, there

is an additional obstruction to local factorization, which persists after regularization, and indeed is

present already at the classical phase space level: the Gauss law constraint ∇ · E = 0 prevents us

from picking independent initial conditions in both R and Rc (fig. C.11), unless the boundary is

a physical object that can accommodate compensating surface charges — but this is not the case

here. One way to resolve this is to decompose the global phase space into sectors labeled by “cen-

ter” variables located at the boundary surface [40–42, 45–47], for example the normal component

E⊥ of the electric field. The center variables Poisson-commute with all local observables inside R

and Rc. In any given sector, factorization then becomes possible.

Building on this framework it was shown in [43] that in a suitable brick wall-like regularization

scheme and for some choice of measure DE⊥, the edge correction of [39] arises as a classical

contribution
´
DE⊥ e−SE [E⊥] to the thermal statistical partition function. Here SE [E⊥] is the on-

shell action for static electromagnetic field modes in Euclidean Rindler space with prescribed E⊥,

localized vanishingly close to ρ = 0 when the brick-wall cutoff is taken to zero, and thus interpreted

as edge modes. They also find a more precise form for the result of [39] for Rindler with its

transverse dimensions compactified on a torus, which is identical in form to our de Sitter result

(3.112) for s = 1, G = U(1).
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Similar results for massive vector fields were obtained in [48]. (The Stueckelberg action for

a massive vector has a U(1) gauge symmetry, so from that point of view it may fit into the above

considerations.) An open string realization of the above ideas was proposed in [197]. It has been

suggested that edge modes and “soft hair” might be related [198].

C.6 Derivations for massive higher spins

C.6.1 Massive spin-s fields

Here we derive (3.84) and (3.83). The starting point is the path integral (3.81). To get a result

guaranteed to be consistent with QFT locality and general covariance, we should in principle start

with the full off-shell system [102] involving auxiliary Stueckelberg fields of all spin s′ < s.

Transverse-traceless part ZTT

One’s initial hope might be that ZPI ends up being equal to the path integral ZTT restricted

to the propagating degrees of freedom, the transverse traceless modes of φ, with kinetic operator

given by the second-order equation of motion in (3.78). Regularized as in (3.66), this is

log ZTT ≡

ˆ ∞
0

dτ
2τ

e−ε
2/4τ TrTT e−τ

(
−∇2

s,TT+m2
s

)
. (C.127)

The index TT indicates the object is defined on the restricted space of transverse traceless modes.

This turns out to be correct for Euclidean AdS with standard boundary conditions [81]. However,

this is not quite true for the sphere, related to the presence of normalizable tensor decomposition

zeromodes.

The easiest way to convince oneself that ZPI , ZTT on the sphere is to just compute ZTT

and observe it is inconsistent with locality, in a sense made clear below. To evaluate ZTT, all we

need is the spectrum of −∇2
TT + m2

s [178, 199]. The eigenvalues are λn =
(
n + d

2

)2
+ ν2, n ≥ s

with degeneracy given by the dimension Dd+2
n,s of the so(d + 2) representation corresponding to the
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two-row Young diagram (n, s), for example for d = 3, (n, s) = (7, 3),

D5
7,3 = dimso(5) = 1190 . (C.128)

Explicit dimension formulae and tables can be found in appendix C.4.1.

Following the same steps as for the scalar case in section 3.3, we end up with

log ZTT =

ˆ ∞
0

dt
2t

(
qiν + q−iν ) fTT(q) , fTT(q) ≡

∑
n≥s

Dd+2
n,s q

d
2+n . (C.129)

Now let us evaluate this explicitly for the example of a massive vector on S5, i.e. d = 4, s = 1.

From (C.89) we read off D6
n,1 =

1
3n(n + 2)2(n + 4). Performing the sum we end up with

fTT(q) =
1 + q
1 − q

(
4 q2

(1 − q)4
−

q
(1 − q)2

)
+ q (d = 4, s = 1) . (C.130)

The first term inside the brackets can be recognized as the d = 4 massive spin-1 bulk character.

The small-t expansion of the integrand in (C.129) contains a term 1/t. This term arises from

the term +q in the above expression, as the other parts give contributions to the integrand that are

manifestly even under t → −t. The presence of this 1/t term in the small-t expansion implies

log ZTT has a logarithmic UV divergence log ZTT |log div = log M where M is the UV cutoff scale.

More precisely in the heat-kernel regularization under consideration, the contribution of the term

+q to log ZTT is, according to (C.68),

ˆ ∞
0

dt
2t

(
q1+iν + q1−iν ) = log

M
√

1 + ν2
, M ≡

2e−γ

ε
. (C.131)

Note that m =
√

1 + ν2 is the Proca mass (3.79) of the vector field. The presence of a logarithmic

divergence means ZPI , ZTT, for log ZPI itself is defined as a manifestly covariant, local QFT path

integral on S5, which cannot have any logarithmic UV divergences, as there are no local curvature

invariants of mass dimension 5.
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For s = 2 and d = 4 we get similarly

fTT(q) =
1 + q
1 − q

(
9 q2

(1 − q)4
−

6 q
(1 − q)2

)
+ 6 q + 15 q2 (d = 4, s = 2) . (C.132)

The terms 6 q + 15 q2 produce a nonlocal logarithmic divergence log ZTT |log div = c log M , where

c = 6 + 15 = 21, so again ZPI , ZTT. Note that 21 = 7×6
2 = dim so(1, 6), the number of conformal

Killing vectors on S5. That this is no coincidence can be ascertained by repeating the same exercise

for general d ≥ 3 and s = 2:

f (s=2)
TT (q) =

1 + q
1 − q

(
Dd

2 ·
q

d
2

(1 − q)d
− Dd+2

1 ·
q

d−2
2

(1 − q)d−2

)
+ Dd+2

1 q + Dd+2
1,1 q2 . (C.133)

The q, q2 terms generate a log-divergence c2 log M , c2 = Dd+2
1 +Dd+2

1,1 = (d+2)+ 1
2 (d+2)(d+1) =

1
2 (d + 3)(d + 2) = Dd+3

1,1 = dim so(1, d + 2), the number of conformal Killing vectors on Sd+1. The

identity NCKV = Dd+3
1,1 = Dd+2

1,1 + Dd+2
1,0 and its generalization to the spin-s case will be a crucial

ingredient in establishing our claims. It has a simple group theoretic origin. As a complex Lie

algebra, the conformal algebra so(1, d + 2) generated by the conformal Killing vectors is the same

as so(d + 3), which is generated by antisymmetric matrices and therefore forms the irreducible

representation with Young diagram of so(d + 3). This decomposes into irreps of so(d + 2) by

the branching rule

→ + , (C.134)

implying in particular Dd+3
1,1 = Dd+2

1,1 +Dd+2
1,0 . Geometrically this reflects the fact that the conformal

Killing modes split into two types: (i) transversal vector modes ϕi1
µ , i1 = 1, . . . ,Dd+2

1,1 , satisfying

the ordinary Killing equation ∇(µϕ
i1
ν)
= 0, spanning the eigenspace of the transversal vector

Laplacian, and (ii) longitudinal modes ϕi0
µ = ∇µϕ

i, i0 = 1, . . . ,Dd+2
1 , satisfying ∇µ∇νϕi0 +gµνϕ

i0 =

0, with the scalar ϕi0 modes spanning the eigenspace of the scalar Laplacian on Sd+2.
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We can extend the above to general s, d by observing the following key relation:11

Dd+2
n,s = Dd+2

n Dd
s − Dd+2

s−1 Dd
n+1 (C.135)

which together with the explicit expression (C.15) for Dd
s with d ≥ 3 immediately leads to

fTT(q) =
∑

n≥−1
Dd+2

n,s q
d
2+n −

s−1∑
n=−1

Dd+2
n,s q

d
2+n (C.136)

=
1 + q
1 − q

(
Dd

s ·
q

d
2

(1 − q)d
− Dd+2

s−1 ·
q

d−2
2

(1 − q)d−2

)
+

s−2∑
n=−1

Dd+2
s−1,n+1 q

d
2+n . (C.137)

To rewrite the finite sum we used Dd+2
n,s = −Dd+2

s−1,n+1 and Dd+2
s−1,s = 0, both of which follow from

(C.135). Substituting this into the integral (C.129), we get

log ZTT = log Zbulk − log Zedge + log Zres , (C.138)

where log Zbulk and log Zedge are the character integrals defined in (3.84)-(3.85), and, evaluating

the integral of the remaining finite sum as in (C.131),

log Zres =

s−2∑
n=−1

Dd+2
s−1,n+1

ˆ
dt
2t

(
q

d
2+n+iν + q

d
2+n−iν ) = s−2∑

n=−1
Dd+2

s−1,n+1 log
M√

( d2 + n)2 + ν2
(C.139)

The term log Zres has a logarithmic UV-divergence:

log Zres = cs log M + · · · , cs =

s−2∑
n=−1

Dd+2
s−1,n+1 = Dd+3

s−1,s−1 = NCKT , (C.140)

where NCKT = Dd+3
s−1,s−1 is the number of rank s − 1 conformal Killing tensors on Sd+2 [200]. This

identity has a group theoretic origin as an so(d + 3) → so(d + 2) branching rule generalizing

11This can be checked for any given d from the Weyl dimension formula of appendix C.4.1, or from the general d
formula given in e.g. [178, 199], or proven directly (with some effort) by an SO(d + 2) → SO(2) × SO(d) reduction.
It has a stronger version as an so(d + 2) character relation: χso(d+2)

n,s (x) = Dd
s χ

so(d+2)
n (x) − Dd

n+1 χ
so(d+2)
s−1 (x).

272



(C.134). For example for s = 4:

→ + + + . (C.141)

Geometrically this reflects the fact that the rank s − 1 = 3 Killing tensor modes split up into 4

types: Schematically ϕi3
µ1µ2µ3 , i3 = 1, . . . ,D3,3; ϕi2

µ1µ2µ3 ∼ ∇(µ1ϕ
i2
µ2µ3)

, i2 = 1, . . . ,D3,2; ϕi1
µ1µ2µ3 ∼

∇(µ1∇µ2ϕ
i1
µ3)

, i1 = 1, . . . ,D3,1; ϕi0
µ1µ2µ3 ∼ ∇(µ1∇µ2∇µ3)ϕ

i0 , i0 = 1, . . . ,D3, where the ϕir
µ1···µr span the

eigenspace of the TT spin-r Laplacian labeled by the above Young diagrams.

As pointed out in examples above and discussed in more detail below, the log-divergence of

log Zres is inconsistent with locality, hence ZPI , ZTT: locality must be restored by the non-TT part

of the path integral. Below we argue this part in fact exactly cancels the log Zres term, thus ending

up with log ZPI = log Zbulk − log Zedge, i.e. the character formula (3.84).

Full path integral ZPI: locality constraints

The full, manifestly covariant, local path integral takes the form (a simple example is (C.148)):

ZPI = ZTT · Znon-TT = Zbulk · Z−1
edge · Zres · Znon-TT . (C.142)

All UV-divergences of log ZPI are local, in the sense they can be canceled by local counterterms,

more specifically local curvature invariants of the background metric. In particular for odd d + 1,

this implies there cannot be any logarithmic divergences at all, as there are no curvature invariants

of odd mass dimension. Recall from (C.140) that the term log Zres is logarithmically divergent. For

odd d + 1, this is clearly the only log-divergent contribution to log ZTT, as the integrands of both

log Zbulk and log Zedge are even in t in this case. More generally, for even or odd d + 1, log Zres

is the only nonlocal log-divergent contribution to log ZTT, as follows from the result of [52, 62]

mentioned below (3.81), combined with the observation in (C.140) that cs = NCKT. Therefore

the log-divergence of log Zres must be canceled by an equal log-divergence in log Znon-TT of the

opposite sign.
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The simplest way this could come about is if Znon-TT exactly cancels Zres, that is if

Znon-TT = Z−1
res =

s−2∏
n=−1

(
M−1

√
( d2 + n)2 + ν2

)Dd+2
s−1,n+1

⇒ ZPI =
Zbulk
Zedge

. (C.143)

Note furthermore that from (C.136), or from (C.139) and Dd+2
s−1,n+1 = −Dd+2

n,s , it follows this iden-

tification is equivalent to the following simple prescription: The full ZPI is obtained from ZTT by

extending the TT eigenvalue sum
∑

n≥s in (C.129) down to
∑

n≥−1:

log ZPI =

ˆ ∞
0

dt
2t

(
qiν + q−iν ) ∑

n≥−1
Dd+2

n,s q
d
2+n , (C.144)

i.e. (3.83). In what follows we establish this is indeed the correct identification. We start by show-

ing it precisely leads to the correct spin-s unitarity bound, and that it moreover exactly reproduces

the critical mass (“partially massless”) thresholds at which a new set of terms in the action defin-

ing the path integral Znon-TT fails to be positive definite. Assisted by those insights, it will then be

rather clear how (C.143) arises from explicit path integral computations.

Unitarity constraints

A significant additional piece of evidence beyond consistency with locality is consistency with

unitarity. It is clear that both the above integral (C.144) for log ZPI and the integral (C.129) for

log ZTT are real provided ν is either real or imaginary. Real ν corresponds to the principal series

∆ = d
2 + iν, while imaginary ν = iµ corresponds to the complementary series ∆ = d

2 − µ ∈ R. In

the latter case there is in addition a bound on |µ| beyond which the integrals cease to make sense,

due to the appearance of negative powers of q = e−t and the integrand blowing up at t → ∞. The

bound can be read off from the term with the smallest value of n in the sum. In the ZTT integral

(C.129) this is the n = s term ∝ q
d
2+s±µ, yielding a bound |µ| < d

2 + s. In the ZPI integral (C.144),
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assuming s ≥ 1, this is the n = −1 term ∝ q
d
2−1±µ, so the bound becomes much tighter:

|µ| <
d
2
− 1 (s ≥ 1) . (C.145)

This is exactly the correct unitarity bound for the spin-s ≥ 1 complementary series representations

of SO(1, d + 1) [76–78, 101]. In terms of the mass m2 = ( d2 + s − 2)2 − µ2 in (3.79), this becomes

m2 > (s − 1)(d − 3 + s), also known as the Higuchi bound [100] (a convenient concise summary

is given in [201] s.a. [202]). From a path integral perspective, this bound can be understood as the

requirement that the full off-shell action is positive definite [102], so indeed log ZPI should diverge

exactly when the bound is violated. Moreover, we get new divergences in the integral formula for

log Znon-TT, according to the above identifications, each time |µ| crosses a critical value µ∗n = d
2+n,

where n = −1, 0, 1, 2, . . . , s−2. These correspond to critical masses m2
∗n = (

d
2 + s−2)2− ( d2 + n)2 =

(s − 2 − n)(d + s − 2 + n), which on the path integral side precisely correspond to the points where

a new set of terms in the action fails to be positive definite. [102].

This establishes the terms in the integrand of (C.139), or equivalently the extra terms n =

−1, . . . , s − 2 in (C.144), have exactly the correct powers of q to match with log Znon-TT. It does

not yet confirm the precise values of the coefficients Dd+2
n,s — except for their sum (C.140), which

was fixed earlier by the locality constraint. To complete the argument, we determine the origin of

these coefficients from the path integral point of view in what follows.

Explicit path integral considerations

Complementary to but guided by the above general considerations, we now turn to more con-

crete path integral calculations to confirm the expression (C.143) for Znon−TT, focusing in particular

on the origin of the coefficients Dd+2
n,s .

Spin 1:

We first consider the familar s = 1 case, a vector field of mass m, related to ν by (3.79) as m =√
( d2 − 1)2 + ν2. The local field content in the Stueckelberg description consists of a vector φµ and
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a scalar χ, with action and gauge symmetry given by

S0 =

ˆ
∇[µφν]∇

[µφν] + 1
2 (∇µχ − m φµ)(∇

µχ − m φµ) ; δχ = mξ , δφµ = ∇µξ . (C.146)

Gauge fixing the path integral by putting χ ≡ 0, we get the gauge-fixed action

S =
ˆ
∇[µφν]∇

[µφν] + 1
2m2φµφ

µ + mc̄c , (C.147)

with BRST ghosts c, c̄. Decomposing φµ into a transversal and longitudinal part, φµ = φT
µ + φ

′
µ,

we can decompose the path integral as ZPI = ZTT · Znon-TT with

ZTT =

ˆ
DφT e−

1
2
´
φT (−∇2+m̄2

1)φ
T

, Znon-TT =

ˆ
Dφ′DcD c̄ e−

´ 1
2 m2φ′2+mc̄c , (C.148)

Both the ghosts and the longitudinal vectors φ′µ = ∇µϕ have an mode decomposition in terms of

orthonormal real scalar spherical harmonics Yi.12 In our heat kernel regularization scheme, each

longitudinal vector mode integral gives a factor M/m, which is exactly canceled by a factor m/M

from integrating out the corresponding ghost mode.13 However there is one ghost mode which

remains unmatched: the constant mode. A constant scalar does not map to a longitudinal vector

mode, because φ′µ = ∇µϕ = 0 for constant ϕ. Thus we end up with a ghost factor m/M in excess,

and

Znon-TT = m/M = M−1
√
( d2 − 1)2 + ν2 , (C.149)

in agreement with (C.143) for s = 1.

Spin 2:

For s = 2, the analogous Stueckelberg action involves a symmetric tensor φµν, a vector χµ, and a

12Explicitly, c =
∑

i ciYi , c̄ =
∑

i c̄iYi , φ′µ =
∑

i:λi,0 φ
′
i∇µYi/

√
λi where ∇2Yi = −λiYi ,

´
YiYj = δi j .

13A priori there might be a relative numerical factor κ between ghost and longitudinal factors, depending on the so
far unspecified normalization of the measure Dc. But because c is local, unconstrained, rescaling Dc =

∏
i dci →∏

i(λdci) merely amounts to a trivial constant shift of the bare cc. So we are free to take κ = 1.

276



scalar χ, subject to the gauge transformations [102]

δχ = a−1 ξ , δ χµ = a0 ξµ +

√
d−1
2d ∇µξ , δφµν = ∇µξν + ∇νξµ +

√
2

d(d−1) a0 ξ , (C.150)

where a0 ≡ m and a−1 ≡
√

m2 − (d − 1). Equivalently, recalling (3.79), an =

√
( d2 + n)2 + ν2.

Gauge fixing by putting χ = 0, χµ = 0, we get a ghost action

Sgh =

ˆ
a−1 c̄c + a0 c̄µcµ . (C.151)

We can decompose φµν into a TT part and a non-TT part orthogonal to it as φµν = φTT
µν +φ

′
µν, where

φ′µν can be decomposed into vector and scalar modes as φ′µν = ∇(µϕν) + gµνϕ. Analogous to the

s = 1 example, we should expect that integrating out φ′ cancels against integrating out the ghosts,

up to unmatched modes of the latter. The unmatched modes correspond to mixed vector-scalar

modes solving ∇(µϕν) + gµνϕ = 0. This is equivalent to the conformal Killing equation. Hence the

unmatched modes are the conformal Killing modes. As discussed below (C.134), the conformal

Killing modes split according to → + into D1,1 vector -modes and D1,0 scalar -modes.

Integrating out the -modes of the vector ghost cµ then yields an unmatched factor (a0/M)D1,1 ,

while integrating out the -modes of the scalar ghost c yields an unmatched factor (a−1/M)D1 . All

in all, we get

Znon-TT = (a−1/M)D1,0(a0/M)D1,1 =
(
M−1

√
( d2 − 1)2 + ν2

)D1,0 (
M−1

√
( d2 )

2 + ν2
)D1,1

(C.152)

in agreement with (C.143) for s = 2.

Spin s:

The pattern is now clear: according to [102], the Stueckelberg system for a massive spin-s field

consists of an unconstrained symmetric s-index tensor φ(s) and of a tower of unconstrained sym-

metric s′-index auxiliary Stueckelberg fields χ(s
′) with s′ = 0, 1, . . . , s − 1, with gauge symmetries
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of the form

δχ(s
′) = as′−1 ξ

(s′) + · · · , δφ(s) = · · · , an ≡

√
( d2 + n)2 + ν2 , (C.153)

where the dots indicate terms we won’t technically need — which is to say, as transpired from

s = 1, 2 already, we need very little indeed. The ghost action is S =
∑s−1

s′=0 as′−1c̄(s
′)c(s

′). The

unmatched modes correspond to the conformal Killing tensors modes on Sd+1, decomposed for

say s = 4 as in (C.141) into D3,3 -modes, D3,2 -modes, D3,1 -modes, and D3,0 -

modes. The corresponding unmatched modes of respectively c(3), c(2), c(1) and c(0) then integrate

to unmatched factors (a2/M)D3,3(a1/M)D3,2(a0/M)D3,1(a−1/M)D3,0 . For general s:

Znon-TT =

s−1∏
s′=0

(
as′−1/M

)Ds−1,s′ =

s−2∏
n=−1

(
M−1

√
( d2 + n)2 + ν2

)Dd+2
s−1,n+1

, (C.154)

in agreement with (C.143) for general s. This establishes our claims.

The above computation was somewhat schematic of course, and one could perhaps still worry

about missed purely numerical factors independent of ν, perhaps leading to an additional finite

constant term being added to our final formulae (3.84) -(3.83) for log ZPI. However at fixed UV-

regulator scale, the limit ν → ∞ of these final expressions manifestly approaches zero, as should

be the case for particles much heavier than the UV cutoff scale. This would not be true if there

was an additional constant term. Finally, we carefully checked the analogous result in the massless

case (which has a more compact off-shell formulation [99]), discussed in section 3.5, by direct

path integral computations in complete gory detail [67], for all s.

Also, the result is pretty.

C.6.2 General massive representations

Here we give a generalization of (3.83) for arbitrary massive representations of the dSd+1 isom-

etry group SO(1, d + 1).

Massive irreducible representations of SO(1, d + 1) are labeled by a dimension ∆ = d
2 + iν and
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an so(d) highest weight S = (s1, . . . , sr) [76–78]. The massive spin-s case considered in (3.83)

corresponds to S = (s, 0, . . . , 0), a totally symmetric tensor field. More general irreps correspond

to more general mixed-symmetry fields. The analog of (C.127) in this generalized setup is

log Z“TT”
PI = ±

ˆ ∞
0

dτ
2τ

e−ε
2/4τ

∑
n≥s1

Dd+2
n,S e−τ((n+

d
2 )

2+ν2) , (C.155)

where for bosons the sum runs over integer n with an overall + sign and for fermions the sum runs

over half-integer n with an overall − sign. The dimensions of the so(d + 2) irreps (n, S) are given

explicitly as polynomials in (n, s1, . . . , sr) by the Weyl dimension formulae (C.87)-(C.88). From

this it can be seen that Dd+2
n,S is (anti-)symmetric under reflections about n = − d

2 , more precisely

Dd+2
n,S = (−1)d Dd+2

−d−n,S . (C.156)

Moreover the exponent in (C.155) is symmetric under the same reflection. The most natural exten-

sion of the sum is therefore to all (half-)integer n, taking into account the sign in (C.156) for odd

d, and adding an overall factor 1
2 to correct for double counting, suggesting

log ZPI = ±
1
2

ˆ ∞
0

dτ
2τ

e−ε
2/4τ

∑
n

σd(
d
2 + n)Dd+2

n,S e−τ((n+
d
2 )

2+ν2) , (C.157)

where σd(x) ≡ 1 for even d and σd(x) ≡ sign(x) for odd d. Equivalently, in view of (C.156)

log ZPI = ±

ˆ ∞
0

dτ
2τ

e−ε
2/4τ

∑
n

Θ( d2 + n)Dd+2
n,S e−τ((n+

d
2 )

2+ν2) (C.158)

where n ∈ Z for bosons and n ∈ 1
2 + Z for fermions, and

Θ(x) = 1 for x > 0, Θ(0) =
1
2

, Θ(x) = 0 for x < 0. (C.159)

At first sight this seems to be different from the extension to n ≥ −1 in (3.83) for the spin-s case

S = (s, 0, . . . , 0). However it is actually the same, as (C.87)-(C.88) imply that Dn,S vanishes for
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2 − d ≤ n ≤ −2 when S = (s, 0, . . . , 0).

The obvious conjecture is then that (C.158) is true for general massive representations. Here

are some consistency checks, which are satisfied precisely for the sum range in (C.158):

• Locality: For even d, the summand in (C.157) is analytic in n. Applying the Euler-Maclaurin

formula to extract the τ → 0 asymptotic expansion of the sum gives in this case

∑
n

Dd+2
n,S e−τ(n+

d
2 )

2
∼

ˆ ∞
−∞

dn Dd+2
n,S e−τ(n+

d
2 )

2
. (C.160)

The symmetry (C.156) tells us that the integrand on the right hand side is even in x ≡ n + d
2 . Since

´
dx x2k e−τx2

∝ τ−k−1/2, this implies the absence of 1/τ terms in the τ → 0 expansion of the

integrand in (C.157), and therefore, in contrast to (C.155), the absence of nonlocal log-divergences,

as required by locality of ZPI in odd spacetime dimension d + 1.

• Bulk − edge structure: By following the usual steps, we can rewrite (C.158) as

log ZPI =

ˆ
dt
2t

F(e−t) , F(q) = ±
(
qiν + q−iν ) ∑

n

Θ
( d

2 + n
)

Dd+2
n,S q

d
2+n (C.161)

Using (C.87)-(C.88), this can be seen to sum up to the form log ZPI = log Zbulk − log Zedge, where

Zbulk is the physically expected bulk character formula for an ideal gas in the dSd+1 static patch

consisting of massive particles in the (∆, S) UIR of SO(1, d + 1), and Zedge can be interpreted as a

Euclidean path integral of local fields living on the Sd−1 edge/horizon.

• Unitarity: Note that for ∆ = d
2 + µ with µ ≡ iν real, we get a bound on µ from requiring t → ∞

(IR) convergence of the integral (C.161), generalizing (C.145), namely

|µ| <
d
2
+ n∗(S) , (C.162)

where n∗(S) is the lowest value of n in the sum for which Dd+2
n,S is nonvanishing. This coincides

again with the unitarity bound on µ for massive representations of SO(1, d + 1) [76–78, 101].

Recalling the discussion below (C.145), this can be viewed as a generalization of the Higuchi
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bound to arbitrary representations.

Combining (C.158) with (C.57), we thus arrive at an exact closed-form solution for the Eu-

clidean path integral on the sphere for arbitrary massive field content.

C.7 Derivations for massless higher spins

In this appendix we derive (3.112) and provide details of various other points summarized in

section 3.5.

C.7.1 Bulk partition function: Zbulk

The bulk partition function Zbulk as defined in (3.67) for a massless spin-s field is given by

Zbulk =

ˆ
dt
2t

1 + q
1 − q

χbulk,s(q) , (C.163)

where q = e−t , and χbulk,s(q) = tr qiH in the case at hand is the (restricted) q-character of the

massless spin-s SO(1, d + 1) UIR. For generic d, this UIR is part of the exceptional series [101].

More precisely in the notation of [76–78] it is the D j
S;p representation, with p = 0, j = (d − 4)/2

for even d, j = (d − 3)/2 for odd d, and S = (s, s, 0, . . . , 0). In the notation of [101] this is the

exceptional series with ∆ = p = 2, S = (s, s, 0, . . . , 0).14 The characters χbulk,s(q) for these irreps

are quite a bit more intricate than their massive counterparts. The full SO(1, d + 1) characters χ̃(g)

were obtained in [76–78]. Restricting to g = e−itH gives χbulk,s(t),15

(1 − q)d χbulk,s(q) =
(
1 − (−1)d

) (
Dd

s qs+d−2 − Dd
s−1 qs+d−1) (C.164)

+

r−2∑
m=0
(−1)mDd

s,s,1m
(
q2+m + (−1)dqd−2−m)

, r ≡ rank so(d) = b d
2 c ,

14For d = 3, it is in the discrete series, but (C.164) still applies.
15Actually we obtained the formula from (C.194), then Mathematica checked agreement with [76–78].
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Here we used the notation of [101]: the so(d) irrep (s, s, 1m) ≡ (s, s, 1, . . . , 1, 0, . . . , 0) with 1

repeated m times. The degeneracies Dd
s,s,1m can be read off from (C.87)-(C.88). Some explicit

low-dimensional examples are

d r (1 − q)d χbulk,s(q)

3 1 2D3
s qs+1 − 2D3

s−1 qs+2

4 2 D4
s,s 2 q2

5 2 D5
s,s

(
q2 − q3) + 2D5

s qs+3 − 2D5
s−1qs+4

6 3 D6
s,s

(
q2 + q4) − D6

s,s,1 2 q3

7 3 D7
s,s

(
q2 − q5) − D7

s,s,1
(
q3 − q4) + 2D7

s qs+5 − 2D7
s−1 qs+6 ,

(C.165)

where D3
s = 2s + 1, D4

s,s = 2s + 1, D5
s =

1
6 (s + 1)(s + 2)(2s + 3), D5

s,s =
1
3 (2s + 1)(s + 1)(2s + 3),

D6
s,s =

1
12 (s + 1)2(s + 2)2(2s + 3), D6

s,s,1 =
1

12 s(s + 1)(s + 2)(s + 3)(2s + 3), etc. For s = 1, the

character can be expressed more succinctly as

χbulk,1(q) = d ·
qd−1 + q
(1 − q)d

−
qd + 1
(1 − q)d

+ 1 . (C.166)

With the exception of the d = 3 case, the above so(1, d + 1) q-characters encoding the H-spectrum

of massless spin-s fields in dSd+1 are very different from the so(2, d) characters encoding the en-

ergy spectrum of massless spin-s fields in AdSd+1 with standard boundary conditions, the latter

being χAdSd+1
bulk,s = (Dd

s qs+d−2 − Dd
s−1 qs+d−1)/(1 − q)d . In particular for d ≥ 4, the lowest power

q∆ appearing in the q-expansion of the character is ∆ = 2, and is associated with the so(d) repre-

sentation S = (s, s), i.e. , , , . . . for s = 1, 2, 3, . . ., whereas for the so(2, d) character this is

∆ = s + d − 2 and S = (s). An explanation for this was given in [101]: in dS, S should be thought

of as associated with the higher-spin Weyl curvature tensor of the gauge field rather than the gauge

field itself.
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This fits well with the interpretation of the expansion

χ(q) =
∑

r

Nr qr , (C.167)

as counting the number Nr of physical static patch quasinormal modes decaying as e−rT (cf. section

3.2 and appendix C.2.3). Indeed for d ≥ 4, the longest-lived physical quasinormal modes of

a massless spin-s field in the static patch of dSd+1 always decay as e−2T [141], which can be

understood as follows. Physical quasinormal modes of the southern static patch can be thought

of as sourced by insertions of gauge-invariant16 local operators on the past conformal boundary

T = −∞ of the static patch, or equivalently at the south pole of the past conformal boundary (or

alternatively the north pole of future boundary) of global dSd+1 [139–141]. By construction, the

dimension r of the operator maps to the decay rate r of the quasinormal mode ∝ e−rT . For s = 1,

the gauge-invariant operator with the smallest dimension r = ∆ is the magnetic field strength

Fi j = ∂i A j − ∂j Ai of the boundary gauge field Ai, which has ∆ = dim ∂ + dim A = 1 + 1 = 2.

For s = 2 in d ≥ 4, the gauge-invariant operator with smallest dimension is the Weyl tensor of the

boundary metric: ∆ = 2+0 = 2. Similarly for higher-spin fields we get the spin-s Weyl tensor, with

∆ = s + 2 − s = 2. The reason d = 3 is special is that the Weyl tensor vanishes identically in this

case. To get a nonvanishing gauge-invariant tensor, one has to act with at least 2s − 1 derivatives

(spin-s Cotton tensor), yielding ∆ = (2s − 1) + (2 − s) = s + 1. An extensive analysis is given in

[141].

Note on a literature disagreements: The characters (C.164) agree with the characters listed in the

original work [76–78], computed by undisclosed methods. They do not agree with those listed in

the more recent work [101], computed by Bernstein-Gelfand-Gelfand resolutions. Indeed [101]

emphasized they disagreed with [76–78] for even d. More precisely, in their eq. (2.14) applied

to p = 2, Yp = (s, s, 0, . . . , 0), ®x = 0, they find a factor 2 = (1 + (−1)d) instead of the factor

(1 − (−1)d) = 0 in (C.164). It is stated in [101] that on the other hand their results do agree with

16More precisely, invariant under linearized gauge transformations acting on the conformal boundary.
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[76–78] for odd d. Actually we find this is not quite true either, as in that case eq. (2.13) in [101]

applied to p = 2, Yp = (s, s, 0, . . . , 0), ®x = 0) has a factor 1 instead of the factor (1 − (−1)d) = 2

in (C.164). Our Euclidean path integral result (C.194) coupled with the physics of section 3.2

strongly suggests the original results in [76–78] and (C.164) are the correct versions. Further

support is provided in [141] by direct construction of higher-spin quasinormal modes.

C.7.2 Euclidean path integral: ZPI = ZG Zchar

The Euclidean path integral of a collection of gauge fields φ on Sd+1 is formally given by

ZPI =

´
Dφ e−S[φ]

vol(G)
(C.168)

where G is the local gauge group generated by the local field ξ appearing in (3.94). This ill-defined

formal expression is turned into something well-defined by BRST gauge fixing. A convenient

gauge for higher-spin fields is the de Donder gauge. At the Gaussian level, the resulting analog of

(C.127) is17

log ZTT ≡
∑

s

ˆ ∞
0

dτ
2τ

e−ε
2/4τ

(
TrTT e−τ

(
−∇2

s,TT+m2
φ,s

)
− TrTT e−τ

(
−∇2

s−1,TT+m2
ξ,s

) )
, (C.169)

where
∑

s sums over the spin-s gauge fields in the theory (possibly with multiplicities) and m2
φ,s

and m2
ξ,s are obtained from the relations below (3.78) using (3.95). The first term arises from the

path integral over the TT modes of φ, while the second arises from the TT part of the gauge fixing

sector in de Donder gauge — a combination of integrating out the TT part of the spin-(s − 1) ghost

fields and the corresponding longitudinal degrees of freedom of the spin-s gauge fields. The above

(C.169) is the difference of two expressions of the form (C.127). Naively applying the formula

17A detailed discussion of normalization conventions left implicit here is given above and below (C.202).
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(C.161) or (3.83) for the corresponding full ZPI, we get

ZPI = exp
∑

s

ˆ
dt
2t

F̂s(e−t) (naive) (C.170)

where (assuming d ≥ 3)

F̂s(q) =
∑

n≥−1
Dd+2

n,s
(
qs+d−2+n + q2−s+n) − ∑

n≥−1
Dd+2

n,s−1
(
qs+d−1+n + q1−s+n) (C.171)

However this is clearly problematic. One problem is that for s ≥ 2, the above F̂s(q) contains

negative powers of q = e−t , making (C.170) exponentially divergent at t → ∞. The appearance

of such “wrong-sign” powers of q is directly related to the appearance of “wrong-sign” Gaussian

integrals in the path integral, as can be seen for instance from the relation between (C.161) and

the heat kernel integral (C.158). In the path integral framework, one deals with this problem by

analytic continuation, generalizing the familiar contour rotation prescription for negative modes in

the gravitational Euclidean path integral [61]. Thus one defines
´

dx e−λx2/2 for λ < 0 by rotating

x → ix, or equivalently by rotating τ → −τ in the heat kernel integral. Essentially this just boils

down to flipping any λ < 0 to −λ > 0. Since the Laplacian eigenvalues are equal to the products

of the exponents appearing in the pairs
(
q∆+n + qd−∆+n) in (C.171), the implementation of this

prescription in our setup is to flip the negative powers qk in F̂s(q) =
∑

k ck qk to positive powers

q−k , that is to say replace

F̂s(q) → Fs(q) ≡
{
F̂s(q)

}
+
=

{∑
k

ck qk
}
+
≡

∑
k<0

ck q−k +
∑
k≥0

ck qk . (C.172)

In addition, each negative mode path integral contour rotation produces a phase ±i, resulting in

a definite, finite overall phase in ZPI [59]. The analysis of [59] translates to each corresponding

flip in (C.172) contributing with the same sign,18 hence to an overall phase i−Ps with Ps the total

18This can be seen in a more careful path integral analysis [67].
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degeneracy of negative modes in (C.171). Using Dd+2
n,s = −Dd+2

s−1,n+1:

ZPI → i−Ps ZPI , Ps =

s−2∑
n′=0

Dd+2
s−1,n′ +

s−2∑
n′=0

Dd+2
s−2,n′ = Dd+3

s−1,s−1 − Dd+2
s−1,s−1 + Dd+3

s−2,s−2 (C.173)

In particular this implies P1 = 0 and P2 = d + 3 in agreement with [59].

After having taken care of the negative powers of q, the resulting amended formula ZPI =´ dt
2t Fs(q) is still problematic, however, as Fs(q) still contains terms proportional to q0, causing the

integral to diverges (logarithmically) for t → ∞. These correspond to zeromodes in the original

path integral. Indeed such zermodes were to be expected: they are due to the existence of nor-

malizable rank s − 1 traceless Killing tensors ξ̄(s−1), which by definition satisfy ∇(µ1 ξ̄µ2···µs) = 0,

and therefore correspond to vanishing gauge transformations (3.94), leading in particular to ghost

zeromodes. Zeromodes of this kind must be omitted from the Gaussian path integral. They are

easily identified in (C.171) as the values of n for which a term proportional to q0 appears. Since

we are assuming d > 2, this is n = s − 2 in the first sum and n = s − 1 in the second. Thus we

should refine (C.172) to

F̂s → Fs − F0
s , (C.174)

where F0
s = Dd+2

s−2,s(q
2s+d−4+1)−Dd+2

s−1,s−1(q
2s+d−2+1). Noting that Dd+2

s−2,s = −Dd+2
s−1,s−1 and Dd+2

s−1,s−1

is the number NKT
s−1 of rank s − 1 traceless Killing tensors on Sd+1, we can rewrite this as

F0
s = −NKT

s−1
(
q2s+d−4 + 1 + q2s+d−2 + 1

)
, NKT

s−1 = Dd+2
s−1,s−1 , (C.175)

making the relation to the existence of normalizable Killing tensors manifest. For example NKT
0 =

1, corresponding to constant U(1) gauge transformations; NKT
1 = 1

2 (d + 2)(d + 1) = dim SO(d + 2),

corresponding to the Killing vectors of the sphere; and NKT
s−1 ∝ s2d−3 for s → ∞, corresponding to

large-spin generalizations thereof.

We cannot just drop the zeromodes and move on, however. The original formal path integral
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expression (C.168) is local by construction, as both numerator and denominator are defined with

a local measure on local fields. In principle BRST gauge fixing is designed to maintain manifest

locality, but if we remove any finite subset of modes by hand, including in particular zeromodes,

locality is lost. Indeed the −F(0)s subtraction results in nonlocal log-divergences in the character

integral, i.e. divergences which cannot be canceled by local counterterms. From the point of view

of (C.168), the loss of locality is due the fact that we are no longer dividing by the volume of the

local gauge group G, since we are effectively omitting the subgroup G generated by the Killing

tensors. To restore locality, and to correctly implement the idea embodied in (C.168), we must

divide by the volume of G by hand. This volume must be computed using the same local measure

defining vol(G), i.e. the invariant measure on G normalized such that integrating the gauge fixing

insertion in the path integral over the gauge orbits results in a factor 1. Hence the appropriate

measure defining the volume of G in this context is inherited from the BRST path integral measure.

As such we will denote it by vol(G)PI. A detailed general discussion of the importance of these

specifications for consistency with locality and unitarity in the case of Maxwell theory can be

found in [66]. Relating vol(G)PI to a “canonical”, theory-independent definition of the group

volume vol(G)c (such as for example vol(U(1))c ≡ 2π) is not trivial, requiring considerable care in

keeping track of various normalization factors and conventions. Moreover vol(G)PI depends on the

nonlinear interaction structure of the theory, as this determines the Lie algebra of G. We postpone

further analysis of vol(G)PI to section C.7.4.

Conclusion

To summarize, instead of the naive (C.170), we get the following formula for the 1-loop Eu-

clidean path integral on Sd+1 for a collection of massless spin-s gauge fields:

ZPI = i−Ps
(
vol(G)PI

)−1 exp
∑

s

ˆ
dt
2t

(
Fs − F0

s
)
, (C.176)
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where Fs = {F̂s}+ and F0
s were defined in (C.171), (C.172) and (C.175); G is the subgroup of

gauge transformations generated by the Killing tensors ξ̄(s−1), i.e. the zeromodes of (3.94); and

i−Ps is the phase (C.173). We can split up the integrals by introducing an IR regulator:

ZPI = i−Ps ZG Zchar , ZG ≡
exp

(
−

∑
s
´ × dt

2t F0
s
)

vol(G)PI
, Zchar ≡ exp

∑
s

ˆ × dt
2t

Fs (C.177)

where the notation
´ × means we IR regulate by introducing a factor e−µt , take µ→ 0, and subtract

the log µ divergent term. For a function f (t) such that limt→∞ f (t) = c, this means

ˆ × dt
t

f (t) ≡ lim
µ→0

(
c log µ +

ˆ
dt
t

f (t) e−µt
)

(C.178)

For example for f (t) = t
t+1 this gives

´ ×
0

dt
t

t
t+1 = log µ− log(eγµ) = −γ, and for f (t) = 1 with the

integral UV-regularized as in (C.68) we get
´ × dt

t = log(2e−γ/ε).

In section C.7.3 we recast Zchar as a character integral formula. In section C.7.4 we express ZG

in terms of the canonical group volume vol(G)c and the coupling constant of the theory.

C.7.3 Character formula: Zchar = Zbulk/ZedgeZKT

In this section we derive a character formula for Zchar in (C.177). If we start from the naive F̂s

given by (C.171) and follow the same steps as those bringing (3.83) to the form (3.84), we get

F̂s =
1 + q
1 − q

χ̂s , χ̂s = χ̂bulk,s − χ̂edge,s , (C.179)

where

χ̂bulk,s = Dd
s

qs+d−2 + q2−s

(1 − q)d
− Dd

s−1
qs+d−1 + q1−s

(1 − q)d
(C.180)

χ̂edge,s = Dd+2
s−1

qs+d−3 + q1−s

(1 − q)d−2 − Dd+2
s−2

qs+d−2 + q−s

(1 − q)d−2 . (C.181)
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Note that these take the form of “field − ghost” characters obtained respectively by substituting

the values of νφ and νξ given by (3.95) into the massive spin s and spin s − 1 characters (3.85).

The naive bulk characters χ̂bulk,s thus obtained cannot possibly be the character of any UIR of

SO(1, d + 1), as is obvious from the presence of negative powers of q. In particular it is certainly

not equal to the physical exceptional series bulk character (C.164). Now let us consider the actual

Fs = {F̂s}+ appearing in (C.177). Then we find19

Fs =
{1 + q

1 − q
χ̂s

}
+
=

1 + q
1 − q

( [
χ̂s

]
+
− 2 NKT

s−1

)
, (C.182)

where the “flipped” character [ χ̂]+ is obtained from χ̂ =
∑

k ck qk by flipping ck qk → −ck q−k for

k < 0 and dropping the k = 0 terms:

[
χ̂
]
+
=

[∑
k

ck qk
]
+
≡

∑
k<0
(−ck) q−k +

∑
k>0

ck qk = χ̂ − c0 −
∑
k<0

ck
(
qk + q−k ) . (C.183)

Thus this flipping prescription can be thought of as the character analog of contour rotations for

“wrong-sign” Gaussians in the path integral. Notice the slight differences in the map χ̂ → [ χ̂]+

and the related but different map F̂ → {F̂}+ defined in (C.172).

Substituting (C.182) into (C.177), we conclude

log Zchar =
∑

s

ˆ × dt
2t

1 + q
1 − q

( [
χ̂bulk,s

]
+
−

[
χ̂edge,s

]
+
− 2NKT

s−1

)
(C.184)

19To check (C.182) starting from (C.172), observe that
{ 1+q

1−q
(
qk + q−k − 2

)}
+
= 0 for any integer k, so

{ 1+q
1−q qk

}
+
=

1+q
1−q

(
−q−k + 2

)
for k < 0, while of course

{ 1+q
1−q qk

}
+
=

1+q
1−q qk for k ≥ 0, . This accounts for the k < 0 and k > 0

terms in the expansion
∑

k ck qk of (C.182). The coefficient 2NKT
s−1 of the q0 term is most easily checked by comparing

the q0 terms on the left and right hand sides of (C.182), taking into account that, by definition, [χ]+ has no q0 term,
and that the q0 terms of the left hand side are given by (C.175).
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Consistency with ideal gas bulk character formula

Consistency with the physical ideal gas picture used to derive Zbulk in section C.7.1 requires

the bulk part of log Zchar as given in (C.184) agrees with (C.163), that is to say it requires

χbulk,s = [ χ̂bulk,s]+ (?) (C.185)

where χbulk,s is one of the intricate exceptional series characters (C.164), while [ χ̂bulk,s]+ is ob-

tained from the simple naive bulk character (C.180) just by flipping some polar terms as in (C.183).

At first sight this might seems rather unlikely. Nevertheless, quite remarkably, it turns out to be

true. Let us first check this in some simple examples:

• s = 2 in d = 3: The naive character (C.180) is

χ̂bulk = 5 ·
q3 + 1
(1 − q)3

− 3 ·
q4 + q−1

(1 − q)3
. (C.186)

The polar and q0 terms are obtained by expanding χ̂bulk = −
3
q − 4 + O(q). Thus

[
χ̂bulk

]
+
= χ̂bulk + 4 +

3
q
+ 3 q =

2 · 5 · q3 − 2 · 3 · q4

(1 − q)3
, (C.187)

correctly reproducing the d = 3, s = 2 character in (C.165).

• s = 1, general d ≥ 3: In this case the map [...]+ merely eliminates the q0 term in the naive

character (C.180) by adding +1:

[
χ̂bulk

]
+
= χ̂bulk + 1 = d ·

qd−1 + q
(1 − q)d

−
qd + 1
(1 − q)d

+ 1 , (C.188)

correctly reproducing (C.166).

Using Mathematica, it is straightforward to check an arbitrary large number of examples in this

way. Below we will derive a general explicit formula for the character flip map χ̂ → [ χ̂]+.
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This will provide a general proof of (C.185), and more generally will enable efficient closed-

form computation of the proper bulk and edge characters for general s and d. Generalizations are

implemented with equal ease: as an illustration thereof we compute the bulk and edge characters

for partially massless fields.

Flipping formula

We wish to derive a general explicit formula for
[ q∆

(1−q)d
]
+

defined in (C.183), for

∆ ∈ {0,−1,−2,−3, . . .} (C.189)

which suffices to obtain an explicit expression for [ χ̂]+ for any bosonic character of interest, in-

cluding in particular (C.180)-(C.181). This is achieved by expanding (1 − q)−d =
∑

k
(d−1+k

k

)
qk ,

splitting the sum in its polar and nonpolar part, incorporating the appropriate sign flips, and re-

summing in terms of hypergeometric functions 2F1(a, b, c; q) =
∑∞

n=0
(a)n(b)n
(c)n

qn

n! . After a bit more

sanding and polishing we find

[
q∆

(1 − q)d

]
+

=
(−1)d+1qd−∆ + p∆(q) + (−1)d pd−∆(q)

(1 − q)d
, (C.190)

where p∆(q) =
(d−∆

d−1
)
· q · 2F1

(
1 − d, 1 − ∆, 2 − ∆, q

)
=

(d−∆
d−1

)
· q ·

∑d−1
k=0(−1)k

(d−1
k

) 1−∆
k+1−∆ qk . The

hypergeometric series terminates because 1 − d ≤ 0. A more interesting version is

[
q∆

(1 − q)d

]
+

=
P∆(q)
(1 − q)d

P∆(q) ≡ (−1)d+1qd−∆ +

r−1∑
m=0
(−1)m Dd

1−∆,1m
(
q1+m + (−1)dqd−1−m)

r =
⌊ d

2
⌋
. (C.191)

Here Dd
1−∆,1m is the dimension of the irrep of so(d) corresponding to the Young diagram S = (1 −

∆, 1, . . . , 1, 0, . . . , 0), with 1 repeated m times, explicitly given in (C.87)-(C.88). We obtained this

formula using Mathematica and also obtained a proof of (C.191) by expressing (C.87)-(C.88) in
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terms of gamma functions and comparing to (C.190). This is somewhat tedious and not especially

illuminating, so we omit it here.

Bulk characters for (partially) massless fields

Now let us apply this to a slight generalization of the massless χ̂bulk,s given in (C.180),

χ̂bulk
ss′ (q) ≡ Dd

s
q1−s′ + qd−1+s′

(1 − q)d
− Dd

s′
q1−s + qd−1+s

(1 − q)d
. (C.192)

This is the naive bulk character for a partially massless spin-s field φµ1···µs with a spin-s′ (0 ≤ s′ ≤

s − 1) gauge parameter field ξµ1···µs′ [203]. The massless case (C.180) corresponds to

s′ = s − 1 (massless case). (C.193)

We consider the more general partially massless case here to illustrate the versatility of (C.191),

and because in a sense the resulting formulae are more elegant than in the massless case, due to

the neat s↔ s′ symmetry already evident in (C.192). Applying (C.191), still with r =
⌊ d

2
⌋
,

(1 − q)d
[
χ̂bulk

ss′ (q)
]
+
=

(
1 + (−1)d+1) (Dd

s qd−1+s′ − Dd
s′ q

d−1+s)
+

r−1∑
m=1
(−1)m−1 Dd

s,s′+1,1m−1

(
q1+m + (−1)dqd−1−m)

.
(C.194)

We used Dd
s P1−s′(q) − Dd

s′P1−s(q) =
∑r−1

m=0(−1)m
(
Dd

s Dd
s′,1m − Dd

s′ Dd
s,1m

) (
q1+m + (−1)dqd−1−m)

=
∑r−1

m=1(−1)m−1 Dd
s,s′+1,1m−1

(
q1+m + (−1)dqd−1−m)

with P∆ as defined in (C.191) to get the second

term. Like for (C.191), we obtained this formula using Mathematica. It can be proven starting

from (C.87)-(C.88).

Remarkably, (C.194) precisely reproduces the massless exceptional series characters (C.164)

for s′ = s − 1, further strengthening our physical picture, adding evidence for (C.161), proving

(C.185), and generalizing it moreover to partially massless gauge fields. Comparing to [76–78], the
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partially massless gauge field characters we find here coincide with those of the unitary exceptional

series D j
S,p with p = 0, S = (s, s′ + 1), and j = (d − 3)/2 for odd d, j = (d − 4)/2 for even d. In the

notation of [101] this is the exceptional series with ∆ = p = 2, S = (s, s′ + 1), which was indeed

identified in [101] as the so(1, d + 1) UIR for partially massless fields.

Edge characters for (partially) massless fields

For the edge correction we proceed analogously. The naive PM edge character is

χ̂
edge
ss′ (q) = Dd+2

s−1
q−s′ + qd−2+s′

(1 − q)d−2 − Dd+2
s′−1

q−s + qd−2+s

(1 − q)d−2 , (C.195)

reducing to the massless case (C.181) for s′ = s − 1. Applying (C.191) gives, still with r = b d
2 c,

(1 − q)d−2 [ χ̂edge
ss′ (q)

]
+
=

(
1 + (−1)d+1) (Dd+2

s−1 qd−2+s′ − Dd+2
s′−1 qd−2+s)

+

r−2∑
m=0
(−1)m D̃m

(
q1+m + (−1)dqd−3−m) (C.196)

where D̃m ≡ Dd+2
s−1 Dd−2

s′+1,1m − Dd+2
s′−1 Dd−2

s+1,1m .

Note that in the massless spin-1 case

[
χ̂

edge
1 (q)

]
+
=

qd−2 + 1
(1 − q)d−2 − 1 . (C.197)

In the notation of [76–78], this equals the character for the unitary SO(1, d − 1) irrep in the ex-

ceptional series D j
S;p=0 with S = (1) and j = (d − 4)/2 for even d and j = (d − 3)/2 for odd d

— the irreducible representation indeed of a massless scalar on dSd−1 with its zeromode removed.

The fact that S = (1) is analogous to what happens in the 2D CFT of a massless free scalar X: the

actual CFT primary operators are the spin ±1 derivatives ∂±X(0).

In contrast to (C.194), we did not find a way of rewriting D̃m for general spin to suggest an

interpretation along these lines in general. Indeed unlike (C.194),
[
χ̂

edge
ss′ (q)

]
+

in general does
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not appear to be proportional to the character of a single exceptional series irrep of SO(1, d − 1).

This is not in conflict with the picture of edge corrections as a Euclidean path integral of some

collection of local fields on Sd−1, since if the fields have nontrivial spin / so(d − 2) weights, the

corresponding character integrals will have a complicated structure, involving sums of iterations of

SO(1, d − 1 − 2k) characters with k = 0, 1, 2, . . ., exhibiting patterns that might be hard to discern

without knowing what to look for. It should also be kept in mind we have not identified a reason

the edge correction must have a local QFT path integral interpretation. On the other hand, the

coefficients of the q-expansion of the effective edge character do turn out to be positive, consistent

with an interpretation in terms of some collection of fields corresponding to unitary representations

of dSd−1. A more fundamental group-theoretic or physics understanding of the edge correction

would evidently be desirable.

For practical purposes, the interpretation does not matter of course. The formula (C.196) gives

a general formula for χedge, which is all we need. For example for d = 3, this gives
[
χ̂

edge
s (q)

]
+
=

2 D5
s−1 qs−D5

s−2 qs+1

1−q = 2D5
s−1 qs+2D4

s−1
qs+1

1−q , where D5
s−1 =

1
6 s(s+1)(2s+1) and D4

s−1 = D5
s−1−D5

s−2 =

s2. The second form makes positivity of coefficients manifest. For d = 4 we get
[
χ̂

edge
s (q)

]
+
=

D5
s−1

2 q
(1−q)2 .

Conclusion

We conclude that (C.184) can be written as

log Zchar = log Zbulk − log Zedge − log ZKT , (C.198)

where the bulk and edge contributions are explicitly given by (C.194)-(C.196) with s′ = s − 1,20

and

log ZKT = dim G
ˆ × dt

2t
1 + q
1 − q

· 2 , dim G =
∑

s

NKT
s−1 =

∑
s

Dd+2
s−1,s−1 . (C.199)

20In the partially massless case log ZKT takes the same form, but with Dd+2
s−1,s−1 replaced by Dd+2

s−1,s′ .
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The finite (IR) part of ZKT is given by (C.75): ZKT |IR = (2π)− dim G.

C.7.4 Group volume factor: ZG

The remaining task is to compute the factor ZG defined in (C.177), that is

ZG =
(
vol(G)PI

)−1 exp
∑

s

NKT
s−1

ˆ × dt
2t

(
q2s+d−4 + q2s+d−2 + 2

)
(C.200)

We imagine the spin range to be finite, or cut off in some way. (The infinite spin range case is

discussed in section 3.9.) In the heat kernel regularization scheme of appendix C.3, we can then

evaluate the integral using (C.68):

ZG =
(
vol(G)PI

)−1
∏

s

(
M4

(2s + d − 4)(2s + d − 2)

) 1
2 NKT

s−1

, M ≡
2e−γ

ε
, (C.201)

On general grounds, the nonlocal UV-divergent factors M appearing here in ZG should cancel

against factors of M in vol(G)PI, as we will explicitly confirm below.

Generalities

Recall that G is the group of gauge transformations generated by the Killing tensors. Equiv-

alently it is the subgroup of gauge transformations leaving the background invariant. vol(G)PI is

the volume of G with respect to the path integral induced measure. This is different from what we

shall call the “canonical” volume vol(G)c, defined with respect to the invariant metric normalized

such that the generators of some standard basis of the Lie algebra have unit norm. (In the case of

Yang-Mills, this coincides with the metric defined by the canonically normalized Yang-Mills ac-

tion, providing some justification for the (ab)use of the word canonical.) In particular, in contrast

to vol(G)c, vol(G)PI depends on the coupling constants and UV cutoff of the field theory.

As mentioned at the end of section C.7.2, the computation of ZG brings in a series of new com-

plications. One reason is that the Lie algebra structure constants defining G are not determined

by the free part of the action, but by its interactions, thus requiring data going beyond the usual
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one-loop Gaussian level. Another reason is that due to the omission of zeromodes and the ensuing

loss of locality in the path integral, a precise computation of vol(G)PI requires keeping track of an

unpleasantly large number of normalization factors, such as for instance constants multiplying ki-

netic operators, as these can no longer be automatically discarded by adjusting local counterterms.

Consequently, exact, direct path integral computationz of ZG for general higher-spin theories re-

quires great care and considerable persistence, although it can be done [67]. Below we obtain an

exact expression for ZG in terms of vol(G)c and the Newton constant in a comparatively painless

way, by combining results and ideas from [66, 68–71, 81, 128], together with the observation that

the form of (C.169) actually determines all the normalization factors we need. Although the ex-

pressions at intermediate stages are still a bit unpleasant, the end result takes a strikingly simple

and universal form.

If G is finite-dimensional, as is the case for example for Yang-Mills, Einstein gravity and

certain (topological) higher-spin theories [117, 118, 145–148, 153, 174, 175] including the dS3

higher-spin theory analyzed in section 3.6, we can then proceed to compute vol(G)c, and we are

done. If G is infinite-dimensional, as is the case in generic higher-spin theories, one faces the

remaining problem of making sense of vol(G)c itself. Glossing over the already nontrivial problem

of exponentiating the higher-spin algebra to an actual group [160], the obvious issue is that vol(G)c

is going to be divergent. We discuss and interpret this and other infinite spin range issues in section

3.9. In what follows we will continue to assume the spin range is finite or cut off in some way as

before, so G is finite-dimensional.

We begin by determining the path integral measure to be used to compute vol(G)PI in (C.201).

Then we compute ZG in terms of vol(G)c and the coupling constant of the theory, first for Yang-

Mills, then for Einstein gravity, and finally for general higher-spin theories.

Path integral measure

To determine vol(G)PI we have to take a quick look at the path integral measure. This is

fixed by locality and consistency with the regularized heat kernel definition of Gaussian path
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integrals we have been using throughout. For example for a scalar field as in (3.66), we have
´
Dφ e−

1
2φ(−∇

2+m2)φ ≡ exp
´ dτ

2τ e−ε
2/4τ Tr e−τ(−∇

2+m2). An eigenmode of −∇2+m2 with eigenvalue

λi contributes a factor M/
√
λi to the right hand side of this equation, with M = exp

´ dτ
2τ e−ε

2/4τe−τ =

2e−γ/ε , the same parameter as in (C.201) (essentially by definition). To ensure the left hand side

matches this, we must use a path integral measure derived from the local metric ds2
φ =

M2

2π
´
(δφ)2.

To see this, expand φ(x) =
∑

i ϕiψi(x) with ψi(x) an orthonormal basis of eigenmodes of −∇2 +m2

on Sd+1. The metric in this basis becomes ds2 =
∑

i
M2

2π dϕ2
i , so a mode with eigenvalue λi con-

tributes a factor
´

dϕi
M√
2π

e−
1
2λiϕ

2
i = M/

√
λi to the left hand side, as required.

We work with canonically normalized fields. For a spin-s field φ this means the quadratic part

of the action evaluated on its transverse-traceless part φTT takes the form

S
[
φTT] = 1

2

ˆ
φTT(−∇2 + m2

)φTT. (C.202)

Consistency with (C.127) or (C.169) then requires the measure for φ to be derived again from the

metric ds2
φ =

M2

2π
´
(δφ)2. If φ has a gauge symmetry, the formal division by the volume of the

gauge group G is conveniently implemented by BRST gauge fixing. For example for a spin-1

field with gauge symmetry δφµ = ∂µξ, we can gauge fix in Lorenz gauge by adding the BRST-

exact action SBRST =
´

iB∇µφµ − c̄∇2c. This requires specifying a measure for the Lagrange

multiplier field B and the ghosts c, c̄. It is straightforward to check that a ghost measure derived

from ds2
c̄c = M2 ´ δc̄ δc (which translates to a mode measure

∏
i

1
M2 dc̄i dci) combined with a B-

measure derived from ds2
B =

1
2π
´
(δB)2, reproduces precisely the second term in (C.169) upon

integrating out B, c, c̄ and the longitudinal modes of φ. It is likewise straightforward to check that

BRST gauge fixing is then formally equivalent to dividing by the volume of the local gauge group

G with respect to the measure derived from the following metric on the algebra of local gauge

transformations:

ds2
ξ =

M4

2π

ˆ
(δξ)2 . (C.203)
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Note that all of these metrics take the same form, with the powers of M fixed by dimensional analy-

sis. An important constraint in the above was that the second term in (C.169) is exactly reproduced,

without some extra factor multiplying the Laplacian. This matters when we omit zeromodes. For

this to be the case with the above measure prescriptions, it was important that the gauge transfor-

mation took the form δφµ = α1∂µξ with α1 = 1 as opposed to some different value of α1, as we a

priori allowed in (3.94). For a general α1, we would have obtained an additional factor α1 in the

ghost action, and a corresponding factor α2
1 in the kinetic term in the second term of (C.169). To

avoid having to keep track of this, we picked α1 ≡ 1. For Yang-Mills theories, everything remains

the same, with internal index contractions understood, e.g. S[φTT] = 1
2
´
φaTT(−∇2 + m2

)φaTT,

ds2
φ =

M2

2π
´
(δφa)2, ds2

ξ =
M4

2π
´
(δξa)2.

For higher-spin fields, we gauge fix in the de Donder gauge. All metrics remain unchanged, ex-

cept for the obvious additional spacetime index contractions. The second term of (C.169) is exactly

reproduced upon integrating out the TT sector of the BRST fields together with the corresponding

longitudinal modes of φ, provided we pick

αs =
√

s (C.204)

in (3.94), with symmetrization conventions such that φ(µ1···µs) = φµ1···µs . (Technically the ori-

gin of the factor s can be traced to the fact that if φµ1···µs = ∇(µ1ξµ2···µs) for a TT ξ, we have
´
φ2 = s−1 ´ ξ(−∇2 + cs)ξ.) Equation (C.204) fixes the normalization of ξ, and (C.203) then

determines unambiguously the measure to be used to compute vol(G)PI in (C.201). We will see

more concretely how this works in what follows, first spelling out the basic idea in detail in the

familiar YM and GR examples, and then moving on to the general higher-spin gauge theory case

considered in [68].
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Yang-Mills

Consider a Yang-Mills theory with with a simple Lie algebra

[La, Lb] = f abcLc , (C.205)

with the La some standard basis of anti-hermitian matrices and f abc real and totally antisymmetric.

For example for su(2)Yang-Mills, La = −1
2iσa and [La, Lb] = εabcLc. Consistent with our general

conventions, we take the gauge fields φµ = φa
µLa to be canonically normalized: the curvature takes

the form Fa
µνLa = Fµν = ∂µφν − ∂νφµ + g[φµ, φν], and the action is

S =
1
4

ˆ
Fa · Fa (C.206)

The quadratic part of S is invariant under the linearized gauge transformations δ(0)ξ φµ = ∂µξ, where

ξ = ξaLa, taking the form (3.94) with α1 = 1 as required. The full S is invariant under local gauge

transformations δξφµ = ∂µξ + g[φµ, ξ], generating the local gauge algebra

[δξ, δξ ′] = δg[ξ ′,ξ] . (C.207)

The rank-0 Killing tensors ξ̄ satisfy ∂µξ̄ = 0: they are the constant gauge transformations ξ̄ = ξ̄aLa

on the sphere, forming the subalgebra g of local gauge transformations acting trivially on the

background φµ = 0, generating the group G whose volume we have to divide by. The bracket of g,

denoted [[·, ·]] in [68], is inherited from the local gauge algebra (C.207):

[[ξ̄, ξ̄′]] = g[ξ̄′, ξ̄] . (C.208)

Evidently this is isomorphic to the original YM Lie algebra. Being a simple Lie algebra, g has an

up to normalization unique invariant bilinear form/metric. The path integral metric ds2
PI of (C.203)
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corresponds to such an invariant bilinear form with a specific normalization:

〈ξ̄ |ξ̄′〉PI =
M4

2π

ˆ
ξ̄aξ̄′a =

M4

2π
vol(Sd+1) ξ̄aξ̄′a . (C.209)

We define the theory-independent “canonical” invariant bilinear form 〈·|·〉c on g as follows. First

pick a “standard” basis Ma of g, i.e. a basis satisfying the same commutation relations as (C.205):

[[Ma, Mb]] = f abcMc. This fixes the normalization of the Ma. Then we fix the normalization of

〈·|·〉c by requiring these standard generators have unit norm, i.e.

〈Ma |Mb〉c ≡ δ
ab . (C.210)

The explicit form of (C.208) implies such a basis is given by the constant functions Ma = −La/g

on the sphere. Thus we have 〈La |Lb〉c = g2δab and

〈ξ̄ |ξ̄′〉c = g2ξ̄aξ̄′a (C.211)

Comparing (C.211) and (C.209), we see the path integral and canonical metrics on G and their

corresponding volumes are related by

ds2
PI =

M4

2π
vol(Sd+1)

g2 ds2
c ⇒

vol(G)PI
vol(G)c

=

(
M4

2π
vol(Sd+1)

g2

) 1
2 dim G

. (C.212)

From (C.201), we get ZG = vol(G)−1
PI

( M4

(d−2)d
) 1

2 dim G, hence

ZG =
γdim G

vol(G)c
, γ ≡

g√
(d − 2)Ad−1

, Ad−1 ≡ vol(Sd−1) =
2π d

2

Γ( d2 )
, (C.213)

where we used vol(Sd+1) = 2π
d vol(Sd−1). (Recall we have been assuming d > 2. The case d = 2 is

discussed in appendix C.8.1.) The quantity γ may look familiar: the Coulomb potential energy for

two unit charges at a distance r in flat space is V(r) = γ2/rd−2.
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Practically speaking, the upshot is that ZG is given by (C.213), with vol(G)c the volume of the

Yang-Mills gauge group with respect to the metric defined by the Yang-Mills action (C.206). For

example for G = SU(2) with f abc = εabc as before, vol(G)c = 16π2, because SU(2) in this metric

is the round S3 with circumference 4π, hence radius 2.

The relation (C.208) can be viewed as defining the coupling constant g given our normalization

conventions for the kinetic terms and linearized gauge transformations. Of course the final result

is independent of these conventions. Conventions without explicit factors of g in the curvature and

gauge transformations are obtained by rescaling φ→ φ/g, ξ → ξ/g. Then there won’t be a factor

g in (C.208), but instead g is read off from the action S = 1
4g2

´
(Fa)2. We could also write this

without explicit reference to a basis as S = 1
4g2

´
Tr F2, where the trace “Tr” is normalized such

that Tr(LaLb) ≡ δab. Then we can say the canonical bilinear/metric/volume is defined by the trace

norm appearing in the YM action. We could choose a differently normalized trace Tr′ = λ2Tr. The

physics remains unchanged provided g′ = λg. Then vol(G)′c = λdim Gvol(G)c, hence, consistently,

Z′G = ZG.

As a final example, for SU(N)Yang-Mills with su(N) viewed as anti-hermitian N×N matrices,

S = − 1
4g2

´
TrN F2 in conventions without a factor g in the gauge algebra, and TrN the ordinary

N × N matrix trace, vol(SU(N))c = (C.94).

Einstein gravity

The Einstein gravity case proceeds analogously. Now we have single massless spin-2 field

φµν. The gauge transformations are diffeomorphisms generated by vector fields ξµ. The subgroup

G of diffeomorphisms leaving the background Sd+1 invariant is SO(d + 2), generated by Killing

vectors ξ̄µ. The usual standard basis MI J = −MJI , I = 1, . . . , d + 2 of the so(d + 2) Lie algebra

satisfies [M12, M23] = M13 etc. We define the canonical bilinear 〈·|·〉c to be the unique invariant

form normalized such that the MI J have unit norm:

〈M12 |M12〉c = 1 . (C.214)
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With respect to the corresponding metric ds2
c , orbits g(ϕ) = eϕM12 with ϕ ranging from 0 to 2π

have length 2π. The canonical volume is then given by (C.93).

To identify the standard generators MI J more precisely in our normalization conventions for ξ̄,

we need to look at the field theory realization in more detail. The so(d+2) algebra generated by the

Killing vectors ξ̄ is realized in the interacting Einstein gravity theory as a subalgebra of the gauge

(diffeomorphism) algebra. As in the Yang-Mills case (C.208), the bracket [[·, ·]] of this subalgebra

is inherited from the gauge algebra. Writing the Killing vectors as ξ̄ = ξ̄µ∂µ, the standard Lie

bracket is [ξ̄, ξ̄′]L =
(
ξ̄µ∂µξ̄

′ν − ξ̄′µ∂µξ̄
ν
)
∂ν. If we had normalized φµν as φµν ≡ gµν − g

0
µν with g0

µν

the background sphere metric, and if we had normalized ξµ by putting α2 ≡ 1 in (3.94), the bracket

[[·, ·]] would have coincided with the Lie bracket [·, ·]L. However, we are working in different

normalization conventions, in which φµν is canonically normalized and α2 =
√

2 according to

(C.204). In these conventions we have instead

[[ξ̄, ξ̄′]] =
√

16πGN [ξ̄
′, ξ̄]L , (C.215)

where GN is the Newton constant. This can be checked by starting from the Einstein-Hilbert

action, expanding to quadratic order (see e.g. [204] for convenient and reliable explicit expressions

in dSd+1), and making the appropriate convention rescalings. This is the Einstein gravity analog

of (C.208). To be more concrete, let us consider the ambient space description of the sphere Sd+1,

i.e. X I XI = 1 with X ∈ Rd+2. Then the basis of Killing vectors MI J ≡ −(XI∂J − XJ∂I)/
√

16πGN

satisfy our standard so(d + 2) commutation relations [[M12, M23]] = M13 etc, hence by (C.214),

〈M12 |M12〉c = 1. The path integral metric (C.203) on the other hand corresponds to the invariant

bilinear 〈ξ̄ |ξ̄′〉PI =
M4

2π
´
ξ̄ · ξ̄′, so 〈M12 |M12〉PI =

M4

2π
1

16πGN

´
Sd+1(X2

1 +X2
2 ) =

M4

2π
1

16πGN
2

d+2vol(Sd+1).

Thus we obtain the following relation between PI and canonical metrics and volumes for G =

SO(d + 2):

ds2
PI =

Ad−1
4GN

1
d(d + 2)

M4

2π
ds2

c ⇒
vol(G)PI
vol(G)c

=

(
Ad−1
4GN

1
d(d + 2)

M4

2π

) 1
2 dim G

(C.216)
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where dim G = 1
2 (d + 2)(d + 1), Ad−1 = vol(Sd−1) as in (C.213), and we again used vol(Sd+1) =

2π
d vol(Sd−1). Combining this with (C.201), we get our desired result:

ZG =
γdim G

vol(G)c
, γ ≡

√
8πGN
Ad−1

. (C.217)

Higher-spin gravity

We follow the same template for the higher-spin case. In the interacting higher-spin theory, the

Killing tensors generate a subalgebra of the nonlinear gauge algebra, with bracket [[·, ·]] inherited

from the gauge algebra, just like in the Yang-Mills and Einstein examples, except the gauge algebra

is much more complicated in the higher-spin case. Fortunately it is not necessary to construct the

exact gauge algebra to determine the Killing tensor algebra: it suffices to determine the lowest

order deformation of the linearized gauge transformation (3.94) fixed by the transverse-traceless

cubic couplings of the theory [68]. The Killing tensor algebra includes in particular an so(d + 2)

subalgebra, that is to say an algebra of the same general form (C.215) as in Einstein gravity, with

some constant appearing on the right-hand side determined by the spin-2 cubic coupling in the TT

action. We define the “Newton constant” GN of the higher-spin theory to be this constant, that is

to say we read off GN from the so(d + 2) Killing vector subalgebra by writing it as

[[ξ̄, ξ̄′]] =
√

16πGN [ξ̄
′, ξ̄]L . (C.218)

The standard Killing vector basis is then again given by MI J ≡ −(XI∂J−XJ∂I)/
√

16πGN, satisfying

[[M12, M23]] = M13 etc.

It was argued in [68] that for the most general set of consistent parity-preserving cubic interac-

tions, assuming the algebra does not split as a direct sum of subalgebras, i.e. assuming the algebra

is simple, there exists an up to normalization unique invariant bilinear form 〈·|·〉c on the Killing

tensor algebra. We fix its normalization again by requiring the standard so(d + 2) Killing vectors
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MI J have unit norm,

〈M12 |M12〉c ≡ 1 . (C.219)

Expressed in terms of the bilinears 〈ξ̄s−1 |ξ̄s−1〉PI =
M4

2π
´
ξ̄s−1 · ξ̄(s−1) corresponding to (C.203), the

invariant bilinear on the Killing tensor algebra takes the general form

〈ξ̄ |ξ̄′〉c =
∑

s

Bs 〈ξ̄s−1 |ξ̄
′
s−1〉PI , (C.220)

where Bs are certain constants fixed in principle by the algebra. The arguments given in [68]

moreover imply that up to overall normalization, the coefficients Bs are independent of the coupling

constants in the theory. More specifically, adapted (with some work, as described below) to our

setting and conventions, and correcting for what we believe is a typo in [68], the coefficients are

Bs ∝ (2s+d−4)(2s+d−2). We confirmed this by comparison to [71], where the invariant bilinear

form for minimal Vasiliev gravity in AdSd+1, dual to the free O(N)model, was spelled out in detail,

building on [68–70]. Analytically continuing to positive cosmological constant, implementing

their ambient space X-contractions by a Gaussian integral, and reducing this integral to the sphere

by switching to spherical coordinates, the expression in [71] can be brought to the form (C.220).

This transformation almost completely cancels the factorials in the analogous coefficients bs in

[71], reducing to the simple Bs ∝ (2s + d − 4)(2s + d − 2). (The alternating signs of [71] are

absent here due to the analytic continuation to positive cc.) Taking into account our normalization

prescription (C.219) (which is different from the normalization chosen in [71]), we thus get

〈
ξ̄ |ξ̄

〉
c =

2π
M4 ·

4GN
Ad−1

∑
s

(2s + d − 4)(2s + d − 2)
〈
ξ̄(s−1)��ξ̄(s−1)〉

PI , (C.221)

with Ad−1 = vol(Sd−1) as before. In view of the independence of the coefficients Bs of the cou-

plings within the class of theories considered in [68], i.e. all parity-invariant massless higher-spin

gravity theories consistent to cubic order, this result is universal, valid for this entire class.

304



As before for Einstein gravity and Yang Mills, from (C.221) we get the ratio

vol(G)PI
vol(G)c

=
∏

s

(
M4

2π
·

Ad−1
4GN

·
1(

2s + d − 4
) (

2s + d − 2
) ) 1

2 NKT
s−1

. (C.222)

Combining this with (C.201) we see that, rather delightfully, all the unpleasant-looking factors

cancel, leaving us with

ZG =
γdim G

vol(G)c
, γ ≡

√
8πGN
Ad−1

(C.223)

This takes exactly the same form as the Einstein gravity result (C.217) except G is now the higher-

spin symmetry group rather than the SO(d + 2) spin-2 symmetry group.

The cancelation of the UV divergent factors M is as expected from consistency with locality.

The cancelation of the s-dependent factors on the other hand seems surprising, in view of the

different origin of the numerator (spectrum of quadratic action) and the denominator (invariant

bilinear form on higher spin algebra of interactions). Apparently the former somehow knows

about the latter. We do not see an obvious reason why this is the case, although the simplicity and

universality of the result suggests we should, and that this entire section should be replaceable by

a one-line argument. Perhaps it is obvious in a frame-like formalism.

Newton constant from central charge

Recall that the Newton constant GN appearing in (C.223) was defined by the so(d + 2) alge-

bra (C.218) in our normalization conventions. An analogous definition can be given in dSd+1 or

AdSd+1 where the algebra becomes so(1, d +1) resp. so(2, d). Starting from this definition, GN can

also be formally related to the Cardy central charge C of a putative21 boundary CFT for AdS or

dS, defined as the coefficient of the CFT 2-point function of the putative energy-momentum tensor.

21There is no assumption whatsoever this CFT actually exists. One just imagines it exists and uses the formal
holographic dictionary to infer the two-point function of this imaginary CFT’s stress tensor. In dS, this “dual CFT”
can be thought of as computing the Hartle-Hawking wave function of the universe [170].
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With our definition of GN, the computation of [205] remains unchanged, so we can just copy the

result obtained there:

C =
(±1) d−1

2 Γ(d + 2)
(d − 1) Γ

( d
2
)2 ·

Ad−1
8πGN

(C.224)

where as before Ad−1 = 2πd/2`d−1/Γ( d2 ), and ±1 = +1 for AdS and −1 for dS. The central charge

of N free real scalars equals C = d
2(d−1) N in the conventions used here. Note that (C.224) reduces

to the Brown-Henneaux formula C = 3`/2GN for d = 2. In [181] it was argued that the Hartle-

Hawking wave function of minimal Vasiliev gravity in dS4 is perturbatively computed by a d = 3

CFT of N free Grassmann scalars. This CFT has central charge C = −3
4 N , hence according to

(C.224), GN = 25/πN and γ =
√

2GN = 8/
√
πN .

The final result of this appendix, putting everything together, is stated in (3.112).

C.8 One-loop and exact results for 3D theories

C.8.1 Character formula for Z (1)PI

For d = 2, i.e. dS3 / S3, some of the generic-d formulae in sections 3.4 and 3.5 become a

bit degenerate, requiring separate discussion. One reason d = 2 is a bit more subtle is that the

spin-s irreducible representation of SO(2) actually comes in two distinct chiral versions ±s, as

do the corresponding SO(1, 3) irreducible representations (∆,±s). Likewise the field modes of a

spin s field in the path integral on S3 split into chiral irreps (n,±s) of SO(4). The dimensions

D2
s = D2

−s = 1 and D4
n,s = D4

n,−s = (1+ n− s)(1+ n+ s) of the SO(2) and SO(4) irreps are correctly

reproduced by the Weyl dimension formula (C.87), rather than (C.15). It should however be kept in

mind that the single-particle Hilbert space of for instance a massive spin-s ≥ 1 Pauli-Fierz field on

dS3 carries both helicity versions (∆,±s) of the massive spin-s SO(1,3) irrep, hence the character

χ to be used in expressions for ZPI in this case is χ = χ+s + χ−s = 2χ+s = 2(q∆ + q2−∆)/(1 − q)2.

On the other hand for a real scalar field, we just have χ = χ0 = (q∆ + q2−∆)/(1 − q)2.
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For massless higher-spin gauge fields of spin s ≥ 2, a similar reasoning implies we should

include an overall factor of 2 in (C.180)-(C.181). For an s = 1 Maxwell field on the other hand, we

get a factor of 2 in the first term but not in the second term (since the gauge parameter/ghost field

is a scalar). The proper massless spin-s bulk and edge characters are then obtained from these by

the polar term flip (C.183) as usual. This results in

χbulk,s = 0 (s ≥ 2) , χ
(s=1)
bulk =

2q
(1 − q)2

, χedge,s = 0 (all s) , (C.225)

expressing the absence of propagating degrees of freedom (i.e. particles) for massless spin-s ≥ 2

fields on dS3.

This can also be derived more directly from the general path integral formula (C.161), taking

into account the ±s doubling. In particular for massless s ≥ 2, (C.171) gets replaced by

F̂s =
∑

n≥−1
Θ(1 + n) 2D4

n,s
(
qs+n + q2−s+n) − ∑

n≥−1
Θ(1 + n) 2D4

n,s−1
(
qs+1+n + q1−s+n), (C.226)

which matters for the n = −1 term because Θ(0) ≡ 1
2 . For s = 1, we get instead

F̂1 =
∑

n≥−1
Θ(1 + n) 2D4

n,1
(
q1+n + q1+n) −∑

n≥0
D4

n,0
(
q2+n + qn) . (C.227)

For s ≥ 2, the computation of Zchar and ZG remains essentially unchanged. For s = 1 there are

some minor changes. The edge character in (C.181) acquires an extra q0 term in d = 2 because

qs+d−3 = q0, so the map χ̂edge → [ χ̂edge]+ gets an extra −1 subtraction, as a result of which the

factor −2 in (C.182) becomes a −3. Relatedly we get an extra q0 term in q2s+d−4 + q2s+d−2 + 2 =

q2 + 3 in (C.200), and we end up with ZG = γ̃
dim G/vol(G)c with γ̃ = g`/

√
A1 = g

√
`/
√

2π instead

of (C.213). Everything else remains the same.
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Finally, the phase i−Ps (C.173) is somewhat modified. For s ≥ 2, from (C.226),

Ps = −

s−3∑
n=−1

Θ(1 + n) 2D4
n,s −

s−2∑
n=−1

Θ(1 + n) 2D4
n,s−1 =

1
3
(2s − 3)(2s − 1)(2s + 1) (C.228)

Note that P2 = 5, in agreement with [59]. P1 = 0 as before, since there are no negative modes.

Conclusion

The final result for Z (1)PI = ZG Zchar in dS3 replacing (3.112)-(3.113) is:

• For Einstein and HS gravity theories with s ≥ 2,

Z (1)PI = i−P γdim G

vol(G)c
· Zchar , Zchar = e−2 dim G

´ × dt
2t

1+q
1−q = (2π)dim Ge− dim G·c ` ε−1

, (C.229)

where as before γ =
√

8πGN/A1 =
√

4GN/`, P =
∑

s Ps, and vol(G)c is the volume with

respect to the metric for which the standard so(4) generators MI J have norm 1. We used

(C.75) to evaluate Zchar. The coefficient c of the linearly divergent term is an order 1 constant

depending on the regularization scheme. (For the heat kernel regularization of appendix C.3,

following section C.3.3, c = 3π
4 . For a simple cutoff at t = ε as in section C.3.4, c = 2.) The

finite part is

Z (1)PI,fin = i−P (2πγ)dim G

vol(G)c
, γ =

√
8πGN
2π`

(C.230)

For example for Einstein gravity with G = SO(4), we get

Z (1)PI,fin = i−5 (2πγ)6

(2π)4
= −i 4π2γ6 . (C.231)

• For Yang-Mills theories with gauge group G and coupling constant g, we get

Z (1)PI =
γ̃dim G

vol(G)c
· e

dim G
´ × dt

2t
1+q
1−q

(
2q
(1−q)2

−3
)
, γ̃ =

g
√
`

√
2π

. (C.232)
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Using (C.57), (C.75), the finite part evaluates to

Z (1)PI,fin =
(2πg
√
` Z1)

dim G

vol(G)c
, Z1 = e−

ζ (3)
4π2 . (C.233)

As in (3.112), vol(G)c is the volume of G with respect to the metric defined by the trace

appearing in the Yang-Mills action. As a check, for G = U(1) we have vol(G)c = 2π, so

Z = g e−ζ(3)/4π
2√
` in agreement with [206] eq. (3.25).

• We could also consider the Chern-Simons partition function on S3,

Zk =

ˆ
DA ei k SCS[A] , SCS[A] ≡

1
4π

ˆ
Tr(A ∧ dA +

2
3

A ∧ A ∧ A) , (C.234)

with k > 0 suitably quantized (k ∈ Z for G = SU(N) with Tr the trace in the N-dimensional

representation). Because in this case the action is first order in the derivatives and not parity-

invariant, it falls outside the class of theories we have focused on in this paper. It is not too

hard though to generalize the analysis to this case. The main difference with Yang-Mills

is that χbulk = 0 = χedge: like in the s ≥ 2 case, the s = 1 Chern-Simons theory has no

particles. The function F̂1 is no longer given by the Maxwell version (C.227), but rather by

(C.226), except without the factors of 2, related to the fact that the CS action is first order in

the derivatives. This immediately gives F1 = F̂1 = −2 1+q
1−q . The computation of the volume

factor is analogous to our earlier discussions. The result (in canonical framing [207]) is

Z (1)k =
γ̃dim G

vol(G)Tr
e−2 dim G

´ × dt
2t

1+q
1−q , Z (1)k,fin =

(2πγ̃)dim G

vol(G)Tr
, γ̃ =

1
√

k
, (C.235)

where vol(G)Tr is the volume with respect to the metric defined by the trace appearing in the

Chern-Simons action (C.234). This agrees with the standard results in the literature, nicely

reviewed in section 4 of [208].
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C.8.2 Chern-Simons formulation of Einstein gravity

3D Einstein gravity can be reformulated as a Chern-Simons theory [143, 209]. Although well-

known, we briefly review some of the basic ingredients and conceptual points here to facilitate the

discussion of the higher-spin generalization in section C.8.3. A more detailed review of certain

aspects, including more explicit solutions, can be found in section 4 of [210]. Explicit computa-

tions using the Chern-Simons formulation of Λ > 0 Euclidean quantum gravity with emphasis on

topologies more sophisticated than the sphere can be found in [84, 211, 212].

Lorentzian gravity

For the Lorentzian theory with positive cosmological constant, amplitudes are computed by

path integrals
´
DA eiSL with real Lorentzian SL(2,C) Chern-Simons action [144]

SL = (l + iκ)SCS[A+] + (l − iκ)SCS[A−] , A∗+ = A−, (C.236)

where SCS is as in (C.234) with A± an sl(2,C)-valued connection and Tr = Tr2. The vielbein e and

spin connection ω are the real and imaginary parts of the connection:

A± = ω ± ie/` , ds2 = 2 Tr2 e2 = ηi jeie j . (C.237)

For the last equality we decomposed e = ei Li in a basis Li of sl(2,R), say

(L1, L2, L3) ≡ (
1
2σ1,

1
2iσ2,

1
2σ3) ⇒ ηi j ≡ 2 Tr2(Li L j) = diag(1,−1, 1) . (C.238)

Note that [Li, L j] = −εi j k Lk with Lk ≡ ηkk ′Lk ′. When l = 0, the action reduces to the firs-order

form of the Einstein action with Newton constant GN = `/4κ and cosmological constant Λ = 1/`2.

The equations of motion stipulate A± must be flat connections:

dA± + A± ∧ A± = 0 , (C.239)
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equivalent with the Einstein gravity torsion constraint (with ωi
j ≡ ηilεl j kω

k) and the Einstein

equations of motion [143]. Turning on l deforms the action by parity-odd terms of gravitational

Chern-Simons type. This does not affect the equations of motion (C.239). We can take l ≥ 0

without loss of generality. The part of the action multiplied by l has a discrete ambiguity forcing l

to be integrally quantized, like k in (C.234). Summarizing,

0 ≤ l ∈ Z , 0 < κ =
2π`

8πGN
∈ R , (C.240)

dS3 vacuum solution

A flat connection corresponding to the de Sitter metric can be obtained as follows. (We will be

brief because the analog for the sphere below will be simpler and make this more clear.) Define

Q(X) ≡ 2 (X4L4 + iX i Li) with L4 ≡
1
21 and note that det Q = X2

4 + ηi j X i X j =: ηI J X I X J , so

M ≡ {X | det Q(X) = 1} is the dS3 hyperboloid, and Q is a map fromM into SL(2,C). Its square

root h ≡ Q1/2 is then a map fromM into SL(2,C)/Z2 ' SO(1, 3), so A+ ≡ h−1dh is a flat sl(2,C)-

valued connection onM. Moreover onM we have Q∗ = Q−1, so h∗ = h−1, A− = A∗+ = −(dh)h−1,

and ds2 = −1
2`

2 Tr(A+ − A−)2 = −1
2`

2 Tr (Q−1dQ)2 = `2ηI J dX I dX J , which is the de Sitter metric

of radius ` onM.

Euclidean gravity

Like the Einstein-Hilbert action — or any other action for that matter — (C.236) may have

complex saddle points, that is to say flat connections A± which do not satisfy the reality constraint

(C.236), or equivalently solutions for which some components of the vielbein and spin connection

are not real. Of particular interest for our purposes is the solution corresponding to the round

metric on S3. This can be obtained from the dS3 solution as usual by a Wick rotation of the time

coordinate. Given our choice of sl(2,R) basis (C.238), this means X2 → −iX2. At the level of

the vielbein e = ei Li such a Wick rotation is implemented as e2 → −ie2. Similarly, recalling

ωi j = εi j kω
k , the spin connection ω = ωi Li rotates as ω1 → iω1, ω3 → iω3. Equivalently, A± →
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(ωi±ei/`)Si where Si ≡
1
2iσi. Notice the Si are the generators of su(2), satisfying [Si, Sj] = −εi j k Sk ,

−2 Tr2(SiSj) = δi j and S†i = −Si. Thus the Lorentzian metric ηi j gets replaced by the Euclidean

metric δi j , the Lorentzian sl(2,C) = so(1, 3) reality condition gets replaced by the Euclidean su(2)⊕

su(2) = so(4) reality condition, and the Lorentzian path integral
´
DA eiSL becomes a Euclidean

path integral
´
DA e−SE , where SE ≡ −iSL is the Euclidean action:

SE = (κ − il) SCS[A+] − (κ + il) SCS[A−] , A†± = −A± . (C.241)

This can be interpreted as the Chern-Simons formulation of Euclidean Einstein gravity with posi-

tive cosmological constant. The su(2) ⊕ su(2)-valued connection (A+, A−) encodes the Euclidean

vielbein, spin connection and metric as

A± = ω ± e/` = (ωi ± ei/`)Si , Si ≡
1
2iσi , ds2 = −2 Tr2 e2 = δi jeie j . (C.242)

The Euclidean counterpart of the reality condition of the Lorentzian action is that SE gets mapped

to S∗E under reversal of orientation. Reversal of orientation maps SCS[A] → −SCS[A], and in

addition here it also exchanges the ± parts of the decomposition so(4) = su(2)+ ⊕ su(2)− into self-

dual and anti-self-dual parts, that is to say it exchanges A+ ↔ A−. Thus orientation reversal maps

SE → −(κ − il) SCS[A−] + (κ + il) SCS[A+] = S∗E , as required.

Round sphere solutions

Parametrizing S3 by g ∈ SU(2) ' S3, it is easy to write down a flat su(2) ⊕ su(2) connection

yielding the round metric of radius `:

(A+, A−) = (g−1dg, 0) ⇒ e/` = 1
2g
−1dg = ω, ds2 = −1

2`
2 Tr(g−1dg)2 . (C.243)

The radius can be checked by observing that along an orbit g(ϕ) = eϕS3 , we get g−1dg = dϕ S3 so

ds = 1
2`dϕ and the orbit length is

´ 4π
0 ds = 2π`. The on-shell action is SE = −

κ−il
12π
´

S3 Tr2(g
−1dg)3 =
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−
2(κ−il)
3π`3

´
eie jek Tr2(SiSj Sk) = −

κ−il
6π`3

´
eie jek εi j k = −2π(κ − il), so

exp(−SE ) = exp
(
2πκ + 2πil

)
= exp

( 2π`
4GN

)
, (C.244)

where we used (C.240). This reproduces the standard Gibbons-Hawking result [10] for dS3.

More generally we can consider flat connections of the form (A+, A−) = (h−1
+ dh+, h−1

− dh−)with

h± = gn± , where n± ∈ Z if we take the gauge group to be G = SU(2) × SU(2) and n± ∈ Z or n± ∈

1
2 + Z if we take G =

(
SU(2) × SU(2)

)
/Z2 ' SO(4). These are all related to the trivial connection

(0, 0) by a large gauge transformation g ∈ S3 → (h+, h−) ∈ G. All other flat connections on S3

are obtained from these by gauge transformations continuously connected to the identity, which

are equivalent to diffeomorphisms and vielbein rotations continuously connected to the identity

in the metric description [143]. Large gauge transformations on the other hand are in general not

equivalent to large diffeomorphisms. Indeed,

e−SE = e2πnκ+2πiñl = e2πnκ , n ≡ n+ − n−, ñ ≡ n+ + n− , (C.245)

so evidently different values of n are physically inequivalent. Conversely, for a fixed value of n but

different values of ñ, we get the same metric, so these solutions are geometrically equivalent. In

particular the n = 1 solutions all produce the same round metric (C.243). For n = 0, the metric

vanishes. For n < 0, we get a vielbein with negative determinant. Only vielbeins with positive

determinant reproduce the Einstein-Hilbert action with the correct sign, so from the point of view

of gravity we should discard the n < 0 solutions. Finally the cases n > 1 correspond to a metric

describing a chain of n spheres connected by throats of zero size, presumably more appropriately

thought of as n disconnected spheres. The Wick rotation X2 → −iX2 of our earlier constructed

Lorentzian dS3 equals the (n+, n−) = (12,−
1
2 ) solution constructed here.
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Euclidean path integral

The object of interest to us is the Euclidean path integral Z =
´
DA e−SE [A], defined pertur-

batively around an n = n+ − n− = 1 round sphere solution (Ā+, Ā−) = (g−n+dgn+, g−n−dgn−), such

as the (1, 0) solution (C.243). Physically, this can be interpreted as the all-loop quantum-corrected

Euclidean partition function of the dS3 static patch. For simplicity we take G = SU(2) × SU(2),

so n± ∈ Z and we can formally factorize Z as an SU(2)k+ × SU(2)k− CS partition function where

k± = l ± iκ, with l ∈ Z+ and κ ∈ R+:

Z =
ˆ
(n+,n−)
DA eik+SCS[A+]+ik−SCS[A−] = ZCS

(
SU(2)k+ | Ān+

)
ZCS

(
SU(2)k− | Ān−

)
, (C.246)

Here the complex-k CS partition function ZCS(SU(2)k | Ām) ≡
´

mDA eikSCS[A] is defined perturba-

tively around the critical point Ā = g−mdgm. It is possible, though quite nontrivial in general, to

define Chern-Simons theories at complex level k on general 3-manifolds M3 [213, 214]. Our goal

is less ambitious, since we only require a perturbative expansion of Z around a given saddle, and

moreover we restrict to M3 = S3. In contrast to generic M3, at least for integer k, the CS action on

S3 has a unique critical point modulo gauge transformations, and its associated perturbative large-k

expansion is not just asymptotic, but actually converges to a simple, explicitly known function: in

canonical framing [207],

ZCS
(
SU(2)k | Ā

)
0 =

√
2

2+k sin
(
π

2+k

)
ei(2+k)SCS[Ā] (k ∈ Z+) . (C.247)

The dependence on the choice of critical point Ā = g−mdgm actually drops out for integer k, as

SCS[Ā] = −2πm ∈ 2πZ. We have kept it in the above expression to because this is no longer the

case for complex k. Analytic continuation to k± = l ± iκ with l ∈ Z+ and κ ∈ R+ in (C.246) then

gives:

Z0 =
���√ 2

2+l+iκ sin
(

π
2+l+iκ

) ���2 e2πnκ−2πi ñ(2+l) =

���√ 2
2+l+iκ sin

(
π

2+l+iκ

)
· eπκ

���2 . (C.248)
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Framing dependence of phase and one-loop check

For a general choice of S3 framing with SO(3) spin connection ω̂, (C.247) gets replaced by

[207]

ZCS
(
SU(2)k | Ā

)
= exp

( i
24 c(k)I(ω̂)

)
ZCS

(
SU(2)k | Ā

)
0 , c(k) = 3

(
1 − 2

2+k

)
, (C.249)

where I(ω̂) = 1
4π
´

Tr3(ω̂∧ dω̂+ 2
3ω̂∧ ω̂∧ ω̂) is the gravitational Chern-Simons action. The action

I(ω̂) can be defined more precisely as explained under (2.22) of [215], by picking a 4-manifold M

with boundary ∂M = S3 and putting

I(ω̂) ≡ IM ≡
1

4π

ˆ
M

Tr(R ∧ R) , (C.250)

where R is the curvature form of M , Rµ
ν =

1
2 Rµ

νρσdxρ ∧ dxσ. Taking M to be a flat 4-ball B, the

curvature vanishes so IB = 0, corresponding to canonical framing. Viewing B as a 4-hemisphere

with round metric has Tr(R ∧ R) = 0 pointwise so again IB = 0. Gluing any other 4-manifold M

with boundary S3 to B, we get a closed 4-manifold X = M − B, with IM − IB =
1

4π
´

X Tr(R ∧ R) =

2πp1(X), where p1(X) is the Pontryagin number of X . According to the Hirzebruch signature

theorem, the signature σ(X) = b+2 − b−2 of the intersection form of the middle cohomology of X

equals 1
3 p1(X). Therefore, for any choice of M ,

IM = 6πr , r = σ(X) ∈ Z . (C.251)

For example r = 1 for X = CP2 and r = p − q for X = pCP2#qCP
2
. Thus for general framing,

(C.249) becomes ZCS(k |m) = ZCS(k |m)0 exp
(
r c(k) iπ

4
)

and (C.248) becomes

Zr = eirφ
���√ 2

2+l+iκ sin
(

π
2+l+iκ

)
eπκ

���2 , r ∈ Z , (C.252)

315



where, using c(k) = 3
(
1 − 2

2+k

)
, the phase is given by

rφ = r
(
c(l + iκ) + c(l − iκ)

) π
4
= r

(
1 − 2(2+l)

(2+l)2+κ2

) 3π
2
. (C.253)

In the weak-coupling limit κ →∞,

Zr → (−i)r
2π2

κ3 · e
2πκ . (C.254)

Using (C.240) and taking into account that we took G = SU(2) × SU(2) here, the absolute value

agrees with our general one-loop result (C.230) in the metric formulation, with the phase (−i)r

matching Polchinski’s phase i−P = i−5 = −i in (3.112) for odd framing r .22 We do not have any

useful insights into why (or whether) CS framing and the phase i−P might have anything to do with

each other, let alone why odd but not even framing should reproduce the phase of [59]. Perhaps

different contour rotation prescriptions as those assumed in [59] might reproduce the canonically

framed (r = 0) result in the metric formulation of Euclidean gravity. We leave these questions

open.

Comparison to previous results: The Chern-Simons formulation of gravity was applied to calcu-

late Euclidean Λ > 0 partition functions in [84, 211, 212]. The focus of these works was on

summing different topologies. Our one-loop (C.254) in canonical framing agrees with [211] up to

an unspecified overall normalization constant in the latter, agrees with Z(S3)/Z(S1 × S2) in [212]

combining their eqs. (13),(32), and disagrees with eq. (4.39) in [84], Z (1)(S3) = π3/(25κ).

C.8.3 Chern-Simons formulation of higher-spin gravity

The SL(2,C) Chern-Simons formulation of Einstein gravity (C.236) has a natural extension to

an SL(n,C)Chern-Simons formulation of higher-spin gravity — the positive cosmological constant

22Strictly speaking for r = 1 mod 4, but iP vs i−P in (3.112) is a matter of conventions, so there is no meaningful
distinction we can make here.
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analog of the theories studied e.g. in [145–148, 153, 154]. The Lorentzian action is

SL = (l + iκ) SCS[A+] + (l − iκ) SCS[A−] , A∗+ = A− , (C.255)

where SCS[A] =
1

4π
´

Trn
(
A∧ dA+ 2

3A∧A∧A
)
, anA is an sl(n,C)-valued connection, κ ∈ R+

and l ∈ Z+. The corresponding Euclidean action SE = −iSL extending (C.241) is given by

SE = (κ − il) SCS[A+] − (κ + il) SCS[A−] , A
†
± = −A± , (C.256)

where A± are now independent su(n)-valued connections.

Landscape of dS3 vacua

The solutions A of the original (n = 2) Einstein gravity theory can be lifted to solutions A =

R(A) of the extended (n > 2) theory by choosing an embedding R of sl(2) into sl(n). More

concretely, such lifts are specified by picking an n-dimensional representation R of su(2),

R = ⊕ama ,
∑

a

ma = n , Si = R(Si) = ⊕a J(ma)

i . (C.257)

Here J(m)i are the standard anti-hermitian spin j = m−1
2 representation matrices of su(2), satisfy-

ing the same commutation relations and reality properties as the spin-1
2 generators Si in (C.242).

Then the matrices Li ≡ R(Li) with the Li as in (C.238) are real, generating the corresponding

n-dimensional representation of sl(2,R). The Casimir eigenvalue of the spin j = m−1
2 irrep is

j( j + 1) = 1
4 (m

2 − 1), so

Trn(SiSj) = −
1
2TR δi j , Trn(LiL j) =

1
2TR ηi j , TR ≡

1
6

∑
a

ma(m2
a − 1) ; (C.258)

A general SL(2,C) connection A = Ai Li has curvature dA + A ∧ A =
(
dAi − 1

2ε
i
j k A j Ak )Li, and

an SL(n,C) connection of the form A = R(A) = AiLi has curvature dA + A ∧ A =
(
dAi −
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1
2ε

i
j k A j Ak )Li, hence A = R(A) solves the equations of motion of the extended SL(n,C) theory

iff A solves the equations of motion of the original Einstein SL(2,C) theory. In other words,

restricting to connections A = AiLi amounts to a consistent truncation, which may be interpreted

as the gravitational subsector of the n > 2 theory. Substituting A = R(A) into the action (C.255)

gives the consistently truncated action

SL = (l + iκ)TR SCS[A+] + (l − iκ)TR SCS[A−] , A∗+ = A− , (C.259)

which is of the exact same form as the original Einstein CS gravity theory (C.236), except l + iκ

is replaced by (l + iκ)TR. Thus we can naturally interpret the components Ai
± again as met-

ric/vielbein/spin connection degrees of freedom, just like in (C.242), i.e. Ai
± = ω

i ± iei/`, ds2 =

ηi jeie j , and the lift A = R(A) of the original solution A corresponding to the dS3 metric again

as a solution corresponding to the dS3 metric. The difference is that the original relation (C.240)

between κ and `/GN gets modified to

κ TR =
2π`

8πGN
. (C.260)

Since κ is fixed, this means the dimensionless ratio `/GN depends on the choice of R. Thus the

different solutions A = R(A) of the SL(n,C) theory can be thought of as different de Sitter vacua

of the theory, labeled by R, with different values of the curvature radius in Planck units `/GN.

These are the dS analog of the AdS vacua discussed in [154]. The total number of vacua labeled

by R = ⊕ama equals the number of partitions of n =
∑

a ma,

Nvac ∼ e2π
√

n/6 (n � 1) . (C.261)

For, say, n ∼ 2 × 105, this gives Nvac ∼ 10500.

Analogous considerations hold for the Euclidean version of the theory. For example the round
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sphere solution (C.243) is lifted to

(A+,A−) =
(
R(A+), 0

)
=

(
R(g)−1dR(g), 0

)
, R(eα

iSi ) ≡ eα
iSi , (C.262)

with the sphere radius ` in Planck units given again by (C.260). The tree-level contribution of the

solution (C.262) to the Euclidean path integral is

exp(−SE ) = exp
(
2πκ TR

)
= exp

( 2π`
4 GN

)
. (C.263)

Note that S(0) ≡ −SE =
2π`
4GN

is the usual dS3 Gibbons-Hawking horizon entropy [10]. Its value

S(0) = 2πκ TR depends on the vacuum R = ⊕ama through TR as given by (C.258). The vacuum R

maximizing e−SE corresponds to the partition of n =
∑

a ma maximizing TR. Clearly the maximum

is achieved for R = n:

max
R

TR = Tn =
n(n2 − 1)

6
. (C.264)

The corresponding embedding of su(2) into su(n) is called the “principal embedding”. Thus the

“principal vacuum” maximizes the entropy at SGH,n =
1
6n(n2 − 1) 2πκ, exponentially dominating

the Euclidean path integral in the semiclassical (large-κ) regime. In the remainder we focus on the

Euclidean version of the theory.

Higher-spin field spectrum and algebra

Of course for n > 2, there are more degrees of freedom in the 2(n2−1) independent components

of A± than just the 3+3 vielbein and spin connection degrees of freedom Ai
±Si. The full set of

fluctuations around the vacuum solution can be interpreted in a metric-like formalism as higher-

spin field degrees of freedom. The precise spectrum depends on the vacuum R. For the principal

vacuum R = n, we get the higher-spin vielbein and spin connections of a set of massless spin-

s fields of s = 2, 3, . . . , n, as was worked out in detail for the AdS analog in [153]. Indeed su(n)
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decomposes under the principally embedded su(2) subalgebra into spin-r irreps, r = 1, 2, . . . , n−1,

generated by the traceless symmetric products Si1···ir of the generators Si. As reviewed in [69], this

means we can identify the su(n)+ ⊕ su(n)− Lie algebra of the theory (C.256) with the higher-spin

algebra hsn(su(2))+ ⊕ hsn(su(2))−, where su(2)+ ⊕ su(2)− = so(4) is the principally embedded

gravitational subalgebra. In the metric-like formalism the spin-r generators correspond to (anti-

)self-dual Killing tensors of rank r . These are the Killing tensors of massless symmetric spin-s

fields with s = r + 1. As a check, recall the number of (anti-)self-dual rank r Killing tensors on S3

equals D4
r,±r = 2r + 1, correctly adding up to

∑
±

n−1∑
r=1

D4
r,±r = 2

n−1∑
r=1
(2r + 1) = 2(n2 − 1) . (C.265)

For different choices of embedding R, we get different su(2) decompositions of su(n). For example

for n = 12, while the principal embedding R = 12 considered above gives the su(2) decomposition

143su(12) = 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23, taking R = 6 ⊕ 4 ⊕ 2 gives

143su(12) = 2 · 1 + 7 · 3 + 8 · 5 + 6 · 7 + 3 · 9 + 11. Interpreting these as Killing tensors for

ns massless spin-s fields, we get for the former n2 = 1, n3 = 1, . . . , n12 = 1, and for the latter

n1 = 2, n2 = 7, n3 = 8, n4 = 6, n5 = 3, n6 = 1. The tree-level entropy S(0) = 2π`/4GN for R = 12 is

S(0) = 286 · 2πκ, and for R = 6 ⊕ 4 ⊕ 2 it is S(0) = 46 · 2πκ.

One-loop Euclidean path integral from metric-like formulation

In view of the above higher-spin interpretation of the theory, we can apply our general massless

HS formula (C.230) with G = SU(n) × SU(n) to obtain the one-loop contribution to the Euclidean

path integral (for l = 0). In combination with (C.260) this takes the form

Z (1)PI = i−P (2πγ)dim G

vol(G)c
, γ =

√
8πGN
2π`

=
1
√
κ TR

. (C.266)

Recall that vol(G)c is the volume of G with respect to the metric normalized such that 〈M |M〉c = 1,

where M is one of the standard so(4) = su(2) ⊕ su(2) generators, which we can for instance take
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to be the rotation generator M = S3 ⊕ S3. In the context of Chern-Simons theory, it is more

natural to consider the volume vol(G)Trn with respect to the metric defined by the trace appearing

in the Chern-Simons action (C.256). Using the definition of TR in (C.259), we see the trace norm

of M is 〈M |M〉Trn = −2 Trn(S3S3) = TR = TR〈M |M〉c, hence vol(G)Trn = (
√

TR)
dim G vol(G)c.

Note that upon substituting this in (C.266), the TR-dependent factors cancel out. Finally, using

(C.228), we get P =
∑n

s=2 Ps =
1
3 (2s − 3)(2s − 1)(2s + 1) = 2

3n2(n − 1)(n + 1) − (n2 − 1). Because

(n−1) ·n · (n+1) is divisible by 3, the first term is an integer, and moreover a multiple of 8 because

either n2 or (n + 1)(n − 1) is a multiple of 4. Hence i−P = i(n
2−1), which equals −i for even n and

+1 for odd n. Thus we get

Z (1)PI = in2−1 (2πγ̃)dim G

vol(G)Trn
, γ̃ ≡

1
√
κ
. (C.267)

Euclidean path integral from CS formulation

As in the SU(2) × SU(2) Einstein gravity case, we can derive an all-loop expression for the Eu-

clidean partition function Z(R) of the SU(n) × SU(n) higher-spin gravity theory (C.256) expanded

around a lifted round sphere solution Ā = R(Ā) such as (C.262), by naive analytic continuation of

the exact SU(n)k+ × SU(n)k− partition function on S3 to k± = l ± iκ, paralleling (C.246) and the

subsequent discussion there. The SU(n)k generalization of the canonically framed SU(2)k result

(C.247) as spelled out e.g. in [80, 216] is

ZCS(SU(n)k |Ā)0 =
1
√

n
1

(n + k)
n−1

2

n−1∏
p=1

(
2 sin

πp
n + k

) (n−p)
· ei(n+k)SCS[Ā] . (C.268)

The corresponding higher-spin generalization of (C.248) is therefore

Z(R)0 =
���� 1
√

n
1

(n + l + iκ)
n−1

2

n−1∏
p=1

(
2 sin

πp
n + l + iκ

) (n−p)
����2 · e2πκTR . (C.269)
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Physically this can be interpreted as the all-loop quantum-corrected Euclidean partition function of

the dS3 static patch in the vacuum labeled by R. The analog of the result (C.249) for more general

framing IM is

ZCS(SU(n)k |Ā) = exp
( i

24 c(k)IM
)

ZCS(SU(n)k |Ā)0 , c(k) = (n2 − 1)
(
1 − n

n+k

)
, (C.270)

hence the generalization of (C.252) for arbitrary framing IM = 6πr , r ∈ Z, is

Z(R)r = eirφ Z(R)0 , (C.271)

where φ =
(
c(l + iκ) + c(l − iκ)

)
π
4 =

(
1 − 2(n+l)

(n+l)2+κ2

)
(n2 − 1) π2 . In the limit κ →∞,

Z(R)r → ir(n2−1) 1
n

1
κn−1

n−1∏
r=1

(2πr
κ

)2(n−r)
= ir(n2−1)

(
2π
√
κ

)2(n2−1) ( 1
√

n

n∏
s=2

Γ(s)
(2π)s

)2
. (C.272)

Recognizing n2 − 1 = dim SU(n) and
√

n
∏n

s=2(2π)
s/Γ(s) = vol(SU(n))Trn (C.94), we see this

precisely reproduces the one-loop result (C.267). Like in the original n = 2 case, the phase again

matches for odd framing r . (The agreement at one loop can also be seen more directly by a slight

variation of the computation leading to (C.235).) This provides a nontrivial check of our higher-

spin gravity formula (C.230) and more generally (3.112).

Large-n limit and topological string description

In generic dSd+1 higher-spin theories, dim G = ∞. To mimic this case, consider the n → ∞

limit of SU(n) × SU(n) dS3 higher-spin theory with l = 0. A basic observation is that the loop

expansion is only reliable then if n/κ � 1. Using (C.260), this translates to TR n � `
GN

For the

exponentially dominant principal vacuum R = n, this becomes n4 � `/GN while at the other

extreme, for the nearly-trivial R = 2 ⊕ 1 ⊕ · · · ⊕ 1, this becomes n � `/GN. Either way, for

fixed `/GN , the large-n limit is necessarily strongly coupled, and the one-loop formula (C.266), or

equivalently (C.267) or (C.272), becomes unreliable. Indeed, according to this formula, log Z (1) ∼
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log
( n
κ

)
· n2 in this limit, whereas the exact expression (C.269) actually implies log Z (loops) → 0.

In fact, the partition function does have a natural weak coupling expansion in the n → ∞

limit — not as a 3D higher-spin gravity theory, but rather as a topological string theory. U(n)k

Chern-Simons theory on S3 has a description [217] as an open topological string theory on the

deformed conifold T∗S3 with n topological D-branes wrapped on the S3, and a large-n ’t Hooft

dual description [79] as a closed string theory on the resolved conifold. Both descriptions are

reviewed in [80], whose notation we follow here. The string coupling constant is gs = 2π/(n + k)

and the Kähler modulus of the resolved conifold is t =
´

S2 J + iB = igsn = 2πin/(n + k). Under

this identification,

ZCS(SU(n)k)0 =
√

n+k
n ZCS(U(n)k)0 =

√
2πi

t Ztop(gs, t) ≡ Z̃top(gs, t) . (C.273)

Thus we can write the SU(n)l+iκ × SU(n)l−iκ higher-spin Euclidean gravity partition function

(C.269) expanded around the round S3 solution Ā = R(Ā) as

Z(R)0 =
���Z̃top(gs, t) e−πTR ·2πi/gs

���2 (C.274)

where TR was defined in (C.258), maximized for R = n at Tn =
1
6n(n2 − 1), and

gs =
2π

n + l + iκ
, t = igsn =

2πin
n + l + iκ

. (C.275)

Note that t takes values inside a half-disk of radius 1
2 centered at t = iπ, with Re t > 0. The higher-

spin gravity theory (or the open string theory description on the deformed conifold) is weakly

coupled when κ � n, which implies |t | � 1. In the free field theory limit κ → ∞, we get

gs ∼ −2πi/κ → 0 and t ∼ 2πn/κ → 0, which is singular from the closed string point of view. In

the ’t Hooft limit n→ ∞ with t kept finite, the closed string is weakly coupled and sees a smooth

geometry. The earlier discussed Vasiliev-like limit n → ∞ with l = 0 and `/GN ∼ Tnκ ∼ n3κ

fixed, infinitely strongly coupled from the 3D field theory point of view, maps to gs ∼ 2π/n → 0
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and t ∼ 2πi + 2πκ/n→ 2πi, which is again singular from the closed string point of view, differing

from the 3D free field theory singularity by a mere B-field monodromy, reflecting the more general

n↔ l + iκ, t ↔ 2πi − t level-rank symmetry.

C.9 Quantum dS entropy: computations and examples

Here we provide the details for section 3.8.

C.9.1 Classical gravitational dS thermodynamics

3D Einstein gravity example

For concreteness we start with pure 3D Einstein gravity as a guiding example, but we will

phrase the discussion so generalization will be clear. The Euclidean action in this case is

SE [g] =
1

8πG

ˆ
d3x
√
g
(
Λ −

1
2

R
)
, (C.276)

with Λ > 0. The tree-level contribution to the entropy (3.153) is

S(0) = logZ(0) , Z(0) =
´

tree
Dg e−SE [g] . (C.277)

The dominant saddle of (C.277) is a round S3 metric g` of radius `=`0 minimizing SE (`) ≡ SE [g`]:

Z(0) =
´

tree
d` e−SE (`) , SE (`) =

2π2

8πG
(
Λ`3 − 3`

)
, (C.278)

where
´

tree means evaluation at the saddle point, here at the on-shell radius ` = `0:

∂`SE (`0) = 0 ⇒ Λ =
1
`2

0
, S(0) = −SE (`0) =

2π`0
4G

, (C.279)

reproducing the familiar area law S(0) = A/4G for the horizon entropy.
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We now recast the above in a way that will allow us to make contact with the formulae of

section 3.7.1 and will naturally generalize beyond tree level in a diffeomorphism-invariant way. To

this end we define an “off-shell” tree-level partition function at fixed (off-shell) volume V :

Z (0)(V) ≡
´

tree
dσ
´

tree
Dg e−SE [g]+σ(

´√
g−V) . (C.280)

Evaluating the integral is equivalent to a constrained extremization problem with Lagrange mul-

tiplier σ enforcing the constraint
´√

g = V . The dominant saddle is the round sphere g = g` of

radius `(V) fixed by the volume constraint:

Z (0)(V) = e−SE (`) , 2π2`3 = V . (C.281)

Paralleling (3.135) and (3.136), we define from this an off-shell energy density and entropy,

ρ(0) ≡ −∂V log Z (0) = −1
3`∂` log Z (0) /V =

(
Λ − `−2)/8πG

S(0) ≡
(
1 − V∂V

)
log Z (0) =

(
1 − 1

3`∂`
)

log Z (0) =
2π`
4G

.
(C.282)

ρ(0) is the sum of the positive cosmological constant and negative curvature energy densities. S(0)

is independent of Λ. It is the Legendre transform of log Z (0):

S(0) = log Z (0) + V ρ(0) , d log Z (0) = −ρ(0)dV , dS(0) = Vdρ(0) , (C.283)

Note that evaluating
´

tree dσ in (C.280) sets σ = −∂V log Z (0) = ρ(0)(V). On shell,

ρ(0)(`0) = 0 , S(0) = log Z (0)(`0) = S(0)(`0) =
2π`0
4G

. (C.284)

Paralleling (3.137), the differential relations in (C.283) can be viewed as the first law of tree-level

de Sitter thermodynamics. We can also consider variations of coupling constants such as Λ. Then

d log Z (0) = −ρ(0)dV − 1
8πGVdΛ, dS(0) = Vdρ(0) − 1

8πGVdΛ. On shell, dS(0) = − V0
8πG dΛ.
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General d and higher-order curvature corrections

The above formulae readily extend to general dimensions and to gravitational actions SE [g]

with general higher-order curvature corrections. Using that Rµνρσ = (gµρgνσ − gµσgνρ)/`
2 for the

round23 Sd+1, Z (0)(V) (C.280) can be evaluated explicitly for any action. It takes the form

log Z (0)(V) = −SE [g`] =
Ωd+1
8πG

(
−Λ`d+1 + d(d+1)

2 `d−1 + · · ·
)
, Ωd+1`

d+1 = V , (C.285)

where + · · · is a sum of Rn higher-order curvature corrections ∝ `−2n and Ωd+1 = (C.92). The

off-shell energy density and entropy are defined as in (C.282)

ρ(0) = − 1
d+1`∂` log Z (0) /V =

(
Λ −

d(d−1)
2 `−2 + · · ·

)
/8πG

S(0) =
(
1 − 1

d+1`∂`
)

log Z (0) =
A

4G
(
1 + · · ·

)
.

(C.286)

where A = Ωd−1`
d−1 and + · · · are 1/`2n curvature corrections. The on-shell radius `0 solves

ρ(0)(`0) = 0, most conveniently viewed as giving a parametrization Λ(`0).

As an example, consider the general action up to order R2 written as

SE =
1

8πG

ˆ
√
g
(
Λ − 1

2 R − l2
s
(
λC2CµνρσCµνρσ + λR2 R2 + λE2 E µνEµν

) )
, (C.287)

where Eµν ≡ Rµν −
1

d+1 R gµν, Cµνρσ is the Weyl tensor, ls is a length scale and the λi are dimen-

sionless. The Weyl tensor vanishes on the round sphere and Rµν = d gµν/`
2, hence

log Z (0) =
Ωd+1
8πG

(
−Λ `d+1 + 1

2 d(d + 1) `d−1 + λR2 d2(d + 1)2 l2
s `

d−3 )
, (C.288)

23By virtue of its SO(d+2) symmetry, the round sphere metric g` withΩd+1`
d+1 = V is a saddle of (C.280). Spheres

of dimension ≥ 5 admit a plentitude of Einstein metrics that are not round [218–221], but as explained e.g. in [222],
by Bishop’s theorem [223], these saddles are subdominant in Einstein gravity. In the large-size limit, higher-order
curvature corrections are small, hence the round sphere dominates in this regime.
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For example for d = 2,

log Z (0) =
π

4G

(
−Λ `3 + 3 ` +

36 l2
s λR2

`

)
, (C.289)

hence, using (C.286) and ρ(0)(`0) = 0,

S(0) = S(0)(`0) =
2π`0
4G

(
1 +

24 l2
s λR2

`2
0

)
, Λ =

1
`2

0

(
1 −

12 l2
s λR2

`2
0

)
. (C.290)

Effective field theory expansion and field redefinitions

Curvature corrections such as those considered above naturally appear as terms in the derivative

expansion of low-energy effective field theories of quantum gravity, with ls the characteristic length

scale of UV-completing physics and higher-order curvature corrections terms suppressed by higher

powers of l2
s /`

2 � 1. The action (C.287) is then viewed as a truncation at order l2
s , and (C.290)

can be solved perturbatively to obtain `0 and S(0) as a function of Λ.

Suppose someone came up with some fundamental theory of de Sitter quantum gravity, pro-

ducing both a precise microscopic computation of the entropy and a precise low-energy effective

action, with the large-`0/ls expansion reproduced as some large-N expansion. At least superficially,

the higher-order curvature-corrected entropy obtained above looks like a Wald entropy [158]. In

the spirit of for instance the nontrivial matching of R2 corrections to the macroscopic BPS black

hole entropy computed in [224] and the microscopic entropy computed from M-theory in [225],

it might seem then that matching microscopic 1/N-corrections and macroscopic l2
s /`

2
0-corrections

to the entropy such as those in (C.290) could offer a nontrivial way of testing such a hypothetical

theory.

However, this is not the case. Unlike the Wald entropy, there are no charges Q (such as energy,

angular momentum or gauge charges) available here to give these corrections physical meaning

as corrections in the large-Q expansion of a function S(Q). Indeed, the detailed structure of the

ls/`0 expansion of S(0) = S(0)(`0) has no intrinsic physical meaning at all, because all of it can
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be wiped out by a local metric field redefinition, order by order in ls/`0, bringing the entropy to

pure Einstein area law form, and leaving only the value of S(0) itself as a physically meaningful,

field-redefinition invariant, dimensionless quantity.

This is essentially a trivial consequence of the fact that in perturbation theory about the round

sphere, the round sphere itself is the unique solution to the equations of motion. Let us however

recall in more detail how this works at the level of local field redefinitions, and show how this is

expressed at the level of log Z (0)(`), as this will be useful later in interpreting quantum corrections.

For concreteness, consider again (C.287) viewed as a gravitational effective field theory action

expanded to order l2
s R2. Under a local metric field redefinition

gµν → gµν + δgµν +O(l4
s ) , δgµν ≡ l2

s
(
u0Λ gµν + u1 R gµν + u2 Rµν

)
, (C.291)

where the ui are dimensionless constants, the action transforms as

SE → SE +
1

16πG

ˆ
√
g

(
Rµν − 1

2 Rgµν + Λgµν
)
δgµν + O(l4

s ) , (C.292)

shifting λR2, λE2 and rescaling G,Λ in (C.287). A suitable choice of ui brings SE to the form

SE =
1

8πG

ˆ
√
g
(
Λ
′ − 1

2 R − l2
s λC2CµνρσCµνρσ +O(l4

s )

)
, Λ

′ = Λ
(
1 − 4(d+1)2

(d−1)2 λR2 l2
sΛ

)
.

(C.293)

Equivalently, this is obtained by using the O(l0
s ) equations of motion Rµν =

2
d−1Λgµν in the O(l2

s )

part of the action. Since λ′
R2 = 0, the entropy computed from this equivalent action takes a pure

Einstein area law form S(0) = Ωd+1`
′ d−1
0 /4G, with `′0 =

√
d(d − 1)/2Λ′. The on-shell value S(0)

itself remains unchanged of course under this change of variables.

In the above we picked a field redefinition keeping G′ = G. Further redefining gµν → α gµν

leads to another equivalent set of couplings G′′,Λ′′, . . . rescaled with powers of α according to

their mass dimension. We could then pick α such that instead Λ′′ = Λ, or such that `′′0 = `0, now
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with G′′ , G. If we keep `′′0 = `0, we get

S(0) =
Ωd+1`

d−1
0

4G′′
, Λ

′′ =
d(d − 1)

2`2
0

, (C.294)

where for example in d = 2 starting from (C.290), G′′ = G
(
1 − 24 λR2 l2

s /`
2
0 +O(l4

s )
)
.

At the level of log Z (0)(`) in (C.288) the metric redefinition (C.291) amounts to a radius re-

defininition ` → ` f (`) with f (`) = 1 + l2
s
(
v10Λ + v11`

−2) + O(l4
s ). For suitable vi this brings

log Z (0) and therefore S(0) to pure Einstein form. E.g. for the d = 2 example (C.289),

` =
(
1 − 12 λR2 l2

s
(
Λ + `′−2) )`′ ⇒ log Z (0) =

π

4G
(
−Λ′ `′3 + 3 `′ +O(l4

s )
)
. (C.295)

The above considerations generalize to all orders in the ls expansion. Rn corrections to log Z (0) are

∝ (ls/`)2n and can be removed order by order by a local metric/radius redefinition

` → α f (`) ` , f (`) = 1 + l2
s
(
v10Λ + v11`

−2) + l4
s
(
v20Λ

2 + v21Λ`
−2 + v22`

−4) + · · · (C.296)

bringing log Z (0) and thus S(0) to Einstein form to any order in the ls expansion.

In d = 2, the Weyl tensor vanishes identically. The remaining higher-order curvature invariants

involve the Ricci tensor only, so can be removed by field redefinitions, reducing the action to

Einstein form in general. Thus in d = 2, S(0) is the only tree-level invariant in the theory, i.e. the

only physical coupling constant. In the Chern-Simons formulation of C.8.2, S(0) = 2πκ. In d ≥ 3,

there are infinitely many independent coupling constants, such as the Weyl-squared λC2 in (C.287),

which are not picked up by S(0), but are analogously probed by invariants S(0)M = logZ(0)[gM] =

−SE [gM] for saddle geometries gM different from the round sphere. We comment on those and

their role in the bigger picture in section C.9.5.

The point of considering quantum corrections to the entropy S is that these include nonlocal

contributions, not removable by local redefinitions, and thus, unlike the tree-level entropy S(0),

offering actual data quantitatively constraining candidate microscopic models.
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C.9.2 Quantum gravitational thermodynamics

The quantum off-shell partition function Z(V) generalizing the tree-level Z (0)(V) (C.280) is

defined by replacing
´

treeDg →
´
Dg in that expression:24

Z(V) ≡
´

tree
dσ
´
Dg e−SE [g]+σ(

´√
g−V) . (C.297)

The quantum off-shell energy density and entropy generalizing (C.282) are

ρ(V) ≡ −∂V log Z , S(V) ≡
(
1 − V∂V ) log Z . (C.298)

S is the Legendre transform of log Z:

S = log Z + V ρ, d log Z = −ρ dV , dS = Vdρ . (C.299)

Writing e−Γ(V) ≡ Z(V), the above definitions imply that as a function of ρ,

S(ρ) = log
´

tree
dV e−Γ(V)+ρV = log

´
Dg e−SE [g]+ρ

´√
g (C.300)

hence S(ρ) is the generating function for moments of the volume. In particular

V =
〈´√

g
〉
ρ
= ∂ρS(ρ) (C.301)

is the expectation value of the volume in the presence of a source ρ shifting the cosmological

constant Λ
8πG →

Λ
8πG − ρ. Γ(V) can be viewed as a quantum effective action for the volume, in the

spirit of the QFT 1PI effective action [227–229] but taking only the volume off-shell. At tree level

24Z(V) is reminiscent of but different from the fixed-volume partition function considered in the 2D quantum gravity
literature, e.g. (2.20) in [226]. The latter would be defined as above but with 1

2πi
´
iR dσ instead of

´
tree dσ, constraining

the volume to V , whereas Z(V) constrains the expectation value of the volume to V .
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it reduces to SE [g`] appearing in (C.285). At the quantum on-shell value V = V̄ =
〈´√

g
〉

0,

ρ(V̄) = 0 , S = log Z(V̄) = S(V̄) . (C.302)

It will again be convenient to work with a linear scale variable ` instead of V , defined by

Ωd+1`
d+1 ≡ V , (C.303)

Since the mean volume V =
〈´√

g
〉
ρ

is diffeomorphism invariant, (C.303) gives a manifestly

diffeomorphism-invariant definition of the “mean radius” ` of the fluctuating geometry. Given

Z(`) ≡ Z(V(`)), the off-shell energy density and entropy are then computed as

ρ(`) = −
1

d+1`∂` log Z

V
, S(`) =

(
1 − 1

d+1`∂`
)

log Z . (C.304)

The quantum on-shell value of ` is denoted by ¯̀ and satisfies ρ( ¯̀) = 0.

The magnitude of quantum fluctuations of the volume about its mean value is given by δV2 ≡〈(´√
g − V

)2〉
ρ
= S′′(ρ) = 1/Γ′′(V) = 1/ρ′(V) = V/S′(V). At large V , δV/V ∝ 1/

√
S.

C.9.3 One-loop corrected de Sitter entropy

The path integral (C.297) for log Z can be computed perturbatively about its round sphere

saddle in a semiclassical expansion in powers of G. To leading order it reduces to log Z (0) defined

in (C.280). For 3D Einstein gravity,

log Z(V) = log Z (0)(V) +O(G0) =
Ω3

8πG
(
−Λ `3 + 3 `

)
+ O(G0) , (C.305)
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To compute the one-loop O(G0) correction, recall that evaluation of
´

tree dσ in (C.297) is equiva-

lent to extremization with respect to σ, which sets σ = −∂V log Z(V) = ρ(V) and

log Z(V) = log
´
Dg e−SE [g]+ρ(V)(

´√
g−V) . (C.306)

To one-loop order, we may replace ρ by its tree-level approximation ρ(0) = −∂V log Z (0). By

construction this ensures the round sphere metric g = g` of radius `(V) given by (C.303) is a

saddle. Expanding the action to quadratic order in fluctuations about this saddle then gives a

massless spin-2 Gaussian path integral of the type solved in general by (3.112), or more explicitly

in (3.148)-(3.149). For 3D Einstein gravity, using (3.149),

log Z = −
(
Λ

8πG
+ c′0

)
Ω3`

3 +
( 1
8πG

+ c′2 −
3

4πε

)
3Ω3` − 3 log

2π`
4G
+ 5 log(2π) +O(G) (C.307)

Here c′0 and c′2 arise from O(G0) local counterterms

SE,ct =

ˆ
√
g
(
c′0 −

c′2
2

R
)
, (C.308)

split off from the bare action (C.276) to keep the tree-level couplngs Λ and G equal to their “phys-

ical” (renormalized) values to this order. We define these physical values as the coefficients of the

local terms ∝ `3, ` in the V → ∞ asymptotic expansion of the quantum log Z(V). That is to say,

we fix c′0 and c′2 by imposing the renormalization condition

log Z(V) =
Ω3

8πG
(
−Λ `3 + 3 `

)
+ · · · (V →∞) . (C.309)

This renormalization prescription is diffeomorphism invariant, since Z(V), V and ` were all de-

fined in a manifestly diffeomorphism-invariant way. In (C.307) it fixes c′0 = 0, c′2 =
3

4πε , hence
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log Z(`) = log Z (0) + log Z (1) +O(G), where

log Z (1) = −3 log
2π`
4G
+ 5 log(2π) . (C.310)

We can express the renormalization condition (C.309) equivalently as

log Z (1) = log Z (1)PI + log Zct , lim
`→∞

∂` log Z (1) = 0 (C.311)

where log Zct = −SE,ct[g`] with g` the round sphere metric of volume V . On S3 we have log Zct =

c0`
3 + c2`, and the ` →∞ condition fixes c0 and c2. Recalling (3.135), we can physically interpret

this as requiring the renormalized one-loop Euclidean energy U(1) of the static patch vanishes in

the ` →∞ limit.

For general d, the UV-divergent terms in log Z (1)PI come with non-negative powers ∝ `d+1−2n,

canceled by counterterms consisting of n-th order curvature invariants. For example on S5, log Zct =

c0`
5 + c2`

3 + c4`. In odd d + 1, the renormalization prescription (C.311) then fixes the c2n. In even

d + 1, log Zct has a constant term cd+1, which is not fixed by (C.311). As we will make explicit in

examples later, it can be fixed by lim`→∞ Z (1) = 0 for massive field contributions, and for mass-

less field contributions by minimal subtraction at scale L, cd+1 = −αd+1 log(MεL), Mε = 2e−γ/ε

(C.67), with L∂L log Z = 0, i.e. L∂L log Z (0) = αd+1.

The renormalized off-shell ρ and S are obtained from log Z as in (C.304). For 3D Einstein,

ρ(1) =
1

2π2`3 , S(1) = −3 log
2π`
4G
+ 5 log(2π) + 1 . (C.312)

The on-shell quantum dS entropy S = log Z( ¯̀) = S( ¯̀) (C.302) is

S = S( ¯̀) = S(0)( ¯̀) + S(1)( ¯̀) + O(G) (C.313)

333



where ¯̀ is the quantum mean radius satisfying ρ( ¯̀) ∝ ∂` log Z( ¯̀) = 0. For 3D Einstein,

S =
2π ¯̀
4G
− 3 log

2π ¯̀
4G
+ 5 log(2π) + 1 + O(G) , Λ =

1
¯̀2 −

4G
π ¯̀3 +O(G2) . (C.314)

Alternatively, S can be expressed in terms of the tree-level `0, ρ(0)(`0) ∝ ∂` log Z (0)(`0) = 0, using

S = log Z (0)( ¯̀) + log Z (1)( ¯̀) +O(G), ¯̀ = `0 +O(G) and Taylor expanding in G:

S = log Z( ¯̀) = S(0)(`0) + log Z (1)(`0) + O(G) (C.315)

This form would be obtained from (3.153) by a more standard computation. For 3D Einstein,

S =
2π`0
4G
− 3 log

2π`0
4G
+ 5 log(2π) + O(G) , Λ =

1
`2

0
. (C.316)

The equivalence of (C.313) and (C.315) can be checked directly here noting ¯̀ = `0−
2
πG + O(G2),

so 2π ¯̀
4G =

2π`0
4G − 1 +O(G). The −1 cancels the +1 in (C.314), reproducing (C.316).

More generally and more physically, the relation between these two expressions can be un-

derstood as follows. At tree level, the entropy equals the geometric horizon entropy S(0)(`0), with

radius `0 such that the geometric energy density ρ(0) vanishes. At one loop, we get additional

contributions from quantum field fluctuations. The UV contributions are absorbed into the gravita-

tional coupling constants. The remaining IR contributions shift the entropy by S(1) and the energy

density by ρ(1). The added energy backreacts on the fluctuating geometry: its mean radius changes

from `0 to ¯̀ such that the geometric energy density changes by δρ(0) = −ρ(1), ensuring the total

energy density vanishes. This in turn changes the geometric horizon entropy by an amount dictated

by the first law (C.283),

δS(0) = V0 δρ
(0) = −V0 ρ

(1) . (C.317)

We end up with a total entropy S = S(0)( ¯̀)+ S(1) = S(0)(`0) −V0 ρ
(1) + S(1) = S(0)(`0)+ log Z (1), up
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Figure C.12: One-loop contributions to the dS3 entropy from metric and scalars with η = 1, 1
4,

5
4 , i.e.

ξ = 0, 1
8,−

1
24 . Blue dotted line = renormalized entropy S(1). Green dotted line = horizon entropy change

δS(0) = 2πδ`/4G = −V ρ(1) due to quantum backreaction `0 → ¯̀ = `0+δ`, as dictated by first law. Solid red
line = total δS = S(1) −V ρ(1) = log Z (1). The metric contribution is negative within the semiclassical regime
of validity ` � G. The renormalized scalar entropy and energy density are positive for m` � 1, and for all

m` if η = 1. If η > 1 and `0 → `∗ ≡

√
η−1
m , the correction δ` ∼ − G

3π
`∗

`0−`∗
→ −∞, meaning the one-loop

approximation breaks down. The scalar becomes tachyonic beyond this point. If a φ4 term is included in
the action, two new dominant saddles emerge with φ , 0.

to O(G) corrections, relating (C.313) to (C.315). (See also fig. C.12.)

More succinctly, obtaining (C.315) from (C.313) is akin to obtaining the canonical description

of a thermodynamic system from the microcanonical description of system + reservoir. The ana-

log of the canonical partition function is Z (1) = eS(1)−V0 ρ
(1)

, with −V0 ρ
(1) capturing the reservoir

(horizon) entropy change due to energy transfer to the system.

C.9.4 Examples

3D scalar

An example with matter is 3D Einstein gravity + scalar φ as in (3.140). Putting ξ ≡ 1−η
6 ,

SE [g, φ] =
1

8πG

ˆ
√
g

(
Λ − 1

2 R
)
+

1
2

ˆ
√
g φ

(
−∇2 + m2 +

1−η
6 R

)
φ, (C.318)
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The metric contribution to log Z (1) remains log Z (1)metric = −3 log 2π`
4G + 5 log(2π) as in (C.310). The

scalar Z (1)PI was given in (3.143). Its finite part is

log Z (1)PI,fin,scalar =
πν3

6
−

2∑
k=0

νk

k!
Li3−k(e−2πν)

(2π)2−k , ν ≡

√
m2`2 − η . (C.319)

The polynomial log Zct(`) = c0`
3 + c2` corresponding to the counterterm action (C.308) is fixed

by the renormalization condition (C.311), resulting in

log Z (1)scalar = log Z (1)PI,fin,scalar −
π

6
m3`3 +

πη

4
m` . (C.320)

The finite polynomial cancels the local terms ∝ `3, ` in the large-` asymptotic expansion of the

finite part: log Z (1)scalar =
πη2

16 (m`)
−1 +

πη3

96 (m`)
−3 + · · · when m` → ∞. The (m`)−2n−1 terms have

the `-dependence of Rn terms in the action and can effectively be thought of as finite shifts of

higher-order curvature couplings in the m` � 1 regime. In the opposite regime m` � 1, IR bulk

modes of the scalar becomes thermally activated and log Z (1)scalar ceases to have a local expansion.

In particular in the minimally-coupled case η = 1,

log Z (1)scalar ' − log(m`) (m` → 0) . (C.321)

The total energy density is ρ = −1
3`∂` log Z/V = 1

8πG

(
Λ − `−2) + 1 + ρ(1)scalar where

V ρ(1)scalar = −
π

6
(m`)2ν coth(πν) +

π

6
(m`)3 −

πη

12
m` . (C.322)

The on-shell quantum dS entropy is given to this order by (C.315) or by (C.313) as

S = S(0) + S(1) = S(0)(`0) + log Z (1) = S(0)(`0) − V ρ(1) + S(1) = S(0)( ¯̀) + S(1) , (C.323)

where `−2
0 = Λ =

¯̀−2−8πG ρ(1)( ¯̀) and S(1) = S(1)PI,fin+
1
6πηm`, with the scalar contribution to S(1)PI,fin

given by the finite part of (3.145). Some examples are shown in fig. C.12.

336



For a massless scalar, m = 0, the renormalized scalar one-loop correction to S is a constant

independent of `0 given by (C.319) evaluated at ν =
√
−η, and ρ

(1)
scalar = 0. For example for a

massless conformally coupled scalar, η = 1
4 , Z (1)scalar =

3 ζ(3)
16π2 −

log(2)
8 .

3D massive spin s

The renormalized one-loop correction S(1)s = log Z (1)s to the dS3 entropy from a massive spin-s

field is obtained similarly from (3.90):

S
(1)
s = log Z (1)s,bulk − log Z (1)s,edge , (C.324)

where log Z (1)s,bulk equals twice the contribution of an η = (s − 1)2 scalar as given in (C.320), while

the edge contribution is, putting ν ≡
√

m2`2 − (s − 1)2,

log Z (1)s,edge = s2 (π(m` − ν) − log
(
1 − e−2πν

) )
. (C.325)

The edge contribution to (C.324) is manifestly negative. It dominates the bulk part, and increas-

ingly so as s grows. Examples are shown in fig. C.13.

2D scalar

As mentioned below (C.311), the counterterm polynomial log Z (0)ct has a constant term in even

spacetime dimensions d +1, which is not fixed yet by the renormalization prescription given there.

Let us consider the simplest example: a d = 1 scalar with action (3.140). Denoting

f(ν) ≡
∑
±

ζ ′(−1, 1
2 ± iν) ∓ iνζ ′(0, 1

2 ± iν) , , (C.326)

and Mε = 2e−γ/ε as in (C.67), we get from (C.59) with ν ≡
√

m2`2 − η, η ≡ 1
4 − 2ξ,

log Z (1)PI =
(
2ε−2 − m2 log(Mε`) + m2) `2 +

(
η + 1

12
)

log
(
Mε`

)
− η + f(ν) , (C.327)
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Figure C.13: Contributions to the dS3 entropy from massive spin s = 1, 2, 3 fields, as a function of m`0,
with coloring as in fig. C.12. Singularities = Higuchi bound, as discussed under (3.145).

In the limit m` →∞, using the asymptotic expansion of the Hurwitz zeta function25,

log Z (1)PI =
(
2ε−2 − m2 log(Mε/m) − 1

2m2) `2 + (η + 1
12 ) log(Mε/m) + O((m`)−2) . (C.328)

Notice the log ` dependence apparent in (C.327) has canceled out. The counterterm action to this

order is again of the form (C.308), corresponding to log Zct = 4π(−c′0`
2+ c′2). The renormalization

condition (C.311) fixes c′0 but leaves c′2 undetermined. Its natural extension here is to pick c2 =

4πc′2 to cancel off the constant term as well, that is

c2 = −(η +
1

12 ) log(Mε/m) ⇒ lim
`→∞

log Z (1) = 0 , (C.329)

25E.g. appendix A of [230]
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ensuring the tree-level G equals the renormalized Newton constant to this order, as in (C.309). The

renormalized scalar one-loop contribution to the off-shell partition function is then

log Z (1) =
( 3

2 − log(m`)
)
(m`)2 + (η + 1

12 ) log(m`) − η + f(ν) . (C.330)

In the large-m` limit, log Z (1) = 240 η2+40 η+7
960 (m`)−2 + · · · > 0, while in the small-m` limit

log Z (1) '
(
η + 1

12
)

log(m`) (η < 1
4 ) , log Z (1) '

( 1
4 +

1
12 − 1

)
log(m`) (η = 1

4 ) . (C.331)

The extra − log(m`) in the minimally-coupled case η = 1
4 is the same as in (C.321) and has the

same thermal interpretation. The energy density is ρ(1) = −1
2`∂` log Z (1)/V with V = 4π`2:

V ρ(1) = −1
2 (η +

1
12 ) +

1
2 (m`)

2 (2 log(m`) −
∑
±ψ
(0) ( 1

2 ± iν
) )

(C.332)

In the massless case m = 0, ν =
√
−η is `-independent, and we cannot use the asymptotic expansion

(C.328), nor the renormalization prescription (C.329). Instead we fix c2 by minimal subtraction,

picking a reference length scale L and putting (with Mε =
2e−γ
ε (C.67) as before)

c2(L) ≡ −(η + 1
12 ) log(MεL) , (C.333)

The renormalized G then satisfies ∂L(
4π

8πG + c2) = 0, i.e. L∂L
1

2G = η +
1

12 , and

log Z (1) = (η + 1
12 ) log(`/L) − η + f

(√
−η

)
, V ρ(1) = −1

2 (η +
1

12 ) . (C.334)

The total log Z = 1
2G (−Λ`

2 + 1) + log Z (1) is of course independent of the choice of L.

4D massive spin s

4D massive spin-s fields can be treated similarly, starting from (C.65). In particular the edge

contribution log Z (1)edge equals minus the log Z (1) of D5
s−1 =

1
6 s(s+1)(2s+1) scalars on S2, computed
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Figure C.14: Edge contributions to the dS4 entropy from massive spin s = 1, 2, 3 fields, as a function of
m`0, with coloring as in fig. C.12. The Higuchi/unitarity bound in this case is (m`0)

2 − (s − 1
2 )

2 > − 1
4 .

earlier in (C.330), with the same ν =
√

m2`2 − ηs as the bulk spin-s field, which according to

(3.79) means ηs = (s − 1
2 )

2. The corresponding contribution to the renormalized energy density is

ρ
(1)
edge = −

1
4`∂` log Z (1)edge/V with V = Ω4`

4, so V ρ(1)edge equals −1
2 D5

s−1 times the scalar result (C.332).

As in the d = 2 case, the renormalized one-loop edge contribution S(1)edge to the entropy is

negative and dominant. Some examples are shown in fig. C.14.

Graviton contribution for general d

For d ≥ 3, UV-sensitive terms in the loop expansion renormalize higher-order curvature cou-

plings in the gravitational action, prompting the inclusion of such terms in SE [g]. Some caution

is in order then if we wish to apply (3.112) or (3.148)-(3.149) to compute log Z (1). The formula

(3.112) for Z (1)PI depends on γ =
√

8πGN/Ad−1, gauge-algebraically defined by (3.109) and various

normalization conventions. We picked these such that in pure Einstein gravity, γ =
√

8πG/A(`0),

`0 =
√

d(d − 1)/2Λ, with G and Λ read off from the gravitational Lagrangian. However this ex-

pression of γ in terms of Lagrangian parameters will in general be modified in the presence of

higher-order curvature terms. This is clear from the discussion in C.9.1, and (C.294) in particular.

Since γ0 is field-redefinition invariant, and since after transforming to a pure Einstein frame we

have γ0 =
√

2π/S(0), with the right hand side also invariant, we have in general (for Einstein +

perturbative higher-order curvature corrections)

γ =

√
2π/S(0) . (C.335)
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From (3.148) we thus get (ignoring the phase)

S = S(0) −
Dd

2
logS(0) + α(2)d+1 log

`0
L
+ Kd+1 + O

(
1/S(0)

)
(C.336)

where Dd =
(d+2)(d+1)

2 , α(2)d+1 = 0 for even d and given by (3.116) for odd d, and Kd+1 a numerical

constant obtained by evaluating (3.115). For odd d the constant in the counterterm log Zct(`)

is fixed by minimal subtraction at a scale L, cd+1(L) ≡ −αd+1 log(MεL), with Mε = 2e−γ/ε

determined by the heat kernel regulator as in (C.67), and L∂LS = 0, i.e. L∂LS
(0) = α

(2)
d+1. Explicitly

for d = 2, 3, 4, using (3.149), (3.12)

d S

2 S(0) − 3 logS(0) + 5 log(2π)

3 S(0) − 5 logS(0) − 571
90 log

(
`0
L

)
− log

(
8π
3

)
+ 715

48 −
47
3 ζ
′(−1) + 2

3 ζ
′(−3)

4 S(0) − 15
2 logS(0) + log(12) + 27

2 log(2π) + 65 ζ(3)
48 π2 +

5 ζ(5)
16 π4

(C.337)

For a d = 3 action (C.287) up to O(l2
s R2), with dots denoting O(l4

s ) terms,

S(0) =
π

G

(
`2

0 + 48 λR2 l2
s + · · ·

)
, Λ =

3
`2

0
+ · · · . (C.338)

where L∂LλR2 = − G
48 π l2

s
· 571

45 . Putting L = `0, and defining the scale `R2 by λR2(`R2) = 0,

S = S(0) − 5 logS(0) + K4 + O
(
1/S(0)

)
, S(0) =

π`2
0

G
−

571
45

log
`0
`R2
+ · · · . (C.339)

The constant K4 could be absorbed into λR2 at this level. Below, in (C.345), we will give it relative

meaning however, by considering saddles different from the round S4.
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C.9.5 Classical and quantum observables

Here we address question 3 in our list below (3.153). To answer this, we need “observables”

of the Λ > 0 Euclidean low-energy effective field theory probing independent gravitational cou-

plings (for simplicity we restrict ourselves to purely gravitational theories here), i.e. diffeomor-

phism and field-redefinition invariant quantities, analogous to scattering amplitudes in asymptoti-

cally flat space. For this to be similarly useful, an infinite amount of unambiguous data should be

extractable, at least in principle, from these observables.

As discussed above, S(0) = logZ(0) = −SE [g`0] invariantly probes the dimensionless coupling

given by `d−1
0 /G ∝ 1/GΛ(d−1)/2 in Einstein frame. The obvious tree-level invariants probing

different couplings in the gravitational low-energy effective field theory are then the analogous

S
(0)
M ≡ logZ(0)M = −SE [gM] evaluated on saddles gM different from the round sphere, in the

parametric `0 � ls regime of validity of the effective field theory, with gM asymptotically Einstein

in the `0 → ∞ limit. These are the analogs of tree-level scattering amplitudes. The obvious

quantum counterparts are the corresponding generalizations of S, i.e. SM ≡ logZM evaluated in

large-`0 perturbation theory about the saddle gM . These are the analogs of quantum scattering

amplitudes. Below we make this a bit more concrete in examples.

3D

In d = 2, the Weyl tensor vanishes identically, so higher-order curvature invariants involve Rµν

only and can be removed from the action by a field redefinition in large-`0 perturbation theory,

reducing it to pure Einstein form in general. As a result, S(0) is the only independent invariant in

pure 3D gravity, all gM are Einstein, and the S(0)M are all proportional to S0 ≡ S
(0)
S3 .

As discussed under (3.168), the quantum S = SS3 takes the form

S = S0 = S0 − 3 logS0 + 5 log(2π) +
∑

n cn S
−2n
0 (C.340)

The corrections terms in the expansion are all nonlocal (no odd powers of `0), and the coefficients

342



provide an unambiguous, infinite data set.

odd D ≥ 5

In 5D gravity, there are infinitely many independent coupling constants. There are also in-

finitely many different Λ > 0 Einstein metrics on S5, including a discrete infinity of Böhm metrics

with SO(3)×SO(3) symmetry [219] amenable to detailed numerical analysis [220], and 68 Sasaki-

Einstein families with moduli spaces up to real dimension 10 [221]. Unlike the round S5, these

are not conformally flat, and thus, unlike S(0), the corresponding S(0)M will pick up couplings such

as the Weyl-squared coupling λC2 in (C.287). It is plausible that this set of known Einstein met-

rics (perturbed by small higher-order corrections to the Einstein equations of motion at finite `0)

more than suffices to invariantly probe all independent couplings of the gravitational action, de-

livering moreover infinitely many quantum observables SM , providing an infinity of unambiguous

low-energy effective field theory data to any order in perturbation theory, without ever leaving the

sphere — at least in principle.

The landscape of known Λ > 0 Einstein metrics on odd-dimensional spheres becomes in-

creasingly vast as the dimension grows, with double-exponentially growing numbers [221]. For

example there are at least 8610 families of Sasaki-Einstein manifolds on S7, spanning all 28 diffeo-

morphism classes, with the standard class admitting a 82-dimensional family, and there are at least

10828 distinct families of Einstein metrics on S25, featuring moduli spaces of dimension greater

than 10833.

4D

4D gravity likewise has infinitely many independent coupling constants. It is not known if S4

has another Einstein metric besides the round sphere. In fact the list of 4D topologies known to

admit Λ > 0 Einstein metrics is rather limited [231]: S4, S2 × S2, CP2, and the connected sums

CP2#kCP2, 1 ≤ k ≤ 8. However for k ≥ 5 these have a moduli space of nonzero dimension [232,

233], which might suffice to probe all couplings. (The moduli space would presumably be lifted at
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sufficiently high order in the ls expansion upon turning on higher-order curvature perturbations.)

Below we illustrate in explicit detail how the Weyl-squared coupling can be extracted from

suitable linear combinations of pairs of S(0)M with M ∈ {S4, S2× S2,CP2}, and how a suitable linear

combination of all three can be used to extract an unambiguous linear combination of the constant

terms arising at one loop.

The Weyl-squared coupling λC2 in SE [g] = (C.287) + · · · is invisible to S(0) (C.338) but it is

picked up by S(0)M by M = S2 × S2:

S
(0)
S2×S2 =

2
3
·
π

G
(
`2

0 + 48 λR2 l2
s + 16 λC2 l2

s + · · ·
)
, (C.341)

with the dots denoting O(l4
s ) terms and `0 =

√
3/Λ + · · · as in (C.338). Physically, S(0)

S2×S2 is the

horizon entropy of the dS2 × S2 static patch, i.e. the Nariai spacetime between the cosmological

and maximal Schwarzschild-de Sitter black hole horizons, both of area A = 1
3 · 4π`

2
0 . Comparing

to (C.338), the linear combination

S
(0)
C2 ≡ 3S(0)

S2×S2 − 2S(0) =
32πl2

s

G
(
λC2 + · · ·

)
(C.342)

extracts the Weyl-squared coupling of SE [g]. Analogously, for the Einstein metric on CP2, we get

S̃
(0)
C2 ≡ 8S(0)

CP2 − 6S(0) = 48πl2
s

G (λC2 + · · · ). Then

S
(0)
cub ≡ 2 S̃(0)

C2 − 3S(0)
C2 = 16S(0)

CP2 − 9S(0)
S2×S2 − 6S(0) = 0 + · · · , (C.343)

which extracts some curvature-cubed coupling in the effective action.

To one loop, the quantum SM = logZM can be expressed in a form paralleling (C.336):

SM = S
(0)
M −

DM

2
logS(0)M + αM log

`0
L
+ KM + · · · , (C.344)

where DM is the number of Killing vectors of M: DS4 = 10, DS2×S2 = 6, DCP2 = 8, and αM can be
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obtained from the local expressions in [51]: αS4 = −571
45 , αS2×S2 = −98

45 , αCP2 = −359
60 . Computing

the constants KM generalizing KS4 given in (C.337) would require more work. Moreover, com-

puting them for one or two saddles would provide no unambiguous information because they may

be absorbed into λC2 and λR2 . However, since there only two undetermined coupling constants at

this order, computing them for all three does provide unambiguous information, extracted by the

quantum counterpart of (C.343):

Scub ≡ 16SCP2 − 9SS2×S2 − 6SS4 = −7 logS(0) + 16 KCP2 − 9 KS2×S2 − 6 KS4 + · · · (C.345)

The log(`0/L) terms had to cancel in this linear combination because the tree-level parts at this

order cancel by design and L∂LScub = 0.
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