
1.  Introduction
Dendrohydrology, the study of past hydroclimate using tree rings, has been largely motivated by water 
resources management. The field traces back to Hardman and Reil  (1936), who recognized that instru-
mental records were too short to understand drought trends and demonstrated that better understanding 
could be gained from exploring the links between tree rings and streamflow. Their work was motivated by 
contemporary droughts in California that affected irrigation. At the same time, Hawley (1937) found strong 
correlations between tree rings and streamflow in Tennessee, USA, and was probably the first to show the 
lagged relationship of streamflow to tree rings. Also to understand droughts, Schulman (1945) established 
a tree ring chronology for the Colorado River Basin, this time motivated by the war effort—to examine 
Hoover Dam's hydropower production reliability to meet wartime demand. While these early works stopped 
at studying tree ring indices, dendrohydrology took a big step when Stockton (1971), leveraging advanced 
multivariate techniques (Fritts et al., 1971), showed that reconstructing streamflow record back in time was 
feasible—long term surface water availability could now be quantified directly. Soon, multiple streamflow 
reconstructions were developed across the Colorado River Basin (Stockton & Jacoby, 1976), revealing the 

Abstract  Despite having offered important hydroclimatic insights, streamflow reconstructions 
still see limited use in water resources operations, because annual reconstructions are not suitable 
for decisions at finer time scales. The few attempts toward sub-annual reconstructions have relied 
on statistical disaggregation, which uses none or little proxy information. Here, we develop a novel 
framework that optimizes proxy combinations to simultaneously produce seasonal and annual 
reconstructions. Importantly, the framework ensures that total seasonal flow matches annual flow closely. 
This mass balance criterion is necessary to avoid misguiding water management decisions, such as the 
allocation of water rights or dam release decisions. Using the framework, and leveraging a multi-species 
network of ring width and cellulose  18O in Southeast Asia, we reconstruct seasonal and annual inflow 
to Thailand's largest reservoir. The reconstructions are statistically skillful. Furthermore, they preserve 
the mass balance well: the differences are mostly within 10% of the mean annual flow. As a result, the 
reconstructions provide more reliable estimates of the seasonal and annual surface water availability. 
This work is one step closer toward operational usability of streamflow reconstruction in water resources 
management.

Plain Language Summary  Long history of river discharge, or streamflow, can be 
reconstructed from tree rings. These reconstructions help us understand the water cycle in the past, but 
they have not been widely used in water resources operations. This is because reconstructions are often 
annual (having only one data point per year). By combining different tree species and different features 
of tree rings (for example, ring width and stable isotope ratio), it is possible to reconstruct seasonal 
streamflow in addition to the annual one, and that is our first goal. But a major challenge arises: how do 
we ensure that the total flow volume of the seasonal reconstructions closely matches the annual one? This 
mass balance criterion is important to avoid misguiding water management decisions such as allocating 
water to different sectors. We develop a novel method to reconstruct seasonal and annual streamflow 
while accounting for mass balance at the same time. Our work is thus a step closer toward operational 
usability of streamflow reconstructions in water resources management.
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shortcomings of the Colorado River Compacts (Woodhouse et al., 2006), and providing insights about long 
term hydrology of Lake Powell, the United States' second largest reservoir.

Streamflow reconstruction has become “an important planning and research tool” in water resources man-
agement (Meko & Woodhouse, 2011). Yet, its use in practical, operational aspects of water management 
is still limited in scope and effectiveness (Galelli et al., 2021). That is because reconstructions often target 
specific components of the hydrograph that best correlate with tree ring proxies. Perhaps most common-
ly, reconstructions from ring width target the growth season (e.g., D'Arrigo, Abram, et  al.,  2011; Güner 
et al., 2017). Another example is given by reconstructions targeting peak flow using stable oxygen isotope 
ratio ( 18 O) of tree ring cellulose (C. Xu et al., 2019). These reconstructions reveal important insights about 
the hydroclimate, but do not provide the total annual surface water availability. Other works target the an-
nual flow (e.g., Nguyen & Galelli, 2018; Rao et al., 2018), but even so, the annual resolution is not suitable 
for making operational decisions at finer time scales—crop planning, for instance, is often based on season-
al flow; reservoir releases are determined at monthly or even daily time steps.

The water resources community recognizes the need for sub-annual reconstructions. Attempts toward this 
goal have relied on statistical disaggregation, assuming some statistical relationships between the sub-an-
nual and annual flows (Prairie et al., 2007, 2008; Sauchyn & Ilich, 2017). These assumptions are reasonable 
but not always valid (Figure S1). More importantly, paleoclimatic proxies are not used in these methods, 
and their rich information are not utilized. Recent progress was made by Stagge et al. (2018), who used mul-
ti-species chronologies as additional inputs to disaggregation, showing that these inputs can be weighted 
differently for each month to improve the monthly reconstructions.

The works of Stagge et al. (2018), C. Xu et al. (2019), and others discussed above suggest that different prox-
ies have different seasonal sensitivities. Instead of disaggregation, multiple proxies can be used to simulta-
neously reconstruct sub-annual (e.g., seasonal) and annual flows. This hypothesis has just been tested with 
promising results by Wise (2021), who produced skillful monthly, quarterly, and semi-annual reconstruc-
tions for multiple Californian watersheds. However, two challenges remain in sub-annual reconstructions. 
How to combine proxies optimally for different targets? And how to ensure that the seasonal flows add up 
to the annual flow, that is, how to account for mass balance? We develop a unified framework to address 
both challenges. Mass balance is accounted for by a term in the regression formulation that penalizes the 
differences between total seasonal flow and annual flow (Section 3.1), and proxy combination is optimized 
with an automatic input selection scheme (Section 3.2). We test the framework with a case study in the 
Chao Phraya River Basin, Thailand, pooling together a multi-species network of ring width and cellulose 

18 O chronologies from Southeast Asia (Section 2). This work is one step closer toward operational usability 
of streamflow reconstruction in water resources management.

2.  Study Site and Data
2.1.  The Chao Phraya River Basin and Streamflow Data

The Chao Phraya Basin covers roughly 30% of Thailand's area (150,000 km2), but is its most important 
economic region (Figures 1a and 1b). The basin is home to about 25 million people. In 2005, the basin 
employed more than three-fourths of the country's workforce and generated about two-thirds of its GDP 
(Thomas, 2005). Water is the basin's lifeblood. The basin has about 1.45 million ha of irrigated land (Di-
vakar et  al.,  2011), and 1.3  GW of installed hydropower capacity (Electricity Generating Authority of 
Thailand, 2013). Another 2.5 GW of thermal power also depends on river flow for cooling (Chowdhury 
et al., 2021). Yet, water is not abundant: freshwater availability per capita stands at about 2,230 m3/year 
(Divakar et al., 2011; World Bank, 2011), less than the national average (3,244 m3/year) and only 39% of the 
world's average (5,732 m3/year) (FAO, 2017). This fundamental resource is mainly controlled by Bhumibol 
and Sirikit Dams, which create two large impoundments with active capacities of 9.7 and 6.7 km3. Reliable 
operations of these reservoirs require accurate assessment of inflow availability, on both inter- and intra-an-
nual scales—the latter is particularly important to address concerns about seasonal water availability as 
demanded by different sectors (Thomas, 2005).
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Figure 1.  (a) Map of the study region, showing the Chao Phraya River Basin and the proxy network. (b) Topographic map of the Chao Phraya River Basin, the 
target streamflow station (P.1) with its drainage area, and reservoirs of interest. (c) Distribution of monthly streamflow at P.1.
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The basin has a dominant monsoon climate, with most of the annual rainfall delivered by the Southwest 
Monsoon (early May–October–November). The seasonal and interannual patterns of water availability 
therefore mirror the dynamics of the Southeast Asian Monsoon, as well as its interaction with the El Niño–
Southern Oscillation (ENSO). El Niño events tend shorten the rain season, while La Niñas bring more 
abundant precipitations (B. I. Cook & Buckley,  2009). It is indeed during, or shortly after, La Niña epi-
sodes that flood risk increases: when tropical storms during the later part of the monsoon season encounter 
an already wet catchment, we observe the ideal conditions for extreme floods, as in 1973 or 2005 (Lim & 
Boochabun, 2012).

The site of interest for seasonal and annual streamflow reconstructions is station P.1, located upstream of 
Bhumibol Reservoir (Figure 1b). Seasonal streamflow reconstructions at P.1 may potentially improve future 
assessments of the reservoir's inflow variability. P.1 is also a good candidate for reconstruction as it has 
the longest and most complete record in Thailand: daily data are available from April 1921 to present. The 
distribution of monthly streamflow at P.1 is shown in Figure 1c. Streamflow here is typical of this region: 
lowest flows often occur between February and April, while peak flows often occur in August to October. 
Flows in the peak season are highly varied, resulting from the complex interactions between monsoon rain 
and tropical storms that we described above.

Since 1985, the river upstream of P.1 has been impounded by the Mae Ngat Dam, which, at full capacity, 
stores about 14% of P.1's mean annual flow. Dam operations modify the seasonal streamflow patterns and 
may interfere with the proxy-streamflow relationship. Therefore, we naturalized the streamflow data from 
1985. The naturalization process is described in Text S3. After naturalization, we aggregated daily data into 
dry season (November–June), wet season (July–October), and water year (November–October). The season 
delineation was determined by the method of B. I. Cook and Buckley (2009) (Text S2), and is consistent with 
a visual examination of the annual hydrograph (Figure 1c). To match the proxies' time span, we finally used 
the streamflow data from November 1921 to October 2005.

2.2.  The Southeast Asian Dendrochronology Network

Over the past three decades, an extensive network of tree ring chronologies have been developed in South-
east Asia. This network has been instrumental in improving our understanding of Southeast Asia's hydro-
climate and history. Tree ring data from Thailand and northern Vietnam (Buckley, Palakit, et al., 2007; Sano 
et al., 2009) revealed a multidecadal drought, what is later known as the Strange Parallel Droughts (E. R. 
Cook et al., 2010), which coincided with a tumultuous period of Southeast Asian history (Lieberman, 2003; 
Lieberman & Buckley, 2012). Further back in time, tree ring data from southern Vietnam linked mega-
droughts in the 14th and 15th centuries to the demise of the Angkor Civilization (Buckley et al., 2010, 2014). 
These findings show the intimate links between Southeast Asian societies and their water resources, and 
suggest the potential benefit of more hydroclimatic reconstructions in the region.

In this work, we use 20 tree ring chronologies from Vietnam, Laos, Cambodia, Thailand, and Myanmar 
(Figure 1). The chronologies at Kirirom, Petchaburi, Pha Taem, and Wiang Haeng are published here for the 
first time. The metadata of the chronologies are provided in Table 1. The common period of most chronolo-
gies in our network is 1748–2005 (Figure S5), and is the same as the time span of our 18 O network. Several 
chronologies are some decades shorter. Following Stagge et al. (2018), we imputed the missing years using 
the R package missMDA (Josse & Husson, 2016) (see Figure S6). We imputed the tree ring data instead of 
building nested models because nesting is not applicable in our reconstruction framework. As we shall 
explain in Section 3.1, the framework is designed to account for mass balance, tuning the regression param-
eters such that the total sub-annual flow matches the annual flow closely. With nesting, the final variance 
correction can disrupt the mass balance.

2.3.  Stable Oxygen Isotope Ratio ( 18O) of Tree Ring Cellulose

We use four 18 O chronologies that were developed in Laos, Thailand, and Vietnam over the past decade 
(Figure 1). Samples were collected and processed to alpha-cellulose, and 18 O time series were measured in 
prior works (Table 2). Details of the laboratory procedure can be found in C. Xu et al. (2011). 18 O exhibits 
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strong mechanical and statistical relationship with the hydroclimate (Sano et al., 2012; C. Xu et al., 2011), 
and has been used to reconstruct wet season precipitation in the region (C. Xu et al., 2015, 2018). 18 O 
in Laos was also found to have significant negative correlation with Mekong River's water level (C. Xu 
et al., 2013), suggesting promising hydrological applications. Finally, three 18 O chronologies were used 
to reconstruct Chao Phraya River peak season flow (C. Xu et al., 2019). These uses of 18 O to develop re-
constructions, along with other studies (e.g., Treydte et al., 2006; G. Xu et al., 2019), serve to illustrate that 
tree ring 18 O has indeed moved beyond “potential” (Gagen et al., 2011), and earned its place as a practical, 
valuable paleoclimate proxy.

2.4.  Proxy–Streamflow Correlations

As a preliminary investigation, we performed correlation analyses between streamflow and proxy data. 
Correlations are calculated at different lags: 2l    to 2  years for ring width (Meko et al., 2007), and 0l   to 
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Site Longitude Latitude Species References

Bidoup 108.45 11.97 Fokienia hodginsii Buckley et al. (2010)

Chin Hills 93.50 22.17 Pinus kesiya Rao et al. (2020)

Kim Hy 106.04 22.25 Pseudotsuga sinensis Hansen et al. (2017)

Kirirom 104.10 11.95 Pinus merkusii This studya

Kon Ka Kinh 108.18 14.91 Fokienia hodginsii Buckley et al. (2019)

Mae Hong Son 98.93 19.28 Tectona grandis Buckley, Palakit, et al. (2007)

Maingtha 96.20 23.20 Tectona grandis D'Arrigo, Palmer, et al. (2011)

Mu Cang Chai 104.06 21.40 Fokienia hodginsii Sano et al. (2009)

Nam Nao 101.57 16.73 Pinus merkusii Buckley et al. (1995)

Petchaburi 99.56 12.96 Pinus merkusii This study

Pha Taem 105.00 15.70 Pinus merkusii This study

Phou Khao Khouay 102.79 18.32 Pinus merkusii Buckley, Duangsathaporn, et al. (2007)

Phu Kradung 101.88 16.90 Pinus merkusii D'Arrigo et al. (1997)

Phu Toei 99.43 14.98 Pinus merkusii E. R. Cook et al. (2010)

Pu Mat 104.85 19.06 Fokienia hodginsii Buckley et al. (2019)

Quang Nam 107.33 15.81 Fokienia hodginsii Buckley et al. (2017)

Salaeng Luang 100.55 16.75 Pinus merkusii Buckley et al. (1995)

San Luang 97.93 19.10 Pinus merkusii E. R. Cook et al. (2010)

Wat Chan 98.23 19.02 Pinus merkusii Buckley et al. (1995)

Wiang Haeng 98.64 19.56 Pinus merkusii This study

aSeveral cores from this site were analyzed by Zhu et al. (2012) for 18 O but the ring width chronology has not been published until now.

Table 1 
Metadata of Tree Ring Width Chronologies

Site Longitude Latitude Species References

Mae Hong Son 98.93 19.28 Pinus merkusii C. Xu et al. (2015)

Mu Cang Chai 104.06 21.40 Fokienia hodginsii Sano et al. (2012)

Phou Khao Khouay 102.79 18.32 Pinus merkusii C. Xu et al. (2019)

Umpang 98.87 16.09 Pinus merkusii C. Xu et al. (2018)

Table 2 
Metadata of 18 O Chronologies
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2 years for 18 O. Negative lags are calculated only for ring with to account for the case when trees use stored 
carbon from previous years (Fritts, 1976; Stockton & Jacoby, 1976); these processes are not relevant for 18 O, 
and first-order autocorrelation for 18 O is low (C. Xu et al., 2015). Positive lags account for the case when the 
catchment's runoff processes are slower than precipitation inputs (Hawley, 1937; Stockton & Jacoby, 1976). 
For robustness, we repeated the correlation analysis 1,000 times using the stationary bootstrap (Politis & 
Romano, 1994). The correlation patterns (how the median and confidence intervals of the correlation coef-
ficient change over different seasons at different lags) are shown in Figure 2.

Among the ring width sites, there are multiple correlation patterns (Figure 2a): some sites such as Chin 
Hills and Phu Toei correlate positively, while others, for example, Phou Khao Khouay (PKK), correlate neg-
atively. The strong negative correlations at PKK is consistent with Buckley, Duangsathaporn, et al. (2007), 
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Figure 2.  Streamflow–proxy correlations. The error bars show the 5th–95th bootstrapped empirical quantiles obtained from 1,000 replicates, using the 
stationary bootstrap (Politis & Romano, 1994). The dots indicate the medians. Lag l ldenotes correlations between proxy at year t and streamflow at year t l .  
Only positive lags are calculated for  18O.
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who reported significant negative correlations between PKK tree rings and April–June rainfall of the prior 
and current year. They interpreted this as the trees' responses to light availability. Pinus merkusii, like most 
Pinus species, requires abundant light at the start of the growth season. Heavy rain in this period would 
increase cloud cover and reduce growth. April–June is also the “shoulder” period between wet and dry sea-
sons, leading to significant negative correlations with streamflow for both seasons, and hence for the water 
year. The Mae Hong Son site displays a more peculiar correlation pattern: significant negative correlation 
at 2l    but significant positive correlations at 0l   and 2l  . Four sites do not correlate with streamflow 
at all. These various patterns suggest that the ring width–streamflow relationship is complex and “noisy,” 
Our tree ring sites lie outside the drainage basin of P.1, that is, we rely on teleconnections, on the basis that 
both streamflow and tree rings are influenced by large scale climate drivers such as the monsoon and ENSO. 
However, each chronology is also influenced by local site conditions that are not relevant to P.1. These sig-
nals are not noise per se but they are noise for the task of streamflow reconstructions at P.1. A large number 
of sites are thus required to extract the strongest common climate signals.

Unlike ring width, 18 O displays more consistent correlation patterns (Figure 2b): all significant correla-
tions are negative, and the strongest correlations are often observed at 0l  . Some correlations have magni-
tudes larger than 0.5, while the largest correlation magnitude in ring width is only 0.36. These observations 
corroborate that 18 O chronologies may contain stronger climate signals than do ring width chronologies 
(Gagen et al., 2011; C. Xu et al., 2019).

In general, we observe that ring width tends to correlate more strongly with dry season flow than with wet 
season flow. Conversely, 18 O tends to correlate more strongly with wet season flow than with dry season 
flow. Both proxies correlate well with annual flow. The proxy-streamflow correlations observed here are also 
in agreement with the proxy-precipitation correlation analysis (Text S5). Both analyses show that tree ring 
proxies have different strength and sensitivity to different parts of the hydrograph, and have the potential to 
be combined for better seasonal reconstructions.

3.  Reconstruction Framework
To build reconstruction models, we define an input as a chronology–lag combination that significantly cor-
relates with streamflow. For instance, some inputs for the annual reconstruction are Chin Hills ring width 
at lag −2, and Umpang 18 O at lag 0 (Figure 2). At P.1, there are 19 inputs for the dry season, 28 for the wet 
season, and 30 for the water year.

The reconstruction framework consists of two main modules: Regression and Input Selection. In Regres-
sion (Section 3.1), the selected inputs for each target are given, and we find the regression coefficients that 
best match the targets while accounting for mass balance simultaneously, using a penalized least squares 
formulation. In Input Selection (Section 3.2), we find the best subset of inputs that minimizes the penalized 
least squares. The two modules are unified in a nested optimization framework that includes a rigorous 
cross-validation scheme to assess reconstruction skills (Section 3.3).

3.1.  Mass Balance-Adjusted Regression

Assume that we have a matrix dU  whose columns contain the selected inputs for the dry season. We first 
need to remove multicollinearity within dU . A common approach in dendrohydrology is to perform Princi-
pal Component Analysis (PCA) on dU , then reduce the set of principal components (PCs) to a parsimonious 
subset that is most relevant to the streamflow target (Coulthard et al., 2016; Hidalgo et al., 2000). Here, we 
use a backward stepwise PC selection routine (Woodhouse et al., 2006). This transformation from the select-
ed inputs to the selected PCs dX  is denoted as the function (.)g :

( )gd dX U� (1)

Similarly, given the selected inputs wU  for the wet season and qU  for the water year, we apply (.)g  to get

( )gw wX U� (2)
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( )gq qX U� (3)

Now, let ,d wy y , and qy  be the target time series of dry season, wet season, and annual streamflow, respective-
ly (these targets can be log-transformed when necessary). Reconstructing streamflow for the three targets 
means solving the following regression equations:

 d dy X d dβ ε� (4)

 w wy X w wβ ε� (5)

 q qy X q qβ ε� (6)

where ,d wβ β , and qβ  are the corresponding regression coefficients; and ,d wε ε , and qε  are white noise.

Next, let

, , , and .

       
       

          
       
       

d d

w w

q q

y X
y y X X

y X

d d

w w

q q

β ε
β β ε ε

β ε
� (7)

Equations 4–6 can then be converted to a more compact form
. y Xβ ε� (8)

Equation 8 has the canonical form of linear regression. It can be solved as a least squares problem:

 1min ( ),J


  y X y X
β

β β� (9)

yielding the solution

1( ) .  X X X yβ� (10)

Solving Equation 8 is equivalent to solving Equations 4–6 simultaneously. The three regression problems in 
Equations 4–6 are independent of one another, and the above formulation places no constraints to match 
the sum of the seasonal flows to the annual flow. Therefore, such formulation can yield large differences in 
the annual mass balance. As we shall see later, this happens at station P.1.

To account for mass balance, it is tempting to impose a constraint,

. d w qX X Xd w qβ β β� (11)

But, Equation 11 is often overdetermined: it is a system of T  equations, one for each year, and we almost 
always have more equations than unknowns in a regression problem. Instead, we can add to the objective 
function in Equation 9 a penalty term that is based on the differences (δ) between the LHS and the RHS of 
Equation 11.

.  d w qX X Xd w qδ β β β� (12)

If the reconstructions involve log-transformed flows, the mass difference is

    , , ,log exp exp 1, , .t t t t t T      d w qx x xd w qβ β β� (13)

Just as we minimize the squared differences between prediction and observation, we also minimize the 
squared mass differences. Finally, we add a weight  to represent the importance of the penalty term, and 
obtain a new objective function

2min ( ) ( )J    y X y X
β

β β δ δ� (14)

We call this the penalized least squares problem. Observe that when 0  , the penalty term disappears, and 
the penalized least squares problem becomes the canonical least squares problem. The higher  is, the more 
important the penalty becomes. How to choose an appropriate ? Theoretically, an analyst can test different 
values of  (a sensitivity analysis) and choose one that produces the best reconstruction skills. Practically, 
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however, such a task may not be straightforward (e.g., which skill metric to use?), and the analyst may also 
have her subjective priority on the mass balance criterion. A reasonable approach, then, is to use the sen-
sitivity analysis as a guide to make a more informed (maybe still subjective) decision. We will demonstrate 
how reconstruction skills vary with  in Section 4.2, and provide some further guidelines on how to choose 
 in Section 4.4. For now, let us assume that an appropriate  is chosen.

Without flow transformation, δ is linear (Equation 12), so 2J  is quadratic. We can solve Equation 14 ana-
lytically to get

     1( )X X A A X yβ� (15)

where A X X Xd w q    . The proof is provided in Text S7.

When log-transformations are involved, δ is not linear, and Equation 14 cannot be solved analytically. But 
it can be solved numerically using any nonlinear solver. Here, we use an efficient quasi-Newton method 
called L-BFGS-B (Byrd et al., 1995), available in the R function optim(). We have implemented the mass 
balance-adjusted regression procedure in the R package mbr (Nguyen, 2021).

3.2.  Optimal Input Selection

A consolidated approach to input selection in linear regression problems is to use Branch and Bound al-
gorithms, such as Leaps and Bounds (Furnival & Wilson, 1974) or its more recent variants (Duarte Sil-
va, 2001, 2002). These algorithms are conceived to balance goodness-of-fit with model simplicity. In this 
work however, we also need to account for mass balance besides goodness-of-fit. Therefore, the input selec-
tion routine must explicitly account for the penalized least squares objective (Equation 14). If the number of 
inputs is small, we can exhaustively search all possible subsets and choose the one that yields the minimum 
penalized least squares value (PLSV). However, this method quickly becomes infeasible with increasing 
input size: there are 2n subsets of n inputs (for station P.1, 19n  , 28, and 30). A computationally tractable 
optimization is necessary (Galelli et al., 2014).

We formulate input selection as a binary optimization problem. Each input has an index, and a binary vec-
tor p encodes input selection: 1ip   means the ith input is selected. For any given p, that is., for any given 
input subset, we can solve the mass balance-adjusted regression problem to obtain a PLSV. Our goal then is 
to find p that has the best PLSV over all p's.

Note that p has three components: [ ]p d w q . Component d represents the dry season:

d
i

i n
i d






 

1

0
1

if proxy is used for the dry season

otherwise
, , .� (16)

So, where 1id  , we take the ith inputs and place into the matrix dU . Similarly, we create wU  from w and qU  
from q. Once we have dU , wU , and qU , the mass balance-adjusted regression procedure can be applied. To 
improve the robustness of the input selection, the regression is cross-validated 50 times (Section 3.3), each 
yielding one PLSV estimate. The average of all runs, denoted ( )f p , is used as the final PLSV for p.

The remaining task is to solve

min ( ).f
p

p� (17)

We solve Equation  17 with Genetic Algorithm (Holland,  1975), a metaheuristic optimization technique 
that allows us to treat the underlying regression as a black-box while searching for the best subset of inputs 
(Kohavi & John, 1997), and is well suited for binary optimization (Whitley, 1994). We use the R package GA 
(Scrucca, 2013). Details about the implementations are provided in Text S8.

3.3.  Model Assessment

To explore the effect of the mass balance adjustment procedure, we build reconstruction models for [0,3]   
with increments of 0.2. Other than the different values for , all models are trained exactly the same way, 
following Sections 3.1 and 3.2.
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During optimization, multiple reconstructions are created while the optimal p is sought for each mod-
el. These reconstructions are assessed with the PLSV. The final reconstructions, created with the optimal 
inputs, are further assessed post hoc with the commonly used metrics: coefficient of determination (R2), 
reduction of error (RE), and coefficient of efficiency (CE) (Fritts, 1976; Nash & Sutcliffe, 1970). All metrics 
are calculated over 50 cross-validation runs. In each run, a contiguous chunk of 25% of the data (21 years) 
is held out, and the model is calibrated on the remaining 75%. R2 is calculated on the calibration chunks 
while RE and CE are calculated on the validation chunks. The contiguous chunks aim to test whether the 
reconstruction can capture regime shifts in the time series, in line with the traditional split-sample scheme; 
meanwhile, the 50 repetitions provide a distribution for each skill metric, allowing more robust estimation 
of the mean skill score (Nguyen et al., 2020). More importantly, the distributions enable us to compare 
skills statistically among models. We use the Wilcoxon rank sum test (Wilcoxon, 1945), also known as the 
Mann-Whitney test (Mann & Whitney, 1947), to determine whether any skill improvement or degradation 
from using a positive  value, as opposed to using 0  , is statistically significant. The Wilcoxon test is 
chosen because it is nonparametric and does not assume normality.

Finally, we assess the validity of the input selection scheme by examining the weight of each input in the 
final reconstruction models. The weight iw  of input i is the inner product of its loadings iz  on the PCs and 
the PCs' regression parameters β  ( β without the intercept terms). Mathematically,

i i ij j
j S

w z 



  z β� (18)

where S is the index set of selected PCs, ijz  is the loading of input i on PC j, and jβ  is PC j's regression 
coefficient.

4.  Results
4.1.  Reconstruction Skills as Functions of 

Herein, the reconstruction model obtained with 0   (without mass balance adjustment) is referred to as 
Model 0. We first compare the skill scores of Model 0 with those of each positive- model (i.e., with mass 
balance adjustment). This comparison is shown in Figure 3. Except for the wet season's R2, the mean scores 
of all metrics either are improved or stayed about the same when using positive  values. Improvements are 
most consistent with [0.6,2]  . However, the improved scores are often not statistically significant under 
the Wilcoxon test ( 0.1  ), so we do not claim that the mass balance-adjusted regression improve skills 
necessarily. But it is reassuring that the new method does not worsen skills while attempting to account for 
the annual mass balance.

To understand how the mass balance adjustment can improve skills, let us recall the models' formulation. 
Model 0 reconstructs the dry season, wet season, and annual flows independently. Contrarily, the mass bal-
ance adjustment procedure links all three reconstructions together via the penalty term (Equations 12–14). 
This link provides each reconstruction with additional information from the other two, thereby improving 
skills.

Wet season's R2 is a curious exception. Recall that R2 measures goodness-of-fit while RE and CE measures 
generalizability. The mass balance regression traded off goodness-of-fit for better out-of-sample prediction. 
This trade-off should reduce overfitting and result in more robust reconstructions. However, the trade-off is 
not entirely successful: the decreases in R2 are statistically significant while the increases in RE and CE are 
not. This trade-off shows that the wet season is the most difficult target to reconstruct; such a trade-off did 
not occur for the dry season and the water year. We shall revisit this issue in Section 4.2.

Figure 3 suggests that [0.6,2]   is a reasonable range of values to choose from, based on skills alone. We 
choose 1.2   for the subsequent discussion—this is the only value that resulted in significantly higher RE 
and CE for the water year. Certainly this choice is subjective and somewhat arbitrary; any [0.6,2]   would 
be a reasonable choice. Henceforth, the model based on 1.2   is referred to as Model 1. We now compare 
Model 0's and Model 1's reconstructions in more detail.
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4.2.  Reconstructions

For both Model 0 and Model 1, the reconstructions match their target closely (Figure 4a). Exceptions are 
the extreme wet years of 1971, 1973, 1975, and 1978, when consecutive La Niña events intensified monsoon 
rain, and large tropical storms carried abundant moisture to the basin in the wet season, causing severe 
floods (Lim & Boochabun,  2012). These extreme events proved difficult for the wet season and annual 
reconstructions. In these years, the dry season reconstructions are good, implying that the mismatches in 
the annual reconstructions are due purely to the wet season's flow. During strong monsoon seasons, the 
soil is fully saturated. The ring width chronologies cannot capture saturation excess flow. While this part of 
the hydrograph can be recorded by 18 O, there are only four 18 O chronologies in our network, limiting the 
models' ability to capture extremely high flows. Seeing this helps us understand better our observation ear-
lier that the wet season is the most difficult target. Perhaps we have exhausted the information contained in 
the proxies for the wet season. Hence, Model 1, although making used of all three seasons, had to trade-off 
goodness-of-fit for generalizability for this target. Also, there may be nonlinearities in the streamflow–proxy 
relationships at the extremes. In future studies, nonlinear reconstruction models (e.g., Nguyen & Galel-
li, 2018; Torbenson & Stagge, 2021) could be incorporated to address this problem.

The reconstructions provide some interesting insights into the inter- and intra-annual variability of the riv-
er (Figure 4b). Between 1825 and 1855, sustained low flow was observed in the wet season and water year 
reconstructions. However, in the dry season, the low flow period ended 15 years earlier, around 1840. Con-
versely, a period of sustained high flow was observed in all three reconstructions between 1790 and 1820, 
especially for the dry season. Most notably, dry season flow in 1815 was so high that it accounted for more 
than 50% of the annual flow—a rare event that occurred in only nine of 254 years (Figure 5). Interestingly, 
these nine years span the whole range of annual flow in the reconstructions, from 1,000 to 3,000 million m3. 
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Figure 3.  Mean reconstruction skill scores resulted from changing the mass balance penalty weight  in Equation 14. The scores from   0 are marked with 
triangles and gray horizontal lines for easy comparison. Scores from positive  values that are not significantly different from   0 under a Wilcoxon rank sum 
test (  0.1) are shown with faint colors. See also Figure S11 for the distributions of skill scores.
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Statistical desegregation methods, with their fixed assumptions of the sub-annual to annual flow ratios or 
quantiles, are unlikely to reproduce this wide range of intra-annual variability. Revealing events like these 
is of fundamental importance for the operations of Bhumibol Dam, which supports large irrigation districts.

The years 1971, 1973, and 1975 once again stand out: extremely high flow occurred in the wet season, lead-
ing to small dry season to annual flow (D/Q) ratios (Figure 5). As discussed in Section 4.2, these extreme 
high flows could not be captured by our proxies. Apart from those three extreme years, the distributions of 
D/Q are similar in the instrumental record and in the reconstruction.
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Figure 4.  (a) Reconstruction skills and time series for the instrumental period, produced using two models: without mass balance adjustment (  0) and with 
adjustment (  1.2) in the regression problem (Equation 14). Gray lines show naturalized observations. A comparison for the full horizon is also provided in 
Figure S4. (b) Full reconstructions with   1.2.

D
ry season

250
500
750

1000           R²     RE     CE 
λ = 0.0    0.45    0.54    0.42

λ = 1.2    0.53    0.56    0.46

W
et season1000

2000

3000

Q
 [m

illi
on

 m
³]           R²     RE     CE 

λ = 0.0    0.48    0.41    0.30

λ = 1.2    0.47    0.43    0.32

W
ater year

1920 1940 1960 1980 2000
1000
2000
3000
4000           R²     RE     CE 

λ = 0.0    0.46    0.48    0.33

λ = 1.2    0.47    0.52    0.37

D
ry season

W
et season

W
ater year

1750 1800 1850 1900 1950 2000

1750 1800 1850 1900 1950 2000

400

800

1200

1600

500

1000

1500

2000

1000
1500
2000
2500
3000

Q
 [m

illi
on

 m
³]

Reconstruction (λ = 1.2) 20-year low-pass filter Long-term mean



Water Resources Research

4.3.  Selected Inputs

The selected input subsets by both models provide further insights into their similarities and differences. 
Both models share many common inputs (Figure 6), especially the 18 O chronologies at Mae Hong Son 
and Mu Cang Chai, and the ring width chronologies at Phou Khao Khouay. We were surprised that the 
Mae Hong Son and Mu Cang Chai 18 O were selected consistently for the dry season, with strong weights 
placed on the Mu Chang Chai. Upon closer examinations of the correlation analysis (Figure 2), the puzzle 
is solved. While these 18 O chronologies correlate less with dry season flow than they do with wet season 
flow, the correlations are still stronger than those observed at many ring width sites.

For most inputs, the signs of the weights in Figure 6 are the same as the signs of correlation in Figure 2. 
There are only three exceptions in each model; in these cases the correlations are relatively weak and the 
weights are near zero. These observations further support that the input selection and the model identifica-
tion process work generally well and are quite robust.

4.4.  Annual Mass Balance

We have now established that the mass balance adjustment produced a sensible model with valid results 
that are slightly better than, if not comparable to, the conventional model. Finally, we can examine the effect 
of this new method on the annual mass balance, its ultimate goal.

For each model, we calculate the mass difference, Q , between the total seasonal flow and the annual flow, 
then examine its trajectory and distribution (Figures 7a and 7b). The mass difference for Model 0 ranges 
from 896  million m3 to 932 million m3, while that range for Model 1 is 432  million m3 to 748 million m3; 
a 45% reduction in range. Moreover, Model 0 yields a mass difference outside the interval 190  million m3  
( 10%  of the mean annual flow (MAF); shaded region in Figure 7b) in 48% of the years. That figure for 
Model 1 is only 21%. By these metrics, Model 1 is much better than Model 0 in preserving mass balance.
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Figure 5.  Distribution of the fraction of dry season flow to total annual flow, plot against the annual flow volume. 
Some extreme years are annotated.
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As  increases, the distribution of Q  tends to narrow (Figure 7c) and the percentage of years with Q  
outside 10% MAF generally decreases. The fluctuations in the decreasing trend are likely due to GA being 
stuck in local optima in some cases—a common challenge with metaheuristic search techniques. Despite 
this, the decreasing trend is clear. With 3  , the range of Q  is narrowed down to [-403, 511] million m3, 
and the percentage of Q  outside 10% MAF is 12%. The choice of 3   addresses the mass balance objec-
tive the best; for an analyst who is most concerned about mass balance this value may be a better choice 
than 1.2  . However, 3   resulted in the largest decrease in wet season's R2. Ultimately, the choice of  
depends on the analyst's priorities (skills vs. mass balance).

5.  Discussion
The “typical” format of streamflow reconstructions hinders their operational usability: reconstructions of-
ten target a specific component of the hydrograph and offer a temporal resolution that is too coarse for 
water management decisions. Our results show that both challenges could be tackled by leveraging the 
seasonal sensitivities of different proxies, a modeling approach that enables skillful seasonal (and annual) 
reconstructions for the inflow to Bhumibol Dam. These reconstructions may be of great value to water 
managers when seen in light of the current decision-making framework. There are indeed two pivotal mo-
ments in the annual management of the Chao Phraya River basin: the dry and wet season water allocations, 
through which water is allocated to the basin's sectors and regions (Divakar et al., 2011; Takeda et al., 2016). 
The allocation builds on a few different criteria, including the amount of water stored in Bhumibol and 
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Figure 6.  The weights of selected inputs for each streamflow target (columns) in each model (panels). Only inputs that 
were selected at least once are shown. The stable oxygen isotope (OX) inputs are marked in red. Inputs whose weights 
have different signs from their correlation coefficients are marked with “X.” Bold numbers at the bottom row of the 
x-axis are the number of selected inputs in each column.
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Sirikit dams as well as a projection of seasonal water demand, which in turn depends on the expected water 
availability. Our reconstructions show that the dry and wet season flows can deviate from the observed en-
velope of variability—for example, there are instances in which the dry season flow accounts for more than 
50% of the annual flow—meaning that the hydro-climatological risk to which water users are exposed is not 
properly characterized. Such information could be used to evaluate the robustness of the current allocation 
process or to stress-test alternative allocation schemes (Divakar et al., 2011).

A second fundamental aspect of streamflow reconstructions is accuracy. In our analysis, we showed that 
the optimal input selection procedure yields good reconstruction skills for both model setups, and that 
Model 1, by imposing a mass balance adjustment, produces more robust reconstructions than does Model 
0 (Section 4.2). More importantly, the adjustment significantly reduces the differences between the total 
seasonal flow and the annual flow (Section 4.4). Without the adjustment, the mass difference can be as 
large as 932 million m3, or about 49% of the mean annual flow. It amounts to 130% of the irrigation demand 
from the Ping River downstream of Bhumibol Reservoir (Divakar et al., 2011). Such a discrepancy would 
arguably restrict the use of reconstructions in the aforementioned decision-making context. But with the 
adjustment, both the frequency and magnitude of discrepancies are reduced: this is crucial for making 
reconstructions appealing to water managers. Therefore, the mass balanced-adjusted regression produces 
more reliable streamflow distributions, which then can be used in bottom-up vulnerability assessments, a 
popular form of analysis in the water resources domain (Borgomeo, Farmer, & Hall, 2015; Borgomeo, Pflug, 
et al., 2015; Herman et al., 2016; Pielke et al., 2012).

The modeling framework that we proposed here can be reapplied and expanded in several ways. First, the 
mass balance formulation is applicable to other climate variables such as precipitation, and to other con-
texts where a penalty term in the regression equation is desirable. For example, if one wishes to reconstruct 
streamflow at two tributaries as well as the main stream of a river, the mass balance adjustment should be 
used to minimize the differences between the total flow of the tributaries and the flow on the main stream. 
Second, if more proxies—such as wood density (Schweingruber & Briffa, 1996) or blue intensity (Buckley 
et al., 2018)—are available, they can also be incorporated into the reconstruction framework. Finally, the 
mass balance formulation is extendable to higher resolutions, for example, quarterly or monthly, as long as 
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Figure 7.  (a) The differences, Q , between the total seasonal flow and the annua flow. (b) Distributions of Q ; the shaded region denotes the 190 million m3 
range, equivalent to 10% of the mean annual flow (MAF). (c) Distribution of Q  as a function of . (d) Percentage of Q  within 10% MAF as a function of .
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the proxy network is sensitive enough to the higher resolution targets. These directions can help dendrohy-
drology realize its value in operational water management, an area where annual, unconstrained stream-
flow reconstructions have had limited success.

6.  Conclusions
In almost a century-long history, dendrohydrology has largely contributed to our understanding of global 
hydrological variability, as well as its linkages to large scale climate features. But to really fulfill their po-
tential, streamflow reconstructions should become a “tool” regularly available to water managers. That 
means improving their format and accuracy. Our work shows that advanced data analytics, informed by 
multi-proxy networks, represent a technical pathway toward meeting these grand challenges.

Data Availability Statement
Streamflow data were obtained from the Thai Royal Irrigation Department at http://hydro-1.rid.go.th/in-
dex.html. The authors provide all data, documented code, and results in an online repository at http://
github.com/ntthung/multiproxy?mbr (https://doi.org/10.5281/zenodo.4306343).

References
Borgomeo, E., Farmer, C. L., & Hall, J. W. (2015). Numerical rivers: A synthetic streamflow generator for water resources vulnerability 

assessments. Water Resources Research, 51(7), 5382–5405. https://doi.org/10.1002/2014WR016827
Borgomeo, E., Pflug, G., Hall, J. W., & Hochrainer-Stigler, S. (2015). Assessing water resource system vulnerability to unprecedented hy-

drological drought using copulas to characterize drought duration and deficit. Water Resources Research, 51(11), 8927–8948. https://doi.
org/10.1002/2015WR017324

Buckley, B. M., Anchukaitis, K. J., Penny, D., Fletcher, R., Cook, E. R., Sano, M., et al. (2010). Climate as a contributing factor in the demise 
of Angkor, Cambodia. Proceedings of the National Academy of Sciences, 107(15), 6748–6752. https://doi.org/10.1073/pnas.0910827107

Buckley, B. M., Barbetti, M., Watanasak, M., D'Arrigo, R., Boonchirdchoo, S., & Sarutanon, S. (1995). Dendrochronological investigations 
in Thailand. IAWA Journal, 16(4), 393–409. https://doi.org/10.1163/22941932-90001429

Buckley, B. M., Duangsathaporn, K., Palakit, K., Butler, S., Syhapanya, V., & Xaybouangeun, N. (2007). Analyses of growth rings of Pinus 
merkusii from Lao P.D.R. Forest Ecology and Management, 253(1), 120–127. https://doi.org/10.1016/j.foreco.2007.07.018

Buckley, B. M., Fletcher, R., Wang, S.-Y. S., Zottoli, B., & Pottier, C. (2014). Monsoon extremes and society over the past millennium on 
mainland Southeast Asia. Quaternary Science Reviews, 95, 1–19. https://doi.org/10.1016/j.quascirev.2014.04.022

Buckley, B. M., Hansen, K. G., Griffin, K. L., Schmiege, S., Oelkers, R., D'Arrigo, R. D., et al. (2018). Blue intensity from a tropical coni-
fer's annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia, 50, 10–22. https://doi.org/10.1016/j.
dendro.2018.04.003

Buckley, B. M., Palakit, K., Duangsathaporn, K., Sanguantham, P., & Prasomsin, P. (2007). Decadal scale droughts over northwestern 
Thailand over the past 448 years: Links to the tropical Pacific and Indian Ocean sectors. Climate Dynamics, 29(1), 63–71. https://doi.
org/10.1007/s00382-007-0225-1

Buckley, B. M., Stahle, D. K., Luu, H. T., Wang, S. Y. S., Nguyen, T. Q. T., Thomas, P., et al. (2017). Central Vietnam climate over the past five 
centuries from cypress tree rings. Climate Dynamics, 48(11–12), 3707–3723. https://doi.org/10.1007/s00382-016-3297-y

Buckley, B. M., Ummenhofer, C. C., D'Arrigo, R. D., Hansen, K. G., Truong, L. H., Le, C. N., & Stahle, D. K. (2019). Interdecadal Pacific 
Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE. Climate Dynamics, 53(5–6), 3181–3196. https://doi.org/10.1007/
s00382-019-04694-4

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Sci-
entific Computing, 16(5), 1190–1208. https://doi.org/10.1137/0916069

Chowdhury, A. F. M. K., Dang, T. D., Nguyen, H. T. T., Koh, R., & Galelli, S. (2021). The Greater Mekong's climate-water-energy nex-
us: How ENSO-triggered regional droughts affect power supply and CO2 emissions. Earth's Future, 9(3), e2020EF001814. https://doi.
org/10.1029/2020EF001814

Cook, B. I., & Buckley, B. M. (2009). Objective determination of monsoon season onset, withdrawal, and length. Journal of Geophysical 
Research, 114(D23), D23109. https://doi.org/10.1029/2009JD012795

Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G. C., & Wright, W. E. (2010). Asian monsoon failure and mega-
drought during the last millennium. Science, 328(5977), 486–489. https://doi.org/10.1126/science.1185188

Coulthard, B., Smith, D. J., & Meko, D. M. (2016). Is worst-case scenario streamflow drought underestimated in British Columbia? A 
multi-century perspective for the south coast, derived from tree-rings. Journal of Hydrology, 534, 205–218. https://doi.org/10.1016/j.
jhydrol.2015.12.030

D'Arrigo, R., Abram, N. J., Ummenhofer, C., Palmer, J. G., & Mudelsee, M. (2011). Reconstructed streamflow for Citarum River, Java, Indo-
nesia: Linkages to tropical climate dynamics. Climate Dynamics, 36(3–4), 451–462. https://doi.org/10.1007/s00382-009-0717-2

D'Arrigo, R., Barbett, M., Watanasak, M., Buckley, B. M., Krusic, P., Boonchirdchoo, S., & Sarutanon, S. (1997). Progress in dendroclimatic 
studies of mountain pine in northern Thailand. IAWA Journal, 18(4), 433–444. https://doi.org/10.1163/22941932-90001508

D'Arrigo, R., Palmer, J. G., Ummenhofer, C. C., Kyaw, N. N., & Krusic, P. (2011). Three centuries of Myanmar monsoon climate variability 
inferred from teak tree rings. Geophysical Research Letters, 38(24). https://doi.org/10.1029/2011GL049927

Divakar, L., Babel, M., Perret, S., & Gupta, A. D. (2011). Optimal allocation of bulk water supplies to competing use sectors based on 
economic criterion – An application to the Chao Phraya River Basin, Thailand. Journal of Hydrology, 401(1–2), 22–35. https://doi.
org/10.1016/j.jhydrol.2011.02.003

NGUYEN ET AL.

10.1029/2020WR029394

16 of 19

Acknowledgments
The authors are indebted to Edward 
Cook for the updated chronologies 
(Salaeng Luang, Mae Hong Son, and 
Mu Cang Chai), and for his valuable 
comments. The authors are also grateful 
to Thanh Dang for the VIC-Res model 
output. The diligent work of Le Canh 
Nam and many other local colleagues 
in collecting tree core samples over 
many years is crucial in building the 
tree ring network, and is sincerely 
appreciated. The authors thank Adam 
Csank for the historical background 
of dendrohydrology through his AAG 
2019 talk and subsequent conversation. 
Hung Nguyen is supported by the Pres-
ident's Graduate Fellowship from the 
Singapore University of Technology and 
Design. Chenxi Xu is supported by the 
Chinese Academy of Sciences Pioneer 
Hundred Talents Program, the National 
Natural Science Foundation of China 
(No. 42022059 and 41888101), and the 
Strategic Priority Research Program of 
the Chinese Academy of Sciences (No. 
XDB26020000). Brendan Buckley is 
supported by the US National Science 
Foundation grants No. AGS-1602629 
and AGS-2001949.

http://hydro-1.rid.go.th/index.html
http://hydro-1.rid.go.th/index.html
http://github.com/ntthung/multiproxy?mbr
http://github.com/ntthung/multiproxy?mbr
https://doi.org/10.5281/zenodo.4306343
https://doi.org/10.1002/2014WR016827
https://doi.org/10.1002/2015WR017324
https://doi.org/10.1002/2015WR017324
https://doi.org/10.1073/pnas.0910827107
https://doi.org/10.1163/22941932-90001429
https://doi.org/10.1016/j.foreco.2007.07.018
https://doi.org/10.1016/j.quascirev.2014.04.022
https://doi.org/10.1016/j.dendro.2018.04.003
https://doi.org/10.1016/j.dendro.2018.04.003
https://doi.org/10.1007/s00382-007-0225-1
https://doi.org/10.1007/s00382-007-0225-1
https://doi.org/10.1007/s00382-016-3297-y
https://doi.org/10.1007/s00382-019-04694-4
https://doi.org/10.1007/s00382-019-04694-4
https://doi.org/10.1137/0916069
https://doi.org/10.1029/2020EF001814
https://doi.org/10.1029/2020EF001814
https://doi.org/10.1029/2009JD012795
https://doi.org/10.1126/science.1185188
https://doi.org/10.1016/j.jhydrol.2015.12.030
https://doi.org/10.1016/j.jhydrol.2015.12.030
https://doi.org/10.1007/s00382-009-0717-2
https://doi.org/10.1163/22941932-90001508
https://doi.org/10.1029/2011GL049927
https://doi.org/10.1016/j.jhydrol.2011.02.003
https://doi.org/10.1016/j.jhydrol.2011.02.003


Water Resources Research

Duarte Silva, A. P. (2001). Efficient variable screening for multivariate analysis. Journal of Multivariate Analysis, 76(1), 35–62. https://doi.
org/10.1006/jmva.2000.1920

Duarte Silva, A. P. (2002). Discarding variables in a principal component analysis: Algorithms for all-subsets comparisons. Computational 
Statistics, 17(2), 251–271. https://doi.org/10.1007/s001800200105

Electricity Generating Authority of Thailand. (2013). Exploring EGAT power plants and dams. Retrieved from https://www.egat.co.th/en/
information/power-plants-and-dams

FAO. (2017). AQUASTAT database. Retrieved from http://www.fao.org/aquastat/statistics/query/index.html
Fritts, H. C. (1976). Tree rings and climate. Elsevier. https://doi.org/10.1016/B978-0-12-268450-0.X5001-0
Fritts, H. C., Blasing, T. J., Hayden, B. P., & Kutzbach, J. E. (1971). Multivariate techniques for specifying tree-growth and climate relation-

ships and for reconstructing anomalies in paleoclimate. Journal of Applied Meteorology, 10(5), 845–864. https://doi.org/10.1175/1520-0
450(1971)010〈0845:MTFSTG〉2.0.CO;2

Furnival, G. M., & Wilson, R. W. (1974). Regressions by leaps and bounds. Technometrics, 16(4), 499–511. https://doi.org/10.1080/004017
06.1974.10489231

Gagen, M., McCarroll, D., Loader, N. J., & Robertson, I. (2011). Stable isotopes in dendroclimatology: Moving beyond ‘potential’. In M. K. 
Hughes, T. W. Swetnam, & H. F. Diaz (Eds.), Dendroclimatology: Progress and prospects (pp. 147–172). Springer Netherlands. https://
doi.org/10.1007/978-1-4020-5725-0_6

Galelli, S., Humphrey, G. B., Maier, H. R., Castelletti, A., Dandy, G. C., & Gibbs, M. S. (2014). An evaluation framework for input variable 
selection algorithms for environmental data-driven models. Environmental Modelling & Software, 62, 33–51. https://doi.org/10.1016/j.
envsoft.2014.08.015

Galelli, S., Nguyen, H. T. T., Turner, S. W. D., & Buckley, B. M. (2021). Time to use dendrohydrological data in water resources manage-
ment? Journal of Water Resources Planning and Management, 147(8), 01821001. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001422

Güner, H. T., Köse, N., & Harley, G. L. (2017). A 200-year reconstruction of Kocasu River (Sakarya River Basin, Turkey) streamflow derived 
from a tree-ring network. International Journal of Biometeorology, 61(3), 427–437. https://doi.org/10.1007/s00484-016-1223-y

Hansen, K. G., Buckley, B. M., Zottoli, B., D'Arrigo, R. D., Nam, L. C., Van Truong, V., et al. (2017). Discrete seasonal hydroclimate recon-
structions over northern Vietnam for the past three and a half centuries. Climatic Change, 145(1–2), 177–188. https://doi.org/10.1007/
s10584-017-2084-z

Hardman, G., & Reil, O. E. (1936). The relationship between tree-growth and stream runoff in the Truckee River Basin, California-Nevada 
(Vol. 141). Nevada Agricultural Experiment Station Bulletin.

Hawley, F. M. (1937). Relationship of southern cedar growth to precipitation and run off. Ecology, 18(3), 398–405. https://doi.
org/10.2307/1931209

Herman, J. D., Zeff, H. B., Lamontagne, J. R., Reed, P. M., & Characklis, G. W. (2016). Synthetic drought scenario generation to support 
bottom-up water supply vulnerability assessments. Journal of Water Resources Planning and Management, 142(11), 04016050. https://
doi.org/10.1061/(ASCE)WR.1943-5452.0000701

Hidalgo, H. G., Piechota, T. C., & Dracup, J. A. (2000). Alternative principal components regression procedures for dendrohydrologic 
reconstructions. Water Resources Research, 36(11), 3241–3249. https://doi.org/10.1029/2000WR900097

Holland, J. H. (1975). Adaptation in natural and artificial systems. The University of Michigan Press.
Josse, J., & Husson, F. (2016). missMDA: A package for handling missing values in multivariate data analysis. Journal of Statistical Soft-

ware, 70(1). https://doi.org/10.18637/jss.v070.i01
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324. https://doi.org/10.1016/

s0004-3702(97)00043-x
Lieberman, V. (2003). Strange parallels: Volume 1, Integration on the Mainland: Southeast Asia in Global Context, c.800–1830. Cambridge 

University Press.
Lieberman, V., & Buckley, B. M. (2012). The impact of climate on Southeast Asia, circa 950–1820: New Findings. Modern Asian Studies. 46, 

1049–1096. https://doi.org/10.1017/S0026749X12000091
Lim, H. S., & Boochabun, K. (2012). Flood generation during the SW monsoon season in northern Thailand. Geological Society, London, 

Special Publications, 361(1), 7–20. https://doi.org/10.1144/SP361.3
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals 

of Mathematical Statistics, 18(1), 50–60. https://doi.org/10.1214/aoms/1177730491
Meko, D. M., & Woodhouse, C. A. (2011). Application of streamflow reconstruction to water resources management. In M. K. Hughes, 

T. W. Swetnam, & H. F. Diaz (Eds.), Dendroclimatology: Progress and prospects (pp. 231–261). Springer Netherlands. https://doi.
org/10.1007/978-1-4020-5725-0_8

Meko, D. M., Woodhouse, C. A., Baisan, C. A., Knight, T., Lukas, J. J., Hughes, M. K., & Salzer, M. W. (2007). Medieval drought in the upper 
Colorado River Basin. Geophysical Research Letters, 34(10), L10705. https://doi.org/10.1029/2007GL029988

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hy-
drology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6

Nguyen, H. T. T. (2021). Mbr: Mass-balance Regression. R package version 0.0.1.
Nguyen, H. T. T., & Galelli, S. (2018). A linear dynamical systems approach to streamflow reconstruction reveals history of regime shifts in 

northern Thailand. Water Resources Research, 54(3), 2057–2077. https://doi.org/10.1002/2017WR022114
Nguyen, H. T. T., Turner, S. W. D., Buckley, B. M., & Galelli, S. (2020). Coherent streamflow variability in monsoon Asia over the past eight 

centuries—Links to oceanic drivers. Water Resources Research, 56(12). https://doi.org/10.1029/2020WR027883
Pielke, R. A., Wilby, R., Niyogi, D., Hossain, F., Dairuku, K., Adegoke, J., et al. (2012). Dealing with complexity and extreme events using 

a bottom-up, resource-based vulnerability perspective. In Extreme events and natural hazards: The complexity perspective (pp. 345–359). 
American Geophysical Union. https://doi.org/10.1029/2011GM001086

Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89(428), 1303–1313. https://
doi.org/10.1080/01621459.1994.10476870

Prairie, J., Nowak, K., Rajagopalan, B., Lall, U., & Fulp, T. (2008). A stochastic nonparametric approach for streamflow generation combin-
ing observational and paleoreconstructed data. Water Resources Research, 44(6), 1–11. https://doi.org/10.1029/2007WR006684

Prairie, J., Rajagopalan, B., Lall, U., & Fulp, T. (2007). A stochastic nonparametric technique for space-time disaggregation of streamflows. 
Water Resources Research, 43(3), 1–10. https://doi.org/10.1029/2005WR004721

Rao, M. P., Cook, E. R., Cook, B. I., D'Arrigo, R., Palmer, J. G., Lall, U., et al. (2020). Seven centuries of reconstructed Brahmaputra River 
discharge demonstrate underestimated high discharge and flood hazard frequency. Nature Communications, 11(1), 6017. https://doi.
org/10.1038/s41467-020-19795-6

NGUYEN ET AL.

10.1029/2020WR029394

17 of 19

https://doi.org/10.1006/jmva.2000.1920
https://doi.org/10.1006/jmva.2000.1920
https://doi.org/10.1007/s001800200105
https://www.egat.co.th/en/information/power-plants-and-dams
https://www.egat.co.th/en/information/power-plants-and-dams
http://www.fao.org/aquastat/statistics/query/index.html
https://doi.org/10.1016/B978-0-12-268450-0.X5001-0
https://doi.org/10.1175/1520-0450%281971%29010%3C0845:MTFSTG%3E2.0.CO;2
https://doi.org/10.1175/1520-0450%281971%29010%3C0845:MTFSTG%3E2.0.CO;2
https://doi.org/10.1080/00401706.1974.10489231
https://doi.org/10.1080/00401706.1974.10489231
https://doi.org/10.1007/978-1-4020-5725-0_6
https://doi.org/10.1007/978-1-4020-5725-0_6
https://doi.org/10.1016/j.envsoft.2014.08.015
https://doi.org/10.1016/j.envsoft.2014.08.015
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001422
https://doi.org/10.1007/s00484-016-1223-y
https://doi.org/10.1007/s10584-017-2084-z
https://doi.org/10.1007/s10584-017-2084-z
https://doi.org/10.2307/1931209
https://doi.org/10.2307/1931209
https://doi.org/10.1061/%28ASCE%29WR.1943-5452.0000701
https://doi.org/10.1061/%28ASCE%29WR.1943-5452.0000701
https://doi.org/10.1029/2000WR900097
https://doi.org/10.18637/jss.v070.i01
https://doi.org/10.1016/s0004-3702%2897%2900043-x
https://doi.org/10.1016/s0004-3702%2897%2900043-x
https://doi.org/10.1017/S0026749X12000091
https://doi.org/10.1144/SP361.3
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1007/978-1-4020-5725-0_8
https://doi.org/10.1007/978-1-4020-5725-0_8
https://doi.org/10.1029/2007GL029988
https://doi.org/10.1016/0022-1694%2870%2990255-6
https://doi.org/10.1002/2017WR022114
https://doi.org/10.1029/2020WR027883
https://doi.org/10.1029/2011GM001086
https://doi.org/10.1080/01621459.1994.10476870
https://doi.org/10.1080/01621459.1994.10476870
https://doi.org/10.1029/2007WR006684
https://doi.org/10.1029/2005WR004721
https://doi.org/10.1038/s41467-020-19795-6
https://doi.org/10.1038/s41467-020-19795-6


Water Resources Research

Rao, M. P., Cook, E. R., Cook, B. I., Palmer, J. G., Uriarte, M., Devineni, N., et al. (2018). Six centuries of Upper Indus Basin streamflow 
variability and its climatic drivers. Water Resources Research, 54(8), 5687–5701. https://doi.org/10.1029/2018WR023080

Sano, M., Buckley, B. M., & Sweda, T. (2009). Tree-ring based hydroclimate reconstruction over northern Vietnam from Fokienia hodgin-
si: Eighteenth century mega-drought and tropical Pacific influence. Climate Dynamics, 33(2–3), 331–340. https://doi.org/10.1007/
s00382-008-0454-y

Sano, M., Xu, C., & Nakatsuka, T. (2012). A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring δ18O. 
Journal of Geophysical Research: Atmospheres, 117(D12). https://doi.org/10.1029/2012JD017749

Sauchyn, D., & Ilich, N. (2017). Nine hundred years of weekly streamflows: Stochastic downscaling of ensemble tree-ring reconstructions. 
Water Resources Research, 53, 9266–9283. https://doi.org/10.1002/2017WR021585

Schulman, E. (1945). Tree-ring hydrology of the Colorado River Basin. University of Arizona Bulletin Series, Laboratory of Tree-Ring Re-
search Bulletin. No. 2, 16(4).

Schweingruber, F. H., & Briffa, K. R. (1996). Tree-ring density networks for climate reconstruction. In P. D. Jones, R. S. Bradley, & J. Jouzel 
(Eds.), Climatic variations and forcing mechanisms of the last 2000 years (pp. 43–66). Springer. https://doi.org/10.1007/978-3-642-61113-1_3

Scrucca, L. (2013). GA: A package for genetic algorithms in R. Journal of Statistical Software, 53(4), 1–37. https://doi.org/10.18637/jss.
v053.i04

Stagge, J. H., Rosenberg, D. E., DeRose, R. J., & Rittenour, T. M. (2018). Monthly paleostreamflow reconstruction from annual tree-ring 
chronologies. Journal of Hydrology, 557, 791–804. https://doi.org/10.1016/j.jhydrol.2017.12.057

Stockton, C. W. (1971). The feasibility of augmenting hydrologic records using tree-ring data (PhD Thesis). University of Arizona.
Stockton, C. W., & Jacoby, G. C. (1976). Long-term surface-water supply and streamflow trends in the Upper Colorado River Basin based 

on tree-ring analyses. Lake Powell Research Project Bulletin, 18.
Takeda, M., Laphimsing, A., & Putthividhya, A. (2016). Dry season water allocation in the Chao Phraya River basin, Thailand. Internation-

al Journal of Water Resources Development, 32(2), 321–338. https://doi.org/10.1080/07900627.2015.1055856
Thomas, D. E. (2005). Developing watershed management organizations in pilot sub-basins (Final Report). Office of Natural Resources and 

Environmental Policy and Planning. Ministry of Natural Resources and Environment.
Torbenson, M. C. A., & Stagge, J. H. (2021). Informing seasonal proxy-based flow reconstructions using baseflow separation: An example 

from the Potomac River, United States. Water Resources Research, 57(2), e2020WR027706. https://doi.org/10.1029/2020WR027706
Treydte, K. S., Schleser, G. H., Helle, G., Frank, D. C., Winiger, M., Haug, G. H., & Esper, J. (2006). The twentieth century was the wettest 

period in northern Pakistan over the past millennium. Nature, 440(7088), 1179–1182. https://doi.org/10.1038/nature04743
Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2). https://doi.org/10.1007/BF00175354
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83. https://doi.org/10.2307/3001968
Wise, E. K. (2021). Sub-Seasonal Tree-Ring Reconstructions for More Comprehensive Climate Records in U.S. West Coast Watersheds. 

Geophysical Research Letters, 48(2), e2020GL091598. https://doi.org/10.1029/2020GL091598
Woodhouse, C. A., Gray, S. T., & Meko, D. M. (2006). Updated streamflow reconstructions for the Upper Colorado River Basin. Water 

Resources Research, 42(5), W05415. https://doi.org/10.1029/2005WR004455
World Bank. (2011). Thailand environment monitor: Integrated water resources management - A way forward (Technical Report No. 63368). 

World Bank Group.
Xu, C., Buckley, B. M., Promchote, P., Wang, S. Y. S., Pumijumnong, N., An, W., et al. (2019). Increased variability of Thailand's Chao 

Phraya River peak season flow and its association with ENSO variability: Evidence from tree ring δ18O. Geophysical Research Letters, 
46(9), 4863–4872. https://doi.org/10.1029/2018GL081458

Xu, C., Pumijumnong, N., Nakatsuka, T., Sano, M., & Guo, Z. (2018). Inter-annual and multi-decadal variability of monsoon season rain-
fall in central Thailand during the period 1804–1999, as inferred from tree ring oxygen isotopes. International Journal of Climatology, 
38(15), 5766–5776. https://doi.org/10.1002/joc.5859

Xu, C., Pumijumnong, N., Nakatsuka, T., Sano, M., & Li, Z. (2015). A tree-ring cellulose δ18O-based July–October precipitation reconstruc-
tion since AD 1828, northwest Thailand. Journal of Hydrology, 529(P2), 433–441. https://doi.org/10.1016/j.jhydrol.2015.02.037

Xu, C., Sano, M., & Nakatsuka, T. (2011). Tree ring cellulose δ18O of Fokienia hodginsii in northern Laos: A promising proxy to reconstruct 
ENSO? Journal of Geophysical Research: Atmospheres, 116(D24). https://doi.org/10.1029/2011JD016694

Xu, C., Sano, M., & Nakatsuka, T. (2013). A 400-year record of hydroclimate variability and local ENSO history in northern South-
east Asia inferred from tree-ring δ18O. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 588–598. https://doi.org/10.1016/j.
palaeo.2013.06.025

Xu, G., Liu, X., Trouet, V., Treydte, K. S., Wu, G., Chen, T., et al. (2019). Regional drought shifts (1710–2010) in East Central Asia and linkag-
es with atmospheric circulation recorded in tree-ring δ18O. Climate Dynamics, 52, 713–727. https://doi.org/10.1007/s00382-018-4215-2

Zhu, M., Stott, L. D., Buckley, B. M., Yoshimura, K., & Ra, K. (2012). Indo-Pacific Warm Pool convection and ENSO since 1867 de-
rived from Cambodian pine tree cellulose oxygen isotopes. Journal of Geophysical Research: Atmospheres, 117(D11). https://doi.
org/10.1029/2011JD017198

References From the Supporting Information
Dang, T. D., Vu, D. T., Chowdhury, A. F. M. K., & Galelli, S. (2020). A software package for the representation and optimization of wa-

ter reservoir operations in the VIC hydrologic model. Environmental Modelling & Software, 126, 104673. https://doi.org/10.1016/j.
envsoft.2020.104673

Gudmundsson, L. (2016). Qmap: Statistical transformations for post-processing climate model output. R package version 1.0-4.
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Technical note: Downscaling RCM precipitation to the sta-

tion scale using statistical transformations – A comparison of methods. Hydrology and Earth System Sciences, 16(9), 3383–3390. https://
doi.org/10.5194/hess-16-3383-2012

Harley, G. L., Maxwell, J. T., Larson, E., Grissino-Mayer, H. D., Henderson, J., & Huffman, J. (2017). Suwannee River flow variabili-
ty 1550–2005 CE reconstructed from a multispecies tree-ring network. Journal of Hydrology, 544, 438–451. https://doi.org/10.1016/j.
jhydrol.2016.11.020

Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. 
Scientific Data, 7(1), 109. https://doi.org/10.1038/s41597-020-0453-3

Hinkley, D. (1977). On quick choice of power transformation. Applied Statistics, 26(1), 67. https://doi.org/10.2307/2346869

NGUYEN ET AL.

10.1029/2020WR029394

18 of 19

https://doi.org/10.1029/2018WR023080
https://doi.org/10.1007/s00382-008-0454-y
https://doi.org/10.1007/s00382-008-0454-y
https://doi.org/10.1029/2012JD017749
https://doi.org/10.1002/2017WR021585
https://doi.org/10.1007/978-3-642-61113-1_3
https://doi.org/10.18637/jss.v053.i04
https://doi.org/10.18637/jss.v053.i04
https://doi.org/10.1016/j.jhydrol.2017.12.057
https://doi.org/10.1080/07900627.2015.1055856
https://doi.org/10.1029/2020WR027706
https://doi.org/10.1038/nature04743
https://doi.org/10.1007/BF00175354
https://doi.org/10.2307/3001968
https://doi.org/10.1029/2020GL091598
https://doi.org/10.1029/2005WR004455
https://doi.org/10.1029/2018GL081458
https://doi.org/10.1002/joc.5859
https://doi.org/10.1016/j.jhydrol.2015.02.037
https://doi.org/10.1029/2011JD016694
https://doi.org/10.1016/j.palaeo.2013.06.025
https://doi.org/10.1016/j.palaeo.2013.06.025
https://doi.org/10.1007/s00382-018-4215-2
https://doi.org/10.1029/2011JD017198
https://doi.org/10.1029/2011JD017198
https://doi.org/10.1016/j.envsoft.2020.104673
https://doi.org/10.1016/j.envsoft.2020.104673
https://doi.org/10.5194/hess-16-3383-2012
https://doi.org/10.5194/hess-16-3383-2012
https://doi.org/10.1016/j.jhydrol.2016.11.020
https://doi.org/10.1016/j.jhydrol.2016.11.020
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.2307/2346869


Water Resources Research

Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy 
fluxes for general circulation models. Journal of Geophysical Research, 99(D7), 14415. https://doi.org/10.1029/94JD00483

Lohmann, D., Nolte-Holube, R., & Raschke, E. (1996). A large-scale horizontal routing model to be coupled to land surface parametriza-
tion schemes. Tellus A, 48(5), 708–721. https://doi.org/10.1034/j.1600-0870.1996.t01-3-00009.x

Lohmann, D., Raschke, E., Nijssen, B., & Lettenmaier, D. P. (1998). Regional scale hydrology: I. Formulation of the VIC-2L model coupled 
to a routing model. Hydrological Sciences Journal, 43(1), 131–141. https://doi.org/10.1080/02626669809492107

Lund, R., & Reeves, J. (2002). Detection of undocumented changepoints: A revision of the two-phase regression model. Journal of Climate, 
15(17), 2547–2554. https://doi.org/10.1175/1520-0442(2002)015<2547:DOUCAR>2.0.CO;2

Maxwell, R., Harley, G., Maxwell, J., Rayback, S., Pederson, N., Cook, E. R., et al. (2017). An interbasin comparison of tree-ring reconstruct-
ed streamflow in the eastern United States. Hydrological Processes, 31(13), 2381–2394. https://doi.org/10.1002/hyp.11188

Robeson, S. M., Maxwell, J. T., & Ficklin, D. L. (2020). Bias correction of paleoclimatic reconstructions: A new look at 1,200+ years of 
Upper Colorado River flow. Geophysical Research Letters, 47(1), 1–12. https://doi.org/10.1029/2019GL086689

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., et al. (2014). The NCEP climate forecast system version 2. Journal of Climate, 
27(6), 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., & Kitoh, A. (2012). APHRODITE: Constructing a long-term daily 
gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93(9), 
1401–1415. https://doi.org/10.1175/BAMS-D-11-00122.1

NGUYEN ET AL.

10.1029/2020WR029394

19 of 19

https://doi.org/10.1029/94JD00483
https://doi.org/10.1034/j.1600-0870.1996.t01-3-00009.x
https://doi.org/10.1080/02626669809492107
https://doi.org/10.1175/1520-0442%282002%29015%3C2547:DOUCAR%3E2.0.CO;2
https://doi.org/10.1002/hyp.11188
https://doi.org/10.1029/2019GL086689
https://doi.org/10.1175/JCLI-D-12-00823.1
https://doi.org/10.1175/BAMS-D-11-00122.1

	Multi-Proxy, Multi-Season Streamflow Reconstruction With Mass Balance Adjustment
	Abstract
	Plain Language Summary
	1. Introduction
	2. Study Site and Data
	2.1. The Chao Phraya River Basin and Streamflow Data
	2.2. The Southeast Asian Dendrochronology Network
	2.3. Stable Oxygen Isotope Ratio (δ18O) of Tree Ring Cellulose
	2.4. Proxy–Streamflow Correlations

	3. Reconstruction Framework
	3.1. Mass Balance-Adjusted Regression
	3.2. Optimal Input Selection
	3.3. Model Assessment

	4. Results
	4.1. Reconstruction Skills as Functions of λ
	4.2. Reconstructions
	4.3. Selected Inputs
	4.4. Annual Mass Balance

	5. Discussion
	6. Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


