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Abstract

Bayesian Modeling in Personalized Medicine with Applications to N-of-1 Trials

Ziwei Liao

The ultimate goal of personalized or precision medicine is to identify the best treatment for each

patient. An N-of-1 trial is a multiple-period crossover trial performed within a single individual,

which focuses on individual outcome instead of population or group mean responses. As in a con-

ventional crossover trial, it is critical to understand carryover effects of the treatment in an N-of-1

trial, especially in situations where there are no washout periods between treatment periods and

high volume of measurements are made during the study. Existing statistical methods for ana-

lyzing N-of-1 trials include nonparametric tests, mixed effect models and autoregressive models.

These methods may fail to simultaneously handle measurements autocorrelation and adjust for po-

tential carryover effects. Distributed lag model is a regression model that uses lagged predictors to

model the lag structure of exposure effects. In the dissertation, we first introduce a novel Bayesian

distributed lag model that facilitates the estimation of carryover effects for single N-of-1 trial, while

accounting for temporal correlations using an autoregressive model. In the second part, we extend

the single N-of-1 trial model to multiple N-of-1 trials scenarios. In the third part, we again focus

on single N-of-1 trials. But instead of modeling comparison with one treatment and one placebo

(or active control), multiple treatments and one placebo (or active control) is considered.

In the first part, we propose a Bayesian distributed lag model with autocorrelated errors (BDLM-

AR) that integrate prior knowledge on the shape of distributed lag coefficients and explicitly model

the magnitude and duration of carryover effect. Theoretically, we show the connection between

the proposed prior structure in BDLM-AR and frequentist regularization approaches. Simulation

studies were conducted to compare the performance of our proposed BDLM-AR model with other

methods and the proposed model is shown to have better performance in estimating total treatment

effect, carryover effect and the whole treatment effect coefficient curve under most of the simu-



lation scenarios. Data from two patients in the light therapy study was utilized to illustrate our

method.

In the second part, we extend the single N-of-1 trial model to multiple N-of-1 trials model and

focus on estimating population level treatment effect and carryover effect. A Bayesian hierarchical

distributed lag model (BHDLM-AR) is proposed to model the nested structure of multiple N-of-1

trials within the same study. The Bayesian hierarchical structure also improves estimates for indi-

vidual level parameters by borrowing strength from the N-of-1 trials of others. We show through

simulation studies that BHDLM-AR model has best average performance in terms of estimating

both population level and individual level parameters. The light therapy study is revisited and we

applied the proposed model to all patients’ data.

In the third part, we extend BDLM-AR model to multiple treatments and one placebo (or

active control) scenario. We designed prior precision matrix on each treatment. We demonstrated

the application of the proposed method using a hypertension study, where multiple guideline-

recommended medications were involved in each single N-of-1 trial.
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Chapter 1: Introduction

1.1 Overview of N-of-1 Trial

Traditional parallel-group randomized controlled trials (RCTs) are the most prevalent study de-

sign to identify the population-level treatment effect in evidence-based medicine. However, clinical

evidence generated from RCTs often has limited generalizability of the results (Greenfield et al.,

2007), especially if efficacy is indicated from a "successful" trial. In the United States, the top ten

highest-grossing drugs will only benefit between 1 in 25 and 1 in 4 of the patients who used them

(Schork, 2015). One of the main reasons of ineffective treatment is the existence of heterogeneity

of treatment effects (HTE), i.e., the variability in the direction and magnitude of treatment effects

for single patient (Kent et al., 2010; R. L. Kravitz et al., 2004). RCTs provide estimate of average

treatment effect for whole participants in the study rather than individual treatment effect (ITE) for

each participant. The variation in treatment effect may trigger a mix of enhanced, weakened or

even negative treatment benefits.

This issue has led growing interest in different types of clinical trials that focuses on individ-

ual, not average, responses to treatment. A lot of research that focuses on personalizing medicine

have been done, and regulatory agencies such as the US Food and Drug Administration (FDA) has

evolved its regulatory processes in response to scientific developments that are critical for the de-

velopment of personalized therapeutics and diagnostics (FDA, 2013; Hamburg and Collins, 2010).

There are mainly two approaches to match patients with potential effective treatment. The first one

is subgroup analysis, where large population is partitioned or stratified into several smaller groups

based on a shared characteristic, such that patients in certain stratified categories are more likely

1



to benefit from a given treatment (Rothwell, 2005; Tsapas and Matthews, 2009). The alternative

method is N-of-1 trial, where individual patient is the entire trial. The patient receives multiple

interventions and the outcome is compared within the patient to identify the optimal treatment for

that patient. Both subgroup analysis and N-of-1 trials are data driven method to address treatment

heterogeneity problem, but the former aimed at selecting the most promising subgroups for a given

intervention while the latter targeted the most promising course of therapy for a given participant.

N-of-1 trials were first proposed by Guyatt in 1986 (G. Guyatt et al., 1988; G. Guyatt et al.,

1986) to address the difficulty in extrapolating the results obtained from traditional multi-patient,

double-blinded, randomized trials to individual patients. N-of-1 trials are prospectively multiple-

period crossover trials comparing two or more interventions within single participant. Unlike

subgroup analysis, N-of-1 trials can estimate ITE directly for each patient, making it in accord with

the ultimate goal of personalizing medical care. In N-of-1 trials, most participants will immediately

benefit from the study if one of the treatments stands out. This is an important merit of N-of-1

trials since participants in population based trials may only be assigned to placebo group during

the entire study.

1.1.1 Application of N-of-1 Trials

N-of-1 trials are applicable to evaluating treatments for chronic conditions with stable treatment

outcomes and quick onset of treatment effect. In addition, N-of-1 trials are especially useful in

studying rare diseases, where participants recruitment is usually challenging (Stunnenberg et al.,

2018). However, similarly as standard parallel-group crossover trials, they may fail to work on

acute or unrelentingly progressive, permanent or slowly reversible treatment outcomes (Duan et

al., 2013; S. S. Senn, 2002). Mirza et al. (2017) summarized the situations where N-of-1 is more

appropriate than conventional randomized trials:

• Quickly acting symptomatic treatment with large response variability (e.g. Samuel et al.,

2019).

• Rare diseases which is infeasible for large parallel group RCTs (e.g. Stunnenberg et al.,

2



2018).

• Patients who are substantially different from subjects in existing trials.

• Patients undergoing long-period of treatment and lack of information for for further treat-

ment (e.g. Liu et al., 2016).

One major concern of N-of-1 trials is that the costs and logistical efforts are probably too

high for individualized patient care (R. L. Kravitz et al., 2009). But with the advent of efficient

and cheap medical monitoring devices, such as non-invasive/wearable sensors for medical metrics

(Topol, 2010) and mobile applications (R. L. Kravitz et al., 2018), data collection process for

N-of-1 trials is getting more feasible and reliable.

Another emerging application area of N-of-1 trials is the use of mobile and wireless health

(mHealth) technologies to increase access to health services and lower health cost (Nilsen et al.,

2012). Smartphones have been utilized to track patients’ outcomes and physical activity (Glynn

et al., 2013; Luxton et al., 2011) and deliver patient education through software applications (apps,

Wang et al., 2017). N-of-1 trials have been used in several mHealth studies to enhance a more

personalized health care (Whitney et al., 2018). From the population perspective, mHealth-based

N-of-1 trial has the potential to achieve faster therapeutic success and more convenient health

services access (Barr et al., 2015).

1.1.2 Design of N-of-1 Trials

Design features of N-of-1 trials are similarly as those of grouped randomized crossover trials,

but on an individual level. The unit of treatment assignment is a prespecified treatment period

block, during which same treatment is assigned to the patient. The duration of treatment period

block is selected to enable that each treatment can reach full effect (Duan et al., 2013). Within each

treatment period block, clinical outcomes are expected to be collected in a frequent way, such as

hourly, daily or other regular time period collection, which renders that data from N-of-1 trial has a

time-series structure. The sequence of assignment can either be randomized or predetermined. For
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Figure 1.1: Scheme of N-of-1 trials (modified from R. Kravitz et al. (2014))

example, the paired design ABABABAB and the singly counterbalanced design ABBAABBA can

protect against temporally linear confounders, while doubly counterbalanced design ABBABAAB

offer better protection against both linear and nonlinear confounders (R. Kravitz et al., 2014). An

example of N-of-1 trial procedures is illustrated in Figure 1.1.

Unlike standard RCTs, where their sample size is counted as the number of participants in each

treatment group, the sample size of N-of-1 trials is the total number of measurements taken on

each participant. Total number of measurements is further determined by the number of treatment

periods and number of measurement within each period. Adding number of treatment periods or

extending the duration of treatment periods can increase study sample size.

Washout period can be used between treatment periods to mitigate the potential carryover effect

of treatment used in the previous time period. But the length of washout period is hard to determine.

Short length of washout period can not grantee the elimination of carryover effect, while long

length of washout period may compromise patient safety since patients are temporarily off all

treatments during the trial (Lillie et al., 2011).
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Figure 1.2: Scheme of multiple N-of-1 trials

1.1.3 Combining Multiple N-of-1 Trials

Individual N-of-1 trials are designed to compare interventions within specific patient and make

suggestion on personal health service. Traditional randomized clinical trials are utilized to obtain

information on differences between interventions in a study population. When data from multiple

individual N-of-1 trials are available, they can be aggregated together to simultaneously estimate

the population and individual level treatment effect. From population perspective, multiple N-of-1

trials can provide a population estimate on treatment effectiveness while adjusting for heterogene-

ity of treatment effect. From individual patient’s perspective, the combined N-of-1 trials can learn

about within and between patient variation and improve the clinical decision on individuals. It is

especially useful when individual patient just starts a trial and has only a few observations or even

does not participate in the trial, since clinicians can "borrow strength" from other patients in the

trial if one believes the existence of similarities between patients. The schematic representation of

population groupings for multiple N-of-1 trials is illustrated in Figure 1.2.
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1.1.4 Current Methods to Analyze N-of-1 Trials

Individual N-of-1 Trials

Many statistical methods have been used in analyzing N-of-1 trials, but no clear consensus has

been reached so far. Gabler et al. (2011) conducted a systematic review of N-of-1 trials published

between 1985 and 2010. Among a total 108 trials reporting on 2,154 participants, most trials re-

ported more than 1 method of data analysis. Approximately half of the trials reported using a t-test

(44%), 52% reported using a visual/graphical comparison with no statistical comparison. Only

17% of the trials applied any type of regression analysis and 22% trials reported using nonpara-

metric statistics. Three statistical methods will be introduced bellow.

(1). Nonparametric tests

Early stage statistical analysis of N-of-1 trials used nonparametric tests such as sign test (G. H.

Guyatt et al., 1990), Wilcoxcon signed rank test, chi-square test, et al. Treatment information is

gathered from day level to treatment block/period level. For each treatment block, we will only

have a binary response, representing whether one treatment is better than the other and omit the

size of difference in treatment effect.

(2). Analysis of variance (ANOVA) type tests (G. H. Guyatt et al., 1990)

ANOVA type tests (t test as a special case) are also used in analyzing N-of-1 trials, which utilize

the information of actual size of treatment effects. These type of tests also use treatment block

level information and assume treatment blocks are mutually independent, neglecting potential car-

ryover effect and autocorrelation between consecutive treatment blocks. The normality assumption

of ANOVA type tests is also hard to hold since measurement unit is block instead of day. In order

to maintain adequate sample size, long trial and frequent treatment switching are expected, which

may be impractical.
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(3). Interrupted time series analysis (Cortina et al., 2013; Lane-Brown and Tate, 2010)

Interrupted time series analysis (ITS), or also called quasi-experimental time series analysis, is a

study design for assessing the effectiveness of population-level interventions that have been im-

plemented at a clearly defined point in time (Bernal et al., 2017). It can be used to evaluate the

intervention’s effect by tracking a long-term period before and after a given intervention point. The

model can be written as:

𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑋𝑡 + 𝛽3𝑡𝑋𝑡 + 𝑒𝑡

where 𝛽0 and 𝛽1 represent pre-intervention intercept and slope. 𝛽2 and 𝛽3 represent post-intervention

changes in intercept and slope. 𝑒𝑡 follows an ARIMA(p,q,d) process:(
1 −

𝑝∑
𝑖=1

𝜙𝑖𝐵
𝑖

)
(1 − 𝐵)𝑑𝑒𝑡 =

(
1 +

𝑞∑
𝑖=1

𝜃𝑖𝐵
𝑖

)
𝑤𝑡

where B denotes back shift operator and 𝑤𝑡 is independent Gaussian white noise. Effects of the

intervention are estimated by changes in the intercept and slope of the time series before and after

the intervention. ITS can also be viewed as a segmented regression model with ARIMA error and

it takes autocorrelation in measurement into consideration, however, only one intervention change

point is allowed in ITS, which restricts its usage in N-of-1 trials.

Combine N-of-1 Trials

(1). Meta-analysis (Martin and Whyte, 2007; Punja et al., 2016)

In meta-analysis, the estimated treatment effect in each individual N-of-1 trial is pooled together

to provide a weighted average of multiple trials. Denote �̂� as the estimated total treatment effect

for the study population, then within a total of 𝑁 individual trials,

�̂� =

∑𝑁
𝑖=1 𝑤𝑖𝑦𝑖∑𝑁
𝑖=1 𝑤𝑖
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where 𝑦𝑖 is the observed mean treatment effect in individual trial and 𝑤𝑖 is the weight of trial. A

common choice of weight function is 𝑤𝑖 = 1/𝜎2
𝑖 , that is, the inverse of variances of each individual

trial.

(2). Regression based tests (Araujo et al., 2016; X. Chen and Chen, 2014)

When a group of participants’ information is available and treatment block level information is

used, multiple N-of-1 trial can be regarded as grouped crossover design with fixed treatment se-

quence. Therefore, linear/generalized mixed effect models can be utilized to analyze data of N-of-1

trials. If we assume data are normally distributed, then the model can be written as:

𝑌𝑖 𝑗 = 𝛽0 + 𝛽1𝑋𝑖 𝑗 + 𝛽2𝑃 𝑗 + 𝜆𝐴𝑍𝐴𝑖 𝑗 + 𝜆𝐵𝑍𝐵𝑖 𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑋𝑖 𝑗 + 𝜀𝑖 𝑗

where 𝑌𝑖 𝑗 denotes the 𝑖-th (𝑖 = 1,...,n) subject’s outcome for the 𝑗-th period. 𝑋𝑖 𝑗 denotes the 𝑖-th

(𝑖 = 1,...,n) subject’s treatment for the 𝑗-th period. 𝑃 𝑗 denotes the period effect. 𝛽0 represents the

intercept of the model. 𝛽1 is the mean of treatment difference. 𝛽2 is the slope of period effect. 𝜆𝐴

and 𝜆𝐵 are the carryover effect of treatment A and B. 𝑍𝐴𝑖 𝑗 and 𝑍𝐵𝑖 𝑗 are the indicator variables for

two treatments. 𝑏0𝑖 and 𝑏1𝑖 are the random intercept and random slope of subject 𝑖, 𝑏0𝑖 ∼ 𝑁 (0, 𝜎2
0 ),

𝑏1𝑖 ∼ 𝑁 (0, 𝜎2
1 ). 𝜀𝑖 𝑗 is the Gaussian random error of subject 𝑖 in period 𝑗 . Especially, when we

want to model for single subject, the model will be reduced to:

𝑌 𝑗 = 𝛽0 + 𝛽1𝑋 𝑗 + 𝛽2𝑃 𝑗 + 𝜆𝐴𝑍𝐴 𝑗 + 𝜆𝐵𝑍𝐵 𝑗 + 𝜀 𝑗

which is similar to ANOVA type tests for single subject while adjusting for period and carryover

effect.

(3). Bayesian hierarchical model (Schluter and Ware, 2005; D. Zucker et al., 1997)

Bayesian hierarchical model has been used to combine the results from individual N-of-1 trials and

posterior estimates of population, individual level and between-patient variance can be obtained

8



after specify the prior distribution and the mean model. Use the same notation as the previous

section, the Bayesian hierarchical model has the following structure

𝑌𝑖 𝑗 ∼ 𝑁 (𝛽𝑖𝑋𝑖 𝑗 , 𝜎
2)

𝛽𝑖 ∼ 𝑁 (𝜃, 𝜎2
0 )

𝜃 ∼ 𝑁 (𝜇0, 𝜎
2
00)

𝜎2 ∝ 1/𝜎2

where 𝛽𝑖 is the treatment effect in individual trial and 𝜃 is the treatment effect at population level.

Each patient is assumed to have some underlying treatment effect 𝛽𝑖 and 𝛽1, 𝛽2, ..., 𝛽𝑁 are assumed

to be exchangeable between patients and arise from the same population distribution of 𝜃. 𝜇0 and

𝜎2
00 are parameters in the hyperprior distribution, which are usually given as fixed value. This

structure can also be applied to binary outcomes with a change of likelihood distribution and prior

distribution.

There are two important features that need to be accounted for in the analysis of N-of-1 trial

data. One is temporal correlation between measurements. Data from N-of-1 trials resemble a

time series since repeated measurements are taken from the same individual. Measurements col-

lected at adjacent time points will exhibit autocorrelation or temporal dependence. Most of current

methods assume that observations are independent. However, ignoring autocorrelation can lead to

underestimates or overestimates of standard error, depending on the existence of positive or nega-

tive autocorrelation, which will inflate the probability of type I error and type II error respectively

(Vieira et al., 2017).

Carryover effects have also long been an issue in validity of N-of-1 trials. Even if washout

periods are included in a study, we are still not guaranteed the elimination of carryover effects.

With the existence of treatment carryover effect, the study results are likely to be biased. In the

extreme, carryover may extend to multiple or all treatment periods and contaminate most of the

study measurement (R. Kravitz et al., 2014).

Hardly any current methods can simultaneously account for temporal correlation between mea-
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surements and carryover effects. Thus, innovative analytic strategy to separate these effects from

the true treatment effect is expected.

1.1.5 Carryover Effects in Clinical Trials

Carryover effect is the effect of a treatment that persists after the treatment period and carryover

effects which last up to and including k periods after the treatment has been stopped are known as

kth-order carryover effects (B. Jones and Kenward, 1989). Carryover effects are usually detected

in two-period crossover designs in clinical trials. Grizzle (1965) proposed the following model for

cross-over type of design:

𝑌𝑖 𝑗 𝑘 = 𝜇 + 𝑏𝑖 𝑗 + 𝜋𝑘 + 𝜙𝑚 + 𝜆𝑚 + 𝜖𝑖 𝑗 𝑘

where 𝑌𝑖 𝑗 𝑘 is the observed outcome on the j-th subject in the i-th treatment sequence during period

k, 𝜇 is the overall mean, 𝑏𝑖 𝑗 is the effect of the j-th subject in the ith treatment sequence, 𝜋𝑘 is the

effect of k-th period, 𝜙𝑚 is the effect of m-th drug, 𝜆𝑚 is the carryover effect of m-th drug and 𝜖𝑖 𝑗 𝑘

is the random error.

In a two interventions setting (Brown Jr, 1980), if there is no carryover effect, then the treatment

difference 𝛿 = 𝜙𝐴 − 𝜙𝐵 can be estimated by

𝛿 =
1
2
[(𝑌1.2 − 𝑌1.1) + (𝑌2.2 − 𝑌2.1)]

where 𝑌𝑖.𝑘 =
∑𝑛 𝑗

𝑗=1𝑌𝑖 𝑗 𝑘 , with variance

var(𝛿) = 𝜎2
𝜖

2

(
1
𝑛1
+ 1
𝑛2

)
To estimate the carryover effect, let 𝜆𝐴 +𝜆𝐵 = 0 and 𝛾 = 𝜆𝐴 −𝜆𝐵, then an unbiased estimate of

𝛾, �̂� is

�̂� =
1
2
[(𝑌2.1 + 𝑌2.2) − (𝑌1.1 + 𝑌1.2)]
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with variance

var(�̂�) = (4𝜎2
𝑏 + 2𝜎2

𝜖 )
(

1
𝑛1
+ 1
𝑛2

)
If the difference in carryover effects is not zero, an unbiased estimate of 𝛿 can be obtained by

using the data from first period only,

𝛿∗ = 𝑌2.1 − 𝑌1.1

with variance

var(𝛿∗) = (𝜎2
𝑏 + 𝜎2

𝜖 )
(

1
𝑛1
+ 1
𝑛2

)
To sum up, the analysis of the crossover design is more complicated than parallel group design.

If carryover effects are negligible, then data from both periods can be utilized to estimate and test

for a treatment effect. Otherwise, the analysis will be based on only the first-period data.

1.1.6 Motivating Examples of N-of-1 Trials

To motivate our work, consider an N-of-1 trial series that compare bright white light (10,000

lux) and dim red light (50 lux) in cancer patients with depressive symptoms, where light therapy

was delivered by portable light boxes with instructions and reminders given by a smartphone ap-

plication (I. M. Kronish et al., 2020). Briefly, each individual would use one of two light boxes

each morning for 30 minutes per day over a 12 weeks. Along with the light boxes, a smartphone

application would be used to give treatment reminders and to assess daily depressive symptoms,

fatigue level, and affectivity over the entire 12-week period. While theory suggests bright white

light may reduce cancer-related depression and fatigue, its effects may vary from individual to in-

dividual (Johnson et al., 2018). Thus, the primary analytical goal in I. M. Kronish et al. (2020) is

to identify for each individual whether bright white light is superior in terms of symptom control.

Figure 1.3 shows the daily assessments of two patients during the study course.

Another example is from a hypertension treatment study (I. M. Kronish et al., 2019). 7 patients

with a history of mild hypertension were included and assigned three blood pressure medications
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Figure 1.3: Daily assessments of two patients id 7707 and 7708. Black line represents bright white
light intervention, and grey line represents dim red light.
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from three different first-line blood pressure classes: hydrochlorothiazide (HCTZ), amlodipine and

losartan. Each trial was designed to last 12 weeks with a counterbalanced sequence ABCCBA. The

outcome of interest is systolic blood pressure (SBP), which was measured by patients twice in the

morning and twice in at night by home blood pressure device. The primary analytical goal is to

determine the personalized selection of blood pressure medications for each patient.

In Section 2.5 and 4.4, the light therapy study dataset and hypertension study dataset are used

to estimate treatment effect of single patient. In Section 3.5, the light therapy study dataset is

revisited to estimate the treatment effect of the entire study population.

1.2 Distributed Lag Models

The distributed lag model (DLM), used widely in economics (Almon, 1965; Koyck, 1954),

advertising (Bass and Clarke, 1972) and environment health studies (Welty et al., 2009; Zanobetti

et al., 2000), is a model in which current value of a dependent variable is not only associated with

current value of an explanatory variable, but also its lagged values. This method allows the effect

of an exposure to be distributed over a specific period of time, and providing a better understanding

of the exposure-outcome relationship, which is especially useful in evaluating the delayed effect.

Compared to existing methods which assume carryover effect is constant within each treatment

period, DLMs are more informative in evaluating the whole time course of treatment effect. Fur-

thermore, the number of observations measured in each treatment period are not required to be

same within or between participants, which makes it more flexible to analyze N-of-1 trials with

varying treatment period length. The general form of a DLM is:

𝑦𝑡 = 𝜇 +
∞∑
𝑖=0

𝛽𝑖𝑥𝑡−𝑖 + 𝑢𝑡 (1.1)

where 𝑡 = 1, 2, ..., 𝑛 denotes different time periods, 𝑦𝑡 denotes a response variable of interest at time

𝑡 and 𝑥𝑡 denotes a time-varying explanatory variable, which has some influence on all outcome after

𝑦𝑡 . 𝑢𝑡 are independent Gaussian errors with mean 0 and variance 𝜎2
𝑢 , and the lagged coefficient
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𝛽𝑖 is usually assumed to satisfy the condition that lim𝑖→∞ 𝛽𝑖 and
∑

𝑖 𝛽𝑖 < ∞. In practice, the lag

length is truncated to some finite length L since the lag coefficient vanishes to zero after L periods.

Then we can substitute the upper limit in (1.1) with the maximum number of lags L.

In DLMs, the parameters of interest are lag coefficients and the overall impact of exposure,

which is the summation of all lag coefficients. One difficulty of DLM is the multicollinearity

problem of lagged explanatory variables.

1.2.1 Polynomial Distributed Lag Model

Almon (1965) proposed a technique to add constraint on the lagged coefficients by assuming

these coefficients 𝛽𝑖 can be approximated by a 𝑑-th degree polynomial function of 𝑖, where 𝑑 is

usually much smaller than L, i.e.,

𝛽𝑖 =
𝑑∑
𝑗=0

𝛼 𝑗 𝑖
𝑗 , 𝑖 = 0, ...𝐿 and 0 < 𝑑 ≤ 𝐿 (1.2)

Or written in matrix notation:

𝜷 = 𝑹𝜶 (1.3)

where

𝑹 =



1 0 0 · · · 0

1 1 1 · · · 1
...

...
...

...
...

1 𝑖 𝑖2 · · · 𝑖𝑑


, 𝜶 =



𝛼0

𝛼1
...

𝛼𝑑


(1.4)

Then (1.1) can be written as

𝒚 = 𝑿𝑹𝜶 + 𝒖 (1.5)

The OLS estimator of 𝛼 is:

�̂�OLS = (𝑹′𝑿′𝑿𝑹)−1𝑹′𝑿′𝒚 (1.6)
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and Almon estimator of 𝜷 is:

�̂�Almon = 𝑹(𝑹′𝑿′𝑿𝑹)−1𝑹′𝑿′𝒚 (1.7)

If the error term is homoscedastic, it is the best linear unbiased estimator (BLUE) of (Judge,

1982). The Almon technique reduces the effect of multicollinearity because there are fewer ex-

planatory variables in the transformed model as compared to the actual DLM. However, in the

presence of heteroscedasticity, �̂�OLS does not remain efficient and consequently �̂�Almon also be-

comes inefficient.

The polynomial distributed lag model alleviates the multicollinearity issue by requiring the lag

weights to fall on a smooth curve. While the polynomial DLM is flexible, it is still a very strong

assumption to make about the curve of lag coefficients.

1.2.2 Geometric Distributed Lag Model

Koyck (1954) proposed an infinite distributed lag model by adding the following constrain on

lag coefficients in (1.1):

𝛽𝑖 = 𝛽0𝜆
𝑖, and 0 < 𝜆 < 1 (1.8)

In this model, lag coefficients are assumed to decrease geometrically. In other words, recent past

explanatory variable are more influential than distant past explanatory variable. 𝜆 is the coefficient

decaying rate. By replacing 𝛽𝑖 into (1.1), we can have:

𝑦𝑡 = 𝜇 + 𝛽0

∞∑
𝑖=0

𝜆𝑖𝑥𝑡−𝑖 + 𝑢𝑡 (1.9)

where 𝛽0 is the immediate effect and the long term effect is defined as:

∞∑
𝑘=0

𝛽𝑘 =
𝛽0

1 − 𝜆 (1.10)

As Koyck DLM contains infinite parameters, it is usually transformed from an infinite dis-
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tributed lag model into an autoregressive model with only three observable variables by subtracting

𝜆𝑦𝑡−1 from (1.9):

𝑦𝑡 = (1 − 𝜆)𝜇 + 𝜆𝑦𝑡−1 + 𝛽0𝑥𝑡 + (𝑢𝑡 − 𝜆𝑢𝑡−1) (1.11)

There are several approaches to estimate the parameters in the Koyck DLM, like the methods

proposed by Klein (1962) and Liviatan (1963). Here we regard Koyck DLM as an autoregressive-

moving average with exogenous terms (ARMAX) model where (𝑦𝑡 −𝜆𝑦𝑡−1) represents the autore-

gressive part and 𝑢𝑡 − 𝜆𝑢𝑡−1 represents the moving average part. Maximum likelihood method is

used to estimate the parameters. The likelihood function is:

𝐿 (𝜇, 𝛽0, 𝜆, 𝜎
2) =

𝑁∏
𝑡=1

{(
2𝜋𝜎2

)− 1
2 exp

(
− 1

2𝜎2𝑢
2
𝑡

)}
(1.12)

where 𝑢1, , 𝑢2, ..., 𝑢𝑛 is:

𝑢1 = 0

𝑢𝑡 = 𝑦𝑡 − (1 − 𝜆)𝜇 − 𝜆𝑦𝑡−1 − 𝛽0𝑥𝑡 + 𝜆𝑢𝑡−1, for 𝑡 = 2, ..., 𝑛
(1.13)

Klein (1962) suggested a method to obtain the maximum likelihood estimation of the parame-

ters in the model by first writing (2.4.4) as:

𝑦𝑡 = 𝛽0

𝑡−1∑
𝑖=0

𝜆𝑖𝑥𝑡−𝑖 + 𝛽0

∞∑
𝑖=𝑡

𝜆𝑖𝑥𝑡−𝑖 + 𝑢𝑡

= 𝛽0𝜂1𝑡 + 𝛾𝜂2𝑡 + 𝑢𝑡

(1.14)

where 𝜂1𝑡 =
∑𝑡−1

𝑖=0 𝜆
𝑖𝑥𝑡−𝑖 and 𝜂2𝑡 = 𝜆𝑡/(1 − 𝜆).

Given 𝜆, we can easily generate 𝜂1𝑡 and 𝜂2𝑡 , then 𝛽0 and 𝛾 can be obtained by ordinary least

squares. If we further assume that 𝑢𝑡 independently follow 𝑁 (0, 𝜎2), then searching over a fine

grid for 𝜆 that returns the minimal residual sum of squares will be the maximum likelihood estimate

of 𝜆 and same for the corresponding 𝛽0 and 𝛾.

Iterative numeric methods, such as Gradient Decent algorithm, BFGS algorithm and Newton-
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Raphson algorithm can be applied to obtain the maximum likelihood estimate of parameters.

Liviatan (1963) proposed to use instrumental variables approach to estimate coefficients of

Koyck DLM, which can avoid above iterative procedure and computational burden. Equation

(1.11) is reparameterized as:

𝑦𝑡 = 𝛿0 + 𝛿1𝑦𝑡−1 + 𝛿2𝑥𝑡 + 𝜖𝑡 (1.15)

where 𝛿0 = (1−𝜆)𝜇, 𝛿1 = 𝜆, 𝛿2 = 𝛽0 and 𝜖𝑡 = 𝑢𝑡 −𝜆𝑢𝑡−1. The first lag of the dependent series 𝑦𝑡−1

and the error term 𝜖𝑡 are correlated with each other, since 𝑦𝑡−1 depends on 𝑢𝑡−1 and the error term

𝜖𝑡 depends on both 𝑢𝑡 and 𝑢𝑡−1. The OLS coefficient estimator is therefore biased and inconsistent,

unless there is no association between 𝑦𝑡−1 and 𝜖𝑡 .

From the assumption of DLM, 𝑥𝑡 and 𝑥𝑡−1 are exogenous, i.e., cov(𝑥𝑡 , 𝜖𝑡) = cov(𝑥𝑡−1, 𝜖𝑡) = 0.

Furthermore, 𝑥𝑡−1 is correlated with change in 𝑦𝑡−1. Then 𝑥𝑡−1 can be utilized as instrument variable

for 𝑦𝑡−1 in formula (1.15). Note that 𝑥𝑡 in the model is exogenous, so it is both an independent and

instrumental variable.

Consider formula (1.15) in matrix form:

𝒚 = �̃�𝜹 + 𝝐 (1.16)

where

�̃� =



1 𝑦1 𝑥2

1 𝑦2 𝑥3
...

...
...

1 𝑦𝑛−1 𝑥𝑛


, 𝜹 =


𝛿0

𝛿1

𝛿2


, 𝝐 =



𝜖2

𝜖3
...

𝜖𝑛


(1.17)

Let 𝒁 be an 𝑛 × 2 matrix with 𝑖𝑡ℎ row 𝑧𝑖 = (𝑥𝑖, 𝑥𝑖−1), which denotes the instrumental variables.

Then the instrumental variables estimator is:

𝜹IV = (𝒁′�̃�)−1𝒁′𝒚 (1.18)
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Under homoskedasticity, the asymptotic distribution of instrumental variables estimator is nor-

mal with mean 𝜹 and the asymptotic covariance matrix is:

V̂
[
�̂�IV

]
=
�̂�2

𝑛
(Z′X)−1 Z′Z (Z′X)−1 (1.19)

where �̂�2 = 1
𝑛−3 (𝒚 − �̃�𝜹IV)′(𝒚 − �̃�𝜹IV).

The original parameters of Koyck model can be viewed as a function of 𝜹, i.e., (𝜇, 𝜆, 𝛽0) =

𝑔(𝛿0, 𝛿1, 𝛿2), Using multivariate delta method, we can derive with estimation ( �̂�, �̂�, 𝛽0) = ( 𝛿0
1−𝛿1

, 𝛿1, 𝛿2)

and its estimated covariance matrix ∇𝑔(𝜹)′V̂
[
�̂�IV

]
∇𝑔(𝜹).

If we are interested in single distributed lag coefficient up to lag 𝐿, then �̂� = (𝛽0, 𝛽1, ..., 𝛽𝐿) =

(𝛿2, 𝛿2𝛿1, ..., 𝛿2𝛿
𝐿
1 ), with estimated covariance matrix:

V̂
[
�̂�
]
=



0 1

𝛿2 𝛿1
...

...

𝐿𝛿2𝛿
𝐿−1
1 𝛿𝐿1


V̂(𝛿1, 𝛿2)


0 𝛿2 . . . 𝐿𝛿2𝛿

𝐿−1
1

1 𝛿1 . . . 𝛿𝐿1

 (1.20)

where V̂(𝛿1, 𝛿2) is the lower right block matrix of V̂
[
�̂�IV

]
.

Koyck DLM has a very specific lag coefficient shape which is hard to be verified before data

analysis. Due to its parsimonious modelling structure, it is hard to allow more freedom to the

estimation of lag coefficient shape. However, the advantage of Koyck DLM is that it allows for

coefficient estimation for an infinite time span, and does not require to truncate the model to an

arbitrary finite lag length.

1.2.3 Bayesian Distributed Lag Model

Instead of adding parametric constraint directly on the lag coefficient, Welty et al. (2009) pro-

posed to incorporate prior knowledge of the shape of lag coefficient curve into DLM through a

Bayesian framework. For a normal linear distributed lag model, the Bayesian DLM has the fol-
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lowing hierarchical structure:

𝒀 |𝑿, 𝜷, 𝜎2 ∼ 𝑁 (𝑿𝑇 𝜷, 𝜎2I𝑛)

𝜷|𝜎2
𝛽 , 𝜂 ∼ 𝑁 (0, 𝜎2

𝛽𝛀(𝜂))

𝜎2
𝛽 = 10Var(𝛽0)

𝛀(𝜂) = 𝑽 (𝜂1)𝑾 (𝜂2)𝑽 (𝜂1)

(1.21)

where 𝑽 (𝜂1) = diag(1, exp(𝜂1)1/2, ..., exp(𝜂1𝐿)1/2), 𝑾 (𝜂2) is the correlation matrix derived from

the covariance matrix 𝑽 (𝜂2)𝑽 (𝜂2)
′ + {I𝐿+1 − V (𝜂2)} 1𝐿+11′𝐿+1 {I𝐿+1 − V (𝜂2)}′, with 1𝐿+1 denotes

a (𝐿 + 1) × 1 vectors of ones.

The prior covariance matrix of 𝜷 can also be written component-wisely:

var(𝛽𝑖) = 𝜎2
𝛽 exp(−𝜂1𝑖)

cov
(
𝛽𝑖, 𝛽 𝑗

)
=

𝜎2
𝛽 {1 − exp (−𝜂2𝑖)} {1 − exp (−𝜂2 𝑗)} exp {−𝜂1 (𝑖 + 𝑗) /2}√([

{1 − exp (−𝜂2𝑖)}2 + exp (−2𝜂2𝑖)
] [
{1 − exp (−𝜂2 𝑗)}2 + exp (−2𝜂2 𝑗)

] )
for 𝑖, 𝑗 = 0, 1, ...𝐿 − 1 and 𝑖 ≠ 𝑗 . 𝜂1 controls the rate at which the variance of 𝜷 approach zero and

𝜂2 controls the rate at which neighbouring coefficients become more correlated.

Let �̂� be the ML estimate of the unconstrained distributed lag coefficients and let 𝚺 be the

sample covariance matrix, then the full conditional posterior distribution for 𝜷 is:

𝜷| �̂�, 𝜼, 𝜎2
𝛽 ∼ 𝑁 (

{
1/𝜎2

𝛽𝛀(𝜼)−1 + 𝚺−1
}−1

𝚺−1 �̂�{
1/𝜎2

𝛽𝛀(𝜼)−1 + 𝚺−1
}−1

) (1.22)

For a general linear DLM, the posterior distribution of 𝜷 has no closed form, but it can be

computed through Gibbs sampling or other Markov chain Monte Carlo methods. Also, we can

use Bayesian statistics software, like Stan or Winbugs to obtain MCMC sampling from posterior

distribution.
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Bayesian DLM adds the constrain of lag coefficient curve through prior information and allows

the degree of smoothness of the lag curve to be decided by the data. When prior assumption that

lag effects smoothly approach zero as lag increases is valid, the performance of Bayesian DLM is

better than other DLMs in terms of coefficient estimation.
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Chapter 2: Analysis of Single N-of-1 Trial

Using Bayesian Distributed Lag Model with

Autocorrelated Errors

2.1 Introduction

N-of-1 trials are multi-period crossover studies that compare two or more interventions in sin-

gle individuals, and are suitable for evaluating personalized treatment effects in those with chronic

conditions where the outcome is relatively stable (R. Kravitz et al., 2014). While treatment de-

livery and data collection involved in N-of-1 trials are more intensive and lengthier than those in

usual care, advances in mobile and sensor technology (Topol, 2010) and better understanding of

patient preferences (Cheung et al., 2020) have improved the implementation and uptake of this

trial methodology.

In a systematic review of 108 N-of-1 trial series between 1985 and 2010, Gabler et al. (2011)

report the use of graphical comparison, hypothesis tests (e.g., t-test, nonparametric tests), and re-

gression models in the analysis of N-of-1 data. While there is no single agreed upon analysis

method, these methods ignore two key features of experimental N-of-1 data. First, most methods

do not account for temporal dependence between assessments. Second, the methods do not capture

the carryover effects of an intervention. The second data feature can be partly addressed by using a

distributed lagged model (DLM), which is widely used in economics (Almon, 1965; Koyck, 1954),

advertising (Bass and Clarke, 1972), and environment health studies (Welty et al., 2009; Zanobetti
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et al., 2000). A DLM postulates that the current value of the outcome variable depends on the

previous values (lags) of an exposure as well as the current exposure value, thus allowing the total

exposure effect to be distributed over a time period and facilitating explicit modeling of carryover

effects. A potential challenge in fitting a DLM is collinearity of the exposure lags. The N-of-1 trial

design will further aggravate the problem: as illustrated in Figure 1.3, the exposure (light box) of-

ten remains the same as in the previous day in order to avoid switching intervention too frequently

during a trial. A strategy to handle collinearity in DLM is by putting parametric constraints on the

lag coefficients such as polynomial lags (Almon, 1965), or geometric lags (Koyck, 1954). Alter-

natively, one may consider putting informative prior on the coefficients in a Bayesian framework

(Welty et al., 2009).

In this chapter, we adopt the Bayesian framework and propose a Bayesian distributed lag model

with autocorrelated errors (BDLM-AR) as an extension of DLMs for N-of-1 trial data. The model

is novel in several ways. First, we propose a prior distribution that constraints the lag coefficients

with shrinkage factors that increase over time. Second, we impose a fused ridge-type penalty to

address collinearity, which may be viewed as a variant of the fused lasso method (Tibshirani and

Wang, 2008). Third, while current DLM methods assume independent error terms, we incorpo-

rate temporal correlations using an autoregressive error model. We will introduce the proposed

BDLM-AR with details in Section 2.2, and describe the posterior computations in Section 2.3.

The performance of BDLM-AR will be evaluated and compared with other methods by simulation

studies presented in Section 2.4. We will apply the proposed method to the light therapy data in

Section 2.5, and will conclude this article with a discussion in Section 2.6. Technical details are

given in the Appendix A.
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2.2 Bayesian Distributed Lag Model with Autocorrelated Errors

2.2.1 Proposed Model

Suppose we observe data from a patient on 𝑛 consecutive days. On day 𝑡 = 1, . . . , 𝑛, let 𝑋𝑡 and

𝑌𝑡 denote the binary treatment indicator and the outcome of interest, respectively. We consider a

distributed lag autoregressive model for 𝑌 , described as follows:

𝑌𝑡 = 𝜇 +
𝐿∑
𝑙=0

𝛽𝑙𝑋𝑡−𝑙 + 𝜖𝑡 (2.1)

for 𝑡 = 𝑝 + 1, ..., 𝑛, where the error term 𝜖𝑡 follows an autoregressive process,

𝜖𝑡 = 𝜙1𝜖𝑡−1 + 𝜙2𝜖𝑡−2 + ... + 𝜙𝑝𝜖𝑡−𝑝 + 𝑤𝑡 (2.2)

𝑤𝑡 is a white Gaussian noise with mean zero and unknown variance 𝜎2 > 0, and 𝐿 and 𝑝 are

pre-specified. Note that for 𝑡 < 𝐿, the maximum lag effect is of order 𝑡 − 1, and terms involving 𝑋

with non-positive subscript are not included in the model.

Model (2.1) is composed of two parts. First, for the structural component, the mean model is

specified by lag coefficients 𝜷 = (𝛽0, ..., 𝛽𝐿)′ and control mean 𝜇. The immediate treatment effect

is measured by 𝛽0, and the carryover effect due to treatment on 𝑙 days ago is measured by 𝛽𝑙 for

𝑙 > 0. In the model, we assume the carryover effect beyond day 𝐿 is zero. As such, the total

carryover treatment effect is captured as

𝛿 ≜
𝐿∑
𝑙=1

𝛽𝑙 = 𝐸 (𝑌𝑡 |𝑋𝑡−1 = 1, ...𝑋𝑡−𝐿 = 1, 𝑋𝑡) − 𝐸 (𝑌𝑡 |𝑋𝑡−1 = 0, ..., 𝑋𝑡−𝐿 = 0, 𝑋𝑡).

Hence, the model naturally breaks down total treatment effect into 𝛽0 and 𝛿.

Second, for the stochastic component, temporal dependency between errors is specified using

an order-𝑝 autoregressive error model with autoregression coefficient 𝝓 = (𝜙1, ..., 𝜙𝑝)′. Let 𝐵

denote the backshift operator, that is, having Φ(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 − ... − 𝜙𝑝𝐵

𝑝 so that the
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autoregression model for the error terms can be written as Φ(𝐵)𝜖𝑡 = 𝑤𝑡 . It is often convenient to

work with the transformed data 𝑌 ∗𝑡 = Φ(𝐵)𝑌𝑡 and 𝑋∗𝑡 = Φ(𝐵)𝑋𝑡 in the estimation steps. Thus,

applying Φ(𝐵) to both sides of model (2.1), we will rewrite the model

𝑌 ∗𝑡 = 𝜇∗ +
𝐿∑
𝑙=0

𝛽𝑙𝑋
∗
𝑡−𝑙 + 𝑤𝑡 , (2.3)

for 𝑡 = 𝑝 + 1, ..., 𝑛, where 𝜇∗ = Φ(𝐵)𝜇. To stack the data in vector form, we have

(𝒀∗ | 𝑿∗, 𝜇∗, 𝜷) ∼ 𝑁 (𝜇∗1𝑛−𝑝 + 𝑿∗𝜷, 𝜎2I𝑛−𝑝) (2.4)

where𝒀∗ = (𝑌 ∗𝑝+1, ..., 𝑌 ∗𝑛 )′, 𝑿
∗ is a (𝑛−𝑝)× (𝐿+1) matrix with 𝑋∗𝑘−𝑙+𝑝+1 being the (𝑘, 𝑙)-th element

of 𝑿∗, 1𝑛−𝑝 is a 1-vector of length 𝑛 − 𝑝, and I𝑛−𝑝 is the identity matrix of dimension 𝑛 − 𝑝. We

denote �̃� = (𝜇, 𝜷′)′ and 𝑿∗ = (Φ(𝐵)1𝑛−𝑝, 𝑿∗), so that 𝑿∗ �̃� = 𝜇∗1𝑛−𝑝 + 𝑿∗𝜷.

2.2.2 Prior Distribution on the Mean Model

We consider normal prior distribution for �̃�, that is, having

�̃� ∼ 𝑁 (0, 𝜎2�̃�
−1), (2.5)

where �̃� = 𝑑𝑖𝑎𝑔(𝑐0,𝛀) so that the prior variance of 𝜇 is 𝜎2𝑐−1
0 and the prior variance-

covariance matrix of 𝜷 is 𝜎2𝛀−1. We note that the prior variance depends on the variance 𝜎2

of the observations: such dependence renders a fused ridge penalized estimation procedure that is

free of the variance parameters, resulting in computational stability; see Equation (2.7) below.

We will postulate a non-informative prior on 𝜇 by setting 𝑐0 to be a small number, and we will
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consider 𝛀 of the following form:

©«

𝜆0 + 𝜆∗0 −𝜆∗0 0 . . . . . . 0

−𝜆∗0 𝜆1 + 𝜆∗0 + 𝜆∗1 −𝜆∗1 . . . . . . 0

0 −𝜆∗1 𝜆2 + 𝜆∗1 + 𝜆∗2 . . . . . . 0
...

...
...

. . .
...

...

0 0 0 . . . 𝜆𝐿−1 + 𝜆∗𝐿−2 + 𝜆∗𝐿−1 −𝜆∗𝐿−1

0 0 0 . . . −𝜆∗𝐿−1 𝜆𝐿 + 𝜆∗𝐿−1 + 𝜆∗𝐿

ª®®®®®®®®®®®®®®®¬

, (2.6)

where the hyperparameters 𝜆𝑙 , 𝜆∗𝑙 > 0, for 𝑙 = 0, . . . , 𝐿, are constrained to increase over 𝑙. As a

result of the monotonicity constraint, a lag coefficient 𝛽𝑙 at a greater lag 𝑙 is associated with a larger

diagonal element in precision 𝛀, thus shrinking 𝛽𝑙 toward the prior mean (zero) to a greater extent.

This effectively addresses collinearity of the lag coefficients without imposing strong parametric

structure to 𝜷. In addition, using the normal prior (2.5) with precision matrix (2.6), we can show

the maximum a posteriori probability estimate of �̃� minimizes a fused ridge-type penalty:

(𝒀∗ − �̃�
∗
�̃�)𝑇 (𝒀∗ − �̃�

∗
�̃�) + 𝑐0𝜇

2 +
𝐿∑
𝑙=0

𝜆𝑙𝛽
2
𝑙 +

𝐿∑
𝑙=0

𝜆∗𝑙 (𝛽𝑙 − 𝛽𝑙+1)2 (2.7)

where 𝛽𝐿+1 ≜ 0, thus giving insights on how the proposed prior constrains the lag coefficients: it

regularizes not only the ℓ2-norm of the coefficients but also their successive differences, thereby

enhancing local smoothness. The equivalence between the Bayesian inference and the fused ridge

regularization (2.7) is proved in Appendix A.1.

There are many ways to specify 𝜆𝑙 and 𝜆∗𝑙 to meet the monotonicity constraints. In this article,

we consider 𝜆𝑙 = exp{𝛾1(𝑙 + 1)} − 1 and 𝜆∗𝑙 = exp{𝛾2(𝑙 + 1)} − 1 for 𝛾1, 𝛾2 > 0, so that 𝛾1

controls the rate at which the ridge penalty in (2.7) increases, and 𝛾2 controls the increasing rate

of smoothness of the coefficient curve 𝜷. Instead of treating these hyperparameters as fixed, we

postulate a truncated standard exponential hyperprior on (𝛾1, 𝛾2), that is, having probability density
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function

𝜋(𝛾1, 𝛾2) ∝ exp (−𝛾1 − 𝛾2)1𝑆𝜸 (𝛾1, 𝛾2) (2.8)

where the support 𝑆𝜸 includes all pairs (𝛾1, 𝛾2) with which the precision matrix 𝛀 is positive

definite. As such, the degree of ridge and smooth penalization can be determined according to the

posterior distribution of the pair.

2.2.3 Prior Distribution on the Error Model

We put the Jeffreys prior for the error variance 𝜎2, that is, having density function

𝜋(𝜎2) ∝ 1/𝜎2 (2.9)

Note that any inverse-gamma prior for 𝜎2 would maintain conjugacy, and the Jeffreys prior can be

regarded as an improper limit of inverse-gamma prior distribution.

For the autoregressive process, we consider a truncated normal prior for 𝝓 subject to the con-

straint that the error process is stationary. Specifically, we postulate

𝝓 ∼ 𝑁𝑝
(
0𝑝, 200 × I𝑝

)
1𝑆𝝓 (𝝓) (2.10)

where 𝑆𝝓 (𝝓) denotes the support where all roots of the polynomial Φ(𝐵) = 1 − ∑𝑝
𝑙=1 𝜙𝑙𝐵

𝑙 are

outside the unit circle. Following Chib (1993), we can show that the process {𝜖𝑡 : 𝑡 = 1, 2, . . .} is

stationary when 𝝓 ∈ 𝑆𝝓 (𝝓). Note that the range of each 𝜙𝑖 is (−1, 1); thus, a prior variance of 200

in (2.10) essentially amounts to a flat prior.

2.3 Conditional Posterior Distributions

The proposed Bayesian model includes several conditionally conjugate priors, which facilitate

posterior computations via a hybrid Metropolis-Hastings/Gibbs algorithm. We describe the con-

ditional posterior distributions in this section; the details of derivation can be found in Appendix

26



A.2.

Working with the likelihood (2.4) based on the transformed data 𝑌 ∗𝑡 , we obtain that �̃� is condi-

tionally normally distributed a posteriori:

�̃� | 𝒀 , �̃�, 𝜎2, 𝝓, 𝜸 ∼ 𝑁𝐿+1
{
[ �̃�∗

′
�̃�
∗ + �̃�(𝜸)]−1 �̃�

∗′
𝒀∗, 𝜎2 [ �̃�∗

′
�̃�
∗ + �̃�(𝜸)]−1

}
(2.11)

and that 𝜎2 has an inverse-gamma conditional posterior:

𝜎2 | 𝒀 , �̃�, �̃�, 𝝓, 𝜸 ∼ IG

[
𝑛 − 𝑝 + 𝐿 + 1

2
,
(𝒀∗ − �̃�

∗
�̃�)′(𝒀∗ − �̃�

∗
�̃�) + �̃�′�̃�(𝜸) �̃�

2

]
(2.12)

Note that the dependence of (2.11) and (2.12) on 𝝓 is via the transformed data 𝒀∗.

Working with model (2.2) and (2.10), we obtain the conditional posterior distribution of 𝝓 is

truncated multivariate normal:

𝝓 | 𝒀 , �̃�, �̃�, 𝜎2, 𝜸 ∼ 𝑁𝑝

[(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)−1

𝜎−2𝑬∗
′
𝝐∗,

(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)−1

]
1𝑆𝝓 (𝝓)

(2.13)

where 𝝐∗ = (𝜖∗𝑝+1, . . . , 𝜖∗𝑛)′, 𝜖∗𝑡 = 𝑌𝑡 − 𝜇 −∑𝐿
𝑙=0 𝛽𝑙𝑋𝑡−𝑙 , and 𝑬∗ is a (𝑛 − 𝑝) × 𝑝 matrix with 𝜖∗𝑝+𝑘− 𝑗

being the (𝑘, 𝑗)-th element.

Because of conjugacy, the parameters �̃�, 𝜎2, and 𝝓 can be easily updated in a Gibbs sampling

fashion.

Using the likelihood (2.4) and prior of 𝜸 and �̃�, the conditional posterior distribution can be

expressed as

𝜋(𝜸 | 𝒀 , �̃�, �̃�, 𝝓, 𝜎2) ∝ |𝜎−2�̃�(𝜸) | 12 exp
[
− 1

2𝜎2 �̃�
′
�̃�(𝜸) �̃�

]
exp(−𝛾1 − 𝛾2)1𝑆𝜸 (𝛾1, 𝛾2). (2.14)

We propose to sample 𝜸 using a Metropolis-Hastings (MH) step with a uniform𝑈 (−𝑎, 𝑎) proposal

distribution. That is, 𝛾𝑖,𝑛𝑒𝑤 = 𝛾𝑖 + 𝑈 (−𝑎, 𝑎), for 𝑖 = 1, 2 where the tuning parameter 𝑎 is chosen

such that the acceptance rate of proposed sample is around 50% (Gelman et al., 1996).
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Note that updating the hyperparameter 𝜸 involves the calculation of the precision matrix �̃�(𝜸),

which needs to be positive definite. The (𝐿 + 2) × (𝐿 + 2) precision matrix �̃�(𝜸) is a special

case of tridiagonal matrix. The computational cost of regular algorithms for checking whether

a given matrix is positive definite is at most 𝑂 (𝐿3). In this article, we implement an efficient

computation algorithm with cost of 𝑂 (𝐿). Specifically, define an (𝐿 + 2)-dimensional vector

c = (𝑐0, 𝑐2, ..., 𝑐𝐿+1) by

𝑐𝑙 =


𝜆0 + 𝜆∗0, 𝑙 = 0,

(𝜆𝑙 + 𝜆∗𝑙 ) −
1

𝑐𝑙−1
, 𝑙 = 1, 2, ..., 𝐿 + 1

El-Mikkawy (2004) showed that the �̃�(𝜸) is positive definite if and only if 𝑐𝑙 > 0 for 𝑙 = 0, 1, ...𝐿+

1. Thus the problem boils down to checking the positiveness of elements in c.

Having the full conditional distribution of all parameters in BDLM-AR, we use a hybrid

Metropolis-Hastings/Gibbs algorithm to generate samples of ( �̃�, 𝝓, 𝜎2, 𝜸) from the posterior dis-

tribution.
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Algorithm 1: The hybrid Metropolis-Hastings/Gibbs algorithm

Step 1. Set initial values for �̃�, 𝜎2, 𝝓 and 𝜸;

for 𝑖 ← 1 to 𝑛iteration do
Step 2. Given current value of 𝝓, transform 𝒀 , �̃� to 𝒀∗, �̃�∗ as described in equation

(3) of Section 2.1; Also construct precision matrix �̃�(𝜸) based on 𝜸 as described in

Section 2.1;

Step 3. Conditional on current values of 𝒀∗, �̃�∗, 𝜎2 and �̃�(𝜸), update �̃� based on

𝜋( �̃� | 𝒀∗, �̃�∗, 𝜎2, 𝝓, 𝜸);

Step 4. Conditional on current values of 𝒀∗, �̃�∗, �̃�, 𝝓 and �̃�(𝜸), update 𝜎2 based on

𝜋(𝜎2 | 𝒀∗, �̃�∗, �̃�, 𝝓, 𝜸);

Step 5. Update 𝝐 conditional on current value of �̃� and 𝒀 , �̃�. Then update 𝝓 based on

𝜋(𝝓 | 𝒀 , �̃�, �̃�, 𝜎2, 𝜸). Reject samples if the roots of 𝝓(𝐿) lie outside the unit circle;

Step 6. Update (𝛾1, 𝛾2) based on 𝜋(𝜸 | �̃�, 𝜎2). Sample a proposal 𝛾∗𝑖 by

𝛾∗𝑖 = 𝛾𝑖 + 𝑎 ∗𝑈 (−1, 1) for 𝑖 = 1, 2. 𝑎 is an adjustable step size. Compute the ratio

𝑅𝛾 =
𝜋(𝜸∗ | �̃�, 𝜎2)
𝜋(𝜸 | �̃�, 𝜎2)

if �̃�(𝜸∗) is positive definite then

update 𝜸 = 𝜸∗ with probability min(1, 𝑅𝛾);

end

end

2.4 Simulation Study

2.4.1 Performance in Estimating Lag Coefficients

In this section, we evaluate the performance of the proposed BDLM-AR using simulation

studies. At the end of each simulated trial, we fitted BDLM-AR with lag 𝐿 = 7 and AR(1),
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that is, having

𝑌𝑡 = 𝜇 +
7∑
𝑙=0

𝛽𝑙𝑋𝑡−𝑙 + 𝜖𝑡 (2.15)

where 𝜖𝑡 = 𝜙𝜖𝑡−1 + 𝑤𝑡 and 𝑤𝑡 ∼ 𝑁 (0, 𝜎2). Posterior distributions were derived using the hybrid

Metropolis Hastings/Gibbs algorithm described in the previous section with 50,000 iterations, a

burn-in period of 25,000, and 𝑎 = 0.2 for sampling 𝛾 in the MH step.

We compared BDLM-AR with some existing methods including the Bayesian distributed lag

model (BDLagM; Welty et al., 2009), Bayesian ridge DLM (BR-DLM) with a mean zero normal

prior for �̃�, and a non-informative prior Bayesian DLM (NB-DLM) with a flat improper priors on

each parameter in �̃�. These existing methods would use the same mean model (2.15) but assume

independent errors without accounting for autocorrelation.

In addition, as a benchmark, we include the parametric Koyck’s DLM (Koyck, 1954) which

assumes the knowledge of the true autoregressive coefficients. Details of the model specifications

of the competing methods are given in Section 2.4.4.

We consider N-of-1 trials where measurements are collected daily for 120 days, and consider

two different treatment sequences. In the first sequence, a participant would receive 𝑥𝑡 = 1 on the

first 30 days and the last 30 days, and receive 𝑥𝑡 = 0 between days 31 and 90; that is,

𝑥 (1)𝑡 =


1 𝑡 = 30𝑠 + 1, ..., 30𝑠 + 30 for 𝑠 = 0, 3

0 𝑡 = 30𝑠 + 1, ..., 30𝑠 + 30 for 𝑠 = 1, 2.

In the second treatment sequence, a participant would switch treatments more frequently; specifi-

cally,

𝑥 (2)𝑡 =


1 𝑡 = 15𝑠 + 1, ..., 15𝑠 + 15 for 𝑠 = 0, 3, 5, 6

0 𝑡 = 15𝑠 + 1, ..., 15𝑠 + 15 for 𝑠 = 1, 2, 4, 7.

For each given treatment sequence, the data are generated according to model (2.15) under five

sets of lag coefficients (lag curves) reflecting different patterns of carryover treatment effects:
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1. Exponential decay curve: 𝜷 = (5, 2.5, 1.25, 0.625, 0.3125, 0, 0, 0)𝑇 ;

2. Exponential decay curve with oscillation: 𝜷 = (5, 2.5,−1.25,−0.625, 0.3125, 0, 0, 0)𝑇 ;

3. Slow absorption curve: 𝜷 = (1.51, 2.75, 3.36, 2.03, 0.34, 0, 0, 0)𝑇 ;

4. Slow absorption curve with oscillation: 𝜷 = (1.51, 2.75,−3.36,−2.03, 0.34, 0, 0, 0)𝑇 ;

5. No carryover effect: 𝜷 = (10, 0, 0, 0, 0, 0, 0, 0)𝑇 .

The exponential decay curves (1) and (2) specify coefficients that diminish in magnitude as lag

lengthens. The slow absorption curves (3) and (4) reflect scenarios where there is a delay for

the carryover effects to peak. The last scenario (5) is the null case where there is no carryover

effect. The coefficients in exponential curve (1) decrease geometrically, which is aligned with

the assumption of Koyck DLM. The lag curves of all five settings are given in Figure 2.1. The

total effect in each scenario is 10 and total carryover effects (𝛿) are 4.69, 0.94, 8.48, -2.30 and 0

respectively.

We consider the two values of the standard deviation 𝜎 to mimic two signal to noise ratios

(SNR =
∑7

𝑙=0 |𝛽𝑙 |/𝜎): 𝜎 = 10 so that SNR= 1 for strong treatment effect, and 𝜎 = 20 so that

SNR = 0.5 for weak treatment effect. Two different autoregressive coefficients are used: 𝜙 = 0.5

for strong serial correlation and 𝜙 = 0.2 for weak serial correlation. In the simulation below, we

focus on the setting of bimonthly switch treatment sequence, strong treatment effect (SNR = 1)

and strong serial correlation (𝜙 = 0.5). We will then compare this setting with settings that alter

only one of the three specifications (i.e., treatment generating sequence, 𝜎 or 𝜙) while keeping the

other two unchanged.

For each simulation scenario, 100 data sets were generated. We fit the proposed BDLM-AR

model with lag 𝐿 = 7 and AR(1) for the error terms using the hybrid Metropolis-Hastings/Gibbs

algorithm in section 2.3 with 50,000 iterations, a burn-in period of 25,000 and tuning parameter

𝑎 = 0.2. We check the convergence of all the MCMC simulations using both trace plots and the

GelmanRubin diagnostics (Gelman, Rubin, et al., 1992). The potential scale reduction factor for
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Figure 2.1: Hypothetical true lag coefficients curve in the simulation. Columns represent shape of
lag coefficients curve. Rows represent variation based on the original shape, from top to bottom
are: no variation and variate with oscillation (every 2 days).
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lag coefficients, autoregressive coefficients and model variance all are smaller than 1.2, as Brooks

and Gelman (1998) have suggested, indicating the convergence of posterior samples.

Evaluation of the lag coefficient estimation performance are based on the bias and root mean

square error (RMSE) for each lag parameter, the total treatment effect (
∑𝐿

𝑙=0 𝛽𝑙) and the total car-

ryover effect (
∑𝐿

𝑙=1 𝛽𝑙) over 100 simulation data sets. To compare the overall performance of each

method in fitting the true lag curve, Euclidean distance is used to measure the estimation prop-

erty of estimated lag coefficient vector �̂� to the true lag coefficient vector 𝜷 by using formula:

Distance = | | �̂� − 𝜷| |2.

First, we investigate the performance of proposed BDLM-AR model in estimating individual

lag coefficients. Figure 2.2 shows the bias and RMSE of each estimated lag coefficient of five

models under different scenarios. Figure 2.3 shows the estimated lag curve of five models under

different scenarios. The 90% posterior mean band represents the distribution of posterior mean of

each lag coefficient under 100 simulations, rather than 90% credible interval of each coefficient

estimation. The NB-DLM method has the largest RMSE and relatively low bias in most parame-

ters. This is expected since no regularization is imposed on the lag coefficients due to the use of

improper priors, which yields low bias, but the variance is inflated due to collinearity. The normal

prior in BR-DLM method acts as an ℓ2 penalty on the lag coefficients, and thus the RMSE of BR-

DLM is consistently smaller than that of NB-DLM across different lag coefficients with slightly

inflated bias. Both BDLagM method and the proposed BDLM-AR method place increasing con-

straint on lag coefficients so that the bias and variance of posterior mean estimator decrease as

lag increases, providing small RMSE at large lags. In addition, compared to BDLagM method,

the proposed BDLM-AR method explicitly incorporates ridge type of regularization on lag coef-

ficients, which will achieve much smaller RMSE at first several lag coefficients. This is the most

common situation in N-of-1 trials since immediate response from patients usually accounts for

a large proportion of total treatment effect. However, as a trade-off, the bias of BDLM-AR for

early lag coefficients will be slightly inflated as compared to BDLagM, BR-DLM and NB-DLM,

especially when true lag curve has frequent fluctuation. The benchmark method, Koyck DLM,
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Figure 2.2: Bias and RMSE of posterior mean lag coefficients under five different true lag curves.
Bimonthly switch treatment sequence, strong treatment effect (SNR = 1) and strong serial correla-
tion (𝜙 = 0.5) are used to generate simulated data.

performs best in the exponential decay case, where the true coefficients of autoregressive error (𝜙)

are assumed to be known. The proposed BDLM-AR has very similar performance as Koyck DLM.

Note that the autoregressive errors are estimated directly from proposed BDLM-AR model, which

is more practical in real application. In summary, the proposed BDLM-AR has the smallest RMSE

in nearly all lag coefficients.

Table 2.1 summarizes the results of total effect (
∑7

𝑙=0 𝛽𝑙), total carryover effect (
∑7

𝑙=𝑖 𝛽𝑙) and

immediate effect (𝛽0) across different lag curves. Our proposed BDLM-AR model has comparable

performance as other models in estimating total effect, and outperforms BDLagM and NB-DLM

in terms of RMSE of total carryover effect in most scenarios, especially when the true lag curve

does not contain carryover effect. This scenario indicates that our proposed model is less likely

to report false positive carryover effect. A summary of the evaluation metrics of all parameters
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Figure 2.3: Posterior mean estimated lag curve (dashed) and true lag curve (solid) with 90% poste-
rior bands (grey) under five lag curves, estimated by five models. Treatment sequence 𝑥 (1)𝑡 , strong
treatment effect (SNR = 1) and strong serial correlation (𝜙 = 0.5) are used to generate simulated
data.
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BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM

Bias

Total Effect
Exponential decay -1.82 0.41 0.65 0.21 0.02
Exponential decay (Oscillated) -1.24 0.61 0.61 0.20 -0.79
Slow absorption -2.04 0.12 0.71 0.30 -0.42
Slow absorption (Oscillated) 0.73 0.73 0.59 0.46 -0.15
No carryover -1.60 0.65 0.58 0.14 0.25

Total Carryover Effect
Exponential decay -1.57 0.10 0.01 1.13 -0.44
Exponential decay (Oscillated) 0.31 2.14 -0.15 1.50 -0.17
Slow absorption -4.19 -3.61 -0.11 -0.31 0.40
Slow absorption (Oscillated) 1.78 2.23 -0.70 0.71 0.06
No carryover 2.05 4.98 0.94 3.25 0.23

Immediate Effect
Exponential decay -0.25 0.30 0.64 -0.92 0.46
Exponential decay (Oscillated) -1.55 -1.53 0.76 -1.30 -0.62
Slow absorption 2.15 3.73 0.81 0.61 -0.82
Slow absorption (Oscillated) -1.05 -1.51 1.29 -0.25 -0.21
No carryover -3.65 -4.33 -0.35 -3.11 0.02

RMSE

Total Effect
Exponential decay 3.61 3.87 4.05 4.17 3.96
Exponential decay (Oscillated) 2.95 3.90 4.05 4.11 3.93
Slow absorption 3.81 3.85 4.06 4.16 4.40
Slow absorption (Oscillated) 2.28 3.93 4.04 4.01 3.99
No carryover 3.54 3.91 4.04 4.18 3.93

Total Carryover Effect
Exponential decay 3.03 2.01 6.57 4.83 7.61
Exponential decay (Oscillated) 2.25 2.87 6.56 4.83 6.31
Slow absorption 5.13 4.15 6.58 4.64 6.94
Slow absorption (Oscillated) 2.96 2.94 6.62 4.44 6.39
No carryover 3.39 5.36 6.65 6.06 6.56

Immediate Effect
Exponential decay 2.71 2.23 6.00 3.85 7.21
Exponential decay (Oscillated) 2.99 2.62 6.01 3.85 6.72
Slow absorption 3.42 4.30 6.03 3.61 6.67
Slow absorption (Oscillated) 2.62 2.52 6.12 3.18 6.49
No carryover 4.77 4.90 5.99 5.39 5.87

Table 2.1: Summary of evaluation metrics (best values in bold) of total effect, total carryover effect
and immediate effect(𝛽0) under five lag curves, estimated by five models. Treatment sequence
𝑥 (1)𝑡 , strong treatment effect (SNR = 1) and strong serial correlation (𝜙 = 0.5) are used to generate
simulated data.
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Bias RMSE
Truth BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM

𝜇 10 1.19 -0.11 -0.34 -0.11 -0.41 2.31 2.71 2.66 2.68 2.35
Total effect 9.69 -1.82 0.41 0.65 0.21 0.02 3.61 3.87 4.05 4.17 3.96

Total carryover effect 4.69 -1.57 0.10 0.01 1.13 -0.44 3.03 2.01 6.57 4.83 7.61
𝛽0 5 -0.25 0.30 0.64 -0.92 0.46 2.71 2.23 6.00 3.85 7.21
𝛽1 2.5 -0.76 -0.04 -0.40 0.04 -0.41 1.62 0.96 2.61 2.69 7.17
𝛽2 1.25 -0.44 -0.07 -0.17 0.41 -1.11 1.26 0.52 1.89 2.56 6.78
𝛽3 0.62 -0.30 -0.04 0.03 0.48 0.64 0.70 0.30 1.16 2.70 6.44
𝛽4 0.31 -0.16 -0.02 0.08 0.25 0.82 0.57 0.18 0.71 2.60 6.29
𝛽5 0 0.08 0.15 0.24 0.05 0.16 0.38 0.19 0.49 2.47 6.10
𝛽6 0 0.03 0.08 0.15 0.14 0.58 0.18 0.11 0.30 2.57 6.55
𝛽7 0 -0.02 0.04 0.09 -0.23 -1.12 0.21 0.06 0.18 3.44 6.45
𝜙 0.5 0.00 - - - - 0.08 - - - -
𝜎 10 -0.04 -0.08 1.47 1.21 1.27 0.63 0.66 1.79 1.57 1.59

Table 2.2: Summary of evaluation metrics of total effect(
∑𝐿

𝑙=0 𝛽𝑙), total carryover effect (
∑𝐿

𝑙=1 𝛽𝑙),
lag coefficients, autoregressive coefficient(𝜙) and model standard deviation(𝜎) under exponential
decay lag curve, estimated by five models. Treatment sequence 𝑥 (1)𝑡 , strong treatment effect (SNR
= 1) and strong serial correlation (𝜙 = 0.5) are used to generate simulated data.

Bias RMSE
Truth BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM

𝜇 10 0.91 -0.19 -0.33 -0.11 0.38 2.07 2.72 2.66 2.66 2.71
Total effect 5.94 -1.24 0.61 0.61 0.20 -0.79 2.95 3.90 4.05 4.11 3.93

Total carryover effect 0.94 0.31 2.14 -0.15 1.50 -0.17 2.25 2.87 6.56 4.83 6.31
𝛽0 5 -1.55 -1.53 0.76 -1.30 -0.62 2.99 2.62 6.01 3.85 6.72
𝛽1 2.5 -1.48 -0.91 -1.75 -0.51 -0.52 1.90 1.31 3.12 2.58 6.69
𝛽2 -1.25 1.42 2.01 1.26 1.58 -0.16 1.77 2.06 2.26 2.87 6.48
𝛽3 -0.62 0.65 1.00 0.64 0.77 0.67 0.81 1.03 1.32 2.63 6.44
𝛽4 0.31 -0.28 -0.13 -0.31 -0.06 0.17 0.49 0.20 0.77 2.39 6.61
𝛽5 0 0.01 0.10 0.00 -0.08 -0.33 0.31 0.13 0.43 2.32 6.31
𝛽6 0 0.01 0.05 0.00 0.06 0.30 0.13 0.07 0.26 2.45 7.01
𝛽7 0 -0.02 0.03 0.00 -0.26 -0.30 0.16 0.04 0.16 3.26 7.45
𝜙 0.5 -0.01 - - - - 0.08 - - - -
𝜎 10 -0.05 -0.07 1.47 1.22 1.21 0.63 0.67 1.79 1.57 1.54

Table 2.3: Summary of evaluation metrics under exponential decay (oscillated) lag curve.

Bias RMSE
Truth BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM

𝜇 10 1.30 0.02 -0.36 -0.17 0.04 2.39 2.71 2.67 2.68 3.04
Total effect 9.99 -2.04 0.12 0.71 0.30 -0.42 3.81 3.85 4.06 4.16 4.40

Total carryover effect 8.49 -4.19 -3.61 -0.11 -0.31 0.40 5.13 4.15 6.58 4.64 6.94
𝛽0 1.51 2.15 3.73 0.81 0.61 -0.82 3.42 4.30 6.03 3.61 6.67
𝛽1 2.75 -0.82 -0.28 0.60 -0.32 -0.43 1.73 1.00 2.66 2.67 5.80
𝛽2 3.36 -2.06 -2.16 -1.27 -0.72 0.97 2.46 2.23 2.27 2.62 6.12
𝛽3 2.03 -1.42 -1.43 -0.77 -0.03 -0.56 1.60 1.46 1.40 2.60 6.42
𝛽4 0.34 -0.07 -0.04 0.42 0.52 0.28 0.62 0.19 0.82 2.59 6.41
𝛽5 0 0.14 0.16 0.46 0.20 1.08 0.43 0.20 0.63 2.43 6.47
𝛽6 0 0.06 0.09 0.28 0.21 -0.81 0.23 0.11 0.38 2.53 6.14
𝛽7 0 -0.02 0.05 0.17 -0.18 -0.12 0.28 0.07 0.23 3.40 6.80
𝜙 0.5 0.00 - - - - 0.08 - - - -
𝜎 10 -0.03 -0.06 1.48 1.21 1.35 0.62 0.65 1.79 1.57 1.63

Table 2.4: Summary of evaluation metrics under slow absorption lag curve.
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Bias RMSE
Truth BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM

𝜇 10 -0.05 -0.22 -0.32 -0.25 0.09 1.75 2.73 2.66 2.63 2.61
Total effect -0.79 0.73 0.73 0.59 0.46 -0.15 2.28 3.93 4.04 4.01 3.99

Total carryover effect -2.3 1.78 2.23 -0.70 0.71 0.06 2.96 2.94 6.62 4.44 6.39
𝛽0 1.51 -1.05 -1.51 1.29 -0.25 -0.21 2.62 2.52 6.12 3.18 6.49
𝛽1 2.75 -2.56 -2.76 -3.34 -1.82 0.15 2.75 2.92 4.22 2.98 7.04
𝛽2 -3.36 3.03 3.35 2.35 2.44 -0.59 3.26 3.38 3.01 3.24 6.87
𝛽3 -2.03 1.81 2.01 1.43 1.17 0.34 1.87 2.03 1.84 2.63 6.50
𝛽4 0.34 -0.41 -0.35 -0.71 -0.49 0.43 0.49 0.38 1.00 2.13 7.23
𝛽5 0 -0.03 -0.01 -0.22 -0.27 -0.22 0.32 0.08 0.48 2.13 6.54
𝛽6 0 0.00 -0.01 -0.13 -0.04 -0.22 0.17 0.05 0.29 2.24 6.55
𝛽7 0 -0.05 0.00 -0.08 -0.28 0.17 0.32 0.03 0.18 3.02 6.03
𝜙 0.5 -0.01 - - - - 0.08 - - - -
𝜎 10 -0.07 -0.06 1.48 1.21 1.41 0.64 0.67 1.79 1.57 1.73

Table 2.5: Summary of evaluation metrics under slow absorption (oscillated) lag curve.

Bias RMSE
Truth BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM

𝜇 10 1.07 -0.25 -0.31 -0.07 0.12 2.25 2.72 2.66 2.69 2.54
Total effect 10 -1.60 0.65 0.58 0.14 0.25 3.54 3.91 4.04 4.18 3.93

Total carryover effect 0 2.05 4.98 0.94 3.25 0.23 3.39 5.36 6.65 6.06 6.56
𝛽0 10 -3.65 -4.33 -0.35 -3.11 0.02 4.77 4.90 5.99 5.39 5.87
𝛽1 0 1.28 2.59 0.51 1.93 0.44 1.93 2.76 2.64 3.49 6.41
𝛽2 0 0.50 1.22 0.18 0.84 0.39 1.39 1.32 1.89 2.89 6.54
𝛽3 0 0.17 0.60 0.11 0.54 -1.00 0.66 0.67 1.17 2.96 6.77
𝛽4 0 0.07 0.30 0.07 0.27 0.08 0.56 0.35 0.71 2.82 7.13
𝛽5 0 0.04 0.15 0.04 -0.11 0.27 0.42 0.19 0.43 2.67 6.53
𝛽6 0 0.01 0.08 0.02 0.10 0.08 0.17 0.11 0.26 2.76 6.28
𝛽7 0 -0.03 0.04 0.01 -0.31 -0.02 0.17 0.06 0.16 3.64 5.79
𝜙 0.5 -0.01 - - - - 0.08 - - - -
𝜎 10 -0.03 -0.06 1.47 1.23 1.49 0.63 0.67 1.79 1.59 1.77

Table 2.6: Summary of evaluation metrics under no carryover effect lag curve.
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comparing five models under different lag curves can be found in Table 2.2 to 2.6.

Treatment sequence, signal to noise ratio and magnitude of autocorrelation are other simula-

tion parameters of interest. Figure 2.4 to 2.6 show comparison of RMSE of total effect and total

carryover effect between different models under different simulation design settings.

The overall performance in estimating the lag coefficient vector is summarized in Figure 2.7.

Two rows represent treatment sequence 𝑥 (1)𝑡 and 𝑥 (2)𝑡 respectively while adjusting for signal to noise

ratio and magnitude of autocorrelation. The distance | | �̂� − 𝜷| |2 between the posterior means/MLE

and the truth under 𝑥 (2)𝑡 (bottom panel) is smaller than that under 𝑥 (1)𝑡 (top panel) suggesting fre-

quently switching treatments will help improve the information content in N-of-1 trial data. This

is in line with what we expect because collinearity of exposure lags will be lessened as treatments

change frequently, while the total duration is held fixed. An implication in practice is that we

should alternate intervention as frequent as it is feasible. The relative performance among meth-

ods is the same regardless of the treatment sequence, that is, the proposed BDLM-AR yields the

shortest distance from the true lag coefficients 𝜷. Comparison of distance to true lag curves under

other simulation parameters can be found in Figure 2.8 and 2.9.

2.4.2 Effects of Model Misspecification

In the previous subsections, BDLM-AR and other methods use a working mean model with

𝐿 = 7 and an AR(1) model for autoregressive errors. These working models correctly specify

(or include the data generation model) in the previous simulation study. In this subsection, we

investigate the robustness of BDLM-AR under model mis-specifications. Specifically, we will

consider (1) the working mean model with 𝐿 = 0, 1, . . . , 7; (2) the stochastic components that

assumes autoregressive error order of 𝑝 = 0, 1, 7. That is, we consider a total of 24 BDLM-AR

models.

In data generation, we use exponential decay curve as the true mean model, where 𝛽𝑙 > 0 for

𝑙 = 0, 1, 2, 3, 4, and we consider true scenarios for the errors:

1. AR(1) with 𝜙 = 0.5
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Figure 2.4: RMSE of (a) Total effect (b) Total carryover effect under: Treatment sequence 𝑥 (1)𝑡 vs.
Treatment sequence 𝑥 (2)𝑡 .
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Figure 2.5: RMSE of (a) Total effect (b) Total carryover effect under: strong signal to noise ratio
(SNR = 1) vs. weak signal to noise ratio (SNR = 0.5).
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Figure 2.6: RMSE of (a) Total effect (b) Total carryover effect under: strong serial correlation (𝜙
= 0.5) vs. weak serial correlation (𝜙 = 0.2).
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2. Autoregressive model with 𝜙1 = 0.5, 𝜙2 = 0, 𝜙3 = 0, 𝜙4 = 0.3, 𝜙5 = 0, 𝜙6 = 0.2, 𝜙7 = 0

Note that, under the scenario 1, a working model with 𝐿 < 4 or 𝑝 = 0 under-specifies the true

model. Likewise, under the scenario 2, a working model with 𝐿 < 4 or 𝑝 = 0, 1 under-specifies

the true model.

Table 2.7 and 2.8 summarize the bias and RMSE of these 24 models under the two scenarios

with 𝜎 = 10 under 𝑥 (1)𝑡 It can be seen that misspecified lag length has little influence on estimating

total effect, total carryover effect and immediate effect, while under-specified error AR order will

increase RMSE of parameters to a higher level than over-specified error AR order. Note that when

choosing a small lag length value, we can hardly acquire estimation about the whole lag curve,

as well as the information on the duration of carryover effect. Therefore, when the lag length is

unknown, we suggest to fit data with a reasonable long lag length. For error autoregressive order,

when the true orders are unknown, it is also suggested to fit a model with high autoregressive order.

2.4.3 Performance in Estimating Autoregressive Coefficients

To demonstrate the performance of proposed model under high order autoregressive errors,

we conducted simulation to compare proposed BDLM-AR model with RegAR model. The data

generation model is 𝑦𝑡 = 𝜇 + ∑7
𝑙=0 𝛽𝑙𝑥𝑡−𝑙 + 𝜖𝑡 , where 𝜖𝑡 = 𝜙1𝜖𝑡−1 + 𝜙2𝜖𝑡−2 + · · · + 𝜙7𝜖𝑡−7 + 𝑤𝑡 and

𝑤𝑡 ∼ 𝑁 (0, 𝜎2) for 𝑡 = 8, 3, ..., 120. Both models are fitted using AR(7) errors and AR(1) errors

respectively, in order to evaluate the effect of neglecting high order autoregressive errors. In this

simulation, we used exponential decay lag curve, strong SNR and treatment sequence 𝑥 (1)𝑡 across

different models. Serial correlation 𝝓 is set to be 𝜙1 = 0.5, 𝜙2 = 0, 𝜙3 = 0, 𝜙4 = 0.3, 𝜙5 = 0, 𝜙6 =

0.2, 𝜙7 = 0.

Table 2.9 summarize the performance of proposed BDLM-AR model in estimating individual

model parameter, averaged across 100 simulation data sets. BDLM-AR performs comparably to

RegAR in estimating autoregressive coefficients and total effect. Comparing BDLM-AR model

with AR(7) and AR(1) error, we observe when higher order positive autoregressive coefficients

are omitted in estimation, the model variance will be under estimated. This will further affect the

43



Exponential decay Exponential decay (Oscillated) Slow absorption Slow absorption (Oscillated) No carryover effect

T
re

a
tm

e
n
t s

e
q
u

e
n
c
e  x

t (1)
T

re
a
tm

e
n
t s

e
q
u

e
n
c
e  x

t (2)

0

10

20

30

40

0

10

20

30

40

Models

D
is

ta
n

c
e
 t

o
 t

ru
e
 l
a
g

 c
o

e
ff

ic
ie

n
t 

c
u

rv
e

Models BDLM−AR Koyck DLM BDLagM BR−DLM NB−DLM

Figure 2.7: Distance to true lag curves under: Treatment sequence 𝑥 (1)𝑡 vs. Treatment sequence
𝑥 (2)𝑡 .
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Figure 2.8: Distance to true lag coefficients curves under: strong signal to noise ratio (SNR = 1)
vs. weak signal to noise ratio (SNR = 0.5).
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Figure 2.9: Distance to true lag coefficients curves under: strong serial correlation (𝜙 = 0.5) vs.
weak serial correlation (𝜙 = 0.2).
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Bias RMSE
Lag AR(7) AR(1) AR(0) AR(7) AR(1) AR(0)

Total Effect

7 -1.64 -1.25 -0.09 4.32 3.85 3.95
6 -1.75 -1.31 -0.12 4.37 3.88 3.92
5 -1.93 -1.42 -0.14 4.44 3.91 3.93
4 -2.03 -1.55 -0.19 4.49 3.98 3.94
3 -2.18 -1.67 -0.25 4.59 4.02 3.93
2 -2.39 -1.85 -0.32 4.63 4.07 3.91
1 -2.74 -2.13 -0.45 4.75 4.15 3.87
0 -0.96 -0.44 -0.02 4.01 3.71 3.77

Total Carryover Effect

7 -1.40 -1.29 -0.53 3.56 3.18 3.85
6 -1.44 -1.35 -0.60 3.51 3.17 3.73
5 -1.59 -1.44 -0.65 3.42 3.15 3.61
4 -1.64 -1.51 -0.73 3.41 3.12 3.49
3 -1.78 -1.68 -0.81 3.41 3.12 3.36
2 -2.12 -2.01 -1.05 3.38 3.10 3.15
1 -2.86 -2.77 -1.87 3.58 3.33 2.92
0 - - - - - -

Immediate Effect

7 -0.24 0.04 0.44 3.09 2.91 3.54
6 -0.31 0.04 0.48 3.02 2.91 3.47
5 -0.34 0.02 0.51 3.03 2.87 3.38
4 -0.39 -0.03 0.54 3.04 2.85 3.31
3 -0.40 0.02 0.57 3.03 2.88 3.28
2 -0.27 0.17 0.74 3.09 2.97 3.29
1 0.12 0.64 1.42 3.15 3.15 3.49
0 3.73 4.25 4.67 5.39 5.62 6.00

Table 2.7: Summary of evaluation metrics of total effect, total carryover effect and immediate
effect(𝛽0) fitted using BDLM-AR model with different lag length and error autoregressive order.
Exponential decay curve and serial correlation 𝜙 = 0.5 are used to generate simulated data.
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Bias RMSE
Lag AR(7) AR(1) AR(0) AR(7) AR(1) AR(0)

Total Effect

7 -2.46 -1.63 0.71 5.85 8.32 10.72
6 -2.58 -1.84 0.66 5.92 8.25 10.62
5 -2.86 -1.93 0.63 5.89 8.21 10.55
4 -2.89 -2.08 0.54 6.01 8.06 10.48
3 -3.24 -2.41 0.45 6.02 7.81 10.40
2 -3.56 -2.75 0.33 6.08 7.68 10.34
1 -4.03 -3.45 0.16 6.12 7.43 10.26
0 -1.66 -1.52 0.57 5.82 8.58 10.52

Total Carryover Effect

7 -1.70 -0.97 0.06 3.55 5.24 6.69
6 -1.71 -1.10 -0.05 3.60 5.15 6.38
5 -1.86 -1.23 -0.08 3.60 4.95 6.08
4 -1.94 -1.37 -0.24 3.73 4.67 5.68
3 -2.19 -1.71 -0.38 3.70 4.29 5.33
2 -2.51 -2.19 -0.73 3.73 4.00 4.62
1 -3.24 -3.11 -1.80 3.86 3.88 3.54
0 - - - - - -

Immediate Effect

7 -0.75 -0.65 0.66 3.61 4.54 8.52
6 -0.87 -0.73 0.71 3.56 4.50 8.46
5 -1.00 -0.70 0.72 3.58 4.52 8.40
4 -0.95 -0.71 0.79 3.57 4.54 8.29
3 -1.05 -0.70 0.84 3.54 4.66 8.25
2 -1.06 -0.56 1.06 3.64 4.91 8.28
1 -0.78 -0.34 1.96 3.71 5.21 8.48
0 3.03 3.17 5.26 6.35 9.02 11.75

Table 2.8: Summary of evaluation metrics of total effect, total carryover effect and immediate
effect(𝛽0) fitted using BDLM-AR model with different lag length and error autoregressive order.
Exponential decay curve and serial correlation 𝜙1 = 0.5, 𝜙2 = 0, 𝜙3 = 0, 𝜙4 = 0.3, 𝜙5 = 0, 𝜙6 =
0.2, 𝜙7 = 0 are used to generate simulated data.
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estimation of lag coefficients as we can find wider 90% credible interval and bigger RMSE for

each lag coefficient.

2.4.4 Competing Methods Specification

BDLagM model full specifications

Welty et al. (2009) proposed to incorporate prior knowledge of the shape of lag curve into

DLM through a Bayesian framework. For a normal linear distributed lag model, the Bayesian

DLM (BDLagM) has the following hierarchical structure:

𝒀 |𝑿, 𝜷, 𝜎2 ∼ 𝑁 (𝑿𝑇 𝜷, 𝜎2I𝑛)

𝜷|𝜎2
𝛽 , 𝜂 ∼ 𝑁 (0, 𝜎2

𝛽𝛀(𝜂))

𝜎2
𝛽 = 10Var(𝛽0)

𝛀(𝜂) = 𝑽 (𝜂1)𝑾 (𝜂2)𝑽 (𝜂1)

where 𝛽0 is the ML estimate of 𝛽0, using the unconstrained distributed lag coefficients, 𝑽 (𝜂1) =

diag(1, exp(𝜂1)1/2, ..., exp(𝜂1𝐿)1/2), 𝑾 (𝜂2) is the correlation matrix derived from the covariance

matrix 𝑽 (𝜂2)𝑽 (𝜂2)
′ + {I𝐿+1 − V (𝜂2)} 1𝐿+11′𝐿+1 {I𝐿+1 − V (𝜂2)}′, with 1𝐿+1 denotes a (𝐿 + 1) × 1

vectors of ones.

The prior covariance matrix of 𝜷 can also be written component-wisely:

var(𝛽𝑖) = 𝜎2
𝛽 exp(−𝜂1𝑖)

cov
(
𝛽𝑖, 𝛽 𝑗

)
=

𝜎2
𝛽 {1 − exp (−𝜂2𝑖)} {1 − exp (−𝜂2 𝑗)} exp {−𝜂1 (𝑖 + 𝑗) /2}√([

{1 − exp (−𝜂2𝑖)}2 + exp (−2𝜂2𝑖)
] [
{1 − exp (−𝜂2 𝑗)}2 + exp (−2𝜂2 𝑗)

] )
for 𝑖, 𝑗 = 0, 1, ...𝐿 − 1 and 𝑖 ≠ 𝑗 . 𝜂1 controls the rate at which the variance of 𝜷 approach zero and

𝜂2 controls the rate at which neighbouring coefficients become more correlated.
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Bayesian ridge DLM full specifications

Frequentist ridge estimate can be regarded as the posterior mean of regression coefficients with

a prior normal distribution with mean zero and an scalar variance-covariance matrix (Hoerl and

Kennard, 1970; Lindley and Smith, 1972). Bayesian ridge regression can be written as:

(𝒀 | 𝑿, �̃�) ∼ 𝑁 (𝑿�̃�, 𝜎2I)

�̃� ∼ 𝑁 (0, 𝜎2/𝜆ridgeI)

𝜆ridge ∼ unif(0,∞)

𝜋(𝜎2) ∝ 1/𝜎2

where 𝜆ridge is a hyperparameter that controls the amount of ridge penalty.

Non-informative prior Bayesian DLM full specifications

To impose a non-informative prior on the lag coefficients, we used flat improper priors on

each parameter. Non-informative prior Bayesian DLM can be considered as the counterpart of

distributed lag model in Bayesian framework.

(𝒀 | 𝑿, �̃�) ∼ 𝑁 (𝑿�̃�, 𝜎2I)

𝜋( �̃�) = 𝜋(𝜇, 𝛽0, 𝛽1, ..., 𝛽𝐿) ∝ 1

𝜋(𝜎2) ∝ 1/𝜎2

Koyck DLM full specifications

Koyck (1954) proposed an infinite distributed lag model by adding the following constrain on

lag coefficients in distributed lag model:

𝛽𝑖 = 𝛽0𝜆
𝑖, and 0 < 𝜆 < 1
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In this model, lag coefficients are assumed to decrease geometrically. In other words, recent past

explanatory variables are more influential than distant past explanatory variables. 𝜆 is the coeffi-

cient decaying rate. By replacing 𝛽𝑖 into distributed lag model, we can have:

𝑌𝑡 = 𝜇 + 𝛽0

∞∑
𝑖=0

𝜆𝑖𝑋𝑡−𝑖 + 𝑢𝑡

where 𝑢𝑡 are independent Gaussian errors with mean 0 and variance 𝜎2, 𝛽0 is the immediate effect

and the long term effect is defined as:

∞∑
𝑘=0

𝛽𝑘 =
𝛽0

1 − 𝜆

2.5 Application to Light Therapy Study

The data set we used is from I. M. Kronish et al. (2020), which studies the effectiveness of

bright white light therapy for depressive symptoms within cancer survivors. Besides bright white

intervention (10,000 lux), dim red (50 lux) was used as a control intervention, which lacks suffi-

cient light intensity to affect cells from retina. Patients received light therapy through mobile phone

application and were instructed to use one of two portable lightboxes each morning for 30 minutes

per day. For each patient, the whole study duration is 12 weeks. One intervention was assigned

on the first three weeks and last three weeks and the other intervention was assigned between

the fourth week and the ninth week. The initial intervention was randomized, either bright white

lightbox or dim red lightbox. The collected outcomes are depressive symptom, fatigue symptom

and negative affectivity. The first two are measured by patient’s self-reported standard single-item

visual analog scale from 0-not at all depressed (tired) to 10-extremely depressed (tired). Other pa-

tients’ characteristics (age, gender, race, ethnicity, years of education, employment status, health

insurance status) were also collected at baseline. Some occasional missing outcomes were imputed

using average non-missing value in the corresponding treatment block. Principal component anal-

ysis method is used to generate a composite score of collected outcomes. To be specific, depressive
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symptom, fatigue symptom and negative affectivity are standardized and principal components are

constructed as linear combinations of these three variables. The first principal component which

maximize the variance of original data is used as response variable of data analysis. Final compos-

ite score is constructed as: Score = 0.65× depressive + 0.57× fatigue + 0.50× negative affectivity.

As an illustrative example, We present results from two subjects’ data (ID:7707 and 7708)

with measurement on daily composite score. Subjects 7707 and 7708 started with dim red light

intervention and bright white light intervention respectively. We fit the data with the proposed

BDLM-AR model. The maximum number of lags 𝐿 is set to 7, since a week’s period is long

enough to exhibit the intervention effect on negative symptoms and intervention effect beyond

one week can hardly have substantial influence on negative symptoms. Two autoregressive orders

of BDLM-AR model AR(1) and AR(7) were used. As a comparison, besides other Bayesian

distributed lag models, we also fit a classical linear regression model with autoregressive errors

(RegAR) with fixed autoregressive (AR) order 1 and 7. Note that RegAR can be viewed as special

case of distributed lag models with 𝐿 setting to 0.

Table 2.10 shows the posterior mean/MLE of both distributed lag and autoregressive coeffi-

cients. For subject 7707, the RegAR and other Bayesian DLM models indicate a strong total effect

of bright white intervention in relieving negative symptoms. However, only weak effect of bright

white intervention is identified by BDLM-AR model. The distinct conclusion drawn from these

two models is potentially triggered by the strong autocorrelation between outcomes. When out-

come serial correlation is adjusted, the true intervention effect is much smaller than those estimated

from models using white noise. To check the fitness of each model, we used LjungBox test (Ljung

and Box, 1978) to examine autocorrelation of the residuals, and the corresponding p-values of

𝜒2-test are also shown in Table 2.10. No statistically significant autocorrelation is found in resid-

uals of BDLM-AR model. For subject 7708, we observe a similar estimation between different

models in terms of total effect. Treatment total effect estimated from BDLM-AR model is -0.64

(90% CI: -1.23, -0.18), which is slightly lower than that from other models. Extra information

obtained from BDLM-AR model is that white light intervention effect lasts for around two days.
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Subject ID: 7707
BDLM-AR(1) BDLM-AR(7) RegAR(1) RegAR(7) BDLagM BR-DLM NB-DLM

𝜇 -0.34 (-0.66,-0.02) -1.07 (-3.19,-0.31) -0.21 (-0.52,0.10) -0.19 (-0.80, 0.42) -0.23 (-0.50,0.03) -0.22 (-0.49,0.04) -0.17 (-0.44,0.10)
Total effect -0.34 (-0.75,0.04) -0.20 (-0.65, 0.23) -0.52 (-0.91,-0.12) -0.53 (-0.97, -0.09) -0.48 (-0.83,-0.12) -0.5 (-0.85,-0.14) -0.59 (-0.95,-0.23)

Total carryover effect -0.01 (-0.40,0.43) 0.07 (-0.27, 0.56) - - 0.21 (-0.74,1.16) -0.19 (-0.74,0.45) 0.22 (-0.76,1.20)
𝛽0 -0.33 (-0.85,0.09) -0.27 (-0.76, 0.14) -0.99 (-2.30, 0.31) -0.53 (-0.97, -0.09) -0.68 (-1.62,0.24) -0.31 (-0.97,0.17) -0.81 (-1.78,0.17)
𝛽1 0 (-0.31,0.36) -0.02 (-0.32, 0.29) - - 0.38 (-0.72,1.48) 0.01 (-0.58,0.67) 0.52 (-0.84,1.88)
𝛽2 -0.01 (-0.24,0.22) 0.02 (-0.17, 0.24) - - -0.07 (-0.55,0.4) -0.11 (-0.79,0.48) -0.69 (-2.05,0.66)
𝛽3 0.02 (-0.12,0.23) 0.03 (-0.08, 0.23) - - -0.04 (-0.26,0.19) 0.28 (-0.29,1.11) 1.17 (-0.20,2.52)
𝛽4 0 (-0.12,0.12) 0.02 (-0.06, 0.17) - - -0.03 (-0.16,0.10) -0.01 (-0.64,0.61) -0.37 (-1.74,0.98)
𝛽5 0 (-0.09,0.08) 0.01 (-0.04,0.11) - - -0.02 (-0.09,0.06) 0.05 (-0.54,0.72) 0.35 (-1.01,1.71)
𝛽6 -0.01 (-0.09,0.04) 0 (-0.04,0.07) - - -0.01 (-0.06,0.04) -0.13 (-0.76,0.46) -0.16 (-1.51,1.19)
𝛽7 -0.01 (-0.07,0.03) 0 (-0.03,0.05) - - -0.01 (-0.03,0.02) -0.28 (-0.90,0.20) -0.58 (-1.56,0.39)
𝜙1 0.22 (0.02,0.42) 0.06 (-0.14,0.27) 0.22 (0.02,0.41) 0.14 (-0.04, 0.32) - - -
𝜙2 - 0.02 (-0.20,0.24) - 0.02 (-0.16, 0.20) - - -
𝜙3 - -0.10 (-0.30,0.10) - -0.06 (-0.24, 0.12) - - -
𝜙4 - 0.16 (-0.04,0.35) - 0.21 (0.04, 0.39) - - -
𝜙5 - 0.16 (-0.06,0.36) - 0.17 (-0.02, 0.35) - - -
𝜙6 - 0.01 (-0.17,0.20) - 0.01 (-0.18, 0.20) - - -
𝜙7 - 0.32 (0.11,0.52) - 0.31 (0.12, 0.51) - - -

p-value 0.55 0.76 0.10 0.85 0.12 0.15 0.09
Subject ID: 7708

BDLM-AR(1) BDLM-AR(7) RegAR(1) RegAR(7) BDLagM BR-DLM NB-DLM
𝜇 -0.30 (-0.60,-0.01) -0.16 (-1.50,1.83) -0.23 (-0.51, 0.05) -0.21 (-0.50, 0.07) -0.25 (-0.47,-0.03) -0.29 (-0.51,-0.07) -0.26 (-0.48,-0.03)

Total effect -0.64 (-1.08,-0.19) -0.64 (-1.23, -0.18) -0.84 (-1.24, -0.43) -0.85 (-1.27, -0.43) -0.76 (-1.11,-0.41) -0.68 (-1.05,-0.31) -0.74 (-1.12,-0.36)
Total carryover effect -0.11 (-0.56,0.32) -0.18 (-0.65, 0.18) - - 0.44 (-0.36,1.25) 0.02 (-0.61,0.74) 0.52 (-0.32,1.36)

𝛽0 -0.53 (-1.04,-0.06) -0.46 (-0.94, -0.04) -0.84 (-1.24, -0.43) -0.85 (-1.27, -0.43) -1.21 (-2.00,-0.42) -0.69 (-1.43,-0.09) -1.26 (-2.09,-0.42)
𝛽1 -0.07 (-0.41,0.28) -0.15 (-0.50, 0.14) - - 0.43 (-0.50,1.35) 0.04 (-0.60,0.81) 0.48 (-0.67,1.64)
𝛽2 -0.02 (-0.25,0.22) -0.03 (-0.27, 0.16) - - 0.02 (-0.38,0.42) 0.07 (-0.57,0.81) 0.22 (-0.95,1.38)
𝛽3 -0.01 (-0.19,0.14) -0.02 (-0.19, 0.12) - - 0 (-0.20,0.19) -0.01 (-0.67,0.69) 0.21 (-0.95,1.37)
𝛽4 -0.02 (-0.17,0.08) -0.02 (-0.16, 0.08) - - 0 (-0.11,0.11) -0.47 (-1.35,0.19) -1.24 (-2.40,-0.09)
𝛽5 0 (-0.07,0.10) 0.02 (-0.05, 0.14) - - 0 (-0.07,0.07) 0.24 (-0.40,1.03) 0.75 (-0.41,1.91)
𝛽6 0 (-0.05,0.07) 0.01 (-0.03, 0.11) - - 0 (-0.04,0.04) 0.17 (-0.47,0.88) 0.28 (-0.87,1.44)
𝛽7 0 (-0.04,0.04) 0 (-0.03, 0.05) - - 0 (-0.02,0.03) -0.03 (-0.60,0.51) -0.18 (-1.02,0.66)
𝜙1 0.27 (0.09,0.46) 0.28 (0.09, 0.49) 0.27 (0.08, 0.45) 0.25 (0.07, 0.44) - - -
𝜙2 - 0.06 (-0.17, 0.25) - 0.02 (-0.17, 0.21) - - -
𝜙3 - -0.18 (-0.36, 0.06) - -0.18 (-0.38, 0.02) - - -
𝜙4 - 0.15 (-0.07, 0.37) - 0.09 (-0.11, 0.29) - - -
𝜙5 - 0.07 (-0.17, 0.25) - 0.05 (-0.15, 0.25) - - -
𝜙6 - -0.06 (-0.25, 0.21) - -0.02 (-0.24, 0.19) - - -
𝜙7 - 0.16 (-0.09, 0.36) - 0.08 (-0.13, 0.28) - - -

p-value 0.77 0.75 0.03 0.99 0.03 0.02 0.01

Table 2.10: Posterior mean/MLE of distributed lag and autoregressive coefficients for light therapy
study. 90% credible intervals/confidence intervals are in brackets. P-value of Ljung-Box test for
each models is on the last row.

For RegAR(1) model, BDLagM, BR-DLM and NB-DLM, statistically significant autocorrelation

is found in residuals, indicating an inadequacy of model fitting.

2.6 Discussion

In this paper, we provide a novel method to analyze data from N-of-1 trials. The method han-

dles temporal correlation between measurements and carryover effects via distributed lag structure

and parameters are estimated using Bayesian approach with (fused) ridge type regularization. From

the design perspective, N-of-1 trial can be viewed as a special crossover trial for one person. Tra-
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ditional crossover trial requires physical washout period to prevent carryover effect. Our proposed

method directly models the carryover effect, thus shortens the entire duration of trial.

To alleviate multicollinearity issue in explanatory variables and incorporate prior knowledge on

the shape of lag curve, we designed a prior precision matrix on lag coefficient and showed its MAP

estimate is equivalent to fused ridge regression in Appendix A.1. The shrinkage and smoothness

penalty terms are determined in a data-driven manner, which provides a more systematic way

to choose regularization tuning parameters in time series data analysis. In Section 2.2.2, we let

hyperparameters follow exponential function, but any function that decay to zero will also work.

In practice, if available, population level pharmacokinetics information can be utilized to select the

functional form of hyperparameters.

We adopt a Bayesian estimation procedure, while demonstrating a connection to a fused ridge

penalized estimation procedure (2.7). Cross validation is often a method of choice in choosing the

penalties (𝜆𝑖 and 𝜆∗𝑖 via 𝛾1 and 𝛾2). However, in our application, it is not feasible to split the sample

at random time points because of the temporal order. Therefore, Bayesian formulation provides a

natural way to "estimate" the penalties.

Through simulations, we showed that our proposed BDLM-AR model outperforms Koyck

DLM, BDLagM, BR-DLM and NB-DLM in estimating total effect, total carryover effect and

single lag coefficients in most scenarios. Furthermore, we showed that BDLM-AR can simulta-

neously estimate autoregressive error. The advantage of BDLM-AR model increases when strong

serial correlation exists or signal to noise ratio is small.

We have applied our model to a real application of using white light therapy for depressive

symptoms. For subject 7707, we found white light therapy nearly has no effect on resolving

depressive symptoms, which is different from the results in the original literature. For subject

7708, our findings are consistent with the literature. However, the proposed BDLM-AR model can

provide more information on patient’s whole time course of treatment effect.
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Chapter 3: Bayesian Hierarchical Distributed

Lag Model with Autocorrelated Errors for

Combining and Evaluating Multiple N-of-1

Trials

3.1 Introduction

N-of-1 trials are multiple-period crossover trials conducted within single subject comparing

two or more interventions (Duan et al., 2013; G. Guyatt et al., 1986). Each subject will receive

treatment assignment in randomized sequence and same treatment will be administrated in a pe-

riod. There is an increasing interest in N-of-1 trials since it is compatible with the goal of patient-

centered outcomes research (Selby et al., 2012) and comparative effectiveness research (Sox and

Greenfield, 2009). A lot of conditions that N-of-1 trials have been utilized include hypertension

(Chatellier et al., 1995), depression (I. M. Kronish et al., 2018), and chronic airflow limitation

(Mahon et al., 1999; Patel et al., 1991).

When a series of N-of-1 trials are conducted within similar subjects, besides treatment effect at

individual level, it is also possible to pursue estimates of treatment effect at population level. Due

to the existence of heterogeneity of treatment effects (Kent et al., 2010), any statistical methods that

aim to estimate treatment effect for whole subjects in the study is expected to take the variation

in individual treatment effect into consideration. Typical methods that address multiple-subject
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data in a model-base approach that analytically incorporate heterogeneity are mixed effect model

(Berkey et al., 1995; A. P. Jones et al., 2009; D. R. Zucker et al., 2010) and Bayesian hierarchical

model (D. R. Zucker et al., 2010; D. Zucker et al., 1997). The benefit of multilevel modeling

structure is that between and within patient variation can be estimated separately.

Like traditional cross-over type of clinical trials, in most N-of-1 trials, a paired unit random-

ization for paired periods is usually used in study design. Data are collected or summarized at

period level, which means one data point will represent the treatment effect in each period and the

only way to increase sample size within each trial is to increase the number of periods and times

of switching treatment in the trial. But additional treatment switches may experience practical dif-

ficulties. Another problem in analyzing N-of-1 trials is the potential existence of carryover effect,

which may compromise the validity of N-of-1 trials (Duan et al., 2013). The usual statistical mod-

els only allows for first-order carryover effect, that is the carryover effect lasting no more than one

period after the end of previous treatment period. Take a two treatments with two periods crossover

trial as an example, if significant carryover is detected, only data from the first period will be used.

S. Senn (1992) points out that using designs and models adjusting for first-order carryover effect

can hardly give protection against real carryover effects.

Distributed lag models (DLM) postulates that the current value of the outcome variable de-

pends on the previous values (lags) of an exposure as well as the current exposure value, thus

allowing the total exposure effect to be distributed over a time period and facilitating explicit mod-

eling of carryover effects. It has wide applications in in economics (Almon, 1965; Koyck, 1954),

advertising (Bass and Clarke, 1972) and environment health studies (Peng et al., 2009; Welty et al.,

2009; Zanobetti et al., 2000). Chapter 2 proposed a Bayesian framework (BDLM-AR) to extend

DLMs for N-of-1 trial data that explicitly model the carryover effect and correlation within subject.

In this chapter, we further extend the BDLM-AR model to Bayesian hierarchical model to

leverage the individual N-of-1 trials data to obtain population-level treatment effect estimation.

Additionally, Bayesian hierarchical model can improve the accuracy and precision of individual-

level parameters estimates since the posterior distribution at population level parameters can be
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considered as prior distribution of individual-level parameters, and these priors are themselves

generated by the data (Gelman et al., 2013).

This chapter is organized as follows. In Section 3.2, we will formally introduce the proposed

Bayesian hierarchical distributed lag model with autocorrelated errors (BHDLM-AR). We then

show the posterior computations in Section 3.3. Next, in Section 3.4, we will perform numerical

simulations to evaluate the performance of BHDLM-AR in estimating both population and indi-

vidual level parameters and compare with other methods. In Section 3.5, the proposed model is

applied to a light therapy study and will conclude this chapter with a discussion in Section 3.6.

3.2 Methods

3.2.1 Proposed Model

Suppose that we obtain data from a total of 𝑆 single N-of-1 trials, each with 𝑛𝑖 observations,

where 𝑖 = 1, 2, ..., 𝑆. For individual N-of-1 trial 𝑖, let 𝑌𝑖,𝑡 denote a response variable of interest

at time 𝑡 of subject 𝑖 and 𝑋𝑖,𝑡 denote a time-varying explanatory binary variable, which has some

influence on 𝑌𝑖,𝑡 up to some pre-determined maximum number of lags L. The distributed lag model

can be described as follows:

𝑌𝑖,𝑡 = 𝜇𝑖 +
𝐿∑
𝑙=0

𝛽𝑖,𝑙𝑋𝑖,𝑡−𝑙 + 𝜖𝑖,𝑡 (3.1)

where the error term 𝜖𝑖,𝑡 follows an autoregressive process,

𝜖𝑖,𝑡 = 𝜙𝑖,1𝜖𝑖,𝑡−1 + 𝜙𝑖,2𝜖𝑖,𝑡−2 + ... + 𝜙𝑖,𝑝𝜖𝑖,𝑡−𝑝 + 𝑤𝑖,𝑡 (3.2)

𝑤𝑖,𝑡 is a white Gaussian noise with mean zero and variance 𝜎2 > 0. Note that when 𝑡 < 𝐿, those

terms with negative subscript will not be included in the model.

The advantage of using above distributed lag model (3.1) to analyze N-of-1 trials data is (1).

The mean model specified by 𝜷𝒊 = (𝛽𝑖,0, ..., 𝛽𝑖,𝐿)
′

reflects the overall time course of the effect that

explanatory variable 𝑋𝑖,𝑡 have on outcome𝑌𝑖,𝑡 . To be specific, each single coefficient 𝛽𝑖,𝑙 represents
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treatment effect on the previous 𝐿-th day, 𝛽𝑖,0 represents current treatment effect and total carryover

effect 𝛿𝑖 can be defined as:

𝛿𝑖 ≜
𝐿∑
𝑙=1

𝛽𝑖,𝑙 = 𝐸 (𝑌𝑖,𝑡 |𝑋𝑖,𝑡−1 = 1, ...𝑋𝑖,𝑡−𝐿 = 1, 𝑋𝑖,𝑡) − 𝐸 (𝑌𝑖,𝑡 |𝑋𝑖,𝑡−1 = 0, ..., 𝑋𝑖,𝑡−𝐿 = 0, 𝑋𝑖,𝑡).

∑𝐿
𝑙=0 𝛽𝑖,𝑙 represents the total treatment effect in the 𝑖-th N-of-1 trial, which is the summation of

current effect and total carryover effect. (2). The temporal dependency between errors is modeled

by an order-p autoregressive model with autoregressive coefficient 𝝓𝒊 = (𝜙𝑖,1, ..., 𝜙𝑖,𝑝)
′
.

Let Φ𝑖 (𝐵) = 1 − 𝜙𝑖,1𝐵 − 𝜙𝑖,2𝐵
2 − ... − 𝜙𝑖,𝑝𝐵

𝑝, where 𝐵 is the backshift operator. Similarly

as Chapter 2, utilizing the relationship that Φ𝑖 (𝐵)𝜖𝑖,𝑡 = 𝑤𝑖,𝑡 , we can apply Φ𝑖 (𝐵) to both sides of

model (3.1) and rewrite the model,

𝑌 ∗𝑖,𝑡 = 𝜇∗ +
𝐿∑
𝑙=0

𝛽𝑖,𝑙𝑋
∗
𝑖,𝑡−𝑙 + 𝑤𝑖,𝑡 , (3.3)

for 𝑡 = 𝑝 + 1, ..., 𝑛𝑖, where 𝜇∗𝑖 = Φ(𝐵)𝜇𝑖, 𝑌 ∗𝑖,𝑡 = Φ𝑖 (𝐵)𝑌𝑖,𝑡 , 𝑋∗𝑖,𝑡 = Φ𝑖 (𝐵)𝑋𝑖,𝑡 and 𝜇∗𝑖 = Φ𝑖 (𝐵)𝜇𝑖. To

stack the data in vector form, we have

𝒀∗𝑖 ∼ 𝑁 (𝜇∗𝑖 1𝑛𝑖−𝑝 + 𝑿∗𝑖 𝜷𝒊, 𝜎
2I𝑛𝑖−𝑝) (3.4)

We denote �̃�𝑖 = (𝜇𝑖, 𝜷′𝑖)′ and 𝑿∗𝑖 = (Φ(𝐵)1𝑛−𝑝, 𝑿∗𝑖 ), so that 𝑿∗𝑖 �̃�𝑖 = 𝜇∗𝑖 1𝑛−𝑝 + 𝑿∗𝑖 𝜷𝑖.

3.2.2 Prior Distribution on the Mean Model

To combine multiple N-of-1 trials and simultaneously estimating study specific and overall

population level treatment effect, we regard the distributed lag coefficient 𝜷𝑖 in each N-of-1 trial

are related and connected and consider the following Bayesian hierarchical structure,

𝜷𝒊 ∼ 𝑁 (�̃� , 𝜎2�̃�
−1
𝛽 (𝛾))

�̃� ∼ 𝑁 (0, 𝜎2
𝜃 �̃�
−1
𝜃 (𝜏))

(3.5)
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for 𝑖 = 1, 2, ..., 𝑆, where �̃�𝛽 (𝛾) = 𝑑𝑖𝑎𝑔(𝑐0,𝛀𝛽 (𝛾)) so that the prior variance of 𝜇𝑖 is 𝜎2𝑐−1
0

and the prior variance-covariance matrix of 𝜷𝑖 is 𝜎2�̃�
−1
𝛽 (𝛾). �̃� = (𝜇𝜃 , 𝜽) = (𝜇𝜃 , 𝜃0, ..., 𝜃𝐿) is a

hyperparameter vector with length 𝐿 + 2, representing the population distributed lag coefficients.

Similarly as single distributed lag model, each coefficient 𝜃𝑙 represents the treatment effect on 𝑙

days ago, but at population level. 𝛀𝛽 (𝛾) is constructed in the following form:

©«

𝜆0 + 𝜆∗0 −𝜆∗0 0 . . . . . . 0

−𝜆∗0 𝜆1 + 𝜆∗0 + 𝜆∗1 −𝜆∗1 . . . . . . 0

0 −𝜆∗1 𝜆2 + 𝜆∗1 + 𝜆∗2 . . . . . . 0
...

...
...

. . .
...

...

0 0 0 . . . 𝜆𝐿−1 + 𝜆∗𝐿−2 + 𝜆∗𝐿−1 −𝜆∗𝐿−1

0 0 0 . . . −𝜆∗𝐿−1 𝜆𝐿 + 𝜆∗𝐿−1 + 𝜆∗𝐿

ª®®®®®®®®®®®®®®®¬

, (3.6)

where the hyperparameters 𝜆𝑙 = exp{𝛾1(𝑙 +1)} −1 and 𝜆∗𝑙 = exp{𝛾2(𝑙 +1)} −1. The function form

of (𝜆𝑙 , 𝜆∗𝑙 ) is not unique. Any other monotone increasing function of 𝛾1 and 𝛾2 will work. As the

lag index increases, 𝜷𝒊 will be shrunk towards the population mean 𝜽 . As mentioned in Chapter

2, an alternative view of �̃�𝛽 is a fused ridge-type penalty, the maximum a posteriori probability

estimate of �̃� minimizes a fused ridge-type penalty:

(𝒀∗ − �̃�
∗
�̃�)𝑇 (𝒀∗ − �̃�

∗
�̃�) + 𝑐0𝜇

2 +
𝐿∑
𝑙=0

𝜆𝑙 (𝛽𝑙 − 𝜃𝑙)2 +
𝐿∑
𝑙=0

𝜆∗𝑙 (𝛽𝑙 − 𝛽𝑙+1)2 (3.7)

where 𝛽𝐿+1 ≜ 0, 𝜆𝑙 is an increasing ℓ2 penalty of the individual level coefficients towards popu-

lation level coefficients, and 𝜆∗𝑙 is an increasing smoothness penalty on the difference of adjacent

individual coefficients.

To choose the amount of fused ridge-type penalty at individual level, we consider a truncated

standard exponential hyperprior on (𝛾1, 𝛾2) of the form

𝜋(𝛾1, 𝛾2) ∝ exp (−𝛾1 − 𝛾2)1𝑆𝜸 (𝛾1, 𝛾2) (3.8)
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where the support 𝑆𝜸 includes all pairs (𝛾1, 𝛾2) with which the precision matrix 𝛀 is positive

definite.

�̃�𝜃 (𝜏) has the same form as �̃�𝛽 (𝜸) but is parameterized by the vector 𝜏 = (𝜏1, 𝜏2). To reduce

the size of model space, the parameters in the hyperprior is set as fixed value. From the experience

of previous works, 𝜏 = (𝜏1, 𝜏2) are both set to 1, and 𝜎𝜃 is set to be a thousand times of the average

model variance estimated from single N-of-1 trials.

3.2.3 Prior Distribution on the Error Model

We use the Jeffreys prior for the error variance 𝜎2 and for the autoregressive process, a normal

prior for 𝝓𝑖 is used, with the constraint that the error process is stationary.

𝜋(𝜎2) ∝ 1/𝜎2

𝝓𝑖 ∼ 𝑁𝑝
(
0𝑝, 200 × I𝑝

)
1𝑆𝝓 (𝝓𝑖)

(3.9)

for i = 1,2,...,S, where 𝑆𝝓 (𝝓𝑖) denotes the support where all roots of the polynomial Φ(𝐵) =

1 − ∑𝑝
𝑙=1 𝜙𝑙𝐵

𝑙 are outside the unit circle. Following Chib (1993), we can show that the process

{𝜖𝑡 : 𝑡 = 1, 2, . . .} is stationary when 𝝓𝑖 ∈ 𝑆𝝓 (𝝓𝑖). Note that the range of each element in 𝜙 is

(−1, 1); thus, a prior variance of 200 in (3.9) essentially amounts to a flat prior.

3.3 Conditional Posterior Distributions

In this part, we show the full conditional distributions of all parameters discussed in the pre-

vious parts. Details of derivation of full conditional distributions for each parameter can be

found in Appendix B.1. For notational convenience, let 𝒀 = (𝒀1, ...,𝒀𝑆), �̃� = ( �̃�1, ..., �̃�𝑆),

�̃� = ( �̃�1, ..., �̃�𝑆), and 𝚽 = (𝝓1, ..., 𝝓𝑆), for 𝑖 = 1, 2, ..., 𝑆.

Given the likelihood function of transformed data (3.4) and prior distribution of 𝜷𝑖, for 𝑖 =
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1, 2, ..., 𝑆, the full conditional distribution of distributed lag coefficient in each individual trial �̃�𝑖 is

�̃�𝑖 | 𝒀 , �̃�, 𝜎2,𝚽, 𝜸, �̃� ∼ 𝑁
{
[ �̃�∗

′

𝑖 �̃�
∗
𝑖 + �̃�𝛽 (𝜸)]−1

[
𝑿∗
′

𝑖 𝒀
∗
𝑖 + 𝜽�̃�𝛽 (𝜸)

]
, 𝜎2 [ �̃�∗

′

𝑖 �̃�
∗
𝑖 + �̃�𝛽 (𝜸)]−1

}
(3.10)

The posterior distribution of hyperparameter 𝜽 can be derived from likelihood function of trans-

formed data (3.4), prior distribution of each individual lag coefficient 𝜷𝑖 and hyperprior on 𝜽 (3.5),

�̃� | 𝒀 , �̃�, 𝜎2, �̃�,𝚽, 𝜸 ∼ 𝑁


[
�̃�𝜃 (𝜏)
𝜎2
𝜃

+
�̃�𝛽 (𝜸)
𝜎2/𝑆

]−1
�̃�𝛽 (𝜸)
𝜎2

𝑆∑
𝑖=1

𝜷𝑖,

[
�̃�𝜃 (𝜏)
𝜎2
𝜃

+
�̃�𝛽 (𝜸)
𝜎2/𝑆

]−1 (3.11)

Working with model (3.2) and (3.9), the full condition distribution of 𝜎2 is an inverse-gamma

distribution,

𝜎2 | 𝒀 , �̃�, �̃�, �̃� ,𝚽, 𝜸 ∼ IG


𝑆∑
𝑖=1

𝑛𝑖 − 𝑆(𝑝 − 𝐿 − 1)

2
,

𝑆∑
𝑖=1

[
( �̃�𝑖 − �̃�)′�̃�𝛽 (𝜸)( �̃�𝑖 − �̃�) + (𝒀∗𝑖 − �̃�

∗
𝑖 �̃�𝑖)′(𝒀∗𝑖 − �̃�

∗
𝑖 �̃�𝑖)

]
2


(3.12)

and 𝝓𝑖 has a truncated multivariate normal conditional posterior:

𝝓𝑖 | 𝒀 , �̃�, �̃�, �̃� , 𝜎2, 𝜸 ∼ 𝑁

[(
𝜎−2𝑬∗

′
𝑖 𝑬𝑖 + 𝜎−2

𝝓 I
)−1

𝜎−2𝑬∗
′

𝑖 𝝐
∗
𝑖 ,

(
𝜎−2𝑬∗

′
𝑖 𝑬𝑖 + 𝜎−2

𝝓 I
)−1

]
1𝑆𝝓 (𝝓𝑖)

(3.13)

where 𝝐∗𝑖 = (𝜖∗𝑖,𝑝+1, . . . , 𝜖∗𝑖,𝑛)′, 𝜖∗𝑖,𝑡 = 𝑌𝑖,𝑡 − 𝜇𝑖 −
∑𝐿

𝑙=0 𝛽𝑖,𝑙𝑋𝑖,𝑡−𝑙 , and 𝑬∗𝑖 is a (𝑛 − 𝑝) × 𝑝 matrix with

𝜖∗𝑖,𝑝+𝑘− 𝑗 being the (𝑘, 𝑗)-th element.

Using the likelihood (3.4) and prior of 𝜸 and �̃�, the full conditional posterior distribution can

not be expressed explicitly, but the density function is proportional to

𝜋(𝜸 | 𝒀 , �̃�, 𝜎2, �̃�, �̃� ,𝚽) ∝ exp(−𝛾1−𝛾2)1𝑆𝜸 (𝛾1, 𝛾2)
𝑆∏
𝑖=1
|𝜎−2�̃�𝛽 (𝜸) |

1
2 exp

[
− 1

2𝜎2 ( �̃�𝑖 − �̃�)
′�̃�𝛽 (𝜸) ( �̃�𝑖 − �̃�)

]
(3.14)

Based on the model specifies in section (3.2), as long as the conditional posterior distributions

62



of the parameters, we proposed a hybrid Metropolis-Hastings (MH)/Gibbs sampler for posterior

sampling. The Gibbs sampling steps will update �̃�, �̃� , 𝜎2 and 𝚽, whose full conditional distri-

butions are available. And MH algorithm will update 𝜸 with a uniform 𝑈 (−𝑎, 𝑎) proposal dis-

tribution. That is, 𝛾𝑖,𝑛𝑒𝑤 = 𝛾𝑖 + 𝑈 (−𝑎, 𝑎), where the tuning parameter 𝑎 is chosen such that the

acceptance rate of proposed sample is around 50% (Gelman et al., 1996).

Having the full conditional distribution of all parameters in BHDLM-AR, we use a hybrid

Metropolis-Hastings/Gibbs algorithm to generate samples of (�̃�, �̃� ,𝚽, 𝜎2, 𝜸) from the posterior

distribution.

Algorithm 2: The hybrid Metropolis-Hastings/Gibbs algorithm for Bayesian Hierarchi-

cal Distributed Lag Model with Autocorrelated Error

Step 1. Set initial values for �̃�, �̃� , 𝜎2, 𝚽 and 𝜸;

for 𝑗 ← 1 to 𝑛iteration do

for 𝑖 ← 1 to 𝑆 do
Step 2. Given current value of 𝝓𝑖, transform 𝒀 𝑖, �̃�𝑖 to 𝒀∗𝑖 , �̃�

∗
𝑖 as described in

equation (3.4); Also construct precision matrix �̃�𝛽 (𝜸) based on 𝜸 as described in

Section 3.2.2;

Step 3. Conditional on current values of 𝒀∗𝑖 , �̃�
∗
𝑖 , �̃� , 𝜎2 and �̃�𝛽 (𝜸), update �̃�𝑖

based on 𝜋( �̃�𝑖 | 𝒀∗, �̃�
∗
, �̃� , 𝜎2,𝚽, 𝜸);

end

Step 4. Conditional on current values of 𝒀∗, �̃�∗, �̃�, 𝜎2, 𝚽 and �̃�𝛽 (𝜸), update �̃� based

on 𝜋(�̃� | 𝒀∗, �̃�∗, �̃�, 𝜎2,𝚽, 𝜸);

Step 5. Conditional on current values of 𝒀∗, �̃�∗, �̃�, �̃� , 𝚽 and �̃�𝛽 (𝜸), update 𝜎2 based

on 𝜋(𝜎2 | 𝒀∗, �̃�∗, �̃�, �̃� ,𝚽, 𝜸);
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Step 6. for 𝑖 ← 1 to 𝑆 do
Update 𝝐∗𝑖 conditional on current value of �̃�𝑖 and 𝒀 𝑖, �̃�𝑖. Then update 𝝓𝑖 based on

𝜋(𝝓𝑖 | 𝒀 , �̃�, �̃�, �̃� , 𝜎2, 𝜸). Reject samples if the roots of 𝝓𝑖 (𝐿) lie outside the unit

circle;

end

Step 7. Update (𝛾1, 𝛾2) based on 𝜋(𝜸 | �̃�, �̃� , 𝜎2). Sample a proposal 𝛾∗𝑖 by

𝛾∗𝑖 = 𝛾𝑖 + 𝑎 ∗𝑈 (−1, 1) for 𝑖 = 1, 2. 𝑎 is an adjustable step size. Compute the ratio

𝑅𝛾 =
𝜋(𝜸∗ | �̃�, �̃� , 𝜎2)
𝜋(𝜸 | �̃�, �̃� , 𝜎2)

if �̃�𝛽 (𝜸∗) is positive definite then

update 𝜸 = 𝜸∗ with probability min(1, 𝑅𝛾);

end

3.4 Simulation Study

3.4.1 Simulation Scenarios and Data Generation

In this section, we present a simulation study to compare the proposed BHDLM-AR model

with other methods for combining N-of-1 trials. Multiple individual N-of-1 trials are regarded as

a simulation group trial. For each individual trial, we generate 84 observations which represent 12

weeks, a reasonable length for N-of-1 trial in real practice. Two numbers of individual trials were

used: 𝑆 = 10, 20. For each simulation group trial, we generate data under the model:

�̃�𝑖 ∼ 𝑁 (�̃� , 𝜎2�̃�
−1
𝛽 (𝛾0))

𝑌𝑖,𝑡 = 𝜇𝑖 +
7∑
𝑙=0

𝛽𝑖,𝑙𝑋𝑖,𝑡−𝑙 + 𝜖𝑖,𝑡
(3.15)
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for 𝑖 = 1, 2, ...𝑆, where 𝜖𝑖,𝑡 = 𝜙𝑖𝜖𝑖,𝑡−1 + 𝑤𝑖,𝑡 and 𝑤𝑖,𝑡 ∼ 𝑁 (0, 𝜎2). �̃�
−1
𝛽 (𝛾0) is defined as equation

(3.6), but 𝛾0 is given and set to both be 1. Five sets of population level lag coefficients (lag curves)

𝜽 were used, reflecting different patterns of carryover treatment effects:

1. Exponential decay curve: 𝜽 = (5, 2.5, 1.25, 0.625, 0.3125, 0, 0, 0)𝑇 ;

2. Exponential decay curve with oscillation: 𝜽 = (5, 2.5,−1.25,−0.625, 0.3125, 0, 0, 0)𝑇 ;

3. Slow absorption curve: 𝜽 = (1.51, 2.75, 3.36, 2.03, 0.34, 0, 0, 0)𝑇 ;

4. Slow absorption curve with oscillation: 𝜽 = (1.51, 2.75,−3.36,−2.03, 0.34, 0, 0, 0)𝑇 ;

5. No carryover effect: 𝜽 = (10, 0, 0, 0, 0, 0, 0, 0)𝑇 .

The exponential decay curves (1) and (2) specify coefficients that diminish in magnitude as lag

lengthens. The slow absorption curves (3) and (4) reflect scenarios where there is a delay for the

carryover effects to peak. The last scenario (5) is the null case where there is no carryover effect.

The total effect in each scenario is 10 and total carryover effects (𝛿) are 4.69, 0.94, 8.48, -2.30 and

0 respectively.

In each individual N-of-1 trial, participants would receive same treatment sequence: 𝑥𝑡 = 1 on

the first 30 days and the last 30 days, and receive 𝑥𝑡 = 0 between days 31 and 90; that is,

𝑥𝑡 =


1 𝑡 = 30𝑠 + 1, ..., 30𝑠 + 30 for 𝑠 = 0, 3

0 𝑡 = 30𝑠 + 1, ..., 30𝑠 + 30 for 𝑠 = 1, 2.

For the stochastic component in data generation, we set 𝜎 = 10 and consider 𝜙 = 0.5, 0.2,

representing strong and weak serial correlation respectively.

3.4.2 Comparison Methods

For each simulation scenario, 100 data sets were generated. We fit the proposed BHDLM-AR

model with lag 𝐿 = 7 and AR(1) for the error terms. Posterior distributions were derived using
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the hybrid Metropolis Hastings/Gibbs algorithm described in the previous section with 50,000

iterations, a burn-in period of 25,000, and 𝑎 = 0.2 for sampling 𝜸 in the MH step.

We compare estimates obtained using BDLM-AR in Chapter 2, linear mixed effect model with

first-order autoregressive structure covariance matrix for observations within subjects (LMM-AR;

D. R. Zucker et al., 2010) and an extension of regular distributed lag model with random effects,

following the same first-order autoregressive covariance structure (DLMM-AR). DLMM-AR can

be regarded as a frequentist counterpart of Bayesian hierarchical model with non-informative prior

on parameters of both population and individual level. Details of the model specifications of the

competing methods are shown below.

Linear mixed effect model full specifications

D. R. Zucker et al. (2010) proposed to use linear mixed effect model to account for correlations

within the study clusters and combine multiple N-of-1 trials. They use data aggregated to the

patient-period level, so the time series treatments of N-of-1 trial will be grouped into different

periods, where treatments in each period will be same. Let𝑌𝑖, 𝑗 denote an average response variable

of interest for the 𝑖-th individual N-of-1 trial in the 𝑗-th period ( 𝑗 = 1, 2, ...𝐽) and𝒀𝒊 = (𝑌𝑖,1, ..., 𝑌𝑖, 𝑗 )

denote the collection of response variable for the 𝑖-th individual N-of-1 trial. Let 𝑋𝑖, 𝑗 denote

the treatment indicator for the 𝑖-th individual N-of-1 trial in the 𝑗-th period ( 𝑗 = 1, 2, ...𝐽) and

𝑿𝒊 = (𝑋𝑖,1, ..., 𝑋𝑖, 𝑗 ) denote the period-level treatment sequence of the 𝑖-th individual N-of-1 trial.

The linear mixed effect model can be written as:

𝒀𝒊 = 𝝁1 + 𝑿𝒊𝛽 + 𝒁𝒊𝒃 𝒊 + 𝝐𝒊

𝒃 𝒊 ∼ 𝑁 (0,𝑮)

𝝐𝒊 ∼ 𝑁 (0,𝚺)

where 𝜷 is a coefficient for treatment effect representing the fixed effect. 𝑍𝑖 is the design matrix

for the random effects. The 𝒃 𝒊 are the random effects. Random intercept and random slope are

included in random effects, thus the dimension for 𝒃 𝒊 is also 2. Here 𝑮 is the covariance matrix
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between random intercept and random slope. We assume they are independent, and hence 𝑮 will

be a diagonal matrix. 𝚺 is the within-patient covariance matrix. There are several forms for 𝚺 and

for the sake of comparison with other methods, first-order autoregressive structure is used. To be

specific,

𝚺 =
𝜎2

1 − 𝜌2

©«

1 𝜌 . . . 𝜌𝐽−1

𝜌 1 . . . 𝜌𝐽−2

...
...

. . .
...

𝜌𝐽−1 𝜌𝐽−2 . . . 1

ª®®®®®®®®¬
Distributed lag model with mixed effect full specifications

An extension of distributed lag model that incorporates correlation within individual N-of-1

trial is using distributed lag model as the mean model and adding random effects of lag coefficients.

The data is collected at day level and let 𝑋𝑡 and 𝑌𝑡 denote the binary treatment indicator and the

outcome of interest on day 𝑡 for the 𝑖-th individual N-of-1 trial respectively, where 𝑡 = 1, 2, ..., 𝑛𝑖

and 𝑖 = 1, 2, ..., 𝑆. Let �̃�𝑖 be a 𝑛𝑖 × (𝐿 + 1) matrix with 𝑋∗𝑖,𝑘−𝑙+1 being the (𝑘, 𝑙)-th element of �̃�𝑖,

then the distributed lag model with mixed effect is:

𝒀𝒊 = 𝝁1 + �̃�𝑖𝜷 + 𝒁𝒊𝒃 𝒊 + 𝝐𝒊

𝒃 𝒊 ∼ 𝑁 (0,𝑮)

𝝐𝒊 ∼ 𝑁 (0,𝚺)

The model parameters are same as those in linear mixed effect model, except that 𝜷 is a 𝑙 + 1

by 1 vector, and the dimension for random effects 𝒃 𝒊 and its covariance matrix 𝑮 are also 𝑙 + 1 to

model for random effects of every lag coefficient. The within-patient covariance matrix 𝚺 follows

first-order autoregressive structure.
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3.4.3 Simulation Results

First, we investigate the performance of the proposed BHDLM-AR model in estimating popu-

lation level parameter 𝜽 . BDLM-AR model is designed for individual N-of-1 trial analysis, there-

fore it cannot obtain estimates for population level parameters. Table 3.1 gives the summary of

bias and root mean squared error, RMSE = [1/𝑛sim ×
∑𝑛sim

𝑗=1 (�̂� 𝑗 − 𝜽 𝑗 )2]1/2 under different lag

curves with 𝑆 = 10 and 𝜙 = 0.5, where �̂� is the posterior mean / maximum likelihood estimate.

LMM-AR only involves one treatment indicator in the model, which means it can only estimate

total treatment effect and is not able to estimate the whole treatment effect curve over time. As

we observe, compared with DLMM-AR, due to the ridge type of shrinkage at both individual and

population level parameter, the proposed BHDLM-AR model has the lowest RMSE in estimating

population level total effect, total carryover effect and immediate effect in most of the scenarios,

but at the cost of larger bias in estimation. So the advantage of the proposed model is the ability of

our method in breaking down the total effect and improving the estimation properties of carryover

effect. Detailed summary of evaluation metrics for each lag coefficient, model standard deviation

𝜎 and autoregressive coefficient 𝜙 can be found in Table 3.2 to 3.6.

For individual level parameters, we estimate the average bias of estimation across individual

trials and root of the squared error between the posterior mean and the true value of 𝑗-th simulation

iteration of the 𝑖-th individual trial, and denoted as average root mean squared error (RAMSE),

which is similar as the metric proposed by Katahira (2016) for evaluating estimation accuarcy at

individual level:

Average bias =
1

𝑆 × 𝑛sim

𝑆∑
𝑖=1

𝑛sim∑
𝑗=1
( �̂�𝑖 𝑗 − 𝜷𝑖 𝑗 )

RAMSE =

√√√
1

𝑆 × 𝑛sim

𝑆∑
𝑖=1

𝑛sim∑
𝑗=1
( �̂�𝑖 𝑗 − 𝜷𝑖 𝑗 )2

(3.16)

For LMM-AR and DLMM-AR, best linear unbiased prediction (BLUP, Robinson et al., 1991) is

used for the estimation of random effects. Table 3.7 summarizes the performance of each method

in estimating individual level parameters under different lag curves with 𝑆 = 10 and 𝜙 = 0.5.
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BHDLM-AR LMM-AR DLMM-AR

Bias

Total Effect
Exponential decay -0.98 -0.24 0.76
Exponential decay (Oscillated) -0.31 0.29 0.30
Slow absorption -1.29 -0.89 0.37
Slow absorption (Oscillated) 0.66 0.51 -0.12
No carryover 0.13 -0.02 -0.05

Total Carryover Effect
Exponential decay -0.92 - -4.57
Exponential decay (Oscillated) 0.32 - 0.12
Slow absorption -2.57 - 0.23
Slow absorption (Oscillated) 1.03 - -0.17
No carryover 1.24 - -0.14

Immediate Effect
Exponential decay -0.05 - 5.33
Exponential decay (Oscillated) -0.63 - 0.17
Slow absorption 1.28 - 0.14
Slow absorption (Oscillated) -0.37 - 0.05
No carryover -1.11 - 0.09

RMSE

Total Effect
Exponential decay 2.28 2.25 2.47
Exponential decay (Oscillated) 2.08 2.32 2.52
Slow absorption 2.44 2.49 2.49
Slow absorption (Oscillated) 2.15 2.73 2.90
No carryover 2.22 2.19 2.52

Total Carryover Effect
Exponential decay 1.95 - 5.17
Exponential decay (Oscillated) 1.74 - 2.21
Slow absorption 3.09 - 2.58
Slow absorption (Oscillated) 1.99 - 2.53
No carryover 2.06 - 2.37

Immediate Effect
Exponential decay 1.94 - 5.88
Exponential decay (Oscillated) 2.04 - 2.23
Slow absorption 2.32 - 2.45
Slow absorption (Oscillated) 1.97 - 2.28
No carryover 2.75 - 2.66

Table 3.1: Summary of bias and RMSE (best values in bold) of population level total effect, total
carryover effect and immediate effect (𝜃0) under five lag coefficient curves, estimated by three
models.

69



Bias RMSE
Truth BHDLM-AR LMM-AR DLMM-AR BHDLM-AR LMM-AR DLMM-AR

𝜇 10 -1.25 -0.39 -0.62 3.42 3.51 3.55
Total effect 9.69 -0.98 -0.24 0.76 2.28 2.25 2.47

Total carryover effect 4.69 -0.92 - -4.57 1.95 - 5.17
𝜃0 5 -0.05 - 5.33 1.94 - 5.88
𝜃1 2.50 -0.43 - -2.82 1.33 - 3.73
𝜃2 1.25 -0.23 - -1.16 0.76 - 2.42
𝜃3 0.62 -0.21 - -0.62 0.48 - 2.17
𝜃4 0.31 -0.15 - -0.39 0.28 - 2.14
𝜃5 0 0.07 - 0.21 0.14 - 2.13
𝜃6 0 0.02 - 0.16 0.00 - 2.03
𝜃7 0 0.01 - 0.05 0.00 - 1.81
𝜙 0.5 - -0.38 -0.01 - 0.47 0.10
𝜎 10 -0.02 -5.75 1.32 0.26 5.82 1.38

Table 3.2: Summary of evaluation metrics for population level parameters under exponential decay
lag coefficient curve.

Bias RMSE
Truth BHDLM-AR LMM-AR DLMM-AR BHDLM-AR LMM-AR DLMM-AR

𝜇 10 -1.39 0.02 0.01 3.50 3.71 3.69
Total effect 5.94 -0.31 0.29 0.30 2.08 2.32 2.52

Total carryover effect 0.94 0.32 - 0.12 1.74 - 2.21
𝜃0 5 -0.63 - 0.17 2.04 - 2.23
𝜃1 2.50 -1.03 - -0.20 1.61 - 2.02
𝜃2 -1.25 1.09 - 0.39 1.31 - 2.16
𝜃3 -0.63 0.54 - -0.12 0.69 - 2.07
𝜃4 0.31 -0.30 - 0.04 0.38 - 2.04
𝜃5 0 0.01 - -0.06 0.11 - 1.93
𝜃6 0 0.01 - -0.20 0.05 - 2.03
𝜃7 0 0.00 - 0.27 0.02 - 1.67
𝜙 0.5 - -0.46 -0.01 - 0.54 0.10
𝜎 10 -0.02 -5.61 1.28 0.26 5.77 1.33

Table 3.3: Summary of evaluation metrics for population level parameters under exponential decay
(oscillated) lag coefficient curve.
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Bias RMSE
Truth BHDLM-AR LMM-AR DLMM-AR BHDLM-AR LMM-AR DLMM-AR

𝜇 10 -1.13 0.99 0.57 3.38 3.11 3.00
Total effect 9.99 -1.29 -0.89 0.37 2.44 2.49 2.49

Total carryover effect 8.49 -2.57 - 0.23 3.09 - 2.58
𝜃0 1.51 1.28 - 0.14 2.32 - 2.45
𝜃1 2.75 -0.26 - 0.15 1.28 - 2.38
𝜃2 3.36 -1.33 - -0.05 1.51 - 2.35
𝜃3 2.03 -1.11 - 0.09 1.19 - 2.03
𝜃4 0.34 -0.03 - -0.19 0.24 - 2.12
𝜃5 0 0.11 - -0.10 0.14 - 2.19
𝜃6 0 0.04 - 0.18 0.00 - 2.21
𝜃7 0 0.01 - 0.14 0.00 - 1.80
𝜙 0.5 - -0.46 -0.01 - 0.55 0.10
𝜎 10 -0.02 -5.62 1.31 0.26 5.71 1.36

Table 3.4: Summary of evaluation metrics for population level parameters under slow absorption
lag coefficient curve.

Bias RMSE
Truth BHDLM-AR LMM-AR DLMM-AR BHDLM-AR LMM-AR DLMM-AR

𝜇 10 -1.56 -0.65 -0.45 3.57 3.56 3.50
Total effect -0.79 0.66 0.51 -0.12 2.15 2.73 2.90

Total carryover effect -2.30 1.03 - -0.17 1.99 - 2.53
𝜃0 1.51 -0.37 - 0.05 1.97 - 2.28
𝜃1 2.75 -1.95 - -0.08 2.32 - 2.12
𝜃2 -3.36 2.09 - -0.23 2.21 - 2.01
𝜃3 -2.03 1.42 - 0.12 1.49 - 2.06
𝜃4 0.34 -0.48 - -0.01 0.54 - 2.05
𝜃5 0 -0.03 - 0.00 0.10 - 1.90
𝜃6 0 -0.01 - 0.19 0.00 - 1.83
𝜃7 0 0.00 - -0.17 0.00 - 1.92
𝜙 0.5 - -0.45 -0.01 - 0.54 0.00
𝜎 10 -0.01 -5.82 1.22 0.26 5.89 1.28

Table 3.5: Summary of evaluation metrics for population level parameters under slow absorption
(oscillated) lag coefficient curve.
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Bias RMSE
Truth BHDLM-AR LMM-AR DLMM-AR BHDLM-AR LMM-AR DLMM-AR

𝜇 10 -0.50 -0.09 -0.09 3.48 3.10 3.13
Total effect 10 0.13 -0.02 -0.05 2.22 2.19 2.52

Total carryover effect 0 1.24 - -0.14 2.06 - 2.37
𝜃0 10 -1.11 - 0.09 2.75 - 2.66
𝜃1 0 0.72 - -0.01 1.41 - 2.07
𝜃2 0 0.28 - 0.17 0.77 - 2.11
𝜃3 0 0.13 - -0.16 0.45 - 2.04
𝜃4 0 0.06 - -0.27 0.24 - 2.32
𝜃5 0 0.03 - 0.28 0.10 - 1.89
𝜃6 0 0.01 - 0.02 0.00 - 1.92
𝜃7 0 0.01 - -0.17 0.00 - 1.68
𝜙 0.5 - -0.46 -0.01 - 0.56 0.00
𝜎 10 -0.02 -5.70 1.20 0.26 5.85 1.27

Table 3.6: Summary of evaluation metrics for population level parameters under no carryover
effect lag coefficient curve.

As we can see, the proposed model has the lowest RAMSE in all of the scenarios. Compared to

fitting separate individual BDLM-AR model, the prior structure in BHDLM-AR pulls the estimates

of individual level parameters towards the population mean, thus yielding the estimation to be

less sensitive to noise. Comparison results under different number of subjects and model error

autocorrelation are similar (Table 3.9 to 3.14).

Figure 3.1 further shows the performance of estimating each individual level lag coefficient

in terms of average bias and RAMSE. DLMM-AR has the smallest average bias in almost all lag

coefficients, but largest RAMSE since it behaves similarly as Bayesian hierarchical distributed lag

model with non-informative prior. BHDLM-AR and BDLM-AR model have large average bias at

early lag coefficients but average bias and RAMSE decreases as lag increases due to the designed

prior structure on lag coefficients with increasing ridge and smoothness penalties. Compared with

fitting individual N-of-1 trials separately with BDLM-AR model, BHDLM-AR further reduces

average bias and RAMSE. This could be because the hierarchical structure of BHDLM-AR en-

ables the estimation of individual level parameters not only depends on its own observations, but

also "borrow strength" from other N-of-1 trials through utilizing the information at population

level parameters. Overall, the proposed BHDLM-AR model has the smallest RAMSE in all lag
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Figure 3.1: Average bias and RAMSE of posterior mean (Maximum likelihood) estimated lag
coefficients under five different true lag coefficient curve with 10 subjects and 𝜙 = 0.5.

coefficients under different scenarios.

3.5 Revisiting Light Therapy Study

We used data from I. M. Kronish et al. (2020), which studies the effectiveness of bright white

light therapy for depressive symptoms within cancer survivors. Eight eligible patients completed

a 12-week N-of-1 trial using both bright white light (10,000 lux) and dim red light (50 lux) in-

tervention, but in different sequence. The outcome of interest is a composite depressive score

calculated through a combination of depressive symptom, fatigue symptom and negative affectiv-

ity. Additional details regarding the data can be found in Section 2.5. Figure 3.2 shows the daily

assessments of all patients in the study.

The proposed BHDLM-AR model was applied to the light therapy data. We choose number of
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BHDLM-AR BDLM-AR LMM-AR DLMM-AR

Average
Bias

Total Effect
Exponential decay -0.18 -1.59 -0.34 0.34
Exponential decay (Oscillated) 0.16 -0.77 0.10 0.11
Slow absorption -0.44 -1.80 -1.19 0.07
Slow absorption (Oscillated) 0.53 0.73 0.68 0.05
No carryover 0.03 -1.44 0.26 0.24

Total Carryover Effect
Exponential decay -0.63 -1.00 - 0.01
Exponential decay (Oscillated) 0.35 0.65 - 0.00
Slow absorption -2.02 -3.49 - 0.07
Slow absorption (Oscillated) 0.79 1.35 - -0.04
No carryover 1.13 2.41 - 0.01

Immediate Effect
Exponential decay 0.45 -0.59 - 0.33
Exponential decay (Oscillated) -0.19 -1.41 - 0.11
Slow absorption 1.57 1.69 - 0.00
Slow absorption (Oscillated) -0.25 -0.62 - 0.09
No carryover -1.10 -3.85 - 0.23

RAMSE

Total Effect
Exponential decay 3.75 4.43 3.91 4.04
Exponential decay (Oscillated) 3.75 4.00 4.06 4.23
Slow absorption 3.78 4.56 3.95 4.02
Slow absorption (Oscillated) 3.79 3.92 3.99 4.17
No carryover 3.74 4.37 3.85 4.00

Total Carryover Effect
Exponential decay 3.33 4.00 - 4.66
Exponential decay (Oscillated) 3.28 3.68 - 4.69
Slow absorption 3.85 5.43 - 4.83
Slow absorption (Oscillated) 3.35 3.85 - 4.69
No carryover 3.45 4.55 - 4.72

Immediate Effect
Exponential decay 3.60 3.87 - 4.57
Exponential decay (Oscillated) 3.57 4.01 - 4.49
Slow absorption 3.90 4.17 - 4.42
Slow absorption (Oscillated) 3.58 3.80 - 4.45
No carryover 3.74 5.63 - 4.52

Table 3.7: Summary of average bias and RAMSE (best values in bold) of individual level total
effect, total carryover effect and immediate effect (𝛽0) under five lag coefficient curves, estimated
by four models.
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Figure 3.2: Daily assessments of eight subjects in the light therapy study. Black line represents
bright white light intervention, and grey line represents dim red light.

lags 𝐿 = 7 so that the model can capture the lagged treatment effect up to a week, which is long

enough to exhibit the treatment effect on composite depressive score. As a comparison, we also

applied BDLM-AR model that fitted data from individual N-of-1 trial separately. Convergence of

all the MCMC were checked using both trace plots and the GelmanRubin diagnostics (Gelman,

Rubin, et al., 1992). To be specific, the potential scale reduction factor for lag coefficients, au-

toregressive coefficients and model variance all are smaller than 1.2, as Brooks and Gelman, 1998

have suggested, indicating the convergence of posterior samples.

The posterior means of each lag coefficient at both population and individual level are shown in

Figure 3.3 as a function of lag. Results fitted by BHDLM-AR and BDLM-AR model are presented

in solid and dashed line respectively. Point-wise 90% posterior credible intervals for each lag

coefficients, total effect, total carryover effect and autoregressive coefficient are summarized in
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Table 3.8. At population level, BHDLM-AR suggests a positive immediate treatment effect in

decreasing composite depressive score (-0.4, 90% CI: -0.90, 0.09) while a negative carryover effect

at lag 1 (0.44, 90% CI: -0.02, 0.91) and lag 2 (-0.16, 90% CI: -0.23, 0.56), indicating patients

receiving light therapy will have immediate benefit from the treatment but the adverse effect will

follow for around 2 days. In the Bayesian hierarchical model, we also observed estimated lag

coefficient curve of single subject follows the trend of population level estimated lag coefficient

curve, which is known as the "shrinkage" effect of the individual parameters estimates towards

the population mean induced by Bayesian hierarchical structure (Efron and Morris, 1977). At

individual level, patient 7707 and 7708 are the only two who have positive total treatment effect.

The composite depressive score decreases 0.37 (90% CI: -0.80, 0.20) point in patient 7707 and 0.58

(90% CI: -1.07, -0.06) point in patient 7708. This result is aligned with their positive feedback after

their individual N-of-1 trial. Another interesting finding is that three patients (ID: 7705, 7709 and

7710) have been found significant carryover effect by the hierarchical model, which provides extra

information in understanding the light therapy treatment effect over the time for each individual

patient.

3.6 Discussion

In this chapter, we introduce a Bayesian approach to combine results from multiple N-of-1

trials and estimate lag coefficients both at population and individual level. BHDLM-AR is an

extension to the BDLM-AR model as described in Chapter 2, and preserve the ability to handle

temporal correlation between observations and carryover effect through distributed lag structure.

In addition, the proposed method uses Bayesian hierarchical structure to account for both within

and between-patient variation, which can improve the estimates for individuals.

Compared with analyzing each single N-of-1 trial separately by BDLAR model, the hierarchi-

cal model reflects the sampling regime more appropriately in the design since the heterogeneity of

treatment effect can be regard as a kind of random effects. In the simulation, we showed BHDLM-

AR outperforms single BDLAR model in estimating total treatment effect, total carryover effect
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and each lag coefficient. When number of observations in some of the single N-of-1 trail is small,

the hierarchical structure allows these trials to borrow strength from other trials to improve estima-

tion.

In BHDLM-AR model, both population and individual level lag coefficients are added with

a designed prior structure so that both lag coefficient curves are shrunk to behave in a monotone

decreasing trend. The trend at large lag is usually right since treatment effect will finally diminish

to zero, but the trend at first several lag varies treatment to treatment. If more informative prior can

be obtained from clinician’s experience or pharmacokinetic/pharmacodynamic research, we may

have more accurate estimation.

The use of BHDLM-AR model to combined N-of-1 trials has practical meanings. From a

regulatory perspective, the population level estimated lag coefficient curve is of interest since it

can provide a more precise general association between the treatment and outcome while adjusting

for treatment heterogeneity across patients. From a patient perspective, the posterior distribution

of population level parameters can be utilized for future light therapy treatment recommendation

and improve the estimation at individual level.

The proposed model is applied to a real application of using white light therapy for depressive

symptoms. We find an overall positive immediate treatment effect while a negative carryover is

identified for around 2 days. The results on light therapy study should be interpreted carefully.

The 90% credible interval of a lot of lag coefficients cover zero, indicating substantial uncertainty

in parameters estimation. But in view of the small number of observations of each patient in the

study, compared to other applications of distributed lag model such as Peng et al. (2009) used 4

years’ day level data and Zanobetti and Schwartz (2008) made use of 12 years of data, we could

expect an increasing in precision of parameters estimation if more data is collected. Although

the finding of light therapy study is interesting, considering the small number of patients in the

study, the results may not be generalized to the overall population. However, further study on the

biological mechanism of light therapy can be performed to obtain a better understanding of its

relationship to depressive symptoms.
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BHDLM-AR LMM-AR DLMM-AR

Bias

Total Effect
Exponential decay -0.63 -0.61 0.10
Exponential decay (Oscillated) -0.28 0.15 0.15
Slow absorption -0.79 -1.21 -0.02
Slow absorption (Oscillated) 0.21 0.50 -0.14
No carryover -0.53 0.12 0.13

Total Carryover Effect
Exponential decay -0.56 - 0.05
Exponential decay (Oscillated) 0.17 - 0.04
Slow absorption -1.56 - -0.01
Slow absorption (Oscillated) 0.54 - -0.21
No carryover 0.69 - 0.12

Immediate Effect
Exponential decay -0.07 - 0.06
Exponential decay (Oscillated) -0.45 - 0.11
Slow absorption 0.76 - -0.01
Slow absorption (Oscillated) -0.34 - 0.07
No carryover -1.23 - 0.02

RMSE

Total Effect
Exponential decay 1.56 1.59 1.59
Exponential decay (Oscillated) 1.45 1.52 1.60
Slow absorption 1.63 2.02 1.73
Slow absorption (Oscillated) 1.45 1.93 1.99
No carryover 1.52 1.78 1.95

Total Carryover Effect
Exponential decay 1.65 - 1.75
Exponential decay (Oscillated) 1.57 - 1.66
Slow absorption 2.20 - 1.71
Slow absorption (Oscillated) 1.65 - 1.71
No carryover 1.71 - 1.87

Immediate Effect
Exponential decay 1.62 - 1.73
Exponential decay (Oscillated) 1.68 - 1.53
Slow absorption 1.79 - 1.77
Slow absorption (Oscillated) 1.66 - 1.69
No carryover 2.04 - 1.71

Table 3.9: Summary of bias and RMSE (best values in bold) of population level total effect, total
carryover effect and immediate effect (𝜃0) under five lag coefficient curves, estimated by three
models with 20 subjects and 𝜙 = 0.5.
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BHDLM-AR LMM-AR DLMM-AR

Bias

Total Effect
Exponential decay 0.00 -0.34 0.02
Exponential decay (Oscillated) -0.32 0.26 0.27
Slow absorption -0.95 -1.36 -0.23
Slow absorption (Oscillated) 0.43 0.49 -0.15
No carryover -0.74 -0.18 -0.25

Total Carryover Effect
Exponential decay -0.40 - 0.11
Exponential decay (Oscillated) 0.15 - 0.10
Slow absorption -1.99 - -0.30
Slow absorption (Oscillated) 0.45 - -0.18
No carryover 1.22 - -0.34

Immediate Effect
Exponential decay 0.39 - -0.09
Exponential decay (Oscillated) -0.47 - 0.16
Slow absorption 1.04 - 0.07
Slow absorption (Oscillated) -0.02 - 0.03
No carryover -1.96 - 0.09

RMSE

Total Effect
Exponential decay 2.06 2.04 2.36
Exponential decay (Oscillated) 1.92 2.12 2.27
Slow absorption 2.15 2.47 2.26
Slow absorption (Oscillated) 1.93 2.40 2.51
No carryover 2.05 2.27 2.43

Total Carryover Effect
Exponential decay 1.88 - 2.12
Exponential decay (Oscillated) 1.75 - 2.07
Slow absorption 2.66 - 2.16
Slow absorption (Oscillated) 1.79 - 2.32
No carryover 2.13 - 2.37

Immediate Effect
Exponential decay 1.86 - 2.37
Exponential decay (Oscillated) 1.92 - 2.24
Slow absorption 2.13 - 2.35
Slow absorption (Oscillated) 1.85 - 2.21
No carryover 2.71 - 2.39

Table 3.10: Summary of bias and RMSE (best values in bold) of population level total effect, total
carryover effect and immediate effect (𝜃0) under five lag coefficient curves, estimated by three
models with 10 subjects and 𝜙 = 0.2.
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BHDLM-AR LMM-AR DLMM-AR

Bias

Total Effect
Exponential decay -0.52 -0.64 0.02
Exponential decay (Oscillated) -0.31 0.15 0.14
Slow absorption -0.57 -1.25 -0.07
Slow absorption (Oscillated) 0.05 0.48 -0.13
No carryover -0.52 0.12 0.12

Total Carryover Effect
Exponential decay -0.41 - 0.03
Exponential decay (Oscillated) 0.00 - 0.05
Slow absorption -1.12 - -0.02
Slow absorption (Oscillated) 0.06 - -0.20
No carryover 0.78 - 0.11

Immediate Effect
Exponential decay -0.12 - -0.01
Exponential decay (Oscillated) -0.31 - 0.09
Slow absorption 0.54 - -0.05
Slow absorption (Oscillated) -0.02 - 0.06
No carryover -1.30 - 0.02

RMSE

Total Effect
Exponential decay 1.42 1.48 1.42
Exponential decay (Oscillated) 1.36 1.36 1.45
Slow absorption 1.45 1.92 1.56
Slow absorption (Oscillated) 1.32 1.72 1.74
No carryover 1.42 1.60 1.75

Total Carryover Effect
Exponential decay 1.59 - 1.68
Exponential decay (Oscillated) 1.54 - 1.54
Slow absorption 1.91 - 1.57
Slow absorption (Oscillated) 1.54 - 1.56
No carryover 1.73 - 1.74

Immediate Effect
Exponential decay 1.53 - 1.75
Exponential decay (Oscillated) 1.57 - 1.51
Slow absorption 1.62 - 1.74
Slow absorption (Oscillated) 1.53 - 1.62
No carryover 2.01 - 1.66

Table 3.11: Summary of bias and RMSE (best values in bold) of population level total effect, total
carryover effect and immediate effect (𝜃0) under five lag coefficient curves, estimated by three
models with 20 subjects and 𝜙 = 0.2.
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BHDLM-AR BDLM-AR LMM-AR DLMM-AR

Average
Bias

Total Effect
Exponential decay -0.10 -1.54 -0.49 0.20
Exponential decay (Oscillated) 0.09 -0.76 0.05 0.05
Slow absorption -0.27 -1.81 -1.10 0.08
Slow absorption (Oscillated) 0.31 0.58 0.67 0.04
No carryover 0.03 -1.31 0.00 0.01

Total Carryover Effect
Exponential decay -0.36 -1.11 - 0.07
Exponential decay (Oscillated) 0.24 0.61 - -0.03
Slow absorption -1.23 -3.54 - 0.06
Slow absorption (Oscillated) 0.50 1.45 - -0.13
No carryover 0.75 2.23 - 0.07

Immediate Effect
Exponential decay 0.26 -0.43 - 0.13
Exponential decay (Oscillated) -0.15 -1.37 - 0.08
Slow absorption 0.96 1.73 - 0.02
Slow absorption (Oscillated) -0.19 -0.87 - 0.18
No carryover -0.72 -3.53 - -0.06

RAMSE

Total Effect
Exponential decay 3.73 4.30 3.86 4.41
Exponential decay (Oscillated) 3.73 3.92 3.87 4.71
Slow absorption 3.74 4.47 3.97 4.84
Slow absorption (Oscillated) 3.74 3.84 3.84 4.39
No carryover 3.73 4.21 3.89 4.40

Total Carryover Effect
Exponential decay 3.23 3.80 - 4.03
Exponential decay (Oscillated) 3.21 3.49 - 4.12
Slow absorption 3.44 5.31 - 4.44
Slow absorption (Oscillated) 3.24 3.77 - 4.04
No carryover 3.29 4.25 - 4.12

Immediate Effect
Exponential decay 3.48 3.69 - 4.11
Exponential decay (Oscillated) 3.48 3.88 - 4.29
Slow absorption 3.61 4.11 - 4.33
Slow absorption (Oscillated) 3.48 3.73 - 4.09
No carryover 3.55 5.21 - 4.06

Table 3.12: Summary of average bias and RAMSE (best values in bold) of individual level total
effect, total carryover effect and immediate effect (𝛽0) under five lag coefficient curves, estimated
by four models with 20 subjects and 𝜙 = 0.5.
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BHDLM-AR BDLM-AR LMM-AR DLMM-AR

Average
Bias

Total Effect
Exponential decay 0.00 -0.73 -0.44 0.05
Exponential decay (Oscillated) 0.13 -0.32 0.07 0.08
Slow absorption -0.11 -0.76 -1.06 0.07
Slow absorption (Oscillated) 0.29 0.39 0.67 0.03
No carryover 0.07 -0.57 -0.03 -0.10

Total Carryover Effect
Exponential decay -0.40 -0.57 - 0.08
Exponential decay (Oscillated) 0.15 0.57 - -0.02
Slow absorption -1.42 -2.88 - -0.19
Slow absorption (Oscillated) 0.16 1.03 - -0.05
No carryover 1.23 2.45 - -0.24

Immediate Effect
Exponential decay 0.39 -0.16 - -0.03
Exponential decay (Oscillated) -0.02 -0.89 - 0.10
Slow absorption 1.31 2.13 - 0.26
Slow absorption (Oscillated) 0.13 -0.64 - 0.08
No carryover -1.16 -3.02 - 0.15

RAMSE

Total Effect
Exponential decay 2.63 2.88 2.78 2.91
Exponential decay (Oscillated) 2.63 2.70 2.78 2.88
Slow absorption 2.63 2.91 2.91 2.80
Slow absorption (Oscillated) 2.64 2.69 2.78 2.83
No carryover 2.63 2.82 2.79 2.99

Total Carryover Effect
Exponential decay 3.13 3.57 - 4.43
Exponential decay (Oscillated) 3.10 3.23 - 4.36
Slow absorption 3.42 4.66 - 4.43
Slow absorption (Oscillated) 3.10 3.43 - 4.28
No carryover 3.34 4.11 - 4.59

Immediate Effect
Exponential decay 3.25 3.49 - 4.38
Exponential decay (Oscillated) 3.22 3.33 - 4.36
Slow absorption 3.49 4.01 - 4.39
Slow absorption (Oscillated) 3.23 3.31 - 4.28
No carryover 3.43 4.51 - 4.34

Table 3.13: Summary of average bias and RAMSE (best values in bold) of individual level total
effect, total carryover effect and immediate effect (𝛽0) under five lag coefficient curves, estimated
by four models with 10 subjects and 𝜙 = 0.2.
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BHDLM-AR BDLM-AR LMM-AR DLMM-AR

Average
Bias

Total Effect
Exponential decay 0.00 -0.73 -0.53 0.14
Exponential decay (Oscillated) 0.07 -0.38 0.05 0.04
Slow absorption -0.05 -0.83 -1.14 0.04
Slow absorption (Oscillated) 0.15 0.35 0.65 0.03
No carryover 0.04 -0.64 0.00 0.00

Total Carryover Effect
Exponential decay -0.21 -0.78 - 0.06
Exponential decay (Oscillated) 0.07 0.60 - -0.02
Slow absorption -0.78 -2.91 - 0.05
Slow absorption (Oscillated) 0.00 1.09 - -0.13
No carryover 0.83 2.48 - 0.06

Immediate Effect
Exponential decay 0.20 0.05 - 0.08
Exponential decay (Oscillated) 0.00 -0.98 - 0.06
Slow absorption 0.73 2.07 - -0.02
Slow absorption (Oscillated) 0.15 -0.74 - 0.16
No carryover -0.80 -3.11 - -0.06

RAMSE

Total Effect
Exponential decay 2.60 2.80 2.74 2.75
Exponential decay (Oscillated) 2.60 2.67 2.70 2.77
Slow absorption 2.61 2.88 2.91 2.67
Slow absorption (Oscillated) 2.61 2.65 2.74 2.72
No carryover 2.60 2.78 2.76 2.89

Total Carryover Effect
Exponential decay 2.98 3.35 - 3.67
Exponential decay (Oscillated) 2.98 3.15 - 3.71
Slow absorption 3.08 4.60 - 3.88
Slow absorption (Oscillated) 2.97 3.37 - 3.64
No carryover 3.09 4.07 - 3.77

Immediate Effect
Exponential decay 3.10 3.23 - 3.77
Exponential decay (Oscillated) 3.10 3.32 - 3.74
Slow absorption 3.18 3.94 - 3.83
Slow absorption (Oscillated) 3.10 3.29 - 3.66
No carryover 3.20 4.55 - 3.73

Table 3.14: Summary of average bias and RAMSE (best values in bold) of individual level total
effect, total carryover effect and immediate effect (𝛽0) under five lag coefficient curves, estimated
by four models with 20 subjects and 𝜙 = 0.2.
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Chapter 4: Extension of Bayesian Distributed

Lag Model with Multiple Interventions

4.1 Introduction

Most N-of-1 trials so far considered two interventions within each patient in the study, either

comparison of drug and placebo or drug and active control (Coxeter et al., 2003). But a lot of

therapeutic areas involve multiple guideline-recommended or first line drug classes, such as hyper-

tension and oncology studies (I. M. Kronish et al., 2019), the only way to know the best treatment

for a patient is to have the patient try the drugs first, if no additional medical diagnose or genetic

information is available. When multiple interventions are used in the N-of-1 trial, a straightforward

approach to analyze the data is to evaluate their effects one at a time by fitting two interventions

model. However, the potential carryover effect from several previous interventions may be hard to

evaluate in multiple single models.

Distributed lag models (DLMs) were first developed in econometric area (Almon, 1965; Koyck,

1954), have in recent years been applied widely used in advertising (Bass and Clarke, 1972), and

environment health studies (Welty et al., 2009; Zanobetti et al., 2000). They are regression models

for time series data when current value of a dependent variable is not only associated with current

value of an explanatory variable, but also its lagged values. The advantage of DLMs is that it allows

the effect of an exposure to be distributed over a specific period of time, and provides a better

understanding of the exposure-outcome relationship. Very few methods so far consider multiple

interventions in N-of-1 trials and their potential carryover effect over the study time period. In this

86



chapter, we extended the Bayesian distributed lag model with autocorrelated error (BDLM-AR) in

Chapter 2 to multiple interventions with one placebo (or active control) scenario.

As a motivating example, we consider a study that uses N-of-1 trials to find personalized blood

pressure medications. For each hypertensive patient, several medications from three different first-

line blood pressure medications classes were assigned in 12 weeks with a counterbalanced se-

quence (i.e., ABCCBA). The outcome of interest is systolic blood pressure which is measured

twice in the morning and twice at night by patients themselves.

The rest of this chapter is organized as follows. In Section 4.2, we introduce the proposed

Bayesian distributed lag model with autocorrelated errors (BDLM-AR) that works for multiple

interventions. In Section 4.3, the posterior distributions and MCMC algorithms are presented. We

then illustrate our models by analyzing data from hypertension study to estimate both total treat-

ment effect and carryover effect of each intervention. And finally, We conclude with a discussion

in Section 4.5.

4.2 Methods

4.2.1 Proposed Model

Suppose we observe data from a patient on 𝑛 consecutive days with a total of 𝐶 interventions

during the entire trial. On day 𝑡 = 1, . . . , 𝑛, let 𝑌𝑡 denote the outcome of interest and 𝑋𝑡,𝑐 denote

𝑐-th binary treatment indicator, where 𝑐 = 1, 2, ...𝐶. The distributed lag autoregressive model for

multiple interventions can be described as follows:

𝑌𝑡 = 𝜇 +
𝐿∑
𝑙=0

𝐶−1∑
𝑐=0

𝛽𝑙,𝑐𝑋𝑡−𝑙,𝑐 + 𝜖𝑡 (4.1)

for 𝑡 = 𝑝 + 1, ..., 𝑛, where the error term 𝜖𝑡 follows an autoregressive process,

𝜖𝑡 = 𝜙1𝜖𝑡−1 + 𝜙2𝜖𝑡−2 + ... + 𝜙𝑝𝜖𝑡−𝑝 + 𝑤𝑡 (4.2)
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for 𝑡 = 𝑝 + 1, ..., 𝑛, where the error term 𝜖𝑡 = 𝜙1𝜖𝑡−1 + 𝜙2𝜖𝑡−2 + ... + 𝜙𝑝𝜖𝑡−𝑝 + 𝑤𝑡 , 𝑤𝑡 is a white

Gaussian noise with mean zero and unknown variance 𝜎2 > 0, and 𝜇 is the intercept. Note that for

𝑡 < 𝐿, the maximum lag effect is of order 𝑡 − 1, and terms involve 𝑋 with non-positive subscript

are not included in the model.

For intervention 𝑐, 𝛽0,𝑐 measures the current treatment effect, and 𝛽𝑖,𝑐, 𝑖 > 0, measures the

carryover effect of lag-𝑖 intervention. Unlike group-level crossover design where carryover ef-

fects are usually assumed to exist only in the immediate past treatment period, the distributed lag

models consider the whole time course of carryover treatment effect. In particular,
∑𝐿

𝑖=1 𝛽𝑖,𝑐 =

𝐸 (𝑌𝑡 |𝑋𝑡−1,𝑐 = 1, ...𝑋𝑡−𝐿,𝑐 = 1, 𝑋𝑡,𝑐) − 𝐸 (𝑌𝑡 |𝑋𝑡−1,𝑐 = 0, ..., 𝑋𝑡−𝐿,𝑐 = 0, 𝑋𝑡,𝑐) measures the cumulative

carryover treatment effect of intervention 𝑐 from past 𝐿 lags.

As mentioned previously, it could be challenging to estimate lag coefficient 𝜷𝑐 = (𝛽0,𝑐, ..., 𝛽𝐿,𝑐)

due to the potential collinearity of the lagged treatment indicators. Therefore, we used the same

prior in Chapter 2 on 𝜷𝑐, which has little constraint on first several lag coefficients and gradually

increased constraint on following coefficients. At the same time, the constraint on 𝜷𝑐 is expected

to alleviate multicollinearity problem.

To estimate the parameters, we reformat model (4.1) as follows. Let Φ(𝐵) = 1− 𝜙1𝐵− 𝜙2𝐵
2 −

... − 𝜙𝑝𝐵
𝑝, where 𝐵 is the backshift operator. Then the autoregression model for the errors can be

written as Φ(𝐵)𝜖𝑡 = 𝑤𝑡 . Denote 𝑌 ∗𝑡 = Φ(𝐵)𝑌𝑡 , 𝑋∗𝑡,𝑐 = Φ(𝐵)𝑋𝑡,𝑐 and 𝜇∗ = Φ(𝐵)𝜇. Applying Φ(𝐵)

to both sides of equation (4.1), we obtain

𝑌 ∗𝑡 = 𝜇∗ +
𝐿∑
𝑖=0

𝐶−1∑
𝑐=1

𝛽𝑖,𝑐𝑋
∗
𝑡−𝑖,𝑐 + 𝑤𝑡 ,

for 𝑡 = 𝑝 + 1, ..., 𝑛. This implies that

(𝒀∗ | 𝑿∗, 𝜇∗, 𝜷) ∼ 𝑁 (𝜇∗1𝑛−𝑝 +
𝐶−1∑
𝑐=1

𝑿∗𝑐𝜷𝑐, 𝜎
2I𝑛−𝑝) (4.3)

where 𝒀∗ = (𝑌 ∗𝑝+1, ..., 𝑌 ∗𝑛 )′, 𝑿
∗ = (𝑿∗1, ..., 𝑿∗𝐶) and I is the identity matrix. Each element in 𝑿∗,

𝑿∗𝑐 is a (𝑛 − 𝑝) × (𝐿 + 1) matrix with 𝑋∗𝑘−𝑖+𝑝+1,𝑐 being the (𝑘, 𝑖)-th element of 𝑿∗𝑐, In following

88



sections, we denote 𝜷𝑐 = (𝜇, 𝜷′𝑐)′ and 𝑿∗𝑐 = (Φ(𝐵)1𝑛−𝑝, 𝑿∗𝑐) for 𝑐 = 1. Otherwise, 𝜷𝑐 = 𝜷𝑐 and

𝑿∗𝑐 = 𝑿∗𝑐.

4.2.2 Prior Distribution on the Mean Model

Prior on �̃�𝑐. The same normal prior distribution as Chapter 2 for �̃�𝑐. One advantage of using

normal prior is that the mode of the posterior distribution is equivalent to Ridge regression estimate

(i.e., 𝑙2-penalty) in the frequentist setting, which deals with the collinearity problem. In addition,

the banded structure variance covariance matrix in the prior distribution has the property that 1)

the ℓ2 penalty increases with lag 𝑖, such that coefficients at large lag are more likely to be shrink to

zero, which is in accordance with the fact that delayed treatment effect will decrease and diminish

eventually; 2) additional regularization is imposed to the difference between adjacent coefficients

to smooth the lag coefficient curve. Specifically, the prior on �̃�𝑐 is

�̃�𝑐 ∼ 𝑁 (0, 𝜎2�̃�
−1
𝑐 ), (4.4)

where �̃�𝑐 = 𝑑𝑖𝑎𝑔(𝑐0,𝛀𝑐) is a precision matrix if 𝑐 = 1 and otherwise, �̃�𝑐 = 𝛀𝑐. 𝑐0 is a scalar,

and 𝛀𝑐 is a (𝐿 + 1) × (𝐿 + 1) matrix. Note that 𝑐−1
0 is the variance of the prior on intercept 𝜇.

The detailed form of 𝛀𝑐 can be found in equation (2.6). We need to note that in equation (2.6),

the precision matrix 𝛀 is a function of 𝝀 = (𝜆0, ..., 𝜆𝐿) and 𝝀∗ = (𝜆∗0, ..., 𝜆∗𝐿) and when multiple

interventions are used, 𝛀𝑐 is governed by index 𝑐, and 𝛀𝑐 is a function of 𝝀𝑐 = (𝜆0,𝑐, ..., 𝜆𝐿,𝑐) and

𝝀∗𝑐 = (𝜆∗0,𝑐, ..., 𝜆∗𝐿,𝑐) for 𝑐 = 1, 2, ..., 𝐶.

With prior distribution (2.5), the resulting maximum a posteriori probability (MAP) estimate

of �̃�, �̂� is of the fused Ridge estimate form:

�̂� = argmin
𝜇,𝜷1,...,𝜷𝐶

(𝒀∗ −
𝐶−1∑
𝑐=0

�̃�
∗
𝑐 �̃�𝑐)

′ (𝒀∗ −
𝐶−1∑
𝑐=0

�̃�
∗
𝑐 �̃�𝑐) + 𝑐0𝜇

2 +
𝐶−1∑
𝑐=1

𝐿∑
𝑖=0

𝜆𝑖,𝑐𝛽
2
𝑖,𝑐 +

𝐶−1∑
𝑐=1

𝐿∑
𝑖=0

𝜆∗𝑖,𝑐 (𝛽𝑖,𝑐 − 𝛽𝑖+1,𝑐)2

where 𝛽𝐿+1,𝑐 ≜ 0. The fused ridge regularization penalizes not only the ℓ2-norm of the coefficients

but also their successive differences, thereby encouraging local smoothness.
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We further parameterize 𝝀𝑐 and 𝝀∗𝑐 by 𝜆𝑖,𝑐 = exp[𝛾1,𝑐 (𝑖 + 1)] and 𝜆∗𝑖,𝑐 = exp[𝛾2,𝑐 (𝑖 + 1)] for

𝑖 = 0, 1, 2, ...𝐿. Here 𝛾1,𝑐, 𝛾2,𝑐 ≥ 0 are intervention specific hyper-parameters. 𝛾1,𝑐 controls the rate

at which the ridge penalty increases, hence also controls the rate that coefficients taper to 0. 𝛾2,𝑐

controls the increasing rate of smoothness of the coefficients curve. Under such parameterization,

coefficients at large lags are more likely to shrink to zero. In the following, we rewrite �̃�𝑐 as

�̃�𝑐 (𝜸𝑐) to indicate the dependence of �̃�𝑐 on 𝜸𝑐 = (𝛾1,𝑐, 𝛾2,𝑐).

Prior on hyperparameters 𝜸𝑐. We use standard exponential hyperprior for 𝜸𝑐 = (𝛾1,𝑐, 𝛾2,𝑐),

which will provide a natural non-negative support. The prior distribution of 𝜸𝑐 is truncated to the

region 𝑆𝜸 to ensure that precision matrix 𝛀𝑐 is positive definite,

𝜋(𝛾1,𝑐, 𝛾2,𝑐) ∝ exp (−𝛾1,𝑐 − 𝛾2,𝑐)1𝑆𝜸 (𝛾1,𝑐, 𝛾2,𝑐) (4.5)

Then the amount of ridge and smooth penalization can be determined in the posterior inference

procedure.

4.2.3 Prior Distribution on the Error Model

Prior on 𝜎2. We use Jeffreys prior to model the error variance 𝜎2. That is,

𝜋(𝜎2) ∝ 1/𝜎2 (4.6)

Note that any inverse-gamma prior for 𝜎2 would maintain conjugacy, and the Jeffreys prior can be

regarded as an improper limit of inverse-gamma prior distribution.

Prior on 𝝓. We consider a truncated normal prior for 𝝓 so that the error process {𝜖𝑡 , 𝑡 =

1, 2, . . .} is stationary. Following Chib (1993), we can construct a region 𝑆𝝓, where error series 𝝐

is stationary. To be specific, all roots of the polynomial Φ(𝑧) = 1 − ∑𝑝
𝑖=1 𝜙𝑖𝑧

𝑖 are outside the unit

circle. Diffuse multivariate normal prior is used for 𝝓 and truncated to the region 𝑆𝝓,

𝝓 ∼ 𝑁𝑝

(
0𝑝, 𝜎

2
𝝓I𝑝

)
1𝑆𝝓 (𝝓) (4.7)
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where 1𝑆𝝓 (𝝓) denotes the indicator function of the region 𝑆𝝓. 𝜎2
𝝓 is assumed to be 200, which is

a hundred times the range of single autoregressive coefficient, so that there will be little influence

on the autoregressive coefficients.

4.3 Conditional Posterior Distributions

In this section, we provide the full conditional distributions of all parameters discussed above,

and propose a hybrid Metropolis-Hastings/Gibbs algorithm to estimate the parameters. Details of

derivation of full conditional distribution for each parameter can be found in Appendix C.1.

Given the likelihood function (4.3) and prior distribution of �̃�𝑐, the full conditional distribution

of �̃�𝑐 is

�̃�𝑐 | 𝒀 , �̃�𝑐, �̃�−𝑐, 𝜎
2, 𝝓, 𝜸𝑐 ∼ 𝑁𝐿+1{[ �̃�

∗′
𝑐 �̃�
∗
𝑐 + �̃�𝑐 (𝜸𝑐)]−1 �̃�

∗′
𝑐 (𝒀∗ + 𝑿∗𝑐𝜷𝑐 −

𝐶−1∑
𝑘=1

𝑿∗𝑘𝜷𝑘 ),

𝜎2 [ �̃�∗
′

𝑐 �̃�
∗
𝑐 + �̃�𝑐 (𝜸𝑐)]−1}

(4.8)

Where �̃�−𝑐 denotes all elements in �̃� except for �̃�𝑐. Similarly, it can be shown that the full condition

distribution of 𝝓 is truncated multivariate normal distribution,

𝝓 | 𝒀 , �̃�, �̃�, 𝜎2, 𝜸 ∼ 𝑁𝑝

[(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)−1

𝜎−2𝑬∗
′
𝝐∗,

(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)−1

]
1𝑆𝝓 (𝝓) (4.9)

where 𝝐∗ = (𝜖∗𝑝+1, . . . , 𝜖∗𝑛)′, 𝜖∗𝑡 = 𝑌𝑡 − 𝜇 −
∑𝐿

𝑙=0
∑𝐶−1

𝑐=1 𝛽𝑙,𝑐𝑋𝑡−𝑙,𝑐, and 𝑬∗ is a (𝑛 − 𝑝) × 𝑝 matrix with

𝜖∗𝑝+𝑘− 𝑗 being the (𝑘, 𝑗)-th element.

The prior distribution of �̃� is conditional on 𝜎2. Therefore, the posterior distribution of 𝜎2

depends on the conditional distribution 𝜋(𝜎2 | �̃�). From (4.3), (4.4) and (4.6), the full conditional

distribution of 𝜎2 is inverse-gamma distribution:

𝜎2 | 𝒀 , �̃�, �̃�, 𝝓, 𝜸 ∼ IG

[
𝑛 − 𝑝 + (𝐶 − 1)(𝐿 + 1)

2
,
(𝒀∗ −∑𝐶−1

𝑐=1 �̃�
∗
𝑐 �̃�𝑐)′(𝒀∗ −

∑𝐶−1
𝑐=1 �̃�

∗
𝑐 �̃�𝑐) + �̃�

′
𝑐�̃�𝑐 (𝜸𝑐) �̃�𝑐

2

]
(4.10)
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The full conditional distribution of 𝜸𝑐 is proportional to:

𝜋(𝜸 | 𝒀 , �̃�𝑐, �̃�𝑐, 𝝓, 𝜎
2) ∝ |𝜎−2�̃�𝑐 (𝜸𝑐) |

1
2 exp

[
− 1

2𝜎2 �̃�
′
𝑐�̃�𝑐 (𝜸𝑐) �̃�𝑐

]
exp(−𝛾1,𝑐−𝛾2,𝑐)1𝑆𝜸𝑐 (𝛾1,𝑐, 𝛾2,𝑐)

(4.11)

Since there is no closed form of the full conditional distribution, we propose to generate 𝜸 using

Metropolis-Hastings (MH) algorithm with proposal distribution as a uniform distribution𝑈 (−𝑎, 𝑎).

We tune the parameter 𝑎 such that the acceptance rate of proposed sample is around 50% (Roberts,

Gelman and Gilks, 1997). Recall that �̃�𝑐 (𝜸𝑐) is a precision matrix of 𝜷𝑐, and therefore is positive

definite. Samples of 𝜸𝑐 causing a non positive definite precision matrix will not be accepted in the

MH algorithm.

Having the full conditional distribution of all parameters in the proposed model, we use a hy-

brid Metropolis-Hastings/Gibbs algorithm to generate samples of ( �̃�, 𝝓, 𝜎2, 𝜸) from the posterior

distribution. The detailed algorithm is given below.
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Algorithm 3: The hybrid Metropolis-Hastings/Gibbs algorithm

Step 1. Set initial values for �̃�, 𝜎2, 𝝓 and 𝜸;

for 𝑖 ← 1 to 𝑛iteration do

for 𝑐 ← 1 to 𝐶 − 1 do
Step 2. Given current value of 𝝓, transform 𝒀 , �̃� to 𝒀∗, �̃�∗ as described in

equation (4.3); Also construct precision matrix �̃�𝑐 (𝜸𝑐) based on 𝜸𝑐 as described

in Section 4.4;

Step 3. Conditional on current values of 𝒀∗, �̃�∗𝑐, 𝜎
2 and �̃�𝑐 (𝜸𝑐), update �̃�𝑐 based

on 𝜋( �̃�𝑐 | 𝒀∗, �̃�
∗
𝑐, �̃�−𝑐, 𝜎

2, 𝝓, 𝜸𝑐);

Step 4. Update (𝛾1,𝑐, 𝛾2,𝑐) based on 𝜋(𝜸𝑐 | �̃�𝑐, 𝜎
2). Sample a proposal 𝛾∗𝑖,𝑐 by

𝛾∗𝑖,𝑐 = 𝛾𝑖,𝑐 + 𝑎 ∗𝑈 (−1, 1) for 𝑖 = 1, 2. 𝑎 is an adjustable step size. Compute the

ratio

𝑅𝛾 =
𝜋(𝜸∗𝑐 | �̃�𝑐, 𝜎

2)
𝜋(𝜸𝑐 | �̃�𝑐, 𝜎

2)

if �̃�𝑐 (𝜸∗𝑐) is positive definite then

update 𝜸𝑐 = 𝜸∗𝑐 with probability min(1, 𝑅𝛾);

end

end

Step 4. Conditional on current values of 𝒀∗, �̃�∗, �̃�, 𝝓 and �̃�(𝜸), update 𝜎2 based on

𝜋(𝜎2 | 𝒀∗, �̃�∗, �̃�, 𝝓, 𝜸);

Step 5. Update 𝝐∗ conditional on current value of �̃� and 𝒀 , �̃�. Then update 𝝓 based on

𝜋(𝝓 | 𝒀 , �̃�, �̃�, 𝜎2, 𝜸). Reject samples if the roots of 𝝓(𝐿) lie outside the unit circle;

end
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4.4 Hypertension Treatment Study

We utilize the dataset from a hypertension treatment study (I. M. Kronish et al., 2019) that

use N-of-1 trials to determine the personalized selection of blood pressure medications. Tradi-

tional clinical approach to treating hypertension is to start with selecting one out of four guideline-

recommended drug classes by clinicians without using too much information from patients. Mul-

tiple studies (Mancia et al., 2011; Materson, 2007) have shown that antihypertension medications

may have different treatment effect on patients, while existing techniques to precisely make person-

alized medications recommendation through genetic tests are still immature. N-of-1 trials provide

an alternative way to select the medications.

In this study, 7 patients with a history of mild hypertension were included. Each patient was

assigned three blood pressure medications from three different first-line blood pressure classes:

hydrochlorothiazide (HCTZ), amlodipine and losartan. Each trial was designed to last 12 weeks

with a counterbalanced sequence ABCCBA. Some patients were allowed to include other medica-

tions if they was already taking one, for example Dyazide (triamterene and HCTZ). One-week’s

washout period was allowed between different medications. The outcome of interest is systolic

blood pressure (SBP), which was measured by patients twice in the morning and twice in at night

by home blood pressure device. Example time series curve of outcome collected from two patients

was presented in Figure 4.1.

We fit the data with the proposed BDLM-AR model and the maximum number of lags 𝐿 is set

to 7 since a week’s period is long enough to reflect the difference in treatment effect between med-

ications and treatment effect after a week will hardly impact the outcome. The error autoregressive

(AR) order is fixed to 1. Multiple observations in the morning and at night will be combined

separately by taking average. Therefore, a patient will have two observations everyday. Some

occasional missing outcomes were imputed using average non-missing value in the correspond-

ing treatment block. Convergence of all the MCMC was checked using both trace plots and the

GelmanRubin diagnostics (Gelman, Rubin, et al., 1992). We also fit a classical linear regression
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Figure 4.1: Systolic blood pressure measurements of two subjects in the hypertension study.

model with autoregressive errors (RegAR) with AR order 1. Note that RegAR can be viewed as

special case of distributed lag models with 𝐿 setting to 0.

Table 4.1 shows the posterior mean/MLE and 90% credible/confidence interval of both dis-

tributed lag and autoregressive coefficients. For patient 1, with respect to total treatment effect,

both RegAR and the proposed BDLM-AR model find that compared to Dyazide, Losartan and

Amlodipine will increase SBP. The estimated increases of Losartan by RegAR and BDLM-AR

were 12.68 (90% CI: 8.34, 17.01) and 10.41 (90% CI: 5.49, 15.44) respectively. The estimated

increases of Amlodipine were 8.62 (90% CI: 4.22, 13.01) and 7.07 (90% CI: 2.12, 11.87) respec-

tively. From BDLM-AR model, we also find treatment difference between Dyazide and Losartan is

quite substantial at the first 3 days, while the difference between Dyazide and Amlodipine reaches

to the maximum when patient 1 took the medication and then keep a flat trend. For patient 2, with
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Patient 1 Patient 2
RegAR(1) BDLM-AR(1) RegAR(1) BDLM-AR(1)

Losartan
vs. HCTZ

Total effect 12.68 (8.34,17.01) 10.41 (5.49,15.44) 7.86 (3.78,11.94) 5.82 (1.75,10.24)
Total carryover effect - 3.62 (-1.19,9.04) - 1.47 (-2.88,5.84)

𝛽0 - 6.78 (1.88,11.52) - 4.35 (0.09,8.78)
𝛽1 - 2.95 (-0.76,7.29) - 1.48 (-1.51,5.02)
𝛽2 - 0.77 (-2.13,3.87) - 0.74 (-1.26,3.81)
𝛽3 - -0.22 (-2.8,1.81) - -0.11 (-2.18,1.45)
𝛽4 - 0.38 (-1.15,2.65) - -0.3 (-2.21,0.75)
𝛽5 - -0.09 (-1.58,1.15) - -0.12 (-1.3,0.65)
𝛽6 - -0.08 (-1.34,0.88) - -0.13 (-1.31,0.49)
𝛽7 - -0.08 (-1.06,0.62) - -0.09 (-0.97,0.37)

Amlodipine
vs. HCTZ

Total effect 8.62 (4.22,13.01) 7.07 (2.12,11.87) 6.34 (2.23,10.46) 5.51 (0.91,10.34)
Total carryover effect - 4.29 (-0.9,11.55) - 3.48 (-0.67,9.83)

𝛽0 - 2.78 (-3.38,8.12) - 2.03 (-2.59,6.28)
𝛽1 - 0.87 (-3.8,4.85) - 0.9 (-2.57,4.25)
𝛽2 - 1.04 (-1.81,4.6) - 1.17 (-0.97,4.47)
𝛽3 - 1.2 (-0.81,4.86) - 0.64 (-0.85,3.13)
𝛽4 - 0.51 (-1.03,2.96) - 0.32 (-0.87,2.06)
𝛽5 - 0.43 (-0.74,2.57) - 0.16 (-0.76,1.53)
𝛽6 - 0.13 (-0.97,1.57) - 0.15 (-0.58,1.37)
𝛽7 - 0.11 (-0.71,1.27) - 0.14 (-0.4,1.13)
𝜇 113.3 (110.2,116.39) 114.71 (111.32,118.24) 107.17 (104.31,110.03) 107.93 (104.85,111.21)
𝜙 0.18 (0,0.36) 0.2 (0,0.4) 0.28 (0.09,0.45) 0.27 (0.07,0.47)
𝜎 8.31 (7.26,9.53) 8.34 (7.3,9.57) 7.3 (6.33,8.43) 7.1 (6.19,8.11)

Table 4.1: Posterior mean/maximum likelihood estimates of total effect, total carryover effect,
lag coefficients and autoregressive coefficients for hypertension study, fitted by BDLM-AR and
RegAR. 90% credible/confidence intervals are in brackets.

respect to total treatment effect, both methods also find that Losartan and Amlodipine will increase

SBP compared to HCTZ. The estimated increases of Losartan by RegAR and BDLM-AR were

7.86 (90% CI: 3.78, 11.94) and 5.82 (90% CI: 1.75, 10.24) respectively. The estimated increases

of Amlodipine were 6.34 (90% CI: 2.23, 10.46) and 5.51 (90% CI: 0.91, 10.34) respectively. All

of the 90% credible/confidence intervals do not contain zero, suggesting a significant difference in

treatment effect.

4.5 Discussion

In this chapter, we have proposed a novel method to analyze N-of-1 trials when multiple inter-

ventions were used. As an extension to the method in Chapter 2, the proposed method in this chap-

ter also handles temporal correlation between observations and estimate carryover effect through a

Bayesian distributed lag structure. To alleviate multicollinearity problem in the explanatory vari-

ables and add prior knowledge on the shape of distributed lag curve, we introduce a designed prior
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precision matrix on each intervention to shrink the treatment effect to zero along the time.

DLMs have been used widely in econometric, advertising and environmental research area but

have not been applied in N-of-1 trials. They have the advantage of decomposing the total treatment

effects over a specific period of time. Many researches have been conducted on DLMs to estimate

distributed lag coefficients including parametric method (Almon, 1965; Koyck, 1954), penalized

regression splines (Zanobetti et al., 2000) and Bayesian framework (Welty et al., 2009). However,

most of these studies focus on single continuous explanatory variable. In N-of-1 trials, using

multiple interventions in different periods within patients are sometimes common, since there are

several first-line medications available with different mechanisms of action. The proposed BDLM-

AR method provides a direct and scientific way to compare interventions within the patient.

One assumption of the proposed model is that the interactions effects between interventions

will not substantially affect the outcome. In N-of-1 trials, the interventions are assigned in prede-

termined order and each patient will repeatedly receive one intervention for several days. Switch-

ing treatment will not happened frequently for practical considerations. However, if the treatment

period of the same intervention is much shorter than its elimination rate/half-life estimated by

pharmacokinetic/pharmacodynamic (PK/PD) modeling, then the interaction term of different in-

terventions may be added into the model due to the potential influence of synergistic or antagonistic

effects from treatment combinations (Y.-H. Chen et al., 2019).

In analyzing hypertension study data, we estimated the treatment effect difference in three

guideline-recommended medications. HCTZ (or Dyazide) is the best treatment for both patients in

reducing blood pressure. These findings are consistent with patients’ preference at the end of trial.

The largest treatment effect difference between HCTZ and Losartan occurs on the same day of

administration of medication while Amlodipine has consistently smaller treatment effect as HCTZ

along the time.

BDLM-AR in this chapter is designed to analyze individual N-of-1 trial time series data with

multiple interventions. A future direction is to combine it with the Bayesian hierarchical structure

in Chapter 3. The multi-trial framework can provide treatment effect estimation at population level,
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while adjusted for treatment heterogeneity, and potentially improve individual treatment effect

estimation by borrowing strength from other similar trials. When two treatments are not compared

directly in any single N-of-1 trial, but each of them compared directly to a third treatment in

common or through a network of relative effect, another advantage of combining multiple N-of-

1 trials with multiple intervention is that it can estimate the treatment effect between drugs with

indirect comparison.
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Chapter 5: Conclusion

N-of-1 trials have been poised to emerge as an important part of personalized medicine in

health care practice. Most of the existing models for analyzing data from N-of-1 trials still regard

them as a kind of conventional multiple-period crossover trials, thus data are usually aggregated

to several time periods in the trial. However, with the advance of modern technology, such as

wearable devices and mobile apps, the abundant data collected not only provide more information

about treatment response, but also require different statistical methods to work with these granular

data. In this dissertation, our main goal is to appropriately estimate the treatment effect in N-of-1

trials using densely collected time series type of data.

To achieve this purpose, in Chapter 2, we first proposed Bayesian DLM to analytically model

autocorrelation between measurements and carryover effect. One typical issue of DLM is the

problem of multicollinearity, which triggers unreliable coefficient estimates with large variances.

To alleviate the adverse effects of multicollinearity, we use Bayesian regularization approach, that

is, impose specific prior distributions on the model parameters. The advantage of using Bayesian

model to analyze N-of-1 trial data is that the degree of regularization is data-driven through putting

prior distribution on tuning parameters. This is especially useful since regular approach to choose

tuning parameters such as cross validation might be problematic in time series data analysis. As

demonstrated in simulation studies, our method outperforms other models in estimating total treat-

ment effect, carryover effect and lag coefficient curve under most of simulation scenarios. The

advantage of BDLM-AR in estimating lag coefficient curve can bring more insights in understand-

ing the dynamic treatment effect within each participant. Analyzing data from two subjects in the

light therapy study, we find two patients have distinct optimal treatment, indicating the existence
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of heterogeneity of treatment effect.

In Chapter 3, we considered Bayesian hierarchical structure to combine data from multiple

N-of-1 trials, focusing on inference of treatment effect and carryover effect at population level and

between patients heterogeneity. In the simulation, we demonstrate the superiority of the proposed

model for population level parameters estimation. Besides that, the advantage of partial pooling

among patients also further improves single N-of-1 trial model in individual level parameters es-

timation. The Bayesian structure that allows to borrow strength from the N-of-1 trials of others is

substantial for patients with only a small number of observations.

In Chapter 4, we extended BDLM-AR model from one treatment and one placebo (or active

control) to multiple treatments and one placebo (or active control) scenario. By applying the pro-

posed model to hypertension study data, we identify the optimal medications for each hypertensive

patient among several available first-line treatments.

From N-of-1 trial design perspective, in individual N-of-1 trial, when the total number of obser-

vations is fixed, increasing treatment switching will reduce the severity of multicollinearity, which

is encouraged. However, frequent treatment change may affect coherence in patients and cause

additional difficulties in administration. This is the trade off that clinicians need to consider before

the trial. Another design element in N-of-1 trial is washout period between different treatments.

A washout period is theoretically important to eliminate lingering effects left from previous inter-

vention. Instead of using physical washout period, our proposed methods provide an alternative to

address the carryover effects analytically, which can be applied to N-of-1 trial either with or with-

out washout period. When washout period is included, it is important to collect the measurements

during this period in order to apply our proposed methods.

In the dissertation, all the proposed models discussed so far use binary predictors, but it can

be easily extended to continuous predictors if one has more information on the interventions, e.g.

dosage, and these methods can potentially be applicable to a wide range of problems. We hope this

dissertation contributes to statistical methods for analyzing N-of-1 trials.
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Appendix A: Appendices to Chapter 2

A.1 Relationship between prior precision matrix on lag coefficient and fused ridge regres-

sion

Let the notation "𝜋(𝐴|·)" represents conditional distribution of 𝐴 given all other variables in

the model. The posterior distribution of �̃� is:

𝜋( �̃� | ·) ∝ 𝜋(𝒀 | �̃�, �̃�, 𝜎2, 𝝓, 𝜸)𝜋( �̃�|𝜎2, 𝜸)
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We now compute the MAP estimate of �̃�:
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It is important for the prior distribution of �̃� to condition on 𝜎2. Without this, the ridge and

smoothness penalties will not only depend on 𝜆𝑙 and 𝜆∗𝑙 , but depend on model variance and prior

covariance matrix on �̃� as well. Conditioning on 𝜎2 provides an explicit way to control the penalty

tuning parameters.
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A.2 Derivation of full conditional posterior distributions of parameters

Given the likelihood function and prior distribution in Section 2.2, full conditional posterior

distributions of each variable are as follows:

(1) Posterior of �̃�

𝜋( �̃�|·) ∝ 𝜋(𝒀 | �̃�, �̃�, 𝜎2, 𝝓, 𝜸)𝜋(𝜷|𝜎2, 𝜸)
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where 𝒀∗ and �̃�

∗ are transformed 𝒀 and �̃� as described in equation (2.4).
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Then the full conditional posterior distribution of �̃� is:
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∗ + �̃�(𝜸)]−1 �̃�

∗′
𝒀∗, 𝜎2 [ �̃�∗

′
�̃�
∗ + �̃�(𝜸)]−1

}
(2) Posterior of 𝜎2

𝜋(𝜎2 |·) ∝ 𝜋(𝒀 | �̃�, �̃�, 𝜎2, 𝝓, 𝜸)𝜋( �̃�|𝜎2, 𝜸)𝜋(𝜎2)

∝
(
𝜎2

)− 𝑛−𝑝
2 exp

[
− 1

2𝜎2 (𝒀
∗ − �̃�

∗
�̃�)′(𝒀∗ − �̃�

∗
�̃�)

]
|𝜎2�̃�

−1(𝜸) |− 1
2 exp

[
− 1

2𝜎2 �̃�
′
�̃�(𝜸) �̃�

]
1
𝜎2

∝
(
𝜎2

)− 𝑛−𝑝+𝐿+3
2 exp

{
− 1

2𝜎2

[
(𝒀∗ − �̃�

∗
�̃�)′(𝒀∗ − �̃�

∗
�̃�) + �̃�′�̃�(𝜸) �̃�

]}
where 𝐿 is the maximum number of lags, and 𝑝 is the order of autoregressive error.

109



Then the full conditional posterior distribution of 𝜎2 is:

𝜎2 | · ∼ Inv-Gamma

[
𝑛 − 𝑝 + 𝐿 + 1

2
,
(𝒀∗ − �̃�

∗
�̃�)′(𝒀∗ − �̃�

∗
�̃�) + �̃�′�̃�(𝜸) �̃�

2

]

(3) Posterior of 𝝓

Given 𝒀 , �̃�, �̃� and 𝜎2, the conditional joint distribution of 𝜖∗𝑝+1, 𝜖
∗
𝑝+2, ..., 𝜖

∗
𝑛 can be regarded as

a sequence of one-sided conditional distributions:

𝜋(𝜖∗𝑝+1, 𝜖∗𝑝+2, ..., 𝜖∗𝑛) = 𝜋(𝜖∗𝑝+1 |𝜖∗𝑝, ..., 𝜖∗1) · · · 𝜋(𝜖∗𝑛 |𝜖∗𝑛−1, ..., 𝜖
∗
𝑛−𝑝)

where 𝜖∗𝑝+1, 𝜖
∗
𝑝+2, ..., 𝜖

∗
𝑛 are described in equation (2.13) of Section 2.3.

𝜋(𝝓 |·) ∝ 𝜋(𝜖∗𝑝+1, 𝜖∗𝑝+2, ..., 𝜖∗𝑛 |𝝓, 𝜎2)𝜋(𝝓|𝜎2
𝝓)

∝
𝑛∏

𝑡=𝑝+1
𝜋(𝜖∗𝑡 |𝜖∗𝑡−1, ..., 𝜖

∗
𝑡−𝑝, 𝝓, 𝜎

2)𝜋(𝝓 |𝜎2
𝝓)

∝ exp
[
− 1

2𝜎2 (𝝐
∗ − 𝑬∗𝝓)′(𝝐∗ − 𝑬∗𝝓)

]
exp

(
− 1

2𝜎2
𝝓

𝝓′𝝓

)
1𝑆𝝓 (𝝓)

∝ exp
[
(𝝓 − �̂�)′

(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)
(𝝓 − �̂�)

]
1𝑆𝝓 (𝝓)

where �̂� =
(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)−1

𝜎−2𝑬∗
′
𝝐∗, 𝜎2

𝝓 is known and set to be 200.

Then the full conditional posterior distribution of 𝝓 is:

𝝓 | · ∼ 𝑁𝑝

[(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)−1

𝜎−2𝑬∗
′
𝝐∗,

(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)−1

]
1𝑆𝝓 (𝝓)
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(4) Posterior of 𝜸

𝜋(𝜸 | ·) ∝ 𝜋(𝒀 | �̃�, �̃�, 𝜎2, 𝝓, 𝜸)𝜋(𝜸 | �̃�, 𝜎2, 𝝓)

∝ 𝜋(𝒀 | �̃�, �̃�, 𝜎2, 𝝓, 𝜸)𝜋( �̃� | 𝜎2, 𝜸)𝜋(𝜸)

∝ |𝜎−2�̃�(𝜸) | 12 exp
[
− 1

2𝜎2 �̃�
′
�̃�(𝜸) �̃�

]
exp(−𝛾1 − 𝛾2)1𝑆𝜸 (𝛾1, 𝛾2)
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Appendix B: Appendices to Chapter 3

B.1 Derivation of full conditional posterior distribution of parameters

Let the notation "𝜋(𝐴|·)" represents conditional distribution of 𝐴 given all other variables in

the model.

Given the likelihood function and prior distribution in Section 3.2, full conditional posterior

distributions of each variable are as follows:

(1) Posterior of �̃�𝑖

𝜋( �̃�𝑖 |·) ∝ 𝜋(𝒀 𝑖 | �̃�𝑖, �̃�𝑖, �̃� , 𝜎
2, 𝝓𝑖, 𝜸)𝜋( �̃�𝑖 |�̃� , 𝜎2, 𝜸)

∝ exp
[
− 1

2𝜎2 (𝒀
∗
𝑖 − �̃�

∗
𝑖 �̃�𝑖)′(𝒀∗𝑖 − �̃�

∗
𝑖 �̃�𝑖)

]
exp

[
− 1

2𝜎2 ( �̃�𝑖 − �̃�)
′�̃�𝛽 (𝜸)( �̃�𝑖 − �̃�)

]
where 𝒀∗𝑖 and �̃�

∗
𝑖 are transformed 𝒀 𝑖 and �̃�𝑖 as described in equation (3.4).

Denote �̂�𝑖 =
[
�̃�
∗′
𝑖 �̃�
∗
𝑖 + �̃�𝛽 (𝜸)

]−1 [
�̃�
∗′
𝑖 𝒀
∗
𝑖 + �̃��̃�𝛽 (𝜸)

]
and using the equation

(𝒀∗𝑖 − �̃�
∗
𝑖 �̃�𝑖)′(𝒀∗𝑖 − �̃�

∗
𝑖 �̃�𝑖) + ( �̃�𝑖 − �̃�)′�̃�𝛽 (𝜸)( �̃�𝑖 − �̃�) = ( �̃�𝑖 − �̂�𝑖)′

[
�̃�
∗′
𝑖 �̃�
∗
𝑖 + �̃�𝛽 (𝜸)

]
( �̃�𝑖 − �̂�𝑖)

+𝒀∗′𝑖 𝒀∗𝑖 − �̂�
′
𝑖

[
�̃�
∗′
𝑖 �̃�
∗
𝑖 + �̃�𝛽 (𝜸)

]
�̂�𝑖 + 𝜃

′
�̃�𝛽 (𝜸)𝜃

Then the full conditional posterior distribution of �̃� is:

𝜋( �̃�𝑖 |·) ∝ exp
{
− 1

2𝜎2 ( �̃�𝑖 − �̂�𝑖)′
[
�̃�
∗′
�̃�
∗ + �̃�𝛽 (𝜸)

]
( �̃�𝑖 − �̂�𝑖)

}
�̃�𝑖 | · ∼ 𝑁𝐿+1

{[
�̃�
∗′
𝑖 �̃�
∗
𝑖 + �̃�(𝜸)

]−1 [
�̃�
∗′
𝑖 𝒀
∗
𝑖 + �̃��̃�𝛽 (𝜸)

]
, 𝜎2

[
�̃�
∗′
𝑖 �̃�
∗
𝑖 + �̃�𝛽 (𝜸)

]−1
}
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(2) Posterior of �̃�

𝜋(�̃� | ·) ∝
𝑆∏
𝑖=1

𝜋(𝒀 𝑖 | �̃�𝑖, �̃�𝑖, �̃� , 𝜎
2, 𝝓𝑖, 𝜸)𝜋(�̃� | 𝜷𝑖, 𝜎2, 𝝓𝑖, 𝜸)

∝ 𝜋(�̃�)
𝑆∏
𝑖=1

𝜋(𝒀 𝑖 | �̃�𝑖, �̃�𝑖, �̃� , 𝜎
2, 𝝓𝑖, 𝜸)𝜋( �̃�𝑖 | �̃� , 𝜎2, 𝜸)

∝ exp

[
− 1

2𝜎2
𝜃

�̃�
′
�̃�𝜃 (𝝉)�̃�

]
exp

[
− 1

2𝜎2

𝑆∑
𝑖=1
( �̃�𝑖 − �̃�)′�̃�𝛽 (𝜸) ( �̃�𝑖 − �̃�)

]
∝ exp

[
− 1

2𝜎2
𝜃

�̃�
′
�̃�𝜃 (𝝉)�̃�

]
exp

[
− 𝑆

2𝜎2 (�̃� −
∑𝑆

𝑖=1 𝜷𝑖
𝑆
)′�̃�𝛽 (𝜸) (�̃� −

∑𝑆
𝑖=1 𝜷𝑖
𝑆
)
]

∝ exp
[
−1

2
(�̃� − 𝑽−1𝒎)′𝑽 (�̃� − 𝑽−1𝒎)

]

where 𝑽 = �̃�𝜃 (𝝉)
𝜎2
𝜃

+ �̃�𝛽 (𝜸)
𝜎2/𝑆 , 𝒎 =

�̃�𝛽 (𝜸)
𝜎2

∑𝑆
𝑖=1 �̃�𝑖.

Then the full conditional posterior distribution of �̃� is:

�̃� | · ∼ 𝑁𝐿+1


[
�̃�𝜃 (𝝉)
𝜎2
𝜃

+
�̃�𝛽 (𝜸)
𝜎2/𝑆

]−1
�̃�𝛽 (𝜸)
𝜎2

𝑆∑
𝑖=1

�̃�𝑖,

[
�̃�𝜃 (𝝉)
𝜎2
𝜃

+
�̃�𝛽 (𝜸)
𝜎2/𝑆

]−1
(3) Posterior of 𝜎2

𝜋(𝜎2 |·) ∝
𝑆∏
𝑖=1

𝜋(𝒀 𝑖 | �̃�𝑖, �̃�𝑖, �̃� , 𝜎
2, 𝝓𝑖, 𝜸)𝜋( �̃�𝑖 |�̃� , 𝜎2, 𝜸)𝜋(𝜎2)

∝
𝑆∏
𝑖=1

{(
𝜎2

)− 𝑛𝑖−𝑝
2 exp

[
− 1

2𝜎2 (𝒀
∗
𝑖 − �̃�

∗
𝑖 �̃�𝑖)′(𝒀∗𝑖 − �̃�

∗
𝑖 �̃�𝑖)

]
|𝜎2�̃�

−1
𝛽 (𝜸) |−

1
2

}
exp

[
− 1

2𝜎2 ( �̃�𝑖 − �̃�)
′�̃�𝛽 (𝜸) ( �̃�𝑖 − �̃�)

]
1
𝜎2

∝
(
𝜎2

)−∑
𝑛𝑖−𝑆 (𝑝−𝐿−1)−2

2 exp

{
− 1

2𝜎2

𝑆∑
𝑖=1

[
( �̃�𝑖 − �̃�)′�̃�𝛽 (𝜸) ( �̃�𝑖 − �̃�) + (𝒀∗𝑖 − �̃�

∗
𝑖 �̃�𝑖)′(𝒀∗𝑖 − �̃�

∗
𝑖 �̃�𝑖)

]}
where 𝐿 is the maximum number of lags, and 𝑝 is the order of autoregressive error.
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Then the full conditional posterior distribution of 𝜎2 is:

𝜎2 | · ∼ Inv-Gamma

[∑
𝑛𝑖 − 𝑆(𝑝 − 𝐿 − 1)

2
,

∑𝑆
𝑖=1

[
( �̃�𝑖 − �̃�)′�̃�𝛽 (𝜸) ( �̃�𝑖 − �̃�) + (𝒀∗𝑖 − �̃�

∗
𝑖 �̃�𝑖)′(𝒀∗𝑖 − �̃�

∗
𝑖 �̃�𝑖)

]
2

]

(4) Posterior of 𝝓

For each individual N-of-1 trial, given 𝒀 𝑖, �̃�𝑖, �̃�𝑖 and 𝜎2, the conditional joint distribution of

𝜖∗𝑖,𝑝+1, 𝜖
∗
𝑖,𝑝+2, ..., 𝜖

∗
𝑖,𝑛 can be regarded as a sequence of one-sided conditional distributions:

𝜋(𝜖∗𝑖,𝑝+1, 𝜖∗𝑖,𝑝+2, ..., 𝜖∗𝑖,𝑛) = 𝜋(𝜖∗𝑖,𝑝+1 |𝜖∗𝑖,𝑝, ..., 𝜖∗𝑖,1) · · · 𝜋(𝜖∗𝑖,𝑛 |𝜖∗𝑖,𝑛−1, ..., 𝜖
∗
𝑖,𝑛−𝑝)

where 𝜖∗𝑖,𝑝+1, 𝜖
∗
𝑖,𝑝+2, ..., 𝜖

∗
𝑖,𝑛 are described in equation (3.13) of Section 3.3.

𝜋(𝝓𝑖 |·) ∝ 𝜋(𝜖∗𝑖,𝑝+1, 𝜖∗𝑖,𝑝+2, ..., 𝜖∗𝑖,𝑛 |𝝓𝑖, 𝜎
2)𝜋(𝝓𝑖 |𝜎2

𝝓)

∝
𝑛∏

𝑡=𝑝+1
𝜋(𝜖∗𝑖,𝑡 |𝜖∗𝑖,𝑡−1, ..., 𝜖

∗
𝑖,𝑡−𝑝, 𝝓𝑖, 𝜎

2)𝜋(𝝓𝑖 |𝜎2
𝝓)

∝ exp
[
− 1

2𝜎2 (𝝐
∗
𝑖 − 𝑬∗𝑖 𝝓𝑖)′(𝝐∗𝑖 − 𝑬∗𝑖 𝝓𝑖)

]
exp

(
− 1

2𝜎2
𝝓

𝝓′𝑖𝝓𝑖

)
1𝑆𝝓 (𝝓𝑖)

∝ exp
[
(𝝓𝑖 − �̂�𝑖)′

(
𝜎−2𝑬∗

′
𝑖 𝑬
∗
𝑖 + 𝜎−2

𝝓 I
)
(𝝓𝑖 − �̂�𝑖)

]
1𝑆𝝓 (𝝓𝑖)

where �̂�𝑖 =
(
𝜎−2𝑬∗

′
𝑖 𝑬
∗
𝑖 + 𝜎−2

𝝓 I
)−1

𝜎−2𝑬∗
′

𝑖 𝝐
∗
𝑖 , 𝜎

2
𝝓 is known and set to be 200.

Then the full conditional posterior distribution of 𝝓𝑖 is:

𝝓𝑖 | · ∼ 𝑁𝑝

[(
𝜎−2𝑬∗

′
𝑖 𝑬
∗
𝑖 + 𝜎−2

𝝓 I
)−1

𝜎−2𝑬∗
′

𝑖 𝝐
∗
𝑖 ,

(
𝜎−2𝑬∗

′
𝑖 𝑬
∗
𝑖 + 𝜎−2

𝝓 I
)−1

]
1𝑆𝝓 (𝝓𝑖)
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(5) Posterior of 𝜸

𝜋(𝜸 | ·) ∝
𝑆∏
𝑖=1

𝜋(𝒀 𝑖 | �̃�𝑖, �̃�𝑖, �̃� , 𝜎
2, 𝝓𝑖, 𝜸)𝜋(𝜸 | �̃�𝑖, �̃� , 𝜎2, 𝝓𝑖)

∝ 𝜋(𝜸)
𝑆∏
𝑖=1

𝜋(𝒀 𝑖 | �̃�𝑖, �̃�𝑖, �̃� , 𝜎
2, 𝝓𝑖, 𝜸)𝜋( �̃�𝑖 | �̃� , 𝜎2, 𝜸)

∝ exp(−𝛾1 − 𝛾2)1𝑆𝜸 (𝛾1, 𝛾2)
𝑆∏
𝑖=1
|𝜎−2�̃�𝛽 (𝜸) |

1
2 exp

[
− 1

2𝜎2 ( �̃�𝑖 − �̃�)
′�̃�𝛽 (𝜸)( �̃�𝑖 − �̃�)

]
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Appendix C: Appendices to Chapter 4

C.1 Derivation of full conditional posterior distributions of parameters

Let the notation "𝜋(𝐴|·)" represents conditional distribution of 𝐴 given all other variables in

the model.

Given the likelihood function and prior distribution in Section 4.2, full conditional posterior

distributions of each variable are as follows:

(1) Posterior of �̃�𝑐

𝜋( �̃�𝑐 |·) ∝ 𝜋(𝒀 | �̃�, �̃�, 𝜎2, 𝝓, 𝜸)𝜋(𝜷𝑐 |𝜎2, 𝜸)

∝ exp

[
− 1

2𝜎2 (𝒀
∗ −

𝐶−1∑
𝑐=1

�̃�
∗
𝑐 �̃�𝑐)′(𝒀∗ −

𝐶−1∑
𝑐=1

�̃�
∗
𝑐 �̃�𝑐)

]
exp

[
− 1

2𝜎2 �̃�
′
𝑐�̃�𝑐 (𝜸𝑐) �̃�𝑐

]

where 𝒀∗ and �̃�
∗ are transformed 𝒀 and �̃� as described in equation (4.3).

Denote �̂�𝑐 =
[
�̃�
∗′
𝑐 �̃�
∗
𝑐 + �̃�𝑐 (𝜸𝑐)

]−1
�̃�
∗′
𝑐 (𝒀∗ + �̃�

∗
𝑐 �̃�𝑐 −

∑𝐶−1
𝑘=1 �̃�

∗
𝑘 �̃�𝑘 ) and using the equation

(𝒀∗ − �̃�
∗
𝑐 �̃�)′𝑐 (𝒀∗ − �̃�

∗
𝑐 �̃�)𝑐 + �̃�

′
𝑐�̃�𝑐 (𝜸𝑐) �̃�𝑐 = ( �̃�𝑐 − �̂�𝑐)′

[
�̃�
∗′
𝑐 �̃�
∗
𝑐 + �̃�𝑐 (𝜸𝑐)

]
( �̃�𝑐 − �̂�𝑐)

+(𝒀∗ + �̃�∗𝑐 �̃�𝑐 −
𝐶−1∑
𝑘=1

�̃�
∗
𝑘 �̃�𝑘 )

′ (𝒀∗ + �̃�∗𝑐 �̃�𝑐 −
𝐶−1∑
𝑘=1

�̃�
∗
𝑘 �̃�𝑘 ) − �̂�

′
𝑐

[
�̃�
∗′
𝑐 �̃�
∗
𝑐 + �̃�𝑐 (𝜸𝑐)

]
�̂�𝑐

Then the full conditional posterior distribution of �̃�𝑐 is:

𝜋( �̃�𝑐 |·) ∝ exp
[
( �̃�𝑐 − �̂�)′𝑐

[
�̃�
∗′
𝑐 �̃�
∗
𝑐 + �̃�𝑐 (𝜸𝑐)

]
( �̃�𝑐 − �̂�𝑐)

]
�̃�𝑐 | · ∼ 𝑁𝐿+1

{
[ �̃�∗

′

𝑐 �̃�
∗
𝑐 + �̃�𝑐 (𝜸𝑐)]−1 �̃�

∗′
𝑐 (𝒀∗ + �̃�

∗
𝑐 �̃�𝑐 −

𝐶−1∑
𝑘=1

�̃�
∗
𝑘 �̃�𝑘 ), 𝜎2 [ �̃�∗

′

𝑐 �̃�
∗
𝑐 + �̃�𝑐 (𝜸𝑐)]−1

}
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(2) Posterior of 𝜎2

𝜋(𝜎2 |·) ∝ 𝜋(𝒀 | �̃�, �̃�, 𝜎2, 𝝓, 𝜸)𝜋(𝜎2)
𝐶−1∏
𝑐=1

𝜋( �̃�𝑐 |𝜎2, 𝜸)

∝
(
𝜎2

)− 𝑛−𝑝
2 exp

[
− 1

2𝜎2 (𝒀
∗ −

𝐶−1∑
𝑐=1

�̃�
∗
𝑐 �̃�𝑐)′(𝒀∗ −

𝐶−1∑
𝑐=1

�̃�
∗
𝑐 �̃�𝑐)

]
1
𝜎2

𝐶−1∏
𝑐=1
|𝜎2�̃�

−1
𝑐 (𝜸𝑐) |−

1
2 exp

[
− 1

2𝜎2 �̃�
′
𝑐�̃�𝑐 (𝜸𝑐) �̃�𝑐

]
∝

(
𝜎2

)− 𝑛−𝑝+(𝐿+1) (𝐶−1)+2
2 exp

{
− 1

2𝜎2

[
(𝒀∗ −

𝐶−1∑
𝑐=1

�̃�
∗
�̃�)′(𝒀∗ −

𝐶−1∑
𝑐=1

�̃�
∗
�̃�) +

𝐶−1∑
𝑐=1

�̃�
′
𝑐�̃�𝑐 (𝜸𝑐) �̃�𝑐

]}
where 𝐿 is the maximum number of lags, and 𝑝 is the order of autoregressive error.

Then the full conditional posterior distribution of 𝜎2 is:

𝜎2 | · ∼ Inv-Gamma

[
𝑛 − 𝑝 + (𝐶 − 1)(𝐿 + 1)

2
,
(𝒀∗ −∑𝐶−1

𝑐=1 �̃�
∗
𝑐 �̃�𝑐)′(𝒀∗ −

∑𝐶−1
𝑐=1 �̃�

∗
𝑐 �̃�𝑐) + �̃�

′
𝑐�̃�𝑐 (𝜸𝑐) �̃�𝑐

2

]

(3) Posterior of 𝝓

Given 𝒀 , �̃�, �̃� and 𝜎2, the conditional joint distribution of 𝜖∗𝑝+1, 𝜖
∗
𝑝+2, ..., 𝜖

∗
𝑛 can be regarded as

a sequence of one-sided conditional distributions:

𝜋(𝜖∗𝑝+1, 𝜖∗𝑝+2, ..., 𝜖∗𝑛) = 𝜋(𝜖∗𝑝+1 |𝜖∗𝑝, ..., 𝜖∗1) · · · 𝜋(𝜖∗𝑛 |𝜖∗𝑛−1, ..., 𝜖
∗
𝑛−𝑝)

where 𝜖∗𝑝+1, 𝜖
∗
𝑝+2, ..., 𝜖

∗
𝑛 are described in equation (4.9) of Section 4.3.

𝜋(𝝓 |·) ∝ 𝜋(𝜖∗𝑝+1, 𝜖∗𝑝+2, ..., 𝜖∗𝑛 |𝝓, 𝜎2)𝜋(𝝓|𝜎2
𝝓)

∝
𝑛∏

𝑡=𝑝+1
𝜋(𝜖∗𝑡 |𝜖∗𝑡−1, ..., 𝜖

∗
𝑡−𝑝, 𝝓, 𝜎

2)𝜋(𝝓 |𝜎2
𝝓)

∝ exp
[
− 1

2𝜎2 (𝝐
∗ − 𝑬∗𝝓)′(𝝐∗ − 𝑬∗𝝓)

]
exp

(
− 1

2𝜎2
𝝓

𝝓′𝝓

)
1𝑆𝝓 (𝝓)

∝ exp
[
(𝝓 − �̂�)′

(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)
(𝝓 − �̂�)

]
1𝑆𝝓 (𝝓)
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where �̂� =
(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)−1

𝜎−2𝑬∗
′
𝝐∗, 𝜎2

𝝓 is known and set to be 200.

Then the full conditional posterior distribution of 𝝓 is:

𝝓 | · ∼ 𝑁𝑝

[(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)−1

𝜎−2𝑬∗
′
𝝐∗,

(
𝜎−2𝑬∗

′
𝑬∗ + 𝜎−2

𝝓 I
)−1

]
1𝑆𝝓 (𝝓)

(4) Posterior of 𝜸

𝜋(𝜸𝑐 | ·) ∝ 𝜋(𝒀 | �̃�, �̃�, 𝜎2, 𝝓, 𝜸)𝜋(𝜸𝑐 | �̃�𝑐, 𝜎
2, 𝝓)

∝ 𝜋(𝒀 | �̃�, �̃�, 𝜎2, 𝝓, 𝜸)𝜋( �̃�𝑐 | 𝜎2, 𝜸𝑐)𝜋(𝜸𝑐)

∝ |𝜎−2�̃�𝑐 (𝜸𝑐) |
1
2 exp

[
− 1

2𝜎2 �̃�
′
𝑐�̃�𝑐 (𝜸𝑐) �̃�𝑐

]
exp(−𝛾1,𝑐 − 𝛾2,𝑐)1𝑆𝜸 (𝛾1,𝑐, 𝛾2,𝑐)
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