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Abstract TheMonsoon Asia region is home to ten of the world's biggest rivers, supporting the lives of 1.7
billion people who rely on streamflow for water, energy, and food. Yet a synthesized understanding of
multicentennial streamflow variability for this region is lacking. To fill this gap, we produce the first large
scale streamflow reconstruction over Monsoon Asia (62 stations in 16 countries, 813 years of mean annual
flow). In making this reconstruction, we develop a novel, automated, climate‐informed, and dynamic
reconstruction framework that is skillful over most of the region. We show that streamflow inMonsoon Asia
is spatially coherent, owing to common drivers from the Pacific, Indian, and Atlantic Oceans. We also show
how these oceanic teleconnections change over space and time. By characterizing past and present
hydroclimatic variability, we provide a platform for assessing the impact of future climatic changes and
informing water management decisions.

Plain Language Summary Ten of the world's biggest rivers are located entirely within the Asian
Monsoon region. They provide water, energy, and food for 1.7 billion people. To manage these critical
resources, we need a better understanding of river discharge—how does it change over a long time? Are
there common variation patterns among rivers? To answer these questions, we use information derived from
tree rings to reconstruct average annual river discharge history at 62 gauges in 16 Asian countries. Our
reconstruction reveals the riparian footprint of megadroughts and large volcanic eruptions over the
past eight centuries. We show that simultaneous droughts and pluvials have often occurred at adjacent
river basins in the past, because Asian rivers share common influences from the Pacific, Indian, and Atlantic
Oceans. We also show how these oceanic teleconnections change over space and time. Our findings
can inform big decisions made on water‐dependent infrastructure, thus benefiting the riparian
people of the Asian Monsoon region.

1. Introduction

Of the world's 30 biggest rivers, ten are located within Monsoon Asia, and two others originate from this
region (Figure 1). These river basins are home to 1.7 billion people (Best, 2019). With high population den-
sities, even smaller basins support the livelihood of millions—for example, Chao Phraya (Thailand): 25 mil-
lion, Angat (the Philippines): 13 million, and Citarum (Indonesia): 10 million (D'Arrigo et al., 2011;
Libisch‐Lehner et al., 2019; Nguyen & Galelli, 2018). River discharge, or streamflow, provides water for
domestic and industrial uses, irrigation, and hydropower. It sustains aquatic life (including fish yield), car-
ries sediment and nutrients, helps prevent salinization of river deltas, and facilitates navigation. Streamflow
is an important link in both the water‐energy‐food nexus and the ecological cycle. To manage this resource,
we need a good understanding of hydrologic variability. Such understanding is often derived from stream-
flowmeasurements; however, these instrumental data span typically only a few decades, too short to capture
long‐term variability and changes in streamflow.

When compared against instrumental data, longer streamflow records reconstructed from climate proxies—
such as tree rings—often reveal striking insights. A reconstructed predam variability of the Yellow River (Li
et al., 2019) shows that streamflow in 1968–2010 was only half of what should have been; in other words,
human withdrawals for agriculture, industry, and municipalities reduced streamflow by half. A reconstruc-
tion of the Citarum River (Indonesia) (D'Arrigo et al., 2011) shows that the period 1963–2006 contained an
increasing trend of low flow years but no trend in high flow years, compared with the previous three centu-
ries. This finding suggests that 10 million inhabitants of Jakarta may be facing higher drought risks than

©2020. American Geophysical Union.
All Rights Reserved.

RESEARCH ARTICLE
10.1029/2020WR027883

Key Points:
• Climate‐informed dynamic

streamflow reconstruction is skillful
over most of Monsoon Asia

• Streamflow in Monsoon Asia is
spatially coherent

• Reconstruction reveals spatial and
temporal variability in
streamflow‐ocean teleconnections

Supporting Information:
• Supporting Information S1
• Table S1
• Movie S1

Correspondence to:
H. T. T. Nguyen,
tanthaihung_nguyen@mymail.sutd.
edu.sg

Citation:
Nguyen, H. T. T., Turner, S. W. D.,
Buckley, B. M., & Galelli, S. (2020).
Coherent streamflow variability in
Monsoon Asia over the past eight cen-
turies—Links to oceanic drivers. Water
Resources Research, 56,
e2020WR027883. https://doi.org/
10.1029/2020WR027883

Received 10 MAY 2020
Accepted 23 SEP 2020
Accepted article online 26 SEP 2020

NGUYEN ET AL. 1 of 20

https://orcid.org/0000-0003-0174-6659
https://orcid.org/0000-0003-4400-9800
https://orcid.org/0000-0003-1544-8003
https://orcid.org/0000-0003-2316-3243
https://doi.org/10.1029/2020WR027883
https://doi.org/10.1029/2020WR027883
http://dx.doi.org/10.1029/2020WR027883
http://dx.doi.org/10.1029/2020WR027883
http://dx.doi.org/10.1029/2020WR027883
http://dx.doi.org/10.1029/2020WR027883
http://dx.doi.org/10.1029/2020WR027883
http://dx.doi.org/10.1029/2020WR027883
http://dx.doi.org/10.1029/2020WR027883
mailto:tanthaihung_nguyen@mymail.sutd.edu.sg
mailto:tanthaihung_nguyen@mymail.sutd.edu.sg
https://doi.org/10.1029/2020WR027883
https://doi.org/10.1029/2020WR027883
http://publications.agu.org/journals/


what is perceived from the instrumental record. The Mongolian “Breadbasket,” an agricultural region in
north‐central Mongolia (Pederson et al., 2013), experienced an unusually wet 20th‐century, and the recent
dry epoch is not rare in the last four centuries (Davi et al., 2006, 2013; Pederson et al., 2013).
Consequently, agricultural planning cannot take the 20th century to be the norm, lest history repeats the les-
son of the Colorado River Basin: observations over abnormally wet years (Robeson et al., 2020; Stockton &
Jacoby, 1976; Woodhouse et al., 2006) led to water rights over‐allocation, and the Colorado no longer reaches
the Pacific Ocean.

The case of the Colorado River demonstrates that streamflow reconstructions can improve our understand-
ing of water resources availability. Furthermore, with longer streamflow records, low frequency variations of

(a)

(b)

Figure 1. (a) The Monsoon Asia region (Cook et al., 2010); river basins involved in this study are highlighted by
subregion, rivers belonging to the world's 30 biggest (Best, 2019) shown with blue names. (b) Upstream retention time
of the 42 stations that have upstream reservoirs. The bar colors denote the regions according to (a). The first two
letters of each station's code indicates the country it is in. Refer to Table S1 for station details.
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streamflow can be revealed, the frequency and magnitude of floods and droughts can be better quantified,
and the risks associated with these natural disasters can be better assessed. These benefits have been demon-
strated in Australia (Allen et al., 2017; Tozer et al., 2018), the United States (DeRose et al., 2015; Stagge
et al., 2018), Canada (Hart et al., 2010; Sauchyn et al., 2015), and other countries (Güner et al., 2017; Lara
et al., 2015). Streamflow reconstructions have also been used to generate stochastic time series for water
management applications (Prairie et al., 2008; Sauchyn & Ilich, 2017). These benefits, if realized in
Monsoon Asia, can improve the lives of many people, given the dense populations that inhabit river basins
in this region.

Compelling evidence calls for more streamflow reconstructions in Monsoon Asia. Tremendous efforts, par-
ticularly in the last 4 years (Supporting Information S1 ‐ Figure S1), have partly addressed this need, but the
hydrological knowledge gained was limited to individual catchments, more than half of which are in China
(Supporting Information S1: Figure S1 and Table S1). A regional, synthesized understanding is lacking.
Here, we produce the first large‐scale streamflow reconstruction for Monsoon Asia, covering 62 stations
in 16 countries, unraveling eight centuries of annual streamflow variability. To achieve this task, we develop
a novel automated framework with three main components: (1) a climate‐informed proxy selection proce-
dure, (2) a dynamic state‐space reconstruction model, and (3) a rigorous cross‐validation routine for para-
meter tuning to achieve optimal skills. We also use the Monsoon Asia Drought Atlas version 2 as the
paleoclimatic proxy instead of a tree ring network, as the former offers computational advantages (supported
with strong physical and statistical foundations) for this large‐scale reconstruction. With this work, 58 sta-
tions are reconstructed for the first time while the other four (Citarum, Yeruu, Ping, and Indus Rivers) are
extended back in time compared to previous works (D'Arrigo et al., 2011; Nguyen & Galelli, 2018;
Pederson et al., 2013; Rao et al., 2018). This data set allows us to assess both local historical water availability
and regional streamflow patterns, revealing the spatial coherence of streamflow and its links to the oceans.
This understanding may improve the management of river basins and other water‐dependent resources.

2. Data
2.1. Streamflow Data

Our reconstruction target is the mean annual flow, and we used the calendar year (January to December) as
there is not a common water year across Monsoon Asia (Knoben et al., 2018). We obtained streamflow data
from the Global Streamflow Indices and Metadata Archive (GSIM) (Do et al., 2018; Gudmundsson
et al., 2018), using stations having at least 41 years of data, and with less than 3% missing daily values. We
also received streamflow data from our colleagues for some countries where public streamflow records are
not available (see Acknowledgments section). Small catchments may be influenced by local conditions more
than by broad climate inputs that are captured in the regional paleoclimate proxies (Strange et al., 2019).
Therefore, we used only stations where the mean annual flow over the whole time series is at least 50 m3/s;
this threshold is heuristic and somewhat arbitrary. Details of this initial selection step are provided in Text
S2 and in the code repository for this paper (https://doi.org/10.5281/zenodo.3818116.)

Many stations in our collection have upstream reservoirs that may interfere with the proxy‐streamflow rela-
tionship. This interference is stronger for seasonal streamflow than annual streamflow: reservoirs transfer
water from the wet season to the dry season, but not all reservoirs retain water from year to year.
Reservoirs that are filled and emptied within a year do not change the annual water budget downstream.
Tominimize reservoir interference, we reconstructed annual streamflow, and we removed stations that have
upstream retention times longer than a year. We identified upstream reservoirs by overlaying the Global
Reservoirs and Dams (GRanD) data (Lehner et al., 2011) on the river network (Barbarossa et al., 2018;
Lehner & Grill, 2013). The upstream retention time was calculated as the total upstream reservoir capacity
(millionm3) divided by themean annual flow volume (millionm3/year). For stations having over‐year reser-
voirs constructed towards the end of their records, we also truncated the corresponding years, keeping only
the streamflow data before dam construction.

Our collection and quality control effort resulted in an annual streamflow data set of 62 stations in 16 coun-
tries. Our records span across Monsoon Asia, covering the following subregions: Central Asia (CA), East
Asia (EA), eastern China (CN), West Asia (WA), Southeast Asia (SEA), and South Asia (SA). The stations'
locations and upstream retention times (for those having upstream reservoirs) are shown in Figure 1.
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2.2. Proxy Data

Our paleoclimate proxy is the Monsoon Asia Drought Atlas version 2 (MADA v2) (Cook, 2015), built upon
the original MADA of Cook et al. (2010). The MADA is a gridded data set of the Palmer Drought Severity
Index (PDSI) (Palmer, 1965) over the Asian monsoon region. Each grid cell contains an annual time series
of the mean June‐July‐August PDSI, reconstructed from tree rings, and calibrated with the instrumental
data set of Dai et al. (2004). The MADA proves to be a reliable long‐term record of monsoon strength, having
revealed the spatiotemporal extents of the four Asian megadroughts in the last millennium, and linking var-
iations in monsoon strength to sea surface temperature patterns. MADA v2 improves over its predecessor by
incorporating more tree ring chronologies (453 vs. 327), and targeting the self‐calibrating PDSI (scPDSI),
which addresses several limitations of the standard PDSI (Wells et al., 2004; van der Schrier et al., 2013).
We use the MADA v2 portion between 1200–2012 as this is the common period of most grid points in the
atlas (Supporting Information S1 ‐ Figure S4) and is also the stable portion with sufficient number of tree
ring chronologies in the source tree ring network.

Drought atlases reconstructed from tree rings have been shown to be practical paleoclimate proxies for
streamflow reconstruction. Earlier experiments used individual grid points to reconstruct streamflow, either
in combination with ring widths (Coulthard et al., 2016) or on their own (Adams et al., 2015; Graham &
Hughes, 2007). Ho et al. (2016, 2017) and Nguyen and Galelli (2018) then formalized the methodology
and provided theoretical considerations. They reasoned that since both streamflow and PDSI can be mod-
eled as functions of ring width, one can also build a model to relate streamflow to PDSI. Moreover, drought
atlases enhance the spatial expression of the underlying tree ring data—by incorporating the modern PDSI
field in their calibration—and are also more uniform in space and time than the tree ring network itself (see
Cook et al., 2010; Figure 1), making them better suited to large‐scale studies. We now elaborate these points
as we describe the reconstruction framework.

3. Reconstruction Framework
3.1. Using a Drought Atlas as Paleoclimate Proxy
3.1.1. Physical Basis
The main physical processes that involve climate and tree growth are depicted in Figure 2a. The climate at a
given location can be characterized by precipitation and temperature, among others. These climatic inputs
control soil moisture on land. Except for losses (such as groundwater recharge, evaporation, and surface run-
off), the net soil moisture storage then follows two main paths: one goes out of the catchment as streamflow,
the other is taken up by the trees and transpired back into the atmosphere, influencing tree growth along the
way. Thus, tree growth and streamflow are connected via land‐atmosphere interactions—this is the basis for
streamflow reconstruction from tree rings (cf. Li et al., 2019; Rao et al., 2018). Note, however, that tree

(a) (b)

Figure 2. (a) Relationships between hydroclimatic variables and tree growth. (b) A probabilistic graphical model
representing the relationships in (a), where C is a vector of climate variables, S the soil moisture, R the ring width
index, and Q streamflow. The arrows represent the conditional dependence among variables.
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growth does not directly control streamflow, and neither does streamflow control tree growth; we can infer a
relationship between them only because they are both influenced by soil moisture. On the other hand, soil
moisture directly controls streamflow and is, in principle, a reasonable predictor for streamflow.

It would thus be ideal to have a “natural” soil moisture proxy record, but of course that is not the case. We
can instead rely on a surrogate—a soil moisture record reconstructed from tree rings, such as the MADA.
3.1.2. Statistical Basis
The physical discussion above yields three types of paleoclimate reconstruction: streamflow from tree rings,
soil moisture from streamflow, and streamflow from soil moisture. We now derive mathematically the rela-
tionships between these reconstruction types.

Each reconstruction is a conditional distribution of one variable (e.g., streamflow) given that we have
observed another variable (e.g., soil moisture), and given the historical climate. We represent these condi-
tional distributions with a probabilistic graphical model (Koller & Friedman, 2009) as shown in Figure 2b.
There are four random variables involved: climate (C), soil moisture (S), ring width (R), and streamflow
(Q). Each of these variables can be multivariate, that is, C includes precipitation and temperature, among
others, and all variables can include multiple sites or grid points. As a convention, let fX (x) be the probability
density function (PDF) of the random variable X, fXY (x, y) be the joint PDF of X and Y, and fX|Y (x|y) be the
conditional PDF of X given that Y ¼ y.

Reconstructing streamflow from tree rings is essentially deriving the distribution of Q given R and C, that is,
fQ|R,C (q|r, c), where r is the measured ring width index, and c is the historical climate. We can decompose
this distribution as follows:

f QjR; Cðqjr; cÞ ¼
Z

f Q; SjR; Cðq; sjr; cÞds

¼
Z

f QjS; R; Cðqjs; r; cÞf SjR; Cðsjr; cÞds:

(1)

The first equality comes from the relationship betweenmarginal and joint distributions. The second equality
comes from Bayes' theorem. Now, Q is independent of R given S and C (Figure 2b), so f QjS; R; Cðqjs; r; cÞ
¼ f QjS; Cðqjs; cÞ. Consequently,

f QjR; Cðqjr; cÞ ¼
Z

f QjS; Cðqjs; cÞf SjR; Cðsjr; cÞds: (2)

Observe that fQ|S, C is the streamflow reconstruction from the MADA and fS|R, C is the MADA reconstruction
from tree rings. Thus we have established mathematically the reasoning that tree‐ring‐based streamflow
reconstruction is possible based on the link through soil moisture. fQ|R, C is the marginal distribution without
observing the soil moisture. Instead of constructing fQ|R, C, we can infer S from R, then Q from S, by con-
structing fS|R,C and fQ|S,C.
3.1.3. Computational Advantages of Using the MADA, and Caveats
The construction of theMADA can be thought of as a transformation from the tree ring network, irregular in
both space and time, to a regular grid with homogeneous temporal coverage—analogous to transforming
meteorological station data to gridded temperature and precipitation products. This transformation brings
several advantages to reconstructing streamflow using the MADA, compared to using the underlying tree
ring network.

First, in a typical reconstruction study, one must detrend and standardize the tree ring data to remove
non‐climate signals (cf. Cook et al., 1990). For a large‐scale study like ours, such a task is complex. Instead,
we can leverage the effort that has been devoted to detrending and standardizing the chronologies in making
the MADA and use the MADA as proxy, having built the physical and statistical foundations to do so.

Second, the tree ring sites often cluster, with vast empty space between clusters (see, e.g., Cook et al., 2010,
Figure 1). When taking a subset of them for reconstruction at a station, there can be cases where none or very
few sites are within a search radius. The MADA helps “bridging” the space, bringing climate signals from
further‐away tree sites to grid points nearer to the station. The high resolution grid (1° × 1° for version 2)
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makes automated grid point selection easier. (The automated grid point selection procedure is described in
section 3.2.1.)

Third, when reconstructing streamflow from tree rings, nested models are often necessary because tree ring
chronologies have different time spans. One starts with the shortest nest, using the common time span of all
chronologies to build a model, then dropping the shortest chronology to build a second model with longer
time span but less explained variance than the first, and repeating the process, dropping more chronologies
to achieve longer time spans until the final nest with the longest time span, but with the lowest explained
variance. The nests' outputs are then corrected for their variance and averaged to obtain the final reconstruc-
tion (see, e.g., D'Arrigo et al., 2011). This nesting step was carried out for the MADA, such that most grid
points have the same time span (Supporting Information S1 ‐ Figure S4). This lets us use a single common
period (1200–2012), and eliminates our need to build nested models back in time. This is particularly desir-
able for our dynamic state‐space reconstruction model, as averaging the nests breaks the link between the
catchment state and streamflow. (The reconstruction model is described in section 3.2.2.)

The computational advantages of using the MADA are thus threefold: (1) no detrending and standardiza-
tion, (2) easier grid point selection, and (3) no nesting. However, these come with some costs, the most
important of which is uncertainty. When reconstructing streamflow from the MADA, we treat the MADA
(i.e., the model input) as constant. But in fact, theMADA is a regression product and has its own uncertainty.
Furthermore, this uncertainty increases back in time as the number of available chronologies decreases. One
way to quantify the uncertainty is by bootstrapping: streamflow reconstructions can be built using bootstrap
replicates of theMADA, and the range of the bootstrap ensemble indicates the uncertainty of the reconstruc-
tion. An appropriate bootstrapping scheme must be considered, given that the uncertainty is nonstationary,
and that dimensionality is a challenge: theMADA has 813 years × 2,716 grid points. In this regard, the added
benefit of our reconstruction framework is that it runs for each station individually (see section 3.2), so one
need not reconstruct the whole network in order to quantify uncertainties at specific stations of interest.

As a gridded regression product, the MADA smooths out local variability. This can be alleviated by carefully
selecting and processing the grid points to retain as much variance as possible (section 3.2.1), and by using
sufficiently large catchments (section 2.1).

Finally, we note that the computational advantages we described here are only applicable to large‐scale stu-
dies, where an automated framework is needed. For individual sites, we urge researchers to consider all
available proxies, rather than being attracted by the convenience offered by the drought atlases.

3.2. Point‐By‐Point, Climate‐Informed, Dynamic Streamflow Reconstruction

When reconstructing a climate field, such as a PDSI grid or a streamflow station network, it is desirable to
preserve the field covariance structure. However, building a large‐scale spatial regression model is challen-
ging. Instead, one can reconstruct each point in the field independently and rely on the proxy network to
capture the spatial patterns. This is the premise of the Point‐by‐Point Regression (PPR) method (Cook
et al., 1999), which has been used to reconstruct drought atlases of Europe (Cook et al., 2015, 2020), the
Americas (Cook et al., 1999; Morales et al., 2020; Stahle et al., 2016), Oceania (Palmer et al., 2015), and
Asia (Cook et al., 2010). These drought atlases demonstrate that PPR captures well the spatial patterns of cli-
mate variability (see, e.g., Cook et al., 1999, Figures 8 and 9). Like these drought atlases, our streamflow net-
work covers a large spatial domain with varying climates; therefore, we adopted the PPR principle, and
reconstructed our stations individually. While some aspects of our reconstruction framework followed the
PPR procedure, we have innovated many steps of the workflow.

Overall, the framework involves three main stages: (1) input selection (section 3.2.1), (2) model calibration
(section 3.2.2), and (3) cross‐validation (section 3.2.3). In Stage 1, we selected a subregion of the MADA that
is hydroclimatically similar to the streamflow station of interest and extracted from this subregion a parsi-
monious subset of principal components, using weighted principal component analysis (PCA). This stage
involves two tuning parameters: the hydroclimate similarity threshold and the PCA weight. For each com-
bination of these parameters, we calibrated a reconstruction model in Stage 2, thus producing an ensemble
of models. Finally, in Stage 3, we cross‐validated the models to choose the best one and used that for the final
reconstruction.
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3.2.1. Climate‐Informed Input Selection
A regional paleoclimate proxy record, such as the MADA or its underlying tree ring network, is rich with
information, but not all of such information is relevant to the streamflow target. A proper input selection
is necessary to filter noise and retain only the most relevant signal. A common way is to use proxy sites
within a search radius, and PPR does the same. But, given that geographical proximity does not necessarily
imply hydroclimatic similarity, we selected our proxies (MADA grid points) by hydroclimatic similarity
directly. The hydroclimate at location i (a MADA grid point or a streamflow station) is characterized by three
indices: aridity ai, moisture seasonality si, and snow fraction fi, following Knoben, Woods, and Freer, who
proposed this hydroclimate characterization and calculated the indices for a global 0.5° × 0.5° grid
(Knoben et al., 2018). The hydroclimatic similarity between two locations i and j is then defined as their
Euclidean distance in the hydroclimate space. This distance is termed the KWF distance and its mathema-
tical definition is

dKWFði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai − ajÞ2 þ ðsi − sjÞ2 þ ðf i − f jÞ2

q
: (3)

(a) (b)

Figure 3. (a) Examples of the climate‐informed grid point selection: selected MADA grid points (green) based on two
KWF distances (columns) at four stations (rows). (b) Correlations between streamflow at the same four stations and
the MADA, significant correlations (α ¼ 0:05) enclosed in black boundaries. The selection regions in (a) generally have
significant positive correlation with streamflow. The areas with significant negative correlations need further
investigation.
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By calculating the KWF distance between each MADA grid point and each streamflow station, we can
screen out MADA grid points that are geographically close to the station of interest but hydroclimatically
different—a climate‐informed grid point selection scheme. Whereas previous PPR implementations varied
the search radius, we fixed the radius to 2,500 km—the scale of regional weather systems (Boers et al., 2019)
—and varied the KWF distance between 0.1 and 0.3 in 0.05 increments. For reference, the maximum KWF
distance between any two points in Monsoon Asia is 1.424. Each KWF distance yielded a search region
encompassing a set of MADA grid points surrounding the streamflow station of interest. In our search
regions, PDSI often correlates significantly and positively with streamflow (Figure 3); indeed hydroclimatic
similarity is a physical basis for correlation.

Next, we performed weighted PCA to remove multicollinearity among the MADA grid points. Following
PPR, we weighted each grid point by its correlation with the target streamflow, using Equation 4:

zi ¼ gir
p
i : (4)

Here, gi is grid point i's scPDSI time series, ri the correlation between gi and the target streamflow, p the
weight exponent, and zi the weighted version of gi. We used p ¼ 0; 0:5; 2=3; 1; 1:5, and 2, the same as those
used by Cook et al. (2010). We then performed PCA on zi's and retained only those principal components
(PCs) having eigenvalue at least 1.0 (Hidalgo et al., 2000). From the retained PCs (typically about 20–40
per station), we selected a parsimonious subset that is most relevant to the streamflow target using the
VSURF (Variable Selection Using Random Forest) algorithm (Genuer et al., 2010). So, for each combination
of KWF distance and PCA weight, we arrived at a subset of PCs for reconstruction. Each streamflow station
has an ensemble of 30 such subsets, the best of which was identified using cross‐validation (section 3.2.3) and
used for the final reconstruction.
3.2.2. Linear Dynamical System
Having obtained the climatic inputs, the next step was to model the relationship between these inputs and
the catchment output (streamflow). Here, this relationship was not modeled with linear regression (as with
original PPR, and as typical with previous reconstruction studies), but as a linear dynamical system (LDS),
following Equations 5 and 6:

xt þ 1 ¼ Axt þ But þ wt; (5)

yt ¼ Cxt þ Dut þ vt; (6)

where t is the time step (year), y the catchment output (streamflow), u the climatic input (an ensemble
member from the climate‐informed grid point selection), w and v white noise, and x the hidden system
state, which can be interpreted as the catchment's flow regime, that is, wet or dry (Nguyen &
Galelli, 2018). By modeling the flow regime and its transition, the LDS model accounts for both regime
shifts (Turner & Galelli, 2016) and catchment memory (Pelletier & Turcotte, 1997). These behaviors are
not modeled in linear regression.

The LDS model assumes that the initial state and the noise processes are normally distributed:

wt ∼ Nð0; QÞ; (7)

vt ∼ Nð0; RÞ; (8)

x1 ∼ Nðμ1; V1Þ: (9)

It follows that the catchment state and output are also normally distributed. But some of our streamflow
records are skewed. These were log‐transformed to reduce skewness (Supporting Information S1: Text S3
and Figure S3).

The LDS model is trained using a variant of the Expectation‐Maximization algorithm. In the E‐step, we fix
the model parameters and learn the hidden state. In the M‐step, we fix the hidden state and learn the model
parameters. Iterations are repeated between the E‐ and M‐steps until convergence. The reconstruction algo-
rithm is implemented in the R package ldsr (Nguyen, 2020).
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3.2.3. Cross‐Validation
Consistent with the literature, we assessed reconstruction performance using the metrics Reduction of Error
(RE) and Nash‐Sutcliffe Coefficient of Efficiency (CE or NSE) (Fritts, 1976; Nash & Sutcliffe, 1970).
Mathematically,

RE ¼ 1 −
∑

t ∈ V

ðQt − Q̂tÞ2

∑
t ∈ V

ðQt − QcÞ2
; (10)

CE ¼ 1 −
∑
t ∈ V

ðQt − Q̂tÞ2

∑
t ∈ V

ðQt − QvÞ2
; (11)

where t is the time step,V the validation set, Q the observed streamflow, Q̂ the reconstructed streamflow,

Qc the calibration period mean, and Qv the verification period mean.

Both RE and CE are based on squared error; they can be sensitive to outliers, especially the CE. To address
this limitation, Gupta et al. (2009) proposed another metric, which assesses a model output based on its cor-
relation with observation, as well as its bias and variability (Equation 12):

KGE ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ − 1Þ2 þ μ̂

μ
− 1

� �2

þ σ̂
σ
− 1

� �2
s

: (12)

Here, ρ is the correlation betweenmodel output and observation, μ̂ and μ the modeled and observedmean of
the streamflow time series, and σ̂ and σ the modeled and observed standard deviation of the streamflow time
series. This metric is now known as the Kling‐Gupta Efficiency (KGE). The KGE complements RE and CE,
and we included the KGE in model assessment.

Conventionally, reconstruction skills are often calculated in a split‐sample (i.e., two‐fold) cross‐validation
scheme: the model is calibrated with the first half of the data and validated with the second half, then

(a)

(b) (d) (f)

(c) (e)

Figure 4. Distribution of model performance scores. Panels a, c, and e show the scores of each station following the color
legends encoded with the histograms in panels b, d, and f.
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calibrated with the second half and validated with the first half (see, e.g., D'Arrigo et al., 2011). The
contiguous halves aim to test a model's ability to capture a regime shift (Briffa et al., 1988). Unfortunately,
this scheme is not practical for many stations in our record, where it would leave us only 20–25 data
points for calibration (Figure S2). In addition, a two‐fold cross‐validation scheme provides only two point
estimates for each skill score, and they may be notably different (e.g., D'Arrigo et al., 2011 reported CE
values of 0.21 and 0.73 for the two folds.) As a result, the mean skill score may not be robust. A number
of recent works have instead used the leave‐k‐out cross‐validation scheme (e.g., Gallant & Gergis, 2011;
Ho et al., 2016; Li et al., 2019). In this scheme, a random chunk of k data points is withheld for validation
while the model is calibrated with the remaining data points, then calibration and validation are repeated
over as many as 100 chunks of k. This scheme provides a more robust estimate of the mean skill score,
but it may not correctly assess the model's ability to capture a regime shift, because the withheld points
are not contiguous like in the split‐sample scheme.

We sought a balanced approach. In each cross‐validation run for each station, we withheld a contiguous
chunk of 25% of the data points for validation and trained the model on the remaining 75%. This way, we
maintain the goal of the split‐sample scheme while still having enough data for calibration and getting dis-
tributions of skill scores, which yield a reasonably robust mean skill estimate for each metric. Having distri-
butions of skill scores has another benefit: we can now make probabilistic statements about skill. For
example, we can calculate the probability that CE< 0, and if that probability is less than a threshold α,
say 0.1, then we consider the reconstruction statistically skillful with respect to CE at α ¼ 0:1. While not
doing formal statistical tests, we can make analogous statements about the significance of the skills scores.

When the hold‐out chunks are contiguous, there are not as many chunks as when they are random, so we
repeated the procedure 30 times instead of 100, and calculated the mean RE, CE, and KGE over these 30

(a)

(b)

Figure 5. Spatiotemporal variability of streamflow in Monsoon Asia. (a) Variations over time (x‐axis) and space (y‐axis) of the standardized streamflow index
(i.e., z‐score of streamflow, or z‐score of log‐transformed streamflow when log‐transformation was used in the reconstruction). The stations are arranged
approximately north to south (top down on y‐axis) and divided into five regions as delineated in Figure 1: CA (Central Asia), EA (East Asia), WA (West Asia),
CN (eastern China), SEA (Southeast Asia), and SA (South Asia). (b) Historic events captured in the reconstruction: (1) Samalas eruption, (2) and
(3) Angkor Droughts I and II, (4) Kuwae eruption, (5) Ming Dynasty Drought, (6) Strange Parallels Drought, (7) East India Drought, (8) Tambora
eruption, and (9) Victorian Great Drought.
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runs. When calculating the mean scores, we used the Tukey's biweight robust mean (Mosteller &
Tukey, 1977) instead of the arithmetic mean, to limit the effect of outliers. The robust mean is commonly
used by dendrochronologists to derive the mean chronology from tree ring samples (Cook et al., 1990),
and we have extended its use here. After cross‐validating all ensemble members (section 3.2.1), we selected
onemember for each station based on the robust mean CE and KGE (RE is similar to CE and is omitted). The
ideal score for both CE and KGE is 1; therefore, we calculated for each ensemble member the Euclidean dis-
tance between the tuple (CE, KGE) and the point (1, 1). For each station, the ensemble member nearest to
the ideal score was used for the final reconstruction.

4. Results and Discussion
4.1. Reconstruction Skills

Reduction of Error (RE) is positive at all stations (Figures 4a and 4b); Coefficient of Efficiency (CE) is positive
at all but one: Kachora in the Indus (Pakistan), where CE≈−0.06 (Figures 4c and 4d). Atα ¼ 0:1, 30 stations
are statistically skillful with respect to RE, and 23 are with CE (Supporting Information S1 ‐ Figure S9).
Comparing the histograms of RE and CE (Figures 4b and 4d), we observe that CE is slightly lower—this
is expected as CE is a more stringent metric than RE (Cook et al., 1990). Much lower CE than RE implies
overfitting; we do not observe that here.

When using the Kling‐Gupta Efficiency (KGE), if one wishes to benchmark a model against the verification

period mean (as is with the CE), the threshold value is 1 −
ffiffiffi
2

p
≈ −0:41, that is, KGE>−0.41 is analogous to

CE> 0 (Knoben et al., 2019). Our KGE ranges from 0.22 to 0.68 (Figures 4e and 4f), far higher than the
threshold. Furthermore, all 62 stations are statistically skillful with respect to KGE at α ¼ 0:1 (Supporting
Information S1 ‐ Figure S9). These results indicate that our reconstruction model performs well in terms
of key characteristics: correlation, bias, and variability.

All three metrics have similar spatial distributions (Figures 4a, 4c, and 4e). As expected, lower skills are seen
in most of Central Asia, Japan, and West Asia, which lie outside the core monsoon area. An exception is the
upper reach of the Selenge River, upstream of Lake Baikal, where model skill is high, owing to high quality
tree ring records from Mongolia (Davi et al., 2006, 2013; Pederson et al., 2013, 2014). In all other regions,
model skill is homogeneous. The consistent performance of our model suggests that the MADA is a good
proxy for streamflow reconstruction in Asia, and our climate‐informed dynamic reconstruction is skillful.
More validation exercises (Supporting Information S1 ‐ Figures S5 to S8) further support the reliability of
the reconstruction.

4.2. Spatiotemporal Variability of Monsoon Asia's Streamflow

Having obtained reliable skill scores, we now present eight centuries of spatiotemporal streamflow variabil-
ity in Monsoon Asia, in terms of standardized streamflow (z‐score of mean annual flow) (Figure 5a). This
reconstructed history captures the riparian footprint of major historical events—large volcanic eruptions
andmegadroughts (Figure 5b). We first discuss the impact of the three largest eruptions of the past eight cen-
turies (Sigl et al., 2015): Samalas (1257) (Lavigne et al., 2013), Kuwae (1452–1453) (Gao et al., 2006), and
Tambora (1815) (Stothers, 1984).

Assuming that Kuwae erupted in 1452 (consistent with tree ring records, see, e.g., Briffa et al., 1998), these
three eruptions saw similar streamflow patterns (Figure 5b, panels 1, 4, and 8). In the eruption year t (t
¼ 1257; 1452; 1815), large positive streamflow anomalies were observed in Southeast and East Asia. The
magnitude of the positive anomalies were largest with Samalas, followed by Kuwae, and then Tambora.
The global radiative forcings of the Samalas, Kuwae, and Tambora events are −32.8, −420.5, and
−17.1 W/m2, respectively (Sigl et al., 2015). Thus, we observe a correspondence between the magnitude of
positive streamflow anomalies and the magnitude of radiative forcings. This correspondence is also
seen clearly from the distributions of streamflow anomalies in the three events (Supporting Information
S1 ‐ Figure S10a). These results suggest an influence of volcanic eruptions on streamflow in Southeast and
East Asia.

Unlike East and Southeast Asia, South Asia's streamflow remained around the normal level in years t and t
+ 1 in all three eruptions, suggesting little volcanic influence. More patterns were also observed: mixed wet
and dry conditions in Central Asia, and normal to wet conditions in eastern China and West Asia (cf.
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Supporting Information S1 ‐ Figure S10a). Thus, the influence of volcanic eruptions on Monsoon Asia's
streamflow varies spatially, ranging from strong positive, mixed, to little. The mechanisms underlying this
spatial variability are yet to be elucidated.

Our results are mostly consistent with Anchukaitis et al. (2010), who used Superposed Epoch Analysis to
analyze PDSI anomalies in the eruption years. The key difference is in eastern China, where Anchukaitis
et al. (2010) showed negative PDSI in year t, while we observed normal to positive streamflow anomalies
in year t, and negative streamflow anomalies in year t+ 1 (see also Supporting Information S1 ‐ Figure
S10b). The discrepancies may be due to the different eruption data sets (Anchukaitis et al., 2010, demon-
strated this with three sets of events) and the analytical methods. It could also be because they analyzed
PDSI while we analyzed streamflow. That we observed negative streamflow anomalies in year t+ 1 instead
of t could be due to the lagged response of streamflow in this region.

As a drought/pluvial indicator, streamflowmay differ from PDSI in individual years for some regions, as dis-
cussed above, but on longer terms, our reconstructed streamflow agrees well with reconstructed PDSI. For
example, our record fully captures the Angkor Droughts (1345–1374 and 1401–1425) (Buckley
et al., 2010, 2014) with prolonged low flow throughout Southeast Asia, and extended as far as India
(Figure 5b, panels 2 and 3), in agreement with speleothem records from Dandak and Jhuma Caves (Sinha
et al., 2007, 2011). Heavy monsoon rain interrupted these megadroughts; such abrupt alterations to the flow
regime proved difficult for the ancient city of Angkor (Buckley et al., 2014). The city once thrived thanks to
an extensive network of hydraulic infrastructure (Lieberman & Buckley, 2012). After the first Angkor
Drought, the inflow/outflow functions of the barays (reservoirs) were altered in an attempt to preserve
water. Heavy rains and flooding subsequently destroyed the reduced‐capacity hydraulic infrastructure.
This flood likely occurred in 1375 (Figure 5b, event 2). By the second Angkor Drought, the “hydraulic city”
(Groslier, 1979; Lustig & Pottier, 2007) had insufficient water storage and could not recover.

Four more megadroughts that severely affected Asian societies (Cook et al., 2010) are also captured in our
reconstruction (Figure 5b, panels 5, 6, 7, and 9), along with other major droughts and pluvials. For example,
Central Asia observed a six‐decade drought between 1260–1320, and sustained pluvials during 1740–1769.
Most notably, Southeast Asia suffered a drought between 1225–1255 that was comparable in length to
Angkor Drought I, but more severe in magnitude. Following this drought was a multidecadal pluvial in
1271–1307. The drought is prominent in the speleothem record of Wang, Johnson, et al., (2019), and the plu-
vial can also be traced from there.

4.3. Links to Oceanic Drivers

To exemplify the spatial variation of how the oceans influence streamflow, we selected four river basins from
west to east: Godavari, Chao Phraya, Mekong, and Yangtze, and selected one station from each basin. The
selected stations are in the main stream and their reconstructions are statistically skillful.

We calculated the correlation between reconstructed annual streamflow at each station and the seasonal
averages of global sea surface temperature (SST) for the period 1856–2012. The season definitions are:
December to February (DJF), March to May (MAM), June to August (JJA), and September to November
(SON). We also included JJA and SON of the prior year (JJA (− 1) and SON (− 1)). Correlation patterns vary
both seasonally and spatially, with differences among rivers and among oceans (Figure 6).
4.3.1. Pacific Ocean
Tropical Pacific SST correlates significantly with streamflow at all four basins, but the correlation patterns
vary. For the Godavari, moderate positive correlations are seen from JJA (− 1) to DJF, and strong negative
correlations are seen from JJA to SON. For the Yangtze, the pattern is completely opposite: strong positive
correlations from JJA (− 1) to DJF, and moderate negative correlations in JJA and SON. The location of
the strongest correlations suggests links to the El Niño‐Southern Oscillation (ENSO, cf. McPhaden
et al., 2006). We find it interesting that ENSO seems to influence the Godavari and Yangtze in
contrasting ways.

Unlike the Godavari and Yangtze, the Chao Phraya and Mekong's streamflow correlates significantly with
SST over most of the Pacific Ocean, and the correlation persists across all seasons. The correlation pattern
is negative in the tropical Pacific, and positive in the northern and southern Pacific. This pattern and its
lack of seasonality suggest that, beside ENSO, there are influences from a driver at longer time scales,
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likely the Pacific Decadal Variability (PDV)—decadal variations of Pacific SST resulted from complex
tropical‐extratropical ocean‐atmosphere interactions (Henley, 2017). The North Pacific component of
PDV is known as the Pacific Decadal Oscillation (PDO) (Mantua & Hare, 2002), its southern
counterpart the South Pacific Decadal Oscillation (Shakun & Shaman, 2009); basin‐wide SST variation
patterns have also been termed Interdecadal Pacific Oscillation (Folland et al., 1999). These modes are
closely related (Henley, 2017). The PDV has been shown to influence hydroclimatic variability in
Monsoon Asia, in conjunction with ENSO (Yu et al., 2018). Specifically for the Chao Phraya, PDV also
modulates ENSO's influence on peak flow (Xu et al., 2019).
4.3.2. Indian Ocean
Correlation patterns are less prominent in the Indian Ocean compared to the Pacific. We observe basin‐wide
correlations in DJF for the Godavari and Yangtze; correlations bear the same sign as that in the Pacific. This
is consistent with the Indo‐Pacific coupling: an ENSO event in the Pacific leads to SST anomalies of the same
sign in the Indian Ocean (Saji et al., 1999). The Godavari and Yangtze also exhibit another correlation pat-
tern in SON (with small areas of significance): correlations bear opposite signs between the tropical western
Indian Ocean near the Horn of Africa and the southeastern Indian Ocean around Sumatra. This pattern and

Figure 6. Correlation between reconstructed mean annual streamflow at four river basins (this work) and seasonal averages of global sea surface temperature
(SST) from the NOAA_ERSST_v5 data set (Huang et al., 2017) for the period 1856–2012; significant correlations (α ¼ 0:05) enclosed in black boundaries. The
locations of the stations are shown in the catchment maps; these are the same stations shown in Figure 3. Seasons are marked by the year in which they end.
“(− 1)” denotes previous year.
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(a)

(b)

(c)

Figure 7. Temporal variability of the streamflow‐sea surface temperature correlations. The analysis here is the same as that carried out in Figure 6, but split into
three 50‐year periods.
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its timing suggest links to the Indian Ocean Dipole (IOD) (Saji et al., 1999; Ummenhofer et al., 2017). The
IOD accounts for about 12% of Indian Ocean SST variability, much less than the basin‐wide coupling mode
(30%) (Saji et al., 1999); this explains the weaker correlations of the IOD. Positive IOD events have also been
linked to droughts in Southeast Asia, but this relationship is not robust (Ummenhofer et al., 2013). In our
analysis, the link between IOD and Southeast Asian streamflow is not visible. Our interpretation is that
ENSO and PDV are the main drivers here, and they dominate any links that the IOD might have.
4.3.3. Atlantic Ocean
The Chao Phraya and Mekong streamflow correlates positively with tropical and northern Atlantic SST.
Significant and consistent correlations are observed throughout the seasons for the Mekong, but less consis-
tent for the Chao Phraya. The link between tropical Atlantic SST and Southeast Asian hydroclimate was also
found in a Laotian cave speleothem record (Wang, Johnson, et al., 2019). To explain this relationship, these
authors examined SST, atmospheric pressure, and zonal moisture transport from climatemodel simulations,
and proposed the following mechanism: increased tropical Atlantic SST leads to changes in zonal moisture
transport, causing depression over tropical Indian Ocean, reducing rainout over the basin, leaving more
moisture available to be transported to mainland Southeast Asia, ultimately strengthening Indian
Monsoon rain over the region.

We repeated the correlation analysis above for other stations in the Godavari, Mekong, and Yangtze, where
additional stations with statistically skillful results are available on the main stream. Results for those sta-
tions are consistent with what we report here (Supporting Information S1 ‐ Figures S11 to S13).
4.3.4. Temporal Variability of Teleconnections
The correlation analysis of Figure 6 shows the spatial variation of the streamflow‐SST teleconnection in
Monsoon Asia. This analysis was done for the common period of SST and streamflow data (1856–2012).
To explore whether and how the teleconnection patterns changed through time, we repeated the correlation
analysis using a sliding 50‐year window with 10‐year increments. We show in Figure 7 three
non‐overlapping windows, and present all windows in Movie S1. Results show that all correlation patterns
changed through time, echoing previous works that found non‐stationarities in oceanic teleconnection (e.g.,
Krishna Kumar et al., 1999; Singhrattna et al., 2005). Correlations were much weaker in the period 1911–
1960 compared to the preceding and subsequent five decades (Figure 7). Some patterns are more transient
than others. The Yangtze's JJA‐SON pattern of negative correlations with tropical Pacific was only strong
in 1921–1980 (Movie S1). On the other hand, the Chao Phraya's SON positive correlations with tropical
Pacific persisted throughout all periods. In 1901–1950, when ENSO teleconnection was the weakest for all
rivers, tropical and northern Atlantic SST became the strongest teleconnection for the Chao Phraya and
Mekong (Movie S1).

5. Conclusions

In this work, we produce the first large‐scale and long‐term record of streamflow variability for Monsoon
Asia, covering 62 stations in 16 countries. In making this record, we also develop a novel automated,
climate‐informed, and dynamic streamflow reconstruction framework that leverages the computational
advantages offered by our climate proxy—the Monsoon Asia Drought Atlas (MADA) version 2. Our frame-
work achieves good skills for most of Monsoon Asia, and skill distribution is spatially homogeneous. Our
results provide a regional, synthesized understanding of Monsoon Asia's streamflow variability over the past
eight centuries, and reveal how the teleconnection between streamflow and its oceanic drivers varied over
space and time.

From our reconstruction, streamflow in Monsoon Asia appears coherent: high and low flows often occur
simultaneously at nearby stations and adjacent basins. This coherence is attributed to common oceanic dri-
vers—the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Variability (PDV), and sea surface tem-
perature variations in the Indian and Atlantic Oceans. Coherence emerges even though we reconstructed
each station individually, demonstrating the merits of Point‐by‐Point Regression. More importantly, this
coherence implies that large‐scale infrastructure transferring water, or other water‐reliant commodities,
across river basins could accidentally expose riparian people to unforeseen risks. For example, Thailand is
increasingly purchasing Mekong‐generated hydropower from Laos, and when that is insufficient, comple-
ments its energy needs with thermal power from plants that use water from the Chao Phraya for cooling.
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Thailand's energy system is more vulnerable when a prolonged drought occurs at both rivers (Chowdhury
et al., 2020)—our record shows such events have happened several times in the past.

We showed that the Pacific, Indian, and Atlantic Oceans influence streamflow variability and that the
strength and spatial footprint of these teleconnections varied over time. This result suggests that our under-
standing of how water‐dependent infrastructure could perform may be narrow, especially in South and
Southeast Asia, where we observe alternating periods of strong and weak teleconnections. A narrow charac-
terization of climate‐induced risks is likely to misguide climate change assessments, an important source of
information for many major infrastructural decisions. Stakes are particularly high in Monsoon Asia, where
river basins will experience further pressure in the coming decades (Satoh et al., 2017; Wang, Byers,
et al., 2019). If we can develop methodologies for viewing future changes in streamflow in the context of past
and present climate, we then have a pathway for making more informed and robust decisions. The recon-
structions developed in our study offer a first step in this direction.

Data Availability Statement

Chao Phraya River data were obtained from the Thai Royal Irrigation Department at www.hydro‐1.net,
Indus River from the supporting information in Rao et al. (2018), other streamflow data from GSIM (Do
et al., 2018; Gudmundsson et al., 2018), reservoir data from GRanD v1.3 (Lehner et al., 2011), MADA v2 data
from Marvel et al. (2019) at www.dropbox.com/s/n2lo99h9qn17prg/madaV2.nc, river network data from
FLO1K (Barbarossa et al., 2018) with help postprocessing by Valerio Barbarossa, basin boundary data from
HydroSHEDS (Lehner & Grill, 2013) at hydrosheds.org, SST data fromNOAA ERSST v5 (Huang et al., 2017)
provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (www.esrl.noaa.gov/psd/). This work was
conducted with open‐source software: analysis and visualization performed in R (R Core Team, 2019), maps
made in QGIS, andmanuscript written in LaTeX.We thank the open‐source software community, especially
the R package creators and maintainers, for their contributions to open science. We provide all data, docu-
mented code, and results at https://github.com/ntthung/paleo-asia (https://doi.org/10.5281/zenodo.3818
116); exceptions are instrumental data of the Mekong, Yangtze, and Pearl Rivers due to restrictions.
Lamont contribution number 8448.
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