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Abstract

Coupling the Thermodynamics, Kinetics and Geodynamics of Multiphase Reactive

Transport in Earth’s Interior

Lucy E. L. Tweed

Multiscale multiphase reactive transport is a central phenomenon governing geologic

processes in Earth’s interior. In the upper mantle, melts, produced by partial melting of

the peridotitic mantle, and volatile-rich fluids, derived from dehydration of subducting

plates, buoyantly ascend through the mantle’s porous network. Reaction between these

melts and fluids and the surrounding solid matrix control the composition of magmas that

reach Earth’s crust. Melt-rock reaction is strongly coupled to the dynamics of melt

transport: not only do the transport pathways modulate the extent of chemical interaction

between melts and the solid matrix, but the melt-rock reactions also feedback into the

transport dynamics through reactive changes to bulk physical properties including

permeability, density, and viscosity. These feedbacks can result in the emergence of

self-organized transport networks, such as the network of high-porosity dunite channels

beneath mid-ocean ridges. Understanding the various feedbacks between reaction and melt

transport requires consistent coupling of multicomponent multiphase thermodynamics and

geodynamics. However, the high-dimensionality of such coupled problems presents a major

theoretical and computational challenge. Existing models of reactive multiphase flow have

therefore tended to focus separately on the geochemistry of melt-rock interaction, or on the

dynamics of melt transport, with simplified thermo-chemical couplings.

In this dissertation I present a new thermodynamically consistent and tractable

framework for integrating multicomponent thermodynamics and multiphase geodynamics.

I use a non-equilibrium thermodynamic formulation to describe reaction as a



time-dependent irreversible process alongside heat and mass transport. This theory is

implemented using new thermodynamics software developed through the ENKI project.

The main benefits of this approach are two-fold. Firstly, it extends the reach of existing

multiphase computational thermodynamics to model macroscopic disequilibrium reaction

paths — this is the first step towards being able to model a host of metastable reaction

phenomena in igneous and metamorphic systems. I model disequilibrium batch reaction for

a simple system in chapter 2. Secondly, it allows self-consistent integration of multiphase

thermodynamics in two-phase flow models, to better explore coupling between reaction and

transport. This is demonstrated in chapter 5.

Chapter 1 gives a broad introduction to multiphase reactive flow and further

discusses the motivation for this work. I outline past work and discuss the scope of

problems in which coupling between reaction and transport plays a critical role in

geodynamic and geochemical evolution.

In chapter 2 I present a general theory for integrating computational thermodynamics

and geodynamics. This approach is based on the standard conservation equations for

porous melt transport within a deformable solid matrix, but extends the governing

equations to include multiple solid phases. The multiphase reactive coupling is described

using a kinetic framework that includes explicit stoichiometric reactions between minerals,

melts, and fluids. Using the theory of non-equilibrium thermodynamics, the macroscopic

reaction rates are controlled by the reaction affinities — providing closed-form expressions

for the net reactive mass transfers. This formulation of disequilibrium reaction is the

principle contribution of this dissertation. Coupled with the conservation equations it can

describe both equilibrium and disequilibrium reaction paths and is applicable to a range of

geological conditions. I outline approaches for modeling melt-mediated, fluid-mediated, and

subsolidus grain-boundary-mediated reaction. In extension to previous theories of

two-phase flow, this framework permits modeling of more realistic melting and



crystallization reactions, including eutectic and peritectic melting. The theoretical

framework is supported by software developed as part of the ENKI project. I briefly

summarize the software infrastructure in this chapter.

In the remaining chapters I step through the workflow for implementing this

approach for a series of model problems in the Mg2SiO4–SiO2 binary system. The

Mg2SiO4–SiO2 subsystem is an important bounding binary for understanding mantle

melting and represents the simplest subsystem for exploring coupled reactive transport

dynamics. Widely used thermodynamic models of silicate melting (i.e. MELTS) do not

extend to the binary, and existing binary melting models involve complex treatments of

melt speciation to account for significant non-ideality at high silica contents. Here, I am

concerned mostly with reaction for mafic compositions relevant to mantle magmatism.

Therefore, in chapter 3 I present a simple thermodynamic model for melting in the

Mg2SiO4–SiO2 system. I use a numerically efficient asymmetric binary mixing model to

describe solution in the melt, which is calibrated using a compilation of phase equilibrium

experimental data. This chapter is not a self-contained study in and of itself, but rather

sets up the thermodynamic model that I will use in the remaining chapters.

Chapter 4 applies the theoretical framework to a series of simple model problems for

disequilibrium reaction and reactive melt transport in the Mg2SiO4–SiO2 system.

Disequilibrium reaction paths can be non-intuitive, and I start by modeling reaction in

uniform batch systems. All of the calculations are consistent with the phase diagram in the

equilibrium limit. More general conservation equations for disequilibrium reaction in

open-system batch reactors are derived in Appendix C. I then integrate irreversible

reaction with the dynamics of diffusion and advection of heat and mass to model the

formation of reactive fronts around fusible heterogeneities, and a eutectic/peritectic

disequilibrium steady-state melting column. This is the first self-consistent inclusion of

eutectic/peritectic melting into magma dynamics.



Finally, in chapter 5 I apply this framework to explore the formation of dunite

channels by incongruent open-system melting. I develop a series of 1-D and 2-D models to

investigate the formation of dunite channels in a harzburgitic mantle within the

Mg2SiO4–SiO2 binary system. The models predict that influx of deep silica-poor melts

promotes a reactive channeling instability that organizes melt into high-porosity dunite

channels. During decompression melting in the absence of a basal melt flux, no

channelization is observed. This implies that an additional flux of melt is required, either

from melting of deep fusible heterogeneities, or from large-scale melt focusing toward the

ridge axis at depth. Alternatively, flux melting of additional melt components could help

drive reactive channelization in natural peridotite systems.
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Chapter 1

The Need for an Integrated modeling Approach to Fluid and

Magma Transport

1.1 Introduction

The cycling of energy and chemical components between Earth’s interior and the surface

is driven by large scale mantle convection. Tectonic motions drive subducting plates into

the mantle, forming the down-going limbs of large-scale convection cells (e.g. Forsyth

and Uyeda, 1975; Hager and O’Connell, 1981) with a return upward flow in hot buoyancy-

driven mantle plumes (e.g. Morgan, 1971; Davies and Richards, 1992), and through passive

upwelling of the upper mantle beneath mid-ocean ridges. Ascent and descent of rocks in these

large-scale flows drive phase transformation and heterogeneous reaction as phase assemblages

evolve to maintain chemical equilibrium. Partial melting of peridotitic mantle beneath mid-

ocean ridges, subduction zone arcs, and hotspot volcanoes is a primary response to this

internal dynamism. Terrestrial magmatism produces new igneous crust and conveys volatile

elements between Earth’s interior and the atmosphere, constituting a fundamental mode of

chemical differentiation on Earth. In tandem with subduction of oceanic lithosphere, it is

responsible for maintaining a stable surface environment over geological time (Hirschmann,

2006; Dasgupta and Hirschmann, 2010). Understanding the melting process, including the

physical mechanisms by which melts are transported to the surface, is therefore crucial to

understanding the geochemical and geodynamic evolution of the Earth system.

Mantle melting is an inherently open-system process. In the convecting mantle incipient

melts segregate from their source by concurrent compaction of the solid matrix and buoy-
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ant ascent of partial melt through an interconnected porous network (Scott and Stevenson,

1984; McKenzie, 1984; Fowler, 1985). As magma encounters new pressure and temperature

conditions, it reacts with the surrounding solid residues in order to maintain chemical equi-

librium. The major and trace element compositions of primary basalts are therefore reflective

of both the initial melting conditions and the subsequent melt-rock reactions. As the degree

to which magma interacts with rocks on ascent is modulated by the transport mechanism

(e.g. Spiegelman and Kenyon, 1992; Kelemen et al., 1997) consideration of the physics of

melt extraction is integral to mantle melting models. At the same time, reaction feeds back

into the transport dynamics by modifying the porosity, permeability and material properties

of the rock (Aharonov et al., 1995, 1997; Spiegelman et al., 2001; Schiemenz et al., 2011;

Katz and Weatherley, 2012; Weatherley and Katz, 2012; Jordan and Hesse, 2015; Keller and

Katz, 2016). The complex interplay between reaction and transport produces a number of

non-linearities which play a key role in the emergent behaviour of the system as a whole. A

major goal toward understanding mantle melting is therefore to develop integrated models

that consistently couple both the petrology and geodynamics of melting and melt extraction.

Coupling between reaction and transport is not restricted to basaltic melts within melt-

ing regions. Within most settings of melting, on rising through the hot convecting mantle,

magmas encounter the cool thermal boundary layer at the base of the lithosphere. Here,

reactive crystallization in response to the conductive geotherm can result in melt ponding

or impregnation of the mantle by diffuse porous flow (Dick, 1989; Elthon, 1992; Boudier and

Nicolas, 1995; Dijkstra et al., 2003). However, it likely also plays a role in driving hydrofrac-

ture and the formation of lithospheric dykes (Kelemen et al., 1995b; Aharonov et al., 1997;

Korenaga and Kelemen, 1997). Reactive transport is increasingly recognized as an impor-

tant mechanism for fractionation in the lower crust (Jackson and Cheadle, 1998; Jackson

et al., 2003; Solano et al., 2012, 2014). This is particularly the case beneath magmatic arcs

where large regions of the lower arc crust have been suggested to exist, either intermittently

or perpetually, in a mush-like state (Annen and Sparks, 2002; Annen et al., 2005; Cashman
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et al., 2017). The importance of coupled reactive transport further extends to fluid migration

within subduction zones where fluid transport and fluid-rock reaction across the slab mantle

interface are both controlled by the intense deformation and chemical disequilibrium in this

region (e.g. Davies, 1999; Wilson et al., 2014; Plümper et al., 2016). All of these scenar-

ios describe open system processes where reactive fluids mediate the exchange of chemical

components between major Earth reservoirs including the convecting mantle, lithospheric

mantle, lower crust, and surface environment. Moreover, in each scenario reactive fluid flow

strongly influences the chemical, thermal, and mechanical state of the system. While the

processes mentioned here span a significant range in thermal and mechanical regimes, and

involve a variety of fluids, from high temperature aqueous fluids to silicate melts, they can

all be considered within a consistent conceptual framework of reactive fluid flow in a de-

formable multiphase solid matrix. Coupled reactive flow also extends to low temperature

hydrothermal and metamorphic fluid flow. The geochemical consequences of aqueous re-

active transport in these settings has been extensively studied (Lichtner, 1985; Steefel and

Lasaga, 1994; Ferry and Gerdes, 1998). In this thesis I therefore focus on high-temperature

reactive transport phenomena associated with igneous processes with particular emphasis on

feedbacks between reaction and transport.

Partial melting and fluid dehydration proceed at the grain-scale with fluids segregating

from their source by concurrent buoyant porous flow of the fluid phase and compaction of the

solid residue. A continuum formulation describing coupled multiphase flow was laid out by

several workers in what are often referred to as the compaction equations (McKenzie, 1984;

Scott and Stevenson, 1984; Fowler, 1985). Much of the debate around melt and fluid trans-

port in the upper mantle and lithosphere has focused on whether transport occurs by diffuse

porous flow or by rapid transport in localized channels. These endmember modes of trans-

port entail very different degrees of chemical interaction between the fluid and surrounding

rock. Diffuse grain-scale porous flow allows for extensive reaction and equilibration between

melts and the surrounding solid matrix. Rapid channelized flow, on the other hand, permits
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less extensive interaction and, depending on the scale of the channels and the rate of melt

transport within them, can preserve disequilibrium between the melt and matrix (Spiegel-

man and Kenyon, 1992; Hart, 1993). Channels can take the form of melt-filled fractures or

high-permeability porous channels. Within the high-temperature asthenosphere viscous de-

formation dominates, and channelization is thought to primarily occur in the form of porous

channels (Kohlstedt and Holtzman, 2009). This is supported by the occurrence of replacive

dunites in the mantle sections of ophiolites (Kelemen et al., 1995a). However hydrofracture

within high-flux regions of the asthenosphere cannot be ruled out based on field evidence

(Sleep, 1988; Kelemen et al., 1997). In the conductive boundary layer in the lithosphere,

cooler temperatures allow hydrofracture and melt tranport in melt-filled fractures (Spence

and Turcotte, 1985; Keller et al., 2013). There is abundant evidence for this in ophiolites

and orogenic peridotites through the occurrence of pyroxenite and gabbro dikes and veins

(e.g. Boudier and Coleman, 1981; Quick, 1981; Shervais and Mukasa, 1991). Hydrofracture

is also an important mechanism within subducting slabs, and may additionally play a role

in transporting fluids within the mantle wedge (Davies, 1999; Pirard and Hermann, 2015;

Plümper et al., 2016).

Reaction and transport are nonlinearly coupled through physical rock properties. This in-

cludes thermodynamic properties—including density, heat capacity, entropy and expansivity—

which depend on the mineral and melt assemblage; and bulk material properties—including

permeability, bulk and shear viscosity, and diffusivity—which depend on both the phase

assemblage and geometric factors such as the rock microstructure. Melt has a weakening

effect on partially molten regions with experimental studies indicating that viscosity de-

creases exponentially with melt fraction (Kohlstedt and Zimmerman, 1996; Kohlstedt et al.,

2000; Zimmerman and Kohlstedt, 2004). The rheological feedback can produce meso-scale

high-porosity shear bands in response to local stresses (Stevenson, 1989; Holtzman et al.,

2003; Spiegelman, 2003; Katz et al., 2006). The rheological effect of melts and fluids has

also been considered in the large-scale context of plate boundary dynamics (e.g. Gerya and
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Figure 1.1: Schematic figure illustrating the components of the coupled model. The grey
shaded boxes show the inputs of each model component, and the boxes below give examples
of useful outputs. The arrows illustrate how variables are passed from one model component
to another.

Meilick, 2011; Wilson et al., 2014). Over and above the presence of melts, further feedbacks

arise from reaction between melts and their host rocks. It has frequently been suggested

that reaction plays a role in driving melt channelization, either through coupling with the

permeability structure (e.g. Aharonov et al., 1995, 1997; Spiegelman et al., 2001; Plümper

et al., 2016), or via hydrofracture in response to reaction-induced density changes (Miller

et al., 2003; Malvoisin et al., 2015; Evans et al., 2018, 2020). Understanding the different

transport mechanisms above therefore requires consideration of melt-rock reaction. Feed-

backs between multiphase reaction and transport are chiefly associated with the following

properties:

1. Density: Melting and dehydration are associated with a decrease in bulk density. The

resulting bouyancy force drives melts towards the surface, and if retained within pore

spaces can result in diapirism (Jha et al., 1994). Reactive density changes also produce

local pressure variations (increasing during melting/dehydration and decreasing during

crystallization/hydration). Depending on the rheology of the matrix this may have the

potential to drive hydrofracture.
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2. Viscosity: Melts and fluids have dramatically lower viscosity than the solid residue.

Increases in porosity therefore result in decreases in the bulk and shear viscosity of the

multiphase aggregate. Local reductions in pressure due to the rheological weakening

can further promote a reactive feedback as more melt is drawn in to the region. Volatile

components, which preferentially enter melts and fluids, also have a profound impact

on solid rheology. Hydration reduces solid viscosity, promoting deformation and po-

tentially providing a conduit for further fluid and melt transport, for example in the

hydrated subduction channel above subducting plates (Hebert et al., 2009; Gerya and

Meilick, 2011). Whereas dehydration can result in embrittlement of the solid residue

(Murrell and Ismail, 1976; Raleigh and Paterson, 1965; Green and Houston, 1995; Jung

et al., 2004).

3. Entropy: The release and absorption of latent heat modulates temperature which can

influence transport dynamics through the solid rheology. For example heat released

during crystallization at the lithosphere-asthenosphere boundary has been suggested

to cause thermal erosion and drive focusing of melt beneath continental rifts (Accardo

et al., 2020; Hopper et al., 2020) and subduction zone arcs (England and Katz, 2010).

4. Permeability: All else being equal, we expect that permeability increases with poros-

ity. If the resultant increase in melt flux enhances dissolution, then a positive feedback

can ensue producing a reaction-infiltration instability. If melt or fluid flow is accom-

panied by crystallization, the feedback becomes negative: melt flux closes off porosity

and so promotes diffuse porous flow or the formation of an impermeable reactive front.

The reaction-permeability feedback has been a particular focus of attention in studies of

magma dynamics. Reactive dissolution of pyroxene and crystallization of olivine during adi-

abatic ascent of melt beneath mid-ocean ridges increases porosity and permeability (Kele-

men, 1990). The resulting local increase in melt flux drives further reaction, and it has been

suggested that this could lead to a reaction infiltration instability that focuses melt into the
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high permeability channels. These are thought to be represented by dunite channels ob-

served in ophiolites (Aharonov et al., 1995; Kelemen et al., 1995a). Reactive channelization

has been the subject of numerous modeling and experimental efforts (Aharonov et al., 1997;

Spiegelman et al., 2001; Hewitt, 2010; Liang et al., 2010; Schiemenz et al., 2011; Weatherley

and Katz, 2012; Keller and Katz, 2016). While studies often focus on individual feedback

mechanisms, in natural petrological systems all of the above feedbacks operate simultane-

ously, and interact with one another. Consistent coupling of reaction and transport that

accounts for reactively induced changes in physical properties is therefore important.

Such feedbacks can be put in the broader context of coupling between petrology and

geodynamics. Similar coupling between phase change and dynamics also operates in sub-

solidus regions and can have significant consequences on mantle dynamics both at the large-

and small-scale. The relative change in density of a subducting slab and the surrounding

peridotitic mantle with increasing pressure, for example, determines whether a subducting

slab will stagnate at the transition zone or penetrate through to the lower mantle (King

et al., 2015; Goes et al., 2017). Likewise, the long-term stability of large low-shear velocity

provinces at the core-mantle boundary requires a fine balance between the thermal expan-

sivity and the compressibility of the accumulated material (Burke et al., 2008). Feedbacks

are particularly strong within partially molten and fluid-saturated regions as melting and

dehydration are accompanied by dramatic changes in physical properties.

Thermodynamics provides a consistent unifying framework linking petrological phase as-

semblages with their thermochemical and physical properties. Inclusion of thermodynamics

in geodynamics therefore presents a powerful tool for coupling petrology with descriptions of

multiphase reactive transport. Self-consistent thermodynamic databases of minerals, melts,

and fluids, parameterized from relevant thermochemical data and phase equilibrium exper-

iments, are now available for a range of pressure-temperature-composition (P-T-X) condi-

tions (Berman, 1988; Holland and Powell, 1998, 2011; Stixrude and Lithgow-Bertelloni, 2005;

Stixrude et al., 2011). In addition to self-consistently describing thermodynamic properties
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of a given phase assemblage, including the equation of state and the heat capacity, equilib-

rium assemblages can be calculated from these thermodynamic databases using appropriate

energy minimization algorithms (e.g. Connolly, 2005; Ghiorso, 2013). Computational ther-

modynamics has the benefit over other parameterizations of melting or crystallization (e.g.

McKenzie and Bickle, 1988; Katz et al., 2003) in that they allow for more reliable interpo-

lation and extrapolation between experimental constraints.

Until recently, computational thermodynamics has largely evolved in isolation from com-

putational geodynamics. This historic divide has emerged from two separate communities

within the geosciences. It can also be viewed as a pragmatic move to reduce what is a very

complex system down into numerically tractable sub-problems, and has permitted a lot of

progress to be made on both sides. Petrological models are based on considerations of uni-

form batch systems. Forward models and interpretations of observed phase assemblages often

assume endmember dynamic behaviour such as batch or fractional melting and crystalliza-

tion. Some approximation of open-system processes can made using variable fluid-rock ratios

or with models including assimilation fractional crystallization (e.g. Kelemen, 1990; Lam-

bart et al., 2012). However there is no description of the actual space- and time-dependent

system dynamics. Conversely, geodynamic models of mantle melting have focused on the

physics of melt segregation and transport. The continuum formulation of multiphase flow is

based on the conservation of mass, momentum, and energy. The governing equations include

closures to describe melt-rock reaction. However, when included, reaction is generally only

considered in a parameterized and ad-hoc way. Furthermore, reactive transport models do

not tend to self-consistently couple phase assemblages and other thermodynamic properties.

Without considering nonlinear couplings between reaction and transport, such approaches

fail to capture emergent system behaviour. A mechanistic understanding of reactive trans-

port processes in Earth’s interior therefore requires a holistic modeling approach that con-

sistently couples geodynamics and petrology. Furthermore, coupled approaches would aid

better interpretation of field observations in places where open system reaction has played a
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role. Inclusion of petrological models into space and time dependent dynamic models pro-

vides a framework for interpreting structural petrological features, such as reaction zones,

where spatial relationships between rock assemblages are key to understanding system be-

haviour.

1.2 Open questions on Open systems

Integrated modeling approaches are key to a host of open questions in petrology and geo-

dynamics. Mid-ocean ridges are the best understood geodynamic settings of mantle melting.

Here, the solid mantle upwells adiabatically and undergoes pressure-release melting. Poly-

baric partial melts segregate from their source and bouyantly ascend to the surface where

they are emplaced at the surface over a narrow zone of crustal accretion. Various lines of

evidence indicate that mid-ocean ridge basalts (MORBs) are not in equilibrium with the up-

permost residual mantle (Stolper, 1980; Elthon and Scarfe, 1984; Johnson et al., 1990); most

notably, MORB is undersaturated in orthopyroxene. This observation is often accounted for

in geochemical models as fractional melting (e.g. McKenzie and Bickle, 1988). Maintain-

ing this disequilibrium in practice requires efficient segregation at small melt fractions and

rapid channelized melt transport (Spiegelman and Kenyon, 1992). It is thought that this

occurs through macroscale high-porosity channels corresponding to dunite bodies observed

in ophiolites, which are in chemical equilibrium with MORB (Kelemen et al., 1995a, 1997).

However, there remain significant questions concerning the relative role of reactive and rhe-

ological feedbacks in channel formation, the controls on channel morphology, locations of

channel initiation, and the effect of the energetics of melting, among other things. Further

questions also remain on the role of enriched pyroxenitic domains within mantle melting

regions. Geochemical data from primitive basalts from mid-ocean ridges and subduction

zones are often interpreted in terms of linear mixing between deep silica-rich pyroxenitic

melts and peridotitic melts (e.g. Sobolev et al., 2007; Shorttle et al., 2014). However, such

interpretations do not account for reaction and re-equilibration of pyroxenite-derived melts
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with the enclosing peridotite during ascent (Yaxley and Green, 1998; Yaxley, 2000; Lambart

et al., 2012).

Other geodynamic settings of mantle melting involve more complex lithospheric and

crustal processing, and elucidating the melting regime and transport processes is more dif-

ficult. Beneath hotspot volcanoes including Hawaii and the Basin and Range Province,

melting and transport in the convecting mantle may be similar to that beneath mid-ocean

ridges. However Mg-Si thermobarometry records equilibration depths corresponding to the

lithosphere-asthenosphere boundary (Ferguson et al., 2013; Plank and Forsyth, 2016), sug-

gesting that melts either ponded at this depth or were transported by diffuse porous flow

up to this level, before being rapidly transported to the surface in lithospheric dykes (e.g.

Havlin et al., 2013). The transition from porous flow to dyking is difficult to model within

a continuum framework (Keller et al., 2013) and is currently an active area of research.

The role of reactive crystallization in modulating the pressure field (Aharonov et al., 1997;

Korenaga and Kelemen, 1997) and the rheological response within this region remain open

questions.

In subduction zones melting occurs through a combination of decompression and flux

melting due to the introduction of volatile slab components. There remains substantial

debate regarding the specific mechanism of material transport from the slab to the hot

corner of the mantle wedge. The leading model involves fluid-mediated mass-transfer from

dehydration of altered oceanic crust and sediment melting (Tatsumi et al., 1986; Plank and

Langmuir, 1993; Manning, 2004). The fluids are thought to transmit the characteristic trace

element signature of arc magmas including enrichment in light rare earth elements and large

ion lithophile elements (Kay, 1984; McCulloch and Gamble, 1991). However, the slab-mantle

interface represents a major geochemical gradient, and it is unclear how fluids are effectively

transferred from the slab to the locus of melting within the mantle wedge without being

heavily modified or assimilated by their interaction with the surrounding peridotite. One

explanation of this is that fluids extensively metasomatize the overlying mantle wedge such
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that residual fluids can flow through without further modification (Tatsumi et al., 1986;

Malaspina et al., 2006). Another explanation is that fluids are transported by focused flow

through hydrofractures (Davies, 1999; Pirard and Hermann, 2015; Plümper et al., 2016).

Alternatively, recent measurements of the hydrous peridotite solidus suggest melting may

begin directly above the subducting slab (Grove et al., 2006; Till et al., 2011). As flux melting

is an open-system process, the subsequent melting and reactive melt transport within the

hot mantle wedge also require coupled approaches to modeling reaction and transport.

While theories of multiphase flow initially emerged within the mantle dynamics commu-

nity, reactive porous flow is increasingly being considered as an important feature in crustal

magmatic systems. In volcanic arcs it has been suggested that the majority of crustal differ-

entiation occurs in lower crustal “hot zones” (Annen and Sparks, 2002; Annen et al., 2005;

Cashman et al., 2017). Here, intermediate and silicic magmas are generated by crystalliza-

tion of mantle derived melts coupled with partial melting of the crust (e.g. Hildreth and

Moorbath, 1988). Chemical differentiation of arc magmas is therefore an open-system pro-

cess that is strongly modulated by factors that regulate melt-solid interaction including melt

flux, intrusion geometry and the mode of magma migration. Arc crust is compositionally,

thermally and rheologically heterogeneous on a range of scales. The upper crust is dominated

by brittle processes, whereas high temperature regions in the lower crust below established

magmatic systems are likely dominated by viscous processes. In these regions porous flow

could have a major control on magmatic architecture (Solano et al., 2012; Jackson et al.,

2018). Crustal magmatic systems are complicated by displaying significant temporal and

spatial variations in porosity. While the idea of cold-storage, in which much of the lower

crust is postulated to exist in a mush-like state (e.g. Cashman et al., 2017), is increasingly

recognised as important, there are intervals of time when pockets of high melt fraction must

exist (e.g. Cooper and Kent, 2014). As these melt pockets exceed the disaggregation thresh-

old for a two-phase system, continuum models that span the transition from porous flow

to a melt suspension are required (Keller and Suckale, 2019). Calls for integrated modeling
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approaches for arc magmatism therefore need to be tempered with the requirement for gen-

eral theories that can account for this rheological diversity. The upshot of this complexity is

that any particular modeling approach is likely to be restricted to a particular region of the

crustal magmatic system. Significant advances in theoretical approaches are required before

trans-crustal multiphase dynamic models become a reality.

1.3 Previous approaches to coupling reaction and transport

The principle barrier to coupled approaches is the sheer complexity of non-isothermal

multiphase multicomponent reaction within a deformable matrix. A typical upper mantle

lherzolite comprises twelve major chemical components and up to five phases, the relative

abundances and compositions of which change continuously as a function of pressure, tem-

perature and bulk composition. Tracking these changes within space- and time-dependent

geodynamic models is challenging, particularly in open systems in which the bulk composi-

tion changes continuously.

One approach for managing the complexity of coupled models has been to use simple pa-

rameterized models of mantle melting. Early studies investigating melt segregation from the

convecting mantle modeled reactive dissolution and precipitation by imposing fixed solubil-

ity gradients in one component isothermal systems (Aharonov et al., 1995, 1997; Spiegelman

et al., 2001; Spiegelman and Kelemen, 2003). This was extended by later studies that in-

cluded a proper treatment of the energetics of reaction by assuming chemical equilibrium,

and using parameterized phase diagrams, involving a melt and a homogeneous solid, to ap-

proximate mantle melt productivity (Šrámek et al., 2007; Katz, 2008; Hewitt, 2010; Katz and

Weatherley, 2012; Weatherley and Katz, 2012). More recently, this parameterized approach

has been generalized to allow for disequilibrium between the melt and solid residue (Rudge

et al., 2011; Keller and Katz, 2016; Keller et al., 2017). Unlike models of magma dynamics

in the mantle, which have been simulated in multiple dimensions, reactive transport in the

lower crust has only recently been explored through numerical models. Existing parameter-
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ized models of crustal reactive transport are limited to one dimension (Jackson and Cheadle,

1998; Jackson et al., 2003; Solano et al., 2012, 2014).

Parameterized melting relations can provide a reasonable approximation for the degree

of melting and latent heat of fusion, and their inclusion in magma dynamics simulations has

yielded important insights into the reaction-permeability-flux feedbacks that are responsible

for melt channelization (Aharonov et al., 1995; Kelemen et al., 1995a). However, the melting

parameterizations do not include a description of the mineralogical evolution of the residual

mantle, or an accurate representation of the mineral-melt reactions. Melting of typical

mantle lherzolite transitions from a pseudo-eutectic melting reaction at depth, to incongruent

melting at lower pressure, in which olivine crystallization and melting occur concurrently

(Walter, 1998). Exhaustion of residual phases, such as clinopyroxene and plagioclase, can also

produce discontinuous changes in the melt productivity (Asimow et al., 1995; Hirschmann

et al., 1999). Without accounting for such complexities, it is not possible to directly compare

model outputs to assemblages observed in peridotite massifs, or to accurately forward model

primary basalt composition; together these constitute our only direct observations of mantle

melting preserved in the geological record. The sensitivity of the dynamics to details of the

thermodynamics, such as the compositional gradient of the melt saturation surface and the

latent heat, means that it is also not clear whether features, such as channels, observed in

existing models would be reproducible if more realistic multiphase thermodynamics were

included.

Another approach has been to directly solve for the equilibrium assemblages using equi-

librium thermodynamic models (Hebert et al., 2009; Tirone et al., 2009; Tirone and Sessing,

2017; Tirone, 2018; Oliveira et al., 2018; Tirone, 2019; Oliveira et al., 2020). This is gen-

erally approached using a multi-step iterative process. First the equations describing the

dynamics are solved; the equilibrium assemblage for the resulting pressure, temperature and

bulk composition conditions is then calculated at every grid point and time-step by free-

energy minimization, and the relevant variables, including the change in melt fraction, and
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the updated densities, heat capacities, and entropies, are passed back to the dynamics code;

and so forth. The difficulty with this approach is that multiphase free-energy minimization

is computationally expensive. Minimization algorithms are also often based on the Newton

method, meaning that convergence is not guaranteed (e.g. Ghiorso, 1985; Ghiorso and Sack,

1995), and additional measures must be put in place to ensure convergence (Tirone et al.,

2009; Oliveira et al., 2018).

One way around this has been to use precalculated look-up tables (Dufek and Bachmann,

2010; Karakas and Dufek, 2015; Malvoisin et al., 2015). These have been widely used in

convection simulations with constant bulk composition (Afonso et al., 2008; Babeykoa and

Sobolev, 2008; Chen and Gerya, 2016). For closed system models such as these, where

chemical equilibrium can be assumed, look-up tables likely present the most practical way

forward. However this approach becomes intractable in open systems for which the dimension

of the look-up table must increase to include the dimension of the compositional space. For

this reason existing studies on open systems have been restricted to modeling transport of a

single component.

The complexity of these problems therefore presents both a theoretical and computational

challenge. Any general theory should self-consistently describe the phase assemblage, the

thermodynamic properties and the dynamics, while also being general enough to be applied

to a variety of thermodynamic systems and solid rheologies. In addition to a general tractable

theory, a major roadblock has been the availability of appropriate interoperable software and

robust numerical solvers that can deal with the various timescales of transport, reaction,

and thermal and chemical diffusion. Computational tools in petrological thermodynamics

and geodynamics have been developed separately with the purpose of serving very different

scientific communities, mirroring the conceptual division between dynamics and petrology.

To explore coupled thermodynamic-geodynamic problems going forwards there is a need

for flexible and reproducible computational tools that allow integration of thermodynamic

models into multiphysics problems.
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1.4 The role of disequilibrium in the dynamics of Earth’s interior

There is increasing recognition of the role of chemical disequilibrium in igneous and

metamorphic processes. Magmas erupted at the surface commonly display a range of dise-

quilibrium features including crystal zonation, resorption and mantling textures, metastable

mineral assemblages, and trace element and isotopic disequilibrium (e.g. Davidson et al.,

2007; Ganne et al., 2018). These features are generally attributed to open-system dynamic

processes in the cool upper crust (Bachmann and Huber, 2016). Metastable mineral as-

semblages are also increasingly recognised during prograde metamorphism due to sluggish

reaction kinetics (e.g. Carlson et al., 2015). Faster reaction can be expected at the high

temperatures of the convecting mantle making the assumption of local equilibrium (Thomp-

son, 1959; Hofmann and Hart, 1978) more applicable. However, the role of metastability has

been increasingly acknowledged during geodynamic processes in Earth’s interior. Metasta-

bility during olivine-group phase transformations (Iidaka and Suetsugu, 1992; Tetzlaff and

Schmeling, 2000; Mosenfelder et al., 2001) in the low temperatures of slab interiors is one

well-recorded example.

Consideration of equilibrium also requires a consideration of scale. The lengthscale over

which equilibrium is maintained is controlled by the relative rates of reaction, mass transport

and diffusion. Melt localization, in the form of veins, dykes, and porous channels, permits

disequilibrium between melt and adjacent solid residue. There is abundant evidence for such

features in mantle exposures. Indeed MORB composition requires macroscale disequilibrium

between ascending melts and the mantle residue (e.g. Kelemen et al., 1997). As continuum

approximations, geodynamic models are applied at much larger scales than those of small-

scale melt localizations; with grid-sizes typically on the order of 10-1000 m. Reaction at this

scale is therefore best approximated as a disequilibrium process, with the kinetics constrained

from appropriate upscaling analysis.

Equilibrium thermodynamics has played a pivotal role in petrology: phase diagrams,
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constrained from phase equilibrium experiments, have long provided a framework for un-

derstanding the petrogenesis of igneous and metamorphic rocks; equations of state have

allowed us to project the properties of geologic materials to high pressures and tempera-

tures in Earth’s interior; and partitioning relations of trace elements have provided a tool for

understanding fractionation processes and isotope systematics allowing us to explore these

processes back in time. More recently, computational thermodynamics has opened up the

possibility to forward model equilibrium phase assemblages and reaction paths. However,

equilibrium thermodynamics is restricted to idealized reversible processes whereby the sys-

tem evolves via a sequence of equilibrium states. The time-dependence of processes involved

are not accounted for.

Non-equilibrium thermodynamics, which was developed over the course of the mid 20th

century by workers including Onsager and Prigogine, extends the second law of thermody-

namics to include irreversible processes (Onsager, 1931a; Prigogine, 1961, 1967). In allowing

for irreversibility and time-dependence, non-equilibrium thermodynamics shifts thermody-

namics from a theory describing the state of systems to one describing system evolution.

The basic premise of classical irreversible thermodynamics is that thermodynamic fluxes are

related to driving forces through linear phenomenological relations: for example Fick’s law

of diffusion relating chemical diffusion to chemical gradients. Irreversible entropy production

is then related to the product of forces and fluxes. Empirical evidence demonstrates that

thermodynamic forces and fluxes, such as thermal and compositional diffusion, are coupled.

In the linear limit this coupling is described by the Onsager reciprocal relations (Onsager,

1931a). Non-equilibrium thermodynamics has lead to a plethora of studies across fields from

biology to chemical engineering. There has been particular interest in how dissipative pro-

cesses in open systems lead to self-organization (Prigogine and Nicolis, 1967; Prigogine and

Lefever, 1968; Prigogine and Glansdorff, 1973). Such emergent structures are widespread in

the geological sciences (Fowler, 1985), being responsible for river networks, mountain belts,

fracture networks, crystal zonation and layered reaction zones. In petrology non-equilibrium
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thermodynamics has been applied to the study of small-scale coupled phenomena such as

Soret diffusion in silicate melts (e.g. Walker and DeLong, 1982), crystal zonation (e.g. Al-

lègre et al., 1981) and diffusive reaction zone growth (e.g. Fisher, 1973; Joesten, 1977).

However, a systematic theoretical framework and computational infrastructure for model-

ing irreversible heterogeneous reaction in igneous and metamorphic systems has yet to be

developed. Existing computational thermodynamic tools have instead largely been geared

towards equilibrium calculations.

Following de Groot and Mazur (1984) and Prigogine (1967), extension of computational

thermodynamics to non-equilibrium processes can be made by treating chemical reaction

as an irreversible process in which reaction rates are a function of the chemical affinities.

Irreversible entropy production is then self-consistently expressed as the product of reaction

rates and chemical affinities. This approach has the benefit of implicitly accounting for the

time-dependence of reaction. Furthermore, as the extent of disequilibrium depends on the

relative timescales of reaction, diffusion and mass transport it can be applied to both dise-

quilibrium and equilibrium systems. Given an appropriate set of reactions, linear rate laws

would also naturally drive the system to equilibrium, given sufficient time, thus removing

the need for on-the-fly free-energy minimization. Non-equilibrium thermodynamics therefore

presents a promising, and arguably more natural, way of including multiphase reaction into

time- and space-dependent dynamic models. However, application of non-equilibrium ther-

modynamics to disequilibrium reaction has limitations. Firstly, it only describes phenomena

on a macroscopic phenomenological level. Geochemical kinetics is a highly complex field,

with heterogeneous reaction proceeding via a complex interplay of diffusion, mass transport,

and surface reaction at the grain scale. Any macroscopic description unavoidably fails to

capture the details of such small scale phenomena. However the kinetics in igneous and

metamorphic systems are poorly understood and a detailed mechanistic description is rarely

feasible. Secondly, classical irreversible thermodynamics is restricted to linear phenomeno-

logical relations. While this is applicable to kinetic rate laws close to equilibrium, further
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from equilibrium reaction is characterized by non-linear rate laws. Description of multiphase

reaction within a non-equilibrium thermodynamic framework does however tractably cap-

ture the macroscopic evolution of the system—including phase abundances, compositions

and physical properties of the multiphase assemblage—close to equilibrium in a way that

allows us to couple bulk petrological evolution with other dynamic processes.

1.5 Dissertation overview

In this dissertation I will present a thermodynamically consistent framework for integrat-

ing multiphase multicomponent thermodynamics and geodynamics. This work builds on

previous formulations of magma dynamics, establishing the set of conservation equations for

mass, momentum, and energy describing melt transport within a deformable porous medium.

As my focus here is on the thermodynamic and reactive coupling, we describe the mechanics

on a sufficiently general level that it can be applied to a range of rheological conditions. We

refer to the significant body of work exploring multiphase transport for various mechanical

regimes (Connolly and Podladchikov, 1998; Bercovici et al., 2001; Bercovici and Ricard, 2003;

Rozhko et al., 2007; Keller et al., 2013; Evans et al., 2018, 2020). The most significant modifi-

cation to the conservation equations is the extension to multiple thermodynamic solid phases,

which together behave as a single mechanical phase. The thermodynamic and reactive cou-

pling is based on the theory of non-equilibrium thermodynamics (Prigogine, 1967; de Groot

and Mazur, 1984), whereby the reactive system is rephrased in terms of an independent set

of stoichiometric reactions. This permits modeling of both quasi-equilibrium and disequi-

librium reaction within a multiphase assemblage while avoiding the need for pre-calculated

look-up tables or on-the-fly energy minimization. I will present reactive formulations for

modeling melt-mediated, fluid-mediated and subsolidus reaction to extend applicability to a

range of geological processes. This general theory is presented in chapter 2.

Implementation of any physical model requires suitable computational infrastructure. In

parallel with the theory and application described here is an ongoing software development
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as part of the ENKI project (http://enki-portal.org/). A principal aim of this project is the

development of flexible and modular themodynamics and kinetic modeling software targeted

at integrating thermodynamics into geodynamics models. The work in this dissertation

has both informed and been supported by this effort. A very brief outline of the software

components used in this work is included in chapter 2.

A further goal of this dissertation is to map out a workflow demonstrating how this

theoretical framework is applied to a problem of geological interest. Here I focus on reactive

melt transport beneath mid-ocean ridges. The various stages of this workflow are presented

in chapters 3 to 5. Firstly, in chapter 3 I describe the calibration of the Mg2SiO4-SiO2 binary

system. This simple system served as a good first-order analogue for eutectic and peritectic

mantle melting. In particular it captures the gradient in silica content of basaltic melts with

decreasing pressure, which has a significant impact on reactive behaviour of ascending melts.

As our goal is to demonstrate the coupling between eutectic and peritectic melting and melt

transport, rather than to accurately capture all details of the phase diagram, we calibrate

the melt solution using a simple asymmetric regular solution model. In chapter 4 I test

the model by applying it to a range of simple problems exploring disequilibrium reaction

and open-system melting. These problems are divided into those looking at non-isothermal

disequilibrium batch reaction path models, and dynamic models coupling reaction with mass

diffusion and poro-viscous transport. Disequilibrium reaction paths are often non-intuitive

and this hierarchy of models permits exploration of the various assumptions and model

parameters used. This exploration is a prerequisite for any complex multiphysics problem.

Finally, in chapter 5 I apply this framework to 2D models of reactive channelization and

the formation of dunite channels in the Mg2SiO4-SiO2 binary system. This is the first

model of reactive transport in a eutectic or peritectic reactive system and allows us to more

accurately describe the melt-rock reactions during melt ascent. Our findings corroborate

previous models using simpler parameterized melting relations, that channel initiation likely

requires some additional flux of melt. This could be from focusing of melt towards the ridge
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axis, or from deep hydrous melting or melting of enriched heterogeneities at depth.

The kinetic and thermodynamic coupling is described here on a general level and therefore

could be applicable to a range of multiphase systems with arbitrarily complex multiphysics

coupling. Our emphasis while setting up the theory and in the model examples has been on

poro-viscous dynamics relevant to magma dynamics in the the asthenosphere. Application to

other rheological conditions and reactive systems will likely entail many different theoretical

and numerical challenges. As it is difficult to predict what these will be, the basic theory

presented here is far from complete and should rather be viewed as a skeleton on which later

adaptations and extensions can grow.
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Chapter 2

A Tractable Kinetic Framework for Coupling Computational

Thermodynamics and Geodynamics

2.1 Introduction

Many important problems in Earth sciences can be described by multiphase, multicom-

ponent reactive porous transport in a deformable, permeable solid matrix. This includes

melt transport within the asthenosphere and lithosphere beneath mid-ocean ridges, subduc-

tion zones, continental rifts and interplate volcanoes; as well as transport of aqueous fluids

within subducting slabs and in the overlying mantle wedge. These phenomena have proven

extremely difficult to model due to the complexity of both the mechanical and thermochem-

ical processes involved. Partial melting and crystallization are strongly coupled to the both

the thermal structure and mechanical behaviour of these regions. Furthermore, chemical

reactions between melts and fluids and the surrounding rocks modify the permeability struc-

ture of the solid matrix resulting in feedbacks between transport and reaction. Despite these

various couplings, the thermodynamics and dynamics of multiphase flow are often treated in

isolation. This has largely been a pragmatic move to reduce what are very complex systems

down into numerically tractable sub-problems, and has permitted a lot of progress to be

made on both sides. However, furthering our understanding of terrestrial magmatism and

geodynamics increasingly calls for a more holistic approach.

Dynamic modeling approaches are based on the continuum formulation of two-phase flow

describing the coupled porous flow of the melt within a viscously compacting solid matrix

(McKenzie, 1984; Scott and Stevenson, 1984; Fowler, 1985). These equations are derived via
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conservation of mass, momentum, and energy, along with a set of appropriate constitutive

relations. The original formulations assumed viscous deformation of the host rock, how-

ever these have since been extended to include elastic (Evans et al., 2018, 2020), visco-elastic

(Connolly and Podladchikov, 1998; Omlin et al., 2018), and visco-elasto-plastic (Keller et al.,

2013) rheologies, as well as the effects of surface tension and damage (Bercovici et al., 2001;

Bercovici and Ricard, 2003). The two-phase flow equations are strongly non-linear and pro-

duce diverse behaviour. Early solutions focused on the formation of magmatic solitary waves

(e.g. Scott and Stevenson, 1984; Spiegelman, 1993a; Wiggins and Spiegelman, 1995; Jordan

et al., 2018), and the focusing of melt at mid-ocean ridges and subduction zones in response

to solid flow fields (Spiegelman and McKenzie, 1987). Additional non-linearities are intro-

duced by mechanical feedbacks which have been shown to focus melts into high-porosity

shear bands (Stevenson, 1989; Holtzman et al., 2003; Spiegelman and Kelemen, 2003; Katz

et al., 2006). As mechanical phenomena, much of this behavior can be examined purely from

conservation of mass and momentum. Modelling the actual melting process, however, also

requires conservation of energy (Hewitt and Fowler, 2008; Hewitt, 2010; Katz, 2008). This

describes the thermal structure by accounting for the transport of heat by the melt and solid,

the latent heat of melting and crystallization, as well as adiabatic terms due to decompres-

sion. Given an expression for melt productivity as a function of pressure and temperature

(e.g. Katz et al., 2003), conservation of porosity, momentum and energy together provide a

first-order description of adiabatic decompression melting. Such thermo-mechanical models

have proven useful for exploring the large-scale geodynamics of plate boundaries (e.g. Katz,

2008; Wilson et al., 2014; Sim et al., 2020). However, these models generally neglect the

compositional dependence of melting which has an important bearing on both the dynamics

of melt extraction and the melting process itself. Variation in equilibrium melt composition

with pressure causes partial melts to react with surrounding rocks during ascent. As melts

reactively dissolve peridotite minerals, this results in an additional component of flux melt-

ing. Feedbacks between permeability and dissolution can also focus melts into high porosity
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reactive channels (Aharonov et al., 1995). In subduction zones, flux melting from influx

of hydrous slab components is the principal melting mechanism. Consistent treatment of

melting across geodynamic settings therefore requires inclusion of both the thermodynamics

and chemistry of melting.

Previous models exploring coupled reactive melt transport in the mantle have largely

been motivated by the observation that mid-ocean ridge basalts (MORBs) are not in equi-

librium with the shallow orthopyroxene-bearing mantle (Stolper, 1980; Elthon and Scarfe,

1984; Johnson et al., 1990). This has lead to the view that melt transport predominantly

occurs by focused flow in high-porosity channels (Spiegelman and Kenyon, 1992). This is

supported by the occurence of dunite bodies, which are in equilibrium with MORB, but sur-

rounded by strongly trace-element depleted harzburgite, in the mantle section of ophiolites

(Kelemen et al., 1995a, 1997). A suite of numerical studies and linear stability analysis have

demonstrated that melt channelisation could be driven by a reaction infiltration instability

arising from the reactive dissolution of pyroxene during melt ascent (Aharonov et al., 1995,

1997; Spiegelman et al., 2001; Spiegelman and Kelemen, 2003; Hewitt, 2010; Liang et al.,

2010; Schiemenz et al., 2011; Katz and Weatherley, 2012; Jordan and Hesse, 2015; Keller and

Katz, 2016; Rees Jones and Katz, 2018). However existing models have so far been restricted

to simple parameterized phase diagrams involving a single solid and melt phase, which vary

smoothly in composition between fictive endmembers. It has not been possible to include

the eutectic and peritectc melting reactions within the current framework, and there are still

questions as to whether reactive channelization can be initiated within a relatively uniform

peridotitic mantle. Furthermore, by not dealing with multiple mineral phases it is not pos-

sible to capture the discontinuous changes in melting and crystallization rates that occur

due to phase exhaustion (e.g. exhaustion of clinopyroxene during adiabatic decompression

melting), phase saturation (e.g. crystallization of plagioclase during melt infiltration in the

lithosphere), and solid phase transitions (e.g. the spinel-plagioclase transition). Inclusion

of more complex thermodynamic systems, while also consistently coupling the dynamics to
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the thermodynamic properties of the phase assemblage, would permit further exploration of

other open system reactive processes including fluid transport and flux melting in subduction

zones.

Multicomponent multiphase thermodynamics provides a consistent framework for cou-

pling reaction and transport dynamics (Stixrude and Lithgow-Bertelloni, 2005; Poulet et al.,

2010). In this work we develop a tractable theoretical framework for integrating compu-

tational thermodynamics and multiphase fluid dynamics. Our approach is based on the

concepts of non-equilibrium thermodynamics in which reaction occurs via a set of explicit

stoichiometric reactions. This allows us to model thermodynamic systems of arbitrary com-

plexity, involving multiple mineral phases. We will describe reactive formulations that are

suitable for modeling melt-mediated, fluid-mediated, and subsolidus reaction. As reaction

is treated as an irreversible process alongside heat and mass transport it can be applied to

systems both close to and far from chemical equilibrium as the extent of local disequilibrium

depends on the relative timescales of reaction and mass transport. The reactive formulation

is integrated with conservation equations for two-phase flow which are generalized to allow

for multiple solid phases. This chapter is organized as follows: Section 2.2 gives an overview

of the modelling approach. Section 2.3 derives the general conservation equations. Section

2.4 describes coupling to thermodynamic models and 2.5 describes the reactive framework.

Section 2.6 briefly describes the supporting software. Finally, section 2.7 discusses potential

applications and limitations of this modelling approach.

2.2 General system description

Here we will lay out a general formulation for describing advection, thermal and com-

positional diffusion, and reaction within a compacting multiphase medium. Like previous

formulations we consider a system comprising up to two mechanical phases with distinct

velocity fields — that is a multiphase solid and a melt or fluid. As a continuum approxima-

tion these equations apply to systems that adhere to the assumptions of generalized porous
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flow in which the system size is much larger than the pore spacing within the permeability

network. In the limit of zero porosity they reduce to the equations for a reactive single phase

continuum.

We do not consider scenarios where both a melt and a fluid or vapor phase are present.

Such a scenario may occur within subduction zones and is expected in upper crustal mag-

matic systems. A continuum approach to modelling magmatic systems of more than two

phases has been formulated by Keller and Suckale (2019) and can be viewed as an extension

of the dynamic model used here. As an extension to previous magma dynamics however,

we incorporate a multimineralic solid. Individual minerals constitute thermodynamic phases

which are defined by distinct free-energy functions, contrary to mechanical phases which are

defined on the basis of their velocity field.

The chemistry is described by considering a general C-component system comprising

N thermodynamic phases, including the melt or fluid and all minerals in the solid assem-

blage. Each phase i has a composition described by Ki phase endmembers which reflect

the stoichiometry of that phase. The endmembers may represent linearly independent phase

components, or non-independent solution species. Summing over all phases, there is a total

of Ktot =
∑N

i=1Ki phase endmembers in the system. The endmembers are generally distinct

from the system components, and in a reactive system we have the condition Ktot > C.

The average assemblage evolves via a set of J stoichiometric reactions each reacting at

a rate Rj. Our reactive formulation is based on that of de Groot and Mazur (1984) who

describe irreversible reaction between species in a homogeneous system. Here we extend this

to reaction between phase endmembers in a multiphase heterogeneous system. Reactions may

be either homogeneous (involving endmembers of a single phase) or heterogeneous (involving

endmembers in different phases). In high temperature magmatic systems it is reasonable

to assume that individual phases are in homogeneous equilibrium whereby species within a

given solution phase are in chemical equilibrium. In this case only heterogeneous reactions

need to be considered. However the framework we describe here is generic and does not
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require this assumption.

Both the geodynamic and thermochemical models are based on mixture theory (Drew,

1971) in which the mechanical and thermodynamic phases are treated as interpenetrating

continua. As such, all variables — including pressure, stess, temperature, phase velocity,

phase volume fraction, and phase composition — are average macroscopic properties of the

system. All processes are therefore described on a phenomenological level. Spatial averaging

at the macroscale means that these processes cannot generally be directly compared to

the microscopic processes from which they are derived. Rather phenomenological relations,

such as those describing permeability and bulk rheology, are obtained empirically or from

appropriate upscaling analysis. Despite the inherent loss of information involved in this

approach, it has the benefit of maintaining tractability, while still providing important insight

at the system scale.

2.3 Conservation Equations

2.3.1 Conservation of mass

Given N phases each with Ki endmembers, conservation of mass for each endmember is

given by

∂

∂t
ρiφic

k
i + ∇ · ρiφicki vi = −∇ · Jki + Γki (i = 1, 2, ..., N ; k = 1, 2, ..., Ki − 1). (2.1)

Where ρi and φi are the density and volume fraction of phase i respectively, and cki is the

mass concentration of endmember k in phase i. vi is the velocity field of phase i, which is

vs for the solid phases, and vf for the melt. Jki is the sum of the diffusive and dispersive

fluxes of endmember k within phase i. To ensure conservation of mass within each phase,
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the diffusive fluxes of its endmembers must cancel

Ki∑
k=1

∇ · Jki = 0 (2.2)

Γki is the net reactive mass transfer per unit volume of endmember k in phase i. If all

reactions are heterogeneous, this corresponds to the interphase mass transfer into or out

of phase i, but if the phase is not in homogeneous equilibrium Γki may also include the

formation/destruction of endmember k in speciation reactions.

Γki =
J∑
j=1

νkijRj, (2.3)

where Rj is the reaction rate of the jth chemical reaction in units of density per unit

time. Rj > 0 for the forward reaction, and Rj < 0 for the reverse reaction. νkij is the

dimensionless mass-weighted stoichiometric coefficient of endmember k in reaction j. By

convention νkij < 0 for reactants, and νkij > 0 for products. They are related to the molar

stoichiometric coefficients ν̃kij by

νkij =
ν̃kijM

k
i

Mj

(2.4)

where Mk
i is the molar mass of endmember k. We have normalized by the mass of reaction

Mj which is calculated by summing the masses of all the products of the reaction

Mj =
N∑
i

Ki∑
k

ν̃kijM
k
i for ν̃kij > 0 (2.5)

This leads to
N∑
i=1

Ki∑
k=1

νkij = 1 for νkij > 0. (2.6)

For a balanced stoichiometric reaction, in which there are no sources or sinks of mass, we
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also have
N∑
i=1

Ki∑
k=1

νkij = 0. (2.7)

While the stoichiometry of each reaction νj is fixed, the net reaction, described by the

Γki terms, will vary as the rates of the individual reactions change.

Only Ki − 1 equations of the form (2.1) are required for each phase, as we can use the

closure
∑Ki

k=1 c
k
i = 1 to get the final endmember concentration. We therefore require Ktot−N

conservation of endmember equations in total to track the composition of all the phases in

the system.

Summing equation (2.1) over all the endmembers in each phase we get the conservation

of mass for phase i
∂

∂t
ρiφi + ∇ · ρiφivi = Γi (i = 1, 2, ..., N). (2.8)

Where we have used the closure
∑Ki

k=1 c
k
i = 1, and assumed that the diffusive fluxes Jki cancel

within each phase. Γi gives the net mass transfer rate (over all its endmembers) into/out of

the phase i:

Γi =

Ki∑
k=1

J∑
j=1

νkijRj. (2.9)

Given that all reactions are balanced, as stated in equation (2.7), we necessarily have the

condition
N∑
i=1

Γi = 0 (2.10)

In a static, closed isothermal system, equations (2.1) and (2.8), along with a description

of the reaction rates terms Rj, would be sufficient to describe the reaction paths. However,

in a dynamic non-isothermal system in which the fluid and solid can flow, additional closures

are required to describe the velocity fields vi, and the temperature T . For these closures we

need to conserve momentum and energy respectively.
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2.3.2 Conservation of momentum

If we assume that inertia is negligible in both fluid and solid phases and that the fluid

phase is sufficiently inviscid that averaged deviatoric stresses in the fluid are negligible,

conservation of momentum proceeds exactly as described in Rudge et al. (2011).

The separation flux between the melt and solid is given by the extended form of Darcy’s

law

φf (vf − vs) = −K
µ

(∇P − ρfg) , (2.11)

where K is the permeability, which is a function of φf , µ is the melt viscosity and g is the

acceleration due to gravity. The above equation neglects the effects of surface energy which,

while being beyond the scope of this paper, is important when modelling damage and shear

localization (Bercovici et al., 2001; Bercovici and Ricard, 2003; Parsons et al., 2008; Takei

and Holtzman, 2009; Evans et al., 2018).

By conservation of total stress, force balance in the solid is described by

∇P = ∇ · σ′s + ρ̄g, (2.12)

where P is the fluid pressure, and ρ̄ =
∑N

i ρiφi is the net density of the multiphase assem-

blage. σ′s is the effective stress in the solid in excess of the fluid pressure

σ′s = σs + PI. (2.13)

Here we use the convention that negative stresses are compressive.
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2.3.3 Conservation of energy

The temperature evolution equation is derived from the entropy balance (de Groot and

Mazur, 1984; Rudge et al., 2011)

N∑
i=1

[
ρiφi

Disi
Dt

+ siΓi

]
= −∇ · j + σ. (2.14)

Where si is the entropy per unit mass of phase i, j is the entropy flux from the heat and mass

fluxes, and σ is the internal entropy production (Tolman and Fine, 1948). Substituting in

the standard thermodynamic relations, we get the following temperature evolution equation

N∑
i=1

[
ρiφiCPi

DiT

Dt
− φiαiT

DiP

Dt
+ TsiΓi

]
= −∇·q+Q+Ψ+

N∑
i=1

Ki∑
k=1

µki
[
∇ · Jki − Γki

]
(2.15)

where Di

Dt = [ ∂
∂t

+ vi ·∇] is the Lagrangian derivative following phase i. CPi is the specific

isobaric heat capacity, and αi is the thermal expansivity of phase i. The more explicit form

for the latent heat of reaction used here can be compared to the latent heat to melting L

used in previous magma dynamics formulations (e.g. Hewitt and Fowler, 2008) according to

L = −
∑N

i=1 siΓi
Γlq

(2.16)

On the RHS of Eq. (2.15), q is the heat flux, Q is the internal heat production, and Ψ

represents the sources of heat from relative fluid flow and viscous dissipation. The final

terms give the dissipative heat sources from diffusion and disequilibrium reaction. Using the

definition of Γki we can rewrite the final dissipative term as

−
N∑
i=1

Ki∑
k=1

µki Γ
k
i =

N∑
i=1

Ki∑
k=1

J∑
j=1

νkijµ
k
iRj =

J∑
j=1

AjRj (2.17)
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where Aj is the chemical affinity of reaction j, which is a scalar measure of disequilibrium

and the thermodynamic driving force for reaction. This is defined as

Aj = −∆rG = −
N∑
i=1

Ki∑
k=1

νkijµ
k
i (P, T, c). (2.18)

∆rG is the Gibbs free energy of reaction, and µki is the chemical potential of endmember k

in phase i.

The entropy flux from Eq. (2.14) is then

j =
1

T

(
q −

N∑
i=1

K∑
k=1

µkiJ
k
i

)
(2.19)

and the internal entropy production is

σ =
1

T

(
Q+ Ψ− q ·∇T

T
−

N∑
i=1

Ki∑
k=1

Jki ·∇
(
µki
T

)
+

J∑
j=1

AjRj

)
(2.20)

The terms in σ relate to irreversible processes including radioactive decay, viscous dissipation,

chemical diffusion, and reaction. By the second law of thermodynamics, σ ≥ 0. For a system

in mechanical, thermal and chemical equilibrium, all the dissipative terms disappear such

that σ = 0. But in natural dynamic systems there is always a finite degree of irreversibility

(otherwise nothing would happen!).

While the second law puts a robust constraint on σ, if all of the terms in Eq.(2.20) can

couple, it only puts a weak constraint on the individual terms. In the case that the fluxes

(e.g. q,Jki , Rj) are assumed to be any linear combination of the forces (e.g. ∇T,∇
(
µki
T

)
, Aj),

given certain symmetry considerations, this leads to Onsager’s reciprocal relations (Onsager,

1931a,b). A stronger constraint is to assume that each term in Eq.(2.20) is independent and

positive, which in the linear case corresponds to a diagonal Onsager’s relationship implying
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that

q ∝ −∇T, Fourier’s law

Jki ∝ −∇
(
µki
T

)
, Fick’s law

Rj ∝ Aj, linear reaction rates

Q, positive heat production

Ψ, positive viscous dissipation

(2.21)

As the relationship between forces and fluxes is empirical, there is actually no obvious re-

quirement for linearity. For example, while Fourier’s law and Fick’s law are robust for a large

range of chemical potential and thermal gradients, studies of reaction kinetics have shown

that reaction rates are only linear for very small perturbations from equilibrium (Prigogine,

1967). Non-linear phenomenological relations lie outside the scope of classical irreversible

thermodynamics. However, a more general constraint to ensure positive entropy production

from the reaction term would be

sign(Rj) = sign(Aj) (2.22)

We discuss the form of the reaction rates Rj further in section 2.5.1.

The assumption of mutually independent sources of entropy ignores coupling between

terms in σ. Such coupling is known to arise, for example during Soret diffusion (Walker

and DeLong, 1982; Lesher and Walker, 1991), however it is unclear that there is sufficient

experimental constraints to write down general coupled terms. Given addition constraints,

this assumption could easily be relaxed.
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2.3.4 Closures

The full system of equations governing conservation of mass, momentum and energy can

now be written

∂

∂t
ρiφic

k
i + ∇ · ρiφicki vi = −∇ · Jki + Γki (i = 1, 2, ..., N ; k = 1, 2, ..., Ki − 1) (2.23)

∂

∂t
ρiφi + ∇ · ρiφivi = Γi (i = 1, 2, ..., N) (2.24)

φf (vf − vs) = −K
µ

(∇P − ρfg) (2.25)

∇P = ∇ · σ′s + ρ̄g (2.26)

N∑
i=1

[
ρiφiCPi

DiT

Dt
− φiαiT

DiP

Dt
+ TsiΓi

]
= −∇·q+Q+Ψ+

N∑
i=1

Ki∑
k=1

µki
[
∇ · Jki − Γki

]
(2.27)

To complete the description for deformation of the solid phase requires additional consti-

tutive equations to relate the effective stress to the solid deformation. For example, for an

isotropic compressible poro-viscous system consistent with viscous creep of mantle rocks at

high pressure and temperature:

σ′s =2ηε̇d + ζTr(ε̇)I

=η

(
∇vs +∇vTs −

2

3
∇ · vsI

)
+ ζ∇ · vsI

(2.28)

where η is the solid shear viscosity, ε̇d is the deviatoric strain rate, ζ is the solid bulk viscosity,

and Tr(ε̇) is the isotropic strain rate.

Alternative solid rheologies could be used. For example, two-phase flow equations have

been derived by past workers for a range of rheologies including poro-elastic (Biot, 1941;

Evans et al., 2018), viscoelastic (Connolly and Podladchikov, 1998; Omlin et al., 2018),

visco-elasto-plastic (Keller et al., 2013) and poro-elastic with phase-field cracking (Evans

et al., 2020).
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To close the momentum equations, constitutive relations must be specified for perme-

ability K, and the rheological coefficients which, in the case of a poroviscous system, are the

solid bulk and shear viscosity ζ, and η. These are emergent properties of the bulk two-phase

medium. As they depend on properties of the aggregate at the grain-scale, they are typically

the most uncertain part of the model. While they can be derived based on assumptions

about the interphase forces and surface energy terms (McKenzie, 1984; Scott and Stevenson,

1984; Bercovici et al., 2001), direct estimates have also been made experimentally (Hirth

and Kohlstedt, 1995a,b; Kohlstedt and Zimmerman, 1996; Miller et al., 2014), and using

homogenization techniques (Simpson et al., 2010a,b). Widely-used expressions for K, ζ, and

η are

K = K0φ
n
f , n ≈ 3 (2.29)

ζ = ζ0(1− φf )φmf , m ≈ −1 (2.30)

η = η0(1− φf ) (2.31)

WhereK0, ζ0, and η0 are constants that depend on the microscale geometry. Alternative rhe-

ological models for partially molten mantle rocks have been explored using micro-mechanical

models, by Takei and Holtzman (2009) and Rudge (2018); which infer a weaker porosity de-

pendence for ζ.

The final closures are those for the thermodynamic properties ρi, CPi, αi, si, and µki , and

the reactive mass transfer terms Γki and Γi.

2.4 Thermodynamics

Descriptions of the thermodynamic properties of phases are obtained from thermody-

namic databases. Widely used examples for igneous and metamorphic phase assemblages

include Berman (1988), Holland and Powell (1998), Holland and Powell (2011), Ghiorso

and Sack (1995), Stixrude and Lithgow-Bertelloni (2005), and Stixrude et al. (2011). These
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databases are calibrated from calorimetric, volumetric, and phase equilibrium experimen-

tal data and describe the properties of pure phase endmembers including standard state

enthalpies, entropies, volumes, heat capacities, and equations of state. Together these de-

scribe the Gibbs free energy of the pure phases which, when expressed as a function of

P and T , constitutes a fundamental thermodynamic relation from which all other ther-

modynamic properties can be derived by taking appropriate derivatives (see Appendix B).

Derivation of properties in this way guarantees thermodynamic self-consistency (Stixrude

and Lithgow-Bertelloni, 2005). While the underlying calibrations may be based on a differ-

ent thermodynamic potential such as the Helmholtz energy, they can be transformed to the

Gibbs energy by Legendre transformation. Mineral endmembers are determined by the min-

eral stoichiometry and therefore have mineral-like compositions such as forsterite Mg2SiO4.

There is greater ambiguity in the choice of melt endmembers as silicate melts do not have

long-range order and so are not bound by the same stoichiometric constraints as minerals.

For convenience mineral-like endmembers have been used in existing models of natural sil-

icate melts used (Ghiorso and Sack, 1995; Holland and Powell, 1998; Green et al., 2012).

Species in aqueous or mixed fluids typically include both ionic and neutral molecular species

(e.g. Helgeson, 1970).

Thermodynamic phase models are assembled from the models of the constituent end-

members. In addition to the weighted contributions of the Gibbs free energies of the pure

endmembers, there are further contributions to the Gibbs free energy of the solution phase

from ideal mixing and the excess energy of mixing. These terms are described in solution

models which are fit from phase equilibrium experiments and vary in complexity from purely

ideal mixing (e.g. Ghiorso and Sack, 1995) to complex non-ideal mixing with internal order-

ing on sites (e.g. Sack and Ghiorso, 1994). Calculating the solubility of components in fluids

also requires models of aqueous speciation.

Currently, thermodynamic databases are accessible through various software packages,

many of which are geared towards the calculation of equilibrium phase assemblages (Ghiorso,
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1985; Powell et al., 1998; Connolly, 2005; De Capitani and Petrakakis, 2010). These software

packages are not designed to be interoperable with dynamics codes, and the underlying ther-

modynamic databases are not easily customized for particular model problems. Application

of the framework described here leverages a new software infrastructure for thermodynamic

modelling as part of the ENKI project which is described further in section 2.6. The ENKI

software (enki-portal.org) uses a flexible hierarchical structure to describe the thermody-

namic models which separately describes pure endmembers and phases. The phases may

contain any number of endmembers and therefore may be pure phases or solution phases,

but all share the same interface. Mineral phases such as pyroxenes, and aqueous solutions in-

volve mixing between non-linearly independent species. If these phases are in homogeneous

equilibrium, speciation can be calculated within the phase description using an internal

solver. The endmembers used in the reactive model would then be the subset of linearly

independent endmembers that describe the phase composition. However if homogeneous

equilibrium is not assumed, internal speciation reactions can be included in the overall re-

active scheme, in which case the endmembers used in the reactive model would be the full

set of non-independent species. We discuss this further in section 2.5.8.

In this formulation the same thermodynamic models are used to characterize both the

thermodynamic phase properties (including ρi, CPi, αi, and si) and the relative stability

of phases in the reactive system through the reaction affinities (see section 2.5.1). The

major advantages of this approach are that: (1) it consistently couples the dynamics and

the petrology of the system; (2) it is internally thermodynamically consistent; and (3) it is

consistent with equilibrium calculations in the limit of fast reaction rates. Previous models

have tended to use fixed values for the densities, latent heats, and other thermodynamic

properties. Using values directly from the thermodynamic models allows us to test these

assumptions. In many cases properties such as CPi and αi are likely to vary only slightly

over the course of a reaction path. However, others including ρi and si may vary more

substantially and feedback into the dynamics.
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2.5 Reactive system

The multiphase assemblage reacts via a set of J irreversible reactions. As an example let

us consider partial melting in the CMSH system. At high temperature, the system comprises

a four component silicate melt Lq comprising endmembers forsterite (fo(Lq), Mg2SiO4),

silica (q(Lq), SiO2), diopside (di(Lq), CaMgSi2O6), and water (w(Lq), H2O); pure forsterite

olivine Ol (fo(Ol), Mg2SiO4); a binary orthopyroxene solid solution comprising endmembers

enstatite (en(Opx), Mg2Si2O6) and diopside (di(Opx), CaMgSi2O6); a binary clinopyroxene

solid solution, also comprising endmembers enstatite (en(Opx), Mg2Si2O6) and diopside

(di(Opx), CaMgSi2O6); and pure water W (w(W), H2O). In this system we can write down

the following reactions

R1 : fo(Ol)⇀↽ fo(Lq) (2.32)

R2 : en(Opx)⇀↽ fo(Lq) + q(Lq) (2.33)

R3 : di(Opx)⇀↽ di(Lq) (2.34)

R4 : en(Cpx)⇀↽ fo(Lq) + q(Lq) (2.35)

R5 : di(Opx)⇀↽ di(Lq) (2.36)

R6 : w(W)⇀↽ w(Lq) (2.37)

Where the ⇀↽ symbol is used to indicate that, although irreversible, reactions can proceed

in either direction depending on their chemical affinities. The stoichiometric coefficients of
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these reactions can be assembled into Ktot × J molar stoichiometric matrix ν̃

ν̃ =





0

−1

0

0





0

−1

−1

0





−1

0

0

0





0

−1

−1

0





−1

0

0

0





0

0

0

−1


(

1

) (
0

) (
0

) (
0

) (
0

) (
0

)
0

0


1

0


0

1


0

0


0

0


0

0

0

0


0

0


0

0


1

0


0

1


0

0

(
0

) (
0

) (
0

) (
0

) (
0

) (
1

)



(2.38)

Which can be transformed to it mass-based equivalent according to Eq. (2.4). The columns

of ν̃ correspond to the reactions above, and the internal parentheses are used to separate

phases such that νki,j refers to endmember k in phase i. Each reaction is assumed to proceed

at an independent rate Rj such that the reactive mass transfers for endmembers and phases

can be given in closed form as

Γki =
J∑
j=1

νkijRj, Γi =

Ki∑
k=1

J∑
j=1

νkijRj (2.39)

As written here there are two components of the reactive closures: the first is the set of

reactions and their stoichiometry, as given above; and the second is closed-form expressions

for the macroscopic reaction rates Rj.
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2.5.1 Rate laws

From consideration of transition state theory (Aagaard and Helgeson, 1982; Lasaga, 1981)

a general rate law for reaction at mineral surfaces can be written

Rj = rjSj (Φj)

(
1− exp

(
−M0

Mj

Aj
RT

))
(2.40)

Where rj is the effective rate constant (units: kg m−2 s−1); Sj is the available reactive surface

area (units: m2 m−3) which is a function of Φj, the phases involved in reaction j; Aj is the

chemical affinity of the reaction; R is the gas constant; Mj is the mass of reactants; and M0

is a reference mass used to normalize the affinity term. Close to equilibrium when affinities

are small (Aj << RT ) this expression can be linearized to give

Rj = rjSj(Φj)
M0

Mj

Aj
RT

(2.41)

Far from equilibrium on the other hand, the affinity term becomes negligible and the rate is

simply controlled by the reactive surface area

Rj = rjSj(Φj) (2.42)

However, during igneous and metamorphic reaction at high temperature we can reasonably

assume that we are in the linear low affinity regime. This has been confirmed experimen-

tally for melting and crystallization reactions in in silicic magmatic systems (Edwards and

Russell, 1996). Linear reaction rates also fit within the framework of classical irreversible

thermodynamics (Prigogine, 1967). Despite this, although linear rate laws can be justified

from transition state theory, for complex reactions this requires a number of assumptions

(Lasaga, 1986). Non-linear dependencies on Aj for other heterogeneous reaction mechanisms,

such as Burton–Cabrera–Frank growth and diffusion-controlled growth, are both predicted

theoretically and have been demonstrated experimentally (Lasaga, 1998). Linear rates are
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therefore far from universal. To account for this and to allow for different rates for the

forward and reverse reactions we can write the more general thermodynamic rate law as a

piece-wise function

Rj =

 r+
j S

+
j (Φ+

rj)f
+(Aj), Aj ≥ 0

r−j S
−
j (Φ−rj)f

−(Aj), Aj < 0
(2.43)

where the ‘+’ superscript refers to the forward reaction and ‘-’ refers to the reverse reaction.

f(Aj) is now the thermodynamic driving function which may or may not be linear.

The functional forms of rj, Sj and f(Aj) depend on the details of the reaction kinetics and

on the rock microstructure. As the kinetics vary significantly depending on factors including

proximity to equilibrium, temperature, phase proportion, and local environmental effects, it

is not possible to write down one reaction rate law that is globally applicable. Our software

allows users to freely specify the functional form of the reaction kinetics symbolically and

then auto-generate C++ and python bindings for incorporation into reactive flow codes (see

Section 2.6). Close to equilibrium, i.e. for systems in which reaction is fast relative to other

processes, the details of the kinetics become less important. However, on a phenomenological

level, there are some general requirements that must be considered to ensure positivity of

phase mass, and consistency with the second law.

Thermodynamic driving function f(Aj) relates the reaction rate to the thermody-

namic stabilities of the reactants and products. As such, it controls the direction that the

reaction proceeds: if Aj > 0 then it follows that (f(Aj), Rj) > 0, and if Aj < 0 then

(f(Aj), Rj) < 0. Similar to the 2nd law constraint described in section 2.3.3, this give us

the condition

sign(f(Aj)) = sign(Aj) (2.44)

In equilibrium Aj = 0 and reaction ceases: we must therefore also have the condition

f(Aj)→ 0 as Aj → 0. (2.45)

40



As the affinities always point in the direction of equilibrium, if f(Aj) is proportional to Aj

in some way, the system will react so as to minimize the chemical potential energy. Given

an appropriate set of reactions, in a closed system the assemblage is guaranteed to converge

to equilibrium. The major advantage of using such a closed-form thermodynamic rate law

is that it avoids the need to solve for the equilibrium state of the system directly by free

energy minimization. Although we have assumed that reaction rates are independent, in

that they are only dependent on their respective chemical affinities, in systems comprising

solution phases the reactions will still be strongly coupled through the phase compositions.

For example in the system above addition of water to the melt would act to destabilize

olivine, orthopyroxene, and clinopyroxene relative to the melt, thus driving further melting

via the other reactions.

Rate constant rj is the scale factor that controls the overall reaction rate. Generally

rj can be described by an Arrhenius form

rj = r0jexp
(
Ea
RT

)
(2.46)

where r0j is the rate constant prefactor, and Ea is the activation energy which may be

pressure- and temperature-dependent (Lasaga, 1998). The rate constant may also be influ-

enced by a number of local environmental factors. This includes species that have a catalytic

or prohibitory affect on the reaction, or the availability of surfaces for heterogeneous nucle-

ation.

Reactive surface area Sj is required to describe the surface area available for heteroge-

neous reactions. In the case of homogeneous reactions, reaction does not occur across a phase

interface and Sj = 1. For heterogeneous reactions Sj is a function of the volume fractions

of the reactant phase or phases, which we denote here as Φrj. What counts as a reactant

depends on the direction the reaction is proceeding: for the forward reaction (Aj > 0) the

phases on the LHS are the reactants; for the reverse reaction (Aj < 0) the reactants are the
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phases on the RHS. The functional form of Sj depends on the rock microstructure and on

the pore geometry. However, to maintain positivity of phase fractions, Sj must tend to 0

when any reactant phase disappears from the assemblage:

Sj → 0 as Φj → 0 (2.47)

Given this, Sj will act to switch off reaction when any reactant phases are exhausted, allow-

ing phases to appear and disappear from the mineral assemblage. Considering the CMSH

system above as an example, the reactive surface areas for the melting reactions 1-5 could

be approximated as linear functions of the phase fractions. The reverse reactions depend on

the availabilty of the melt. In partially molten rocks, melt is distributed in tubes along grain

boundaries (e.g. Yoshino et al., 2005) implying a reactive surface area that has a square root

dependence on melt porosity. As both of these constraints satisfy (2.47), the reactive surface

areas may be written

S+
1−5 = S0θΦj S−1−5 = S0

√
φlq (2.48)

Where S0 is the total mineral surface area, which depends on grain size, and θ is a geometrical

constant, which depends on the wetting angle (von Bargen and Waff, 1986).

2.5.2 Choice of reactions

Equally important as the rate law is the choice of reactions themselves. In natural geo-

logical phase assemblages, reaction takes place via a complex network of reactions occurring

in series and parallel at the grain scale (Zhang, 2008). The reaction mechanisms of geochem-

ical reactions, particularly those at high temperature involving solid solutions, are poorly

understood. Here, we are only interested in capturing the average macroscopic evolution

of the phase assemblage and are therefore describing reaction on a phenomenological level.

Thus, the goal is to find a minimal, or near-minimal, set of reactions that is able to define

the equilibrium state of the system, while also providing a tractable approximation of the
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natural kinetic pathways in the system. The latter is particularly important when the system

is reacting far from equilibrium.

2.5.3 Linearly independent reactions

In any reactive system there is a set of J = Ktot − C linearly independent reactions

that represent the minimum number of reactions required to describe the phase assemblage

evolution. A suitable linearly independent set can be derived by considering the endmember

space of the reactive system. The mathematical formulation for reactive systems has been

written down by a number of authors including Smith (1982), Steefel and MacQuarrie (1996),

and Lichtner (1985), the latter two of whom focus on aqueous reactions. While descriptions

differ in terminology, the underlying linear algebra is the same.

For partial melting in the CMSH system the reactions (2.32)-(2.37) constitute a linearly

independent set. This can be recognized by writing out the full endmember space in terms

of the system components. The table below shows the phase endemember compositions as

a function of their constituent oxides

Phases Lq Ol Opx Cpx W

Endmembers di fo q w fo en di en di w

CaO 1 0 0 0 0 0 1 0 1 0

MgO 1 2 0 0 2 2 1 2 1 0

SiO2 2 1 1 0 1 2 2 2 2 0

H2O 0 0 0 1 0 0 0 0 0 1

Where we have grouped together endmembers belonging to each phase. This compositional
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table can equivalently be compiled into a C ×Ktot formula matrix F

F =



1 0 0 0 0 0 1 0 1 0

1 2 0 0 2 2 1 2 1 0

2 1 1 0 1 2 2 2 2 0

0 0 0 1 0 0 0 0 0 1


(2.49)

A set of independent reactions can be constructed from the null space of F — as such these

reactions sometimes referred to as a set of ‘null-space reactions’. In simple systems such a set

can often be determined by inspection, but a more general approach to constructing linearly

independent reactions is detailed in Appendix D. Writing out the stoichiometric coefficients

of the reactions above again, but this time removing the inner parentheses

ν̃ =



0 0 −1 0 −1 0

−1 −1 0 −1 0 0

0 −1 0 −1 0 0

0 0 0 0 0 −1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(2.50)

we see that each column ν̃j represents a balanced reaction that satisfies

F ν̃j = 0 (2.51)

In most systems the set of independent reactions is non-unique. Reactions (2.32)-(2.37) are
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written in what is sometimes referred to as ‘canonical form’ (Smith, 1982). This is where

the phase endmembers are partitioned into secondary species sj, which appear in only one

reaction, and basis species bκ, which appear in multiple reactions and whose compositions

span the column space of F . We use the convention whereby basis species fill the top rows of

the stoichiometric matrix, and the secondary species fill the remaining rows. Such reactions

then have the general form

sj =
C∑
κ=1

νκ,jbκ (2.52)

Note that as we are considering the full set of endmembers within the system as a whole, we

have used a different set of endmember indices. The endmember (row) indices here can be

transformed into those used for referring to endmembers k in phases i above according to

κ =
i−1∑
i=1

Ki + k (2.53)

Even when written in form (2.52) the reactions are non-unique as there there are multiple

possible choices for the set of basis species. For instance, in the example above an alternative

set of reactions could be written in terms of olivine and orthopyroxene endmembers and

aqueous water: fo(Ol), en(Opx), di(Opx), w(W). The choice of reactions partly rests on

which set best approximates the kinetics of natural systems, but considerations must also

be made to guarantee convergence to equilibrium.

2.5.4 Equilibrium and kinetic considerations

In a heterogeneous system the choice of basis species comes down to which phases repre-

sent appropriate reaction-mediating phases. There are three important considerations:

1. To be thermodynamically consistent, reactions must be chosen such that the reactive

system converges to the global equilibrium under closed-system conditions. If all the

reacting phases, and thus all phase endmembers, are known a priori to be saturated

in the equilibrium assemblage, convergence is guaranteed for any independent set of
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reactions. As all the reactants and products are stable, the equilibrium condition is

then simply defined by the fixed point

A = 0 (2.54)

Where A is a vector of the reaction affinities. However, the more general case is that

the set of reacting phases represents a super-set of phases including both those that

are saturated and those that are undersaturated at equilibrium. To comply with mass

conservation constraints, reactions are turned off when reactant phase fractions tend to

zero. If all the mediating phases are reacted out of the system, then no further reaction

can occur. To guarantee the system converges to the global equilibrium, reactions must

be universally applicable and must therefore be mediated by phases that are known,

a priori, to be saturated. As these phases are stable throughout the course of the

reaction path we therefore refer to them as omnipresent phases. The saturation states

of the other reacting phases are then effectively tested against these mediating phases

through the reaction affinities. The general equilibrium condition is then

 Aj = 0 for sj in saturated phases

Aj > 0 for sj in undersaturated phases
(2.55)

2. Mediating phases must also comprise endmembers that constitute a compositional

basis set. Unless there are two mediating phases this is generally restricted to omni-

component phases such as silicate melts and aqueous fluids. These represent excellent

choices for mediating phases as they not only comprise a basis set of species, but they

are also not bound by the same stoichiometric constraints of mineral phases. If all the

reactions occur via the omnicomponent phase all the chemical affinities and therefore

reaction rates become coupled through its chemical potentials (Ghiorso, 2013). Many

saturation state algorithms used to compute equilibrium phase relations in multicom-
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ponent systems rely on such omnicomponent phases (e.g. Ghiorso, 1985; Asimow and

Ghiorso, 1998). In subsolidus phase assemblages, which lack both a melt and a fluid,

or in which the fluid is assumed to be pure water, an omnicomponent grain boundary

phase can be constructed. We discuss the context for melt-, fluid-, and grain boundary

mediated reactions below.

3. Finally, for an equilibrium problem, as long as the preceding conditions discussed are

met, the choice of reactions does not affect the reaction path. This is also true of

systems operating very close to equilibrium. Disequilibrium systems, however, are

path-dependent, and the choice of reactions significantly impacts the macroscopic re-

action pathway, thereby controlling the time-dependent behaviour of the system. The

chosen set of basis species should therefore reasonably approximate the reactive inter-

mediates in order to match the macroscopic kinetics of the system at the scale being

considered.

2.5.5 Melt-mediated reactions

In partially molten systems a set of melt-mediated reactions can be written as given

above for the CMSH system in 2.32-2.37.

sj =
C∑
k=1

νj,k[melt endmember]k (2.56)

Where sj are mineral endmembers or components of a fluid phase if present. In addition

to guaranteeing convergence to equilibrium in partially molten and near-solidus systems,

melt-mediated reactions also serve as a reasonable approximation of the grain-scale kinetics.

In partially molten systems the melt is generally the wetting phase (Holness, 2006), meaning

that it provides a physical pathway connecting all the mineral surfaces. Furthermore, due to

the high diffusivity of melt compared to solid minerals (Zhang, 2008) melt channels and films

serve as a fast kinetic pathway for components to be transported to different reactive surfaces.

47



Theoretical, numerical and experimental studies looking at grainscale kinetic mechanisms

have demonstrated the role of dissolution-reprecipitation during mantle melting (Liang, 2003;

Lo Cascio et al., 2004; Morgan and Liang, 2003).

2.5.6 Fluid-mediated reactions

Aqueous or mixed volatile fluids (H2O-CO2-H2S) occur in a huge range of geological

environments, from the critical zone to the upper mantle. Transport in the fluid is orders

of magnitude faster than through solid minerals, meaning that where fluids are present they

serve to transport various species between reactive mineral surfaces (Putnis, 2002). In some

cases, such as during metasomatism or hydrothermal alteration, the fluid transport itself is

the main driver of disequilibrium. In others, the fluid serves to catalyse reactions within an

already metastable mineral assemblage. The solubility of mineral components within fluids

is strongly dependent on the thermodynamic conditions. This is also true of the speciation of

components within the fluid. However, in general, it is possible to write a set of mineral-fluid

reactions of the form

sj =
C∑
k=1

νj,k[fluid species]k (2.57)

Originating with the seminal work of Helgeson (Helgeson, 1968; Helgeson et al., 1969) there

is a vast literature on mineral-fluid interactions. This includes a substantial body of work

integrating aqueous reactions into porous transport models (e.g. Lichtner, 1985; Steefel and

Lasaga, 1994). We therefore will not seek to review this here. Aqueous reactive transport

modeling has been applied across a huge range of geological environments including ground-

water and contaminant transport, hydrothermal processes, weathering, and metamorphic

reaction. Substantially less work however has focused on the impact of reactive fluid trans-

port at high pressure and temperature. In these settings coupling between the solid and fluid

flow by compaction means that the mechanical models required to model fluid transport be-

come more complex. There is also the potential for significant coupling between fluid-rock

reaction and the transport dynamics.
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2.5.7 Grain boundary-mediated reactions

In systems that lack both a melt or a fluid, there is no obvious omnicomponent phase.

While reactions mediated by a set of mineral phases could be written, loss of any one of

these mediating phases, across a univariant reaction for example, would render the reaction

set inadequate. More importantly, beyond very simple systems in which there are just

one or two reactions, such a set is unlikely to accurately represent heterogeneous reaction

mechanisms. Reaction via grain-boundaries provides a more realistic description (Fisher,

1973; Joesten, 1977). Diffusion along grain boundaries is several orders of magnitude faster

than within minerals (Dohmen and Milke, 2010). Grain boundaries thus provide a short-

circuit pathway for transport of components between mineral surfaces. Solid state diffusion,

even in the presence of grain boundaries is still several orders of magnitude slower than fluid

transport, and therefore we can expect grain boundary-mediated reactions rates to be much

slower than fluid-mediated reaction. However there is a suggestion that at high pressures

and temperatures, reaction may preferentially occur via an amorphous grain boundary phase

due to the limited solubility in aqueous fluids (Konrad-Schmolke et al., 2018).

A solution to subsolidus anhydrous reaction mechanisms is therfore to introduce a hypo-

thetical omnicomponent grain boundary phase. We say hypothetical as grain boundaries do

not represent a macroscopic phase in the thermodynamic sense. While they can be identified

as transitional regions between adjacent crystals from which thermodynamic properties can

be defined (Takei, 2019), the nature of grain boundaries varies depending on the orientation

and types of adjacent phases. As a result there is no thermodynamic model for a macroscopic

grain boundary phase across the entire heterogeneous assemblage.

In general grain boundary reactions may be written

sj =
C∑
k=1

νj,k[grain boundary endmember]k (2.58)

In the absence of thermodynamic constraints we are free to select any viable set of com-
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positional endmembers within the grain boundary. Rather than defining a thermodynamic

model a priori, we use mass balance constraints to solve for the grain boundary chemical

potentials.

We illustrate this description of grain boundary mediated reactions by considering the

dehydration of amphibole in the CMSH system. While this reaction involves a fluid phase, in

many applications this may be approximated as pure water. In such a case a grain boundary

phase can effectively serve as a substitute for the aqueous solution. The role of the fluid in

catalyzing the metamorphic reactions can be accounted for through catalytic terms in the

rate constant. If we assume the grain boundary comprises mineral-like endmembers the set

of grain boundary-mediated reactions describing dehydration of tremolite is

R1 : fo(Ol)⇀↽ fo(GB) (2.59)

R2 : en(Opx)⇀↽ fo(GB) + q(GB) (2.60)

R3 : di(Opx)⇀↽ di(GB) (2.61)

R4 : en(Cpx)⇀↽ fo(GB) + q(GB) (2.62)

R5 : di(Opx)⇀↽ di(GB) (2.63)

R6 : w(W)⇀↽ w(GB) (2.64)

R7 : 2tr(Act)⇀↽ 4di(GB) + 3fo(GB) + 5q(GB) + 2w(GB) (2.65)

Where tr(Act) is pure tremolite. Assuming that the hypothetical grain boundary phase

always occupies a negligible volume fraction φgb = εgb which cannot grow or shrink, and that

it has fixed composition, we can then calculate the reaction affinities using a further set of

C mass balance constraints of the form:

ΓkGB = 0 (2.66)
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For the grain boundary phase above we have four constraints

ΓfoGB = R1 +R2 +R4 + 3R7 = 0 (2.67)

ΓqGB = R2 +R4 + 5R7 = 0 (2.68)

ΓdiGB = R3 +R5 + 4R7 = 0 (2.69)

ΓwGB = R6 + 2R7 = 0 (2.70)

which can be solved for µkGB by unrolling the chemical affinities in the reaction rate expres-

sions. The result of this system of equations is that the chemical potentials of the grain

boundary are always intermediate between those of the reacting phases. As it occupies a

vanishing volume fraction it does not need to be considered in the conservation equations for

the dynamics. Just as melt- and fluid-mediated reactions bear comparison to saturation state

algorithms, this grain boundary-mediated approach can be considered as a time-dependent

version of the algorithmic extension to MELTS (Asimow and Ghiorso, 1998).

2.5.8 Dependent reactions

While a set of J independent reactions is the minimum number required to describe the

macroscopic phase assemblage evolution, there is no strict requirement that the reactions

need to be limited to a linearly independent set. Indeed there may be reactive systems in

which it is prudent to include some additional non-independent reactions such that J > J .

There are two particularly important scenarios where this is the case. The first is in solution

phases in which the species are not in homogeneous equilibrium. This would rarely be

expected in high temperature systems, but does occur in low-temperature aqueous fluids,

particularly for redox reactions. The second is for polymorphic phase transitions such as the

olivine-group phase transitions. As both of these represent homogeneous reactions which

occur within a given phase, writing them as heterogeneous melt- or fluid- or grain boundary-
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Figure 2.1: Schematic figure illustrating the components of the coupled model. The grey
shaded boxes show the inputs of each model component, and the boxes below give examples
of useful outputs. The arrows illustrate how variables are passed from one model component
to another.

mediated reactions would result in unrealistic reaction paths. Both of these are also restricted

to phases which comprise non-independent endmembers (typically referred to in this context

as species).

Dependent reactions become more important in systems far from equilibrium as reaction

pathways in such systems are strongly dependent on the reaction mechanism. In cases

where detailed kinetic information is available, it may be appropriate to model reaction

as a complex multistep process, for example in the case of mineral hydrolysis (Murphy and

Helgeson, 1987). However, at high temperature, systems tend to operate close to equilibrium

and detailed kinetic information is rarely available. It is therefore reasonable to assume an

independent reaction set.

2.6 Supporting software

The conservation equations and reactive framework we have described here are very

general and could be used to address a range of model problems. To explore the behavior

of different systems, we therefore need a supporting software framework that also allows

flexibility both in the choice of the reactive system and the phenomenological relations,

including the constitutive relations for deformation, fluid flow, and reaction.
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A major obstacle in the development of coupled thermochemical-dynamic models has

been the lack of interoperability between existing computational thermodynamics software

and dynamics codes. Thermodynamics software packages often lack the appropriate bind-

ings, and do not provide the high-level derivatives of thermodynamic properties required for

efficient numerical solution to dynamics problems. Most significantly however, is the lack

of a standard interface for the widely-used thermodynamic databases, which means that

switching to using a different database is a laborious process. Furthermore, the databases

themselves are defined for specific composition and phase spaces, and are not readily cus-

tomizable for a particular assemblage or reduced model system, as is often desirable when

coupling to dynamics.

The ENKI project (enki-portal.org) is an open-source web-based software project that ad-

dresses these issues through the development of tools for thermodynamic model description,

development, and calibration. It provides a standard interface to interact with thermody-

namic models of minerals, melts, and fluids, and supports a range of workflows, including

calibration of new thermodynamic databases, generalized equilibrium calculations, disequi-

librium reaction path modelling, and integration into geodynamics models.

To implement the theory described here, we utilize the two primary software packages in

the ENKI project, ThermoEngine and ThermoCodegen. Both rely on a common set of pack-

ages (coder.py) for automatic generation of fast C code for custom thermodynamic databases

from symbolic descriptions of thermodynamic models using SymPy. ThermoCodegen pro-

vides a software framework for description, storage and retrieval of the thermodynamic

potential models of endmembers and phases using hierarchical xml (SPuD) files. The Coder

module in ThermoEngine is a SymPy-based code-generation tool that uses symbolic differ-

entiation to derive all other thermodynamic variables of the phases, and their derivatives,

from the underlying potential model. Given a set of xml description files we can automat-

ically generate fast compiled (C and C++) libraries that implement the thermodynamic

models. Once a thermodynamic database of endmembers and phases has been created, a
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custom reactions library describing the reactive system, the reaction stoichiometries, and

the rate laws for irreversible reaction is built using ThermoCodegen, also using automatic

code-generation. The hierarchical nature of the software components is illustrated in Figure

2.1. The reactions library is the principal means of interacting with the reactive system,

and returns all the thermochemical variables of interest (ρi, µki , Aj Γki , Γi, CPi, αi, si, βi),

and their derivatives with respect to P , T , and C (and φi for Γki /Γi) out to third order. All

libraries are wrapped in python so that the system may be explored in a python environment

or by directly interfacing with the underlying libraries. A major advantage of this software

is that it allows the user to easily manage the complexity of the models so that they are

customized for the particular system of interest, and produces reproducible and transpar-

ent code. Description of the ENKI software and example workflows for generating custom

thermodynamic and reactive models will be the subject of future contributions.

Importantly, the thermodynamics and kinetics libraries have been designed to be inter-

operable with existing dynamics codes. Here we use the TerraFERMA software package

(Wilson et al., 2017, terraferma.github.io) to model the dynamics. TerraFERMA leverages

several advanced computational libraries (FEniCS and PETSc) along with a hierarchical

options management system, SpuD, to facilitate development of reproducible and transpar-

ent Finite Element Models. Phase diagrams and simple reaction paths are calculated in

well-documented Jupyter notebooks using the python interface.

2.7 Conclusions and future directions

The aim of this work was to lay out a basic framework that integrates the description

of multiphase multicomponent thermodynamics, and geodynamics. We have done this by

extending the description of two-phase flow to include a multiphase solid, and formulat-

ing reactive closures based on a set of stoichiometric reactions. We assume that reactions

proceed irreversibly according to thermodynamic rate laws in which the reaction rates are

proportional to the chemical affinities. In high temperature systems this has the primary

54



benefit of avoiding computationally expensive free-energy minimization. It also provides a

more natural description of reaction as a time-dependent irreversible process. As the prox-

imity to equilibrium depends on the rate of reaction relative to other fluxes, we can model

both equilibrium and disequilibrium scenarios, removing the need to assume equilibrium a

priori.

There are several major classes of problems that can be addressed. The first is the

coupling of reaction with melt transport in the mantle. The framework incorporates explicit

mineral-melt reactions thus opening up the ability to include peritectic and eutectic-style

melting reactions into magma dynamics calculations. Such reactions more closely describe

the actual melting reaction and allows us to self-consistently model both the melt chemistry

and the mineralogy of the residual solid matrix. Application to the formation of high-

porosity dunite channels by reactive melting of ascending melts is a primary target. Other

open questions in magma dynamics where reactive feedbacks play a role include the fate

of deep silica-rich melts of enriched pyroxenitic heterogeneities, the transition from viscous

porous flow to brittle fracture at the base of the thermal boundary layer, flux melting and

melt focusing in subduction zones, and the transport of subduction zone fluids across the

slab-matle transition. Some of these processes require more complex solid rheologies which

are readily included in the equations laid out here.

More generally, when coupled with conservation of energy, the reactive framework ex-

tends the reach of computational thermodynamics to irreversible reaction. In the absence

of detailed kinetic information, application of irreversible thermodynamics to macroscopic

heterogeneous reaction is limited to systems relatively close to equilibrium. However, even

small degrees of overstepping may still have important geochemical and dynamic conse-

quences. An example is metastability in subducting slabs which is predicted for both the

breakdown of hydrous phases, as well as deep phase transitions involving olivine (Iidaka and

Suetsugu, 1992; Mosenfelder et al., 2001) and pyroxene (Hogrefe et al., 1994). These have

consequences for the depth range of fluid delivery to the overlying mantle wedge, and the
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seismogenic and dynamic behaviour of the subducting slab in the upper mantle (Kirby et al.,

1996; Tetzlaff and Schmeling, 2000) respectively. Disequilibrium processes are also pervasive

in crustal magmatic systems. In particular, disequilibrium crystallization (La Spina et al.,

2016; Arzilli et al., 2019) and volatile exsolution (Mangan and Sisson, 2000) during eruption

have also been proposed as a driver of explosive fragmentation. The thermo-kinetic frame-

work presented here would have the benefit over previous attempts to model overstepping in

volcanic systems (e.g. Proussevitch and Sahagian, 2005), as it self-consistently couples the

relative stability of different phases, the bulk density, and the latent heat of reaction.

Development of the theory and supporting software have been guided by the principles

of tractability, self-consistency, flexibility, reproducibilty and extensibility. Any macroscale

description is inherently approximate as averaging over processes at a local scale unavoidably

results in a loss of information. The goal of coupled thermodynamic-geodynamic models is

to understand reaction and the transfer of heat and mass at a large scale. The complexity of

these processes requires us to use approaches that have a tractable level of complexity while

still capturing key processes at the system scale. The approach described here is based on

mixture theory, which describes variables as continuum fields and averages processes locally.

Macroscopic behaviour of the system can still be captured, as evidenced by the success of

continuum models in developing our understanding of magma dynamics and other porous

media reactive transport problems. However, a continuum description for heterogeneous

reaction kinetics is particularly challenging as, in contrast to geodynamic processes, chemical

disequilibrium operates at the grain scale, in the form of crystal chemical zonation and fine-

scale variations in modal abundance. As for other phenomenological processes, effective

bridging between scales requires upscaling and averaging methods to inform the appropriate

set of reactions and the kinetic rate laws for a given problem. Although such upscaling

analysis has done for low temperature aqueous environments (e.g. Li et al., 2006), it is yet

to be explored in mantle systems.
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Chapter 3

A Simple Analogue Model for Mantle Melting: The Mg2SiO4–SiO2

Binary System

3.1 Introduction

The melting relations and thermodynamic properties of mantle phases are fundamental

to our understanding of planetary differentiation. The melt composition and solidus temper-

ature during deep partial melting determines the dynamics of core formation (Siebert et al.,

2013; Hirose et al., 2017) and crystallization of the early magma ocean (Labrosse et al., 2007;

Monteux et al., 2016). In the modern Earth the systematics of partial melting control the

location and extent of partial melting in the upper mantle, and may also account for the

presence of melt within ultra-low velocity zones at the core-mantle boundary (Williams and

Garnero, 1996; Lay et al., 2004). Much of our understanding of melting systematics has

evolved from the study of simple systems comprising a reduced set of thermodynamic com-

ponents. Inclusion of simple thermodynamic systems into coupled dynamic models therefore

presents a tractable first step for understanding thermo-chemical coupling during melt and

fluid transport.

MgO and SiO2 are the most abundant oxides in the mantle making the Mg2SiO4–SiO2 an

important bounding binary in the chemical evolution of Earth’s interior. It was one of the

first systems to be systematically studied in the early days of geochemical thermodynamics

(Bowen and Anderson, 1914), and since then has formed a basis for our understanding

of silicic magmatic systems. Early experimental studies on liquidus relations showed that

enstatite melts incongruently at atmospheric pressure (Bowen and Anderson, 1914; Chen
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and Presnall, 1975). The presence of eutectic melting between enstatite and quartz and

low pressure liquid immiscibility in high silica melts was also revealed (Ol’shanskii, 1951;

Hageman and Oonk, 1986). Subsequent studies demonstrated a systematic shift in the

composition of the cotectic between forsterite and enstatite to lower melt silica contents with

increasing pressure (Taylor, 1973; Chen and Presnall, 1975; Kato and Kumazawa, 1985; Liu

and Presnall, 1990; Herzberg and Zhang, 1998; Presnall et al., 1998), causing a transition

from peritectic (en → fo + lq) to eutectic (fo + en → lq) melting of enstatite around 0.5

GPa (Hudon et al., 2005). The shift in eutectic melt composition to lower silica has a

fundamental influence on the melting systematics of basaltic mantle melts (Walter, 1998).

During open system melting the gradient in equilibrium silica content drives open-system

reaction between the ascending melt and the surrounding residue

en + lq1 → fo + lq2 (3.1)

which is accompanied by an increase in porosity (Kelemen, 1990). Near-fractional partial

melting requires transport of melt in chemically isolated channels (Spiegelman and Kenyon,

1992). It has been suggested that open-system incongruent melting itself is responsible for

initiating a reactive channeling instability (Aharonov et al., 1995, 1997; Spiegelman et al.,

2001). The Mg2SiO4–SiO2 binary therefore provides a rich analog model for exploring reac-

tive transport and related phenomena using our new multiphase reactive formulation. The

presence of both forsterite-enstatite and enstatite-quartz melting eutectics also allows us

study the interactions between melts of different lithologies. While natural systems permit

more direct model-observation intercomparison, inclusion of the Mg2SiO4–SiO2 sub-system

provides a means to tractably explore complex couplings between eutectic and peritectic

style melting and transport dynamics.

Description of polybaric partial melting requires a model of the Gibbs free energy of

the melt as a function of pressure, temperature and composition. The thermodynamic pro-
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gram MELTS is widely used for modelling silicic magmatic systems (Ghiorso and Sack,

1995). However, the underlying thermodynamic model for the silicate melt is calibrated

from experiments in natural systems for which the free energy surface is relatively flat. This

parameterization does not extend to the Mg2SiO4–SiO2 binary in which the melt contains

substantial short-range ordering and greater curvature of the free energy surface. It is there-

fore necessary to construct and calibrate a custom thermodynamic model for melt solution

along the binary. The purpose of this chapter is to calibrate a simple melt solution model

in the Mg2SiO4–SiO2 binary in order to investigate open-system melt-rock reaction in the

mantle. As our goal is not to capture the full complexity of the phase diagram, we will

use a simple asymmetric regular formulation that successfully captures the variation of the

olivine-orthopyroxene cotectic with pressure.

3.2 Thermodynamic model for the Mg2SiO4–SiO2 binary system

3.2.1 Subsolidus phase assemblage

The subsolidus phase assemblage along the Mg2SiO4–SiO2 binary comprises pure forsterite

olivine (fo(ol), Mg2SiO4), pure enstatite orthopyroxene (en(opx), Mg2Si2O6), and a pure sil-

ica quartz (q(qz), SiO2). As these are all pure phases we simply us the standard state models

from the Berman database (Berman, 1988). The molar Gibbs free energy of ol and opx is

Gol = µ◦fo (3.2)

Gopx = µ◦en (3.3)

Where µ◦fo and µ◦en are the standard state chemical potentials of forsterite and orthoen-

statite. Quartz undergoes a polymorphic phase transition along the solidus at low pressure,

transitioning from β-quartz (bqz) to β-cristobalite (bcrs) (Hudon et al., 2002). We include
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this polymorphic phase transition within the phase description of qz by setting

Gqz = min(µ◦bqz, µ
◦
bcrs) (3.4)

While enstatite also undergoes a polymorphic transition from protoenstatite to orthoen-

statite at around 1.5GPa (Chen and Presnall, 1975), we have omitted this in this simple

treatment.

3.2.2 Melt solution model

We use the melt endmember models from the xMELTS calibration (Ghiorso et al., 2007).

The melt solution in Mg2SiO4–SiO2 is very non-ideal, with strong interactions between melt

species. Certain features of the phase diagram, including the low pressure miscibility gap at

high-silica concentrations, are very sensitive to the relative Gibbs free energy of mixing. To

accurately capture this non-ideality requires an associated speciation model (Holland and

Powell, 2003), or a highly parameterized quasichemical model (Harvey et al., 2015; Kim

et al., 2017) to account for ordering of species at intermediate silica contents. Both of these

approaches require internal solvers to calculate the melt speciation. For our present purposes,

we are more interested in the general topology for low and intermediate silica contents. We

therefore model solution in the melt with a numerically efficient binary asymmetric regular

solution model (Berman and Brown, 1984).

We take the melt endmembers to be silica liquid (q(f), Si2O4) and forsterite liquid (fo(ol),

Mg2SiO4), where the silica endmember is used on a four oxygen basis to improve the form of

the entropy of mixing. The expression for the molar Gibbs free energy of the melt solution is

comprised of three components: the standard state Gibbs free energy of the pure endmembers

G◦f , the ideal entropy of mixing Gideal
f , and the excess energy due to non-ideal mixing Gexcess

f .

Gf = xqfµ
q◦
f + xfof µ

fo◦
f︸ ︷︷ ︸

G◦
f

+xqfRT lnx
q
f + xfof RT lnx

fo
f︸ ︷︷ ︸

Gideal
f

+
(
xqfWq,fo + xfof Wfo,q

)
xqfx

fo
f︸ ︷︷ ︸

Gexcess
f

(3.5)
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Table 3.1: Data Sources for Mg2SiO4–SiO2 melt calibration

Bowen and Anderson (1914)
Boyd et al. (1964)
Taylor (1973)
Chen and Presnall (1975)
Kato and Kumazawa (1985)
Hageman and Oonk (1986)
Herzberg and Zhang (1998)
Presnall et al. (1998)
Liu and Presnall (1990)
Hudon et al. (2005)

Where xqf and xfof = 1 − xqf are the molar silica (Si2O4) and forsterite concentrations re-

spectively. The chemical potentials of the pure endmembers µq◦f and µfo◦f are taken from

the xMELTS calibration (Ghiorso et al., 2007). Wq,fo and Wfo,q are binary interaction pa-

rameters. We assume that both parameters are first order functions of pressure P such

that

Wq,fo = WH
q,fo − PW V

q,fo (3.6)

Wfo,q = WH
fo,q − PW V

fo,q (3.7)

3.2.3 Calibration

The interaction parameters are fit from experimental phase equilibrium constraints on

the liquidus surfaces. The liquidus surfaces are defined by the melt-solid equilibria

Gol = µfof (3.8)

Gopx = µfof +
1

2
µqf (3.9)

Gqz =
1

2
µqf (3.10)
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and the surface of the high silica miscibility gap is given by the melt-melt equilibrium

µqf (x1) = µqf (x2)

µfof (x1) = µfof (x2)

(3.11)

where x1 and x2 correspond to compositions on either side of the solvus.

Given models of the solid phases, the interaction parameters can be fit from a set of

experimental constraints which each constrain a point on the liquidus surface in pressure-

temperature-composition (P -T -x) space. This is done by finding the values of the mixing

parameters that minimize a set of residuals of the form

Ai = Gol(Pi, Ti)− µfof (Pi, Ti, xi) (3.12)

Where the conditions (Pi, Ti, xi) represent a single experimental liquidus constraint. To

provide a good fit, a large experimental database is required with constraints that are spread

widely in P -T -x space.

We compiled experimental constraints from the literature. The list of data sources are

given in Table 3.1. Constraining melt compositions for small degrees of melting remains

a major challenge in experimental petrology. Experiments therefore typically take the ap-

proach of bracketing the liquidus surface with a series of distinct starting compositions.

For this kind of data we take the liquidus temperature to be the midpoint of the liquidus

bracket. To increase the number of data-points, and to ensure a good fit for the ol-opx cotec-

tic, we supplement the experimental brackets with some synthetic data taken from existing

interpolated phase diagrams.

We carried out the calibration in Python using scipy.optimize.leastsq. The thermody-

namic models of the phases were described using a python package we developed called

Pyezthermo which served as a prototype for thermocodegen (see section 2.6 above). The

phase models have been tested against models developed using thermocodegen, which is used
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Figure 3.1: Calculated Mg2SiO4–SiO2 binary phase diagram at 1 bar (left) and 1 GPa
(right). Phase abbreviations as in text. Colored markers include both experimental brackets
and interpolated data from Bowen and Anderson (1914) and Hudon et al. (2005).

in the remaining chapters, and were found to be identical.

The fitted interaction parameters are as follows

WH
q,fo = 35168 J mol−1 W V

q,fo = 0.7959 J mol−1bar−1

WH
fo,q = −56504 J mol−1 W V

fo,q = −1.8783 J mol−1bar−1

(3.13)

Calculated phase diagrams using these values at 1 bar and 1 GPa are shown in Figure 3.1.

As expected, the phase diagram provides a poor match at the high silica end where there a

fewer experimental constraints. This is particularly evident for the miscibility gap which is

very sensitive to the excess energy of mixing. The phase diagram does, however, provide a

good description of the variation in the fo-en cotectic with decreasing pressure, as shown in

Figure 3.2.
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Figure 3.2: Pressure dependence of fo-en cotectic. The solid lines show the phase boundaries
for the 1 bar and 2 GPa phase diagrams. The dashed line shows the variation in the cotectic
melt composition with increasing pressure. In this calibration the melting reaction transitions
from eutectic to peritectic around 0.2 GPa

3.3 Comparison to the melting systematics of natural peridotites

The Mg2SiO4–SiO2 sub-system provides a useful framework for understanding complex

phase equilibria in ultramafic and mafic rocks. However, in contrast to melting along the

binary, natural peridotites melt incongruently up to pressures of 2 GPa (Figure 3.3). This

is reflected in higher silica concentrations in natural peridotite melts. As noted by Kushiro

(1975) and others (Ryerson, 1985; Hirschmann et al., 1998), this can be attributed to the

presence of monovalent and divalent cations which have a tendency to depolymerize the

melt and, in so doing, decrease the silica activity. This enhances the stability of olivine

relative to orthopyroxene resulting in an expansion of the olivine phase field. A simple way

of approximating the melting behavior of natural peridotites is with the addition of a third

component as a ‘depolymerising agent’ which acts as a proxy for the combined behavior

of oxides, other than MgO and SiO2, in natural systems. This is shown for the Mg2SiO4–

SiO2–K2O ternary phase diagram in Figure 3.4(a), which shows a strong deflection in the

fo-en cotectic for small additions of K2O. Below this in Figures 3.4(b) and (c) we have fit an
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Figure 3.3: a) Experimental olivine- and orthopyroxene-saturated partial melts from the
LEPR database plotted in wt concentration where MO accounts for all oxides other than
MgO and SiO2. Note that all natural melts are more silicic than the binary melts. The
fractional harzburgite melt composition is from Wasylenki et al. (2003) b) forsterite-enstatite
cotectic boundary plotted on a similar ternary but in molar concentration and reproduced
from Kushiro (1975). The concentrations of the oxides have been scaled by the number of
cations per formula unit. Note the deflection of the cotectic boundary with the addition of
monovalent and divalent cations.

65



Figure 3.4: a) Experimental liquidus constraints with phase boundaries reproduced from
the quasichemical model of Kim et al. (2017). b) Approximate thermodynamic fit at 1bar
using a regular asymmetric solution model. The dashed lines show the liquidus temperature
contours. c) Approximate thermodynamic fit at 1 GPa

. Concentrations are in mass units in all plots.

approximate ternary liquidus surface, again using a regular asymmetric solution, but with

the addition of a K2O component in the melt to modify the silica activity.

3.4 Summary

In conclusion, we have calibrated a simple model for melting at low pressure in the

Mg2SiO4–SiO2 binary system. While an asymmetric binary regular solution model does not

accurately capture some details of the phase diagram, including the low-pressure miscibility

gap in high-silica melts, it does capture the general liquidus morphology. Moreover we are

able to accurately reproduce the variation in silica concentration of the fo-en cotectic with

decreasing pressure. This arises from the expansion of the olivine phase field in response to

pressure-induced changes in the melt polymerization and is reflected in the systematics of

natural peridotite melts.

The Mg2SiO4–SiO2 binary serves as useful model to explore coupling between thermody-
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namics and magma dynamics in the mantle. It provides a reasonable first-order approxima-

tion of peridotite melting, while also containing sufficient complexity to push the boundaries

of what previous reactive transport models have been able to deal with. The workflow for

integrating this system into a geodynamics code in described in the following chapter.
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Chapter 4

Model Examples of Disequilibrium Reaction and Reactive

Transport in the Mg2SiO4-SiO2 System

4.1 Introduction

The goal of this chapter is to demonstrate the application of the general kinetic formula-

tion, described in chapter 2, for integrating thermodynamics and geodynamics. The theory

serves two purposes: the first is to extend the reach of computational thermodynamics in

petrology to the modeling macroscopic irreversible reaction; the second is to integrate com-

putational thermodynamics and complex phase relations with computational geodynamics.

As described in chapter 1, this particularly pertains to open-system reactive flow of melts

and fluids. Here we apply the framework to the Mg2SiO4-SiO2 binary system. This is an

important bounding binary that has long helped to elucidate phase relations relations in

mafic and ultramafic rocks. Despite its relative simplicity compared to natural systems, the

Mg2SiO4-SiO2 system contains a variety of reaction morphologies, including divariant liq-

uidus surfaces, eutectic and peritectic melting reactions, and subsolidus polymorphic phase

transitions. Inclusion of such a system in magma dynamics marks a significant advance on

previous theories, and opens up the potential for modeling more realistic melt-rock reactions.

To gain intuition for disequilibrium reaction in this system we will present a hierarchy of

models beginning with the simplest possible 0-D batch reactor models in which there is no

advection or diffusion. These models demonstrate the consistency with the equilibrium phase

diagram in the equilibrium limit, and also allow us to explore the impact of choices made

in the kinetic models. The behaviour of disequilibrium systems can be non-intuitive, and
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these simple models provide a framework for understanding the time-dependent behaviour

of the system. We then add in diffusion of heat and mass to explore open-system reaction

in a dynamically simple system. Finally, we will integrate the thermodynamic and reactive

model into the full magma dynamics equations derived in chapter 2.

4.2 Mg2SiO4-SiO2 system description

At low pressures, the mineral phases we must consider are Mg2SiO4 olivine, MgSiO3 or-

thopyroxene, and a polymorphic silica phase. All the minerals are pure stoichiometric phases,

but for clarity, and consistency with the nomenclature in the reactive framework described

above, we refer to the phases as olivine (ol), orthopyroxene (opx) and quartz (qz), and to

their respective endmember compositions as forsterite (fo(ol), Mg2SiO4), enstatite (en(opx),

Mg2SiO6), and silica (q(qz), SiO2). The silicate melt (f) comprises two endmembers, which

we take to be forsterite (fo(f), Mg2SiO4) and silica (q(f), Si2O4).

There are five phase endmembers in total in the system, as such five variables are required

to fully characterize the phase assemblage. These include the proportions of the four phases

(φol, φopx, φqz, φf ) and the melt composition cqf . There is only one compositional variable,

as the melt is the only solution phase. The vector of phase compositions is then

C =



cf

col

copx

cqz


=



 cqf

cfof


cfool

cenopx

cqqz


=



 cqf

1− cqf


1

1

1


(4.1)

4.2.1 Thermodynamics

We use the same thermodynamic models as described in the previous chapter. As de-

scribed there, the Gibbs free energy models of pure solid phases are taken from the Berman
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database (Berman, 1988). The silica phase undergoes a polymorphic phase transition from

quartz to cristobalite along the liquidus at low pressure. We account for this by including

both the β-quartz (β− qz) and β-cristobalite (β− crs) endmember models within the phase

solution of qz, and assume that it always occurs as the stable polymorph. The melt solution

is modeled as described above. The melt enedmembers are modeled using the xMELTS

calibration (Ghiorso et al., 2007), and the melt solution is modeled using the asymmetric

regular solution model with the mixing parameters given above.

4.2.2 Reactions

The full compositional space of the phase endmembers is described by the formula matrix

F =
SiO2

MgO

qf fof fool enopx qqz 2 1 1 2 1

0 2 2 2 0

 (4.2)

There are five phase endmembers in total, and two system components, meaning that there

are three independent reactions. As we are considering reaction paths involving a partial

melt we will use the set of independent melt-mediated reactions

1. fo(ol) = fo(f)

2. en(opx) =
1

2
q(f) + fo(f)

3. q(qz) =
1

2
q(f)

(4.3)

we use the reaction indexes (1, 2, 3) to refer to the reaction rates and affinities of the

respective reactions, as illustrated in Figure 4.2. In this simple system, each of these reactions

corresponds to the liquidus surfaces of the different solid phases. As such the liquidus surfaces

mark the contours in pressure-temperature-composition space along which Aj = 0. The
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affinity contours for the reactions are shown in Figure 4.1.

The molar stoichiometric matrix for this reactive system is

ν̃ =



 ν̃qf,1

ν̃fof,1


 ν̃qf,2

ν̃fof,2


 ν̃qf,3

ν̃fof,3


ν̃fool,1 ν̃fool,2 ν̃fool,3

ν̃enopx,1 ν̃enopx,2 ν̃enopx,3

ν̃qqz,1 ν̃qqz,2 ν̃qqz,3


=



 0

1


 1/2

1


 1/2

0


−1 0 0

0 −1 0

0 0 −1


(4.4)

Where we have put parentheses around the melt coefficients for clarity. In mass-weighted

units the stoichiometric coefficients become

ν =



 0

1


 Mq

f

2Men
opx

Mfo
f

Men
opx


 1

0


−1 0 0

0 −1 0

0 0 −1


(4.5)

Where Mk
i is the molar mass of endmember k in phase i. From equation (2.9) the reactive

mass transfer rates for each phase are then

Γf = Γqf + Γfof =

(
M q

f

2M en
opx

R2 +R3

)
+

(
R1 +

M fo
f

M en
opx

R2

)
= R1 +R2 +R3

Γol = Γfool = −R1

Γopx = Γenopx = −R2

Γqz = Γqqz = −R3

(4.6)

Where Rj is the reaction rate of reaction j, in units of ρs−1. By construction the reactive

mass transfer terms sum to zero.
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Figure 4.1: Mg2SiO4−SiO2 binary at 1bar contoured for the three different melting reactions

72



Figure 4.2: Cartoon illustration of reactive system in the Mg2SiO4–SiO2 system, showing the
phase assemblage and the three reactions. Rj and Aj refer to the reaction rate and affinity
of reaction j.

4.2.3 Kinetics

We assume the reactions proceed at independent rates according to a piecewise rate law

as described in chapter 2.

Rj =

 r+
j S

+
j (Φrj)f

+(Aj), Aj ≥ 0

r−j S
−
j (Φrj)f

−(Aj), Aj < 0
(4.7)

The rate constant is assumed to have an Arrhenius temperature dependence

rj =

 r+
j exp

(
− T
T0

)
, Aj ≥ 0

r−j exp
(
− T
T0

)
, Aj < 0

(4.8)

As a simplification, we assume that T0 is the same for all reactions, but we allow the pre-

exponential factors to differ for the forward (melting) and reverse (crystallization) reactions.

Without evidence to the contrary, we assume that the rate constants are the same for all

three reactions. These options may be easily modified if necessary.
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In partially molten rocks, melt is distributed in tubes along grain boundaries. Given

this geometry, it would be expected that the reactive surface area be proportional to
√
φf .

However, since the derivative of
√
φf becomes singular at φf = 0, we use the following, more

numerically stable, function for the reactive surface area

Sj =

 S0
φr,j
φr,j+ε

, Aj ≥ 0

S0
φf
φf+ε

, Aj < 0
(4.9)

where φr,1 = φol, φr,2 = φopx, φr,3 = φqz, and S0 is the total surface area per unit volume of

the aggregate solid phase. The parameter ε controls how rapidly the reactive surface area

tends to zero. We use ε = 0.1 for all the model examples below.

In high temperature magmatic systems, reaction is fast and affinities of reaction are likely

small enough that a linear thermodynamic driving function can be used

f(Aj) =
M0

Mj

Aj
RT

. (4.10)

where M0 is a reference molar mass, and Mj is the mass of reaction defined above. We scale

the affinity by Mj to normalize each reaction to one mole of reactant.

4.2.4 Implementation

The thermodynamic and kinetic models are constructed using custom thermodynam-

ics and kinetic modeling tools from the ENKI software project (http://enki-portal.org/).

Specifically we use the thermocodegen package and coder module of thermoengine to gener-

ate the custom thermodynamics and kinetics libraries. All the choices of functions, variables

and parameters described above for the Gibbs free energy models of the endmembers and

phases are recorded in hierarchical xml schema using the thermocodegen package. These

schema are then used as input to coder which is a SymPy-based code-generation module

which generates custom compiled C++ libraries with python bindings. Coder uses auto-

74



matic symbolic differentiation to derive all of the thermodynamic variables (i.e. µki , ρi, si,

CPi, αi) and their derivatives, from the underlying Gibbs free energy models (Gi). This

ensures thermodynamic self-consistency, and avoids the need to hand-code these functions.

The software utilizes the natural hierarchical structure of thermodynamic models in which

the phase models are dependent on the underlying endmember models.

Given this compiled thermodynamic database, the reactions library is also generated in

a similar way: the stoichiometries and reaction rates of the reactive system are described in

a hierarchical xml schema which are input into a code generation module within the ther-

mocodegen package. This generates a custom compiled C++ reactions library with Python

bindings through which all of the thermodynamic properties of the underlying endmembers

and phases can be accessed, as well as the properties of the reactions including the sto-

ichiometries (νj), chemical affinities (Aj), reaction rates (Rj), and reactive mass transfer

terms (Γi and Γki ), as well as their derivatives where appropriate.

4.3 0-D batch reactors

We begin by exploring the disequilibrium behaviour of the system by considering a 0-D

batch reactor model. In this case, all spatial dependence of the model is removed and the

governing equations reduce to a set of ordinary differential equations describing conservation

of mass and energy.
d
dt
ρiφi = Γi i = ol, opx, qz, f (4.11)

ρfφf
d
dt
cqf = Γqf − c

q
fΓf (4.12)

N∑
i=1

[
ρiφiCPi

dT
dt
− φiαiT

dP
dt

+ TsiΓi

]
= Qext −

Ki∑
k=1

N∑
i=1

µki Γ
k
i (4.13)

where Qext is the external heating rate in Jm−3s−1. As the equations are written on a

mass per volume basis, the total volume of the system may increase or decrease during

reaction: this shows up as a change in the total volume fraction of the phases
∑

i φi. In
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Table 4.1: Parameters, definitions, and reference values for batch reactor models

Temperature T0 1925 K
Pressure P0 1.2 GPa
Density ρ0 3000 kgm−3

Heat capacity CP0 1 Jkg−1K−1

Expansivity α0 5e-5 K−1

Gravity g 9.81 ms−2

Solid velocity W0 (0.1, 0.02) myr−1
Heating rate Qext Jm−3s−1

Rate constant r0 1e-8 kgm−2s−1

Reactive surface area S0 6000 m2m−3

Reaction rate r∗ = r0S0

ρ0
2e-8 s−1

Damköhler number DaQ = ρ0CP0T0r
∗

Qext
1e2–1e5

Adiabatic parameter Ad = α0P0

ρ0CP0

Decompression rate dP
dt = −ρ0gW0

the full partial differential equations this expansion or contraction would be taken up in the

divergence of the solid and melt velocity fields. The 0-D equations could be written in a

fully mass-conservative form by writing them on a mass basis and multiplying the reactive

mass transfers by the system volume, but here for consistency we will use the density-based

equations. A full derivation for conservation of mass and energy in an 0-D open system

subject to inflow/outflow of mass and heat is provided in Appendix C.

We non-dimensionalize using the following scaling parameters:

t =
t′

r∗
, T = T0T

′, P = P0P
′, ρi = ρ0ρ

′
i, Γi = ρ0r

∗Γ′i,

CPi = CP0C
′
Pi, αi = α0α

′
i, si = CP0s

′
i, µki = CP0T0µ

k
i

′
(4.14)

Where r∗ is a a measure of the the reaction rate given by

r∗ =
r0S0

ρ0

(4.15)

Rewriting the reduced governing equations in terms of non-dimensional variables, and
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dropping the primes, gives us

d
dt
ρiφi = Γi i = ol, opx, qz, f (4.16)

ρfφf
d
dt
cqf = Γqf − c

q
fΓf (4.17)

N∑
i=1

[
ρiφiCPi

dT
dt
− φiαiT

α0P0

ρ0CP0

dP
dt

+ TsiΓi

]
=

1

DaQ
−

Ki∑
k=1

N∑
i=1

µki Γ
k
i (4.18)

DaQ is a dimensionless Damkohler number describing the relative rates of external heating

and reaction

DaQ =
ρ0CP0T0r

∗

Qext

. (4.19)

In the following examples, we solve the initial value problem for φ, cqf and T in python

using a numerical ODE solver that allows flexibility in the choice of integration method.

4.3.1 Adiabatic reaction paths

To explore the reaction paths taken by the system as it converges to equilibrium, let us

first consider the simplest case of an isobaric adiabatic system. For this system, equations

(4.16)-(4.18) are further simplified as
(dP

dt , Da
−1
Q

)
= 0. As this is a perfectly isolated system,

the only way to get reaction is if the system is initiated with a disequilibrium assemblage.

It serves as a useful test to ensure the reactive framework we have chosen actually converges

to equilibrium under closed-system conditions, and to demonstrate the coupling between

temperature and reaction. Such a set-up could also have some practical applications for

understanding how systems behave when suddenly displaced from equilibrium. For example,

it could serve as a model for understanding reaction paths during experiments when the

experimental apparatus is suddenly heated and left to anneal. Or in natural crustal magmatic

systems when intrusion of a new batch of mafic magma, or eruption cause sudden changes

in composition and pressure.

For now we consider the simple question of what happens when olivine and quartz are
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put together at high temperature. Olivine and quartz are never stable together and we

would expect them to react spontaneously. However without a model that couples the

thermodynamics, kinetics and energetics it is not possible to predict the macroscopic reaction

path. To model this we fix the pressure at 1 bar and use an initial temperature of 1720 ◦C and

an initial assemblage comprising 50 vol% ol and 50 vol% qz. Although there is initially no

melt present we still need to set an initial melt composition. Expanding equation (4.16) and

substituting (4.17) in the limit φ → 0 shows that the first instantaneous melt composition

satisfies

cqf =
Γqf
Γf
. (4.20)

This can be solved numerically.

The scaling parameters ρ0, CP0, T0, and r∗ are given in Table 1. We choose a value of

S0 = 6000m2m−3 by considering the total surface area for an aggregate of cubic crystals with

grain diameters of 1 mm. The pre-exponential factor for the melting reactions are set to

r+
0 = 10−8kg m−2s−1 in line with estimates for olivine dissolution from Brearley and Scarfe

(1986). To explore the effect of different kinetic models on the reaction paths we use three

different crystallization rates: r−0 = r+
0 , r

−
0 = 5r+

0 , and r
−
0 = 20r+

0 .

The resulting disequilibrium reaction paths are shown in Figure 4.3. In all cases the

system spontaneously reacts by melting out ol and qz, and crystallizing opx to converge

to equilibrium. While the amount of transient melt produced in the r−0 = r+
0 path seems

large, the amount of melt decreases as the relative crystallization rate is increased. For the

r0− = 20r+
0 reaction paths, the transient melt produced is very small and could be likened

to an amorphous grain-boundary material. Temperature is strongly coupled to reaction,

such that it decreases during melting, and increases during crystallization. As the system

is operating far from equilibrium, disequilibrium melting actually drives the system below

the solidus temperature, with the degree of under-cooling depending on the kinetics and the

amount of transient melt present at any one time. The system eventually buffers itself to

the temperature of the opx-qz eutectic. At equilibrium all reactions cease and the reaction
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Figure 4.3: Isobaric adiabatic reaction paths for a system initially comprising a disequilib-
rium assemblage of ol and qz. Three different kinetic rate laws are shown: crystallization
rate equal to melting rate (solid line); crystallization rate 5× faster than melting (dashed
line); crystallization 20× faster than melting (dotted line). (a) Melt composition versus
temperature compared to equilibrium phase diagram. (b) Phase volume fraction evolution.
(c) Temperature evolution. (d) Chemical affinities of the three reactions. (e) Reaction rates
of the three reactions: The rates converge to zero at equilibrium.
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rates converge to zero. It is important to note that this is not equivalent to all affinities

converging to zero, as only the affinities of reactions involving stable phases must converge

to zero at equilibrium. In this case, ol is not stable in the final assemblage, the affinity of

the ol melting reaction therefore does not tend to zero.

When we use a set of melt-mediated reactions along with an appropriate reaction rate law,

the system is guaranteed to evolve to equilibrium under closed-system conditions at super-

solidus temperatures. Starting from a disequilibrium assemblage, if a mineral endmember

is undersaturated relative to the melt, it will melt out (i.e. the reaction will proceed in the

forward direction) until Aj = 0, or until the phase is exhausted. Likewise, if an endmember

is oversaturated in the original assemblage it will crystallize from the melt until either it

reaches saturation, or the melt is exhausted. One obvious implication of this is that once

the melt is exhausted—that is once the melt becomes undersaturated relative to the rest of

the assemblage—all reactions cease. This puts a limit on the ability to use melt-mediated

reactions at subsolidus conditions.

However, in most systems there is a region close to the solidus for which it is possible

to model melt-mediated subsolidus reactions. This is shown for the Mg2SiO4-SiO2 system

in Figure 4.4 in which we have initiated the same initial assemblage of qz and ol at three

different temperatures: one above the solidus (T0 = 1550◦C), one just below the solidus

(T0 = 1450◦C), and one far below the solidus (T0 = 1350◦C). At 1550 ◦C the system is

above the saturation surfaces of both ol and qz, meaning that both ol and qz will initially

melt to allow the system to converge to the opx-qz cotectic. At 1450 ◦C the system is below

the solidus, but is still above the metastable extensions of the ol and qz saturation surfaces

(shown in Fig 4.4 as dashed lines) meaning that ol and qz will still initially melt. In this

case, as the system is subsolidus, equilibrium is only attained when all of the transient melt

has crystallized completely to leave a subsolidus assemblage of qz and opx. Here we have

initiated the system with a melt composition that falls above the metastable extensions of

both saturation surfaces (the dark purple shaded triangle in Figure 4.4), however if an initial
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Figure 4.4: Isobaric adiabatic reaction paths for three different initial temperatures. (a)
Melt composition versus temperature compared to the equilibrium phase diagram. The
metastable extensions of the the saturation surfaces of ol, opx and qz are shown in dashed
lines. The dark purple shaded region indicates the region in which melt is more stable than
ol and qz. The light purple shading shows the temperature range over which subsolidus
melt-mediated reactions are possible. (b) Phase volume fraction evolution. Note that no
reaction occurs for T0 = 1350◦C (c) Temperature evolution.

melt composition outside this region were used the reaction would still go to completion, as

long as the temperature is above the metastable intersection of the ol and qz melting curves.

1350 ◦C falls below this intersection. Despite being metastable, the assemblage of ol and qz

is more stable than the melt, meaning that no melt-mediated reaction is possible.

More generally, for any given system, this can be summarized as follows: If there exists a

metastable melt that is more stable than the original assemblage, then the melt can effectively

act as a metastable reactive intermediate. Melt-mediated subsolidus reaction may not be

the most realistic reaction pathway, but as long as the amount of transient melt is small,

then it can be likened to an amorphous grain-boundary phase.

This problem demonstrates the importance of choosing appropriate reaction sets and

kinetic rate laws in disequilibrium calculations. As the actual kinetics of these reactions
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are not known, proper validation requires experiments. However this framework provides a

means of guiding the design of such experiments, and for understanding experimental results.

4.3.2 Heated reaction paths

Next, we can explore how the system responds to an external driving force by considering

a heated isobaric system. In this case we have dP
dt = 0 and Da−1

Q ≥ 0. By varying DaQ we are

able to model both quasi-equilibrium and disequilibrium batch melting and crystallization

and to explore the effect of varying degrees of disequilibrium. Although rarely modeled, dis-

equilibrium melting may be a relatively common phenomenon. For example in experimental

phase equilibrium experiments, rapid heating is likely to cause initial superheating of the

assemblage. Furthermore, in natural systems rapid decompression of a magma chamber due

to eruption, or heating from a new batch of magma could also cause superheating.

As an example we simulate melting of an ol-opx assemblage, comprising 50 vol% ol and

50 vol% opx, at 1 bar. Unlike the previous model, we start in equilibrium at the ol-opx

peritectic. The initial temperature and melt composition can be found by solving for the

point of intersection of the ol and opx saturation surfaces, at which the affinities of melting

of both ol and opx are equal to zero. That is

(A1, A2)
(
Teq, c

q
feq

)
= 0 (4.21)

This can be solved numerically for Teq and cqfeq.

We use the same reaction rate parameters as previously, but this time assume equal

crystallization and melting rates: S0 = 6000m2m−3 and r−0 = r+
0 = 108. We vary the heating

rate using three different values of DaQ: DaQ = 105, DaQ = 103, and DaQ = 102. We stop

timestepping for each reaction path when the temperature reaches 1950 ◦C. The results are

shown in Fig. 4.5. The total reaction duration differs vastly for the different heating rates.

So that the reaction paths can be easily compared, we have plotted the phase fraction and
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Figure 4.5: Isobaric heated reaction paths for DaQ = 105 (solid), DaQ = 103 (dashed),
DaQ = 102 (dotted). DaQ = 106 approximates equilibrium batch melting. (a) Melt com-
position versus temperature compared to the equilibrium phase diagram. Circle shows the
initial melt composition (at the ol-opx peritectic), and the cross shows the final condition.
(b) Temperature evolution, and (c) normalized phase fraction evolution plotted versus rela-
tive reaction time. Note that for DaQ = 102 the fraction of ol decreases slightly during initial
melting contrary to what would be expected for the equilibrium peritectic melting reaction.

temperature evolution as a function of time/total time.

The DaQ = 105 heating path effectively follows the reversible batch melting path (DaQ =

∞) in which ol and opx melt incongruently (opx→ lq + ol) at a constant temperature until

opx is exhausted. The system then ascends along the ol liquidus until the remaining ol has

melted, at which point the system leaves the liquidus and heats at a constant rate. For

DaQ = 103 and DaQ = 102, heating is too fast for the system to remain in equilibrium.

This results in overstepping of both the peritectic reaction and the ol liquidus. Perhaps less

intuitively, disequilibrium also changes the stoichiometry of the ol-opx melting reaction to

the point that for the DaQ = 102 heating path, the melting reaction is eutectic (ol + opx→

lq) rather than peritectic.

These calculations explicitly take account of the dissipative terms in the energy balance.

For this system the only contribution to the internal entropy production is from disequilib-
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Figure 4.6: Internal entropy production σ for reaction paths shown in Fig 6: DaQ = 105

(solid), DaQ = 103 (dashed), DaQ = 102 (dotted).

rium reaction.

σ =
1

T

J∑
j=1

AjRj (4.22)

Figure 4.6 shows how σ varies for the three reaction paths calculated in Figure 4.5. As σ

scales as
∑

j A
2
j , it increases with decreasing DaQ. This means that while σ has a negligible

effect on the temperature evolution for the close-to-equilibrium reaction path, its effect on

temperature for disequilibrium reaction paths can be significant: For DaQ = 102 the reactive

dissipation accounts for an additional 6◦C of heating.

4.3.3 Adiabatic decompression reaction paths

Melting in Earth’s interior is most commonly caused by adiabatic decompression beneath

spreading centers, or within mantle plumes. In this scenario we have Da−1
Q = 0 and dP

dt < 0.

The decompression rate is set by the mantle upwelling velocity

dP
dt

= −ρ0gW0, (4.23)

Where ρ0 is the reference solid density, andW0 is the upwelling velocity. Beneath a mid-ocean

ridge, W0 is roughly equal to the half-spreading rate.
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Figure 4.7: Calculated 0-D adiabatic decompression reaction paths for a ‘harzburgite’ (ol
+ opx) and ‘eclogite’ (opx + qz) assemblage. The reaction paths follow equilibrium batch
melting trends. The discontinuity in the eclogite melting path is due to the qz-crs transition.
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The Mg2SiO4–SiO2 system contains two cotectic solid assemblages: opx + ol, and opx +

qz, which serve as simplified models of harzburgite and eclogite which occur in the convecting

mantle. To compare the different melting behaviour we model adiabatic decompression

melting of a harzburgite assemblage comprising 50 vol% ol and 50 vol% opx, and an eclogite

assemblage comprising 50 vol% opx and 50 vol% qz. We start both assemblages at 1.2 GPa

and 1672 ◦C, which is below both the eclogite and harzburgite solidi, and allow them to

decompress at a velocity of 10 cm/yr. The reaction rate parameters are the same as those

used above for the heated reaction paths. The calculated adiabatic decompression reaction

paths are shown for each assemblage in Figure 4.7.

The decompression rate is very slow compared to the rate of reaction. This creates a

very stiff set of equations, and allows equilibrium to be maintained throughout. Eclogite is

more fusible than harzburgite, it therefore starts to melt at a higher pressure and produces

more silica-rich melt. The discontinuity in the eclogite melting path at 0.4 GPa is due to

the qz-crs transition.

A useful feature of this approach is that the reactive mass transfer rates Γi give the

stoichiometry of the net melting reaction. Eutectic harzburgite melting is therefore occurs

when Γopx < 0 and Γol < 0. Peritectic melting on the other hand occurs when Γopx < 0 and

Γol > 0. Interestingly, for the steady state batch harzburgitic melting column shown here,

the net melting reaction transitions from eutectic to peritectic at a higher pressure (0.5 GPa)

than the transition to peritectic melting in the equilibrium phase diagram (0.2 GPa), despite

the fact that it maintains an equilibrium composition during ascent. As shown in Figure 4.8,

the transition to peritectic melting in the batch upwelling column is independent of upwelling

rate. In a dynamic system, the melting reaction at any point in time is the reaction required

to bring the system back into chemical equilibrium. As such the deeper transition to eutectic

melting can be understood in terms of the different pressure dependencies of the en and fo

liquidi.
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Figure 4.8: Olivine reactive mass transfer rate Γol for 0-D adiabatic decompression with a
range in upwelling rates. W0 is in m yr−1. Γol < 0=eutectic melting, and Γol > 0=peritectic
melting. The blue line shows the transition to peritectic melting in the equilibrium phase
diagram.
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4.4 Reaction-diffusion dynamics

We can now add slightly more complexity by considering a system with diffusion of heat

and mass, but no advection of melt relative to solid. Conservation of mass and energy in

such a system is governed by

∂

∂t
ρiφi = Γi i = ol, opx, qz, f (4.24)

φf
∂cqf
∂t

=
1

ρf

(
Γqf − c

q
fΓf
)

+ ρfD
q
f∇ · (φf + εD)∇cqf (4.25)

N∑
i=1

[
ρiφiCPi

∂T

∂t
− φiαiT

dP
dt

+ TsiΓi

]
= k∇2T (4.26)

Where k is the thermal conductivity, and Dq
f is the diffusivity of silica in the melt in units

of m2s−1. Here we have assumed effective diffusivity of silica through the porous medium

takes the form

Dq
eff = Dq

f (φf + εD) (4.27)

The regularization parameter εD accounts for the fact that there is still diffusion of silica

along grain boundaries at subsolidus conditions. As such, it is fit so that

εD =
Dq
s

Dq
f

(4.28)

Where Dq
s is macroscopic diffusivity of silica in the aggregate solid.

We use the same scalings as listed in (4.14), with the addition of a length scale

x = Lx′, (4.29)

where L is the width of the system. As before, we assume that the whole system is being

advected up through the melting region at a rate W0 to give a decompression rate of dP
dt =
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Table 4.2: Parameters, definitions, and reference values for reaction-diffusion models

Width L 10 m
Melt silica diffusivity Dq

f (1e-11, 1e-9) m2s−1

Thermal diffusivity κ 1e-6 m2s−1

Damköhler number DaC = r∗L2

Dq
f

Damköhler number DaT = r∗L2

κ

Decompression rate dP
dt = −ρ0gW0

−ρ0gW0.

The scaled governing equations in a frame moving with the solid become

∂

∂t
ρiφi = Γi i = ol, opx, qz, f (4.30)

φf
∂cqf
∂t

=
1

ρf

(
Γqf − c

q
fΓf
)

+
1

DaC
∇ · (φf + εD)∇cqf (4.31)

N∑
i=1

[
ρiφiCPi

∂T

∂t
− φiαiT

α0P0

ρ0CP0

dP
dt

+ TsiΓi

]
=

1

DaT
∇2T (4.32)

Where dP
dt is the scaled decompression rate, and DaT and DaC are dimensionless Damkohler

numbers describing the rates of heat conduction and diffusion, relative to reaction.

DaT =
r∗L2

κ
(4.33)

DaC =
r∗L2

Dq
f

(4.34)

where κ is the thermal diffusivity.

In the temperature equation (4.32) we have neglected the chemical dissipation terms

due to reaction and diffusion. As demonstrated above, when the system is reacting close to

equilibrium, dissipation due to reaction is negligible; likewise, the internal entropy production

from chemical diffusion can be regarded as negligible (Asimow, 2002).
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4.4.1 Decompression melting of an eclogite inclusion

An interesting application of this model is the melting of a fusible eclogite inclusion in

a peridotite matrix during passive decompression. As shown for the 0-D system above, the

simple analogue eclogite is more fusible than peridotite and starts melting at a greater depth.

The silica-rich eclogite melts react with surrounding peridotite in the convecting mantle to

produce secondary pyroxenites. Such reactions are considered an important process in the

generation of mantle heterogeneity (Yaxley and Green, 1998), and contribute to the diversity

of primary melt compositions erupted at the surface (Sobolev et al., 2007; Shorttle et al.,

2014). The reactivity of silica-rich pyroxenite melts means that it is impossible to determine

the fate of melts as they ascend without considering coupling between reaction and melt

transport.

We consider a 10 m wide 1-D system that upwells at a constant rate of 10 cm yr−1 from 1.2

GPa to the surface. As demonstrated for the adiabatic decompression reaction path above,

this ascent rate is sufficiently slow for the rocks to remain close to chemical equilibrium. The

harzburgite is made up of 60 vol% ol and 40 vol% opx. In the centre of the domain is a 3 m

wide eclogite inclusion comprising 40 vol% qz and 60 vol% opx. The edges of the inclusion

are smoothed out over a width of 0.8 m. As before we set the initial temperature of the

system at 1.2 GPa to 1672 ◦C, which is below both the eclogite and harzburgite solidus. The

values of the dimensional and non-dimensional parameters used in the model are given in

Tables 4.1 and 4.2.

The small relative proportion of recycled eclogite in the convecting mantle means that

during partial melting, the system is buffered along the peridotite adiabat (Phipps Morgan,

2001). As we are only considering a small region around an eclogite inclusion, our model has

an unrealistically high eclogite:harzburgite ratio and therefore does not properly account

for the relative proportions of the two assemblages. As a result, to model the additional

background heat from the surrounding harzburgite reservoir, we impose a Robin condition
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Figure 4.9: Isothermal decompression melting of a fusible eclogite (opx + qz) inclusion in
a harzburgitic (ol + opx) matrix for a system that is open to diffusion of both heat and
SiO2. On the left is the P-T path of the system. The eclogite solidus (dotted line) and
harzburgite solidus (dashed line) are shown. On the right are numbered snapshots of the
system at different pressures. The phase assemblage is shown as a cumulative phase volume
fraction and the melt composition in wt fraction SiO2 is shown in red.

91



at the boundaries.
1

DaT
∇T = β(Tbc − T ) on ∂Ω (4.35)

where Tbc is set to the solid harzburgite adiabat. This serves as a stand-in for the large

pool of surrounding harzburgite outside the domain. We turn off this background heating

once the harzburgite begins to melt by setting β = 1 below the harzburgite solidus, and

β = 0 above. In the absence of this background heat supply, melting of the eclogite cools

the domain resulting in an adiabat that is intermediate between the eclogite and harzburgite

solidi.

Equations (4.30)-(4.32) with the initial and boundary conditions described above are

solved numerically using finite elements in TerraFERMA (Wilson et al., 2017). This involves

solving the weak form of the equations over a discretization of the domain. We use a semi-

implicit time-stepping scheme with adaptive time-stepping to adjust the timesteps according

to the melting rate and magnitude of the diffusive flux. We solve the equations at each

timestep using Newton’s method with a sparse direct solver. The results are shown in

Figure 4.9.

As ol and qz are unstable together, the edges of the inclusion quickly undergo subsolidus

reaction to form pure opx pyroxenite rims. At the eclogite solidus the eclogite melts rapidly,

but with no advection, the melt remains trapped in the inclusion behind the pyroxenite

walls. Melting is slightly amplified at the edges due to diffusion of heat and mass in from the

surrounding harzburgite. As the inclusion continues to ascend, the pyroxenite rims become

sharper and the melt composition tends towards a step function on either side. These self-

sharpening reactions fronts, or shocks, are due to the porosity dependence of silica diffusion.

Sharp reaction zones are a common feature metamorphic systems where there is an interplay

between reaction and diffusion. Only at the harzburgite solidus, when the harzburgite matrix

also starts to melt, do these compositional fronts relax. In the simplified binary system, the

pure opx rims actually take the longest to melt due to their higher melting temperature; this

would not be the case for natural pyroxenites. Eventually the system melts to such a degree
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that only residual ol is left across the domain. The high degree of melting is a local effect,

resulting from the large volume of silica-rich eclogite melt which must be mass-balanced by

silica-poor harzburgite melt to maintain equilibrium.

4.5 1-D reactive porous flow

We now consider the full set of magma dynamics equations described in chapter 2, with

advection of the solid and liquid phases and diffusion of heat and components. We will

neglect deviatoric stresses and deviatoric components of the strain-rate tensor. The governing

equations for a partially molten poro-viscous system undergoing isotropic compaction are

then

∂

∂t
ρiφic

k
i + ∇ · ρiφicki vi = −∇ · Jki + Γki (i = 1, 2, ..., N ; k = 1, 2, ..., Ki − 1) (4.36)

∂

∂t
ρiφi + ∇ · ρiφivi = Γi (i = 1, 2, ..., N) (4.37)

φf (vf − vs) = −K
µ

(∇P − ρfg) (4.38)

∇P = ∇ · ζ∇ · vsI + ρ̄g (4.39)

N∑
i=1

[
ρiφiCPi

DiT

Dt
− φiαiT

DiP

Dt
+ TsiΓi

]
= −∇ · q (4.40)

where vs,f are the solid and melt velocities, Jki is the diffusive flux, q is the heat flux, K is

the permeability, µ is the melt viscosity and ζ is the solid bulk viscosity. We have neglected

the dissipation terms in the energy balance as these terms are negligible for high temperature

viscous systems close to chemical equilibrium (Asimow, 2002).

The magma dynamics equations can be more conveniently solved by linearly decompos-

ing the fluid pressure into lithostatic Pl = ρ̄sgz, compaction P and dynamic P ∗ pressure

components.

P = Pl + P + P ∗ (4.41)
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where

P = ζ∇ · vs (4.42)

The P -split formulation is described in Appendix D. We non-dimensionalize the equations

by introducing the following scalings

z = hz′ t = h
q0
t′ (vf ,vs) = q0(v′f ,v

′
s) g = gĝ

T = T0T
′ ρi = ∆ρ0ρ

′
i P = ∆ρ0ghP

′ Γi = ∆ρ0r
∗Γ′i

ζ = ζ(φ0)ξ′ K = K(φ0)K ′ µ = µ0µ
′

CPi = CP0C
′
Pi si = CP0s

′
i αi = α0α

′
i

Where h is the height of the system; ∆ρ0 is the reference density difference between solid

and melt; K(φ0) and ζ(φ0) are the permeability and bulk viscosity at the reference porosity;

and q0 is the reference melt flux, given by

q0 =
K(φ0)∆ρ0g

µ0

(4.43)

For the Mg2SiO4-SiO2 system, this gives the following set of equations for φ, cqf , vf , vs,

P and T , in terms of non-dimensional variables.

Dsφi
Dt

= −h
2

δ2
φi
P
ζ

+Da
Γi
ρi

i = [ol, opx, qz] (4.44)

Dsφf
Dt

=
h2

δ2
(1− φf )

P
ζ
−Da

N∑
i=2

Γi
ρi

(4.45)

h2

δ2

P
ζ

=
∂

∂z
K

(
∂P
∂z

+ ∆ρg

)
+Da

N∑
i=1

Γi
ρi

(4.46)

∂vs
∂z

=
h2

δ2

P
ζ

(4.47)

∂P

∂z
=
∂P
∂z

+ ρ̄g (4.48)
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Table 4.3: Dimensional parameters, definitions, and reference values

Temperature T0 1925 K
Pressure P0 1.2 GPa
Density ρ0 3000 kgm−3

Density difference ∆ρ0 = ρ̄s − ρf 300 kgm−3

Heat capacity CP0 1 Jkg−1K−1

Expansivity α0 5e-5 K−1
Gravity g 9.81 ms−2

Solid velocity W0 4 cmyr−1

Rate constant r0 1e-8 kgm−2s−1

Reactive surface area S0 6000 m2m−3

Reaction rate r∗ = r0S0

ρ0
2e-8 s−1

Melt silica diffusivity Dq
f 1e-9 m2s−1

Thermal diffusivity κ 1e-6 m2s−1

Porosity φ0 0.05
Melt viscosity µ0 1 Pas
Bulk viscosity coefficient ζ0 1e19 Pas
Solid viscosity exponent m -1
Bulk viscosity ζ(φ0) = ζ0φ

m
0 2e20 Pas

Permeability coefficient K0 1e-7 m2

Permeability exponent n 3
Permeability K(φ0) = K0φ

n
0 1.25e-11 m2

Melt flux q0 = K(φ0)∆ρ0g
µ0

3.68e-7 ms−1

Table 4.4: Scaling parameters and non-dimensional numbers, definitions, and values

System depth h = P0

ρ0g
40775 m

Compaction length δ =
√

K(φ0)ζ(φ0)
µ

5e4 m
Damköhler number Da = r∗h

q0
2217

Peclet number PeC =
Dq

f

q0h
1.5e7

Peclet number PeT = κ
q0h

1.5e4
Adiabatic parameter Ad = α0gh

CP0

φfvf = φfvs −
K

µ

(
∂P
∂z
−∆ρg

)
(4.49)

φf
Dfc

k
f

Dt
=
Da

ρf

(
Γqf − c

q
fΓf
)

+
1

Pec

∂

∂z

(
(φf + εD)

∂cqf
∂z

)
(4.50)
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N∑
i=1

[
ρiφiCPi

DiT

Dt
− AdφiαiT

DiP

Dt
+DaTsiΓi

]
=

1

PeT

∂2T

∂z2
(4.51)

Where ∆ρ = ρ̄s − ρf . δ is the compaction length describing the length scale over which

compaction pressure decays

δ =

√
K(φ0)ζ(φ0)

µ0

(4.52)

Da is the Damkohler number, and Pec and PeT are the compositional and thermal Peclet

numbers

Da =
r∗h

q0

(4.53)

PeT =
q0h

κ
(4.54)

PeC =
q0h

Dq
f

(4.55)

The adiabatic term Ad describes the change in temperature due to adiabatic decompression

over the height of the system.

Ad =
α0gh

CP0

(4.56)

We assume that the constitutive laws for viscosities and permeabilities are given by simple

power-law expressions

K = K0(φf + εK)n, n = 3 (4.57)

ζ = ζ0(φf + εζ)
m, m = −1 (4.58)

Where εK and εζ are regularization parameters that ensure the compaction pressure does

not become singular, and varies smoothly, as φf → 0.

4.5.1 Batch melting column

To explore coupled flow and reaction, we consider a 1-D mantle column that is slowly

ascending beneath a ridge axis by passive upwelling. This is a standard benchmark problem

in magma dynamics that has been studied by many authors in the past using both equilibrium
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and disequilibrium formulations (Ribe, 1985; Spiegelman and Elliott, 1993; Asimow and

Stolper, 1999; Hewitt and Fowler, 2008; Katz, 2008; Rudge et al., 2011). In the absence

of transient perturbations the solution for the 1-D melting column evolves to steady state.

Here, we build on past formulations by incorporating disequilibrium, and also integrating a

real thermodynamic model for eutectic/peritectic style melting in a multiphase assemblage,

which fully couples the dynamics to the evolving phase assemblage.

We consider a harzburgitic mantle column, comprising 60 vol% ol and 40 vol% opx that

ascends from 1.2 GPa to the surface. The solid phase fractions are fixed on the lower

boundary. We fix the solid upwelling velocity at the upper boundary to W0 = 4 cm/yr, with

passive inflow across the lower boundary. We start the calculation with a solid adiabatic

temperature gradient calculated for the initial harzburgitic assemblage.

T = T0exp
(
ᾱP

ρCP

)
(4.59)

Where T0 is the potential temperature at the surface, and ᾱ and ρCP are the average

thermal expansivity and density and heat capacity for the initial solid assemblage. The

temperature of the lower boundary is fixed to a temperature corresponding to the potential

temperature of T0 according to equation (4.59), such that the solidus occurs at 1 GPa.

As the lower boundary is subsolidus, the compaction pressure is set to zero at the lower

boundary, with free-flux on the upper boundary. The values of all scaling, dimensional,

and non-dimensional parameters used in the calculation are given in Tables 4.3 and 4.4.

The thermodynamic variables are calculated directly from the thermodynamic models. The

remaining parameters have been chosen from the literature to best match those predicted

for the partially molten upper mantle.

The non-dimensional system of equations with the initial and boundary conditions de-

scribed above is solved using finite elements in TerraFERMA (Wilson et al., 2017). This

involves solving the weak form of the equations over a discretization of the domain. We use
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a semi-implicit time-stepping scheme with adaptive time-stepping to adjust the timesteps

according to the melting rate. We solve the equations at each timestep using Newton’s

method with a sparse direct solver. The calculated steady state melting columns are shown

in Fig.4.10.

The melt fraction F , that is the mass of melt extracted from the initial solid assemblage,

is not directly calculated from equations (4.44)-(4.51), but is a useful property for under-

standing the degree of depletion of the solid residue. It can be calculated by tracking the

concentration of a hypothetical perfectly compatible tracer in the solid ctrs , whose evolution

is described by

ρs(1− φf )
(
∂ctrs
∂t

+ vs
∂ctrs
∂z

)
= ctrs Γf (4.60)

The melt fraction is then calculated by mass balance

F = 1− ctrs0
ctrs

(4.61)

where ctrs0 is the initial concentration in the solid, which we set to unity.

The column initially melts rapidly until a quasi-equilibrium steady state is reached after

approximately 100 Kyr. In steady state, the permeability is sufficiently high that the porosity

is low throughout the column at 1-2 vol%. The melt fraction on the other hand reaches 27

wt%, which is reflected in the depletion of opx in the residue. As for the batch adiabatic

decompression model shown above, the system transitions from eutectic to peritectic melting

around 0.5 GPa. This appears to be unaffected by transport. This shows up in Fig 4.10 as

Γol transitions from negative (melting), to positive (crystallizing).

The benefit of the thermodynamic approach is that the dynamics are directly coupled to

the evolving petrology and thermodynamic properties of the phase assemblage. Fig. 4.11

shows the variation in the density and entropy of ol, opx and lq for the reference steady state

melting column. All lq properties vary more extensively than those of the solid phases due

to the variation in melt composition with depth. ρf , CP,f , sf , and αf vary inversely with

98



Figure 4.10: Calculated steady-state 1-D melting profiles in the Mg2SiO4-SiO2 system. This
is a near-equilibrium model with Da ≈ 104. The solid phase fractions in plot (h) are
normalized to 100% for the solid assemblage. The transition from eutectic to peritectic
melting can be seen in subplot (i) in which Γol becomes positive at 0.5 GPa, resulting in
melting reaction opx=ol +f.
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Figure 4.11: Thermodynamic phase properties for the steady-state profiles shown in Figure
4.10 from the solidus to the surface. (a) Phase densities; (b) ∆ρ = ρs − ρf is the density
difference between the aggregate solid and melt. The observed variation in the ρf and ∆ρ
is due to the variation in melt composition with pressure. (c) Phase entropies; (d) Latent
heat of melting. The entropies of all phases are temperature-dependent, but sf varies more
extensively due to variation in melt composition.

melt silica content, and therefore decrease with decreasing pressure. The thermodynamic

variables that are likely to have the most significant effect on melting profile are the density

difference between the melt and solid residue ∆ρ, and the latent heat L, which is defined as

L = T
N∑
i=1

si
Γi
Γf

(4.62)

In most past formulations these are simply set as constants. However, as melting is non-

modal, the latent heat depends on the stoichiometry of the net melting reaction which is

dependent on pressure and extent of depletion of the solid residue. As shown in Figure 4.11,

in this system, both ∆ρ and L show quite significant variation with pressure.

Parameter variation: Da

Of the four dimensionless parameters (Da, PeT , PeC , h
2

δ2
, Ad), Da is particularly poorly

constrained due to uncertainty in the macroscopic reaction kinetics. Fig. 4.12 shows the
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behavior of the steady state column for a range of Da. Previous authors (Ribe, 1985; Spiegel-

man and Elliott, 1993; Asimow and Stolper, 1999) have demonstrated the equivalence of 1-D

steady state equilibrium melting and batch melting, in terms of melt and solid composi-

tion, temperature, and extent of melting F . This provides us with a useful independent

test of the model in the limit of high Da. The calculations for batch melting are shown for

comparison in Fig. 4.12, and are in agreement with the pseudo-equilibrium runs. As the

extent of disequilibrium increases, the profiles show lower F , higher T , lower cqf , and higher

modal abundances of residual opx than expected for batch melting. The deviation does not

increase linearly with decreasing Da due to the non-linear coupling, but increases markedly

for Da > 10.

Figure 4.12: Calculated 1-D steady state melting columns for a range of Da compared to
the calculated profile for equilibrium (Da = ∞) batch and fractional melting. All other
model parameters in the disequilibrium melting columns are set to the reference values. F
and T are the same for fractional and batch melting and are represented by the red dashed
line. The fractional melt composition is the accumulated fractional melt composition that
we would expect for melt transported in chemically-isolated channels.

One interesting observation is that for disequilibrium runs, the melt at the surface is

undersaturated in opx, and compositionally preserves a deeper melting signature (Fig. 4.13).
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This reflects one of the primary observations of MORB which is usually attributed to the

transport of melt in high-porosity channels (Kelemen et al., 1997). This allows melts, that are

locally produced in equilibrium, to be rapidly transported to the surface without chemically

equilibrating with the overlying mantle, resulting in near-fractional melting. Although we

would expect some degree of interaction between channelized melts and the surrounding

mantle, simple scaling analysis can be used to show that a channel spacing of just 10 cm is

sufficient to maintain significant disequilibrium (Spiegelman and Kenyon, 1992).

The endmember scenario of perfectly fractional melting is calculated and plotted in figure

4.12. As melting locally occurs in equilibrium, the T and F profiles match those for equilib-

rium batch melting. However as the accumulated fractional melt does not re-equilibrate with

the overlying mantle, its composition preserves a weighted average of the deep melting sig-

nature. The calculated disequilibrium reactive flow profiles we calculate here do not capture

this behaviour as they assume that the local melting reaction and the subsequent transport

both involve the same degree of disequilibrium. This means that silica under-saturation in

the melt is also accompanied by lower melt productivity and a higher adiabatic temperature.

Recognition of these different modes of disequilibrium is important.

4.6 Discussion

These simplified problems provide a clear set of examples for illustrating how the coupled

thermochemical-geodynamic formulation is applied to a real system of geological interest.

The goal more generally was to develop a flexible, tractable and self-consistent approach to

integrating general thermodynamic systems into magma dynamics calculations. The exam-

ple models have been developed from the base up: from a thermodynamic description of

the phases and the equilibrium phase diagrams; to describing the system of reactions and

reaction kinetics; to integration of the reactive system into sets of conservation equations for

problems of varying complexity. These examples extend previous magma dynamics mod-

els by including multiple solid phases, and eutectic and peritectic melting reactions. The
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Figure 4.13: Surface melt compositions and temperatures from steady state melting columns
shown in Fig. 4.12 for differentDa, plotted on the 1 bar phase diagram. For lowDa the melts
are silica-deficient as they have not maintained equilibrium with the solid during ascent. The
ol-opx cotectic for different pressures in GPa are plotted for comparison.

calculations are also fully coupled, in that the physical properties such as density and heat

capacity, that feed into the dynamics and energetics of the system, are calculated directly

from the same thermodynamic models governing reaction. This ensures full self-consistency

between the chemistry and physics.

The behaviour of systems reacting far from equilibrium can be non-intuitive. By develop-

ing a hierarchy of models we were able to test how the kinetic model impacted the transient

and steady-state behaviour of the system, and to fine-tune it as necessary. Building up the

problems from simple 0-D models to more complex 1-D diffusive, and then 1-D reactive flow

models also allowed us to separate out the response to different diving forces (i.e. heat-

ing, decompression, chemical diffusion, melt infiltration). The inclusion of disequilibrium

reaction kinetics provides a more natural description of reaction as a time-dependent irre-

versible process. However by opening up the potential for disequilibrium, it also increases

the parameter space of the model through the choice of reaction set and the kinetic rate
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laws. In high-temperature geological systems, the kinetics of heterogeneous reaction are

poorly constrained and there is additional ambiguity when considering averaged kinetics at

a macroscale. The choices in the kinetic model therefore require careful consideration of the

system and problem being modeled. Here we used melt-mediated reactions, and simple linear

kinetics which are suitable for modelling interface-controlled kinetics within a homogeneous

partially molten system close to equilibrium (Dohmen and Chakraborty, 2004).

The relative importance of the kinetic model, including the choice of reactions and the

rate laws, depends on extent of disequilibrium. Close to equilibrium reaction is fast relative

to other processes, and the impact of kinetics is negligible. As long as the reactions have

been chosen to be consistent with equilibrium considerations discussed in Section 2.5.4, the

system will follow, or closely approximate, the equilibrium reaction path. The potential

difficulty in the equilibrium limit is rather that the system of governing equations becomes

stiff. Thankfully modern computational libraries such as SciPy, PETSc, FEniCS, and Ter-

raFERMA give considerable flexibility in constructing efficient solvers that are suitable for

such problems. As models are extended to higher dimensions further development of efficient

solvers will become paramount.

Further from equilibrium, the choice of reactions and rate laws have a significant im-

pact on the time-dependence of the the system. This is demonstrated in the batch reactor

models in Fig. 4.3 whereby a small change in the relative rates of the melting and crystal-

lization reactions resulted in very different transient behaviour. At the high temperatures of

the convecting mantle, we expect the mantle assemblages to be locally in, or very close to,

equilibrium. However as discussed above, this is only true at the very local scale. Hetero-

geneities, such as melt channels, at scales smaller than the scale of discretization result in

macroscale rates that are systematically slower than mineral dissolution and precipitation

rates measured in the laboratory for single grains in well stirred liquids. Despite this, grain

scale reaction rates used here provide a useful upper bound.

As noted above, a 1-D disequilibrium batch melting column with a single melt phase is
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not able to capture the type of macroscopic disequilibrium that arises due to channelized

flow. To capture the effect of sub-grid melt localisation requires a modelling approach that

decouples the local melting reaction from the chemical exchange between the ascending melts

and the solid residue. Rudge et al. (2011) do this for a simple binary phase loop by separating

out the mass flux associated with phase change from the fluxes of components that occur

without phase change. This is not readily extended to the more complex phase diagrams

as the stoichiometry of the melting reaction varies with depth. Oliveira et al. (2020) model

disequilibrium melting for more complex systems by introducing different thermodynamic

subsystems that interact with each other to varying degrees; representing unmetasomatised

regions far from melt channels, reactive regions at the rims of channels, and chemically

isolated channel interiors. A similar approach could readily be taken using our disequilibrium

formulation by introducing a second melt phase, representing the channelized melt that only

reacts very slowly with the surrounding rock (i.e. at a rate governed by the background

diffusion rate).

Further modelling in the Mg2SiO4-SiO2 system would help further our understanding

of feedbacks between melting and crystallization and transport. Of particular interest are

models in 2- or 3-D that explore the formation of reaction infiltration instabilities. Dunite

channels are thought to be formed through the incongruent dissolution reaction opx → ol +

melt, but previous models have only considered congruent melting reactions. As this process

has not been explored with real phase diagrams of incongruent melting, it is unresolved

whether the gradient in silica activity with decreasing pressure of olivine-orthopyroxene

saturated melts is sufficient to initiate channelisation. Stronger chemical gradients, such as

that due the infiltration of deep hydrous melts may be required (Keller and Katz, 2016; Keller

et al., 2017). Understanding this is critical for determining at what depth channelisation

occurs in the mantle.

Extension of this approach to more complex thermodynamic systems would allow more

direct comparison between models and field observations. For example applying this to a five
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phase peridotite with solid solution would allow us to simulate the formation of the diverse

reaction zones observed in orogenic peridotites. Furthermore, inclusion of aqueous fluids

and hydrous phases such as amphibole and phlogopite would allow us to model important

subduction zone processes. Application to such systems follows exactly the same workflow

as outlined above, but would require an expanded set of reactions in the reactive system,

and a greater number of fields to be solved for.

When extending the problem to higher dimensions, or to more complex petrological sys-

tems, it is important to consider the additional computational cost associated with greater

model dimensions. To tackle such problems going forwards, the availability of efficient solvers

will be paramount. One way to improve efficiency of more complex problems is to fix rela-

tively invariable phase properties as constants where appropriate, so as to reduce the com-

putational cost of calculating the Jacobian. For example, in the models above the densities,

heat capacities, and expansivities of olivine and orthopyroxene could be approximated as con-

stants over the melting region with very little loss of accuracy. Nonetheless, this framework

provides a way to quantitatively assess what assumptions are suitable for a given problem,

before scaling it up.

4.7 Summary

In this chapter I have implemented the general theory for disequilibrium reaction and

open-system reactive transport described in chapter 2. The Mg2SiO4-SiO2 binary system is

the simplest model system for understanding silicate melting. We have extended previous

thermodynamic modeling approaches by integrating thermodynamic models of the minerals

and melt, with kinetic formulations of reaction. The simple 0-D batch reactor models pre-

sented here demonstrate consistency with the phase equilibrium models in the equilibrium

limit, and also allow us to explore how choices in the kinetic models affect macroscopic re-

action pathways. Reaction-diffusion models further serve to explore open-system reaction

which is particularly useful for modeling the formation of reaction zones. Integration of more
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complex thermodynamic systems into these simple batch and/or diffusive systems could be

very useful in the interpretation and analysis of petrological experiments in which metasta-

bility and compositional and thermal gradients are often observed. Finally, we have modeled

open-system reactive melt transport in the Mg2SiO4-SiO2 in 1-D. This significantly extends

the capabilities of previous magma dynamics models, which were previously restricted to

modeling simple parameterized divariant melting reactions. Here we have directly incorpo-

rated a calibrated phase diagram with a variety of reaction morphologies, including eutectic

and peritectic melting involving multiple solid phases. The goal in the future is to extend

this to approach to higher dimensional models and to more complex petrological systems.
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Chapter 5

Formation of High-Porosity Dunite Channels by Reactive Melt

Transport

5.1 Introduction

Melt transport in high porosity dunite channels is thought to be an important mechanism

during melt extraction beneath mid-ocean ridges. The major and trace element compositions

of mid-ocean ridge basalts (MORBs) are not in equilibrium with the uppermost mantle

(Stolper, 1980; Johnson et al., 1990; Elthon and Scarfe, 1984). In particular MORB is

undersaturated in orthopyroxene (opx). This implies fractional or near-fractional melting

and requires melts to be extracted rapidly from their source in high-flux channels (Spiegelman

and Kenyon, 1992). Rapid melt extraction is corroborated by observations of uranium-series

disequilibrium (McKenzie, 2000), and pulses of magmatism following deglaciation (Jull and

McKenzie, 1996; Slater et al., 1998; Maclennan et al., 2002). Dunite channels observed in

the mantle section of ophiolites are generally thought to represent the high-porosity conduits

through which partial melts were transported (Kelemen et al., 1995a, 1997). Unlike the

surrounding harzburgite, the dunites are in equilibrium with MORB. However, there remain

significant questions concerning the mechanism driving melt channelization during partial

melting.

In this chapter I develop numerical models to simulate the formation of dunite channels

by reactive infiltration. The reactive infiltration instability is a chemo-dynamic instability

that arises during porous flow through a solubility gradient (Chadam et al., 1986; Ortoleva

et al., 1987). As melt ascends it dissolves, or melts, the surrounding solid matrix increasing
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the local porosity. This locally increases the permeability and melt flux driving further

dissolution: setting off a positive feedback. The reaction infiltration instability was first

suggested as a mechanism for dunite channel formation by Aharonov et al. (1995) and

Aharonov et al. (1997). Since then there have been numerous modeling efforts exploring

channelization by coupled reactive melt transport in a deformable solid matrix. Early models

only considered the mechanical and chemical couplings (Spiegelman et al., 2001; Spiegelman

and Kelemen, 2003). Later models integrated thermal models by self-consistently conserving

energy and accounting for latent heat of melting (Šrámek et al., 2007; Katz, 2008; Hewitt,

2010; Katz and Weatherley, 2012; Weatherley and Katz, 2012; Rudge et al., 2011; Keller

and Katz, 2016; Keller et al., 2017). These studies have yielded important insights into the

reaction-permeability-flux feedbacks, and have demonstrated the potential for background

adiabatic decompression melting to suppress channelization. However, recent models have

been restricted to simple parameterized phase diagrams. In particular they assume that both

the melt and solid are homogeneous phases which vary smoothly in composition between

compositional endmembers. In reality the mantle is a multimineralic medium in which

melting occurs via eutectic or peritectic melting reactions. The formation of dunite channels

themselves involves the open-system incongruent melting reaction

melt1 + opx→ melt2 + ol (5.1)

Accurately modeling the melting process and the formation of replacive dunite reaction zones

therefore requires an approach that explicitly accounts for the solid assemblage.

Here we build on previous modeling efforts by modeling reactive two-phase flow within

a multimineralic solid residue. We use the disequilibrium reactive framework described

in chapter 2, which consistently couples the dynamics and thermodynamics. We apply

this to melting and reactive transport in the Mg2SiO4-SiO2 binary system described in the

previous chapters, which represents the simplest subsystem for modeling harzburgite (ol +
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opx) melting. This chapter is organized as follows: Section 5.2 sets up the thermodynamic

and kinetic models; Section 5.3 lays out the governing equations for reactive transport in a

viscously compactible solid matrix; Section 5.4 describes the set-up for a series of 1-D and

2-D models; Section 5.5 presents the model results — the 1-D models provide a framework

for understanding open-system melting in the Mg2SiO4-SiO2 binary system, while the 2-D

models explore the conditions for reactive channelization; finally Section 5.6 discusses the

broader implications of these results.

5.2 Thermodynamic and reactive system

We model reaction between olivine (ol), orthopyroxene (opx) and melt (f) in the Mg2SiO4-

SiO2 binary system. In this system olivine is pure forsterite (fo(ol), Mg2SiO4), orthopyroxene

is pure enstatite (en(opx), Mg2Si2O6), and the melt is a binary solution between silica (q(f),

Si2O4) and forsterite (fo(f), Mg2SiO4) endmembers. The details of the Gibbs free energy

models of the pure endmembers and phases are described in chapter 3. Because we are

considering reaction in a harzburgitic mantle, we do not include quartz in the reactive system.

The phase assemblage is then described in terms of four variables: the volume fractions of

the three phases φol, φopx, and φf ; and the concentration of silica in the melt cqf . We only

need one compositional variable as the minerals are pure phases, and the melt forsterite

concentration is simply cfof = 1− cqf .

The equilibrium phase diagrams at 1 bar and 1 GPa for mafic compositions in the

Mg2SiO4-SiO2 system are shown in Figure 5.1 (a) and (b). As shown, the fo-en cotec-

tic melting reaction shifts from eutectic to peritectic at low pressure due to the relative

expansion of the olivine phase field. This is responsible for the gradient in equilibrium melt

silica concentration with pressure shown in Figure 5.1 (c). In this chapter we will be explor-

ing reactive channelization as a result of melt transport up this silica gradient. While the

binary subsystem reasonably approximates the gradient in silica content of natural peridotite

melts, we do not capture the effects of incompatible components in the melt, ranging from
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Figure 5.1: Calculated equilibrium phase diagrams for mafic compositions in the Mg2SiO4-
SiO2 binary system at (a) 1 bar, and (b) 1 GPa. (c) Variation fo-en cotectic melt composition
as a function of pressure
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Fe to H2O, which further contribute to flux melting. The role of volatiles in reactive melt

transport is explored by Keller and Katz (2016) and Keller et al. (2017). Furthermore, fo-en

cotectic melting in the binary is a univariant reaction. This differs from natural systems in

which melting is multivariate, occurring over a region in P -T space. Despite these short-

comings, this contribution is the first to include peritectic and eutectic melting reactions,

involving multiple solid phases, in a coupled two-phase flow model. By explicitly describing

the mineralogy of the solid residue we are able to model the formation of replacive dunites

by incongruent open-system melting.

In this two-component thermodynamic system there are four phase endmembers in total

meaning that there are two independent stoichiometric reactions. We use the following

melt-mediated reactions

1. fo(ol) ⇀↽ fo(f)

2. en(opx) ⇀↽
1

2
q(f) + fo(f)

(5.2)

Weighting by the molar masses, the mass-based stoichiometric coefficients are

ν =



νqf,1 νqf,2

νfof,1 νfof,2

νfool,1 νfool,2

νenopx,1 νenopx,2


=



0
Mq

f

Men
opx

1
Mfo

f

Men
opx

−1 0

0 −1


(5.3)

Where Mk
i is the molar mass of endmember k in phase i. These reactions are assumed to

proceed at independent rates R1 and R2 as a function of their respective chemical affinities.

At high temperature within the mantle we assume the system is close to chemical equilibrium

We therefore use linear rate laws. The reaction rates in units of kgm−3s−1 are

R1


= r0exp

(
T
Tr

)
S0φol

M0

Mfo
ol

A1

RT
, A1 ≥ 0

= r0exp
(
T
Tr

)
S0φf

M0

Mfo
ol

A1

RT
, A1 < 0

(5.4)
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R2

 = r0exp
(
T
Tr

)
S0φopx

M0

Men
opx

A2

RT
, A2 ≥ 0

= r0exp
(
T
Tr

)
S0φf

M0

Men
opx

A2

RT
, A2 < 0

(5.5)

Where r0 is the rate constant prefactor with units kgm−2s−1; Tr is a reference reaction

temperature; and M0 is a reference mass of reaction; S0 is the reference mineral-melt surface

area with units m2m−3; and R is the gas constant. Aj is the molar chemical affinity of

reaction defined as before as

Aj = −
N∑
i=1

Ki∑
k=1

ν̃ki,jµ̃
k
i (5.6)

where ν̃ki,j are the molar stoichiometric coefficients, and µ̃ki are the molar chemical potentials.

The piecewise rate laws account for the different reactants in the forward and reverse

direction. Here we have made the simplifying assumption that the surface area is a linear

function of the reactant phase fraction: i.e. in the forward direction Sj ∝ [φol, φopx], and in

the reverse direction Sj ∝ φf . In reality the reactive surface area depends on the rock mi-

crostructure and therefore likely has a more complex functional form. Close to equilibrium,

however, this does not have a significant impact on the melting reactions. Most impor-

tantly these reactive surface areas satisfy the condition that S → 0 as the reactant phase is

exhausted, ensuring positivity of phase fraction.

We describe the rate constants with an Arrhenius temperature dependence. However,

we have made the simplifying assumption that they have the same values for both reactions

in both the forward and reverse directions. The kinetics of dissolution and precipitation in

igneous systems are poorly constrained, and there is not sufficient evidence to differentiate

between the melting and crystallization rates during reactive porous flow. This assumption

could easily be relaxed in light of further constraints.

Taking these reaction rates along with the reaction stoichiometries, the net reactive mass
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transfers of the endmembers and phases are given by

Γfool = −R1 Γol = Γfool = −R1

Γenopx = −R2 Γopx = Γenopx = −R2

Γqf =
M q

f

2M en
opx

R2 Γfof = R1 +
M fo

f

M en
opx

R2 Γf = Γqf + Γfof = R1 +R2

(5.7)

As described in the previous chapters, the thermodynamic and kinetic models are im-

plemented in custom C++ libraries generated using the thermocodegen and thermoengine

packages of the ENKI project. The software has a hierarchical structure, and all of the rele-

vant thermodynamic and reactive properties, along with their derivatives where appropriate,

are accessible through the kinetics library. This library can be imported directly into the

dynamics code. Thermocodegen also provides python bindings so that the system can be

explored in a python environment. This is very useful when setting up the problem and

doing simple batch calculations with which to compare the results of the dynamic models.

The properties of the pure endmembers are functions of P and T ; those of the phases are

functions of P , T , and the phase compositions c =
[
[cqf , 1− c

q
f ][1][1]

]
. The reaction rates and

reactive mass transfers are functions of P , T , c, and the phase fractions φ = [φol, φopx, φf ].

We assume here that the thermodynamic pressure is equivalent to the fluid pressure. The

correct thermodynamic pressure to use is subject to debate. For a further discussion of this

see Rudge et al. (2011).

5.3 Governing equations

The conservation equations for mass momentum and energy for porous multiphase reac-

tive flow in a deformable solid matrix are described in chapter 2. These are based on the

two-phase flow formulations of McKenzie (1984) and Rudge et al. (2011), but generalized for

a multiphase solid. In the high temperature convecting mantle the solid deforms viscously

on the timescale of melt extraction. Here, we ignore deviatoric strain and decompose the
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fluid pressure P into the compaction pressure P and the lithostatic pressure ρs0g · z. The

governing equations for cqf , φ, P , vs and T are then as follows

ρfφf
Dfc

k
f

Dt
= Γkf − ckfΓf +Dk

f∇ · (φf + εD)∇ckf (5.8)

Dsφi
Dt

= −φi
P
ζ

+
Γi
ρi

for i = ol, opx (5.9)

Dsφf
Dt

= (1− φf )
P
ζ
−

N∑
i=2

Γi
ρi

(5.10)

P
ζ

= ∇ · K
µ

(∇P + ∆ρg) +
N∑
i=1

Γi
ρi

(5.11)

∇ · vs =
P
ζ

(5.12)

N∑
i=1

[
ρiφiCPi

DiT

Dt
− φiαiT

DiP

Dt
+ TsiΓi

]
= k∇2T (5.13)

Here we have used the convention i = 1 for the melt, and i = 2 for ol and i = 3 for

opx. ρi, CPi, αi, and si are the density, heat capacity, thermal expansivity, and entropy of

phase i respectively. ρ̄ =
∑

i φiρi is the average density of the multiphase assemblage. vi

is the velocity field of phase i: we assume that the aggregate solid (ol + opx) behaves as

a single mechanical phase with velocity vs, and that the melt has velocity vf . Di

Dt is the

Lagrangian derivative following phase i Di

Dt = ∂
∂t

+ vi ·∇. µ is the melt viscosity, k is the

thermal conductivity, Dq
f is the diffusivity of of silica in the melt, and εD is a regularization

parameter to account for subsolidus diffusion along grain boundaries. As the phase densities

are relatively constant, we have neglected the density derivative terms Diρi
Dt . We have also

neglected dissipative heating terms in the temperature equation.

Given φf , P , and vs, the melt flux is reconstructed as

φfvf = φfvs −
K

µ
(∇P + ∆ρg) (5.14)
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The mechanical equations are closed with constitutive relations for the permeability K

and bulk viscosity ζ. Following previous authors we will use the following φf -dependent

expression for the bulk viscosity

ζ = ζ0φ
m
f , m = −1 (5.15)

We use a simple power law relationship for the permeability

K = K0φ
n
f , n = 3 (5.16)

5.3.1 Scaling

We non-dimensionalize the equations by introducing the following scalings

z = hz′ t = h
q0
t′ (vf ,vs) = q0(v′f ,v

′
s) g = gĝ

T = T0T
′ ρi = ∆ρ0ρ

′
i P = ∆ρ0ghP

′ Γi = r0S0Γ′i

ζ = ζ(φ0)ζ ′ K = K(φ0)K ′ µ = µ0µ
′

CPi = CP0C
′
Pi si = CP0s

′
i αi = α0α

′
i

Where the primed terms indicate dimensionless variables. The scaling parameters are as

follows: h is the height of the system; ∆ρ0 is the reference density difference between solid

and melt; and K(φ0) and ζ(φ0) are the permeability and bulk viscosity at the reference

porosity. q0 is the reference separation flux, given by

q0 =
K(φ0)∆ρ0g

µ0

(5.17)

and δ is the compaction length defined as

δ =

√
K(φ0)ζ(φ0)

µ0

(5.18)
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Removing the primes the governing equations in terms of nondimensional variables are then

ρfφf
Dfc

q
f

Dt
= Da

(
Γqf − c

q
fΓf
)

+
1

PeC
∇ · φf∇cqf (5.19)

Dsφi
Dt

= −h
2

δ2
φi
P
ζ

+Da
Γi
ρi

for i = ol, opx (5.20)

Dsφf
Dt

=
h2

δ2
(1− φf )

P
ζ
−Da

N∑
i=2

Γi
ρi

(5.21)

h2

δ2

P
ζ

= ∇ · K
µ

(∇P + ĝ) +Da

N∑
i=1

Γi
ρi

(5.22)

∇ · vs =
h2

δ2

P
ζ

(5.23)

φfvf = φfvs −
K

µ
(∇P + ĝ) (5.24)

N∑
i=1

[
ρiφiCPi

DiT

Dt
− AdφiαiT

DiP

Dt
+DaTsiΓi

]
=

1

PeT
∇2T (5.25)

Where Da is the Damköhler number, PeC is the compositional Peclet number, and PeT is

the thermal Peclet number

Da =
r0S0h

∆ρ0q0

(5.26)

PeC =
∆ρ0q0h

Dq
fρ0

(5.27)

PeT =
∆ρ0q0h

κρ0

(5.28)

The dimensionless parameter Ad describes the adiabatic cooling due to decompression

Ad =
α0gh

CP0

(5.29)
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5.4 Model setup

We consider mantle melting and reactive melt transport within a decompressing region

beneath the axis of a mid-ocean ridge. We will model both 1-D profiles, and melting within

a simple 0.8:1 rectangular 2-D region. The 1-D column models allow us to establish the

steady state vertical melting profiles and to explore the open-system melting systematics.

The 2-D models the allow us to explore the coupling between reaction and fluid flow and to

determine the regime under which reactive channelization occurs.

5.4.1 Initial and boundary conditions

The model domains of both the 1-D and 2-D models extend from 1.2 GPa and the

surface. The geometry and setup of the 2-D models are shown in Figure 5.2. The 1-

D models represent vertical sections through the 2-D domain. To simulate the effects of

passive decompression we impose a constant solid upwelling velocity at the upper boundary

vs · ẑ = W0, and allow free flow across the lower boundary. The upwelling velocity is varied

in the models between 0 ≥ W0 ≥ 10 cm yr−1. Compaction within the melting region means

that vs · ẑ > W0 at the lower boundary. On the lower boundary we impose zero compaction

pressure, and fix the temperature T = T0 such that the mantle crosses the solidus around 1

GPa. Melting occurs at a much higher temperature in the Mg2SiO4–SiO2 system than for

natural peridotite compositions. As a result the model temperatures are higher than the

natural mantle geotherm.

We consider two melting scenarios. The first is simple decompression melting in which

solid rock upwells from below its solidus and begins to partially melt on crossing the solidus.

In this case the inflowing mantle at the lower boundary has zero porosity and fixed solid phase

proportions. For similarity to upper mantle harzburgites we use φol = 0.6 and φopx = 0.4.

Although there is no melt physically present at the lower boundary, we still have to specify

a melt composition. Given the underlying thermo-kinetic model, reaction spontaneously oc-
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Figure 5.2: Model setup for 2-D upwelling column models. On the right is the setup for the
decompression melting models with no melt flux across the lower boundary (φf = 0). On the
left is the setup for decompression melting with an influx of melt across the lower boundary
(φ=0.01). For these models we apply ‘masks’ to ζ and Γi to impose a rigid unreactive buffer
zone below the solidus. These are given by ζmask = 1000 + 1−1000

2

(
tanh

(
Psol−P

λ

)
+ 1.

)
and

Γmask = 1
2

(
tanh

(
Psol−P

λ

)
+ 1
)
. The boundary conditions are the same for the 1-D models.

curs as a result of the relative stability of the melt and solid phases. To avoid disequilibrium

melting beneath the solidus, the melt composition must be carefully chosen so that it falls

below the metastable extensions of the fo and en liquidus surfaces. We use a melt composi-

tion of cqf = 0.2406 which is slightly more forsteritic than the equilibrium melt composition

at the 1 GPa solidus.

In the second scenario we consider decompression melting with an influx of melt across the

lower boundary. We refer to these models are ‘fluxed inflow’ melting scenarios. We impose

1% porosity at the lower boundary φf = 0.01, while using the same relative proportions of

ol and opx as before (φol = 0.594, φopx = 0.396), and the same melt composition. In these

models compaction and reactive crystallization of melt beneath the solidus are prohibited

by imposing a rigid unreactive buffer zone. This is achieved by applying ‘masks’ to the bulk
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viscosity and reactive mass transfer terms such that

ζ ′ = ζmaskζ (5.30)

(
Γi, Γki

)′
= Γmask

(
Γi, Γki

)
(5.31)

Where ζmask and Γmask are tanh transfer functions as shown in Figure 5.2.

The 1-D models are initialized with constant porosity, phase proportions, melt compo-

sition and temperature across the domain. As the system is initially far out of equilibrium

there is a large transient melting pulse before it evolves to steady state. To avoid this

transient, the 2-D models are instead initialized with the steady state 1-D melting profiles

for pure decompression melting. On top of the steady state depletion gradient in the solid

phase fractions we introduce some uniformly distributed random noise as shown in Figure

5.3. Because melting in the binary is univariant, the melting temperature is independent of

ol and opx phase proportions. However, these heterogeneities in modal proportions produce

variations in melting rate via the reactive surface area terms in the reaction rates. As opx is

the main contributor to the net melting reaction, regions with high opx have locally increased

melting rate.

5.4.2 Parameters

Apart from varying the solid upwelling velocity, the parameter values are the same for

all model runs shown here. Parameters are selected based on estimates for partial melting

in the mantle. To avoid numerical instabilities at the solidus, however, we use a factor of

10 lower reaction rates and higher diffusivities than might be expected. All reference and

scaling parameters are reported in table 5.1. The thermodynamic properties, including ρi,

CPi, αi, and si, of all phases are calculated on the fly from the underlying thermodynamic

models. Using the thermodynamic rate laws in Eq (5.5), the reaction rates and net melting

stoichiometry also vary as a function of the chemical affinities. This ensures complete self-
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Figure 5.3: The initial fields for the modal proportions of olivine and opx in the solid residue
( φol

1−φf
and φopx

1−φf
) used in the 2-D models. These are obtained from the steady state 1-

D decompression melting profiles, with uniform random noise imposed over the top. The
maximum amplitude of the random fluctuations is εφ = 0.05.

consistency between the thermodynamics and dynamics.

5.4.3 Numerical implementation

We discretize the system of equations (5.19)-(5.25) using finite elements in space and

finite difference in time. They are solved numerically using TerraFERMA (Wilson et al.,

2017), which is an open-source software package for reproducible assembly and solution of

finite element models that leverages the FEniCS (Alnæs et al., 2015), PETSc (Balay et al.,

2012), and SPuD (Ham et al., 2009) libraries. The finite element method involves solution,

within a finite element space, to the weak forms of the equations, which are provided in

Appendix E. Solution to the system at each timestep is obtained using an iterative Newton

solver. We improve convergence by solving over two steps: in the first we estimate solutions

for φ, cqf , and T ; before solving the full system of equations.

The domain for the 1-D models is discretized using a uniform grid with 320 nodes, giving
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Table 5.1: Parameters, definitions, and reference values

Temperature T0 1965 K
Pressure P0 1.2 GPa
System depth h = P0

ρ0g
38226 m

Density ρ0 3200 kgm−3

Density difference ∆ρ0 = ρ̄s − ρf 300 kgm−3

Heat capacity CP0 1.36 Jkg−1K−1

Expansivity α0 5e-5 K−1
Gravity g 9.81 ms−2

Solid velocity W0 0-10 cm yr−1

Rate constant r0 1e-9 kgm−2s−1

Reactive surface area S0 6000 m2m−3

Melt silica diffusivity Dq
f 1e-7 m2s−1

Thermal diffusivity κ 1e-6 m2s−1

Porosity φ0 0.05
Melt viscosity µ0 1 Pas
Bulk viscosity coefficient ζ0 1e19 Pas
Bulk viscosity ζ(φ0) = ζ0φ

−1
0 2e20 Pas

Permeability coefficient K0 1e-7 m2

Permeability K(φ0) = K0φ
3
0 1.25e-11 m2

Melt flux q0 = K(φ0)∆ρ0g
µ0

3.68e-7 ms−1

Compaction length δ =
√

K(φ0)ζ(φ0)
µ

5e4 m
Damköhler number Da = r∗h

q0
2217

Peclet number PeC =
Dq

f

q0h
1.5e7

Peclet number PeT = κ
q0h

1.5e4
Adiabatic parameter Ad = α0gh

CP0
13.8

a resolution of 120 m. For the 2-D models we use a uniform triangular mesh with 100×125

cells; this gives a mesh resolution of 300 m.

5.5 Results

5.5.1 1-D models

The decompression melting model evolves to steady state after 100 kyrs. The steady

state melting columns for a solid upwelling rate of W0 = 4 cm yr−1 are shown in Figure
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Figure 5.4: 1-D column models shown for t = 10 in model time. (a)-(e) show results for
decompression melt models. The dashed lines correspond to ‘closed-system’ batch melting
where we have set K = 0. (f)-(j) show results for the fluxed inflow models. These do not
reach steady state due to the sustained flux of melt on the bottom boundary. Profiles at
t = 2, 4, 6, 7, 8, 9, 10.
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5.4 (a)-(e). In the equilibrium limit, steady state 1-D reactive porous flow is constrained

to be equivalent to batch melting (Asimow and Stolper, 1999). In the models here some

disequilibrium arises due to solid and melt advection. To separate out the disequilibrium

effects of open-system melt transport versus solid upwelling, we have run a suite of models

with the permeability set to zero. All the other parameters are the same, but now the melt

does not separate from the solid residue. As such the melt velocity is equal to the solid

velocity (i.e. vf = vs = W0), and the porosity remains high. There is little appreciable

difference between T and φol,opx for the closed and open melting scenarios. However a more

substantial difference is observed in cqf at the top of the column where the open-system melt

velocity is greatest. This difference is caused by the additional component of disequilibrium

due to melt transport relative to the solid.

Figure 5.4 (f)-(j) shows 1-D melting profiles with fluxed inflow of melt, again for an

upwelling rate ofW0 = 4 cm yr−1. The inflow of melt means that these models do not evolve

to steady state, but rather become progressively more depleted in opx, eventually forming a

dunite layer at the top of the column. The ledges in φf and vf above the solidus are a result

of the rigid buffer zone imposed at the base of the domain.

Analysis of open system reaction rates

Reactive channelization arises during open-system melting when local fluctuations in

the melt flux produce variations in the melting rate in excess of those due to background

decompression melting. This occurs during flow up a solubility gradient. channelization is

favored when there are strong gradients in the equilibrium melt composition, and when melt

velocities are high relative to the solid. This second condition requires implies high rock

permeability. This is shown schematically in Figure 5.5.

In our reactive formulation, the melting rate Γf is a function of the disequilibrium due

to both solid and melt advection, making it difficult to deconvolve the two. However, by

comparing Γf for the open-system (K = K0(φf )) and closed-system (K = 0) models shown
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Figure 5.5: Schematic illustration of the additional component of flux melting driven by
transport of melt relative to the solid matrix (i.e. open-system melting). Pressure decreases
vertically on the y-axis and the x-axis is the concentration of a component k in the melt. The
black lines show two examples of the equilibrium concentration of component k in the melt.
Melt must react with the surrounding solid to maintain equilibrium as it ascends, with the
additional component of flux melting given by Γopenf . The degree of flux melting therefore
increases with solubility gradient and melt velocity.
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Figure 5.6: Analysis of reaction rates for 1-D melting columns. Plots (a) and (c) show the
net reactive mass transfer into/out of each phase Γi and the reactive mass transfer of silica
into/out o the melt Γqf for melting columns with an upwelling rate of 4 cm yr−1. Peritectic
reaction corresponds to Γol > 0. The dashed lines are for closed system batch melting (K =
0) and the solid lines are for open system melting. (b) and (d) show the relative contribution
of flux melting to the total melting rate for different W0. For decompression melting this is
independent of W0, but for the fluxed inflow models it increases as W0 decreases.
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in Figure 5.4, we can explicitly separate out these two components. All other things being

equal, the excess melting due to flux melting is given by

∆Γf =
Γf,open − Γf,closed

Γf,open
(5.32)

We have run open- and closed-system melting models for a range of upwelling velocities and

plotted the reaction rates in Figure 5.6. For the adiabatic decompression models flux melting

is responsible for increasing the melting rate by 25%. This excess melting is insensitive to

changes in upwelling velocity, implying that changes in upwelling velocity will not affect

the channelization potential for a region undergoing decompression melting. For the fluxed

inflow models, there is an additional component of flux melting due to the inflow of deep

melt. In this scenario, as the melt flux in the bottom of the domain is relatively independent

of upwelling rate, the relative contribution of flux melting increases as W0 decreases. In the

limit of zero upwelling, when there is no background decompression melting, flux melting

accounts for 100% of the melting rate. Where there is a sustained deeper source of melt, we

would therefore expect channelization to be promoted for slow background upwelling rates.

Flux melting not only changes the melting rate, but also impacts the net melting reaction.

This is demonstrated most clearly for the fluxed inflow model in Figure 5.6 (c) where we

have plotted the Γi terms. Whereas for closed-system melting the net reaction transitions

from eutectic to peritectic around 0.4 GPa, during flux melting, the net melting reaction

is peritectic at all depths. This is because the flux of silica-poor deeper melts drives the

incongruent melting reaction

opx+ f1 → ol + f2 (5.33)

This incongruent melting reaction is responsible for the continued depletion of opx in the

residue, which over time can result in dunite formation.
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Figure 5.7: Time evolution of static (W0 = 0) fluxed inflow model. The orthopyroxene field
is the modal opx in the solid residue. Channels emerge pervasively through the melting
region. Melt influx produces a thick dunite layer at the top of the domain.
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5.5.2 2-D models

Here we explore the coupling between open-system melting and melt transport in 2-D

to determine the condition under which the silica gradient of the binary melt composition

drives reactive channelization.

Static fluxed inflow

The analysis of open-system melting rates above implies that channelization is most likely

for a static system (i.e. W0 = 0) subject to a flux of melt from below. In the 2-D model

simulations we find that this setup is strongly unstable to reactive channelization. The

time-series progression of channelization is shown in Figure 5.7. Because the silica gradient

is relatively constant with pressure (as shown in Figure 5.1), The instability first emerges

throughout the domain as periodic variations in φf , q, and Γi. It takes slightly longer for

the channels to show up appreciably in the solid assemblage, and thus for the high-flux

regions to be preserved as dunite channels. At the beginning of the simulation (φf , q, Γi)

are positively correlated with the random fluctuations in φopx. This reflects the dependence

of the melting rate on φopx through the reactive surface area terms in the rate law. However,

as the channels become established, (φf , q, Γi) become anti-correlated with φopx. This is

shown in the horizontal profile in Figure 5.8.

In the absence of background solid advection, the system does not establish a steady

state. Rather, the sustained flux of deep silica-poor melt progressively depletes the melting

region of opx, eventually producing a thick dunite layer at the top of the domain. Once all of

the opx has been exhausted, the incongruent melting reaction driving channelization shuts

down, and the melt transport regime transitions to pervasive porous flow.

Decompression melting

Simulations for decompression melting with no melt flux on the lower boundary do not

show any melt channelization. The melt is instead transported by pervasive porous flow.
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Figure 5.8: Cross section of the 2-D fluxed inflow model at P = 0.4 GPa and for t = 593
kyr. Plotted are φopx, φf , cqf and nondimensional melt flux magnitude q and melting rate
Γf .

Figure 5.9 shows the porosity field and a horozontal profile across the melting region at

t=310 kyr, for a simulation with an upwelling rate of 4 cm yr−1. Unlike in the channelized

model above, there is no wavelength selection and the random variations in (φf , q, Γi) are

positively correlated with the imposed fluctuations in φopx. The lower contribution of flux

melting to the net melting rate in this model means that pervasive porous flow is stabilized

by the background adiabatic decompression melting.

Decompression melting with fluxed inflow

Intermediate between the two endmember setups shown above are scenarios where there

is both background melting (W0 > 0) and an additional influx of melt across the lower

boundary. Running models for a range of W0 we find that, for the parameter space used

here, channels only emerge for low upwelling rates W0 < 2 cm yr−1. Results for a simulation

with W0 = 1 cm yr−1 are shown in Figure 5.10. The stabilizing effect of background melting

means that channels are less pronounced (i.e. have lower φf , q etc.) than for the static flux

melting scenario. From examination of the open-system melting rate systematics shown in
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Figure 5.9: (a) Porosity field and (b) cross section of 2-D decompression melting model for
W0 = 4 cm yr−1. For the reference parameters no channelization is observed.
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Figure 5.10: (a) Porosity field, (b) modal opx, and (c) cross section with renormalized fields
for the fluxed inflow model with W0 = 1 cm yr−1. The position of the cross section is shown
by the dashed line in (a).
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Figure 5.6, these results imply that channelization only emerges when flux melting accounts

for more than 50% of the net melting rate.

5.6 Discussion

5.6.1 Channel geometry and evolution

The channelized model runs show strong wavelength selection during channel growth.

Linear analysis of the reactive infiltration instability during melting shows that the minimum

wavelength is set by chemical diffusion, while the maximum wavelength is controlled by

compaction (Aharonov et al., 1995; Spiegelman et al., 2001; Rees Jones and Katz, 2018).

The interaction of compaction pressure with porous channels for the static inflow model is

shown in Figure 5.11. Compaction occurs across the whole melting region, but is particularly

strong within the high-porosity channels. Decompaction is restricted to regions above pockets

of high porosity, or above jogs in the channel paths.

The channels evolve over time, with melt being progressively focused toward channel

edges as opx is exhausted in the interior. This appears as a bifurcation in the porosity

and melt flux as shown in Figure 5.12. Under the influence of compaction, some channels

are also abandoned. As the mineralogy of the solid residue records the time-integrated melt

flux, channels that have been abandoned are still preserved as replacive dunites. Likewise, as

channels bifurcate, the residual dunite zones expand laterally. This highlights the fact that

dunite channels preserved in ophiolite sections do not necessarily represent a porous melt

network that was all active at the same time, and even within individual channels melt flux at

any one time may be focused within a particular zone. However, the channelization process

in natural peridotites is more complex than the simplified setup modeled here, with shear

deformation (Holtzman et al., 2003; Spiegelman, 2003; Katz et al., 2006) and hydrofracture

and channel decompaction (Connolly and Podladchikov, 1998) potentially playing a role. As

such the interpretation of the channel geometries can only go so far.
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Figure 5.11: Dimensionless compaction pressure P field for the static fluxed inflow model
at t = 512 kyr. blue and beige colors show compacting regions and dark red colors show
decompacting regions. Porosity contours are plotted over the top.
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Figure 5.12: Snapshots of melt flux at (a) 512 kyr and (b) 638 kyr for the 2-D static fluxed
infow model showing evolution in channel morphology over time. (c) Modal proportion of
olivine in the solid residue at 638 kyr preserves a time-integrated record of melt transport.
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5.6.2 Melt inflow as a driver of channelization

The results here demonstrate that in the absence of other solubility gradients, channel-

ization of melt due to the reactive dissolution of opx during adiabatic decompression melting

only occurs when there is an additional flux of deep silica-poor melt. The stabilizing impact

of background decompression melting has been observed in previous model studies (Hewitt,

2010; Katz, 2008). We can consider three potential sources of deep melt flux. The first is

from melting of fusible pyroxenitic heterogeneities. The role of mantle heterogeneity in seed-

ing channels was examined for a simplified reactive model by Weatherley and Katz (2012)

and Katz and Weatherley (2012). The second is from deep volatile-rich melting. However,

as any volatile-rich melts produced at depth in the mantle are very low-degree, the role of

volatile melting is more likely related to the chemical corrosivity of these melts. A perhaps

more voluminous source of basal melt flux could be related to the focusing of melt towards

the ridge axis. Recent models have demonstrated strong melt focusing at depth beneath the

ridge axis through the combined effects of melt pressure focusing and ridge suction (Turner

et al., 2017; Sim et al., 2020). Beneath the ridge axis, this focusing provides an additional

flux of deep melt in excess of that for purely vertical flow. The role of melt focusing in

reactive channelization has yet to be examined.

Here we have modeled the impact of the gradient in equilibrium melt silica concentration

in the binary system. The silica gradient is responsible for dunite formation in regions of high

flux relative to the solid upwelling rate, via the incongruent open-system melting reaction:

opx + f1 → ol + f2. As demonstrated with the thick layers of replacive dunite at the top

of the domain of the fluxed inflow models, dunites are expected to form wherever there is a

sustained flux of deep melt. Here, we have shown that the gradient in silica content could

also initiate an instability driving melt channelization. However, this does not mean that

channelization in natural systems arises from the gradient in silica content alone. While silica

is the main chemical component in the mantle, the presence of other chemical gradients in

natural systems is expected to further contribute to flux melting and reactive channelization.
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The conditions for channelization in the binary system should therefore be viewed as the

most conservative scenario. Fluxing of highly incompatible components, including H2O,

CO2, K2O, and Na2O in deep low fraction melts, could have a particularly strong channeling

effect. This is in part due to the impact of these components on the equilibrium melt silica

content (Kushiro, 1975; Ryerson, 1985), as discussed in chapter 3. The role of volatiles was

considered for a simple system by Keller and Katz (2016) and Keller et al. (2017), who

demonstrated the strong channelization potential during adiabatic decompression melting

at the anhydrous solidus due to fluxing of H2O and CO2 rich melts.

5.6.3 Model limitations

The models presented here represent the first examples of eutectic and peritectic melt-

ing being included in two-phase magma dynamics. As discussed, they provide a framework

for understanding the conditions under which reactive channels emerge, while directly ac-

counting for the solid phase assemblage. We have also demonstrated the full self-consistent

coupling between thermodynamics and melt transport dynamics. As discussed above, the

role of other melt components in driving channelization is yet to be explored. We also have

not explored the role of other mantle phases. These impact both the melting reaction, and

the melt productivity. Clinopyroxene (cpx) in particular is a major contributor to deep par-

tial melting. The greater solubility of cpx relative to opx was shown to promote reactive

channelization in the experiments of Pec et al. (2020).

The role of shear deformation and the resulting mechanical feedbacks (Stevenson, 1989;

Holtzman et al., 2003; Spiegelman and Kelemen, 2003; Katz et al., 2006; Butler, 2009, 2012)

are beyond the scope of this study. The interaction between reactive channeling and shear-

driven instabilities was subject to a recent analysis by Rees Jones et al. (2021). Field evidence

in some ophiolites show that shear could play a role in melt focusing under some dynamical

regimes (Kelemen and Dick, 1995). The simple viscous rheology used here also does not allow

for failure of the solid residue. On the basis of field evidence and simple scaling analysis,
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fracture-driven melt transport in the mantle cannot be ruled out Kelemen et al. (1997).

Hydrofracture at the core of high-flux dunites would provide a channelization mechanism

independent of the reactive focusing mechanism explored here.

Finally, the models presented here have relatively coarse spatial resolution of 100-300 m,

limiting the lengthscales of features that can be modeled. This contrasts with field exposures

in ophiolites, where dunite channels are observed down to the scale of a few cm. Furthermore,

the requirement to have a smooth solution at the model resolution used means that we have

been restricted to running models at lower Da and PeC than would be expected in natural

systems. The high diffusivity suppresses high frequency channels.

5.6.4 Future work

Further analysis of these initial model simulations is required. In particular I aim to

compare these numerical results with the linear stability analysis of Rees Jones and Katz

(2018). I also aim to explore how variations in the model parameters affect the melt transport

regime. A particular target is to run a series of high resolution simulations with higher Da

and PeC .

The models here pave the way for integrating more complex chemistry in the future,

in order to more closely approximate melting systematics of natural peridotites. One way

of approaching this would be to use a reduced thermodynamic subsystem, as done here,

but adding additional components. The Mg2SiO4–SiO2–H2O or Mg2SiO4–SiO2–CaMgSi2O6

ternary systems would be suitable candidates. Alternatively, parameterized phase relations

could be used, such as those implemented by previous authors (e.g. Keller and Katz, 2016),

but with the inclusion of eutectic and peritectic melting reactions.
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5.7 Conclusions

This work is the first demonstration of reactive channelization via incongruent flux melt-

ing. This is a significant extension over previous theories and opens up the potential to

directly relate reactive melt transport to the mineralogical evolution of the solid residue. We

have found that in the Mg2SiO4–SiO2 binary system the gradient in melt silica content is able

to drive channelization, but only when there is an additional flux of deep silica-poor melt.

During natural peridotite melting, however, fluxing by other components including volatiles

and alkali elements, may further promote channelization. We have further demonstrated the

full coupling between a self-consistent thermodynamic model and melt transport dynamics.
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Appendix A: Thermodynamic relations

The molar Gibbs energy of a general solution phase can be broken up into three compo-

nents: G̃◦i describing the contributions from the pure endmebers, G̃config
i describing ideal mix-

ing between endmembers, and G̃excess
i describing the additional energy due to non-ideality.

G̃i(T, P, ci) =

Ki∑
k=1

[
xki µ̃

k◦
i (T, P )︸ ︷︷ ︸
G̃◦

i

+RTxki lnx
k
i︸ ︷︷ ︸

G̃config
i

+RTxki lnγ̃
k
i (T, P,xi)︸ ︷︷ ︸

G̃excess
i

]
(A.1)

Where the tildes refer to molar quantities. µ̃◦,ki are the the molar chemical potentials of the

pure endmembers: these include models of the molar enthalpies, entropies, volumes, heat

capacities, and equations of state (e.g. Berman, 1988). xki is the molar concentration of

endmember k, and γ̃ki is the activity coefficient. The functional form of G̃excess
i depends on

the solution model used. As the independent variable for composition is mass concentration,

we transform to molar concentration in the definition of G̃i according to

xki =

cki
Mk

i∑Ki

k=1
cki
Mk

i

(A.2)

Given expressions for the molar Gibbs free energy surfaces for the phases, the relevant

thermodynamic properties are defined as follows

s̃i = −∂G̃i

∂T
, Ṽi =

∂G̃i

∂P
, µ̃ki =

∂G̃i

∂nk
,

C̃Pi = −T ∂
2G̃i

∂T 2
, α̃i =

1

Ṽi

∂2G̃i

∂P∂T

(A.3)

These are converted to specific quantities by dividing through by the relevant molar
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masses

si =
s̃i∑Ki

k=1 x
k
iM

k
i

, ρi =

∑Ki

k=1 x
k
iM

k
i

Ṽ k
i

, µki =
µ̃ki∑Ki

k=1 x
k
iM

k
i

CPi =
C̃Pi∑Ki

k=1 x
k
iM

k
i

, αi =
α̃i∑Ki

k=1 x
k
iM

k
i

(A.4)
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Appendix B: Deriving independent reaction sets

By the rank-nullity theorem, for any reactive system, there is a set of J = Ntot −

C linearly independent reactions. This is the minimum number of reactions required to

describe the chemical state of the system. In simple systems such a set can be determined

by inspection. But more generally a reaction set can be constructed by dividing the system

into mediating endmembers, whose compositions span the column space of F , and non-

independent, or reacting, endmembers whose compositions can be expressed in terms of the

mediating endmembers. Mathematically this is equivalent to putting F in reduced row

echelon form, with possible rearrangement of columns such that the pivot columns occupy

the leftmost columns

RREF(F ) =

[
IC Q

]
(B.1)

Where IC is a C×C identity matrix, and Q is a C×J matrix that maps the stoichiometry

of the non-independent endmembers onto the mediating endmembers. This then allows us

to derive the Ntot × J stoichiometric matrix ν̃

ν̃ =

 Q

−IJ

 (B.2)

Where IJ is a J × J identity matrix. The columns of ν̃ correspond to the stoichiometric

vectors for the respective reactions ν̃j for a set of reactions of the form

[non-independent phase endmember]j =
C∑
k=1

νkj [mediating phase endmember]k (B.3)
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Appendix C: Evolution equations for an open system batch reactor

Here we will derive a set of conservation equations for mass and energy for disequilibrium

multiphase reaction in an open batch system as shown in Figure C.1. As we are not consid-

ering spatial gradients and time is the only independent variable, we write the conservation

equations in integral form in which we conserve the net mass and energy fluxes in the system

volume.

The system exchanges heat with the surroundings via a boundary heat flux at a rate

QE. Mass of a phase i is transferred into the system at a rate Ψin
i and with composition

cinik . This incoming material has a temperature T in which may be different to that of the

system. It is assumed that this material is instantaneously homogenized, both thermally

and chemically, within the system. Mass then flows out at a rate Ψout
i with a composition

and temperature identical to that of the system. The net boundary heat and mass transfer

rates can be equated to integrals of the heat and mass fluxes according to

QE = −
‹

S(V )

q · dS = −
˚

V

∇ · qdV (C.1)

Ψin
i −Ψout

i = −
‹

S(V )

JAi · dS = −
˚

V

∇ · JAi dV, (C.2)

where q is the heat flux and JAi is the advective mass flux.

Reaction, mass flux and heating/cooling produce a mechanical response that depends on

the assumptions made about the rheology of the system boundaries. As the system expands

it does work on the surroundings at a rate given by

W = P
dV
dt
, (C.3)
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Figure C.1: Schematic sketch of the open batch reactor. Heterogeneous reaction Rj and
heat production QI occur within the system, while boundary heat flux QE and the advective
mass fluxes Ψin

i and Ψout
i , into and out of the system respectively, allow it to exchange heat

and mass with the surroundings. As the system expands it does work on the environment
at a rate W

where V is the system volume. We can consider two endmember scenarios. The first corre-

sponds to an isobaric system. In this case, P is the independent variable and the system is

free to expand or contract in response to any changes in assemblage, temperature or in-flux

or out-flux of material (e.g. a deformable partially molten region in the mantle). We assume

that the expansion and contraction are perfectly reversible such that no energy is dissipated

as the volume changes. The second scenario is that of an isochoric system in which V is the

independent variable. In this case the system volume remains constant and reaction, mass

flux and heating produce changes in P instead (e.g. a magma chamber in the brittle upper

crust).

C.0.1 Conservation of composition

We start by conserving the mass of endmember k in phase i

d
dt
micik = Γik + Ψin

i c
in
ik −Ψout

i cik (C.4)
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where mi is the mass of phase i, cik is the concentration as a mass fraction of k in i. Γik is the

net rate of production or consumption of endmember k by internal heterogeneous reaction

Γik =
J∑
j=1

ν̂ikjRj (C.5)

where ν̂ikj is the mass-normalized stoichiometric coefficient of k in reaction j, defined as

ν̂kij =

νkij
Mk∑M

i=1

∑Ni

k=Ni−1

νkij
Mk

(C.6)

where Mk is the molar mass of endmember k. Rj is the reaction rate of reaction j in units of

kgs−1: Rj > 0 is a forward reaction and Rj < 0 is a reverse reaction. As the concentrations

within each phase sum to 1, we need Ki − 1 equations to track the composition of a single

phase; giving Ktot− equations for all the endmembers in the system.

C.0.2 Conservation of phase mass

Summing over all the endmembers in each phase, we get equations for the conservation

of phase mass
dmi

dt
=

Ni∑
k=1

Γik + Ψin
i −Ψout

i (C.7)

where we have used the fact that
Ni∑
k=1

cik = 1. (C.8)

Phase masses are dimensional quantities that are not constrained to sum to unity. They can

be converted to equivalent mass fractions by normalizing by the total mass

φi =
mi∑Ni

i=1 mi

. (C.9)
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C.0.3 Conservation of energy

For non-isothermal systems we must also conserve energy to track the temperature evo-

lution of the system. Summing the internal energy of all phases gives

M∑
i=1

(
d
dt
miui + ΨA

i ui

)
= QE −W +

M∑
i=1

(
Ψin
i u

in
i −Ψout

i ui
)

(C.10)

where ui is the specific internal energy of phase i. Applying conservation of mass to this

expression gives

M∑
i=1

[
mi

d
dt
ui + ui

Ni∑
k=1

Γik + Ψin
i

(
ui − uini

)]
= QE −W. (C.11)

By substituting in the thermodynamic relations

ui =

Ni∑
k=1

µikcik −
P

ρi
+ Tsi (C.12)

dui
dt

= T
dsi
dt

+
P

ρ2
i

dρi
dt

+

Ni∑
k=1

µik
dcik
dt

, (C.13)

where si is the specific entropy of phase i and µik is the specific chemical potential of end-

member k in phase i, we can convert to an equation for conservation of entropy

M∑
i=1

[
T

(
mi

dsi
dt

+ si

Ni∑
k=1

Γik

)
+

Ni∑
k=1

µik

(
mi

dcik
dt

+

Ni∑
k=1

Γikcik

)

+Ψin
i

(
Ni∑
k=1

(
µikcik − µinikcinik

)
+ Tsi − T insini

)

+P

(
mi

ρ2
i

dρi
dt
− 1

ρi

Ni∑
k=1

Γik −Ψin
i

(
1

ρi
− 1

ρini

))]
= QE −W.

(C.14)
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This can be simplified by noting that

P

M∑
i=1

[
mi

ρ2
i

dρi
dt
− 1

ρi

Ni∑
k=1

Γik −Ψin
i

(
1

ρi
− 1

ρini

)]
= −P dV

dt
= −W. (C.15)

This cancels with the work term on the right-hand side. If we also apply conservation of

composition, we can put the entropy equation in the following more compact form

M∑
i=1

[
mi

dsi
dt

+

Ni∑
k=1

(
siΓik +

1

T
µikΓik

)]
=

1

T

[
QE −

M∑
i=1

Ψin
i

(
Tsi − T insini +

Ni∑
k=1

cinik
(
µik − µinik

))] (C.16)

We can convert (C.16) into equation for the temperature evolution by substituting in

dsi
dt

=
CPi
T

dT
dt
− αi
ρi

dP
dt

(C.17)

where CPi is the heat capacity and αi is the thermal expansivity. This gives

M∑
i=1

[
mi

(
CP

dT
dt
− αiT

ρi

dP
dt

)
+ Tsi

Ni∑
k=1

Γik +

Ni∑
k=1

µikΓik

]
=

QE +
M∑
i=1

Ψin
i

[
Tsi − T insini +

Ni∑
k=1

cinik
(
µik − µinik

)]
.

(C.18)

Here we have written the temperature evolution with P as the independent variable. This

is appropriate for the isobaric scenario discussed above where the system is free to expand

in response to reaction, inflowing material, and thermal or adiabatic expansion, so that

P is held constant. If we want to simulate the isochoric scenario in which V is the fixed

independent variable we would simply need to substitute in

− αi
ρi

dP
dt

= − d
dT

P (Vi, T )
dVi
dt

(C.19)
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where Vi is the specific molar volume of phase i. P is no longer an independent variable,

but is dependent on the Vi and T through the equations of state (EOS) of the constituent

phases which are provided by the thermodynamic models.
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Appendix D: Pressure-split formulation

To put the governing equations (2.23)-(2.27) into a more convenient form, following

Spiegelman (1993b,c) and Katz et al. (2007) we use the pressure-split formulation to rewrite

them as a function of phase fraction, solid velocity and pressure. The fluid pressure is

decomposed into three components

P = P + P ∗ + ρs0g · z (D.1)

where P = ζ∇ · vs is the compaction pressure, and P ∗ describes the remaining dynamic

pressure components.

Following the same approach as Spiegelman (1993b), but here summing over the multiple

solid phases, we get the following set of equations

ρfφf
Dfc

k
f

Dt
= Γkf − ckfΓf +Dk

f∇ · φf∇ckf (D.2)

Dsφi
Dt

= −φi
P
ζ

+
Γi
ρi

(D.3)

Dsφf
Dt

= (1− φf )
P
ζ

+
N∑
i=2

[
φi
ρi

Dsρi
Dt
− Γi
ρi

]
(D.4)

P
ζ

= ∇ · K
µ

(∇P ∗ + ∇P + ∆ρg) +
N∑
i=1

Γi
ρi
−

N∑
i=1

(
φi
ρi

Diρi
Dt

)
(D.5)

∇ · vs =
P
ζ

(D.6)

∇P ∗ = ∇ · η(∇vs + ∇vTs −
2

3
∇ · vsI)− φf∆ρg (D.7)

Where Di

Dt is the Lagrangian derivative following phase i Di

Dt = ∂
∂t

+vi ·∇. Here we have used
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the convention i = 1 for the melt, and i = 2−N for the solid phases. As long as the phase

densities are relatively constant, the density derivative terms Diρi
Dt may be neglected. Given

φi, φf , P , vs, and P ∗, the melt flux is reconstructed as

φfvf = φfvs −
K

µ
(∇P ∗ + ∇P + ∆ρg) (D.8)

The temperature is given as before by

N∑
i=1

[
ρiφiCPi

DiT

Dt
− φiαiT

DiP

Dt
+ TsiΓi

]
= k∇2T (D.9)
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Appendix E: Numerical solution using finite elements

The weak forms of equations (5.19)-(5.25) are as follows

Fφf =

ˆ
Ω

[
φft

(
φfn − φfn−1 + ∆t

(
vsn− 1

2
·∇φfn− 1

2
− h2

δ2
(1− φf )

P
ζ n− 1

2

−DaΓf
ρ̄s n

))]
dV

(E.1)

Fφ =

ˆ
Ω

[
φt ·

(
φn − φin−1 + ∆t

(
vsn− 1

2
∇φn− 1

2
+
h2

δ2
φ
P
ζ n− 1

2

−Da(Γ� ρ)n

))]
dV

(E.2)

Fcqf =

ˆ
Ω

[
cqft

(
(ρfφf )n− 1

2
(cqfn − c

q
fn−1)

+ ∆t
(

(ρfq)n− 1
2
·∇cq

fn− 1
2

−Da
(
Γqfn − c

q
fnΓfn

))
+∆t

1

PeC
∇cqft · φfn∇cqfn

]
dV

−
ˆ
∂Ω

∆t
1

PeC
cqftφfn∇cqfn · dS

(E.3)

FP =

ˆ
Ω

[
Pt

(
h2

δ2

Pn
ζn
−Da

N∑
i=1

Γin
ρin

)
+ ∇Pt ·

Kn

µ
(∇Pn + ĝ)

]
dV

−
ˆ
∂Ω

Pt
Kn

µ
(∇Pn + ĝ) · dS

(E.4)

FU =

ˆ
Ω

[vct · vcn + ∇ · vctUn] dV −
ˆ
∂Ω

vctUn · dS (E.5)
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Fvc =

ˆ
Ω

Ut

(
h2

δ2

P
ζ n

−∇ · vcn
)
dV (E.6)

Fq =

ˆ
Ω

[
qt

(
qn − φfnvsn +

Kn

µ
(∇Pn + ĝ)

)]
dV (E.7)

FT =

ˆ
Ω

[
Tt

(
N∑
i=1

(ρiφiCPi)n− 1
2

(Tn − Tn−1) + ∆t

(
N∑
i=2

(ρiφiCPivs)n− 1
2

+ (ρfCPfq)n− 1
2

)
∇Tn− 1

2

− Ad
N∑
i=1

(φiαiT )n− 1
2

(Pn − Pn−1)−∆tAd

(
N∑
i=2

(φiαiTvs)n− 1
2

+ αfTqn− 1
2

)
∇Pn− 1

2

+∆tDaTi

N∑
i=1

siΓi

)
+ ∆t

1

PeT
∇Tt ·∇Ti

]
dV

−
ˆ
∂Ω

∆t
1

PeT
Tt∇Tn · dS

(E.8)

Where [·]t is the test function. [·]n and [·]n−1 are the variable values at the current and

previous timesteps, and [·]n− 1
2

= 0.5([·]n + [·]n−1).
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