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Abstract

Detect and Repair Errors for DNN-based Software

Yuchi Tian

Nowadays, deep neural networks based software have been widely applied in many areas

including safety-critical areas such as traffic control, medical diagnosis and malware detection,

etc. However, the software engineering techniques, which are supposed to guarantee the

functionality, safety as well as fairness, are not well studied. For example, some serious crashes

of DNN based autonomous cars have been reported. These crashes could have been avoided if

these DNN based software were well tested. Traditional software testing, debugging or repairing

techniques do not work well on DNN based software because there is no control flow, data flow or

AST(Abstract Syntax Tree) in deep neural networks. Proposing software engineering techniques

targeted on DNN based software are imperative. In this thesis, we first introduced the

development of SE(Software Engineering) for AI(Artificial Intelligence) area and how our works

have influenced the advancement of this new area. Then we summarized related works and some

important concepts in SE for AI area. Finally, we discussed four important works of ours.

Our first project DeepTest is one of the first few papers proposing systematic software

testing techniques for DNN based software. We proposed neuron coverage guided image

synthesis techniques for DNN based autonomous cars and leveraged domain specific

metamorphic relation to generate oracle for new generated test cases to automatically test DNN

based software. We applied DeepTest to testing three top performing self-driving car models in

Udacity self-driving car challenge and our tool has identified thousands of erroneous behaviors



that may lead to potential fatal crash.

In DeepTest project, we found that the natural variation such as spatial transformations or

rain/fog effects have led to problematic corner cases for DNN based self-driving cars. In the

follow-up project DeepRobust, we studied per-point robustness of deep neural network under

natural variation. We found that for a DNN model, some specific weak points are more likely to

cause erroneous outputs than others under natural variation. We proposed a white-box approach

and a black-box approach to identify these weak data points. We implemented and evaluated our

approaches on 9 DNN based image classifiers and 3 DNN based self-driving car models. Our

approaches can successfully detect weak points with good precision and recall for both DNN

based image classifiers and self-driving cars.

Most of existing works in SE for AI area including our DeepTest and DeepRobust focus on

instance-wise errors, which are single inputs that result in a DNN model’s erroneous outputs.

Different from instance-wise errors, group-level errors reflect a DNN model’s weak performance

on differentiating among certain classes or inconsistent performance across classes. This type of

errors is very concerning since it has been found to be related to many real-world notorious errors

without malicious attackers. In our third project DeepInspect, we first introduced the group-level

errors for DNN based software and categorized them into confusion errors and bias errors based

on real-world reports. Then we proposed neuron coverage based distance metric to detect

group-level errors for DNN based software without requiring labels. We applied DeepInspect to

testing 8 pretrained DNN models trained in 6 popular image classification datasets, including

three adversarial trained models. We showed that DeepInspect can successfully detect group-level

violations for both single-label and multi-label classification models with high precision.

As a follow-up and more challenging research project, we proposed five WR(weighted

regularization) techniques to repair group-level errors for DNN based software. These five

different weighted regularization techniques function at different stages of retraining or inference

of DNNs including input phase, layer phase, loss phase and output phase. We compared and

evaluated these five different WR techniques in both single-label and multi-label classifications



including five combinations of four DNN architectures on four datasets. We showed that WR can

effectively fix confusion and bias errors and these methods all have their pros, cons and applicable

scenario.

All our four projects discussed in this thesis have solved important problems in ensuring the

functionality, safety as well as fairness for DNN based software and had significant influence in

the advancement of SE for AI area.
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Introduction

In recent years, deep neural networks have been developed and adopted in many areas

including computer vision, natural language processing, program synthesis, recommending

systems, etc. and even in some safety-critical areas, such as self-driving cars, medical diagnosis,

malware detection, etc. However, these DNN based software have not been adequately tested and

thus the functionality, safety as well as fairness are not guaranteed. This is because existing

software testing techniques for DNN based software are very limited and most of deep learning

researchers and developers only focus on improving the accuracy in test data[1, 2, 3, 4] and

neglect other software quality measurement. Most of traditional software testing techniques do

not work for DNN based software. The DNN based software, unlike traditional software where

program logic is manually written by software developers, learn its logic automatically from the

training data. The learned weights as well as model structures (neurons and layers) are much

harder to interpret and thus challenging for debugging. The code coverage such as statement

coverage, branch coverage, MC/DC coverage[5, 6, 7], etc., which are used for measuring how

well traditional software are tested, do not work for DNNs at all. The test generation techniques,

such as MHS(metaheuristic search)[8] based test generation[9, 10, 11, 12] and the symbolic

execution based test generation[13, 14, 15, 16, 17, 18], etc. do not work for DNNs because the

complex input type such as image or video and there is no control flow or data flow in DNNs.

There are some software testing techniques for machine learning based software, which can be

adapted to DNN based software, such as applying metamorphic testing to machine learning

applications without test oracles[19, 20, 21, 22]. However, these software testing techniques do
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not leverage information specifically in DNNs such as neurons, gradients, weights, loss functions

and etc. and thus have limited effect and performance. Similarly, existing automatic program

repairing techniques are also only targeted to traditional software.[23]. These techniques include

random or guided mutation of AST(Abstract Syntax Tree)[24, 25, 26, 27, 28, 29, 30, 31], static

program analysis or symbolic execution/concrete execution[32, 33, 34, 35, 36, 37] and most

recently, language models training and program synthesis[38, 39]. All these techniques for

repairing traditional programs such as C, C++ or Java, cannot work on DNN based software

because there is no control flow, data flow or AST in deep neural networks.

However, just like traditional software, DNN-based software suffer from unexpected corner

cases that can lead to dangerous consequences like a fatal collision in self-driving cars. Several

such real-world cases have already been reported (see Table 1). For example, the fatal Tesla crash

resulted from a failure to detect a white truck against the bright sky. Such severe crashes could be

avoided if the DNN based autonomous cars are well tested. The existing possible approaches to

detect such bugs depend heavily on manual collection of labeled test data and techniques to

measure how well the DNN based software is tested are not available. The systematic testing

tools for DNN based software are far away from being ready, not mentioning the repairing

techniques for repairing DNN based software. Therefore, proposing software engineering

techniques for DNN based software are imperative and in urgent need.

Table 1: Examples of real-world accidents involving autonomous cars

Reported Date Cause Outcome Comments

Hyundai Competition [40] December, 2014 Rain fall Crashed while
testing

"The sensors failed to pick up street signs, lane markings, and
even pedestrians due to the angle of the car shifting in rain and
the direction of the sun" [40]

Tesla autopilot mode [41] July, 2016 Image contrast Killed the driver "The camera failed to recognize the white truck against a bright
sky" [42]

Google self-driving car [43] February, 2016 Failed to estimate speed Hit a bus while
shifting lane

"The car assumed that the bus would yield when it attempted
to merge back into traffic" [43]

Initially, DNNs are mostly developed by machine learning researchers, who are interested

in improving the performance with respect to test accuracy. In this thesis, we argue the necessity

of more software engineering measurement and software engineering techniques that can work

for DNN based software. It is significantly important to design, implement and evaluate new

2



(a) 0°, bird (b) +6°, air-
plane

(c) +24°,
cat

(d) -9°, dog (e) 0°, bird (f) +6°, bird (g) +24°,
bird

(h) -9°, bird

Figure 1: (a)-(d) A well-trained ResNet model [47] misclassifies the rotated variations of a bird image
into three different classes though the original un-rotated image is classified correctly. (e)-(h) The
same model successfully classifies all the rotated variants of another bird image from the same test
set. The sub-captions consist of rotation degrees and the predicted classes.

systematic testing tools that can work for DNN based software to assure the functionality, safety

as well as fairness. One of our work DeepTest to be discussed in Chapter 3 is one of the first few

paper applying software engineering techniques on DNN based software. We proposed neuron

coverage guided image synthesis techniques to generate test cases for DNN based software and at

the same time maximize the coverage of new neurons. Different from DeepXplore[44], which

requires multiple implementations required by differential testing, ours is able to test single

implementation by leveraging metamorphic testing to generate labels for those new generated test

cases as the test oracle to automatically test DNN based software. We apply DeepTest to testing

top-rank DNN based self-driving car models in Udacity self-driving car challenge and our tool

discovers thousands of erroneous behaviours that may lead to potential fatal crash. We also retrain

these self-driving car models with our new generated test inputs and show that those bugs can be

fixed after retraining.

Deep neural networks are extremely vulnerable to natural variation such as spatial

transformations or rain/fog effects. The natural variants are especially concerning as they can

occur naturally in the field without any active adversary and may lead to serious

consequences [45, 46]. In our second project DeepRobust, we tried to understand per-point

robustness of deep neural network under natural variation. We found that not all the inputs under

natural variation will result in erroneous outputs for a DNN. There are specific "weak" data

points, which are more likely to fail a deep neural network than other data points. For example,

consider Figure 1, although the original bird image (a) is predicted correctly by a DNN, its rotated
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variations in images (b)-(d) are mispredicted to three different classes. This makes the original

image (a) very weak as far as robustness is concerned. In contrast, the bird image (e) and all its

rotated versions (generated by the same degrees of rotation) in Figure 1:(f)-(h) are correctly

classified. Thus, the original image (e) is quite robust. It is important to distinguish between such

robust vs. non-robust images, as the non-robust ones can induce errors with slight natural

variations.

Existing works in DNN robustness mainly focuses on evaluating the overall robustness of

DNNs across all the test data [47, 48, 49]. This is analogous to estimating how buggy a software

is without actually localizing the bugs in traditional software. We argued that DNN is a

combination of data and architecture. DeepRobust(Chapter 4) focuses on localizing the

non-robust points in the input space that pose significant threats to a DNN model’s robustness.

Different from traditional software where bug localization is performed in program space, we

identify the non-robust inputs in the data space. To address this problem, we proposed a white-box

approach(DEEPROBUST-W) and a black-box approach(DEEPROBUST-B) to identify these weak

data points for DNN based software. We applied our approaches to testing 9 DNN based image

classifiers and 3 DNN based self-driving car models. Our results show that DEEPROBUST-W and

DEEPROBUST-B are able to achieve an F1 score of up to 91.4% and 99.1%, respectively in

testing DNN based image classifiers. DEEPROBUST-W is effective in identifying weak data

points with F1 score up to 78.9% in testing DNN based self-driving car models.

More and more papers have been published in SE for AI area, as the software engineering

techniques are urgently demanded for machine learning based software. Similar to code coverage

in traditional software, different coverage for DNNs such as neuron coverage[44], k-multisection

coverage and boundary coverage[50], SS(sign-sign coverage) coverage[51], etc. have been

proposed and evaluated for DNNs. Similar to test generations in traditional software, norm based

perturbation[52, 44] , natural transformations[53, 47] based and GAN(Generative Adversarial

Networks)[46] based test generation have been proposed to generate corner cases input for testing

DNNs. Metamorphic testing[53, 46], fuzzing testing[52, 54, 55], mutation testing[56], differential

4



testing[44] and concolic testing[57, 58], etc. have been proposed for DNN based software.

Abstract interpreter[59] has been proposed to verify DNN based software. Image

transformations[47, 60] or data augmentation techniques[61, 55] are proposed to evaluate the

robustness of DNN based software.

Besides of the new testing techniques for DNN based software, the repairing techniques for

DNN based software have been studied too[62]. Different data augmentation and fine-tuning

techniques have been proposed for repairing DNN models in improving overall accuracy[63, 64,

65]. There are also works in improving robustness of DNN models against adversarial

instances[55, 60, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75].

However, existing studies including our DeepTest and DeepRobust in detecting and

repairing errors only focus on instance-wise errors, while group-level errors are mostly ignored.

An instance-wise error happens when a DNN model outputs inconsistent prediction given a

specific input[44, 45, 76, 72]. These inputs include adversarial examples from norm-bounded

perturbation[72], realistic transformation[47] of an existing input, or physical attack[77], etc.. To

repair these instance-wise errors, techniques such as adversarial training, data augmentation, etc.

are widely leveraged [72, 47]. In contrast, group-level error is about the DNN model’s weak

performance on differentiating among certain classes or has inconsistent performance across

classes[78]. This type of bugs is very concerning since it has been found to relate to many

real-world notorious errors without malicious attackers[78] as shown in Table 2. For example,

Google faced backlash in 2015 due to a notorious error in its photo-tagging app, which tagged

pictures of dark-skinned people as “gorillas” [79]. Analogous to traditional software bugs, the

Software Engineering (SE) literature denotes these classification errors as model bugs [65], which

can arise due to either imperfect model structure or inadequate training data.

In one of our works, DeepInspect, to be discussed in Chapter 5, we investigated some

public reports describing the class-level violations listed in Table 2, and categorized them into two

group-level errors: (i) Confusion Errors: The model cannot differentiate one class from another.

For example, Google Photos confuses skier and mountain [81]. (ii) Bias Errors: The model
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Table 2: Examples of real-world bugs reported in neural image classifiers

Bug Type Name Report Date Outcome

Gorilla Tag [79] Jul 1, 2015 Black people were tagged as gorillas by Google photo app.
Confusion Elephant is detected Aug 9, 2018 Image Transplantation (replacing a sub-region of an image by

in a room [80] another image containing a trained object) leads to mis-classification.
Google Photo [81] Dec 10, 2018 Google Photo confuses skier and mountain.

Nikon Camera [82] Jan 22, 2010 Camera shows bias toward Caucasian faces when detecting people’s blinks.
Men Like Shopping [83] July 29, 2017 Multi-label object classification models show bias towards women on

Bias activities like shopping, cooking, washing, etc.
Gender Shades[84] 2018 Open-source face recognition services provided by IBM, Microsoft, and Face++

have higher error rates on darker-skin females for gender classification.

shows disparate outcomes between two related groups. For example, Zhao et al. in their paper

“Men also like shopping” [83], find classification bias in favor of women on activities like

shopping, cooking, washing, etc. We further notice that in the case of confusion errors, the

classification error-rate between the objects of two classes, say, cat and dog, can be significantly

higher than the overall classification error rate of the model trained in CIFAR-10 dataset. In the

bias scenario reported by Zhao et al., a DNN model, while classifying the gender of a person,

may mistakenly associate gender with a given specific activity, object or environment such as

shopping, sports or kitchen. Different from instance-wise errors, this is a class level property

affecting all the shopping, sports or kitchen images with men or women. Any violation of such a

property by definition affects the whole class although not necessarily every image in that class,

e.g., a man is more prone to be predicted as a woman when he is shopping, in the kitchen or hold

a baby, even though some individual images of a man may still be predicted correctly.

In DeepInspect, we also proposed a novel neuron-coverage metric to automatically detect

group-level violations (confusion and bias errors) in DNN-based models for image classification.

Our tool DeepInspect found many errors in widely-used DNN models with precision up to 100%

(avg. 72.6%) for confusion errors and up to 84.3% (avg. 66.8%) for bias errors. DeepInspect

shows that these group-level errors occur in all popular models trained in popular classification

dataset including single-label image classification where each image is labeled with one object

and multi-label image classification where each image is associated with a set of labels. The

following lists some examples of group-level errors DeepInspect identified in DNN models

trained in popular image classification datasets. Figure 2, 3, 4 and 5 presents examples of

6



confusion errors respectively from COCO, ImageNet, CIFAR-10 and CIFAR-100. Figure 6, 7

presents examples of bias errors respectively from COCO gender and ImSitu dataset.

(a) laptop -> laptop,mouse (b) bus -> bus,traffic lights (c) skis -> snowboard

Figure 2: Examples of confusion errors found in COCO dataset

(a) cello -> violin (b) violin -> cello (c) wok -> pan

Figure 3: Examples of confusion errors found in ImageNet dataset

(a) bird -> deer (b) bird -> deer (c) cat -> dog (d) cat -> dog

Figure 4: Examples of confusion errors found in CIFAR10

A much harder and reasonable follow-up problem to solve is how to repair these errors.

One of the root causes is that certain classes are harder to be differentiated from each other. For

example, in CIFAR-10, dog and cat tend to confuse even a state-of-the-art DNN model since they
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(a) boy -> girl (b) boy -> girl (c) oak -> maple (d) oak -> maple

Figure 5: Examples of confusion errors found in CIFAR100

(a) given surfboard, woman -> man (b) given frisbee, woman -> man

Figure 6: Examples of bias errors found in COCO gender dataset

(a) given outside, woman -> man (b) given room, man -> woman

Figure 7: Examples of bias errors found in ImSitu dataset

share many common semantic features. For multi-label classification, one of the root causes is

that two classes may appear together frequently. For example, in COCO dataset, mouse and laptop

appear in the same image frequently, which make it hard for DNN model to distinguish between
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them. The confusing pair of classes tend to be very close with each other in the representation

space and the decision boundary between them might not be "fine-grained" enough for correct

classification on these confusing pairs. We denote the error-inducing classes as target classes. To

fix the errors of the target classes, the model needs to take more effort to learn from them.

In the last work(Chapter 6) to be discussed in this thesis, We propose a generic method

called weighted regularization (WR) to repair group level errors in DNN based software. WR

consists of five weighted regularization methods including weighted augmentation (w-aug),

weighted batch normalization (w-bn), weighted output smoothing (w-os), weighted loss (w-loss),

and weighted distance-based regularization (w-dbr). These methods function at different stage of

a given DNN’s training or inference as shown in Figure 8. Specifically, if retraining is allowed

and training data are accessible, w-aug assigns more weights to the target classes during the

retraining; w-bn re-scales the distribution of the activation values induced by the input at every

batchnorm layer to shift the decision boundary toward target classes(assuming the model has

batchnorm layers); w-loss modifies the loss function by assigning more weights to the

mis-classification occurring between target classes while w-dbr updates the loss function by

regularizing the class centroids in the representation space. Such regularization strategies enable

the model to emphasize more on the instances of the target classes and thus reduce the errors

between the target classes. If fine-tuning is not possible or training data are not accessible, w-os

multiplies the model’s prediction on target classes by a small user-specified constant to make the

model predict less the target class such that those unsure data points located in decision

boundary(mis-classification between target classes ) can be avoided.

Figure 9 illustrates how these different approaches function using an example consists of

three classes (square, circle and diamond). The colors represent the model’s prediction while the

dashed lines denote the model’s decision boundary. Figure 9(a) shows that the original model

tends to confuse between square and circle. The ideal fix of decision boundary is shown in

Figure 9(d). w-os solves the confusion error by contracting the decision boundary of the target

classes as illustrated in Figure 9(c). w-aug, w-loss, and w-dbr try to reduce confusion by shifting
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Figure 8: Overview of Weighted Regularization for Target Fixing

(a)Original (b)Shifted (c)Contracted (d)Ideal

Figure 9: Illustration of different potential decision boundary before and after applying WR.

the decision boundary. They may be able to achieve Figure 9(d) but it may also be possible to

sacrifice the decision boundary for other classes and get the decision boundary in Figure 9(b)

instead. w-bn comes in between: on the one hand, it tends to contract the decision boundary as

w-os; on the other hand, it tends to shift the decision boundary through fine-tuning. We evaluate

different regularization methods and compare their effectiveness on four widely-used datasets and

architectures and show that WR can effectively fix confusion and bias errors and these approaches

all have their pros, cons and applicable scenario. The detail results will be discussed in Chapter 6.

In summary, this thesis incorporates four major projects in SE for AI area.

10



• Chapter 3: DeepTest(Automated Testing of DNN based Autonomous Cars), published in

ICSE’ 18[45]

• Chapter 4: DeepRobust(Understanding Local Robustness of Deep Neural Networks under

Natural Variations), published in FASE’ 21[76]

• Chapter 5: DeepInspect(Automated Testing Group Level Errors for DNN based Image

Classifiers), published in ICSE’ 20[78]

• Chapter 6: WR (Repair Group Level Errors for DNN based Image Classifiers Using

Weighted Regularization), one short paper published in FSE’ 20[85], another 12-page paper

in submission.
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Chapter 1: Problem Statement

1.1 Problem Statement

Our studies focus on proposing new software engineering techniques to ensure the functional-

ity, safety as well as fairness for DNN based software.

In recent years, more and more papers have been published in this SE for AI area from coverage

metric for DNNs to automatic testing, repairing and verification for DNN based software. Here we

discuss existing works’ limitation, specify the problems our projects try to solve and summarize

our contributions.

• Before our DeepTest project, there is very few paper in SE for AI area. Most of works were

trying to improve DNNs’ generalization with respect to natural accuracy in deep learning

studies[1, 2, 3, 4] or robust accuracy in adversarial examples studies[61, 86]. Pei et al. in

DeepXplore proposed neuron coverage to measure how well a DNN based software is tested,

leveraged gradient based perturbation to generate test inputs to test image classifiers[44]. Our

project DeepTest(Chapter 3) presents an neuron coverage based grey-box approach to guide

our generation of test inputs. In contrast to gradient based perturbation by DeepXplore we

are using nature image transformations including rain or fog weather to simulate the camera

shake, different weather conditions, etc. Our generated test inputs are more natural since the

image transformations can very well simulate the real-world driving conditions.

• Pei et al. in DeepXplore applied differential testing from software engineering in testing dif-

ferent DNN models. However, differential testing requires multiple DNN models. We pro-

posed domain specific metamorphic relation to generate oracles for all the synthesized im-

ages, which enables the testing of single DNN model in DeepTest(Chapter 3). DeepTest ap-
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plies metamorphic testing from software engineering to testing the DNN driven autonomous

cars as one of the first few paper in SE for AI area.

• As a follow-up project of DeepTest(Chapter 3), we conducted an empirical study on per-

point robustness under natural variation to dig further into DNNs’ vulnerability against nat-

ural transformations in DeepRobust(Chapter 4). Existing works in DNN robustness, focuses

on evaluating the overall robustness of DNNs across all the test data [47, 48, 49]. This is

analogous to estimating how buggy a software is without actually localizing the bugs in tra-

ditional software. DeepRobust(Chapter 4) tries to localize the non-robust points in the input

space that pose significant threats to a DNN model’s robustness. However, unlike traditional

software where bug localization is performed in program space, we identify the non-robust

inputs in the data space. We proposed white-box and black-box solutions in identifying non-

robust points for both DNN based image classifiers and DNN based self-driving car models.

• In recent years, more and more papers have been published in DNN testing, repairing as

well as verification. However, all of these works focus on instance-wise errors, while group-

level errors are completely ignored. An instance-wise error is a classification mistake a

DNN model makes, given a specific input. This input could be an original test case or

an adversarial test case from norm-bounded perturbation[72], natural transformation[47],

or physical attack[77] etc. In contrast, group-wise error is about the DNN model’s weak

performance on differentiating among certain classes or has inconsistent performance across

classes. Our paper DeepInspect(Chapter 5) categorizes group-level errors into confusion

errors and bias errors and proposes neuron coverage based metric to detect confusion errors

and bias errors in DNN based single-label and multi-label classifiers.

• A reasonable follow-up and more challenging problem is to repair group level errors for

DNN based software. Our last project(Chapter 6) proposed five different weighted regular-

ization techniques to address this problem. These five different techniques are leveraged in

different stages of DNN retraining or inference including input phase, layer phase, output
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phase and loss phase. We compare and evaluate these five different WR techniques in both

single-label and multi-label DNN-based classifications including five combinations of four

DNN architectures for four datasets. The results show that WR can effectively fix confusion

and bias errors and these methods all have their pros, cons and applicable scenario.

1.2 Thesis Overview

Following this chapter, we include a detail literature review in the SE for AI areas where our

works focus on and necessary background knowledge in computer vision, machine learning and

software engineering to prepare readers for following chapters’ discussion. In Chapter 3, we pre-

sented our project DeepTest, which, to our knowledge, is the first systematic testing tool for DNN

based autonomous cars. We will discuss our neuron coverage guided inputs synthesize algorithm

and how we apply metamorphic testing in DNNs as well as the implementation and evaluation of

our tool DeepTest on top performing models in Udacity self-driving car challenge. In Chapter 4,

we presented our project DeepRobust in understanding the local robustness of deep neural net-

works under natural variation. We showed our finding that only specific weak points would result

in errors under natural variation. We proposed a white-box approach and black-box approach to

identify these weak points for DNN based image classifiers and DNN based self-driving cars. In

Chapter 5, we presented our project DeepInspect, which introduces the concepts of group-level

errors in DNNs and categorizes them into confusion errors and bias errors. We will discuss the

difference between group-level errors and instance-wise errors. We will also discuss the method-

ology and evaluation of DeepInspect, a systematic tool to identify group-level errors for DNN

based image classifiers. In Chapter 6, we presented our project "Repairing group-level errors using

weighted regularization". In this chapter, we discuss the five weighted regularization approaches,

which works on different stages of retraining and inference and thus can be applied in different

scenarios to effectively repair group-level errors. We conclude this thesis with a summary of con-

tribution, discussion of existing works’ limitation, potential future works.
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Chapter 2: Background and Related Work

Our works discussed in this thesis explored and proposed new software engineering techniques

for DNN based software to ensure the functionality, security as well as fairness. First in Sec-

tion 2.1, we briefly summarized traditional software engineering techniques, explained the differ-

ence between traditional software and DNN based software and showed why traditional software

techniques cannot work on DNN based software. In Section 2.2, we introduced the popular DNN

architectures and two DNN based software, DNN based autonomous cars and DNN based image

classifiers. DNN based autonomous car is one of most popular safety critical DNN applications in

recent years and its safety issues are very concerning. We introduced DNN based autonomous cars

to prepare readers for our first project in proposing systematic testing techniques for DNN based

autonomous cars. Image classification is one of the most popular DNN applications. We intro-

duced two types of image classification tasks, single-label/multi-class classification and multi-label

classification to prepare readers for our third and fourth project in detecting and repairing errors in

DNN based image classifiers. Both DNN based autonomous cars and DNN based image classifiers

are useful for understanding the second project because the second project proposed approaches in

localizing non-robust points for both DNN based applications. Then in Section 2.3, we discussed

related works in DNN testing and repairing techniques. There are generally two categories of er-

rors in DNN testing and repairing, instance-wise errors and group level errors. We showed that

most of existing works in SE for AI focus on instance-wise errors and motivated readers about the

importance of group level errors to prepare readers for our third and fourth project in proposing

techniques in testing DNN based software with respect to group level errors. Lastly in Section 2.4,

we discussed the related works in DNN bias/fairness to prepare readers for our third and fourth

project in detecting bias errors and repairing bias triples for DNN based software.
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2.1 Software Testing and Repair

2.1.1 Test Generation and Test Criteria

Software testing for traditional software usually involves test generation, amplification and

leveraging different test criteria to measure the quality of a test set or how well the software has

been tested. There is a large body of work on test case generation and amplification techniques

for traditional software that automatically generate test cases from some seed inputs and increase

code coverage. Instead of summarizing them individually here, we refer the interested readers to

the surveys by Anand et al. [87], McMinn et al. [9], and Pasareanu et al. [88]. There are also

well-established test criteria for traditional software including statement coverage, branch cover-

age, MC/DC coverage[5, 6, 7], etc.. However, these test generation and amplification techniques

as well as test criteria for traditional software cannot work for DNN based software because there

is no control flow or data flow in DNNs and the input type for DNN based software is usually much

more complex such as image or video. Inspired from test amplification for traditional software,

one of the contributions in our work DeepTest(Chapter 3) is to automatically generate test inputs

for DNN based autonomous cars and at the same time maximize the neuron coverage. In our sec-

ond project DeepInspect(Chapter 5), we propose neuron coverage based metric to test DNN based

image classifiers for group-level errors/bugs. The approaches we propose can be generalized for

other DNN based software as well, although the evaluation is targeted to a specific type of software

application.

2.1.2 Software Repair

For the automatic program repair techniques that target traditional software, we refer interested

readers to this review[23]. In summary, automatic program repairing techniques include random

or guided mutation of AST(Abstract Syntax Tree)[24, 25, 26, 27, 28, 29, 30, 31], static program

analysis or symbolic execution/concrete execution[32, 33, 34, 35, 36, 37] and most recently, lan-
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guage models training and program synthesis[38, 39]. All these techniques for repairing traditional

programs such as C, C++ or Java, cannot work on DNN based software because there is no control

flow, data flow or AST in deep neural networks. In our third major project(Chapter 6), we pro-

pose weighted regularization techniques, which can automatically repair DNN based software for

group-level errors.

2.2 DNN based Software

2.2.1 DNN Architectures

Most popular DNNs used in DNN based software can be categorized into two types: (1) Con-

volutional Neural Network (CNN), and (2) Recurrent neural network (RNN). We provide a brief

description of each architecture below and refer the interested readers to [89] for more detailed

descriptions.

CNN architecture. The most significant signature to distinguish a CNN from a fully connected

neural network is the convolution layers. The neurons in a convolution layer are connected only to a

subset of the neurons in the next layer and multiple connections share the same weight. The sets of

connections sharing the same weights are essentially a convolution kernel [90] that applies the same

convolution operation on the outputs of a set of neurons in the previous layer. Figure 2.1a illustrates

a simplified CNN based self-driving car architecture with three convolution layers, which is similar

to the models used in practice [91].

CNNs have much fewer trainable parameters than fully connected neural networks by allowing

sharing of weights among multiple connections and thus the training process of CNNs is much

faster. CNNs perform especially well for image or video input as their architecture resembles the

human visual system which extracts a layer-wise representation of visual input [90, 92].

RNN architecture. In RNNs[93], the output of each layer is not only fed to the following layer but

also flow back to the previous layer. Such arrangement allows the prediction output for previous

inputs (e.g.,, previous frames in a video sequence or previous words in a sentence) to be also

considered in predicting current input.
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(a) A simplified CNN architecture

(b) A simplified RNN architecture

Figure 2.1: (Upper row) A simplified CNN architecture with a convolution kernel shown on the top-left
part of the input image. (Lower row) A simplified RNN architecture with loops in its hidden layers.

Figure 2.1b illustrates a simplified version of the RNN based self-driving car architecture.

Similar to other DNNs, RNNs also leverage gradient descent to update weights during back

propagation for training. However, it is well known that the gradient, when propagated through

multiple loops in an RNNs, may vanish to zero or explode to an extremely large value [94] and

therefore may lead to an inaccurate model. Long short-term memory (LSTM) [95], a popular

subgroup of RNNs, is designed to solve this vanishing/exploding gradient problem. We encourage

interested readers to refer to [95] for more details.

2.2.2 DNN based Autonomous Cars

Our first major project DeepTest(Chapter 3) proposed techniques for automatically testing

DNN based autonomous cars. Here we briefly introduce DNN based autonomous cars. The key

component of an autonomous vehicle is the perception module controlled by the underlying Deep

Neural Network (DNN) [96, 97]. The DNN takes input from different sensors like camera, light

sensors and LiDAR sensors, and so on, which can measure the environment, and outputs the steer-

ing angle, braking, acceleration, etc. to maneuver the car safely in road as shown in Figure 2.2.
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Figure 2.2: A simple autonomous car DNN that takes inputs from camera, light sensors and LiDAR sensors,
and etc., and outputs steering angle, braking, and acceleration control. The DNN models the function
f() (2) · f() (1) · x)) where )s represent the weights of the edges and f is the activation function. The
details of the computations performed inside a single neuron are shown on the right.

DNNs(including CNNs and RNNs) are composed of multiple layers stacked together to extract

different level of representations of the input [98]. Each layer of the DNN increasingly abstracts

the input, e.g.,, from raw pixels to semantic concepts. For example, the first few layers of an

autonomous car DNN extract low-level features such as edges and directions, while the deeper

layers identify objects like stop signs and other cars, and the final layer outputs the steering decision

(e.g.,, turning left or right by some degree).

Each layer of a DNN consists of multiple computing units called neurons. The neurons between

adjacent layers are connected through edges, which has a corresponding weight ()s as shown in

Figure 2.2). Each neuron applies a nonlinear activation function on its inputs and sends the output

to the subsequent neurons as shown in Figure 2.2. Popular activation functions include ReLU (Rec-

tified Linear Unit) [99], Sigmoid [100], etc. The weights of a DNN is learned by backpropagation

during the training process. Gradient descent is usually adapted in backpropagation [101]. After

training, an inference of DNN with learned weights can be used for predictions. For example, an

autonomous car DNN can predict the steering angle based on input images.
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2.2.3 DNN based Image Classifier

Our second major project(Chapter 5) and third major project(Chapter 6) focus on testing and

repairing DNN based image classifiers respectively. Image classification is one of the most popular

applications of deep neural networks. There are generally two type of image classification tasks.

(i) Single-label Classification. In single-label classification problem, each datum is associated

with a single label l from a set of disjoint labels ! where |! | > 1. If |! | = 2, the classification

problem is called a binary classification problem; if |! | > 2, it is a multi-class classification

problem [102]. Among some popular image classification datasets, MNIST, CIFAR-10/CIFAR-

100 [103] and ImageNet [104] are all single-label, where each image can be categorized into only

one class or outside that class.

(ii) Multi-label Classification. In a multi-label classification problem, each datum is associated

with a set of labels Y where . ⊆ !. COCO[105] and imSitu[106] are popular datasets for multi-

label classification. For example, an image from the COCO dataset can be labeled as bus, person,

traffic light. A multi-label classification model is supposed to predict all of bus, person, traffic light

from a single image that shows all of these kinds of objects.

Given any single- or multi-label classification task, DNN based classifier is supposed to learn

the decision boundary between different classes—all members of a class, say �8, should be cate-

gorized identically irrespective of their individual features, and members of another class, say � 9 ,

should not be categorized to �8 [107]. The DNN represents the input image in an embedded space

with the feature vector at a certain intermediate layer and uses the subsequent layers as a classifier

to classify these representations. The class separation between two classes estimates how well the

DNN has learned to separate each class from the other. If the distance in an embedded feature

space between two classes is too small compared to other classes, or lower than some pre-defined

threshold, the DNN can hardly separate them from each other.
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2.3 DNN Testing and Repairing

2.3.1 Against Instance-wise Errors

Most of existing works in DNN testing focus on identifying instance-wise errors. An instance-

wise error happens when a DNN model outputs inconsistent prediction across different semantic-

preserving transformations of a given input [44, 45, 76, 72]. Testing of DNN based software for

instance-wise errors usually involves generating test cases using norm-bounded perturbation[72],

natural transformation[47], generative adversarial network[46] or physical attack[77], etc.. Sim-

ilar to coverage metric in traditional software, coverage metrics such as neuron coverage[44], k-

multisection coverage[50], neuron boundary coverage[50] and sign-sign coverage[108] have been

proposed for DNN based software to evaluate how well these software are tested. Different white-

box and black-box testing approaches based on these new metrics have been proposed to identify

instance-wise errors for DNN based software [44, 53, 46, 57, 52].

Adversarial deep learning studies also target instance wise errors. DNNs are known to be

vulnerable to well-crafted inputs called adversarial examples, where the discrepancies are imper-

ceptible to a human but can easily fool deep neural network models [109, 110, 111, 112, 77,

113, 114, 115, 116, 117, 118, 119, 120, 121]. These adversarial examples can be used to test

DNN based software. However, they are manually crafted and may not exist in reality. Our work

DeepTest(Chapter 3) leveraged image transformations to simulate camera shake, weather condi-

tion, etc.. Our generated test cases are more realistic and at the same time maximize neuron cover-

age. Our follow-up project DeepRobust(chapter 4) studied per-point robustness of neural network

under natural transformations and proposed both white-box and black-box solutions to identify

non-robust data points for DNN based image classifiers and self-driving cars.

There are also studies in repairing DNN based software against instance-wise errors or defend-

ing against adversarial attacks by using adversarial training or data augmentation [122, 123, 124,

125, 126, 127, 128, 129, 130, 131, 132, 133, 75, 72, 47]. Our work DeepTest(Chapter 3) also

shows that retraining with our generated test cases can repair the DNN based software.
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2.3.2 Against Group-level Errors

Group-level errors are about the DNN model’s weak performance on differentiating among

certain classes or has inconsistent performance across classes[78]. For example, Google faced

backlash in 2015 due to a notorious error in its photo-tagging app, which tagged pictures of dark-

skinned people as “gorillas” [79]. Our third project(Chapter 5) investigates some public reports

describing the class-level violations listed in Table 2, and categorize them into two group-level

errors: (i) Confusion Errors: The model cannot differentiate one class from another. For example,

Google Photos confuses skier and mountain [81]. (ii) Bias Errors: The model shows disparate

outcomes between two related groups. For example, a DNN model should not have different error

rates while classifying the gender of a person, given a specific activity, object or environment such

as shopping, sports or kitchen. Unlike individual image properties, this is a class property affecting

all the shopping, sports or kitchen images with men or women. Any violation of such a property

by definition affects the whole class although not necessarily every image in that class. Our third

project(Chapter 5) is the first paper to propose techniques in testing DNN based software against

group level errors. Our fourth project(Chapter 6) proposed weighted regularization approaches to

repair DNN based software against target confusion errors or bias errors.

2.4 Bias/Fairness Related Work

Evaluating Models’ Bias/Fairness. Evaluating the bias and fairness of a system is important both

from a theoretical and a practical perspective [134, 135, 136, 137]. Related studies first define a

fairness criteria and then try to optimize the original objective while satisfying the fairness criteria

[138, 139, 140, 141, 142, 143]. These properties are defined either at individual [138, 144, 145] or

group levels [146, 139, 147].

Galhotra et al. [148] first applied the notion of software testing to evaluating software fairness.

They mutate the sensitive features of the inputs and check whether the output changes. One major

problem with their proposed method, Themis, is that it assumes the model takes into account
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sensitive attribute(s) during training and inference. This assumption is not realistic since most

existing fairness-aware models drop input-sensitive feature(s). Besides, Themis will not work on

image classification, where the sensitive attribute (e.g.,, gender, race) is a visual concept that cannot

be flipped easily.

Our third project(Chapter 5) proposed a white-box approach to measure the bias learned by the

model during training. Our testing method does not require the model to take into account any

sensitive feature(s). We propose a new fairness notion for the setting of multi-object classification,

average confusion disparity, and a proxy, average bias, to measure for any deep learning model

even when only unlabeled testing data is provided. In addition, our method tries to provide an

explanation behind the discrimination. Our last project(Chapter 6) proposed weighted regulariza-

tion methods, which can be applied in different stage of retraining or inference based on different

scenarios and usage, to reduce bias among the target bias triple.
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Chapter 3: DeepTest: Automated Testing of DNN based Autonomous Cars

In this chapter, we introduce our first project DeepTest, which is one of the first few papers

in proposing software testing techniques for DNN based software and promoting the birth of SE

for AI area. In this project, we proposed systematic test generation and automatic software test-

ing techniques for DNN based software such as autonomous cars. We leveraged realistic image

transformations to simulate different driving conditions such as camera shake, lightning condition,

weather condition, etc. for generating corner cases and proposed neuron coverage guided test gen-

eration to synthesize corner cases and maximize the neuron coverage at the same time. We also

leveraged metamorphic testing to generate oracle for these new generated test inputs to automati-

cally test DNN based software. Finally, we implemented our proposed techniques in DeepTest and

applied our tool in testing three top performing models in Udacity self-driving car challenge. Our

tool identified thousands of erroneous behaviors that may lead to potential fatal crash. We also

show that our generated test inputs can be used to repair those errors after retraining.

We publicly release the source code1. All images, figures, tables, equations, and text included

in this chapter is based on a published collaborative work [53].

3.1 Motivation

Significant progress in Machine Learning (ML) techniques like Deep Neural Networks (DNNs)

over the last decade has enabled the development of safety-critical ML systems like autonomous

cars. Several major car manufacturers including Tesla, GM, Ford, BMW, and Waymo/Google are

building and actively testing these cars. Recent results show that autonomous cars have become

very efficient in practice and already driven millions of miles without any human intervention [149,

150]. Twenty US states including California, Texas, and New York have recently passed legislation
1https://github.com/ARiSE-Lab/deepTest
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to enable testing and deployment of autonomous vehicles [151].

However, despite the tremendous progress, just like traditional software, DNN-based software,

including the ones used for autonomous driving, often demonstrate incorrect/unexpected corner-

case behaviors that can lead to dangerous consequences like a fatal collision. Several such real-

world cases have already been reported (see Table 3.1). As Table 3.1 clearly shows, such crashes

often happen under rare previously unseen corner cases. For example, the fatal Tesla crash re-

sulted from a failure to detect a white truck against the bright sky. The existing mechanisms for

detecting such erroneous behaviors depend heavily on manual collection of labeled test data or ad

hoc, unguided simulation [152, 153] and therefore miss numerous corner cases. Since these cars

adapt behavior based on their environment as measured by different sensors (e.g., camera, Infrared

obstacle detector, etc.), the space of possible inputs is extremely large. Thus, unguided simulations

are highly unlikely to find many erroneous behaviors.

Table 3.1: Examples of real-world accidents involving autonomous cars

Reported Date Cause Outcome Comments

Hyundai Competition [40] December, 2014 Rain fall Crashed while
testing

"The sensors failed to pick up street signs, lane markings, and
even pedestrians due to the angle of the car shifting in rain and
the direction of the sun" [40]

Tesla autopilot mode [41] July, 2016 Image contrast Killed the driver "The camera failed to recognize the white truck against a bright
sky" [42]

Google self-driving car [43] February, 2016 Failed to estimate speed Hit a bus while
shifting lane

"The car assumed that the bus would yield when it attempted
to merge back into traffic" [43]

At a conceptual level, these erroneous corner-case behaviors in DNN-based software are anal-

ogous to logic bugs in traditional software. Similar to the bug detection and patching cycle in

traditional software development, the erroneous behaviors of DNNs, once detected, can be fixed

by adding the error-inducing inputs to the training data set and also by possibly changing the model

structure/parameters. However, this is a challenging problem, as noted by large software compa-

nies like Google and Tesla that have already deployed machine learning techniques in several

production-scale systems including self-driving car, speech recognition, image search, etc. [154,

155].

Our experience with traditional software has shown that it is hard to build robust safety-critical

systems only using manual test cases. Moreover, the internals of traditional software and new
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DNN-based software are fundamentally different. For example, unlike traditional software where

the program logic is manually written by the software developers, DNN-based software automat-

ically learns its logic from a large amount of data with minimal human guidance. In addition,

the logic of a traditional program is expressed in terms of control flow statements while DNNs

use weights for edges between different neurons and nonlinear activation functions for similar

purposes. These differences make automated testing of DNN-based software challenging by pre-

senting several interesting and novel research problems.

First, traditional software testing techniques for systematically exploring different parts of the

program logic by maximizing branch/code coverage is not very useful for DNN-based software as

the logic is not encoded using control flow [44]. Next, DNNs are fundamentally different from the

models (e.g., finite state machines) used for modeling and testing traditional programs. Unlike the

traditional models, finding inputs that will result in high model coverage in a DNN is significantly

more challenging due to the non-linearity of the functions modeled by DNNs. Moreover, the

Satisfiability Modulo Theory (SMT) solvers that have been quite successful at generating high-

coverage test inputs for traditional software are known to have trouble with formulas involving

floating-point arithmetic and highly nonlinear constraints, which are commonly used in DNNs. In

fact, several research projects have already attempted to build custom tools for formally verifying

safety properties of DNNs. Unfortunately, none of them scale well to real-world-sized DNNs [67,

156, 157]. Finally, manually creating specifications for complex DNN systems like autonomous

cars is infeasible as the logic is too complex to manually encode as it involves mimicking the logic

of a human driver.

In this paper, we address these issues and design a systematic testing methodology for automat-

ically detecting erroneous behaviors of DNN-based software of self-driving cars. First, we leverage

the notion of neuron coverage (i.e., the number of neurons activated by a set of test inputs) to sys-

tematically explore different parts of the DNN logic. We empirically demonstrate that changes in

neuron coverage are statistically correlated with changes in the actions of self-driving cars (e.g.,

steering angle). Therefore, neuron coverage can be used as a guidance mechanism for systemically

26



exploring different types of car behaviors and identify erroneous behaviors. Next, we demonstrate

that different image transformations that mimic real-world differences in driving conditions like

changing contrast/brightness, rotation of the camera result in activation of different sets of neurons

in the self-driving car DNNs. We show that by combining these image transformations, the neuron

coverage can be increased by 100% on average compared to the coverage achieved by manual test

inputs. Finally, we use transformation-specific metamorphic relations between multiple executions

of the tested DNN (e.g., a car should behave similarly under different lighting conditions) to au-

tomatically detect erroneous corner case behaviors. We found thousands of erroneous behaviors

across the three top performing DNNs in the Udacity self-driving car challenge [158].

The key contributions of this paper are:

• We present a systematic technique to automatically synthesize test cases that maximizes

neuron coverage in safety-critical DNN-based systems like autonomous cars. We empirically

demonstrate that changes in neuron coverage correlate with changes in an autonomous car’s

behavior.

• We demonstrate that different realistic image transformations like changes in contrast, pres-

ence of fog, etc. can be used to generate synthetic tests that increase neuron coverage. We

leverage transformation-specific metamorphic relations to automatically detect erroneous be-

haviors. Our experiments also show that the synthetic images can be used for retraining and

making DNNs more robust to different corner cases.

• We implement the proposed techniques in DeepTest, to the best of our knowledge, the

first systematic and automated testing tool for DNN-driven autonomous vehicles. We use

DeepTest to systematically test three top performing DNN models from the Udacity driv-

ing challenge. DeepTest found thousands of erroneous behaviors in these systems many of

which can lead to potentially fatal collisions as shown in Figure 3.1.

• We have made the erroneous behaviors detected by DeepTest available at

https://deeplearningtest.github.io/deepTest/. We also plan to release
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the generated test images and the source of DeepTest for public use.

(a) original (b) with added rain

Figure 3.1: A sample dangerous erroneous behavior found by DeepTest in the Chauffeur DNN.

3.2 Methodology

To develop an automated testing methodology for DNN-driven autonomous cars we must an-

swer the following questions. (i) How do we systematically explore the input-output spaces of an

autonomous car DNN? (ii) How can we synthesize realistic inputs to automate such exploration?

(iii) How can we optimize the exploration process? (iv) How do we automatically create a test ora-

cle that can detect erroneous behaviors without detailed manual specifications? We briefly describe

how DeepTest addresses each of these questions below.

3.2.1 Systematic Testing with Neuron Coverage

The input-output space (i.e., all possible combinations of inputs and outputs) of a complex

system like an autonomous vehicle is too large for exhaustive exploration. Therefore, we must

devise a systematic way of partitioning the space into different equivalence classes and try to cover

all equivalence classes by picking one sample from each of them. In this paper, we leverage

neuron coverage [44] as a mechanism for partitioning the input space based on the assumption that

all inputs that have similar neuron coverage are part of the same equivalence class (i.e., the target

DNN behaves similarly for these inputs).
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Neuron coverage was originally proposed by Pei et al. for guided differential testing of multiple

similar DNNs [44]. It is defined as the ratio of unique neurons that get activated for given input(s)

and the total number of neurons in a DNN:

#4DA>= �>E4A064 =
|�2C8E0C43 #4DA>=B |
|)>C0; #4DA>=B | (3.1)

An individual neuron is considered activated if the neuron’s output (scaled by the overall layer’s

outputs) is larger than a DNN-wide threshold. In this paper, we use 0.2 as the neuron activation

threshold for all our experiments.

Similar to the code-coverage-guided testing tools for traditional software, DeepTest tries to

generate inputs that maximize neuron coverage of the test DNN. As each neuron’s output affects

the final output of a DNN, maximizing neuron coverage also increases output diversity. We empir-

ically demonstrate this effect in Section 3.4.

Pei et al. defined neuron coverage only for CNNs [44]. We further generalize the definition to

include RNNs. Neurons, depending on the type of the corresponding layer, may produce different

types of output values (i.e. single value and multiple values organized in a multidimensional array).

We describe how we handle such cases in detail below.

For all neurons in fully-connected layers, we can directly compare their outputs against the

neuron activation threshold as these neurons output a single scalar value. By contrast, neurons

in convolutional layers output multidimensional feature maps as each neuron outputs the result

of applying a convolutional kernel across the input space [159]. For example, the first layer in

Figure 2.1.1 illustrates the application of one convolutional kernel (of size 3×3) to the entire image

(5×5) that produces a feature map of size 3×3 in the succeeding layer. In such cases, we compute

the average of the output feature map to convert the multidimensional output of a neuron into a

scalar and compare it to the neuron activation threshold.

For RNN/LSTM with loops, the intermediate neurons are unrolled to produce a sequence of

outputs (Figure 2.1.2). We treat each neuron in the unrolled layers as a separate individual neuron

for the purpose of neuron coverage computation.
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3.2.2 Increasing Coverage with Synthetic Images

Generating arbitrary inputs that maximize neuron coverage may not be very useful if the in-

puts are not likely to appear in the real-world even if these inputs potentially demonstrate buggy

behaviors. Therefore, DeepTest focuses on generating realistic synthetic images by applying im-

age transformations on seed images and mimic different real-world phenomena like camera lens

distortions, object movements, different weather conditions, etc. To this end, we investigate nine

different realistic image transformations (changing brightness, changing contrast, translation, scal-

ing, horizontal shearing, rotation, blurring, fog effect, and rain effect). These transformations

can be classified into three groups: linear, affine, and convolutional. Our experimental results, as

described in Section 3.4, demonstrate that all of these transformations increase neuron coverage

significantly for all of the tested DNNs. Below, we describe the details of the transformations.

Adjusting brightness and contrast are both linear transformations. The brightness of an image

depends on how large the pixel values are for that image. An image’s brightness can be adjusted

by adding/subtracting a constant parameter V to each pixel’s current value. Contrast represents the

difference in brightness between different pixels in an image. One can adjust an image’s contrast

by multiplying each pixel’s value by a constant parameter U.

Table 3.2: Different affine transformation matrices

Affine Transform Example Transformation Matrix Parameters

Translation
[
1 0 CG
0 1 CH

]
CG : displacement along x axis
CH : displacement along y axis

Scale
[
BG 0 0
0 BH 0

]
BG : scale factor along x axis
BH : scale factor along y axis

Shear
[

1 BG 0
BH 1 0

]
BG : shear factor along x axis
BH : shear factor along y axis

Rotation
[
cos @ − sin @ 0
sin @ cos @ 0

]
@: the angle of rotation

Translation, scaling, horizontal shearing, and rotation are all different types of affine transfor-

mations. An affine transformation is a linear mapping between two images that preserves points,

straight lines, and planes [160]. Affine transforms are often used in image processing to fix distor-

tions resulting from camera angle variations. In this paper, we leverage affine transformations for
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the inverse case, i.e., to simulate different real-world camera perspectives or movements of objects

and check how robust the self-driving DNNs are to those changes.

An affine transformation is usually represented by a 2× 3 transformation matrix " [161]. One

can apply an affine transformation to a 2D image matrix � by simply computing the dot product

of � and " , the corresponding transformation matrix. We list the transformation matrices for the

four types of affine transformations (translation, scale, shear, and rotation) used in this paper in

Table 3.2.

Blurring and adding fog/rain effects are all convolutional transformations, i.e., they perform the

convolution operation on the input pixels with different transform-specific kernels. A convolution

operation adds (weighted by the kernel) each pixel of the input image to its local neighbors. We

use four different types of blurring filters: averaging, Gaussian, median, and bilateral [162]. We

compose multiple filters provided by Adobe Photoshop on the input images to simulate realistic

fog and rain effects [163, 164].

3.2.3 Combining Transformations to Increase Coverage

As the individual image transformations increase neuron coverage, one obvious question is

whether they can be combined to further increase the neuron coverage. Our results demonstrate

that different image transformations tend to activate different neurons, i.e., they can be stacked

together to further increase neuron coverage. However, the state space of all possible combinations

of different transformations is too large to explore exhaustively. We provide a neuron-coverage-

guided greedy search technique for efficiently finding combinations of image transformations that

result in higher coverage (see Algorithm 1).
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Algorithm 1: Greedy search for combining image transfor-
mations to increase neuron coverage

Input : Transformations T, Seed images I
Output : Synthetically generated test images
Variable: S: stack for storing newly generated images

Tqueue: transformation queue
1

2 Push all seed imgs ∈ I to Stack S
3 genTests = q
4 while ( is not empty do
5 img = S.pop()
6 Tqueue = q
7 numFailedTries = 0
8 while numFailedTries ≤ maxFailedTries do
9 if Tqueue is not empty then

10 T1 = Tqueue.dequeue()
11 else
12 Randomly pick transformation T1 from T
13 end
14 Randomly pick parameter P1 for T1
15 Randomly pick transformation T2 from T
16 Randomly pick parameter P2 for T2
17 newImage = ApplyTransforms(image, T1, P1, T2, P2)
18 if covInc(newimage) then
19 Tqueue.enqueue(T1)
20 Tqueue.enqueue(T2)
21 UpdateCoverage()
22 genTest = genTests ∪ newimage S.push(newImage)
23 else
24 numFailedTries = numFailedTries + 1
25 end
26 end
27 end
28 return genTests

The algorithm takes a set of seed images �, a list of transformations T and their corresponding

parameters as input. The key idea behind the algorithm is to keep track of the transformations

that successfully increase neuron coverage for a given image and prioritize them while generating

more synthetic images from the given image. This process is repeated in a depth-first manner to

all images.

3.2.4 Creating a Test Oracle with Metamorphic Relations

One of the major challenges in testing a complex DNN-based system like an autonomous ve-

hicle is creating the system’s specifications manually, against which the system’s behavior can
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be checked. It is challenging to create detailed specifications for such a system as it essentially

involves recreating the logic of a human driver. To avoid this issue, we leverage metamorphic rela-

tions [165] between the car behaviors across different synthetic images. The key insight is that even

though it is hard to specify the correct behavior of a self-driving car for every transformed image,

one can define relationships between the car’s behaviors across certain types of transformations.

For example, the autonomous car’s steering angle should not change significantly for the same

image under any lighting/weather conditions, blurring, or any affine transformations with small

parameter values. Thus, if a DNN model infers a steering angle \> for an input seed image �> and

a steering angle \C for a new synthetic image �C , which is generated by applying the transformation

C on �>, one may define a simple metamorphic relation where \> and \C are identical.

However, there is usually no single correct steering angle for a given image, i.e., a car can

safely tolerate small variations. Therefore, there is a trade-off between defining the metamorphic

relations very tightly, like the one described above (may result in a large number of false positives)

and making the relations more permissive (may lead to many false negatives). In this paper, we

strike a balance between these two extremes by using the metamorphic relations defined below.

To minimize false positives, we relax our metamorphic relations and allow variations within the

error ranges of the original input images. We observe that the set of outputs predicted by a DNN

model for the original images, say {\>1, \>2, ...., \>=}, in practice, result in a small but non-trivial

number of errors w.r.t. their respective manual labels ({\̂1, \̂2, ...., \̂=}). Such errors are usually

measured using Mean Squared Error (MSE), where "(�>A86 = 1
=

∑=
8=1(\̂8 − \>8)2. Leveraging this

property, we redefine a new metamorphic relation as:

(\̂8 − \C8)2 ≤ _ "(�>A86 (3.2)

The above equation assumes that the errors produced by a model for the transformed images as

input should be within a range of _ times the MSE produced by the original image set. Here, _

is a configurable parameter that allows us to strike a balance between the false positives and false
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negatives.

3.3 Implementation

Autonomous driving DNNs. We evaluate our techniques on three DNN models that won top

positions in the Udacity self-driving challenge [158]: Rambo [166] (2=3 rank), Chauffeur [167]

(3A3 rank), and Epoch [168] (6Cℎ rank). We choose these three models as their implementations are

based on the Keras framework [169] that our current prototype of DeepTest supports. The details

of the DNN models and dataset are summarized in Table 3.3.

As shown in the right figure of Table 3.3, the steering angle is defined as the rotation degree

between the heading direction of the vehicle (the vertical line) and the heading directions of the

steering wheel axles (i.e., usually front wheels). The negative steering angle indicates turning left

while the positive values indicate turning left. The maximum steering angle of a car varies based

on the hardware of different cars. The Udacity self-driving challenge dataset used in this paper has

a maximum steering angle of +/- 25 degree [158]. The steering angle is then scaled by 1/25 so that

the prediction should fall between -1 and 1.

No. of Reported Our
Model Sub-Model Neurons MSE MSE

Chauffeur CNN 1427 0.06 0.06LSTM 513

Rambo
S1(CNN) 1625

0.06 0.05S2(CNN) 3801
S3(CNN) 13473

Epoch CNN 2500 0.08 0.10
†

dataset HMB_3.bag [170]

Table 3.3: (Left) Details of DNNs used to evaluate DeepTest.†(Right) The outputs of the DNNs are the
steering angles for a self-driving car heading forward. The Udacity self-driving car has a maximum steering
angle of +/- 25 degree.

Rambo model consists of three CNNs whose outputs are merged using a final layer [166].

Two of the CNNs are inspired by NVIDIA’s self-driving car architecture [91], and the third CNN

is based on comma.ai’s steering model [171]. As opposed to other models that take individual

images as input, Rambo takes the differences among three consecutive images as input. The model

uses Keras [169] and Theano [172] frameworks.
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Chauffeur model includes one CNN model for extracting features from the image and one

LSTM model for predicting steering angle [167]. The input of the CNN model is an image while

the input of the LSTM model is the concatenation of 100 features extracted by the CNN model from

previous 100 consecutive images. Chauffeur uses Keras [169] and Tensorflow [173] frameworks.

Epoch model uses a single CNN. As the pre-trained model for Epoch is not publicly available,

we train the model using the instructions provided by the authors [168]. We used the CH2_002

dataset [170] from the Udacity self-driving Challenge for training the epoch model. Epoch , similar

to Chauffeur, uses Keras and Tensorflow frameworks.

Image transformations. In the experiments for RQ2 and RQ3, we leverage seven different types

of simple image transformations: translation, scaling, horizontal shearing, rotation, contrast ad-

justment, brightness adjustment, and blurring. We use OpenCV to implement these transforma-

tions [174]. For RQ2 and RQ3 described in Section 3.4, we use 10 parameters for each transfor-

mation as shown in Table 3.4.

Table 3.4: Transformations and parameters used by DeepTest for generating synthetic images.

Transformations Parameters Parameter ranges

Translation (CG , CH)
(10, 10) to (100, 100)

step (10, 10)

Scale (BG , BH)
(1.5, 1.5) to (6, 6)

step (0.5, 0.5)

Shear (BG , BH)
(−1.0, 0) to (−0.1, 0)

step (0.1, 0)

Rotation @ (degree) 3 to 30 with step 3

Contrast U (gain) 1.2 to 3.0 with step 0.2

Brightness V (bias) 10 to 100 with step 10

Averaging kernel size 3 × 3, 4 × 4, 5 × 5, 6 × 6

Gaussian kernel size 3 × 3, 5 × 5, 7 × 7 , 3 × 3

Blur Median aperture linear size 3, 5

Bilateral Filter diameter, sigmaColor, sigmaSpace 9, 75, 75

3.4 Results

As DNN-based models are fundamentally different than traditional software, first, we check

whether neuron coverage is a good metric to capture functional diversity of DNNs. In particular, we

investigate whether neuron coverage changes with different input-output pairs of an autonomous
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car. An individual neuron’s output goes through a sequence of linear and nonlinear operations

before contributing to the final outputs of a DNN. Therefore, it is not very clear how much (if at

all) individual neuron’s activation will change the final output. We address this in our first research

question.

Table 3.5: Relation between neuron coverage and test output

Steering Steering
Model Sub-Model Angle Direction

Spearman Wilcoxon Effect size
Correlation Test (Cohen’s d)

Chauffeur Overall -0.10 (***) left (+ve) > right (-ve) (***) negligible
CNN 0.28 (***) left (+ve) < right (-ve) (***) negligible
LSTM -0.10 (***) left (+ve) > right (-ve) (***) negligible

Rambo Overall -0.11 (***) left (+ve) < right (-ve) (***) negligible
S1 -0.19 (***) left (+ve) < right (-ve) (***) large
S2 0.10 (***) not significant negligible
S3 -0.11 (***) not significant negligible

Epoch N/A 0.78 (***) left (+ve) < right (-ve) (***) small

*** indicates statistical significance with p-value < 2.2 ∗ 10−16

RQ1. Do different input-output pairs result in different neuron coverage?

For each input image we measure the neuron coverage (see Equation 3.1 in Section 3.2.1) of

the underlying models and the corresponding output. As discussed in Section 3.3, corresponding

to an input image, each model outputs a steering direction (left (+ve) / right (-ve)) and a steering

angle as shown in Table 3.3 (right). We analyze the neuron coverage for both of these outputs

separately.

Steering angle. As steering angle is a continuous variable, we check Spearman rank corre-

lation [175] between neuron coverage and steering angle. This is a non-parametric measure to

compute monotonic association between the two variables [176]. Correlation with positive statis-

tical significance suggests that the steering angle increases with increasing neuron coverage and

vice versa. Table 3.5 shows that Spearman correlations for all the models are statistically signif-

icant—while Chauffeur and Rambo models show an overall negative association, Epoch model

shows a strong positive correlation. This result indicates that the neuron coverage changes with

the changes in output steering angles, i.e. different neurons get activated for different outputs.

Thus, in this setting, neuron coverage can be a good approximation for estimating the diversity

of input-output pairs. Moreover, our finding that monotonic correlations between neuron coverage
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and steering angle also corroborate Goodfellow et al.’s hypothesis that, in practice, DNNs are often

highly linear [113].

Steering direction. To measure the association between neuron coverage and steering direc-

tion, we check whether the coverage varies between right and left steering direction. We use the

Wilcoxon nonparametric test as the steering direction can only have two values (left and right).

Our results confirm that neuron coverage varies with steering direction with statistical significance

(p < 2.2 ∗ 10−16) for all the three overall models. Interestingly, for Rambo , only the Rambo-

S1 sub-model shows statistically significant correlation but not Rambo-S2 and Rambo-S3. These

results suggest that, unlike steering angle, some sub-models are more responsible than other for

changing steering direction.

Overall, these results show that neuron coverage altogether varies significantly for different

input-output pairs. Thus, a neuron-coverage-directed (NDG) testing strategy can help in finding

corner cases.

Result 1: Neuron coverage is correlated with input-output diversity and can be used to

systematic test generation.

4.1 Difference in neuron coverage caused by different image transformations 4.2 Average cumulative neuron coverage per input image

Figure 3.2: Different image transformations activate significantly different neurons. In the top figure
the median Jaccard distances for Chauffeur-CNN, Chauffeur-LSTM, Epoch, Rambo-S1, Rambo-S2, and
Rambo-S3 models are 0.53, 0.002, 0.67, 0.12, 0.17, 0.30, and 0.65.

Next, we investigate whether synthetic images generated by applying different realistic image

transformations (as described in Table 3.2) on existing input images can activate different neurons.
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Thus, we check:

RQ2. Do different realistic image transformations activate different neurons?

We randomly pick 1,000 input images from the test set and transform each of them by using

seven different transformations: blur, brightness, contrast, rotation, scale, shear, and translation.

We also vary the parameters of each transformation and generate a total of 70,000 new synthetic

images. We run all models with these synthetic images as input and record the neurons activated

by each input.

We then compare the neurons activated by different synthetic images generated from the same

image. Let us assume that two transformations )1 and )2, when applied to an original image �,

activate two sets of neurons #1 and #1 respectively. We measure the dissimilarities between #1

and #2 by measuring their Jaccard distance: 1 − |#1∩#2 |
|#1∪#2 | .

Figure 3.2.1 shows the result for all possible pair of transformations (e.g., blur vs. rotation,

rotation vs. transformation, etc.) for different models. These results indicate that for all models,

except Chauffeur-LSTM , different transformations activate different neurons. As discussed in

Section 2.2.2, LSTM is a particular type of RNN architecture that keeps states from previous

inputs and hence increasing the neuron coverage of LSTM models with single transformations is

much harder than other models. In this paper, we do not explore this problem any further and leave

it as an interesting future work.

We further check how much a single transformation contributes in increasing the neuron cover-

age w.r.t. all other transformations for a given seed image. Thus, if an original image � undergoes

seven discrete transformations: )1, )2, ...)7, we compute the total number of neurons activated by

)1, )1∪)2, ...,
7⋃
8=1
)8. Figure 3.2.2 shows the cumulative effect of all the transformations on average

neuron coverage per seed image. We see that the cumulative coverage increases with increasing

number of transformations for all the models. In other words, all the transformations are contribut-

ing towards the overall neuron coverage.

We also compute the percentage change in neuron coverage per image transformation (#) )
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w.r.t. to the corresponding seed image (#$) as: (#) -#$)/#$ . Figure 3.3 shows the result. For all

the studied models, the transformed images increase the neuron coverage significantly—Wilcoxon

nonparametric test confirms the statistical significance. These results also show that different image

transformations increase neuron coverage at different rates.

Result 2: Different image transformations tend to activate different sets of neurons.

Next, we mutate the seed images with different combinations of transformations (see Sec-

tion 3.2). Since different image transformations activate different set of neurons, here we try to

increase the neuron coverage by these transformed image inputs. To this end, we question:

RQ3. Can neuron coverage be further increased by combining different image transforma-

tions?

We perform this experiment by measuring neuron coverage in two different settings: (i) apply-

ing a set of transformations and (ii) combining transformations using coverage-guided search.

i) Cumulative Transformations. Since different seed images activate a different set of neu-

rons (see RQ1), multiple seed images collectively achieve higher neuron coverage than a sin-

gle one. Hence, we check whether the transformed images can still increase the neuron cover-

age collectively w.r.t. the cumulative baseline coverage of a set of seed images. In particular,

we generate a total of 7,000 images from 100 seed images by applying 7 transformations and

varying 10 parameters on 100 seed images. This results in a total of 7,000 test images. We

then compare the cumulative neuron coverage of these synthetic images w.r.t. the baseline, which

use the same 100 seed images for fair comparison. Table 3.6 shows the result. Across all the

models (except Rambo-S3), the cumulative coverage increased significantly. Since the Rambo-

S3 baseline already achieved 97% coverage, the transformed images only increase the coverage by

(13, 080 − 13, 008)/13, 008 = 0.55%.

ii) Guided Transformations. Finally, we check whether we can further increase the cumula-

tive neuron coverage by using the coverage-guided search technique described in Algorithm 1.

We generate 254, 221, and 864 images from 100 seed images for Chauffeur-CNN , Epoch , and
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Median Increase in Neuron Coverage
Transformation Chauffeur Epoch Rambo

(CNN,LSTM) (S1,S2,S3)

Scale (1.0,0.0) 39.0** (2.0*,5.0*,32.0)
(0.67%,0%) 93% (0.41%,1%,4%)

Brightness (100.0**,1.0) 113.0** (67.0**,104.0**,585.0*)
(67%,0.2%) 269% (14%,24%,66%)

Contrast (120.0**,1.0*) 75.0** (47.0**,100.0**,159.0)
(80%,0.2%) 179% (10%,23%,18%)

Blur (41.0**,0.0) 9.0* (18.0**,23.0**,269.5*)
(28%,0%) 21% (4%,5%,31%)

Rotation (199.0**,2.0*) 81.0** (70.0**,13.0**,786.5*)
(134%,0.39%) 193% (14%,3%,89%)

Translation (147.0**,1.0*) 65.0** (143.0**,167.0**,2315.5**)
(99%,0.2%) 155% (29%,38%,263%)

Shear (168.0**,1.0*) 167.0** (48.0**,132.0**,1472.0**)
(113%,0.2%) 398% (10%,30%,167%)

All numbers are statistically significant;
Numbers with * and ** have small and large Cohen’s D effect.

Figure 3.3: Neuron coverage per seed image for individual image transformations w.r.t. baseline.

Table 3.6: Neuron coverage achieved by cumulative and guided transformations applied to 100 seed images.

Cumulative Guided % increase of guided w.r.t.
Model Baseline Transformation Generation Baseline Cumulative
Chauffeur-CNN 658 (46%) 1,065 (75%) 1,250 (88%) 90% 17%
Epoch 621 (25%) 1034 (41%) 1,266 (51%) 104% 22%
Rambo-S1 710 (44%) 929 (57%) 1,043 (64%) 47% 12%
Rambo-S2 1,146 (30%) 2,210 (58%) 2,676 (70%) 134% 21%
Rambo-S3 13,008 (97%) 13,080 (97%) 13,150 (98%) 1.1% 0.5%
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Rambo models respectively and measure their collective neuron coverage. As shown in Table 3.6,

the guided transformations collectively achieve 88%, 51%, 64%, 70%, and 98% of total neurons

for models Chauffeur-CNN , Epoch , Rambo-S1 , Rambo-S2 , and Rambo-S3 respectively, thus

increasing the coverage up to 17% 22%, 12%, 21%, and 0.5% w.r.t. the unguided approach. This

method also significantly achieves higher neuron coverage w.r.t. baseline cumulative coverage.

Result 3: By systematically combining different image transformations, neuron coverage

can be improved by around 100% w.r.t. the coverage achieved by the original seed images.

Next we check whether the synthetic images can trigger any erroneous behavior in the au-

tonomous car DNNs and if we can detect those behaviors using metamorphic relations as described

in Section 3.2.4. This leads to the following research question:

RQ4. Can we automatically detect erroneous behaviors using metamorphic relations?

Figure 3.4: Deviations from the human labels for images that violate the metamorphic relation (see
Equation 3.2) is higher compared to the deviations for original images. Thus, these synthetic images
have a high chance to show erroneous behaviors.

Here we focus on the transformed images whose outputs violate the metamorphic relation

defined in Equation 3.2. We call these images �4AA and their corresponding original images as �>A6.

We compare the deviation between the outputs of �4AA and �>A6 w.r.t. the corresponding human

labels, as shown in Figure 3.4. The deviations produced for �4AA are much larger than �>A6 (also
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confirmed by Wilcoxon test for statistical significance). In fact, mean squared error (MSE) for

�4AA is 0.41, while the MSE of the corresponding �>A6 is 0.035. Such differences also exist for

other synthetic images that are generated by composite transformations including rain, fog, and

those generated during the coverage-guided search. Thus, overall �4AA has a higher potential to

show buggy behavior.

original fog original rain original translation(40,40) original scale(2.5x)

original shear(0.1) original rotation(6 degree) original contrast(1.8) original brightness(50)

Figure 3.5: Sample images showing erroneous behaviors detected by DeepTest using synthetic images. For
original images the arrows are marked in blue, while for the synthetic images they are marked in red. More
such samples can be viewed at https://deeplearningtest.github.io/deepTest/.

However, for certain transformations (e.g., rotation), not all violations of the metamorphic

relations can be considered buggy as the correct steering angle can vary widely based on the con-

tents of the transformed image. For example, when an image is rotated by a large amount, say

30 degrees, it is nontrivial to automatically define its correct output behavior without knowing its

contents. To reduce such false positives, we only report bugs for the transformations (e.g., small

rotations, rain, fog, etc.) where the correct output should not deviate much from the labels of the

corresponding seed images. Thus, we further use a filtration criteria as defined in Equation 3.3 to

identify such transformations by checking whether the MSE of the synthetic images is close to that

of the original images.

| "(�(CA0=B,?0A0<) − "(�>A6 | ≤ n (3.3)

Thus, we only choose the transformations that obey Equation 3.3 for counting erroneous be-

haviors. Table 3.7 shows the number of such erroneous cases by varying two thresholds: n and
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_—a higher value of _ and lower value of n makes the system report fewer bugs and vice versa.

For example, with a _ of 5 and n of 0.03, we report 330 violations for simple transformations. We

do not enforce the filtration criteria for composite transformations. Rain and fog effects should

produce same outputs as original images. Also, in guided search since multiple transformations

produce the synthesized images, it is not possible to filter out a single transformation. Thus, for

rain, fog, and guided search, we report 4448, 741, and 821 erroneous behavior respectively for _ =

5, across all three models.

Table 3.7: Number of erroneous behaviors reported by DeepTest across all tested models at different thresh-
olds

Simple Tranformation Composite Transformation
_ n (see Eqn. 3.3) Fog Rain Guided

(see Eqn. 3.2) 0.01 0.02 0.03 0.04 0.05 Search

1 15666 18520 23391 24952 29649 9018 6133 1148
2 4066 5033 6778 7362 9259 6503 2650 1026
3 1396 1741 2414 2627 3376 5452 1483 930
4 501 642 965 1064 4884 4884 997 872
5 95 171 330 382 641 4448 741 820
6 49 85 185 210 359 4063 516 764
7 13 24 89 105 189 3732 287 721
8 3 5 34 45 103 3391 174 668
9 0 1 12 19 56 3070 111 637
10 0 0 3 5 23 2801 63 597

Table 3.8: Number of unique erroneous behaviors reported by DeepTest for different models with _ = 5
(see Eqn. 3.2)

Transformation Chauffeur Epoch Rambo

Simple Transformation
Blur 3 27 11
Brightness 97 32 15
Contrast 31 12 -
Rotation - 13 -
Scale - 10 -
Shear - - 23
Translation 21 35 -

Composite Transformation
Rain 650 64 27
Fog 201 135 4112
Guided 89 65 666

Table 3.8 further elaborates the result for different models for _ = 5 and n = 0.03, as high-

lighted in Table 3.7. Interestingly, some models are more prone to erroneous behaviors for some

transformations than others. For example, Rambo produces 23 erroneous cases for shear, while

the other two models do not show any such cases. Similarly, DeepTest finds 650 instances of er-

roneous behavior in Chauffeur for rain but only 64 and 27 for Epoch and Rambo respectively. In

total, DeepTest detects 6339 erroneous behaviors across all three models. Figure 3.5 further shows
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some of the erroneous behaviors that are detected by DeepTest under different transformations that

can lead to potentially fatal situations. We also manually checked the bugs reported in Table 3.8

and report the false positives in Figure 3.6. It also shows two synthetic images (the corresponding

original images) where DeepTest incorrectly reports erroneous behaviors while the model’s output

is indeed safe. Although such manual investigation is, by definition, subjective and approximate,

all the authors have reviewed the images and agreed on the false positives.

Simple
Model Transformation Guided Rain Fog Total

Epoch 14 0 0 0 14
Chauffeur 5 3 12 6 26
Rambo 8 43 11 28 90

Total 27 46 23 34 130

original translation(50,50), epoch original shear(0.4), rambo

Figure 3.6: Sample false positives produced by DeepTest for _ = 5, n = 0.03

Result 4: With neuron coverage guided synthesized images, DeepTest successfully detects

more than 1,000 erroneous behavior as predicted by the three models with low false positives.

RQ5. Can retraining DNNs with synthetic images improve accuracy?

Table 3.9: Improvement in MSE after retraining of Epoch model with synthetic tests generated by DeepTest

Test set Original MSE Retrained MSE

original images 0.10 0.09
with fog 0.18 0.10
with rain 0.13 0.07

Here we check whether retraining the DNNs with some of the synthetic images generated by

DeepTest helps in making the DNNs more robust.We used the images from HMB_3.bag [170] and

created their synthetic versions by adding the rain and fog effects. We retrained the Epoch model

with randomly sampled 66% of these synthetic inputs along with the original training data. We

evaluated both the original and the retrained model on the rest 34% of the synthetic images and

their original versions. In all cases, the accuracy of the retrained model improved significantly over

the original model as shown in Table 3.9.
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Result 5: Accuracy of a DNN can be improved up to 46% by retraining the DNN with

synthetic data generated by DeepTest.

3.5 Discussion & Threats to Validity

DeepTest generates realistic synthetic images by applying different image transformations on

the seed images. However, these transformations are not designed to be exhaustive and therefore

may not cover all realistic cases.

While our transformations like rain and fog effects are designed to be realistic, the generated

pictures may not be exactly reproducible in reality due to a large number of unpredictable factors,

e.g., the position of the sun, the angle and size of the rain drops. etc. However, as the image

processing techniques become more sophisticated, the generated pictures will get closer to reality.

A complete DNN model for driving an autonomous vehicle must also handle braking and

acceleration besides the steering angle. We restricted ourselves to only test the accuracy of the

steering angle as our tested models do not support braking and acceleration yet. However, our

techniques should be readily applicable to testing those outputs too assuming that the models

support them.

3.6 Related Work

Testing of driver assistance systems. Abdessalem et al. proposed a technique for testing Ad-

vanced Driver Assistance Systems (ADAS) in autonomous cars that show warnings to the drivers

if it detects pedestrians in positions with low driver visibility [177]. They use multi-objective meta

heuristic search algorithms to generate tests that simultaneously focus on the most critical behav-

iors of the system and the environment as decided by the domain experts (e.g., moving pedestrians

in the dark).

The key differences between this work and ours are threefold: (i) We focus on testing the

image recognition and steering logic in the autonomous car DNNs while their technique tested
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ADAS system’s warning logic based on preprocessed sensor inputs; (ii) Their blackbox technique

depends on manually selected critical scenarios while our gray-box technique looks inside the

DNN model and systematically maximize neuron coverage. The trade-off is that their technique

can, in theory, work for arbitrary implementations while our technique is tailored for DNNs; and

(iii) We leverage metamorphic relations for creating a test oracle while they depend on manual

specifications for detecting faulty behavior.

Testing and verification of machine learning. Traditional practices in evaluating machine

learning systems primarily measure their accuracy on randomly drawn test inputs from manually

labeled datasets and ad hoc simulations [178, 153, 152]. However, without the knowledge of the

model’s internals, such blackbox testing paradigms are not able to find different corner-cases that

may induce unexpected behaviors [179, 44].

Pei et al. [44] proposed DeepXplore, a whitebox differential testing algorithm for systemat-

ically finding inputs that can trigger inconsistencies between multiple DNNs. They introduced

neuron coverage as a systematic metric for measuring how much of the internal logic of a DNNs

have been tested. By contrast, our graybox methods use neuron coverage for guided test genera-

tion in a single DNN and leverage metamorphic relations to identify erroneous behaviors without

requiring multiple DNNs.

Another recent line of work has explored the possibility of verifying DNNs against different

safety properties [157, 156, 67]. However, none of these techniques can verify a rich set of

properties for real-world-sized DNNs. By contrast, our techniques can systematically test state-of-

the-art DNNs for safety-critical erroneous behaviors but do not provide any theoretical guarantees.

Adversarial machine learning.

A large number of projects successfully attacked machine learning models at test time by forc-

ing it to make unexpected mistakes. More specifically, these attacks focus on finding inputs that,

when changed minimally from their original versions, get classified differently by the machine

learning classifiers. These types of attacks are known to affect a broad spectrum of tasks such as

image recognition [119, 113, 115, 116, 180, 118, 117, 114, 77], face detection/verification [181,
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182], malware detection [183, 184, 185, 186], and text analysis [187, 188]. Several prior works

have explored defenses against these attacks with different effectiveness [126, 130, 122, 132, 156,

123, 189, 190, 129, 131, 125, 191, 124, 127, 128].

In summary, this line of work tries to find a particular class of erroneous behaviors, i.e., forcing

incorrect prediction by adding a minimum amount of noise to a given input. By contrast, we

systematically test a given DNN by maximizing neuron coverage and find a diverse set of corner-

case behaviors. Moreover, we specifically focus on finding realistic conditions that can occur in

practice.

Test amplification. There is a large body of work on test case generation and amplification

techniques for traditional software that automatically generate test cases from some seed inputs

and increase code coverage. Instead of summarizing them individually here, we refer the interested

readers to the surveys by Anand et al. [87], McMinn et al. [9], and Pasareanu et al. [88]. Unlike

these approaches, DeepTest is designed to operate on DNNs.

Metamorphic testing. Metamorphic testing [165, 192] is a way of creating test oracles in

settings where manual specifications are not available. Metamorphic testing identifies buggy be-

havior by detecting violations of domain-specific metamorphic relations that are defined across

outputs from multiple executions of the test program with different inputs. For example, a sample

metamorphic property for program ? adding two inputs 0 and 1 can be ?(0, 1) = ?(0, 0) + ?(1, 0).

Metamorphic testing has been used in the past for testing both supervised and unsupervised ma-

chine learning classifiers [193, 20]. By contrast, we define new metamorphic relations in the do-

main of autonomous cars which, unlike the classifiers tested before, produce a continuous steering

angle, i.e., it is a regression task.

3.7 Summary

In this work, we proposed and evaluated DeepTest, a tool for automated testing of DNN-driven

autonomous cars. DeepTest maximizes the neuron coverage of a DNN using synthetic test im-

ages generated by applying different realistic transformations on a set of seed images. We use
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domain-specific metamorphic relations to find erroneous behaviors of the DNN without detailed

specification. DeepTest can be easily adapted to test other DNN-based systems by customizing the

transformations and metamorphic relations. We believe DeepTest is an important first step towards

building robust DNN-based systems.
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Chapter 4: Understanding Local Robustness of Deep Neural Networks

under Natural Variations

In Chapter 3, DeepTest has identified large numbers of erroneous behaviors resulted from cor-

ner cases generated by natural transformations. In this chapter, we presented a follow-up project

DeepRobust in studying the local robustness of deep neural networks under natural variations.

We first conducted an empirical study to understand per-point robustness of deep neural networks

under natural variation. We found that not all the inputs under natural variation will result in er-

roneous outputs for a DNN. There exists specific weak data points, which are more likely to fail a

deep neural network model than other data points. Then we designed and implemented a white-box

approach(DEEPROBUST-W) and a black-box approach(DEEPROBUST-B) to identify these weak

data points for DNN based image classifiers and DNN based self-driving cars. We evaluated our

approaches on 9 DNN based image classifiers and 3 DNN based self-driving car models. Our

results show that DEEPROBUST-W and DEEPROBUST-B are able to achieve an F1 score of up to

91.4% and 99.1%, respectively in testing DNN based image classifiers. DEEPROBUST-W is effec-

tive in identifying weak data points with F1 score up to 78.9% in testing DNN based self-driving

car models.

We publicly release the source code1. All images, figures, tables, equations, and text included

in this chapter is based on a published collaborative work [76].

4.1 Motivation

Deep Neural Networks (DNNs) have achieved an unprecedented level of performance over the

last decade in many sophisticated areas such as image recognition [92], self-driving cars [91] and

1https://github.com/deeprobust/DeepRobust
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(a) 0°, bird (b) +6°, air-
plane

(c) +24°,
cat

(d) -9°, dog (e) 0°, bird (f) +6°, bird (g) +24°,
bird

(h) -9°, bird

Figure 4.1: (a)-(d) A well-trained Resnet model [47] misclassifies the rotated variations of a bird
image into three different classes though the original un-rotated image is classified correctly. (e)-(h)
The same model successfully classifies all the rotated variants of another bird image from the same
test set. The sub-captions consist of rotation degrees and the predicted classes.

playing complex games [194]. These advances have also motivated companies to adapt their soft-

ware development flows to incorporate AI components [195]. This trend has, in turn, spawned a

new area of research within software engineering addressing the quality assurance of DNN com-

ponents [44, 45, 46, 65, 196, 197, 198, 199, 200, 201, 78, 55].

Notwithstanding the impressive capabilities of DNNs, recent research has shown that DNNs

can be easily fooled, i.e. made to mispredict, with a little variation of the input data [113, 47,

45]—either adding a norm-bound pixel-level perturbation into the original input [119, 113, 123],

or with natural variants of the inputs, e.g., rotating an image, changing the lighting conditions,

etc. [47, 44]. The natural variants are especially concerning as they can occur naturally in the field

without any active adversary and may lead to serious consequences [45, 46].

While norm-bound perturbation based DNN robustness is relatively well-studied, our knowl-

edge of DNN robustness under the natural variations is still limited—we do not know which images

are more robust than others, what their characteristics are, etc. For example, consider Figure 4.1:

although the original bird image (a) is predicted correctly by a DNN, its rotated variations in im-

ages (b)-(d) are mispredicted to three different classes. This makes the original image (a) very

weak as far as robustness is concerned. In contrast, the bird image (e) and all its rotated versions

(generated by the same degrees of rotation) in Figure 4.1:(f)-(h) are correctly classified. Thus, the

original image (e) is quite robust. It is important to distinguish between such robust vs. non-robust

images, as the non-robust ones can induce errors with slight natural variations.

Existing literature, however, focuses on estimating the overall robustness of DNNs across all
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the test data [47, 48, 49]. From a traditional software point of view, this is analogous to estimating

how buggy a software is without actually localizing the bugs. Our current work tries to bridge this

gap by localizing the non-robust points in the input space that pose significant threats to a DNN

model’s robustness. However, unlike traditional software where bug localization is performed in

program space, we identify the non-robust inputs in the data space. As a DNN is a combination

of data and architecture, and the architecture is largely uninterpretable, we restrict our study of

non-robustness to the input space. To this end, we first quantify the local (per input) robustness

property of a DNN. First, we treat all the natural variants of an input image as its neighbors. Then,

for each input data, we consider a population of its neighbors and measure the fraction of this pop-

ulation classified correctly by the DNN - a high fraction of correct classifications indicates good

robustness (Figure 4.1:e) and vice versa (Figure 4.1:a). We term this measure neighbor accuracy.

Using this metric, we study different local robustness properties of the DNNs and analyze how

the weak, a.k.a. non-robust, points differ characteristically from their robust counterparts. Given

that the number of natural neighbors of an image can be potentially infinite, first we performed a

more controlled analysis by keeping the natural variants limited to spatially transformed images

generated by rotation and translation, following the previous work [47, 48, 49]. Such controlled

experiments help us to explore different robustness properties while systematically varying trans-

formation parameters.

Our analysis with three well-known object recognition datasets across three popular DNN mod-

els, i.e. a total of nine DNN-dataset combinations, reveal several interesting properties of local

robustness of a DNN w.r.t. natural variants:

• The neighbors of a weaker point are not necessarily classified to one single incorrect class. In

fact, the weaker the point is its neighbors (mis)classifications become more diverse.

• The weak points are concentrated towards the class decision boundaries of the DNN in the feature

space.

Based on these findings, we further develop two techniques (a black-box and a white-box) that

can localize the points of poor robustness, thereby providing a means of, input-specific, real-time
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feedback about robustness to the end-user. Our white-box and black-box detectors can identify

weak, a.k.a. non-robust, points with f1 score up to 91.4% and 99.1%, respectively, at neighbor

accuracy cutoff 0.75. To further check the generalizability of our technique, we aim to detect weak

points w.r.t. a self-driving car application where we generated natural input variants by adding rain

and fog. Note that these are more complex image transformations, and also the model works in

a regression setting instead of classification. These models take an image as input, and output a

driving angle. Our white-box detector can identify weak points with f1 score up to 78.9%.

In summary, we make the following contributions:

• We conduct an empirical study to understand the local robustness properties of DNNs under

natural variations.

• We develop a white-box (DEEPROBUST-W) and a black-box (DEEPROBUST-B) method to au-

tomatically detect weak points.

• We present a detailed evaluation of our methods on three DNN models across three image clas-

sification datasets. To check the generalizability of our findings, we further evaluate DEEP-

ROBUST-W in a setting with non-spatial transformations (i.e. rain and fog), a different task (i.e.

regression), and a safety-critical application (i.e. self-driving car). We find that DEEPROBUST

can successfully detect weak points with reasonably good precision and recall.

• We made our code public at https://github.com/deeprobust/DeepRobust.

4.2 Methodology

4.2.1 Terminology

Original Data Point: An original data point represents an original un-modified data instance (im-

age in our case) in the studied dataset. The original data points can come from training, validation,

or testing dataset, depending on the experimental setting. In Figure 4.2, the triangle in the center

is an original data point.
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0

Robust Region Weak Region

weak original point

strong original point

 misclassified neighbor

correctly classified neighbor

Figure 4.2: Illustrating our terminologies. The triangles are original points, and the small circles are
their neighbors generated by natural variations. The light-green region is robust with higher neighbor
accuracy, while the light-red region is vulnerable. The corresponding original points are robust and
non-robust accordingly.

Neighbors: Neighbors are images generated by the natural variations, e.g., spatial transformations

applied to an original image. Since the transformation parameters are continuous (e.g., degree of

rotations), there can be an infinite number of neighbors per image. In Figure 4.2, the small circles

around an original data point represent its neighbors.

Neighbor Accuracy: We define neighbor accuracy as the percentage of its neighbors, including

itself, that can be correctly classified by the DNN model. Figure 4.2 illustrates this; here, red small

circles indicate misclassified neighbors, while the green small circles are correctly classified ones.

The figure shows that there are only five neighbors per original data point. In the left-hand-side

diagram, four out of five neighbors are correctly classified by the given DNN model. If the original

data point is correctly classified as well, the neighbor accuracy of the original data is (5/6=) 83.3%.

Similarly, in Figure 4.2 (right), four out of the five neighbors have been misclassified by the model;

if the original data point is misclassified, the neighbor accuracy is (1/6=) 16.6%.

Robustness. An original data point is strong, a.k.a. robust, w.r.t. the DNN model under test if its

neighbor accuracy is higher than a pre-defined threshold. Conversely, a weak, a.k.a. non-robust,

point has the neighbor accuracy lower than a pre-defined threshold. For example, at 0.75 neighbor

accuracy threshold, the black triangle in Figure 4.2 is a strong point, and the grey triangle is a weak

point.

A region contains an original point and all of its neighbors. If the original point is strong

(weak), we call the corresponding region as a robust (weak) region. In Figure 4.2, the light green
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region is robust while the light red region is weak.

Neighbor Diversity: For multi-class classification task, different neighbors of an original point

can be mis-classified to different classes. Neighbor Diversity score measures how many diverse

classes a point’s neighbors are classified, and is formally computed using Simpson Diversity Index

(_) [202]:

_ =

:∑
8=1

?2
8 (4.1)

where : is the total number of possible classes and ?8 is the probability of an image’s neighbors

being predicted to be class 8. Large Simpson Index means low diversity. Let’s consider we have

three possible classes A, B, and C. Assume an image has 4 neighbors. Including the original image,

there are 5 images in total. If two of the five images are classified as A, and rest are classified as B,

then _ = (2/5)2 + (3/5)2 + (0/5)2 = 0.52. In contrast, if two of them are classified as A, and two

are classified as B, and one is classified as C then _ = (2/5)2 + (2/5)2 + (1/5)2 = 0.36. Clearly,

the latter case is more diverse and thus, has a lower _ score.

Feature Representation: In a DNN, the neurons’ output in each layer capture different abstract

representation of the raw input, which are commonly known as features, extracted by the current

layer and all the preceding layers. Each layer’s output forms the corresponding feature space. For

a given input data point, we consider the output of the DNN’s second-to-last layer as its feature

representation or feature vector.

4.2.2 Data Collection

Neighbor Generation: For the image classification tasks, for each original image point, we gen-

erate its neighbors by combining two types of spatial transformations: rotation and translation. We

carefully choose these two types as representatives of non-linear and linear spatial transformations,

respectively, following Engstrom et al. [47]. In particular, following them, we generate a neighbor

by randomly rotating the original point by t (∈ [−30, 30]) degrees, shifting it by 3G (about 10%

of the original image’s width i.e. ∈ [−3, 3]) pixels horizontally, and shifting it by 3H (about 10%

of the original image’s height i.e. ∈ [−3, 3]) pixels vertically. It should be noted that for image
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classification it is standard in the literature [71, 47, 203] to assume that the transformed image has

the same label as the original one. As the transformation parameters are continuous, there can be

infinite neighbors of an original data point. Hence, we sample < neighbors for each original data

point. We explore the impact of < in RQ2.

For the self-driving-car task where the model predicts steering angle, for each original im-

age point, we generate 50% neighbors with rain effect and the rest 50% with fog effects. We

adopt a widely used self-driving car data augmentation package, Automold [204], for adding

these effects where we randomly vary the degrees of the added effect. For the rain effect, we

set “rain_type=heavy" and everything else as default. For the fog effect, we set everything as

default.

Estimating Neighbor Accuracy: To compute the neighbor accuracy of a data point for a given

DNN model, we first generate its neighbor samples by applying different transformations—spatial

for image classification and rain or fog for self-driving-car application. Then we feed these gen-

erated neighbors into the DNN model and compute the accuracy by comparing the DNN’s output

with the label of the original data point. For self-driving-car application, we follow the technique

described in DeepTest [45]. More specifically, if the predicted steering angle of the transformed

image is within a threshold to the original image, we consider it as correct. This ensures that

any small variations of steering angle are tolerated in the predicted results. We then compute

=486ℎ1>DA 022DA02H =
#2>AA42C ?A4382C8>=B

>A868=0; ?>8=C+#C>C0; =486ℎ1>DAB .

4.2.3 Classifying Robust vs. Weak Points

We propose two methods, DEEPROBUST-W and DEEPROBUST-B, to identify whether an un-

labeled input is strong or weak w.r.t. a DNN in real time. If a test image is identified as a weak

point, although it may be classified correctly by the pre-trained model, this image is in a vulnera-

ble region where a slight change to this image may cause the pre-trained DNN to misclassify the

changed input.
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DEEPROBUST-W: White-box Classifier

Original
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(a) workflow - training

Test Data
Point

Pre-trained
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Test
feature
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Strong
Point

Weak Point

(b) workflow - testing

Figure 4.3: Workflow of DEEPROBUST-W

This is a binary classifier designed to classify an image (in particular, image feature vector) as

a strong or weak point. Here, we assume that we have white box access to the DNN under test to

extract the feature vectors of the input images from the DNN. These feature vectors are given as

inputs to DEEPROBUST-W. Figure 4.3 shows the workflow.

Training: During training of DEEPROBUST-W, we first feed all the original training images and

their neighbors to the DNN under test. From the DNN outputs, we compute the neighbor accuracy

for each data point in the training set and label each point strong/weak depending on whether its

neighbor accuracy is higher/lower than a predefined threshold. For each original data point, we

also extract the output of the DNN’s second-to-last layer as its feature vector. We use these vectors

as inputs to train DEEPROBUST-W and the outputs are the corresponding strong/weak labels.

Testing: Given a test input, we first extract its feature vector by feeding the test image to the DNN

under test and then feed the extracted feature vector into trained DEEPROBUST-W, which predicts

if the input image is a strong or weak point.

DEEPROBUST-B: Black-box Classifier

This is also a binary classifier that is intended to classify an image to strong/weak point. How-

ever, here the user does not have white box access to the DNN under test. Figure 4.4 shows the

workflow.
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Figure 4.4: Workflow of DEEPROBUST-B

Given a test input, we first randomly generate some of its neighbors. We then query the DNN

under test with all these neighbors and compute the diversity score, as per Equation 4.1. If the

neighbor diversity score (inversely correlated with neighbor diversity) is greater than a given di-

versity score threshold, the given test input is classified as a strong point; otherwise, a weak point.

Notice that, in this method, we do not need a training step. We only need the diversity score

threshold, which can be empirically set using a ground-truth data set. In particular, we first cal-

culate the neighbor accuracy and diversity score of each pre-annotated point. Next, based on a

given neighbor accuracy threshold, we identify the weak points, as the ground truth. The highest

diversity score among these weak points is chosen as the diversity score threshold.

Usage Scenario

DEEPROBUST-W/B works in a real-world setting where a customer/user runs a pre-trained

DNN model in real-time which constantly receives inputs and wants to test if the prediction of the

DNN on a given input can be trusted. DEEPROBUST-W assumes that the user has white-box access

to DNN under test and all the training data used to train the DNN. DEEPROBUST-W leverages the

feature vector and neighbor accuracy of the training data to train the classifier, which can notify

the user if the current input is a strong point or weak point. If the input is classified as strong point,

the user can give more trust to the original DNN’s prediction. On the other hand, if the point is

classified as a weak point, the user may want to be more cautious about the DNN’s prediction and
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conduct additional inspections.

In the blackbox setting, DEEPROBUST-B assumes the user does not have white-box access to

DNN under test. DEEPROBUST-B comes with a small overhead of transforming the input multiple

times to get some neighbors and querying DNN under test on them to estimate the diversity score.

4.3 Experimental Design

4.3.1 Study Subjects

Image Classification

Similar to many existing works [45, 46, 196, 50, 205, 78] on DNN testing, in this work, we use

image classification application of DNNs as the basis of our investigation. This is one of the most

popular computer vision tasks, where the model tries to classify the objects in an image or video.

Datasets: We conduct our experiments on three image classification datasets: F-MNIST [206],

CIFAR-100 [207], and SVHN [208].

• CIFAR-10: consists of 50,000 training and 10,000 testing 32x32 color images. Each image is

one of ten digit classes.

• F-MNIST: consists of 60,000 training images and 10,000 testing 28x28 grayscale images. Each

image is one of ten fashion product related classes.

• SVHN: consists of 73,257 training images and 26,032 testing images. Each image is a 32x32

color cropped image of house numbers collected from Google Street View images.

Architectures: The popular DNN-based image classifiers are variants of convolutional neural

networks (CNN) [209, 210, 92]. Here we study the following three architectures for all the three

datasets:

• ResN: Following Engstrom et al. [47], we use ResN model with 4 groups of residual layers with

filter sizes 16, 16, 32, and 64, and 5 residual units each.
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Table 4.1: Study Subjects (values are in percentage)

Dataset CIFAR-100 SVHN F-MNIST

Model VGG ResN WRN VGG ResN WRN VGG ResN WRN

nat acc’ 89.0 89.3 90.6 94.5 95.3 95.2 93.4 93.5 93.6
rob acc* 75.5 68.5 74.8 78.1 78.9 81. 61.1 63.0 64.2

’Natural accuracy. *Robust accuracy is estimated as the average neighbor accuracy for test data points.

• VGG: We use the same VGG architecture as proposed in [211].

• WRN: We use a structure with block type (3, 3) and depth 28 in [1] but replace the widening

factor 10 with 2 for less parameters and faster training.

We train all the models from scratch. When training models on CIFAR-100 , we pre-process

the input images with random augmentation (random translation with 3G, 3H ∈ [−2, 2] pixels

both horizontally and vertically) which is a widely used preprocessing step for this dataset. When

training models on the other two datasets, plain images are directly fed into the models. The natural

accuracies and robust accuracies of the models are shown in Table 4.1.

Steering Angle Prediction

We further evaluate DEEPROBUST-W in a self-driving car application to show that it can be

applied into a regression task. These models learn to steer (i.e. predict steering angle) by taking

in visual inputs from car-mounted cameras that record the driving scene, paired with the steering

angles from a human driver.

Datasets: We use the dataset by Stocco et al. [212], which is collected by the authors driving

on three tracks of different environments in the Udacity Simulator [213]. It consists of 37888

central camera training images and 9427 central camera evaluation images. Each image is of size

320x120.

Architectures: We evaluate our method on the three pre-trained DNN models used in [212]:

NVIDIA DAVE-2 [214], Epoch [168], and Chauffeur [167]. These models have been used by

many previous testing works on self-driving car [44, 45, 212].
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4.3.2 Evaluation

Evaluation Metric. We evaluate both DEEPROBUST-W and DEEPROBUST-B for detecting weak

points under twelve and nine different DNN-dataset combinations, respectively, in terms of preci-

sion, recall, and F1 score. Let us assume that � is the number of weak points detected by our tool

and � is the the number of true weak points in the ground truth set. Then the precision and recall

are |�∩� ||� | and |�∩� ||�| , respectively. F1 score is a single accuracy measure that considers both preci-

sion and recall, and defined as 2×?A428B8>=×A420;;
?A428B8>=+A420;; . We perform each experiment for two thresholds

of neighbor accuracy that defines strong vs. weak points: 0.75 and 0.50.

Baselines. We compare DEEPROBUST-W and DEEPROBUST-B with two baselines. One naive

baseline (denoted random) is randomly selecting the same number of points as detected by our

proposed method to be weak points. Another baseline (denoted top1) is based on prediction confi-

dence score—if the confidence of a data point is higher than a pre-defined cutoff we call it a strong

point, weak otherwise. This baseline is based on the intuition that DNNs might not be confident

enough to predict the weak points.

4.4 Results

In this section, we elaborate on our results. In our preliminary experiments, we have two

findings regarding neighbor accuracy. First, the neighbor accuracy vary widely across data points

and there is a non-trivial number of points having relatively low neighbor accuracy. For example,

for all the models trained on CIFAR-100 dataset, 40% of training data and 42% of testing data

have neighbor accuracy <0.75, and 16% of training data and 20% of testing data have neighbor

accuracy <0.50. These points degrade the aggregated spatial robustness of the model. The same

finding holds for the other two datasets. Second, the distribution of neighbor accuracy for a dataset

is similar across different models. For CIFAR-100 , F-MNIST and SVHN, 60%, 76%, and 81%,

respectively, of data points have neighbor accuracy change < 0.2 across any two models on the

same dataset. This implies that a large portion of data points’ neighbor accuracy is independent of
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Figure 4.5: The t-SNE plots of data points from two randomly chosen classes across all three datasets
when using ResNet. Darker color indicates lower neighbor accuracy.

the model selected.

The first observation shows that neighbor accuracy is a distinguishable measure for local ro-

bustness for the datasets and models we study. The second observation implies that the properties

of points of low neighbor accuracy may be similar across models for each dataset. Following these

two observations, we dive deeper and explore the characteristics of data points with different neigh-

bor accuracy in RQ1. We then evaluate the performance of DEEPROBUST-W and DEEPROBUST-B

which are developed based on the observations from RQ1 in RQ2 and RQ3, respectively. Finally,

in RQ4, we evaluate the generalizability of our method by applying DEEPROBUST-W in a regres-

sion task for self-driving cars under more complex transformations.

RQ1. What are the characteristics of the weak points? Here we explore the characteristics of

robust vs. non-robust points in their feature space. In particular, we check the difference in feature

representations between: a) robust and non-robust points, and b) points with different degrees of

robustness.

RQ1a. Given a well trained model, do the feature representations of robust and non-robust points

vary? In this RQ, we first explore how robust (i.e. strong) and non-robust (i.e. weak) data points

are distributed in the feature space. We apply t-SNE[215], a widely used visualization method, to

visualize the distribution of points of different neighbor accuracy in the representation space for

all three datasets when using ResN as the classifier. Figure 4.5 shows the visualization of feature

vectors from two randomly picked classes with colors indicating the neighbor accuracy of each

61



Table 4.2: Weak and strong points ratio, and cohen’s d effect size

Dataset CIFAR-100 SVHN F-MNIST

Model ResN WRN VGG ResN WRN VGG ResN WRN VGG

Neighbor Accuracy Cutoff=0.5

AF 0.915 0.955 1.004 1.046 1.103 0.997 0.746 0.734 0.976
AB 0.609 0.584 0.975 0.294 0.309 0.977 0.297 0.293 0.930
d* 1.368 1.736 1.163 2.077 2.428 1.420 1.426 1.312 1.332

Neighbor Accuracy Cutoff=0.75

AF 0.778 0.796 0.992 0.604 0.671 0.983 0.516 0.496 0.953
AB 0.588 0.558 0.973 0.260 0.274 0.977 0.253 0.257 0.918
d* 0.786 1.040 0.749 0.860 1.111 0.401 0.749 0.642 0.937

*Cohen’s d effect size of 0.20 = small, 0.50 = medium, 0.80 = large, 1.20 = very large, and 2.0 = huge [216, 217].

point. The darker a point’s color is, the lower its neighbor accuracy is. It is evident that most

points of low neighbor accuracy tend to be further away from the class center.

To numerically verify this observation, first, we define a class center 2: for each class : as the

median value of the feature vectors of all the points from class : . Thus, if 58 is the feature of a

point at iCℎ dimension and 5̂8: is the median of the iCℎ dimension features for all the points in class

: , 2: is defined to be ( ˆ51: , ..., ˆ5 9 : , ..., ˆ5=: ).

The reason we take median rather than mean is that it is a more statistically stable measure and

is less likely to be heavily influenced by outliers in the representation space. Then, for every point

?, we define a ratio: A (?) =
3
(?)
B0<4_2;0BB

3
(?)
=40A4BC_>Cℎ4A_2;0BB

, where 3 (?)
B0<4_2;0BB is the distance of the ?-th point’s

feature vector to its own class center and 3
(?)
=40A4BC_>Cℎ4A_2;0BB is the distance of the ?-th point’s

feature vector to the class center of its closest other class. A small A (?) means that the point ? is

close to its own class center while far from other classes, i.e. ? is far from the decision boundary.

In contrast, a larger A (?) indicates that the point ? is closer to some other classes, i.e. it is closer to

the decision boundary.

We then measure the average A (?) among the weak points (denoted as AF) and among strong

points (denoted as AB) for all three datasets across three models. Besides, we also calculate mann-

whitney wilocox test[218] and cohen’s d effect size [216] between the two ratios to test if the two

ratios indeed have statistically significant difference and how large the difference is.
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Table 4.3: Spearman Correlation between Neighbor Accuracy and Simpson Diversity Index. All
coefficients are reported with statistical significance (? < 0.05).

Dataset CIFAR-100 SVHN F-MNIST

Model ResN WRN VGG ResN WRN VGG ResN WRN VGG

corr.coeff. 0.853 0.909 0.946 0.970 0.984 0.983 0.923 0.962 0.8947

As shown in Table 4.2, for both the neighbor accuracy cutoff (0.5 and 0.75), except one setting,

the cohen’s d effect size for every setting is larger than 0.50, which implies a medium to very large

difference. Besides, for every setting, the mann-whitney wilocox test value (not shown in the table)

is smaller than 14−80, which implies the difference is indeed statistically significant.

The visualization and numerical results imply that most weak points are close to the decision

boundaries between classes. Note that similar observation was also observed by Kim et. al. [196] in

case of adversarial perturbation. In particular, they find that adversarial examples tend to be closer

to class decision boundaries. In contrast, we focus on spatial robustness and find that spatially

non-robust points are closer to decision boundaries.

RQ1b. Given a well trained model, do the feature representations of the data points vary by their

degree of robustness? By analyzing the classifications of the neighbors of weak vs. strong points,

we observe that the weaker a point is, its neighbors are more likely to be classified in different

classes. We quantify this observation by computing diversity of the outputs a point’s neighbor; We

adopt Simpson Diversity Index (_) [202] as defined in Equation (4.1).

Table 4.3 shows the Spearman correlation between neighbor accuracy and _ on the three

datasets and three models for each. Note that while calculating the correlation, we remove points

with neighbor accuracy 100% since there are many points having 100% neighbor accuracy and

tend to bias upward the Spearman Correlation; if we include points with neighbor accuracy 100%,

the correlations become even higher. We notice that for any setting, the Spearman Correlation is

never lower than 0.853. This indicates that neighbor accuracy and diversity are highly correlated

with each other. For example, the bird image in Fig.4.1a has neighbor accuracy 0.49 and diversity

0.36, while the bird image in Fig.4.1e has neighbor accuracy 1 and diversity 1. This shows, the
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classifier tends to be confused about weak points and mispredicts them into many different kinds

of classes.

Result 1: In the representation space, weak points tend to lie towards the class decision

boundary while the strong points lie towards the center. The weaker an image is, the model

tends to be more confused by it, and classify its neighbors into more diverse classes.

RQ2. Can we detect the weak points in a white-box setting?

We explore this RQ using DEEPROBUST-W, as discussed in Section 4.2.3. DEEPROBUST-

W takes the feature vector of a data point as input and classifies it to a strong/weak point. We

implement DEEPROBUST-W with a simple 4-layer, fully connected neural network architecture

with hidden layer dimensions 1500, 1000, and 500, respectively.

Table 4.4 shows the result. At 0.75 setting, DEEPROBUST-W has F1 up to 91.4%, with an

average of 76.9%. At 0.50 setting, DEEPROBUST-W detects weak points with average f1 of 61.1%,

while it can go as high as 79.1%. DEEPROBUST-W consistently performs significantly better than

the top1 baseline and random baseline.

The top1 has very good precision, since a mis-classified image with low confidence tends to

have very poor local robustness. However, there also exist many images that are correctly classified

with high confidence yet have poor local robustness. The miss of these points leads the top1 to

have very poor recall and thus even worse f1 compared with the random baseline. Our method

comes to aid by providing high recall at the same time of decent precision.

Notice that DEEPROBUST-W’s performance depends on the training data selection, mainly (a)

how many weak vs. strong points are used to train the model, and (b) how many neighbors are

generated per point to decide whether it is strong/weak. To investigate the previous one, we assign

a weight to each input point, indicating how likely it would be selected to train DEEPROBUST-W.

In particular, for an input 8, a weight F8 := 1+(1−=8)<×100<
1+100< is computed, where = is its neighbor

accuracy, and < is a configurable parameter; with larger <, more weak points are sampled, and
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Table 4.4: Performance of DEEPROBUST-W and the baseline methods for predicting weak points.

dataset model method 0.75 neighbor acc. 0.50 neighbor acc.

f1 tp fp f1 tp fp

CIFAR-100 ResN ours 0.79 3844 764 0.581 1290 664
top1 0.376 1218 206 0.182 255 120
random 0.488 2372 2236 0.233 520 1445

WRN ours 0.747 2901 906 0.56 947 610
top1 0.35 889 222 0.183 189 90
random 0.395 1534 2273 0.154 261 1296

VGG ours 0.654 2222 938 0.493 747 543
top1 0.439 1070 153 0.266 278 106
random 0.332 1127 2033 0.132 200 1090

SVHN ResN ours 0.755 6814 2530 0.577 1414 674
top1 0.315 1665 142 0.267 452 122
random 0.343 3095 6249 0.086 210 1878

WRN ours 0.709 5062 2143 0.582 1404 1055
top1 0.292 1238 130 0.203 275 85
random 0.28 2000 5205 0.095 229 2230

VGG ours 0.595 5214 3367 0.498 1272 911
top1 0.172 840 67 0.139 221 52
random 0.341 2986 5595 0.094 240 1943

F-MNIST ResN ours 0.914 6034 873 0.791 2144 556
top1 0.124 428 11 0.039 57 7
random 0.657 4340 2567 0.263 712 1988

WRN ours 0.896 5743 652 0.76 2033 641
top1 0.144 490 14 0.045 63 8
random 0.638 4093 2302 0.281 752 1922

VGG ours 0.864 6348 1231 0.654 1895 1082
top1 0.104 392 5 0.028 39 5
random 0.734 5393 2186 0.295 854 2123
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vice versa. Thus, if < is larger, DEEPROBUST-W will be trained with more weak points and vice

versa.

Table 4.5A shows the performance: as < increases, the detector trades precision for recall.

In this way, choosing different values of <, the precision-recall trade-off of the detector can be

adjusted according to a user’s need. From a different perspective, this way of oversampling weak

points also addresses the potential problem of imbalanced data when the weak points are much

less than the strong points.

Table 4.5: DEEPROBUST-W performance using different sampling strategies for training

A: with varying number of strong/weak points

dataset m prec recall tp fp f1

CIFAR-100 0 0.660 0.518 1290 664 0.581
1 0.615 0.599 1490 932 0.607
2 0.544 0.699 1740 1460 0.612

SVHN 0 0.677 0.502 1414 674 0.577
1 0.575 0.653 1837 1357 0.612
2 0.332 0.767 2160 4356 0.463

F-MNIST 0 0.794 0.787 2144 556 0.791
1 0.746 0.839 2284 777 0.79
2 0.712 0.871 2372 962 0.783

B: with varying number of neigbours

dataset #neighbors prec recall tp fp f1

CIFAR-100 6 0.662 0.389 967 493 0.49
12 0.685 0.384 955 440 0.492
25 0.665 0.502 1250 629 0.572
50 0.660 0.518 1290 664 0.581

200 0.683 0.507 1261 585 0.582

SVHN 6 0.723 0.403 1136 436 0.518
12 0.672 0.527 1483 725 0.59
25 0.619 0.629 1771 1090 0.624
50 0.632 0.605 1703 993 0.618

200 0.667 0.550 1550 774 0.603

F-MNIST 6 0.817 0.727 1981 443 0.77
12 0.784 0.790 2153 592 0.787
25 0.773 0.787 2143 629 0.78
50 0.836 0.727 1981 390 0.778

200 0.778 0.812 2211 632 0.794

Next, we check how DEEPROBUST-W’s performance is dependent on the number of sampled

neighbors, because a data point can potentially have infinite neighbors. Table 4.5B shows that the

number of neighbors does not have much influence on the performance of the detector once it goes

beyond some value (F1 score does not change more than 3.5 percentage point between 25 and 200

samples) for all the three datasets. Thus, we choose 50 for all of our experiments

Result 2: DEEPROBUST-W can identify weak points with reasonably high F1 score: on

average 76.9%, at 0.75 neighbor accuracy cut-off.

RQ3. Can we identify the weak points in a black-box setting?
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Figure 4.6: The spearman correlation coeff. between diversity score (_) and neighbor accuracy, with
varying #neighbors (<).

We explore this RQ using DEEPROBUST-B, as discussed in Section 4.2.3. Here, we assume,

we only have access to unlabeled testing data and black-box access of the model under test. To

evaluate DEEPROBUST-B, we spatially transform each test input < times by randomly applying

3l ∈ [−30, +30] degrees rotation, 3G ∈ [−3, +3] pixels horizontal translation, and 3H ∈ [−3, +3]

pixels vertical translation. We then calculate the output diversity score (_) based on Equation (4.1)

and rank the test images based on _. Finally, we mark top : images as potential most non-robust

points. The parameter : is chosen according to users’ need.

With each test data, DEEPROBUST-B queries the model with < neighbors to compute _. Since

querying the classifier comes with an overhead, our goal is to achieve an optimal accuracy with

minimal queries (i.e. <). To determine an optimal < value, we explore the spearman correlation

between diversity score and neighbor accuracy, with varying <, when running ResN on all the

three datasets (see Figure 4.6). The correlation increases as < increases, as with more query _

becomes more accurate, and so the neighbor accuracy. We notice that at < = 15, the correlation

coefficients across all the experimental settings reach above 0.8, and the rate of increase begins to

slow down significantly. The results for the other two architectures are highly similar. Thus, we

set < = 15 as default for DEEPROBUST-B.

Next, we evaluate DEEPROBUST-B’s performance. We plot AUC-ROC by changing C>? − :
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Figure 4.7: AUC-ROC curve with neighbor accuracy cutoff at 0.75. The red vertical line indicates
when the diversity score threshold is chosen from training data.

at < = 15 and compare our method with the random baseline and the top1 baseline as before. As

shown in Figure 4.7, our method performs much better than the random baseline. In particular, our

proposed method achieves AUC higher than 0.87 for all settings when neighbor accuracy cutoff is

0.5 and 0.97 when neighbor accuracy cutoff is 0.75.

Instead of above ranking based scheme, DEEPROBUST-B can also be used as a classifier if a

diversity threshold is given (see Section 4.2.3). Here, we estimate the threshold using pre-annotated

training data.

We evaluate precision and recall of DEEPROBUST-B in the nine DNN-dataset combinations

under neighbor accuracy cutoffs 0.5 and 0.75. Table 4.6 shows the result. At 0.75 setting, DEEP-

ROBUST-B has f1 up to 99.1%, with an average of 96.5%. At 0.50 setting, DEEPROBUST-B

detects weak points with average f1 of 72.9%, while it can go as high as 85.7%. It consistently

produces much better estimation than the top1 baseline and the random baseline. This shows that

our black-box method can effectively identify weak points.

Note that, generating the spatial transformations and querying the model with it under black

box setting is fast. Previous black box methods for adversarial perturbation work in such fashion
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Table 4.6: Performance of DEEPROBUST-B and the random baseline method for predicting neighbor
accuracy under different settings.

dataset model method 75% 50%

f1 tp fp f1 tp fp

CIFAR-100 ResN ours 0.939 4714 257 0.622 1454 801
top1 0.376 1218 206 0.182 255 120
random 0.501 2516 2455 0.234 549 1706

WRN ours 0.938 3657 171 0.585 986 604
top1 0.35 889 222 0.183 189 90
random 0.383 1494 2334 0.182 307 1283

VGG ours 0.945 3397 148 0.682 1087 390
top1 0.439 1070 153 0.266 278 106
random 0.36 1296 2249 0.153 244 1233

SVHN ResN ours 0.956 8371 365 0.67 1845 858
top1 0.315 1665 142 0.267 452 122
random 0.336 2944 5792 0.102 280 2423

WRN ours 0.963 6827 227 0.718 1602 514
top1 0.292 1238 130 0.203 275 85
random 0.275 1950 5104 0.085 191 1925

VGG ours 0.976 8608 144 0.779 2138 454
top1 0.172 840 67 0.139 221 52
random 0.339 2997 5755 0.102 279 2313

F-MNIST ResN ours 0.987 6422 81 0.802 2316 546
top1 0.124 428 11 0.039 57 7
random 0.655 4265 2238 0.289 835 2027

WRN ours 0.989 6246 70 0.857 2297 360
top1 0.144 490 14 0.045 63 8
random 0.631 3987 2329 0.274 736 1921

VGG ours 0.991 7078 60 0.847 2393 418
top1 0.104 392 5 0.028 39 5
random 0.711 5084 2054 0.277 784 2027
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[219, 220]. For example, using CIFAR-100 , when we use a batch with size 100, the average

transformation+query time for one image is 0.031 ± 0.015 ms. For the other two datasets, the

overhead is similar. Thus, to for < = 15 queries, it takes only 0.465 ± 0.225 ms, which is a

negligible overhead for most real-world DNN based vision applications. This implies that our

black-box method can also be used in real time for many applications.

Result 3: Given only black-box access to the DNN classifier, DEEPROBUST-B can identify

weak points with f1 that are much better than those of using top1 method or random method.

RQ4. How generalizable are these findings?

The local robustness issues also exist in more critical applications like self-driving-car. Here

we explore more complex transformations, i.e. adding rain and fog to the driving scenes. As shown

in Figure 4.8, among those correctly classified data points, there is a non-trivial portion (45.8%) of

them (in the heatmap, more red signified weaker) suffer from low (<0.75) neighbor accuracy.

Note that, here, we test regression models, which take images of driving scenes as inputs and

output the corresponding steering angles.

Let the set of outputs predicted by a DNN be denoted by {\̂>1, \̂>2, ..., \̂>=}, and corresponding

ground truth labels for the original (unmodified) image points be {\1, \2, ..., \=}. If the difference

between predicted steering angle \̂>8 of a transformed image and the ground truth label of the

original image \8 is above a threshold, we consider it as incorrect. The threshold _"(�>A86 is

defined following DeepTest’s [45], where "(�>A86 = 1
=

∑=
8=1(\8 − \̂>8)2 . "(� is the Mean Square

Error between the outputs and the manual labels, and _ is a positive coefficient that is chosen

to reflect a user’s tolerance on the deviation. Note that there is no softmax layer (and thus no

confidence score) in these regression models so the top1 baseline method cannot be used here.

Table 4.7 shows the result when _ = 3. At 0.75 setting, DEEPROBUST-W has f1 score up to

78.9%, with an average of 58.2%. At 0.50 setting, DEEPROBUST-W detects weak points with

an average f1 of 47.9%, while it can go as high as 68.2%. It consistently produces much better

estimation than the random baseline under all the settings. It should be noted that our observation is
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Figure 4.8: The t-SNE plot of correctly classified data points from Self-Driving dataset by the epoch
model. data points are colored based on neighbor accuracy.

model method 0.75 neighbor acc. 0.50 neighbor acc.

f1 tp fp f1 tp fp

chauffeur ours 0.417 555 547 0.346 339 384
random 0.146 194 908 0.096 94 629

epoch ours 0.789 4354 1112 0.682 2641 1127
random 0.586 3234 2232 0.411 1592 2176

dave2 ours 0.541 979 471 0.409 475 246
random 0.193 350 1100 0.121 141 580

Table 4.7: Performance of DEEPROBUST-W for predicting weak points of Self-Driving dataset
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valid for all the _ used in [45] from _ equal to 1 to 5. This shows that our proposed method DEEP-

ROBUST-W can be applied to regression problems with more complex natural transformations.

It should also be noted that it is unrealistic to use DEEPROBUST-B for this task for two reasons:

It is impractical to try different variations of an image in real-time for a self-driving car, which is a

time-sensitive application. Further, DEEPROBUST-B requires the calculation of neighbor diversity

score. For a regression problem, the predicted values are continuous, so there is a very low proba-

bility for any two predictions being equal. Thus, the neighbor diversity score for every data point

will be the same and cannot be used for identifying the weak points.

Result 4: DEEPROBUST-W can detect weak points of a self-driving car dataset with f1

score up to 78.9%, with an average of 58.2%, at neighbor accuracy cutoff 0.75.

4.5 Discussion & Threats to Validity

We adopt rotation and translation as transformations for image classification tasks and rain and

fog effects for the self-driving car task. There are many more natural variations such as brightness,

snow effect etc. However, rotation and translation are representative of spatial transformation and

used by many paper in evaluating robustness of DNN models[47, 44]. Rain and fog effects are also

widely leveraged in many influential studies on testing self-driving cars [44, 45, 46].

Besides, for some of the experiments we did not show all the combinations under both neighbor

accuracy cutoffs (i.e. 0.5 and 0.75). However, we note that the observations are consistent and we

did not include them purely because of space limitation. Another limitation is that for both DEEP-

ROBUST-W and DEEPROBUST-B, we need to decide the number of neighbors to use for training

a classifier and estimating _, respectively. We mitigate it by selecting the neighbor numbers that

give stable performance in terms of precision and recall.
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4.6 Related Work

Adversarial examples. Many works focus on generating adversarial examples to fool the DNNs

and evaluate their robustness using pixel-based perturbation [113, 123, 124, 127, 221, 196, 70, 222,

66, 126, 130, 129, 223, 224]. Some other papers [203, 71, 47], like us, proposed more realistic

transformations to generate adversarial examples. In particular, Engstrom et al. [47] proposed that

a simple rotation and translation can fool a DNN based classifier, and spatial adversarial robustness

is orthogonal to ;?-bounded adversarial robustness. However, all these works estimate the overall

robustness of a DNN based on its aggregated behavior across many data points. In contrast, we

analyze the robustness of individual data points under natural variations and propose methods to

detect weak/strong points automatically.

DNN testing. Many researchers [44, 50, 57, 196, 78, 225, 226, 227, 228, 229] proposed techniques

to test DNN. For example, Pei et al. [44] proposed an image transformation based differential test-

ing framework, which can detect erroneous behavior by comparing the outputs of an input image

across multiple DNNs. Ferit et al. [229] used fault localization methods to identify suspicious

neurons and leveraged those to generate adversarial test cases.

In contrast, others [45, 46, 225, 228, 230, 231] used metamorphic testing where the assumption

is the outputs of an original and its transformed image will be the same under natural transforma-

tions. Among them, some use a uncertainty measure to quantify some types of non-robustness

of an input for prioritizing samples for testing / retraining [230] or generating test cases[231].

We follow a similar metamorphic property while estimating neighbor accuracy and our proposed

DEEPROBUST-B also leverages an uncertainty measure. The key differences are: First, we focus

on estimating model’s performance on general natural variants of an input rather than the input

itself or only spatial variants. Second, we focus on the task of weak points detection rather than

prioritizing / generating test cases. We also give detailed analyses of the properties of natural

variants and propose a feature vector based white-box detection method DEEPROBUST-W. Fur-

ther, we show that our method works across domains (both image classification and self-driving
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car controllers) and tasks (both classification and regression). Other uncertainty work comple-

ment ours in the sense that we can easily leverage weak points identified by DEEPROBUST-W and

DEEPROBUST-B to prioritize test cases or generate more adversarial cases of natural variants.

Another line of work [232, 233, 234, 235, 236, 237, 238] estimates the confidence of a DNN’s

output. For example, [233] leverages thrown away information from existing models to measure

confidence; [234] shows other NN properties like depth, width, weight decay, and batch normaliza-

tion are important factors influencing prediction confidence. Although such methods can provide

a confidence measure per input or its adversarial variants, they do not check its natural robustness

property, i.e., with natural variations how will they behave.

DNN verification. There also exist work on verifying properties for a DNN model [239, 70, 156,

240, 241]. Most of them focus on verifying properties on ;? norm bounded input space. Recently,

Balunovic et al.[49] provides the first verification technique for verifying a data point’s robustness

against spatial transformation. However, their technique suffers from scalability issues.

Robust training. Regular neural network training involves the optimization of the loss value for

each data point. Robust training of neural network works on minimizing the largest loss within

a specific bounded region usually using adversarial examples [66, 67, 68, 69, 70, 71, 72, 73,

74]. While both robust training methods and our work generate variants of data points, instead

of training a model with these variants to improve robustness, we leverage them to estimate the

robustness of the unseen data points. The relation between robust retraining and us is thus similar

to bug fixing vs. bug detection in traditional software engineering literature.

4.7 Summary

In this work, we include the data characteristic into the robustness testing of a DNN model.

We adopt the concept of neighbor accuracy as a measure for local robustness of a data point on

a given model. We explore the properties of neighbor accuracy and find that weak points are

often located towards the corresponding class boundaries and their transformed versions are likely

to be predicted to be more diverse classes. Leveraging these observations, we propose a white-
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box method and a black-box method to identify weak/strong points to warn a user about potential

weakness in the given trained model in real-time. We design, implement and evaluate our proposed

framework, DEEPROBUST-W and DEEPROBUST-B, on three image recognition datasets and one

self-driving car dataset (for DEEPROBUST-W only) with three models for each. The results show

that they can effectively identify weak/strong points with high precision and recall.

For future work, other consistency analysis methods [238] e.g. variation ratio, entropy can be

tried. We can also leverage ideas from [230, 231] to easily prioritize test cases or generate more

hard test cases based on identified weak points. Further, we can potentially modify existing fixing

methods such as [55] targeting the weak points to fix them.
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Chapter 5: DeepInspect: Testing DNN Image Classifiers for Group-Level

Errors

In Chapter 3, we introduced our work DeepTest, where we designed, implemented and evalu-

ated our proposed techniques for systematic testing DNN based software. We show that our tool

identified thousands of erroneous behaviours in three top performing DNN based self-driving car

models in Udacity self-driving challenge. In Chapter 4, we introduced our work DeepRobust,

where we studied the per-point robustness of DNNs under natural variation, proposed and imple-

mented a white-box approach and black-box approach in identifying weak points for DNN based

image classifiers and DNN based self-driving cars. These two works as well as most of existing

works in SE for AI area focus on instance-wise errors, which are single inputs that result in a DNN

model’s erroneous outputs. In this chapter, we introduce our third project DeepInspect, where

we first show another type of errors, group-level errors, which DNN based software also suffer

from but most of existing works ignored. Then we categorized group-level errors into confusion

errors and bias errors based on real-world reports. Lastly, we proposed neuron coverage based

distance metric to automatically test DNN based software for group-level errors without requiring

data labels.

We publicly release the source code1. All images, figures, tables, equations, and text included

in this chapter is based on a published collaborative work[78].

5.1 Motivation

Image classification has a plethora of applications in software for safety-critical domains such

as self-driving cars, medical diagnosis, etc. Even day-to-day consumer software includes image

1https://github.com/ARiSE-Lab/DeepInspect
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classifiers, such as Google Photo search and Facebook image tagging. Image classification is

a well-studied problem in computer vision, where a model is trained to classify an image into

single or multiple predefined categories [242]. Deep Neural Networks (DNNs) have enabled major

breakthroughs in image classification tasks over the past few years, sometimes even matching

human-level accuracy under some conditions [209], which has led to their ubiquity in modern

software.

However, in spite of such spectacular success, DNN-based image classification models, like

traditional software, are known to have serious bugs. For example, Google faced backlash in 2015

due to a notorious error in its photo-tagging app, which tagged pictures of dark-skinned people as

“gorillas” [79]. Analogous to traditional software bugs, the Software Engineering (SE) literature

denotes these classification errors as model bugs [65], which can arise due to either imperfect

model structure or inadequate training data.

At a high-level, these bugs can affect either an individual image, where a particular image is

mis-classified (e.g., a particular skier is mistaken as a part of a mountain), or an image class, where

a class of images is more likely to be mis-classified (e.g., dark-skinned people are more likely to

be mis-classified), as shown in Table 5.1. The latter bugs are specific to a whole class of images

rather than individual images, implying systematic bugs rather than the DNN equivalent of off-

by-one errors. While much effort from the SE literature on Neural Network testing has focused

on identifying individual-level violations—using white-box [44, 50, 196, 221], grey-box [45, 65],

or concolic testing [57], detection of class-level violations remains relatively less explored. This

paper focuses on automatically detecting such class-level bugs, so they can be fixed.

After manual investigation of some public reports describing the class-level violations listed

in Table 5.1, we determined two root causes: (i) Confusion: The model cannot differentiate one

class from another. For example, Google Photos confuses skier and mountain [81]. (ii) Bias: The

model shows disparate outcomes between two related groups. For example, Zhao et al. in their

paper “Men also like shopping” [83], find classification bias in favor of women on activities like

shopping, cooking, washing, etc. We further notice that some class-level properties are violated
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Table 5.1: Examples of real-world bugs reported in neural image classifiers

Bug Type Name Report Date Outcome

Gorilla Tag [79] Jul 1, 2015 Black people were tagged as gorillas by Google photo app.
Confusion Elephant is detected Aug 9, 2018 Image Transplantation (replacing a sub-region of an image by

in a room [80] another image containing a trained object) leads to mis-classification.
Google Photo [81] Dec 10, 2018 Google Photo confuses skier and mountain.

Nikon Camera [82] Jan 22, 2010 Camera shows bias toward Caucasian faces when detecting people’s blinks.
Men Like Shopping [83] July 29, 2017 Multi-label object classification models show bias towards women on

Bias activities like shopping, cooking, washing, etc.
Gender Shades[84] 2018 Open-source face recognition services provided by IBM, Microsoft, and Face++

have higher error rates on darker-skin females for gender classification.

in both kinds of cases. For example, in the case of confusion errors, the classification error-rate

between the objects of two classes, say, skier and mountain, is significantly higher than the overall

classification error rate of the model. Similarly, in the bias scenario reported by Zhao et al., a DNN

model should not have different error rates while classifying the gender of a person in the shopping

category. Unlike individual image properties, this is a class property affecting all the shopping

images with men or women. Any violation of such a property by definition affects the whole class

although not necessarily every image in that class, e.g., a man is more prone to be predicted as a

woman when he is shopping, even though some individual images of a man shopping may still be

predicted correctly. Thus, we need a class-level approach to testing image classifier software for

confusion and bias errors.

The bugs in a DNN model occur due to sub-optimal interactions between the model structure

and the training data [65]. To capture such interactions, the literature has proposed various metrics

primarily based on either neuron activations [44, 50, 196] or feature vectors [65, 243]. However,

these techniques are primarily targeted at the individual image level. To detect class-level viola-

tions, we abstract away such model-data interactions at the class level and analyze the inter-class

interactions using that new abstraction. To this end, we propose a metric using neuron activations

and a baseline metric using weight vectors of the feature embedding to capture the class abstrac-

tion.

For a set of test input images, we compute the probability of activation of a neuron per predicted

class. Thus, for each class, we create a vector of neuron activations where each vector element
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corresponds to a neuron activation probability. If the distance between the two vectors for two

different classes is too close, compared to other class-vector pairs, that means the DNN under test

may not effectively distinguish between those two classes. Motivated by MODE’s technique [65],

we further create a baseline where each class is represented by the corresponding weight vector of

the last linear layer of the model under test.

We evaluate our methodology for both single- and multi-label classification models in eight

different settings. Our experiments demonstrate that DeepInspect can efficiently detect both Bias

and Confusion errors in popular neural image classifiers. We further check whether DeepInspect

can detect such classification errors in state-of-the-art models designed to be robust against norm-

bounded adversarial attacks [244]; DeepInspect finds hundreds of errors proving the need for or-

thogonal testing strategies to detect such class-level mispredictions. Unlike some other DNN test-

ing techniques [45, 44, 243, 57], DeepInspect does not need to generate additional transformed

(synthetic) images to find these errors. The primary contributions of this paper are:

• We propose a novel neuron-coverage metric to automatically detect class-level violations (con-

fusion and bias errors) in DNN-based visual recognition models for image classification.

• We implemented our metric and underlying techniques in DeepInspect.

• We evaluated DeepInspect and found many errors in widely-used DNN models with precision

up to 100% (avg. 72.6%) for confusion errors and up to 84.3% (avg. 66.8%) for bias errors.

Our code is available at https://github.com/ARiSE-Lab/DeepInspect. The

errors reported by DeepInspect are available at: https://www.ariselab.info/deepin

spect.

5.2 Methodology

We give a detailed technical description of DeepInspect. We describe a typical scenario where

we envision our tool might be used in the following and design the methodology accordingly.
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Usage Scenario. Similar to customer testing of post-release software, DeepInspect works in a

real-world setting where a customer gets a pre-trained model and tests its performance in a sample

production scenario before deployment. The customer has white-box access to the model to profile,

although all the data in the production system can be unlabeled. In the absence of ground truth

labels, the classes are defined by the predicted labels. These predicted labels are used as class

references as DeepInspect tries to detect confusion and bias errors among the classes. DeepInspect

tracks the activated neurons per class and reports a potential class-level violation if the class-level

activation-patterns are too similar between two classes. Such reported errors will help customers

evaluate how much they can trust the model’s results related to the affected classes. As elaborated

in Section 5.6, once these errors are reported back to the developers, they can focus their debugging

and fixing effort on these classes. Figure 5.1 shows the DeepInspect workflow.

5.2.1 Definitions

Before we describe DeepInspect’s methodology in detail, we introduce definitions that we use

in the rest of the paper. The following table shows our notation.

All neurons set # = {#1, #2, ...}

Activation function >DC (#, 2) returns output

for neuron # , input 2.

Activation threshold )ℎ

Neural-Path (#%). For an input image 2, we define neural-path as a sequence of neurons that are

activated by 2.

Neural-Path per Class (#%�). For a class �8, this metric represents a set consisting of the union

of neural-paths activated by all the inputs in �8.

For example, consider a class cow containing two images: a brown cow and a black cow. Let’s

assume they activate two neural-paths: [#1, #2, #3] and [#4, #5, #3]. Thus, the neural-paths for

class cow would be #%2>F = {[#1, #2, #3], [#4, #5, #3]}. #%2>F is further represented by a
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Figure 5.1: DeepInspect Workflow

vector (#1
1 , #

1
2 , #

2
3 , #

1
4 , #

1
5 ), where the superscripts represent the number of times each neuron

is activated by �2>F . Thus, each class �8 in a dataset can be expressed with a neuron activation

frequency vector, which captures how the model interacts with �8.

Neuron Activation Probability: Leveraging how frequently a neuron # 9 is activated by all the

members from a class �8, this metric estimates the probability of a neuron # 9 to be activated by

�8. Thus, we define: %(# 9 | �8) =
|{28: | ∀28: ∈ �8, >DC (# 9 , 28: ) > )ℎ}|

|�8 |

We then construct a = × < dimensional neuron activation probability matrix, d, (= is the number

of neurons and < is the number of classes) with its ij-th entry being %(# 9 | �8).

d=

�1 ... �8 ... �<©­­­­­­­­­­­«

ª®®®®®®®®®®®¬

#1 ?11 ?1<

... ...

# 9 ? 91 ... ? 9<

... ...

#= ?=1 ?=<

(5.1)

This matrix captures how a model interacts with a set of input data. The column vectors (dU<)

represent the interaction of a class �< with the model. Note that, in our setting, �s are predicted

labels.

Since Neuron Activation Probability Matrix (d) is designed to represent each class, it should

be able to distinguish between different �s. Next, we use this metric to find two different classes

of errors often found in DNN systems: confusion and bias (see Table 5.1).
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5.2.2 Finding Confusion Errors

In an object classification task, when the model cannot distinguish one object class from an-

other, confusion occurs. For example, as shown in Table 5.1, a Google photo app model confuses

a skier with the mountain. Thus, finding confusion errors means checking how well the model

can distinguish between objects of different classes. An error happens when the model under test

classifies an object with a wrong class, or for multi-label classification task, predicts two classes

but only one of them is present in the test image.

We argue that the model makes these errors because during the training process the model

has not learned to distinguish well between the two classes, say 0 and 1. Therefore, the neurons

activated by these objects are similar and the column vectors corresponding to these classes: dU0

and dU1 will be very close to each other. Thus, we compute the confusion score between two

classes as the euclidean distance between their two probability vectors:

NAPVD(0,1)=Δ(0,1)=| |dU0−dU1 | |2 =

√√
=∑
8=1
(%(#8 |0) − %(#8 |1))2 (5.2)

If the Δ value is less than some pre-defined threshold (conf_th) for two pairs of classes, the

model will potentially make mistakes in distinguishing one from another, which results in confu-

sion errors. This Δ is called NAPVD (Neuron Activation Probabiliy Vector Distance).

5.2.3 Finding Bias Errors

In an object classification task, bias occurs if the model under test shows disparate outcomes

between two related classes. For example, we find that ResNet-34 pretrained by imSitu dataset,

often mis-classifies a man with a baby as woman. We observe that in the embedded matrix d,

Δ(101H, F><0=) is much smaller than Δ(101H, <0=). Therefore, during testing, whenever the

model finds an image with a baby, it is biased towards associating the baby image with a woman.

Based on this observation, we propose an inter-class distance based metric to calculate the bias
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learned by the model. We define the bias between two classes 0 and 1 over a third class 2 as

follows:

180B(0, 1, 2) :=
|Δ(2, 0) − Δ(2, 1) |
Δ(2, 0) + Δ(2, 1) (5.3)

If a model treats objects of classes 0 and 1 similarly under the presence of a third object class

2, 0 and 1 should have similar distance w.r.t. 2 in the embedded space d; thus, the numerator of the

above equation will be small. Intuitively, the model’s output can be more influenced by the nearer

object classes, i.e. if 0 and 1 are closer to 2. Thus, we normalize the disparity between the two

distances to increase the influence of closer classes.

This bias score is used to measure how differently the given model treats two classes in the

presence of a third object class. An average bias (abbreviated as avg_bias) between two objects 0

and 1 for all class objects $ is defined as:

0E6_180B(0, 1) :=
1

|$ | − 2

∑
2∈$,2≠0,1

180B(0, 1, 2) (5.4)

The above score captures the overall bias of the model between two classes. If the bias score is

larger than some pre-defined threshold, we report potential bias errors.

Note that, even when the two classes 0 and 1 are not confused by the model, i.e. Δ(0, 1) >

2>= 5 _Cℎ, they can still show bias w.r.t. another class, say 2, if Δ(0, 2) is very different from Δ(1, 2).

Thus, bias and confusion are two separate types of class-level errors that we intend to study in this

work.

Using these above equations we develop a novel testing tool, DeepInspect, to inspect a DNN

implementing image classification tasks and look for potential confusion and bias errors. We

implemented DeepInspect in the Pytorch deep learning framework and Python 2.7. All our exper-

iments were run on Ubuntu 18.04.2 with two TITAN Xp GPUs. For all of our experiments, we set

the activation threshold )ℎ to be 0.5 for all datasets and models. We discuss why we choose 0.5 as

neuron activation threshold and how different thresholds affect our performance in the section 5.6.
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Table 5.2: Study Subjects

Dataset Model

Classification CNN Reported
Task Name #classes Models #Neurons #Layers Accuracy

COCO [105] 80 ResNet-50[83] 26,560 53 Conv 0.73*
Multi-label COCO gender[83] 81 ResNet-50[209] 26,560 53 Conv 0.71*
classification imSitu[106] 205,095 ResNet-34[106] 8,448 36 Conv 0.37†

CIFAR-100[103] 100 CNN[245] 2,916 26 0.74

Robust 10 Small CNN[244] 158 8 0.69
Single-label CIFAR-10[103] Large CNN[244] 1,226 14 0.73
classification ResNet[244] 1,410 34 0.70

ImageNet[104] 1000 ResNet-50[211] 26,560 53 Conv 0.75

* reported in mean average precision, †reported in mean accuracy

5.3 Experimental Design

5.3.1 Study Subjects

We apply DeepInspect for both multi-label and single-label DNN-based classifications. Under

different settings, DeepInspect automatically inspects 8 DNN models for 6 datasets. Table 5.2

summarizes our study subjects. All the models we used are standard, widely-used models for each

dataset. We used pre-trained models as shown in the Table for all settings except for COCO with

gender. For COCO with gender model, we used the gender labels from [83] and trained the model

in the same way as [83]. imSitu model is a pre-trained ResNet-34 model [106]. There are in

total 11,538 entities and 1,788 roles in the imSitu dataset. When inspecting a model trained using

imSitu, we only considered the top 100 frequent entities or roles in the test dataset.

Among the 8 DNN models, three are pre-trained relatively more robust models that are trained

using adversarial images along with regular images. These models are pre-trained by provably

robust training approach proposed by [244]. Three models with different network structures are

trained using the CIFAR10 dataset [244].

5.3.2 Constructing Ground Truth (GT) Errors

To collect the ground truth for evaluating DeepInspect, we refer to the test images misclassified

by a given model. We then aggregate these misclassified image instances by their real and predicted
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class-labels and estimate pair-wise confusion/bias.

GT of Confusion Errors

Confusion occurs when a DNN often makes mistakes in disambiguating members of two dif-

ferent classes. In particular, if a DNN is confused between two classes, the classification error

rate is higher between those two classes than between the rest of the class-pairs. Based on this,

we define two types of confusion errors for single-label classification and multi-label classification

separately:

Type1 confusions: In single-label classification, Type1 confusion occurs when an object of

class G (e.g.,violin) is misclassified to another class H (e.g.,cello). For all the objects of class

G and H, it can be quantified as: type1conf (G, H) = mean(P(G |H), P(H |G)) —DNN’s probability to

misclassify class H as G and vice-versa, and takes the average value between the two. For example,

given two classes cello and violin, type1conf estimates the mean probability of violin

misclassified to cello and vice versa. Note that, this is a bi-directional score, i.e. misclassification

of H as G is the same as misclassification of G as H.

Type2 confusions: In multi-label classification, Type2 confusion occurs when an input im-

age contains an object of class G (e.g.,mouse) and no object of class H (e.g.,keyboard), but

the model predicts both classes (see Figure 5.7. For a pair of classes, this can be quantified as:

type2conf (G, H) = mean(P((G, H) |G), P((G, H) |H)) to compute the probability to detect two objects

in the presence of only one. For example, given two classes keyboard and mouse, type2conf

estimates the mean probability of mouse being predicted while predicting keyboard and vice

versa. This is also a bi-directional score.

We measure type1conf and type2conf by using a DNN’s true classification error measured on

a set of test images. They create the DNN’s true confusion characteristics between all possible

class-pairs. We then draw the distributions of type1conf and type2conf. For example, Figure 5.2a

shows type2conf distribution for COCO . The class-pairs with confusion scores greater than 1

standard deviation from the mean-value are marked as pairs truly confused by the model and form
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(a) Confusions distribution (b) NAPVD distribution

Figure 5.2: Identifying Type2 confusions for multi-classification applications. LHS shows how we
marked the ground truth errors based on Type2 confusion score. RHS shows DeepInspect’s predicted
errors based on NAPVD score.

our ground truth for confusion errors. For example, in the COCO dataset, there are 80 classes and

thus 3160 class pairs (80*79/2); 178 class-pairs are ground-truth confusion errors.

Note that, unlike how a bug/error is defined in traditional software engineering, our suspicious

confusion pairs have an inherent probabilistic nature. For example, even if 0 and 1 represent a

confusion pair, it does not mean that all the images containing 0 or 1 will be misclassified by the

model. Rather, it means that compared with other pairs, images containing 0 or 1 tend to have a

higher chance to be misclassified by the model.

GT of Bias Errors

A DNN model is biased if it treats two classes differently. For example, consider three classes:

man, woman, and surfboard. An unbiased model should not have different error rates while

classifying man or woman in the presence of surfboard. To measure such bias formally, we

define confusion disparity (cd) to measure differences in error rate between classes G and I and

between H and I: cd(G, H, I) = |4AA>A (G, I) − 4AA>A (H, I) |, where the error measure can be either

type1conf or type2conf as defined earlier. cd essentially estimates the disparity of the model’s

error between classes G, H (e.g., man, woman) w.r.t. a third class I (e.g., surfboard).

We also define an aggregated measure average confusion disparity (avg_cd) between two

86



classes G and H by summing up the bias between them over all third classes and taking the average:

avg_cd(G, H) :=
1

|$ | − 2

∑
I∈$,I≠G,H

cd(G, H, I).

Depending on the error types we used to estimate avg_cd, we refer to)H?41_avg_cd and)H?42_avg_cd.

We measure avg_cd using the true classification error rate reported for the test images. Similar to

confusion errors, we draw the distribution of avg_cd for all possible class pairs and then consider

the pairs as truly biased if their avg_cd score is higher than one standard deviation from the mean

value. Such truly biased pairs form our ground truth for bias errors.

5.3.3 Evaluating DeepInspect

We evaluate DeepInspect using a set of test images.

Error Reporting. DeepInspect reports confusion errors based on NAPVD (see Equation (5.2))

scores—lower NAPVD indicates errors. We draw the distributions of NAPVDs for all possible

class pairs, as shown in Figure 5.2b. Class pairs having NAPVD scores lower than 1 standard

deviation from the mean score are marked as potential confusion errors.

As discussed in Section 5.2.3, DeepInspect reports bias errors based on avg_bias score (see Equa-

tion (5.4)), where higher avg_bias means class pairs are more prone to bias errors. Similar to above,

from the distribution of avg_bias scores, DeepInspect predicts pairs with avg_bias greater than 1

standard deviation from the mean score to be erroneous. Note that, while calculating error dis-

parity between classes 0, 1 w.r.t. 2 (see Equation (5.3)), if both 0 and 1 are far from 2 in the

embedded space d, disparity of their distances (Δ) should not reflect true bias. Thus, while calcu-

lating avg_bias(0, 1) we further filter out the triplets where Δ(2, 0) > Cℎ ∧ Δ(2, 1) > Cℎ, where

Cℎ is some pre-defined threshold. In our experiment, we remove all the class-pairs having Δ larger

than 1 standard deviation (i.e. Cℎ) from the mean value of all �4;C0s across all the class-pairs.

Evaluation Metric. We evaluate DeepInspect in two ways:

Precision & Recall. We use precision and recall to measure DeepInspect’s accuracy. For each
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error type t, suppose that E is the number of errors detected by DeepInspect and A is the the

number of true errors in the ground truth set. Then the precision and recall of DeepInspect are

|�∩� |
|� | and |�∩� ||�| respectively.

Area Under Cost Effective Curve (AUCEC). Similarly to how static analysis warnings are

ranked based on their priority levels [246], we also rank the erroneous class-pairs identified by

DeepInspect based on the decreasing order of error proneness, i.e. most error-prone pairs will be at

the top. To evaluate the ranking we use a cost-effectiveness measure [247], AUCEC (Area Under

the Cost-Effectiveness Curve), which has become standard to evaluate rank-based bug-prediction

systems [248, 249, 250, 246, 251].

Cost-effectiveness evaluates when we inspect/test top n% class-pairs in the ranked list (i.e.

inspection cost), how many true errors are found (i.e. effectiveness). Both cost and effectiveness

are normalized to 100%. Figure 5.6 shows cost on the x-axis, and effectiveness on the y-axis,

indicating the portion of the ground truth errors found. AUCEC is the area under this curve.

Baseline. We compare DeepInspect w.r.t. two baselines:

(i) MODE-inspired: A popular way to inspect each image is to inspect a feature vector, which

is an output of an intermediate layer [65, 46]. However, abstracting a feature vector per image

to the class level is non-trivial. Instead, for a given layer, one could inspect the weight vector

(F; = [F0
;
, F1

;
, ..., F=

;
]) of a class, say ;, where the superscripts represent a feature. Similar weight-

vectors are used in MODE [65] to compare the difference in feature importance between two

image groups. In particular, from the last linear layer before the output layer we extract such per-

class weight vectors and compute the pairwise distances between the weight vectors. Using these

pairwise distances we calculate confusion and bias metrics as described in Section 5.2.

(ii) Random: We also build a random model that picks random class-pairs for inspection [252] as

a baseline.

For AUCEC evaluation, we further show the performance of an optimal model that ranks the

class-pairs perfectly—if =% of all the class-pairs are truly erroneous, the optimal model would

rank them at the top such that with lower inspection budget most of the errors will be detected.
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The optimal curve gives the lower upper bound of the ranking scheme.

Research Questions. With this experimental setting, we investigate the following three research

questions to evaluate DeepInspect for DNN image classifiers:

• RQ1. Can DeepInspect distinguish between different classes?

• RQ2. Can DeepInspect identify the confusion errors?

• RQ3. Can DeepInspect identify the bias errors?

5.4 Results

We begin our investigation by checking whether de-facto neuron coverage-based metrics can

capture class separation.

RQ1. Can DeepInspect distinguish between different classes?

Motivation. The heart of DeepInspect’s error detection technique lies in the fact that the underly-

ing Neuron Activation Probability metric (d) captures each class abstraction reasonably well and

thus distinguishes between classes that do not suffer from class-level violations. In this RQ we

check whether this is indeed true. We also check whether a new metric d is necessary, i.e., whether

existing neuron-coverage metrics could capture such class separations.

Approach. We evaluate this RQ w.r.t. the training data since the DNN behaviors are not tainted

with inaccuracies associated with the test images. Thus, all the class-pairs are benign. We eval-

uate this RQ in three settings: (i) using DeepInspect’s metrics, (ii) neuron-coverage proposed by

Pei et al. [44], and (iii) other neuron-activation related metrics proposed by DeepGauge [50].

Setting-1. DeepInspect. Our metric, Neuron Activation Probability Matrix (d), by construction

is designed per class. Hence it would be unfair to directly measure its capability to distinguish

between different classes. Thus, we pose this question in slightly a different way, as described

below. For multi-label classification, each image contains multiple class-labels. For example, an

image might have labels for both mouse and keyboard. Such coincidence of labels may create
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confusion—if two labels always appear together in the ground truth set, no classifier can distin-

guish between them. To check how many times two labels coincide, we define a coincidence score

between two labels !0 and !1 as: 2>8=2834=24 (!0, !1) = <40=(% (!0, !1 |!0) , % (!0, !1 |!1)).

The above formula computes the minimum probability of labels !0 and !1 occurring together

in an image given that one of them is present. Note that this is a bi-directional score, i.e. we treat

the two labels similarly. The <40= operation ensures we detect the least coincidence in either

direction. A low value of coincidence score indicates two class-labels are easy to separate and vice

versa.

Now, to check DeepInspect’s capability to capture class separation, we simply check the corre-

lation between coincidence score and confusion score (NAPVD) from Equation 5.2 for all possible

class-label pairs. Since only multi-label objects can have label coincidences, we perform this ex-

periment for a pre-trained ResNet-50 model on the COCO multi-label classification task.

A Spearman correlation coefficient between the confusion and coincidence scores reaches a

value as high as 0.96, showing strong statistical significance. The result indicates that DeepInspect

can disambiguate most of the classes that have a low confusion scores.

Interestingly, we found some pairs where coincidence score is high, but DeepInspect was able

to isolate them. For example, (cup,chair), (toilet,sink), etc.. Manually investigating such

cases reveals that although these pairs often appear together in the input images, there are also

enough instances when they appear by themselves. Thus, DeepInspect disambiguates between

these classes and puts them apart in the embedded space d. These results indicate DeepInspect

can also learn some hidden patterns from the context and, thus, can go beyond inspecting the

training data coincidence for evaluating model bias/confusion, which is the de facto technique

among machine learning researchers [83].

Next, we investigate whether popular white-box metrics can distinguish between different

classes.

Setting-2. Neuron Coverage (#�) [44] computes the ratio of the union of neurons activated by

an input set and the total number of neurons in a DNN. Here we compute #� per class-label, i.e.
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Figure 5.3: Distribution of neuron coverage per class label, for 10 randomly picked class labels, from
the COCO dataset.

for a given class-label, we measure the number of neurons activated by the images tagged with that

label w.r.t. to the total neurons. The activation threshold we use is 0.5. We perform this experiment

on COCO and CIFAR-100 to study multi- and single-label classifications. Figure 5.3 shows results

for COCO . We observe similar results for CIFAR-100 .

Each boxplot in the figure shows the distribution of neuron coverage per class-label across all

the relevant images. These boxplots visually show that different labels have very similar #� distri-

bution. We further compare these distributions using Kruskal Test [253], which is a non-parametric

way of comparing more than two groups. Note that we choose a non-parametric measure as #�s

may not follow normal distributions. (Kruskal Test is a parametric equivalent of the one-way

analysis of variance (ANOVA).) The result reports a ? − E0;D4 << 0.05, i.e. some differences

exist across these distributions. However, a pairwise Cohend’s effect size for each class-label pair,

as shown in the following table, shows more than 56% and 78% class-pairs for CIFAR-100 and

COCO have small to negligible effect size. This means neuron coverage cannot reliably distinguish

a majority of the class-labels.

Effect Size of neuron coverage across different classes

Exp Setting negligible small medium large

COCO 40.51% 38.19% 16.96% 4.34%

CIFAR-100 31.94% 25.69% 23.87% 18.48%
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Setting-3. DeepGauge [50]. Ma et al. [50] argue that each neuron has a primary region of op-

eration; they identify this region by using a boundary condition [;>F, ℎ86ℎ] on its output during

training time; outputs outside this region ((−∞, ;>F) ∪ (ℎ86ℎ, +∞)) are marked as corner cases.

They therefore introduce multi-granular neuron and layer-level coverage criteria. For neuron cov-

erage they propose: (i) k-multisection coverage to evaluate how thoroughly the primary region of

a neuron is covered, (ii) boundary coverage to compute how many corner cases are covered, and

(iii) strong neuron activation coverage to measure how many corner case regions are covered in

(ℎ86ℎ, +∞) region. For layer-level coverage, they define (iv) top-k neuron coverage to identify

the most active k-neurons for each layer, and (v) top-k neuron pattern for each test-case to find a

sequence of neurons from the top-k most active neurons across each layer.

We investigate whether each of these metrics can distinguish between different classes by mea-

suring the above metrics for individual input classes following Ma et al.’s methodology. We first

profiled every neuron upper- and lower-bound for each class using the training images containing

that class-label. Next, we computed per-class neuron coverage using test images containing that

class; for k-multisection coverage we chose : = 100 to scale up the analysis. It should be noted

that we also tried : = 1000 (which is used in the original DeepGauge paper) and observed similar

results (not shown here).

For layer-level coverage, we directly used the input images containing each class, where we

select : = 1.

Figure 5.4 shows the results as a histogram of the above five coverage criteria for the COCO dataset.

For all five coverage criteria, there are many class-labels that share similar coverage. For example,

in COCO , there are 52 labels with k-multisection neuron coverage with values between 0.31 and

0.32. Similarly, there are 40 labels with 0 neuron boundary coverage. Therefore, none of the five

coverage criteria are an effective way to distinguish between different equivalence classes. The

same conclusion was drawn for the CIFAR-100 dataset.
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Figure 5.4: Histogram of DeepGauge [50] multi-granular coverage per class label for COCO dataset

Result 1: DeepInspect can disambiguate classes better than previous coverage-based met-

rics for the image classification task.

We now investigate DeepInspect’s capability in detecting confusion and bias errors in DNN

models.

RQ2. Can DeepInspect identify the confusion errors?

Motivation. To evaluate how well DeepInspect can detect class-level violations, in this RQ, we

report DeepInspect’s ability to detect the first type of violation, i.e., Type1/Type2 confusions w.r.t.

to ground truth confusion errors, as described in Section 5.3.2.

We first explore the correlation between NAPVD and ground truth Type1/Type2 confusion

score. Strong correlation has been found for all 8 experimental settings. Figure 5.5 gives exam-

ples on COCO and CIFAR-10. These results indicate that NAPVD can be used to detect confusion

errors—lower NAPVD means more confusion.

Approach. By default, DeepInspect reports all the class-pairs with NAPVD scores one standard

deviation less than the mean NAPVD score as error-prone (See Figure 5.2b). In this setting, as the

result shown on Table 5.3, DeepInspect reports errors at high recall under most settings. Specif-
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(b) Robust CIFAR-10 Small

Figure 5.5: Strong negative Spearman correlation (-0.55 and -0.86) between NAPVD and ground truth
confusion scores.

ically, on CIFAR-100 and robust CIFAR-10 ResNet, DeepInspect can report errors as high as

71.8%, and 100%, respectively. DeepInspect has identified thousands of confusion errors.

If higher precision is wanted, a user can choose to inspect only a small set of confused pairs

based on NAPVD. As also shown in Table 5.3, when only the top1% confusion errors are reported,

a much higher precision is achieved for all the datasets. In particular, DeepInspect identifies 31 and

39 confusion errors for the COCO model and the CIFAR-100 model with 100% and 79.6% pre-

cision, respectively. The trade-off between precision and recall can be found on the cost-effective

curves shown on Figure 5.6, which show overall performance of DeepInspect at different inspec-

tion cutoffs. Overall, w.r.t. a random baseline mode, DeepInspect is gaining AUCEC performance

from 61.6% to 85.7%; w.r.t. a MODE baseline mode, DeepInspect is gaining AUCEC performance

from 10.2% to 28.2%.

Figure 5.7 and Figure 5.8 give some specific confusion errors found by DeepInspect in the

COCO and the ImageNet settings. In particular, as shown in Figure 5.7a, when there is only a

keyboard but no mouse in the image, the COCO model reports both. Similarly, Figure 5.8a shows

confusion errors on (cello, violin). There are several cellos in this image, but the model predicts it

to show a violin.

Across all three relatively more robust CIFAR-10 models DeepInspect identifies (cat, dog),

94



Table 5.3: DeepInspect performance on detecting confusion errors

NAPVD < mean-1std Top 1%

TP FP Precision Recall TP FP Precision Recall

COCO DeepInspect 138 256 0.350 0.775 31 0 1 0.174
MODE 126 382 0.248 0.708 26 5 0.839 0.146
random 22 372 0.056 0.124 1 30 0.032 0.006

COCO gender DeepInspect 139 286 0.327 0.827 32 0 1 0.190
MODE 125 379 0.248 0.744 30 2 0.938 0.179
random 22 403 0.052 0.131 1 31 0.031 0.006

CIFAR-100 DeepInspect 206 584 0.261 0.718 39 10 0.796 0.136
MODE 111 605 0.155 0.387 22 27 0.449 0.077
random 45 745 0.057 0.157 2 47 0.041 0.007

R CIFAR-10 S DeepInspect 4 6 0.400 0.800 - - - -
MODE 3 4 0.429 0.600 - - - -
random 1 9 0.100 0.200 - - - -

R CIFAR-10 L DeepInspect 3 4 0.430 0.600 - - - -
MODE 3 5 0.375 0.600 - - - -
random 0 7 0 0 - - - -

R CIFAR-10 R DeepInspect 5 3 0.625 1 - - - -
MODE 1 3 0.250 0.200 - - - -
random 0 8 0 0 - - - -

ImageNet DeepInspect 4014 69957 0.054 0.617 1073 3922 0.215 0.165
MODE 3428 66987 0.049 0.527 1591 3404 0.319 0.245
random 962 73009 0.013 0.148 65 4930 0.013 0.010

imSitu DeepInspect 48 58 0.453 0.165 31 19 0.620 0.107
random 6 100 0.057 0.020 2 48 0.040 0.007
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Figure 5.6: AUCEC plot of Type1/Type2 Confusion errors in three different settings. The red vertical
line marks 1-standard deviation less from mean NAPVD score. DeepInspect marks all class-pairs with
NAPVD scores less than the red mark as potential errors.
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(a) (keyboard,mouse) (b) (oven,microwave)

Figure 5.7: Confusion errors identified in COCO model. In each pair the second object is mistakenly
identified by the model.

(a) (cello, violin) (b) (library, bookshop)

Figure 5.8: Confusion errors identified in the ImageNet model. For each pair, the second object is
mistakenly identified by the model.
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(bird, deer) and (automobile, truck) as buggy pairs, where one class is very likely to be mistakenly

classified as the other class of the pair. This indicates that these confusion errors are to be tied to

the training data, so all the models trained on this dataset including the robust models may have

these errors. These results further show that the confusion errors are orthogonal to the norm-based

adversarial perturbations and we need a different technique to address them.

We also note that the performance of all methods degrades quite a bit on ImageNet. ImageNet

is known to have a complex structure, and all the tasks, including image classification and robust

image classification [254] usually have inferior performance compared with simpler datasets like

CIFAR-10 or CIFAR-100. Due to such inherent complexity, the class representation in the em-

bedded space is less accurate, and thus the relative distance between two classes may not correctly

reflect a model’s confusion level between two classes.

Result 2: DeepInspect can successfully find confusion errors with precision 21% to 100%

at top1% for both single- and multi-object classification tasks. DeepInspect also finds confu-

sion errors in robust models.

RQ3. Can DeepInspect identify the bias errors?
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Figure 5.9: Strong positive Spearman’s correlation (0.76 and 0.62) exist between avg_cd and avg_bias
while detecting classification bias.

Motivation. To assess DeepInspect’s ability to detect class-level violations, in this RQ, we report

DeepInspect’s performance in detecting the second type of violation, i.e., Bias errors as described

97



in Section 5.3.2.

Approach. We evaluate this RQ by estimating a model’s bias (avg_bias) using Equation (5.4) w.r.t.

the ground truth (avg_cd), computed as in Section 5.3.2. We first explore the correlation between

pairwise avg_cd and our proposed pairwise avg_bias; Figure 5.9 shows the results for COCO and

CIFAR-10. Similar trends were found in the other datasets we studied. The results show that a

strong correlation exists between avg_cd and avg_bias. In other words, our proposed avg_bias is a

good proxy for detecting confusion errors.

Table 5.4: DeepInspect performance on detecting bias errors

avg_bias > mean+1std Top 1%

TP FP Precision Recall TP FP Precision Recall

COCO DeepInspect 249 278 0.472 0.759 24 8 0.75 0.073
MODE 145 324 0.309 0.442 12 20 0.375 0.037
random 54 472 0.103 0.167 3 28 0.103 0.010

COCO gender DeepInspect 218 325 0.401 0.568 17 16 0.515 0.044
MODE 151 328 0.315 0.393 13 20 0.394 0.034
random 64 478 0.118 0.168 3 28 0.118 0.010

CIFAR-100 DeepInspect 310 543 0.363 0.380 29 21 0.580 0.036
MODE 69 315 0.180 0.085 5 45 0.100 0.001
random 140 711 0.165 0.172 8 41 0.165 0.010

R CIFAR-10 S DeepInspect 7 4 0.636 0.778 - - - -
MODE 3 10 0.231 0.333 - - - -
random 2 8 0.200 0.222 - - - -

R CIFAR-10 L DeepInspect 6 7 0.462 0.667 - - - -
MODE 8 14 0.364 0.889 - - - -
random 2 9 0.200 0.267 - - - -

R CIFAR-10 R DeepInspect 6 3 0.667 0.667 - - - -
MODE 8 14 0.364 0.889 - - - -
random 1 7 0.200 0.200 - - - -

ImageNet DeepInspect 26704 48913 0.353 0.330 3253 1742 0.651 0.040
MODE 23881 47503 0.335 0.295 2355 2640 0.471 0.029
random 12234 63381 0.162 0.151 808 4186 0.162 0.010

imSitu DeepInspect 408 311 0.567 0.718 43 8 0.843 0.076
random 80 638 0.112 0.142 5 44 0.112 0.010

As in RQ2, we also do a precision-recall analysis w.r.t. finding the bias errors across all

the datasets. We analyze the precision and recall of DeepInspect when reporting bias errors

at the cutoff Top1%(avg_bias) and mean(avg_bias)+standard deviation(avg_bias), respectively.

The results are shown in Table 5.4. At cutoff Top1%(avg_bias), DeepInspect detects suspicious

pairs with precision as high as 75% and 84% for COCO and imSitu, respectively. At cutoff

mean(avg_bias)+standard deviation(avg_bias), DeepInspect has high recall but lower precision:
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DeepInspect detects ground truth suspicious pairs with recall at 75.9% and 71.8% for COCO and

imSitu. DeepInspect can report 657(=249+408) total true bias bugs across the two models. DeepIn-

spect outperforms the random baseline by a large margin at both cutoffs. As in the case of detect-

ing confusion errors, there is a significant trade-off between precision and recall. This can be

customized based on user needs. The cost-effectiveness analysis in Figure 5.10 shows the entire

spectrum.
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Figure 5.10: Bias errors detected w.r.t. the ground truth of avg_cd beyond one standard deviation
from mean.

As shown in Figure 5.10, DeepInspect outperforms the baseline by a large margin. The AUCEC

gains of DeepInspect are from 37.1% to 76.1% w.r.t. the random baseline and from 6.0% to 41.9%

w.r.t. the MODE baseline across the 8 settings. DeepInspect’s performance is close to the optimal

curve under some settings, specifically the AUCEC gains of the optimal over DeepInspect are only

7.11% and 7.95% under the COCO and ImSitu settings, respectively.

Inspired by [83], which shows bias exists between men and women in COCO for the gender

image captioning task, we analyze the most biased third class 2 for 0 and 1 being men and women.

As shown in Figure 5.11, we found that sports like skiing, snowboarding, and surfboarding are

more closely associated with men and thus misleads the model to predict the women in the images

as men. Figure 5.12 shows results on imSitu, where we found that the model tends to associate the
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class “inside” with women while associating the class “outside” with men.

Figure 5.11: The model classifies the women in these pictures as men in the COCO dataset.

We generalize the idea by choosing classes 0 and 1 to be any class-pair. We found that similar

bias also exists in the single-label classification settings. For example, in ImageNet, one of the

highest biases is between Eskimo_dog and rapeseed w.r.t. Siberian_husky. The model tends to

confuse the two dogs but not Eskimo_dog and rapeseed. This makes sense since Eskimo_dog and

Siberian_husk are both dogs so more easily misclassified by the model.

Figure 5.12: The model classifies the man in the first figure to be a woman and the woman in the
second figure to be a man.

One of the fairness violations of a DNN system can be drastic differences in accuracy across

groups divided according to some sensitive feature(s). In black-box testing, the tester can get a

number indicating the degree of fairness has been violated by feeding into the model a validation

set. In contrast, DeepInspect provides a new angle to the fairness violations. The neuron distance

difference between two classes 0 and 1 w.r.t. a third class 2 sheds light on why the model tends to be

more likely to confuse between one of them and 2 than the other. We leave a more comprehensive

examination on interpreting bias/fairness violations for future work.
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Result 3: DeepInspect can successfully find bias errors for both single- and multi-label

classification tasks, and even for the robust models, from 52% to 84% precision at top1%.

5.5 Related Work

Software Testing & Verification of DNNs. Prior research proposed different white-box testing

criteria based on neuron coverage [44, 50, 45] and neuron-pair coverage [108]. Sun et al. [57]

presented a concolic testing approach for DNNs called DeepConcolic. They showed that their

concolic testing approach can effectively increase coverage and find adversarial examples. Odena

and Goodfellow proposed TensorFuzz[243], which is a general tool that combines coverage-guided

fuzzing with property-based testing to generate cases that violate a user-specified objective. It

has applications like finding numerical errors in trained neural networks, exposing disagreements

between neural networks and their quantized versions, surfacing broken loss functions in popular

GitHub repositories, and making performance improvements to TensorFlow. There are also efforts

to verify DNNs [239, 67, 156, 70] against adversarial attacks. However, most of the verification

efforts are limited to small DNNs and pixel-level properties. It is not obvious how to directly apply

these techniques to detect class-level violations.

Adversarial Deep Learning. DNNs are known to be vulnerable to well-crafted inputs called

adversarial examples, where the discrepancies are imperceptible to a human but can easily make

DNNs fail [109, 110, 111, 112, 77, 113, 114, 115, 116, 117, 118, 119, 120, 121]. Much work

has been done to defend against adversarial attacks [122, 123, 124, 125, 126, 127, 128, 129,

130, 131, 132, 133, 75]. Our methods have potential to identify adversarial inputs. Moreover,

adversarial examples are usually out of distribution data and not realistic, while we can find both

out-distribution and in-distribution corner cases. Further, we can identify a general weakness or

bug rather than focusing on crafted attacks that often require a strong attacker model (e.g., the

attacker adds noise to a stop sign image).

Interpreting DNNs. There has been much research on model interpretability and visualiza-
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tion [255, 256, 257, 258, 259, 260]. A comprehensive study is presented by Lipton [255]. Dong

et al. [260] observed that instead of learning the semantic features of whole objects, neurons tend

to react to different parts of the objects in a recurrent manner. Our probabilistic way of looking

at neuron activation per class aims to capture holistic behavior of an entire class instead of an

individual object so diverse features of class members can be captured. Closest to ours is by Pa-

pernot et al. [261], who used nearest training points to explain adversarial attacks. In comparison,

we analyze the DNN’s dependencies on the entire training/testing data and represent it in Neuron

Activation Probability Matrix. We can explain the DNN’s bias and weaknesses by inspecting this

matrix.

Evaluating Models’ Bias/Fairness. Evaluating the bias and fairness of a system is important both

from a theoretical and a practical perspective [134, 135, 136, 137]. Related studies first define a

fairness criteria and then try to optimize the original objective while satisfying the fairness criteria

[138, 139, 140, 141, 142, 143]. These properties are defined either at individual [138, 144, 145]

or group levels [146, 139, 147]. In this work, we propose a definition of a bias error for image

classification closely related to fairness notions at group-level. Class membership can be regarded

as the sensitive feature and the equality that we want to achieve is for the confusion levels of two

groups w.r.t. any third group. We showed the potential of DeepInspect to detect such violations.

Galhotra et al. [148] first applied the notion of software testing to evaluating software fairness.

They mutate the sensitive features of the inputs and check whether the output changes. One major

problem with their proposed method, Themis, is that it assumes the model takes into account

sensitive attribute(s) during training and inference. This assumption is not realistic since most

existing fairness-aware models drop input-sensitive feature(s). Besides, Themis will not work on

image classification, where the sensitive attribute (e.g.,, gender, race) is a visual concept that cannot

be flipped easily. In our work, we use a white-box approach to measure the bias learned by the

model during training. Our testing method does not require the model to take into account any

sensitive feature(s). We propose a new fairness notion for the setting of multi-object classification,

average confusion disparity, and a proxy, average bias, to measure for any deep learning model
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even when only unlabeled testing data is provided. In addition, our method tries to provide an

explanation behind the discrimination. A complementary approach by Papernot et al. [261] shows

such explainability behind model bias in a single classification setting.

5.6 Discussion & Threats to Validity

Discussion. In the literature, bug detection, debugging, and repair are usually three distinct

tasks, and there is a large body of work investigating each separately. In this work, we focus on

bug detection for image classifier software. A natural follow-up of our work will be debugging and

repair leveraging DeepInspect’s bug detection. We present some preliminary results and thoughts.

A commonly used approach to improving (i.e. fixing) image classifiers is active learning, which

consists of adding more labeled data by smartly choosing what to label next. In our case, we can

use NAPVD to identify the most confusing class pairs, and then target those pairs by collecting

additional examples that contain individual objects from the confusing pairs. We download 105

sample images from Google Images that contain isolated examples of these categories so that the

model learns to disambiguate them. We retrain the model from scratch using the original train-

ing data and these additional examples. Using this approach, we have some preliminary results

on the COCO dataset. After retraining, we find that the type2conf of the top confused pairs re-

duces. For example, the type2conf(baseball bat, baseball glove) is reduced from 0.23 to 0.16, and

type2conf(refrigerator, oven) is reduced from 0.14 to 0.10. Unlike traditional active learning ap-

proaches that encourage labeling additional examples near the current decision boundary of the

classifier, our approach encourages the labeling of problematic examples based on confusion bugs.

Another potential direction to explore is to use DeepInspect in tandem with debugging & repair

tools for DNN models like MODE [65]. DeepInspect enables the user to focus debugging effort

on the vulnerable classes even in the absence of labeled data. For instance, once DeepInspect

identifies the vulnerable class-pairs, one can use the GAN-based approach proposed in MODE to

generate more training data from these class-pairs, apply MODE to identify the most vulnerable

features in these pairs to select for retraining.
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We have also explored how the neuron coverage threshold(Cℎ) used in computing #�%+�

affects our performance in detecting confusion and bias errors. We studied one multi-label classi-

fication task COCO and one single-label classification task CIFAR-100. Table 5.5, 5.6, 5.7, 5.8

show how our precision and recall change when using different neuron coverage thresholds (Cℎ).

We observed that for CIFAR-100 and COCO that DeepInspect’s accuracies are overall stable at

0.4 ≤ Cℎ ≤ 0.75. With smaller th(< 0.25), too many neurons are activated pulling the per-class

activation-probability-vectors closer to each other. In contrast, with higher th(> 0.75), important

activation information gets lost. Thus, we select Cℎ = 0.5 for all the other experiments to avoid

either issue.

Table 5.5: DeepInspect impact of neuron coverage threshold on detecting confusion errors for COCO

NC threshold NAPVD < mean-1std Top 1%

TP FP Precision Recall TP FP Precision Recall

0.25 36 18 0.67 0.20 23 8 0.74 0.13

0.40 150 215 0.41 0.84 31 0 1 0.17

0.50 138 256 0.35 0.78 31 0 1 0.17

0.60 137 264 0.34 0.77 30 1 0.97 0.17

0.75 135 271 0.33 0.76 29 2 0.94 0.16

Table 5.6: DeepInspect impact of neuron coverage threshold on detecting confusion errors for
CIFAR-100

NC threshold NAPVD < mean-1std Top 1%

TP FP Precision Recall TP FP Precision Recall

0.25 188 629 0.23 0.66 34 15 0.69 0.12

0.40 197 550 0.26 0.69 39 10 0.80 0.14

0.50 206 584 0.26 0.72 39 10 0.80 0.14

0.60 211 596 0.26 0.74 37 12 0.76 0.13

0.75 195 604 0.24 0.68 37 12 0.76 0.13

Threats to Validity. We only test DeepInspect on 6 datasets under 8 settings. We include both

single-class and multi-class as well as regular and robust models to address these threats as much

as possible.

Another limitation is that DeepInspect needs to decide thresholds for both confusion errors and

bias errors, and a threshold for discarding low-confusion triplets in the estimation of avg_bias.
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Table 5.7: DeepInspect impact of neuron coverage threshold on detecting bias errors for COCO

NC threshold avg_bias > mean+1std Top 1%

TP FP Precision Recall TP FP Precision Recall

0.25 218 280 0.438 0.665 26 6 0.812 0.079

0.40 260 275 0.486 0.793 20 12 0.625 0.061

0.50 249 278 0.472 0.759 24 8 0.75 0.073

0.60 190 273 0.410 0.579 24 8 0.75 0.073

0.75 197 54 0.785 0.601 32 0 1 0.098

0.90 201 102 0.663 0.592 32 0 1 0.094

Table 5.8: DeepInspect impact of neuron coverage threshold on detecting bias errors for CIFAR-100

NC threshold avg_bias > mean+1std Top 1%

TP FP Precision Recall TP FP Precision Recall

0.25 289 569 0.337 0.355 18 32 0.36 0.022

0.40 272 545 0.333 0.334 27 23 0.54 0.033

0.50 310 543 0.363 0.380 29 21 0.58 0.036

0.60 279 473 0.371 0.342 26 24 0.54 0.032

0.75 276 455 0.378 0.339 29 21 0.58 0.036

0.90 179 587 0.234 0.220 12 38 0.24 0.015

Instead of choosing fixed threshold, we mitigate this threat by choosing thresholds that are one

standard deviation from the corresponding mean values and, also, reporting performance at top1%.

The task of accurately classifying any image is notoriously difficult. We simplify the problem

by testing the DNN model only for the classes that it has seen during training. For example, while

training, if a DNN does not learn to differentiate between black vs. brown cows (i.e., all the cow

images only have label cow and they are treated as belonging to the same class by the DNN),

DeepInspect will not be able to test these sub-groups.

5.7 Summary

Our testing tool for DNN image classifiers, DeepInspect, automatically detects confusion and

bias errors in classification models. We applied DeepInspect to six different popular image classifi-

cation datasets and eight pretrained DNN models, including three so-called relatively more robust

models. We show that DeepInspect can successfully detect class-level violations for both single-
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and multi-label classification models with high precision.
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Chapter 6: Repairing Group-Level Errors Using Weighted Regularization

In Chapter 5, we introduced our work DeepInspect, which is designed to identify group-level

errors(confusion errors and bias errors) for DNN based software. In this chapter, we work on ad-

dressing a follow-up and more challenging problem - automatically repair DNN based software for

confusion errors and bias errors. As proposed by Goodfellow et al., regularization are all different

approaches expressing preference for different solutions[262]. To solve this problem, we propose

WR consists of five different weighted regularization techniques to make a DNN model takes more

effort in learning from distinguishing target classes to reduce confusion between target pairs and

bias among target triples. These five different weighted regularization techniques function at dif-

ferent stages of retraining or inference of DNNs including input phase, layer phase, loss phase

and output phase. These different techniques make it possible for effective repairing in different

scenarios. Our experimental results show that WR can effectively fix confusion and bias errors and

these methods all have their pros, cons and applicable scenarios.

We publicly release the source code1. All images, figures, tables, equations, and text included

in this chapter is based on a recently collaborative work.

6.1 Motivation

Deep Neural Networks are widely used nowadays as components in many critical applica-

tions like self-driving cars, face-recognition, medical diagnosis, etc. Unlike traditional software,

although a DNN model has no code logics, it may still suffer from a different type of "serious

bugs"[263, 78]. For example, it has been found that Google photo-tagging app tagged pictures of

two dark-skinned people as “gorillas” [79]. Analogous to traditional software bugs, previous work

in Software Engineering (SE) has denoted classification errors like this as model bugs [65] that
1https://github.com/deepfixdeepfix/dnnfix

107



arise from either biased training data, problematic model architecture, training procedure error or

the combination of them.

DNN classification errors fall into two main categories, instance-wise and group-wise. The

former has been well-studied in the previous literature. In essence, an instance-wise error happens

when a DNN model outputs inconsistent prediction across different semantic-preserving transfor-

mations of a given input [44, 45, 76, 72]. Over the past few years, researchers have found numer-

ous such transformations such as norm-bounded perturbation[72], natural transformation[47], or

physical attack[77] to fool a well-trained DNN classifier. The fixing strategies such as adversary

training, data augmentation are also widely studied [72, 47]. In contrast, group-wise error is about

the DNN model’s weak performance on differentiating among certain classes or has inconsistent

performance across classes[78]. There are very few work on repairing group-wise errors and it

only receives attentions recently [78]. This type of bugs is very concerning since it has been found

to relate to many real-world notorious errors without malicious attackers[78]. Some works pro-

posed techniques to detect this kind of errors, however until now, no fixing methods have been

proposed for repairing them. To bridge this gap, in this work, we propose a generic fixing method

for repairing such errors of any given DNN models.

The group-level errors definition proposed in [78] consists of two main types with different

root causes: (i) Confusion: The model cannot differentiate one class from another. For example,

Google Photos confuses skier and mountain [81]. (ii) Bias: The model shows disparate outcomes

between two related groups. For example, Zhao et al. [83] find classification bias in favor of women

on activities like shopping, cooking, washing, etc.. Figure 6.1 presents two concrete examples of

both types of errors from COCO and Image-Net reported in [78]. Note that unlike an instance-level

error, such group-level error affects all the images falling into the groups.

The causes of such errors can be certain classes are harder to be differentiated from each other.

For example, in CIFAR-10 , dog and cat tend to confuse even a state-of-the-art DNN model since

they share many common semantic features. As a result, the two classes tend to be very close

to each other in the representation space and the decision boundary between them might not be
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(a) given laptop, a mouse is predicted (b) a surfing woman is misclassied as man

Figure 6.1: Examples of confusion and bias errors found in [78]

"fine-grained" enough for correct classification on some dog can cat images. We denote the error-

inducing classes as target classes. To fix the errors of the target classes, the model needs to take

more effort to learn from them. For large and complex DNN models, complete training from

scratch may not be possible. Sometimes no extra data can be collected, either. In these cases, fine-

tuning can be applied to let the model to take more effort in learning from target classes. When

fine-tuning is not possible or training data cannot be accessed, (for example, the user does not have

the right to access the data) the output can be modified to fix the errors while sacrificing the overall

performance to some extent.

Input model output loss

weighted
augmentation

weighted
loss

weighted
batchnorm

weighted
output

smoothing

weighted-
regularization

for target
fixing

weighted
distance-
based 

Figure 6.2: Overview of Weighted Regularization for Target Fixing
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With this insight, we propose a generic method called weighted regularization (WR). WR con-

sists of multiple methods including weighted augmentation (w-aug), weighted batch normalization

(w-bn), weighted output smoothing (w-os), weighted loss (w-loss), and weighted distance-based

regularization (w-dbr). These methods function at different stages of a given DNN’s training or

inference time Figure 6.2. In particular, if retraining is allowed and training data are provided,

w-aug assigns more weights to the target classes during the retraining, w-bn shifts the distribution

of the activation values induced by the input at every batchnorm layer(assuming the model has

batchnorm layers), and w-loss and w-dbr modify the loss function by assigning more weights to

the erroneous instances and regularizing the class centroids in the representation space, respec-

tively. Such fine-tuning strategies enable the model to emphasize more on the instances of the

target classes and thus more likely to avoid the errors involving the target classes. If fine-tuning

and training data are not provided, w-os multiplies the model’s prediction on target classes by a

smaller user-specified constant. In other words, making the model predict less the target class. In

this way, the group-level errors on those unsure data points can be avoided.

Figure 6.3 further illustrates the different impact of these methods using an example consists

of three classes (square, circle and diamond). The colors represent the model’s prediction while

the dark dashed lines denote the model’s decision boundary. Figure 6.3(a) shows that the original

model tends to confuse between blue and red since these two classes are very close with each other.

Ideally, a fixing method wants to finetune the model such that the decision boundary becomes that

in Figure 6.3(d). w-os tends to solve the confusion issue by contracting the decision boundary of

the target classes as illustrated in Figure 6.3(c). w-aug, w-loss, and w-dbr try to reuce confusion by

shifting the decision boundary. They may be able to achieve Figure 6.3(d) but may also sacrifice

the decision boundary for other classes sometimes and get the decision boundary in Figure 6.3(b)

instead. w-bn comes in between: on the one hand, it tends to contract the decision boundary as

w-os; on the other hand, it tends to shift the decision boundary through finetuning.

We evaluate the proposed methods on fixing confusion error and bias error for both single-

label and multi-label image classification in five different settings involving four datasets and DNN
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(a)Original (b)Shifted (c)Contracted (d)Ideal

Figure 6.3: Illustration of different potential decision boundary before and after applying WR.

architectures. Our experiments show that WR can effectively fixing the errors with minimal cost

of the overall performance. In every setting, a subset of our proposed methods can reduce the error

significantly and most of time at least one method can achieve better accuracy (or mean average

precision for multi-label image classification) and lower confusion/bias error than the original

model at the same time. We also provide some analysis of the proposed methods’ performance and

applicability. In summary, we make the following contributions:

• We propose a generic method for target class-level bug fixing of DNN models, WR.

• We compare the proposed, specific fixing methods under the generic method and show their

effectiveness on fixing two types of class-level errors.

Our code is available at https://github.com/deepfixdeepfix/dnnfix.

6.2 Methodology

Figure 6.2 provides an overview of our proposed framework, Weighted Regularization (WR)

for DNN target fixing. It consists of different methods applied to different stages of a DNN’s

retraining or inference. In particular, Weighted Augmentation (w-aug) re-weights the input data

according to their class membership, Weighted Batch Normalization (w-bn) modifies the batch

norm layer’s statistics of the given DNN model, Weighted Output Smoothing (w-os) smooths a

model’s prediction probability of each class, and finally, Weighted Loss (w-loss) and Weighted

Distance-Based Regularization (w-dbr) assign more weights to a model’s mistake on target classes

and regularize the representation of the target classes in the loss function when finetuning the DNN

model, respectively.
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When training data is accessible and finetuning of the given model is allowed, w-aug, w-bn, w-

loss, w-dbr can be applied to repairing the model through finetuning. w-os, on the other hand, does

not require the access to the training data or the extra finetuning step. It only required the DNN’s

prediction confidence values for every class (mostly last layer’s output). An extra limitation for

w-bn is that it requires the given model to have batch norm layers.

In the following subsections, we will introduce the details of each method in terms of how they

are developed to fix the confusion error and the bias error for both single-label classification as

well as multi-label classification. For simplicity, we only explain our methods in fixing confusion

error between one pair of classes and bias error among one triplet. However, our method can be

very easily extended to fixing multiple pairs and multiple triplets by simply treating every pair /

triplet the same way as the one demonstrated in the methodology. In the result section, we further

show the effectiveness of applying our methods to fixing multiple confused pairs.

6.2.1 Original model (orig)

Before explaining our proposed methods, we first briefly introduce how the original model is

trained. The original model is trained using the standard objective function as follows:

!>BB>A86 = E(G,H)∼DL( 5 (G), H)

where D is the underlying data distribution of input G and label H and L is the user specified loss

function. Some widely used classification loss functions include cross-entropy loss and l2 loss.

6.2.2 Weighted augmentation (w-aug)

The weighted augmentation method oversamples images from the target classes such that the

DNN model will be able to better identify these target classes. For fixing the confusion error, the

target classes consist of the chosen pairs of classes. For fixing the bias error, the target classes
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consists of the chosen triplets of classes. The loss function is defined as:

!>BB>B = E(G,H)∼D′L( 5 (G), H)

where the probability density function for the weighted distribution D′ is

?35 ′(-,. ) =


d × ?35 (-,. ), if H ∈ .C0A64C

?35 (-,. ), otherwise

where ?35 is the probability density function of the original data distribution �. In essence, the

images that have labels belonging to the target classes are oversampled by a user specified constant

d ≥ 1 times during finetuning. The larger d is, more effort the DNN model will spend on the target

classes compared with other non-target classes.

(a)Fixing confusion error: target classes � and � are oversampled.

(b)Fixing bias error: target classes �, � and � are oversampled.

6.2.3 Weighted batch normalization (w-bn)

The weighted batch normalization method redistributes the batch normalization layer based on

the distribution of data from target classes. Such method has not been proposed before in previous

literature. We have found that this method can shift the decision boundaries of the non-target

classes towards the target classes. To demonstrate this phenomenon, Figure 6.4(a) shows a toy 2D

dataset composed of three classes. Figure 6.4(b) shows the decision boundary of a well-trained

simple ResNet model and Figure 6.4(c) shows the decision boundary of the model retrained via

w-bn. It is noticeable that the decision boundary of class 2 expand over class 0 and class 1.

Figure 6.5 illustrates our approach. We first denote G to be a regular batch of images and GC0A64C

to be a batch consists of images sampled only from the target classes. (a) shows a traditional BN
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Figure 6.4: Shift of decision boundary using weighted BN

layer. Given the input from previous convolutional layer G(1) , the output

G(2) =
G(1) − � [G(1)]√
+0A [G(1)] + n

× W + V.

where W and V are standard batchnorm scaling and shifting trainable parameters.

In contrast, the proposed weighted BN layer (shown in (b)) takes in both G(1) and GC0A64C(1) and

has an output

G(2) =
G(1) − �̂ [G(1) , GC0A64C(1) ]√
+̂0A [G(1) , GC0A64C(1) ] + n

× W + V

where

�̂ [G(1) , GC0A64C(1) ] := (1 − d)� [G(1)] + d� [GC0A64C(1) ],

+̂0A [G(1) , GC0A64C(1) ] := (1 − d)+0A [G(1)] + d+0A [GC0A64C(1) ] .

The main differences are that the weighted BN layer passes extra batch of the target classes and

assigns more weights to those data when estimating the BN statistics (i.e. batch mean � and batch

variance+0A) in neural network forward pass. It should be noted that during the back-propagation,

only the loss coming from the regular batch (highlighted in dashed red box) is considered. This is

because we aim to preserve the overall accuracy at the same time of reducing the confusion/bias

error.

(a)Fixing confusion error: More instances of the uncertain target classes � and � (those lay around

the decision boundary) tend to be predicted to other classes. Consequently, the confusion between
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Figure 6.5: Illustration of the traditional BN layer and the proposed weighted BN layer.

class � and � drops while sacrificing the confusion between class A, B and other classes.

(b)Fixing bias error: all the three classes �, �, and � will be included in the target class. The

reason is that this will contract the decision boundaries of all the three classes and the misclassified

ones among them will be more likely to be predicted to other classes. As a result, both confusions

between A and C, and B and C tend to drop. It follows that the bias will be mitigated.

6.2.4 Weighted output smoothing (w-os)

First we denote the last layer’s output of a given input x to be ?(G), which is a< (i.e. the number

of classes) dimensional vector. Each field of ?(G) is positively correlated with the prediction

probability of the class corresponding to that field.

(a)Fixing confusion error: for single-label classification, w-os multiplies the target class predic-

tion probability ?(G)C by a specified parameter [ ∈ [0, 1] for images classified into any of the

target classes � and �; for multi-label classification, w-os multiplies the target class prediction

probability ?(G)C by [ for images predicted to have both target classes � and �.

(b)Fixing bias error: for single-label classification, w-os multiplies the target classes prediction

probability ?(G)C by [ for images predicted to be any of the target classes �, �, and �; for multi-
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label classification, w-os multiplies the target classes prediction probability ?(G)C by [ for images

predicted to have the positive target class � and the anchor target class � or have the negative

target class � and the anchor target class �.

In essence, this method tends to make those unsure prediction on the target classes to be pre-

dicted to the most confident non-target classes. Thus, images laying around the decision boundary

of the target classes tend to change prediction early and thus reduce the confusion between target

classes. In order to repair bias error, it reduces the confusion between the two pairs at the same

time. Since most of the influence will be on the higher confused pair(for example A-B), it does not

hurt the overall accuracy much.

Note that this method is analogous to the post-processing method in fairness ML literature[264],

where different thresholds are assigned to each sensitive group for a binary classifier’s to mitigate

equalized odds/opportunity. The thresholds are set to make trade-off between prediction accuracy

and fairness criteria. In contrast, we apply different levels of smoothing for target classes to make

trade-off between accuracy and confusion/bias errors.

6.2.5 Weighted loss (w-loss)

The weighted loss method allows a user to assign more weights to images leading to a confu-

sion error or a bias error.

(a)Fixing confusion error: Denote .C0A64C = {�, �}. The loss function is defined as:

!>BBA; = (1 − d)E(G,H)∼DL( 5 (G), H)

+ dE(G,H)∼D(.C0A64C )L( 5 (G), H)
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where the probability density function for the distribution D(.C0A64C) is

?35 ′(-,. ) =



?35 (-,. ), if (G, H) ∼ D s.t. H ∈ .C0A64C

and 5 (G) ≠ H and 5 (G) ∈ .C0A64C .

0, otherwise

Intuitively, the DNN model is encouraged to better differentiate between � and � compared with

differentiating among other classes in general.

(b)Fixing bias error: The loss function is defined as:

!>BBA; = (1 − d)E(G,H)∼DL( 5 (G), H)

+ d
(
E(G,H)∼D′(.C0A64C+ )L( 5 (G), H)

+ E(G,H)∼D(.C0A64C− )L( 5 (G), H)
)

where .C0A64C+ = {�,�} and .C0A64C− = {�,�}. This loss function encourages the DNN model to

better differentiate between � and� as well as � and� compared with differentiating among other

classes in general.

6.2.6 Weighted distance-based regularization (w-dbr)

The distance-based regularization method leverages the class-level representation and adds an

extra regularization term in the loss function to balance the distance among the target classes in

the representation space under a defined metric. The insight here is that the closer the two classes

representations are, the more confused the model is between the two classes[78].

Given a class A, we define its class-level representation

%=4F (�) =
[((=1), ((=2), ..., ((=C)]

#
,

where ((=8) is the sum of each output of neuron =8, given # input images. Then, we define the
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distance metric between two classes A and B as:

�=4F (�, �) = | | (%=4F (�), %=4F (�)) | |2

(a)Fixing confusion error: The loss for reducing confusion is defined as:

!>BB31A−2>= 5 = !>BB>A86 − d�=4F (�, �)

where d trades off the original loss and the new distance-based regularization. In essence, the

regularization term encourages a larger separation of the centroids of the two classes � and � in

the representation space.

(b)Fixing bias error: Similarly, we define a new loss for reducing bias:

!>BB31A−180B = !>BB>A86 + d 01B(�=4F (�,�) − �=4F (�,�)).

The regularization term balances the difference between the centroid distance between class � and

�, and centroid distance between class � and � in the representation space such that the relative

distances from � to � and � are similar.

6.3 Experimental Design

6.3.1 Study Subjects

We evaluate the proposed method for two applications involving both single-label and multi-

label DNN-based classifications including five combinations of four DNN architectures for four

datasets.

Datasets: We conduct our experiments on two single-label image classification datasets, CIFAR-

10, CIFAR-100 and two multi-label image classification datasets, MS-COCO[105] and MS-COCO

gender[83].
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• CIFAR-10: consists of 50,000 training and 10,000 testing 32x32 color images. It has 10

classes and 6,000 images per class.

• CIFAR-100: consists of 50,000 training and 10,000 testing 32x32 color images. It has 100

classes and 600 images per class.

• MS-COCO: MS-COCO dataset has 80 objects. It contains 80783 training images and 40504

validation images.

• MS-COCO gender: MS-COCO gender dataset is a subset of MS-COCO dataset. The gen-

der information is annotated by Zhao et al. [83]. We remove person class and add man and

woman classes based on the gender annotation.

Architectures: We evaluate our repairing performance on four different convolutional neural net-

works[209, 211].

• ResNet-18: ResNet-18 is trained on CIFAR-10 dataset. the model is trained using the state-

of-the-art training scripts from CutMix[265]. The training takes 300 epochs and the repairing

takes 60 epochs for methods requiring retraining. The initial learning rate is 0.1 and is

multiplied by 0.1 after 50% training epochs and 75% training epochs.

• VGG11_BN: VGG11_BN is a variant of VGG11 model with batch normalization layers

[211]. We train a VGG11_BN model on CIFAR-10 dataset in a same way as above.

• ResNet-34: ResNet-34 is trained on CIFAR-100 dataset. the model is trained in the same

way as above.

• ResNet-50: Following Zhao et al[83], we train ResNet-50 models for both MS-COCO and

MS-COCO gender datasets. Both models are trained for 12 epochs and are repaired by

retraining of another 6 epochs for methods requiring retraining.

Table 6.1 summarizes our study subjects including the details of all the datasets and models

used.
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Table 6.1: Study Subjects

Dataset Model

Classification Models Reported
Task Name #classes #Params #Layers Accuracy

Multi-label COCO [105] 80 ResNet-50[209] 23,671,952 174 0.6603*
classification COCO gender[83] 81 ResNet-50[209] 23,674,001 174 0.6691*

Single-label CIFAR-100[103] 100 ResNet-34 [265] 336,244 101 0.6961†

classification CIFAR-10[103] 10 ResNet-18[265] 127,642 41 0.8747†
VGG11-BN[211] 9,756,426 36 0.9175†

* reported in mean average precision, †reported in mean accuracy

6.3.2 Evaluations Metrics

For either fixing the confusion error or bias error, the goal is to fix the error while maintaining

or even improving the model’s overall accuracy. Since there are two goals i.e. high accuracy

and low confusion/bias a model tries to achieve, for comparison purpose, we rank each fixed

model (including the original model) by accuracy and confusion respectively. Next, we sum up the

two ranks for each model and compare the rank sums. The model with the smallest rank sum is

considered the one that achieves the best trade-off between accuracy and confusion/bias.

Research Questions. With the experimental setting mentioned above, we investigate the following

two research questions to evaluate WR for target bug fixing of DNNs:

• RQ1. Can WR fixes confusion errors of DNN models for both single-label classification and

multi-label classification effectively?

• RQ2. Can WR fixes bias errors of DNN models for both single-label classification and multi-

label classification effectively?

6.4 Results

RQ1. Fixing Confusion Error

In this RQ, we explore if the proposed methods can fix confusion errors effectively. We evaluate

the proposed methods on two settings in the multi-label classification task and three settings in the
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single-label classification task. We choose two hyper-parameters for each method and thus result

in eleven models (including the original model) for each setting.

Table 6.2 shows the results under different settings. We highlight the top3 (or top4 if tied)

methods in terms of rank sum. In summary, under every setting, many of the proposed methods

can achieve lower confusion while preserving decent overall accuracy (or mean average precision

for multi-label classification). For example, w-os can almost always decrease the confusion to

close to 0 under every setting while maintaining accuracy at a reasonable level.

For the multi-label classification task, w-loss strikes the best trade-off between mean aver-

age precision and confusion in terms of the rank sum. On both the COCO and COCO gender

datasets, w-loss improves the mean average precision while also decreasing confusion compared

with the original model. For example, on the COCO dataset, w-loss(0.4) improves the mean aver-

age precision from 0.6603 to 0.6611 and reduces confusion between person and bus from 0.2381

to 0.03457; on the COCO gender dataset, w-loss(0.4) improves the mean average precision from

0.6691 to 0.6697 and reduces confusion between handbag and woman from 0.0394 to 0.02063.

For the single-label classification task, on CIFAR-10 , w-dbr(0.1) is ranked the top while on

CIFAR-100 , w-aug(5) is ranked the top. They also achieve higher accuracy and lower confusion

compared with the original models in the same setting, respectively. In particular, on the CIFAR-

10 dataset and ResNet-18 model, w-dbr(0.1) improves the overall accuracy from 0.8747 to 0.8764

and reduces confusion between cat and dog from 0.096 to 0.09; on the CIFAR-10 dataset and VGG-

11 with BN model, w-bn(0.4) improves the overall accuracy from 0.9175 to 0.919 and reduces

confusion between cat and dog from 0.083 to 0.076; on the CIFAR-100 dataset, w-aug(5) improves

the accuracy from 0.6961 to 0.6697 and reduces confusion between girl and woman from 0.15 to

0.12.

Under all the settings, w-os works very well and gives decent trade-off between accuracy and

confusion. In particular, w-os with different hyper-parameters is ranked at the top3 for every

setting. On the flip side, it has to trade confusion for accuracy. w-bn also works reasonably

well across all the settings but slightly worse than w-os in most settings. Although w-loss works
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Table 6.2: Results on Confusion

Dataset Model Target Method Accuracy Confusion Acc Conf Rank
Classes Rank Rank Sum

COCO * ResNet-50 person, orig 0.6603 0.2381 4 9 13
bus w-aug(3) 0.6563 0.2763 10 10 20

w-aug(5) 0.6531 0.3009 11 11 22
w-bn(0.4) 0.6606 0.101 2 7 9
w-bn(0.6) 0.6585 0.0641 8 6 14
w-os(0.5) 0.6599 0 6 1 7
w-os(0.7) 0.6602 0.1159 5 8 13
w-loss(0.4) 0.6606 0.03457 2 4 6
w-loss(0.6) 0.6611 0.04276 1 5 6
w-dbr(0.5) 0.6589 0.01309 7 2 9
w-dbr(1) 0.6566 0.02491 9 3 12

COCO ResNet-50 handbag, orig 0.6691 0.0394 3 7 10
gender* woman w-aug(3) 0.6679 0.0643 7 8 15

w-aug(5) 0.6646 0.0897 11 11 22
w-bn(0.4) 0.6689 0.00603 4 3 7
w-bn(0.6) 0.6679 0 7 1 8
w-os(0.5) 0.6686 0 6 1 7
w-os(0.7) 0.6688 0.0061 5 4 9
w-loss(0.4) 0.6697 0.02063 1 6 7
w-loss(0.6) 0.6695 0.01754 2 5 7
w-dbr(0.5) 0.6672 0.06763 9 9 18
w-dbr(1) 0.6659 0.06867 10 10 20

CIFAR-100 ResNet-34 girl, orig 0.6961 0.15 3 8 11
woman w-aug(3) 0.7042 0.145 2 7 9

w-aug(5) 0.7043 0.12 1 5 6
w-bn(0.4) 0.6593 0.02 7 3 10
w-bn(0.6) 0.6174 0.005 8 1 9
w-os(0.01) 0.6911 0.055 4 4 8
w-os(0.001) 0.6901 0.01 5 2 7
w-loss(0.4) 0.534 0.17 10 9 19
w-loss(0.6) 0.5342 0.165 9 8 17
w-dbr(0.1) 0.6628 0.125 6 6 12
w-dbr(0.5) 0.6593 0.145 7 7 14

CIFAR-10 ResNet-18 cat, orig 0.8747 0.0960 3 9 12
dog w-aug(3) 0.875 0.093 2 8 10

w-aug(5) 0.8636 0.0915 6 7 13
w-bn(0.4) 0.8313 0.051 8 3 11
w-bn(0.6) 0.781 0.028 10 2 12
w-os(0.1) 0.8654 0.0710 5 4 9
w-os(0.001) 0.8056 0.0195 9 1 10
w-loss(0.4) 0.8566 0.1105 7 10 17
w-loss(0.6) 0.7556 0.172 11 11 22
w-dbr(0.1) 0.8764 0.09 1 6 7
w-dbr(0.5) 0.8699 0.087 4 5 9

VGG-11 cat, orig 0.9175 0.083 2 9 11
with BN dog w-aug(3) 0.9143 0.0655 6 2 8

w-aug(5) 0.9138 0.07 8 3 11
w-bn(0.4) 0.919 0.076 1 6 7
w-bn(0.6) 0.9167 0.0725 4 4 8
w-os(0.1) 0.9173 0.081 3 8 11
w-os(0.001) 0.9086 0.053 9 1 10
w-loss(0.4) 0.7912 0.3135 10 10 20
w-loss(0.6) 0.2017 0.4125 11 11 22
w-dbr(0.1) 0.9151 0.076 5 6 11
w-dbr(0.5) 0.9141 0.0725 7 4 11

* reported in mean average precision
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very well on COCO and COCO gender, it works poorly on CIFAR-10 and CIFAR-100 . A deeper

exploration of the retraining process reveals that its retraining processes on CIFAR-10 and CIFAR-

100 tend to be very unstable. For example, on CIFAR-100 , it tends to misclassify dog to cat

much more frequently on one epoch and the reverse on another. w-aug is ranked among the top

on CIFAR-100 and CIFAR-10 but performs quite poorly on COCO and COCO gender. This is

because the causes of confusions between single-label classification and multi-label classification

are different. For CIFAR-100 and CIFAR-10 , the high confusions result from similar features

between two classes when the target classes are oversampled during training, the difference of

features are better learned by models. However, for COCO and COCO gender the confusions

mostly result from two objects appearing together frequently in the same image or having similar

backgrounds. When target classes are oversampled, the confusions may be increased. w-dbr can

reduce confusion for COCO , CIFAR-100 and CIFAR-10 but fail to do so on COCO gender. One

possibility is that the confusion between handbag and woman is already very low and the class

centroids between woman and handbag are far away from each other so the extra loss regularization

term does not help reduce the confusion further.

Figure 6.6 shows some examples of the fixed confusion instances. On the CIFAR-10 dataset,

Figure 6.6(a)-(b) show two cat images that were originally classified to dog by the original model.

After the fixing using w-dbr, they are correctly predicted to cat and Figure 6.6(c)-(d) show two

dog images that were originally classified to cat by the original model. After the fixing using w-

dbr, they are correctly predicted to dog after applying w-dbr. Similarly, on the CIFAR-100 dataset

Figure 6.6(e)-(f) show two girl images that were originally classified to woman by the original

model. After the fixing using w-dbr, they are correctly predicted to girl. Figure 6.6(g)-(h) show

two woman images that were originally classified to girl by the original model. After the fixing

with w-dbr, they are correctly predicted to woman. On the COCO dataset, Figure 6.6(i)-(j) show

two images that contain only person but the original model mispredicts the presence of bus in

them. After fixing using w-loss, the model correctly predicts the presence of person without false

positively predicting the presence of bus. Similarly, Figure 6.6(k)-(l) show two images with only
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bus in them but the original model false positively predicts the presence of person in them as well.

After fixing using w-loss, the model can correctly predict the presence of bus while not falsely

predicting the presence of person in the images.

(a) cat (b) cat (c) dog (d) dog

(e) girl (f) girl (g) woman (h) woman

(i) person (j) person (k) bus (l) bus

Figure 6.6: Fixed confusion errors on CIFAR-10 ((a)-(d)), CIFAR-100 ((e)-(h)), and COCO ((i)-(l))
respectively.

Next, we explore if the proposed methods can be applied to fixing confusion errors among

multiple pairs at the same time. To answer this question, we apply the proposed methods to fixing

confusions between two pairs (one top confused pair and one randomly picked confused pair) on

CIFAR-10 and COCO . Table 6.3 shows the results. On COCO , w-loss(0.6) achieves the best

trade-off between accuracy and confusion. It reduces the summed confusions of two pairs (person-

bus and mouse-keyboard) from 0.4025 to 0.0723 while only sacrificing mean average precision

by 0.0001 (from 0.6604 to 0.6603). On CIFAR-10 , w-dbr(0.1) achieves the best trade-off by

increasing the overall accuracy from 0.8747 to 0.8778 and reducing the confusion from 0.134 to

0.128. We also want to highlight that w-os is ranked in top3 for both settings and significantly
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reduces the confusion in both settings while only slightly sacrificing the mean average precision

and accuracy, respectively.

Table 6.3: Results on Confusion (Two Pairs)

Dataset Model Target Method Accuracy Confusion Acc Conf Rank
Classes Rank Rank Sum

COCO * ResNet-50 (person orig 0.6604 0.4025 1 6 7
, bus), w-aug(3) 0.6564 0.5335 7 7 14
(mouse, w-bn(0.6) 0.6574 0.2032 5 4 9
keyboard) w-os(0.7) 0.6595 0.1937 3 3 6

w-os(0.5) 0.6575 0 4 1 5
w-loss(0.6) 0.6603 0.0723 2 2 4
w-dbr(0.5) 0.6566 0.2954 6 5 11

CIFAR-10 ResNet-18 (cat orig 0.8747 0.134 2 5 7
, dog), w-aug(3) 0.8697 0.149 3 6 9
(automobile, w-bn(0.6) 0.8328 0.082 6 2 8
truck) w-os(0.1) 0.8628 0.1055 4 3 7

w-os(0.001) 0.7788 0.0327 7 1 8
w-loss(0.4) 0.8493 0.1655 5 7 12
w-dbr(0.1) 0.8778 0.128 1 4 5

* reported in mean average precision

We further check the confusion between the target classes and all other classes on CIFAR-10 to

explore how the confusion from the target classes to other classes change when using different

methods. Figure 6.7 shows the result. In the original model, dog(label 5) is highly confused with

cat(label 3) than any other classes. After the fixing, the confusion between dog and cat drops

slightly for w-aug and w-dbr and drops significantly for w-os and w-bn. However, the confusion

between dog and other classes (also cat and other classes) increase at the same time as a trade-off

for all the methods except w-aug. It is also worth noting that w-bn(the purple bars) provides a

uniform distribution of the confusion after fixing. This might be a desirable property if a user does

not want to overburden one particular non-target class in terms of the confusion distribution. The

result also suggests a future exploration direction of our method: by adjusting hyper-parameter,

one can optimize the model such that the maximum pair-wise confusion is the lowest. In other

words, no pair should be confused much larger than other pairs.

Since w-os can be applied when no training data is available or retraining is allowed and can

reduce confusion by a significant amount while only slightly sacrificing the overall performance

under every setting, we conduct an ablation study on its hyper-parameter [ to explore its trade-

off between confusion and accuracy. Figure 6.8 shows the results. Note that by decreasing [,
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Figure 6.7: Confusion between target classes and non-target classes for each model on CIFAR-10 .

the confusion decreases and accuracy decrease at the same time. Thus, a user can decide what

parameter to use depending on the significance of accuracy and confusion.
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Figure 6.8: Accuracy and Confusion trade-off of different parameters for w-os.

Result 1: The proposed method WR can effectively fix confusion errors for both single-

label image classification and multi-label image classification. Under every setting, one fixing

method can achieve both higher accuracy and lower confusion than the original model. The

proposed methods also generalize to fixing errors for multiple pairs.

RQ2. Fixing Bias Error

In this RQ, we explore if the proposed methods can fix bias errors. The settings are similar to

those for evaluating confusion error fixing. Table 6.4 shows the results under different settings. In
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summary, the general trend is similar to fixing the confusion error. Under every setting, many of

the proposed methods can achieve lower bias while preserving decent overall accuracy (or mean

average precision for multi-label classification). For example, w-os can significantly decrease the

bias under every setting.

For the multi-label classification task, w-loss strikes the best trade-off between mean average

precision and bias in terms of the rank sum. On both the COCO and COCO gender datasets, w-

loss improves the mean average precision while also decreasing the bias compared with the original

model. For example, on the COCO dataset, w-loss(0.6) improves the mean average precision from

0.6603 to 0.6611 and reduces bias between person and clock with respect to bus from 0.2366

to 0.0425; on the COCO gender dataset, w-loss(0.4) improves the mean average precision from

0.6691 to 0.6706 and reduces bias between woman and man with respect to skis from 0.2630 to

0.02472.

For the single-label classification task, on CIFAR-10 and ResNet-18 model, w-dbr(0.5) is

ranked among the top3 while on CIFAR-100 , w-aug(5) is ranked among the top3. Both meth-

ods achieve higher accuracy and lower bias compared with the original models in the same setting,

respectively. In particular, on CIFAR-10 and ResNet-18 model, w-dbr(0.1) improves the overall

accuracy from 0.8747 to 0.8763 and reduces the bias between dog and cat with respect to bird from

0.092 to 0.062; on CIFAR-100 , w-aug(5) improves the accuracy from 0.6961 to 0.7059 and re-

duces the bias between girl and boy with respect to woman from 0.09 to 0.075. On CIFAR-10 and

VGG-11 with BN model, w-aug(3) has the top1 performance. It significantly decreases the bias

from 0.065 to 0.04 with only slightly decreasing of accuracy from 0.9175 to 0.914.

Similar to fixing confusion errors, under all the settings, w-os works reasonably well and gives

decent trade-off between accuracy and bias. The observations for w-bn, w-loss, w-aug, and w-dbr

are also similar as in performance in fixing confusion errors. In particular, w-bn also can reduce

bias significantly in most settings but tends to be slightly worse than w-os overall. w-loss works

very well for the multi-label classification task but not for the single-label classification task. w-

aug performs much better on CIFAR-100 and CIFAR-10 than on COCO and COCO gender. w-dbr
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Table 6.4: Results on Bias

Dataset Model Target Method Accuracy Bias Acc Conf Rank
Classes Rank Rank Sum

COCO * ResNet-50 bus, orig 0.6603 0.2366 3 6 9
person, w-aug(3) 0.6563 0.2760 10 8 18
clock w-aug(5) 0.6532 0.2951 11 9 20

w-bn(0.4) 0.6581 0.2445 8 7 15
w-bn(0.6) 0.6576 0.1983 9 5 14
w-os(0.5) 0.6599 0 5 1 6
w-os(0.7) 0.6602 0.1160 4 4 8
w-loss(0.4) 0.6607 0.04131 2 2 4
w-loss(0.6) 0.6611 0.0425 1 3 4
w-dbr(0.5) 0.6595 0.3589 7 11 18
w-dbr(1) 0.6599 0.3557 5 10 15

COCO gender* ResNet-50 skis, orig 0.6691 0.2630 3 8 11
woman, w-aug(3) 0.6648 0.2972 9 10 19
man w-aug(5) 0.6623 0.3190 11 11 22

w-bn(0.4) 0.6656 0.1277 8 5 13
w-bn(0.6) 0.6645 0.0861 10 4 14
w-os(0.5) 0.6685 0 6 1 7
w-os(0.7) 0.6689 0.2119 4 6 10
w-loss(0.4) 0.6706 0.02472 1 3 4
w-loss(0.6) 0.6703 0.02232 2 2 4
w-dbr(0.5) 0.6687 0.2606 5 7 12
w-dbr(1) 0.6684 0.2877 7 9 16

CIFAR-100 ResNet-34 woman, orig 0.6961 0.09 3 11 14
girl, w-aug(3) 0.7002 0.075 2 9 11
boy w-aug(5) 0.7059 0.075 1 9 10

w-bn(0.2) 0.6892 0.040 5 4 9
w-bn(0.4) 0.6584 0.0050 10 1 11
w-os(0.001) 0.688 0.01 6 2 8
w-os(0.1) 0.6944 0.06 4 6 10
w-loss(0.1) 0.6748 0.06 7 6 13
w-loss(0.4) 0.5804 0.07 11 8 19
w-dbr(0.1) 0.6668 0.04 8 4 12
w-dbr(0.5) 0.6639 0.015 9 3 12

CIFAR-10 ResNet-18 dog, orig 0.8747 0.092 2 10 12
cat, w-aug(3) 0.8696 0.073 4 8 12
bird w-aug(5) 0.8605 0.0705 5 7 12

w-bn(0.4) 0.8498 0.053 6 4 10
w-bn(0.6) 0.8103 0.047 7 3 10
w-os(0.01) 0.7675 0.016 10 1 11
w-os(0.5) 0.8731 0.04 3 2 5
w-loss(0.4) 0.7964 0.0915 8 9 17
w-loss(0.6) 0.7348 0.1005 11 11 22
w-dbr(0.5) 0.8763 0.062 1 6 7
w-dbr(1) 0.7845 0.060 9 5 14

VGG-11 dog, orig 0.9175 0.065 1 9 10
with BN cat, w-aug(3) 0.914 0.04 6 1 7

bird w-aug(5) 0.9123 0.048 7 3 10
w-bn(0.4) 0.915 0.057 5 7 12
w-bn(0.6) 0.9161 0.0525 3 4 7
w-os(0.1) 0.9166 0.063 2 8 10
w-os(0.001) 0.9012 0.054 9 6 15
w-loss(0.4) 0.8031 0.1780 10 11 21
w-loss(0.6) 0.6395 0.1715 11 10 21
w-dbr(0.5) 0.916 0.0445 4 2 6
w-dbr(1) 0.9099 0.050 8 5 13

* reported in mean average precision
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can reduce bias for COCO , CIFAR-100 and CIFAR-10 but fail to do so on COCO gender.

Figure 6.6 shows two examples of the fixed bias instances. In particular, Figure 6.9(a) shows

an image containing a woman and a skis but the original model classifies the woman to man. After

fixing using w-loss, the model correctly predicts the presence of woman and skis. Figure 6.9(b)

shows an image containing several woman, man and skis while the original model only predicts

the presence of only man and skis but misses woman. After fixing the model using w-loss, the

model successfully recovers the presence woman, man and skis.

(a) woman, skis (b) woman, man, skis

Figure 6.9: Fixed bias errors on COCO gender.

Result 2: The proposed method WR can effectively fix bias errors for both single-label im-

age classification and multi-label image classification. Under every setting, one fixing method

can achieve both higher accuracy and lower bias than the original model.

6.5 Related Work

6.5.1 Program Repair

Automatic software repair is very challenging and most of existing automatic program repair-

ing works focus on traditional software.[23]. Traditional automatic repairing techniques include
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random or guided mutation of AST(Abstract Syntax Tree)[24, 25, 26, 27, 28, 29, 30, 31], static

program analysis or symbolic execution/concrete execution[32, 33, 34, 35, 36, 37]. The most

recent techniques involve language models training and program synthesis[38, 39]. All these tech-

niques proposed to repair traditional programs such as C, C++, Java or Python, cannot work on

DNN based software because there is no program logic or AST in DNN models. In this paper, we

propose, compare and discuss Weighted Regularization for automatic target repairing techniques

on DNN based software repair for group-level errors.

6.5.2 DNN Testing and Repairing

An increasing number of works in SE for AI area focus on DNN testing and repairing. The

testing techniques usually leverage metamorphic relation as oracle and coverage guided image

transformation or perturbation for generating test cases[44, 53, 50, 54, 196, 266, 56]. Data aug-

mentation and retraining techniques are usually proposed for repairing DNN models in improving

overall accuracy[63, 64, 65]. There are also works in improving robustness of models against ad-

versarial instances[55, 60, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. All of these papers focus on

repairing instance-wise bugs i.e. a model’s failure on the variations of a given image. In contrast,

our paper focuses on fixing group-level errors.

6.5.3 Fairness

Fairness is an important problem from both a theoretical and a practical perspective [134, 135,

136, 137]. Related works in fairness usually define a fairness criteria and then optimize the original

objective while satisfying the fairness criteria [138, 139, 140, 141, 142, 143]. These properties are

defined either at individual [138, 144, 145] or group levels [146, 139, 147]. Our paper focuses on

the fixing techniques of a group level fairness definition called bias error proposed in [78], and to

the best of our knowledge, our proposed repairing methods for which have not been studied in the

previous literature.

130



6.6 Discussion & Threats to Validity

There are many potential ways to fix group-level errors of DNNs. To mitigate this threat,

we propose and compare the performance of five different methods. For each method, we set a

parameter to make trade-off between accuracy and confusion. We only rank the results using two

parameters for each method to compare different methods’ performance.

There are many datasets and models, which can be used for the evaluation purpose. We choose

five combinations of four widely used datasets and models in the computer vision field. Besides,

DNN training is stochastic so the results may have some fluctuations. The general patterns of the

results we observe hold across different runs of the same methods. Lastly, our method can be

applied to DNN models used in applications beyond image classifications such as object detection

and recommendation systems. We leave that for future work.

6.7 Summary

In this work, we propose a generic method called Weighted Regularization(WR) that can fix

group-level errors for deep neural networks. To the best of our knowledge, this is the first work

proposing, exploring and comparing target fixing methods, which can be applied in different stages

of DNN retraining or inference, on repairing group-level DNN model errors. Our experimental

results show that WR can effectively fix confusion and bias errors and these methods all have their

pros, cons and applicable scenarios.
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Conclusion

In this thesis, we show the limitation of traditional software engineering techniques on

DNN based software and discussed the necessity of developing new software engineering

techniques for DNN based software to ensure the functionality, safety as well as fairness. To this

end, new challenges such as test generation, software testing, software repairing, software fairness

should be addressed for DNN based software. We firstly introduced the development of the new

area SE for AI, an intersection area between software engineering and artificial intelligence and

then presented four major projects addressing these new challenges in SE for AI area. Our first

project (Chapter 3) designed and implemented systematic testing tool for DNN based software.

We applied our tool on three top performing DNN based self-driving car models in Udacity

self-driving car challenge and it identified thousands of erroneous behaviours. Our second project

studied per-point robustness of DNNs under natural variation. We proposed both white-box and

black-box approaches to identify non-robust data points for DNN based image classifiers and

DNN based self-driving car models. We implemented and evaluated our approaches on 9 DNN

based image classifiers and 3 DNN based self-driving car models. Our approaches can identify

weak points with reasonably good precision and recall for both DNN based image classifiers and

self-driving cars. Our third project(Chapter 5) proposed a neuron coverage based distance metric

to identify group-level errors(confusion and bias errors) for DNN based software and it identified

group-level errors in widely used models trained on popular single-label and multi-label image

classification datasets. Our last project(Chapter 6) proposed five different weighted regularization

techniques to repair group-level errors(confusion and bias errors) for DNN based software. Our
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results show that all these five different weighted regularization techniques can effectively fix

group-level errors with minimal cost for different scenarios. Finally, we summarized our

contribution and discussed some open problems and potential future exploration.

Collectively, these projects promote the emerge and advancement of SE for AI area and

contribute to the assuring of functionality, safety as well as fairness for DNN based software. We

summarize the contributions of main published papers in the following:

• Presented a neuron coverage guided test generation techniques for DNN based software.

Leveraged realistic image transformations to synthesize realistic corner cases for

self-driving car models. Applied domain-specific metamorphic relations to generating

oracle for these new generated test cases. Implemented these techniques in DeepTest and

applied it on three top performing self-driving car models in Udacity self-driving car

challenge. DeepTest identified thousands of erroneous behaviours that may lead to potential

fatal crash.[53]

• Conducted an empirical study on per-point robustness of DNNs under natural variation.

Found that specific weak points near decision boundary will result in erroneous behaviours

under natural variations. Designed and implemented a white-box

approach(DEEPROBUST-W) and a black-box approach(DEEPROBUST-B) to identify these

weak data points for DNN based software. Evaluated our approaches to testing 9 DNN

based image classifiers and 3 DNN based self-driving car models. Our results show that

DEEPROBUST-W and DEEPROBUST-B are able to achieve an F1 score of up to 91.4% and

99.1%, respectively in testing DNN based image classifiers. DEEPROBUST-W is effective

in identifying weak data points with F1 score up to 78.9% in testing DNN based

self-driving car models.[76]

• Introduced group-level errors, which is another type of errors DNN based software suffers,

different from instance-wise errors. Categorized group-level errors into confusion errors

and bias errors based on real-world reports. Proposed neuron coverage based distance
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metric to test DNN based software for confusion errors and bias errors. Implemented these

techniques in DeepInspect and applied it to six different popular image classification

datasets and eight pretrained DNN models, including three robust trained models. It

identified confusion errors with precision up to 100% (avg. 72.6%) bias errors up to 84.3%

(avg. 66.8%). It found hundreds of classification mistakes in widely used models, many

exposing errors indicating confusion or bias.[78]

• Proposed five weighted regularization techniques to automatically repair confusion errors

and bias errors for DNN based software. These five weighted regularization techniques

function at different phases of retraining or inference of DNNs to make the model take more

effort in learning from target classes. These techniques can be applied in different scenarios

including even retraining is not possible. Implemented these techniques in WR and applied

it to four widely-used datasets and architectures. The results show that WR can effectively

fix confusion errors and bias errors with minimal cost of the overall performance.

We summarize the limitation and future work of main published papers in the following:

• Our techniques proposed in DeepTest leverage neuron coverage to measure the quality of

generated test cases and how well DNN based software are tested. Future works may

include the exploration and comparison of other coverage techniques such as neuron set and

neuron path coverage, etc. for DNN based software. We proposed neuron coverage guided

test generation techniques. In future, other search based fuzzing techniques can be explored

and compared. In DeepTest, we specifically applies our implementation on DNN based

self-driving cars models. These models only have camera input and output steering angles.

Future testing of DNN based self-driving car may handle more sensors’ inputs and other

outputs such as brake, acceleration control, etc. besides steering angles.

• We studied per-point robustness of DNNs under natural variation in DeepRobust. We

observed that specific weak points are more likely to fail a DNN based software under

natural transformations. Then, we proposed a white-box approach(DEEPROBUST-W) and a

134



black-box approach(DEEPROBUST-B) to identify these weak points for DNN based image

classifiers and self-driving cars. The results show that they can effectively identify

weak/strong points with high precision and recall. Future work may include the exploration

of other consistency analysis methods [238] such as variation ratio, entropy etc. We can

also prioritize test cases based on identified weak points[230, 231] or retrain DNNs with

weak points to improve DNNs’ robustness [55].

• We introduce group-level errors in DeepInspect, orthogonal to instance-wise errors for

DNN based software. There are very few existing works studying group-level errors. In

future, we expect more exploration such as white-box based interpretation and debugging

techniques for group-level errors for DNN based software. In future other types of errors

could be explored and discovered, besides group-level errors and instance-wise errors. As

more and more DNN based software are developed and deployed in real world, we expect

that the fairness issue becomes more serious and our proposed bias errors will be

investigated and studied in more depth.

• In our last project, we proposed five different weighted regularization techniques to repair

group-level errors. We evaluated these techniques on popular single-label and multi-label

DNN based image classification. Future works may include repairing other applications

such as object recognition and recommending systems, etc. We proposed weighted

regularization in different stages of retraining or inference of DNNs to repair group-level

errors. In future other DNN repairing techniques such as weights updates and layers

adding/removing, etc. can be studied and compared. We also expect that increasing number

of works published in SE for AI area will focus on repairing DNN based software.
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