
Building theories of neural circuits with machine learning

Sean Robert Bittner

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021

© 2021

Sean Robert Bittner

All Rights Reserved

Abstract

Building theories of neural circuits with machine learning

Sean Robert Bittner

As theoretical neuroscience has grown as a field, machine learning techniques have played an

increasingly important role in the development and evaluation of theories of neural computation.

Today, machine learning is used in a variety of neuroscientific contexts from statistical inference

to neural network training to normative modeling. This dissertation introduces machine learning

techniques for use across the various domains of theoretical neuroscience, and the application of

these techniques to build theories of neural circuits.

First, we introduce a variety of optimization techniques for normative modeling of neural activity,

which were used to evaluate theories of primary motor cortex (M1) and supplementary motor area

(SMA). Specifically, neural responses during a cycling task performed by monkeys displayed

distinctive dynamical geometries, which motivated hypotheses of how these geometries conferred

computational properties necessary for the robust production of cyclic movements. By using

normative optimization techniques to predict neural responses encoding muscle activity while

ascribing to an “untangled” geometry, we found that minimal tangling was an accurate model of

M1. Analyses with trajectory constrained RNNs showed that such an organization of M1 neural

activity confers noise robustness, and that minimally “divergent” trajectories in SMA enable the

tracking of contextual factors.

In the remainder of the dissertation, we focus on the introduction and application of deep

generative modeling techniques for theoretical neuroscience. Specifically, both techniques

employ recent advancements in approaches to deep generative modeling – normalizing flows – to

capture complex parametric structure in neural models. The first technique, which is designed for

statistical generative models, enables look-up inference in intractable exponential family models.

The efficiency of this technique is demonstrated by inferring neural firing rates in a log-gaussian

poisson model of spiking responses to drift gratings in primary visual cortex. The second

technique is designed for statistical inference in mechanistic models, where the inferred

parameter distribution is constrained to produce emergent properties of computation. Once fit, the

deep generative model confers analytic tools for quantifying the parametric structure giving rise

to emergent properties. This technique was used for novel scientific insight into the nature of

neuron-type variability in primary visual cortex and of distinct connectivity regimes of rapid task

switching in superior colliculus.

Table of Contents

List of Figures . vii

Acknowledgments . x

Dedication . x

Chapter 1: Introduction and Background . 1

1.1 Types of theories in neuroscience . 2

1.2 Models and machine learning techniques in theoretical neuroscience 2

1.2.1 Statistical generative models . 3

1.2.2 Neural circuit models . 4

1.2.3 Neural networks . 6

1.2.4 Normative models . 7

1.3 Deep generative modeling . 7

1.4 Thesis overview . 8

Chapter 2: The dynamical geometry of population activity in motor cortex 10

2.1 Introduction . 11

2.2 Motor cortex embeds commands in an untangled population response 11

2.2.1 Smooth dynamics predict low tangling . 11

i

2.2.2 Noise-robust networks display low tangling 14

2.2.3 Hypothesis-based prediction of neural responses 16

2.2.4 Alternative predictions . 20

2.2.5 Signals introduced by optimization yield incidental correlations 20

2.2.6 Muscle-like signals are embedded in trajectories with low tangling 22

2.3 Supplementary motor area exhibits a minimally divergent geometry 23

2.3.1 Trajectory divergence . 25

2.3.2 Computational implications of trajectory divergence 26

2.3.3 Discussion . 27

2.4 Methods . 31

2.4.1 Trajectory-constrained Neural Networks 31

2.4.2 Predicting neural population activity . 34

2.4.3 Similarity between empirical and predicted data 37

Chapter 3: Approximating exponential family models (not single distributions) with a two-
network architecture . 38

3.1 Introduction . 39

3.2 Exponential family networks . 40

3.2.1 Exponential families as target model P 40

3.2.2 Density networks as approximating familyM 42

3.2.3 Exponential family networks as approximating model Q 43

3.2.4 Relation to variational inference . 45

3.3 Results . 46

3.3.1 Tractable exponential families . 48

ii

3.3.2 Lookup inference in an intractable exponential family 50

3.4 Discussion . 53

Chapter 4: Emergent property inference captures complex parametric structure of neural
circuit models and scales to high dimensions 54

4.1 Introduction . 54

4.2 Results . 57

4.2.1 Motivating emergent property inference of theoretical models 57

4.2.2 Emergent property inference via deep generative models 59

4.2.3 Scaling inference of recurrent neural network connectivity with EPI 62

4.3 Discussion . 65

4.4 Methods . 68

4.4.1 Emergent property inference (EPI) . 68

4.4.2 Stomatogastric ganglion . 85

4.4.3 Scaling EPI for stable amplification in RNNs 90

4.5 Deep inference and the exponential family . 96

4.5.1 Maximum entropy and the exponential family 98

4.5.2 Variational simulation-based inference . 99

4.5.3 Two-network architectures for deep inference 101

Chapter 5: Building theories of neural circuits with emergent property inference 103

5.1 EPI reveals how recurrence with multiple inhibitory subtypes governs excitatory
variability in a V1 model . 103

5.2 EPI identifies two regimes of rapid task switching 107

iii

5.3 EPI inferred SC connectivities reproduce results from optogenetic inactivation ex-
periments . 111

5.4 Discussion . 113

5.5 Methods . 115

5.5.1 Primary visual cortex . 115

5.5.2 Superior colliculus . 123

Conclusion . 134

References . 152

iv

List of Figures

Figure 1.1 Neural circuit models. 5

Figure 2.1 Behavioral and physiological responses during cycling. 12

Figure 2.2 Low trajectory tangling aids noise robustness . 15

Figure 2.3 Relationship between low tangling and noise robustness 17

Figure 2.4 Elaboration of prediction analyses . 21

Figure 2.5 Muscle-like signals coexist with signals that contribute to low tangling 24

Figure 2.6 Autonomous networks reproducing SMA and M1 responses 28

Figure 2.7 Trajectories that would yield low or high trajectory divergence and tangling . . 31

Figure 3.1 Exponential family network (EFN) . 43

Figure 3.2 50-dimensional Dirichlet exponential family network . 47

Figure 3.3 Scaling exponential family networks . 49

Figure 3.4 Lookup inference in a log-Gaussian Poisson model with V1 responses 51

Figure 4.1 Emergent property inference in the stomatogastric ganglion. 58

Figure 4.2 Inferring stable amplification in recurrent neural networks 64

Figure 4.3 Emergent property inference in a 2D linear dynamical system 81

Figure 4.4 Analytic contours of inferred EPI distribution . 83

Figure 4.5 Simulated activity of inferred 2D linear models . 84

Figure 4.6 EPI optimization of the STG model producing network syncing 89

Figure 4.7 Architecture parameter comparison of EPI and SNPE . 93

Figure 4.8 SNPE convergence was enabled by increasing nround, not natom 95

v

Figure 4.9 Model characteristics affect predictions of posteriors inferred by SNPE, while

predictions of parameters inferred by EPI remain fixed . 97

Figure 4.10 Deep inference architectures . 100

Figure 5.1 Emergent property inference in the stochastic stabilized supralinear network 105

Figure 5.2 Inferring rapid task switching networks in superior colliculus 109

Figure 5.3 Responses to optogenetic perturbation by connectivity regime 112

Figure 5.4 EPI inferred distribution for X(10 Hz) . 118

Figure 5.5 EPI optimization qθ (z | X(5 Hz)) . 119

Figure 5.6 EPI predictive distributions of the sum of squares of each parameter pair . . . 120

Figure 5.7 SSSN responses to neuron-type input . 121

Figure 5.8 Task accuracy by EPI inferred SC network connectivity 125

Figure 5.9 SC network simulations by regime . 126

Figure 5.10 Eigenmodes of SC connectivity . 127

Figure 5.11 SC responses to delay period inactivation at Anti error saturating levels . . . 128

Figure 5.12 SC responses to delay period inactivation at experiment matching levels . . . 129

Figure 5.13 EPI optimization of the SC model producing rapid task switching 130

Figure 5.14 SC connectivities obtained through brute-force sampling 131

List of Algorithms

Algorithm 1 Emergent property inference . 78

vi

Acknowledgements

First and foremost, thank you to my parents Robert and Kimberly Bittner for their love and

support, and for always encouraging me to pursue my interests. My PhD at the Center for Theo-

retical Neuroscience at Columbia has been an extraordinary experience, which exceeded even my

lofty expectations. I am appreciative to so many people who have supported me and helped me

grow since I joined the program. In general, it has been a treat to be part of such an impressive,

curious, and genuine group of people.

Thanks to Jelena Kovačević, who mentored me in my first undergraduate research project along

with Siheng Chen at Carnegie Mellon University. Thank you to Byron Yu for introducing me to

a field that I became so passionate about, taking the time to help me develop from an engineer

into a scientist, and for giving me so many opportunities to advance my career. Thank you to

everyone from the Center for the Neural Basis of Cognition in Pittsburgh that I had the priv-

iledge to meet or work with during this period: Benjamin Cowley, Ryan Williamson, William

Bishop, Matthew Golub, Akash Umakantha, Jay Hennig, Joao Semedo, Adam Snyder, Brent Do-

iron, Matthew Smith, and Steven Chase.

Thank you to Mark Churchland for being such a positive and supportive mentor, for teaching

me a lot about motor control and theoretical neuroscience, and especially for allowing me to do

such interesting rotation work in his lab with Abby Russo, which turned into a special project.

Thank you to Abby for all of the advice and guidance she’s given me throughout graduate school.

Much of my foundational understanding of neural dynamics was developed at Mark’s journal

club, and I am grateful to all friends and colleagues that I met in this group: Cora Ames, Karen

vii

Schroeder, Najja Marshall, Andrew Zimnik, Sean Perkins, and Yana Pavlova.

Thank you to all of John Cunningham’s current and former advisees that I have overlapped

with. You have all been amazing friends, mentors, and zebroid compatriots. Gamaleldin Elsayed,

Gabriel Loaiza-Ganem, Scott Linderman, Shreya Saxena, Josh Glaser, Anqi Wu, Geoff Pleiss,

Taiga Abe, Kelly Buchanan, Dan Biderman, Julien Boussard, Luhuan Wu, and Elliot Rodriguez.

Thanks to all friends and colleagues I have met through the theory center: Jacob Portes, Ramin

Khajeh, Matthias Christenson, James Priestly, Dar Gilboa, Ella Batty, Patrick Stinson, Salomon

Muller, Chris Cueva, Conor Dempsey, Grace Lindsay, Amin Nejatbakhsh, Marjorie Xie, Danil

Tyulmankov, Denis Turcu, Fabio Stefanini, Alessandro Ingrosso, Laureline Logiac, James Murray,

Chris Rodgers, SueYuen Chen, Vivek Athalye, Rainer Engelken, Bettina Hein, Kenny Kay, Jack-

son Loper, Ramon Nogueira Manas, Samuel Muscinelli, Ari Pakman, Xuexin Wei Erdem Varol,

Matthew Whiteway, Robert Yang, Ashok Litwin-Kumar, Sean Escola, Allison Ong, and Mahham

Fayyaz. A special thanks goes to Jeff Seely, who was an incredibly helpful mentor during my early

PhD.

Thank you to all of my friends from the Neurobiology and Behavior PhD program for the com-

radery and support, especially Gabe Stine, Jung Park, Leslie Sibener, Kelly Martyniuk, Naveen

Senhilnathan, Luke Nunnelly, Avery McGuirt, Josie McGowan, Lillian Coie, Viktoriya Zhuravl-

eva, Jennifer Scribner, Josie McGowan, Lisa Randolph, Macayla Donegan, Georgia Pierce, Rebeca

Vaadia, Michelle Stackman, Liz Pekarskaya, Gordon Petty, Michael Cohanpour, Claire Everrett,

Andres Villegas, and Stevie Hamilton. Thank you to Rozanna Yakub and Alla Kerzhner for sup-

porting all of us.

Thanks to my collaborators Agostina Palmigiano, Alex Piet, Ann Duan, and their mentors

Kenneth Miller and Carlos Brody.

Thanks to my thesis committee members for providing their insight and support: Larry Abbott,

Kenneth Miller, Liam Paninski, and external member Jonathan Pillow.

Thanks to my adviser John Cunningham, who has been an amazing mentor. I’m very grateful

for the impact he’s had on my growth as an academic, and for his ability to listen and help me

viii

clarify my career ambitions. Even after several years, I am still impressed by his ingenuity and

willingness to explore unorthodox ideas, which has made my PhD all the more enjoyable.

ix

Dedication

To Mom, Dad, Brian, Jake, and Dan.

x

Chapter 1: Introduction and Background

To understand the neural basis of behavior and cognition, neuroscientists have conducted ex-

tensive experiments and studies to describe neurons and their circuitry, cellular mechanisms, and

genetic factors [1, 2]. To build on these achievements, theoretical neuroscientists seek a lawful,

integrated understanding of neural computation through the perspective of mathematical model-

ing [3, 4, 5]. Mathematical models of neural computation are constrained by the biological and

physiological properties of the nervous system being studied. While single neuronal models can

provide important insight (e.g. [6, 7]), the predominant focus of theoretical neuroscience is dedi-

cated towards neural circuit modeling: networks of interconnected neurons that make up a given

brain area or subcircuit [8, 9, 10, 11, 12].

As the field of theoretical neuroscience has progressed, so has the field of machine learning.

Leaps in the capabilities of image and speech recognition were enabled by neural network archi-

tectures [13, 14], whose origins come from neuroscientific motivations [15]. Key ideas in each

of these fields have aided and advanced the other throughout their co-evolution [16, 17, 18]. Ma-

chine learning has become an integral part of theoretical neuroscience, and the specific technique

employed in a given study depends on the type of theory being evaluated.

Theories of neural computation can be categorized by the questions they attempt to answer:

What are neurons doing? How are they doing it? Why do they do it that way [19]? In this intro-

ductory chapter, we explain the different types of theories, the types of models they stipulate, and

the machine learning techniques used to evaluate such theories. With this context, we then intro-

duce the technique of deep generative modeling, which is a core topic of this dissertation. Finally,

we review the content of this dissertation, which introduces new machine learning techniques for

theoretical neuroscience, and develops theories of neural circuits through the application of such

techniques.

1

1.1 Types of theories in neuroscience

Here, we recapitulate the organization of theories in neuroscience by Levenstein et al. 2020

[19], which will serve as useful categories for explaining the role of machine learning in theoreti-

cal neuroscience. Descriptive theories in neuroscience seek to explain what a neural circuit does.

For example, such theories often describe the stimulus features [20], behavior [21], or abstract

representations [22] that neurons are responsive to. Mechanistic theories aim to explain how key

elements and properties of the neural circuit enable it to perform its computation. The mathemat-

ical structure of a mechanistic model reflects the biological constraints of the neural circuit; this

is how neurophysiological research informs theoretical modeling [9]. Normative theories aim to

explain why a neural circuit exhibits some phenomena. Within some established constraints of the

normative model, a neural circuit is proposed to optimize some criteria. For example, normative

models are implicit throughout neuroscience – auditory cortex is considered to be optimized for

processing sound. In the next section, we describe how descriptive, mechanistic, and normative

theories are evaluated with a variety of models, and how various machine learning techniques are

used to support this science.

1.2 Models and machine learning techniques in theoretical neuroscience

Different types of theories prescribe different types of models, which are mathematical formal-

izations of theories. Such models are used to ask empirical questions: Does the theory explain

observed phenomena (or data)? What predictions does the theory make? When analytic tech-

niques cannot answer these questions, techniques from the domain of machine learning are often

used to fit or train these models. In this chapter, we review the primary classes of models used in

theoretical neuroscience and the machine learning techniques used to analyze them.

2

1.2.1 Statistical generative models

To learn about the brain from neural recordings, neuroscientists have adopted statistical mod-

eling techniques to make the most of collected data. Descriptive theories (see types of theory in

Section 1.1) are typically embedded in such statistical generative models, for which considerable

methodology for neural data has been developed [23]. Neural responses are recorded with respect

to a particular stimulus or behavior (often in the same repeated condition), and by using statisti-

cal methodology, one can precisely quantify what the data informs us about a neuron or neuronal

population.

Statistical inference – the inference of model parameters most likely to produce observed data

– is the core machine learning technique developed for research with these models. Seminal work

modeling neural spiking data as point processes produced methods for inferring neural firing rate

[24] and a neuron’s relation to extrinsic experimental factors [25]. Advanced techniques supported

this inference in concert with spiking history from the remaining ensemble [26, 27], facilitating

the evaluation of a mechanistic theory that the network connectivity supports the hypothesized

representation.

State-space modeling of neural firing rates has grown in popularity, where unobserved factors

are inferred from the shared firing rate variability of the neural population [28, 29, 30]. By inferring

the low dimensional state of neural population activity, scientists can infer how computations are

executed through internal dynamics [31]. In this case of state space modeling of neural activity,

a mechanistic theory (at the level of dynamics predicated by neural connectivity) is built from the

low dimensional state inferred using a phenomenological model.

A major advance in the machine learning community for statistical inference was the develop-

ment of the variational autoencoder (VAE) [32, 33], which has had a sizable impact on the field

of statistical neuroscience. VAEs use deep neural networks to induce a posterior distribution on

hidden variables of a latent variable model given data. So far, VAEs have been used to expand the

class of generative models of cortical population activity [34, 35, 36, 37] and animal behavior [38,

39, 40] amenable to statistical inference. We will revisit the topic of VAEs when we introduce the

3

topic of deep generative modeling in Section 1.3.

1.2.2 Neural circuit models

Neural circuit models are constructed via a system of mathematical equations to evaluate mech-

anistic theories of neural computation. The equations of neural circuit models often reflect the

constraints of the underlying biology, and are designed to reproduce phenomena observed from

the neural system being modeled. Neural circuit models come in a variety of sizes, structures, and

levels of abstraction. For example, prominent models of fly and crustacean subcircuits may consist

of five or less neurons [41, 42], while models of cortical areas in other model organisms may be on

the scale of hundreds [43] or thousands [44]. Models range from the scope of specific microcircuits

[45], to entire cortical areas [46], to whole brain models [47]. The computation modeled may be

related to sensory processing, action, or some intermediate processing.

In biologically realistic neural circuit models, the variables are often neural activity level (e.g.

membrane potential or firing rate), and the parameters of the model equations (e.g. ion channel

conductance, time constants, synaptic strength, or connectivity rate) govern the evolution of this

activity. For example, a model of the stomatogastric ganglion (STG) of crustaceans consists of

five neurons: two in the fast population (f1 and f2), two in the slow population (s1 and s2), and a

hub neuron that is both synaptically and electrically coupled to each population [41] (Fig. 1.1 top-

left). The synaptic and electrical conductance parameters gsynA, gsynB, and gel determine how the

membrane potentials of each neuron in this circuit evolve according to well-established biophysical

laws of cellular dynamics in neurons [48]. For different values of the conductance parameters, the

hub neuron’s spiking frequency will either sync with the fast, slow, or both populations. Since

the STG model contains neurons corresponding to real, identifiable cells, and it closely reflects

biophysical laws at the level of channel conductances, we consider it to have a high degree of

biological realism. Furthermore, since the coupling organization of this neural circuit model cannot

be unwound into a purely feed-forward structure, it is a recurrent neural circuit model.

Not all biologically realistic neural circuit models have recurrent architectures. For example,

4

hub

f1

s2

f2 s1

...

recurrent

feed-forward

neural networks

STG RNN

DNN

biological
realism

methodological
utility

Neural circuit models

Fly visual

Tm3Mi1

T4

motion detector

Mi4 Mi9

Figure 1.1: Neural circuit models. Examples are organized by biological realism (left), machine
learning methodological utility (right), recurrent (top), and feed-forward architecture (bottom).
STG - stomatogastric ganglion subcircuit of crustaceans to model hub neuron coupling [41] (see
text). Fly visual motion detector - three-neuron microcircuit of Drosophila that detects directional
motion [42] (see text). RNN - recurrent neural network. DNN - deep neural network.

the motion detector subcircuit in the fly Drosophila contains four neurons (Mi4, Mi1, Tm3, and

Mi9), which project to the detector neuron T4 [42] (Fig. 1.1 bottom-left). By closely character-

izing the input to these medullar cells and the strength and dynamics of their projections to T4,

scientists attempt to reverse engineer the precise algorithm implemented for motion detection [49].

In contrast to recurrency, this architecture is classified as a feed-forward circuit, since neurons Mi4,

Mi1, Tm3, and Mi9 are not influenced by the neural activity of T4.

It is often methodologically challenging to find the parameters of biologically realistic models

that reproduce observed phenomena. In Section 1.2.1, we described the technique of statistical

inference, which often does not generalize to this class of models because of the absence of a

tractable likelihood function. To infer the parameters of such neural circuit models, simulation-

based inference is used, where the model is simulated many times until suitable parameters are

obtained [50]. Historically, neuroscientists have used the sampling techniques of approximate

5

bayesian computation [51] and sequential monte carlo [52] to fit (or "invert") neural circuit models.

In the next section, we introduce the more abstract subclass of neural circuit models, which we

classify as neural network models. We will consider neural networks as belonging to the class of

neural circuit models when they are used with the intention of modeling a computation executed by

a biological neural system. Otherwise, a neural network is not considered a neural circuit model,

and merely a utilitarian function approximator used to enable machine learning methodology.

1.2.3 Neural networks

The origin of the neural network architecture is rooted in the McCullough-Pitts neuron [15],

which is designed to integrate the incoming signals from neurons projecting incoming synapses.

Unsupervised [53] and supervised [54] learning rules for such neural networks were developed in

the mid-twentieth century, however the implementation of efficient backpropagation optimization

techniques for neural networks did not occur until the 1980’s [55, 56, 57]. Throughout the next

four decades, the generality and flexibility of neural networks coupled with efficient optimization

technology would make deep learning the dominant paradigm of machine learning [16]. No matter

the application or problem domain, neural networks have proven to be highly effective and tractable

function approximators.

Neural networks belong to two main classes of architectures: recurrent (Fig. 1.1 top-right) and

feed-forward (Fig. 1.1 bottom-right). Recurrent neural networks (RNNs) produce outputs as a map

from an internal hidden neural state which evolves over time via some internal connectivity and the

input it receives. RNNs are typically used to model sequence data. Feed-forward or deep neural

networks (DNNs), which consist of a sequence of nonlinear transformations at each layer of neural

units, are used to learn static mappings. In their everyday usage in machine learning technology, we

do not consider these neural networks as neural circuit models, but utilitarian classes of functions.

Only when they are used in a context of neural system modeling, do we consider them to be neural

circuit models.

For example, a popular approach in theoretical neuroscience has been to train an RNN to per-

6

form some task, and to reverse engineer how the RNN executes the computation through its dynam-

ics [58]. The machine learning techniques of backpropagation and backpropagation-through-time

[59, 60] are used to train neural networks, whether it be in the context of unsupervised, supervised,

or reinforcement learning [18]. Furthermore, some research tests the efficacy of biologically plau-

sible learning rules in RNNs [61, 62, 63, 64]. In these examples, we would consider such RNNs to

be neural circuit models. The impressive performance of convolutional deep learning architectures

in computer vision [13] suggest that visual cortices may process visual stimuli in a similar man-

ner. Research has related the (approximately) feed-forward visual stream of primates to individual

components of the deep learning architecture [65]. In this case as well, the deep neural network

would be considered as a neural circuit model designed to evaluate a mechanistic theory.

1.2.4 Normative models

Normative models of neural activity suggest that it is optimal with respect to some criteria

while adhering to some constraints. These constraints may be biologically realistic in the spirit

of a mechanistic theory, or they may be more abstract and conceptual. For example, the gabor-

like responses of neurons in primary visual cortex can be explained by a normative model: gabor

responses emerge when synthetic neural activity are optimized to encode natural visual stimuli

under the constraint of a sparse linear code [66]. Machine learning techniques for constrained

optimization and regularization are often required to fit such normative models.

1.3 Deep generative modeling

In Section 1.2.1, we introduced statistical generative models, and how they can be used to ap-

proximate distributions of data. By inferring the parameters most likely to generate a given dataset,

we also gain the ability to produce samples with variation according to the learned distribution. In

deep generative models, deep neural networks are used to define the generative model, and gen-

erally increase the expressivity of the approximating model class. Deep generative models are

usually fit using VAEs [32] or generative adversarial networks (GANs) [67].

7

The typical architecture of a deep generative model consists of a non-invertible deterministic

mapping of a latent variable to the mean and variance parameters of a generating gaussian (or

other) distribution. Recent advances in deep generative modeling have produced a new class of

deep generative models called normalizing flows, which are parameterized by invertible neural

network architectures [68, 69]. Special care is taken to design deep, expressive architectures that

remain invertible and either produce fast samples [70], fast probability density calculations [71],

or both [72].

Normalizing flows consist of two key components: a simple random initial distribution, and

a deep neural network. The simple random initial distribution (typically chosen as an isotropic

gaussian) has no parameters and is the source of randomness in the probability distribution. This

initial randomness is then deterministically transformed by the deep neural network to capture the

distributional structure of interest. The deep neural networks of normalizing flows are constrained

to be bijective, and to have tractable log determinant jacobians. As a note, normalizing flows should

not be misconstrued as neural circuit models, since they are simply representing a distribution

which is flexibly parameterized by the neural network. Continued research has resulted in a host

of powerful techniques for approximating distributions with rich structure [69].

1.4 Thesis overview

In this dissertation we introduce machine learning techniques for theoretical neuroscience, and

use these methods to develop theories of neural circuits. In Chapter 2, we develop optimization

techniques and train RNNs to evaluate normative theories of motor cortex based on the dynamical

geometry of neural responses to movement. In the remainder of the thesis, we introduce deep

generative modeling techniques for building descriptive and mechanistic theories. Both techniques

introduced in Chapters 3 and 4 employ normalizing flows to capture rich structure in parameter

distributions of neural models. In Chapter 3, we present an efficient method for posterior inference

with normalizing flows in statistical generative models (for descriptive theories), which we use

for fast inference in a log-gaussian poisson model of neural spiking responses in primary visual

8

cortex. In Chapter 4, we present a method that uses normalizing flows for inference in mechanistic

neural circuit models. Finally in Chapter 5, EPI is used to develop mechanistic theories of neuron-

type variability in primary visual cortex, and of superior colliculus connectivity regimes producing

rapid task switching.

9

Chapter 2: The dynamical geometry of population activity in motor cortex

In this chapter, we evaluate normative theories of primary motor cortex (M1) and supplemen-

tary motor area (SMA) based on the dynamical geometry of neural responses observed during a

cycling task performed by monkeys. Neural responses in M1 and SMA displayed cyclical and heli-

cal geometries, repectively, motivating the development of metrics to quantify dynamical geometry

of such nature. Such geometries were theorized to confer noise robustness and in the case of SMA

the ability to track of contextual factors. We developed an optimization-based technique for evalu-

ating a variety of normative models of M1 activity. Futhermore, we trained trajectory-constrained

RNNs to produce responses from both M1 and SMA to evaluate how dynamical geometric prop-

erties confer the robust production of cyclical movements in the presence of noise.

This work is featured across two studies presenting minimal "tangling" as a normative model

of M1 [73] and minimal "divergence" as a normative model of SMA [74]. Sections 2.2-2.2.6 are

lightly adapted from Russo et al. 2018 and were coauthored by Abigail A. Russo, Sean M. Perkins,

Jeffrey S. Seely, Brian M. London, Antonio H. Lara, Andrew Miri, Najja J. Marshall, Adam Kohn,

Thomas M. Jessell, Laurence F. Abbott, John P. Cunningham and Mark M. Churchland. Sections

2.3.1-2.3.3 are lightly adapted from Russo et al. 2020 and were coauthored by Abigail A. Russo,

Ramin Khajeh, Sean M. Perkins, John P. Cunningham, L. F. Abbott, and Mark M. Churchland.

Section 2.4 takes from both papers and describes the analyses performed in this chapter. All

remaining text provides summary of motivation and experimental results from the two studies

supporting the modeling analyses.

10

2.1 Introduction

Motor cortex, which has synaptic projections to both spinal interneurons [75] and motoneurons

[76], has been shown to strongly represent both movement-related kinematics [21, 77, 78] and

muscle activity [79, 80, 81]. However, it has also been shown that neural responses contain features

reflecting network or feedback dynamics [82, 83]. Research into the neural basis of motor control

has largely focused on analyzing neural responses from reaching tasks, and has produced little

consensus on how to account for the variety of these phenomena. To interrogate the nature of

movement encoding and recurrent dynamics in motor cortex, Russo et al. [73] designed a novel

behavioral paradigm in which a hand pedal is rotated for different cycle counts in a forward and

backward direction (Fig. 2.1A-B). By collecting motion (Fig. 2.1C-D), neural (Fig. 2.1C) and

electromyographic (EMG) recordings (Fig. 2.1D) from monkeys during this behavior, kinematic,

neural, and muscle activity could be compared over extended periods of time.

During the execution of this task, individual neurons had heterogeneous responses properties.

At the population level, neurons coded for muscle activity quite well (R2 = 0.79), yet the popula-

tion response was dominated by a rotational component that did not code for muscle or kinematic

activity. This most salient feature of the population recordings motivated the precise characteri-

zation of dynamic population-level geometry in motor cortex. Russo et al. found that recordings

in primary motor cortex (M1) [73] and supplementary motor area (SMA) [74] revealed distinc-

tive population geometries (minimal tangling and divergence, respectively). In our analyses, we

evaluate how well such geometrical measures confer hypothesized computational properties, and

whether they define accurate normative models of recorded neural activity.

2.2 Motor cortex embeds commands in an untangled population response

2.2.1 Smooth dynamics predict low tangling

Recent physiological and theoretical investigations suggest that the neural state in motor cortex

obeys smooth dynamics [82, 84, 85, 86, 87]. Smooth dynamics imply that neural trajectories

11

A B

C D
world position

vertical hand
position

M1_C078a Trapezius

Figure 2.1: Behavioral and physiological responses during cycling. A. Schematic of the task during
forward cycling. A green landscape indicated that virtual progress required cycling “forward". B.
An orange landscape indicated that progress required cycling “backward". C. Behavioral data and
spikes from one neuron during an example session. Data are for a single condition: forward /
seven-cycle / bottom-start (monkey C). Trials are aligned to movement onset, and ordered from
fastest to slowest. D. Behavioral data and raw trapezius EMG for one condition: backward /
seven-cycle / bottom-start (monkey D).

12

should not be “tangled": similar neural states, either during different movements or at different

times for the same movement, should not be associated with different derivatives. We quantified

trajectory tangling using

Q(t) = max
t ′

| |ẋt − ẋt ′ | |
2

| |xt − xt ′ | |
2 + ε

(2.1)

where xt is the neural state at time t (i.e., a vector containing the neural responses at that time), ẋt is

the temporal derivative of the neural state, | | · | | is the Euclidean norm, and ε is a small constant that

prevents division by zero (methods). Q(t) becomes high if there exists a state at a different time, t′,

that is similar but associated with a dissimilar derivative. We take the maximum to ask whether the

state at time t ever becomes tangled with any other state. This maximum is taken with t indexing

across time during all conditions. Q(t) can be analogously assessed for the muscle trajectories.

We chose tangling as a straightforward measure of whether a given trajectory could have been

produced by a smooth dynamical flow-field. Given limits on how non-smooth dynamics can be,

moments of very high tangling are incompatible with a fixed flow-field. Furthermore, even moder-

ately high tangling implies potential instabilities in the underlying flow-field (Supp Fig 1 and Supp

Note of [73]). High tangling thus implies that the system must rely on external commands rather

than internal dynamics, or that the system is flirting with instability. Although other metrics are

possible, tangling has the practical benefit that it can be computed directly from the trajectories

without needing to know (or fit) a flow-field.

For the reasons above, a network that relies heavily on intrinsic dynamics should avoid tangling.

In contrast, when population activity primarily reflects external commands (as for the muscles or a

population of sensory neurons) high tangling is both benign and, with enough observations, likely.

For example, co-contraction of the biceps and triceps at one moment might need to be quickly

followed by biceps activation and triceps relaxation. At a later moment or during a different move-

ment, co-contraction might instead need to be followed by biceps relaxation and triceps activation.

This would constitute an instance of tangling because the same state (co-contraction) is followed

by different subsequent states. Do such moments of high tangling indeed occur for the muscles?

If so, are they mirrored or avoided in the neural responses?

13

Russo et al. [73] showed that neural activity (in recordings and network models) had less tan-

gling than the muscle activity it produced, suggesting that similar neural states with conflicting

derivatives are avoided by motor cortex. Lower tangling of motor cortex than muscle population

activity was also found in monkeys performing reaching tasks and in mice performing reaching

and walking behaviors, suggesting that untangled motor responses are preserved across tasks and

species. In contrast, somatosensory cortex and visual cortex did not display the untangling prop-

erty.

2.2.2 Noise-robust networks display low tangling

For a recurrent or feedback-driven network, it is intuitive that high tangling must be avoided.

If the flow-field has some degree of smoothness, nearby states cannot be associated with very

different derivatives. Thus, moments of high tangling cannot be produced without relying on

disambiguating external inputs. Yet motor cortex trajectories avoided even moderate tangling. This

is not strictly necessary even in the idealized case of a fully autonomous dynamical system. For

example, some recurrent networks did show moderate tangling, yet still functioned [73]. Might the

very low empirical tangling confer some computational advantage? Formal considerations support

that possibility: even moderate tangling implies potential dynamical instabilities (Supp Note of

[73]).

To explore potential advantages of low tangling, we considered neural networks trained to gen-

erate a simple idealized output: cos t for one muscle and sin 2t for a second muscle (Fig 2.2A,

top). The resulting output trajectory was thus a figure-eight (left sub-panel). It is not possible for

a network’s internal trajectory to follow a pure figure-eight; the center-most state is very highly

tangled. Tangling can be reduced by employing a third dimension such that the trajectory is:[
cos t; sin 2t; β sin t

]
. Even a modest value of β reduces tangling enough (middle sub-panel) that

the trajectory can be produced. As a network follows that three-dimensional trajectory, the figure-

eight trajectory can still be “read out" via projection onto two of the axes (with the third dimension

falling in the null space of the readout [88, 89]. Is there an advantage to further decreases in tan-

14

E F

C D

moderate
tangling

high
tangling

low
tangling

output 1:

output 2:

A

B

5.5

0.0 0.1 0.3 0.5 0.75 1.0

0

0.07

N
oi

se
 to

le
ra

nc
e

2.590th Percentile Tangling (x 103)

Monkey D

0 500Iterations
0.7

0.8

0.9

1.0

S
im

ila
rit

y

500

0.7

0.8

0.9

1.0

Monkey C

Iterations

S
im

ila
rit

y

-0.5

0.5

-0.5 0.5PC 1

P
C

 2

-0.5

0.5

-0.5 0.5PC 1

P
C

 2

0

high tangling low tangling

Figure 2.2: Low trajectory tangling aids noise robustness, and can be leveraged to predict the
motor-cortex population response. A. Illustration of how an output can be embedded in a larger
trajectory with varying degrees of tangling. Top gray traces: A hypothetical two-dimensional
output [cos t, sin 2t]. Plotted in state space, the output trajectory is a figure-eight, and contains
a highly tangled central point. Adding a third dimension (β sin t) reduces tangling. B. Noise
robustness of recurrent networks trained to follow the internal trajectory

[
cos t, sin 2t, β sin t

]
By

varying β, we trained a set networks that could all produce the same output, but had varying
degrees of trajectory tangling. Noise tolerance (mean and SEM across initializations) is plotted
versus network tangling for each value of β. C. Similarity of the predicted and empirical motor-
cortex population responses (monkey D). Blue trace: prediction yielded by optimizing the cost
function in Eqn. 2. Cyan dot indicates similarity at initialization; i.e., the similarity of empirical
neural and muscle trajectories. This also provides a lower benchmark (orange dashed line). Gray
traces: Same as blue trace but initialized with Gaussian noise added during initialization. Multiple
initializations were yielded a family of predictions. Black dashed line shows upper benchmark
as described in the text, with a 95% confidence interval computed across random divisions of the
population. D. Same but for monkey C. E. Projection of a representative predicted population
response onto the top two PCs. Prediction based on EMG for monkey D. Green / red traces show
trajectories for three cycles of forward / backward cycling. F. Same but for monkey C. See also
Fig 2.3 and 2.4.

15

gling (right sub-panel)? We examined noise tolerance across networks whose internal trajectories

were
[
cos t; sin 2t; β sin t

]
with different values of β. This necessitated the unusual step of training

networks not only to produce a desired output, but also to follow a specified internal trajectory (see

Section 2.4.1).

Networks with high trajectory tangling failed to produce the figure-eight output trajectory in

the presence of even small amounts of noise (Fig 2.2B). Networks with low trajectory tangling

were much more noise robust. We performed a similar analysis with trajectories that encoded the

empirical muscle trajectories, but with varying degrees of tangling (found using the optimization

approach in the next section). Again, low tangling provided noise robustness (Fig. 2.3). This

was true both for networks that generated a single internal trajectory, and networks that generated

different “forward" and “backward" trajectories based on inputs. Intuitively, when tangling is low

it is less likely that noise will perturb the network onto a nearby but inappropriate part of the

trajectory. More formally, low tangling aids local stability (Supp Fig 1; Supp Note of [73]). While

the example in Fig 2.2A,B is intentionally simplified, it illustrates a feature that may help interpret

the empirical neural trajectories. Note that β = 1 yields a weakly-tangled trajectory that encodes

the desired figure-eight output in one projection and is a circle in another projection (Fig 2.2A, right

sub-panel). Although we created this shape via construction, it is a natural shape to introduce: a

circle is the least-tangled rhythmic trajectory.

2.2.3 Hypothesis-based prediction of neural responses

The results above suggest a hypothesis: motor cortex may embed outgoing commands (which,

if muscle-like, would be quite tangled) in a larger trajectory such that the full orbit is minimally

tangled. Inspired by optimizations that successfully predicted V1 responses [66], we employed

an optimization approach to predict the dominant patterns of motor cortex activity. Optimization

found a predicted neural population response, X̂ , that could be linearly decoded to produce the

16

4.0 2.4
0

0.06

N
oi

se
 to

le
ra

nc
e

4.0 2.4
0

0.06

4.2 2.4
0

0.06

N
oi

se
 to

le
ra

nc
e

4.2 2.4
0

0.06

Monkey D Monkey C

log 90th Percentile Tangling (x 103) log 90th Percentile Tangling (x 103)

target trajectory

P
C

 2

PC 1

input

P
C

 2

PC 1

A B C

D E F

Figure 2.3: Relationship between low tangling and noise robustness in networks trained to follow
specified internal trajectories. These trajectories encoded muscle activity with varying degrees
of tangling. A. Schematic of network architecture and internal trajectory for networks trained to
produce trajectories corresponding to forward cycling only. Networks (50 fully connected units)
were trained to produce ten-dimensional target trajectories that encode muscle activity with varying
degrees of trajectory tangling. To create target trajectories, we used an optimization that was the
same as that described in the main text (and that produced the data in Figure 7C-F) but was applied
to a single cycle of muscle data for forward cycling only. Optimization was repeated 10 times with
smooth noise added during initialization to produce a family of solutions. As optimization ran, we
kept the solution for different iterations: 0, 1, 2, 3, 4, 5, 10 ,100, and the final iteration. This yielded
90 trajectories: one for each optimization and iteration. These trajectories were all ten-dimensional
and had a wide variety of tangling values. For each such trajectory, 20 networks (each with a
different set of initial weights) were trained to autonomously and repeatedly follow that trajectory.
As for Figure 7B, networks were not trained to produce the trajectory as an output but rather to
internally follow that trajectory. B, C. Analysis of the noise robustness of the networks described
in A. Noise tolerance was assessed by training networks in the presence of different levels of
additive Gaussian noise. Noise tolerance was defined as the maximum noise level at which the
network still followed the target trajectory. Each black circle plots the mean noise tolerance across
many networks whose tangling fell within a given bin. Standard errors are within the symbol
size. D. Schematic for networks trained to produce trajectories corresponding to either forward
or backward cycling depending on an input. The input was two-dimensional. The command to
produce forward / backward cycling involved one dimension being high and the other low. Each
input dimension was connected to all network units with random weights. All other details are as
in A. E, F. Same as B,C, but for the networks described in D.

17

empirical muscle activity Z , yet was minimally tangled. Specifically:

X̂ = argmin
X

*
,
| |Z − Z X+X | |2F + λ

∑
t

Qx (t)+
-

(2.2)

where each column of the matrix Z describes the muscle population response for one time and

condition. The first term of the cost function ensures that neural activity “encodes" muscle activity;

Z X+X is the optimal linear reconstruction of Z from X (+ indicates the pseudo-inverse; | | · | |F

indicates the Frobenius norm). This formulation should not be taken to imply that the true neural-

to-muscle mapping is linear, merely that the predicted neural activity should yield a reasonable

linear readout of muscle activity, consistent with empirical findings [90, 91, 92]. The second term

of the cost function encourages low trajectory tangling. The predicted neural population response

thus balances optimal encoding of muscle activity with minimal tangling.

We applied optimization using muscle data that included three middle cycles of forward cycling

and three middle cycles of backward cycling. Thus, we are attempting to simultaneously predict

two “steady state" neural trajectories. We used canonical correlation to assess the similarity be-

tween predicted and actual neural responses. Canonical correlation finds linear transformations

of two datasets such that they are maximally correlated. We employed a variant of canonical

correlation that enforces orthonormal matrix transformations. Unity similarity thus indicates two

datasets are the same but for a rotation, isotropic scaling, or offset. We initialized optimization with

X̂init = Z , corresponding to the baseline hypothesis that neural activity is a “pure" code for muscle

activity. This resulted in a reasonably high initial similarity (Fig 2.2C-D, cyan dot) because muscle

activity shares many basic features with neural activity (e.g., the same fundamental frequency).

During optimization, we insisted that the predicted neural population response, X̂ , have the

same dimensionality as the muscle population response, Z (both were ten-dimensional). Matching

dimensionality is a conservative choice that aids interpretation. Because optimization cannot add

dimensions, some muscle-like features must be lost in order to gain features that reduce tangling.

Similarity will therefore increase only if the features gained during optimization are more realistic

18

/ prominent than the features that are lost. Similarity between predicted and empirical populations

increased with optimization (Fig 2.2C-D blue), reaching a similarity roughly halfway between

the “pure muscle encoding" hypothesis and perfect similarity. To provide a rough benchmark of

good similarity, we computed the average similarity between two random halves of the empirical

neural population (black dashed trace with 95% confidence intervals). Similarity approached this

benchmark for both monkeys. To test the consistency of this result we repeated optimization, each

time initializing with the empirical patterns of muscle activity plus temporally smooth noise in

each of the ten dimensions. Similarity to the data always increased (gray traces). This analysis

also revealed that the addition of random structure decreased initial similarity (gray traces start

below the blue trace). This underscores that increasing similarity requires the addition of structure

matching that in the neural data, rather than any arbitrary structure.

Each initialization resulted in a slightly different solution (the optimized X̂). We were thus

able to ask which solutions were common and whether the nature of those solutions explains the

increased similarity with the empirical data. For all 200 solutions (100 per monkey), optimization

produced near-circular trajectories. When comparing between forward and backward, two classes

of solution emerged. The less common (31/100 for monkey D and 13/100 for monkey C) involved

dominant circular trajectories in planes that were nearly orthogonal (first principal angle > 85◦)

for forward and backward. The most common (69/100 and 87/100 for monkey D and C) involved

at least some overlap between these planes. In such cases, trajectories were almost always co-

rotational (67/69 and 85/87 for monkey D and C) in the top two PCs. Two typical solutions are

shown in Figure 2.2E,F. Co-rotations dominate because, when two trajectories exist in a common

subspace, tangling is lowest if they co-rotate (if they exist in orthogonal planes, co-rotation versus

counter-rotation is not defined). Similar structure was seen for the empirical data: the planes that

best captured neural trajectories during forward and backward cycling overlapped (principal angles

were 72◦ and 61◦ for monkey D, and 73◦ and 40◦ for monkey C) and showed co-rotation in the top

two PCs. Thus, the hypothesis embodied in Equation 2.2 not only increased quantitative similarity,

it also reproduced the dominant features of the neural data: nearly circular trajectories that exist in

19

distinct but overlapping planes, and that co-rotate in the projection capturing the most variance.

2.2.4 Alternative predictions

We performed a variety of optimizations corresponding to cost functions embodying other

hypotheses (Fig 2.4). Optimizations that sought to reduce the norm of activity or to increase

sparseness (standard forms of regularization) led to decreases in similarity. Optimizing for local

smoothness (one aspect of low tangling) increased similarity but not as much as optimizing for low

tangling itself. Thus, similarity increased only when optimization reduced tangling, and increased

most when low tangling was directly optimized.

However, low tangling per se was not necessarily sufficient to increase similarity. We created

simulated populations where the response of each unit was either the response of a muscle or the

derivative of that response. This reflects the hypothesis that neurons might represent both muscle

activity and the change in muscle activity [93]. By construction, these simulated populations had

fairly low tangling [73]. Yet, they did not particularly resemble the neural population. Quanti-

tatively, similarity increased modestly for monkey D (roughly half as much as when optimizing

for low tangling directly) and decreased for monkey C. The dominant signals in these simulated

populations also did not show the same dominant circular structure seen in the neural data [73].

The mismatch can be understood by noting that differentiation increases the prevalence of high-

frequency features. This does not lead to a match with the dominant circular structure at the

fundamental frequency in the empirical data. In summary, optimizing directly for low tangling in-

troduced features that were both particularly effective in reducing tangling and matched features in

the data. Reducing tangling in a more “incidental" fashion did not produce these realistic features.

2.2.5 Signals introduced by optimization yield incidental correlations

The optimization based on Equation 2.2 added structure that reduced tangling. That structure is

unconnected to kinematics or other task parameters; optimization was blind to all such parameters.

Nevertheless, the predicted neural population response appeared to encode kinematics to a greater

20

A B
Monkey D

0 500Iterations

0.7

0.8

0.9

1.0
S

im
ila

rit
y

Iterations

S
im

ila
rit

y

0 500
0.7

0.8

0.9

1.0 Monkey C

Figure 2.4: Elaboration of analyses in Figure 2.2C,D A, B. Same as Figure 2.2C,D but using ad-
ditional cost functions. These cost functions are described below, and formalized subsequently.
Each cost function embodies a hypothesis regarding the relationship between neural and muscle
activity. The similarity metric thus indicates how well that hypothesis predicts the data. Blue
traces (reproduced from Figure 2.2) show similarity between empirical and predicted population
responses when prediction employed the cost function in Equation 2.2. That cost function included
linear-decode error and trajectory tangling. Optimization thus embodies the hypothesis that neu-
ral activity seeks to encode muscle activity fairly directly while maintaining low tangling. Purple
traces: predictions yielded by minimizing non-linear decode error and the L2-norm of population
activity. Optimization thus embodies the hypothesis that neural activity may wish to be as modest
as possible while still allowing muscle activity to be decoded. Each muscle was allowed its own
non-linearity, the parameters of which were optimized. This potentially allowed neural activity to
be lower-dimensional and/or simpler than muscle activity, with different patterns of activity across
muscles accounted for via different non-linearities. In principle, this might have explained why the
dominant neural signals are ‘simpler’ and different from the dominant muscle signals. In fact, simi-
larity between the empirical and predicted populations typically declined. (There were many local
minima so the algorithm was run from many different initializations.) Gray traces: predictions
yielded by minimizing both non-linear decode error and trajectory tangling. This cost function
embodies the same hypothesis as in Equation 2.2, but allows each muscle’s activity to be decoded
nonlinearly as above. Across multiple initializations, similarity occasionally increased, especially
when compared to the purple traces. However, similarity did not increase to the same degree as for
the simpler cost function in Equation 2.2. This might mean that the ‘true’ readout is already close
to linear (such that the constraint of linearity is beneficial). More likely, the space of non-linear
readouts is sufficiently large that we did not find an instance where the non-linear model improved
upon the linear approximation. Red trace: prediction yielded by minimizing linear-decode error
and trajectory curvature within each condition. Trajectory curvature is effectively a local measure
of tangling. Similarity increased, but not as much as if tangling was minimized directly. Not
shown: prediction yielded by minimizing linear-decode error and sparseness. Similarity declined
dramatically and immediately, with traces falling off the bottom of the plot.

21

degree than would a pure code for muscle activity. We used linear regression to decode a set of

kinematic parameters (horizontal and vertical position and velocity) from the activity of the muscle

population. Fits were reasonable (R2=0.86 and 0.88 for monkey D and C) but improved (R2=0.97

and 0.94) when we instead decoded kinematics from the predicted neural population response. This

performance was nearly identical to that observed when decoding kinematics from the empirical

neural population (R2=0.98 and 0.93). The ability to decode horizontal and vertical velocity might

initially seem surprising: the dominant signals in the neural data co-rotated in the top two PCs –

inconsistent with a velocity representation. However, the presence of more than two dimensions

with sinusoidal structure ensured that velocity could be read out reasonably accurately. Despite

these excellent decodes, generalization performance was poor: generalization R2 was near-zero

(or even negative) when fitting kinematics for one direction and predicting for the other. This

was true whether decoding was based on the predicted or empirical neural response. While poor

generalization does not exclude the possibility that the empirical population encodes kinematic

signals, we saw no direct evidence for this hypothesis. As noted above, we also rarely observed

neurons whose firing rates resembled kinematic parameters.

2.2.6 Muscle-like signals are embedded in trajectories with low tangling

The optimization results lead to the hypothesis that the dominant population-level signals in

motor cortex function to yield low tangling, and that muscle-like signals may be encoded by rel-

atively modest ‘ripples’ in dimensions that point off the plane of dominant circular structure. A

rough analogy would be a phonograph, where the direction that encodes a temporally complex

output is orthogonal to the dominant motion of the record. Can such structure be viewed directly

in the empirical data? We projected the neural population response onto triplets of dimensions (Fig

2.5). The first and second dimensions were always the first two PCs. The third was based on the

readout direction of a particular muscle, defined by the set of weights found via linear regression

(arrow in Fig 2.5A plots the readout direction for the trapezius). The third dimension was then

the vector that was orthogonal to the first two PCs, and allowed the three dimensions to span the

22

readout direction.

Consider first a triplet of dimensions that span the trapezius readout direction (Fig 2.5A). Tra-

jectories trace out circular paths in the top PCs. Ripples in a third dimension yield the fine temporal

structure that matches trapezius activity Fig 2.5B). The overall trajectory thus has the joint prop-

erties of encoding trapezius activity while exhibiting low tangling. Similar structure was observed

for other muscles (Fig 2.5C,E).

The dimensions that encode muscle activity captured only modest variance. In the examples

in Figure 2.5, each muscle-readout dimension captured 10% as much variance as each of the top

two PCs. The vertical dimensions in 2.5A,C,E are thus shown on an expanded scale for visualiza-

tion. Similar structure was present for the network models and also for the predicted population

responses in Figure 2.2E,F: the activity of each “encoded" muscle constituted a set of ripples upon

dominant circular structure that yielded low tangling.

In addition to the dimensions from which muscle-like signals can be read out, there exist other

dimensions (not visible in Figure 2.5) that provide separation between neural trajectories during

forward and backward cycling. Low tangling may require such separation, else forward and back-

ward trajectories would have to encode very different patterns of muscle activity despite following

similar paths. Indeed, forward and backward neural trajectories were on average much better sep-

arated than the corresponding muscle trajectories. This difference in separation was large but not

as profound as the difference in tangling. Thus, low neural-trajectory tangling (relative to muscle-

trajectory tangling) results from a variety of factors: more circular trajectories, increased separation

between forward and backward trajectories, and greater alignment of flow-fields (e.g., co-rotation

in the dominant dimensions).

2.3 Supplementary motor area exhibits a minimally divergent geometry

Here, we consider the hypothesis that supplementary motor area (SMA) guides movement by

tracking contextual factors, and derive a prediction regarding population trajectory geometry. We

predict that SMA trajectories should avoid ‘divergence’; trajectories should be structured, across

23

M
3E F

Time from movement onset (s)
0 1 2 3

Medial Triceps
readout

De22_1

Medial Triceps

0 1 2 3

De24_1

C DM
2

Medial Biceps
readout

Medial Biceps

0 1 2 30 1 2 3

A BM
1Trapezius readout

De13_1

PC 2
PC 1

forward

backward

top

top

bottom

bottom

Trapezius

forward

backward

0 1 2 30 1 2 3

Figure 2.5: Muscle-like signals coexist with signals that contribute to low tangling. Data are for
monkey D. A. Three-dimensional subspace capturing trajectories that encode trapezius activity;
i.e., can be linearly read out to approximate trapezius activity. Blue arrow indicates the readout
direction, defined by the weights identified via linear regression. Axes correspond to the first two
PCs and a third dimension that ensures the space spans the readout direction. Trajectories are
shown for four conditions: forward (green) and backward (red) seven-cycle movements, starting
at the top and bottom (lighter and darker traces). Lighter ‘shadow’ traces at bottom show the
projection onto just the first two PCs (perspective has been added). B. Projections, for the four
conditions plotted in A, onto the readout direction. Thin black trace plots the true activity of the
trapezius. Axis spans the time of movement. C,D. Same as A,B but for the medial biceps. Only
the third (vertical) axis is different. E,F. Same but for the medial triceps.

24

time and conditions, such that it is never the case that two trajectories follow the same path and

then separate. Low trajectory divergence is essential to ensure that neural activity can distinguish

situations with different future motor outputs, even if current motor output is similar. We hypoth-

esize that the need to avoid divergence strongly influences the shape of the population trajectory,

and thus the response features observed within a particular task.

2.3.1 Trajectory divergence

Trajectories displayed by context-tracking networks reflect specific solutions to a general prob-

lem: ensuring that two trajectory segments never trace the same path and then diverge. Avoiding

such divergence is critical when network activity must distinguish between situations that have the

same present motor output but different future outputs. Rather than assessing the specific paths

of individual-network solutions, we developed a general metric of trajectory divergence. We note

that trajectory divergence differs from trajectory tangling [73], which was very low in both SMA

and M1 (Figure S5 of [74]). Trajectory tangling assesses whether trajectories are consistent with

a locally smooth flow-field. Trajectory divergence assesses whether similar paths eventually sepa-

rate, smoothly or otherwise. A trajectory can have low tangling but high divergence, or vice versa

(Figure 2.7).

To construct a metric of trajectory divergence, we consider times t and t′, associated population

states xt and xt ′, and future population states xt+∆ and xt ′+∆. We consider all possible pairings of

t and t′ across both times and cycling distances. Thus, t and t′ might occur during different cycles

of the same movement or during different distances. We compute the ratio |xt+∆−xt ′+∆ |2

|xt−xt ′ |2+α
, which

becomes large if xt+∆ differs from xt ′+∆ despite xt and xt ′ being similar. The constant α is small

and proportional to the variance of x, and prevents hyperbolic growth.

Given that the difference between two random states is typically sizeable, the above ratio will

be small for most values of t′. As we are interested in whether the ratio ever becomes large, we

25

take the maximum, and define divergence for time t as:

D(t) = max
t ′,∆

|xt+∆ − xt ′+∆ |
2

|xt − xt ′ |
2 + α

(2.3)

We consider only positive values of ∆. Thus, D(t) becomes large if similar trajectories diverge but

not if dissimilar trajectories converge. Divergence was assessed using a twelve-dimensional neural

state. Results were similar for all reasonable choices of dimensionality.

D(t) differentiated between context-tracking and context-naive networks. To compare, we con-

sidered pairs of networks, one context-tracking and one context-naïve. For each time, we plotted

D(t) for the context-tracking network versus that for the context-naive network. Trajectory diver-

gence was consistently lower for context-tracking networks (Figure 6C of [74], p<0.0001, rank

sum test). This was further confirmed by considering the difference in D(t) for every time and all

network pairs (Figure 6D of [74]). Both context-tracking and context-naïve trajectories contained

many moments when divergence was low, resulting in a narrow peak near zero. However, context-

naive trajectories (but not context-tracking trajectories) also contained moments when divergence

was high, yielding a large set of negative differences.

2.3.2 Computational implications of trajectory divergence

We considered trajectory divergence because of its expected computational implications. A

network with a high-divergence trajectory can accurately and robustly generate its output on short

timescales. Yet unless guided by external inputs at key moments, such a network may be suscepti-

ble to errors on longer timescales. For example, if a trajectory approximately repeats, a likely error

would be the generation of extra cycles or the inappropriate skipping of a cycle.

To test whether these intuitions are accurate, we performed additional simulations. We em-

ployed an atypical training approach that enforced an internal network trajectory [73], as opposed

to the usual approach of training a target output. We trained networks to precisely follow the em-

pirical M1 trajectory, recorded during a four-cycle movement, without any input indicating when

26

to stop (Figure 2.6A). To ensure that solutions were not overly delicate, networks were trained

in the presence of additive noise. Using data from each monkey, we trained forty networks: ten

for each of the four four-cycle conditions. Networks were able to reproduce the cyclic portion of

the M1 trajectory. However, without the benefit of a stopping pulse, these networks failed to con-

sistently complete the trajectory. For example, networks sometimes erroneously produced extra

cycles (Figure 2.6B) or skipped cycles and stopped early (Figure 2.6C).

We also trained networks to follow the empirical SMA trajectories. Those trajectories con-

tained both a rhythmic component and lower-frequency ‘ramping’ signals (Figure 2.6D) related to

the translation visible in Figure 4C,D. In contrast to the high-divergence M1 trajectories, which

were never consistently followed for the full trajectory, the majority of network initializations re-

sulted in good solutions where the low-divergence SMA trajectory was successfully followed from

beginning to end. Thus, in the absence of a stopping pulse, the empirical SMA trajectories could

be reliably produced and terminated in a way that the M1 trajectories could not.

2.3.3 Discussion

A variety of studies argue that SMA contributes to the guidance of action based on internal,

abstract, or contextual factors [94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106]. We trans-

lated this hypothesis into a prediction regarding the geometry of population activity, and tested it

in a novel task. As predicted, trajectory divergence was low in SMA, and provided a cohesive

explanation for diverse response features. Slowly ramping firing-rates are, at the surface level,

a very different feature from changes in the occupied subspace. Yet both contribute to low di-

vergence. Other features (which we did not attempt to isolate) maintained low divergence across

cycling directions and starting positions. This raises a broader point: the features that subserve low

divergence will almost certainly be task and situation specific. For example, during sequences of

reaches, SMA neurons exhibit burst-like responses with various forms of selectivity. Such selec-

tivity presumably produces low divergence, although this remains to be explicitly tested. Thus, a

reasonable hypothesis is that, during a given task, SMA responses will exhibit some of the dom-

27

0 2.5

DC

R2 = .98

PC
 1

PC
 2

PC
 3

0 2.5 0 2.5
time (seconds)

R2 = .53 R2 = .56

A

B

In
iti

al
 s

ta
te

Internal trajectory targets

. . .

. . .

E F

Figure 2.6: A. Illustration of trajectory-constrained neural networks. Networks were trained to
autonomously follow a target trajectory defined by the top six PCs of the empirical population
trajectory during a four-cycle movement, including stopping at the end. Dashed lines show the
target trajectory for three PCs for one example: monkey D, M1, cycling backward starting at the
bottom. The activity of every neuron in the network was trained to follow a random combination of
the projection onto the top six PCs. This ensured that the simulated population trajectory matched
the empirical trajectory. B, C. Two example network trajectories (black lines) constrained to follow
M1 target trajectory (dashed gray lines) during a 4-cycle condition. These networks were less noise
robust than those following the SMA target trajectory and tended to produce too many cycles (B)
or abort early (C). D. An example network trajectory (blue lines) constrained to follow SMA target
trajectory (dashed gray lines). E. Trajectory completion robustness of networks constrained to
follow either the M1 (gray) or SMA (blue) population trajectories during the 4-cycle conditions
(monkey C). 10 networks were trained for each of the four 4-cycle conditions (all combinations
of starting position and pedaling direction) for each region. Dots correspond the mean of each
distribution and rightward-going hash corresponds to the 90th percentiles. F. Same for monkey D.

28

inant response features seen in M1 (transient responses when reaching, rhythmic activity during

cycling, and so forth) combined with additional response features that ensure low divergence. It

is common for studies to focus on specific features that relate to how a network might perform

a particular task or computation [82, 107, 108, 89, 109, 99, 110]. This will remain an essential

strategy. A complementary strategy is to quantify general properties likely to be preserved across

a class of computations. Our divergence metric was designed with this goal in mind. We recently

considered a different geometric property, trajectory tangling [73], which is necessary for a net-

work to robustly generate an output via internal dynamics. Low trajectory tangling was observed

in M1 across a range of tasks, in both monkeys and mice. As another example, studies of the visual

system have employed linear separability (a different definition of "untangled") to assess whether

population geometry is consistent with a class of computation having been performed [111, 112].

The advantages of this approach come with a limitation: geometry may strongly suggest a class of

computations, yet do little to delineate the specific computation. For example, low trajectory diver-

gence in SMA is consistent with internal tracking of context, but does not specify the input-output

relationship the network is trying to accomplish. Indeed, we observed low-divergence trajectories

regardless of whether context-tracking networks received a ramping input or internally generated

their own ramp. Similarly, it remains unclear what signals SMA conveys to downstream areas.

Possibilities include start/stop signals, a ‘keep moving’ signal that remains high during movement,

or a rhythmic signal that entrains downstream pattern generation [113]. Deciphering the com-

putation used to perform a particular task will typically require consideration of a level of detail

below that captured by measures of population geometry. A goal of assessing population geom-

etry is to find properties that generalize across situations. At the same time, exceptions may be

informative. For example, during grasping, trajectory tangling becomes high in M1, suggesting

a shift in the balance of input-driven versus internally driven activity [114]. We expect that, in

SMA, there will be situations where divergence becomes revealingly high. For example, there are

presumably limits on the timescales across which SMA can track context, which may be revealed

in the timescales over which divergence stays low. Trajectory divergence is also likely to become

29

high when action is guided by sudden, unpredictable cues. Given the benefits of low divergence,

why employ separate areas – SMA and M1 – with low and high trajectory divergence? Why not

unify context tracking and pattern generation? Allowing high divergence in M1 may be useful

for two reasons. First, dispensing with divergence-avoiding signals frees dynamic range for other

computations, such as generating fine-grained aspects of the outgoing motor command. Second,

low divergence may interfere with adaptation; learning on one cycle would have no clear way of

transferring to other cycles if they involve very different neural states [115]. The concepts in the

present study are informed by our field’s understanding of how recurrent networks perform com-

putations [109, 86, 99, 73, 116]. Because recurrent-network-based computations are commonly

described via flow-fields governing a neural state [117, 58], this perspective has been termed a "dy-

namical systems view" [83]. This view intersects with ideas regarding how dynamical systems can

perform computations [118] or describe behavior [119]. It has been argued that dynamics-based

explanations should supplant ‘representational’ explanations [118]. This view is extreme – dynam-

ical systems may involve representations [120] – yet it is true that purely representational thinking

can be limiting. For example, the question of whether M1 is more concerned with "muscles ver-

sus movements" is poorly addressed by inquiring whether neural activity is a function of muscle

activity versus movement kinematics[121, 73, 122]. M1 activity is dominated by signals that are

neither muscle-like nor kinematic-like, but are readily understood as necessary for low trajectory

tangling and thus for noise-robust dynamics [73]. Correspondingly, we found multiple properties

of the SMA population response that can be understood as aiding low trajectory divergence. It

is tempting to apply representational interpretations to some of those properties. For example,

there is a dimension in which activity is ramp-like during cycling, which might be thought of as

a representation of ‘time’, ‘distance’, or ‘progress within the overall movement’. While it is con-

ceivable that this dimension might consistently represent these things during other tasks, there is

presently no evidence for this. Furthermore, low divergence is aided by additional features that

lack a straightforward representational interpretation, such as the occupancy of different subspaces

across cycles. The dynamical perspective helps one to see the connection between these seemingly

30

High
divergence

Low
divergence

High tangling

Low tangling

Figure 2.7: Illustration of trajectories that would yield low or high trajectory divergence and tra-
jectory tangling. Pairs of lines (black and gray) indicate trajectories that might correspond to two
different conditions while circular tan-black lines indicate trajectories that might correspond to a
single condition over time. Trajectories that have high tangling (upper two quadrants) may have
sharp turns and crossing points. Trajectories that have high divergence (right two quadrants) are
similar at some point in time but later separate. Divergence will remain low (left two quadrants)
if trajectories start dissimilar and converge (e.g. trajectories in the right column), start similar and
stay similar (e.g. black circular trajectory in the bottom left quadrant), or maintain dissimilarity
over time (e.g. helical trajectory at the bottom left corner).

disjoint response features, in a way that a purely representational perspective does not.

2.4 Methods

2.4.1 Trajectory-constrained Neural Networks

To examine how tangling relates to noise-robustness (Figure 2.7B) we trained RNNs to follow

a set of target internal trajectories. This involved the unconventional approach of employing both a

target output, ytarg, and a target internal network trajectory, starg. Networks consisted of 100 units.

31

Network dynamics were governed by

v(t + 1) = v(t) +
∆t
τ

(
−v(t) + A f (v(t)) + w(t)

)
(2.4)

y(t) = C f (v(t)) (2.5)

where f := tanh and w ∼ N (0, σw I) adds noise. v can be thought of as the membrane voltage and

f (v(t)) as the firing rate. A f (v(t)) is then the network input to each unit: the firing rates weighted

by the connection strengths. C f (v(t)) is a linear readout of firing rates.

During training, A was adjusted using recursive least squares [62] so that A f (v(t) ≈ starg.

Training thus insured that the synaptic inputs to each unit closely followed the pre-determined

trajectory defined by starg. Firing rates therefore also followed a pre-determined trajectory. C was

adjusted so that y ≈ ytarg. Training was deemed successful if the R2 between y and ytarg was > 0.9.

Noise tolerance was assessed as the largest value of σw for which the network could be trained

to accurately produce the target output for five consecutive cycles (R2>0.9 between y and ytarg,

averaged across 100 iterations) despite the constraint of following the target internal trajectory,

starg.

We set ytarg = [cos t, sin 2t]. To construct starg, we began with an idealized low-dimensional

target, s′(t)targ =
[
cos t, sin 2t, β sin t

]
. To give each unit a target, we set starg = Gs′targ where G is a

random matrix of size 100×3 with entries drawn independently from a uniform distribution from -1

to 1. Noise tolerance was tested for a range of values of β. That range produced target trajectories

that varied greatly in their tangling, allowing us to examine how tangling related to noise tolerance.

Noise tolerance was the largest magnitude of state noise for which the network still produced the

desired output. For each target trajectory, and each of the 20 random initializations of A, C, and G,

we doubled σw starting at 0.005 until we found the noise tolerance. We then computed the average

(and SEM) noise tolerance across the 20 parameter initializations.

For the analyses in Figure 2.6, target trajectories were derived from neural recordings (M1,

and SMA) during the four-cycle movements for each of the four condition types (forward-bottom-

32

start, forward-top-start, backward-bottom-start, backward-top-start). Target trajectories spanned

the time period from movement onset until 250 ms after movement offset. To emphasize that

the network should complete the trajectory and remain in the final state, we extended the final

sample of the target trajectory for an additional 500 ms. To obtain target trajectories, neural data

were mean-centered and projected onto the top six PCs (computed for that condition). Each target

trajectory was normalized by its greatest norm (across times). We trained a total of 160 networks,

each with a different weight initialization. The eighty networks for each monkey included ten

each for the two cortical areas and four condition types (two starting positions by two cycling

directions).

Network dynamics were governed by equation 2.4, where f := tanh and w ∼ N (0, σ2
w I) adds

noise. v can be thought of as the membrane voltage and f (v(t)) as the firing rate. A f (v(t)) is

then the vector of inputs to each unit: i.e., the firing rates weighted by the connection strengths.

Network training attempted to minimize the difference between this input vector and a target tra-

jectory: starg(t). Training focused on the vector of inputs, rather than the vector of outputs (firing

rates) purely for technical purposes. The end result is much the same as inputs and outputs are

related by a monotonic function. A was trained using recursive least squares. The target trajec-

tory was constructed as starg(t) = Gytarg(t).ytarg is the six-dimensional trajectory derived from the

physiological data. G is an N × 6 matrix of random weights, sampled fromU [−.5, .5], that maps

the global target trajectory onto a target input of each model unit. This construction ensures that

the target network trajectory is isomorphic with the physiological trajectory, with each unit having

random "tuning" for the underlying factors. The entries of A were initialized by draws from a cen-

tered normal distribution with variance 1
N (where N = 50, the number of network units). Simulation

employed 4 ms time steps.

To begin a given training epoch, the initial state was set with v(0) based on starg(0) and A.

The network was simulated, applying recursive least squares (Sussillo and Abbott, 2009) with

parameter α = 1 to modify A as time unfolds. After 1000 training epochs, stability was assessed

by simulating the network 100 times, and computing the mean squared difference between the

33

actual and target trajectory. That error was normalized by the variance of the target trajectory,

yielding an R2 value. An average (across the 100 simulated trials) R2 < 0.9 was considered a

failure.

Because the empirical population trajectories never perfectly repeated, it was trivially true that

networks could follow the full trajectory, for both M1 and SMA, in the complete absence of noise

(i.e., for σw=0). For the larger value of σw used for our primary analysis, all networks failed

to follow the M1 trajectories while most networks successfully followed the SMA trajectories

(although there were still some network initializations that never resulted in good solutions). It is

of course unclear what value of σw is physiologically relevant. We therefore also performed an

analysis where we swept the value of σw until failure. The level of noise that was tolerated was

much greater when networks followed the SMA trajectories. Indeed, some M1 trajectories (for

particular conditions) could never be consistently followed even at the lowest noise level tested.

To visualize network activity (Figure 2.6B-D) we "decoded" the network population. To do

so, we reconstructed the first three dimensions of the trajectory (which should match the first three

dimensions of the target trajectory) by pseudo-inverting G.

2.4.2 Predicting neural population activity

The optimization described by Equation 2.2 was performed using the Theano Python module.

Optimization was initialized either with X̂init = Z , or with X̂init = Z + noise where the noise was

smooth with time but independent for each dimension. Both X̂ and Z were 10 × T ; they contained

the projection onto the top ten PCs. T is the total number of timepoints across the conditions being

considered. Specifically, we predicted neural activity for three middle cycles of forward cycling

and three middle cycles of backward cycling (both taken from seven-cycle movements). Because

dimensionality is equal for X̂ and Z , the ability to decode Z from X̂ will suffer as optimization

modifies X̂ . However, because some dimensions of Z contain more variance than others, X̂ can

gain considerable new structure while compromising the decode only modestly. This tradeoff can

be determined by the choice of λ. However, for scientific reasons, we employed a modified ap-

34

proach to better control that tradeoff. We wished to ensure that the predictions made by different

cost functions all encoded muscle activity equally well. This aids interpretation when comparing

the results of the optimization in Figure 2.7C,D with optimizations using different cost functions

in Figure 2.S7. By matching encoding accuracy, any differences in similarity must be due to other

structure that differs due to the cost function being optimized. Thus, instead of minimizing the

first term of Equation 2.2 (which attempts to create a perfect decode) we minimized the squared

difference between the decode R2 and 0.95. We only considered optimizations that achieved this

with a tolerance of 0.01. This approach insures that muscle encoding is equally good for the pre-

dicted populations responses yielded by different cost functions. Optimizations employed gradient

descent using an inexact line search for the Wolfe conditions c1=0.05 and c2=0.1. As a technical

point, the derivative used to compute Q(tend) was based on the assumption that the three-cycle

pattern would repeat.

2.4.2.1 Cost functions

Cost functions All cost functions were of the form:

X̂ = argmin
X

K∑
k=1

λk f k (X, Z) (2.6)

where f k is some function of the input data and λk are scaling coefficients used to ensure that one

term of the cost function did not dominate at the expense of the others. The arguments of f k () are

the optimization variable, X and the empirical muscle activity, Z . All cost functions examined in

Supplementary Figure 7 are described below in terms of different definitions of f k ().

Muscle encoding and low tangling (same as Equation 2.2)

f1(X, Z) = fdecode(X, Z) = | |Z − Z X+X | |2F (2.7)

f2(X) = f tangling(X) =
∑

t

QX (t) (2.8)

Nonlinear mapping with L-2 minimization

35

f1(X, Z̄) = fdecode-nonlin(X, Z̄) = | | Z̄ − Ẑ | |2F (2.9)

Z̄ containsindividual muscle activity. Here we consider the activity of all muscles individually

(rather than the top ten PCs as above) because this matters in the non-linear case. The hypothesis

being considered is that motor cortex may use a simplified set of muscle "synergies" that becomes,

via a set of non-linear transformations, the activity of each muscle. Z = α + tanh(βX + γ) with

the parameters α, β, and γ optimized to minimize fdecode-nonlin(X, Z̄).

f2(X) = fnorm(X) = | |X | |2F (2.10)

where F denotes the Frobenius norm.

Nonlinear mapping with tangling minimization:

f1(X, Z̄) = fdecode-nonlin(X, Z̄) (2.11)

f2(X) = f tangling(X) (2.12)

where fdecode-nonlin and f tangling are as described above.

Low curvature:

f1(X, Z) = fdecode(X, Z) (2.13)

f2(X) = fcurvature(X) =
∑

t

| |ẋnorm
t − ẋnorm

t−1 | |

st
(2.14)

where,

ẋnorm
t =

ẋt

| |ẋt | |
(2.15)

and st is the normalized “speed" of the neural trajectory,

st =
| |ẋt | |∑
t ′ | |ẋt ′ | |

. (2.16)

36

As a technical point, we wished to ensure that the predictions made by different cost functions

all encoded muscle activity equally well. By matching the accuracy of muscle encoding, any dif-

ferences in similarity must be due to other structure introduced during optimization. We therefore

modified fdecode(X, Z) and fdecode-nonlin(X, Z̄) so that they were minimized when decode accuracy

had an R2 of 0.95, rather than 1.0. We only considered optimizations that achieved this with a

tolerance of 0.01.

2.4.3 Similarity between empirical and predicted data

We assessed similarity using a modified version of canonical correlation [123]. This method

finds a pair of orthogonal transformations, one for each dataset, that maximizes the correlation

between the transformed datasets. Specifically, for mean-centered datasets Xa ∈ R
K×T and Xb ∈

RK×T , similarity is:

S(Xa, Xb) = argmax
Ma,Mb

tr (M>a Xa X>b Mb)√
tr (M>a Xa X>a Ma)tr (M>b XbX>b Mb)

(2.17)

Subject to the constraint that Ma and Mb are orthonormal matrices. Similarity will thus be unity

if two datasets are the same but for an orthonormal transformation. Note also that an overall

shift of one dataset relative to the other does not impact similarity because the data are mean-

centered before computing similarity. Due to the normalization in the denominator of the above

cost function, similarity is also not impacted by an isotropic scaling of one dataset relative to the

other.

37

Chapter 3: Approximating exponential family models (not single

distributions) with a two-network architecture

In the remainder of this dissertation, we turn our focus to the development and application of

deep generative modeling techniques for theoretical neuroscience. Oftentimes, we seek a Bayesian

posterior given some choices of likelihood and prior, which make the posterior analytically un-

available. Variational inference, an optimization technique for fitting posteriors, is generally used

to approximate singular posterior distributions for a chosen dataset. However, we may want to run

the same approximate posterior inference program repeatedly (for the same likelihood and prior)

for many similar datasets. Here, we introduce an algorithm to train two-network architectures to

approximate exponential family models (not just single distributions).

The natural parameter of the exponential family model is input to the first neural network,

which determines the weights and biases of the normalizing flow. The normalizing flow is used

to approximate the exponential family distribution indexed by the chosen natural parameter. By

applying this technique to intractable exponential family posteriors, we enable look-up posterior

inference for arbitrary combinations of dataset and prior.

We demonstrate the efficiency of this technique with a log-gaussian poisson model of primary

visual cortex spike responses to drift gratings. The log-gaussian poisson model of neural spikes is

a statistical generative model, which can be used to evaluate descriptive theories of neural circuits

or support the development of mechanistic hypotheses (see types of theories in Section 1.1). By

using exponential family networks, neuroscientists can save time and computational resources

when inferring firing rates (or other parameters) in statistical generative models belonging to the

exponential family.

The remainder of this chapter was co-authored by John Cunningham [124].

38

3.1 Introduction

Much recent work has focused on deep generative models, which map a latent random variable

w ∼ q0 through a member of a highly expressive function family G = {gθ : θ ∈ Θ}, the composition

resulting in an implicit probability modelM = {q(gθ (w)) : θ ∈ Θ}. Choosing G to be a parameter-

indexed family of neural networks has both a rich history [125, 126], and has recently been used to

produce exciting results for density estimation [127, 128, 71], generation of complex data [129],

variational inference [130, 33, 131], and more.

On the other hand, since these models have been chosen to be generic and flexible, they can

lack the classic stipulation that a model instantiates existing domain knowledge [132, 133, 134].

There are well known drawbacks of fitting such flexible models to finite (albeit large) data sets,

which contrast with the bias-variance benefits that come from working in a restricted model space

[135, §7.3]. Work on generalization and compressibility in deep networks suggests that this broad

class of function families are indeed quite large, perhaps problematically so [136].

When performing inference on a restricted model, it is increasingly common to deploy an im-

plicit “recognition network” model for variational inference [130], which finds a qθ∗ (z) ∈ M such

that an evidence bound is optimized with respect to the true posterior p(z |X). However, it is widely

understood that many such true posteriors p(z |X) are exponential families (albeit intractable, due

to the choice of sufficient statistics t(z)) of the form: P =
{

h(z)
A(η) exp

{
η>t(z)

}
: η ∈ H

}
[137].

Should we be able to learn a tractable approximation to this exponential family model, we would

in the very least get the bias-variance benefits of an intelligently restricted model space, and at best

would get inference “for free” in the sense that we could evaluate approximate posteriors directly

without separate optimization for each dataset encountered (a novel form of amortized inference

[138, 130, 33, 139]). In this paper, we aim to learn a restricted model Q = {q(z; η) : η ∈ H } that

will be a strict subset ofM and will closely approximate a target exponential family P. Note the

critical difference between this aim and much of the literature that seeks to learn a density q∗θ ∈ M

(we explore this distinction in depth both algorithmically and empirically). To proceed, we specify

39

a set of invertible deep generative models Q =
{
Qφ : φ ∈ Φ

}
, from which we can learn a single

model Qφ∗ . We restrict Θ, the parameter space of M, to be itself the image of a second deep

parameter network family F =
{

fφ : φ ∈ Φ
}
, such that

{
fφ(η) : η ∈ H

}
⊂ Θ.

We define this two-network architecture, which we term an exponential family network (EFN),

and we specify a stochastic optimization procedure over an ELBO-like variant of the typical

Kullback-Leibler divergence. We then demonstrate the ability of EFNs to approximately learn ex-

ponential families and the benefits of approximating distributions in such restricted model spaces.

Finally we demonstrate the computational savings afforded by this approach when learning the

posterior family of point-process latent intensities, given neural spike trains recorded in a neuro-

science experiment.

3.2 Exponential family networks

To define exponential family networks (EFNs), we begin with relevant context for our modeling

choice of exponential families (§2.1). We then describe the network architectural constraint and

the background we use to satisfy that constraint (§2.2). We then introduce EFN in detail, including

the optimization algorithm used for learning (§2.3). The similarities with variational inference are

then explored in depth in (§2.4).

3.2.1 Exponential families as target model P

We will focus on a fundamental problem setup in probabilistic inference, that of a latent vari-

able z ∈ Z with prior belief p0(z), and where we observe a dataset X = {x1, ..., xN } ⊂ X as

conditionally independent draws given z. Updating our belief with data produces the posterior

p(z |X) ∝ p0(z)
∏N

i=1 p(xi |z). This setup is shown as a graphical model in Figure 1A.

If we restrict our attention to priors and likelihoods that belong to exponential families P =
{

h(·)
A(η) exp

{
η>t(·)

}
: η ∈ H

}
, the posterior can also be viewed as an exponential family, albeit an

intractable one [137]. For simplicity we will hereafter suppress the base measure h(·). Consider:

40

p0(z) =
1

A0(α)
exp

{
α>t0(z)

}
(3.1)

p(xi |z) =
1

A(z)
exp

{
ν(z)>t(xi)

}
, (3.2)

where t(·) is the sufficient statistic vector, and ν(z) is the natural parameter of the likelihood in

natural form [140]. The posterior then has the form:

p(z |x1, ..., xN) ∝ exp

α∑
i t(xi)

−N

>

t0(z)

ν(z)

log A(z)

, (3.3)

which again is an intractable exponential family.

To give a concrete example, consider the hierarchical Dirichlet – a Dirichlet prior z ∼ Dir (α)

(of dimension |Z|) with conditionally iid Dirichlet draws xi |z ∼ Dir (βz) [141, 142, 143, 144]).

Figure 1B shows the prior for a given α (top), and three examples of datasets that could arise via

this generative model (middle). A set of basic manipulations shows the hierarchical Dirichlet poste-

rior p(z |X) to be itself an exponential family with natural parameter η =
[
α − 1,

∑
i log(xi),−N

]>
and sufficient statistic t(z) =

[
log(z), βz, log(B(βz))

]>. The corresponding posteriors are shown

in Figure 1B (bottom). Note importantly that, because the likelihood was chosen to be an ex-

ponential family (which is closed under sampling), this form will not change for any choice of

|Z |-dimensional hierarchical Dirichlet – any draw from the prior, any N , or any particular real-

ization of observed data X (technically the prior need not be exponential family, but we leave

it as such for simplicity). The exponential family is clearly sufficient for this property, and the

Pitman-Koopman Lemma further clarifies that it is also necessary (under reasonable conditions)

[140, §3.3.3].

The critical observation here is that, if we can approximately learn an intractable exponential

family (the model itself), then it becomes trivial to perform posterior inference. To execute poste-

rior inference, we simply construct the natural parameter η by concatenating the hyperparameters

of the prior, the summed sufficient statistics over the dataset, and the total number of samples in

41

the dataset (see Equation 3.3). Following the minor amount of computation required to construct

the natural parameter η, it is fed into the parameter network of the EFN, and the posterior distribu-

tion is then produced by the density network (see next section). The goal of EFNs is to amortized

inference across the posterior family P for many choices of η, which is determined by hyperpa-

rameterization of the prior and individual datasets of varying sample count. By fitting EFN’s, we

can save computation when we need to do inference in many instances of the same posterior family

model (e.g. upon many datasets).

3.2.2 Density networks as approximating familyM

Invertible deep generative models, which we will use for our approximating model familyM,

can be defined by any base random variable w ∼ p0 mapped through any bijective, parameter-

indexed function family G = {gθ : θ ∈ Θ}, with induced density on z = gθ (w) as qθ (z). This

is a well-established idea that has recently seen many variants and applications [126, 145, 146,

128, 127, 68, 147, 71, 148]. Specifically, let z = gθ (w) = gL ◦ ... ◦ g1(w) for bijective vector-

valued functions g` (surpressing θ), and denote J`θ (z) as the Jacobian of the function g` at the layer

activation corresponding to z. Then we have:

qθ (z) = q0
(
g−1

1 ◦ ... ◦ g
−1
L (z)

) L∏
`=1

1
|J`θ (z) |

. (3.4)

The specific form of the layers g` can be chosen based on empirical considerations; we used planar

flow architectures [68]. For the remainder (and to avoid confusion when we introduce a second

network), we call this deep bijective neural architecture the density network; this network is shown

vertically oriented (flowing from w down to z) in Figure 1C.

This density network induces the model M = {q(gθ (w)) : θ ∈ Θ}, which previous work has

searched to find a single optimized distribution qθ∗ (such as a posterior or data generative density),

on the assumption and subsequent empirical evidence that the target exponential family member

is close to (or approximately belongs to) M. We make the same assumption for the exponential

family itself and seek to intelligently restrictM in order to learn the exponential family.

42

A

x

zα

β

p(z |x1, ..., xN)

B

...

...

C
w∼q0(w)

z=gθ (w)∼qφ(z; η)

η
θ= fφ(η)

φ

Figure 3.1: (A) Probabilistic graphical model. (B) Hierarchical Dirichlets: a Dirichlet prior with
conditionally iid Dirichlet draws. (top) prior p0(z), (middle) three sample conditional Dirichlet
datasets X of N = 2, 20, and 100, and (bottom) the three posteriors that themselves belong to an
exponential family P. (C) Architecture for exponential family network (EFN): density network
running top to bottom; parameter network right to left.

3.2.3 Exponential family networks as approximating model Q

Having introduced our target model P, an exponential family with natural parameters η ∈ H ,

and the density network familyM, we now seek to learn Q ≈ P, where Q ⊂ M. To do so we will

parameterize θ, the parameters of the density network, as the image of a second parameter network

family F =
{

fφ : H → Θ, φ ∈ Φ
}
. This network is shown flowing from right to left in Figure 1C.

Using a second meta-network to aid or restrict network learning has been used in a variety of

settings; a few examples include parameterizing the optimization algorithm in the “learning to

learn” setting [149], and a more closely related work that used a second network to condition on

observations for local latent variational inference [68], a connection which we explore closely in

Appendix A.

Any choice of parameter network parameters φ induces a |H |-dimensional submanifold (the

image fφ(H)) of the density network parameter space Θ, and as such defines a restricted model

Qφ =
{
q fφ (z; η) : η ∈ H

}
⊂ M; by our choice of H as the natural parameter space of the expo-

nential family target P, this model restriction is at least of the correct dimensionality. Our goal

then is to search over the implied set of models Q =
{
Qφ : φ ∈ Φ

}
to find an optimal φ∗ such that

43

Qφ∗ ≈ P.

Given the connections between the exponential family and Shannon entropy, we will measure

the error between Qφ and P with Kullback-Leibler divergence. Consider for the moment a fixed

choice of natural parameter η; we seek to minimize, over φ:

D
(
qφ (z; η) | |p(z; η)

)
= Eqφ

(
log qφ (z; η) − η>t(z) + log(A(z))

)
(3.5)

which is equivalent to minimizing

Eqφ

(
log qφ(z; η) − η>t(z)

)
= Eqφ

*
,
log q0

(
g−1
θ (z)

)
+

L∑
`=1

log |J`θ (z) | − η>t(z))+
-
, (3.6)

where again we note that θ = fφ(η), and thus for a fixed η, this objective depends only on φ.

Indeed, the target η>t(z) is linear in η (an obvious restatement of the log-linear exponential family

form), giving us some hope that we may be able to learn this model 1 .

Of course we seek to approximate not just a single target exponential family member (p(z; η)

for a fixed η), but rather the entire model P = {p(z; η) : η ∈ H }. For optimization we thus need to

introduce a distribution p(η) (for stochastic optimization), leading to the objective:

argmin
φ
Ep(η)

(
D

(
qφ(z; η) | |p(z; η)

))
= argmin

φ
D

(
qφ(z; η)p(η) | |p(z; η)p(η)

)
. (3.7)

Unbiased estimates of this objective are immediate. qφ(z; η) is sampled by computing the density

network parameters θ = fφ(η) (using the parameter network), sampling the latent w ∼ q0(w), and

running that w through the density network. p(η) is user defined and chosen such that it is trivial

to sample. Stochastic optimization can then be carried out on the estimator:

L(φ) =
1
K

1
M

K∑
k=1

M∑
m=1

(
log q0

(
g−1
θk

(
zm))

+

L∑
`=1

log |J`
θk

(
zm)
| − η>k t

(
zm))

, (3.8)

1This objective can also produce approximations of the log partition (as the intercept term implied by this linear
target), which we have found to be reasonably accurate, though nuanced schemes are likely appropriate [150].

44

where θk = fφ
(
ηk

)
. Successful optimization over φ should thus result in Qφ∗ ∈ M that accurately

approximates the target exponential family; that is, Q ≈ P. We call this two-network architecture

and optimization an exponential family network (EFN). What remains for empirical implementa-

tion is to make particular choices of hyperparameters, network layers, and optimization algorithm,

which we specify in §3 below.

3.2.4 Relation to variational inference

A tremendous amount of work in recent years has gone into variational inference (VI), and

its similarity to EFN warrants careful attention. In the following, we aim to carefully (and some-

what pedantically) dissect this question. As such, though EFN can address any target exponential

familiy, to bring us closest to VI let us here restrict the EFN target model P to be a family of

posterior distributions (such as for example the log-Gaussian Poisson example in Section 4.2.).

The typical role of variational inference is to infer an approximate posterior qφ(z) ≈ p(z |X). In

this setting, the difference with EFN is stark, in so much as VI learns this single posterior approx-

imation, whereas the main goal of the EFN is to approximate the model P = pη (z |X) : η ∈ H: to

learn the family of distributions. More recently, much focus has gone into the particular instance

of VI for local variables zi, for example
∏N

i=1 p(zi)p(xi |zi) (such as a variational autoencoder

[130]) or p(u)
∏N

i=1 p(zi |u)p(xi |zi) (latent Dirichlet allocation being a canonical example [143,

151]), the result of which is often an amortized inference/recognition network that produces a lo-

cal variational distribution qφ∗ (zi |xi). This local variational distribution is typically parameterized

explicitly: the inference network µφ(xi) induces a local parametric distribution, often a Gaussian

q(zi |xi) ∼ N
(
zi; µφ(xi)

)
[130, for example]. Viewed this way, local-latent-variable VI methods

induce a model
{
qφ∗ (zi |xi) : xi ∈ X

}
for a finite dataset X . In that sense, EFN and VI are similar

‘model learning’ approaches. Even more closely, as part of a long-standing desire to add structure

to VI beyond mean-field (classically [152, 153]; more recently [154, 155], to name but a few),

in several cases an inference network has been used to parameterize a deep implicit model (in a

two-network inference architecture, to say nothing of whether or not the generative model itself is

45

a deep generative model); closest to the EFN architecture is [68] (cf. Figure 2 of [68] with Figure

1C here). Thus EFN (when used for posterior families) can be seen as a close generalization of VI.

Even accepting this VI-as-a-model view, the difference between the finite dataset X and the

natural parameter space H persists when viewed at a mechanical level; well-known are the over-

fitting/generalization issues associated with a finite dataset compared with access to a distribution

p(η). Thus one goal of EFN is to allow the model Qφ∗ ≈ P to be learned in the absence of a finite

dataset, such that inference on that dataset can then be executed without concerns of overfitting

to that set (and of course without having to run a VI optimization for every new dataset; we will

demonstrate this benefit of EFN in the experiments). Perhaps more importantly, the “model” im-

plied by VI is parameterized by xi, and indeed the inference network takes xi as input. The EFN

on the other hand is considerably more general; the posterior includes the natural parameters of

the prior (Equation 3.3). This allows the EFN architecture to learn across a more general setting

that VI cannot, since any VI inference network is only parameterized by data. One final difference

made clear by Equation 3.3 is that the observations are given to the EFN in natural form (that is,

t(xi), not xi) [140]. This choice is a novel insight: by exploiting the known sufficiency of t(xi) in

the target model P, some difference in performance for VI may be observed. Accordingly, while

EFN and VI do at a high level bear multiple similarities, the differences are both material and

provoke interesting speculation about means to improve both VI and EFN.

3.3 Results

To investigate the performance of EFNs, we assess approximation fidelity on some tractable

exponential families, examine the benefits of learning in a regularized model space, and character-

ize data analysis scenarios in which training an EFN is computationally advantageous. First, we

test the ability of EFNs to approximate the target model P when this model is a known, tractable

exponential family: this choice provides a simple ground truth and calibrates us to expected per-

formance vs alternatives. Additionally, tractable exponential families allow us to measure the

relative accuracy of single distribution approximations in isolation versus indexed members of

46

trained EFNs. The main advantage of learning an EFN is to make tractable a previously intractable

exponential family (at least approximately). This confers major benefits in terms of test-time: for

example, rather than optimization needing to be run for variational inference with each particu-

lar dataset realized from a model class, EFN will allow immediate lookup. This benefit is orders

of magnitude and is not instructive to view, so we show a decision boundary among neural data

analysis scenarios, in which training an EFN is computationally advantageous to approximating

several distributions through VI optimization individually. Most often, training an EFN has striking

computational advantages.

To compare model approximations by EFNs to standard methodology, we alternatively train

density networks to approximate members of the target model family. Since η will not change,

we dispose of the parameter network and train the density network directly over θ (again with a

deterministic choice of a single η). When the distribution being approximated is a posterior, this

procedure is variational inference. This is the key comparison for the EFN model, and we refer to

this alternative as NF for normalizing flow.

We also must make some particular architectural choices for these experiments. We considered

a variety of density network architectures. For each exponential family, we searched through some

candidate architectures which consisted of cascades of normalizing flow layers such as planar and

radial flows introduced in [68], a structured spinner flows inspired by [156], and a single affine

A B C

iterations iterations MMD p values

KL

Figure 3.2: 50-dimensional Dirichlet exponential family network. (A) Distribution of r2 between
log density of EFN samples and ground truth across choices of η throughout optimization. (B)
Distribution of KL divergence throughout optimization. (C) Distribution of maximum mean dis-
crepancy p-values between EFN samples and ground truth after optimization.

47

transformation.

The parameter network was given tanh nonlinearities. In many of the results below we will

analyze EFNs across a range of model dimensionality D (that is, z ∈ Z ⊆ RD). In all cases

then we have also D flow layers in the density network (except when the affine transformation is

optimal). In analyses where D was less than 20, 20 flow layers were used. The number of layers in

the parameter network scaled as the square root of D, with a minimum of 4 layers, and the number

of units per layer scaled linearly from the input to the number of density network parameters.

Models were trained using the Adam optimizer algorithm [157], with learning rates ranging from

10−3 to 10−5. Optimizations ran for at least 50,000 iterations, and completed once there was a

subthreshold increase in ELBO. These choices were made so that model performance saturated,

and were held constant within comparative analyses.

All code was implemented in tensorflow, and is available at

https://github.com/cunningham-lab/efn.

3.3.1 Tractable exponential families

Here we study the multivariate Gaussian and Dirichlet families, which offer a known ground

truth and intuition about the range of performance that EFN – learning a model – has with respect to

its single-distribution counterpart NF. While this section serves primarily to validate the approach

of EFN, such approximations to popular exponential family models may serve as differentiable

generative modules in hierarchical generative models.

First, to validate the basic EFN approach, we train the D = 50-dimensional Dirichlet family.

We chose p(η), the prior on the α parameter vector of the Dirichlet, as αi ∼ U [.5, 5.0]. The num-

ber of η samples K at each iteration was 100, and the minibatch size in z was M = 1000. Figure

2 shows a high accuracy fit to this Dirichlet model: Figures 2A and 2B shows rapid convergence

to high coefficient of determination r2 and low Kullback-Leibler divergence. Since we are doing

distribution regression, r2 is a convenient metric calculated as the coefficient of determination be-

tween the model predictions log(qφ(zi; ηk)) and their known targets η>k t(zi). We can then perform

48

Dirichletmultivariate normal

r2
KL

A B

DD

Figure 3.3: Scaling exponential family networks: D denotes the dimensionality of the family being
learned, and comparisons are between EFN and its alternative NF (see text). (A) Multivariate
normal family (B) Dirichlet family.

a standard MMD-based kernel two-sample test [158] between distributions chosen from P and

Qφ∗ . Since an appreciable majority of exponential family distributions of the EFN model Qφ∗ are

not significantly different from the ground truth distribution of the true target Dirichlet family P

(100-sample tests), we consider the Dirichlet model to be well-approximated by the EFN.

Second, in Figure 3 we consider how this performance scales across dimensionality. Consider

EFN vs NF, where again the only difference is that EFN attempts to learn the entire model (as in

η ∈ H), whereas NF chooses a single η and thus learns a single distribution optimizing the density

network parameters θ directly. One might expect a noticeable deficit in approximation by EFNs,

since they are generalizing the expressivity of the density network across p(η). Accordingly, this

deficit is apparent when modeling the multivariate normal family (Fig. 3A). In low dimensions,

we have nearly exact model approximation by EFNs (blue) and distributional approximations by

NFs (red). The distributions learned by NFs were drawn from the same η prior as the EFN was

trained. However, as dimensionality increases EFN distributional approximations become signifi-

cantly worse than the nearly perfect approximations learned by NFs. The η prior of the multivariate

49

normal was specified as an isotropic normal on the mean parameter µi ∼ N (0, 0.1), and an inverse-

Wishart distribution on the covariance Σ ∼ IW (n,Ψ) with degrees of freedom n = 5 and Ψ = nDI.

However, learning the model with EFN does not necessarily harm the distributional approxima-

tion relative to NF. In fact, conventional wisdom suggests that learning in a restricted model space

is beneficial for regularization. Here, the expansiveness of the η prior determines the necessary

degree of generalization of the EFN assigning a weight in the objective to the approximation loss

of each distribution. By requiring the parameter network to learn generalizations of the density net-

work across the η prior, local minima may be avoided that NFs would otherwise be susceptible to.

This is in fact what we see when modeling the Dirichlet distribution (Fig. 3B). In low dimensions,

NF performs better than EFN, but from 20 dimensions and greater, the restricted model space of

the EFN confers superior optimization convergence relative to NF, which is more susceptible to

local minima.

3.3.2 Lookup inference in an intractable exponential family

Of course the main interest of an EFN is to learn intractable exponential families. The Gaussian

family is the ubiquitous prior for real valued parameters, but it does not match well with the non-

negativity requirements of the intensity measure required of certain distributions, most notably the

Poisson. Log Gaussian Cox Processes have been used numerous times in machine learning, and all

have required attention to approximate inference in this fundamentally nonconjugate model. Fur-

thermore, many of these examples have been used to analyze the latent firing intensity of neural

spike train data [159, 160, 161, 34].

We demonstrate the utility of a log-Gaussian Poisson EFN for inferring latent firing intensities

of neurons recorded in primary visual cortex of anesthetized macaques in response to 6.25 Hz drift

grating stimuli [162]. 200 spike train responses were recorded for each neuron in response to 12

different grating orientations. Spiking responses were binned into 20ms intervals from 280ms-

680ms following stimulus onset (to avoid the effects of transient neural dynamics). The latent

space of this model was thus 20-dimensional and represents the log-firing rates of single neurons

50

time (s) time (s)

tr
ia

ls
sp

ik
es

/s

A B

D E

-E
LB

O

da

ta
se

ts

-ELBO targetlog time (s)

EFN faster

VI faster

C

time (s)

Figure 3.4: Lookup inference in a log-Gaussian Poisson model with V1 responses to drift grating
stimuli. (A-C) Top: Inferred latent intensities from a single EFN (blue) or varitional inference (red)
run individually for each dataset. Shading denotes the standard deviation of the posterior. Bottom:
Corresponding V1 spiking responses. (D) Distribution of -ELBO throughout training across a held
out test group of 100 datasets for the EFN (blue), and across 298 datasets fit with NF (red). (E)
Decision boundary for what number of datasets for a given target approximation accuracy it is
advantageous to train an EFN rather than run variational inference individually for each dataset.

51

in trial-averaged responses to particular stimulus conditions. The frequency of the drift grating

stimulus motivated a multivariate gaussian prior corresponding to a gaussian process with a 25ms

squared-exponential kernel. The mean and variance calculated across log firing rates of all neural

responses (or "datasets") determined the final hyperparameterization (µ and Σ) of the gaussian

prior. Across three experimental subects, 247 neurons with signal-to-noise ratios greater than

1.5 and mean firing rates greater than 1 Hz were considered, resulting in 2,964 total datasets for

inferring latent intensities. By training an EFN on this log-Gaussian Poisson family, we have a

model of the posterior distribution for this prior covariance, and some chosen spiking responses.

We can compare the posterior distribution learned with standard variational inference with NF

(red) for a given neuron’s response, to the posterior distribution we get with immediate lookup by

supplying the spiking responses of a neuron and the chosen prior (the natural parameters of the

posterior) as input to a trained EFN (blue) (Fig. 4A-C). As a reminder, NF is learning a single

member of an exponential family. If that exponential family is in fact an intractable posterior dis-

tribution (such as the hierarchical Dirichlet or log-Gaussian Poisson examples already discussed),

then indeed NF is precisely performing variational inference with a normalizing flow recognition

network, as in [68, 147, 71]. Both EFNs and NFs were trained with 30 planar flow layers. These

posteriors are very similar, and neither appears to fit the data better than the other. The high quality

of these lookup posteriors is an incredible feat by the EFN. Now that we have trained this EFN, we

have immediate posterior inference for all remaining and future neural recordings.

Training an EFN understandably takes more time than an NF (Fig. 4D), but once the EFN is

trained we have immediate posterior inference lookup. If we have a target level of approximation

(ELBO target) we can determine when it is faster to get posterior inference on a number of datasets

by training an EFN and then using the immediate lookup feature or by running variational inference

independently for each distribution. By computing the amount of computational time it takes to

reach the ELBO target on average for both EFN and NF, and then counting how many datasets

it would take to learn with NF before eclipsing the training time for the EFN. This results in a

decision boundary (Fig. 4E), where an EFN is more computationally efficient for running posterior

52

inference, and we have infinite computational savings for each additional dataset. As the ELBO

target increases from its minimum value on the right of Fig. 4E, the extra time it takes an EFN

to reach this ELBO target relative to NF increases initially. At some point, the EFN ELBO and

NF ELBO distributions begin to converge (Fig. 4D), and the gap of time between learning an

EFN and an NF for a given ELBO target begins to decrease. For some posterior distributions, the

EFN learning approach may confer a mean ELBO greater than achievable by traditional variational

inference due to the benefits of learning in a restricted model class. In the case where EFN achieves

a greater mean ELBO than NF, it is always advantageous to use EFN.

Our ability to approximate an intractable exponential family model with an EFN is very en-

couraging. We have shown in the applied setting of inferring neural firing rates that learning the

posterior inference model with an EFN can confer enormous computational savings. There is noth-

ing unique about this application, insofar as we expect the power of learning exponential family

models to translate to applications of intractable exponential family models in other settings. One

can imagine downloading a pre-trained EFN for an intractable exponential family model, and being

able to do posterior inference immediately given an arbitrary choice of prior and dataset.

3.4 Discussion

We have approached the problem of learning an exponential family using a deep generative

network, the parameters of which are the image of the natural parameters of the target exponential

family under another deep neural network. We demonstrated high quality empirical performance

across a range of dimensionalities, the potential for better approximations when learning in a re-

stricted model space, and computational savings afforded by immediate posterior inference lookup.

53

Chapter 4: Emergent property inference captures complex parametric

structure of neural circuit models and scales to high dimensions

In Chapter 3, we presented a deep generative modeling technique that uses normalizing flows

for inference in statistical generative models, and demonstrated its efficiency on neural datasets. In

this chapter, we introduce an additional deep generative modeling technique, which employs nor-

malizing flows to infer distributions of parameters of neural circuit models that produce emergent

properties of computation. Emergent property inference (EPI) is a machine learning technique de-

signed to build and evaluate mechanistic theories of neural circuits. We compare EPI to alternative

techniques for inference in neural circuit models, and in Section 4.5, we draw connections between

these techniques and the exponential family networks of Chapter 3. The remaining content of this

chapter (Sections 4.1-4.4.3) corresponds to lightly adapted sections of Bittner et al. 2021 [163]

concerning the introduction and evaluation of EPI, and were co-authored by Agostina Palmigiano,

Alex T. Piet, Chunyu A. Duan, Carlos D. Brody, Kenneth D. Miller, and John P. Cunningham.

4.1 Introduction

The fundamental practice of theoretical neuroscience is to use a mathematical model to under-

stand neural computation, whether that computation enables perception, action, or some interme-

diate processing. A neural circuit is systematized with a set of equations – the model – and these

equations are motivated by biophysics, neurophysiology, and other conceptual considerations [8,

9, 10, 11, 12]. The function of this system is governed by the choice of model parameters, which

when configured in a particular way, give rise to a measurable signature of a computation. The

work of analyzing a model then requires solving the inverse problem: given a computation of

interest, how can we reason about the distribution of parameters that give rise to it? The inverse

54

problem is crucial for reasoning about likely parameter values, uniquenesses and degeneracies, and

predictions made by the model [164, 165, 166].

Ideally, one carefully designs a model and analytically derives how computational properties

determine model parameters. Seminal examples of this gold standard include our field’s under-

standing of memory capacity in associative neural networks [167], chaos and autocorrelation

timescales in random neural networks [168], central pattern generation [169], the paradoxical ef-

fect [170], and decision making [171]. Unfortunately, as circuit models include more biological

realism, theory via analytical derivation becomes intractable. Absent this analysis, statistical infer-

ence offers a toolkit by which to solve the inverse problem by identifying, at least approximately,

the distribution of parameters that produce computations in a biologically realistic model [172,

173, 174, 175, 176, 177].

Statistical inference, of course, requires quantification of the sometimes vague term compu-

tation. In neuroscience, two perspectives are dominant. First, often we directly use an exemplar

dataset: a collection of samples that express the computation of interest, this data being gathered

either experimentally in the lab or from a computer simulation. Though a natural choice given its

connection to experiment [17], some drawbacks exist: these data are well known to have features

irrelevant to the computation of interest [178, 179, 180], confounding inferences made on such

data. Related to this point, use of a conventional dataset encourages conventional data likelihoods

or loss functions, which focus on some global metric like squared error or marginal evidence,

rather than the computation itself.

Alternatively, researchers often quantify an emergent property (EP): a statistic of data that

directly quantifies the computation of interest, wherein the dataset is implicit. While such a choice

may seem esoteric, it is not: the above “gold standard" examples [167, 168, 169, 170, 171] all

quantify and focus on some derived feature of the data, rather than the data drawn from the model.

An emergent property is of course a dataset by another name, but it suggests different approach

to solving the same inverse problem: here we directly specify the desired emergent property – a

statistic of data drawn from the model – and the value we wish that property to have, and we set

55

up an optimization program to find the distribution of parameters that produce this computation.

This statistical framework is not new: it is intimately connected to the literature on approximate

bayesian computation [51, 181, 52], parameter sensitivity analyses [182, 183, 184, 185], maximum

entropy modeling [186, 187, 188], and approximate bayesian inference [189, 190]; we detail these

connections in Section 4.4.1.1.

The parameter distributions producing a computation may be curved or multimodal along var-

ious parameter axes and combinations. It is by quantifying this complex structure that emergent

property inference offers scientific insight. Traditional approximation families (e.g. mean-field

or mixture of gaussians) are limited in the distributional structure they may learn. To address

such restrictions on expressivity, advances in machine learning have used deep probability distri-

butions as flexible approximating families for such complicated distributions [68, 69] (see Section

4.4.1.2). However, the adaptation of deep probability distributions to the problem of theoretical

circuit analysis requires recent developments in deep learning for constrained optimization [191],

and architectural choices for efficient and expressive deep generative modeling [72, 192]. We detail

our method, which we call emergent property inference (EPI) in Section 4.2.2.

Equipped with this method, we demonstrate the capabilities of EPI and present novel theoret-

ical findings from its analysis. First, we show EPI’s ability to handle biologically realistic circuit

models using a five-neuron model of the stomatogastric ganglion [41]: a neural circuit whose para-

metric degeneracy is closely studied [193]. Then, we show EPI’s scalability to high dimensional

parameter distributions by inferring connectivities of recurrent neural networks that exhibit stable,

yet amplified responses – a hallmark of neural responses throughout the brain [194, 195, 196]. In

a model of primary visual cortex [197, 198], EPI reveals how the recurrent processing across dif-

ferent neuron-type populations shapes excitatory variability: a finding that we show is analytically

intractable. Finally, we investigated the possible connectivities of a superior colliculus model that

allow execution of different tasks on interleaved trials [199]. EPI discovered a rich distribution

containing two connectivity regimes with different solution classes. We queried the deep probabil-

ity distribution learned by EPI to produce a mechanistic understanding of neural responses in each

56

regime. Intriguingly, the inferred connectivities of each regime reproduced results from optoge-

netic inactivation experiments in markedly different ways. These theoretical insights afforded by

EPI illustrate the value of deep inference for the interrogation of neural circuit models.

4.2 Results

4.2.1 Motivating emergent property inference of theoretical models

Consideration of the typical workflow of theoretical modeling clarifies the need for emergent

property inference. First, one designs or chooses an existing circuit model that, it is hypothesized,

captures the computation of interest. To ground this process in a well-known example, consider

the stomatogastric ganglion (STG) of crustaceans, a small neural circuit which generates multiple

rhythmic muscle activation patterns for digestion [45]. Despite full knowledge of STG connectivity

and a precise characterization of its rhythmic pattern generation, biophysical models of the STG

have complicated relationships between circuit parameters and computation [193, 173].

A subcircuit model of the STG [41] is shown schematically in Figure 4.1A. The fast population

(f1 and f2) represents the subnetwork generating the pyloric rhythm and the slow population (s1

and s2) represents the subnetwork of the gastric mill rhythm. The two fast neurons mutually

inhibit one another, and spike at a greater frequency than the mutually inhibiting slow neurons.

The hub neuron couples with either the fast or slow population, or both depending on modulatory

conditions. The jagged connections indicate electrical coupling having electrical conductance gel,

smooth connections in the diagram are inhibitory synaptic projections having strength gsynA onto

the hub neuron, and gsynB = 5nS for mutual inhibitory connections. Note that the behavior of this

model will be critically dependent on its parameterization – the choices of conductance parameters

z = [gel, gsynA].

Second, once the model is selected, one must specify what the model should produce. In this

STG model, we are concerned with neural spiking frequency, which emerges from the dynamics

of the circuit model (Fig. 4.1B). An emergent property studied by Gutierrez et al. is the hub

neuron firing at an intermediate frequency between the intrinsic spiking rates of the fast and slow

57

Emergent property:
intermediate hub frequency

Circuit model:
STG

...

EPI

hub

f1

s2

f2 s1

A B CEmergent property statistic:
spiking frequency

D

circuit model

emergent property

E EPI distribution EPI simulationsFEmergent property inference

Figure 4.1: Emergent property inference in the stomatogastric ganglion. A. Conductance-based
subcircuit model of the STG. B. Spiking frequency ω(x; z) is an emergent property statistic. Sim-
ulated at gel = 4.5nS and gsynA = 3nS. C. The emergent property of intermediate hub frequency.
Simulated activity traces are colored by log probability of generating parameters in the EPI dis-
tribution (Panel E). D. For a choice of circuit model and emergent property, EPI learns a deep
probability distribution of parameters z. E. The EPI distribution producing intermediate hub fre-
quency. Samples are colored by log probability density. Contours of hub neuron frequency error
are shown at levels of .525, .53,575 Hz (dark to light gray away from mean). Dimension
of sensitivity v1 (solid arrow) and robustness v2 (dashed arrow). F (Top) The predictions of the
EPI distribution. The black and gray dashed lines show the mean and two standard deviations
according the emergent property. (Bottom) Simulations at the starred parameter values.

58

populations. This emergent property (EP) is shown in Figure 4.1C at an average frequency of

0.55Hz. To be precise, we define intermediate hub frequency not strictly as 0.55Hz, but frequencies

of moderate deviation from 0.55Hz between the fast (.35Hz) and slow (.68Hz) frequencies.

Third, the model parameters producing the emergent property are inferred. By precisely quan-

tifying the emergent property of interest as a statistical feature of the model, we use emergent

property inference (EPI) to condition directly on this emergent property. Before presenting techni-

cal details (in the following section), let us understand emergent property inference schematically.

EPI (Fig. 4.1D) takes, as input, the model and the specified emergent property, and as its output,

returns the parameter distribution (Fig. 4.1E). This distribution – represented for clarity as samples

from the distribution – is a parameter distribution constrained such that the circuit model produces

the emergent property. Once EPI is run, the returned distribution can be used to efficiently gen-

erate additional parameter samples. Most importantly, the inferred distribution can be efficiently

queried to quantify the parametric structure that it captures. By quantifying the parametric struc-

ture governing the emergent property, EPI informs the central question of this inverse problem:

what aspects or combinations of model parameters have the desired emergent property?

4.2.2 Emergent property inference via deep generative models

EPI formalizes the three-step procedure of the previous section with deep probability distri-

butions [68, 69]. First, as is typical, we consider the model as a coupled set of noisy differential

equations. In this STG example, the model activity (or state) x = [xf1, xf2, xhub, xs1, xs2] is the

membrane potential for each neuron, which evolves according to the biophysical conductance-

based equation:

Cm
dx(t)

dt
= −h(x(t); z) + dB (4.1)

where Cm=1nF, and h is a sum of the leak, calcium, potassium, hyperpolarization, electrical, and

synaptic currents, all of which have their own complicated dependence on activity x and parameters

59

z = [gel, gsynA], and dB is white gaussian noise [41] (see Section 4.4.2.1 for more detail).

Second, we determine that our model should produce the emergent property of “intermediate

hub frequency" (Figure 4.1C). We stipulate that the hub neuron’s spiking frequency – denoted by

statistic ωhub(x) – is close to a frequency of 0.55Hz, between that of the slow and fast frequen-

cies. Mathematically, we define this emergent property with two constraints: that the mean hub

frequency is 0.55Hz,

Ez,x

[
ωhub(x; z)

]
= 0.55 (4.2)

and that the variance of the hub frequency is moderate

Varz,x

[
ωhub(x; z)

]
= 0.0252. (4.3)

In the emergent property of intermediate hub frequency, the statistic of hub neuron frequency is

an expectation over the distribution of parameters z and the distribution of the data x that those

parameters produce. We define the emergent property X as the collection of these two constraints.

In general, an emergent property is a collection of constraints on statistical moments that together

define the computation of interest.

Third, we perform emergent property inference: we find a distribution over parameter configu-

rations z of models that produce the emergent property; in other words, they satisfy the constraints

introduced in Equations 4.2 and 4.3. This distribution will be chosen from a family of probability

distributions Q = {qθ (z) : θ ∈ Θ}, defined by a deep neural network [68, 69] (Figure 4.1D, EPI

box). Deep probability distributions map a simple random variable z0 (e.g. an isotropic gaus-

sian) through a deep neural network with weights and biases θ to parameters z = gθ (z0) of a

suitably complicated distribution (see Section 4.4.1.2 for more details). Many distributions in Q

will respect the emergent property constraints, so we select the most random (highest entropy)

distribution, which also means this approach is equivalent to bayesian variational inference (see

Section 4.4.1.6). In EPI optimization, stochastic gradient steps in θ are taken such that entropy

is maximized, and the emergent property X is produced (see Section 4.4.1). We then denote the

60

inferred EPI distribution as qθ (z | X), since the structure of the learned parameter distribution is

determined by weights and biases θ, and this distribution is conditioned upon emergent property

X.

The structure of the inferred parameter distributions of EPI can be analyzed to reveal key in-

formation about how the circuit model produces the emergent property. As probability in the EPI

distribution decreases away from the mode of qθ (z | X) (Fig. 4.1E yellow star), the emergent

property deteriorates. Perturbing z along a dimension in which qθ (z | X) changes little will not

disturb the emergent property, making this parameter combination robust with respect to the emer-

gent property. In contrast, if z is perturbed along a dimension with strongly decreasing qθ (z | X),

that parameter combination is deemed sensitive [182, 185]. By querying the second order deriva-

tive (Hessian) of log qθ (z | X) at a mode, we can quantitatively identify how sensitive (or robust)

each eigenvector is by its eigenvalue; the more negative, the more sensitive and the closer to zero,

the more robust (see Section 4.4.2.4). Indeed, samples equidistant from the mode along these di-

mensions of sensitivity (v1, smaller eigenvalue) and robustness (v2, greater eigenvalue) (Fig. 4.1E,

arrows) agree with error contours (Fig. 4.1E contours) and have diminished or preserved hub fre-

quency, respectively (Fig. 4.1F activity traces). The directionality of v2 suggests that changes in

conductance along this parameter combination will most preserve hub neuron firing between the

intrinsic rates of the pyloric and gastric mill rhythms. Importantly and unlike alternative tech-

niques, once an EPI distribution has been learned, the modes and Hessians of the distribution can

be measured with trivial computation (see Section 4.4.1.2).

In the following sections, we demonstrate EPI on three neural circuit models across ranges of

biological realism, neural system function, and network scale. First, we demonstrate the superior

scalability of EPI compared to alternative techniques by inferring high-dimensional distributions

of recurrent neural network connectivities that exhibit amplified, yet stable responses. Next, in a

model of primary visual cortex [197, 198], we show how EPI discovers parametric degeneracy,

revealing how input variability across neuron types affects the excitatory population. Finally, in

a model of superior colliculus [199], we used EPI to capture multiple parametric regimes of task

61

switching, and queried the dimensions of parameter sensitivity to characterize each regime.

4.2.3 Scaling inference of recurrent neural network connectivity with EPI

To understand how EPI scales in comparison to existing techniques, we consider recurrent neu-

ral networks (RNNs). Transient amplification is a hallmark of neural activity throughout cortex,

and is often thought to be intrinsically generated by recurrent connectivity in the responding corti-

cal area [194, 195, 196]. It has been shown that to generate such amplified, yet stabilized responses,

the connectivity of RNNs must be non-normal [200, 194], and satisfy additional constraints [201].

In theoretical neuroscience, RNNs are optimized and then examined to show how dynamical sys-

tems could execute a given computation [43, 46], but such biologically realistic constraints on

connectivity [200, 194, 201] are ignored for simplicity or because constrained optimization is dif-

ficult. In general, access to distributions of connectivity that produce theoretical criteria like stable

amplification, chaotic fluctuations [168], or low tangling [73] would add scientific value to existing

research with RNNs. Here, we use EPI to learn RNN connectivities producing stable amplification,

and demonstrate the superior scalability and efficiency of EPI to alternative approaches.

We consider a rank-2 RNN with N neurons having connectivity W = UV> and dynamics

τẋ = −x +Wx, (4.4)

where U =
[
U1 U2

]
+ g χ(U), V =

[
V1 V2

]
+ g χ(V), U1U2,V1,V2 ∈ [−1, 1]N , and χ(U)

i, j , χ
(V)
i, j ∼

N (0, 1). We infer connectivity parameters z = [U1,U2,V1,V2] that produce stable amplifica-

tion. Two conditions are necessary and sufficient for RNNs to exhibit stable amplification [201]:

real(λ1) < 1 and λs
1 > 1, where λ1 is the eigenvalue of W with greatest real part and λs is the max-

imum eigenvalue of W s = W+W>
2 . RNNs with real(λ1) = 0.5±0.5 and λs

1 = 1.5±0.5 will be stable

with modest decay rate (real(λ1) close to its upper bound of 1) and exhibit modest amplification

62

(λs
1 close to its lower bound of 1). EPI can naturally condition on this emergent property

X : Ez,x

real(λ1)

λs
1

=

0.5

1.5

Varz,x

real(λ1)

λs
1

=

0.252

0.252

.

(4.5)

Variance constraints predicate that the majority of the distribution (within two standard deviations)

are within the specified ranges.

For comparison, we infer the parameters z likely to produce stable amplification using two

alternative simulation-based inference approaches. Sequential Monte Carlo approximate bayesian

computation (SMC-ABC) [52] is a rejection sampling approach that uses SMC techniques to im-

prove efficiency, and sequential neural posterior estimation (SNPE) [190] approximates posteriors

with deep probability distributions (see Section 4.4.1.1). Unlike EPI, these statistical inference

techniques do not constrain the predictions of the inferred distribution, so they were run by condi-

tioning on an exemplar dataset x0 = µ, following standard practice with these methods [52, 190].

To compare the efficiency of these different techniques, we measured the time and number of sim-

ulations necessary for the distance of the predictive mean to be less than 0.5 from µ = x0 (see

Section 4.4.3).

As the number of neurons N in the RNN, and thus the dimension of the parameter space

z ∈ [−1, 1]4N , is scaled, we see that EPI converges at greater speed and at greater dimension

than SMC-ABC and SNPE (Fig. 4.2A). It also becomes most efficient to use EPI in terms of

simulation count at N = 50 (Fig. 4.2B). It is well known that ABC techniques struggle in parameter

spaces of modest dimension [202], yet we were careful to assess the scalability of SNPE, which

is a more closely related methodology to EPI. Between EPI and SNPE, we closely controlled the

number of parameters in deep probability distributions by dimensionality (Fig. 4.7), and tested

more aggressive SNPE hyperparameter choices when SNPE failed to converge (Fig. 4.8). In this

analysis, we see that deep inference techniques EPI and SNPE are far more amenable to inference

63

A B

C

D

EPI SNPE SMC

stable amplification stable monotonic unstable

N = 2 N = 5 N = 10 N = 100 N = 250

time (s) time (s) time (s) time (s) time (s)

model: RNN

parameter dimension parameter dimension

co
nv

er
ge

nc
e

tim
e

co
nv

er
ge

nc
e

si

m
s

did not
converge

did not
converge

EPI
SNPE
SMC

and

EPI
SNPE
SMC

Figure 4.2: A. Wall time of EPI (blue), SNPE (orange), and SMC-ABC (green) to converge
on RNN connectivities producing stable amplification. Each dot shows convergence time for an
individual random seed. For reference, the mean wall time for EPI to achieve its full constraint
convergence (means and variances) is shown (blue line). B. Simulation count of each algorithm
to achieve convergence. Same conventions as A. C. The predictive distributions of connectivities
inferred by EPI (blue), SNPE (orange), and SMC-ABC (green), with reference to x0 = µ (gray
star). D. Simulations of networks inferred by each method (τ = 100ms). Each trace (15 per
algorithm) corresponds to simulation of one z. (Below) Ratio of obtained samples producing
stable amplification, stable monotonic decay, and instability.

64

of high dimensional RNN connectivities than rejection sampling techniques like SMC-ABC, and

that EPI outperforms SNPE in both wall time (elapsed real time) and simulation count.

No matter the number of neurons, EPI always produces connectivity distributions with mean

and variance of real(λ1) and λs
1 according to X (Fig. 4.2C, blue). For the dimensionalities in

which SMC-ABC is tractable, the inferred parameters are concentrated and offset from the exem-

plar dataset x0 (Fig. 4.2C, green). When using SNPE, the predictions of the inferred parameters

are highly concentrated at some RNN sizes and widely varied in others (Fig. 4.2C, orange). We

see these properties reflected in simulations from the inferred distributions: EPI produces a con-

sistent variety of stable, amplified activity norms |x(t) |, SMC-ABC produces a limited variety of

responses, and the changing variety of responses from SNPE emphasizes the control of EPI on pa-

rameter predictions (Fig. 4.2D). Even for moderate neuron counts, the predictions of the inferred

distribution of SNPE are highly dependent on N and g, while EPI maintains the emergent property

across choices of RNN (see Section 4.4.3.5).

To understand these differences, note that EPI outperforms SNPE in high dimensions by using

gradient information (from∇z[real(λ1), λs
1]>). This choice agrees with recent speculation that such

gradient information could improve the efficiency of simulation-based inference techniques [50],

as well as reflecting the classic tradeoff between gradient-based and sampling-based estimators

(scaling and speed versus generality). Since gradients of the emergent property are necessary

in EPI optimization, gradient tractability is a key criteria when determining the suitability of a

simulation-based inference technique. If the emergent property gradient is efficiently calculated,

EPI is a clear choice for inferring high dimensional parameter distributions.

4.3 Discussion

In neuroscience, machine learning has primarily been used to reveal structure in neural datasets

[17]. Careful inference procedures are developed for these statistical models allowing precise,

quantitative reasoning, which clarifies the way data informs beliefs about the model parameters.

However, these statistical models often lack resemblance to the underlying biology, making it un-

65

clear how to go from the structure revealed by these methods, to the neural mechanisms giving rise

to it. In contrast, theoretical neuroscience has primarily focused on careful models of neural cir-

cuits and the production of emergent properties of computation, rather than measuring structure in

neural datasets. In this work, we improve upon parameter inference techniques in theoretical neu-

roscience with emergent property inference, harnessing deep learning towards parameter inference

in neural circuit models (see Section 4.4.1.1).

Methodology for statistical inference in circuit models has evolved considerably in recent

years. Early work used rejection sampling techniques [51, 181, 52], but EPI and another recently

developed methodology [190] employ deep learning to improve efficiency and provide flexible

approximations. SNPE has been used for posterior inference of parameters in circuit models con-

ditioned upon exemplar data used to represent computation, but it does not infer parameter dis-

tributions that only produce the computation of interest like EPI (see Section 4.2.3). When strict

control over the predictions of the inferred parameters is necessary, EPI uses a constrained op-

timization technique [191] (see Section 4.4.1.4) to make inference conditioned on the emergent

property possible.

A key difference between EPI and SNPE, is that EPI uses gradients of the emergent property

throughout optimization. In Section 4.2.3, we showed that such gradients confer beneficial scaling

properties, but a concern remains that emergent property gradients may be too computationally

intensive. Even in a case of close biophysical realism with an expensive emergent property gra-

dient, EPI was run successfully on intermediate hub frequency in a 5-neuron subcircuit model of

the STG (Section 4.2.1). However, conditioning on the pyloric rhythm [203] in a model of the py-

loric subnetwork model [173] proved to be prohibitive with EPI. The pyloric subnetwork requires

many time steps for simulation and many key emergent property statistics (e.g. burst duration and

phase gap) are not calculable or easily approximated with differentiable functions. In such cases,

SNPE, which does not require differentiability of the emergent property, has proven useful [190].

In summary, choice of deep inference technique should consider emergent property complexity

and differentiability, dimensionality of parameter space, and the importance of constraining the

66

model behavior predicted by the inferred parameter distribution.

Acknowledgements:

This work was funded by NSF Graduate Research Fellowship, DGE-1644869, McKnight Endow-

ment Fund, NIH NINDS 5R01NS100066, Simons Foundation 542963, NSF NeuroNex Award,

DBI-1707398, The Gatsby Charitable Foundation, Simons Collaboration on the Global Brain

Postdoctoral Fellowship, Chinese Postdoctoral Science Foundation, and International Exchange

Program Fellowship. We also acknowledge the Marine Biological Laboratory Methods in Com-

putational Neuroscience Course, where this work was discussed and explored in its early stages.

Helpful conversations were had with Larry Abbott, Stephen Baccus, James Fitzgerald, Gabrielle

Gutierrez, Francesca Mastrogiuseppe, Srdjan Ostojic, Liam Paninski, and Dhruva Raman.

Data availability statement:

The datasets generated during this study have been made publicly available on Zenodo at this

address: https://doi.org/10.5281/zenodo.4910010 .

Code availability statement:

All software written for the current study is available at https://github.com/cunningham-lab/epi.

67

4.4 Methods

4.4.1 Emergent property inference (EPI)

Solving inverse problems is an important part of theoretical neuroscience, since we must un-

derstand how neural circuit models and their parameter choices produce computations. Recently,

research on machine learning methodology for neuroscience has focused on finding latent struc-

ture in large-scale neural datasets, while research in theoretical neuroscience generally focuses on

developing precise neural circuit models that can produce computations of interest. By quantifying

computation into an emergent property through statistics of the emergent activity of neural circuit

models, we can adapt the modern technique of deep probabilistic inference towards solving inverse

problems in theoretical neuroscience. Here, we introduce a novel method for statistical inference,

which uses deep networks to learn parameter distributions constrained to produce emergent prop-

erties of computation.

Consider model parameterization z, which is a collection of scientifically meaningful variables

that govern the complex simulation of data x. For example (see Section 4.2.1), z may be the

electrical conductance parameters of an STG subcircuit, and x the evolving membrane potentials

of the five neurons. In terms of statistical modeling, this circuit model has an intractable likelihood

p(x | z), which is predicated by the stochastic differential equations that define the model. From

a theoretical perspective, we are less concerned about the likelihood of an exemplar dataset x, but

rather the emergent property of intermediate hub frequency (which implies a consistent dataset x).

In this work, emergent properties X are defined through the choice of emergent property statis-

tic f (x; z) (which is a vector of one or more statistics), and its means µ, and variances σ2:

X : Ez,x
[

f (x; z)
]
= µ, Varz,x

[
f (x; z)

]
= σ2. (4.6)

In general, an emergent property may be a collection of first-, second-, or higher-order moments of

a group of statistics, but this study focuses on the case written in Equation 4.6. In the STG example,

68

intermediate hub frequency is defined by mean and variance constraints on the statistic of hub

neuron frequency ωhub(x; z) (Equations 4.2 and 4.3). Precisely, the emergent property statistics

f (x; z) must have means µ and variances σ2 over the EPI distribution of parameters (z ∼ qθ (z))

and the data produced by those parameters (x ∼ p(x | z)), where the inferred parameter distribution

qθ (z) itself is parameterized by deep network weights and biases θ.

In EPI, a deep probability distribution qθ (z) is optimized to approximate the parameter dis-

tribution producing the emergent property X. In contrast to simpler classes of distributions like

the gaussian or mixture of gaussians, deep probability distributions are far more flexible and ca-

pable of fitting rich structure [68, 69]. In deep probability distributions, a simple random variable

z0 ∼ q0(z0) (we choose an isotropic gaussian) is mapped deterministically via a sequence of deep

neural network layers (g1, .. gl) parameterized by weights and biases θ to the support of the distri-

bution of interest:

z = gθ (z0) = gl (..g1(z0)) ∼ qθ (z). (4.7)

Such deep probability distributions embed the inferred distribution in a deep network. Once op-

timized, this deep network representation of a distribution has remarkably useful properties: fast

sampling and probability evaluations. Importantly, fast probability evaluations confer fast gradient

and Hessian calculations as well.

Given this choice of circuit model and emergent property X, qθ (z) is optimized via the neural

network parameters θ to find a maximally entropic distribution q∗θ within the deep variational

family Q = {qθ (z) : θ ∈ Θ} that produces the emergent property X:

qθ (z | X) = q∗θ (z) = argmax
qθ∈Q

H (qθ (z))

s.t. X : Ez,x
[

f (x; z)
]
= µ,Varz,x

[
f (x; z)

]
= σ2,

(4.8)

where H (qθ (z)) = Ez
[
− log qθ (z)

]
is entropy. By maximizing the entropy of the inferred dis-

tribution qθ , we select the most random distribution in family Q that satisfies the constraints of

the emergent property. Since entropy is maximized in Equation 4.8, EPI is equivalent to bayesian

69

variational inference (see Section 4.4.1.6), which is why we specify the inferred distribution of

EPI as conditioned upon emergent property X with the notation qθ (z | X). To run this con-

strained optimization, we use an augmented lagrangian objective, which is the standard approach

for constrained optimization [204], and the approach taken to fit Maximum Entropy Flow Networks

(MEFNs) [191]. This procedure is detailed in Section 4.4.1.4 and the pseudocode in Algorithm 1.

In the remainder of Section 4.4.1, we will explain the finer details and motivation of the EPI

method. First, we explain related approaches and what EPI introduces to this domain (Section

4.4.1.1). Second, we describe the special class of deep probability distributions used in EPI called

normalizing flows (Section 4.4.1.2). Then, we establish the known relationship between maximum

entropy distributions and exponential families (Section 4.4.1.3). Next, we explain the constrained

optimization technique used to solve Equation 4.8 (Section 4.4.1.4). Then, we demonstrate the

details of this optimization in a toy example (Section 4.4.1.5). Finally, we explain how EPI is

equivalent to variational inference (Section 4.4.1.6).

4.4.1.1 Related approaches

When bayesian inference problems lack conjugacy, scientists use approximate inference meth-

ods like variational inference (VI) [205] and Markov chain Monte Carlo (MCMC) [206, 207]. Af-

ter optimization, variational methods return a parameterized posterior distribution, which we can

analyze. Also, the variational approximation is often chosen such that it permits fast sampling. In

contrast MCMC methods only produce samples from the approximated posterior distribution. No

parameterized distribution is estimated, and additional samples are always generated with the same

sampling complexity. Inference in models defined by systems of differential equations has been

demonstrated with MCMC [208], although this approach requires tractable likelihoods. Advance-

ments have introduced sampling [209], likelihood approximation [210], and uncertainty quantifica-

tion techniques [211] to make MCMC approaches more efficient and expand the class of applicable

models.

Simulation-based inference [50] is model parameter inference in the absence of a tractable

70

likelihood function. The most prevalent approach to simulation-based inference is approximate

bayesian computation (ABC) [51], in which satisfactory parameter samples are kept from random

prior sampling according to a rejection heuristic. The obtained set of parameters do not have a

probabilities, and further insight about the model must be gained from examination of the parame-

ter set and their generated activity. Methodological advances to ABC methods have come through

the use of Markov chain Monte Carlo (MCMC-ABC) [181] and sequential Monte Carlo (SMC-

ABC) [52] sampling techniques. SMC-ABC is considered state-of-the-art ABC, yet this approach

still struggles to scale in dimensionality [202] (cf. Fig. 4.2). Still, this method has enjoyed much

success in systems biology [212]. Furthermore, once a parameter set has been obtained by SMC-

ABC from a finite set of particles, the SMC-ABC algorithm must be run again from scratch with a

new population of initialized particles to obtain additional samples.

For scientific model analysis, we seek a parameter distribution represented by an approximating

distribution as in variational inference [205]: a variational approximation that once optimized

yields fast analytic calculations and samples. For the reasons described above, ABC and MCMC

techniques are not suitable, since they only produce a set of parameter samples lacking probabilities

and have unchanging sampling rate. EPI infers parameters in circuit models using the MEFN [191]

algorithm with a deep variational approximation. The deep neural network of EPI (Fig. 4.1E)

defines the parametric form (with weights and biases as variational parameters θ) of the variational

approximation of the inferred parameter distribution qθ (z | x). The EPI optimization is enabled

using stochastic gradient techniques in the spirit of likelihood-free variational inference [189]. The

analytic relationship between EPI and variational inference is explained in Section 4.4.1.6.

We note that, during our preparation and early presentation of this work [213, 214], another

work has arisen with broadly similar goals: bringing statistical inference to mechanistic models of

neural circuits [215, 216, 190]. We are encouraged by this general problem being recognized by

others in the community, and we emphasize that these works offer complementary neuroscientific

contributions (different theoretical models of focus) and use different technical methodologies

(ours is built on our prior work [191], theirs similarly [217]).

71

The method EPI differs from SNPE in some key ways. SNPE belongs to a “sequential" class

of recently developed simulation-based inference methods in which two neural networks are used

for posterior inference. This first neural network is a deep probability distribution (normalizing

flow) used to estimate the posterior p(z | x) (SNPE) or the likelihood p(x | z) (sequential neural

likelihood (SNL) [218]). A recent approach uses an unconstrained neural network to estimate the

likelihood ratio (sequential neural ratio estimation (SNRE) [219]). In SNL and SNRE, MCMC

sampling techniques are used to obtain samples from the approximated posterior. This contrasts

with EPI and SNPE, which use deep probability distributions to model parameters, which facil-

itates immediate measurements of sample probability, gradient, or Hessian for system analysis.

The second neural network in this sequential class of methods is the amortizer. This unconstrained

deep network maps data x (or statistics f (x; z) or model parameters z) to the weights and biases of

the first neural network. These methods are optimized on a conditional density (or ratio) estima-

tion objective. The data used to optimize this objective are generated via an adaptive procedure, in

which training data pairs (xi, zi) become sequentially closer to the true data and posterior.

The approximating fidelity of the deep probability distribution in sequential approaches is op-

timized to generalize across the training distribution of the conditioning variable. This general-

ization property of the sequential methods can reduce the accuracy at the singular posterior of

interest. Whereas in EPI, the entire expressivity of the deep probability distribution is dedicated

to learning a single distribution as well as possible. The well-known inverse mapping problem of

exponential families [137] prohibits an amortization-based approach in EPI, since EPI learns an

exponential family distribution parameterized by its mean (in contrast to its natural parameter, see

Section 4.4.1.3). However, we have shown that the same two-network architecture of the sequential

simulation-based inference methods can be used for amortized inference in intractable exponential

family posteriors when using their natural parameterization [124].

Finally, one important differentiating factor between EPI and sequential simulation-based in-

ference methods is that EPI leverages gradients ∇z f (x; z) during optimization. These gradients

can improve convergence time and scalability, as we have shown on an example conditioning low-

72

rank RNN connectivity on the property of stable amplification (see Section 4.2.3). With EPI, we

prove out the suggestion that a deep inference technique can improve efficiency by leveraging these

emergent property gradients when they are tractable. Sequential simulation-based inference tech-

niques may be better suited for scientific problems where ∇z f (x; z) is intractable or unavailable,

like when there is a nondifferentiable emergent property. However, the sequential simulation-based

inference techniques cannot constrain the predictions of the inferred distribution in the manner of

EPI.

Structural identifiability analysis involves the measurement of sensitivity and unidentifiabilities

in scientific models. Around a single parameter choice, one can measure the Jacobian. One ap-

proach for this calculation that scales well is EAR [183]. A popular efficient approach for systems

of ODEs has been neural ODE adjoint [220] and its stochastic adaptation [221]. Casting identi-

fiability as a statistical estimation problem, the profile likelihood works via iterated optimization

while holding parameters fixed [182]. An exciting recent method is capable of recovering the func-

tional form of such unidentifiabilities away from a point by following degenerate dimensions of

the fisher information matrix [185]. Global structural non-identifiabilities can be found for mod-

els with polynomial or rational dynamics equations using DAISY [222], or through mean optimal

transformations [223]. With EPI, we have all the benefits given by a statistical inference method

plus the ability to query the first- or second-order gradient of the probability of the inferred dis-

tribution at any chosen parameter value. The second-order gradient of the log probability (the

Hessian), which is directly afforded by EPI distributions, produces quantified information about

parametric sensitivity of the emergent property in parameter space (see Section 4.2.2).

4.4.1.2 Deep probability distributions and normalizing flows

Deep probability distributions are comprised of multiple layers of fully connected neural net-

works (Equation 4.7). When each neural network layer is restricted to be a bijective function,

the sample density can be calculated using the change of variables formula at each layer of the

73

network. For zi = gi (zi−1),

p(zi) = p(g−1
i (zi))

������
det

∂g−1
i (zi)
∂zi

������
= p(zi−1)

�����
det

∂gi (zi−1)
∂zi−1

�����

−1
. (4.9)

However, this computation has cubic complexity in dimensionality for fully connected layers.

By restricting our layers to normalizing flows [68, 69] – bijective functions with fast log determi-

nant Jacobian computations, we obtain a fast, tractable calculation of the sample log probability.

Fast log probability calculation confers efficient optimization of the maximum entropy objective

(see Section 4.4.1.4).

We use the real NVP [72] normalizing flow class, because its coupling architecture confers both

fast sampling (forward) and fast log probability evaluation (backward). Fast probability evalua-

tion facilitates fast gradient and Hessian evaluation of log probability throughout parameter space.

Glow permutations were used in between coupling stages [192]. This is in contrast to autoregres-

sive architectures [71, 70], in which only one of the forward or backward passes can be efficient.

In this work, normalizing flows are used as flexible parameter distribution approximations qθ (z)

having weights and biases θ. We specify the architecture used in each application by the number

of real NVP affine coupling stages, and the number of neural network layers and units per layer of

the conditioning functions.

When calculating Hessians of log probabilities in deep probability distributions, it is important

to consider the normalizing flow architecture. With autoregressive architectures [70, 71], fast sam-

pling and fast log probability evaluations are mutually exclusive. That makes these architectures

undesirable for EPI, where efficient sampling is important for optimization, and log probability

evaluation speed predicates the efficiency of gradient and Hessian calculations. With real NVP

coupling architectures, we get both fast sampling and fast Hessians making both optimization and

scientific analysis efficient.

74

4.4.1.3 Maximum entropy distributions and exponential families

The inferred distribution of EPI is a maximum entropy distribution, which have fundamental

links to exponential family distributions. A maximum entropy distribution of form:

p∗(z) = argmax
p∈P

H (p(z))

s.t. Ez∼p [T (z)] = µopt,

(4.10)

where T (z) is the sufficient statistics vector and µopt a vector of their mean values, will have

probability density in the exponential family:

p∗(z) ∝ exp(η>T (z)). (4.11)

The mappings between the mean parameterization µopt and the natural parameterization η are

formally hard to identify except in special cases [137].

In this manuscript, emergent properties are defined by statistics f (x; z) having a fixed mean

µ and variance σ2 as in Equation 4.6. The variance constraint is a second moment constraint on

f (x; z):

Varz,x
[

f (x; z)
]
= Ez,x

[(
f (x; z) − µ

)2]
. (4.12)

As a general maximum entropy distribution (Equation 4.10), the sufficient statistics vector contains

both first and second order moments of f (x; z)

T (z) =

Ex∼p(x|z)
[

f (x; z)
]

Ex∼p(x|z)
[(

f (x; z) − µ
)2]

, (4.13)

which are constrained to the chosen means and variances

µopt =

µ

σ2

. (4.14)

75

Thus, µopt is used to denote the mean parameter of the maximum entropy distribution defined

by the emergent property (all constraints), while µ is only the mean of f (x; z). The subscript

“opt" of µopt is chosen since it contains all of the constraint values to which the EPI optimization

algorithm must adhere.

4.4.1.4 Augmented lagrangian optimization

To optimize qθ (z) in Equation 4.8, the constrained maximum entropy optimization is executed

using the augmented lagrangian method. The following objective is minimized:

L(θ; ηopt, c) = −H (qθ) + η>optR(θ) +
c
2
| |R(θ) | |2 (4.15)

where there are average constraint violations

R(θ) = Ez∼qθ (z)
[
T (z) − µopt

]
, (4.16)

ηopt ∈ R
m are the lagrange multipliers where m is the number of total constraints

m = |µopt | = |T (z) | = 2| f (x; z) |, (4.17)

and c is the penalty coefficient. The mean parameter µopt and sufficient statistics T (z) are de-

termined by the means µ and variances σ2 of the emergent property statistics f (x; z) defined in

Equation 4.8. Specifically, T (z) is a concatenation of the first and second moments (Equation

4.13) and µopt is a concatenation of their constraints µ and σ2 (Equation 4.14). (Although, note

that this algorithm is written for general T (z) and µopt to satisfy the more general class of emergent

properties.) The lagrange multipliers ηopt are closely related to the natural parameters η of expo-

nential families (see Section 4.4.1.6). Weights and biases θ of the deep probability distribution are

optimized according to Equation 4.15 using the Adam optimizer with learning rate 10−3 [157].

The gradient with respect to entropy H (qθ (z)) can be expressed using the reparameterization

76

trick as an expectation of the negative log density of parameter samples z over the randomness in

the parameterless initial distribution q0(z0):

H (qθ (z)) =
∫
−qθ (z) log(qθ (z))dz = Ez∼qθ

[
− log(qθ (z))

]
= Ez0∼q0

[
− log(qθ (gθ (z0)))

]
.

(4.18)

Thus, the gradient of the entropy of the deep probability distribution can be estimated as an average

of gradients with respect to the base distribution z0:

∇θH (qθ (z)) = Ez0∼q0

[
−∇θ log(qθ (gθ (z0)))

]
. (4.19)

The gradients of the log density of the deep probability distribution are tractable through the use

of normalizing flows (see Section 4.4.1.2).

The full EPI optimization algorithm is detailed in Algorithm 1. The lagrangian parameters

ηopt are initialized to zero and adapted following each augmented lagrangian epoch, which is a

period of optimization with fixed (ηopt, c) for a given number of stochastic gradient descent (SGD)

iterations. A low value of c is used initially, and conditionally increased after each epoch based on

constraint error reduction. The penalty coefficient is updated based on the result of a hypothesis

test regarding the reduction in constraint violation. The p-value of E[| |R(θk+1) | |] > γE [| |R(θk) | |]

is computed, and ck+1 is updated to βck with probability 1 − p. The other update rule is ηopt,k+1 =

ηopt,k + ck
1
n
∑n

i=1(T (z(i)) − µopt) given a batch size n and z(i) ∼ qθ (z). Throughout the study,

γ = 0.25, while β was chosen to be either 2 or 4. The batch size of EPI also varied according to

application.

In general, c and ηopt should start at values encouraging entropic growth early in optimization.

With each training epoch in which the update rule for c is invoked, the constraint satisfaction

terms are increasingly weighted, which generally results in decreased entropy (e.g. see Figure

4.3C). This encourages the discovery of suitable regions of parameter space, and the subsequent

refinement of the distribution to produce the emergent property. The momentum parameters of the

Adam optimizer are reset at the end of each augmented lagrangian epoch, which proceeds for imax

77

Algorithm 1: Emergent property inference
1 initialize θ by fitting qθ to an isotropic gaussian of mean µinit and variance σ2

init
2 initialize c0 > 0 and ηopt,0 = 0.
3 for Augmented lagrangian epoch k = 1, ..., kmax do
4 for SGD iteration i = 1, ..., imax do
5 Sample z(1)

0 , ..., z(n)
0 ∼ q0, get transformed variable z(j) = gθ (z(j)

0), j = 1, ..., n
6 Update θ by descending its stochastic gradient (using ADAM optimizer [157]).

∇θL(θ; ηopt,k, c) =
1
n

n∑
j=1
∇θ log qθ (z(j)) +

1
n

n∑
j=1
∇θ

(
T

(
z(j)

)
− µopt

)
ηopt,k

+ ck
2
n

n
2∑

j=1
∇θ

(
T

(
z(j)

)
− µopt

)
·

2
n

n∑
j= n

2+1

(
T

(
z(j)

)
− µopt

)
7 end
8 Sample z(1)

0 , ..., z(n)
0 ∼ q0, get transformed variable z(j) = gθ (z(j)

0), j = 1, ..., n
9 Update ηopt,k+1 = ηopt,k + ck

1
n
∑n

j=1

(
T

(
z(j)

)
− µopt

)
.

10 Update ck+1 > ck (see text for detail).
11 end

iterations. In this work, we used a maximum number of augmented lagrangian epochs kmax >= 5.

Rather than starting optimization from some θ drawn from a randomized distribution, we found

that initializing qθ (z) to approximate an isotropic gaussian distribution conferred more stable, con-

sistent optimization. The parameters of the gaussian initialization were chosen on an application-

specific basis. Throughout the study, we chose isotropic Gaussian initializations with mean µinit at

the center of the support of the distribution and some variance σ2
init, except for one case, where an

initialization informed by random search was used (see Section 4.4.2). Deep probability distribu-

tions were fit to these gaussian initializations using 10,000 iterations of stochastic gradient descent

on the evidence lower bound (as in [124]) with Adam optimizer and a learning rate of 10−3.

To assess whether the EPI distribution qθ (z) produces the emergent property, we assess whether

each individual constraint on the means and variances of f (x; z) is satisfied. We consider the EPI

to have converged when a null hypothesis test of constraint violations R(θ)i being zero is accepted

for all constraints i ∈ {1, ...,m} at a significance threshold α = 0.05. This significance threshold is

78

adjusted through Bonferroni correction according to the number of constraints m. The p-values for

each constraint are calculated according to a two-tailed nonparametric test, where 200 estimations

of the sample mean R(θ)i are made using Ntest samples of z ∼ qθ (z) at the end of the augmented

lagrangian epoch. Of all kmax augmented lagrangian epochs, we select the EPI inferred distribution

as that which satisfies the convergence criteria and has greatest entropy.

When assessing the suitability of EPI for a particular modeling question, there are some im-

portant technical considerations. First and foremost, as in any optimization problem, the defined

emergent property should always be appropriately conditioned (constraints should not have wildly

different units). Furthermore, if the program is underconstrained (not enough constraints), the dis-

tribution grows (in entropy) unstably unless mapped to a finite support. If overconstrained, there is

no parameter set producing the emergent property, and EPI optimization will fail (appropriately).

4.4.1.5 Example: 2D LDS

To gain intuition for EPI, consider a two-dimensional linear dynamical system (2D LDS) model

(Fig. 4.3A):

τ
dx
dt
= Ax (4.20)

with

A =

a1,1 a1,2

a2,1 a2,2

. (4.21)

To run EPI with the dynamics matrix elements as the free parameters z = [a1,1, a1,2, a2,1, a2,2]

(fixing τ = 1s), the emergent property statistics f (x; z) were chosen to contain parts of the primary

eigenvalue of A, which predicate frequency, imag(λ1), and the growth/decay, real(λ1), of the

system

f (x; z) ,

real(λ1)(x; z)

imag(λ1)(x; z)

(4.22)

λ1 is the eigenvalue of greatest real part when the imaginary component is zero, and alternatively

that of positive imaginary component when the eigenvalues are complex conjugate pairs. To learn

79

the distribution of real entries of A that produce a band of oscillating systems around 1Hz, we

formalized this emergent property as real(λ1) having mean zero with variance 0.252, and the os-

cillation frequency imag(λ1)
2π having mean 1Hz with variance 0.1Hz2:

X : Ez,x
[

f (x; z)
]
, Ez,x

real(λ1)(x; z)

imag(λ1)(x; z)

=

0

2π

, µ

Varz,x
[

f (x; z)
]
, Varz,x

real(λ1)(x; z)

imag(λ1)(x; z)

=

0.252

(π5)2

, σ2.

(4.23)

To write the emergent property X in the form required for the augmented lagrangian optimiza-

tion (Section 4.4.1.4), we concatenate these first and second moment constraints into a vector of

sufficient statistics T (z) and constraint values µopt.

Ez [T (z)] , Ez

Ex∼p(x|z) [real(λ1)(x; z)]

Ex∼p(x|z)
[
imag(λ1)(x; z)

]
Ex∼p(x|z)

[
(real(λ1)(x; z) − 0)2

]

Ex∼p(x|z)
[
(imag(λ1)(x; z) − 2π)2

]

=

0

2π

0.252

(π5)2

, µopt. (4.24)

From now on in all scientific applications (Sections 4.4.2-5.5.2, we specify how the EPI optimiza-

tion was setup by specifying f (x; z), µ, and σ2.

Unlike the models we presented in the main text, this model admits an analytical form for the

mean emergent property statistics given parameter z, since the eigenvalues can be calculated using

the quadratic formula:

λ =
(a1,1+a2,2

τ) ±
√

(a1,1+a2,2
τ)2 + 4(a1,2a2,1−a1,1a2,2

τ)

2
. (4.25)

We study this example, because the inferred distribution is curved and multimodal, and we can

compare the result of EPI to analytically derived contours of the emergent property statistics.

80

A B

C

model: 2D LDS

emergent property:
1Hz oscillations

entropy bound

-6

-8

-10

-12

-14

-16

Figure 4.3: A. Two-dimensional linear dynamical system model, where real entries of the dynam-
ics matrix A are the parameters. B. The EPI distribution for a two-dimensional linear dynamical
system with τ = 1 that produces an average of 1Hz oscillations with some small amount of vari-
ance. Dashed lines indicate the parameter axes. C. Entropy throughout the optimization. At the
beginning of each augmented lagrangian epoch (imax = 2, 000 iterations), the entropy dipped due to
the shifted optimization manifold where emergent property constraint satisfaction is increasingly
weighted. D. Emergent property moments throughout optimization. At the beginning of each
augmented lagrangian epoch, the emergent property moments adjust closer to their constraints.

81

Despite the simple analytic form of the emergent property statistics, the EPI distribution in

this example is not simply determined. Although Ez [T (z)] is calculable directly via a closed form

function, the distribution q∗θ (z | X) cannot be derived directly. This fact is due to the formally hard

problem of the backward mapping: finding the natural parameters η from the mean parameters µ

of an exponential family distribution [137]. Instead, we used EPI to approximate this distribution

(Fig. 4.3B). We used a real NVP normalizing flow architecture three coupling layers and two-

layer neural networks of 50 units per layer, mapped onto a support of zi ∈ [−10, 10]. (see Section

4.4.1.2).

Even this relatively simple system has nontrivial (though intuitively sensible) structure in the

parameter distribution. To validate our method, we analytically derived the contours of the proba-

bility density from the emergent property statistics and values. In the a1,1-a2,2 plane, the black line

at real(λ1) = a1,1+a2,2
2 = 0, dashed black line at the standard deviation real(λ1) = a1,1+a2,2

2 ± 0.25,

and the dashed gray line at twice the standard deviation real(λ1) = a1,1+a2,2
2 ±0.5 follow the contour

of probability density of the samples (Fig. 4.4A). The distribution precisely reflects the desired sta-

tistical constraints and model degeneracy in the sum of a1,1 and a2,2. Intuitively, the parameters

equivalent with respect to emergent property statistic real(λ1) have similar log densities.

To explain the bimodality of the EPI distribution, we examined the imaginary component of

λ1. When real(λ1) = a1,1 + a2,2 = 0 (which is the case on average in X), we have

imag(λ1) =

√
a1,1a2,2−a1,2a2,1

τ , if a1,1a2,2 < a1,2a2,1

0 otherwise
. (4.26)

In Figure 4.4B, we plot the contours of imag(λ1) where a1,1a2,2 is fixed to 0 at one standard devi-

ation (π5 , black dashed) and two standard deviations (2π
5 , gray dashed) from the mean of 2π. This

validates the curved multimodal structure of the inferred distribution learned through EPI. Subtler

combinations of model and emergent property will have more complexity, further motivating the

use of EPI for understanding these systems. As we expect, the distribution results in samples of

82

A B

Figure 4.4: A. Probability contours in the a1,1-a2,2 plane were derived from the relationship to
emergent property statistic of growth/decay factor real(λ1). B. Probability contours in the a1,2-a2,1
plane were derived from the emergent property statistic of oscillation frequency 2πimag(λ1).

two-dimensional linear systems oscillating near 1Hz (Fig. 4.5).

4.4.1.6 EPI as variational inference

In variational inference, a posterior approximation q∗θ is chosen from within some variational

family Q to be as close as possible to the posterior under the KL divergence criteria

q∗θ (z) = argmin
qθ∈Q

K L(qθ (z) | | p(z | x)). (4.27)

This KL divergence can be written in terms of entropy of the variational approximation:

K L(qθ (z) | | p(z | x)) = Ez∼qθ
[
log(qθ (z))

]
− Ez∼qθ

[
log(p(z | x))

]
(4.28)

= −H (qθ) − Ez∼qθ
[
log(p(x | z)) + log(p(z)) − log(p(x))

]
(4.29)

Since the marginal distribution of the data p(x) (or “evidence") is independent of θ, variational in-

ference is executed by optimizing the remaining expression. This is usually framed as maximizing

83

A B

Figure 4.5: Sampled dynamical systems z ∼ qθ (z | X) and their simulated activity from x(t = 0) =
[
√

2
2 ,−

√
2

2] colored by log probability. A. Each dimension of the simulated trajectories throughout
time. B. The simulated trajectories in phase space.

the evidence lower bound (ELBO)

argmin
qθ∈Q

K L(qθ | | p(z | x)) = argmax
qθ∈Q

H (qθ) + Ez∼qθ
[
log(p(x | z)) + log(p(z))

]
. (4.30)

Now, we will show how the maximum entropy problem of EPI is equivalent to variational

inference. In general, a maximum entropy problem (as in Equation 4.10) has an equivalent lagrange

dual form:

argmax
q∈Q

H (q(z)) ⇐⇒ argmax
q∈Q

H (q(z)) + η∗>Ez∼q [T (z)] ,

s.t. Ez∼q [T (z)] = 0
(4.31)

with lagrange multipliers η∗. By moving the lagrange multipliers within the expectation

q∗ = argmax
q∈Q

H (q(z)) + Ez∼q
[
η∗>T (z)

]
, (4.32)

inserting a log exp(·) within the expectation,

q∗ = argmax
q∈Q

H (q(z)) + Ez∼q
[
log exp

(
η∗>T (z)

)]
, (4.33)

84

and finally choosing T (·) to be likelihood averaged statistics as in EPI

q∗ = argmax
q∈Q

H (q(z)) + Ez∼q

log exp

*......
,

η∗>

Ex∼p(x|z)
[
φ1(x; z)

]
...

Ex∼p(x|z)
[
φm(x; z)

]

+//////
-

, (4.34)

we can compare directly to the objective used in variational inference (Equation 4.30). We see

that EPI is exactly variational inference with an exponential family likelihood defined by sufficient

statistics T (z) = Ex∼p(x|z)
[
φ(x; z)

]
, and where the natural parameter η∗ is predicated by the choice

of mean parameter µopt. Equation 4.34 implies that EPI uses an improper (or uniform) prior, which

is easily changed.

This derivation of the equivalence between EPI and variational inference emphasizes why

defining a statistical inference program by its mean parameterization µopt is so useful. With EPI,

one can clearly define the emergent property X that the model of interest should produce through

intuitive selection of µopt for a given T (z). Alternatively, figuring out the correct natural parameters

η∗ for the same T (z) that produces X is a formally hard problem (see Section 4.4.1.3).

4.4.2 Stomatogastric ganglion

In Section 4.2.1 and 4.2.2, we used EPI to infer conductance parameters in a model of the

stomatogastric ganglion (STG) [41]. This 5-neuron circuit model represents two subcircuits: that

generating the pyloric rhythm (fast population) and that generating the gastric mill rhythm (slow

population). The additional neuron (the IC neuron of the STG) receives inhibitory synaptic input

from both subcircuits, and can couple to either rhythm dependent on modulatory conditions. There

is also a parametric regime in which this neuron fires at an intermediate frequency between that of

the fast and slow populations [41], which we infer with EPI as a motivational example. This model

is not to be confused with an STG subcircuit model of the pyloric rhythm [203], which has been

statistically inferred in other studies [173, 190].

85

4.4.2.1 STG model

We analyze how the parameters z = [gel, gsynA] govern the emergent phenomena of interme-

diate hub frequency in a model of the stomatogastric ganglion (STG) [41] shown in Figure 4.1A

with activity x = [xf1, xf2, xhub, xs1, xs2], using the same hyperparameter choices as Gutierrez et al.

Each neuron’s membrane potential xα (t) for α ∈ {f1, f2, hub, s1, s2} is the solution of the following

stochastic differential equation:

Cm
dxα
dt
= −

[
hleak (x; z) + hCa (x; z) + hK (x; z) + hhyp(x; z) + helec(x; z) + hsyn(x; z)

]
+ dB.

(4.35)

The input current of each neuron is the sum of the leak, calcium, potassium, hyperpolarization,

electrical and synaptic currents. Each current component is a function of all membrane potentials

and the conductance parameters z. Finally, we include gaussian noise dB to the model of Gutierrez

et al. so that the model stochastic, although this is not required by EPI.

The capacitance of the cell membrane was set to Cm = 1nF. Specifically, the currents are the

difference in the neuron’s membrane potential and that current type’s reversal potential multiplied

by a conductance:

hleak (x; z) = gleak (xα − Vleak) (4.36)

helec(x; z) = gel(xpost
α − xpre

α) (4.37)

hsyn(x; z) = gsynSpre
∞ (xpost

α − Vsyn) (4.38)

hCa (x; z) = gCa M∞(xα − VCa) (4.39)

hK (x; z) = gK N (xα − VK) (4.40)

hhyp(x; z) = ghH (xα − Vhyp). (4.41)

The reversal potentials were set to Vleak = −40mV , VCa = 100mV , VK = −80mV , Vhyp = −20mV ,

and Vsyn = −75mV . The other conductance parameters were fixed to gleak = 1 × 10−4µS. gCa,

86

gK , and ghyp had different values based on fast, intermediate (hub) or slow neuron. The fast

conductances had values gCa = 1.9 × 10−2, gK = 3.9 × 10−2, and ghyp = 2.5 × 10−2. The

intermediate conductances had values gCa = 1.7 × 10−2, gK = 1.9 × 10−2, and ghyp = 8.0 × 10−3.

Finally, the slow conductances had values gCa = 8.5×10−3, gK = 1.5×10−2, and ghyp = 1.0×10−2.

Furthermore, the Calcium, Potassium, and hyperpolarization channels have time-dependent

gating dynamics dependent on steady-state gating variables M∞, N∞ and H∞, respectively:

M∞ = 0.5
(
1 + tanh

(
xα − v1

v2

))
(4.42)

dN
dt
= λN (N∞ − N) (4.43)

N∞ = 0.5
(
1 + tanh

(
xα − v3

v4

))
(4.44)

λN = φN cosh
(

xα − v3
2v4

)
(4.45)

dH
dt
=

(H∞ − H)
τh

(4.46)

H∞ =
1

1 + exp
(

xα+v5
v6

) (4.47)

τh = 272 − *.
,

−1499
1 + exp

(
−xα+v7

v8

) +/
-
. (4.48)

where we set v1 = 0mV , v2 = 20mV , v3 = 0mV , v4 = 15mV , v5 = 78.3mV , v6 = 10.5mV ,

v7 = −42.2mV , v8 = 87.3mV , v9 = 5mV , and vth = −25mV .

Finally, there is a synaptic gating variable as well:

S∞ =
1

1 + exp
(
vth−xα

v9

) . (4.49)

When the dynamic gating variables are considered, this is actually a 15-dimensional nonlinear

dynamical system. The gaussian noise dB has variance (1× 10−12)2 A2, and introduces variability

87

in frequency at each parameterization z.

4.4.2.2 Hub frequency calculation

In order to measure the frequency of the hub neuron during EPI, the STG model was simulated

for T = 300 time steps of dt = 25ms. The chosen dt and T were the most computationally conve-

nient choices yielding accurate frequency measurement. We used a basis of complex exponentials

with frequencies from 0.0-1.0 Hz at 0.01Hz resolution to measure frequency from simulated time

series

Φ = [0.0, 0.01, ..., 1.0]> .. (4.50)

To measure spiking frequency, we processed simulated membrane potentials with a relu (spike

extraction) and low-pass filter with averaging window of size 20, then took the frequency with

the maximum absolute value of the complex exponential basis coefficients of the processed time-

series. The first 20 temporal samples of the simulation are ignored to account for initial transients.

To differentiate through the maximum frequency identification, we used a soft-argmax Let

Xα ∈ C
|Φ| be the complex exponential filter bank dot products with the signal xα ∈ RN , where

α ∈ {f1, f2, hub, s1, s2}. The soft-argmax is then calculated using temperature parameter βψ = 100

ψα = softmax(βψ |Xα |) � i, (4.51)

where i = [0, 1, ..., 100]. Thus, ψα is a dot product between a vector of positive frequency in-

tensities that sum to one, and the corresponding indices to those frequencies. By increasing the

temperature parameter βψ , the first argument of the dot product more closely approximates a one-

hot vector. The frequency is then calculated as

ωα = 0.01ψαHz. (4.52)

Intermediate hub frequency, like all other emergent properties in this work, is defined by the

88

A B

0 5k 10k 15k 20k 25k 30k 0 5k 10k 15k 20k 25k 30k

Figure 4.6: EPI optimization of the STG model producing network syncing. A. Entropy throughout
optimization. B. The emergent property statistic means and variances converge to their constraints
at 25,000 iterations following the fifth augmented lagrangian epoch.

mean and variance of the emergent property statistics. In this case, we have one statistic, hub neu-

ron frequency, where the mean was chosen to be 0.55Hz,(Equation 4.2) and variance was chosen

to be 0.0252 Hz2 (Equation 4.3).

4.4.2.3 EPI details for the STG model

EPI was run for the STG model using

f (x; z) = ωhub(x; z), (4.53)

µ =
[
0.55

]
, (4.54)

and

σ2 =
[
0.0252

]
(4.55)

(see Sections 4.4.1.3-4.4.1.4, and example in Section 4.4.1.5). Throughout optimization, the aug-

mented lagrangian parameters η and c, were updated after each epoch of imax = 5, 000 iterations

(see Section 4.4.1.4). The optimization converged after five epochs (Fig. 4.6).

For EPI in Fig 4.1E, we used a real NVP architecture with three coupling layers and two-layer

neural networks of 25 units per layer. The normalizing flow architecture mapped z0 ∼ N (0, I) to

89

a support of z = [gel, gsynA] ∈ [4, 8] × [0.01, 4], initialized to a gaussian approximation of samples

returned by a preliminary ABC search. We did not include gsynA < 0.01, for numerical stability.

EPI optimization was run using 5 different random seeds for architecture initialization θ with an

augmented lagrangian coefficient of c0 = 105, β = 2, a batch size n = 400, and we simulated one

x(i) per z(i). The architecture converged with criteria Ntest = 100.

4.4.2.4 Hessian sensitivity vectors

To quantify the second-order structure of the EPI distribution, we evaluated the Hessian of

the log probability ∂2 log q(z|X)
∂zz> . The eigenvector of this Hessian with most negative eigenvalue is

defined as the sensitivity dimension v1, and all subsequent eigenvectors are ordered by increasing

eigenvalue. These eigenvalues are quantifications of how fast the emergent property deteriorates

via the parameter combination of their associated eigenvector. In Figure 4.1D, the sensitivity

dimension v1 (solid) and the second eigenvector of the Hessian v2 (dashed) are shown evaluated at

the mode of the distribution. Since the Hessian eigenvectors have sign degeneracy, the visualized

directions in 2-D parameter space were chosen to have positive gsynA. The length of the arrows

is inversely proportional to the square root of the absolute value of their eigenvalues λ1 = −10.7

and λ2 = −3.22. For the same magnitude perturbation away from the mode, intermediate hub

frequency only diminishes along the sensitivity dimension v1 (Fig. 4.1E-F).

4.4.3 Scaling EPI for stable amplification in RNNs

4.4.3.1 Rank-2 RNN model

We examined the scaling properties of EPI by learning connectivities of RNNs of increasing

size that exhibit stable amplification. Rank-2 RNN connectivity was modeled as W = UV>, where

U =
[
U1 U2

]
+ g χ(W), V =

[
V1 V2

]
+ g χ(V), and χ(W)

i, j , χ
(V)
i, j ∼ N (0, 1). This RNN model has

dynamics

τẋ = −x +Wx. (4.56)

90

In this analysis, we inferred connectivity parameterizations z =
[
U>1 ,U

>
2 ,V

>
1 ,V

>
2

]>
∈ [−1, 1](4N)

that produced stable amplification using EPI, SMC-ABC [52], and SNPE [190] (see Section Re-

lated Methods).

4.4.3.2 Stable amplification

For this RNN model to be stable, all real eigenvalues of W must be less than 1: real(λ1) < 1,

where λ1 denotes the greatest real eigenvalue of W . For a stable RNN to amplify at least one input

pattern, the symmetric connectivity W s = W+W>
2 must have an eigenvalue greater than 1: λs

1 > 1,

where λs is the maximum eigenvalue of W s. These two conditions are necessary and sufficient for

stable amplification in RNNs [201].

4.4.3.3 EPI details for RNNs

We defined the emergent property of stable amplification with means of these eigenvalues (0.5

and 1.5, respectively) that satisfy these conditions. To complete the emergent property definition,

we chose variances (0.252) about those means such that samples rarely violate the eigenvalue

constraints. To write the emergent property of Equation 4.5 in terms of the EPI optimization, we

have

f (x; z) =

real(λ1)(x; z)

λs
1(x; z)

, (4.57)

µ =

0.5

1.5

, (4.58)

and

σ2 =

0.252

0.252

(4.59)

(see Sections 4.4.1.3-4.4.1.4, and example in Section 4.4.1.5). Gradients of maximum eigenvalues

of Hermitian matrices like W s are available with modern automatic differentiation tools. To differ-

entiate through the real(λ1), we solved the following equation for eigenvalues of rank-2 matrices

91

using the rank reduced matrix W r = V>U

λ± =
Tr(W r) ±

√
Tr(W r)2 − 4Det(W r)

2
. (4.60)

For EPI in Fig. 4.2, we used a real NVP architecture with three coupling layers of affine

transformations parameterized by two-layer neural networks of 100 units per layer. The initial

distribution was a standard isotropic gaussian z0 ∼ N (0, I) mapped to the support of zi ∈ [−1, 1].

We used an augmented lagrangian coefficient of c0 = 103, a batch size n = 200, β = 4, and we

simulated one W(i) per z(i). We chose to use imax = 500 iterations per augmented lagrangian epoch

and emergent property constraint convergence was evaluated at Ntest = 200 (Fig. 4.2B blue line,

and Fig. 4.2C-D blue). It was fastest to initialize the EPI distribution on a Tesla V100 GPU, and

then subsequently optimize it on a CPU with 32 cores. EPI timing measurements accounted for

this initialization period.

4.4.3.4 Methodological comparison

We compared EPI to two alternative simulation-based inference techniques, since the likeli-

hood of these eigenvalues given z is not available. Approximate bayesian computation (ABC) [51]

is a rejection sampling technique for obtaining sets of parameters z that produce activity x close to

some observed data x0. Sequential Monte Carlo approximate bayesian computation (SMC-ABC)

is the state-of-the-art ABC method, which leverages SMC techniques to improve sampling speed.

We ran SMC-ABC with the pyABC package [224] to infer RNNs with stable amplification: con-

nectivities having eigenvalues within an ε-defined l-2 distance of

x0 =

real(λ1)

λs
1

=

0.5

1.5

. (4.61)

SMC-ABC was run with a uniform prior over z ∈ [−1, 1](4N), a population size of 1,000 particles

with simulations parallelized over 32 cores, and a multivariate normal transition model.

92

N (neurons)

ar
ch

ite
ct

ur
e

pa
ra

m
et

er
s

Figure 4.7: Number of parameters in deep probability distribution architectures of EPI (blue) and
SNPE (orange) by RNN size (N).

SNPE, the next approach in our comparison, is far more similar to EPI. Like EPI, SNPE treats

parameters in mechanistic models with deep probability distributions, yet the two learning al-

gorithms are categorically different. SNPE uses a two-network architecture to approximate the

posterior distribution of the model conditioned on observed data x0. The amortizing network maps

observations xi to the parameters of the deep probability distribution. The weights and biases of the

parameter network are optimized by sequentially augmenting the training data with additional pairs

(zi, xi) based on the most recent posterior approximation. This sequential procedure is important

to get training data zi to be closer to the true posterior, and xi to be closer to the observed data. For

the deep probability distribution architecture, we chose a masked autoregressive flow with affine

couplings (the default choice), three transforms, 50 hidden units, and a normalizing flow mapping

to the support as in EPI. This architectural choice closely tracked the size of the architecture used

by EPI (Fig. 4.7). As in SMC-ABC, we ran SNPE with x0 = µ. All SNPE optimizations were

run for a limit of 1.5 days, or until two consecutive rounds resulted in a validation log probability

lower than the maximum observed for that random seed. It was always faster to run SNPE on a

CPU with 32 cores rather than on a Tesla V100 GPU.

To compare the efficiency of these algorithms for inferring RNN connectivity distributions

producing stable amplification, we develop a convergence criteria that can be used across meth-

93

ods. While EPI has its own hypothesis testing convergence criteria for the emergent property, it

would not make sense to use this criteria on SNPE and SMC-ABC which do not constrain the

means and variances of their predictions. Instead, we consider EPI and SNPE to have converged

after completing its most recent optimization epoch (EPI) or round (SNPE) in which the distance

|Ez,x
[

f (x; z)
]
−µ |2 is less than 0.5. We consider SMC-ABC to have converged once the population

produces samples within the ε = 0.5 ball ensuring stable amplification.

When assessing the scalability of SNPE, it is important to check that alternative hyperparam-

terizations could not yield better performance. Key hyperparameters of the SNPE optimization are

the number of simulations per round nround, the number of atoms used in the atomic proposals of

the SNPE-C algorithm [225], and the batch size n. To match EPI, we used a batch size of n = 200

for N <= 25, however we found n = 1, 000 to be helpful for SNPE in higher dimensions. While

nround = 1, 000 yielded SNPE convergence for N <= 25, we found that a substantial increase to

nround = 25, 000 yielded more consistent convergence at N = 50 (Fig. 4.8A). By increasing nround,

we also necessarily increase the duration of each round. At N = 100, we tried two hyperparameter

modifications. As suggested in [225], we increased natom by an order of magnitude to improve

gradient quality, but this had little effect on the optimization (much overlap between same random

seeds) (Fig. 4.8B). Finally, we increased nround by an order of magnitude, which yielded conver-

gence in one case, but no others. We found no way to improve the convergence rate of SNPE

without making more aggressive hyperparameter choices requiring high numbers of simulations.

In Figure 4.2C-D, we show samples from the random seed resulting in emergent property conver-

gence at greatest entropy (EPI), the random seed resulting in greatest validation log probability

(SNPE), and the result of all converged random seeds (SMC).

4.4.3.5 Effect of RNN parameters on EPI and SNPE inferred distributions

To clarify the difference in objectives of EPI and SNPE, we show their results on RNN models

with different numbers of neurons N and random strength g. The parameters inferred by EPI

consistently produces the same mean and variance of real(λ1) and λs
1, while those inferred by

94

simulations time (min)

A N = 50

N = 100B

simulations time (min)

N = 100C

simulations time (min)

Figure 4.8: SNPE convergence was enabled by increasing nround, not natom. A. Difference of mean
predictions x0 throughout optimization at N = 50 with by simulation count (left) and wall time
(right) of SNPE with nround = 5, 000 (light orange), SNPE with nround = 25, 000 (dark orange), and
EPI (blue). Each line shows an individual random seed. B. Same conventions as A at N = 100 of
SNPE with natom = 100 (light orange) and natom = 1, 000 (dark orange). C. Same conventions as
A at N = 100 of SNPE with nround = 25, 000 (light orange) and nround = 250, 000 (dark orange).

95

SNPE change according to the model definition (Fig. 4.9A). For N = 2 and g = 0.01, the SNPE

posterior has greater concentration in eigenvalues around x0 than at g = 0.1, where the model has

greater randomness (Fig. 4.9B top, orange). At both levels of g when N = 2, the posterior of SNPE

has lower entropy than EPI at convergence (Fig. 4.9B top). However at N = 10, SNPE results in

a predictive distribution of more widely dispersed eigenvalues (Fig. 4.9A bottom), and an inferred

posterior with greater entropy than EPI (Fig. 4.9B bottom). We highlight these differences not

to focus on an insightful trend, but to emphasize that these methods optimize different objectives

with different implications.

Note that SNPE converges when it’s validation log probability has saturated after several rounds

of optimization (Fig. 4.9C), and that EPI converges after several epochs of its own optimization

to enforce the emergent property constraints (Fig. 4.9D blue). Importantly, as SNPE optimizes

its posterior approximation, the predictive means change, and at convergence may be different

than x0 (Fig. 4.9D orange, left). It is sensible to assume that predictions of a well-approximated

SNPE posterior should closely reflect the data on average (especially given a uniform prior and

a low degree of stochasticity), however this is not a given. Furthermore, no aspect of the SNPE

optimization controls the variance of the predictions (Fig. 4.9D orange, right).

4.5 Deep inference and the exponential family

In Chapter 1 Section 1.3 we introduced the topic of deep generative modeling, and inference

with normalizing flows (or deep probability distributions) for the flexible approximation of poste-

rior distributions. In Chapter 3, we presented our novel approach for deep inference of intractable

exponential family models using exponential family networks (EFNs). In this chapter, we have

presented an additional novel method for deep inference of neural circuit models called emergent

property inference (EPI). Furthermore, we compared EPI to an alternative simulation-based in-

ference technique called sequential neural posterior estimation (SNPE) [190], which employs the

same two-network architecture as an EFN. Here, we explain mathematical connections and prac-

tical similarities between these deep inference techniques through the lens of exponential family

96

A B C

time (min) time (min)

D

EPI
SNPE

time (min) time (min) time (min) time (min)

Figure 4.9: Model characteristics affect predictions of posteriors inferred by SNPE, while predic-
tions of parameters inferred by EPI remain fixed. A. Predictive distribution of EPI (blue) and SNPE
(orange) inferred connectivity of RNNs exhibiting stable amplification with N = 2 (top), N = 10
(bottom), g = 0.01 (left), and g = 0.1 (right). B. Entropy of parameter distribution approximations
throughout optimization with N = 2 (top), N = 10 (bottom), g = 0.1 (dark shade), and g = 0.01
(light shade). C. Validation log probabilities throughout SNPE optimization. Same conventions as
B. D. Adherence to EPI constraints. Same conventions as B.

97

distributions.

4.5.1 Maximum entropy and the exponential family

To formalize the relationship between EPI and EFN, we recognize the equivalence between

maximum entropy distributions and their representations as exponential families [137]. Consider

a maximum entropy distribution p∗(z) within family P of form

p∗(z) = argmax
p∈P

H (p(z)) s.t. Ez∼p [T (z)] = µ, (4.62)

where H (·) is entropy, T (·) is a vector of statistics, and µ is the mean parameter. The maximum

entropy distribution has a solution in the exponential family with parameter η

p∗(z) ∝ exp(η>T (z)). (4.63)

Thus, every maximum entropy (and exponential family) distribution has two parameterizations:

the mean and natural parameterizations µ and η. In fact, there exists a bijective mapping called

the "forward" mapping µ = f (η) (and the "backward" mapping η = f −1(µ)), which are generally

unknown or intractable.

4.5.1.1 Deep inference of maximum entropy distributions

To execute deep inference of a maximum entropy distribution, we must fit a normalizing flow

to a distribution satisfying the constraints of Equation 4.62, and select that with maximum entropy.

This can be done with a normalizing flow qθ solving the following equation using the algorithm of

maximum entropy flow networks [191]

q∗θ (z) = argmax
qθ∈Q

H (qθ (z)) s.t. Ez∼qθ [T (z)] = µ. (4.64)

98

In deep inference of maximum entropy distributions, the inferred distribution q∗θ (z) is defined by

mean parameter µ. When this statistical inference approach is applied to emergent properties

of generative models, the inferred distribution is a posterior in the spirit of variational bayesian

inference (see Section 4.5.2.1).

4.5.1.2 Deep inference of exponential families

When the posterior distribution of a bayesian inference problem is known to belong to the

exponential family, and its natural parameterization η is also known, one can approximate this

posterior using variational inference. This is done by optimizing variational parameters θ of the

normalizing flow to approximate the true posterior as closely as possible according to the KL-

divergence

D(qθ (z; η) | |p(z; η)) (4.65)

In Chapter 3, we introduced a two network architecture for amortizing variational inference in

this family. Over a distribution of the natural parameter p(η), we optimize the variational fits to

the posterior

φ∗ = argmin
φ
Ep(η)

[
D(qθ (z; η) | |p(z; η))

]
. (4.66)

This algorithm is executed with a two-network architecture, where parameter samples z are emitted

from a normalizing flows with parameters set by a deep function of the natural parameter θ = fφ (η)

(Fig. 4.10B). The natural parameter η of the posterior contains hyperparameters of the prior and

summary statistics of the data – this is how data enter the EFN architecture.

4.5.2 Variational simulation-based inference

In simulation-based inference, parameter distributions are inferred in complex, simulator-defined

models. Historically, approaches to simulation based inference have focused on rejection sam-

pling techniques like approximate bayesian computation (ABC) [51] or markov chain monte carlo

(MCMC) [206, 207]. However, in neither of these approaches is a distributional form fit for infer-

99

...

...

...

...

...

...

...

...

...

EPI EFN SNPEA B C

Figure 4.10: Deep inference architectures. A. Emergent property inference (EPI) B. Exponential
family networks (EFN) C. Sequential neural posterior estimation (SNPE).

ence. In variational simulation-based inference, a distribution is fit within a parameterized family.

Having a variational approximation is important in the context of scientific research, where we

want to efficiently quantify the structure of the inferred distribution.

4.5.2.1 Emergent property inference

In emergent property inference (EPI), a maximum entropy distribution of model parameters

is inferred such that they produce an emergent property (see Chapter 4.). An emergent property

is quantified as statistical constraints on data that emerge from the generative model of interest.

EPI is fit using the MEFN algorithm, where T (z) = Ex∼p(x∼z
[
φ(z)

]
(see Algorithm 1). In EPI,

only a single deep neural network in the normalizing flow is used in the learning architecture (Fig.

4.10A).

4.5.2.2 Sequential neural posterior estimation

In sequential neural posterior estimation (SNPE), an inference network fφ (x) learns to map

data to variational parameters of the approximate posterior qθ (z | x). This is done in the first

optimization epoch by optimizing a density estimation objective

φ∗ = argmax
φ
Ez,x

[
log q fφ (x) (z)

]
, (4.67)

100

where paired samples (xi, zi) are sampled from the joint distribution p(x, z). In subsequent epochs

(sequential epochs), paired samples are produced by sampling from the current approximate pos-

terior zi ∼ qθ (z | x) and from the model simulator xi ∼ p(x | z). The two-network architecture for

SNPE is shown in Figure 4.10C.

4.5.2.3 Sequential optimization

Both EPI and SNPE update their optimization objectives in sequential epochs based on their

latest approximations, however the nature of these updates are very different. In EPI, the optimal

lagrangian penalty coefficients ηopt are estimated from the current constraint errors. The lagrangian

penalty coefficients are adjusted in each epoch of the EPI optimization until convergence, where

all constraints of the emergent property are satisfied.

In SNPE, the distribution of paired samples (xi, zi) over which the density estimation objective

is optimized is adjusted to be closer to the posterior with each epoch. At the beginning of each

SNPE epoch, the current estimate of the posterior is sampled to obtain many new parameters zi and

paired simulations xi to augment the current training dataset. In both the EPI and SNPE algorithms,

a period of stochastic gradient descent on a consistent objective is followed by an adaptation of the

objective function of the optimization.

4.5.3 Two-network architectures for deep inference

While EPI has a single network in its architecture, SNPE has two networks in the same manner

as EFNs. This gives SNPE the capacity for amortization, a relative advantage over EPI. If there

was a simple bijective mapping from the mean parameter µ of EPI to the natural parameter η,

we could use the approach of EFN to amortize inference of emergent properties. However, as we

discussed in Section 4.5.2.1, the backward mapping is formally hard for general maximum entropy

distributions.

Exponential family posteriors have consistent form and dimensionality of natural parameter

η no matter the number of observed data points. Once trained, an EFN can return a posterior

101

approximation for datasets of varying observation count (Equation 3.3). In SNPE, this is not the

case. The data conditioned upon xi is either a concatenation of a static number of observations, or

a summary statistic calculated over a static number of observations.

Chapter 5

102

Chapter 5: Building theories of neural circuits with emergent property

inference

In Chapter 4, we introduced a deep generative modeling technique for inferring distributions

of neural circuit model parameters that produce emergent properties. This chapter corresponds to

selected sections of Bittner et al. 2021 [163] related to the application of EPI to models of primary

visual cortex and superior colliculus. By fitting normalizing flows to parameter distributions of

these models that produce emergent properties of computation, we gained novel insight, which

builds upon mechanistic theories of these neural circuits. The remainder of this chapter was co-

authored by Agostina Palmigiano, Alex T. Piet, Chunyu A. Duan, Carlos D. Brody, Kenneth D.

Miller, and John P. Cunningham.

5.1 EPI reveals how recurrence with multiple inhibitory subtypes governs excitatory vari-

ability in a V1 model

Dynamical models of excitatory (E) and inhibitory (I) populations with supralinear input-

output function have succeeded in explaining a host of experimentally documented phenomena

in primary visual cortex (V1). In a regime characterized by inhibitory stabilization of strong recur-

rent excitation, these models give rise to paradoxical responses [170], selective amplification [200,

194], surround suppression [226] and normalization [227]. Recent theoretical work [228] shows

that stabilized E-I models reproduce the effect of variability suppression [229]. Furthermore, ex-

perimental evidence shows that inhibition is composed of distinct elements – parvalbumin (P),

somatostatin (S), VIP (V) – composing 80% of GABAergic interneurons in V1 [230, 231, 232],

and that these inhibitory cell types follow specific connectivity patterns (Fig. 5.1A) [233]. Here,

we use EPI on a model of V1 with biologically realistic connectivity to show how the structure

103

of input across neuron types affects the variability of the excitatory population – the population

largely responsible for projecting to other brain areas [234].

We considered response variability of a nonlinear dynamical V1 circuit model (Fig. 5.1A) with

a state comprised of each neuron-type population’s rate x = [xE, xP, xS, xV]>. Each population re-

ceives recurrent input Wx, where W is the effective connectivity matrix (see Section 5.5.1) and an

external input with mean h, which determines population rate via supralinear nonlinearity φ(·) =

[·]2
+. The external input has an additive noisy component ε with variance σ2 =

[
σ2

E, σ
2
P, σ

2
S, σ

2
V

]
.

This noise has a slower dynamical timescale τnoise > τ than the population rate, allowing fluctua-

tions around a stimulus-dependent steady-state (Fig. 5.1B). This model is the stochastic stabilized

supralinear network (SSSN) [228]

τ
dx
dt
= −x + φ(Wx + h + ε), (5.1)

generalized to have multiple inhibitory neuron types. It introduces stochasticity to four neuron-type

models of V1 [197]. Stochasticity and inhibitory multiplicity introduce substantial complexity to

the mathematical treatment of this problem (see Section 5.5.1.5) motivating the analysis of this

model with EPI. Here, we consider fixed weights W and input h [198], and study the effect of

input variability z = [σE, σP, σS, σV]> on excitatory variability.

We quantify levels of E-population variability by studying two emergent properties

X(5Hz) : Ez,x

[
sE (x; z)

]
= 5Hz X(10Hz) : Ez,x

[
sE (x; z)

]
= 10Hz

Varz,x

[
sE (x; z)

]
= 1Hz2 Varz,x

[
sE (x; z)

]
= 1Hz2,

(5.2)

where sE (x; z) is the standard deviation of the stochastic E-population response about its steady

state (Fig. 5.1C). In the following analyses, we select 1Hz2 variance such that the two emergent

properties do not overlap in sE (z; x).

First, we ran EPI to obtain parameter distribution qθ (z | X(5Hz)) producing E-population

variability around 5Hz (Fig. 5.1D). From the marginal distribution of σE and σP (Fig. 5.1D, top-

104

time (ms)

Exc
Pb

Sst

Vip

A B

D E

time (ms)

E
P
S
V

F

model: V1 C

Figure 5.1: Emergent property inference in the stochastic stabilized supralinear network (SSSN)
A. Four-population model of primary visual cortex with excitatory (black), parvalbumin (blue),
somatostatin (red), and VIP (green) neurons (excitatory and inhibitory projections filled and
unfilled, respectively). Some neuron-types largely do not form synaptic projections to others
(|Wα1,α2) | < 0.025). Each neural population receives a baseline input hb, and the E- and P-
populations also receive a contrast-dependent input hc. Additionally, each neural population re-
ceives a slow noisy input ε . B. Transient network responses of the SSSN model. Traces are
independent trials with varying initialization x(0) and noise ε . C. Mean (solid line) and standard
deviation sE (x; z) (shading) across 100 trials. D. EPI distribution of noise parameters z conditioned
on E-population variability. The EPI predictive distribution of sE (x; z) is show on the bottom-left.
E. (Top) Enlarged visualization of the σE-σP marginal distribution of EPI qθ (z | X(5Hz)) and
qθ (z | X(10Hz)). Each black dot shows the mode at each σP. The arrows show the most sensitive
dimensions of the Hessian evaluated at these modes. F. The predictive distributions of σ2

E +σ
2
P of

each inferred distribution qθ (z | X(5Hz)) and qθ (z | X(10Hz)).

105

left), we can see that sE (x; z) is sensitive to various combinations of σE and σP. Alternatively, both

σS and σV are degenerate with respect to sE (x; z) evidenced by the unexpectedly high variability

in those dimensions (Fig. 5.1D, bottom-right). Together, these observations imply a curved path

with respect to sE (x; z) of 5Hz, which is indicated by the modes along σP (Fig. 5.1E).

Figure 5.1E suggests a quadratic relationship in E-population fluctuations and the standard

deviation of E- and P-population input; as the square of either σE or σP increases, the other com-

pensates by decreasing to preserve the level of sE (x; z). This quadratic relationship is preserved at

greater level of E-population variability X(10Hz) (Fig. 5.1E and 5.4). Indeed, the sum of squares

of σE and σP is larger in qθ (z | X(10Hz)) than qθ (z | X(5Hz)) (Fig 5.1F, p < 1 × 10−10), while

the sum of squares of σS and σV are not significantly different in the two EPI distributions (Fig.

5.6, p = .40), in which parameters were bounded from 0 to 0.5. The strong interaction between E-

and P-population input variability on excitatory variability is intriguing, since this circuit exhibits

a paradoxical effect in the P-population (and no other inhibitory types) (Fig. 5.7), meaning that

the E-population is P-stabilized. Future research may uncover a link between the population of

network stabilization and compensatory interactions governing excitatory variability.

EPI revealed the quadratic dependence of excitatory variability on input variability to the E-

and P-populations, as well as its independence to input from the other two inhibitory populations.

In a simplified model (τ = τnoise), it can be shown that surfaces of equal variance are ellipsoids

as a function of σ (see Section 5.5.1.5). Nevertheless, the sensitive and degenerate parameters

are intractable to predict mathematically, since the covariance matrix depends on the steady-state

solution of the network [228, 235], and terms in the covariance expression increase quadratically

with each additional neuron-type population (see also Section 5.5.1.5). By pointing out this math-

ematical complexity, we emphasize the value of EPI for gaining understanding about theoretical

models when mathematical analysis becomes onerous or impractical.

106

5.2 EPI identifies two regimes of rapid task switching

It has been shown that rats can learn to switch from one behavioral task to the next on ran-

domly interleaved trials [236], and an important question is what neural mechanisms produce this

computation. In this experimental setup, rats were given an explicit task cue on each trial, either

Pro or Anti. After a delay period, rats were shown a stimulus, and made a context (task) dependent

response (Fig. 5.2A). In the Pro task, rats were required to orient towards the stimulus, while in

the Anti task, rats were required to orient away from the stimulus. Pharmacological inactivation

of the SC impaired rat performance, and time-specific optogenetic inactivation revealed a crucial

role for the SC on the cognitively demanding Anti trials [199]. These results motivated a nonlin-

ear dynamical model of the SC containing four functionally-defined neuron-type populations. In

Duan et al. 2021, a computationally intensive procedure was used to obtain a set of 373 connectiv-

ity parameters that qualitatively reproduced these optogenetic inactivation results. To build upon

the insights of this previous work, we use the probabilistic tools afforded by EPI to identify and

characterize two linked, yet distinct regimes of rapid task switching connectivity.

In this SC model, there are Pro- and Anti-populations in each hemisphere (left (L) and right (R))

with activity variables x = [xLP, xL A, xRP, xRA]> [199]. The connectivity of these populations is

parameterized by self sW , vertical vW , diagonal dW and horizontal hW connections (Fig. 5.2B).

The input h is comprised of a positive cue-dependent signal to the Pro or Anti populations, a

positive stimulus-dependent input to either the Left or Right populations, and a choice-period input

to the entire network (see Section 5.5.2.1). Model responses are bounded from 0 to 1 as a function

φ of an internal variable u

τ
du
dt
= −u +Wx + h + dB

x = φ(u).
(5.3)

The model responds to the side with greater Pro neuron activation; e.g. the response is left if

xLP > xRP at the end of the trial. Here, we use EPI to determine the network connectivity z =

107

[sW, vW, dW, hW]> that produces rapid task switching.

Rapid task switching is formalized mathematically as an emergent property with two statistics:

accuracy in the Pro task pP(x; z) and Anti task pA(x; z). We stipulate that accuracy be on average

.75 in each task with variance .0752

X : Ez

pP(x; z)

pA(x; z)

=

.75

.75

Varz

pP(x; z)

pA(x; z)

=

.0752

.0752

.

(5.4)

75% accuracy is a realistic level of performance in each task, and with the chosen variance, inferred

models will not exhibit fully random responses (50%), nor perfect performance (100%).

The EPI inferred distribution (Fig. 5.2C) produces Pro and Anti task accuracies (Fig. 5.2C,

bottom-left) consistent with rapid task switching (Equation 5.4). This parameter distribution has

rich structure that is not captured well by simple linear correlations (Fig. 5.8). Specifically, the

shape of the EPI distribution is sharply bent, matching ground truth structure indicated by brute-

force sampling (Fig. 5.14). This is most saliently observed in the marginal distribution of sW -hW

(Fig. 5.2C top-right), where anticorrelation between sW and hW switches to correlation with

decreasing sW . By identifying the modes of the EPI distribution z∗(sW) at different values of

sW (Fig. 5.2C red/purple dots), we can quantify this change in distributional structure with the

sensitivity dimension v1(z) (Fig. 5.2C red/purple arrows). Note that the directionality of these

sensitivity dimensions at z∗(sW) changes distinctly with sW , and are perpendicular to the robust

dimensions of the EPI distribution that preserve rapid task switching. These two directionalities of

sensitivity motivate the distinction of connectivity into two regimes, which produce different types

of responses in the Pro and Anti tasks (Fig. 5.9).

When perturbing connectivity along the sensitivity dimension away from the modes

z = z∗(sW) + δv1(z∗(sW)), (5.5)

108

B

C

LA RA

LP RP

Left

P
ro

A
nti

Go rightGo left

Right

model:
SC

A

Pro accuracy

A
nt

i a
cc

ur
ac

y

re
gi

m
e

1
re

gi
m

e
2

D

P
ro

 a
cc

ur
ac

y
A

nt
i a

cc
ur

ac
y

Sensitivity
perturbation

connectivity perturbation distance () from mode

Task eigenvector
perturbation

Diag eigenvector
perturbation

Figure 5.2: A. Rapid task switching behavioral paradigm (see text). B. Model of superior colliculus (SC).
Neurons: LP - Left Pro, RP - Right Pro, LA - Left Anti, RA - Right Anti. Parameters: sW - self, hW -
horizontal, vW -vertical, dW - diagonal weights. C. The EPI inferred distribution of rapid task switching
networks. Red/purple parameters indicate modes z∗(sW) colored by sW . Sensitivity vectors v1(z∗) are
shown by arrows. (Bottom-left) EPI predictive distribution of task accuracies. D. Mean and standard error
(Ntest = 25, bars not visible) of accuracy in Pro (top) and Anti (bottom) tasks after perturbing connectivity
away from mode along v1(z∗) (left), vtask (middle), and vdiag (right).

109

Pro accuracy monotonically increases in both regimes (Fig. 5.2D, top-left). However, there is a

stark difference between regimes in Anti accuracy. Anti accuracy falls in either direction of v1 in

regime 1, yet monotonically increases along with Pro accuracy in regime 2 (Fig. 5.2D, bottom-

left). The sharp change in local structure of the EPI distribution is therefore explained by distinct

sensitivities: Anti accuracy diminishes in only one or both directions of the sensitivity perturbation.

To understand the mechanisms differentiating the two regimes, we can make connectivity per-

turbations along dimensions that only modify a single eigenvalue of the connectivity matrix. These

eigenvalues λall, λside, λtask, and λdiag correspond to connectivity eigenmodes with intuitive roles

in processing in this task (Fig. 5.10A). For example, greater λtask will strengthen internal repre-

sentations of task, while greater λdiag will amplify dominance of Pro and Anti pairs in opposite

hemispheres (Section 5.5.2.7). Unlike the sensitivity dimension, the dimensions va that perturb

isolated connectivity eigenvalues λa for a ∈ {all, side, task, diag} are independent of z∗(sW) (see

Section 5.5.2.7), e.g.

z = z∗(sW) + δvtask. (5.6)

Connectivity perturbation analyses reveal that decreasing λtask has a very similar effect on Anti

accuracy as perturbations along the sensitivity dimension (Fig. 5.2D, middle). The similar effects

of perturbations along the sensitivity dimension v1(z∗) and reduction of task eigenvalue (via per-

turbations along −vtask) suggest that there is a carefully tuned strength of task representation in

connectivity regime 1, which if disturbed results in random Anti trial responses. Finally, we recog-

nize that increasing λdiag has opposite effects on Anti accuracy in each regime (Fig. 5.2D, right).

In the next section, we build on these mechanistic characterizations of each regime by examining

their resilience to optogenetic inactivation.

110

5.3 EPI inferred SC connectivities reproduce results from optogenetic inactivation experi-

ments

During the delay period of this task, the circuit must prepare to execute the correct task accord-

ing to the presented cue. The circuit must then maintain a representation of task throughout the

delay period, which is important for correct execution of the Anti task. Duan et al. found that bilat-

eral optogenetic inactivation of SC during the delay period consistently decreased performance in

the Anti task, but had no effect on the Pro task (Fig. 5.3A) [199]. The distribution of connectivities

inferred by EPI exhibited this same effect in simulation at high optogenetic strengths γ, which

reduce the network activities x(t) by a factor 1 − γ (Fig. 5.3B) (see Section 5.5.2.8).

To examine how connectivity affects response to delay period inactivation, we grouped connec-

tivities of the EPI distribution along the continuum linking regimes 1 and 2 of Section 5.2. Z (sW)

is the set of EPI samples for which the closest mode was z∗(sW) (see Section 5.5.2.4). In the fol-

lowing analyses, we examine how error, and the influence of connectivity eigenvalue on Anti error

change along this continuum of connectivities. Obtaining the parameter samples for these analysis

with the learned EPI distribution was more than 20,000 times faster than a brute force approach

(see Section 5.5.2.5).

The mean increase in Anti error of the EPI distribution is closest to the experimentally mea-

sured value of 7% at γ = 0.675 (Fig. 5.3B, black dot). At this level of optogenetic strength, regime

1 exhibits an increase in Anti error with delay period silencing (Fig. 5.3C, left), while regime 2

does not. In regime 1, greater λtask and λdiag decrease Anti error (Fig. 5.3C, right). In other words,

stronger task representations and diagonal amplification make the SC model more resilient to delay

period silencing in the Anti task. This complements the finding from Duan et al. 2021 [199] that

λtask and λdiag improve Anti accuracy.

At roughly γ = 0.85 (Fig. 5.3B, gray dot), the Anti error saturates, while Pro error remains at

zero. Following delay period inactivation at this optogenetic strength, there are strong similarities

in the responses of Pro and Anti trials during the choice period (Fig. 5.3D, left). We interpreted

111

ExperimentA B

C

er
ro

r (
%

)

(Adapted from
Duan et al. 2021)

EPI connectivities

(%)

D

opto strength

er
ro

r (
%

)

matches
experiment

Anti error
saturation

Matches experiment

Anti error saturation

Pro, Left trials

Anti, Left trials

linear fit

-.76
LP
RP
RA
LA

regime 1regime 2 regime 1regime 2

Task error Connectivity correlation
with Anti error

Pro
Anti

(panel C) (panel D)

Pro
Anti

Figure 5.3: A. Mean and standard error (bars) across recording sessions of task error following
delay period optogenetic inactivation in rats. B. Mean and standard deviation (bars) of task error
induced by delay period inactivation of varying optogenetic strength γ across the EPI distribution.
C. (Left) Mean and standard error of Pro and Anti error from regime 1 to regime 2 at γ = 0.675.
(Right) Correlations of connectivity eigenvalues with Anti error from regime 1 to regime 2 at
γ = 0.675. D. (Left) Mean and standard deviation (shading) of responses of the SC model at
the mode of the EPI distribution to delay period inactivation at γ = 0.85. Accuracy in Pro (top)
and Anti (bottom) task is shown as a percentage. (Right) Anti accuracy following delay period
inactivation at γ = 0.85 versus accuracy in the Pro task across connectivities in the EPI distribution.

112

these similarities to suggest that delay period inactivation at this saturated level flips the inter-

nal representation of task (from Anti to Pro) in the circuit model. A flipped task representation

would explain why the Anti error saturates at 50%: the average Anti accuracy in EPI inferred

connectivities is 75%, but average Anti accuracy would be 25% (100% - Ez
[
pP

]
) if the internal

representation of task is flipped during the delay period. This hypothesis prescribes a model of

Anti accuracy during delay period silencing of pA,opto = 100% − pP, which is fit closely across

both regimes of the EPI inferred connectivities (Fig. 5.3D, right). Similarities between Pro and

Anti trial responses were not present at the experiment-matching level of γ = 0.675 (Fig. 5.12 left)

and neither was anticorrelation in pP and pA,opto (Fig. 5.12 right).

In summary, the connectivity inferred by EPI to perform rapid task switching replicated results

from optogenetic silencing experiments. We found that at levels of optogenetic strength matching

experimental levels of Anti error, only one regime actually exhibited the effect. This connectivity

regime is less resilient to optogenetic perturbation, and perhaps more biologically realistic. Finally,

we characterized the pathology in Anti error that occurs in both regimes when optogenetic strength

is increased to high levels, leading to a mechanistic hypothesis that is experimentally testable.

The probabilistic tools afforded by EPI yielded this insight: we identified two regimes and the

continuum of connectivities between them by taking gradients of parameter probabilities in the EPI

distribution, we identified sensitivity dimensions by measuring the Hessian of the EPI distribution,

and we obtained many parameter samples at each step along the continuum at an efficient rate.

5.4 Discussion

In this paper, we demonstrate the value of deep inference for parameter sensitivity analyses at

both the local and global level. With these techniques, flexible deep probability distributions are

optimized to capture global structure by approximating the full distribution of suitable parame-

ters. Importantly, the local structure of this deep probability distribution can be quantified at any

parameter choice, offering instant sensitivity measurements after fitting. For example, the global

structure captured by EPI revealed two distinct parameter regimes, which had different local struc-

113

ture quantified by the deep probability distribution (see Section 5.5.2). In comparison, bayesian

MCMC is considered a popular approach for capturing global parameter structure [208], but there

is no variational approximation (the deep probability distribution in EPI), so sensitivity informa-

tion is not queryable and sampling remains slow after convergence. Local sensitivity analyses

(e.g. [182]) may be performed independently at individual parameter samples, but these methods

alone do not capture the full picture in nonlinear, complex distributions. In contrast, deep infer-

ence yields a probability distribution that produces a wholistic assessment of parameter sensitivity

at the local and global level, which we used in this study to make novel insights into a range of

theoretical models. Together, the abilities to condition upon emergent properties, the efficient in-

ference algorithm, and the capacity for parameter sensitivity analyses make EPI a useful method

for addressing inverse problems in theoretical neuroscience.

Acknowledgements:

This work was funded by NSF Graduate Research Fellowship, DGE-1644869, McKnight Endow-

ment Fund, NIH NINDS 5R01NS100066, Simons Foundation 542963, NSF NeuroNex Award,

DBI-1707398, The Gatsby Charitable Foundation, Simons Collaboration on the Global Brain

Postdoctoral Fellowship, Chinese Postdoctoral Science Foundation, and International Exchange

Program Fellowship. We also acknowledge the Marine Biological Laboratory Methods in Com-

putational Neuroscience Course, where this work was discussed and explored in its early stages.

Helpful conversations were had with Larry Abbott, Stephen Baccus, James Fitzgerald, Gabrielle

Gutierrez, Francesca Mastrogiuseppe, Srdjan Ostojic, Liam Paninski, and Dhruva Raman.

Data availability statement:

The datasets generated during this study have been made publicly available on Zenodo at this

address: https://doi.org/10.5281/zenodo.4910010 .

Code availability statement:

All software written for the current study is available at https://github.com/cunningham-lab/epi.

114

5.5 Methods

5.5.1 Primary visual cortex

5.5.1.1 V1 model

E-I circuit models, rely on the assumption that inhibition can be studied as an indivisible unit,

despite ample experimental evidence showing that inhibition is instead composed of distinct ele-

ments [232]. In particular three types of genetically identified inhibitory cell-types – parvalbumin

(P), somatostatin (S), VIP (V) – compose 80% of GABAergic interneurons in V1 [230, 231, 232],

and follow specific connectivity patterns (Fig. 5.1A) [233], which lead to cell-type specific com-

putations [237, 198]. Currently, how the subdivision of inhibitory cell-types, shapes correlated

variability by reconfiguring recurrent network dynamics is not understood.

In the stochastic stabilized supralinear network [228], population rate responses x to mean

input h, recurrent input Wx and slow noise ε are governed by

τ
dx
dt
= −x + φ(Wx + h + ε), (5.7)

where the noise is an Ornstein-Uhlenbeck process ε ∼ OU (τnoise,σ)

τnoisedεα = −εαdt +
√

2τnoiseσ̃αdB (5.8)

with τnoise = 5ms > τ = 1ms. The noisy process is parameterized as

σ̃α = σα

√
1 +

τ

τnoise
, (5.9)

so that σ parameterizes the variance of the noisy input in the absence of recurrent connectivity

(W = 0). As contrast c ∈ [0, 1] increases, input to the E- and P-populations increases relative to

a baseline input h = hb + chc. Connectivity (Wfit) and input (hb,fit and hc,fit) parameters were fit

using the deterministic V1 circuit model [198]

115

Wfit =

WEE WEP WES WEV

WPE WPP WPS WPV

WSE WSP WSS WSV

WV E WV P WV S WVV

=

2.18 −1.19 −.594 −.229

1.66 −.651 −.680 −.242

.895 −5.22 × 10−3 −1.51 × 10−4 −.761

3.34 −2.31 −.254 −2.52 × 10−4

,

(5.10)

hb,fit =

.416

.429

.491

.486

, (5.11)

and

hc,fit =

.359

.403

0

0

. (5.12)

To obtain rates on a realistic scale (100-fold greater), we map these fitted parameters to an

equivalence class

W =

WEE WEP WES WEV

WPE WPP WPS WPV

WSE WSP WSS WSV

WV E WV P WV S WVV

=

.218 −.119 −.0594 −.0229

.166 −.0651 −.068 −.0242

.0895 −5.22 × 10−4 −1.51 × 10−5 −.0761

.334 −.231 −.0254 −2.52 × 10−5

,

(5.13)

116

hb =

hb,E

hb,P

hb,S

hb,V

=

4.16

4.29

4.91

4.86

, (5.14)

and

hc =

hc,E

hc,P

hc,S

hc,V

=

3.59

4.03

0

0

. (5.15)

Circuit responses are simulated using T = 200 time steps at dt = 0.5ms from an initial con-

dition drawn from x(0) ∼ U [10Hz, 25Hz]. Standard deviation of the E-population sE (x; z) is

calculated as the square root of the temporal variance from tss = 75ms to Tdt = 100ms

sE (x; z) =
√
Et>tss

[(
xE (t) − Et>tss [xE (t)]

)2]
. (5.16)

5.5.1.2 EPI details for the V1 model

To write the emergent properties of Equation 5.2 in terms of the EPI optimization, we have

f (x; z) = sE (x; z), (5.17)

µ =
[
5

]
(5.18)

(or µ =
[
10

]
), and

σ2 =
[
12

]
(5.19)

(see Sections 4.4.1.3-4.4.1.4, and example in Section 4.4.1.5).

For EPI in Figures 5.1D-E and 5.4, we used a real NVP architecture with three coupling layers

and two-layer neural networks of 50 units per layer. The normalizing flow architecture mapped

117

z0 ∼ N (0, I) to a support of z = [σE, σP, σS, σV] ∈ [0.0, 0.5]4. EPI optimization was run using

three different random seeds for architecture initialization θ with an augmented lagrangian coef-

ficient of c0 = 10−1, β = 2, a batch size n = 100, and simulated 100 trials to calculate average

sE (x; z) for each z(i). We used imax = 2, 000 iterations per epoch. The distributions shown are those

of the architectures converging with criteria Ntest = 100 at greatest entropy across three random

seeds. Optimization details are shown in Figure 5.5. The sums of squares of each pair of param-

eters are shown for each EPI distribution in Figure 5.6. The plots are histograms of 500 samples

from each EPI distribution from which the significance p-values of Section 5.1 are determined.

Figure 5.4: EPI inferred distribution for X(10Hz).

5.5.1.3 Sensitivity analyses

In Fig. 5.1E, we visualize the modes of qθ (z | X) throughout the σE-σP marginal. At each

local mode z∗(σP), where σP is fixed, we calculated the Hessian and visualized the sensitivity

dimension in the direction of positive σE .

118

Figure 5.5: EPI optimization qθ (z | X(5Hz)) A. Entropy throughout optimization. B. The emer-
gent property statistic means and variances converge to their constraints at 8,000 iterations follow-
ing the fourth augmented lagrangian epoch.

A B

5.5.1.4 Testing for the paradoxical effect

The paradoxical effect occurs when a populations steady state rate is decreased (or increased)

when an increase (decrease) in current is applied to that population [170]. To see which, if any,

populations exhibited a paradoxical effect, we examined responses to changes in input to individual

neuron type populations, where the initial condition was the steady-state response to h (Fig. 5.7).

Input magnitudes were chosen so that the effect is salient (0.002 for E and P, but 0.02 for S and

V). Only the P-population exhibited the paradoxical effect at this connectivity W and input h.

5.5.1.5 Primary visual cortex: Mathematical intuition and challenges

We re-write the original Equations 5.7 and 5.8 in the following way:

dx =
1
τ

(−x + φ(Wx + h + ε))dt

dε = −
dt
τnoise

ε +

√
2

√
τnoise

ΣεdW
(5.20)

119

Figure 5.6: EPI predictive distributions of the sum of squares of each pair of noise parameters.
co

un
t

co
un

t

Where in this paper we chose Σε , the covariance of the noise to be

Σε = τnoise

σ̃E 0 0 0

0 σ̃P 0 0

0 0 σ̃S 0

0 0 0 σ̃V

(5.21)

and where σ̃α is the reparameterized standard deviation of the noise for population α from Equa-

tion 5.9.

We are interested in computing the covariance of the activity. For that, first we define v =

ωx+h+ε , the total input to each cell type, and the matrix S, the negative Jacobian S = I−ω f ′(−v).

Then, Eq. (5.20) can be written as an 8-dimensional system. Linearizing around the fixed point of

the system without fluctuations, we find the equations that describe the fluctuations of the input to

each cell type:

120

E
P
S
V

Figure 5.7: (Left) SSSN simulations for small increases in neuron-type population input. (Right)
Average (solid) and standard deviation (shaded) of stochastic fluctuations of responses.

121

d
*..
,

δv

ε

+//
-
= −

*..
,

S −
τnoise−τ
ττnoise

I

0 1
τnoise

I

+//
-

*..
,

δv

ε

+//
-

dt +
*..
,

0
√

2
√
τnoise
Σε

0
√

2
√
τnoise
Σε

+//
-

dW (5.22)

Where dW is a vector with the private noise of each variable. The dW term is multiplied

by a non-diagonal matrix is because the noise that the voltage receives is the exact same than

the one that comes from the OU process and not another process. The covariance of the inputs

Λv = 〈δvδvT 〉 can be found as the solution the following Lyapunov Equation [228, 235]:

*..
,

S −
τnoise−τ
ττnoise

I

0 1
τnoise

I

+//
-

*..
,

Λv Λc

ΛT
c Λε

+//
-
+

*..
,

Λv Λc

ΛT
c Λε

+//
-

*..
,

ST 0

−
τnoise−τ
ττnoise

I 1
τnoise

I

+//
-
=

*..
,

2
τnoise
Λε

2
τnoise
Λε

2
τnoise
Λε

2
τnoise
Λε

+//
-

(5.23)

Where Λc = 〈δvδεT 〉 can be eliminated by solving this block matrix multiplication:

SΛv + ΛvST =
2Λε
τnoise

+
τ2

noise − τ
2

(ττnoise)2

(
(

1
τnoise

I + S)−1
Λε + Λε (

1
τnoise

I + ST)−1
)

(5.24)

The equation above is another Lyapunov Equation, now in 4 dimensions. In the simplest case

in which τnoise = τ, the voltage is directly driven by white noise, and Λv can be expressed in

powers of S and ST . Because S satisfies its own polynomial equation (Cayley Hamilton theorem),

there will be 4 coefficients for the expansion of S and 4 for ST , resulting in 16 coefficients that

define Λv for a given S. Due to symmetry arguments[235], in this case the diagonal elements of

the covariance matrix of the voltage will have the form:

Λvii =
∑

i={E,P,S,V }

gi (S)σ2
ii (5.25)

These coefficients gi (S) are intricate functions of the Jacobian of the system. Although expres-

122

sions for these coefficients can be found explicitly, only numerical evaluation of those expressions

determine which components of the noisy input are going to strongly influence the variability of

excitatory population. Showing the generality of this dependence in more complicated noise sce-

narios (e.g. τnoise > τ as in Section 5.1), is the focus of current research.

5.5.2 Superior colliculus

5.5.2.1 SC model

The ability to switch between two separate tasks throughout randomly interleaved trials, or

“rapid task switching," has been studied in rats, and midbrain superior colliculus (SC) has been

show to play an important in this computation [236]. Neural recordings in SC exhibited two

populations of neurons that simultaneously represented both task context (Pro or Anti) and motor

response (contralateral or ipsilateral to the recorded side), which led to the distinction of two

functional classes: the Pro/Contra and Anti/Ipsi neurons [199]. Given this evidence, Duan et al.

proposed a model with four functionally-defined neuron-type populations: two in each hemisphere

corresponding to the Pro/Contra and Anti/Ipsi populations. We study how the connectivity of this

neural circuit governs rapid task switching ability.

The four populations of this model are denoted as left Pro (LP), left Anti (LA), right Pro (RP)

and right Anti (RA). Each unit has an activity (xα) and internal variable (uα) related by

xα = φ(uα) =
(

1
2

tanh
(uα − a

b

)
+

1
2

)
, (5.26)

where α ∈ {LP, L A, RA, RP}, a = 0.05 and b = 0.5 control the position and shape of the nonlin-

123

earity. We order the neural populations of x and u in the following manner

x =

xLP

xL A

xRP

xRA

u =

uLP

uL A

uRP

uRA

, (5.27)

which evolve according to

τ
du
dt
= −u +Wx + h + dB. (5.28)

with time constant τ = 0.09s, step size 24ms and Gaussian noise dB of variance 0.22. These

hyperparameter values are motivated by modeling choices and results from [199].

The weight matrix has 4 parameters for self sW , vertical vW , horizontal hW , and diagonal dW

connections:

W =

sW vW hW dW

vW sW dW hW

hW dW sW vW

dW hW vW sW

. (5.29)

We study the role of parameters z = [sW, vW, hW, dW]> in rapid task switching.

The circuit receives four different inputs throughout each trial, which has a total length of 1.8s.

h = hconstant + hP,bias + hrule + hchoice-period + hlight. (5.30)

There is a constant input to every population,

hconstant = Iconstant[1, 1, 1, 1]>, (5.31)

a bias to the Pro populations

hP,bias = IP,bias[1, 0, 1, 0]>, (5.32)

124

A B

C

Figure 5.8: A. Same pairplot as Fig. 5.2C colored by Pro task accuracy. B. Same as A colored by
Anti task accuracy. C. Connectivity parameters of EPI distributions versus task accuracies. β is
slope coefficient of linear regression, r is correlation, and p is the two-tailed p-value.

125

Pro, Left

Anti, Left

A B
LP
RP
RA
LA

Figure 5.9: A. Simulations in network regime 1: z∗(sW = −0.75). B. Simulations in network
regime 2: z∗(sW = 0.75).

rule-based input depending on the condition

hP,rule(t) =

IP,rule[1, 0, 1, 0]>, if t ≤ 1.2s

0, otherwise
(5.33)

hA,rule(t) =

IA,rule[0, 1, 0, 1]>, if t ≤ 1.2s

0, otherwise
, (5.34)

a choice-period input

hchoice(t) =

Ichoice[1, 1, 1, 1]>, if t > 1.2s

0, otherwise
, (5.35)

and an input to the right or left-side depending on where the light stimulus is delivered

hlight(t) =

Ilight[1, 1, 0, 0]>, if 1.2s < t < 1.5s and Left

Ilight[0, 0, 1, 1]>, if 1.2s < t < 1.5s and Right

0, otherwise

. (5.36)

The input parameterization was fixed to Iconstant = 0.75, IP,bias = 0.5, IP,rule = 0.6, IA,rule = 0.6,

126

+ +

++

+

+

_

_++

_ _+ _

_+

all side task diag

A

B

LA RA

LP RP

P
ro

 a
cc

ur
ac

y
A

nt
i a

cc
ur

ac
y

All eigenvector
perturbation

Side eigenvector
perturbation

connectivity perturbation distance () from mode

Figure 5.10: A. Invariant eigenvectors of connectivity matrix W . B. Accuracies for connectivity
perturbations when changing λall and λside (λtask and λdiag shown in Fig. 5.2D).

Ichoice = 0.25, and Ilight = 0.5.

5.5.2.2 Task accuracy calculation

The accuracies of the Pro and Anti tasks are calculated as

pP(x; z) = Ex∼p(x|z) [dP(x; z)] (5.37)

and

pA(x; z) = Ex∼p(x|z) [dA(x; z)] (5.38)

127

Pro
Anti

Anti error saturation

regime 1regime 2 regime 1regime 2

(%)
Task error Connectivity correlation

with Anti error

Figure 5.11: (Left) Mean and standard error of Pro and Anti error from regime 1 to regime 2 at
γ = 0.85. (Right) Correlations of connectivity eigenvalues with Anti error from regime 1 to regime
2 at γ = 0.85.

where dP(x; z) and dA(x; z) calculate the decision made in each trial (approximately 1 for correct

and 0 for incorrect choices). Specifically,

dP(x; z) = Θ[xLP(t = 1.8s) − xRP(t = 1.8s)] (5.39)

in Pro trials where the stimulus is on the left side, and Θ approximates the Heaviside step function.

Similarly,

dA(x; z) = Θ[xRP(t = 1.8s) − xLP(t = 1.8s)] (5.40)

in Anti trials where the stimulus was on the left side. Our accuracy calculation only considers one

stimulus presentation (Left), since the model is left-right symmetric. The accuracy is averaged

over 200 independent trials, and the Heaviside step function is approximated as

Θ(x) = sigmoid(βΘx), (5.41)

where βΘ = 100.

128

Matches experiment

linear fit

.30
LP
RP
RA
LA

Pro, Left trials

Anti, Left trials

Figure 5.12: (Left) Mean and standard deviation (shading) of responses of the SC model at
the mode of the EPI distribution to delay period inactivation at γ = 0.675. Accuracy in Pro
(top) and Anti (bottom) task is shown as a percentage. (Right) Anti accuracy following delay
period inactivation at γ = 0.675 versus accuracy in the Pro task across connectivities in the EPI
distribution.

5.5.2.3 EPI details for the SC model

To write the emergent properties of Equation 5.4 in terms of the EPI optimization, we have

f (x; z) =

dP(x; z)

dA(x; z)

(5.42)

µ =

.75

.75

, (5.43)

and

σ2 =

.0752

.0752

(5.44)

(see Sections 4.4.1.3-4.4.1.4, and example in Section 4.4.1.5).

Throughout optimization, the augmented lagrangian parameters η and c, were updated after

each epoch of imax = 2, 000 iterations (see Section 4.4.1.4). The optimization converged after ten

epochs (Fig. 5.12).

For EPI in Fig. 5.2C, we used a real NVP architecture with three coupling layers of affine

129

A B

Figure 5.13: EPI optimization of the SC model producing rapid task switching. A. Entropy
throughout optimization. B. The emergent property statistic means and variances converge to their
constraints at 20,000 iterations following the tenth augmented lagrangian epoch.

transformations parameterized by two-layer neural networks of 50 units per layer. The initial

distribution was a standard isotropic gaussian z0 ∼ N (0, I) mapped to a support of zi ∈ [−5, 5].

We used an augmented lagrangian coefficient of c0 = 102, a batch size n = 100, and β = 2.

The distribution was the greatest EPI distribution to converge across 5 random seeds with criteria

Ntest = 25.

The bend in the EPI distribution is not a spurious result of the EPI optimization. The struc-

ture discovered by EPI matches the shape of the set of points returned from brute-force random

sampling (Fig. 5.14A) These connectivities were sampled from a uniform distribution over the

range of each connectivity parameter, and all parameters producing accuracy in each task within

the range of 60% to 90% were kept. This set of connectivities will not match the distribution of

EPI exactly, since it is not conditioned on the emergent property. For example the parameter set

returned by the brute-force search is biased towards lower accuracies (Fig. 5.14B).

5.5.2.4 Mode identification with EPI

We found one mode of the EPI distribution for fixed values of sW from 1 to -1 in steps of

0.25. To begin, we chose an initial parameter value from 500 parameter samples z ∼ qθ (z | X)

that had closest sW value to 1. We then optimized this estimate of the mode (for fixed sW) using

probability gradients of the deep probability distribution for 500 steps of gradient ascent with a

130

100

100

0

0

ra
nd

om
E

P
I

A B

sa
m

pl
in

g

Figure 5.14: A.Rapid task switching SC connectivities obtained from random sampling. B. Task
accuracies of the inferred distributions from random sampling (top) and EPI (bottom).

learning rate of 5 × 10−3. The next mode (at sW = 0.75) was found using the previous mode as

the initialization. This and all subsequent optimizations used 200 steps of gradient ascent with a

learning rate of 1×10−3, except at sW = −1 where a learning rate of 5×10−4 was used. During all

mode identification optimizations, the learning rate was reduced by half (decay = 0.5) after every

100 iterations.

5.5.2.5 Sample grouping by mode

For the analyses in Figure 5.3C and Figure 5.11, we obtained parameters for each step along

the continuum between regimes 1 and 2 by sampling from the EPI distribution. Each sample was

assigned to the closest mode z∗(sW). Sampling continued until 500 samples were assigned to each

mode, which took 2.67 seconds (5.34ms/sample-per-mode). It took 9.59 minutes to obtain just

5 samples for each mode with brute force sampling requiring accuracies between 60% and 90%

in each task (115s/sample-per-mode). This corresponds to a sampling speed increase of roughly

21,500 once the EPI distribution has been learned.

131

5.5.2.6 Sensitivity analysis

At each mode, we measure the sensitivity dimension (that of most negative eigenvalue in the

Hessian of the EPI distribution) v1(z∗). To resolve sign degeneracy in eigenvectors, we chose

v1(z∗) to have negative element in hW . This tells us what parameter combination rapid task switch-

ing is most sensitive to at this parameter choice in the regime.

5.5.2.7 Connectivity eigendecomposition and processing modes

To understand the connectivity mechanisms governing task accuracy, we took the eigendecom-

position of the connectivity matrices W = QΛQ−1, which results in the same eigenmodes qi for

all W parameterized by z (Fig. 5.10A). These eigenvectors are always the same, because the con-

nectivity matrix is symmetric and the model also assumes symmetry across hemispheres, but the

eigenvalues of connectivity (or degree of eigenmode amplification) change with z. These basis

vectors have intuitive roles in processing for this task, and are accordingly named the all eigen-

mode - all neurons co-fluctuate, side eigenmode - one side dominates the other, task eigenmode

- the Pro or Anti populations dominate the other, and diag mode - Pro- and Anti-populations of

opposite hemispheres dominate the opposite pair. Due to the parametric structure of the connec-

tivity matrix, the parameters z are a linear function of the eigenvalues λ = [λall, λside, λtaskλdiag]>

associated with these eigenmodes.

z = Aλ (5.45)

A =
1
4

1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

. (5.46)

We are interested in the effect of raising or lowering the amplification of each eigenmode in

the connectivity matrix by perturbing individual eigenvalues λ. To test this, we calculate the unit

132

vector of changes in the connectivity z that result from a change in the associated eigenvalues

va =

∂z
∂λa

| ∂z
∂λa
|2
, (5.47)

where
∂z
∂λa
= Aea, (5.48)

and e.g. eall = [1, 0, 0, 0]>. So va is the normalized column of A corresponding to eigenmode

a. The parameter dimension va (a ∈ {all, side, task, and diag}) that increases the eigenvalue of

connectivity λa is z-invariant (Equation 5.48) and va ⊥ vb,a. By perturbing z along va, we can

examine how model function changes by directly modulating the connectivity amplification of

specific eigenmodes, which have interpretable roles in processing in each task.

5.5.2.8 Modeling optogenetic silencing.

We tested whether the inferred SC model connectivities could reproduce experimental effects

of optogenetic inactivation in rats [199]. During periods of simulated optogenetic inactivation,

activity was decreased proportional to the optogenetic strength γ ∈ [0, 1]

xα = (1 − γ)φ(uα). (5.49)

Delay period inactivation was from 0.8 < t < 1.2.

133

Conclusion

This dissertation focused on the development of machine learning techniques for theoretical

neuroscience. For building normative theories, we developed optimization techniques for

predicting neural responses that encode muscle activity according to different normative criteria

(Chapter 2). For building descriptive theories, we developed a technique for efficient inference in

statistical generative models of neural data that belong to the exponential family (Chapter 3). For

building mechanistic theories, we developed a parameter inference technique for neural circuit

models that constrains the inferred parameter distribution to produce an emergent property of

computation (Chapter 4). Emergent property inference was used for novel insight regarding

mechanistic models of primary visual cortex and superior colliculus (Chapter 5).

The methods introduced in Chapters 3 and 4 used normalizing flows to create powerful deep

generative modeling techniques. By fitting distributions (defined by deep neural networks) to

complex parameter distributions, we were then able to quantify and characterize the scientifically

meaningful structure captured by these deep generative models. In Chapter 5, we showed how

effectively such techniques can be used for scientific analysis, and believe this to be a powerful

approach to be used in future theoretical work.

134

References

[1] Eric R Kandel et al. Principles of neural science. Vol. 4. McGraw-hill New York, 2000.

[2] Mark Bear, Barry Connors, and Michael A Paradiso. Neuroscience: Exploring the brain.
Jones & Bartlett Learning, LLC, 2020.

[3] Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and mathe-
matical modeling of neural systems. Computational Neuroscience Series, 2001.

[4] Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.

[5] Wulfram Gerstner et al. Neuronal dynamics: From single neurons to networks and models
of cognition. Cambridge University Press, 2014.

[6] Christof Koch and Idan Segev. “The role of single neurons in information processing”. In:
Nature neuroscience 3.11 (2000), pp. 1171–1177.

[7] Michael London and Michael Häusser. “Dendritic computation”. In: Annu. Rev. Neurosci.
28 (2005), pp. 503–532.

[8] Nancy Kopell and G Bard Ermentrout. “Coupled oscillators and the design of central pat-
tern generators”. In: Mathematical biosciences 90.1-2 (1988), pp. 87–109.

[9] Eve Marder. “From biophysics to models of network function”. In: Annual review of neu-
roscience 21.1 (1998), pp. 25–45.

[10] Larry F Abbott. “Theoretical neuroscience rising”. In: Neuron 60.3 (2008), pp. 489–495.

[11] Xiao-Jing Wang. “Neurophysiological and computational principles of cortical rhythms in
cognition”. In: Physiological reviews 90.3 (2010), pp. 1195–1268.

[12] Timothy O’Leary, Alexander C Sutton, and Eve Marder. “Computational models in the
age of large datasets”. In: Current opinion in neurobiology 32 (2015), pp. 87–94.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing sys-
tems 25 (2012), pp. 1097–1105.

[14] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition with
deep recurrent neural networks”. In: 2013 IEEE international conference on acoustics,
speech and signal processing. Ieee. 2013, pp. 6645–6649.

135

[15] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in nervous
activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133.

[16] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural net-
works 61 (2015), pp. 85–117.

[17] Liam Paninski and John P Cunningham. “Neural data science: accelerating the experiment-
analysis-theory cycle in large-scale neuroscience”. In: Current opinion in neurobiology 50
(2018), pp. 232–241.

[18] Blake A Richards and et al. “A deep learning framework for neuroscience”. In: Nature
Neuroscience (2019).

[19] Daniel Levenstein et al. “On the role of theory and modeling in neuroscience”. In: arXiv
preprint arXiv:2003.13825 (2020).

[20] David H Hubel and Torsten N Wiesel. “Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex”. In: The Journal of physiology 160.1 (1962),
pp. 106–154.

[21] Apostolos P Georgopoulos, Andrew B Schwartz, and Ronald E Kettner. “Neuronal popu-
lation coding of movement direction”. In: Science 233.4771 (1986), pp. 1416–1419.

[22] John O’keefe and Lynn Nadel. The hippocampus as a cognitive map. Oxford: Clarendon
Press, 1978.

[23] Robert E Kass, Uri T Eden, and Emery N Brown. Analysis of neural data. Vol. 491.
Springer, 2014.

[24] Robert E Kass and Valérie Ventura. “A spike-train probability model”. In: Neural compu-
tation 13.8 (2001), pp. 1713–1720.

[25] Emery N Brown et al. “A statistical paradigm for neural spike train decoding applied to po-
sition prediction from ensemble firing patterns of rat hippocampal place cells”. In: Journal
of Neuroscience 18.18 (1998), pp. 7411–7425.

[26] Liam Paninski. “Maximum likelihood estimation of cascade point-process neural encoding
models”. In: Network: Computation in Neural Systems 15.4 (2004), pp. 243–262.

[27] Wilson Truccolo et al. “A point process framework for relating neural spiking activity to
spiking history, neural ensemble, and extrinsic covariate effects”. In: Journal of neurophys-
iology 93.2 (2005), pp. 1074–1089.

[28] Anne C Smith and Emery N Brown. “Estimating a state-space model from point process
observations”. In: Neural computation 15.5 (2003), pp. 965–991.

136

[29] M Yu Byron et al. “Gaussian-process factor analysis for low-dimensional single-trial anal-
ysis of neural population activity”. In: Advances in neural information processing systems.
2009, pp. 1881–1888.

[30] Vernon Lawhern et al. “Population decoding of motor cortical activity using a general-
ized linear model with hidden states”. In: Journal of neuroscience methods 189.2 (2010),
pp. 267–280.

[31] Shreya Saxena and John P Cunningham. “Towards the neural population doctrine”. In:
Current opinion in neurobiology 55 (2019), pp. 103–111.

[32] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: International
Conference on Learning Representations (2014).

[33] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic backpropaga-
tion and approximate inference in deep generative models”. In: arXiv preprint arXiv:1401.4082
(2014).

[34] Yuanjun Gao et al. “Linear dynamical neural population models through nonlinear embed-
dings”. In: NIPS. 2016, pp. 163–171.

[35] Yuan Zhao and Il Memming Park. “Recursive variational bayesian dual estimation for
nonlinear dynamics and non-gaussian observations”. In: stat 1050 (2017), p. 27.

[36] Gabriel Barello, Adam Charles, and Jonathan Pillow. “Sparse-Coding Variational Auto-
Encoders”. In: bioRxiv (2018), p. 399246.

[37] Chethan Pandarinath et al. “Inferring single-trial neural population dynamics using sequen-
tial auto-encoders”. In: Nature methods (2018), p. 1.

[38] Alexander B Wiltschko et al. “Mapping sub-second structure in mouse behavior”. In: Neu-
ron 88.6 (2015), pp. 1121–1135.

[39] Matthew J Johnson et al. “Composing graphical models with neural networks for structured
representations and fast inference”. In: Advances in neural information processing systems.
2016, pp. 2946–2954.

[40] Eleanor Batty et al. “BehaveNet: nonlinear embedding and Bayesian neural decoding of
behavioral videos”. In: Advances in Neural Information Processing Systems (2019).

[41] Gabrielle J Gutierrez, Timothy O’Leary, and Eve Marder. “Multiple mechanisms switch
an electrically coupled, synaptically inhibited neuron between competing rhythmic oscil-
lators”. In: Neuron 77.5 (2013), pp. 845–858.

137

[42] Shin-ya Takemura et al. “The comprehensive connectome of a neural substrate for ‘ON’motion
detection in Drosophila”. In: Elife 6 (2017), e24394.

[43] David Sussillo. “Neural circuits as computational dynamical systems”. In: Current opinion
in neurobiology 25 (2014), pp. 156–163.

[44] Romain Brette et al. “Simulation of networks of spiking neurons: a review of tools and
strategies”. In: Journal of computational neuroscience 23.3 (2007), pp. 349–398.

[45] Eve Marder and Vatsala Thirumalai. “Cellular, synaptic and network effects of neuromod-
ulation”. In: Neural Networks 15.4-6 (2002), pp. 479–493.

[46] Omri Barak. “Recurrent neural networks as versatile tools of neuroscience research”. In:
Current opinion in neurobiology 46 (2017), pp. 1–6.

[47] Xiao-Jing Wang et al. “Brain connectomes come of age”. In: Current Opinion in Neurobi-
ology 65 (2020), pp. 152–161.

[48] Catherine Morris and Harold Lecar. “Voltage oscillations in the barnacle giant muscle
fiber”. In: Biophysical journal 35.1 (1981), pp. 193–213.

[49] Helen H Yang and Thomas R Clandinin. “Elementary motion detection in Drosophila:
algorithms and mechanisms”. In: Annual Review of Vision Science 4 (2018), pp. 143–163.

[50] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. “The frontier of simulation-based
inference”. In: Proceedings of the National Academy of Sciences (2020).

[51] Mark A Beaumont, Wenyang Zhang, and David J Balding. “Approximate Bayesian com-
putation in population genetics”. In: Genetics 162.4 (2002), pp. 2025–2035.

[52] Scott A Sisson, Yanan Fan, and Mark M Tanaka. “Sequential monte carlo without like-
lihoods”. In: Proceedings of the National Academy of Sciences 104.6 (2007), pp. 1760–
1765.

[53] Donald Olding Hebb. “The organization of behavior; a neuropsycholocigal theory”. In: A
Wiley Book in Clinical Psychology 62 (1949), p. 78.

[54] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage and or-
ganization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[55] Paul J Werbos. “Applications of advances in nonlinear sensitivity analysis”. In: System
modeling and optimization. Springer, 1982, pp. 762–770.

[56] Yann LeCun. “Une procedure d’apprentissage ponr reseau a seuil asymetrique”. In: Pro-
ceedings of Cognitiva 85 (1985), pp. 599–604.

138

[57] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal repre-
sentations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[58] David Sussillo and Omri Barak. “Opening the black box: low-dimensional dynamics in
high-dimensional recurrent neural networks”. In: Neural computation 25.3 (2013), pp. 626–
649.

[59] Paul Werbos. “Beyond regression:" new tools for prediction and analysis in the behavioral
sciences”. In: Ph. D. dissertation, Harvard University (1974).

[60] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations
by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[61] Herbert Jaeger and Harald Haas. “Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication”. In: science 304.5667 (2004), pp. 78–80.

[62] David Sussillo and Larry F Abbott. “Generating coherent patterns of activity from chaotic
neural networks”. In: Neuron 63.4 (2009), pp. 544–557.

[63] Timothy P Lillicrap et al. “Random synaptic feedback weights support error backpropaga-
tion for deep learning”. In: Nature communications 7.1 (2016), pp. 1–10.

[64] James M Murray. “Local online learning in recurrent networks with random feedback”. In:
ELife 8 (2019), e43299.

[65] Daniel LK Yamins et al. “Performance-optimized hierarchical models predict neural re-
sponses in higher visual cortex”. In: Proceedings of the national academy of sciences
111.23 (2014), pp. 8619–8624.

[66] Bruno A Olshausen and David J Field. “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images”. In: Nature 381.6583 (1996), pp. 607–609.

[67] Ian J Goodfellow et al. “Generative adversarial networks”. In: arXiv preprint arXiv:1406.2661
(2014).

[68] Danilo Jimenez Rezende and Shakir Mohamed. “Variational inference with normalizing
flows”. In: arXiv preprint arXiv:1505.05770 (2015).

[69] George Papamakarios et al. “Normalizing flows for probabilistic modeling and inference”.
In: arXiv preprint arXiv:1912.02762 (2019).

[70] Durk P Kingma et al. “Improved variational inference with inverse autoregressive flow”.
In: Advances in neural information processing systems 29 (2016), pp. 4743–4751.

139

[71] George Papamakarios, Iain Murray, and Theo Pavlakou. “Masked autoregressive flow for
density estimation”. In: NIPS. 2017, pp. 2335–2344.

[72] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using real
nvp”. In: Proceedings of the 5th International Conference on Learning Representations
(2017).

[73] Abigail A Russo et al. “Motor cortex embeds muscle-like commands in an untangled pop-
ulation response”. In: Neuron 97.4 (2018), pp. 953–966.

[74] Abigail A Russo et al. “Neural trajectories in the supplementary motor area and motor
cortex exhibit distinct geometries, compatible with different classes of computation”. In:
Neuron 107.4 (2020), pp. 745–758.

[75] Richard P Dum and Peter L Strick. “The origin of corticospinal projections from the pre-
motor areas in the frontal lobe”. In: Journal of Neuroscience 11.3 (1991), pp. 667–689.

[76] Jean-Alban Rathelot and Peter L Strick. “Subdivisions of primary motor cortex based on
cortico-motoneuronal cells”. In: Proceedings of the National Academy of Sciences 106.3
(2009), pp. 918–923.

[77] Andrew B Schwartz. “Direct cortical representation of drawing”. In: Science 265.5171
(1994), pp. 540–542.

[78] Daniel W Moran and Andrew B Schwartz. “Motor cortical activity during drawing move-
ments: population representation during spiral tracing”. In: Journal of neurophysiology
82.5 (1999), pp. 2693–2704.

[79] Emanuel Todorov. “Direct cortical control of muscle activation in voluntary arm move-
ments: a model”. In: Nature neuroscience 3.4 (2000), pp. 391–398.

[80] Lauren E Sergio, Catherine Hamel-Pâquet, and John F Kalaska. “Motor cortex neural cor-
relates of output kinematics and kinetics during isometric-force and arm-reaching tasks”.
In: Journal of neurophysiology 94.4 (2005), pp. 2353–2378.

[81] Robert Ajemian et al. “Assessing the function of motor cortex: single-neuron models of
how neural response is modulated by limb biomechanics”. In: Neuron 58.3 (2008), pp. 414–
428.

[82] Mark M Churchland et al. “Neural population dynamics during reaching”. In: Nature
487.7405 (2012), pp. 51–56.

[83] Krishna V Shenoy, Maneesh Sahani, and Mark M Churchland. “Cortical control of arm
movements: a dynamical systems perspective”. In: Annual review of neuroscience 36 (2013),
pp. 337–359.

140

[84] Thomas M Hall, Felipe de Carvalho, and Andrew Jackson. “A common structure under-
lies low-frequency cortical dynamics in movement, sleep, and sedation”. In: Neuron 83.5
(2014), pp. 1185–1199.

[85] David Sussillo et al. “A neural network that finds a naturalistic solution for the production
of muscle activity”. In: Nature neuroscience 18.7 (2015), pp. 1025–1033.

[86] Jonathan A Michaels, Benjamin Dann, and Hansjörg Scherberger. “Neural population dy-
namics during reaching are better explained by a dynamical system than representational
tuning”. In: PLoS computational biology 12.11 (2016), e1005175.

[87] Jeffrey S Seely et al. “Tensor analysis reveals distinct population structure that parallels the
different computational roles of areas M1 and V1”. In: PLoS computational biology 12.11
(2016), e1005164.

[88] Shaul Druckmann and Dmitri B Chklovskii. “Neuronal circuits underlying persistent rep-
resentations despite time varying activity”. In: Current Biology 22.22 (2012), pp. 2095–
2103.

[89] Matthew T Kaufman et al. “Cortical activity in the null space: permitting preparation with-
out movement”. In: Nature neuroscience 17.3 (2014), pp. 440–448.

[90] Darcy Michelle Griffin et al. “Do corticomotoneuronal cells predict target muscle EMG
activity?” In: Journal of neurophysiology 99.3 (2008), pp. 1169–1986.

[91] Michelle M Morrow, Eric A Pohlmeyer, and Lee E Miller. “Control of muscle synergies
by cortical ensembles”. In: Progress in Motor Control. Springer, 2009, pp. 179–199.

[92] Marc H Schieber and Gil Rivlis. “Partial reconstruction of muscle activity from a pruned
network of diverse motor cortex neurons”. In: Journal of neurophysiology 97.1 (2007),
pp. 70–82.

[93] Edward V Evarts. “Relation of pyramidal tract activity to force exerted during voluntary
movement.” In: Journal of neurophysiology 31.1 (1968), pp. 14–27.

[94] Jaime Cadena-Valencia et al. “Entrainment and maintenance of an internal metronome in
supplementary motor area”. In: Elife 7 (2018), e38983.

[95] Katja Kornysheva and Jörn Diedrichsen. “Human premotor areas parse sequences into their
spatial and temporal features”. In: Elife 3 (2014), e03043.

[96] Hugo Merchant and Victor De Lafuente. “Introduction to the neurobiology of interval tim-
ing”. In: Neurobiology of interval timing (2014), pp. 1–13.

141

[97] Hajime Mushiake, Masahiko Inase, and Jun Tanji. “Neuronal activity in the primate pre-
motor, supplementary, and precentral motor cortex during visually guided and internally
determined sequential movements”. In: Journal of neurophysiology 66.3 (1991), pp. 705–
718.

[98] Kae Nakamura, Katsuyuki Sakai, and Okihide Hikosaka. “Neuronal activity in medial
frontal cortex during learning of sequential procedures”. In: Journal of neurophysiology
80.5 (1998), pp. 2671–2687.

[99] Evan D Remington et al. “Flexible sensorimotor computations through rapid reconfigura-
tion of cortical dynamics”. In: Neuron 98.5 (2018), pp. 1005–1019.

[100] Wolfram Schultz and Ranulfo Romo. “Role of primate basal ganglia and frontal cortex
in the internal generation of movements”. In: Experimental Brain Research 91.3 (1992),
pp. 363–384.

[101] Keisetsu Shima and Jun Tanji. “Neuronal activity in the supplementary and presupple-
mentary motor areas for temporal organization of multiple movements”. In: Journal of
neurophysiology 84.4 (2000), pp. 2148–2160.

[102] Jeong-Woo Sohn and Daeyeol Lee. “Order-dependent modulation of directional signals in
the supplementary and presupplementary motor areas”. In: Journal of Neuroscience 27.50
(2007), pp. 13655–13666.

[103] J Tanji and KIYOSHI Kurata. “Comparison of movement-related activity in two cortical
motor areas of primates.” In: Journal of Neurophysiology 48.3 (1982), pp. 633–653.

[104] Jun Tanji and Keisetsu Shima. “Role for supplementary motor area cells in planning several
movements ahead”. In: Nature 371.6496 (1994), pp. 413–416.

[105] D Thaler et al. “The functions of the medial premotor cortex”. In: Experimental Brain
Research 102.3 (1995), pp. 445–460.

[106] Jing Wang et al. “Flexible timing by temporal scaling of cortical responses”. In: Nature
neuroscience 21.1 (2018), p. 102.

[107] Laura N Driscoll, Matthew D Golub, and David Sussillo. “Computation through cortical
dynamics”. In: Neuron 98.5 (2018), pp. 873–875.

[108] Juan A Gallego et al. “Neural manifolds for the control of movement”. In: Neuron 94.5
(2017), pp. 978–984.

[109] Valerio Mante et al. “Context-dependent computation by recurrent dynamics in prefrontal
cortex”. In: nature 503.7474 (2013), pp. 78–84.

142

[110] Mark Stopfer and Gilles Laurent. “Short-term memory in olfactory network dynamics”.
In: Nature 402.6762 (1999), pp. 664–668.

[111] James J DiCarlo and David D Cox. “Untangling invariant object recognition”. In: Trends
in cognitive sciences 11.8 (2007), pp. 333–341.

[112] Marino Pagan et al. “Signals in inferotemporal and perirhinal cortex suggest an untangling
of visual target information”. In: Nature neuroscience 16.8 (2013), pp. 1132–1139.

[113] Gregor Schoner and JA Kelso. “Dynamic pattern generation in behavioral and neural sys-
tems”. In: Science 239.4847 (1988), pp. 1513–1520.

[114] Aneesha K Suresh et al. “Neural population dynamics in motor cortex are different for
reach and grasp”. In: ELife 9 (2020), e58848.

[115] Hannah R Sheahan, David W Franklin, and Daniel M Wolpert. “Motor planning, not exe-
cution, separates motor memories”. In: Neuron 92.4 (2016), pp. 773–779.

[116] Carsen Stringer et al. “High-dimensional geometry of population responses in visual cor-
tex”. In: Nature 571.7765 (2019), pp. 361–365.

[117] Niru Maheswaranathan et al. “Universality and individuality in neural dynamics across
large populations of recurrent networks”. In: Advances in neural information processing
systems 2019 (2019), p. 15629.

[118] Tim Van Gelder. “The dynamical hypothesis in cognitive science”. In: Behavioral and
brain sciences 21.5 (1998), pp. 615–628.

[119] JA Scott Kelso. “Multistability and metastability: understanding dynamic coordination in
the brain”. In: Philosophical Transactions of the Royal Society B: Biological Sciences
367.1591 (2012), pp. 906–918.

[120] William Bechtel. “Representing time of day in circadian clocks”. In: Knowledge and rep-
resentation. Palo Alto, CA: CSLI Publications (2011).

[121] Eberhard E Fetz. “Are movement parameters recognizably coded in the activity of single
neurons?” In: Behavioral and brain sciences (1992), p. 154.

[122] Stephen H Scott. “Inconvenient truths about neural processing in primary motor cortex”.
In: The Journal of physiology 586.5 (2008), pp. 1217–1224.

[123] John P Cunningham and Zoubin Ghahramani. “Linear dimensionality reduction: Survey,
insights, and generalizations”. In: The Journal of Machine Learning Research 16.1 (2015),
pp. 2859–2900.

143

[124] Sean R Bittner and John P Cunningham. “Approximating exponential family models (not
single distributions) with a two-network architecture”. In: ICML Workshop on Invertible
Neural Networks and Normalizing Flows (2019).

[125] Peter Dayan et al. “The helmholtz machine”. In: Neural computation 7.5 (1995), pp. 889–
904.

[126] D. J. C. MacKay and M. N. Gibbs. “Density Networks”. In: Statistics and Neural Networks.
Oxford, 1997, pp. 129–146.

[127] Benigno Uria, Iain Murray, and Hugo Larochelle. “RNADE: The real-valued neural au-
toregressive density-estimator”. In: NIPS. 2013, pp. 2175–2183.

[128] Oren Rippel and Ryan Prescott Adams. “High-dimensional probability estimation with
deep density models”. In: arXiv preprint arXiv:1302.5125 (2013).

[129] Ian Goodfellow et al. “Generative Adversarial Nets”. In: NIPS 27. Ed. by Z. Ghahramani
et al. Curran Associates, Inc., 2014, pp. 2672–2680.

[130] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: arXiv (Dec.
2013). eprint: 1312.6114.

[131] Michalis Titsias and Miguel Lázaro-Gredilla. “Doubly stochastic variational Bayes for
non-conjugate inference”. In: International Conference on Machine Learning. 2014, pp. 1971–
1979.

[132] Andrew Gelman et al. Bayesian data analysis. Vol. 2. CRC press Boca Raton, FL, 2014.

[133] Joshua B Tenenbaum, Thomas L Griffiths, and Charles Kemp. “Theory-based Bayesian
models of inductive learning and reasoning”. In: Trends in cognitive sciences 10.7 (2006),
pp. 309–318.

[134] Peter McCullagh. “What Is a Statistical Model?” In: The Annals of Statistics 30.5 (2002),
pp. 1225–1267.

[135] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learn-
ing. Vol. 1. Springer series in statistics New York, 2001.

[136] Wenda Zhou et al. “Compressibility and Generalization in Large-Scale Deep Learning”.
In: arXiv preprint arXiv:1804.05862 (2018).

[137] Martin J Wainwright, Michael I Jordan, et al. “Graphical models, exponential families, and
variational inference”. In: Foundations and Trends® in Machine Learning 1.1–2 (2008),
pp. 1–305.

144

1312.6114

[138] Samuel Gershman and Noah Goodman. “Amortized inference in probabilistic reasoning”.
In: Proceedings of the Annual Meeting of the Cognitive Science Society. Vol. 36. 36. 2014.

[139] Andreas Stuhlmüller, Jacob Taylor, and Noah Goodman. “Learning stochastic inverses”.
In: NIPS. 2013, pp. 3048–3056.

[140] Christian Robert. The Bayesian choice: from decision-theoretic foundations to computa-
tional implementation. Springer Science & Business Media, 2007.

[141] David JC MacKay and Linda C Bauman Peto. “A hierarchical Dirichlet language model”.
In: Natural language engineering 1.3 (1995), pp. 289–308.

[142] Yee Whye Teh et al. “Hierarchical Dirichlet Processes”. In: Journal of the American Sta-
tistical Association 101.476 (2006), pp. 1566–1581. eprint: https://doi.org/10.
1198/016214506000000302.

[143] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet allocation”. In: Jour-
nal of machine Learning research 3.Jan (2003), pp. 993–1022.

[144] Jonathan K Pritchard, Matthew Stephens, and Peter Donnelly. “Inference of population
structure using multilocus genotype data”. In: Genetics 155.2 (2000), pp. 945–959.

[145] Leemon Baird, David Smalenberger, and Shawn Ingkiriwang. “One-step neural network
inversion with PDF learning and emulation”. In: Neural Networks, 2005. IJCNN’05. Pro-
ceedings. 2005 IEEE International Joint Conference on. Vol. 2. IEEE. 2005, pp. 966–971.

[146] Esteban G Tabak, Eric Vanden-Eijnden, et al. “Density estimation by dual ascent of the
log-likelihood”. In: Communications in Mathematical Sciences 8.1 (2010), pp. 217–233.

[147] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using Real
NVP”. In: arXiv preprint arXiv:1605.08803 (2016).

[148] Jörn-Henrik Jacobsen, Arnold Smeulders, and Edouard Oyallon. “i-RevNet: Deep Invert-
ible Networks”. In: arXiv preprint arXiv:1802.07088 (2018).

[149] Marcin Andrychowicz et al. “Learning to learn by gradient descent by gradient descent”.
In: NIPS. 2016, pp. 3981–3989.

[150] George Papamakarios and Iain Murray. “Distilling intractable generative models”. In: Prob-
abilistic Integration Workshop at Neural Information Processing Systems. 2015.

[151] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. “Variational inference: A review for
statisticians”. In: Journal of the American Statistical Association 112.518 (2017), pp. 859–
877.

145

https://doi.org/10.1198/016214506000000302
https://doi.org/10.1198/016214506000000302

[152] Lawrence K Saul and Michael I Jordan. “Exploiting tractable substructures in intractable
networks”. In: NIPS. 1996, pp. 486–492.

[153] David Barber and Wim Wiegerinck. “Tractable variational structures for approximating
graphical models”. In: NIPS. 1999, pp. 183–189.

[154] Matthew Hoffman and David Blei. “Stochastic structured variational inference”. In: Artifi-
cial Intelligence and Statistics. 2015, pp. 361–369.

[155] Dustin Tran, David Blei, and Edo M Airoldi. “Copula variational inference”. In: NIPS.
2015, pp. 3564–3572.

[156] Mariusz Bojarski et al. “Structured adaptive and random spinners for fast machine learning
computations”. In: arXiv preprint arXiv:1610.06209 (2016).

[157] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[158] Arthur Gretton et al. “A kernel two-sample test”. In: Journal of Machine Learning Re-
search 13.Mar (2012), pp. 723–773.

[159] John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. “Fast Gaussian process
methods for point process intensity estimation”. In: Proceedings of the 25th international
conference on Machine learning. ACM. 2008, pp. 192–199.

[160] John P Cunningham et al. “Inferring neural firing rates from spike trains using Gaussian
processes”. In: NIPS. 2008, pp. 329–336.

[161] Ryan Prescott Adams, Iain Murray, and David JC MacKay. “Tractable nonparametric
Bayesian inference in Poisson processes with Gaussian process intensities”. In: Proceed-
ings of the 26th Annual International Conference on Machine Learning. ACM. 2009,
pp. 9–16.

[162] Matthew A Smith and Adam Kohn. “Spatial and temporal scales of neuronal correlation in
primary visual cortex”. In: Journal of Neuroscience 28.48 (2008), pp. 12591–12603.

[163] Sean R Bittner et al. “Interrogating theoretical models of neural computation with emergent
property inference”. In: bioRxiv (2021), p. 837567.

[164] Ryan N Gutenkunst et al. “Universally sloppy parameter sensitivities in systems biology
models”. In: PLoS Comput Biol 3.10 (2007), e189.

[165] Kamil Erguler and Michael PH Stumpf. “Practical limits for reverse engineering of dy-
namical systems: a statistical analysis of sensitivity and parameter inferability in systems
biology models”. In: Molecular BioSystems 7.5 (2011), pp. 1593–1602.

146

[166] Brian K Mannakee et al. “Sloppiness and the geometry of parameter space”. In: Uncer-
tainty in Biology. Springer, 2016, pp. 271–299.

[167] John J Hopfield. “Neural networks and physical systems with emergent collective com-
putational abilities”. In: Proceedings of the national academy of sciences 79.8 (1982),
pp. 2554–2558.

[168] Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. “Chaos in random neural
networks”. In: Physical review letters 61.3 (1988), p. 259.

[169] Andrey V Olypher and Ronald L Calabrese. “Using constraints on neuronal activity to
reveal compensatory changes in neuronal parameters”. In: Journal of Neurophysiology 98.6
(2007), pp. 3749–3758.

[170] Misha V Tsodyks et al. “Paradoxical effects of external modulation of inhibitory interneu-
rons”. In: Journal of neuroscience 17.11 (1997), pp. 4382–4388.

[171] Kong-Fatt Wong and Xiao-Jing Wang. “A recurrent network mechanism of time integration
in perceptual decisions”. In: Journal of Neuroscience 26.4 (2006), pp. 1314–1328.

[172] WR Foster, LH Ungar, and JS Schwaber. “Significance of conductances in Hodgkin-Huxley
models”. In: Journal of neurophysiology 70.6 (1993), pp. 2502–2518.

[173] Astrid A Prinz, Dirk Bucher, and Eve Marder. “Similar network activity from disparate
circuit parameters”. In: Nature neuroscience 7.12 (2004), pp. 1345–1352.

[174] Pablo Achard and Erik De Schutter. “Complex parameter landscape for a complex neuron
model”. In: PLoS computational biology 2.7 (2006), e94.

[175] Dimitry Fisher et al. “A modeling framework for deriving the structural and functional
architecture of a short-term memory microcircuit”. In: Neuron 79.5 (2013), pp. 987–1000.

[176] Timothy O’Leary et al. “Cell types, network homeostasis, and pathological compensa-
tion from a biologically plausible ion channel expression model”. In: Neuron 82.4 (2014),
pp. 809–821.

[177] Leandro M Alonso and Eve Marder. “Visualization of currents in neural models with sim-
ilar behavior and different conductance densities”. In: Elife 8 (2019), e42722.

[178] Cristopher M Niell and Michael P Stryker. “Modulation of visual responses by behavioral
state in mouse visual cortex”. In: Neuron 65.4 (2010), pp. 472–479.

[179] Aman B Saleem et al. “Integration of visual motion and locomotion in mouse visual cor-
tex”. In: Nature neuroscience 16.12 (2013), pp. 1864–1869.

147

[180] Simon Musall et al. “Single-trial neural dynamics are dominated by richly varied move-
ments”. In: Nature neuroscience 22.10 (2019), pp. 1677–1686.

[181] Paul Marjoram et al. “Markov chain Monte Carlo without likelihoods”. In: Proceedings of
the National Academy of Sciences 100.26 (2003), pp. 15324–15328.

[182] Andreas Raue et al. “Structural and practical identifiability analysis of partially observed
dynamical models by exploiting the profile likelihood”. In: Bioinformatics 25.15 (2009),
pp. 1923–1929.

[183] Johan Karlsson, Milena Anguelova, and Mats Jirstrand. “An efficient method for structural
identifiability analysis of large dynamic systems”. In: IFAC Proceedings Volumes 45.16
(2012), pp. 941–946.

[184] Keegan E Hines, Thomas R Middendorf, and Richard W Aldrich. “Determination of pa-
rameter identifiability in nonlinear biophysical models: A Bayesian approach”. In: Journal
of General Physiology 143.3 (2014), pp. 401–416.

[185] Dhruva V Raman, James Anderson, and Antonis Papachristodoulou. “Delineating param-
eter unidentifiabilities in complex models”. In: Physical Review E 95.3 (2017), p. 032314.

[186] Gamaleldin F Elsayed and John P Cunningham. “Structure in neural population record-
ings: an expected byproduct of simpler phenomena?” In: Nature neuroscience 20.9 (2017),
p. 1310.

[187] Cristina Savin and Gašper Tkačik. “Maximum entropy models as a tool for building precise
neural controls”. In: Current opinion in neurobiology 46 (2017), pp. 120–126.

[188] Wiktor Młynarski et al. “Statistical analysis and optimality of neural systems”. In: bioRxiv
(2020), p. 848374.

[189] Dustin Tran, Rajesh Ranganath, and David Blei. “Hierarchical implicit models and likelihood-
free variational inference”. In: Advances in Neural Information Processing Systems. 2017,
pp. 5523–5533.

[190] Pedro J Gonçalves et al. “Training deep neural density estimators to identify mechanistic
models of neural dynamics”. In: bioRxiv (2019), p. 838383.

[191] Gabriel Loaiza-Ganem, Yuanjun Gao, and John P Cunningham. “Maximum entropy flow
networks”. In: International Conference on Learning Representations (2017).

[192] Durk P Kingma and Prafulla Dhariwal. “Glow: Generative flow with invertible 1x1 convo-
lutions”. In: Advances in neural information processing systems. 2018, pp. 10215–10224.

148

[193] Mark S Goldman et al. “Global structure, robustness, and modulation of neuronal models”.
In: Journal of Neuroscience 21.14 (2001), pp. 5229–5238.

[194] Brendan K Murphy and Kenneth D Miller. “Balanced amplification: a new mechanism of
selective amplification of neural activity patterns”. In: Neuron 61.4 (2009), pp. 635–648.

[195] Guillaume Hennequin, Tim P Vogels, and Wulfram Gerstner. “Optimal control of transient
dynamics in balanced networks supports generation of complex movements”. In: Neuron
82.6 (2014), pp. 1394–1406.

[196] Giulio Bondanelli et al. “Population coding and network dynamics during OFF responses
in auditory cortex”. In: BioRxiv (2019), p. 810655.

[197] Ashok Litwin-Kumar, Robert Rosenbaum, and Brent Doiron. “Inhibitory stabilization and
visual coding in cortical circuits with multiple interneuron subtypes”. In: Journal of neu-
rophysiology 115.3 (2016), pp. 1399–1409.

[198] Agostina Palmigiano et al. “Structure and variability of optogenetic responses identify the
operating regime of cortex”. In: bioRxiv (2020).

[199] Chunyu A Duan et al. “Collicular circuits for flexible sensorimotor routing”. In: Nature
Neuroscience (2021), pp. 1–11.

[200] Mark S Goldman. “Memory without feedback in a neural network”. In: Neuron 61.4
(2009), pp. 621–634.

[201] Giulio Bondanelli and Srdjan Ostojic. “Coding with transient trajectories in recurrent neu-
ral networks”. In: PLoS computational biology 16.2 (2020), e1007655.

[202] Scott A Sisson, Yanan Fan, and Mark Beaumont. Handbook of approximate Bayesian com-
putation. CRC Press, 2018.

[203] Eve Marder and Allen I Selverston. Dynamic biological networks: the stomatogastric ner-
vous system. MIT press, 1992.

[204] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014.

[205] Lawrence Saul and Michael Jordan. “A mean field learning algorithm for unsupervised
neural networks”. In: Learning in graphical models. Springer, 1998, pp. 541–554.

[206] Nicholas Metropolis et al. “Equation of state calculations by fast computing machines”.
In: The journal of chemical physics 21.6 (1953), pp. 1087–1092.

149

[207] W Keith Hastings. “Monte Carlo sampling methods using Markov chains and their appli-
cations”. In: (1970).

[208] Mark Girolami and Ben Calderhead. “Riemann manifold langevin and hamiltonian monte
carlo methods”. In: Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 73.2 (2011), pp. 123–214.

[209] Ben Calderhead and Mark Girolami. “Statistical analysis of nonlinear dynamical systems
using differential geometric sampling methods”. In: Interface focus 1.6 (2011), pp. 821–
835.

[210] Andrew Golightly and Darren J Wilkinson. “Bayesian parameter inference for stochastic
biochemical network models using particle Markov chain Monte Carlo”. In: Interface focus
1.6 (2011), pp. 807–820.

[211] Oksana A Chkrebtii et al. “Bayesian solution uncertainty quantification for differential
equations”. In: Bayesian Analysis 11.4 (2016), pp. 1239–1267.

[212] Juliane Liepe et al. “A framework for parameter estimation and model selection from ex-
perimental data in systems biology using approximate Bayesian computation”. In: Nature
protocols 9.2 (2014), pp. 439–456.

[213] Sean R Bittner et al. “Degenerate solution networks for theoretical neuroscience”. In: Com-
putational and Systems Neuroscience Meeting (COSYNE), Lisbon, Portugal (2019).

[214] Sean R Bittner et al. “Examining models in theoretical neuroscience with degenerate solu-
tion networks”. In: Bernstein Conference 2019, Berlin, Germany (2019).

[215] Marcel Nonnenmacher et al. “Robust statistical inference for simulation-based models in
neuroscience”. In: Bernstein Conference 2018, Berlin, Germany. 2018.

[216] Deistler Michael et al. “Statistical inference for analyzing sloppiness in neuroscience mod-
els”. In: Bernstein Conference 2019, Berlin, Germany. 2019.

[217] Jan-Matthis Lueckmann et al. “Flexible statistical inference for mechanistic models of neu-
ral dynamics”. In: Advances in Neural Information Processing Systems. 2017, pp. 1289–
1299.

[218] George Papamakarios, David Sterratt, and Iain Murray. “Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows”. In: The 22nd International Confer-
ence on Artificial Intelligence and Statistics. PMLR. 2019, pp. 837–848.

[219] Joeri Hermans, Volodimir Begy, and Gilles Louppe. “Likelihood-free mcmc with amor-
tized approximate ratio estimators”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 4239–4248.

150

[220] Ricky TQ Chen et al. “Neural ordinary differential equations”. In: Advances in neural
information processing systems. 2018, pp. 6571–6583.

[221] Xuechen Li et al. “Scalable gradients for stochastic differential equations”. In: arXiv preprint
arXiv:2001.01328 (2020).

[222] Maria Pia Saccomani, Stefania Audoly, and Leontina D’Angiò. “Parameter identifiability
of nonlinear systems: the role of initial conditions”. In: Automatica 39.4 (2003), pp. 619–
632.

[223] Stefan Hengl et al. “Data-based identifiability analysis of non-linear dynamical models”.
In: Bioinformatics 23.19 (2007), pp. 2612–2618.

[224] Emmanuel Klinger, Dennis Rickert, and Jan Hasenauer. “pyABC: distributed, likelihood-
free inference”. In: Bioinformatics 34.20 (2018), pp. 3591–3593.

[225] David S Greenberg, Marcel Nonnenmacher, and Jakob H Macke. “Automatic Posterior
Transformation for Likelihood-Free Inference”. In: International Conference on Machine
Learning (2019).

[226] Hirofumi Ozeki et al. “Inhibitory stabilization of the cortical network underlies visual sur-
round suppression”. In: Neuron 62.4 (2009), pp. 578–592.

[227] Daniel B Rubin, Stephen D Van Hooser, and Kenneth D Miller. “The stabilized supralinear
network: a unifying circuit motif underlying multi-input integration in sensory cortex”. In:
Neuron 85.2 (2015), pp. 402–417.

[228] Guillaume Hennequin et al. “The dynamical regime of sensory cortex: stable dynamics
around a single stimulus-tuned attractor account for patterns of noise variability”. In: Neu-
ron 98.4 (2018), pp. 846–860.

[229] Mark M. Churchland et al. “Stimulus onset quenches neural variability: a widespread cor-
tical phenomenon”. In: Nat. Neurosci. 13.3 (2010), pp. 369–378.

[230] Henry Markram et al. “Interneurons of the neocortical inhibitory system”. In: Nature re-
views neuroscience 5.10 (2004), p. 793.

[231] Bernardo Rudy et al. “Three groups of interneurons account for nearly 100% of neocortical
GABAergic neurons”. In: Developmental neurobiology 71.1 (2011), pp. 45–61.

[232] Robin Tremblay, Soohyun Lee, and Bernardo Rudy. “GABAergic Interneurons in the Neo-
cortex: From Cellular Properties to Circuits”. In: Neuron 91.2 (2016), pp. 260–292.

[233] Carsten K Pfeffer et al. “Inhibition of inhibition in visual cortex: the logic of connections
between molecularly distinct interneurons”. In: Nature Neuroscience 16.8 (2013), p. 1068.

151

[234] Daniel J Felleman and David C Van Essen. “Distributed hierarchical processing in the
primate cerebral cortex.” In: Cerebral cortex (New York, NY: 1991) 1.1 (1991), pp. 1–47.

[235] C Gardiner. Stochastic methods: A Handbook for the Natural and Social Sciences. 2009.

[236] Chunyu A Duan, Jeffrey C Erlich, and Carlos D Brody. “Requirement of prefrontal and
midbrain regions for rapid executive control of behavior in the rat”. In: Neuron 86.6 (2015),
pp. 1491–1503.

[237] Daniel P Mossing et al. “Antagonistic inhibitory subnetworks control cooperation and com-
petition across cortical space”. In: bioRxiv (2021).

152

	List of Figures
	Acknowledgments
	Dedication
	Introduction and Background
	Types of theories in neuroscience
	Models and machine learning techniques in theoretical neuroscience
	Statistical generative models
	Neural circuit models
	Neural networks
	Normative models

	Deep generative modeling
	Thesis overview

	The dynamical geometry of population activity in motor cortex
	Introduction
	Motor cortex embeds commands in an untangled population response
	Smooth dynamics predict low tangling
	Noise-robust networks display low tangling
	Hypothesis-based prediction of neural responses
	Alternative predictions
	Signals introduced by optimization yield incidental correlations
	Muscle-like signals are embedded in trajectories with low tangling

	Supplementary motor area exhibits a minimally divergent geometry
	Trajectory divergence
	Computational implications of trajectory divergence
	Discussion

	Methods
	Trajectory-constrained Neural Networks
	Predicting neural population activity
	Similarity between empirical and predicted data

	Approximating exponential family models (not single distributions) with a two-network architecture
	Introduction
	Exponential family networks
	Exponential families as target model P
	Density networks as approximating family M
	Exponential family networks as approximating model Q
	Relation to variational inference

	Results
	Tractable exponential families
	Lookup inference in an intractable exponential family

	Discussion

	Emergent property inference captures complex parametric structure of neural circuit models and scales to high dimensions
	Introduction
	Results
	Motivating emergent property inference of theoretical models
	Emergent property inference via deep generative models
	Scaling inference of recurrent neural network connectivity with EPI

	Discussion
	Methods
	Emergent property inference (EPI)
	Stomatogastric ganglion
	Scaling EPI for stable amplification in RNNs

	Deep inference and the exponential family
	Maximum entropy and the exponential family
	Variational simulation-based inference
	Two-network architectures for deep inference

	Building theories of neural circuits with emergent property inference
	EPI reveals how recurrence with multiple inhibitory subtypes governs excitatory variability in a V1 model
	EPI identifies two regimes of rapid task switching
	EPI inferred SC connectivities reproduce results from optogenetic inactivation experiments
	Discussion
	Methods
	Primary visual cortex
	Superior colliculus

	Conclusion
	References

