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Abstract

The anti-cancer properties of the green tea-derived mixture Polyphenon E (Poly E) have been 

demonstrated in a variety of cell culture and animal models. We recently discovered that the H460 

lung cancer cell line is markedly resistant to the growth inhibitory effects of Poly E compared with 

SW480 colon and Flo-1 esophageal cancer cells. We investigated the mechanism of H460 

resistance by comparing gene expression profiles of Poly E-sensitive and -resistant cells. 

Unsupervised hierarchical clustering revealed that Poly E-sensitive cells clustered separately from 

Poly E-resistant cells, and 6,242 genes were differentially expressed between the two groups at the 

0.01 level of significance. We discovered that BCL2 gene and protein expression were 

significantly higher in H460 cells compared with SW480 and Flo-1 cells (10.60-fold higher gene 

expression; P < 0.0001). Inhibition of BCL2 expression and activity, using siRNA and the small 

molecule inhibitor HA14-1 respectively, restored sensitivity to Poly E and induced BCL2-related 

apoptosis by decreasing mitochondrial membrane potential and inducing PARP cleavage. Our 

results suggest that increased BCL2 expression may contribute to H460 resistance to the growth 

inhibitory effects of Poly E. If validated in additional laboratory and clinical models, BCL2 could 

ultimately be used as a marker of Poly E resistance.
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INTRODUCTION

Population studies have demonstrated an inverse relationship between green tea 

consumption (mainly in Asian populations) and standardized incidence and mortality rates 

for a variety of human malignancies, including those of the breast, esophagus, gastric, and 

hematologic system (1, 2). In addition, there is an extensive literature demonstrating the 

anti-cancer activity of several green tea-derived compounds or catechins, most notably 

epigallocatechin gallate (EGCG), the major biologically active component of green tea, in a 

wide variety of cell culture and animal models (1, 3). These reports have demonstrated 

significant relationships between catechin dose and relevant cancer endpoints, including 

inhibition of cell proliferation and tumor growth, induction of apoptosis, induction of G1-

phase cell cycle arrest, inhibition of tyrosine kinase (including epidermal growth factor 

receptor (EGFR) and HER2) signaling, and reduction of tumor multiplicity and volume in 

animals (4-10). This strong preclinical evidence supported the development of multiple 

previous and ongoing Phase I and II clinical trials of green tea catechins for the prevention 

and treatment of human malignancy. Two recently reported trials have demonstrated 70% 

response rates and significant reductions in tumor incidence in patients with precancerous 

lesions of the cervix and prostate, respectively (11, 12).

Polyphenon E (Poly E) is a standardized botanical drug substance containing a defined 

mixture of catechins that are extracted from green tea leaves. The main component is 

EGCG, which comprises 50-75% of the material. Poly E and EGCG have been formulated 

into capsules by the Chemoprevention Agent Development Research Group at the National 

Cancer Institute (NCI) and are undergoing active clinical investigation for the prevention and 

treatment of a variety of cancers. Biomarkers of both resistance and response would be 

useful for designing clinical trials involving these compounds, identifying patients who 

would most likely benefit from treatment, and ultimately for managing patients with these 

agents in either the prevention or therapeutic setting.

In the present study, we used the Poly E-resistant H460 cell line and two Poly E-sensitive 

cell lines, SW480 and Flo-1, to investigate the growth inhibitory effects of Poly E. We 

conducted these studies with Poly E, rather than EGCG, since Poly E is the green tea-

derived compound that is being most commonly studied in NCI-sponsored early-phase 

prevention and therapy trials. We compared gene expression profiles of untreated cells to 

identify potential markers of Poly E resistance. We also analyzed gene expression profiles of 

cells treated with Poly E to identify potential markers of Poly E response and activity. We 

demonstrated that resistance to Poly E in H460 cells is largely driven by increased 

expression of the anti-apoptotic protein BCL2. If validated in additional cell lines and in 
vivo models, BCL2 could ultimately serve as a marker of resistance to the anti-cancer 

properties of Poly E.

MATERIALS AND METHODS

Compounds, Antibodies, and Cell Lines

Poly E and EGCG were supplied in powder form by the Division of Cancer Prevention 

(NCI, Bethesda, MD) and were dissolved in DMSO (Sigma-Aldrich, St. Louis, MO) and 
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stored at −20°C in 50 mg/mL aliquots wrapped in foil. HA14-1 (ethyl 2-amino-6-

bromo-4-1-cyano-2-ethoxy-2-oxoethyl-4H-chromene-3-carboxylate; Alexis Biochemicals, 

San Diego, CA) was dissolved in DMSO (Sigma-Aldrich) and stored at −20°C in 200 mM 

aliquots. Compounds were added directly to cell culture media at a final concentration of 

0.05-0.1% DMSO. Primary antibodies were obtained from the following companies: (a) 

BCL2 (100; Santa Cruz Biotechnology, Inc., Santa Cruz, CA); (b) P53 (1C12; Cell 

Signaling Technology, Inc., Danvers, MA); (c) cleaved PARP (Asp 214; Cell Signaling 

Technology, Inc.); and (d) actin (Sigma-Aldrich). Human H460 lung carcinoma, SW480 

colon adenocarcinoma, and Flo-1 esophageal adenocarcinoma cell lines were generously 

provided by Dr. David Beer (University of Michigan, Ann Arbor, MI) and were grown in 

DMEM supplemented with 10% fetal bovine serum (FBS). HCT116 and HT29 colon cancer 

cells were provided by Dr. Seiji Adachi (Columbia University, New York, NY); MeWo 

melanoma cells were provided by Dr. Giannicola Genovese (Columbia University); MCF7 

and MDA MB231 cells are commercially available (American Type Culture Collection, 

Manassas, VA). HCT116, HT29, and MCF7 cells were grown in 10% FBS-DMEM; MDA-

MB-231 cells were grown in 10% FBS-MEM; and MeWo and HCE7 human esophageal 

squamous carcinoma (13) cells were grown in 10% FBS-RPMI 1640. All cell culture media 

and FBS were obtained from Life Technologies, Inc. (Grand Island, NY). All cells were 

maintained at 37°C in a 5% CO2 atmosphere.

Cell Proliferation Assays

Cell proliferation was measured using the MTT Cell Proliferation Kit I (Boehringer 

Mannheim, Indianapolis, IN), which colorimetrically measures a purple formazan 

compound produced only by viable cells. Cells were plated in flat-bottomed, 96-well 

microtiter plates (2.0 × 103 cells/6.4-mm-diameter well). After 24 h, cells were treated with 

DMSO (0.1%) or increasing doses of Poly E. For co-treatment assays, HA14-1 was added 

24 h or 48 h after plating. After 72 h, cells were treated with 10 μl of MTT reagent for 4 h at 

37°C and then treated with 100 μl of solubilization solution at 37°C overnight. The quantity 

of formazan product was measured using a spectrophotometric microtiter plate reader 

(Dynatech Laboratories, Alexandria, VA) at 570 nm wavelength. Results were expressed as a 

percentage of growth, with 100% representing control cells treated with DMSO alone. All 

experiments were performed in duplicate.

Cell Growth Assays

Cells were plated in 10 cm culture dishes at concentrations to yield 60-70% confluence 

within 24 h. Cells were then treated with either media alone or Poly E (25 μg/ml). The 

numbers of cells were measured using a Coulter Counter (Coulter Electronics, Inc., 

Beckman Coulter Co., Fullerton, CA).

RNA Extraction and Labeling

H460, SW480, and Flo-1 cells were plated in 10-cm culture dishes at concentrations 

determined to yield 60–70% confluence within 24 h. All cells were treated with either 10% 

FBS-DMEM alone (untreated) or Poly E (25 μg/mL). The H460 Poly E-resistant cell line 

was also treated with an additional Poly E treatment dose (100 μg/mL) based on the higher 

IC50 value of this cell line. Following treatment for 6 h and 24 h, adherent cells were 
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harvested; untreated cells were collected during the 6 h treatment group. cRNA preparation 

and array hybridization were conducted in collaboration with the Columbia University 

Microarray Project. Total cell RNA was isolated using Trizol reagent (Invitrogen, Carlsbad, 

CA) and cleaned and precipitated with the Qiagen RNeasy Cleanup kit (Qiagen, Valencia, 

CA). The integrity of extracted RNA was checked by agarose gel electrophoresis using 36 μl 

of total RNA. Comparable RNA quality across the various cell lines and treatment 

conditions was confirmed by identifying sharp 28S and 18S major rRNA bands (data not 
shown). RNA was reverse transcribed into double-stranded cDNA using Superscript II 

(Invitrogen) and then cleaned with phase lock gels-chloroform extraction (Qiagen). Biotin-

labeled cRNAs were generated by in vitro transcription (Enzo BioArray HighYield RNA 

Transcript Labeling Kit, Enzo Life Sciences, Farmingdale, NY), fragmented by heating at 

94°C, and then hybridized onto the Affymetrix GeneChip oligonucleotide microarray, 

Human Genome U133 Plus 2.0 (Affymetrix, Santa Clara, CA). (Quality of labeled cRNA 

and fragmented cRNA was determined by gel electrophoresis prior to array hybridization; 

data not shown.) Slides were washed and scanned using a confocal laser scanner to generate 

fluorescence intensities. All treatment conditions were performed in duplicate.

Gene Expression Analysis

Gene expression signal intensities were normalized using robust multichip analysis. 

Unsupervised hierarchical clustering was performed using a total sampling of 2000 genes – 

500 genes with the highest variability within each of 4 quantiles of expression distribution – 

low, moderately low, moderately high, and high. Differences in gene expression profiles 

between Poly E-sensitive (SW480, Flo-1) and Poly E–resistant (H460) cells were evaluated 

using the moderated t statistic integrated into the Linear Models for Microarray Data 

(LIMMA) package and based on an empirical Bayes approach (14). A gene was considered 

significantly differentially expressed if its corresponding unadjusted p-value was less than 

0.01. This resulted in a false discovery rate (FDR) of less than 6%. A working set of 

“interesting” genes was created by screening this set into those with a fold change of 2 or 

greater.

The working set was analyzed further using FatiGO, a web-based software application 

(http://babelomics.bioinfo.cipf.es/EntryPoint?loadForm=fatigo), which can identify Gene 

Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) terms that are 

overrepresented among the working set of genes (i.e., differentially expressed between 

resistant and sensitive cell lines), as compared with the entire 54,613-gene genome. Four 

databases were considered – GO Biological Process, GO Molecular Function, GO Cellular 

Component, and KEGG. Terms in levels 6 or higher of the GO databases and all terms in the 

KEGG database with a corresponding adjusted p-value less than 0.01 were explored more 

closely for potentially interesting patterns.

Protein Extraction and Western Blotting

The methods for protein extraction and Western blot analysis have been described previously 

(15). Briefly, cells were treated with 10% FBS-DMEM (negative control), Poly E alone (25 

μg/mL), increasing concentrations of HA14-1 in combination with Poly E (25 μg/ mL), or 5 

nM or 10 nM bcl2-specific siRNA with Poly E (25 μg/mL). After treatment, cell lysates 
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were prepared, and 30–60 μg of protein were separated by SDS-PAGE (8-15%). After 

transfer to nitrocellulose membranes (Millipore, Bedford, MA), blots were blocked with 5% 

milk protein, incubated for 1 h or overnight at 4°C with the indicated primary antibody, and 

then reincubated for 1 h with the corresponding horseradish peroxidase-conjugated 

secondary antibody. Protein-antibody complexes were detected by the enhanced 

chemiluminescence system (Amersham, Piscataway, NJ). Immunoblotting for actin was 

performed to verify equivalent amounts of loaded protein.

siRNA Transfections

The siRNA ON-TARGET plus SMARTpool (pool of four designed siRNA duplexes which 

target the bcl-2 gene) and individual siRNA duplexes (Duplex 1 (D1) catalogue # 

J-003307-16, Duplex 2 (D2) catalogue # J-003307-19) were purchased from Dharmacon 

Research Inc. (Chicago, IL) and dissolved in RNAse-free ddH2O. Stock solution aliquots 

(200 μM) were stored at −20°C. siRNA transfections were performed the same day cells 

were seeded using HiPerFect Transfection Reagent (Qiagen, Valencia, CA) according to the 

manufacturer's “Reverse Transfection” instructions. For each reaction, siRNA-transfection 

reagent complexes were prepared by mixing RNA oligonucleotides with transfection reagent 

at the indicated dilution and incubating the complexes for 10 min in serum-free media at 

room temperature. Final concentrations of siRNA were between 1 and 100 nM. 

Transfections were performed in 1 ml of 10% FBS-DMEM for 24 h; fresh 10% FBS-

DMEM was replaced 24 h following transfection; and cells were assayed 24 to 96 h post-

transfection. For each assay, siControl pool RNA (Dharmacon) was used as a negative (i.e., 

non-targeting) control.

Analysis of Mitochondrial Membrane Potential (MMP)

MMP was measured using the JC-1 staining assay (Invitrogen) according to the 

manufacturer’s instructions. Briefly, cells were adjusted to a density of 1×106/ml, harvested 

using trypsin, washed with PBS, resuspended in 1 ml of 10% FBS-DMEM, and stained with 

5 μg/mL JC-1 mitochondrial membrane dye for 15-20 minutes at 37°C with 5% CO2 in the 

dark. (JC-1 dye was dissolved in DMSO (Sigma-Aldrich), and a 2X working solution was 

prepared in FBS-free DMEM medium (Life Technologies, Inc.) and stored at −20°C.) Cells 

were then washed twice with PBS and resuspended in 0.5 ml 10% FBS-DMEM. Positive 

control cells were resuspended in DMEM containing the depolarizing compound CCCP (1 

μL/mL). Cells were analyzed using a FACScan instrument equipped with FACStation 

running Cell Quest software (Becton Dickinson, San Jose, CA). All experiments were 

performed in duplicate.

Statistical Analyses

Data are expressed as mean +/− standard deviation. Comparisons between untreated control 

(i.e., 0.1% DMSO and Poly E 0 μg/ml) cells and treated (e.g., Poly E-, Poly E plus siRNA-, 

or Poly E plus HA 14-1-treated) cells were made using the unpaired t-test. Differences 

between groups of p < .01 or p < .05 were considered statistically significant.
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RESULTS

H460 cells are resistant to the growth inhibitory effects of Poly E

We investigated the effects of Poly E on cell growth in four human cancer cell lines – 

SW480, H460, Flo-1, and HCE7. Exponentially dividing cells were treated with increasing 

concentrations of Poly E (0–100 μg/mL) for 72 h. Statistically significant reductions in cell 

viability were seen after treatment with 20, 30, and 50 μg/ml Poly E in the HCE7, Flo-1, and 

SW480 cell lines, whereas significant inhibition in the H460 cells occurred only with 

treatment of Poly E at doses of 60 μg/ml or higher (Fig. 1). In the SW480, HCE7, and Flo-1 

cell lines, Poly E caused marked growth inhibition, in a dose-dependent fashion, with IC50 

values in the range of 15-25 μg/mL (Fig. 1). However, the H460 cells were markedly 

resistant to growth inhibition, and the IC50 value was 100 μg/mL, approximately four-fold 

higher than for the Poly E-sensitive cell lines. Of note, H460 cells were also resistant to the 

growth inhibitory activity of EGCG, the major component of Poly E (data not shown). To 

investigate the mechanism of H460 cell resistance, we compared gene expression profiles 

between Poly E-resistant and Poly-E sensitive cells. Unsupervised hierarchical clustering 

was performed using a sampling of 2000 genes and revealed that untreated SW480 and 

Flo-1 cells clustered separately from untreated H460 cells (Fig. 2). Cells that were treated 

with Poly E (25μg/mL, 100 μg/ml.) for 6 h and 24 h also clustered according to cell line 

(data not shown).

BCL2 gene expression is higher and P53 gene expression is lower in Poly E-resistant H460 
cells compared with Poly E-sensitive SW480 and Flo-1 cells

We used the LIMMA approach to identify genes whose expression levels were significantly 

different between Poly E-resistant and Poly E-sensitive cells. Of the 54,613 genes contained 

in the genechip, the expression levels of 6,242 were significantly different at the 0.01 level 

of significance with a corresponding FDR < 6% (data not shown). We created a working 

genelist using the following criteria: 1) genes with a fold-change of 2 or greater; and 2) 

genes that were categorized with the GO term “apoptosis”. We chose this term to screen 

genes, because the mechanism of action of many anticancer agents, including chemotherapy 

drugs and Poly E, can be attributed to the induction of apoptosis. Of the 6,242 significantly 

different genes, 2,929 had a fold change ≥ 2 (data not shown), including 62 “apoptosis”-

related probe sets (Table 1A). In the resistant H460 cells, expression levels were 

significantly increased in 46 gene probe sets, including BCL2 (10.60-fold higher, P < 

0.0001), and significantly decreased in 16 gene probe sets, including two P53 probe sets 

(2.68-fold lower, P = 0.0067; 2.57-fold lower, P < 0.0001). Three additional BCL2 probe 

sets were increased in H460 cells, although they did not satisfy the statistical criteria used in 

our analysis (data not shown). Both BCL2 overexpression and P53 gene mutations have 

been implicated in resistance to many drugs, including many chemotherapeutic agents (16, 

17). The “apoptosis” gene signature included other genes whose relative expression could 

explain drug resistance, including increased expression of the anti-apoptotic mcl-1 and bag-2 
genes and reduced expression of the pro-apoptotic bid gene (Table 1A). The contribution of 

increased expression of the pro-apoptotic fas-1, caspase 7, and caspase 8 genes to Poly E 

resistance in H460 cells is less clear. Moreover, there were marked differences in gene 
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expression in other less studied genes, including BCL2 interacting protein 3, synuclein, 

alpha, and osteopontin.

We also investigated whether any biological or molecular or cellular processes were over-

represented among the 6,242 differentially expressed genes and explored if these processes 

could suggest additional mechanisms of Poly E resistance. Using the FatiGO application, we 

explored terms in levels 6 or higher of three GO databases (Biological Process, Molecular 

Function, Cellular Component) and all terms in the KEGG database that were over-

represented when compared with the 54,613-gene genome. We identified multiple 

significant terms that were over-represented with a corresponding p-value less than 0.01 

(Table 1B). There were no significant over-represented terms in the KEGG analysis. We then 

explored the inclusion of BCL2 and P53 in each significant process by determining the 

prevalence of each gene, by searching for each of 4 BCL2 and 2 P53 probe sets. For 

example, 1 of the 4 BCL2 and both P53 probe sets were present in the “cell death” pathway 

that was identified in level 6 of the GO Biological Process database. Interestingly, this 

analysis could suggest that decreased P53 expression may have a greater impact than 

increased BCL2 expression in determining Poly E resistance, since it was included more 

frequently in the over-represented terms.

Treatment with Poly E did not induce significant changes in gene expression in any cell 
line

We investigated whether treatment with Poly E induced changes in gene expression in Poly 

E-resistant cells that were different from those induced in Poly E-sensitive cells in an effort 

to identify potential markers of Poly E response or activity. We used the LIMMA approach 

to compare gene expression between untreated and treated samples within the Poly E-

resistant (H460) cell line and within the Poly E-sensitive (SW480, Flo-1) cell lines and 

performed an overall comparison between untreated and treated samples across all three cell 

lines. We did not detect any significant differences in expression between treated and 

untreated samples – the fold-changes for all genes before and after treatment were ≤ 1.5 at 

the 0.001 level after adjusting for multiple comparisons (data not shown). Because only 

duplicate samples were run for each treatment condition, this experiment was likely not 

powered to detect significant treatment effects, given the inherent variability in expression in 

individual genes.

BCL2 protein expression is increased and P53 protein expression is absent in untreated 
H460 cells

To confirm our findings of increased BCL2 gene expression and decreased P53 gene 

expression in H460 cells (Table 1A), we examined the levels of protein expression in 

untreated cells. Immunoblotting demonstrated that basal BCL2 expression is significantly 

increased in untreated H460 cells compared with untreated SW480 and Flo-1 cells (Fig. 3A). 

Similarly, P53 protein expression is present in untreated SW480 and Flo-1 cells and virtually 

absent in untreated H460 cells. Therefore, these results confirm the changes in BCL2 and 

P53 gene expression identified from the initial microarray studies (Table 1A).
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We next investigated a panel of cell lines with varying degrees of BCL2 and P53 protein 

expression (Fig. 3B). Human MeWo melanoma and MCF7 breast cancer cells displayed 

high BCL2 and low P53 protein expression, which is similar to the profile seen in H460 

cells. Conversely, there was relatively higher P53 and lower BCL2 protein expression in 

HT29 colon cancer and MDA MB231 breast cancer cells. All cell lines were then treated 

with 25 μg/ml Poly E for 48-72 h, which is in the range of the IC50 value of the Poly E-

sensitive SW480 and Flo-1 cells. Unfortunately, preliminary studies did not demonstrate a 

correlation between BCL2 protein expression and/or P53 protein expression and growth 

inhibition (as measured by the Coulter Counter method) – MeWo and MCF7 cells were the 

most sensitive; HCT 116 and HT29 cells were moderately sensitive; and MDA MB231 cells 

were the least sensitive; data not shown. Therefore, triplicate MTT experiments were not 

pursued, and IC50 values were not formally determined. Thus, the importance of BCL2 in 

determining Poly E resistance is cell-line dependent.

We also determined that levels of BCL2 protein expression were similar in untreated H460 

cells and H460 cells that were treated for 24 h with Poly E (25 μg/mL) (data not shown). 

This is consistent with our microarray analysis, which revealed no significant differences in 

the expression of bcl-2 or other genes between Poly E-treated and untreated cells. We did 

not determine whether treatment with Poly E for different durations affected BCL2 protein 

expression in H460 or SW480 or Flo-1 cells. From these studies, we demonstrated that both 

increased expression of the anti-apoptotic protein BCL2 and decreased expression of the 

pro-apoptotic protein P53 could contribute to Poly E resistance in H460 cells. To further 

study the effects of these proteins on resistance, we could either restore expression (or 

induce over-expression) of wild-type P53 or inhibit or knock down the activity or expression 

of BCL2. Previous studies have demonstrated that restoring wild-type P53 expression in p53 
−/− cells can often result in cell death (18), which would make additional in vitro analyses 

difficult. On the other hand, bcl-2 gene silencing and BCL2 inhibition can be 

accomplishment quite effectively using RNA interference (RNAi) and small molecule 

inhibitors, respectively (19, 20). Furthermore, the latter approach is now being studied in the 

clinical setting (21, 22).

BCL2 knockdown can decrease H460 resistance to the growth inhibitory effects of Poly E

To investigate the dose- and time-dependent effects of bcl-2-specific siRNA on BCL2 

protein expression, we initially transfected H460 cells with 5nM and 10nM of SMARTpool 

siRNA and measured expression after 24h, 48h, and 72h of treatment. Previous reports have 

demonstrated that transfection of cells with bcl-2-specific siRNA at concentrations ≥100 nM 

frequently lead to nonspecific off-target effects, and concentrations of 10–20 nM minimize 

off-target binding and exert fewer nonspecific effects (19). Western blot analysis revealed a 

significant reduction in BCL2 protein expression 24 h after transfection with 5 nM and 10 

nM SMARTpool siRNA in a dose-dependent manner compared with untreated cells (Fig. 

4A). These effects were increased after 48 h, but some recovery in expression occurred after 

72 h of treatment (5 nM, 72 h treatment not shown). We also demonstrated significant 

inhibition of protein expression 24 h, 48 h, 72 h, and 96 h after transfection with 10 nM of 

two individual siRNA duplexes (D1 and D2; Fig. 4B, 72 h data not shown). The maximum 

decrease in BCL2 protein expression occurred at 72 h and 96 h using 10 nM D2 siRNA.
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To examine the effects of decreased BCL2 protein expression on sensitivity to Poly E, H460 

cells were plated in 96-well plates under the following conditions – no siRNA transfection 

(untreated cells), cells transfected with negative siControl RNA or 10 nM D1 siRNA or 10 

nM D2 siRNA. Twenty-four hours after plating, exponentially dividing cells were treated 

with increasing concentrations of Poly E (0–100 μg/mL) for 72 h. Untreated cells (i.e., Poly 

E alone) and cells transfected with negative siControl RNA were relatively resistant to Poly 

E, and significant reductions in cell viability occurred only at the Poly E 100 μg/ml dose 

(Fig. 4C). In contrast, D1- and D2-transfected cells were extremely sensitive to Poly E with 

IC50 values in the 5-8 μg/mL range. Poly E treatment doses as low as 10 μg/ml and 5 μg/ml 

led to significant reductions in cell viability in D1- and D2-transfected cells, respectively. 

Therefore, reduced BCL2 expression increased H460 sensitivity to the growth inhibitory 

effects of Poly E.

BCL2 inhibition by HA14-1 can decrease H460 resistance to the growth inhibitory effects of 
Poly E

To examine the effects of BCL2 inhibition on sensitivity to Poly E, H460 cells were co-

treated with increasing doses of Poly E and the small molecule BCL2 functional antagonist, 

HA14-1 (20). HA14-1 binds to the BCL2 surface pocket and interferes with its function by 

disrupting the interaction with its target proteins, including BAX. H460 cells were initially 

plated in 96-well plates and treated after 24 h under the following conditions – increasing 

doses of Poly E (0–100 μg/mL) alone; increasing doses of HA14-1 (0-50 μM) alone; 

increasing doses of Poly E (0–100 μg/mL) and 5 μM HA 14-1; increasing doses of Poly E 

(0–100 μg/mL) and 25 μM HA14-1. After 72 h, H460 cells co-treated with 5 μM and 25 μM 

HA14-1 were sensitive to Poly E with IC50 values of 25 μg/mL (Fig. 4D), which are similar 

to the IC50 values of Poly E-sensitive (SW480, Flo-1) cells (Fig. 1). In fact, there were 

significant reductions in cell viability in H460 cells that were co-treated with either dose of 

HA14-1 and all doses of Poly E (5-100 μg/ml), except the HA 14-1 (5 μM)/Poly E (10 

μg/ml) combination – this latter dose treatment likely did not reach significance due to the 

larger standard deviation. Treatment with HA14-1 alone also led to growth inhibition, 

especially at concentrations above 25 μM, which is consistent with previous reports (20). 

Therefore, both doses of HA14-1 were equally effective in decreasing Poly E resistance, 

although treatment with the higher 25 μM dose alone resulted in a higher degree of toxicity. 

By western blotting, we also determined that treatment of H460 cells with HA14-1 (5 μM 

and 25 μM) with and without Poly E (25 μg/mL) did not significantly affect the level of 

BCL2 protein expression (data not shown), which is consistent with HA14-1’s ability to 

inhibit BCL2 activity and not expression (20). Therefore, inhibition of BCL2 activity 

increased H460 sensitivity to the growth inhibitory effects of Poly E.

Loss of MMP and increased PARP cleavage occur after treatment with Poly E, HA14-1, and 
bcl2-specific siRNA in H460 cells

Because inhibition of BCL2 expression and activity attenuated resistance to Poly E in H460 

cells, we investigated whether BCL2 inhibition interfered with downstream effects of BCL2 

signaling – maintenance of MMP and prevention of apoptosis. Downregulation or inhibition 

of BCL2 disturbs the mitochondrial membrane, leading to a loss of mitochondrial membrane 
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integrity and a loss of MMP. Cytochrome c is released, and apoptosis is induced as 

demonstrated by the cleavage of PARP (20, 23).

Using the JC-1 mitochondrial membrane dye and flow cytometry, we measured the MMP in 

H460 cells after treatment under the following conditions: no treatment; 10 nM siControl 

RNA (negative control), 10 nM D1 siRNA, 10 nM D2 siRNA, 10 nM D2 plus Poly E (25 μg/

mL), 10 nM D2 plus Poly E (25 μg/mL) plus HA14-1. Values were normalized to untreated 

cells (value 1.0). Transfection with 10 nM D1 and 10 nM D2 led to 25% and 45% reductions 

in MMP, respectively, compared with untreated cells (Fig. 5A). Transfection with 10 nM D2 

and Poly E (25 μg/mL) decreased MMP by 35% compared with untreated cells, and 

transfection with 10 nM D2 and Poly E (25 μg/mL) and HA 14-1 resulted in an 85% 

decrease in MMP. The MMP of cells transfected with a positive control (CCCP, a disrupter 

of electron transport) also decreased by 85%, while the MMP of cells transfected with 10 

nM negative siControl RNA was virtually identical to that of untreated cells. Statistically 

significant reductions in MMP occurred in all D2-transfected cells – D2 alone, D2 plus Poly 

E, and D2 plus Poly E plus HA 14-1. Similarly, treatment with 10 nM D1 siRNA, 10 nM D2 

siRNA, 10 nM D2 plus Poly E (25 μg/mL, 24 h), and 10 nM D2 plus Poly E (25 μg/mL, 48 

h) led to increased apoptotic death as demonstrated by PARP cleavage (Fig. 5B). Of note, 

compared with D1 siRNA, transfection of D2 siRNA led to greater Poly E sensitivity (i.e., 

lower IC50; Fig. 4C), greater loss of MMP (Fig. 5A), and greater PARP cleavage (Fig. 5B).

Thus, H460 cells that were transfected with bcl-2-specific siRNA and co-treated with 

HA14-1 and Poly E demonstrated increased BCL2-related apoptotic death, as demonstrated 

by PARP cleavage and decreased MMP.

DISCUSSION

This is the first report identifying BCL2 as a potential marker of resistance to the growth 

inhibitory activity of Poly E. BCL2 has been known to confer resistance to 

chemotherapeutic agents in a variety of human cancers (for review, please refer to (17)). 

Resistance occurs at a distal point in the apoptotic process, involving the pro- and anti-

apoptotic BCL2 family member proteins which operate at the convergence of multiple 

pathways leading to the major types of cell death, including apoptosis, necrosis, and 

autophagy. BCL2 has also been shown to confer resistance to chemotherapy in the clinical 

setting, and both BCL2 overexpression and bcl-2 gene rearrangements have been associated 

with chemoresistance and worsened prognosis in cancers, such as non-Hodgkin lymphoma 

(24). There is one previous report demonstrating BCL2-induced resistance to non-

chemotherapeutic anti-cancer compounds. In a leukemia cell line model, overexpression of 

BCL2 led to resistance against FLT3 inhibitors, which could explain the limited clinical 

efficacy of FLT3 inhibitors in the treatment of AML (25). While induction of the pro-

apoptotic BCL2 family member BIM has been shown to play a role in apoptosis induced by 

the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib in lung cancer, upregulation 

of anti-apoptotic BCL2 family member proteins has not yet been implicated in EGFR TKI 

resistance (26, 27).
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A previous report demonstrated the ability of EGCG and other green tea-derived catechins to 

bind strongly to the hydrophobic grooves of both BCL2 and BCL-XL (28). The authors 

proposed that direct inhibition of these proteins could explain the cancer prevention activity 

of EGCG, although they did not correlate the degree of binding with effects on apoptosis or 

cell growth. We did not measure the BCL2 binding affinity of the catechins contained in 

Poly E. However, we did demonstrate that co-treatment of the resistant H460 cells with Poly 

E and the BCL2 inhibitor HA14-1 restored sensitivity (Fig. 4D) and decreased MMP (Fig. 

5A) and that treatment with Poly E and bcl-2-specific siRNA was more effective than siRNA 

alone in causing growth inhibition (Fig. 4C) and apoptosis (Fig. 5B). Although these studies 

do not provide direct evidence that BCL2 is a molecular target of Poly E, they do suggest 

that BCL2 inhibition could provide an approach for overcoming resistance. Of course, the 

mechanism of Poly E resistance is likely to be cell line-dependent and will not always be 

determined by the relative expression of BCL2 and P53. Conversely, high BCL2 expression 

will not always lead to Poly E resistance as in the case of MeWo and MCF7 cells that are 

quite sensitive to Poly E (Fig. 3B).

In our studies, treatment with Poly E did not decrease BCL2 gene or protein expression 

(data not shown); although these assays were performed using a limited number of time 

points. Interestingly, in the previously mentioned report of BCL2 and resistance to FLT3 

inhibitors, treatment with the inhibitor also did not affect BCL2 expression (25). On the 

other hand, other investigators have shown that EGCG-mediated apoptosis is associated with 

decreased BCL2 expression in human melanoma, sarcoma, osteosarcoma, prostate cancer, 

and breast cancer cell lines (29-33).

We also demonstrated that P53 gene and protein expression were significantly reduced in 

H460 cells (Table 1A and Fig. 3A). P53 gene mutations have also been implicated in 

chemotherapy resistance (16, 34), and previous studies have demonstrated the development 

of EGCG resistance after knockout of p53 in both mouse JB6 and human prostate cancer 

cells (35-37). The “resistant” phenotype is often characterized by alterations in multiple and 

synergistic resistance pathways (16), and several factors may be contributing to H460 

resistance to Poly E. However, despite the multiple potential genetic changes in H460 cells 

that could account for their resistance to Poly E – increased expression of bcl-2, mcl-1 and 

bag-2 and reduced expression of p53 and bid (Table 1A), correction of the BCL2 increase 

alone (i.e., reduced expression and activity) was sufficient to overcome Poly E resistance 

(Fig. 4C and Fig. 4D). Thus, BCL2-induced resistance in H460 cells appears to occur 

independently of p53-mediated regulation of pro- and anti-apoptotic genes. For example, the 

activity of BCL2 family proteins can also be modulated by post-translational modifications, 

including phosphorylation (38).

There have been few reports investigating the mechanism of resistance to EGCG, Poly E, or 

other green tea-derived catechin. In a series of experiments similar to ours, and 

coincidentally also in a lung cancer cell line, Kweon, et. al., demonstrated that A549 cells 

were markedly resistant to apoptosis induction by EGCG (100 μM) (39). Resistance was 

attributed to Nrf2-mediated overexpression of heme oxygenase-1 (HO-1), a gene that is 

induced by stress stimuli and may also be associated with chemoresistance. Both inhibition 

of HO-1 and gene silencing restored sensitivity of these cells to apoptosis induction by 
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EGCG. Although A549 lung cancer cells express BCL2 protein at levels that are comparable 

to H460 cells (40), we did not investigate the activity of Poly E in or repeat our series of 

experiments using this cell line. In fact, HO-1 induction has been shown to induce BCL2 

overexpression and resistance to apoptosis in other models of cellular stress and 

inflammation (41-43). Thus, we would expect that inhibition of BCL2 could also restore 

sensitivity to EGCG and therefore Poly E. In another study, resistance to EGCG was shown 

to develop with activation of the MAPK pathway in HER2-positive NF639 breast cancer 

cells (44). EGCG has previously been shown to inhibit MAPK signaling by inhibiting ERK 

and MEK activation (45). The level of BCL2 expression in NF639 cells was not reported. In 

a series of human breast cancers, BCL2 expression was associated with hormone receptor 

but not HER2 expression (46).

We did not detect significant differences in gene expression between Poly E-treated and 

untreated cells. Several previous studies were able to identify changes in the expression of 

specific genes after treatment of cancer cell lines with EGCG or other green tea preparations 

(for review, please refer to (47)). These discordant results between studies are likely due to 

multiple confounders and variables, including differences in cell lines, doses (e.g., EGCG 

range 10-100 μg/mL), green tea preparations (e.g., EGCG, Poly E, GTC, GTP), treatment 

durations, and assays used for analysis. The largest confounder in our study relates to the 

small sample size, and increasing the number of replicates for each treatment condition 

would increase the power to detect significant gene expression differences between Poly E-

treated and untreated cells. We could also evaluate more cell lines and additional treatment 

time-points, in case we are simply missing the time-point at which many gene changes 

occur.

CONCLUSION

We conducted comparative microarray studies to identify BCL2 as a potential marker of 

Poly E resistance and demonstrated that inhibition of BCL2 expression and activity restore 

sensitivity of H460 cells to the growth inhibitory effects of Poly E. Early-phase clinical trials 

are currently investigating the efficacy of Poly E in preventing or treating a variety of human 

malignancies. BCL2 expression could be assayed in the human specimens that are being 

collected in these trials and correlated with the various response and efficacy endpoints used 

in these trials to further investigate its predictive value as a marker of resistance. BCL2 

expression could ultimately be used to design future prospective clinical trials (i.e., for 

biomarker validation and subsequently as an eligibility criterion) and identify patients who 

are more likely to respond to Poly E. Moreover, approaches that combine Poly E with BCL2 

inhibitors might be more effective in managing precancerous lesions and cancers with high 

BCL2 expression.
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Figure 1. 
H460 cells are resistant to the growth inhibitory effects of Polyphenon E. Exponentially 

dividing cells were treated with increasing concentrations of Poly E for 72 h. Cell viability 

was determined using the MTT assay. The percentage of growth was calculated, with 100% 

representing control cells treated with 0.1% DMSO alone. The results are the means ± SDs 

from quadruplicate experiments (*, p < .01).
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Figure 2. 
Poly E-sensitive cells (SW480, Flo-1) cluster separately from Poly E-resistant cells (H460). 

Gene expression profiles of duplicate samples of untreated H460, Flo-1, and SW480 cells 

were analyzed using the Affymetrix Human Genome U133 Plus 2.0 array. Unsupervised 

hierarchical clustering was performed using a sampling of 2000 genes - 500 genes with the 

highest variability within each of four quantiles of expression distribution.

Borgovan et al. Page 17

J Exp Ther Oncol. Author manuscript; available in PMC 2019 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A, BCL2 protein expression is increased and P53 protein expression is absent in untreated 

H460 cells. B, Levels of BCL2 and P53 protein in a series of human cancer cell lines – 

MCF7, MDA MB231, Flo-1, SW480, H460, HCT116, HT29, MeWo. Cells were plated in 

10% FBS-DMEM/MEM/RPMI. After 48 h, cell lysates were evaluated for levels of BCL2 

and P53 protein by Western blotting. Immunoblotting for actin was performed to verify 

equivalent amounts of loaded protein.
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Figure 4. 
Inhibition of BCL2 expression and activity attenuates H460 cell resistance to the growth 

inhibitory effects of Poly E. A, H460 cells were transfected with 5 nM and 10 nM of 

SMARTpool bcl-2-specific siRNA for 24 h, 48 h, and 72 h (5 nM sample not shown). Cell 

lysates from untreated (UT) and transfected cells were collected after each time point and 

evaluated for BCL2 protein expression by western blotting. Immunoblotting for actin was 

performed to verify equivalent amounts of loaded protein. B, H460 cells were transfected 

with 10 nM of two individual bcl-2-specific siRNA duplexes (D1 – 96 h; D2 – 24 h, 48 h, 

and 96 h). Cell lysates from UT and transfected cells were collected after each time point 

and evaluated for BCL2 protein expression by western blotting. C, exponentially dividing 

cells were transected with 10 nM of Duplex 1 or Duplex 2 bcl-2-specific siRNA or 

(negative) non-targeting siControl RNA for 24 h and then treated with increasing 

concentrations of Poly E for 72 h. “No siRNA” cells were not transfected with any siRNA. 

Cell viability was determined using the MTT assay. The percentage of growth was 

calculated, with 100% representing control cells treated with 0.1% DMSO alone. The results 

are the means ± SDs from triplicate experiments (*, p < .01). D, exponentially dividing cells 

were treated under the following conditions: increasing doses of Poly E alone, increasing 

doses of HA14-1 alone, increasing doses of Poly E and 5 μM HA14-1, increasing doses of 

Poly E and 25 μM HA14-1. Cell viability was determined after 72 h using the MTT assay. 

The percentage of growth was calculated, with 100% representing control cells treated with 

10% FBS-DMEM alone. The x-axis indicates the doses of Poly E (μg/ml) and/or HA14-1 
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(μM) that were used in each treatment condition. The results are the means ± SDs from 

triplicate experiments (*, p < .05).
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Figure 5. 
Treatment of H460 cells with Poly E, bcl-2-specific siRNA, and/or HA14-1 decreases MMP 

and increases PARP cleavage. A, H460 cells were treated under the following conditions: no 

treatment, 10 nM siControl RNA (negative control), 10 nM D1 siRNA, 10 nM D2 siRNA, 

10 nM D2 plus Poly E (25 μg/mL), 10 nM D2 plus Poly E (25 μg/mL) plus HA14-1, CCCP 

(positive control). MMP was measured using the JC-1 staining assay and flow cytometry. 

Values were normalized to untreated cells (value 1.0).The results are the means +/− standard 

deviations from duplicate experiments (*, p ≤ .01). B, H460 cells were treated under the 

following conditions: 10 nM D1 siRNA, 10 nM D2 siRNA, 10 nM D2 plus Poly E (25 

μg/mL, 24 h), and 10 nM D2 plus Poly E (25 μg/mL, 48 h). Cell lysates were collected and 

evaluated for cleaved PARP by western blotting. Immunoblotting for actin was performed to 

verify equivalent amounts of loaded protein (data not shown).
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