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Abstract

Phase retrieval in the high-dimensional regime

Milad Bakhshizadeh

The main focus of this thesis is on the phase retrieval problem. This problem has a broad range

of applications in advanced imaging systems, such as X-ray crystallography, coherent diffraction

imaging, and astrophotography. Thanks to its broad applications and its mathematical elegance and

sophistication, phase retrieval has attracted researchers with diverse backgrounds.

Formally, phase retrieval is the problem of recovering a signal x ∈ C= from its phaseless linear

measurements of the form
��a∗
8
x
�� + n8, where sensing vectors a8, 8 = 1, 2, . . . , <, are in the same

vector space as x and n8 denotes the measurement noise. Finding an effective recovery method in a

practical setup, analyzing the required sample complexity and convergence rate of a solution, and

discussing the optimality of a proposed solution are some of the major mathematical challenges that

researchers have tried to address in the last few years.

In this thesis, our aim is to shed some light on some of these challenges and propose new ways to

improve the imaging systems that have this problem at their core. Toward this goal, we focus on the

high-dimensional setting where the ratio of the number of measurements to the ambient dimension

of the signal remains bounded. This regime differs from the classical asymptotic regime in which

the signal’s dimension is fixed and the number of measurements is increasing. We obtain sharp

results regarding the performance of the existing algorithms and the algorithms that are introduced

in this thesis. To achieve this goal, we first develop a few sharp concentration inequalities. These

inequalities enable us to obtain sharp bounds on the performance of our algorithms. We believe



such results can be useful for researchers who work in other research areas as well. Second, we

study the spectrum of some of the random matrices that play important roles in the phase retrieval

problem, and use our tools to study the performance of some of the popular phase retrieval recovery

schemes. Finally, we revisit the problem of structured signal recovery from phaseless measurements.

We propose an iterative recovery method that can take advantage of any prior knowledge about the

signal that is given as a compression code to efficiently solve the problem. We rigorously analyze

the performance of our proposed method and provide extensive simulations to demonstrate its

state-of-the-art performance.
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Chapter 1: Introduction and Background

1.1 Phase Retrieval

1.1.1 Overview

Phase retrieval is an inverse problem that aims to recover a signal x ∈ C= from its phaseless

measurements y = |Gx | + & , where y ∈ R=, & ∈ R= denote the measurements and noise respectively.

This problem appears in a variety of imaging systems, such as astrophotography [1], crystallography

[2], and coherent diffraction imaging [3]. Applications of phase retrieval will be discussed in more

details in Section 1.1.2. The study of phase retrieval problem dates back to the mid 20th century [4]

in studying optical imaging systems [5]. Since then, an extensive literature has grown around this

problem. An interested reader may refer to the surveys [4, 6, 7, 8] that review this large body of

work.

Note that the lack of phase information in the measurements makes this problem more chal-

lenging than the classical linear model that appears in other imaging systems, such as magnetic

resonance imaging. Hence, researchers have pursued two directions to obtain accurate estimates

of the signal: (i) oversampling, and (ii) assuming or learning a certain structure about the signal

of interest and incorporate that structure in the recovery algorithm. In this thesis, we study both

directions.

One of the primary characteristics of the phase retrieval problem is having multiple (infinitely

many) solutions. It is straightforward to confirm that if x satisfies y = |Gx |, then so does e8\x

for all \ ∈ R. This ambiguity makes it challenging for iterative methods that aim to converge

to the solution by minimizing a cost function. When there are multiple solutions which form a

non-convex set, no exact formulation of the problem would be convex. Moreover, in the region

between multiple solutions some other stationary points may emerge which can slow down or

1



disturb the convergence. To overcome this difficulty, two main techniques have been developed.

The first one is to convexify the problem. It has been shown that under some conditions on the

signal or the number of measurements the solution of the convex and the non-convex formulations

coincide. However, convex methods require some technical adaption, such as lifting to much higher

dimensional space, which make them unfeasible in most practical cases. The second method is

to solve the original non-convex problem in a small vicinity of a solution which can exclude lots

of irrelevant stationary points. The main challenge of the latter technique is to find such small

neighborhood. Both of these techniques will be discussed in more details in the following sections

of the current chapter.

1.1.2 Applications

Several well-known applications of phase retrieval are crystallography, coherent diffraction

imaging, astrophtpgraphy, optics, and quantum mechanics. In this section, we briefly explain some

of these applications.

X-ray crystallography is an imaging technique to obtain an image of a crystal structure. This

technique was developed in early 1900s by discovering that the diffraction pattern of the X-ray

beam is unique for each crystal [9, 10]. However, light detectors used in X-ray crystallography

can only measure the intensity of the light ray. Hence, the problem of obtaining the phases from

magnitude-only measurements emerged which is now called the phase retrieval problem.

The extension of X-ray crystallography for obtaining images of non-crystal structures was an

important development in imaging systems which was achieved in the late 20th century [11]. This

novel method of imaging is known as Coherent Diffraction Imaging (CDI). For the same reason as

in X-ray crystallography, the phase retrieval problem is at the heart of CDI systems too. A similar

technique can be used in electron microscopy which obtains images of higher resolution than what

a microscope working with visible light can achieve [12].

Inability of detection devices, such as CCD cameras and photosensitive films, to record the phase

of the measurements makes the phase retrieval problem a major component of many optical imaging

2



systems. We refer to [7, 5] and the references therein for a detailed review of such applications.

In astrophotography, the resolution of images is limited by two main factors: First, the earth’s

atmosphere interferes with the light telescopes receive from far away objects. Second, the resolution

of the obtained images is limited by the diameter of the telescope used for imaging. This diameter

can become prohibitively large for a desired resolution. To increase the resolution of astronomical

images a family of techniques, called interferometric imaging, are employed [1]. Similar to the

previous cases, it is difficult in many cases to capture the phases of the measurements. We refer to

[1] for the details on how the solution of phase retrieval can be beneficial in such imaging systems.

As our final example, we would like to note that the phase retrieval problem is closely related

to Pauli’s problem which is raised in the context of quantum physics [13]. Wolfgang Pauli asked

initially whether a function can be uniquely identified by the modulus of itself and its Fourier

transform. This problem and its extensions have attracted the attention of many researchers working

in both theoretical and experimental physics. For further details on the connection of phase retrieval

and Pauli’s problem we refer the reader to the following articles and the references therein [13, 14,

15].

1.2 Convex Solutions

In this section, we briefly review some of the proposed solutions for the phase retrieval problem

by taking advantage of the convex optimization tools.

A popular method to solve inverse problems is to define a loss function 3 (x̂, H1, ..., H<) which

measures the closeness of a candidate vector x̂ ∈ C= from the desired solution based on mea-

surements H1, H2, ..., H< ∈ R. As should be expected, this loss function usually depends on the

measurement matrix G as well. For making this dependency explicit we may denote it by 3G.

Several relaxation techniques have been introduced that allow us to solve an easier computational

problem at the expense of either the required number of measurements or the accuracy of the

estimate. For instance, the authors of [16] lift the signal x to the matrix ^ = xx∗ and solve a

semidefinite programming (SDP) in this higher dimensional space. There is a convex relaxation

3



in the formulation of this method which replaces the rank 1 constraint by trace minimization.

Nevertheless, [16] proves given < = Ω(= log =), the relaxed problem finds the exact solution when

sensing vectors are uniformly sampled from the unit ball. Later, [17] improves this result by

reducing the sample complexity to < = Ω(=). The authors of [18] focus on sparse real signals, and

give a relaxed convex formulation for phase retrieval similar to [16]. This work proves that if the

measurement matrix satisfies Restricted Isometry Property (RIP) [19], then the sparsest solution

of the original problem and the relaxed problem are the same. Another SDP-based approach is

proposed in [20], called PhaseCut. This work explicitly splits the amplitude and the phase of the

signal and formulates an optimization problem which seeks for the most optimal phase. While

many similarities between [16] and PhaseCut are discussed in [20], the main goal of this work is to

offer a simpler expression for the constraints of the optimization problem they aim to solve. This

simpler structure enables authors to employ a block coordinate descent algorithm whose iterations

are less demanding than the update rules of [16]. The SDP-based methods suffer from a common

disadvantage which is the requirement of lifting the signal to much higher dimension than its natural

dimension. This avoids one to scale the proposed techniques for high-dimensional vectors and

make them impractical for some realistic settings. To address this issue, [21, 22] appeared almost

at the same time, and suggested a convex relaxation of the phase retrieval that does not require

lifting, called PhaseMax. Both works offer recovery guarantees with different setups for the signal,

sensing vectors, noise distribution, and sample complexity. This approach is computationally more

affordable than SDP-based methods. However, the success of PhaseMax heavily depends on having

access to an initial point which has strong correlation with the signal of interest. Finding such a

good initial point is usually the most challenging part in utilizing PhaseMax.

1.3 Non-Convex Solutions

Despite the major developments of the convex formulation for phase retrieval, the non-convex

algorithms have remained the most popular algorithms in applications. This is partly due to their

simplicity and partly due to their superior performances. Gerchberg-Saxton algorithm [23] is one the
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earliest solutions proposed to solve the phase retrieval problem which was improved later by Fienup

[24]. The main idea of these algorithms is to alternatively project a candidate vector on the image

of the sensing matrix and the set of vectors whose magnitude matches with the given measurements.

Since the latter set on which the projection is made is non-convex, we have a non-convex approach

in this setup. While Gerchberg-Saxton algorithm is easily scalable and offers a great performance

in practice, no theoretical guarantee for its convergence was shown. To overcome this issue, [25]

proposes a non-convex algorithm, called Wirtinger Flow which provably converges to the right

solution. In this work, authors suggest using gradient descent for minimizing a quadratic function of

measurements which yields an estimate for the signal. It is shown in [25] that for a Gaussian sensing

matrix and for sufficiently large number of measurements, Wirtinger Flow converges to the signal

of interest with an overwhelming probability. In order to improve the performance of the recovery

algorithm, [26] proposes a similar optimization problem based on an objective function which is

slightly different from the one used in [25], called Truncated Amplitude Flow (TAF). The authors

of [26] prove theoretical guarantee for TAF and compare its performance with many preceding

methods thorough extensive simulations. There are several other works that adapted the ideas of the

above works to take the prior knowledge about the signal into account and improve the performance

of the recovery method [27]. We will discus methods for structured signals in section 1.4.

1.3.1 Initialization

When the objective function is non-convex, it is possible to have multiple local minimas and

saddle points which are far from the desired signal. Hence, the point from which an iterative

algorithm starts has a major impact on the final solution. Usually, there is a vicinity of the true

signal in which no other stationary point exits. Finding an initial point in that vicinity, however, is a

challenging task.

The authors of [28, 25] considered the leading eigenvector of the following matrix as an initial

estimate:

S =
1
<

<∑
8=1
T (H8)a8a∗8 .
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Here, H8, a8 are the 8th observation and sensing vector, respectively, and T is a trimming function

which is chosen in a way to yield the best performance. Such an initialization is called the spectral

method. In [25], the authors have shown that when a8 is sampled from a Gaussian distribution and

T = 83 is the identity function we have

E [S] = O + 2xx∗,

where x is the signal of interest, O denotes the identity matrix, and ∗ denotes the Hermitian operator.

Note that x is the leading eigenvector of E [S] with the corresponding eigenvalue being equal

to 3. Hence, if S concentrates around its mean, it makes sense to utilize the spectral method for

initialization. It has been shown in [25] that with < = Ω(= log =), the output of the spectral method

is good enough to yield the right signal when it is passed to an iterative algorithm called Wirtinger

Flow. Later, [29, 30, 31, 32, 33] studied the performance of the spectral method in more general

settings and determined the optimal trimming function in some setups.

In Chapters 3 and 4 we provide very sharp analysis of spectral methods for several types of

measurement matrices that are very popular in application.

1.3.2 Iterative Convergence

An iterative method starts from an initial point x0 and updates each iteration based on a rule

x= = 6(x0, ..., x=−1) in a way that it will eventually either converge to the true signal x or a point in

its close proximity. The pioneer Gerchberg-Saxton algorithm [23], the Wirtinger Flow [25] (WF),

and the Amplitude Flow [26] (AF) have proposed different iterations to reach this goal. While

Gerchberg-Saxton algorithm utilizes an alternating projection idea, Wirtinger Flow and Amplitude

Flow use the ’gradient descent’ for the following objective functions:

3,� (u) =
1
<

<∑
8=1

(��a∗8 u��2 −��a∗8 x��2)2
, 3�� (u) =

1
<

<∑
8=1

(��a∗8 u�� −��a∗8 x��)2
.

As discussed in Section 1.3.1, starting from a sufficiently close initial point, each of the above
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iterative methods are guaranteed to converge to the right signal up to a global phase. Finding

new iterative methods for solving the phase retrieval problem is still an active area of research [8].

Furthermore, some theoretical aspects of this problem are yet to be understood. We will discuss a

few of such problems that are more related to the discussions of this thesis in Chapter 6.

1.4 Structured Data

Considering some structure on the signal (based on our prior knowledge) to improve the perfor-

mance, has became a major component of many imaging systems. Employing such information may

speed up the convergence rate, reduce the required sample complexity, and increase the accuracy of

the estimate. Sparsity structure has been studied extensively in this context. A signal x is called

:-sparse if it has at most : non-zero components, i.e. ‖x‖ℓ0 ≤ : . Several articles have considered

the phase retrieval problem for sparse signals [34, 35, 36, 37, 38, 39]. They include a variety of

regularizers in the objective function, such as ℓ1 penalty [39] and total variation [40], or include

a truncation [34, 26] or projection step [24, 41] in the iterations. While it has been shown that

$ (: log =) measurements are sufficient to converge to a :−sparse signal if we are in its vicinity [42],

all proposed iterative algorithms need $ (:2 log =) measurements to find a proper initialization. In a

recent line of study, the sparse signal is replaced by the image of a generative model whose input

lies on a :-dimensional space [43]. In this setup, a linear sample complexity in : , i.e. $ (: log =)

seems to be sufficient for a guaranteed recovery. Nevertheless, training a generative model requires

thousands of samples from the distribution of interest which may not be available in some cases, in

particular for cutting-edge imaging systems. Moreover, minimizing the value of : is not a priority

of generative models since it may lead to less capacity of the model to learn the desired distribution.

Therefore, such an approach might not be suitable to achieve the optimal sample-complexity in

practice.

Chapter 5 of our thesis is dedicated to a general formulation of the structure based on compres-

sion codes. We refer the reader to this Chapter and the references therein for a more detailed review

of the literature in phase retrieval for structured signals.
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1.5 Organization of the following chapters

In this thesis, we study the phase retrieval problem in the high-dimensional settings. We consider

the high-dimensional regime where the ratio of the number of measurements < to the ambient

dimension of the signal = remains bounded. In this regime, many classical asymptotic results that

are based on =
<
→ 0 fail. Hence, new tools and analysis strategies are required for studying this

problem. Therefore, we create new theoretical and practical tools and platforms to develop recovery

methods and analyze phase retrieval algorithms. Below, we provide more details.

Chapter 2: In this chapter we obtain concentration and large deviation for the sums of independent

and identically distributed random variables with heavy-tailed distributions. Our concentration

results are concerned with random variables whose distributions satisfy P (- > C) ≤ e−� (C) ,

where � : R → R is an increasing function and � (C)/C → U ∈ [0,∞) as C → ∞. Our main

theorem can not only recover some of the existing results, such as the concentration of the

sum of subWeibull random variables, but it can also produce new results for the sum of

random variables with heavier tails. We show that the concentration inequalities we obtain

are sharp enough to offer large deviation results for the sums of independent random variables

as well. Our analyses which are based on standard truncation arguments simplify, unify and

generalize the existing results on the concentration and large deviation of heavy-tailed random

variables. This chapter is based on results published in [44].

Chapter 3: The success of iterative local search algorithms in phase retrieval depends heavily on

their starting points. The most widely used initialization scheme is the spectral initialization,

in which the eigenvector corresponding to the largest eigenvalue of a data-dependent matrix

is used as a starting point. Recently, the performance of the spectral initialization was char-

acterized accurately for measurement matrices with independent and identically distributed

entries. This chapter aims to obtain the same level of knowledge for the partial orthogonal

matrices, which are substantially better models for practical phase retrieval systems. Towards

this goal, we consider the asymptotic setting in which the number of measurements <, and the
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dimension of the signal, =, diverge to infinity while </=→ X, and obtain simple expression

for the overlap between the initialization and the true signal. Results of this chapter have been

published in [32].

Chapter 4: In the phase retrieval problem one seeks to recover an unknown = dimensional signal

vector x from < measurements of the form H8 = | (Gx)8 |, where G denotes the sensing

matrix. A popular class of algorithms for this problem are based on approximate message

passing. For these algorithms, it is known that if the sensing matrix G is generated by

sub-sampling = columns of a uniformly random (i.e. Haar distributed) orthogonal matrix,

in the high dimensional asymptotic regime (<, = → ∞, =/< → ^), the dynamics of the

algorithm are given by a deterministic recursion known as the state evolution. For a special

class of linearized message passing algorithms, we show that the state evolution is universal:

it continues to hold even when G is generated by randomly sub-sampling columns of certain

deterministic orthogonal matrices such as the Hadamard-Walsh matrix, provided the signal is

drawn from a Gaussian prior. This chapter is based on [33].

Chapter 5: Compressive phase retrieval refers to the problem of recovering a structured =-dimensional

complex-valued vector from its phase-less under-determined linear measurements. The non-

linearity of the measurement process makes designing theoretically-analyzable efficient phase

retrieval algorithms challenging. As a result, to a great extent, existing recovery algorithms

only take advantage of simple structures such as sparsity and its convex generalizations. The

goal of this chapter is to move beyond simple models through employing compression codes.

Such codes are typically developed to take advantage of complex signal models to represent

the signals as efficiently as possible. In this chapter, it is shown how an existing compression

code can be treated as a black box and integrated into an efficient solution for phase retrieval.

First, COmpressive PhasE Retrieval (COPER) optimization, a computationally-intensive

compression-based phase retrieval method, is proposed. COPER provides a theoretical

framework for studying compression-based phase retrieval. The number of measurements
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required by COPER is connected to : , the U-dimension (closely related to the rate-distortion

dimension) of a given family of compression codes. To find the solution of COPER, an

efficient iterative algorithm called gradient descent for COPER (GD-COPER) is proposed. It

is proven that under some mild conditions on the initialization and the compression code, if

the number of measurements is larger than �:2 log2 =, where � is a constant, GD-COPER

obtains an accurate estimate of the input vector in polynomial time. In the simulation results,

JPEG2000 is integrated in GD-COPER to confirm the state-of-the-art performance of the

resulting algorithm on real-world images. These results have been published in [41].

Chapter 6: Finally, Chapter 6 is devoted to some open problems.
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Chapter 2: Concentration of Heavy tailed distribution

2.1 Introduction

The concentration of measure inequalities have recently received substantial attention in high-

dimensional statistics and machine learning [45]. While concentration inequalities are well-

understood for subGaussian and subexponential random variables, in many application areas,

such as signal processing [46], machine learning [47] and optimization [48] we need concentration

results for sums of random variables with heavier tails. The standard technique, i.e. finding upper

bounds for the moment generating function (MGF), clearly fails for heavy-tailed distributions whose

moment generating functions do not exist. Furthermore, other techniques, such as Chebyshev’s

inequality, are incapable of obtaining sharp results. The goal of this chapter is to show that under

quite general conditions on the tail, a simple truncation argument can not only help us use the

standard MGF argument for heavy-tailed random variables, but is also capable of obtaining sharp

concentration results.

The problem of finding sharp concentration inequalities dates back to 1970s [49, 50, 51, 52,

53, 54]. For instance, [49] discusses several inequalities for finite sums of independent random

variables with variety of tail decays [49]. The proof techniques of the present chapter have a similar

flavor to what is used in [49]; we also use the truncation of random variables and bound the MGF

of the truncated random variables. The generality of the inequalities presented in [49] in terms

of the truncation levels, the moments of random variables, etc., makes the results difficult to use

and interpret. In particular, obtaining the optimal choice of the parameters that appear in different

upper bounds and simplifying the expressions for a given set of parameters is a time-consuming and

cumbersome task. Compared to [49], we only consider the sum of random variables with bounded

variances. For this class of distributions we are able to find the optimal truncation level. Using this
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right truncation level, we have been able to reduce the problem of obtaining sharp concentration

results to that of finding an upper bound for the expectation of a smooth function of the distribution

of individual random variables. We have also offered several insights on the quantity that is involved

in our upper bound. As a result, our concentration results, while less general than [49], are much

more interpretable and the calculations that are involved in them can be easily carried out. Despite

the simpler form of our results, as we show through large deviation, they are still sharp. We should

also emphasize that there have been more follow-up researches [50, 51, 52, 53, 54] that have

appeared after [49]. These works suffer from similar issues as the ones we discussed about [49].

For instance, the bounds in [50] are written in terms of the solutions of some optimization problems

which are not easily solvable for most distributions of interest.

Recently, a few papers have considered specific classes of distributions with heavier tails than

exponential and obtained extensions of the classical concentration results. In [55], the authors

consider the class of subWeibull variables, and prove a concentration inequality for the sum of

independent random variables from this class by leveraging a novel Orlicz’s norm. The first

advantage of the approach proposed in this chapter compared to [55] is its generality; our approach

is not tailored to the form of the tail. As a result, we have been able to consider much more

generic tail decays, compared to [55], and study the effect of the tail-decay on the concentration.

Furthermore, the same approach gives sharp large deviation bounds that shows the sharpness of the

exponents that we obtain in our concentration results.

Although the result is novel and very useful for the extended class of distributions, it looks a

bit overwhelming by lots of technical terms due the complexity of the norm they have used in the

proof, hence in addition to the main result a ready to use inequality is also offered in this article.

[47] also considers the class of subWeibull variables and shows how they naturally appear in the

context of neural networks. This article offers some relations on the algebra of variables in this class

between the algebraic operators and the tail. However, it does not study the concentrations with so

much technical depth. These recent results usually lack the lower bound inequalities to check the

sharpness of the offered tool.
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To explore the accuracy of our concentration approach, we use our technique to obtain large

deviation results. Not surprisingly, the tools we offer for our concentration results are also able to

obtain the large deviation results that are consistent with the existing literature on the large deviation

behavior of sums of independent, heavy-tailed random variables [56, 57, 58, 59, 60, 61, 62].

2.2 Our main contributions

2.2.1 Concentration

First, we discuss our concentration results for heavy-tailed distributions. Let us start with the

following definition.

Definition 1. Let � : R → R denote an increasing function. We say � captures the right tail of

random variable - if

P (- > C) ≤ exp
(
−� (C)

)
, ∀C > 0. (2.1)

Note that for the moment � (C) can be a generic function. However, as we will see later, in our

theorems we will impose some constraints on � (C). Clearly, �1A (C) = − logP (- > C) captures the

right tail of - for any random variable - . We call �1A (C) the basic rate capturing function. One

can use �1A (C) in our concentration results. However, as will be discussed later, it is often more

convenient to approximate this basic tail capturing function.

Given a sequence of independent and identically distributed random variables -1, -2, . . . , -<

with E [-8] < ∞, the goal of this chapter is to study

P
(
(< − E [(<] > <C

)
,

where (< =
<∑
8=1
-8. Based on the definition of the rate capturing function we state our concentration

result. In the rest of the chapter, we use the notation -! to denote the truncated version of the

random variable - , i.e.,

-! = -I(- ≤ !).
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Theorem 1 (General Concentration). Suppose -1, ..., -<
3
= - are independent and identically

distributed random variables whose right tails are captured by an increasing and continuous

function � : R → R≥0 with the property � (C) = $ (C) as C → ∞. Define /! , -! − E [-].

Moreover, for V ∈ (0, 1], ! > 0, and _ = V � (!)
!

, define

2!,V , E

[(
/!

)2
I
(
/! ≤ 0

)
+

(
/!

)2
exp

(
_

(
/!

))
I
(
/! > 0

)]
. (2.2)

Finally, define Cmax(V) , sup
{
C ≥ 0 : C ≤ V2<C,V � (<C)<C

}
.1 Then,

P
(
(< − E [(<] > <C

)
≤


exp

(
−2CV� (<C)

)
+ < exp

(
−� (<C)

)
, C ≥ Cmax(V),

exp

(
− <C2

22<Cmax,V

)
+ < exp

(
−<Cmax(V)2
V2<Cmax,V

)
, 0 ≤ C < Cmax(V),

(2.3)

where 2C is a constant between 1
2 and 1. More precisely, 2C = 1 − 1

2
V2<C,V
C

� (<C)
<C

.

The proof of this theorem can be found in Section 2.4. Note that the concentration result we

obtain is similar to the concentration results that exist for sub-exponential random variables; there

is a region for C in which the distribution of the sum looks like a Gaussian, and a second region

in which the sum has heavier tail than a Gaussian. We will apply our theorem to some popular

examples, including the subexponential distributions later. Before that, let us discuss some of the

main features of this theorem.

Remark 1. As is clear from the proof of Theorem 1 one can replace 2<C,V with an upper bound. In

other words, if 2<C,V ≤ 2, then Theorem 1 remains valid by replacing 2<C,V with 2 in the definition

of Cmax and the coefficients appeared in (2.3).

Obtaining an accurate upper bound for 2!,V is a key to using Theorem 1 for different applications.

Since, we are often interested in the behavior of 2<C,V for large values of <C, it is usually instructive

to understand the behavior of 2!,V for large values of !. Suppose that there exists a function 6(-)
1We set Cmax = 0, when the set is empty.

14



such that �����(/!)2
I
(
/! ≤ 0

)
+

(
/!

)2
exp

(
_

(
/!

))
I
(
/! > 0

)����� < 6(-),
and that E

[
6(-)

]
< ∞. Further, assume that � (!) = >(!). Then, from the dominated convergence

theorem we have

lim sup
!→∞

E

[(
/!

)2
I
(
/! ≤ 0

)
+

(
/!

)2
exp

(
_

(
/!

))
I
(
/! > 0

)]
= E

[
(- − E [-])2

]
.

Hence, if the random variables have bounded variances, then we expect 2!,V < ∞ for all values of !.

If we replace 2<C,V in Theorem 1 with a fixed number, then the statement of the theorem becomes

simpler. Note that this argument is based on an asymptotic argument and is not particularly useful

when we want to derive concentration bounds. Hence, our next few lemmas obtain simpler integral

forms for E

[(
/!

)2
exp

(
_

(
/!

))
I
(
/! > 0

)]
.

Lemma 1. Let /! = -! − E [-], and �1A (C) = − logP (- > C) denote the basic tail capturing

function. Then,

E

[(
/!

)2
exp

(
_

(
/!

))
I
(
/! > 0

)]
=

∫ !−E [-]

0
exp

(
_C − �1A (C + E [-])

) (
2C + _C2

)
3C.

Proof. We have

E

[(
/!

)2
exp

(
_

(
/!

))
I
(
/! > 0

)]
=

∫ ∞

0
P

((
/!

)2
exp

(
_/!

)
> D, /! > 0

)
3D

(∗)
=

∫ !−E [-]

0
P

(
- > C + E [-]

)
3D,

=

∫ !−E [-]

0
exp

(
−�1A (C + E [-])

) (
2C + _C2

)
exp (_C) 3C

=

∫ !−E [-]

0
exp

(
_C − �1A (C + E [-])

) (
2C + _C2

)
3C.

In in the equation tagged by (∗), we applied the following change of variable: C2 exp (_C) = D.
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�

We can use the integral expression we derived in Lemma 1, and the specific properties of the

rate function that we have, to obtain simpler upper bounds for E

[(
/!

)2
exp

(
_

(
/!

))
I
(
/! > 0

)]
.

The following simple lemma is an upper bound we will use in our examples.

Lemma 2. Suppose that � (C)
C

is a nonincreasing function, and let _ = V� (!)
!

Then,

E

[(
/!

)2
exp

(
_

(
/!

))
I
(
/! > 0

)]
≤ exp

(
−VE [-] � (!)

!

) ∫ !−E [-]

0
exp

(
−(1 − V)� (C + E [-])

) (
2C + V � (!)

!
C2

)
3C

≤ exp
(
−VE [-] � (!)

!

) ∫ !−E [-]

0
exp

(
−(1 − V)� (C + E [-])

) (
2C + VC� (C)

)
3C.

Proof. Similar to the proof of Lemma 1, we have

E

[(
/!

)2
exp

(
_

(
/!

))
I
(
/! > 0

)]
≤

∫ !−E [-]

0
exp

(
−� (C + E [-])

) (
2C + _C2

)
exp

(
V
� (!)
!
C

)
3C

≤ exp
(
−VE [-] � (!)

!

) ∫ !−E [-]

0
exp

(
−(1 − V)� (C + E [-])

) (
2C + V � (!)

!
C2

)
3C

≤ exp
(
−VE [-] � (!)

!

) ∫ !−E [-]

0
exp

(
−(1 − V)� (C + E [-])

) (
2C + VC� (C)

)
3C,

where to obtain the last two inequalities we used the fact that � (C)
C

is a nonincreasing function. �

We will later show how combining Theorem 1 and Lemma 2 leads to sharp concentration

results for some well-known tail capturing functions. It is straightforward to see that as long as

(1− V)� (C +E [-]) > 20 log C for some 0 > 1, the upper bound given by Lemma 2 remains bounded

even when ! →∞. Hence, we can use these upper bounds for a broad range of tail decays. We will

discuss this in more details at the end of this section.

Remark 2. Note that Theorem 1 considers the case where � (!) = $ (!). The other cases, i.e.
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� (!) = Ω(!), can be studied using standard arguments based on the moment generating function

and hence, are not explored in this chapter. We will later emphasize that this condition is not enough

for the usefulness of Theorem 1. For instance, if the tail is too heavy then 2!,V will be infinite. We

will discuss this issue in more details later.

Let us now show how Theorem 1 can be used in a few concrete examples which are popular in

application areas. Our first example considers the well-studied class of subexponential distributions.

Corollary 1. Let � (C) = :C for some fixed coefficient : . Then, for all V ∈ (0, 1) and ! > E [-] we

have

2!,V ≤ E
[
(- − E [-])2I(- ≤ E [-])

]
+ 1
(1 − V)3

2
:2 exp

(
:E [-]

) = 2V. (2.4)

Hence for < >
E [-]
V2V:

,

P
(
(< − E [(<] > <C

)
≤


exp

(
−2CV:<C

)
+ < exp (−:<C) , C ≥ V2V:,

exp

(
− 1

22V
<C2

)
+ < exp

(
−V2V:2<

)
, 0 ≤ C < V2V:,

(2.5)

where 2C = 1 − 1
2
V2V:

C
.

Proof. We would like to use Theorem 1 for proving the concentration. Toward this goal, we use

Lemma 2 to obtain an upper bound for 2!,V. First note that, _ = V � (!)
!
= V: . Hence, according to
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Lemma 1 we have

E

[(
/!

)2
exp

(
_

(
/!

))
I
(
/! > 0

)]
≤ exp

(
−V:E [-]

) ∫ !−E [-]

0
exp

(
−(1 − V): (C + E [-])

) (
2C + V:C2

)
3C

≤ exp
(
−V:E [-]

) ∫ ∞

0
exp

(
−(1 − V): (C + E [-])

) (
2C + V:C2

)
3C

= exp
(
−:E [-]

) ∫ ∞

0
exp

(
−(1 − V):C

) (
V:C2 + 2C

)
3C

= exp
(
−:E [-]

) (
V:

(1 − V)3:3Γ(3) +
2

(1 − V)2:2Γ(2)
)

= exp
(
−:E [-]

) 2
:2

1
(1 − V)3

.

We also have that if ! > E [-], then

E

[(
/!

)2
I
(
/! ≤ 0

)]
= E

[(
-! − E [-]

)2
I
(
-! ≤ E [-]

)]
= E

[ (
- − E [-]

)2
I
(
- ≤ E [-]

) ]
.

�

Our next example considers subWeibull distributions.

Corollary 2. Let - be a centered random variable, i.e. E [-] = 0, whose tail is captured by 2U U
√
C

for some U ≥ 1. Moreover, assume E
[
-2I(- ≤ 0)

]
= f2
− < ∞. Then, we have

2!,V ≤ f2
− +

Γ(2U + 1)(
(1 − V)2U

)2U + !
1
U
−1 V2UΓ(3U + 1)

3
(
(1 − V)2U

)3U .

Hence, one can apply Theorem 1 with the above bound. In this case, two regions of the concentration

are separated by Cmax(V) =
(
V2<C,V2U

) U
2U−1 <−

U−1
2U−1 .

Proof. Note that since U ≥ 1, � (C)
C

is indeed nonincreasing. We just need to apply Lemma 2 with
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� (C) = 2U U
√
C to obtain

∫ !

0
exp

(
−(1 − V)2U U

√
C

) (
2C + V2U!

1
U
−1C2

)
3C

≤
∫ ∞

0
exp (−D) ©­« 2DU(

(1 − V)2U
)U + V2U!

1
U
−1D2U(

(1 − V)2U
)2U

ª®¬ UDU−1(
(1 − V)2U

)U 3D
=

2U(
(1 − V)2U

)2UΓ(2U) +
V2U!

1
U
−1U(

(1 − V)2U
)3UΓ(3U)

=
Γ(2U + 1)(
(1 − V)2U

)2U + !
1
U
−1 V2UΓ(3U + 1)

3
(
(1 − V)2U

)3U .

Finally, it is straightforward to note that

E
[
(-!)2I(-! ≤ 0)

]
≤ E

[
-2I(- ≤ 0)

]
.

�

In our last example, we consider random variables with polynomially decaying tails.

Corollary 3. Let - be a centered random variable, i.e. E [-] = 0, whose tail is captured by W log C,

where W > 2. Moreover, assume E
[
-2I(- ≤ 0)

]
= f2
− < ∞. Then, we have

2!,V ≤


f2
− + !

WV

! +
2 − WV

2−W(1−V)
2 − W(1 − V)

(
!2−W(1−V) − 1

)
+ WV!

2−(1−V)W log !
2 − (1 − V)W , V ≠ 1 − 2

W
,

f2
− + !

W−2
! + 2 log ! + W − 2

2
(
log !

)2
, V = 1 − 2

W
.

(2.6)
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Proof. Note that

E

[(
-!

)2
exp

(
_-!

)
I(-! > 0)

]
= E

[(
-!

)2
exp

(
_-!

)
I(0 < -! ≤ 1)

]
+ E

[(
-!

)2
exp

(
_-!

)
I(-! > 1)

]
≤ exp

(
VW

log(!)
!

)
+ E

[(
-!

)2
exp

(
_-!

)
I(-! > 1)

]
= !

WV

! + E
[(
-!

)2
exp

(
_-!

)
I(-! > 1)

]
.

Thus, for V ≠ 1 − 2
W

, using the upper bound given in Lemma 2, we just need to show

∫ !

1
exp

(
−(1 − V)W log C

) (
2C + VWC log C

)
3C =

2 − WV

2−W(1−V)
2 − W(1 − V)

(
!2−W(1−V) − 1

)
+ WV!

2−(1−V)W log !
2 − (1 − V)W .

(2.7)

Toward this goal, note that

∫ !

1
exp

(
−(1 − V)W log C

) (
2C + VWC log C

)
3C =

∫ !

1
C1−(1−V)W

(
2 + VW log C

)
3C

=
C2−(1−V)W

2 − (1 − V)W

(
2 + VW

(
− 1

2 − (1 − V)W + log C
)) �����!

1

=
2 − WV

2−W(1−V)
2 − W(1 − V)

(
!2−W(1−V) − 1

)
+ WV!

2−(1−V)W log !
2 − (1 − V)W .

In the above equality, we are using
∫
C: = 1

:+1 C
:+1 and

∫
C: log C =

(
− 1
(:+1)2 +

log C
:+1

)
C:+1.

For V = 1 − 2
W

we have 1 − (1 − V)W = −1 and WV = W − 2. Hence

∫ !

1
exp

(
−(1 − V)W log C

) (
2C + VWC log C

)
3C =

∫ !

1
C−1 (

2 + (W − 2) log C
)
3C

= 2 log C + W − 2
2

(
log C

)2

�����!
1

= 2 log ! + W − 2
2

(
log !

)2
,

which concludes the proof. �
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Remark 3. Note that V < 1 − 2
W

is equivalent to 2 − (1 − V)W < 0. Hence, the right hand side of

(2.6) remains bounded when ! grows to infinity. By letting V get closer to 1 we can cover any W > 2.

Hence, we can obtain a concentration inequality for the sum of independent and identical random

variables with polynomially decaying tail as long as %(- > C) < 1
CW

for some W > 2.

Let us try to find another bound for 2!,V for the distributions we discussed in Corollaries 2 and

3. These bounds enable us to obtain another concentration result that is in some sense sharper than

the one we derived above and shows the flexibility of our framework.

Lemma 3. Suppose that var(-) < ∞ and the right tails of random variables - is captured by � (C).

Suppose that � (C) satisfies one of the following conditions:

(a) � (C) = �U (C) = 2U U
√
C for U > 1 and V < 1,

(b) � (C) = W log C for W > 2 and V < 1 − 2
W

.

Then, if we set _!,V = V
� (!)
!

we have

lim
!→∞
E

[ (
-! − E [-]

)2
(
I
(
-! ≤ E [-]

)
+ exp

(
_!,V

(
-! − E [-]

) )
I
(
-! > E [-]

))]
= Var(-).

The proof of this lemma is presented in Section 2.4.2. This lemma implies that if ! is large

enough, then we should expect 2!,V to be very close to Var(-). So, assuming <C is large enough

we can obtain a more accurate concentration result.

Corollary 4. Suppose that the right tails of independent and identically distributed random vari-

ables -1, -2, . . . , -< are captured by 2U U
√
C for U > 1, and +0A (-8) = f2. Define (< =

∑
8≤<

-8.

Then, for any 0 < V < 1 and n > 0, there is a constant �n such that for all <C > �n

P
(
(< − E [(<] > <C

)
≤


exp

(
−2CV2U U

√
<C

)
+ < exp

(
−2U U
√
<C

)
, C > Cmax,

exp

(
− <C2

2
(
f2 + n

) ) + < exp

(
−

<C2max
V(f2 + n)

)
, C ≤ Cmax,

(2.8)
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where Cmax =
(
V(f2 + n)2U

) U
2U−1

<−
U−1

2U−1 and 2C = 1− 1
2 V(f

2 + n)2U<
1
U
−1C

1
U
−2 varies between 1

2 and

1.

Proof. Note that, by Lemma 3, for any given n > 0 we can find a positive constant �n , such that

E

[ (
-! − E [-]

)2
(
I
(
-! ≤ E [-]

)
+ exp

(
_!,V

(
-! − E [-]

) )
I
(
-! > E [-]

))]
≤ f2+n, ∀! > �n .

Hence, for all <C > �n , Theorem 1 is applicable with 2!,V = f2 + n . The corollary follows by

substituting this 2!,V and � (C) = 2U U
√
C in Theorem 1. �

Remark 4. According to Corollary 4, if �n < <C ≤ <Cmax, then P
(
(< − E [(<] > <C

)
is upper

bounded by exp
(
− <C2

2(f2+n)

)
+ < exp

(
− <C2max
V(f2+n)

)
. Note that exp

(
− <C2

2(f2+n)

)
is very close to the term

that appears in the central limit theorem. Furthermore, if <C > Cmax, then P
(
(< − E [(<] > <C

)
is bounded from above by exp

(
−2CV2U U

√
<C

)
+ < exp

(
−2U U
√
<C

)
. Again we will show in the

next section that this bound is sharp. Hence, an accurate bound for 2!,V results in an accurate

concentration result.

Remark 5. Using part (b) of Lemma 3, a corollary similar to Corollary 4 can be also written

for � (C) = W log C with W > 2. For the sake of brevity, we do not repeat this corollary. Hence,

Theorem 1 can be used to obtain concentration results as long as � (C) > W log C with W > 2 (for

large enough values of C). Note that if �1A (C) = W log C for W < 2, then the variance of the random

variable is unbounded. This is the region in which the sum of independent and identically distributed

random variables does not converge to a Gaussian and it converges to other stable distributions

(See Chapter 1 of [63]). We leave the study of the concentration of sums of such random variables

to future research.

2.2.2 Large deviation

In this section, as a simple byproduct of what we have proved for obtaining concentration

bounds and also evaluating the sharpness of our results, we study the large deviation properties
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of the sums of independent and identically distributed random variables. Towards this goal, we

consider the limiting version of Definition 1 in which the exact rate of decay of the tail is captured

by � (C).

Definition 2. Let � : R → R denote an increasing function. We say � captures the right tail of

random variable - in the limit if

lim
C→∞

− log
(
P (- > C)

)
� (C) = 1. (2.9)

We say a random variable is super-exponential if its tail is captured in limit by a function � such

that � (C) = >(C) as C →∞.

Note that if the basic right tail capturing function satisfies �1A (C) = >(C), then the moment

generating function of the distribution is infinity for _ ∈ (0,∞). Hence, Cramer’s theorem is not

useful. Our next theorem offers a sharp large deviation result for superexponential random variables.

Theorem 2 (General Large Deviation). Suppose that -1, -2, . . . , -< are super-exponential random

variables with finite variance whose tails are captured in the limit by � (C). Furthermore, suppose

that � is an increasing function and lim
C→∞

log(C)
� (C) = 0. Finally, let W< be an increasing sequence of real

numbers that satisfy

log< � � (W<) �
W2
<

<
.2 (2.10)

If (2.2) remains bounded for -1 and for all V < 1, then

lim
<→∞

− logP
(
(< − E [(<] > W<

)
� (W<)

= 1. (2.11)

The proof of this theorem is presented in Section 2.4.3. Again we use this theorem to obtain

large deviation results for a few concrete examples.

2 5 (C) � 6(C) means that 5 (C) = >(6(C)) as C →∞.
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Corollary 5. Let the tail of independent and identically distributed random variables -1, -2, . . . , -<

be captured by � (C) = 2U U
√
C in the limit, where U > 1. Then, we have

lim
<→∞

− logP
(
(< − E [(<] > <C

)
U
√
<C

= 2U .

Proof. It suffices to choose W< = <C and apply Theorem 2 with � (C) = 2U U
√
C. Note that

log< � 2U
U
√
<C � (<C)

2

<
= <C2, (2.12)

for all U > 1. �

Remark 6. We should emphasize that the large deviation result for subWeibull distribution has been

studied in the literature [64], [62]. Being able to answer this question for subWeibull distributions,

although it is not novel, shows the strength of the results developed in this chapter. Note that even if

C grows with <, as long as (2.12) is satisfied, i.e. <C< � <
U

2U−1 , we have

lim
<→∞

− logP
(
(< − E [(<] > <C<

)
U
√
<C<

= 2U .

On the other hand, it is known that if<C< � <
U

2U−1 , then the decay is characterized byΦ
(

<C<√
<Var(-)

)
,

where Φ = 1 −Φ, and Φ denotes the cumulative distribution function of a standard normal random

variable [64]. According to Table 3.1 of [64] a similar result as the one presented in Corollary 5

has been known for W< � <
U

2U−2 when 0 ≤ 1
U
≤ 1

2 . However as we discussed above, an extension of

Corollary 5 fills the gap between <
U

2U−2 and <
U

2U−1 , and shows that in this region still the tail of the

sum behaves like the tail of the maximum.

Theorem 2 does not cover the polynomially-decaying tails. Hence, for the sake of completeness

we discuss the polynomial example below.

Corollary 6. Suppose - has zero mean and finite variance f2 and its right tail is captured by

� (C) = U log C for some U > 2. For any sequence W< that satisfies any of the following conditions
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(i) lim
<→∞

log<
log W< = : for some : < 2,

(ii) lim
<→∞

log<
log W< = 2 and W< �

√
< log<,

we have

lim
<→∞

− logP
(
(< > W<

)
� (W<) − log<

= 1. (2.13)

The proof can be found in Section 2.4.4.

Remark 7. The result of Corollary 6 is known in the literature. For instance, the interested reader

may refer to Proposition 3.1 in [64]). The main reason it is mentioned here is to show that this is

also a simple byproduct of our main results in Section 2.2.1. Note that the conditions Corollary 6

imposes on the growth of W< cover all sequences that satisfy W< �
√
< log< (maybe after passing

to a subsequence to make lim log<
log W< exist). For sequences that grow slower than

√
< log< the rate

function for large deviations is not � (W<) − log< anymore [64].

2.3 Discussion of the sharpness of Theorem 1

In this section, we would like to discuss that the bounds offered by Theorem 1 are sharp if

compared with the limiting expressions obtained from the large deviation results. We clarify this

point through the following two examples: Let � (C) capture the right tail of a centered random

variable - and also captures its right tail in the limit (�1A (C) has this property). Assume that

-1, ..., -< are independent copies of - and (< =
∑
8≤<

(<. Below we discuss the subWeibull

distributions and the distributions with polynomial tail decays.

1. � (C) = 2U U
√
C: Theorem 1 yields

P
(
(< > W<

)
≤


exp

(
−2 W<

<
V� (W<)

)
+ < exp

(
−� (W<)

)
, W< � <

U
2U−1 ,

exp

(
− W<

2

2<
(
f2 + n

) ) + < exp

(
−

<C2max
V(f2 + n)

)
, W< � <

U
2U−1 .

(2.14)
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Note that 1 − V and n can be chosen arbitrarily small. Moreover, lim
W<→∞

2 W<
<
= 1. Hence, in

the first case the right hand side behaves like its dominant term which is exp
(
−� (W<)

)
. As

proven in Theorem 2, P
(
(< > W<

)
∼ exp

(
−� (W<)

)
which proves the asymptotic sharpness

of our first bound. Furthermore, when W< � <
U

2U−1 the right hand side of Inequality (2.14)

behaves like exp
(
− W2

<

2<f2

)
. It is known for W< growing at this speed we have

lim
<→∞

P
(
(< > W<

)
Φ

(
W<

f
√
<

) = 1,

where Φ = 1−Φ(C) and Φ is the CDF of standard normal distribution [64]. Since Φ
(
W<

f
√
<

)
∼

√
<f√

2cW<
exp

(
− W2

<

2<f2

)
we have

lim
<→∞

− logΦ
(
W<

f
√
<

)
W2
<

2<f2

= 1.

Hence,

lim
<→∞

− logP
(
(< > W<

)
W2
<

2<f2

= 1.

This proves the asymptotic sharpness of our second bound.

2. � (C) = W log C for W > 2: Theorem 1 yields

P
(
(< > W<

)
≤


exp

(
−2 W<

<
V� (W<)

)
+ exp

(
−

(
� (W<) − log<

) )
, W< �

√
< log<,

exp

(
− W<

2

2<
(
f2 + n

) ) + < exp

(
−

<C2max
V(f2 + n)

)
, W< �

√
< log<,

for any V < 1− 2
W

. This time, one can easily check< exp
(
−� (W<)

)
= <W

−W
< and exp

(
− W<

2

2<(f2+n)

)
will be dominant for the first and second cases, respectively. One more time, the rate function

given by Corollary 1 in the first case, and the Gaussian CDF approximation in the second

case [64] match the dominant terms offered by Theorem 1.
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2.4 Proofs of our main results

In this section, we state and prove a key lemma about the truncated random variable. This

lemma is important in the proof of our concentration and large deviation results.

2.4.1 Proof of Theorem 1

Lemma 4. If -! , -1-≤! , then for all _ > 0 and ! > 0 we have

logE
[
exp

(
_(-! − E [-])

)]
≤ :!,_

2
_2,

where

:!,_ = E

[(
-! − E [-]

)2
I
(
-! ≤ E [-]

)]
+ E

[(
-! − E [-]

)2
exp

(
_

(
-! − E [-]

))
I
(
-! > E [-]

)]
.

Proof. From the mean value theorem we have

exp (_-!) = exp
(
E [_-]

)
+
(
_-! − E [_-]

)
exp

(
_E [-]

)
+1

2
(
_-! − E [_-]

)2 exp (_. ) , (2.15)

where . is a random variable whose value is always between E [-] and -! . Hence,

logE
[
exp (_-1-≤!)

]
= _E [-]

+ log
(
1 + _

(
E [-!] − E [-]

)
+ 1

2
_2E

[ (
-! − E [-]

)2 exp
(
_. − E [_-]

) ] )
. (2.16)

Note that -! − - ≤ 0 and _ > 0. Thus,
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logE
[
exp

(
_

(
-1-≤! − E [-]

) )]
= log

(
1 + _

(
E [-!] − E [-]

)
+ 1

2
_2E

[ (
-! − E [-]

)2 exp
(
_. − E [_-]

) ] )
≤ log

(
1 + 1

2
_2E

[ (
-! − E [-]

)2 exp
(
_. − E [_-]

) ] )
≤ 1

2
_2E

[ (
-! − E [-]

)2 exp
(
_. − E [_-]

) ]
. (2.17)

Since . falls between E [-] and -! we have

. ≤ E [-] I
(
-! ≤ E [-]

)
+ -!I

(
-! > E [-]

)
.

Hence the expectation in (2.17) is bounded by

E

[(
-! − E [-]

)2
I
(
-! ≤ E [-]

)]
+ E

[(
-! − E [-]

)2
exp

(
_

(
-! − E [-]

))
I
(
-! > E [-]

)]
.

�

Proof of Theorem 1. Note that by Lemma 4 and (2.2) we have

logE
[
exp

(
_(-! − E [-])

)]
≤
2!,V

2
_2.

Moreover,

P
(
(< − E [(<] > <C

)
≤ P

(∑
-!8 − E [(<] > <C

)
+ P (∃8 -8 > !)

≤ exp (−_<C) E
[
exp

(
_(-! − E [-])

)]<
+ <P (- > !)

≤ exp

(
<

(
−_C +

2!,V

2
_2

))
+ < exp

(
−� (!)

)
. (2.18)

The main remaining step is to find good choices for the free parameters ! and _. The goal is to
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choose the values of _, ! such that we get the best upper bound in (2.18). We consider two cases:

(i) C > Cmax, and (ii) C ≤ Cmax. In each case, we select these parameters accordingly.

• Case 1 (C > Cmax): In this case, we choose ! = <C and _ = V � (<C)
<C

. We have

P
(
(< − E [(<] > <C

)
≤ exp

(
−V

(
1 −

V2!,V� (<C)
2<C2

)
� (<C)

)
+ < exp

(
−� (<C)

)
= exp

(
−V2C � (<C)

)
+ < exp

(
−� (<C)

)
.

Note that since for all C > Cmax we have C > V2!,V
� (<C)
<C

, we can conclude 1
2 ≤ 2C < 1.

• Case 2 (C ≤ Cmax): In this case, we pick ! = <Cmax and _ = C
2!,V
≤ Cmax

2!,V
= V

� (!)
!

. Then, (2.18)

implies

P
(
(< − E [(<] > <C

)
≤ exp

(
− 1

22!,V
<C2

)
+ < exp

(
−� (<Cmax)

)
= exp

(
− 1

22!,V
<C2

)
+ < exp

(
− 1
V2!,V

<C2max

)
.

Note that 2!,V is increasing in V. Hence, choosing a smaller value for _, as we did in this case,

causes no problem.

�

2.4.2 Proof of Lemma 3

First, we prove the lemma under Assumption (a). Note that for ! > E [-] we have
(
-! − E [-]

)2 ≤(
- − E [-]

)2 ∈ L1. Furthermore, -!
0.B.−−−→ - . Hence, by using the dominant convergence theorem

we obtain

E

[(
-! − E [-]

)2
I
(
- ≤ E [-]

) ] !→∞−−−−→ E
[
(- − E [-])2I

(
- ≤ E [-]

) ]
. (2.19)
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Furthermore, it is straightforward to show that

(-! − E [-])2 exp
(
_!,V (-! − E [-]

)
0.B.−−−→ (- − E [-])2. (2.20)

Hence, if we find an L1 function that dominates (-! − E [-])2 exp
(
_!,V (-! − E [-]

)
, then we

can use the dominant convergence theorem to complete the proof. Toward this goal, we consider

. =
(
- − E [-]

)2 exp
(
V2U

U
√

max(-, 0) + 1
)
I
(
- > E [-]

)
.

Note that for - > E [-], ! > 2E [-] and −_!,VE [-] ≤ 1, we have (we remind the reader that

_!,V = V
� (!)
!
→ 0 as ! →∞)

exp
(
_!,V (-! − E [-])

)
≤ exp

(
_!,V-

! + 1
)
= exp

(
V2U

U
√
!

!
-! + 1

)
≤ exp

(
V2U

U
√

max(-, 0) + 1
)
.

(2.21)

Thus, for ! large enough we have

(-! − E [-])2 exp
(
_!,V (-! − E [-]

)
I
(
- > E [-]

)
≤ . . (2.22)

To prove the integrability of . , note that

E

[ (
- − E [-]

)2 exp
(
V2U

U
√

max(-, 0)
)
I(- > E [-])

]
=

∫ ∞

0
P

( (
- − E [-]

)2 exp
(
V2U

U
√

max(-, 0)
)
> D, - > E [-]

)
3D

≤ E
[ (
- − E [-]

)2
I
(
E [-] ≤ - < 0

) ]
+

∫ ∞

0
P (- > C) 3D (C − E [-])2 exp

(
V2U

U
√
C

)
= D

≤ +0A (-) +
∫ ∞

0
exp

(
−2U U
√
C

)
3D

≤ +0A (-) +
∫ ∞

0
exp

(
−2U U
√
C

) (
2(C − E [-]) + V2U

U
C

1
U
−1(C − E [-])2

)
exp

(
V2U

U
√
C

)
3C

≤ +0A (-) +
∫ ∞

0
exp

(
−2U (1 − V) U

√
C

)
Poly

(
C

1
U
−1, C

)
3C < ∞.
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Recall that V < 1 and 2U > 0, hence the exponent of the last line is negative. Thus . is integrable as

it was desired.

The proof under assumption (b) is analogous to the proof of part (a). The only difference is to

prove the dominant convergence theorem for the following variable:

(-! − E [-])2 exp
(
_!,V (-! − E

[
-)

] )
I
(
- > E [-]

)
.

Toward this goal we use the dominant variable:

. =
(
- − E [-]

)2 exp
(
VW log

(
- − E [-]

) )
I
(
- > E [-]

)
=

(
- − E [-]

)2+VW
I
(
- > E [-]

)
.

The proof of the integrability of this variable is left to the readers.

2.4.3 Proof of Theorem 2

We start with a lemma that will be used in our proof later.

Lemma 5. Let 0=, 1= and 2= be sequences of positive numbers such that

lim
=→∞

log 0=
2=

= 0, lim
=→∞

log 1=
2=

= 1, lim
=→∞

2= = ∞.

Then

lim
=→∞

log(0= + 1=)
2=

= max {0, 1} . (2.23)

Proof. Without loss of generality assume 0 ≥ 1, hence 0= ≥ 1= for large enough =. Thus

0 = lim
=→∞

log 0=
2=

≤ lim
=→∞

log(0= + 1=)
2=

≤ lim
=→∞

log 20=
2=

= lim
=→∞

log 2
2=
+ lim
=→∞

log 0=
2=

= 0.

Therefore

lim
=→∞

log(0= + 1=)
2=

= 0.
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�

First note that

P
(
(< − E [(<] > W<

)
≥ P

(
- > W<

)
P

(
(<−1 − E [(<−1] ≥ E [-]

)
.

Since (<−1−E [(<−1]√
<−1

3−→ N(0,Var(-)) and E [-]√
<−1
→ 0 we have

P
(
(<−1 − E [(<−1] ≥ E [-]

)
≥ � > 0,

for a positive constant � and large enough <. Therefore,

lim
<→∞

− logP
(
(< − E [(<] > W<

)
� (W<)

≤ lim
<→∞

− logP
(
- > W<

)
� (W<)

+ − log�
� (W<)

= 1. (2.24)

To obtain the last equality we used the fact that since log< � � (W<) we have � (W<) → ∞ as

< →∞. Hence,

lim
<→∞

− log�
� (W<)

= 0.

On the other hand,

P
(
(< − E [(<] > W<

)
≤ exp

(
−_W<

)
E

[
exp

(
_(-! − E [-])

)]<
+ <P (- > !)

≤ exp
(
−_W<

)
exp

(
:!,_

2
_2<

)
+ <P (- > !) , (2.25)

where we used Lemma 4 to obtain the last inequality. Let ! = W< and _ = V
� (W<)
W<

. Moreover,

assume 2V is the bound for 2!,V when ! is large enough. Then, (2.25) implies that

P
(
(< − E [(<] > W<

)
≤ exp

(
−V� (W<) +

V22V

2
<� (W<)2

W2
<

)
+ <P

(
- > W<

)
. (2.26)
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In order to find a lower bound for lim − logP((<−E [(<]>W<)
� (W<) , we use Lemma 5. Hence, we need to

bound each term of (2.26) separately.

lim
<→∞

V� (W<) −
V22V

2
<� (W<)2
W2
<

� (W<)
= V +

V22V

2
lim
<→∞

−<� (W<)
W2
<

= V, (2.27)

where we used � (W<) = >( W
2
<

<
) to obtain the last equality. Moreover,

lim
<→∞

− log(<P
(
- > W<

)
)

� (W<)
= 1. (2.28)

The last equality holds because � captures the tail of - asymptotically and grows faster than log(<).

Hence, using (2.26), (2.27) and (2.28) we obtain

lim
<→∞

− logP
(
(< − E [(<] > <C

)
� (<C) ≥ V, ∀V < 1,

which implies

lim
<→∞

− logP
(
(< − E [(<] > <C

)
� (<C) ≥ 1. (2.29)

By using (2.24) and (2.29) we obtain

lim
<→∞

− logP
(
(< − E [(<] > <C

)
� (<C) = 1,

which concludes the proof.

2.4.4 Proof of Corollary 6

First, assume W< satisfies (i). Let V < 1 − :
U

, hence (1 − V)U = :′ > : . According to Corollary

3 for this V and ! = W< we have

2W<,V ≤ �W
2−(1−V)U
< log W< = �W2−: ′

< log W< .
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Therefore

W<

<
� W2−: ′

<

log<
W<

≥ �′V2W<,V
� (W<)
W<

,

since we have lim log<
log W< = : < :

′. Thus, for large enough <, when applying Theorem 1 with C = W<
<

and the chosen V above we will be in the C > Cmax regime.

For the second case that W< satisfies (ii), Lemma 3 implies that for any V < 1− 2
U

, 2W<,V remains

bounded. Hence we have
W<

<
� V2W<,V

� (W<)
W<

= $

(
log<
W<

)
,

which means we still are in the region C > Cmax. Hence,

P
(
(< > W<

)
≤ exp

(
−2 W<

<
V� (W<)

)
+ < exp

(
−� (W<)

)
. (2.30)

Note that 2 W<
<
= 1 − 1

2
V2W<,V
W<
<

� (W<)
W<

<→∞−−−−→ 1, so we obtain

lim
<→∞

2 W<
<
V� (W<)

� (W<) − log<
= lim
<→∞

V

1 − log<
� (W<)

= lim
<→∞

V

1 − log<
U log W<

=
V

1 − :
U

=
U − :′
U − : , ∀:′ > :.

(2.31)

Moreover,

lim
<→∞

� (W<) − log<
� (W<) − log<

= 1. (2.32)

By combining (2.30), (2.31) and (2.32) we obtain

lim
<→∞

− logP
(
(< > W<

)
� (W<) − log<

≥ U − :
′

U − : , ∀:′ > :,
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which implies

lim
<→∞

− logP
(
(< > W<

)
� (W<) − log<

≥ 1. (2.33)

On the other hand,

P
(
(< > W<

)
≥

<∑
9=1
P

©­«
∑
8≠ 9

-8 > −n
√
<, max

8≠ 9
-8 < W<

ª®¬P
(
- 9 ≥ W< + n

√
<

)
= <P

(
(<−1√
<

> −n, max
8≤<−1

< W<

)
P

(
-< ≥ W< + n

√
<

)
≥ ©­«P

(
(<−1√
<

> −n
)
− P

(
∃8 ≤ < − 1, -8 > W<

)ª®¬<P
(
- ≥ W< + n

√
<

)
≥ ©­«P

(
(<−1√
<

> −n
)
− (< − 1)P

(
- > W<

)ª®¬<P
(
- ≥ W< + n

√
<

)
. (2.34)

Note that by the central limit theorem we have P
(
(<−1√
<
> −n

)
≥ P

(
(<−1√
<
> 0

)
<→∞−−−−→ 1

2 . Further-

more,

(< − 1)P
(
- > W<

)
= exp

(
log(< − 1) − �1A (W<)

)
∼ exp

(
log(< − 1) − U log(W<)

)
∼ exp

(
(1 − U

:
) log<

)
. (2.35)

Since : ≤ 2 < U, the right hand side of (2.35) goes to 0 as < grows. Hence for large enough <,

we have ©­«P
(
(<−1√
<

> −n
)
− (< − 1)P

(
- > W<

)ª®¬ ≥ 1
3
.
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Therefore, by (2.34) we obtain

lim
<→∞

− logP
(
(< > W<

)
� (W<) − log<

≤ lim
<→∞

log 3 − logP
(
- > W< + n

√
<

)
− log<

U log W< − log<

= lim
<→∞

U log
(
W< + n

√
<

)
− log<

U log W< − log<
= 1

To obtain the last equality we have used lim<→∞
log(W<+n√<)

log W< = 1 which can be easily proved by

noting that log W< ≤ log
(
W< + n

√
<

)
≤ log W< + n

√
<

W<
and that

√
< � W< since : < 2.

2.5 Conclusion

We developed a framework to study the concentration of the sum of independent and identically

distributed random variables with heavy tails. In particular, we considered distributions for which

the moment generating function does not exist. Techniques that we offered in this chapter are

pretty simple and yet effective for all distributions that have finite variances. The generality and

simplicity of the tools not only enable us to recognize different deviation behaviors, but also help

us to determine the boundary of such phase transitions precisely. Furthermore, we showed the

tools that we developed for obtaining concentration inequalities are sharp enough to offer large

deviation results as well. Note that there are plenty of results in the literature, such as Hanson-

Wright inequality [65] and Gartner-Ellis Theorem [66], whose proof heavily relies on the moment

generating function. We believe that the framework presented here can extend all such results to the

class of distributions with finite variance.
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Chapter 3: Spectral Method for Phase Retrieval

3.1 Introduction

Phase retrieval refers to the problem of recovering a signal x ∈ C= from a set of phaseless linear

observations y ∈ R<. Under the absence of the measurement noise, the acquisition process is

modeled as

H8 = | (Gx)8 |,

where G ∈ C<×= is a measurement matrix and (·)8 denotes the 8th element of a vector. The phase

retrieval problem is intended to model practical imaging systems where it is difficult to measure the

phase of the measurements [7]. A number of recent recovery algorithms pose Phase retrieval as a

non-convex optimization problem, and employ a local search algorithm to find the minimizer [25,

67, 26, 68]. For instance, the well known Wirtinger Flow algorithm [25] solves the optimization

problem:

min
z

<∑
8=1
(H2
8 − |a∗8 z |2)2, (3.1)

using gradient descent.

Since the optimization problem (3.1) is non-convex, the initialization can have an impact on the

success of local search algorithms. The most widely used initialization scheme, known as spectral

initialization [28, 67, 26, 29, 69, 30], uses the leading eigenvector of the following data-dependent

matrix:

S
Δ
= G∗ZG (3.2)

as the starting point for local search algorithms. In the above equation,

Z = Diag(T (H1),T (H2), . . . ,T (H<)),

37



and T (·) denotes a suitable trimming function. Let x̂ denote the leading eigenvector of S normal-

ized to have unit Euclidean (ℓ2) norm. That is,

x̂
Δ
= max
‖z‖=1

z∗Sz. (3.3)

The earliest analysis [28, 25] of the spectral estimator showed that if number of measurements <

is large enough (for a fixed =), then the leading eigenvector of S is a consistent estimator of the

true signal vector. However these analyses had two drawbacks: (i) They only provide information

about the order of measurements required for a successful initialization and not a sharp requirement

on the sampling ratio </=, (ii) These analyses fail to capture the difference in the performance

of various trimming functions. Recently, Lu and Li [29] have analyzed the spectral estimator for

measurement matrices that are composed of independent and identically distributed (i.i.d.) standard

normal entries in the high dimensional asymptotic regime. More specifically, Lu and Li considered

the asymptotic setting in which <, = → ∞, </= = X, and obtained a sharp characterization for

the overlap between the leading eigenvector and the true signal. In follow up work by Mondelli

and Montanari [69] and Luo, Alghamdi and Lu [30] this characterization was leveraged to design

optimal trimming functions. For the optimal trimming function, the overlap |x̂∗x |2/‖x‖2 converges

to zero when X < 1, and converges to a strictly positive value otherwise.

A major assumption in the analysis of [29, 69, 30] is that the measurement matrix G contains

i.i.d. Gaussian entries. However, it is well-known that many important applications of phase retrieval

are concerned with Fourier-type matrices [70]. This leads to the following natural questions: (i) Are

the conclusions of [29, 69, 30] correct for other matrices that are employed in practice? (ii) Is the

optimal choice of trimming that was derived in [29, 69, 30] for Gaussian measurement matrices

optimal for other matrices employed in practice? In response to these questions, Ma et al. [71]

considered a popular class of matrices that can be used in phase retrieval systems, known as coded

diffraction pattern (CDP) [72]. Through an extensive numerical study, the authors showed that the

performance of the spectral initialization for such matrices closely approximates the performance of
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the spectral estimator for partial orthogonal matrices. The authors then designed an Expectation

Propagation (EP) [73, 74] algorithm for the eigenvalue problem given in (3.3). EP algorithms had

previously been proposed for partial orthogonal matrices in [75, 76] and their State Evolution (SE)

had been analyzed in [77, 78]. Ma et al. used the SE of derived EP algorithm for the eigenvalue

problem to derive a (conjectured) formula for the asymptotic overlap |x̂∗x |2/‖x‖2 between the

true signal vector and the spectral initialization. However, while it is believed that EP algorithm

indeed solves the eigenvalue problem (this has also been observed in simulations), this has not been

shown rigorously. As a result of such studies, the authors conjectured that for partial orthogonal

matrices if the trimming function is chosen optimally, then for X > 2, |x̂∗x |2/‖x‖2 > 0, and for

X < 2, |x̂∗x |2/‖x‖2 = 0, in the asymptotic setting where =, < = X=→∞. As mentioned previously,

the simulations in [71] suggest that these conjectures are also likely to hold for CDP matrices.

In this paper, we prove the conjectures presented in [71] for partial orthogonal matrices using

tools from the free probability theory [79]. We believe this is the first theoretical justification that the

expectation propagation framework can correctly predict the statistical properties of the solutions

to non-convex optimization problems. The main technical step in our proof is the identification

of the location of the largest eigenvalue using a subordination function [79]. Interestingly, this

subordination function appears naturally in the expectation propagation (EP) algorithm of [71].

3.2 Main result

3.2.1 Notation

For Linear Algebraic Aspects

For a matrix G, G∗ refers to the conjugate transpose of G. For a matrix G ∈ C=×=, with real

eigenvalues, we use _1(G) ≥ _2(G) · · · ≥ _= (G) to denote the eigenvalues arranged in descend-

ing order. We use f(G) to refer to the spectrum of G which is simply the set of eigenvalues
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{_1(G), _2(G) . . . _= (G)}. Finally we define the spectral measure of G, denoted by `G as,

`G
Δ
=

1
=

=∑
8=1

X_8 (G) .

For <, = ∈ N, we denote the < × < identity matrix by O< and a < × = matrix of all zero entries by

0<,=. For < ≥ =, We also define the special matrix Y<,= as:

Y<,=
Δ
=


O=

0<−=,=

 . (3.4)

For Complex Analytic Aspects

For a complex number I ∈ C, Re(I), Im(I),Arg(I), |I |, I refer to the real part, imaginary part,

argument, modulus and conjugate of I. We denote the complex upper half plane and lower half

planes by

C+
Δ
= {I ∈ C : Im(I) > 0} and C− Δ

= {I ∈ C : Im(I) < 0}.

For Probabilistic Aspects

We use CN (0, 1) to denote the standard, circularly symmetric, complex Gaussian distribution.

Unif(U<) denotes the Haar measure on the unitary group. We denote almost sure convergence,

convergence in probability and convergence in distribution by
a.s.→, P→ and

d→ respectively. Two

random variables -,. are equal in distribution, denoted by - d
= . if they have the same distribution.

Throughout this paper, the random variables /,) refer to the pair of random variables with the joint

distribution given by / ∼ CN (0, 1) , ) = T (|/ |/
√
X). For a borel probability measure `, we use

Supp(`) to denote the support of `.
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Miscellaneous:

Let � be a subset of R or C. � denotes the closure of �. The distance from a point G ∈ R to �

is defined by dist(G, �) = infH∈� |G − H |. We define the n neighborhood of �, denoted by �n as

�n
Δ
= {G : dist(G, �) < n}.

The symbol ∅ is used to denote the empty set.

3.2.2 Measurement Model and Spectral Estimator

In the phase retrieval problem we are given < observations y ∈ R< generated as:

y = |Gx |

where x ∈ C= is the unknown signal vector and G ∈ C<×= is the sensing matrix. We assume

that ‖x‖ =
√
= and that the matrix G is generated according to the following process: Sample

N< ∈ U(<) from the Haar measure on the unitary group U(<) and set G to be the matrix formed

by picking the first = columns of N<. More formally,

G = NY<,=, N ∼ Unif(U(<)),

and Y is defined in (3.4). An important parameter for our analysis will be the sampling ratio,

denoted by X Δ
= </=. Let T : R≥0 → R be a trimming function. We study spectral estimators x̂

constructed as the leading eigenvector of the matrix S, defined below:

x̂ = arg max
‖u‖=1

u∗Su,

where S = G∗ZG and Z = Diag(T (H1),T (H2) . . . T (H<)).
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3.2.3 Assumptions & Asymptotic Framework

We analyze the performance of the spectral estimator in an asymptotic setup where =, < →

∞, </= = X > 1. In particular, we consider a sequence of independent phase retrieval problems

realized on the same probability space with increasing =, <. We assume some regularity assumptions

on the trimming function T which are stated below.

Assumption 1. The trimming function T satisfies the following conditions:

1. T is Lipschitz continuous.

2. supH≥0 T (H) = 1, infH≥0 T (H) = 0.

3. The random variable ) , defined by / ∼ CN (0, 1) and ) = T (|/ |/
√
X) has a density with

respect to the Lebesgue measure on R.

In the following remarks, we discuss why each of these assumptions are required and whether

they can be relaxed.

Remark 8. We need the trimming function T to be Lipschitz continuous so that the trimmed

measurements T (H8) can be approximated in distribution by T (|/ |/
√
X), / ∼ CN (0, 1). We expect

this approximation to hold under weaker smoothness hypothesis on T than Lipschitz continuity.

Remark 9. The assumptions:

sup
H≥0
T (H) = 1, inf

H≥0
T (H) = 0

are no stronger than the assumption that T is a bounded trimming function. In fact, given any

arbitary bounded trimming function with infH≥0 T (H) = 0 and supH≥0 T (H) = 1, the spectral

estimator constructed using T has the same performance as the spectral measure constructed using

T̃ (H) Δ
= (T (H) − 0)/(1 − 0).
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This is because,

S̃
Δ
= G∗Z̃ G =

1
1 − 0 G

∗ZG − 0

1 − 0 O=

=
1

1 − 0S −
0

1 − 0 O=.

In particular S and S̃ have the same leading eigenvector. We require the assumption that the

trimming function is bounded since a number of results in free probability theory that we rely on

assume this.

Remark 10. We need (3) in Assumption 1 to ensure that the limiting spectral measure of the matrix

S has no discrete component. We expect that this assumption can be completely removed by a

careful analysis since the location of point masses in the limiting spectral measure of S is well

understood.

3.2.4 Main Result

In order to state our main result about the performance of the spectral estimator, we need to

introduce the following four functions:

Λ(g) , g − (1 − 1/X)

E
[

1
g−)

] , k1(g) ,
E

[
|/ |2
g−)

]
E

[
1
g−)

] ,
k2(g) ,

E
[

1
(g−))2

]
(
E

[
1
g−)

] )2 , k
2
3 (g)

Δ
=

E
[
|/ |2
(g−))2

]
(
E

[
1
g−)

] )2 . (3.5)

In the above display, the random variables /,) have the joint distribution given by / ∼ CN (0, 1) , ) =

T (|/ |/
√
X). The functions Λ, k1 are defined on [1,∞) and the functions k2, k3 are defined on

(1,∞).

Remark 11. Under Assumption 1, the support of the random variable ) is the interval [0, 1].

Hence the definition of these functions at g = 1 needs some clarification. First, note that the random
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variable (1−))−1 ≥ 0. Hence, the E[(1−))−1] is well-defined, but maybe∞. If it is finite, each of

the above functions are well-defined at g = 1. If E[(1 − ))−1] = ∞, we define, Λ(1) = 1, k1(1) = 1.

This corresponds to interpreting 1/∞ = 0 and∞/∞ = 1 in the definition of these functions.

Theorem 3. Define gA , arg ming∈[1,∞) Λ(g). Also, let \★ denote the unique value of \ > gA that

satisfies k1(\) = X
X−1 . Then, under Assumption 1, we have

_1(S)
a.s.→


Λ(gA), k1(gA) ≤ X

X−1 ,

Λ(\★), k1(gA) > X
X−1 .

Furthermore,

|x∗x̂ |2
=

a.s.→


0, k1(gA) < X

X−1 ,(
X
X−1

)2
− X
X−1 ·k2 (\★)

k3 (\★)2− X
X−1 ·k2 (\★)

, k1(gA) > X
X−1 .

Remark 12. The proof of Theorem 3 shows that if k1(gA) > X/(X − 1), there exists exactly one

solution to the equation k1(\) = X/(X − 1), \ ∈ (gA ,∞). Hence, \★ is well-defined.

The proof of this result is postponed until Section 3.4. Before we proceed to the proof of this

theorem, let us clarify some of its interesting features. First, note that similar to the Gaussian sensing

matrices, even in the case of partial orthogonal matrices, the maximum eigenvector exhibits a phase

transition behavior. For certain values of X > 1, the inequality k1(gA) < X
X−1 holds, and hence the

maximum eigenvector does not carry information about x. For other values of X, the inequality

k1(g★) > X
X−1 holds and hence, the direction of the maximum eigenvector starts to offer information

about the direction of x. For typical choices of the trimming function T , there exists a critical value

of X, denoted by XT such that, when X < XT , the spectral estimator is asymptotically orthogonal to

the signal vector. When X > XT , the spectral estimator makes a non-trivial angle with the signal

vector. This phase transition phenomena is illustrated in Figure 3.1 for 3 different choices of T .
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Figure 3.1: Plot of the asymptotic cosine similarity between x̂ and x.

Remark 13 (Choice of Trimming function). The trimming function in Figure 3.1 are supported on

[0, 1].

1. T (H) = XH2/(XH2 +
√
X − 1) is a translated and re-scaled version of the trimming function

proposed by [69].

2. T (H) = XH2/(XH2 + 0.1) is a regularized version of the trimming function proposed by [30].

Remark 14 (Extensions to generalized linear measurements). While we focus on the phase retrieval

problem in this paper, our results extend straightforwardly to the generalized linear estimation,

where the measurements H8 are generated as follows:

H8 ∼ 5 (·| (Gx)8),

where 5 (·|·) denotes a conditional distribution modelling a possibly randomized output channel.

Under suitable regularity assumptions on 5 , Theorem 1 holds with the change that the joint

distribution of the random variables ), / is now given by:

/ ∼ CN (0, 1) , . ∼ 5
(
·
���� /√
X

)
, ) = T (. ).
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3.3 Optimal Trimming Functions

Theorem 3 can used to design the trimming function T optimally in order to obtain the best

possible value of |x∗★x̂ |2. Most of the work towards this goal was already done in [71] where the

result in Theorem 3 was stated as a conjecture and was used to design the optimal trimming function.

In particular, [71] showed the following impossibility result.

Proposition 1 ([71]). Let T be any trimming function for which Theorem 3 holds. Then,

lim sup
<,=→∞
<==X

|x∗x̂ |2
=

a.s.

≤ d2
opt(X),

where,

d2
opt(X)

Δ
=


0, X ≤ 2

\
opt
★ −1
\

opt
★ − 1

X

, X > 2
,

where \opt
★ is the solution to the equation (in g):

k
opt
1 (g) =

X

X − 1
, k

opt
1 (g)

Δ
=

E
[
|/ |2
g−)opt

]
E

[
1

g−)opt

] , g ∈ (1,∞),
which exists uniquely when X > 2 and, the random variable )opt is distributed as:

/ ∼ CN (0, 1) , )opt = 1 − 1
|/ |2

.

The work [71] also provided a candidate for the optimal trimming function:

Topt(H) = 1 − 1
XH2 .

They showed that if the characterization given in Theorem 3 holds for Topt, then it achieves the
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asymptotic squared correlation d2
opt(X). Unfortunately, since Topt is unbounded, Theorem 3 does not

apply to it. Extending Theorem 3 to unbounded trimming functions would likely require extending

previously known results in free probability to unbounded measures, and we don’t pursue this

approach in our work. Instead, we suitably modify the arguments of [71] to show that the family of

bounded trimming functions:

Topt,n (H) = 1 − 1
XH2 + n

, n > 0,

attains an asymptotic squared correlation that can be made arbitrarily close to d2(X) as n ↓ 0.

Proposition 2. Let x̂n denote the spectral estimator for x obtained by using Topt,n as the trimming

function. We have, almost surely,

lim
n↓0

lim
<,=→∞
<==X

|x∗x̂n |2
=

= d2
opt(X).

We provide a proof of this result in Appendix 3.6.

The regularized trimming functions Topt,n are not only useful from a theoretical point of view to

prove an achievability result, but also from a computational stand point: In simulations we have

observed that the power iterations are slow to converge when Topt is used as the trimming function

due to presence of large negative eigenvalues and this problem is mitigated by using Topt,n with a

small value of n (such as 0.1 or 0.01) with a negligible degradation in performance.

3.4 Proof of Theorem 3

3.4.1 Roadmap

Our proof follows the general strategy taken by [29]. In this subsection, we state several key

lemmas and show how they fit together in the proof of Theorem 3.2. First we note that without loss

of generality, for the purpose of analysis of the spectral estimator, we can assume x =
√
=e1. The

following lemma supports this claim.
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Lemma 6. The distribution of the cosine similarity, d2 = |x∗x̂ |2/= is independent of x.

Proof. Let x be an arbitrary signal vector with ‖x‖ =
√
=. Let y,Z, x̂ denote the measurements,

trimmed measurements and spectral estimate generated when the sensing matrix was G and the

signal vector was x. Note that the cosine similarity d2 is a (deterministic) function of G, x and

hence we use the notation d2(G, x) to denote the cosine similarity when the sensing matrix is G

and the signal vector is x.

Let � ∈ U(=) be such that
√
=�e1 = x. We have x∗x̂ =

√
=e∗1�

∗x̂. Next we note that

x̂′
Δ
= �∗x̂ is the leading eigenvector of the matrix S′ Δ

= �∗S� = (G�)∗ZG� = G′∗ZG′, where

we defined G′ Δ
= G�. Noting that Z is a diagonal matrix consisting of the trimmed observations

y = |Gx | =
√
=|G′e1 |, we conclude that x̂′ is the spectral estimate generated when the sensing

matrix was G′ and the signal vector was
√
=e1. Hence, we have concluded that

d2(G, x) = d2(G′,
√
=e1).

Next we note that G was generated from the sub-sampled Haar model, that is G = N<Y<,= where

N< ∼ Unif(U(<)). Since the Haar measure on U(=) is invariant to right multiplication by unitary

matrices, we have

N<
d
= N< ·


� 0

0 O<−=

 ,
where the notation d

= means that two random vectors have the same distributions. Consequently

G = N<Y<,=
d
= G� = G′. Therefore, d2(G, x) = d2(G′,

√
=e1)

d
= d2(G,

√
=e1), and the distribution

of d2 is independent of x. �

In the light of the above lemma, in the rest of the paper, we will assume x =
√
=e1. Next, we

partition G by separating the first column

G = [G1, G−1],
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where G−1 denotes all the remaining columns of G (except G1). Hence we can partition G∗ZG in

the following way:

G∗ZG =


G∗1ZG1 G∗1ZG−1

G∗−1ZG1 G∗−1ZG−1

 . (3.6)

Our strategy will be to reduce questions about the spectrum of the matrix S to questions about the

spectrum of a matrix of the form ^ = K[L[∗, where[ is a uniformly random unitary matrix, K is

a random matrix independent of[ and L is deterministic. This matrix model has been well studied

in Free Probability [79]. The starting point of our reduction is Proposition 2 from [29], stated below.

Proposition 3 ([29]). Let J be an arbitrary deterministic symmetric matrix partitioned as:

J =


0 q∗

q V

 .
Then, we have

_1(�) = ! (o★),

where ! (o) = _1(V + oqq∗), and o★ > 0 is the unique solution to the fixed point equation

! (o) = 1
o
+ 0. Furthermore, let v1 be the eigenvector corresponding to the largest eigenvalue of J.

Then,

|e∗1v1 |2 ∈
[

m−! (o★)
m−! (o★) + (1/o★)2

,
m+! (o★)

m+! (o★) + (1/o★)2

]
,

where m− and m+ denote the left and right derivatives respectively. In particular, if ! (o) is differen-

tiable at o★, then

|e∗1v1 |2 =
!′(o★)

!′(o★) + (1/o★)2
.
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A straightforward corollary of the above proposition to our problem is given below. Define the

function

!< (o)
Δ
= _1

(
G∗−1(Z + oZG1(ZG1)∗)G−1

)
.

Corollary 7. Let o< > 0 be the unique solution of !< (o) = 1/o + G∗1ZG1. Then, _1(G∗ZG) =

!< (o<) and

|e∗1x̂ |
2 ∈

[
m−!< (o<)

m−!< (o<) + (1/o<)2
,

m+!< (o<)
m+! (o<) + (1/o<)2

]
.

In particular, if !< (o) is differentiable at o<, then

|e∗1x̂ |
2 =

!′< (o<)
!′< (o<) + (1/o<)2

.

Hence, we shift our focus to characterizing the function !< (o). Recall the decomposition of

the matrix S given in (3.6). Recall that since x =
√
=e1, the diagonal matrix Z is a deterministic

function of G1. If the sensing matrix G consisted of independent Gaussian entries, then Z, G1 would

have been independent of G−1. This is no longer true when G is a partial unitary matrix. In order to

take care of this, the following lemma leverages a conditioning trick to get rid of the dependence.

The following lemma also establishes the link between the function !< (o) and the study of the

spectrum of a matrix of the form ^ = K[L[∗, where[ is a uniformly random unitary matrix, K is

a random matrix independent of[ and L is deterministic.

Lemma 7. We have

!< (o) = _1

(
H∗(Z + oZG1(ZG1)∗)HN<−1XN

∗
<−1

)
, (3.7)
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where

X =


O=−1 0=−1,<−=

0<−=,=−1 0<−=,<−=

 ,
H ∈ C<×<−1 is an arbitrary basis matrix for G⊥1 , which denotes the subspace orthogonal to G1,

and N<−1 ∼ Unif(U(< − 1)) is independent of G1.

Proof. We condition on G1. Conditioned on G1, we can realize G−1 as:

G−1 = HN<−1Y<−1,=−1.

In the above equation, H ∈ C<×<−1 is matrix whose columns form an orthonormal basis of the

orthogonal complement of G1 and N<−1 is a Haar Unitary of size < − 1 independent of G1. Hence,

we obtain

!< (o) = _1

(
G∗−1(Z + oZG1(ZG1)∗)G−1

)
a
= _1

(
H∗(Z + oZG1(ZG1)∗)H · N<−1XN

∗
<−1

)
.

In the step marked (a), We used the fact that for any two matrices �, � (of appropriate dimensions),

�� and �� have the same non-zero eigenvalues. In particular, we used this fact with:

� = Y∗<−1,=−1N
∗
<−1

� = H∗(Z + oZG1(ZG1)∗)HN<−1Y<−1,=−1.

�

Define the matrix,

K (o) Δ
= H∗(Z + oZG1(ZG1)∗)H. (3.8)
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The following lemma characterizes the asymptotic limit of the function !< (o). Define Λ+(g) as

Λ+(g) =


g − (1−1/X)

E
[

1
g−)

] if g > gA ,

ming≥1

(
g − (1−1/X)

E
[

1
g−)

] ) if g ≤ gA ,

where ) = T (|/ |/
√
X) and / ∼ CN(0, 1), and

gA , arg min
g≥1

©­­«g −
(1 − 1/X)

E
[

1
g−)

] ª®®¬ .
Lemma 8. Let o2

Δ
=

(
1 −

(
E

[
|/ |2
1−)

] )−1
− E[|/ |2)]

)−1

. Define the function \ (o) as:

• When o > o2: Let \ (o) be the unique value of _ that satisfies the equation:

_ − E[|/ |2)] − 1/o = ©­«E
[
|/ |2
_ − )

]ª®¬
−1

,

in the interval:

_ ∈
(
max(1,E[|/ |2)] + 1/o),∞

)
.

• When o ≤ o2: \ (o) Δ
= 1.

Then, we have !< (o)
a.s.→ Λ+(\ (o)), where !< (o) is defined in (3.7).

The proof of Lemma 8 can be found in Section 3.4.5.

From Corollary 7, we know that _1(S) solves the fixed point equation (in o): !< (o) = 1/o +

G∗1ZG1. Simple concentration arguments (see Lemma 12, Section 3.4.3) show that asymptotically:

G∗1ZG1 ≈ E|/ |2).
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Combining this with Lemma 8 suggests that asymptotically _1(S) behaves like the solution to the

following fixed point equation (in o):

Λ+(\ (o)) = 1/o + E|/ |2).

The following lemma analyzes the behavior of this asymptotic fixed point equation. The proof of

this lemma can be found in Section 3.4.5.

Lemma 9. The following hold for the equation:

Λ+(\ (o)) = 1/o + E[|/ |2)], o > 0.

1. This equation has a unique solution.

2. Let o★ denote the solution of the above equation. Then:

Case 1 If k1(gA) ≤ X
X−1 , we have

Λ+(\ (o★)) = Λ(gA).

Furthermore if k1(gA) < X/(X − 1), then,

dΛ+(\ (o))
do

����
o=o★

= 0,

Case 2 If k1(gA) > X
X−1 , we have

Λ+(\ (o★)) = Λ(\★),

and,

dΛ+(\ (o))
do

����
o=o★

=

1
o2
★

· X

X − 1
·
(
X

X − 1
− k2(\★)

)
· 1
k2

3 (\★) −
X2

(X−1)2
.
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where \★ > 1 is the unique \ ≥ gA that satisfies k1(\) = X
X−1 .

We are now in the position to prove our main result (restated below for convenience). Recall the

definitions of the functions Λ(g), k1(g), k2(g), k3(g) from Section 3.2.

Theorem 1 Define gA , arg ming∈[1,∞) Λ(g). Also, let \★ denote the unique value of \ > gA that

satisfies k1(\) = X
X−1 . Then, we have

_1(S)
a.s.→


Λ(gA), if k1(gA) ≤ X

X−1 ,

Λ(\★), if k1(gA) > X
X−1 .

Furthermore,

|e∗1x̂ |
2 a.s.→


0, if k1(gA) < X

X−1 ,(
X
X−1

)2
− X
X−1 ·k2 (\★)

k3 (\★)2− X
X−1 ·k2 (\★)

, if k1(gA) > X
X−1 .

Proof. We start with the analysis of the largest eigenvalue. We recall the claim of Corollary 7,

which tells us that _1(S) is given by !< (o<) where o< denotes the solution of !< (o) = 1/o + 0<

and 0< = G∗1ZG1.

We also know that there exists a probability 1 event E, on which, !< (o)
a.s.→ Λ+(\ (o)) (Lemma

8) and 0<
a.s.→ E[|/ |2)] (see Lemma 12 in Section 3.4.3).

We claim that on E, o< → o★, where o★ is the solution of the limiting fixed point equation

Λ+(\ (o)) = 1/o + E[|/ |2)] (which was analyzed in Lemma 9). To see this let o = lim sup o<.

Consider a subsequence o<: → o. Then applying Lemma 3 (in Appendix E) of [29], we obtain,

0 = lim
:→∞

(
!<: (o<: ) −

1
o<:
− 0<:

)
= Λ+(\ (o)) −

1
o
− E|/ |2).
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That is, o is also a solution to the limiting fixed point equation Λ+(\ (o)) = 1/o + E[|/ |2)]. But

since this equation has a unique solution (Lemma 9), we have lim sup o< = o = o★. Likewise, an

analogous argument shows lim inf o< = o★.

Now for any realization in the event E, we have,

_1(S) = !< (o<)
(a)→ Λ+(\ (o★)).

In the above display, in the step marked (a), we again appealed to Lemma 3 (Appendix E) of [29]

and the fact that o< → o★. Finally, appealing to the alternative characterization of Λ+(\ (o★)) given

in Lemma 9 gives us the claim of the theorem.

We now discuss our result about the cosine similarity. We recall that from Corollary 7, we have

|e∗1x̂ |
2 ∈

[
m−!< (o<)

m−!< (o<) + (1/o<)2
,

m+!< (o=)
m+! (o<) + (1/o<)2

]
.

Appealing to Lemma 4 in Appendix E of [29], we have,

m−!< (o<) → m−Λ+(\ (o★)), m+!< (o<) → m+Λ+(\ (o★)).

The derivative of Λ+(\ (o)) at o = o★ was calculated in Lemma 9. Plugging this in the above

expression gives the statement of the theorem. �

The remainder of this section is dedicated to the proof of Lemmas 8 and 9, and is organized as

follows:

• Recall that (cf. 3.7)

!< (o) = _1

(
K (o)N<−1XN

∗
<−1

)
,

where

K (o) Δ
= H∗(Z + oZG1(ZG1)∗)H.

Note that K (o) is independent of N<−1. The spectrum of such a matrix product has been
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studied in free probability theory, and we collect some results regarding this in Section 3.4.2.

• In order to apply the free probability results, we need to understand the spectrum of K (o).

This is done in Section 3.4.3.

• It turns out that the limiting spectrum measure of K (o)N<−1XN
∗
<−1 is given by the free

convolution (defined in Section 3.4.2) of the measures W and L) , where W Δ
= 1

X
X1 +

(
1 − 1

X

)
X0

and L) is the law of the random variable ) = T (|/ |/
√
X). Section 3.4.4 is devoted to

understanding the support of the free convolution.

• Finally, Section 3.4.5 proves lemmas 8 and 9.

3.4.2 Free Probability Background

Our analysis of the spectral estimators relies on a well-studied model in the theory of free

probability; We will reduce the problem to the problem of understanding the spectrum of matrices

of the form ^ = K[L[∗, where K and L are deterministic matrices and [ is a Haar-distributed

unitary matrix. Then, the limiting spectral distribution of ^ is the free multiplicative convolution

of the limiting spectral distributions of K and L. This section is a collection of the results and

definitions regarding these aspects. Here is the organization of this section. Section 3.4.2 collects

various facts from free harmonic analysis. Section 3.4.2 describes the two fundamental results about

the model ^ = K[L[∗ that will be used throughout our paper. Section 3.4.2 reviews some results

about the support of singular part of the free convolution of two measures. Throughout this section,

we assume that W and a are two arbitrary compactly supported probability measures on [0,∞) and

that neither of the two measures is completely concentrated at a single point.

Facts from Free Harmonic Analysis

In this section, we collect some facts from the field of free harmonic analysis. All these results

can be found in Chapter 3 of [80] or the papers [79] and [81].
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Definition 3. The Cauchy transform �W of W at I is defined as follows:

�W (I) =
∫

W(dC)
I − C , I ∈ C\[0,∞).

Definition 4. The moment generating function of W, kW at I is defined as follows:

kW (I) =
∫

IC

1 − IC W(dC), I ∈ C\[0,∞).

The Cauchy transform and the moment generating function are related via the relation

�W (I) =
1
I
·
(
kW

(
1
I

)
+ 1

)
.

Definition 5. The [-transform of a measure is defined as,

[W (I) =
kW (I)

1 + kW (I)
.

The Cauchy Transform (and hence the Moment Generating function) uniquely characterizes a

measure. The measure can be obtained by the following inversion formula. The particular version

we state is taken from Section 3.1 of [79].

Theorem 4. For 0 < 1 ∈ [0,∞), we have

W((0, 1)) + 1
2
W({0, 1}) = 1

c
lim
n→0+

∫ 1

0

Im(�W (G − 8n)) dG.

Furthermore, if W satisfies W = W02 + WB, where W02 and WB denote the absolutely continuous and the

singular part of the measure with respect to the Lebesgue measure, then the density of the absolutely

continuous part is given by

dW02
dG
(G) = lim

n→0+
1
c

Im(�W (G − 8n)).
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Next we recall the definition of the free convolution based on the subordination functions from

[82]. The statement we provide below appears in a more general form as Proposition 2.6 in [83].

Definition 6. Let (W, a) be a pair of probability measures. There exist analytic functions FW, Fa

defined on C\[0,∞) such that, for all I ∈ C+ we have

1. FW (I), Fa (I) ∈ C+; FW (I) = FW (I), Fa (I) = Fa (I) and Arg(FW (I)) ≥ Arg(I),Arg(Fa (I)) ≥

Arg(I).

2. For any I ∈ C+, Fa (I) is the unique solution in C+ of the fixed point equation &I (F) = F,

where &I is given by

&I (F) =
F

[a (F)
[W

(
I[a (F)
F

)
.

An analogous characterization holds for FW with the role of W and a changed.

The free convolution of the measures W and a denoted by W � a is the measure whose moment

generating function satisfies

kW�a (I) = kW (FW (I)) = ka (Fa (I)) =
FW (I)Fa (I)

I − FW (I)Fa (I)
.

Remark 15. We emphasize that each of the subordination functions FW, Fa depend on both the

measures W, a. This is clear since the function &I (F) defining Fa depends on both a, W.

Note that the above definition defines Fa and FW on C\[0,∞). However these functions can be

continously extended to C+ ∪ {∞} (Lemma 3.2 in [79]). These extensions to the real line will be

important for Theorem 3.4.2.

Lemma 10. The restrictions of subordination functions FW, Fa on C+ have extensions to C+ ∪ {∞}

with the following properties:
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1. FW, Fa : C+ ∪ {∞} → C+ ∪ {∞} are continuous.

2. If 1/G ∈ [0,∞)\Supp(W � a), then the functions FW, Fa continue analytically to a neighbor-

hood of G and

1
FW (G)

=
Fa (G)
G
· 1 + ka (Fa (G))

ka (Fa (G))
∈ R\Supp(W),

1
Fa (G)

=
FW (G)
G
·

1 + kW (FW (G))
kW (FW (G))

∈ R\Supp(a).

Spectrum of X = EUFU∗

As we discussed before, we will convert the problem of analyzing the spectrum of S to problems

involving the spectrum of matrices of the form X# = E#U#F#U∗
#

, where [# is a sequence of

Haar distributed # × # random matrices, and K# and L# are sequences of deterministic positive

semidefinite matrices. In this section, we review two important results from the field of free

probability regarding such matrices.

Suppose that K# and L# satisfy the following hypotheses:

(i) `K#
d→ `4 and `L#

d→ ` 5 , where `4, ` 5 are compactly supported measures on [0,∞).

(ii) K# has a single outlying eigenvalue \ not contained in Supp(`4). L# has no eigenvalues

outside Supp(` 5 ).

(iii) The set of eigenvalues of K# not equal to \ converge uniformly to Supp(`4) in the sense,

lim
#→∞

max
8:_8 (K# )≠\

dist(_8 (K# ), Supp(`4)) = 0.

Our next theorem characterizes the bulk distribution of ^# . The first part of this theorem is due

to [84] and the second and third parts are due to [79] (Theorem 2.3).

59



Theorem 5. Let F4 and F 5 denote the subordination functions for the free multiplicative convolution

of `4 and ` 5 . Define

g4 (1/I) =
1

F4 (1/I)
,  = Supp(`4 � a 5 ) ∪ g−1

4 (\).

Then we have, almost surely for large enough # ,

1. `^#
d→ `4 � ` 5 .

2. Given n > 0, we have f(^# ) ⊂  n , where  n is the n-neighborhood of  and f(^# ) denotes

the set of eigenvalues of ^# .

3. For any d ∈ g−1
4 (\) such that ∃n > 0 with (d − 2n, d + 2n) ∩  = {d}, we have |f(^# ) ∩

(d − n, d + n) | = 1.

Remark 16. The hypothesis in the above theorem can be relaxed (as mentioned in Remark 5.11

of [79]) in the following two ways: 1) K# is random, independent of[# and L# is deterministic,

provided `K#
d→ `4 occurs almost surely, 2) The spike locations depend on # , \# provided \# → \

almost surely.

Remark 17. The above theorem is a simplified version of Theorem 2.3 in [79] which allows for

multiple spikes in both K# and L# .

Remark 18. The function g might not be invertible. In such cases, g−1(\) can be a non-singleton

set, and hence a single spike in K# can create multiple spikes in ^# . But we will see that this

doesn’t happen in our problem.

Singular Part of Free Convolution

In the last section we discussed the bulk distribution of ^# = K#[#L#[# . The main objective

of this section is to mention a result regarding the largest eigenvalue of ^# . We state regularity

results for the singular part of W � a from [85] (Corollary 3.4) and [81] (Theorem 4.1).
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Theorem 6 (Singular Part of W � a). Decompose the singular part of W � a as (W � a)B = (W � a)3 +

(W � a)B2 where (W � a)3 denotes the discrete part and (W � a)B2 denotes the singular continous

part. Then we have,

1. There can be at most two atoms. The possible locations of the atoms are:

(a) 0, with W � a({0}) = max(W({0}), a({0})).

(b) Any 0 ∈ (0,∞) such that there exist D, E ∈ (0,∞) with DE = 0 and W({D}) + a({E}) > 1

and we have, W � a({0}) = W({D}) + a({E}) − 1. Note that there can be atmost one such

0.

2. Suppose neither of W, a is completely concentrated at a single point. We have, Supp((W �

a)B2) ⊂ Supp((W � a)02). Hence,

Supp(W � a) = Supp((W � a)02) ∪ Supp((W � a)3).

3.4.3 Analysis of the Spectrum of E(o)

In order to apply Theorem 5, we need to understand the spectrum of H∗(Z + oZG1(ZG1)∗)H.

This is done in the following lemma.

Lemma 11. Let

)(1) ≥ )(2) · · · ≥ )(<)

denote the sorted trimmed measurements. Let K (o) Δ
= H∗(Z + oZG1(ZG1)∗)H. Then,

1. The eigenvalues of K (o) interlace with )(1) , )(2) . . . )(<) in the sense,

_8 (K (o)) ≤ )(8−1) ∀ 8 = 2, 3, . . . <, &

_8 (K (o)) ≥ )(8+1) ∀ 8 = 1, 3, . . . < − 1.
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2. K (o) can have at most one eigenvalue bigger than )(1) , which (if it exists) is given by the root

of the following equation:

&< (_) =
1

_ − 0< − 1/o, _ > max(0< + 1/o,)(1)),

where &< (_) is defined as

&< (_)
Δ
=

<∑
8=1

|�18 |2
_ − )8

.

3. Furthermore, _1(K (o)) ≤ 1 + o and _<−1(K (o)) ≥ 0.

Proof. Define the matrix K (o) = H∗(Z + oZG1(ZG1)∗)H. The main trick will be to choose the

orthonormal basis matrix H conveniently, which will make our calculations easier. Recall that the

columns of matrix H, i.e. H1, H2...H<−1, span the subspace G⊥1 . Any basis for subspace G⊥1 can

serve as matrix H. Hence, we chose the following specific construction of H:

H1 =
ZG1 − 0<G1√
1< − 02

<

,

where 0< = G∗1ZG1 and 1< = G∗1Z
2G1. With this choice, we note that

H∗ZG1 = [H∗1ZG1, H
∗
2ZG1...H

∗
<−1ZG1]∗

=

√
1< − 02

<e1.

Hence K (o) = H∗ZH+o(1<−02
<)e1e

∗
1. To obtain the eigenvalues of K (o) we use its characteristic

polynomial. To evaluate the characteristic polynomial of K (o), we connect it to the characteristic
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polynomial of U∗ZU, where U = [G1, H]. Note that U is a unitary matrix. First, we have

U∗ZU =


G∗1ZG1 G∗1ZH

H∗ZG1 H∗ZH


=


0<

√
1< − 02

<e
∗
1√

1< − 02
<e1 H∗ZH

 .
Consider the following matrix equation:


0< + 1

o
0∗

0 K (o)

 =

0< + 1

o
0∗

0 H∗ZH


+ o(1< − 02

<)e2e
∗
2

=


0<

√
1< − 02

<e
∗
1√

1< − 02
<e1 H∗ZH


+


1/o −

√
1< − 02

< 0∗
<−2,1

−
√
1< − 02

< o(1< − 02
<) 0∗

<−2,1

0<−2,1 0<−2,1 0<−2,<−2


= U∗ZU +


1/
√
o

−
√
o(1< − 02

<)

0<−2,1




1/
√
o

−
√
o(1< − 02

<)

0<−2,1



∗

= U∗(Z + uu∗)U, (3.9)
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where

u = U ·


1/
√
o

−
√
o(1< − 02

<)

0<−2,1


=

1
√
o
G1 −

√
o(1< − 02

<)H1

=

(
1
√
o
+ 0<
√
o

)
G1 −

√
oZG1

Therefore,

|D8 |2 =
(1 + 0<o − o)8)2 |�18 |2

o
.

Now, we can compute the characteristic polynomial of K (o). We have

det(_O − K (o))

=
1

_ − 0< − 1
o

det
©­­­«_O −


0< + 1

o
0∗

0 K (o)


ª®®®¬

=
1

_ − 0< − 1/o · det(_O − Z − uu∗)

=
det(_� − Z)
_ − 0< − 1/o · (1 − u

∗(_O − Z)−1u).
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Note that

1 − u∗(_O − Z)−1u = 1 −
<∑
8=1

|D8 |2
_ − )8

= 1 − 1
o

<∑
8=1

(1 + 0<o − _o + (_ − )8)o)2 |�18 |2
_ − )8

= 1 − (1 + 0<o − _o)
2

o
· ©­«

<∑
8=1

|�18 |2
_ − )8

ª®¬
− o · ©­«

<∑
8=1
(_ − )8) · |�18 |2

ª®¬ − 2(1 + 0<o − _o)

= −(1 − _o + 0<o) ·
(
1 + 1 − _o + 0<o

o
&< (_)

)
,

Where &< (_) is defined in the following way:

&< (_)
Δ
=

<∑
8=1

|�18 |2
_ − )8

.

Hence,

det(_O − K (o)) =

det(_O − Z) (o + (1 − _o + 0<o)&< (_)). (3.10)

We emphasize that the above equation does not imply that )1, )2, . . . , )< are the eigenvalues of

K (o). This is because while det(_O − Z) has zeros at )8, the function &< (_) has poles at )8. This

prevents us from concluding that det(_O − K (o)) = 0 when _ = )8. However, we can make the

following observations:
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1. By Cauchy’s interlacing theorem, we have

_1(Z + o(ZG1) (ZG1)∗) ≥ )(1)

≥ _2(Z + o(ZG1) (ZG1)∗)

≥ )(2) . (3.11)

The above is also true for the eigenvalues of:

U∗(Z + o(ZG1) (ZG1)∗)U,

since U is a unitary matrix.

2. (3.9) shows that K (o) is a principal submatrix of

U∗(Z + o(ZG1) (ZG1)∗)U.

Hence, the eigenvalues of K (o) will interlace the eigenvalues of U∗(Z + o(ZG1) (ZG1)∗)U:

_1(Z + o(ZG1) (ZG1)∗ ≥ _1(K (o))

≥ _2(Z + o(ZG1) (ZG1)∗

≥ _2(K (o)). (3.12)

Combining (3.11) and (3.12), one obtains

_2(K (o)) ≤ )(1) , _1(K (o)) ≥ )(2) .

This proves statement (1) in the lemma. This means that K (o) has atmost one eigenvalue

bigger than )(1) . If _1(K (o)) ≤ )(1) , then it has no outlying eigenvalue, if _1(K (o)) > )(1) ,

it has exactly one. We call this eigenvalue an outlying eigenvalue for reasons that will be
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clear later.

3. The outlying eigenvalue of K (o) (if it exists) is a root of the characteristic polynomial:

det(_O − K (o)) =

det(_� − Z) · (o + (1 − _o + 0<o)&< (_)).

Since this root lies in ()(1) ,∞), it must be a root of:

&< (_) =
1

_ − 0< − 1/o, _ > )(1) . (3.13)

Observing that:

_ > )(1) =⇒ &< (_) > 0,

_ > 0< + 1/o =⇒ (_ − 0< − 1/o)−1 > 0,

we conclude the outlying eigenvalue is the unique solution (if it exists) to:

&< (_) =
1

_ − 0< − 1/o, _ > max(0< + 1/o,)(1)).

This proves statement (2).

4. Finally, we observe that K (o) is a positive semidefinite matrix for all o ≥ 0, which shows

_<−1(K (o)) ≥ 0. Also, we have _1(K (o)) ≤ ‖K (o)‖ ≤ ‖H‖2‖Z + oZG1(ZG1)∗‖. Note

that ‖H‖ ≤ 1 and ‖Z‖ ≤ 1 and ‖ZG1(ZG1)∗‖ = G∗1Z
2G1 ≤ )2

(1) ≤ 1. Hence, by the triangle

inequality we have _1(K (o)) ≤ 1 + o. This proves statement (3) of the lemma.

�

The following lemma analyzes the concentration of the function &< (_) to the deterministic

function &(_).
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Lemma 12. Suppose <
=
= X. For a Lipschitz function T whose range is in [0, 1], there exists an

event of probability 1, on which the following three statements hold:

1. 1
<

∑<
8=1 X)8

d→ L) ,

2. &< (_) → &(_) ∀ _ ∈ (1,∞),

3. 0< → E|/ |2) .

In the above equations, / ∼ CN (0, 1), and ) = T (|/ |/
√
X). Furthermore, L) denotes the law

of the random variable ) , and

&(_) = E
[
|/ |2
_ − )

]
.

Proof. It is sufficient to show each item holds almost surely.

1. The argument for this part is a minor modification of the argument sketched in [86]. To prove

statement (1) it suffices to show that

1
<

=∑
8=1

X√<|�81 |
3−→ /, (3.14)

almost surely. Because if we have (3.14), then for every bounded continuous function 5 ,

5

(
T

(√
=|�81 |

))
= 6

(√
< |�18 |

)
,

where 6(G) = 5 (T ( |G |√
X
)) is a bounded continuous function as well. Hence by (3.14),

1
<

<∑
8=1

5 ()8) → E
[
6(/)

]
= E

 5 ©­«T
(
/
√
X

)ª®¬
 ,

which implies 1
<

∑<
8=1 X)8

3−→ L) .
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To show (3.14), note that G1 has the same distribution as z
‖z‖ , where z = (I1, ..., I<), and

I8
8.8.3.∼ CN(0, 1). Let Φ denote the cumulative distribution function of a standard normal

random variable and define

�< (C)
Δ
=

1
<

<∑
8=1

1
(√
< |�18 | ≤ C

)
,

�< (C)
Δ
=

1
<

<∑
8=1

1 (I8 ≤ C) .

Then, we have

�< (C)
3
= �<

(
C
‖z‖
√
<

)
. (3.15)

Moreover,

�<

(
C
‖z‖
√
<

)
−Φ(C) =

�<

(
C
‖z‖
√
<

)
−Φ

(
C
‖z‖
√
<

)
+Φ

(
C
‖z‖
√
<

)
−Φ(C)

0.B.−−−→ 0 + 0.

�< (C‖z‖) −Φ(C‖z‖) goes to 0 almost surely by Glivenko-Cantelli lemma. Furthermore, since

‖z‖
√
<

0.B.−−−→ 1,

and Φ is a continuous function we conclude that

Φ

(
C
‖z‖
√
<

)
−Φ(C) 0.B.→ 0.

Hence,

�< (C) → Φ(C),

almost surely which yields (3.14).
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2. We now focus on the proof of statement (2). Let

C:
Δ
=

[
1 + 1

:
, :

]
, : ∈ N.

We will show that

&< (_) → &(_) ∀ _ ∈ C: , (3.16)

almost surely. This means there is a set C′
:
, with measure 0, out of which we have the

convergence for all _ ∈ C: . If we define C′ Δ
=
∞⋃
:=1
C′
:
, then &< (_) → &(_) ∀_ ∈ (1,∞) out

of C′ and clearly P (C′) = 0.

First note that G1
3
= z
‖z‖ , where

z = (I1, ..., I<) , I8
8.8.3.∼ CN(0, 1).

Define

&̃< (_)
Δ
=

1
<

<∑
8=1

|I8 |2

_ − T
(
|I8 |√
X

) . (3.17)

Note that for a fixed _ we have &̃< (_) → &(_) almost surely by the strong law of large

numbers. Since &̃< (_) is a decreasing function in _ and we have &̃< (_) → &(_) ∀_ ∈

C: ∩ Q almost surely, we obtain &̃< (_) → &(_) for all _ ∈ C: with probability 1. Hence, it

suffices to show under an event that holds with probability 1,

&< (_) − &̃< (_) → 0 ∀_ ∈ C: . (3.18)

To prove (3.18), we will find a sequence g< such that g< → 0 as < →∞, and,

∑
<≥1
P

(
sup
_∈C:

���&< (_) − &̃< (_)��� > g<)
< ∞.

70



With this, Borel-Cantelli lemma yields that event

� =

{
sup
_∈C:

���&< (_) − &̃< (_)��� > g< infinitely often

}
has measure 0. Out of the event � we have (3.18) as it was desired.

Define the events:

�1 ,

{
sup
8≤<
|I8 | ≤

√
6 log<

}
,

�2,n ,

{�����‖z‖2< − 1

����� ≤ n
}
,

where n is parameter we will set later. Note that,

���&< (_) − &̃< (_)��� ≤
<∑
8=1

|I8 |2

‖z‖2

�������
‖z‖2
<

_ − T
(
|I8 |√
X

) − 1

_ − T
(√

=

‖z‖ |I8 |
)
�������

≤ I + II,

where we defined the terms I, II as:

I =

����� ‖z‖2<
− 1

����� · <∑
8=1

|I8 |2
‖z‖2

·

������� 1
_ − T

( |I8 |√
X

)
�������

II =
<∑
8=1

|I8 |2
‖z‖2

·

���T ( |I8 |√
X

)
− T

(√=|I8 |
‖z‖

) ������_ − T ( |I8 |√
X

) ��� · ���_ − T (√=|I8 |
‖z‖

) ��� .
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Using the fact that z ∈ �1 ∩ �2,n and _ ∈ C: , we have,

I ≤ :n,

II ≤ :2 ·max
8≤=

�����T (
|I8 |√
X

)
− T

(√=|I8 |
‖z‖

) ����� .
Observe that, on the event �1 ∩ �2,n ,�����|I8 |√X −

√
=

‖z‖ |I8 |
����� ≤ |I8 |√X

�����1 − √<‖z‖
�����

≤
√

6 log(<) ·
�����1 − √<‖z‖

�����
≤

√
6 log(<) ·

�����1 − <

‖z‖2

�����
≤

√
6 log(<) · n

1 − n .

Since T was assumed to be Lipchitz,

II ≤ :2 ·max
8≤=

�����T (
|I8 |√
X

)
− T

(√=|I8 |
‖z‖

) �����
≤ :2 · ‖T ‖Lip ·

√
6 log(<) · n

1 − n ,

where ‖T ‖Lip denotes the Lipchitz constant of T . Hence, when < ≥ 42, setting n = 1
log(<) ≤

0.5, we obtain, on the event �1 ∩ �2,n

���&< (_) − &̃< (_)��� ≤ g<, ∀ _ ∈ C: . (3.19)

where

g< =
:

log(<) +
2:2 · ‖T ‖Lip√

log(<)
.
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Note that g< → 0 as < →∞ as required. And,

P

(
sup
_∈C:

���&< (_) − &̃< (_)��� > g<)
≤ P

(
�21

)
+ P

(
�22,n

)
≤ 2 · <−2 + 24−

<

8 log2 (<) ,

where the last step follows from standard bounds on the tail Gaussian random variables and

j2 random variables. In particular, we have,

∑
<≥1
P

(
sup
_∈C:

���&< (_) − &̃< (_)��� > g<)
< ∞,

as required.

3. The proof is similar to the proof of the second statement. Hence, we skip the details. Note

that if we define

,< =

=∑
8=1
|�18 |2 T (|�18 |

√
=),

then it again converges under the event �1 ∩ �2,n , defined in the proof of statement (2).

�

The next lemma analyzes the properties of the limiting fixed point equation &(_) = (_ −

E|/ |2) − 1/o)−1. Define the critical value o2 as:

o2
Δ
=

©­­«1 − ©­«E
[
|/ |2

1 − )

]ª®¬
−1

− E[|/ |2)]
ª®®¬
−1

≥ 0.

Lemma 13. Consider the fixed point equation (in _)

_ − E[|/ |2)] − 1/o = 1

E
[
|/ |2
_−)

] , (3.20)
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on the domain:

_ > max(1,E[|/ |2)] + 1/o).

We have

1. If o > o2, then the above equation has exactly 1 solution, denoted by _ = \ (o). Furthermore,

_ − E[|/ |2)] − 1/o > 1

E
[
|/ |2
_−)

]
∀ _ ∈

(
max(1,E[|/ |2)] + 1/o), \ (o)

)
,

_ − E[|/ |2)] − 1/o < 1

E
[
|/ |2
_−)

] ∀ _ ∈ (
\ (o),∞

)
.

Furthermore, we have \ (o) is an increasing function of o and limo→∞ \ (o) = ∞.

2. If o ≤ o2, then the equation has no solutions. For any o ≤ o2, we define \ (o) = 1.

Proof. The following change of measure simplifies some of the proofs:

?(I) Δ
=
|I |2
c

exp(−|I |2),

Ẽ[ 5 (/)] Δ
=

∫
5 (I)?(I) dI.

Note that ?(I) is a proper probability density function since
∫
?(I) dI = E[|/ |2] = 1. With this

notation, (3.20) can be written as

_ − Ẽ[)] − 1/o = 1

Ẽ
[

1
_−)

] , _ > max(1, Ẽ[)] + 1/o).

Define the random variable � (_) = (_ − ))−1. Note that �′(_) = −�2(_). Further, define

5 (_) Δ
=

1
Ẽ

[
� (_)

] ; _ ∈ [1,∞).

74



The first two derivatives of 5 (_) are

5 ′(_) = Ẽ[�
2]

Ẽ[�]2
,

5 ′′(_) = −2 · Ẽ[�
3]Ẽ[�] − Ẽ[�2]2

Ẽ[�]3
.

First, since 5 ′(_) ≥ 0, the function 5 (_) is increasing. By Jensen’s Inequality 5 ′(_) ≥ 1. Since the

equality holds if and only if � is deterministic, and we have assumed that the support of ) is [0, 1],

we conclude that 5 (_) > 1. Noting that � ≥ 0 and applying Chebychev’s association inequality

(See Fact 1, Appendix 3.7) with � = � = � and 5 (0) = 6(0) = 0 gives 5 ′′(_) ≤ 0. Hence 5 (_) is

an increasing, concave function and 5 ′(_) > 1.

Next, we claim that 5 (_) = _ − Ẽ[)] − 1/o can have atmost one solution in (1,∞). To see

this, let _1 be the first point at which the two curves intersect. Hence 5 (_1) = _1 − Ẽ[)] − 1/o.

Furthermore

5 ′(_) > 1 =
d(_ − Ẽ[)] − 1/o)

d_
.

Hence there can be no other intersection point of the two curves after _1.

Now consider the following two cases:

Case 1: o > o2. First note that since (1 − G)−1 is a convex function on (−∞, 1], according to

Jensen’s Inequality

Ẽ

[
1

1 − )

]
≥ 1

1 − Ẽ[)]
≥ 0.

Hence,

1
o2
= 1 −

(
Ẽ

[
1

1 − )

])−1

− Ẽ[)] ≥ 0.
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This shows that o2 ≥ 0. Furthermore,

o > o2 ⇐⇒ (_ − Ẽ[)] − 1/o)_=1 > 5 (1).

On the other hand, we can also compare the limiting behavior of _ − Ẽ[)] − 1/o and 5 (_) as

_→∞. We have

_ − Ẽ[)] − 1/o
_

= 1 − Ẽ[)] + 1/o
_

,

and

5 (_)
_

=
1

Ẽ
[

1
1−)/_

] = ©­­«Ẽ

∞∑
==0

(
)

_

)=
ª®®¬
−1

=

(
1 + Ẽ[)]/_ + >(1/_)

)−1

= 1 − Ẽ[)]
_
+ >(_−1).

Hence, 5 (_) > _− Ẽ[)] − 1/o for _ large enough and 5 (1) < 1− Ẽ[)] − 1/o. Hence the functions

5 (_) and 1 − Ẽ[)] − 1/o intersect once in (1,∞). Finally note that,

1
o
+ Ẽ[)] < 1

o2
+ Ẽ[)] = 1 −

(
Ẽ

[
1

1 − )

])−1

≤ 1.

Hence 5 (_) = _ − Ẽ[)] − 1/o has exactly one solution in _ ≥ max(1, Ẽ[)] + 1/o) as claimed. By

the Implicit Function Theorem, we can compute

\′(o) = 1/o2

5 ′(\ (o)) − 1
≥ 0. (3.21)

Hence \ (o) is an increasing function of o. Finally, we verify that limo→∞ \ (o) = ∞. Suppose that
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this is not the case, i.e. \ (o) → \∞ < ∞ as o→∞. Recalling the fixed point characterization of

\ (o), we obtain that \∞ satisfies the fixed point equation

\∞ − Ẽ[)] =
1

Ẽ
[

1
\∞−)

] .
This means that Jensen’s Inequality applied to the strictly convex function (\∞ − C)−1 should be

tight. This means under the tilted measure (Ẽ), ) is deterministic. This is not possible since we have

assumed that ) is supported on [0, 1].

Case 2: o ≤ o2 As in Case 1 we argue (this time with the opposite conclusion) that

o ≤ o2 =⇒ 5 (1) ≥ (_ − Ẽ[)] − 1/o)_=1

Furthermore, since 5 ′(_) > d(_−Ẽ[)]−1/o)
d_ = 1, 5 (_) = _− Ẽ[)] −1/o has no solution in (1,∞). �

Combining the above sequence of lemmas, we obtain the following proposition about the

spectrum of the matrix K (o).

Proposition 4. Let K (o) = H∗(Z + oZG1(ZG1)∗))H. Then, there exists an event of probability 1,

on which we have,

1. `K (o)
d→ L) .

2. If o ≤ o2, f(K (o)) ⊂ [0, 1].

3. If o > o2, then _8 (K (o)) ∈ [0, 1] ∀ 8 ≥ 2, and,

_1(K (o))
a.s.→ \ (o),

where \ (o) is the unique solution to the equation (in _):

_ − E[|/ |2)] − 1/o = 1

E
[
|/ |2
_−)

] ,
77



in the domain:

_ > max(1,E[|/ |2)] + 1/o).

Proof. We restrict ourselves to the event guaranteed by Lemma 12, on which,

1. 0< → E|/ |2)

2. 1
<

∑<
8=1 X)8

d→ L)

3. &< (_) → &(_) ∀ _ ∈ (1,∞).

Let us denote this event by E. Define the sequence of (random) functions 5< (_) as:

5< (_) = _ − 0< − 1/o − ©­«
<∑
8=1

|�18 |2
_ − )8

ª®¬
−1

,

with the domain:

_ > max(1, 0< + 1/o).

Define the (deterministic) function 5 (_):

5 (_) = _ − E[|/ |2)] − 1/o − ©­«E
[
|/ |2
_ − )

]ª®¬
−1

,

with the domain:

_ > max(1,E[|/ |2)] + 1/o).

Note that on E, we have 5< (_) → 5 (_) ∀ _ > 1.
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1. By Lemma 11, we know that the eigenvalues of K (o) interlace with the eigenvalues of the

diagonal matrix Z. On the event E, `Z → L) . Hence indeed `K (o)
d→ L) . This proves

statement (1) of the proposition.

2. Consider the case o ≤ o2. By Lemma 11, we already know that _2(K (o)) ≤ )(1) ≤ 1 and

_<−1(K (o)) ≥ 0. Hence to prove (2), it is sufficient to show that

_1
Δ
= lim sup

<→∞
_1(K (o)) ≤ 1, on E .

For the sake of contradiction, suppose that there is a realization in E such that _1 > 1. On this

realization we consider a subsequence such that _1(K (o)) → _1. All the analysis henceforth

is along this subsequence. Since for all < large enough _1(K (o)) > 1, by Lemma 11, we

must have 5< (_1(K (o)) = 0. Applying Lemma 3 from [29] (Appendix E), we obtain

0 = 5< (_1(K (o)) → 5 (_1).

Since o ≤ o2, we know by Lemma 13 that 5 (_) = 0 does not have any solution in _ >

max(1,E[|/ |2)] + 1/o). Hence,

1 < _1 ≤ E[|/ |2)] + 1/o.

However,

5 (_1) = _1 − E[|/ |2)] − 1/o︸                     ︷︷                     ︸
≤0

−
(
E

[
|/ |2
_ − )

]
︸      ︷︷      ︸

>0

)−1

< 0.

This contradicts 5 (_1) = 0. Hence, lim sup
<→∞

_1(K (o)) ≤ 1, on E. This concludes the proof

of statement (2).
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3. Now consider the case o > o2. Again by Lemma 11, we know _8 (K (o)) ∈ [0, 1] for all 8 ≥ 2.

By Lemma 13, we know that 5 (_) = 0 has a unique solution in _ > max(1,E|/ |2) + 1/o)

denoted by \ (o). Fix an n small enough such that [\ (o) − n, \ (o) + n] lies in the domain of

5 (_). Note that 5 (\ (o)) = 0, while 5 (\ (o) − n) > 0 and 5 (\ (o) + n) < 0 (by Lemma 13).

Since 0< → E|/ |2) , for all < large enough, [\ (o) − n, \ (o) + n] also lies in the domain of

5< (_). By Lemma 12, we have 5< (_) → 5 (_) for all _ ∈ [\ (o) − n, \ (o) + n]. In particular,

we have, for all = large enough 5< (\ (o) − n) > 0 while 5< (\ (o) + n) < 0. Hence, by

Lemma 11, we have _1(K (o)) ∈ [\ (o) − n, \ (o) + n] for all = large enough. Hence indeed,

_1(K (o))
a.s.→ \ (o). This proves (3).

�

3.4.4 Analysis of the Support of W � L)

We recall that L) is the law of the random variable ) = T (|/ |/
√
X), and W = 1

X
X1 +

(
1 − 1

X

)
X0.

To keep the notation clean, we will refer to the analytic transforms corresponding to the measure

L) with the subscript ) , for example the Cauchy transform for the measure L) will be referred to

as �) .We begin by computing the Cauchy Transform of W � ) .

Lemma 14. Let I ∈ C−. Then, we have,

�W�) (I) =
1
I
· 1 − 1/X

1 − IF) (1/I)
.

In the above display, the subordination function, F) (1/I), is the unique solution in C+ to the

equation Λ(1/F) = I, where the function Λ is defined as:

Λ(g) Δ
= g − (1 − 1/X)

E
[

1
g−)

] .

80



Proof. First we can compute the moment generating functions:

kW (I) =
1
X
· I

1 − I ,

k) (I) = −1 + E
[

1
1 − I)

]
.

The [-transforms of the two measures are given by,

[W (I) =
I/X

I/X − I + 1
,

[) (I) =
E

[
I)

1−I)

]
E

[
1

1−I)

] .
Hence, we can compute the function &I, given in Definition 6,

&I (F) =
1/X

(1/X − 1)
E
[

)
1−F)

]
E
[

1
1−F)

] + 1/I
.

Hence F) is the unique solution in C+ of the equation &I (F) = F. This equation can be simplified

to

1
I
= Λ(1/F),

where the function Λ is defined as Λ(g) Δ
= g − (1−1/X)

E
[

1
g−)

] . Hence, we can compute the moment

generating function of W � ) in the following way:

kW�) (I) = k) (F) (I))

= −1 + E
[

1
1 − F) (I))

]
(a)
= −1 + 1 − 1/X

1 − F) (I)/I
.
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In the above display, in the step marked (a), we used the fact that F) solves Λ(1/F) = 1/I. Finally,

the Cauchy Transform of W � ) is given by

�W�) (I) =
1
I

(
kW�)

(
1
I

)
+ 1

)
=

1
I
· 1 − 1/X

1 − IF) (1/I)
.

�

Our next goal is to characterize Supp(W � )). Theorem 6 gives a complete characterization of

the support of the singular part of W � ) . Hence, we now need to understand the support of the

absolutely continuous part of W � ) . According to the Stieltjes Inversion theorem, (Theorem 4) the

density of the continuous part is given by

d(W � ))02
dG

(G) = 1
c

lim
n→0+

Im �W�) (G − 8n)

=
1
cG

Im

(
1 − 1

X

1 − G limn→0+ F) (1/(G − 8n))

)
.

Since g) (G − 8n)
Δ
= 1/F) (1/(G − 8n)) uniquely solves Λ(g) = G − 8n in C−, our interest will be

to study the solutions of this equation for n ≈ 0. Hence, we begin by studying the solutions of

Λ(g) = G. Before doing so, we clarify the definition of Λ(g) at g = 1 which is a subtle case because

1 ∈ Supp()). We note that the random variable (1−))−1 is non-negative and hence the expectation

E[(1 − ))−1] is well defined but might be∞. If it is finite, then Λ(g) is well defined at g = 1. If the

expectation is∞, we define Λ(1) = 1 which is consistent with intepreting 1/∞ = 0. Λ(g) is defined

at g = 0 analogously. This definition ensures Λ(g) is a continuous function on (−∞, 0] ∪ [1,∞).

Next we discuss the solutions of Λ(g) = G. Figure 3.2 shows a typical plot Λ(g). As is clear from

this figure we expect the following two quantities to play major roles in determining the existence
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of a solution of Λ(g) = G: Define

_; = max
g∈(−∞,0]

Λ(g), g; = arg max
g∈(−∞,0]

Λ(g)

_A = min
g∈[1,∞)

Λ(g), gA = arg min
g∈[1,∞)

Λ(g).

Our next lemma proves the properties of Λ(g) suggested by Figure 3.2.

�5 �4 �3 �2 �1 0 1 2 3 4 5
0

0.2

0.4

0.6

�r

�l

⌧

⇤
(⌧

)

Figure 3.2: An Illustrative plot of the function Λ(g): When _; < G < _A , the equation Λ(g) = G
has no solutions. When G ≥ _A , the equation Λ(g) = G,Λ′(g) > 0 has a unique solution in [1,∞).
When G < _; , then Λ(g) = G,Λ′(g) > 0 has a unique solution in (−∞, 0].

Lemma 15. The following statements are true about Λ(g):

1. Λ(g) is a convex function on [1,∞) and a concave function on (−∞, 0].

2. limg→∞Λ(g) = ∞, limg→−∞Λ(g) = −∞.

3. _A > _; ≥ 0.

4. Consider the 3 mutually exclusive and exhaustive cases:

Case A: G ≤ _; . There is at least one and at most two solutions to Λ(g) = G. All solutions

lie in (−∞, 0]. Furthermore, when G < _; , there is exactly one solution for the equation

Λ(g) = G,Λ′(g) > 0. This unique solution additionally satisfies g < g; ≤ 0.
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Case B: _; < G < _A . There are no solutions of the equation Λ(g) = G, g ∈ (−∞, 0]∪ [1,∞).

Case C: G ≥ _A . There is at least one and at most two solutions to Λ(g) = G. All solutions lie

in [1,∞). Furthermore, when, G > _A , there is a unique solution to Λ(g) = G,Λ′(g) > 0.

This solution additionally satisfies g > gA ≥ 1.

Proof. 1. We define the random variable � (g),

� (g) Δ
=

1
g − ) .

We observe that for any g ∈ [1,∞), � (g) ≥ 0 where as for g ∈ (−∞, 0], � (g) ≤ 0. It is

straightforward to see that �′(g) = −�2(g) ≤ 0. For notational simplicity, we will often

short hand � (g) as �. We have

Λ′(g) = 1 −
(
1 − 1

X

)
· E�

2

(E�)2
,

Λ′′(g) = 2
(
1 − 1

X

)
· (E�

3) · (E�) − (E�2)2
(E�)3

.

Consider the following two cases, Case 1: g ∈ [1,∞). Applying Chebychev’s Association

Inequality (Fact 1) with � = � = � and 5 (0) = 6(0) = 0 gives us that Λ′′(g) ≥ 0. In fact, an

inspection of the proof of the Chebychev’s Association Inequality from [87] allows us to rule

out the equality case under the assumptions imposed on T , and we have Λ′′(g) > 0. Hence,

Λ is strictly convex in (1,∞). Since Λ(g) is continuous on [1,∞), we have Λ is convex on

[1,∞) Case 2: g ∈ (−∞, 0]. Again, applying Chebychev’s Association Inequality with

� = � = −� and 5 (0) = 5 (1) = 0 gives us Λ′′(g) ≤ 0, Hence Λ is concave in this region.

As before, an inspection of the proof of Chebychev’s Association inequality allows us to rule

out the equality case under the assumptions imposed on T , and we have Λ′′(g) < 0. Hence,

Λ is strictly concave in (−∞, 0). Since Λ(g) is continuous on (−∞, 0), we have Λ is concave

on (−∞, 0]. This concludes the proof of statement (1) in the lemma.
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2. Note that,

lim
g→∞

g − (1 − 1/X)

E
[

1
g−)

] = g
©­­«1 − (1 − 1/X)

E
[
g
g−)

] ª®®¬ = ∞.
This shows limg→∞Λ(g) = ∞. The claim about the limit as g → −∞ can be analogously

obtained. This proves item (2) in the statement of the lemma.

3. The infimum in the definition of _A is attained due to item (2) in the statement of the lemma.

Analogously, the supremum in the definition of _; is attained. Next consider any g+ ∈ (1,∞)

and any g− ∈ (−∞, 0). Since the function 5 (C) = (g+ − C)−1 is convex on [0, 1], according to

Jensen’s Inequality, we have

Λ(g+) ≥ g+ −
(
1 − 1

X

)
· (g+ − E[)])

=
g+
X
+

(
1 − 1

X

)
· E[)] .

On the other hand, since the function 5 (C) = (g− − C)−1 is concave on [0, 1], we have

Λ(g−) ≤ g− −
(
1 − 1

X

)
· (g− − E[)])

=
g−
X
+

(
1 − 1

X

)
· E[)] .

Hence,

Λ(g+) ≥
1
X
+

(
1 − 1

X

)
· E[)]

>

(
1 − 1

X

)
· E[)]

≥ Λ(g−).

Taking the minimum over g+ and maximum of g− gives us _A > _; . Furthermore we note
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that Λ(0−) ≥ 0. Hence _; ≥ 0. This concludes the proof of item (3) in the statement of the

lemma.

4. For any G ∈ (_; , _A), Λ(g) = G doesn’t have a solution in (−∞, 0] ∪ [1,∞) since Λ(g) ≤

_; ∀ g ≤ 0 and Λ(g) ≥ _A ∀ g ≥ 1. Now consider any G ≥ _A . Since _(g) ≤ _; < _A ∀ g ≤ 0,

we know that all solutions of Λ(g) = G lie in [1,∞). Since Λ is strictly convex in (1,∞),

there can be atmost 2 solutions. Now consider any G > _A . Let gA = arg ming≥1Λ(g). Due

to strict convexity of Λ(g), we have Λ′(g) > 0 for any g ∈ (gA ,∞). Hence Λ(g) is strictly

increasing on [gA ,∞). Since _A = Λ(gA) < G < Λ(∞) = ∞, we are guaranteed to have exactly

one solution to Λ(g) = G on (gA ,∞) which indeed satisfies Λ′(g) > 0. The analysis for the

case when G ≤ _; can be done in a similar way. This concludes the proof of item (4) in the

statement of the lemma.

�

We are now in the position to characterize the support of W � ) which is the content of the

following proposition.

Proposition 5. The support of W � ) is given by

Supp(W � )) = [_; , _A] ∪ Supp((W � ))3),

where (W � ))3 denotes the discrete part of the measure W � ) . If the random variable ) has a

density with respect to the Lebesgue measure, then,

Supp(W � )) = [_; , _A] .

Proof. We first claim that (_; , _A) ⊂ Supp(W � )). Since the support of a measure is closed,

this means that [_; , _A] ⊂ Supp(W � )). We prove this claim by contradiction. Suppose that

∃_ ∈ (_; , _A) such that _ ∉ Supp(W � )). To simplify notation, for I ∈ C−, we introduce the
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following reciprocal subordination function g) (I)

g) (I)
Δ
=

1
F) (1/I)

.

According to Lemma 10, we have

g) (_)
Δ
= lim
n→0+

g) (_ − 8n) ∈ (−∞, 0) ∪ (1,∞).

By Lemma 14, g) (_ − 8n) uniquely solves the equation Λ(g) = _ − 8n in C−. Taking n → 0, we

obtain,

_ = lim
n→0+

Λ(g) (_ − 8n))

= lim
n→0+

©­­«g) (_ − 8n) −
1 − 1/X

E
[

1
g) (_−8n)−)

] ª®®¬
(a)
= g) (_) −

1 − 1/X

E
[

1
g) (_)−)

] .
In the step marked (a), we used the fact that since limn→0+ g) (_ − 8n) ∉ Supp()), we have ∃2 > 0,

such that for any n small enough dist(g) (_− 8n), Supp())) ≥ 2. This gives us a dominating function

for an application of the dominated convergence theorem. Hence, we have found a solution for

the equation _ = Λ(g), g ∈ (−∞, 0) ∪ (1,∞). But this contradicts Lemma 15. Hence, we have,

(_; , _A) ⊂ Supp(W � )).

Next, we claim that any G ∈ [0, _;) ∪ (_A ,∞) is not in the support of the absolutely continuous

part of W � ) . To show this, we first compute a first order asymptotic expansion of g) (G − 8n) for

n ≈ 0. From Lemma 15, we know there exists a unique solution for the equation Λ(g) = G, g ∈

(−∞, 0) ∪ (1,∞) and Λ′(g) > 0. We denote this solution by g★. Since g★ ∉ Supp()), the function

Λ(g) is analytic in the neighborhood (in C) of g★. The implicit function theorem guarantees us a

solution g(n) = g' (n) + 8g� (n) of the equation Λ(g) = G − 8n . However, this g(n) may not be the
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reciprocal subordination function g) (G − 8n) since we still need to verify it is in C−. To take care of

this, again by the implicit function theorem we have

Λ′(g★) ·
dg
dn
(0) = −8.

This gives us

dg�
dn
(0) = − 1

Λ′(g★)
< 0,

dg'
dn
(0) = 0.

Hence, we have

g(n) = g★ − 8
n

Λ′(g★)
+ >(n).

This verifies that g(n) ∈ C− for n small enough. Finally since g) (G − 8n) is the unique solution to

the equation Λ(g) = G − 8n in C−, we have

g) (G − 8n) = g★ − 8
n

Λ′(g★)
+ >(n).

According to the Stieltjes Inversion Formula, Theorem 4, we obtain

d(W � ))02
dG

(G) = 1
cG
· Im

(
1 − 1

X

1 − G · limn→0+ F)

(
1

G−8n

) )
(b)
=

1
cG
· Im

(
(1 − 1/X) · g★

g★ − G

)
= 0.

In the step marked (b), we are relying on the assumption that g★ ≠ G. To verify this, we recall that
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g★ solves, Λ(g★) = G and g★ ∉ [0, 1]. This means that

|g★ − G | =
1 − 1/X����E [

1
g★−)

] ����
≥ 1 − 1/X

E
[��� 1
g★−)

���]
≥ (1 − 1/X) · dist(g★, [0, 1]) > 0.

Hence, we have shown

d(W � ))02
dG

(G) a.s.
= 0,∀G ∈ [0, _;) ∪ (_A ,∞).

This implies,

[0, _;) ∪ (_A ,∞) ⊂ R\Supp((W � ))02).

Taking complements, we have Supp((W � ))02) ⊂ [_; , _A]. Hence, we have shown that

[_; , _A] ∪ Supp((W � ))3) ⊂ Supp(W � ))

= Supp((W � ))02) ∪ Supp((W � ))3)

⊂ [_; , _A] ∪ Supp((W � ))3).

Therefore, Supp(W � )) = [_; , _A] ∪ Supp((W � ))3) which proves the claim of the proposition.

Finally, when ) has a density with respect to Lebesgue measure, Theorem 6 gives us Supp((W �

))3) = ∅ which yields the second claim in the proposition. �

Finally we note that in order to apply Theorem 5, it is necessary to understand the set

g−1
)
({\}) ∩ (R\Supp(W � ))), \ ∈ R (See Theorem 5 for a definition of g) ). This is done in

the following lemma.
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Lemma 16. Let (FW, F) ) denote the subordination functions corresponding to the free multiplica-

tive convolution of W,L) . Define

g) (I) =
1

F) (1/I)
.

Then, we have

g−1
) ({\}) ∩ (R\Supp(W � ))) =


\ ∈ [g; , gA] : ∅

\ ∉ [g; , gA] : {Λ(\)}
,

where where, g; , arg maxg≤0Λ(g), gA , arg ming≥1Λ(g).

Proof. From Proposition 5, we know that Supp(W � )) = [_; , _A], where _;
Δ
= maxg≤0Λ(g) and

_A
Δ
= ming≥1Λ(g). Furthermore, we showed that for any G ∉ [_; , _A], the reciprocal subordination

function g) (G) is the unique solution to the equations: Λ(g) = G,Λ′(g) > 0, g ∉ [0, 1]. From

Lemma 15, we know that when G > _A , the unique solution to Λ(g) = G,Λ′(G) > 0 satisfies g > gA

and when G < _; , the unique solution satisfies g < g; . These considerations immediately yield the

claim of the lemma. �

3.4.5 Proof of Lemmas 8 and 9

Recall we defined Λ+(g) as

Λ+(g) =


g − (1−1/X)

E
[

1
g−)

] if g > gA ,

ming≥1

(
g − (1−1/X)

E
[

1
g−)

] ) if g ≤ gA ,
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where ) = T (|/ |/
√
X) and / ∼ CN(0, 1), and

gA , arg min
g≥1

©­­«g −
(1 − 1/X)

E
[

1
g−)

] ª®®¬ .
We first prove Lemma 8, which we restated below for convenience.

Lemma 3. Let o2
Δ
=

(
1 −

(
E

[
|/ |2
1−)

] )−1
− E[|/ |2)]

)−1

. Define the function \ (o) as:

• When o > o2: Let \ (o) be the unique value of _ that satisfies the equation:

_ − E[|/ |2)] − 1/o = ©­«E
[
|/ |2
_ − )

]ª®¬
−1

,

in the interval:

_ ∈
(
max(1,E[|/ |2)] + 1/o),∞

)
.

• When o ≤ o2: \ (o) Δ
= 1.

Then, we have !< (o)
a.s.→ Λ+(\ (o)), where !< (o) is defined in (3.7).

Proof. In Proposition 11, we obtained an asymptotic characterization of the spectrum of K (o).

More specifically, we proved that

`K (o)
d→ L) , _1(K (o)) → \ (o).

We recall the matrix X was defined as

X =


O=−1 0=−1,<−1

0<−=,=−1 0<−1,<−1

 .
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In particular, `X
d→ W, where the measure W is given by

W =
1
X
X1 +

(
1 − 1

X

)
X0.

Applying Theorem 5, we obtain:

1. The spectral measure of K (o)N<−1XN
∗
<−1 converges to:

`K (o)N<−1XN∗<−1

d→ W � L) .

2. For any n > 0, we have, almost surely, for < large enough that, f(K (o)N<−1XN
∗
<−1) ⊂  n ,

where  n is the n-neighborhood of the set  = Supp(W � L) ) ∪ g−1
)
({\ (o)}).

3. For any _ ∈ g−1
)
({\ (o)}) ∩ (R\Supp(W�L) )), we have almost surely exactly one eigenvalue

of K (o)N<−1XN
∗
<−1 in a small enough neighborhood of _ for large enough =.

In Proposition 5, we characterized Supp(W � L) ) as [_; , _A], where _; = maxg≤0Λ(g), _A =

ming≥1Λ(g) and the function Λ(g) is given by:

Λ(g) = g − (1 − 1/X)

E
[

1
g−)

] .
In Lemma 16, we characterized the set:

g−1
) ({\}) ∩ (R\Supp(W � ))) =


∅ \ ∈ [g; , gA],

{Λ(\)} \ ∉ [g; , gA],

where, g; , arg maxg≤0Λ(g), gA , arg ming≥1Λ(g). Putting these together, one obtains the

following two cases:

Case 1: \ (o) ≤ gA . In this case, the set g−1
)
({\})∩(R\Supp(W � ))) = ∅. The matrix K (o)N<−1XN

∗
<−1
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has no eigenvalues outside the support of the bulk distribution, and

!< (o)
a.s.→ _A = Λ(gA).

Case 2: \ (o) > gA . In this case, the set

g−1
) ({\}) ∩ (R\Supp(W � ))) = {Λ(\ (o))}.

Hence, there is an eigenvalue in the neighborhood of Λ(\ (o))). Since \ (o) > gA , and Λ is

a strictly increasing function on [gA ,∞) (Lemma 15), we have Λ(\ (o)) > _A . Hence the

eigenvalue in the neighborhood of Λ(\ (o)) is the largest one, and we have

!< (o)
a.s.→ Λ(\ (o)).

It is now straightforward to check that the above two cases can be combined into a concise form

stated in the claim of the lemma. �

We end this section by proving Lemma 9, restated below for convenience.

Lemma 4. The following hold for the equation:

Λ+(\ (o)) = 1/o + E[|/ |2)], o > 0.

1. This equation has a unique solution.

2. Let o★ denote the solution of the above equation. Then:

Case 1 If k1(gA) ≤ X
X−1 , we have

Λ+(\ (o★)) = Λ(gA).
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Furthermore if k1(gA) < X/(X − 1), then,

dΛ+(\ (o))
do

����
o=o★

= 0,

Case 2 If k1(gA) > X
X−1 , we have

Λ+(\ (o★)) = Λ(\★),

and,

dΛ+(\ (o))
do

����
o=o★

=

1
o2
★

· X

X − 1
·
(
X

X − 1
− k2(\★)

)
· 1
k2

3 (\★) −
X2

(X−1)2
.

where \★ > 1 is the unique \ ≥ gA that satisfies k1(\) = X
X−1 .

Proof. Before we begin the proof of this lemma, it is helpful to list the conclusions of some of the

previous lemmas.

Lemma 13: In this lemma, for o > o2 we defined the function \ (o) as the unique value of

_ > max(1,E[|/ |2)] + 1/o) that satisfies

_ − E[|/ |2)] − 1/o = 1

E
[
|/ |2
_−)

] .
We also set \ (o) = 1 when o ≤ o2. We also showed that \ (o) is strictly increasing on

[o2,∞) and \ (∞) = ∞. In particular \ (o) has a well defined inverse defined on the domain

[1,∞) given by:

\−1(_) =
©­­«_ − E[|/ |2)] −

1

E
[
|/ |2
_−)

] ª®®¬
−1

. (3.22)
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Lemma 15: We defined the function Λ(g) as

Λ(g) , g − (1 − 1/X)

E
[

1
g−)

] . (3.23)

We showed the thatΛ(g) is strictly convex on [1,∞). We defined (gA , _A) to be the minimizing

argument and the minimum value of Λ(g) in [1,∞). In particular gA ≥ 1. We also showed

that Λ(∞) = ∞. We further defined Λ+(g) in the following way:

Λ+(g) =


_A , g ≤ gA .

Λ(g), g > gA .

Some simple implications of the above assertions are: First, since \ (o) and Λ+ are both non-

decreasing continuous functions Λ+(\ (o)) is non-decreasing and continuous. Second, since Λ(g) =

_A for g ≤ gA , we have, for all o ≤ \−1(gA), Λ+(\ (o)) = _A . Third since \ (∞) = ∞ and Λ(∞) = ∞,

we have, Λ+(\ (o)) → ∞ as o→∞. The only possible point of non-differentiability of Λ+(\ (o))

is at o = \−1(gA). It is straightforward to compute the derivative of Λ(\ (o)) at all other points using

implicit function theorem and obtain

dΛ+(\ (o))
do

=


0 o < \−1(gA),

Λ′(\ (o)) · \′(o) o > \−1(gA).
(3.24)

The derivatives of Λ, \ can be calculated as,

Λ′(g) = X − 1
X

(
X

X − 1
− k2(g)

)
. (3.25)

\′(o) = 1
o2

©­­­­­«
(
E

[
|/ |2

\ (o)−)

] )2

E
[
|/ |2

(\ (o)−))2

]
−

(
E

[
|/ |2

\ (o)−)

] )2

ª®®®®®¬
. (3.26)
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A representative plot of the function Λ+(\ (o)) is shown in Figure 3.3.
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Figure 3.3: Typical Plots of the functions Λ+(\ (o)) (Blue) and E[|/ |2)] + 1
o

(Red). Case 1 (Left):
The two functions intersect at the constant part of Λ+(\ (o)), Case 2 (Right): The The two functions
intersect at the increasing part of Λ+(\ (o))

We are now in a position to prove the claims of the lemma.

1. Since Λ+(\ (o)) is continuous and non-decreasing and 1/o + E[|/ |2)] is continuous and

strictly decreasing, the fixed point equation can have at most one solution. On the other hand

comparing the values of the two sides of the fixed point equation at o→ 0 and o→∞ shows

that there is at least one solution.

2. Let o★ be denote the solution of the fixed point equation Λ+(\ (o)) = 1/o + E[|/ |2)]. A

typical plot of these two functions is shown in Figure 3.3. The figure shows two possible cases

for the intersection of the two curves: Case 1: The curves intersect at a point o★ ≤ \−1(gA)

(or on the flat part of Λ+(\ (U)). In this case we have, Λ+(\ (o★)) = _A .

Case 2: The curves intersect at a point o★ > \−1(gA) or the rising part of Λ+(\ (U). We have

Λ+(\ (o★)) > _A . We can distinguish between the two cases by comparing the value of the

function 1/o + E[|/ |2)] at o = \−1(gA) with _A . In particular, we have,

Case 1:

Λ+(\ (o★)) = _A ⇔ 1/\−1(gA) + E[|/ |2)] ≤ _A ,
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Case 2:

Λ+(\ (o★)) > _A ⇔ 1/\−1(gA) + E[|/ |2)] > _A .

Substituting the formula for \−1(gA), mentioned in (3.22), and _A = Λ(gA) and the formula

for Λ from (3.23), the 2 cases can be simplified slightly more.

Case 1: This case occurs when

1
\−1(gA)

+ E[|/ |2)] ≤ _A ⇔
E

[
|/ |2
gA−)

]
E

[
1

gA−)

] ≤ X

X − 1
.

In this situation, we have, Λ+(\ (o★)) = _A . Furthermore, if we additionally have

E
[
|/ |2
gA−)

]
E

[
1

gA−)

] < X

X − 1

Then Λ+(\ (o)) is differentiable at o★ and, from (3.24), we have

dΛ+(\ (o))
do

����
o=o★

= 0.

Case 2: This case occurs when

1
\−1(gA)

+ E[|/ |2)] > _A

⇔
E

[
|/ |2
gA−)

]
E

[
1

gA−)

] > X

X − 1
.

In this situation, we have, Λ+(\ (o★)) > _A . It turns out that we can give a simpler expression

for Λ+(\ (o★)). In this case, o★ ≥ \−1(gA) solves,

Λ(\ (o★)) =
1
o★
+ E[|/ |2)], (3.27)
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and \ (o★) ≥ 1 is the solution of the equation

E[|/ |2)] + 1
o★

= \ (o★) −
1

E
[
|/ |2

\ (o★)−)

] . (3.28)

By definition the function Λ(g(U)) is

Λ(\ (o★)) = \ (o★) −
(1 − 1/X)

E
[

1
\ (o★)−)

] . (3.29)

We first eliminate o★ from Equations (3.27)-(3.29) and conclude that \★
Δ
= \ (o★) solves

E
[
|/ |2
\★−)

]
E

[
1

\★−)

] = X

X − 1
, \★ ≥ gA , (3.30)

and o★ is given by

o★ =
©­­«\★ −

1

E
[
|/ |2
\★−)

] − E[|/ |2)]ª®®¬
−1

.

Since the solution to Equations (3.27)-(3.29) was guaranteed to be unique, the solution to

(3.30) is guaranteed to be unique. Finally we can compute the derivative of Λ+(\ (o)) at

o = o★. It will be convenient to introduce the random variable � = (\★ − ))−1 to write the
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equations in a compact form. From (3.24)-(3.26), we have

dΛ+(\ (o))
do

����
o=o★

= Λ′(\★) · \′(o★)

=
X − 1
Xo2

★

(
X

X − 1
− k2(\★)

)
E[|/ |2�]2

E[|/ |2�2] − E[|/ |2�]2

(a)
=

X ·
(
X
X−1 − k2(\★)

)
o2
★ · (X − 1) · k2

1 (\★)
· E[|/ |2�]2
E[|/ |2�2] − E[|/ |2�]2

=

X ·
(
X
X−1 − k2(\★)

)
o2
★ · (X − 1)

· E[�]2
E[|/ |2�2] − E[|/ |2�]2

=
X

o2
★(X − 1)

(
X

X − 1
− k2(\★)

)
1

k2
3 (\★) −

X2

(X−1)2
.

In the above display, in the step marked (a) we used the fact that \★ satisfies k1(\★) = X/(X−1).

This concludes the proof of the characterization (2) given in the statement of the lemma.

�

3.5 Conclusions

We analyzed the asymptotic performance of a spectral method for phase retrieval under a random

column orthogonal matrix model. Our results provides a rigorous justification for the conjectures in

[71], which were obtained by analyzing an expectation propagation algorithm.

3.6 Proof of Proposition 2

This section is devoted to the proof of Proposition 2. We denote the functions Λ, k1, k2, k3

(recall (3.5)) with T = Topt as Λopt, k
opt
1 , k

opt
2 , k

opt
3 and those with T = Topt,n as Λn , kn1, k

n
2, k

n
3.

Define the random variables:

/ ∼ CN (0, 1) , )opt = Topt( |/ |/
√
X), )n = Topt,n ( |/ |/

√
X).
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Next we observe that the function Topt,n is a bounded, strictly increasing, Lipchitz function and

consequently )n has a density with respect to the Lebesgue measure. Hence by the rescale and shift

argument outlined in Remark 9, Theorem 3 applies to a equivalent modification of Topt,n which

can used to infer the corresponding result for Topt,n (after another rescale and shift argument). This

gives us the result:

|x∗★x̂n |2
=

a.s.→


0, kn1 (g

n
A ) < X

X−1 ,(
X
X−1

)2
− X
X−1 ·k

n
2 (\

n
★)

k n3 (\
n
★)2− X

X−1 ·k n2 (\
n
★)
, k1(gnA ) > X

X−1 .

, (3.31)

where gnA
Δ
= arg ming∈[1,∞) Λn (g) and \n★ is the solution to the fixed point equation (in g): kn1 (g) =

X/(X − 1) which is guaranteed to exist uniquely provided k1(gnA ) > X/(X − 1). First we observe

that,

Λ′n (g) = 1 −
(
1 − 1

X

)
·
E�2

n (g)
(E�n (g))2

, �n (g) = (g − )n )−1.

In particular, at g = 1, we have,

Λ′n (1) = 1 −
(
1 − 1

X

)
· (1 + n)

2 + 1
(1 + n)2

=⇒ lim
n↓0
Λ′(1) = 2 − X

X
,

and,

kn1 (1) = 2 + n .

We consider the following two cases.

Case 1: 1 < X < 2. Lemma 15 shows that Λn (g) is convex on [1,∞). When X < 2, Λ′n (1) > 0

for n small enough, and hence Λn is strictly increasing and gnA = 1. Moreover, in this case, for n
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small enough,

X

X − 1
= 2 + 2 − X

X − 1
> 2 + n = kn1 (1).

Hence, using (3.31),

lim
n↓0

lim
<,=→∞
<=X=

|x∗x̂n |2
=

= 0.

Case 2: X > 2 In this case, for small enough n , Λ′n (1) < 0. Hence the gnA , the minimizer of the

convex function Λn occurs in the region (1,∞). This means it satisfies the optimality condition:

Λ′n (gnA ) = 0⇔ k2(gnA ) =
X

X − 1
.

Next we claim that, ∀g ∈ [1,∞),

kn1 (g) > k
n
2 (g) ⇔ E[�n (g)] · E[|/ |2�n (g)] > E[�2

n (g)],

which is a consequence of Chebychev’s association inequality (Fact 1) with the choice:

� = �n (g), � = |/ |,

5 (0) = 02 ©­«g − Tn
(
0
√
X

)ª®¬ , 6(0) = ©­«g − Tn
(
0
√
X

)ª®¬
−1

.

In particular we have kn1 (g
n
A ) > X/(X − 1), and hence Theorem 3 gives us:

1. There exists a unique solution \n★ ∈ (gnA ,∞) such that kn1 (\
n
★) = X/(X − 1),

2. and,

|x∗x̂n |2
=

a.s.→

(
X
X−1

)2
− X
X−1 · k

n
2 (\

n
★)

kn3 (\
n
★)2 − X

X−1 · kn2 (\
n
★)
.
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Next we claim that,

1 < lim inf
n↓0

\n★ ≤ lim sup
n↓0

\n★ < ∞.

To see this, observe

kn1 (\
n
★) =

E |/ |2 ( |/ |2+n)
(\ n★−1) ( |/ |2+n)+1

E ( |/ |2+n)
(\ n★−1) ( |/ |2+n)+1

.

If lim infn↓0 \n★ = 1, one can select a subsequence along which kn1 (\
n
★) → E|/ |4 = 2 by dominated

convergence which contradicts: kn2 (\
n
★) = X/(X − 1) < 2. Likewise if lim supn↓0 \n★ = ∞, one can

find a subsequence along which \n★→∞ and, by dominated convergence,

kn1 (\
n
★) =

E
|/ |2 ( |/ |2+n) (\ n★−1)
(\ n★−1) ( |/ |2+n)+1

E
( |/ |2+n) (\ n★−1)
(\ n★−1) ( |/ |2+n)+1

→ 1,

which contradicts kn1 (\
n
★) = X/(X − 1) < 1 ∀ X ∈ (2,∞). We can now conclude that,

lim inf
n↓0

\n★ = lim sup
n↓0

\n★ = \
opt
★ ,

where \opt
★ is the unique solution to kopt

1 (g) = X/(X − 1) in g ∈ (1,∞) guaranteed by Proposition 1

(due to [71]). This is because, by selecting a subsequence along with \n★→ lim infn↓0 \n★, we can

conclude that, along that subsequence,

X

X − 1
= kn1 (\

n
★) → k

opt
1

(
lim inf
n↓0

\n★

)
.

This implies,

k
opt
1

(
lim inf
n↓0

\n★

)
=

X

X − 1
,
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and analogously,

k
opt
1

(
lim sup
n↓0

\n★

)
=

X

X − 1
.

Since Proposition 1 guarantees that the equation kopt
1 (g) = X/(X − 1) has a unique solution in (1,∞)

we get,

lim inf
n↓0

\n★ = lim sup
n↓0

\n★ = \
opt
★ .

Dominated convergence now yields,

kn8 (\n★) → k
opt
8
(\opt
★ ), as n ↓ 0 ∀ 8 = 1, 2, 3,

and consequently, almost surely,

lim
n↓0

lim
<,=→∞,
<==X

|x∗x̂n |2
=

a.s.
=

(
X
X−1

)2
− X
X−1 · k

opt
2 (\

opt
★ )

k
opt
3 (\

opt
★ )2 − X

X−1 · k
opt
2 (\

opt
★ )

.

The right hand side of the above display can be simplified to:

(
X
X−1

)2
− X
X−1 · k

opt
2 (\

opt
★ )

k
opt
3 (\

opt
★ )2 − X

X−1 · k
opt
2 (\

opt
★ )

=
\

opt
★ − 1

\
opt
★ − 1

X

.

This clean formula is due to [71] and we refer the reader to Appendix B in [71] for a proof.

3.7 Miscellaneous results

Fact 1 (Chebychev Association Inequality, [87]). Let �, � be r.v.s and � ≥ 0. Suppose 5 , 6 are two

non-decreasing functions. Then,

E[�]E[� 5 (�)6(�)] ≥ E[ 5 (�)�]E[6(�)�] .
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Furthermore, if, P (� = 0) = 0 and,

P
(
5 (�) = G

)
= 0, P

(
6(�) = G

)
= 0, ∀ G ∈ R,

then, the above inequality is strict.

Proof. The proof of the inequality appears in [87]. Inspecting the proof we can derive a sufficient

condition for the inequality to be strict. The proof in [87] shows,

2 · (E[�]E[� 5 (�)6(�)] − E[ 5 (�)�]E[6(�)�]) =

E��′( 5 (�) − 5 (�′)) · (6(�) − 6(�′)).

where (�′, �′) is an independent sample of the random variables (�, �). Since, 5 , 6 are increasing

( 5 (�) − 5 (�′)) · (6(�) − 6(�′)) ≥ 0 and � ≥ 0, �′ ≥ 0. Hence the equality is tight iff:

��′( 5 (�) − 5 (�′)) · (6(�) − 6(�′)) a.s.
= 0,

which is ruled out by the assumptions of the claim. �
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Chapter 4: Universality of Linearized Message Passing for Phase Retrieval

with Structured Sensing Matrices

4.1 Introduction

In the phase retrieval one observes magnitudes of< linear measurements (denoted by H1, H2, ..., H<)

of an unknown = dimensional signal vector x:

H8 = | (Gx)8 |,

where G is a < × = sensing matrix. The phase retrieval problem is a mathematical model of imaging

systems which are unable to measure the phase of the measurements. Such imaging systems arise

in a variety of applications such as electron microscopy, crystallography, astronomy and optical

imaging [7].

Theoretical analyses of the phase retrieval problem seek to design algorithms to recover x (up

to a global phase) with the minimum number of measurements. The earliest theoretical analysis

modelled the sensing as a random matrix with i.i.d. Gaussian entries and design computationally

efficient estimators which recover x with information theoretically rate-optimal $ (=) (or nearly

optimal < = $ (= polylog(=))) measurements. A representative, but necessarily incomplete, list of

such works includes the analysis of convex relaxations like PhaseLift due to [16, 17], PhaseMax

due to [21, 22], and analysis of non-convex optimization based methods due to [28], [25], and [88].

The number of measurements required if the underlying signal has a low dimensional structure has

also been investigated [34, 41, 43].

Unfortunately, i.i.d. Gaussian is not realizable in practice; instead, the sensing matrix is usually

a variant of the Discrete Fourier Transform (DFT) matrix [89]. Hence, there have been efforts to
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extend the theory to structured sensing matrices [90, 91, 92, 72, 93, 94]. A popular structured sensing

ensemble is the Coded Diffraction Pattern (CDP) ensemble introduced by [92] which is intended to

model applications where it is possible to randomize the image acquisition by introducing random

masks in front of the object. In this setup, the sensing matrix is given by:

GCDP =



L=J1

L=J2
...

L=J!


,

where L= denotes the = × = DFT matrix and J1:! are random diagonal matrices representing masks:

Jℓ = Diag
(
ei\1,ℓ , ei\2,ℓ , · · · , ei\=,ℓ

)
,

and ei\ 9 ,ℓ are random phases. For the CDP ensemble convex relaxation methods like PhaseLift [72]

and non-convex optimization based methods [25] are known to recover the signal x with the near

optimal < = $ (= polylog(=)) measurements. Another common structured sensing model is the

sub-sampled Fourier sensing model where the sensing matrix is generated as:

GDFT = L<VY,

where L is the < ×< Fourier matrix, V is a uniformly random < ×< permutation matrix and Y the

matrix that selects the first = columns of an < × < matrix:

Y =


O=

0<−=,=

 . (4.1)

This models a common oversampling strategy to ensure injectivity [8]. We also refer the reader to

the recent review articles [95, 89, 96, 8] for more discussion regarding good models of practical
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sensing matrices.

The aforementioned finite sample analyses show that a variety of different methods succeed

in solving the phase retrieval problem with the optimal or nearly optimal order of magnitude of

measurements. However, in practice, these methods can have a vast difference in performance,

which is not captured by the non-asymptotic analyses. Consequently, efforts have been made

to complement these results with sharp high dimensional asymptotic analyses which shed light

on the performance of different estimators and information theoretic lower bounds in the high

dimensional limit <, = → ∞, =/< → ^. This provides a high resolution framework to compare

different estimators based on the critical value of ^ at which they achieve non-trivial performance (

i.e. better than a random guess) or exact recovery of x. Comparing this to the critical value of ^

required information theoretically allows us to reason about the optimality of known estimators.

This research program has been executed, to varying extents, for the following unstructured sensing

ensembles:

1. Gaussian Ensemble: In this ensemble the entries of the sensing matrix are assumed to be i.i.d.

Gaussian (real or complex). This is the most well studied ensemble in the high dimensional

asymptotic limit. For this ensemble, precise performance curves for spectral methods [29,

69, 30], convex relaxation methods like PhaseLift [97] and PhaseMax [98], and a class of

iterative algorithms called Approximate Message Passing [99] are now well understood. The

precise asymptotic limit of the Bayes risk [100] for Bayesian phase retrieval is also known.

2. Sub-sampled Haar Ensemble: In the sub-sampled Haar sensing model, the sensing matrix

is generated by picking = columns of a uniformly random orthogonal (or unitary) matrix at

random:

GHaar = UVY,

where U ∼ Unif (U<) (or U ∼ Unif (O<) in the real case) and V is a uniformly random

< × < permutation matrix and Y is the matrix defined in (4.1). The sub-sampled Haar
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model captures a crucial aspect of sensing matrices that arise in practice: namely they have

orthogonal columns (note that for both the CDP and the sub-sampled Fourier ensembles we

have G∗DFTGDFT = G
∗
CDPGCDP = O=). For the sub-sampled Haar sensing model it has been

shown that when ^ > 0.5 no estimator performs better than a random guess [31]. Moreover, it

is known that spectral estimators can achieve non-trivial performance when ^ < 0.5 [71, 32].

3. Rotationally Invariant Ensemble: This is a broad class of unstructured sensing ensembles that

include the Gaussian Ensemble and the sub-sampled Haar ensemble as special cases. Here, it

is assumed that the SVD of the sensing matrix is given by:

G = [Y\T,

where [,\ are independent and uniformly random orthogonal matrices (or unitary in the

complex case): [ ∼ Unif (O<) , \ ∼ Unif (O=) and Y is a deterministic matrix such that the

empirical spectral distribution of YTY converges to a limiting measure `(. The analysis of

Approximate Message Passing algorithms has been extended to this ensemble [101, 102].

For this ensemble, the non-rigorous replica method from statistical physics can be used to

derive conjectures regarding the Bayes risk and performance of convex relaxations as well as

spectral methods [103, 104, 105]. Some of these conjectures have been proven rigorously in

some special cases [106, 107].

The techniques used to prove the above results rely heavily on the rotational invariance of the

underlying matrix ensembles. This makes it difficult to extend these results to structured sensing

matrices.

However, numerical simulations reveal an intriguing universality phenomena: It has been

observed that the performance curves derived theoretically for sub-sampled Haar sensing provide

a nearly perfect fit to the empirical performance on practical sensing ensembles like GCDP, GDFT.

This has been observed by a number of authors in the context of various signal processing problems.

It was first pointed out by [108] in the context of ℓ1 norm minimization for noiseless compressed
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sensing and then again by [109] for the same setup but for many more structured sensing ensembles.

For noiseless compressed sensing both the Gaussian ensemble and the Sub-sampled Haar ensemble

lead to identical predictions (and hence the simulations with structured sensing matrices match

both of them). However, in noisy compressed sensing, the predictions from the sub-sampled Haar

model and the Gaussian model are different. [110] pointed out that structured ensembles generated

by sub-sampling deterministic orthogonal matrices empirically behave like Sub-sampled Haar

sensing matrices. More recently, [111] have observed this universality phenomena in the context of

approximate message passing algorithms for noiseless compressed sensing. In the context of phase

retrieval this phenomena was reported by [71] for the performance of the spectral method.

Our Contribution: In this chapter we study the real phase retrieval problem where the sensing

matrix is generated by sub-sampling = columns of the < × < Hadamard-Walsh matrix. Under an

average case assumption on the signal vector, our main result (Theorem 7) shows that the dynamics

of a class of linearized Approximate message passing schemes for this structured ensemble are

asymptotically identical to the dynamics of the same algorithm in the sub-sampled Haar sensing

model in the high dimensional limit where <, = diverge to infinity such that ratio ^ = =/< ∈ (0, 1)

is held fixed. This provides a theoretical justification for the observed empirical universality in this

particular setup. In the following section we define the setup we study in more detail.

4.1.1 Setup

Sensing Model

As mentioned in the Introduction, we study the phase retrieval problem where the measurements

H1, H2, . . . H< are given by:

H8 = ( |Gx |)8 .

The matrix G is called the sensing matrix. We also define z , Gx which we refer to as the signed

measurements (which are not observed). We need to introduce the following 3 models for the

109



sensing matrix G:

In all the equations below, V is a uniformly random < × < permutation matrix and Y is the

selection matrix as defined in (4.1).

Sub-sampled Hadamard Sensing Model: Assume that < = 2ℓ for some ℓ ∈ N. In the

sub-sampled Hadamard sensing model the sensing matrix is generated by sub-sampling = columns

of a < × < Hadamard-Walsh matrix N uniformly at random:

G = NVY, (4.2)

Recall that the Hadamard-Walsh matrix as a closed form formula: For any 8, 9 ∈ [<], let i, j denote

the binary representations of 8 − 1, 9 − 1. Hence, i, j ∈ {0, 1}ℓ. Then the (8, 9)-th entry of N is

given by:

�8 9 =
(−1)〈i, j〉
√
<

, (4.3)

where 〈i, j〉 = ∑ℓ
:=1 8: 9: . It is well known that N is orthogonal, i.e. NTN = O<. This sensing

model can be thought of as a real analogue of the sub-sampled Fourier sensing model. Our primary

goal is to develop a theory for this sensing model which is not covered by existing results. We

believe that our analysis can be extended to the Fourier case without much effort as well as some

other deterministic orthogonal matrices like the discrete cosine transform matrix.

Remark 19. Some authors refer to any orthogonal matrix with ±1 entries as a Hadamard matrix.

We emphasize that we claim results only about the Hadamard-Walsh construction given in (4.3) and

not arbitrary Hadamard matrices.

Sub-sampled Haar Sensing Model: In this model the sensing matrix is generated by sub-

sampling = columns, chosen uniformly at random, of a < × < uniformly random orthogonal
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matrix:

G = UVY, (4.4)

where U ∼ Unif (O<). Existing theory applies to this sensing model and our goal will be to transfer

these results to the sub-sampled Hadamard model.

Sub-sampled Orthogonal Model: This model includes both sub-sampled Hadamard and Haar

models as special cases. In this model the sensing matrix is generated by sub-sampling = columns

chosen uniformly at random of a < × < orthogonal matrix[:

G = [VY, (4.5)

where[ is a fixed or random orthogonal matrix. Setting[ = U gives the sub-sampled Haar model

and setting[ = N gives the sub-sampled Hadamard model. Our primary purpose for introducing

this general model is that it allows us to handle both the sub-sampled Haar and Hadamard models

in a unified way. Additionally, some of our intermediate results hold for any orthogonal matrix[

whose entries are delocalized, and we wish to record that when possible.

In addition, we introduce the following matrices which will play an important role in our

analysis:

1. We define H , VYYTVT. Observe that H is a random diagonal matrix with {0, 1} entries. It

is easy to check that the distribution of H is described as follows: pick a uniformly random

subset ( ⊂ [<] with |( | = = and set:

�88 =


1 : 8 ∈ (

0 : 8 ∉ (

.

2. Note that EH = ^O<. We define the zero mean random diagonal matrix H , H − ^O<.
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3. We define the matrix 	 , [H[T = GGT − ^O<.

Finally, note that all the sensing ensembles introduced in this section make sense only when = ≤ <

or equivalently ^ ∈ [0, 1]. We will additionally assume that ^ lies in the open interval (0, 1).

Algorithm

We study a class of linearized message passing algorithms. This is a class of iterative schemes

which execute the following updates:

ẑ(C+1) ,

(
1
^
GGT − O

)
·
(
[C (_) −

ETr([C (_))
<

O

)
· ẑ(C) , (4.6a)

x̂ (C+1) , GT ẑ(C+1) , (4.6b)

where

_ = Diag
(
H1, H2 . . . H<

)
,

and [C : R→ R are bounded Lipchitz functions that act entry-wise on the diagonal matrix _ . The

iterates ( ẑ(C))C≥0 should be thought as estimates of the signed measurements z = Gx. We now

provide further context regarding the iteration in (4.6).

Interpretation as Linearized AMP: The iteration (4.6) can be thought of as a linearization of

a broad class of non-linear approximate message passing algorithms. These algorithms execute the

iteration:

ẑ(C+1) ,

(
1
^
GGT − O

)
· �C (y, ẑ(C)), (4.7a)

x̂ (C+1) , GT ẑ(C+1) . (4.7b)
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where �C : R2 → R is a bounded Lipchitz function which satisfies the divergence-free property:

1
<

<∑
8=1
EmI�C (H8, Î(C)8 ) = 0.

Indeed, if �C was linear in the second (I) argument (or was approximated by its linearization) one

obtains the iteration in (4.6). By choosing the function �C in the iteration appropriately, one can

obtain the state-of-the-art performance for phase retrieval with sub-sampled Haar sensing. This

algorithm achieves non-trivial (better than random) performance when ^ < 2/3, and exact recovery

when ^ < 0.63 [107]. While our analysis currently does not cover the non-linear iteration (4.7), we

hope our techniques can be extended to analyze (4.7).

Connection to Spectral Methods: Given that the algorithm we analyze (4.6) does not cover

the state-of-the-art algorithm, one can reasonably ask what performance can one achieve with the

linearized iteration (4.6). It turns out that the iteration in (4.6) can implement a popular class of

spectral methods which estimates the signal vector x as proportional to the leading eigenvector of

the matrix:

S =
1
<

<∑
8=1
T (H8)a8aT

8 ,

where a)1 , a
)
2 , ..., a

)
< denote the rows of G and T : R≥0 → (−∞, 1) is a trimming function. The

performance of these spectral estimators have been analyzed in the high dimensional limit [71, 32]

for the sub-sampled Haar model and they are known to have a non-trivial (better than random)

performance when ^ < 2/3. Furthermore, simulations show that the same result holds for sub-

sampled Hadamard sensing. In order to connect the iteration (4.6) to the spectral estimator, [71]

proposed setting the functions [C in the following way:

[C (H) =
(
1
`
− T (H)

)−1
, (4.8)

where ` ∈ (0, 1) is a tuning parameter. [71] shows that with this choice of [C , every fixed point of

113



the iteration (4.6) denoted by z∞, GTz∞ is an eigenvector of the matrix S. Furthermore, suppose `

is set to be the solution to the equation:

k1(`) =
1

1 − ^ , k1(`) ,
E|/ |2�
E�

, (4.9)

where the joint distribution of (/, �) is given by:

/ ∼ N (0, 1) , � =

(
1
`
− T (|/ |)

)−1
.

Then, [71] have shown that the linearized message passing iterations (4.6) achieve the same

performance as the spectral method for the sub-sampled Haar model as C →∞.

The State Evolution Formalism: An important property of the AMP algorithms of (4.6) and

(4.7) is that for the sub-sampled Haar model, the dynamics of the algorithm can be tracked by a

deterministic scalar recursion known as the state evolution. This was first shown for Gaussian

sensing matrices by [99] and subsequently for rotationally invariant ensembles by [102]. We

instantiate their result for our problem in the following proposition.

Proposition 6 (State Evolution [102]). Suppose that the sensing matrix is generated from the sub-

sampled Haar model and the signal vector is normalized such that ‖x‖22/<
P→ 1 and the iteration

(4.6) is initialized as:

ẑ(0) = U0z + f0w,

where U0 ∈ R, f0 ∈ R≥0 are fixed and w ∼ N (0, O<). Then for any fixed C ∈ N, as <, = → ∞,

=/< → ^, we have,

〈ẑ(C) , z〉
<

P→ UC ,
‖ ẑ(C) ‖22
<

P→ U2
C + f2

C ,

〈x̂ (C) , x〉
<

P→ UC ,
‖x̂ (C) ‖22
<

P→ U2
C + (1 − ^)f2

C ,
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where (UC , f2
C ) are given by the recursion:

UC+1 = (X − 1) · UC · E/2[C ( |/ |), (4.10a)

f2
C+1 =

(
1
^
− 1

)
·
(
U2
C ·

{
E/2[2

C ( |/ |) − (E/2[C ( |/ |))2
}
+ f2

C E[
2
C ( |/ |)

)
. (4.10b)

In the above display, / ∼ N (0, 1) and [C (I) = [C (I) − E[C ( |/ |).

The above proposition lets us track the evolution of some performance metrics like the mean

squared error (MSE) and the cosine similarity of the iterates. The proof of Proposition 6 crucially

relies on the rotational invariance of the sub-sampled Haar ensemble via Bolthausen’s conditioning

technique [112] and does not extend to structured sensing ensembles.

A Demonstration of the Universality Phenomena: For the sake of completeness, we provide

a self contained demonstration of the universality phenomena that we seek to study in Figure 4.1. In

order to generate this figure:

1. We used a 1024 × 256 image (after vectorization, shown as inset in Figure 4.1) as the signal

vector. Each of the red, blue, green channels were centered so that that their mean was zero

and standard deviation was 1.

2. We set < = 1024 × 256.

3. In order to generate problems with different ^ we down-sampled the original image to obtain

a new signal with = ≈ <^ (upto rounding errors).

4. We used a randomly sub-sampled Hadamard matrix for sensing. This was used to construct a

phase retrieval problem for each of the red, blue and green channels.

5. We used the linearized message passing configured to implement the spectral estimator (c.f.

(4.8) and (4.9)) with the optimal trimming function [30, 71]:

T★(H) = 1 − 1
H2 .
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We ran the algorithm for 20 iterations and tracked the squared cosine similarity:

cos2(∠(x̂ (C) , x)) , |〈x̂
(C) , x〉|2

‖x̂ (C) ‖22‖x‖
2
2
.

We averaged the squared cosine similarity across the RGB channels.

6. We repeated this for 10 different random sensing matrices. The average cosine similarity is

represented by + markers in Figure 4.1 and the error bars represent the standard error across

10 repetitions. The solid curves represent the predictions derived from State Evolution (see

Proposition 6). We can observe that the State Evolution closely tracks the empirical dynamics.

Figure 4.1: Solid Lines: Predicted Dynamics derived using State Evolution (Prop. 6 developed for
sub-sampled Haar sensing, + markers: Dynamics of Linearized Message Passing averaged over 10
repetitions with sub-sampled Hadamard sensing and a real image (shown in inset) used as the signal
vector. The error bars represent the standard error across repetitions.

Assumption on the signal: It is easy to see that, unlike in the sub-sampled Haar case, the state

evolution cannot hold for arbitrary worst case signal vectors for the sub-sampled Hadamard sensing
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models since the orthogonal signal vectors
√
<e1 and

√
<e2 generate the same measurement vector

y = (1, 1 · · · , 1)T. This is a folklore argument for non-indentifiability of the phase retrieval problem

for ±1 sensing matrices [95]. Hence we study the universality phenomena under the simplest

average case assumption on the signal, namely x ∼ N
(
0, O=/^

)
.

4.1.2 Notation

Important Sets: N,N0,R,C denote the sets of natural numbers, non-negative integers, real

numbers, and complex numbers, respectively. [:] denotes the set {1, 2, · · · , :} and [8 : 9] denotes

the set {8, 8 + 1, 8 + 2 · · · , 9 − 1, 9}. O< refers to the set of all < × < orthogonal matrices and U<

refers to the set of all < × < unitary matrices.

Stochastic Convergence:
P→ denotes convergence in probability. If for a sequence of random

variables we have -=
P→ 2 for a deterministic 2, we say p-lim -= = 2.

Linear Algebraic Aspects: We will use bold face letters to refer to vectors and matrices. For a

matrix \ ∈ R<×=, we adopt the convention of referring to the columns of \ by \1,\2 · · ·\= ∈ R<

and to the rows by v1, v2 · · · v< ∈ R=. For a vector v, ‖v‖1, ‖v‖2, ‖v‖∞ denote the ℓ1, ℓ2, and ℓ∞

norms, respectively. By default, ‖v‖ denotes the ℓ2 norm. For a matrix \, ‖\‖op, ‖\‖Fr, ‖\‖∞

denote the operator norm, Frobenius norm, and the entry-wise∞-norm, respectively. For vectors

v1, v2 ∈ R=, 〈v1, v2〉 denotes the inner product 〈v1, v2〉 =
∑=
8=1 E18E28. For matrices \1,\2 ∈ R<×=,

〈\1,\2〉 denotes the matrix inner product
∑<
8=1

∑=
9=1(+1)8 9 (+2)8 9 .

Important distributions: N
(
`, f2

)
denotes the scalar Gaussian distribution with mean `

and variance f2. N
(
-,�

)
denotes the multivariate Gaussian distribution with mean vector - and

covariance matrix �. Bern(?) denotes Bernoulli distribution with bias ?. Binom(=, ?) denotes

the Binomial distribution with = trials and bias ?. For an arbitrary set (, Unif (() denotes the

uniform distribution on the elements of (. For example, Unif (O<) denotes the Haar measure on

the orthogonal group.

Order Notation and Constants: We use the standard $ (·) notation. � will be used to refer to

a universal constant independent of all parameters. When the constant � depends on a parameter :

117



we will make this explicit by using the notation �: or � (:). We say a sequence 0= = $ (polylog(=))

if there exists a fixed, finite constant  such that 0= ≤ $ (log (=)).

4.2 Main Result

Now, we are ready to state our main result.

Theorem 7. Consider the linear message passing iterations (4.6). Suppose that:

1. The functions [C are bounded and Lipchitz.

2. The signal is generated from the Gaussian prior: x ∼ N
(
0, 1

^
O=

)
.

3. The sensing matrix is generated from the sub-sampled Hadamard ensemble.

4. The iteration (4.6) is initialized as:

ẑ(0) = U0z + f0w,

where U0 ∈ R, f0 ∈ R+ are fixed and w ∼ N (0, O<).

Then for any fixed C ∈ N, as <, =→∞, = = ^<, we have,

〈ẑ(C) , z〉
<

P→ UC ,
‖ ẑ(C) ‖22
<

P→ U2
C + f2

C ,

〈x̂ (C) , x〉
<

P→ UC ,
‖x̂ (C) ‖22
<

P→ U2
C + (1 − ^)f2

C ,

where (UC , f2
C ) are given by the recursion in (4.10).

Theorem 7 simply states that the dynamics of linearized message passing in the sub-sampled

Hadamard model are asymptotically indistinguishable from the dynamics in the sub-sampled Haar

model. This provides a theoretical justification for the universality depicted in Figure 4.1.
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4.3 Related Work

Gaussian Universality: A number of papers have tried to explain the observations of [108]

regarding the universality in performance of ℓ1 minimization for noiseless linear sensing. For

noiseless linear sensing, the Gaussian sensing ensemble, sub-sampled Haar sensing ensemble,

and structured sensing ensembles like sub-sampled Fourier sensing ensemble behave identically.

Consequently, a number of papers have tried to identify the class of sensing matrices which behave

like Gaussian sensing matrices. It has been shown that sensing matrices with i.i.d. entries under

mild moment assumptions behave like Gaussian sensing matrices in the context of performance

of general (non-linear) Approximate Message Passing schemes [99, 113], the limiting Bayes risk

[106], and the performance of estimators based on convex optimization [114, 115]. The assumption

that the sensing matrix has i.i.d. entries has been relaxed to the assumption that it has i.i.d. rows

(with possible dependence within a row) [97]. Finally, we emphasize that in the presence of noise or

when the measurements are non-linear, the structured ensembles that we consider here, obtained by

sub-sampling a deterministic orthogonal matrix like the Hadamard-Walsh matrix, no longer behave

like Gaussian matrices, but rather like sub-sampled Haar matrices.

A result for highly structured ensembles: While the results mentioned above move beyond

i.i.d. Gaussian sensing, the sensing matrices they consider are still largely unstructured and highly

random. In particular, they do not apply to the sub-sampled Hadamard ensemble considered here. A

notable exception is the work of [116] which considers a random undetermined system of linear

equations (in x) of the form Gx = Gx0 for a random matrix G ∈ R<×= and a :-sparse non-negative

vector x0 ∈ R=≥0. [116] shows that as <, =, : →∞ such that =/< → ^1, :/< → ^2, the probability

that x0 is the unique non-negative solution to the system sharply transitions from 0 to 1 depending on

the values ^1, ^2. Moreover, this transition is universal across a wide range of random G, including

Gaussian ensembles, random matrices with i.i.d. entries sampled from a symmetric distribution, and

highly structured ensembles whose null space is given by a random matrix H ∈ R=−<×= generated

by multiplying the columns of a fixed matrix H0 whose columns are in general position by i.i.d.
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random signs. The proof technique of [116] uses results from the theory of random polytopes and it

is not obvious how to extend their techniques beyond the case of solving under-determined linear

equations.

Universality Results in Random Matrix Theory: The phenomena that structured orthogonal

matrices, such as Hadamard and Fourier matrices, behave like random Haar matrices in some aspects

has been studied in the context of random matrix theory [117] and in particular free probability [80].

A well known result in free probability (see the book of [80] for a textbook treatment) is that if

[ ∼ Unif
(
U(<)

)
and J1, J2 are deterministic < × < diagonal matrices then[J1[

∗ and J2 are

asymptotically free and consequently the limiting spectral distribution of matrix polynomials in J2

and[J1[
∗ can be described in terms of the limiting spectral distribution of J1 and J2. [118, 119]

have obtained an extension of this result where a Haar unitary matrix is replaced by < × < Fourier

matrix: If J1, J2 are independent diagonal matrices then L<J1L
∗
< is asymptotically free from J2.

The result of these authors has been extended to other deterministic orthogonal/unitary matrices

(such as the Hadamard-Walsh matrix) conjugated by random signed permutation matrices by [120].

In order to see how the result of [118] connects with ours note that the linearized AMP iterations

(4.6) involve 2 random matrices: NHNT and @(_). Note that if H and the diagonal matrix @(_)

were independent, then the result of [118] would imply that NHNT and @(_) are asymptotically

free and this could potentially be used to analyze the linearized AMP algorithm. However, the key

difficulty is that the measurements y depend on which columns of the Hadamard-Walsh matrix

were selected (specified by H). Infact, this dependence is precisely what allows the linearized AMP

algorithm to recover the signal. However, we still find some of the techniques introduced by [118]

useful in our analysis. We also emphasize that asymptotic freeness of NHNT, @(_) alone seems to

be insufficient to characterize the behavior of Linearized AMP algorithms. Asymptotic freeness

implies that the expected normalized trace of certain matrix products involving NHNT, @(_)

vanish in the limit < → ∞. On the other hand, our proof also requires the analysis of certain

quadratic forms involving NHNT, @(_) (see Proposition 8) which do not appear to have been

studied in the free probability literature.
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Non-rigorous Results from Statistical Physics: In the statistical physics literature Cakmak,

Opper, Winther, and Fleury [121, 122, 123, 124, 125] have developed an analysis of message

passing algorithms for rotationally invariant ensembles via a non-rigorous technique called the

dynamical functional theory. These works are interesting because they do not heavily rely on

rotational invariance, but instead rely on results from Free probability. Since some of the free

probability results have been extended to Fourier and Hadamard matrices [118, 119, 120], there

is hope to generalize their analysis beyond rotationally invariant ensembles. However, currently,

their results are non-rigorous due to two reasons: 1) due to the use of dynamical field theory, and 2)

their application of Free probability results neglects dependence between matrices. In our work,

we avoid the use of dynamical functional theory since we analyze linearized AMP algorithms and

furthermore, we properly account for dependence that is heuristically neglected in their work.

The Hidden Manifold Model: Lastly, we discuss the recent works of [126, 127, 128], where

they study statistical learning problems where the feature matrix G ∈ R<×= (the analogue of the

sensing matrix in statistical learning) is generated as:

G = f(`L),

where L ∈ R3×= is a generic (possibly structured) deterministic weight matrix and ` ∈ R<×3 is

an i.i.d. Gaussian matrix. The function f : R → R acts entry-wise on the matrix `L. For this

model, the authors have analyzed the dynamics of online (one-pass) stochastic gradient descent

(first non-rigorously [126] and then rigorously [128]) and the performance of regularized empirical

risk minimization with convex losses (non-rigorously) via the replica method [127] in the high

dimensional asymptotic <, =, 3 →∞, =/< → ^1, 3/< → ^2. Their results show that in this case

the feature matrix behaves like a certain correlated Gaussian feature matrix. We note that the feature

matrix G here is quite different from the sub-sampled Hadamard ensemble since it uses $ (<2) i.i.d.

random variables (`) where as the sub-sampled Hadamard ensemble only uses < i.i.d. random

variables (to specify the permutation matrix V). However, a technical result proved by the authors
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(Lemma A.2 of [126]) appears to be a special case of a classical result of [129, 130] which we find

useful to account for the dependence between the matrices @C (_), G appearing in the linearized

AMP iterations (4.6).

4.4 Proof Overview

Our basic strategy to prove Theorem 7 will be as follows: Throughout the chapter we will

assume that Assumptions 1, 2, and 4 of Theorem 7 hold. We will seek to only show that the

observables:

〈ẑ(C) , z〉
<

,
‖ ẑ(C) ‖22
<

,
〈x̂ (C) , x〉
<

,
‖x̂ (C) ‖22
<

, (4.11)

have the same limit in probability under both the sub-sampled Haar and the sub-sampled Hadamard

sensing models. We will not need to explicitly identify their limits since Proposition 6 already

identifies the limit for us, and hence, Theorem 7 will follow.

It turns out the limits of the observables (4.11) depends only on normalized traces and quadratic

forms of certain alternating products of the matrices 	 and `. Hence, we introduce the following

definition.

Definition 7 (Alternating Product). A matrix A is said to be a alternating product of matrices

	, ` if there exist polynomials ?8 : R → R, 8 ∈ 1, 2 . . . , : , and bounded, Lipchitz functions

@8 : R→ R, 8 ∈ {1, 2 . . . :} such that:

1. If � ∼ Bern(^), E?8 (� − ^) = 0.

2. @8 are even functions i.e. @8 (b) = @8 (−b) and if b ∼ N (0, 1), then, E@8 (b) = 0,

and, A is one of the following:

1. Type 1: A = ?1(	)@1(`)?2(	) · · · @:−1(`)?: (	)

2. Type 2: A = ?1(	)@1(`)?2(	)@2(`) · · · ?: (	)@: (`)
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3. Type 3: A = @1(`)?2(	)@2(`) · · · ?: (	)@: (`).

4. Type 4: A = @1(`)?2(	)@2(`)?3(	) · · · @:−1(`)?: (	).

In the above definitions:

1. The scalar polynomial ?8 is evaluated at the matrix 	 in the usual sense, for example if

?(k) = k2, then, ?(	) = 	2.

2. The functions @8 are evaluated entry-wise on the diagonal matrix `, i.e.

@8 (`) = Diag
(
@8 (I1), @8 (I2) . . . @8 (I<)

)
.

We note that alternating products are a central notion in free probability [80]. The difference

here is that we have additionally constrained the functions ?8, @8 in Definition 7.

Theorem 7 is a consequence of two properties of alternating products which may be of indepen-

dent interest. These are stated in the following propositions.

Proposition 7. Let A(	, `) be an alternating product of matrices 	, `. Suppose the sensing

matrix G is generated from the sub-sampled Haar sensing model, or the sub-sampled Hadamard

sensing model, or by sub-sampling a deterministic orthogonal matrix[ with the property:

‖[‖∞ ≤

√
 1 log 2 (<)

<
, ∀< ≥  3,

for some fixed constants  1,  2,  3. Then,

Tr(A(	, `))/< P→ 0.

Proposition 8. Let A(	, `) be an alternating product of matrices 	, `. Then for the sub-sampled
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Haar sensing model and for sub-sampled Hadamard ([ = N) sensing model, we have,

p-lim
〈z,Az〉
<

exists and is identical for the two models.

Outline of the Remaining Chapter: The remainder of the chapter is organized as follows:

1. In Section 4.5 we provide a proof of Theorem 7 assuming Propositions 7 and 8.

2. In Section 4.6 we introduce some key tools required for the proof of Propositions 7 and 8.

3. The proof of Proposition 7 can be found in Section 4.7.

4. The proof of Proposition 8 can be found in Section 4.8.

4.5 Proof of Theorem 7

In this section we will show the analysis of the observables (4.11) reduces to the analysis of the

normalized traces and quadratic forms of alternating products. In particular, we will prove Theorem

7 using Propositions 7 and 8.

Proof of Theorem 7. For simplicity, we will assume the functions [C do not change with C, i.e.

[C = [ ∀ C ≥ 0. This is just to simplify notations, and the proof of time varying [C is exactly the

same. Define the function:

@(I) = [( |I |) − E/∼N(0,1) [[( |/ |)] .

Note that the linearized message passing iterations (4.6) can be expressed as:

ẑ(C+1) =
1
^
· 	 · @(`) · ẑ(C) .
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Unrolling the iterations we obtain:

ẑ(C) =
1
^C
· (	 · @(`))C · ẑ(0) .

Note that the initialization is assumed to be of the form: ẑ(0) = U0z + f0w, where w ∼ N (0, O).

Hence:

ẑ(C) = U0
1
^C
· (	 · @(`))C · z + f0 ·

1
^C
· (	 · @(`))C · w,

x̂ (C) = GT ẑ(C) .

We will focus on showing that the limits:

p-lim
〈x, x̂ (C)〉
<

, p-lim
‖x̂ (C) ‖22
<

, (4.12)

exist and are identical for the two models. The claim for the limits corresponding to ẑ(C) are exactly

analogous and omitted. Hence, the remainder of the proof is devoted to analyzing the above limits.

Analysis of 〈x, x̂ (C)〉: Observe that:

〈x, x̂ (C)〉 = 〈GTz, GT ẑ(C)〉

= U0
1
^C
· 〈GTz, GT(	 · @(`))C · z〉︸                           ︷︷                           ︸

()1)

+f0 ·
1
^C
· 〈GTz, GT · (	 · @(`))C · w〉︸                              ︷︷                              ︸

()2)

.

We first analyze term ()1). Observe that:

()1) = zTGGT(	 · @(`))C z

= zT	(	 · @(`))C z + ^zT(	 · @(`))C z

= zT	2(@(`)	)C−1@(`)z + ^zT(	 · @(`))C z
(a)
= zT?(	) (@(`)	)C−1@(`)z + ^(1 − ^)zT(@(`)	)C−1@(`)z + ^zT(	 · @(`))C z.
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In the step marked (a) we defined the polynomial ?(k) = k2− ^(1− ^) which has the property

E?(� − ^) = 0 when � ∼ Bern(^). One can check that / ∼ N (0, 1), E@(/) = 0, and @ is a

bounded, Lipchitz, even function. Hence, each of the terms appearing in step (a) are of the

form zTAz for some alternating productA (Definition 7) of matrices 	, `. Consequently, by

Proposition 8 we obtain that term (1) divided by < converges to the same limit in probability

under both the sub-sampled Haar sensing and the sub-sampled Hadamard sensing model.

Next, we analyze ()2). Note that:

〈GTz, GT · (	 · @(`))C · w〉
<

= zTGGT
(	 · @(`))Cw/<

d
=
‖(@(`)	)CGGTz‖2

<
·,, , ∼ N (0, 1) ,

where d
= means both sides have a same distribution. Observe that:

‖(@(`)	)CGGTz‖2
<

=
‖(@(`)	)CGx‖2

<

≤ ‖(@(`)	)CG‖op ·
‖x‖2
<

≤ ‖@(`)‖Cop‖	‖Cop‖G‖op ·
‖x‖2
<

.

It is easy to check that: ‖@(`)‖op ≤ 2‖[‖∞ < ∞. Similarly, ‖	‖op ≤ 1, ‖G‖op = 1. Hence,

‖(@(`)	)CGGTz‖2
<

≤ 2C ‖[‖C∞ ·
√
‖x‖2
<
· 1
√
<

Observing that ‖x‖2/< P→ 1 we obtain:����� 〈GTz, GT · (	 · @(`))C · w〉
<

����� ≤ 2C ‖[‖C∞ ·
√
‖x‖2
<
· |, |√
<

P→ 0.

Note the above result holds for both subsampled Haar sensing and subsampled Hadamard
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sensing. This proves that the limit

p-lim
〈x, x̂ (C)〉
<

exists and is identical for the two models.

Analysis of ‖x̂ (C) ‖2: Recalling that:

ẑ(C) = U0
1
^C
· (	 · @(`))C · z + f0

1
^C
· (	 · @(`))C · w,

x̂ (C) = GT ẑ(C) ,

we can compute:

1
<
‖x̂ (C) ‖22 =

1
^2C ·

(
U2

0 · ()3) + 2U0f0()4) + f2
0 · ()5)

)
,

where the terms ()3 − )5) are defined as:

()3) =
zT(@(`)	)CGGT(	 · @(`))C · z

<
,

()4) =
zT(@(`)	)CGGT(	 · @(`))C · w

<
,

()5) =
wT(@(`)	)CGGT(	 · @(`))C · w

<
.

We analyze each of these terms separately. First, consider ()3). Our goal will be to decompose

the matrix (@(`)	)CGGT(	 · @(`))C as:

(@(`)	)CGGT(	 · @(`))C = 20O +
#C∑
8=1

28A8,

where A8 are alternating products of the matrices 	, ` (see Definition 7) and 28 are some

scalar constants. This decomposition has the following properties: 1) It is independent of the

choice of the orthogonal matrix [ used to generate the sensing matrix. 2) The number of
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terms in the decomposition #C depends only on C and not on <, =. In order to see why such a

decomposition exists: first recall that GGT = 	 + ^O<. Hence, we can write:

(@(`)	)CGGT(	 · @(`))C = (@(`)	)C	(	 · @(`))C + ^zT(@(`)	)C (	 · @(`))C

= (@(`)	)C−1@(`)Ψ3@(`) (	 · @(`))C−1 + ^zT(@(`)	)C−1@(`)	2@(`) (	 · @(`))C−1.

For any 8 ∈ N, we write Ψ8 = ?8 (	) + `8 O, where `8 = E(� − ^)8, � ∼ Bern(^), and

?8 (k) = k8 − `8. This polynomial satisfies E?8 (� − ^) = 0. This gives us:

(@(`)	)CGGT(	 · @(`))C = (@(`)	)C−1@(`)?3(	)@(`) (	 · @(`))C−1

+ ^zT(@(`)	)C−1@(`) p2(Ψ)@(`) (	 · @(`))C−1

+ (`3 + ^`2) · (@(`)	)C−1@(`)2(	 · @(`))C−1.

In the above display, the first two terms on the RHS are in the desired alternating product

form. We center the last term. For any 8 ∈ N we define @8 (I) = @8 (I) − a8, a8 = E@(b)8, b ∼

N (0, 1). Hence, @8 (`) = @8 (`) + a8 O<. Hence:

(@(`)	)CGGT(	 · @(`))C = (@(`)	)C−1@(`)?3(	)@(`) (	 · @(`))C−1

+ ^zT(@(`)	)C−1@(`) p2(Ψ)@(`) (	@(`))C−1

+ (`3 + ^`2) (@(`)	)C−1@2(`) (	 · @(`))C−1

+ a2 (`3 + ^`2) (@(`)	)C−1(	 · @(`))C−1.

In the above display, each of the terms in the right hand side is an alternating product except

(`3+^`2) · (@(`)	)C−1(	 ·@(`))C−1. We inductively center this term. Note that this centering

procedure does not depend on the choice of the orthogonal matrix [ used to generate the

sensing matrix. Furthermore, the number of terms is bounded by #C ≤ #C−1+3, so #C ≤ 1+3C.
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Hence, we have obtained the desired decomposition:

(@(`)	)CGGT(	 · @(`))C = 20O +
#C∑
8=1

28A8 . (4.13)

Therefore, we can write ()3) as:

()3) = 20
‖z‖2
<
+ 1
<

#C∑
8=1

28 z
TA8z = 20

‖x‖2
<
+ 1
<

#C∑
8=1

28 z
TA8z.

Observe that ‖x‖2/< P→ 1, and Proposition 8 guarantees zTA8z/< converges in probability

to the same limit irrespective of whether [ = U or [ = N. Hence, term ()3) converges

in probability to the same limit for both the subsampled Haar sensing and the subsampled

Hadamard sensing model.

Next, we analyze term ()4). Repeating the arguments we made for the analysis of the term

()2) we find:

()4) =
zT(@(`)	)CGGT(	 · @(`))C · w

<

d
=
‖(@(`)	)CGGT(	 · @(`))C z‖2

<
·, P→ 0,

where, ∼ N (0, 1). Finally, we analyze the term ()5). Using the decomposition (4.13) we

have:

()5) = 20
‖w‖22
<
+ 1
<

#C∑
8=1

28 w
TA8w.

We know that ‖w‖22/<
P→ 1. Hence, we focus on analyzing wTA8w/<. We decompose this

as:

wTA8w

<
=
FTA8w − E[FTA8w |A8]

<
+ E[F

TA8w |A8]
<

.
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Observe that:

E[wTA8w |A8]
<

=
^ · Tr(A8)

<

P→ 0 (By Proposition 7).

On the other hand, using the Hanson-Wright Inequality (Fact 2) together with the estimates

‖A8‖op ≤ � (A8), ‖A8‖Fr ≤
√
< · � (A8),

for a fixed constant � (A8) (independent of <, =) depending only on the formula for A8, we

obtain:

P

(���wTA8w − E[FTA8w |A8]
��� > <C ���� A8

)
≤ 2 exp

(
− 2

� (A8)
· < ·min(C, C2)

)
→ 0.

Hence,

wTA8w − E[FTA8w |A8]
<

P→ 0.

This implies ()5)
P→ 20 for both the models. This proves the limit :

p-lim
‖x̂ (C) ‖22
<

exists and is identical for the two sensing models, which concludes the proof of Theorem 7.

�

4.6 Key Ideas for the Proof of Propositions 7 and 8

In this section, we introduce some key ideas that are important in the proof of Propositions 7 and

8. Recall that we wish to analyze the limit in probability of the normalized trace and the quadratic
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form. A natural candidate for this limit is the limiting value of their expectation:

p-lim
1
<

TrA(	, `) ?
= lim
<→∞

1
<
ETrA(	, `),

p-lim
〈z,Az〉
<

?
= lim
<→∞

E〈z,Az〉
<

.

In order to show this, one needs to show that the variance of the normalized trace and the normalized

quadratic form converge to 0, which involves analyzing the second moment of these quantities.

However, since the analysis of the second moment uses very similar ideas as the analysis of the

expectation, we focus on outlining the main ideas in the context of the analysis of expectation.

First, we observe that alternating products can be simplified significantly due to the following

property of polynomials of centered Bernoulli random variables.

Lemma 17. For any polynomial ? such that if � ∼ Bern(^), E ?(� − ^) = 0 we have,

?(	) = (?(1 − ^) − ?(−^)) · 	.

Proof. Observe that since 	 = [H[T, and [ is orthogonal, we have ?(	) = [?(H)[T. Next,

observe that:

?(�88) = ?(1 − ^)�88 + ?(−^) (1 − �88)

= (?(1 − ^) − ?(−^)) · �88 + ^?(1 − ^) + (1 − ^)?(−^)︸                            ︷︷                            ︸
=0

,

where the last step follows from the assumption E ?(�−^) = 0. Hence, ?(H) = (?(1−^)−?(−^))H

and ?(	) = (?(1 − ^) − ?(−^))	. �

Hence, without loss of generality we can assume that each of the ?8 in an alternating product

satisfy ?8 (b) = b.
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4.6.1 Partitions

Note that the expected normalized trace and the expected quadratic form in Propositions 7 and 8

can be expanded as follows:

1
<
ETrA(	, `) = 1

<

<∑
01,02,...0:=1

E[(	)01,02@1(I02) · · · @:−1(I0: ) (	)0: ,01],

E〈z,Az〉
<

=
1
<

∑
01::+1∈[<]

E[I01 (	)01,02@1(I02) (	)02,03 · · · @:−1(I0: ) (	)0: ,0:+1I0:+1] .

Some Notation: Let P([:]) denotes the set of all partitions of a discrete set [:]. We use |c | to

denote the number of blocks in c. Recall that a partition c ∈ P([:]) is simply a collection of

disjoint subsets of [:] whose union is [:] i.e.

c = {V1,V2 . . .V|c |}, t|c |C=1VC = [:] .

The symbol t is exclusively reserved for representing a set as a union of disjoint sets. For any

element B ∈ [:], we use the notation c(B) to refer to the block that B lies in. That is, c(B) = V8 iff

B ∈ V8. For any c ∈ P([:]), define the set C(c) the set of all vectors a ∈ [<]: which are constant

exactly on the blocks of c:

C(c) def
= {a ∈ [<]: : 0B = 0C ⇔ c(B) = c(C)}.

Consider any a ∈ C(c). IfV8 is a block in c, we use 0V8 to denote the unique value the vector a

assigns to the all the elements ofV8.

The rationale for introducing this notation is the observation that:

[<]: =
⊔

c∈P([:])
C(c),
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and hence we can write the normalized trace and quadratic forms as:

ETrA(	, `)
<

=
1
<

∑
c∈P([:])

∑
a∈C(c)

E[(	)01,02@1(I02) · · · @:−1(I0: ) (	)0: ,01], (4.14a)

E〈z,Az〉
<

=
1
<

∑
c∈P([:+1])

∑
a∈C(c)

E[I01 (	)01,02@1(I02) · · · @:−1(I0: ) (	)0: ,0:+1I0:+1] . (4.14b)

This idea of organizing the combinatorial calculations is due to [131] and the rationale for doing so

will be clear in a moment.

4.6.2 Concentration

Lemma 18. Let the sensing matrix G be generated by sub-sampling an orthogonal matrix[. We

have, for any 0, 1 ∈ [<]:

P
(
|Ψ01 | ≥ n |[

)
≤ 4 exp

(
− n2

8<‖[‖4∞

)
.

Proof. Recall that 	 = [(H − ^O<)[T, where the distribution of the diagonal matrix

H = Diag (�11, �22 . . . �<<)

is described as follows: First draw a uniformly random subset ( ⊂ [<] with |( | = = and set:

�88 =


0 : 8 ∉ (

1 : 8 ∈ (
.

Due to the constraint that
∑<
8=1 �88 = =, these random variables are not independent. In order to

address this issue we couple H with another random diagonal matrix H̃ generated as follows:

1. First sample # ∼ Binom(<, ^).

2. Sample a subset (̃ ⊂ [<] with |(̃ | = # as follows:
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• If # ≤ =, then set (̃ to be a uniformly random subset of ( of size # .

• If # > = first sample a uniformly random subset � of (2 of size # − = and set (̃ = (∪ �.

3. Set H̃ as follows:

�̃88 =


0 : 8 ∉ (̃

1 : 8 ∈ (̃.
.

It is easy to check that conditional on # , (̃ is a uniformly random subset of [<] with cardinality # .

Since # ∼ Binom(<, ^), we have �̃88
i.i.d.∼ Bern(^). Define:

)
def
= Ψ01 = u

T
0 (H − ^O<)u1 =

<∑
8=1

D08D18 (�88 − E�88),

)̃
def
= uT

0 (H̃ − ^O<)u1 =
<∑
8=1

D08D18 (�̃88 − E�̃88).

Observe that |) − )̃ | ≤ |# − =|‖[‖2∞. Hence,

P
(
|) | ≥ n

)
≤ P

(
|)̃ | ≥ n

2

)
+ P

(
|) − )̃ | ≥ n

2

)
= P

(
|)̃ | ≥ n

2

)
+ P

(
|# − E# | ≥ n

2‖[‖2∞

)
(a)

≤ 4 exp

(
− n2

8<‖[‖4∞

)
.

In the step marked (a), we used Hoeffding’s Inequality. �

Hence the above lemma shows that,

‖	‖∞ ≤ $
(√
<‖[‖2∞ polylog(<)

)
,

with high probability. Recall that in the subsampled Hadamard model[ = N and ‖N‖∞ = 1/
√
<.

Similarly, in the subsampled Haar model [ = U and ‖U‖∞ ≤ $ (polylog(<)/
√
<). Hence, we
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expect:

‖	‖∞ ≤ $
(
polylog(<)
√
<

)
, with high probability. (4.15)

4.6.3 Mehler’s Formula

Note that in order to compute the expected normalized trace and quadratic form as given in

(4.14), we need to compute:

E[(	)01,02@1(I02) · · · @:−1(I0: ) (	)0: ,01],

E[I01 (	)01,02@1(I02) (	)02,03 · · · @:−1(I0: ) (	)0: ,0:+1I0:+1] .

Note that by the Tower property:

E[(	)01,02@1(I02) · · · @:−1(I0: ) (	)0: ,01] =

E
[
(	)01,02 · · · (	)0: ,01E[@1(I02) · · · @:−1(I0: ) |G]

]
,

and analogously for E[I01 (	)01,02@1(I02) (	)02,03 · · · @:−1(I0: ) (	)0: ,0:+1I0:+1]. Suppose that a ∈

C(c) for some c ∈ P([:]). Let c = V1 tV2 · · · t V|c |. Define:

�V8 (b) =
∏
9∈V8
9≠1

@ 9−1(b).

Then, we have:

E[@1(I02) · · · @:−1(I0: ) |G] = E

|c |∏
8=1

�V8 (I0V8 )
����G .
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In order to compute the conditional expectation we observe that conditional on G, z is a zero mean

Gaussian vector with covariance:

E[zzT |G] = 1
^
GGT =

1
^
[H[T = O + 	

^
.

Note that since 0V8 ≠ 0V9 for 8 ≠ 9 , we have as a consequence of (4.15), {I0V8 }
|c |
8=1 are weakly

correlated Gaussians. Hence we expect,

E[@1(I02) · · · @:−1(I0: ) |G] =
|c |∏
8=1
E/∼N(0,1)�V8 (/) + A small error term,

where the error term is a term that goes to zero as < →∞. Mehler’s formula given in the proposition

below provides an explicit formula for the error term. Observe that in (4.14):

1. the sum over c ∈ P([:]) cannot cause the error terms to add up since |P([:]) | is a constant

depending on : but independent of <.

2. On the other hand, the sum over a ∈ C(c) can cause the errors to add up since:

|C(c) | = < · (< − 1) · · · (< − |c | + 1).

It is not obvious right away how accurately the error must be estimated, but it turns out that for the

proof of Proposition 7 it suffices to estimate the order of magnitude of the error term. For the proof

of Proposition 8 we need to be more accurate and the leading order term in the error needs to be

tracked precisely.

Before we state Mehler’s formula we recall some preliminaries regarding Fourier analysis on the

Gaussian space. Let / ∼ N (0, 1). Let 5 : R→ R be such that E 5 2(/) < ∞, i.e. 5 ∈ !2(N (0, 1)).

The Hermite polynomials {� 9 : 9 ∈ N0} form an orthogonal polynomial basis for !2(N (0, 1)).
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The polynomial � 9 is a degree 9 polynomial. They satisfy the orthogonality property:

E�8 (/)� 9 (/) = 8! · X8 9 .

The first few Hermite polynomials are given by:

�0(I) = 1, �1(I) = I, �2(I) = I2 − 1.

Proposition 9 ([129, 130]). Consider a : dimensional Gaussian vector z ∼ N (0,�), such that

Σ88 = 1 for all 8 ∈ [:]. Let 51, 52, . . . , 5: : R→ R be : arbitrary functions whose absolute value

can be upper bounded by a polynomial. Then,���������E

:∏
8=1

58 (I8)
 −

∑
w∈G(:)
‖w‖≤C

©­«
:∏
8=1

5̂8 (d8 (w))
ª®¬ · �

w

w!

��������� ≤ �
(
1 + 1

_4C+4
min (�)

) (
max
8≠ 9
|Σ8 9 |

) C+1
,

where:

1. G(:) denotes the set of undirected weighted graphs with non-negative integer weights on :

nodes with no self loops.

2. An element w ∈ G(:) is represented by a : × : symmetric matrix w with F8 9 = F 98 ∈ N∪{0},

and F88 = 0.

3. d8 (w) denotes the degree of node 8: d8 (w) =
∑:
9=1 F8 9 .

4. ‖w‖ denotes the total weight of the graph defined as:

‖w‖ def
=

∑
8< 9

F8 9 =
1
2

:∑
8=1

d8 (w).

5. The coefficients 5̂8 ( 9) are defined as: 5̂8 ( 9) = E 58 (/)� 9 (/) where / ∼ N (0, 1).
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6. �w, w! denote the entry-wise powering and factorial:

�w =
∏
8< 9

Σ
F8 9

8 9
, w! =

∏
8< 9

F8 9 !

7. � = �C,:, 51:: is a finite constant depending only on the C, : , and the functions 51:: but is

independent of �.

This result is essentially due to [129] in the case : = 2, and the result for general : was obtained

by [130]. Actually the results of these authors show that the pdf ofN (0,�) denoted by k(z;�) has

the following Taylor expansion around � = O: :

k(z;�) = k(z; O: ) ·
©­«

∑
w∈G(:)

�w

w!
·

:∏
8=1

�d8 (w) (I8)
ª®¬ .

In Appendix 4.10.5 of the supplementary materials we check that this Taylor’s expansion can be

integrated, and estimate the truncation error to obtain Proposition 9.

At this point, we have introduced all the tools used in the proof of Proposition 7 and we refer

the reader to Section 4.7 for the proof of Proposition 7.

4.6.4 Central Limit Theorem

We introduce the following definition.

Definition 8 (Matrix Moment). Let S be a symmetric matrix. Given:

1. A partition c ∈ P([:]) with blocks c = {V1,V2, · · · ,V|c |}.

2. A : × : symmetric weight matrix w ∈ G(:) with non-negative valued entries and F88 =

0 ∀ 8 ∈ [:].

3. A vector a ∈ C(c).
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Define the (w, c, a) - matrix moment of the matrix S as:

M(S, w, c, a) def
=

∏
8, 9∈[:],8< 9

"
F8 9
08 ,0 9 .

By defining:

,BC (w, c)
def
=

∑
8, 9∈[:],8< 9

{c(8),c( 9)}={VB ,VC }

F8 9 ,

we can writeM(S, w, c, a) in the form:

M(S, w, c, a) =
∏

B,C∈[|c |]
B≤C

"
,BC (w,0)
0VB ,0VC

.

Remark 20 (Graph Interpretation). It is often useful to interpret the tuple (w, c, a) in terms of

graphs:

1. w represents the adjacency matrix of an undirected weighted graph on the vertex set [:] with

no self-edges (F88 = 0). We say an edge exists between nodes 8, 9 ∈ [:] if F8 9 ≥ 1 and the

weight of the edge is given by F8 9 .

2. The partition c of the vertex set [:] represents a community structure on the graph. Two

vertices 8, 9 ∈ [:] are in the same community iff c(8) = c( 9).

3. a represents a labelling of the vertices [:] with labels in the set [<] which respects the

community structure.

4. The weights,BC (w, c) simply denote the total weight of edges between communities B, C.

The rationale for introducing this definition is as follows: When we use Mehler’s formula

to compute E[@1(I02) · · · @:−1(I0: ) |G] and E[I01@1(I02) · · · @:−1(I0: )I0:+1 |G], and substitute the
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resulting expression in (4.14), it expresses:

TrA(	, `)
<

,
E〈z,Az〉

<
,

in terms of the matrix momentsM(	, w, c, a).

For the proof of Proposition 7 it suffices to upper bound |M(	, w, c, a) |. We do so in the

following lemma.

Lemma 19. Consider an arbitrary matrix momentM(	, w, c, a) of 	. There exists a universal

constant � (independent of <, a, c, w) such that,

E|M(	, w, c, a) | ≤
©­­«
√
�‖w‖ log2(<)

<

ª®®¬
‖w‖

,

for both the sub-sampled Haar and the sub-sampled Hadamard sensing model.

The claim of the lemma is not surprising in light of (4.15). The complete proof follows from the

concentration inequality in Lemma 18, which can be found in Appendix 4.10.3 of the supplementary

materials.

On the other hand, to prove Proposition 8 we need a more refined analysis and we need to

estimate the leading order term in EM(	, w, c, a). In order to do so, we first consider any fixed

entry of
√
<	:

√
<Ψ01 =

√
<([H[T)01 =

<∑
8=1

√
< · D08 · D18 (�88 − ^).

Observe that:

1. �88 − ^ are centered and weakly dependent.

2.
√
<D08D18 = $ (<−

1
2 ) under both the sub-sampled Haar model and the sub-sampled Hadamard

model.

140



Consequently, we expect
√
<Ψ01 to converge to a Gaussian random variable and hence, we expect

that:

EM(
√
<	, w, c, a)

to converge to a suitable Gaussian moment. In order to show that the normalized quadratic form

E〈z,Az〉/< converges to the same limit under both the sensing models, we need to understand

what is the limiting value of EM(
√
<	, w, c, a) under both the models. Understanding this uses

the following simple but important property of Hadamard matrices.

Lemma 20. For any 8, 9 ∈ [<], we have:

√
<h8 � h 9 = h8⊕ 9 ,

where � denotes the entry-wise multiplication of vectors, and 8 ⊕ 9 ∈ [<] denotes the result of the

following computation:

Step 1: Compute i, j ∈ {0, 1}< which are the binary representations of (8 − 1) and ( 9 − 1)

respectively.

Step 2: Compute i + j by adding i, j bit-wise (modulo 2).

Step 3: Compute the number in [0 : < − 1] whose binary representation is given by i + j.

Step 4: Add one to the number obtained in Step 3 to obtain 8 ⊕ 9 ∈ [<].

Proof. Recall by the definition of the Hadamard matrix, we have,

ℎ8: =
1
√
<
(−1)〈i,k〉, ℎ 9 : =

1
√
<
(−1)〈 j ,k〉 .
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Hence,

√
<(h8 � h 9 ): =

(−1)〈i+ j ,k〉
√
<

= (h8⊕ 9 ): ,

as claimed. �

Due to the structure in Hadamard matrices, EM(
√
<	, w, c, a) might not always converge

to the same limit under the subsampled Haar and the Hadamard models. There are two kinds of

exceptions:

Exception 1: Note that for the subsampled Hadamard Model,

√
<Ψ00 =

√
<

<∑
8=1

�88 |ℎ08 |2 =
1
√
<

<∑
8=1

�88 = 0.

In contrast, under the subsampled Haar model, it can be shown that
√
<Ψ00 converges to a

non-degenerate Gaussian. These exceptions are ruled out by requiring the weight matrix w to

be dissassortative with respect to c (See definition below).

Exception 2: Define b ∈ R< to be the vector formed by the diagonal entries of H. Observe that

for the subsampled Hadamard model:

√
<Ψ01 = 〈b,

√
<h0 � h1〉 = 〈b, h0⊕1〉.

Consequently, if two distinct pairs (01, 11) and (02, 12) are such that 01 ⊕ 11 = 02 ⊕ 12,

then
√
<Ψ01,11 and

√
<Ψ02,12 are perfectly correlated in the subsampled Hadamard model. In

contrast, unless (01, 11) = (02, 12), it can be shown they are asymptotically uncorrelated in

the subsampled Haar model. This exception is ruled out by requiring the labelling a to be

conflict free with respect to (w, c) (defined below).

Definition 9 (Disassortative Graphs). We say the weight matrix w is disassortative with respect to

the partition c if: ∀ 8, 9 ∈ [:], 8 < 9 such that c(8) = c( 9), we have F8 9 = 0. This is equivalent to
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,BB (w, c) = 0 for all B ∈ [|c |]. In terms of the graph interpretation, this means that there are no

intra-community edges in the graph. For any c ∈ P([:]),we denote the set of all weight matrices

dissortive with respect to c by GDA(c):

GDA(c)
def
= {w ∈ G(:) : ,BB (w, c) = 0 ∀ B ∈ [|c |]}.

Definition 10 (Conflict Freeness). Let c ∈ P([:]) be a partition and let w ∈ GDA(c) be a weight

matrix disassortative with respect to c. Let B1 < C1 and B2 < C2 be distinct pairs of communities:

B1, B2, C1, C2 ∈ [|c |], (B1, C1) ≠ (B2, C2). We say a labelling a ∈ C(c) has a conflict between distinct

community pairs (B1, C1) and (B2, C2) if:

1. ,B1,C1 (w, c) ≥ 1, ,B2,C2 (w, c) ≥ 1.

2. 0VB1 ⊕ 0VC1 = 0VB2 ⊕ 0VC2 .

We say a labelling a is conflict-free if it has no conflicting community pairs. The set of all conflict

free labellings of (w, c) is denoted by LCF(w, c).

The following two propositions show that if Exception 1 and Exception 2 are ruled out, then

indeed EM(
√
<	, w, c, a) converges to the same Gaussian moment under both the subsampled

Haar and the Hadamard models.

Proposition 10. Consider the sub-sampled Haar model (	 = UHUT). Fix a partition c ∈ P(:)

and a weight matrix w ∈ G(:). Then, there exist constants  1,  2,  3 > 0 depending only on ‖w‖

(independent of <), such that for any a ∈ C(c) we have:��������EM(
√
<	, w, c, a) −

∏
B,C∈[|c |]
B≤C

E
[
/
,BC (w,c)
BC

] �������� ≤
 1 log 2 (<)

<
1
4

, ∀ < ≥  3.

In the above display, /BC , B ≤ C, B, C ∈ [|c |] are independent Gaussian random variables with the
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distribution:

/BC ∼


B < C : N

(
0, ^(1 − ^)

)
B = C : N

(
0, 2^(1 − ^)

) .
Proposition 11. Consider the sub-sampled Hadamard model (	 = NHNT). Fix a partition

c ∈ P(:) and a weight matrix w ∈ N:×:
0 . Then,

1. Suppose that w ∉ GDA(c), then,

M(
√
<	, w, c, a) = 0.

2. Suppose that w ∈ GDA(c). Then, there exist constants  1,  2,  3 > 0 depending only on ‖w‖

(independent of <), such that for any conflict free labelling a ∈ LCF(w, c), we have:��������EM(
√
<	, w, c, a) −

∏
B,C∈[|c |]
B<C

E
[
/
,BC (w,c)
^

] �������� ≤
 1 log 2 (<)

<
1
4

, ∀ < ≥  3.

In the above display, /^ ∼ N
(
0, ^(1 − ^)

)
.

The proof of these Propositions can be found in Appendix 4.10.3 in the supplementary materials.

The proofs use a coupling argument to replace the weakly dependent diagonal matrix H with a i.i.d.

diagonal entries (as in the proof of Lemma 18) along with a classical Berry Eseen inequality due to

[132].

Finally, in order to finish the proof of Proposition 8 regarding the universality of the normalized

quadratic form we need to argue the number exceptional labellings under which EM(
√
<	, w, c, a)

doesn’t converge to the same Gaussian moment under the sub-sampled Hadamard and Haar models

are an asymptotically negligible fraction of the total number of labellings.

Lemma 21. Let c ∈ P([:]) be a partition and w ∈ GDA(c) be a weight matrix disassortative with
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respect to c. We have, |C(c)\LCF(w, c) | ≤ |c |4 · < |c |−1, and

lim
<→∞

LCF(w, c)
< |c |

= 1.

Proof. Let (B1, C1) ≠ (B2, C2) be two distinct community pairs such that:

,B1,C1 (w, c) ≥ 1, ,B2,C2 (w, c) ≥ 1.

Let L(s1,t1;s2,t2) (w, c) denote the set of all labellings a ∈ C(c) that have a conflict between distinct

community pairs (B1, C1) and (B2, C2):

L(s1,t1;s2,t2) (w, c)
def
= {a ∈ C(c) : 0VB1 ⊕ 0VC1 = 0VB2 ⊕ 0VC2 }.

Then, we note that

C(c)\LCF(w, c) =
⋃

B1,C1,B2,C2

L(s1,t1;s2,t2) (w, c),

where the union ranges over B1, C1, B2, C2 such that 1 ≤ B1 < C1 ≤ |c |, 1 ≤ B2 < C2 ≤ |c | and

(B1, C1) ≠ (B2, C2) and ,B1,C1 (w, c) ≥ 1,,B2,C2 (w, c) ≥ 1. Next, we bound |L(s1,t1;s2,t2) (w, c) |.

Since we know that (B1, C1) ≠ (B2, C2) and B1 < C1 and B2 < C2 out of the 4 indices B1, C1, B2, C2, there

must be one index which is different from all the others. Let us assume that this index is C2 (the

remaining cases are analogous). To count |L(s1,t1;s2,t2) (w, c) | we assign labels to all blocks of c

except C2. The number of ways of doing so is at most < |c |−1. After we do so, we note that 0VC2 is

uniquely determined by the constraint:

0VB1 ⊕ 0VC1 = 0VB2 ⊕ 0VC2 .
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Hence, |L(s1,t1;s2,t2) (w, c) | ≤ < |c |−1. Therefore,

|C(c)\LCF(w, c) | =
∑

B1,C1,B2,C2

|L(s1,t1;s2,t2) (w, c) | ≤ |c |
4< |c |−1.

Finally, we note that,

|C(c) | − |C(c)\LCF(w, c) | = |LCF(w, c) | ≤ |C(c) |.

|C(c) | is given by:

|C(c) | = <(< − 1) · · · (< − |c | + 1) = < |c | · (1 + >< (1)).

Combining this with the already obtained upper bound |C(c)\LCF(w, c) | ≤ |c |4 ·< |c |−1, we obtain

the second claim of the lemma. �

We now have all the tools required to finish the proof of Proposition 8 and we refer the reader to

Section 4.8 for the proof of this result.

4.7 Proof of Proposition 7

In this Section we prove Proposition 7.

Let us consider a fixed alternating product A(	, `) as given in Definition 7. As a consequence

of Lemma 17 we can assume that all the polynomials ?8 (b) = b. We begin by stating a few

intermediate lemmas which will be used to prove Proposition 7.

Lemma 22 (A high probability event). Let[ denote the < × < orthogonal matrix used to generate

the sensing matrix . Define the event:

E =
{
max
8≠ 9
| (GGT |)8 9 ≤

√
32 · < · ‖[‖4∞ · log(<),

max
8∈[<]
| (GGT)88 − ^ | ≤

√
32 · < · ‖[‖4∞ · log(<)

}
. (4.16)
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Then,

P(E|[) ≥ 1 − 4/<2.

Furthermore, for the subsampled Haar model, when[ = U ∼ Unif
(
O(<)

)
, we have:

P
©­«
{
‖U‖∞ ≤

√
8 log(<)

<

}
∩ Eª®¬ ≥ 1 − 6/<2.

The above Lemma follows from the concentration result in Lemma 18 and a union bound.

Complete details are provided in Appendix 4.10.1 in the supplementary materials.

Lemma 23 (A Continuity Estimate). Let A(	, `) be an alternating product of the matrices 	, `

(see Definition 7). Then the map ` ↦→ TrA(	, `)/< is Lipchitz in / , i.e. for any two diagonal

matrices ` = Diag (I1, I2 . . . , I<) , `′ = Diag
(
I′1, I

′
2 . . . , I

′
<

)
we have:

����TrA(	, `)
<

− TrA(	, `′)
<

���� ≤ � (A)√
<
· ‖` − `′‖Fr,

where � (A) denotes a constant depending only on the formula for the alternating product A

(independent of <, =).

This lemma follows from a straightforward computation provided in 4.10.1 in the supplementary

materals.

Lemma 24 (Analysis of Expectation). Let the sensing matrix G be drawn either from the subsam-

pled Haar model or be generated using a deterministic orthogonal matrix[ with the property:

‖[‖∞ ≤

√
 1 log 2 (<)

<
,
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for some universal constants  1,  2 ≥ 0, then, we have:

1
<
E[Tr(A(	, `)) |G] P→ 0.

Lemma 25 (Analysis of Variance). Let A(	, `) be any alternating product of the matrices 	, `.

Then,

Var
(
TrA(	, `)

<

����G)
≤ � (A)

=
,

where � (A) denotes a constant depending only on the formula for the alternating product A

(independent of <, =).

Proofs of Lemmas 24 and 25 can be found at Section 4.7.1. Before moving forward to the proofs

of these lemmas, let us conclude the proof of Proposition 7 assuming Lemmas 24 and 25 are true.

Proof of Proposition 7. We write Tr(A(	, `))/< as:

Tr(A(	, `))
<

= E

[
Tr(A(	, `))

<

����G]
+

(
Tr(A(	, `))

<
− E

[
Tr(A(	, `))

<

����G])
.

We will show each of the two terms on the right hand side converge to zero in probability. Lemma

24 already gives:

E

[
Tr(A(	, `))

<

����G]
P→ 0.

On the other hand, by Chebychev’s Inequality and Lemma 25 we have:

P

[����Tr(A(	, `)) − E[Tr(A(	, `)) |G]
<

���� > n ����G]
≤ 1
n2 · Var

(
TrA(	, `)

<

����G)
≤ � (A)

=n2 .
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Hence,

P

[����Tr(A(	, `)) − E[Tr(A(	, `)) |G]
<

���� > n ] → 0.

This concludes the proof of the proposition. �

4.7.1 Proof of Lemmas 24 and 25

Proof of Lemma 24. Recall the notation regarding partitions introduced in Section 4.6.1. We will

organize the proof into various steps.

Step 1: Restricting to a Good Event. We first observe that Tr(A(	, `))/< is uniformly bounded:

TrA(	, `)
<

≤ ‖A(	, `)‖op ≤
:∏
8=1
‖@8‖∞ = � (A) < ∞,

where ‖@8‖∞ = supb∈R |@8 (b) |, and � (A) denotes a finite constant independent of <, =.

Recall the definition of E in (4.16). If the sensing matrix G was generated by subsampling a

deterministic orthogonal matrix[ with the property

‖[‖∞ ≤

√
 1 log 2 (<)

<
,

then Lemma 22 gives P(E2) ≤ 4/<2. On the other hand, if G was generated by subsampling

a uniformly random column orthogonal matrix U then we set  1 = 8,  2 = 1 and Lemma 22

gives P(E2) ≤ 6/<2. Using this event, we decompose E[Tr(A(	, `) |G]/< as:

E[TrA(	, `) |G]
<

=
E[TrA(	, `) |G]

<
· IE +

E[TrA(	, `) |G]
<

· IE2 .

Since P(E2) → 0 and E[Tr(A(	, `) |G]/< < � (A) < ∞ is uniformly bounded, we
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immediately obtain E[Tr(A(	, `) |G] · IE2/<
P→ 0. Hence, we simply need to show:

E[TrA(	, `) |G]
<

· IE
P→ 0.

Step 2: Variance Normalization. Recall that ` = Diag (z) , z = Gx ∼ N
(
0, GGT/^

)
. We

define the normalized random vector z̃ as:

Ĩ8 =
I8

f8
, f2

8 =
(GGT)88

^
. (4.17)

Note that conditional on G, z̃ is a zero mean Gaussian vector with:

E[Ĩ82 |G] = 1, E[Ĩ8 Ĩ 9 |G] =
(GGT)8 9/^
f8f9

.

We define the diagonal matrix ˜̀ = Diag ( z̃). Using the continuity estimate from Lemma 23

we have, �����TrA(	, `)
<

− TrA(	, ˜̀ )
<

����� ≤ � (A)√
<
‖z − z̃‖2

≤ � (A) · ©­« 1
<

<∑
8=1

I28
ª®¬

1
2

·
(
max
8∈[<]

���� 1
f8
− 1

����)

≤ � (A) · ©­« 1
<

<∑
8=1

G2
8

ª®¬
1
2

·
(
max
8∈[<]

���� 1
f8
− 1

����) .
We observe that ‖x‖2/< P→ ^−1, and on the event E,

max
8∈[<]

���� 1
f8
− 1

����→ 0.
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Hence, �����E[TrA(	, `) |G]
<

− E[TrA(	, ˜̀ ) |G]
<

����� · IE P→ 0,

and hence, to conclude the proof of the lemma we simply need to show:

E[TrA(	, ˜̀ ) |G]
<

· IE
P→ 0.

Step 3: Mehler’s Formula. Supposing that alternating product is of the Type 2 form (recall Defi-

nition 7):

A(	, ˜̀) = (	)@1( ˜̀ ) (	)@2( ˜̀ ) · · · (	)@: ( ˜̀ ).

The argument for the other types is very similar and we will sketch it in the end. We expand

TrA(	, ˜̀ ) as follows:

1
<

TrA(	, ˜̀ ) = 1
<

<∑
01,02,...0:=1

(	)01,02@1( ˜̀ )02,02 · · · (	)0: ,01@: ( ˜̀ )01,01 .

Next, we observe that:

[<]: =
⊔

c∈P([:])
C(c).

Hence we can decompose the above sum as:

E[TrA(	, ˜̀ ) |G]
<

=
∑

c∈P([:])

1
<

∑
0∈C(c)

(	)01,02 · · · (	)0: ,01E[ @1( Ĩ02) · · · @: ( Ĩ0:+1) |G] .
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By the triangle inequality,�����E[TrA(	, ˜̀ ) |G]
<

����� ≤ ∑
c∈P([:])

1
<

∑
0∈C(c)

| (	)01,02 · · · (	)0: ,01 | |E[ @1( Ĩ02) · · · @: ( Ĩ01) |G] |.

(4.18)

We first bound |E[ @1( Ĩ02)@2( Ĩ03) · · · @: ( Ĩ01) |G] |. Observe that if we denote the blocks of

c = {V1,V2 . . .V|c |}, we can write:

��E[ @1( Ĩ02)@2( Ĩ03) · · · @: ( Ĩ01) |G]
�� =

�������E

|c |∏
8=1

∏
9∈V8

@ 9−1( Ĩ0V8 )
����G

������� .
In the above display, we have defined @0

def
= @: . Define the functions @1, @2 . . . @ |c | as:

@8 (b) =
∏
9∈V8

@ 9−1(b) − a8, a8 = Eb∼N(0,1)

∏
9∈V8

@ 9−1(b)
 .

Hence, we obtain:

��E[ @1( Ĩ02)@2( Ĩ03) · · · @: ( Ĩ01) |G]
�� =

�������E

|c |∏
8=1
(@8 (I0V8 ) + a8)

����G
�������

≤
∑

+⊂[|c |]

©­«
∏
8∉+

|a8 |
ª®¬ ·

�������E

∏
8∈+

@8 ( Ĩ0V8 )
����G

������� . (4.19)

Let �(c) denote the singleton blocks of the partition c: �(c) = {8 ∈ [|c |] : |V8 | = 1}. Note

that for any 8 ∈ �(c), a8 = 0 since the functions @8 satisfy E@8 (b) = 0 when b ∼ N (0, 1)

(Definition 7). Hence,

��E[ @1( Ĩ02)@2( Ĩ03) · · · @: ( Ĩ01) |G]
�� ≤ ∑

+⊂[|c |]:�(c)⊂+

©­«
∏
8∉+

|a8 |
ª®¬ ·

�������E

∏
8∈+

@8 ( Ĩ0V8 )
����G

������� .
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Next, we apply Mehler’s Formula (Proposition 9) to bound:�������E

∏
8∈+

@8 ( Ĩ0V8 )
����G

������� IE .
We make the following observations:

1. Recall the distribution of z̃ given in (4.17) and the definition of the event E in (4.16),

we obtain:

max
8≠ 9
|E[Ĩ8 Ĩ 9 |G] | ≤

©­­«max
8≠ 9

1
^f8f9

√
32 ·  2

1 · log2 2+1(<)
<

ª®®¬ .
Note that for large enough <, event E guarantees min8 f8 ≥ 1/2. Hence,

max
8≠ 9
|E[Ĩ8 Ĩ 9 |G] | ≤

©­­«
4
^

√
32 ·  2

1 · log2 2+1(<)
<

ª®®¬ .
For any ( ⊂ [<] with |( | ≤ : , let E[ z̃ z̃T |G](,( be the principal submatrix of the

covariance matrix E[ z̃ z̃T |G]. By Gershgorin’s Circle Theorem we have.

_min

(
E[ z̃ z̃T |G](,(

)
≥ 1 − : max

8≠ 9
|E[Ĩ8 Ĩ 9 |G] | ≥

1
2

(for < large enough).

2. We note that @8 satisfy E@8 (b) = 0 and Eb@8 (b) = 0 (since @8 are even functions) when

b ∼ N (0, 1). Hence, the first non-zero term in Mehler’s expansion corresponds to w

such that:

d8 (w) ≥ 2, ∀ 8 ∈ +,

thus,

‖w‖ ≥ |+ |.
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Hence, by Mehler’s Formula (Proposition 9), we obtain:�������E

∏
8∈+

@8 ( Ĩ0V8 )
����G

������� IE ≤ � ·
(
max
8≠ 9
E[Ĩ8 Ĩ 9 |G]

) |+ |

≤ � ·
©­­«
4
^

√
32 ·  2

1 · log2 2+1(<)
<

ª®®¬
|+ |

,

for some finite constant � depending only on : and the functions @1:: . Substituting this bound

in (4.19) we obtain:

��E[ @1( Ĩ02)@2( Ĩ03) · · · @: ( Ĩ01) |G]
�� · IE ≤ ∑

+⊂[|c |]

©­«
∏
8∉+

|a8 |
ª®¬ ·

�������E

∏
8∈+

@8 ( Ĩ0V8 )
����G

�������
≤ �

∑
+⊂[|c |]

©­«
∏
8∉+

|a8 |
ª®¬ ·

©­­«
4
^

√
32 ·  2

1 · log2 2+1(<)
<

ª®®¬
|+ |

≤ � (A) ·
©­­«
4
^

√
32 ·  2

1 · log2 2+1(<)
<

ª®®¬
|�(c) |

.

In the above display, � (A) denotes a finite constant depending only on : and the functions

appearing in the definition of A. Substituting this in (4.18):�����E[TrA(	, ˜̀ ) |G]
<

����� IE
≤

∑
c∈P([:])

� (A)
<

∑
0∈C(c)

| (	)01,02 · · · (	)0: ,01 |
©­­«
4
^

√
32 ·  2

1 · log2 2+1(<)
<

ª®®¬
|�(c) |

.
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Again, recalling the definition of E in (4.16), we can upper bound | (	)01,02 · · · (	)0: ,01 |:

�����E[TrA(	, ˜̀ ) |G]
<

����� · IE ≤ ∑
c∈P([:])

� (A)
<

∑
0∈C(c)

·
©­­«
√
· 2

1 · log2 2+1(<)
<

ª®®¬
|�(c) |+:

=
� (A)
<

∑
c∈P([:])

|C(c) | ·
©­­«
√
· 2

1 · log2 2+1(<)
<

ª®®¬
|�(c) |+:

. (4.20)

Step 4: Conclusion. Observe that: |C(c) | ≤ < |c |. Recall that c has |�(c) | singleton blocks. All

remaining blocks of c have at least 2 elements. Hence, we can upper bound |c | as follows:

|c | ≤ : − |�(c) |
2

+ |�(c) | = : + |�(c) |
2

.

Substituting this in (4.20) along with the trivial bounds |�(c) | ≤ :, |P([:]) ≤ : : , we

obtain: �����E[TrA(	, ˜̀ ) |G]
<

����� · IE ≤ � (A) · : : · ( 2
1 log2 2+1(<)):

<
→ 0,

as desired.

Step 5: Other Cases. Recall that we had assumed that the alternating product was of Type 2:

A(	, ˜̀) = (	)@1( ˜̀ ) (	)@2( ˜̀ ) · · · (	)@: ( ˜̀ ).

The analysis for the other types is analogous, and we briefly sketch these cases:

Type 1: A(	, ˜̀) = (	)@1( ˜̀ ) (	)@2( ˜̀ ) · · · (	)@: ( ˜̀ ) (	). In this case, the normalized trace
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is expanded as:

E[TrA(	, ˜̀ ) |G]
<

=
1
<

<∑
00,01,...0:=1

E[(	)00,01@1( ˜̀ )01,01 · · · @: ( ˜̀ )0: ,0: (	)0: ,00 |G]

=
1
<

<∑
00=1

∑
c∈P([:])

∑
0∈C(c)

(	)00,01 (	)01,02 · · · (	)0: ,00E[@1( Ĩ01) · · · @: ( Ĩ0: ) |G] .

As before, we can argue on the event E, for any 00:: :

|E[@1( Ĩ01) · · · @: ( Ĩ0: ) |G] | ≤ $
©­«
(
polylog(<)

<

) |�(c) |
2 ª®¬ ,

| (	)00,01 (	)01,02 · · · (	)0: ,00 | ≤ $
©­«
(
polylog(<)

<

) :+1
2 ª®¬ ,

|C(c) | ≤ <
:+|�(c) |

2 ,

|P([:]) | ≤ : : .

This gives us:

�����E[TrA(	, ˜̀ ) |G]
<

����� IE ≤ 1
<
·

choices for 00︷︸︸︷
< ·

choices for c︷    ︸︸    ︷
|P([:]) | ·

choices for 01::︷ ︸︸ ︷
|C(:) | · $

(
polylog(<)
<

:+|�(c) |+1
2

)
= $

(
polylog(<)
√
<

)
→ 0.

Type 3: A = @0(`) (	)@1(`) · · · (	)@: (`). This case can be reduced to Type 1 and Type

2. Define @̃: (b) = @0(b)@: (b) − a, a = Eb∼N(0,1) @0(b)@: (b). Then:

E[TrA(	, `) |G]
<

=
E[Tr(@0(`) (	)@1(`) · · · (	)@: (`)) |G]

<

=
E[Tr((	)@1(`) · · · (	)@: (`)@0(`)) |G]

<

=
E[Tr((	)@1(`) · · · (	)@̃: (`)) |G]

<︸                                        ︷︷                                        ︸
Type 2

+a E[Tr((	)@1(`) · · · (	)) |G]
<︸                               ︷︷                               ︸

Type 1

.
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Type 4: A(	, `) = @1(`) (	)@2(`) (	) · · · @: (`) (	). This case is exactly the same as

Type 2, and exactly the same bounds hold.

This concludes the proof of Lemma 24. �

Proof of Lemma 25. We observe that since 	 = GGT − ^O<, conditioning on G fixes 	. Hence,

the only source of randomness in A(	, `) is ` = Diag (z) , z = Gx, x ∼ N
(
0, 1/^

)
. Define the

map 5 (x) def
= Tr(A(	,Diag (Gx))/<. By Lemma 23, we have:

| 5 (x) − 5 (x′) | ≤ � (A)√
<
· ‖G(x − x′)‖2 ≤

� (A)‖G‖op√
<

· ‖x − x′‖2 =
� (A)
√
<
· ‖x − x′‖2.

Hence, 5 is� (A)/
√
=-Lipchitz. The claim of Lemma follows from the Gaussian Poincare Inequality

(see Fact 3). �

4.8 Proof of Proposition 8

In this section, we provide a proof of Proposition 8. The proof follows from the following three

results.

Lemma 26 (Continuity Estimates). We have:����� zTA([H[T,Diag (z))z
<

−
z̃TA([H[T,Diag

(
z̃
)
) z̃

<

�����
≤ � (A)

<
·
(
‖z‖22 · ‖z − z̃‖∞ + ‖z − z̃‖2 · (‖z‖2 + ‖ z̃‖2)

)
,

where � (A) depends only on : , the ‖‖∞-norms, and Lipchitz constants of the functions appearing

in A.

We have relegated the proof of the above continuity estimate to Appendix 4.10.4 in the supple-

mentary materials.
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Proposition 12 (Universality of the first moment of the quadratic form). For both the subsampled

Haar sensing model and the subsampled Hadamard sensing model, we have:

lim
<→∞

EzTAz
<

= (1 − ^): · ©­«
∏
8

@̂8 (2)
ª®¬ · ©­«

∏
8

(?8 (1 − ^) − ?8 (−^))
ª®¬ ,

where the index 8 in the product ranges over all the ?8, @8 functions appearing in A. In the above

display:

@̂8 (2) = E@8 (b)�2(b), b ∼ N (0, 1) , (4.21)

where �2(b) = b2 − 1 is the degree 2 Hermite polynomial.

Proposition 13 (Universality of the second moment of the quadratic form). For both the subsampled

Haar sensing model and the subsampled Hadamard sensing model we have:

lim
<→∞

E(zTAz)2
<2 = (1 − ^)2: · ©­«

∏
8

@̂2
8 (2)

ª®¬ · ©­«
∏
8

(?8 (1 − ^) − ?8 (−^))2
ª®¬ .

In the above expression, @̂8 (2) are as defined in (4.21).

We now provide a proof of Proposition 8 using the above results.

Proof of Proposition 8. Note that Propositions 12, 13 together imply that,

Var

(
zTAz
<

)
→ 0,

for both the sensing models. Hence, by Chebychev’s inequality and Proposition 12, we have, for

both the sensing models,

p-lim
zTAz
<

= (1 − ^): · ©­«
∏
8

@̂8 (2)
ª®¬ · ©­«

∏
8

(?8 (1 − ^) − ?8 (−^))
ª®¬ .
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This proves the claim of Proposition 8. �

The remainder of the section is dedicated to the proof of Proposition 12. The proof of Proposition

13 is very similar and can be found in Appendix 4.10.2 in the supplementary materials.

4.8.1 Proof of Proposition 12

We provide a proof of Proposition 12 assuming that alternating form is of Type 1.

A(	, `) = ?1(	)@1(`)?2(	) · · · @:−1(`)?: (	).

We will outline how to handle the other types at the end of the proof (see Remark 21). Furthermore,

in light of Lemma 17 we can further assume that all polynomials ?8 (k) = k. Hence, we assume

that A is of the form:

A(	, `) = 	@1(`)	 · · · @:−1(`)	.

The proof of Proposition 12 consists of various steps which will be organized as separate lemmas.

We begin by recall that

z ∼ N
(
0,
GGT

^

)
.

Define the event:

E =

max
8≠ 9
| (GGT |)8 9 ≤

√
2048 · log3(<)

<
, max
8∈[<]
| (GGT)88 − ^ | ≤

√
2048 · log3(<)

<

 . (4.22)

By Lemma 22, we know that P(E2) → 0 for both the subsampled Haar sensing and the subsampled

Hadamard model. We define the normalized random vector z̃ as:

Ĩ8 =
I8

f8
, f2

8 =
(GGT)88

^
.
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Note that conditional on G, z̃ is a zero mean Gaussian vector with:

E[Ĩ82 |G] = 1, E[Ĩ8 Ĩ 9 |G] =
(GGT)8 9/^
f8f9

.

We define the diagonal matrix ˜̀ = Diag
(
z̃
)
.

Lemma 27. We have,

lim
<→∞

EzTA(	, `)z
<

= lim
<→∞

Ez̃TA(	, ˜̀) z̃
<

IE ,

provided the latter limit exists.

The proof of the lemma uses the fact that P(E2) → 0, and that on the event E since f2
8
≈ 1, we

have z ≈ z̃ and hence, the continuity estimates of Lemma 26 give the claim of this result. Complete

details have been provided in Appendix 4.10.4 in the supplementary materials.

The advantage of Lemma 27 is that Ĩ8 ∼ N (0, 1), and on the event E the coordinates of z̃ have

weak correlations. Consequently, Mehler’s Formula (Proposition 9) can be used to analyze the

leading order term in E[ z̃TA(	, ˜̀) z̃ IE]. Before we do so, we do one additional preprocessing

step.

Lemma 28. We have:

lim
<→∞

Ez̃TA(	, ˜̀) z̃
<

IE = lim
<→∞

E〈A(	, ˜̀), z̃ z̃T − ˜̀2〉IE
<

,

provided the latter limit exists.

Proof Sketch. Observe that we can write:

z̃TA z̃ = 〈A(	, ˜̀), z̃ z̃T〉
(a)
= 〈A(	, ˜̀), z̃ z̃T − ˜̀2〉 + Tr(A(	, ˜̀) · @( ˜̀)) + Tr(A(	, ˜̀)).

160



In the step marked (a), we defined @(b) = b2 − 1 which is an even function. Note that we know

|Tr(A)|/< ≤ ‖A‖op ≤ � (A) < ∞. Furthermore, by Proposition 7, we know Tr(A)/< P→ 0,

and hence by Dominated Convergence Theorem ETr(A)IE/< → 0. Additionally, note that

Tr(A@( ˜̀)) is also an alternating form except for minor issue that @(b) is not uniformly bounded

and Lipchitz. However, the combinatorial calculations in Proposition 7 can be repeated to show that

ETr(A · @( ˜̀))/< → 0. Since we will see a more complicated version of these arguments in the

remainder of the proof, we omit the details of this step. �

Note that, so far, Lemmas 27 and 28 show that:

lim
<→∞

EzTA(	, `)z
<

= lim
<→∞

E〈A(	, ˜̀), z̃ z̃T − ˜̀2〉IE
<

,

provided the latter limit exists. We now focus on analyzing the RHS. We expand

〈A(	, ˜̀), z̃ z̃T − ˜̀2〉
<

=
1
<

∑
01::+1∈[<]
01≠0:+1

Ĩ01 (	)01,02@1( Ĩ02) · · · @:−1( Ĩ0: ) (	)0: ,0:+1 Ĩ0:+1 .

Recall the notation for partitions introduced in Section 4.6.1. Observe that:

{(01 . . . 0:+1) ∈ [<]:+1 : 01 ≠ 0:+1} =
⊔

c∈P([:+1])
c(1)≠c(:+1)

C(c).

Hence,

E〈A(	, ˜̀), z̃ z̃T − ˜̀2〉 · IE
<

=

1
<

∑
c∈P([1::+1])
c(1)≠c(:+1)

∑
0∈C(c)

E Ĩ01 (	)01,02@1( Ĩ02) (	)02,03 · · · @:−1( Ĩ0: ) (	)0: ,0:+1 Ĩ0:+1 · IE .

Fix a c ∈ P([: + 1]) such that c(1) ≠ c(: + 1), and consider a labelling a ∈ C(c). By the tower
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property,

EĨ01 (	)01,02@1( Ĩ02) (	)02,03 · · · @:−1( Ĩ0: ) (	)0: ,0:+1 Ĩ0:+1IE =

E
[
(	)01,02 (	)02,03 · · · (	)0: ,0:+1 · E[Ĩ01@1( Ĩ02)@2( Ĩ03) · · · @:−1( Ĩ0: ) Ĩ0:+1 |G]IE

]
.

We will now use Mehler’s formula (Proposition 9) to evaluate the conditional expectation upto

leading order. Note that some of the random variables Ĩ01::+1 are equal (as given by the partition

c). Hence, we group them together and recenter the resulting functions. The blocks corresponding

to 01, 0:+1 need to be treated specially due to the presence of Ĩ01 , Ĩ0:+1 in the above expectations.

Hence, we introduce the following notations:

ℱ(c) = c(1), ℒ(c) = c(: + 1), �(c) = {8 ∈ [2 : :] : |c(8) | = 1}.

We label all the remaining blocks of c asV1,V2 . . .V|c |−|�(c) |−2. Hence, the partition c is given

by:

c = ℱ(c) tℒ(c) t ©­«
⊔

8∈�(c)
{8}ª®¬ t ©­«

|c |−|�(c) |−2⊔
C=1

V8
ª®¬ .

Note that:

Ĩ01 Ĩ0:+1

:∏
8=2

@8−1( Ĩ08 ) = &ℱ ( Ĩ01)&ℒ ( Ĩ0:+1)
©­«

∏
8∈�(c)

@8−1( Ĩ08 )
ª®¬ ·
|c |−|�(c) |−2∏

8=1
(&V8 (I0V8 ) + `V8 ),
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where:

&ℱ (b) = b ·
∏

8∈ℱ(c),8≠1
@8−1(b), (4.23)

&ℒ (b) = b ·
∏

8∈ℒ(c),8≠:+1
@8−1(b), (4.24)

`V8 = Eb∼N(0,1)


∏
9∈V8

@ 9−1(b)
 , (4.25)

&V8 (b) =
∏
9∈V8

@ 9−1(b) − `V8 . (4.26)

With this notation in place, we can apply Mehler’s formula. The result is summarized in the

following lemma.

Lemma 29. For any c ∈ P([: + 1]) such that c(1) ≠ c(: + 1), and any labelling a ∈ C(c) we

have:

IE ·

������E[Ĩ01@1( Ĩ02)@2( Ĩ03) · · · @:−1( Ĩ0: ) Ĩ0:+1 |G] −
∑

w∈G1 (c)
6(w, c) · M(	, w, c, a)

������
≤ � (A) ·

(
log3(<)
<^2

) 2+|�(c) |
2

, (4.27a)

whereM(	, w, c, a) is the matrix moment as defined in Definition 8. The coefficients 6(w, c) are

given by:

6(w, c) = 1
^‖w‖w!

· ©­«&̂ℱ (1)&̂ℒ (1)
∏
8∈�(c)

@̂8−1(2)
ª®¬ · ©­«

∏
8∈[|c |−|�(c) |−2]

`V8
ª®¬ , (4.27b)

and, the set G1(c) is defined as:

G1(c)
def
=

{
w ∈ G(: + 1) : d1(w) = 1, d:+1(w) = 1, d8 (w) = 2 ∀ 8 ∈ �(c),

d8 (w) = 0 ∀ 8 ∉ {1, : + 1} ∪�(c)
}
. (4.27c)
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The proof of the lemma is obtained by instantiating Mehler’s formula for this situation and

identifying the leading order term. Additional details for this step are provided in Appendix 4.10.4

in the supplementary materials.

With this, we return to our analysis of:

E〈A(	, ˜̀), z̃ z̃T − ˜̀2〉 · IE
<

=

1
<

∑
c∈P([1::+1])
c(1)≠c(:+1)

∑
0∈C(c)

E Ĩ01 (	)01,02@1( Ĩ02) (	)02,03 · · · @:−1( Ĩ0: ) (	)0: ,0:+1 Ĩ0:+1 · IE .

We define the following subsets of P(: + 1) as:

P1( [: + 1]) def
=

{c ∈ P(: + 1) : c(1) ≠ c(: + 1), |c(1) | = 1, |c(: + 1) | = 1, |c( 9) | ≤ 2 ∀ 9 ∈ [: + 1]},

(4.28a)

P2( [: + 1]) def
= {c ∈ P(: + 1) : c(1) ≠ c(: + 1)}\P1( [: + 1]), (4.28b)

and the error term which was controlled in Lemma 29:

n (	, a) def
= IE ·

©­«E[Ĩ01@1( Ĩ02) · · · @:−1( Ĩ0: ) Ĩ0:+1 |G] −
∑

w∈G1 (c)
6(w, c) · M(	, w, c, a)ª®¬ .

With these definitions we consider the decomposition:

E〈A(	, ˜̀), z̃ z̃T − ˜̀2〉 · IE
<

=

1
<

∑
c∈P1 ( [:+1])

∑
0∈C(c)

∑
w∈G1 (c)

6(w, c)E
[
(	)01,02 · · · (	)0: ,0:+1M(	, w, c, a)

]
− I + II + III,
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where:

I def
=

1
<

∑
c∈P([:+1])
c(1)≠c(:+1)

∑
0∈C(c)

∑
w∈G1 (c)

6(w, c)E
[
(	)01,02 · · · (	)0: ,0:+1M(	, w, c, a)IE2

]
,

II def
=

1
<

∑
c∈P([:+1])
c(1)≠c(:+1)

∑
0∈C(c)

E
[
(	)01,02 · · · (	)0: ,0:+1n (	, a)IE

]
,

III def
=

1
<

∑
c∈P2 ( [:+1])

∑
0∈C(c)

∑
w∈G1 (c)

6(w, c)E
[
(	)01,02 · · · (	)0: ,0:+1M(	, w, c, a)

]
.

Define ℓ:+1 ∈ G(: + 1) to be the weight matrix of a simple line graph, i.e.

(ℓ:+1)8 9 =


1 : | 9 − 8 | = 1

0 : otherwise
.

This decomposition can be written compactly as:

I =
1
<

∑
c∈P([1::+1])
c(1)≠c(:+1)

∑
0∈C(c)

∑
w∈G1 (c)

6(w, c) · E
[
M(	, w + ℓ:+1, c, a)IE2

]
,

II =
1
<

∑
c∈P([1::+1])
c(1)≠c(:+1)

∑
0∈C(c)

E
[
M(	, ℓ:+1, c, a)n (	, a)IE

]
,

III =
1
<

∑
c∈P2 ( [1::+1])

∑
0∈C(c)

∑
w∈G1 (c)

6(w, c) · E
[
M(	, w + ℓ:+1, c, a)

]
.

We will show that I, II, III→ 0. Showing this involves the following components:

1. Bounds on matrix moments E
[
M(	, w + ℓ:+1, c, a)

]
, which have been developed in Lemma

19.

2. Controlling the size of the set |C(c) | (since we sum over a ∈ C(c) in the above terms). Since,

|C(c) | = <(< − 1) · · · (< − |c | + 1) � < |c |,
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we need to develop bounds on |c |. This is done in the following lemma. In contrast, the sums

over c ∈ P([: + 1]) and w ∈ G1(c) are not a cause of concern since |P([: + 1]) |, |G1(c) |

depend only on : (which is held fixed), and not on <.

Lemma 30. For any c ∈ P1( [: + 1]), we have:

|c | = : + 3 + |�(c) |
2

=⇒ |C(c) | ≤ <
:+3+|�(c) |

2 .

For any c ∈ P2( [: + 1]), we have:

|c | ≤ : + 2 + |�(c) |
2

=⇒ |C(c) | ≤ <
:+2+|�(c) |

2 .

Proof. Consider any c ∈ P([: + 1]) such that c(1) ≠ c(: + 1). Recall that the disjoint blocks of

|c | were given by:

c = ℱ(c) tℒ(c) t ©­«
⊔

8∈�(c)
{8}ª®¬ t ©­«

|c |−|�(c) |−2⊔
C=1

V8
ª®¬ .

Hence,

: + 1 = |ℱ(c) | + |ℒ(c) | + |�(c) | +
|c |−|�(c) |−2∑

C=1
|V8 |.

Note that:

|ℱ(c) | ≥ 1 (Since 1 ∈ ℱ(c)), (4.29a)

|ℒ(c) | ≥ 1 (Since : + 1 ∈ ℒ(c)), (4.29b)

|V8 | ≥ 2 (SinceV8 are not singletons). (4.29c)
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Hence,

: + 1 ≥ |ℱ(c) | + |ℒ(c) | + |�(c) | + 2|c | − 2|�(c) | − 4,

which implies:

|c | ≤ : + 5 + |�(c) | − |ℱ(c) | − |ℒ(c) |
2

≤ : + 3 + |�(c) |
2

, (4.30)

and hence,

|C(c) | ≤ < |c | ≤ <
:+3+|�(c) |

2 .

Finally, observe that:

1. For any c ∈ P1( [: + 1]) each of the inequalities in (4.29) are exactly tight by the definition

of P1( [: + 1]) in (4.28), and hence:

|c | = : + 3 + |�(c) |
2

.

2. For any c ∈ P2( [: + 1]), one of the inequalities in (4.29) must be strict (see (4.28)). Hence,

when c ∈ P2( [: + 1]), we have the improved bound:

|c | ≤ : + 2 + |�(c) |
2

.

This proves the claims of the lemma. �

We will now show that I, II, III→ 0.
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Lemma 31. We have,

I→ 0, II→ 0, III→ 0 as < →∞,

and hence:

lim
<→∞

EzTAz
<

= lim
<→∞

1
<

∑
c∈P1 ( [:+1])

∑
0∈C(c)

∑
w∈G1 (c)

6(w, c)E
[
M(	, w + ℓ:+1, c, a)

]
,

provided the latter limit exists.

Proof. First, note that for any w ∈ G1(c), we have:

‖w‖ = 1
2

:+1∑
8=1

d8 (w) =
1 + 1 + 2|�(c) |

2
= 1 + |�(c) | (See (4.27)).

Furthermore, recalling that ℓ:+1 is the weight matrix of a simple line graph, ‖ℓ:+1‖ = : . Now, we

apply Lemma 19 to obtain:

|E
[
M(	, w + ℓ:+1, c, a)IE2

]
| ≤

√
E

[
M(	, 2w + 2ℓ:+1, c, a)

]√
P(E2)

(a)

≤
(
�: log2(<)

<

) |�(c) |+1+:
2

·
√
P(E2)

≤
(
�: log2(<)

<

) |�(c) |+1+:
2

· �:
<
.

Analogously we can obtain:

E|M(	, ℓ:+1, c, a) | ≤
(
�: log2(<)

<

) :
2

,

E
[
|M(	, w + ℓ:+1, c, a) |

]
≤

(
�: log2(<)

<

) |�(c) |+1+:
2
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Further, recall that by Lemma 29 we have:

|n (	, a) | ≤ � (A) ·
(
log3(<)
<^2

) 2+|�(c) |
2

.

Using these estimates, we obtain:

|I| ≤ � (A)
<
·

∑
c:P([:+1])
c(0)≠c(:+1)

|C(c) | ·
(
�: log2(<)

<

) |�(c) |+1+:
2

· �:
<

(a)

≤ � (A)
<
·

∑
c:P([:+1])
c(0)≠c(:+1)

<
:+3+|�(c) |

2 ·
(
�: log2(<)

<

) |�(c) |+1+:
2

· �:
<

= $

(
polylog(<)

<

)
.

In addition:

|II| ≤ � (A)
<
·
(
�: log2(<)

<

) :
2

·
∑

c:P([:+1])
c(0)≠c(:+1)

|C(c) | ·
(
log3(<)
<^2

) 2+|�(c) |
2

(a)

≤ � (A)
<
·
(
�: log2(<)

<

) :
2

·
∑

c:P([:+1])
c(0)≠c(:+1)

<
:+3+|�(c) |

2 ·
(
log3(<)
<^2

) 2+|�(c) |
2

= $

(
polylog(<)
√
<

)
.

169



Furthermore:

|III| ≤ � (A)
<
·

∑
c:P2 ( [:+1])

|C(c) | ·
(
�: log2(<)

<

) |�(c) |+1+:
2

(a)

≤ � (A)
<
·

∑
c:P2 ( [:+1])

<
:+2+|C(c) |

2 ·
(
�: log2(<)

<

) |�(c) |+1+:
2

= $

(
polylog(<)
√
<

)
.

In each of the above displays, in the steps marked (a), we used the bounds on |C(c) | from Lemma

30. �: denotes a constant depending only on : and � (A) denotes a constant depending only on :

and the functions appearing in A. This concludes the proof of this lemma. �

So far we have shown that:

lim
<→∞

EzTAz
<

= lim
<→∞

1
<

∑
c∈P1 ( [:+1])

∑
0∈C(c)

∑
w∈G1 (c)

6(w, c) · E
[
M(	, w + ℓ:+1, c, a)

]
,

provided the latter limit exists. Our goal is to show that the limit on the LHS exists and is universal

across the subsampled Haar and Hadamard models. In order to do so, we will leverage the fact that

the first order term in the expansion of E
[
M(	, w + ℓ:+1, c, a)

]
is the same for the two models if

w + ℓ:+1 is dissortive with respect to c and if a is a conflict-free labelling (Propositions 10 and 11).

Hence, we need to argue that the contribution of terms corresponding to w : w + ℓ:+1 ∉ GDA(c) and

a ∉ LCF(w + ℓ:+1, c) are negligible. Towards this end, we consider the decomposition:

1
<

∑
c∈P1 ( [:+1])

∑
0∈C(c)

∑
w∈G1 (c)

6(w, c) · E
[
M(	, w + ℓ:+1, c, a)

]
=

1
<

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

∑
0∈LCF (w+ℓ:+1,c)

6(w, c) · E
[
M(	, w + ℓ:+1, c, a)

]
+ IV + V,
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where:

IV def
=

1
<

∑
c∈P1 ( [:+1])

∑
0∈C(c)

∑
w∈G1 (c)

w+ℓ:+1∉GDA (c)

6(w, c) · E
[
M(	, w + ℓ:+1, c, a)

]
,

V def
=

1
<

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

∑
0∈C(c)\LCF (w+ℓ:+1,c)

6(w, c) · E
[
M(	, w + ℓ:+1, c, a)

]
.

Lemma 32. We have IV→ 0,V→ 0, as < →∞, and hence:

lim
<→∞

EzTAz
<

=

lim
<→∞

1
<

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

∑
0∈LCF (w+ℓ:+1,c)

6(w, c) · E
[
M(	, w + ℓ:+1, c, a)

]
,

provided the latter limit exists.

Proof. We will prove this in two steps.

Step 1: IV→ 0. We consider the two sensing models separately:

1. Subsampled Hadamard Sensing: In this case, Proposition 11 tells us that if w + ℓ:+1 ∉

GDA(c), then:

E
[
M(	, w + ℓ:+1, c, a)

]
= 0,

and hence, IV = 0.

2. Subsampled Haar Sensing: Observe that, since ‖w‖ + ‖ℓ:+1‖ = 1 + |�(c) | + : , we have:

E
[
M(	, w + ℓ:+1, c, a)

]
=
E

[
M(
√
<	, w + ℓ:+1, c, a)

]
<

1+|�(c) |+:
2

.
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By Proposition 10, we know that:��������E
[
M(
√
<	, w + ℓ:+1, c, a)

]
−

∏
B,C∈[|c |]
B≤C

E
[
/
,BC (w+ℓ:+1,c)
BC

] �������� ≤
 1 log 2 (<)

<
1
4

,

where  1,  2,  3 are universal constants depending only on : . Note that since w+ℓ:+1 ∉

GDA(c), we must have some B ∈ [|c |] such that:

,BB (w + ℓ:+1, c) ≥ 1.

Recall that d8 (w) = 0 for any 8 ∉ {1, : + 1} ∪�(c) (since w ∈ G1(c)), and furthermore,

|c(8) | = 1 ∀ 8 ∈ {1, : + 1} ∪�(c) (since c ∈ P1(: + 1)). Hence, we have w ∈ GDA(c)

and in particular,,BB (w, c) = 0. Consequently, we must have,BB (ℓ:+1, c) ≥ 1. Recall

that ℓ:+1 is the weight matrix of a line graph:

(ℓ:+1)8 9 =


1 : |8 − 9 | = 1

0 : otherwise
.

Consequently, since,BB (ℓ:+1, c) ≥ 1, we must have for some 8 ∈ [:], c(8) = c(8 + 1) =

VB. However, since c ∈ P1(: + 1), |VB | ≤ 2, and hence, VB = {8, 8 + 1}. This means

that,BB (ℓ:+1, c) = 1 = ,BB (w + ℓ:+1, c). Consequently, since E/BB = 0, we have:

∏
B,C∈[|c |]
B≤C

E
[
/
,BC (w+ℓ:+1,c)
BC

]
= 0,

or

|E
[
M(	, w + ℓ:+1, c, a)

]
| = �: log (<)

<
1+|�(c) |+:

2 + 1
4

,
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where �: ,  are constants that depend only on : . Recalling Lemma 30,

|C(c) | ≤ < |c | ≤ <
:+3+|�(c) |

2 ,

we obtain:

|IV| ≤ � (A)
<

∑
c∈P1 ( [:+1])

|C(c) | · �: log (<)
<

1+|�(c) |+:
2 + 1

4

= $

(
polylog(<)

<
1
4

)
→ 0.

Step 2: V→ 0. Using Lemma 21, we know that

|C(c)\LCF(w + ℓ:+1, c) | ≤ (: + 1)4< |c |−1.

In Lemma 30, we showed that for any c ∈ P1( [: + 1]),

|c | = : + 3 + |�(c) |
2

.

Hence,

|C(c)\LCF(w + ℓ:+1, c) | ≤ (: + 1)4 · <
:+1+|�(c) |

2 .

We already know from Lemma 19 that:

|E
[
M(	, w + ℓ:+1, c, a)

]
| ≤

(
�: log2(<)

<

) ‖w ‖+‖ℓ:+1 ‖
2

≤
(
�: log2(<)

<

) |�(c) |+1+:
2

.
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This gives us:

|V| ≤ �
<

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

|C(c)\LCF(w + ℓ:+1, c) | ·
(
�: log2(<)

<

) |�(c) |+1+:
2

= $

(
polylog(<)

<

)
which goes to zero as claimed.

�

To conclude, we have shown that:

lim
<→∞

EzTAz
<

=

lim
<→∞

1
<

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

∑
0∈LCF (w+ℓ:+1,c)

6(w, c) · E
[
M(	, w + ℓ:+1, c, a)

]
,

provided the limit on the RHS exists. In the following lemma we explicitly evaluate the limit on the

RHS, and in particular, show it exists and is identical for the two sensing models.

Lemma 33. For both the subsampled Haar sensing and Hadamard sensing model, we have:

lim
<→∞

EzTAz
<

=
∑

c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

6(w, c) · `(w + ℓ:+1, c),

where,

`(w + ℓ:+1, c)
def
=

∏
B,C∈[|c |]
B<C

E
[
/,BC (w+ℓ:+1,c)

]
, / ∼ N

(
0, ^(1 − ^)

)
.

Proof. By Propositions 11 (for the subsampled Hadamard model) and 10 (for the subsampled Haar
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model) we know that, if w + ℓ:+1 ∈ GDA(c) and a ∈ LCF(w + ℓ:+1, c), we have:

M(
√
<	, w + ℓ:+1, c, a) = `(w + ℓ:+1, c) + n (w, c, a),

where

|n (w, c, a) | ≤  1 log 2 (<)
<

1
4

, ∀ < ≥  3,

for some constants  1,  2,  3 depending only on : . Hence, we can consider the decomposition:

1
<

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

∑
0∈LCF (w+ℓ:+1,c)

6(w, c)E
[
M(	, w + ℓ:+1, c, a)

]
= VI + VII,

where:

VI def
=

1
<

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

∑
0∈LCF (w+ℓ:+1,c)

6(w, c) · `(w + ℓ:+1, c)
<

1+�(c)+:
2

,

VII def
=

1
<

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

∑
0∈LCF (w+ℓ:+1,c)

6(w, c) · n (w, c, a)
<

1+�(c)+:
2

.

We can upper bound |VII| as follows:

|LCF(w + ℓ:+1, c) | ≤ |C(c) | ≤ <
:+3+|�(c) |

2 .

Thus:

|VII| ≤ � (A)
<
· �: · |LCF(w + ℓ:+1, c) | ·

1

<
1+|�(c) |+:

2

·  1 log 2 (<)
<

1
4

= $

(
polylog(<)

<
1
4

)
→ 0.
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Moreover, can compute:

lim
<→∞
(VI) = lim

<→∞
1
<

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

∑
0∈LCF (w+ℓ:+1,c)

6(w, c) · `(w + ℓ:+1, c)
<

1+�(c)+:
2

= lim
<→∞

1
<

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

6(w, c) · `(w + ℓ:+1, c)
<

1+|�(c) |+:
2

· |LCF(w + ℓ:+1, c) |

(a)
= lim
<→∞

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

6(w, c) · `(w + ℓ:+1, c) ·
|LCF(w + ℓ:+1, c) |

< |c |

(b)
=

∑
c∈P1 ( [:+1])

∑
w∈G1 (c)

w+ℓ:+1∈GDA (c)

6(w, c) · `(w + ℓ:+1, c).

In the step marked (a) we used the fact that |c | = (3 + |�(c) | + :)/2 for any c ∈ P1( [: + 1])

(Lemma 30), and in step (b) we used Lemma 21 (|LCF(w + ℓ:+1, c) |/< |c | → 1). This proves the

claim of the lemma. �

In the following lemma, we show that the combinatorial sum obtained in Lemma 33 can be

significantly simplified.

Lemma 34. For both the subsampled Haar sensing and Hadamard sensing models, we have:

lim
<→∞

EzTAz
<

= (1 − ^): ·
:−1∏
8=1

@̂8 (2).

In particular, Proposition 12 holds.

Proof. We claim that the only partition with a non-zero contribution is:

c =

:+1⊔
8=1
{8}.

In order to see this, suppose c is not entirely composed of singleton blocks. Define:

8★
def
= min{8 ∈ [: + 1] : |c(8) | > 1}.
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Note that 8★ > 1 since we know that |c(1) | = |ℱ(c) | = 1 for any c ∈ P1(: + 1). Since

c ∈ P1( [: + 1]), we must have |c(8★) | = 2, hence, denote:

c(8★) = {8★, 9★},

for some 9★ > 8★ + 1 (8★ ≤ 9★ since it is the first index which is not in a singleton block, and

9★ ≠ 8★ + 1 since otherwise w + ℓ:+1 will not be disassortative). Let us label the first few blocks of c

as:

V1 = {1}, V2 = {2}, . . . ,V8★−1 = {8★ − 1}, V8★ = {8★, 9★}.

Next, we compute:

,8★−1,8★ (w + ℓ:+1, c) = ,8★−1,8★ (ℓ:+1, c) +,8★−1,8★ (w, c)
(a)
= ,8★−1,8★ (ℓ:+1, c)
(b)
= 18★−1∈V8★−1 + 18★+1∈V8★−1 + 1 9★−1∈V8★−1 + 1 9★+1∈V8★−1

(c)
= 18★−1=8★−1 + 18★+1=8★−1 + 1 9★−1=8★−1 + 1 9★+1=8★−1

(d)
= 1.

In the step marked (a), we used the fact that since w ∈ G1(c) and |c(8★) | = |c( 9★) | = 2, we must

have 38★ (w) = 3 9★ (w) = 0 and,8★−1,8★ (w, c) = 0. In the step marked (b), we used the definition of

ℓ:+1 (that it is the line graph). In the step marked (c), we used the fact thatV8★−1 = {8★−1}. In the

step marked (d), we used the fact that 9★ > 8★ + 1.

Hence, we have shown that for any c ≠ t:+1
8=1 {8}, we have:

`(w, c) = 0 ∀ w such that w ∈ G1(c), w + ℓ:+1 ∈ GDA(c).
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Next, let c = t:+1
8=1 {8}. We observe for any w such that w ∈ G1(c), w + ℓ:+1 ∈ GDA(c), we have:

`(w + ℓ:+1, c) =
∏

B,C∈[|c |]
B<C

E
[
/,BC (w+ℓ:+1,c)

]
, / ∼ N

(
0, ^(1 − ^)

)
=

∏
8, 9∈[:+1]
8< 9

E
[
/F8 9+(ℓ:+1)8 9 ,c)

]
, / ∼ N

(
0, ^(1 − ^)

)
.

Note that since E/ = 0, for `(w + ℓ:+1, c) ≠ 0, we must have:

F8 9 ≥ (ℓ:+1)8 9 , ∀ 8, 9 ∈ [:] .

However, since w ∈ G1(c) we have:

d1(w) = d:+1(w) = 1, d8 (w) = 2 ∀ 8 ∈ [2 : :],

so, w = ℓ:+1. Hence, recalling the formula for 6(w, c) from Lemma 29, we obtain:

lim
<→∞

EzTAz
<

= (1 − ^): ·
:−1∏
8=1

@̂8 (2).

This proves the statement of the lemma and also Proposition 12 (see Remark 21 regarding how the

analysis extends to other types). �

Throughout this section, we assumed that the alternating productA was of Type I. The following

remark outlines how the analysis of this section extends to other types.

Remark 21. The analysis of the other cases can be reduced to Type 1 as follows: Consider an

alternating form A(	, `) of Type 1:

A = ?1(	)@1(`)?1(	) · · · @:−1(`)?: (	),
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but the more general quadratic form:

1
<
EU(z)TA(	, `)V(z), (4.31)

where U, V : R→ R are odd functions whose absolute values can be upper bounded by a polyno-

mial. They act on the vector z entry-wise. This covers all the types in a unified way:

1. For Type 1 case: We take U(I) = V(I) = I.

2. For the Type 2 case, we write:

zT?1(	)@1(`)?1(	) · · · @: (`)?: (	)@: (`)z = U(z)TA(	, `)V(z),

where U(I) = I, V(I) = I@: (I).

3. For the Type 3 case:

zT@0(`)?1(	)@1(`)?1(	) · · · @:−1(`)?: (	)@: (`)z = U(z)TA(	, `)V(z),

where U(I) = I@0(I), V(I) = I@: (I).

4. For the Type 4 case:

zT@0(`)?1(	)@1(`)?2(	) · · · @:−1(`)?: (	)z = U(z)TA(	, `)V(z),

where U(I) = I@0(I), V(I) = I.

The analysis of the more general quadratic form in (4.31) is analogous to the analysis outlined in

this section. Lemmas 27 and 28 extend straightforwardly. Inspecting the proof of Lemma 29 shows

that the same error bound continues to hold (after suitably redefining 2(w, c)), since U, V are odd

(as in the case U(I) = V(I) = I). The subsequent lemmas after that hold verbatim for the more

general quadratic form (4.31).
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4.9 Conclusion and Future Work

In this work we analyzed the dynamics of linearized Approximate message passing algorithms

for phase retrieval when the sensing matrix is generated by sub-sampling = columns of a < × <

Hadamard-Walsh matrix under an average-case Gaussian prior assumption on the signal. We showed

that the dynamics of linearized AMP algorithms for these sensing matrices are asymptotically

indistinguishable from the dynamics in the case when the sensing matrix is generated by sampling

= columns of a uniformly random < ×< orthogonal matrix. This provides a theoretical justification

for an empirically observed universality phenomena in a particular case. It would be interesting to

extend our results in the following ways:

Other structured ensembles: In this chapter, while we focused on the sub-sampled Hadamard

sensing model, we believe our results should extend to other popular structured matrices with

orthogonal columns such as randomly sub-sampled Fourier, Discrete Cosine Transform matrices,

and CDP matrices. For these ensembles, there exist analogues of Lemma 20 which would make it

possible to prove counterparts of Proposition 11.

Non-linear AMP Algorithms: Our results hold for linearized AMP algorithms which are not

the state-of-the-art message passing algorithms for phase retrieval. It would be interesting to extend

our results to include general non-linear AMP algorithms.

Non-Gaussian Priors: Simulations show that the universality of the dynamics of linearized

AMP algorithms continues to hold even if the signal is not drawn from a Gaussian prior, but is an

actual image. Hence it would be interesting to extend our results to general i.i.d. priors and more

realistic models for signals.
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4.10 Supplementary materials

4.10.1 Proof of Lemmas 22 and 23

Proof of Lemma 22

Proof of Lemma 22. Recall that, GGT = [H[T, 	 = GGT − E[GGT |[] = [(H − ^O<)[T where

H is a uniformly random < × < diagonal matrix with exactly = entries set to 1 and the remaining

entries set to 0. Using the concentration inequality of Lemma 18:

P
(
| (GGT)8 9 − E(GGT)8 9 | > n

�� [)
≤ 4 exp

(
− n2

8<‖[‖4∞

)
, . (4.32)

Setting n =
√

32 · < · ‖[‖4∞ · log(<) in (4.32) we obtain,

P

(
| (GGT)8 9 − E(GGT)8 9 | >

√
32 · < · ‖[‖4∞ · log(<)

�� [)
≤ 4
<4 .

By a union bound, P(E2 |[) ≤ 4/<2 → 0. In order to prove the claim of the lemma for the

subsampled Haar model, we first note that by Fact 5 we have,

P

(
|$8 9 | >

√
8 log(<)

<

)
≤ 2
<4 .

By a union bound P(‖U‖∞ >
√

8 log(<)/<) ≤ 2<−2. This gives us:

P
©­«
{
‖U‖∞ ≤

√
8 log(<)

<

}
∩ Eª®¬ ≥ 1 − P

(
‖U‖∞ >

√
8 log(<)

<

)
− P(E2)

≥ 1 − 2
<2 − EP(E

2 |[)

≥ 1 − 6
<2 .

This concludes the proof of the lemma. �
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Proof of Lemma 23

Proof of Lemma 23. Consider any alternating product A (see Definition 7):

A(	, `) = (	)@1(`) (	) · · · @: (`).

Note that in the above expression, we have assumed the alternating product is of Type 2 but the

following argument applies to all the other types too. We define:

A8 = (	)@1(`) (	)@2(`) · · · (	)@8 (`) (	)@8+1(`′) (	)@8+2(`′) · · · (	)@: (`′).

Then we can express A(	, `′) − A(	, `) as a telescoping sum:

A(	, `) − A(	, `′) =
:∑
8=1
(A8 − A8−1).

Hence, ����TrA(	, `)
<

− TrA(	, `′)
<

���� ≤ 1
<

:∑
8=1
|Tr(A8 − A8−1) |.
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Next we observe that:

|Tr(A8 − A8−1) |

= |Tr((	)@1(`) · · · (	)@8−1(`) · (@8 (`) − @8 (`′)) · (	)@8+1(`′) · · · (	)@: (`′)) |

≤


(	)@1(`) · · · (	)@8−1(`) · (	)@8+1(`′) · · · (	)@: (`′)




op ·

©­«
<∑
9=1
|@8 (I 9 ) − @8 (I′9 ) |

ª®¬
≤ ‖(	)‖op‖@1(`)‖op · · · ‖ (	)‖op‖@: (`′)‖op ·

©­«
<∑
9=1
|@8 (I 9 ) − @8 (I′9 ) |

ª®¬
(a)

≤ ©­«
:∏
9=1
‖@ 9 ‖∞

ª®¬ · ‖@8‖Lip ·
©­«
<∑
9=1
|I 9 − I′9 |

ª®¬
≤
√
< · � (A) · ‖` − `′‖Fr.

In the step marked (a), we observed that: ‖(	)‖op = ‖[(H)[T‖op ≤ max( |^) |, |1 − ^ |) ≤ 1.

Similarly, ‖@ 9 (`)‖op ≤ ‖@ 9 ‖∞
def
= supb∈R |@ 9 (b) |. We also recalled the functions @8 are assumed to

be Lipchitz and denoted the Lipchitz constant of @8 by ‖@8‖Lip. Hence we obtain:����TrA(	, `)
<

− TrA(	, `′)
<

���� ≤ : · � (A)√
<

· ‖` − `′‖Fr.

This concludes the proof of the lemma. �

4.10.2 Proof of Proposition 13

The proof of Proposition 13 is very similar to the proof of Proposition 12 and hence we will be

brief in our arguments.

As discussed in the proof of Proposition 12, we will assume that alternating form is of Type 1.

The other types are handled as outlined in Remark 21. Furthermore, in light of Lemma 17 we can

further assume that all polynomials ?8 (k) = k. Hence we assume that A is of the form:

A(	, `) = 	@1(`)	 · · · @:−1(`)	.
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The proof of Proposition 13 consists of various steps which will be organized as separate lemmas.

We begin by recall that

z ∼ N
(
0,
GGT

^

)
.

Define the event:

E =

max
8≠ 9
| (GGT |)8 9 ≤

√
2048 · log3(<)

<
, max
8∈[<]
| (GGT)88 − ^ | ≤

√
2048 · log3(<)

<

 (4.33)

By Lemma 22 we know that P(E2) → 0 for both the subsampled Haar sensing and the subsampled

Hadamard model. We define the normalized random vector z̃ as:

Ĩ8 =
I8

f8
, f2

8 =
(GGT)88

^

Note that conditional on G, z̃ is a zero mean Gaussian vector with:

E[Ĩ82 |G] = 1, E[Ĩ8 Ĩ 9 |G] =
(GGT)8 9/^
f8f9

.

We define the diagonal matrix ˜̀ = Diag
(
z̃
)
.

Lemma 35. We have,

lim
<→∞

E(zTA(	, `)z)2
<2 = lim

<→∞
E( z̃TA(	, ˜̀) z̃)2

<2 IE ,

provided the latter limit exists.

The proof of this lemma is analogous the proof of Lemma 27 and is omitted. The advantage

of Lemma 35 is that Ĩ8 ∼ N (0, 1) and on the event E the coordinates of z̃ have weak correlations.

Consequently, Mehler’s Formula (Proposition 9) can be used to analyze the leading order term in

E[ z̃TA(	, ˜̀) z̃ IE]. Before we do so, we do one additional preprocessing step.
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Lemma 36. We have,

lim
<→∞

E( z̃TA(	, ˜̀) z̃)2
<2 IE = lim

<→∞
E Tr(A · ( z̃ z̃T − ˜̀2) · A · ( z̃ z̃T − ˜̀2))IE

<2 ,

provided the latter limit exists.

Proof Sketch. Observe that we can write:

( z̃TA z̃)2 = Tr(A · z̃ z̃T · A · z̃ z̃T)

= Tr(A · ( z̃ z̃T − ˜̀2 + ˜̀2) · A · ( z̃ z̃T − ˜̀2 + ˜̀2))

= Tr(A · ( z̃ z̃T − ˜̀2) · A · ( z̃ z̃T − ˜̀2)) + Tr(A · ˜̀2 · A · z̃ z̃T) + Tr(A · z̃ z̃T · ˜̀2 · A)

− Tr(A · ˜̀2 · A · ˜̀2)

= Tr(A · ( z̃ z̃T − ˜̀2) · A · ( z̃ z̃T − ˜̀2)) + 2z̃TA · ˜̀2 · A · z̃ − Tr(A · ˜̀2 · A · ˜̀2).

Next we note that:

| z̃TA · ˜̀2 · A · z̃ | ≤ ‖ z̃‖2 · ‖A‖2op ·
(
max
8∈[<]
| Ĩ8 |2

)
≤ $% (<) · $ (1) · $% (polylog(<)),

Hence it can be shown that,

E| z̃TA · ˜̀2 · A · z̃ |
<2 → 0.

Similarly,

|Tr(A · ˜̀2 · A · ˜̀2) | ≤ <‖A · ˜̀2 · A · ˜̀2‖op ≤ <‖A‖2op ·
(
max
8∈[<]
| Ĩ8 |4

)
≤ $ (<) · $ (1) · $% (polylog(<)),

185



and hence one expects that,

E|Tr(A · ˜̀2 · A · ˜̀2) |
<2 → 0.

We omit the detailed arguments. This concludes the proof of the lemma. �

Note that, so far, we have shown that:

lim
<→∞

E(zTA(	, `)z)2
<2 = lim

<→∞
E Tr(A · ( z̃ z̃T − ˜̀2) · A · ( z̃ z̃T − ˜̀2))IE

<2 ,

provided the latter limit exists. We now focus on analyzing the RHS. We expand

Tr(A · ( z̃ z̃T − ˜̀2) · A · ( z̃ z̃T − ˜̀2)) =∑
01:2:+2∈[<]
01≠02:+2
0:+1≠0:+2

(	)01,02@1( Ĩ02) · · · (	)0: ,0:+1 Ĩ0:+1 Ĩ0:+2 (	)0:+2,0:+3@1( Ĩ0:+3) · · · (	)02:+1,02:+2 Ĩ02:+2 Ĩ01 .

This can be written compactly in terms of matrix moments (Definition 8) as follows: Let ℓ⊗2
:+1 ∈

G(2: + 2) denote the graph formed by combining two disconnected copies of the simple line graph

on vertices [1 : : + 1] and [: + 2 : 2: + 2]:

(ℓ⊗2
:+1)8 9 =


1 : |8 − 9 | = 1, {8, 9} ≠ {: + 1, : + 2},

0 : otherwise
.

Recall the notation for partitions introduced in Section 4.6.1. Observe that:

{(01 . . . 02:+2) ∈ [<]2:+2 : 01 ≠ 02:+2, 0:+1 ≠ 0:+2} =
⊔

c∈P0 ( [2:+2])
C(c),
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where,

P0( [2: + 2]) def
= {c ∈ P(2: + 2) : c(1) ≠ c(2: + 2), c(: + 1) ≠ c(: + 2)}.

Recalling Definition 8, we have,

(	)01,02 · · · (	)0: ,0:+1 (	)0:+2,0:+3 · · · (	)02:+1,02:+2 =M(	, ℓ⊗2
:+1, c, a)

Hence,

E Tr(A · ( z̃ z̃T − ˜̀2) · A · ( z̃ z̃T − ˜̀2))IE
<2 =

1
<2

∑
c∈P0 (2:+2)
a∈C(c)

EM(	, ℓ⊗2
:+1, c, a) · ( Ĩ01@1( Ĩ02) · · · Ĩ0:+1 Ĩ0:+2@1( Ĩ0:+3) · · · Ĩ02:+2) · IE .

By the tower property,

EM(	, ℓ⊗2
:+1, c, a) · ( Ĩ01@1( Ĩ02) · · · Ĩ0:+1 Ĩ0:+2@1( Ĩ0:+3) · · · Ĩ02:+2) · IE =

E
[
M(	, ℓ⊗2

:+1, c, a) · E[Ĩ01@1( Ĩ02) · · · Ĩ0:+1 Ĩ0:+2@1( Ĩ0:+3) · · · Ĩ02:+2 |G]IE
]
.

We will now use Mehler’s formula (Proposition 9) to evaluate E[· · · |G] upto leading order. Note

that some of the random variables Ĩ01:2:+2 are equal (as given by the partition c). Hence we group

them together and recenter the resulting functions. The blocks corresponding to 01, 0:+1, 0:+2, 02:+2

need to be treated specially due to the presence of Ĩ01 , Ĩ0:+1 , Ĩ0:+2 , Ĩ02:+2 in the above expectations.

Hence, we introduce the following notations: We introduce the following notations:

ℱ1(c) = c(1), ℒ1(c) = c(: + 1), ℱ2(c) = c(: + 2), ℒ2(c) = c(2: + 2)

�(c) = {8 ∈ [1 : 2: + 2]\{1, : + 1, : + 2, 2: + 2} : |c(8) | = 1}.
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We label all the remaining blocks of c asV1,V2 . . .V|c |−|�(c) |−4. Hence the partition c is given by:

c = ℱ1(c) tℒ1(c) tℱ2(c) tℒ2(c) t
©­«

⊔
8∈�(c)

{8}ª®¬ t ©­«
|c |−|�(c) |−4⊔

C=1
V8

ª®¬ .
To simplify notation, we additionally define:

@:+1+8 (b)
def
= @8 (b), 8 = 1, 2 . . . : − 1.

Note that:

Ĩ01 Ĩ0:+1 Ĩ0:+2 Ĩ02:+2

2:∏
8=1

8≠:,:+1

@8 ( Ĩ08+1) =

&ℱ1 ( Ĩ01)&ℒ1 ( Ĩ0:+1)&ℱ2 ( Ĩ0:+2)&ℒ2 ( Ĩ02:+2)
©­«

∏
8∈�(c)

@8−1( Ĩ08 )
ª®¬
|c |−|�(c) |−4∏

8=1
(&V8 (I0V8 ) + `V8 ),

where,

&ℱ1 (b) = b ·
∏

8∈ℱ1 (c),8≠1
@8−1(b),

&ℒ1 (b) = b ·
∏

8∈ℒ1 (c),8≠:+1
@8−1(b),

&ℱ2 (b) = b ·
∏

8∈ℱ2 (c),8≠:+2
@8−1(b),

&ℒ2 (b) = b ·
∏

8∈ℒ2 (c),8≠2:+2
@8−1(b),

`V8 = Eb∼N(0,1)


∏
9∈V8

@ 9−1(b)
 ,

&V8 (b) =
∏
9∈V8

@ 9−1(b) − `V8 ,
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With this notation in place we can apply Mehler’s formula. The result is summarized in the following

lemma.

Lemma 37. For any c ∈ P0( [2: + 2]) and any a ∈ C(c) we have,

IE

������E[Ĩ01@1( Ĩ02) · · · Ĩ0:+1 Ĩ0:+2@1( Ĩ0:+3) · · · Ĩ02:+2 |G] −
∑

w∈G2 (c)
� (w, c) · M(	, w, c, a)

������
≤ � (A) ·

(
log3(<)
<^2

) 3+|�(c) |
2

,

where,M(	, w, c, a) is the matrix moment as defined in Definition 8,

� (w, c) = 1
^‖w‖w!

©­«&̂ℱ1 (1)&̂ℒ1 (1)&̂ℱ2 (1)&̂ℒ2 (1)
∏
8∈�(c)

@̂8−1(2)
ª®¬ ©­«

∏
8∈[|c |−|�(c) |−4]

`V8
ª®¬

G2(c)
def
=

{
w ∈ G(2: + 2) : d8 (w) = 1 ∀ 8 ∈ {1, : + 1, : + 2, 2: + 2},

d8 (w) = 2 ∀ 8 ∈ �(c), d8 (w) = 0 ∀ 8 ∉ {1, : + 1, : + 2, 2: + 2} ∪�(c)
}
,

The proof of the lemma involves instantiating Mehler’s formula for this situation and identifying

the leading order term. Since the proof is analogous to the proof of Lemma 29 provided in Appendix

4.10.4, we omit it.

We return to our analysis of:

E Tr(A · ( z̃ z̃T − ˜̀2) · A · ( z̃ z̃T − ˜̀2))IE
<2 =

1
<2

∑
c∈P0 (2:+2)
a∈C(c)

EM(	, ℓ⊗2
:+1, c, a) · ( Ĩ01@1( Ĩ02) · · · Ĩ0:+1 Ĩ0:+2@1( Ĩ0:+3) · · · Ĩ02:+2) · IE .
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We define the following subsets of P0(2: + 2) as:

P1( [2: + 2]) def
=

{
c ∈ P0(2: + 2) : |c(8) | = 1, ∀ 8 ∈ {1, : + 1, : + 2, 2: + 2}, (4.35a)

|c( 9) | ≤ 2 ∀ 9 ∈ [: + 1]
}
,

P2( [2: + 2]) def
= P0( [2: + 2])\P1( [2: + 2]), (4.35b)

and the error term which was controlled in Lemma 29:

n (	, a) def
=

IE
©­«E[Ĩ01@1( Ĩ02) · · · Ĩ0:+1 Ĩ0:+2@1( Ĩ0:+3) · · · Ĩ02:+2 |G] −

∑
w∈G2 (c)

� (w, c) · M(	, w, c, a)ª®¬
.

With these definitions we consider the decomposition:

E Tr(A · ( z̃ z̃T − ˜̀2) · A · ( z̃ z̃T − ˜̀2))IE
<2 =

1
<2

∑
c∈P1 ( [2:+2])

∑
0∈C(c)

∑
w∈G2 (c)

� (w, c) · E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
− I + II + III,

where,

I =
1
<2

∑
c∈P0 ( [2:+2])

∑
0∈C(c)

∑
w∈G2 (c)

� (w, c) · E
[
M(	, w + ℓ⊗2

:+1, c, a)IE2
]
,

II =
1
<2

∑
c∈P0 (2:+2])

∑
0∈C(c)

E
[
M(	, ℓ⊗2

:+1, c, a)n (	, a)IE
]
,

III =
1
<2

∑
c∈P2 ( [2:+2])

∑
0∈C(c)

∑
w∈G2 (c)

� (w, c) · E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
.

We will show that I, II, III→ 0. Showing this involves the following components:

1. Bounds on matrix moments E
[
M(	, w + ℓ⊗2

:+1, c, a)
]

which have been developed in Lemma

19.
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2. Controlling the size of the set |C(c) | (since we sum over a ∈ C(c) in the above terms). Since,

|C(c) | = <(< − 1) · · · (< − |c | + 1) � < |c |,

we need to develop bounds on |c |. This is done in the following lemma. In contrast, the sums

over c ∈ P0( [2:+2]) and w ∈ G1(c) are not a cause of concern since |P0( [2:+2]) |, |G1(c) |

depend only on : (which is held fixed) and not on <.

Lemma 38. For any c ∈ P1( [2: + 2]) we have,

|c | = 2: + 6 + |�(c) |
2

=⇒ |C(c) | ≤ <
2:+6+|�(c) |

2 .

For any c ∈ P2( [2: + 2]), we have,

|c | ≤ 2: + 5 + |�(c) |
2

=⇒ |C(c) | ≤ <
2:+5+|�(c) |

2 .

Proof. Consider any c ∈ P0( [2: + 2]). Recall that the disjoint blocks of |c | were given by:

c = ℱ1(c) tℒ1(c) tℱ2(c) tℒ2(c) t
©­«

⊔
8∈�(c)

{8}ª®¬ t ©­«
|c |−|�(c) |−4⊔

C=1
V8

ª®¬ .
Hence,

2: + 2 = |ℱ1(c) | + |ℱ2(c) | + |ℒ1(c) | + |ℒ2(c) | + |�(c) | +
|c |−|�(c) |−4∑

C=1
|V8 |.
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Note that:

|ℱ1(c) | ≥ 1 (Since 1 ∈ ℱ1(c)) (4.36a)

|ℱ2(c) | ≥ 1 (Since : + 2 ∈ ℱ2(c)) (4.36b)

|ℒ1(c) | ≥ 1 (Since : + 1 ∈ ℒ1(c)) (4.36c)

|ℒ2(c) | ≥ 1 (Since 2: + 2 ∈ ℒ1(c)) (4.36d)

|V8 | ≥ 2 (SinceV8 are not singletons). (4.36e)

Hence,

2: + 2 ≥ 4 + 2|c | − |�(c) | − 8,

which implies,

|c | ≤ 2: + 6 + |�(c) |
2

, (4.37)

and hence,

|C(c) | ≤ < |c | ≤ <
2:+6+|�(c) |

2 .

Finally observe that:

1. For any c ∈ P2( [2: + 2]) each of the inequalities in (4.36) are exactly tight by the definition

of P1( [: + 1]) in (4.35), and hence,

|c | = 2: + 6 + |�(c) |
2

.

2. For any c ∈ P2( [2: + 2]), one of the inequalities in (4.36) must be strict (see (4.35)). Hence,
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when c ∈ P2( [: + 1]) we have the improved bound:

|c | ≤ 2: + 5 + |�(c) |
2

.

This proves the claims of the lemma. �

We will now show that I, II, III→ 0.

Lemma 39. We have,

I→ 0, II→ 0, III→ 0 as < →∞,

and hence,

lim
<→∞

E(zTA(	, `)z)2
<2 =

lim
<→∞

1
<2

∑
c∈P1 ( [2:+2])

∑
0∈C(c)

∑
w∈G2 (c)

� (w, c) · E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
,

provided the latter limit exists.

Proof. First note that for any w ∈ G1(c), we have,

‖w‖ = 1
2

2:+2∑
8=1

d8 (w) =
1 + 1 + 1 + 1 + 2|�(c) |

2
= 2 + |�(c) | (See Lemma 37).
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Furthermore recalling the definition of ℓ⊗2
:+1, ‖ℓ⊗2

:+1‖ = 2: . Now we apply Lemma 19 to obtain:

|E
[
M(	, w + ℓ⊗2

:+1, c, a)IE2
]
| ≤

√
E

[
M(	, 2w + 2ℓ⊗2

:+1, c, a)
]√
P(E2)

≤
(
�: log2(<)

<

) |�(c) |+2+2:
2

·
√
P(E2),

(a)

≤
(
�: log2(<)

<

) |�(c) |+2+2:
2

· �:
<
.

E|M(	, ℓ⊗2
:+1, c, a) | ≤

(
�: log2(<)

<

) :
,

E
[
|M(	, w + ℓ:+1, c, a) |

]
≤

(
�: log2(<)

<

) |�(c) |+2+2:
2

In the step marked (a) we used Lemma 22. Further recall that by Lemma 29 we have,

|n (	, a) | ≤ � (A) ·
(
log3(<)
<^2

) 3+|�(c) |
2

.
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Using these estimates, we obtain,

|I| ≤ � (A)·
<2 ·

∑
c:P0 ( [2:+2])

|C(c) | ·
(
�: log2(<)

<

) |�(c) |+2+2:
2

· �:
<

≤ � (A)·
<2 ·

∑
c:P0 ( [2:+2])

<
2:+6+|�(c) |

2 ·
(
�: log2(<)

<

) |�(c) |+2+2:
2

· �:
<

= $

(
polylog(<)

<

)
|II| ≤ � (A)

<2 ·
(
�: log2(<)

<

) :
·

∑
c:P0 ( [2:+2])

|C(c) | ·
(
log3(<)
<^2

) 3+|�(c) |
2

≤ � (A)
<2 ·

(
�: log2(<)

<

) :
·

∑
c:P0 ( [2:+2])

<
2:+6+|�(c) |

2 ·
(
log3(<)
<^2

) 3+|�(c) |
2

= $

(
polylog(<)
√
<

)

|III| ≤ � (A)·
<2 ·

∑
c:P2 ( [2:+2])

|C(c) | ·
(
�: log2(<)

<

) |�(c) |+1+:
2

≤ � (A)·
<2 ·

∑
c:P2 ( [2:+2])

<
2:+5+|�(c) |

2 ·
(
�: log2(<)

<

) |�(c) |+2+2:
2

= $

(
polylog(<)
√
<

)
.

This concludes the proof of this lemma. �

Next, we consider the decomposition:

1
<2

∑
c∈P1 ( [2:+2])

∑
0∈C(c)

∑
w∈G2 (c)

� (w, c) · E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
=

1
<2

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

∑
0∈LCF (w+ℓ⊗2

:+1,c)

� (w, c) · E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
+ IV + V,
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where,

IV def
=

1
<2

∑
c∈P1 ( [2:+2])

∑
0∈C(c)

∑
w∈G2 (c)

w+ℓ⊗2
:+1∉GDA (c)

� (w, c) · E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
,

V def
=

1
<2

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

∑
0∈C(c)\LCF (w+ℓ⊗2

:+1,c)

� (w, c) · E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
.

Lemma 40. We have, IV→ 0,V→ 0 as < →∞, and hence,

lim
<→∞

E(zTAz)2
<2 =

lim
<→∞

1
<2

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

∑
0∈LCF (w+ℓ⊗2

:+1,c)

� (w, c) · E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
,

provided the latter limit exists.

Proof. We will prove this in two steps.

Step 1: IV→ 0. We consider the two sensing models separately:

1. Subsampled Hadamard Sensing: In this case, Proposition 11 tells us that if w + ℓ⊗2
:+1 ∉

GDA(c), then,

E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
= 0

and hence IV = 0.

2. Subsampled Haar Sensing: Observe that, since ‖w‖ + ‖ℓ⊗2
:+1‖ = 2 + |�(c) | + 2: , we

have,

E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
=

E
[
M(
√
<	, w + ℓ⊗2

:+1, c, a)
]

<
2+|�(c) |+2:

2

.

196



By Proposition 10 we know that,��������E
[
M(
√
<	, w + ℓ⊗2

:+1, c, a)
]
−

∏
B,C∈[|c |]
B≤C

E

[
/
,BC (w+ℓ⊗2

:+1,c)
BC

] �������� ≤
 1 log 2 (<)

<
1
4

,

∀ < ≥  3, where  1,  2,  3 are universal constants depending only on : . Note that

since w + ℓ⊗2
:+1 ∉ GDA(c), must have some B ∈ [|c |] such that:

,BB (w + ℓ⊗2
:+1, c) ≥ 1.

Recall that, d8 (w) = 0 for any 8 ∉ {1, : + 1, : + 2, 2: + 2} ∪�(c) (since w ∈ G2(c)) and

furthermore, |c(8) | = 1∀ 8 ∈ {1, : + 1, : + 2, 2: + 2} ∪�(c) (since c ∈ P1(2: + 2)).

Hence, we have w ∈ GDA(c) and in particular,,BB (w, c) = 0. Consequently, we must

have ,BB (ℓ⊗2
:+1, c) ≥ 1. Recall the definition of ℓ⊗2

:+1, since ,BB (ℓ:+1, c) ≥ 1 we must

have that for some 8 ∈ [2: + 2], we have, c(8) = c(8 + 1) = VB. However, since

c ∈ P1(2: + 2), |VB | ≤ 2, and hence VB = {8, 8 + 1}. This means that ,BB (ℓ⊗2
:+1, c) =

1 = ,BB (w + ℓ⊗2
:+1, c). Consequently since E/BB = 0, we have,

∏
B,C∈[|c |]
B≤C

E

[
/
,BC (w+ℓ⊗2

:+1,c)
BC

]
= 0,

or, ����E [
M(	, w + ℓ⊗2

:+1, c, a)
] ���� = polylog(<)

<
2+|�(c) |+2:

2 + 1
4

.

Recalling Lemma 38,

|C(c) | ≤ < |c | ≤ <
2:+6+|�(c) |

2 ,
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we obtain,

|IV| ≤ � (A)
<2

∑
c∈P1 ( [2:+2])

|C(c) | · polylog(<)
<

2+|�(c) |+2:
2 + 1

4

= $

(
polylog(<)

<
1
4

)
→ 0.

Step 2: V→ 0. Using Lemma 21, we know that

|C(c)\LCF(w + ℓ⊗2
:+1, c) | ≤ $ (<

|c |−1)

In Lemma 38, we showed that for any c ∈ P1( [: + 1]),

|c | = 2: + 6 + |�(c) |
2

.

Hence,

|C(c)\LCF(w + ℓ⊗2
:+1, c) | ≤ $ (<

2:+4+|�(c) |
2 ).

We already know from Lemma 19 that,

|E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
| ≤

(
�: log2(<)

<

) ‖w ‖+‖ℓ⊗2
:+1 ‖

2

≤
(
�: log2(<)

<

) |�(c) |+2+2:
2

,

This gives us:

|V| ≤ �

<2

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

|C(c)\LCF(w + ℓ⊗2
:+1, c) |

(
�: log2(<)

<

) |�(c) |+2+2:
2

= $

(
polylog(<)

<

)
which goes to zero as claimed.

This concludes the proof of the lemma. �
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So far we have shown that:

lim
<→∞

E(zTAz)2
<2 =

lim
<→∞

1
<2

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

∑
0∈LCF (w+ℓ⊗2

:+1,c)

� (w, c) · E
[
M(	, w + ℓ⊗2

:+1, c, a)
]
.

provided the latter limit exists. In the following lemma we explicitly calculate the limit on the

RHS and hence show that it exists and is same for the subsampled Haar and subsampled Hadamard

sensing models.

Lemma 41. For both the subsampled Haar sensing and Hadamard sensing model, we have,

lim
<→∞

E(zTAz)2
<2 =

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

� (w, c) · `(w + ℓ⊗2
:+1, c),

where,

`(w + ℓ⊗2
:+1, c)

def
=

∏
B,C∈[|c |]
B<C

E
[
/,BC (w+ℓ

⊗2
:+1,c)

]
, / ∼ N

(
0, ^(1 − ^)

)
.

Proof. By Propositions 11 (for the subsampled Hadamard model) and 10 (for the subsampled Haar

model) we know that, if w + ℓ⊗2
:+1 ∈ GDA(c), a ∈ LCF(w + ℓ⊗2

:+1, c), we have,

M(
√
<	, w + ℓ⊗2

:+1, c, a) = `(w + ℓ
⊗2
:+1, c) + n (w, c, a),

where

|n (w, c, a) | ≤  1 log 2 (<)
<

1
4

, ∀ < ≥  3,
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for some constants  1,  2,  3 depending only on : . Hence, we can consider the decomposition:

1
<2

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

∑
0∈LCF (w+ℓ⊗2

:+1,c)

� (w, c)·E
[
M(	, w + ℓ⊗2

:+1, c, a)
]

= VI + VII,

where,

VI def
=

1
<2

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

∑
0∈LCF (w+ℓ⊗2

:+1,c)

� (w, c) ·
`(w + ℓ⊗2

:+1, c)

<
2+�(c)+2:

2

,

VII def
=

1
<2

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

∑
0∈LCF (w+ℓ⊗2

:+1,c)

� (w, c) · n (w, c, a)
<

2+�(c)+2:
2

We can upper bound |VII| as follows:

|LCF(w + ℓ⊗2
:+1, c) | ≤ |C(c) | ≤ <

2:+6+|�(c) |
2 ,

|VII| ≤ � (A)
<2 · �: · |LCF(w + ℓ⊗2

:+1, c) | ·
1

<
2+|�(c) |+2:

2

·  1 log 2 (<)
<

1
4

= $

(
polylog(<)

<
1
4

)
→ 0.
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We can compute:

lim
<→∞
(VI) = lim

<→∞
1
<2

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

∑
0∈LCF (w+ℓ⊗2

:+1,c)

� (w, c) ·
`(w + ℓ⊗2

:+1, c)

<
2+�(c)+2:

2

= lim
<→∞

1
<2

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

� (w, c) ·
`(w + ℓ⊗2

:+1, c)

<
2+�(c)+2:

2

· |LCF(w + ℓ⊗2
:+1, c) |

=
∑

c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

� (w, c) · `(w + ℓ⊗2
:+1, c) ·

< |c |

<
6+�(c)+2:

2

·
|LCF(w + ℓ⊗2

:+1, c) |
< |c |

(a)
=

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

� (w, c) · `(w + ℓ⊗2
:+1, c) ·

|LCF(w + ℓ⊗2
:+1, c) |

< |c |

(b)
=

∑
c∈P1 ( [2:+2])

∑
w∈G2 (c)

w+ℓ⊗2
:+1∈GDA (c)

� (w, c) · `(w + ℓ⊗2
:+1, c).

In the step marked (a) we used the fact that |c | = (6 + |�(c) | + 2:)/2 for any c ∈ P1( [2: + 2])

(Lemma 38) and in step (b) we used Lemma 21 (|LCF(w + ℓ⊗2
:+1, c) |/<

|c | → 1). This proves the

claim of the lemma and Proposition 13. �

We can actually significantly simply the combinatorial sum obtained in Lemma 41 which we do

so in the following lemma.

Lemma 42. For both the subsampled Haar sensing and Hadamard sensing models, we have,

lim
<→∞

E(zTAz)2
<2 = (1 − ^)2: ·

:−1∏
8=1

@̂2
8 (2).

In particular, Proposition 13 holds.

Proof. We claim that the only partition with a non-zero contribution is:

c =

2:+2⊔
8=1
{8}.
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In order to see this suppose c is not entirely composed of singleton blocks. Define:

8★
def
= min{8 ∈ [2: + 2] : |c(8) | > 1}.

Note 8★ > 1 since we know that |c(1) | = |ℱ1(c) | = 1 for any c ∈ P1(2:+2). Since c ∈ P1( [2:+2])

we must have |c(8★) | = 2, hence denote:

c(8★) = {8★, 9★}.

for some 9★ > 8★+1 (8★ ≤ 9★ since it is the first index which is not in a singleton block, and 9★ ≠ 8★+1

since otherwise w+ℓ⊗2
:+1 will not be disassortative. Similarly we know that 8★, 9★ ≠ : +1, : +2, 2: +2

because |c(: + 1) | = |c(: + 2) | = |c(2: + 2) | = 1 since c ∈ P1( [2: + 2]). Let us label the first few

blocks of c as:

V1 = {1}, V2 = {2}, . . .V8★−1 = {8★ − 1}, V8★ = {8★, 9★}.

Next we compute:

,8★−1,8★ (w + ℓ⊗2
:+1, c) = ,8★−1,8★ (ℓ⊗2

:+1, c) +,8★−1,8★ (w, c)
(a)
= ,8★−1,8★ (ℓ⊗2

:+1, c)
(b)
= 18★−1∈V8★−1 + 18★+1∈V8★−1 + 1 9★−1∈V8★−1 + 1 9★+1∈V8★−1

(c)
= 18★−1=8★−1 + 18★+1=8★−1 + 1 9★−1=8★−1 + 1 9★+1=8★−1

(d)
= 1.

In the step marked (a), we used the fact that since w ∈ G2(c) and |c(8★) | = |c( 9★) | = 2, we must

have 38★ (w) = 3 9★ (w) = 0 and,8★−1,8★ (w, c) = 0. In the step marked (b) we used the definition of

ℓ⊗2
:+1. In the step marked (c) we used the fact thatV8★−1 = {8★−1}. In the step marked (d) we used

the fact that 9★ > 8★ + 1.
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Hence we have shown that for any c ≠ t2:+2
8=1 {8}, we have

`(w, c) = 0 ∀ w such that w ∈ G2(c), w + ℓ⊗2
:+1 ∈ GDA(c).

Next, let c = t2:+2
8=1 {8}. We observe for any w such that w ∈ G2(c), w + ℓ⊗2

:+1 ∈ GDA(c), we have,

`(w + ℓ⊗2
:+1, c) =

∏
B,C∈[|c |]
B<C

E
[
/,BC (w+ℓ

⊗2
:+1,c)

]
, / ∼ N

(
0, ^(1 − ^)

)
=

∏
8, 9∈[2:+2]

8< 9

E
[
/F8 9+(ℓ:+1)8 9 ,c)

]
, / ∼ N

(
0, ^(1 − ^)

)

Note that since E/ = 0, for `(w + ℓ⊗2
:+1, c) ≠ 0 we must have:

F8 9 ≥ (ℓ⊗2
:+1)8 9 , ∀ 8, 9 ∈ [2: + 2] .

However since w ∈ G2(c) we have,

d1(w) = d:+1(w) = d:+2(w) = d2:+2(w) = 1,

d8 (w) = 2 ∀ 8 ∈ [2: + 2]\{1, : + 1, : + 2, 2: + 2},

hence w = ℓ⊗2
:+1. Hence, recalling the formula for 6(w, c) from Lemma 29 we obtain:

lim
<→∞

E(zTAz)2
<2 = (1 − ^)2: ·

:−1∏
8=1

@̂2
8 (2).

This proves the statement of the lemma and also Proposition 12 (see Remark 21 regarding how the

analysis extends to other types). �
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4.10.3 Proofs from Section 4.6.4

Proof of Lemma 19

Proof of Lemma 19. Recall that,

E|M(	, w, c, a) | = E
∏
8, 9∈[:]
8< 9

|ΨF8 908 ,0 9 |

(a)

≤
∑
8, 9∈[:]
8< 9

F8 9

‖w‖E|Ψ
‖w‖1
08 ,0 9 |

≤ max
8, 9∈[<]

E|Ψ8 9 |‖w‖ ,

where step (0) follows from the AM-GM inequality. We now consider the subsampled Haar and

Hadamard cases separately.

Hadamard Case: By Lemma 18, Ψ8 9 is subgaussian with with variance proxy bounded by �/<

for some universal constant �. Hence,

E|M(	, w, c, a) | ≤
(
�‖w‖
<

) ‖w ‖
2

.

Haar Case: By Lemma 18, conditional onU,Ψ8 9 is subgaussian with variance proxy�<‖o8‖2∞‖o 9 ‖2∞.

Hence,

E|M(	, w, c, a) | ≤ max
8, 9∈[<]

E|Ψ8 9 |‖w‖

= max
8, 9∈[<]

E[E[|Ψ8 9 |‖w‖ |U]]

≤ max
8, 9∈[<]

(�‖w‖<)
‖w ‖

2 E
[
‖o8‖‖w‖∞ ‖o 9 ‖‖w‖∞

]
≤ max
8, 9∈[<]

(�‖w‖<)
‖w ‖

2

(
E‖o8‖2‖w‖∞ + E‖o 9 ‖2‖w‖∞

)
.
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Note that o8
d
= o 9

d
= u ∼ Unif (S<−1). Applying Fact 6 gives us,

E|M(	, w, c, a) | ≤
©­­«
√
�‖w‖ log2(<)

<

ª®®¬
‖w‖

.

�

Proofs of Propositions 10 and 11

This section is dedicated to the proof of Propositions 10 and 11. We consider the following

general setup. Let v1, v2 · · · , v< be fixed vectors in R3 for a fixed 3 ∈ N. Define the statistic:

Z =
√
<

<∑
8=1

�88v8,

where H denotes a diagonal matrix whose = diagonal entries are set to 1 − ^ uniformly at random

and the remaining < − = are set to −^.

Analogously, we define the statistic:

Ẑ =
√
<

<∑
8=1

�̂88v8,

where,

�̂88
i.i.d.∼


1 − ^ : with prob. ^

−^ : with prob. 1 − ^
.

As in the proof of Lemma 18 we H and Ĥ in the same probability space as follows:

1. We first sample H. Let ( = {8 ∈ [<] : �88 = 1 − ^}

2. Next sample # ∼ Binom(<, ^).

3. Sample a subset (̂ ⊂ [<] with |(̂ | = # as follows:
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• If # ≤ =, then set (̂ to be a uniformly random subset of ( of size # .

• If # > = first sample a uniformly random subset � of (2 of size # − = and set (̂ = ( ∪ �

4. Set Ĥ as follows:

�̂88 =


−^ : 8 ∉ (̂

1 − ^ : 8 ∈ (̂.
.

We stack the vectors v1:< along the rows of a matrix \ ∈ R<×3 and refer to the columns of \ as

\1,\2 · · ·\3:

\ = [\1,\2 · · ·\3] =



vT
1

vT
2
...

vT
<


.

Lastly we introduce the matrix �̂ ∈ R3×3:

�̂
def
= E[ẐẐT |\] = <^(1 − ^)\T\ .

These definitions are intended to capture the matrix momentsM(	, w, c, a) as follows: Consider

any : ∈ N, c ∈ P([:]), w ∈ G(:) and any a ∈ C(c). Let the disjoint blocks of c be given by

c = V1 tV2 · · · t V|c |.

In order to capture M(	, w, c, a) in the subsampled Hadamard case 	 = NHNT and the

subsampled Haar case 	 = UHUT we will set \1:3 as follows:

1. In the subsampled Haar case, we set:

{\1,\2, · · ·\3} = {(o0VB � o0VC ) − X(B, C) ê : B, C ∈ [|c |], B ≤ C, ,BC (w, c) > 0},
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where,

eT =

(
1
<
,

1
<
· · · 1

<

)
, X(B, C) =


1 : B = C

0 : B ≠ C

.

If for some 8 ∈ [3] and some B, C ∈ [|c |] we have \8 = o0VB � o0VC − X(B, C) ê, we will abuse

notation and often refer to \8 as \BC . Likewise the corresponding entries of Z, Ẑ, )8, )̂8 will be

referred to as )BC , )̂BC .

2. In the subsampled Hadamard case, we set:

{\1,\2, · · ·\3} = {h0VB � h0VC − X(B, C) ê : B, C ∈ [|c |], B ≤ C, ,BC (w, c) > 0}.

If for some 8 ∈ [3] and some B, C ∈ [|c |] we have \8 = h0VB � h0VC − X(B, C) ê, we will abuse

notation and often refer to \8 as \BC . Likewise the corresponding entries of Z, Ẑ: )8, )̂8 will be

referred to as )BC , )̂BC .

With the above conventions and the observation that
∑<
8=1 �88 = 0 we have:

M(
√
<	, w, c, a) =

∏
B,C∈[|c |]
B≤C

,BC (w,c)>0

)
,BC (w,c)
BC .

The remainder of this section is organized as follows:

1. First, in Lemma 43 we show that �̂ converges to a fixed deterministic matrix � and bound the

rate of convergence in terms of E‖�̂ − �‖2Fr.

2. In Lemma 44 we upper bound E‖Ẑ − Z‖22. Consequently a Gaussian approximation result for

Ẑ implies a Gaussian approximation result for Z.

3. In Lemma 45, we use a standard Berry Eseen bound of [132] to derive a Gaussian approxima-

tion result for Ẑ since it is a weighted sum of i.i.d. centered random variables.
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4. Finally we conclude by using the above lemmas to provide a proof for Propositions 11 and

10.

Lemma 43. 1. For the Hadamard case suppose w is disassortative with respect to c and a is a

conflict free labelling of (w, c). Then,

�̂ = ^(1 − ^)O3 .

2. For the Haar case there exists a universal constant � < ∞ such that for any partition

c ∈ P([:]), any weight matrix w ∈ G(:) and any labelling a ∈ C(c) we have,

E‖�̂ − �‖2Fr ≤
� · :4 · (^2(1 − ^)2)

<
.

where the matrix � is a diagonal matrix whose diagonal entries are given by:

ΣBC,BC =


^(1 − ^) : B ≠ C

2^(1 − ^) : B = C

.

Proof. Recall that,

�̂ = <^(1 − ^)\T\ .

We consider the Hadamard and the Haar case separately.

Hadamard Case: Consider two pairs (B, C) and (B′, C′) such that:

B ≤ C, ,BC (w, c) > 0, B, C ∈ [|c |] .
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and the analogous assumptions on the pair (B′, C′). Then the entry Σ̂BC,B′C ′ is given by:

Σ̂BC,B′C ′ = <^(1 − ^)〈\BC ,\B′C ′〉

= <^(1 − ^)〈h0VB � h0VC − X(B, C) ê, h0V′B � h0V′C − X(B
′, C′) ê〉

(a)
= ^(1 − ^)〈h0VB⊕0VC −

√
<X(B, C) ê, h0V′B ⊕0V′C −

√
<X(B′, C′) ê〉

(b)
= ^(1 − ^)〈h0VB⊕0VC , h0V′B ⊕0V′C 〉
(c)
= ^(1 − ^)X(B, B′)X(C, C′).

In the step marked (a) we appealed to Lemma 20. In the step marked (b), we noted that ê =

h1/
√
< and ê ⊥ h0VB⊕0VC unless B = C which is ruled out by the fact that w is disassortative

with respect to c i.e. ,BB (w, c) = 0. In the step marked (c) we used the fact that a is a conflict

free labelling. Consequently, we have shown that �̂ = ^(1 − ^)O3 .

Haar case: By the bias-variance decomposition:

E‖�̂ − �‖2Fr = E‖�̂ − E�̂‖
2
Fr + ‖E�̂ − �‖

2
Fr.

We will first compute E�̂. Consider the (BC, B′C′) entry of �̂:

Σ̂BC,B′C ′ = <^(1 − ^)〈\BC ,\B′C ′〉

= <^(1 − ^)〈o0VB � o0VC − X(B, C) ê, o0V′B � o0V′C − X(B
′, C′) ê〉

= <^(1 − ^)

<∑
8=1

(
(o0VB )8 (o0VC )8 −

X(B, C)
<

) (
(o0V′B )8 (o0V′C )8 −

X(B′, C′)
<

) .
Note that U8 is a uniformly random unit vector. Hence we can compute E�̂ using Fact 4. We
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obtain:

EΣ̂BC,B′C ′

^(1 − ^) =



2 − 6
<+2 : B = B′ = C = C′

2
(<−1) (<+2) : B = C, B′ = C′, B ≠ B′

1 + 2
(<−1) (<+2) : B = B′, C = C′, B ≠ C

0 : otherwise

.

Hence, the bias term can be bounded by:

‖E�̂ − �‖2Fr ≤
36 · :4 · ^2(1 − ^)2

(< + 2)2
.

On the other hand, applying the Poincare Inequality (Fact 7) and a tedious calculation

involving 6th moments of a random unit vector (see for example Proposition 2.5 of [133])

shows that,

Var(Σ̂BC,B′C ′) ≤
� · ^2(1 − ^)2

<
,

for some universal constant �. Hence,

E‖�̂ − E�̂‖2Fr ≤
� · :4 · ^2(1 − ^)2

<
,

for some universal constant �, and consequently the claim of the lemma holds.

�

Lemma 44. We have,

E
[
‖Z − Ẑ‖22

]
≤ �:

3
√
<
,

for a universal constant �.
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Proof. Let b, b̂ ∈ R< be the vectors formed by the diagonals of H, Ĥ, respectively. Define:

?1 = P(11 ≠ 1̂1), ?2 = P(11 ≠ 1̂1, 12 ≠ 1̂2).

We have,

E
[
‖Z − Ẑ‖22 | \

]
= <E

[
(b − b̂)T\\T(b − b̂)

]
= <Tr

(
\\TE

[
(b − b̂) (b − b̂)T

] )
= <Tr

(
\\T(1 − 2^)2

(
?211T + (?1 − ?2)O<

))
= <(1 − 2^)2

(
?2




\T1



2

2
+ (?1 − ?2)Tr

(
\\T

))
.

Now, since \T has centered coordinate-wise product of columns of an orthogonal matrix we have

\T1 = 0. Hence,

E
[
‖Z − Ẑ‖22 | \

]
= (?1 − ?2)Tr

(
\\T

)
.

Next we compute ?1 = P(11 ≠ 1̂1). Observe that conditional on # , the symmetric difference (4(̂

is a uniformly random set of size |# − =|. Hence,

P(11 ≠ 1̂1 |#) = P(1 ∈ (4(̂ |#) =
|= − # |
<

.

Therefore

?1 =
E [# − =]

<
≤

√
Var(#))
<

=

√
^(1 − ^)
√
<

.

Hence, we obtain

E
[
‖Z − Ẑ‖22 |\

]
≤ (1 − 2^)2√

< · ^(1 − ^)
· Tr(�̂). (4.38)
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By Lemma 43 we have,

ETr(�̂) ≤ ETr(�) +
√
3 · E‖�̂ − �‖2Fr

≤ �^(1 − ^):3.

where constant �^,3 depends only on ^, 3. And hence,

E
[
‖Z − Ẑ‖22

]
≤ �:

3
√
<
,

for a universal constant �. �

Lemma 45. Under the assumptions and notations of Lemma 43 for both the subsampled Haar

sensing and the subsampled Hadamard sensing models, we have, for any bounded Lipschitz function

5 : R3 → R:

E
���E[ 5 (Ẑ) |\] − E 5 (�̂1/2

`)
��� ≤ �: · (‖ 5 ‖∞ + ‖ 5 ‖Lip)√

<
. (4.39)

where ` ∼ N (0, O3), �: is a constant depending only on : .

Proof. Note that Ẑ =
√
<\T b̂ and

√
<�̂

−1
2 \T b̂ has the identity covariance matrix. Hence, by the

Berry Eseen bound of [132] for any bounded and Lipschitz function 6 we have������E
[
6

(
�̂
−1
2 Ẑ

)]
− E [`]

������ ≤ �3 · d
′
3 ·

(

6

∞ +

6

!8?)
√
<

, (4.40)
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where �3 is a constant only dependent on 3 and

d′3 = <
2
<∑
8=1
E

[
1̂8‖�̂

−1
2 v8‖32 |\

]
= <2

(
^(1 − ^)3 + (1 − ^)^3

) <∑
8=1
‖�̂

−1
2 v8‖32

≤ <2 ·
√
3 · ‖�̂−

1
2 ‖3op · (^(1 − ^)) ·

<∑
8=1
‖v8‖33

.

Define 6(-) , 5

(
�̂

1
2 ^

)
, hence, 6

(
�̂
−1
2 \T b̂

)
= 5

(
)̂

)
. Moreover,



6

∞ ≤ 

 5 

∞ and


6



!8?
≤

‖�‖
1
2
>?



 5 


!8?

. Hence we obtain:

���E[ 5 ()̂) |\] − E 5 (�̂1/2
`)

��� ≤
�3 (^(1 − ^)) · <

3
2 · (



 5 

∞ + ‖�̂‖ 1
2
op



 5 

Lip) · ‖�̂
− 1

2 ‖3op ·
<∑
8=1
‖v8‖33. (4.41)

We define the event:

E def
=

{
\ : ‖�̂ − �‖2Fr ≤

^2(1 − ^)2
4

}
.

By Markov Inequality and Lemma 43, we know that, P(E2) ≤ �:4/< for some universal constant

�. Hence,

E
���E[ 5 ()̂) |\] − E 5 (�̂1/2

`)
��� ≤ 2� · ‖ 5 ‖∞ · :4

<
+ E

���E[ 5 ()̂) |\] − E 5 (�̂1/2
`)

��� IE .

213



On the event E we have,

‖�̂‖op ≤ ‖�‖op +
^(1 − ^)

2
≤ 5^(1 − ^)

2
,

‖�̂−
1
2 ‖op ≤ ‖�−

1
2 ‖op + ‖�̂

− 1
2 − �− 1

2 ‖op
(a)

≤ 1
^(1 − ^) +

1
2
≤ 9

8(^(1 − ^)) ,

E‖v8‖3 =
3∑
9=1
E|E8 9 |3

(b)

≤ �3
<3 .

In the step marked (a) we used the continuity estimate for matrix square root in Fact 8. In the step

marked (b), we recalled the definition of v8 and used the moment bounds for a coordinate of a

random unit vector from Fact 4. Substituting these estimates in (4.41) we obtain:

E
���E[ 5 (Ẑ) |\] − E 5 (�̂1/2

`)
��� ≤ 2� · ‖ 5 ‖∞ · :4

<
+
�: · (‖ 5 ‖∞ + ‖ 5 ‖Lip)√

<
.

�

Using the above lemmas, we can now provide a proof of Propositions 11 and 10.

Proof of Propositions 11 and 10. Define the polynomial ?(z) as:

?(z) def
=

∏
B,C∈[|c |]
B≤C

,BC (w,c)>0

I
,BC (w,c)
BC ,

and the indicator function:

IE (z)
def
=


1 : z ∈ E

0 : z ∉ E
,

where:

E def
=

{
max
B,C
|IBC | ≤

(
2048 log3(<)

) 1
2

}
.
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Recall that we had,

M(
√
<	, w, c, a) =

∏
B,C∈[|c |]
B≤C

,BC (w,c)>0

)
,BC (w,c)
BC = ?(Z),

and in Lemma 22 we showed that,

P(Z ∉ E) ≤ �

<2 .

We additionally define the function ?̃(z) def
= ?(z)IE (z). observe that:

‖ ?̃‖∞ ≤
(
2048 log3(<)

) ‖w ‖
2
, ‖ ?̃‖Lip ≤ ‖w‖

(
2048 log3(<)

) ‖w ‖
2
.

Let ` ∼ N (0, O3). Then, we can write:

���E?(Z) − E?(� 1
2 `)

��� ≤ ���E?̃(Z) − E?̃(� 1
2 `)

��� + |E?(Z)IE2 (Z) | + |E?(Z)IE2 (� 1
2 /) |

≤
���E?̃(Z) − E?̃(Ẑ)���︸                ︷︷                ︸

(I)

+
����E?̃(Z) − E?̃(�̂ 1

2 `)
����︸                    ︷︷                    ︸

(II)

+
����E?̃(� 1

2 `) − E?̃(�̂ 1
2 `)

����︸                        ︷︷                        ︸
(III)

+ |E?(Z)IE2 (Z) |︸            ︷︷            ︸
(IV)

+ |E?(� 1
2 `)IE2 (�

1
2 `) |︸                     ︷︷                     ︸

(V)

.

We control each of these terms separately.

Analysis of (I): In order to control I observe that:

(I) ≤ ‖ ?̃‖LipE‖Z − Ẑ‖2

≤ ‖ ?̃‖Lip · (E‖Z − Ẑ‖22)
1
2

≤ � · ‖w‖ ·
(
2048 log3(<)

) ‖w ‖
2 ·
√
:3

<
1
4
.
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In the last step, we appealed to Lemma 44.

Analysis of (II): In order to control I, recall that:

‖ ?̃‖∞ ≤
(
2048 log3(<)

) ‖w ‖
2
, ‖ ?̃‖Lip ≤ ‖w‖

(
2048 log3(<)

) ‖w ‖
2
.

Hence, by Lemma 45 we have,

(II) ≤ �: · (2048 log3(<))
‖w ‖

2 (1 + ‖w‖)
√
<

.

Analysis of (III): Again using the Lipchitz bound on ?̃ we have,

(III) ≤ E| ?̃(� 1
2 `) − ?̃(�̂ 1

2 `) |

≤ ‖w‖
(
2048 log3(<)

) ‖w ‖
2 · E‖(�̂

1
2 − � 1

2 )`‖2

≤ ‖w‖
(
2048 log3(<)

) ‖w ‖
2 ·

√
E‖(�̂

1
2 − � 1

2 )`‖22

≤ ‖w‖
(
2048 log3(<)

) ‖w ‖
2 ·

√
E‖�̂

1
2 − � 1

2 ‖2Fr

(a)

≤ ‖w‖
(
2048 log3(<)

) ‖w ‖
2 · :2

_max(�)
· E‖�̂ − �‖2Fr

(b)

≤ � · :
6 · ‖w‖(2048 log3(<))

‖w ‖
2

<
.

In the step marked (a) we used the fact that the continuity estimate for matrix square roots

given in Fact 8. In the step marked (b) we recalled the definition of � and observed that

_max(�) ≥ ^(1− ^) for the subsampled Haar and the Hadamard sensing model. We also used

the bound on E‖�̂ − �‖2Fr obtained in Lemma 43.
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Analysis of (IV): We can control (III) as follows:

(IV) ≤
√
E?2(Z) ·

√
P(Z ∉ E)

(c)

≤ �
√
EM(

√
<	, 2w, c, a)
<

(d)

≤ (�‖w‖ log2(<))
‖w ‖

2

<

In the step marked (c) we recalled that P(Z ∉ E) ≤ �/<2 and expressed ?2(Z) as a matrix

moment. In the step marked (d) we used the bounds on matrix moments obtained in Lemma

19.

Analysis of (IV): We recall that � was a diagonal matrix with |Σ88 | ≤ 2^(1 − ^) ≤ 1. Hence,

(V) ≤
√
E?2(� 1

2 ) ·
√
P(� 1

2 ` ∉ E)

(e)

≤ : ‖w‖
‖w ‖

2

<
.

In the step marked (e) we used standard moment and tail bounds on Gaussian random

variables.

Combining the bounds on I − V immediately yields the claims of Proposition 11 and 10. �

4.10.4 Missing Proofs from Section 4.8

Proof of Lemma 26

Proof of Lemma 26. We will assume thatA is of Type 1 (the proof of the other types is analogous):

A(	, `) = ?1(	)@1(`)?2(	) · · · @:−1(`)?: (	).
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Define for any 8 ∈ [:]:

A0
def
= ?1(	)@1(Diag (z))?2(	) · · · @:−1(Diag (z))?: (	),

A8
def
= ?1(	)@1(Diag

(
z̃
)
) · · · @8 (Diag

(
z̃
)
)?8+1(	)@8+1(Diag (z)) · · · @:−1(Diag (z))?: (	).

where 	 = [H[T. Observe that we can write:

zTA([H[T,Diag (z))z − z̃TA([H[T,Diag
(
z̃
)
) z̃ = zTA0z − z̃TA:−1 z̃

= zTA0z − zTA:−1z + zTA:−1z + z̃TA:−1 z̃

=
©­«
:−2∑
8=0
zT(A8 − A8+1)z

ª®¬ + 〈A:−1, zz
T − z̃ z̃T〉.

We bound each of these terms separately. First observe that:

|zT(A8 − A8+1)z | ≤ ‖z‖22 · ‖A8 − A8+1‖op

≤ � (A) · ‖z‖22 · ‖z − z̃‖∞.

Next we note that,

|〈A:−1, zz
T − z̃ z̃T〉| ≤ 2‖A:−1‖op · ‖zzT − z̃ z̃T‖op

= � (A) · ‖z − z̃‖2 · (‖z‖2 + ‖ z̃‖2).

This gives is the estimate:����� zTA([H[T,Diag (z))z
<

−
z̃TA([H[T,Diag

(
z̃
)
) z̃

<

����� ≤
� (A)
<
·
(
‖z‖22 · ‖z − z̃‖∞ + ‖z − z̃‖2 · (‖z‖2 + ‖ z̃‖2)

)
,

218



where � (A) denotes a finite constant depending only on the ‖‖∞ norms and Lipchitz constants of

the functions appearing in A. �

Proof of Lemma 27

Proof of Lemma 27. Using the continuity estimate from Lemma 26 we know that on the event E,����� zTA(	, `)z<
− z̃

TA(	, ˜̀) z̃
<

����� ≤ � (A)<
·
(
‖z‖22 · ‖z − z̃‖∞ + ‖z − z̃‖2 · (‖z‖2 + ‖ z̃‖2)

)
≤ � (A)

<
·
(
‖z‖22 · ‖z‖∞ + ‖z‖2 · (‖z‖2 + ‖ z̃‖2)

)
·
(
max
8∈[<]

���� 1
f8
− 1

����)
≤ � (A)

<^
·
(
‖z‖22 · ‖z‖∞ + ‖z‖2 · (‖z‖2 + ‖ z̃‖2)

)
·

√
log3(<)
<

Hence,�����E zTA(	, `)z<
− E z̃

TA(	, ˜̀) z̃
<

IE

����� ≤
�����E zTA(	, `)z<

IE2

�����
+ � (A) log

3
2 (<)

<
√
<^

·
(
E‖z‖22 · ‖z‖∞ + E‖z‖2 · (‖z‖2 + ‖ z̃‖2)

)
.

Observe that zTAz ≤ ‖A‖op‖z‖2 ≤ � (A)‖z‖22 ≤ � (A)‖x‖
2
2. Hence,

�����E zTA(	, `)z<
IE2

����� ≤ � (A)
√
E‖x‖42 · P(E2)

<
≤
� (A)

√
P(E2)

^2 → 0,

E‖z‖22 + E‖z‖2‖ z̃‖2 ≤ 2E‖z‖22 + E‖ z̃‖
2
2 ≤ 2E‖x‖22 + E‖ z̃‖

2
2 =

2<
^
+ <,

E‖z‖22 · ‖z‖∞ ≤ <E‖z‖
3
∞ ≤ <

(
E‖z‖99

) 1
3 ≤ �< 4

3 .

This gives us, �����E zTA(	, `)z<
− E z̃

TA(	, ˜̀) z̃
<

IE

�����→ 0,

219



and hence we have shown,

lim
<→∞

EzTA(	, `)z
<

= lim
<→∞

E
z̃TA(	, ˜̀) z̃

<
IE ,

provided the latter limit exists. �

Proof of Lemma 29

Proof of Lemma 29. Recall that:

Ĩ01 Ĩ0:+1

:∏
8=1

@8 ( Ĩ08 ) = &ℱ ( Ĩ01) · &ℒ ( Ĩ0:+1)
©­«

∏
8∈�(c)

@8−1( Ĩ08 )
ª®¬
|c |−|�(c) |−2∏

8=1
(&V8 (I0V8 ) + `V8 )

Hence,

E[Ĩ01@1( Ĩ02)@2( Ĩ03) · · · @:−1( Ĩ0: ) Ĩ0:+1 |G] =∑
+⊂[|c |−|�(c) |−2]

E

&ℱ ( Ĩ01)&ℒ ( Ĩ0:+1)
©­«

∏
8∈�(c)

@8−1( Ĩ08 )
ª®¬
∏
8∈+
(&V8 ( Ĩ0V8 ))

����G ©­«
∏
8∉+

`V8
ª®¬ (4.42)

We now apply Mehler’s formula to estimate the above conditional expectations. We first check the

conditions for Mehler’s formula:

1. The random variables z̃ are marginally N (0, 1). Define � = E[ z̃ z̃T |G]. z̃ and are weakly

correlated on the event E since:

max
8≠ 9
|Σ8 9 | =

����� (GGT)8 9/^
f8f9

�����
=

����� (	)8 9/^f8f9

�����
≤ �

√
log3(<)
<^2 , for < large enough,

where � denotes a universal constant.
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2. Let ( ⊂ [<] with |( | ≤ : +2. Let �(,( denote the principal submatrix of � formed by picking

rows and columns in (. Then by Gershgorin’s Circle theorem, on the event E,

_min(�) ≥ 1 − (: + 1)max
8≠ 9
|Σ8 9 |

≥ 1 − � (: + 1)

√
log3(<)
<^2

≥ 1
2
, for < large enough.

3. Note that for b ∼ N (0, 1), we have,

E&ℱ (b) = 0, E&ℒ (b) = 0 (Since they are odd functions, see (4.23), (4.24)),

E@8−1(b) = Eb@8−1(b) = 0 ∀ 8 ∈ �(c) (They are centered, even functions, see Def. 7),

E&V8 (b) = Eb&V8 (b) = 0 ∀ 8 ∈ [|c | − |�(c) | − 2] (See (4.26))

Hence applying the first non-zero term in Mehler’s Expansion (Proposition 9) of the condi-

tional expectation:

E

&ℱ ( Ĩ01) · &ℒ ( Ĩ0:+1) ·
©­«

∏
8∈�(c)

@8−1( Ĩ08 )
ª®¬ ·

∏
8∈+
(&V8 ( Ĩ0V8 ))

����G
has total weight ‖w‖ given by:

‖w‖ ≥ 1 + 1 + 2|�(c) | + 2|+ |
2

= 1 + |�(c) | + |+ |.
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Hence, by Proposition 9 we have,

IE ·

�������E
&ℱ ( Ĩ01) · &ℒ ( Ĩ0:+1) ·

©­«
∏
8∈�(c)

@8−1( Ĩ08 )
ª®¬ ·

∏
8∈+
(&V8 ( Ĩ0V8 ))

����G
�������

≤ � (A)(max
8≠ 9
|Σ8, 9 |)1+|�(c) |+|+ | ≤ � (A) ·

(
log2(<)
<^2

) 1+|�(c) |+ |+ |
2

, (4.43)

where � (A) denotes a finite constant depending only on the functions @1:: . When + = ∅ we will

also need to estimate the leading order term more accurately. Define,

G1(c)
def
=

{
w ∈ G(: + 1) : d1(w) = 1, d:+1(w) = 1, d8 (w) = 2 ∀ 8 ∈ �(c),

d8 (w) = 0 ∀ 8 ∉ {1, : + 1} ∪�(c)
}
.

By Mehler’s formula, on the event E, we have:�������E
&ℱ ( Ĩ01) · &ℒ ( Ĩ0:+1) ·

©­«
∏
8∈�(c)

@8−1( Ĩ08 )
ª®¬
����G −

∑
w∈G1 (c)

6̂(w,	) · M(	, w, c, a)

�������
≤ � (A) ·

(
log3(<)
<^2

) 2+|�(c) |
2

,

where,

6̂(w,	) = 1
w!
· ©­«

:+1∏
8=1

1
f

d8 (w)
08

ª®¬ · ©­«&̂ℱ (1)&̂ℒ (1)
∏
8∈�(c)

@̂8−1(2)
ª®¬ 1
^‖w‖

,

and M(	, w, c, a) are matrix moments as defined in Definition 8. Note that the coefficients

6̂(w,	) depend on 	 since,

f2
8 = 1 + 	88

^
,
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but we can remove this dependence. On the event E, note that,

max
8∈[<]
|f2
88 − 1| ≤ �

√
log3(<)
<^2 .

Hence defining:

6̂(w, c) = 1
w!
· ©­«&̂ℱ (1)&̂ℒ (1)

∏
8∈�(c)

@̂8−1(2)
ª®¬ 1
^‖w‖

,

we have, for < large enough and on the event E,

|6̂(w, c) − 6̂(w,	) | ≤ �:

√
log3(<)
<^2 .

Furthermore, we have the estimate,

|M(	, w, c, a) | ≤ (max
8, 9
|Ψ8 9 |)‖w‖1

(a)

≤ �
(
log3(<)
<^2

) 1+|�(c) |
2

,

where in the step (a), we used the definition of the event E in (4.22) and the fact that ‖w‖ = 1+|�(c) |

for any w ∈ G1(c). Hence we obtain, on the event E,�������E
&ℱ ( Ĩ01) · &ℒ ( Ĩ0:+1) ·

©­«
∏
8∈�(c)

@8−1( Ĩ08 )
ª®¬
����G −

∑
w∈G1 (c)

6̂(w, c) · M(	, w, c, a)

�������
≤ � (A) ·

(
log3(<)
<^2

) 2+|�(c) |
2

,
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Combining this estimate with (4.42) and (4.43) gives us:

IE ·

������E[Ĩ01@1( Ĩ02)@2( Ĩ03) · · · @:−1( Ĩ0: ) Ĩ0:+1 |G] −
∑

w∈G1 (c)
6(w, c) · M(	, w, c, a)

������
≤ � (A) ·

(
log3(<)
<^2

) 2+|�(c) |
2

,

where,

6(w, c) = 1
^‖w‖w!

· ©­«&̂ℱ (1)&̂ℒ (1)
∏
8∈�(c)

@̂8−1(2)
ª®¬ · ©­«

∏
8∈[|c |−|�(c) |−2]

`V8
ª®¬

G1(c)
def
=

{
w ∈ G(: + 1) : d1(w) = 1, d:+1(w) = 1, d8 (w) = 2 ∀ 8 ∈ �(c),

d8 (w) = 0 ∀ 8 ∉ {1, : + 1} ∪�(c)
}
,

and � (A) denotes a constant depending only on the functions appearing in A and : . This was

precisely the claim of Lemma 29. �

4.10.5 Proof of Proposition 9

Proof of Proposition 9. Let k(z;�) denote the density of a : dimensional zero mean Gaussian

vector with positive definite covariance matrix � i.e. z ∼ N (0,�). Suppose that Σ88 = 1 ∀ 8 ∈ [:].

In this situation [130] has found an explicit expression for the Taylor series expansion of k(z;�)

around � = O: given by:

k(z;�) =
∑

w∈G(:)

�w� k(z; O: )
w!

· ©­«
∏
8< 9

Σ
F8 9

8 9

ª®¬ ,
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where �w� k(z; O: ) denotes the derivative:

�w� k(z; O: )
def
=

m‖w‖

mΣ
F12
12 mΣ

F13
13 · · · mΣ

F23
23 mΣ

F24
24 · · · mΣ

F:−1,:
:−1,:

k(z;�)
����
�=O:

=
©­«
:∏
8=1

�d8 (w) (I8)
ª®¬ · k(z; O: ).

We intend to integrate the Taylor series for k(z;�) to obtain the expansion for the expectation in

Proposition 9. In order to do so we need to understand the truncation error in the Taylor Series. By

Taylors Theorem, we know that:

k(z;�) −
∑

w∈G(:):‖w‖≤C

�w� k(z; O: )
w!

· ©­«
∏
8< 9

Σ
F8 9

8 9

ª®¬ =
∑

w∈G(:):‖w‖=C+1

�w� k(z;�W)
w!

· �w, (4.45)

where �W = W� + (1− W)O: for some W ∈ (0, 1). [130] has further showed the following remarkable

identity:

�w� k(z;�) =
m2‖w‖

mI
d1 (w)
1 mI

d2 (w)
2 · · · mId: (w)

:

k(z;�).

An inductive calculation shows that the ratio:

1
k(z;�)

m2‖w‖

mI
d1 (w)
1 mI

d2 (w)
2 · · · mId: (w)

:

k(z;�),

is a polynomial of degree 4‖w‖ in the variables I1, I2 . . . I: , {(�−1)8 9 }8< 9 . Hence:������ 1
k(z;�)

m2‖w‖

mI
d1 (w)
1 mI

d2 (w)
2 · · · mId: (w)

:

k(z;�)

������ ≤
�‖w‖ · (1 +

∑
8< 9

| (�−1)8 9 |4‖w‖ +
:∑
8=1
|I8 |4‖w‖),
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where �‖w‖ denotes a constant depending only on ‖w‖. Observing that:

(�−1)8 9 ≤ ‖�−1‖op =
1

_min(�)
< ∞.

This gives us:������ 1
k(z;�)

m2‖w‖

mI
d1 (w)
1 mI

d2 (w)
2 · · · mId: (w)

:

k(z;�)

������ ≤ �‖w‖ ©­«1 + :2

_
4‖w‖
min (�)

+
:∑
8=1
|I8 |4‖w‖

ª®¬ .
Substituting this estimate in (4.45) gives us:������k(z;�) − ∑

w∈G(:):‖w‖≤C

�w� k(z; O: )
w!

· �w
������

≤ �C,: ·
©­«1 + :2

_4C+4
min (�W)

+
:∑
8=1
|I8 |4C+4

ª®¬ ·
(
max
8≠ 9
|Σ8 9 |

) C+1
· k(z;�W).

Note that _min(�W) = W + (1 − W)_min(�) ≥ min(1, _min(�)). Hence,������k(z;�) − ∑
w∈G(:):‖w‖≤C

�w� k(z; O: )
w!

· �w
������

≤ �C,: ·
©­«1 + :2

min(_4C+4
min (�), 1)

+
:∑
8=1
|I8 |4C+4

ª®¬ ·
(
max
8≠ 9
|Σ8 9 |

) C+1
· k(z;�W).

Using this expansion to compute the expectation of
∏:
8=1 58 (I8) we obtain:���������E


:∏
8=1

58 (I8)
 −

∑
w∈G(:)
‖w‖≤C

©­«
:∏
8=1

5̂8 (d8 (w))
ª®¬ · �

w

w!

��������� ≤ �
(
1 + 1

_4C+4
min (�)

) (
max
8≠ 9
|Σ8 9 |

) C+1
,

where � = �C,:, 51:: denotes a constant depending only on C, : and the functions 51:: . In obtaining the

above estimate we use the fact that since the functions 58 have polynomial growth and marginally
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I8 ∼ N (0, 1) under the measure N
(
0,�W

)
(since (ΣW)88 = 1) we have,

Ez∼N (0,�W)

|I8 |4C+4
:∏
9=1
| 5 9 (I 9 ) |

 ≤
:∑
9=1
Ez∼N (0,�W)

[
|I8 |4C+4 | 5 9 (I 9 ) |:

]
= �C,:, 51:: < ∞.

�

4.10.6 Some Miscellaneous Facts

Fact 2 (Hanson-Wright Inequality [65]). Let x = (G1, G2 . . . , G=) ∈ R= be a random vector with

independent 1-subgaussian, zero mean components. Let G be an = × = matrix. Then, for every

C ≥ 0,

P
(
|xTGx − ExTGx | > C

)
≤ 2 exp ©­«−2min

(
C2

‖G‖2Fr

,
C

‖G‖op

)ª®¬ .
Fact 3 (Gaussian Poincare Inequality). Let x ∼ N (0, O=). Then, for any !-Lipchitz function

5 : R= → R we have,

Var( 5 (x)) ≤ !2.

Fact 4 (Moments of a Random Unit vector, Lemma 2.22 & Proposition 2.5 of [133]). Let x ∼

Unif (S=−1). Let 8, 9 , :, ℓ be distinct indices. Then:

EG4
8 =

3
=(= + 2) , EG

2
8 G

2
9 =

= + 1
=(= − 1) (= + 2) EG

3
8 G 9 = 0 EG8G 9G2

: = 0, EG8G 9G:G; = 0.

Furthermore, there exists a universal constant � such that, for any C ∈ N:

E|G8 |C ≤
(
�C

<

) C
2

.
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Fact 5 (Concentration on the Sphere, [134]). Let x ∼ Unif (S=−1). Then

P
(
|G1 | ≥ n

)
≤ 24−=n

2/2.

Fact 6 (ℓ∞ norm of a random unit vector). x ∼ Unif (S=−1). Then

E‖x‖C∞ ≤
(
� log(=)

=

) C
2

,

for a universal constant �.

Proof. For a random unit vector we can control E‖x‖C∞ as follows. Let @ ∈ N be a parameter to be

set suitably. Then,

E‖x‖C∞ =
(
E‖x‖@C∞

) 1
@

≤ ©­«
=∑
8=1
E|G8 |@C

ª®¬
1
@

(a)
=

(
=E|G1 |@C

) 1
@

(b)
= =

1
@ · @ C2 ·

(
�C

=

) C
2

(c)

≤ 4C · (2 log(=)) C2 ·
(
�

=

) C
2

.

In the step marked (a) we used the fact that the coordinates of a random unit vector are exchangeable,

in (b) we used the fact that D1 is �/<-subgaussian (see Fact 5) and in (c) we set @ = b 2 log(=)
C
c. �

Fact 7 (Poincare Inequality for Haar Measure, [135]). Consider the following setups:

1. Let U ∼ Unif
(
O(<)

)
and 5 : R<×< → R be a function such that:

5 (U) = 5 (UJ), J = Diag
(
1, 1, 1, . . . , 1, sign(det(U))

)
, (4.46)

228



then,

Var( 5 (U)) ≤ 8
<
· E‖∇ 5 (U)‖2Fr.

for any < ≥ 4.

2. Let U ∼ Unif
(
U(<)

)
and 5 : C<×< → R. Then,

Var( 5 (U)) ≤ 8
<
· E‖∇ 5 (U)‖2Fr.

Proof. This result is due to [135]. Our reference for these inequalities was the book of [133].

Theorem 5.16 of [133] shows that Haar measures on SO(<),U(<) satisfy Log-sobolev inequality

with constant 8/<. It is well known that Log-Sobolev Inequality implies the Poincare Inequality (see

for e.g. Lemma 8.12 in [136]). Note that, in the real case we only obtain the Poincare inequality for

the Haar measure on SO(<), condition (4.46) ensures the result still holds forU ∼ Unif
(
O(<)

)
. �

Fact 8 (Continuity of Matrix Square Root [137, Lemma 2.2]). For any two symmetric positive

semi-definite matrices S1,S2 we have,

‖S
1
2
1 − S

1
2
2 ‖op ≤

‖S1 − S2‖op√
_min(S1)

.
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Chapter 5: Compressive Phase Retrieval

5.1 Introduction

5.1.1 Motivation

Consider the problem of recovering x ∈ Q from < noisy phase-less linear measurements

y = |�x | + & ,

where � ∈ C<×= and & ∈ R< denote the sensing matrix and the measurement noise, respectively.

Here Q denotes a compact subset of C= and | · | denotes the element-wise absolute value operator.

Assume that the class of signals denotes by Q is “structured”, but instead of the set Q, or its

underlying structure, for recovering x from y, we have access to a compression code that takes

advantage of the structure of signals in Q to compress them efficiently. For instance, consider the

class of images or videos for which compression algorithms, such as JPEG2000 or MPEG4, take

advantage of complicated structures within such signals and encode them efficiently. Employing

such structures in a phase retrieval algorithm can reduce the number of measurements or equivalently

increase the quality of the recovered signals. This raises the following questions:

1. Is it possible to use a given compression algorithm for the recovery of x from its undersampled

set of phaseless observations?

2. What is the required number of observations (in terms of the rate-distortion performance of

the code), for almost zero-distortion recovery of x?

3. Can we find polynomial time algorithms to use a given compression algorithm to recover

x from its undersampled set of phaseless observations? If so, how does the answer to the
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second question change if we want to approximate the solution in the polynomial time?

Affirmative answers to these questions enable us to use the structures that are employed by the

state-of-the-art compression algorithms, such as JPEG2000 or MPEG4, and build phase retrieval

recovery algorithms with higher reconstruction quality or equivalently lower number of required

measurements for a given desired quality. Furthermore, whenever the image or video compression

communities design new compression algorithms that are capable of employing more complex

structures, the framework we develop in this chapter, by integrating those codes, automatically, with

no extra effort, leads to new phase retrieval algorithms that take advantage to those new structures

In the remainder of this section, we first review the formal definitions of compression algorithms

and their rate-distortion performance measures. We will then briefly sates our responses to the

above three questions. Finally, we compare our contribution with the existing work in the literature.

5.1.2 Background on compression algorithms

A rate-A compression code is composed of an encoder mapping E and a decoder mapping D,

where

E : C= → {0, 1}A , and D : {0, 1}A → C=.

The distortion performance of the compression code defined by mappings (E,D) on set Q is

measured as

X , sup
x∈Q



x − D(E(x))

 .
Throughout the chapter sometimes we use subscript A for the encoder and decoder mappings as

(EA ,DA) to highlight the rate of the code. The codebook of compression code (EA ,DA) operating at

rate A is defined as

CA , DA (EA (Q)) = {DA (EA (x)) : x ∈ Q}.

It is straightforward to confirm that |CA | ≤ 2A .
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In many application areas, the user has access to a family of compression codes. For instance,

in image processing, a user can tune the rate in JPEG2000. Given a family of compression codes

F =
{
(EA ,DA)

}
A∈N for set Q indexed by their rate A , let X(A) denote the distortion performance of

the code operating at rate A , i.e., (EA ,DA). Then, the rate-distortion function of this family of codes

is defined as

A (X) , inf{A : X(A) < X}.

Define the U-dimension of this family of codes as

dimU (F ) , lim sup
X→0

A (X)
log2

1
X

. (5.1)

We will later show that this quantity is closely connected to the number of measurements our

proposed recovery methods require for accurate phase retrieval. To offer some insight on this

quantity and what it measures consider the following well-known example. Let

B= =
{
x ∈ R=

���‖x‖ ≤ 1
}
,

and

S=,: =
{
x ∈ B=

���‖x‖0 ≤ :}
denote the unit =-dimensional ball and the set of :-sparse signals in the unit ball, respectively. It is

straightforward to show that the U-dimension of any family of compression codes for B= and S=,:

are lower-bounded by = and : , respectively. As shown in [138], there exist compression codes that

achieve these lower bounds in both cases. A straightforward generalization of this result implies

that for :-sparse signals in the unit ball in C=, the U-dimension of any family of compression codes

is lower-bounded by 2: , and this bound is achievable.
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5.1.3 Summary of our contributions

Consider the problem of noiseless phase retrieval, i.e., recovering x up to its phase from y = |�x |.

To answer the first two questions we raised in Section 5.1.1, we propose COmpressible PhasE

Retrieval (COPER) that employs a given compression code to solve the described phase retrieval

problem. Given measurement matrix � ∈ C<×=, define the distortion measure 3� : C= × C= → R+

as follows

3� (x, c) ,
<∑
:=1

(��a:∗x��2 −��a:∗c��2)2

=

<∑
:=1

(
a:
∗(xx∗ − cc∗)a:

)2
, (5.2)

where a:∗ denotes the : th row of �. When there is no ambiguity about the signal of interest x, we

use 3� (c) instead of 3� (x, c). Throughout the chapter, for complex matrix �, �∗ and � denote

its transposed-conjugate, and conjugate, respectively. Based on the defined distance measure, we

define COPER, a non-convex optimization problem for recovering x from measurements y, as

follows:

x̂ = arg min
c∈CA

3� (x, c). (5.3)

In other words, among all elements of the codebook, COPER finds the one for which |�c | is closest

to measurements y. Note that since H: = |a:∗x |, to calculate 3� (x, c), we do not need to know x.

In phase retrieval, since the measurements are phaseless, the recovery of x can never be exact; if

x satisfies y = |�x |, then so does e8\x, for any \ ∈ R. Hence, following the standard procedure in

the phase retrieval literature, we measure the quality of our estimate x̂ as

inf
\∈[0,2c)




e8\x − x̂


2
.

In Section 5.2, we will bound inf
\



e8\x − x̂

2 in terms of the number of measurements and the rate-

distortion function of the code. We show that < > dimU (F ) observations suffice for an accurate
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recovery of x by COPER. For the aforementioned set of :-sparse signals that lie in the unit ball in

C=, using a family of compression codes with an U-dimension of 2: , our results imply that COPER

requires slightly more than 2: noise-free phase-less measurements for an accurate recovery.

Despite the nice theoretical properties of COPER, it is not directly useful in practice as it is

based on an exhaustive search over the set of all codewords, which is exponentially large. This

leads us to the third question asked in Section 5.1.1. In response to this question, we introduce an

iterative algorithm called gradient descent for COPER (GD-COPER). Let z0 denote some selected

initial point, and define gradient of real-valued function 3 as ∇3� (z) ,
(
m3�
mz

)∗
, where

m3�

mz
,
m3� (z, z)

mz

���
z=constant

,

is the Wirtinger derivative [25]. The iterations of GD-COPER proceed as follows:

sC+1 , zC − `∇3� (zC),

zC+1 , PCA (sC+1), (5.4)

where C represents the iteration index. Moreover, here, for z ∈ C=,

3� (z) = 3� (x, z) =
<∑
:=1

(��a∗: z��2 −��a∗:x��2)2

=

<∑
:=1

(
a:
∗(xx∗ − zz∗)a:

)2
,

and therefore,

∇3� (z) = 2
<∑
:=1

(��a∗: z��2 −��a∗:x��2) a: a∗: z.
Here, CA , as defined earlier, is the set of codewords of the code, and PCA : C= → CA denotes the

projection operator on this set. That is, for s ∈ C=,

PCA (s) = arg min
c∈CA
‖c − s‖2 .
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We show that, under some mild conditions on the initialization, given < > � dimU (F )2 log2
2 =

phase-less measurements, GD-COPER finds an accurate estimate of x. Note that the number of

measurements GD-COPER requires is considerably larger than what is needed by the combinatorial

COPER optimization; in addition to the extra log factor, the number of measurements GD-COPER

requires is proportional to dimU (F )2, unlike for COPER which only requires dimU (F ) observations.

While it might be the case that the difference is due to our proof techniques and the gap is not

something fundamental, based on our study of the problem, it seems more plausible to us that the

difference is the cost paid for having a polynomial time algorithm and cannot be closed (except for

probably removing the log2 factors).

Finally, we perform extensive numerical experiments to understand the algorithmic properties

of GD-COPER, and evaluate the amount of gain a compression algorithm can offer for a simple

‘gradient descent’-type algorithm.

5.1.4 Related work

The problem of phase retrieval has been extensively studied in the literature [24, 25, 139, 38,

26, 140, 141, 142, 143, 21, 22, 144, 145, 146, 147, 148, 149]. (Refer to [140] for a comprehensive

review of the literature.) Since, unlike compressed sensing, in phase retrieval, the measurements are

a non-linear function of the input, even if the number of measurements is more than the ambient

dimension of the signal, the recovery problem is still challenging. Hence, the primary focus of the

field has been on developing and analyzing efficient recovery algorithms for general input signals.

However, similar to compressed sensing, in most applications, the input signals are in fact structured.

Therefore, taking such structures into account can lead to more efficient recovery algorithms with

a lower number of required measurements or smaller reconstruction error. Hence, in more recent

years, there has been work on phase retrieval of structured sources. In this domain, most papers

are concerned with standard structures, such as sparsity. Assuming the signal is :-sparse, i.e., all

of its coordinates but : of them are 0, a variety of recovery algorithms have been proposed in the

literature. In the following, we briefly review some of such methods.
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It is assumed in [150] that the signal is sparse, or can be approximated well with few non-zero

coefficients. Furthermore, the authors suppose that ;1-norm of the signal is known, and employ an

iterative phase retrieval algorithm. However, no theoretical guarantee is offered for the performance

of the proposed recovery algorithm. The lifting is used in [18, 151] to convexify the problem and

take advantage of semidefinite programming (SDP) for signal recovery. Since x ∈ C= is lifted to

the space of C=×= matrices, the proposed algorithm is computationally demanding. Furthermore,

the performance of the algorithm is guaranteed only under the assumption that the linear operator

that appears in the SDP satisfies either the restricted isometry property or the coherence condition.

Similarly, [152] poses the problem of sparse phase retrieval as a non-convex optimization problem

and uses the alternating direction method of multipliers (ADMM) to solve the problem. Generalized

approximate message passing (GAMP) has been used in [153] for the recovery of sparse signals.

Despite the success of the ADMM and GAMP in simulation results, the theoretical properties of

the algorithms are unknown. Inspired by the Wirtinger flow algorithm, [34] proposes a projected

gradient descent for the recovery of :-sparse signals that resembles GD-COPER, proposed in

this chapter. However, GD-COPER uses a generic compression algorithm, while the projected

gradient descent of [34] uses the projection on the set of all :-sparse vectors. Also, by combining

the alternating minimization idea with Compressive Sampling Matching Pursuit (CoSaMP) [154]

has obtained another theoretically-supported algorithm for sparse phase retrieval with sample

complexity of $ (:2 log2 =). In a more general setting, [155, 36] consider the regularized PhaseMax

formulation, proposed in [21, 22], and show that if a good anchor is available, then the algorithm

is capable of recovering the signal from a number of measurements proportional to the minimum

required number of measurements.

More recently, a few papers have used more sophisticated structures that are present in images

to improve the performance of the recovery algorithms [156, 157, 158, 159]. For instance, by

integrating a generic image denoiser in the iterations of the approximate message passing, similar

to the approach of [160], [156] improved the performance of the approximate message passing

for the recovery of images. Since the message passing framework works mainly for measurement
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matrices drawn independent and identically distributed (i.i.d.), [156] used the RED formulation,

proposed originally in [161], for the phase retrieval. The simulation results presented in [156]

suggest that the algorithms that are based on the RED formulation (and a neural net denoiser) work

well on Gaussian as well as coded diffraction and Fourier measurement matrices. Similarly, [158]

adds a total variation penalty to the non-convex formulation of phase retrieval problem and uses

the ADMM approach for finding a local minimizer. Finally, [162] uses a deep generative network

to model images and then uses the learned model as a prior to help the phase retrieval recovery

algorithms.

Finally, using generic compression algorithms for compressed sensing and image restoration

problems has been investigated before in [138, 163, 164, 165]. However, given the nonlinear nature

of the measurement process in phase retrieval, similar to other compressed sensing methods, neither

the theoretical nor the algorithmic tools and techniques developed in the area of compression-based

compressed sensing are directly applicable to phase retrieval.

In this chapter, we develop a theoretical framework for phase retrieval, i.e., recovering a signal

from its under-determined noise-free phase-less measurements, that is applicable to general struc-

tures employed by compression codes. This allows developing theoretically-analyzable algorithms

that employ structures much beyond those that have been studied so far in the phase retrieval litera-

ture. We first propose an idealistic compression-based phase retrieval recovery method that guides

us on the potential of such recovery methods. We then propose a computationally-efficient and

theoretically-analyzable algorithm that given enough measurements is guaranteed to convergence to

the desired solution. We also obtain an upper bound on the gap between the performance of the

efficient algorithm and that of the idealistic computationally-infeasible method.

5.1.5 Organization of this chapter

The organization of the chapter is as follows. Sections 5.2 and 5.3 state and prove our main

theoretical contributions regarding the performance of COPER and GD-COPER, respectively.

Section 5.4 summarizes our simulation results. Finally, section 5.6 gathers lemmas and theorems
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we have used to obtain the main results and proves them.

5.2 Theoretical Guarantees of COPER

Consider a class of signals Q ⊂ C= and a compression code with encoding and decoding

mappings (EA ,DA) and codebook CA . Using the given compression code, COPER recovers x ∈ Q

from measurements y = |�x | by solving the following combinatorial optimization:

x̂ = arg min
c∈CA

3� (x, c).

The main goal of this section is to analyze the performance of this optimization. Toward this goal,

we make the following assumptions:

1. For every x ∈ Q, we have ‖x‖2 ≤ 1.1

2. The elements of � are i.i.d. drawn from N(0, 1) + 8N(0, 1), where 8 denotes the square root

of −1.

The following theorem obtains an upper bound on the accuracy of the COPER’s estimate.

Theorem 8. Let (EA , CA) be a rate-A compression code with distortion X. Let x ∈ Q denotes

the desired signal, and define sensing matrix �, as above. Let x̂ denotes the solution of COPER

optimization. That is, x̂ = arg min
c∈�A

3� (x, c). Then, we have

inf
\




e8\x − x̂


2
≤ 16
√

3
1 + g2√
g1

<X, (5.5)

with probability at least

1 − 2Ae
<
2 ( +log g1−log<) − e−2<(g2−log(1+g2)) , (5.6)

1Given the fact that we need the rate-distortion function to be finite for every X > 0, we expect Q to be a subset of
{x ∈ Re= |‖x‖2 ≤ '} for a given '. Without any loss of generality and for notational simplicity we have set ' = 1.
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where  = log 2c4, and g1, g2 are arbitrary positive real numbers.

The general form of this theorem enables us to set g1, g2, and X, and obtain different types of

performance guarantees. Hence, before proving this theorem, we mention one specific choice that

connects this result to the U-dimension of the compression code in the next corollary.

Corollary 8. For large enough A, we have

P

(
inf
\




e8\x − x̂


2
≤ �Xn

)
≥ 1 − 2−2[A − e−0.6<, (5.7)

where � = 32
√

3, and < = [ A

log2
1
X

. Given [ > 1
1−n , 2[ is a positive number less than [(1 − n) − 1.

Proof. Given n > 0, [ > 0, in Theorem 8, let g1 = <2X2−2n , and g2 = 1. It follows that,

inf
\




e8\x − x̂


2
≤ 32
√

3Xn , (5.8)

with probability

1 − e
A

(
log 2+ [ log 2

2 log 1
X

( +log<2X2−2n−log<)
)
− e−2<(1−log 2) . (5.9)

Note that 1 − log 2 > 0.3, and

1 + [

2 log 1
X

(
 + log<2X2−2n − log<

)
=

1 + [( + log<)
2 log 1

X

− [(1 − n).

Since  , [ are constants, and < → [ dimU (F ) as X→ 0. Therefore,

[( + log<)
2 log 1

X

X→0−−−→ 0.
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Set any positive number 2[ such that 0 < 2[ < [(1 − n) − 1, so for large enough A we have

1 + [( + log<)
2 log 1

X

− [(1 − n) < −2[,

Thus

e
A log 2

(
1+ [

2 log 1
X

( +log<2X2−2n−log<)
)
< 2−2[A .

�

We would like to emphasize on a few points about this corollary:

Remark 22. Corollary 8 shows that COPER recovers the signal x from [ dimU (Q) measurements

for any [ > 1 with desired small distortion. This happens with very high probability as A → ∞.

One simple implication of this result is that, in the case of :-sparse complex signals, COPER needs

2[: measurements for almost accurate recovery. Even if we had access to the sign of �x, we could

not recover x accurately with less than 2: measurements. Hence, in some sense this result is sharp.

Remark 23. This theorem guarantees the minimizer of the COPER optimization. However, note

that the COPER optimization is highly non-convex (optimization of a non-convex function over a

discrete set). Hence, it is still not clear how we can get a good approximation of x̂ in polynomial

time. This issue will be discussed in the next section.

Next we briefly review the main steps of the proof of Theorem 8.

Roadmap of the proof of Theorem 8. Here we mention the roadmap of the proof to help the readers

understand the main ideas. The details are presented in section 5.6.3. Let

x̃ = D(E(x)).

Clearly, x̃ ∈ CA . Note that by definition of X(A), ‖x − x̃‖ ≤ X(A). Moreover, by definition of x̂, we

have

3�
(
|�x | ,|�x̂ |

)
≤ 3�

(
|�x | ,|�x̃ |

)
. (5.10)
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For a complex vector c, let _1(c), _2(c) denote the two non-zero eigenvalues of xx∗ − cc∗. Fur-

thermore, let _max(c) denote the one with the largest absolute value. In Theorem 12 (proved in

Appendix B) we prove that for any positive g1 and g2 we have

P
(
3� (|�x | ,|�c |) > _2

max(c)g1, ∀c ∈ �A
)

≥ 1 − 2Ae
<
2 ( +log g1−log<) , (5.11)

where  = log 2ce and

P
(
3� (|�x | ,|�x̃ |) < _2

max(x̃)
(
4<(1 + g2)

)2
)

≥ 1 − e−2<(g2−log(1+g2)) . (5.12)

Combining (5.10), (5.11), and (5.12), we obtain

_2
max(x̂)g1 < 3�

(
|�x | ,|�x̂ |

)
≤ 3

(
|�x | ,|�x̃ |

)
< _2

max(x̃)
(
4<(1 + g2)

)2
. (5.13)

Therefore,

_2
max(x̂) <

16<2(1 + g2)2
g1

_2
max(x̃), (5.14)

with a probability larger than 1−2Ae<2 ( +log g1−log<) −e−2<(g2−log(1+g2)) . Hence, the main remaining

step is to connect _2
max(x̂) with inf

\



e8\x − x̂

2. According to Lemma 52 (proved in the Appendix)
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we have

_2
max(x̂) ≥

1
2

(
_2

1(x̂) + _
2
2(x̂)

)
(5.15)

=
1
2

(
‖x‖2 −‖x̂‖2

)2
+

(
‖x‖2‖x̂‖2 −

��x∗x̂��2) .
Recall ‖x − x̃‖ ≤ X and since x, x̃ ∈ Q we have ‖x‖ ,‖x̃‖ ≤ 1, thus

(
‖x‖ +‖x̃‖

)2 (
‖x‖ −‖x̃‖

)2 ≤ 4X2. (5.16)

Moreover,

X2 ≥ ‖x − x̃‖2

= ‖x‖2 +‖x̃‖2 − x∗x̃ − x̃∗x

≥ ‖x‖2 +‖x̃‖2 − 2
��x∗x̃��

≥ 2
(
‖x‖‖x̃‖ −

��x∗x̃��) ,
so we have

(
‖x‖‖x̃‖ −|x∗x̃ |

)
≤ X2

2 , which implies

(
‖x‖2‖x̃‖2 −

��x∗x̃��2) ≤ X2. (5.17)

Similarly, Lemma 52 implies

_2
max(x̃) ≤

(
_2

1(x̃) + _2(x̃)2
)

(5.18)

=

(
‖x‖2 −‖x̃‖2

)2
+ 2

(
‖x‖2‖x̃‖2 −

��x∗x̃��2)
≤ 6X2.

242



Therefore, combining (5.14),(5.15),(5.18), we have

1
2

(
‖x‖2 −‖x̂‖2

)2
+

(
‖x‖2‖x̂‖2 −

��x∗x̂��2) ≤ _2
max(x̂)

<
16<2(1 + g2)2

g1
_2

max(x̃)

≤ 96<2(1 + g2)2
g1

X2 (5.19)

with probability larger than 1 − 2Ae<2 ( +log g1−log<) − e−2<(g2−log(1+g2)) . Finally, Lemma 47

connects the left hand side of (5.19) with
(
inf
\



e8\x − x̂

2
)2

. Hence, using Lemma 47 we have

(
inf
\




e8\x − x̂


2
)2
≤ 768<2(1 + g2)2

g1
X2,

which means

P

(
inf
\




e8\x − x̂


2
≤ 16
√

3
1 + g2√
g1

<X

)
≥ 1 − 2Ae

<
2 ( +log g1−log<) − e−2<(g2−log(1+g2)) ,

where  = log 2c4, g1, g2 > 0.

�

5.3 Theoretical Guarantees of GD-COPER

As discussed before, COPER is based on an exhaustive search over the space of all codewords,

and is hence computationally very demanding, if not infeasible. This section aims to prove that with

more measurements GD-COPER, introduced in Section 5.1.3, reaches a good approximation of the

solution of COPER in polynomial time. In this section, we assume that

‖x‖ = 1, ‖z‖ = 1, ∀ z ∈ CA . (5.20)
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This assumption enables us to state our theoretical results in a simpler form. We will have a more

detailed discussion about this assumption in Section 5.5. Recall that the iterations of the GD-COPER

algorithm are given by

sC+1 , zC − `∇3� (zC),

zC+1 , PCA (sC+1), (5.21)

Remark 24. The projection step in GD-COPER, i.e., zC+1 , PCA (sC+1), might seem computationally

expensive, as the codebook CA is exponentially large. However, for a good compression code,

it is natural to expect the projection on the set of codewords to be equivalent to the successive

application of the encoder and the decoder mappings of the compression code. In other words, we

expect PCA (·) = DA (EA (·)) or, at least, DA (EA (·)) to be very close to PCA (·). We will present an

example in Section 5.5 to justify this claim. We will also provide theoretical results regarding the

robustness of GD-COPER to this assumption in Theorem 11. Hence, in our simulations, we use this

observation and run the GD-COPER algorithm as follows:

sC+1 = zC − `∇3� (zC),

zC+1 = DA (EA (sC+1)).

We first mention our generic result. We will then, simplify this result in a few corollaries to

interpret it and compare with the existing work.

Theorem 9. For a fixed signal x ∈ Q, define zC ∈ CA as in (5.21) with ` = 1
8< . Suppose that for

all \ ∈ R, e8\x ∈ Q. Define \C , arg min
\∈R



zC − e8\x


. For all n ≥ �2<

− 1
3 , with probability at least

1 − �3e−�1
√
<n+(3 log 2)A , where �1, �2, �3 > 0 are absolute constants, for C = 1, 2, . . ., we have




zC+1 − e8\Cx



 ≤ (


zC − e8\Cx




 + n )


zC − e8\Cx



 + 3XA . (5.22)

Before proving this theorem, we first simplify the statement of this theorem and compare it with
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Corollary 8. The following Corollary shows having enough measurements, we may get arbitrary

close to the COPER’s solution with this algorithm, with exponentially high probability.

Corollary 9. Consider the same setup as in Theorem 9. Assume that inf
\∈R



e8\x − z0

 = 1 − 2g < 1,

for some g > 0. Then, if X ≤ g(1−2g)
3 , and

< ≥ max

{(
�2
g

)3
,
�4
g
(dimU (F ) log2

1
X
)2

}
,

after ) iterations of GD-COPER,

inf
\∈R




e8\x − z)


 ≤ (1 − 2g) (1 − g)) + 3
g
XA , (5.23)

with probability at least

1 − �3e−
�1
√
g

2
√
< . (5.24)

Here, �1, �2, �3 are the constants introduced in Theorem 9 with n = g, and �4 is an absolute

constant.

Proof. We apply Theorem 9 with n = g, thus we need g = n ≥ �2<
− 1

3 , hence

< ≥
(
�2
g

)3
. (5.25)

With a probability larger than 1 − �3e−�1
√
<g+(3 log 2)A at each iteration we have




zC+1 − e8\C+1x



 ≤ (


zC − e8\Cx




 + g)


zC − e8\Cx



 + 3X, (5.26)
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hence,




zC+1 − e8\C+1x



 ≤ (


zC − e8\Cx




 + g)


zC − e8\Cx



 + 3X

≤ (1 − g) (1 − 2g) + 3X

≤ 1 − 2g, (5.27)

since X ≤ g(1−2g)
3 . Therefore, by (5.26) and (5.27), we may deduce that




zC+1 − e8\C+1x



 ≤ (1 − g)


zC − e8\Cx




 + 3X.

Hence we get,




x − e8\) z)



 ≤ (1 − g))


e8\0x − z0





+ 3X

(
1 + 1 − g + (1 − g)2 + . . . + (1 − g))−1

)
≤ (1 − 2g) (1 − g)) + 3X

g
. (5.28)

Moreover, if G denotes the event under which Theorem 9 holds, i.e. (5.22) is satisfied, then

P (G) ≥ 1 − �3e−�1
√
<g+(3 log 2)A

≥ 1 − �3e−
�1
√
g

2
√
<,

once we have (3 log 2)A ≤ �1
√
g<

2 , or equivalently

< ≥
�′4
g
A2, �′4 =

(
6 log 2
�1

)2
.

Since lim
A→∞

A

log2
1
X

= dimU (F ), for large enough A, we have A ≤ 1.5 dimU (F ) log2
1
X
. Hence,

< ≥ �4
g

(
dimU (F ) log2

1
X

)2
, (5.29)
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where �4 = 2.25�′4.

Since we assumed < ≥ max
((
�2
g

)3
,
�4
g

(
dimU (F ) log2

1
X

)2
)
, both (5.25) and (5.29) are satis-

fied. Then by (5.28) we obtain

inf
\∈R




e8\x − z)


 ≤ (1 − 2g) (1 − g)) + 3X
g
. (5.30)

�

Remark 25. Consider the same setup as in Corollary 9 and let g = 1
4 . Then, for X ≤ 1

24 , and

< ≥ max
{
(4�2)3 , 4�4(dimU (F ) log2

1
X
)2

}
,

after ) iterations of the GD-COPER algorithm,

inf
\∈R




e8\x − z)


 ≤ 1
2

(
3
4

))
+ 12X, (5.31)

with a probability greater than 1 − �3e−
�1
4
√
<, where �8, 8 ∈ {1, . . . , 4}, are positive constants.

Remark 26. If = is a large number (which is the case in almost all the applications of the phase

retrieval), then we can set X = 1
=

in Remark 25, and conclude that with < ≥ �′4 dimU (F )2 log2
2 =

measurements, GD-COPER can with high probability obtain an accurate estimate of x (with$ (1/=)

distortion). Hence, the number of measurements GD-COPER requires is substantially more than

the number of observations COPER requires. At this stage, it is not clear whether this discrepancy

is an artifact of our proof technique, the limitation of the GD-COPER algorithm, or a fundamental

limitation of the polynomial time algorithms. We leave the full study of this phenomenon for future

research. We should also mention that in the case of sparse phase retrieval [34] observed that even

under a good initialization the thresholded Wirtinger flow algorithm can recover the signal exactly

with :2 log2 = measurements, which is again consistent with our result. Furthermore, the paper

presented other evidences to suggest that to obtain a good initialization :2 log2 = measurements are

required. It is also worth mentioning that [166] has shown that convex relaxation methods will not
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work if the number of measurements is less than 2:2/log2 = for constant 2.

Remark 27. Corollary 9 proves the accuracy of GD-COPER under an initialization that satisfies

inf
\∈R



e8\x − z0

 = 1 − 2g < 1. Finding an initialization that theoretically satisfies this condition is a

good research direction for future research. However, as will be clarified in our simulation results

and has also be discussed elsewhere [145], the choice of initialization seems to have a minor effect

(almost none) on the performance of GD-COPER (and other iterative algorithms). Hence, in our

simulation results we have initialized GD-COPER with a white image.

Roadmap of the proof of Theorem 9. Let x̃ = PCA (e8\Cx). Since zC+1 = PCA (sC+1) and x̃ ∈ CA , we

have

‖sC+1 − x̃‖2 ≥ ‖sC+1 − zC+1‖2

= ‖sC+1 − x̃‖2 +‖x̃ − zC+1‖2 (5.32)

+ 2Re
(
(x̃ − zC+1)∗(sC+1 − x̃)

)
.

Therefore,

‖x̃ − zC+1‖2 ≤ 2Re
(
(x̃ − zC+1)∗(x̃ − sC+1)

)
. (5.33)

Let

vC ,
x̃ − zC+1
‖x̃ − zC+1‖

. (5.34)

Using this definition, (5.33) can be written as

‖x̃ − zC+1‖ ≤ 2Re
(
v∗C (x̃ − sC+1)

)
. (5.35)

Recall that E
[
∇3� (z)

]
= 8<(zz∗ − xx∗)z. Hence,
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x̃ − sC+1 = x̃ − e8\Cx + e8\Cx −
(
zC −

1
8<
E

[
∇3� (zC)

]
+ 1

8<

(
E

[
∇3� (zC)

]
− ∇3� (zC)

))
= x̃ − e8\Cx + e8\Cx −

(
zC − zC + (x∗zC)x

)
+ 1

8<

(
∇3� (zC) − E

[
∇3� (zC)

] )
= x̃ − e8\Cx + (1 − (e8\Cx)∗zC)e8\Cx (5.36)

+ 1
8<

(
∇3� (zC) − E

[
∇3� (zC)

] )
.

Note that


x̃ − e8\Cx



 ≤ XA . Also, since by lemma 46 we have 1 − (e8\Cx)∗zC = 1
2


e8\Cx − zC

2

and


e8\Cx

 = ‖vC ‖ = 1, by the triangle inequality, from (5.35) and (5.36), we have




e8\Cx − zC+1


 ≤ 


e8\Cx − x̃


 +‖x̃ − zC+1‖
≤ XA + 2Re

(
v∗C (x̃ − sC+1)

)
≤ XA + 2‖vC ‖




x̃ − e8\Cx





+2(1 − (e8\Cx)∗zC)‖vC ‖



e8\Cx




+ 1
4<

Re
(
v∗C

(
∇3� (zC) − E

[
∇3� (zC)

] ))
≤ XA + 2XA +




e8\Cx − zC


2
(5.37)

+ 1
4<

Re
(
v∗C

(
∇3� (zC) − E

[
∇3� (zC)

] ))
.

Define event G as follows

G ,
{

1
4<

Re
(
v∗

(
∇3� (z) − E

[
∇3� (z)

] ))
≤ n inf

\∈R




e8\x − z


 , v =
x̃ − z′
‖x̃ − z′‖ , ∀x̃, z, z

′ ∈ CA
}
. (5.38)
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One difficulty in bounding P (G) is that ∇3� (z) is summation of heavy-tailed random variables. To

address this issue, in Lemma 54 (stated and proved in Section 5.6.4), we develop a technique that

yields sharp concentration bounds for such summations. Applying Lemma 54 with 4n , for a given

v ∈ C= with ‖v‖ = 1 and z ∈ CA , we get constants �1, �2, �3 > 0 for which, for every n ≥ �2<
− 1

3 ,

P

{�����Re
(
v∗

(
∇3� (z) − E

[
∇3� (z)

] ))�����
> 4<n inf

\∈R




e8\x − z


} ≤ �3e−�1
√
<n . (5.39)

Hence, combining (5.39) with the union bound, for every n ≥ �2<
− 1

3 , we have

P (G) ≥ 1 − 23A�3e−�1
√
<n . (5.40)

Therefore, conditioned on G we have

1
4<

Re
(
v∗C

(
∇3� (zC) − E

[
∇3� (zC)

] ))
≤ n inf

\∈R




e8\x − zC



= n




e8\Cx − zC


 ,
hence, (5.37) implies that, for all C ∈ {1 · · · , )},




zC+1 − e8\Cx



 ≤ (


zC − e8\Cx




 + n )


zC − e8\Cx



 + 3XA , (5.41)

which in turn leads to (5.22).

�
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5.4 Simulation results

The main goal of this section is to experimentally evaluate the performance of our algorithm.

Furthermore, comparisons between our algorithm and Wirtinger flow will be presented to empirically

evaluate the amount of gain a compression scheme offers. Since the publicly available compression

algorithms work with real-valued images, in our simulation results we focus on real-valued signals

and measurements only. Note that even though our theoretical results are presented for complex-

valued signals, the extension to real-valued signals is straightforward. For the sake of brevity, we

did not include such extensions.

5.4.1 Measurement matrices

We consider two types of measurement matrices: (i) Gaussian measurement matrices in which

�8 9
883∼ # (0, 1), and (ii) coded diffraction patterns in which the measurements are constructed in the

following way:

H8,; =

������ =∑
:=1

G: cos

(
8c

=

(
: + 1

2

))
";,:

������ . (5.42)

In these measurements, ";,: modulates the entries of the signal and is drawn from the following

distribution:

";,:
883∼



1 with probability
1
4

−1 with probability
1
4

0 with probability
1
2

, 1 ≤ : ≤ =, 1 ≤ ; ≤ !. (5.43)

Coded diffraction patterns have recently received attention in the phase retrieval problem since they

can outperform the Fourier matrices. Note that due to the construction of the coded diffraction

measurement matrices, the imaging system is over-sampled by the factor !. Our simulation results

will cover ! ∈ {1, 2, . . . , 15}. As we will discuss later, GD-COPER algorithm is capable of
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(a) q = 0 (b) q = 50 (c) q = 100

Figure 5.1: Compression with different quality-layers

performing well even when ! = 1. Note that given that the signs are missing, this can be considered

as an under-sampled situation.

5.4.2 Setting the parameters

GD-COPER

In our simulation results, we will be using natural images, and JPEG2000 compression algorithm.

In particular, we have used a python implementation of the JPEG2000 which is a part of the

PIL package available at : https://pillow.readthedocs.io/en/3.1.x/handbook/

image-file-formats.html#jpeg-2000. The compression algorithm has multiple inputs.

The first one is the image itself. The other parameter that is important in our implementation is

the parameter “quality-layer”, denoted by @ in this chapter, that controls compression ratio (or

equivalently the rate). Figure 5.1 shows the result of the compression-decompression for three

different values of the parameter @. It is clear from this figure that as @ decreases, the distortion in

the reconstructed image reduces. The value @ = 0 corresponds to the lossless compression.

The GD-COPER algorithm has three different parameters that require tuning: (i) initialization,

(ii) the quality parameter of the compression algorithm @ at every iteration, and (iii) the step size

`. As will be discussed in Section 5.4.4, our algorithm is not sensitive to the the initialization

and in our simulation results, we start the algorithm with the white image. Hence, in this section,
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we only describe how we set the step-size `C and the quality parameter @C at every iteration. The

problem of parameter tuning for iterative algorithms is a challenging problem that has not been

settled properly yet [167]. Hence, after doing multiple runs of the algorithm we have found a set of

parameters that work well in practice. Below we summarize the chosen parameters for the Gaussian

and coded diffraction patterns. We should emphasize that better tuning are expected to improve

the performance of GD-COPER. Below we discuss our choice of parameters for the Gaussian and

coded diffraction patterns separately.

• Gaussian matrices: The “quality-layer" and step-size parameters at step C are set in the

following way:


@C = 40, `C = .2 ×

‖zC ‖

∇3� (zC)

 1 ≤ C ≤ 10

@C = 0, `C = .02 × ‖zC ‖

∇3� (zC)

 C ≥ 11
(5.44)

Note that @C = 0 means that the algorithm employs an almost-lossless compression. The main

reason an almost-lossless compression is used in the final iteration is that we are considering

noiseless observations. We run the GD-COPER for 50 iterations, since the error does not

decrease much after that.

• Coded diffraction patterns: The value of parameters we chose for the coded-diffraction

patterns is somewhat different from the ones we chose for Gaussian matrices. For such

matrices, we adopt the following parameters:

`C = max
(
e0.7−0.41C , 0.02

)
× ‖zC ‖

∇3� (zC)

 ,

@C = 50 1 ≤ C ≤ 5

@C = 20 6 ≤ C ≤ 30

@C = 0 C > 30.

(5.45)
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We run the GD-COPER for 50 iterations, since the error remains almost the same for further

iterations. Again these parameters are obtained by comparing a number of choices and choosing the

one that seems to perform well on a wide range of images and problem instances.

Setting the parameters of Wirtinger flow

The following parameters of the Wirtinger flow require tuning: (i) initialization, (ii) step size.

Most of the papers, including [25] suggest using the spectral method for the initialization of the

algorithm. Our simulation results, some of which are reported in Section 5.4.5, show that the

algorithm works better when it is initialized with the white image. Hence, in all our simulations,

except the ones in Sections 5.4.5 and 5.4.4, we initialize the algorithm with a white image.

For setting the step size, we follow the suggestions of [25], and adopt the following policy:

`C = min
(
1 − e−

C
C> , `max

)
, (5.46)

where C> = 330, `max = 0.4. Moreover, 300 iterations are used in all runs of Wirtinger Flow ( this

is the number which is suggested in the simulations of [25]) except for the cases that due to the

divergence of algorithm the machine terminates the run earlier. Divergence happens when the norm

of zC goes to infinity.

5.4.3 Results

We present our results for Gaussian and coded diffraction patterns separately.

Gaussian measurement matrices

In our simulations, we consider seven different images shown in the first column of Table 5.1.

All these images are chosen from “The Miscellaneous volume data-set”, which is publicly available

at http://sipi.usc.edu/database/database.php?volume=misc. Since the images are colored we have

extracted the luminance of the image and all the simulations are performed on gray-scale images.

254

h


To reduce the computational complexity of our algorithm (in the case of Gaussian measurements

only) we downsample images to reduce their size to 128 × 128. This size reduction helps us avoid

the issues we face in storing i.i.d. Gaussian matrices. However, it also reduces the structures that

exist in an image. Hence, JPEG2000 loses some of its efficiency. Hence, we expect the GD-COPER

to perform better as the image size increases. This will become clearer when we work with larger

images in the coded diffraction pattern simulations.

After the downsampling, the signals’ dimensions are = = 16384. In Table 5.1, we have

considered < = 32786, 16384, 12000, and 8192. Note that, in most of these systems, not only the

measurements are phaseless, but also they are undersampled.

In each setup, we compare the performance of our algorithm with that of the Wirtinger flow. In

addition to comparing the quality of the reconstruction via evaluating the peak-signal-to-noise-ratio

(PSNR),2 we report the run time of the algorithms as well. The run times of the algorithm are

measured on a laptop computer with 2.8 GHz Intel Core i7 processor and 16 GB RAM. We can

draw the following conclusions from the results reported in Table 5.1:

(i) As expected, the Wirtinger flow does not do well when <
=
≤ 1. This is in contrast to the

performance of GD-COPER that can obtain reasonable estimates even for </= ≤ 1. Note that

in some cases, the Wirtinger flow can do as well as GD-COPER when <
=
= 2. This happens

because we have downsampled the images to 128 × 128 size, and hence we have removed

some structures that JPEG2000 could otherwise employ. In other words, JPEG2000 cannot

efficiently reduce the size of such images, and hence GD-COPER is not capable of employing

the structures of such images either. In the next section, GD-COPER works with large images

(we can do this with coded diffraction patterns), and will outperform the Wirtinger flow with

a larger margin. See Figure 5.2 for a visual comparison of the GD-COPER and Wirtinger

flow algorithms.

2PSNR is defined as

PSNR = 20 log2 10

(
255
√

MSE

)
,

where MSE is the mean squared error obtained from the last iteration of the algorithm.
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(a) Original Image (b) <
=
= .5 (c) <

=
= .73 (d) <

=
= 1 (e) <

=
= 2

(f) Original Image (g) <
=
= .5 (h) <

=
= .73 (i) <

=
= 1 (j) <

=
= 2

Figure 5.2: First row: outcomes of GD-COPER for different values of </=. Second row: outcomes
of Wirtinger Flow for different values of </=. The original image is shown in the left column. The
measurement matrix is Gaussian.

(ii) GD-COPER is faster than the Wirtinger flow. Note that each iteration of GD-COPER is

computationally more demanding than that of the Wirtinger flow. However, GD-COPER

requires less steps to obtain a good estimate of the signal. Figure 5.3 compares the normalized

MSE (we have normalized the mean square error, by the energy of the underlying signal) of

GD-COPER as a function of the iteration number with that of the Wirtinger flow. We can

see that GD-COPER converges in 10 iteration, while Wirtinger flow requires around 200

iterations to get to a comparable error if it does not diverge.

Coded diffraction model

In this section, we evaluate the performance of our algorithm on the more practical coded-

diffraction measurements. Again, we work with the seven images we introduced in the last section.

However, given the fact that in the case of the coded diffraction patterns the measurement matrix

is not explicitly stored we will use images in their original sizes, 256 × 256. We compare the

performance of GD-COPER with that of the Wirtinger flow for different </= ratios. Tables 5.2 and

5.3 summarize our simulation results. Again we should emaphasize that both the GD-COPER and
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Figure 5.3: Normalized mean square error as a function of the iteration number for four different
values of </=. The original image is the same as the one chosen for Figure 5.2.

Wirtinger flow are initialized with an all-white image. We can draw the following conclusion from

Tables 5.2 and 5.3:

1. Again for lower values of the sampling ratio </= such as </= ≤ 5 Wirtinger flow is not

capable of finding a good estimate. However, GD-COPER obtains an accurate estimate for

</= ≤ 5, and even for </= = 1. If we compare these simulations with the ones we had for

Gaussian matrices, it seems to be the case that the discrepancy between the performance of

the Wirtinger flow and GD-COPER has increased in the coded-diffraction simulation. Part

of this is a result of the fact that our simulations have been performed on larger images for

which JPEG2000 is more efficient.
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2. As we increase the number of masks, usually after ! = 10 the performance of GD-COPER

saturates, while Wirtinger flow continues to improve. There are two effects that cause the

saturation of the GD-COPER: (i) Given that the compression is applied at every iteration,

even though it is in its loss-less mode, it still imposes some quantization to the estimates. (ii)

Suboptimal parameter tuning. We believe that the performance saturation of the algorithm

does not cause a major issue in practice since it happens at very high values of PSNR, e.g. 40

dB. However, as a result of the saturation, we see that in most cases, when </= > 15, then

the Wirtinger flow outperforms GD-COPER (for the sake of brevity we have not included the

results of </= > 15 in our tables). Hence, if extremely accurate estimates of the signal are

required (e.g. PSNR= 50 dB) and we have enough masks, then the Wirtinger flow should be

preferred over GD-COPER.

3. The computational complexity of GD-COPER is comparable with that of the Wirtinger flow.

Note that each iteration of GD-COPER is computationally more demanding than that of the

Wirtinger flow. However, GD-COPER requires less steps to obtain a good estimate of the

signal.

5.4.4 Robustness of GD-COPER with respect to initialization

As we discussed in Section 5.4.2, the performance of GD-COPER is not sensitive to the

initialization. In this section, we present some of our evidence that supports this claim. Given that

our simulation results are similar for both coded diffraction patterns and Gaussian measurements,

we only report our simulations for the coded diffraction patterns. In order to observe the impact

of initialization we considered the following initialization: Let x denote the underlying signal we

want to recover, and let x> denote the vector that corresponds to an all-white image. A simple

initialization that we can use in practice is x>, while the best oracle-initialization is x. Hence, we

can consider the family of initializations

xinit = _x> + (1 − _)x,
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for _ ∈ {0, 0.1, 0.2, . . . , 0.9, 1}. We expect the smaller values of _ to return better initializations.

Tables 5.6 and 5.7 evaluate the performance of GD-COPER for different initializations and different

images. The other parameters of GD-COPER are set according to the strategy described in Section

5.4.2. As is clear from our simulation results, the initialization schemes have much larger impacts

on the Wirtinger flow compared to GD-COPER. In fact, the GD-COPER is not very sensitive to the

choice of initialization and in most cases, the difference between the best initialization and worst

initialization is less than 2 dB. In contrast to GD-COPER, the performance of the Wirtinger flow

is very sensitive to the choice of the initialization. For this reason, the spectral method is often

used for the initialization of the Wirtinger flow algorithm. In the next section, we will show that

the initialization of the Wirtinger flow algorithm with an all-white image is often better than the

spectral initialization. However, we should emphasize that this phenomenon is only true for the

real-valued signals, and has not been tested on complex-valued signals.

5.4.5 Spectral Initialization

Another claim we made in Section 5.4.2 regarding the initialization was the fact that Spectral

initialization does not seem to help the Wirtinger flow beyond what is offered by an all-white image

initialization. We show part of our evidence regarding this claim. Tables 5.4 - 5.5 summarize

some of our findings. In these table the ‘n-init-err’ shows the normalized mean square error of

the initialization. Note that in most cases the spectral methods does not offer a closer point than

the all-white image except when we have <
=
≥ 7. Moreover, when we have many observations

and the initial point offered by the Spectral method is closer than the white image, Wirtinger Flow

usually performs better starting from the white image. This shows the initial distance is not the

only important factor to the convergence of Wirtinger flow (this is an artifact of the fixed parameter

tuning that has been proposed for the Wirtinger flow). For instance, if the norm of the gradient at

the starting steps, when the step-size defined in (5.46) is large, remains high, then the algorithm

may diverges.
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5.5 Discussion of our assumptions

In the proof of the convergence of GD-COPER in Theorem 9, we made two assumptions:

1. ‖x‖22 = 1 and ‖z‖22 = 1 for all z ∈ CA .

2. PCA (·) = DA (EA (·)), i.e. the application of the encoder and decoder of a compression

algorithm is equivalent to projecting a signal on the closest code-word.

First, note that we can obtain a good estimate of the norm of the signal, and normalize the

measurements and pretend that the signal satisfies ‖x‖22 = 1. Below we present one approach to

execute this normalization. Suppose that y = |�x |. We have

E
[��H: ��2] = E [

H∗: H:
]
= E

[
x∗a∗: a:x

]
= 2=‖x‖2 .

Hence, 1
2=<



y

2 P−→‖x‖2, where the notation
P−→ denotes convergence in probability. Hence, if we

divide our measurements by
√

1
2=<



y

2, then we can assume that ‖x‖2 = 1. Once we know that

the magnitude of the signal is equal to one, we can modify any compression algorithm to have

the property ‖z‖22 = 1 for all z ∈ CA , by dividing the output of the decoder by its magnitude. One

question that we still have to address though is the following: Often times the estimate of the

magnitude of the signal is random and may deviate from what we expect. Hence, we may end up

having a signal x whose magnitude satisfies |‖x‖22 − 1| ≤ W where W is a small number. What would

be the impact of such an error in the performance of GD-COPER? In particular, one would hope

that this error does not accumulate in the iterations of the algorithm. Our next theorem proves this

claim.

Theorem 10. Consider a fixed signal x ∈ Q that satisfies |‖x‖22 − 1| ≤ W. Define zC ∈ CA as in

(5.21) with ` = 1
8< . Suppose that for all \ ∈ R, e8\x ∈ Q. Define \C , arg min

\∈R



zC − e8\x


. For all

n ≥ �2<
− 1

3 , with probability at least 1 − �3e−�1
√
<n+(3 log 2)A , where �1, �2, �3 > 0 are absolute
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constants, for C = 1, 2, . . ., we have




zC+1 − e8\Cx



 ≤ (


zC − e8\Cx




 + n )


zC − e8\Cx



 + 3XA + W. (5.47)

Proof. Note that we still assume that for all z ∈ CA , we have ‖z‖22 = 1, since this condition is

straightforward to satisfy exactly (given that the output of decoder is available and hence we can

directly normalize it). Since the proof of this theorem is similar to the proof of Theorem Theorem 9

we skip most of the steps, and only mention the ones that are different. By following the steps in

the proof of Theorem 9 that led to (5.36) we obtain

x̃ − sC+1 = x̃ − e8\Cx + (1 − (e8\Cx)∗zC)e8\Cx

+ 1
8<

(
∇3� (zC) − E

[
∇3� (zC)

] )
.

In the proof of Theorem 9, we claimed that (1 − (e8\Cx)∗zC) = 1
2


e8\Cx − zC

2. Clearly, this is not

true any more. Instead we have

1
2




e8\Cx − zC


2
=

1
2
‖x‖2 − 1

2
+ (1 − (e8\Cx)∗zC).
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Hence, we will conclude that




e8\Cx − zC+1


 ≤ 


e8\Cx − x̃


 +‖x̃ − zC+1‖
≤ XA + 2Re

(
v∗C (x̃ − sC+1)

)
≤ XA + 2‖vC ‖




x̃ − e8\Cx



 + 2(1 − (e8\Cx)∗zC)‖vC ‖




e8\Cx



+ 1

4<
Re

(
v∗C

(
∇3� (zC) − E

[
∇3� (zC)

] ))
≤ XA + 2XA +




e8\Cx − zC


2
+ |‖x‖2 − 1|

+ 1
4<

Re
(
v∗C

(
∇3� (zC) − E

[
∇3� (zC)

] ))
≤ 3XA + W +




e8\Cx − zC


2

+ 1
4<

Re
(
v∗C

(
∇3� (zC) − E

[
∇3� (zC)

] ))
.

The rest of the proof is exactly the same as the proof of Theorem 9, and is hence skipped. �

We would like to emphasize that given the linear convergence of the GD-COPER, the accumula-

tion of the error due to W will be negligible and the error in the estimation of the magnitude of ‖x‖2

does not have any major impact on the performance of GD-COPER.

We now turn our attention to the second assumption, i.e. the assumption that PCA (·) = DA (EA (·)).

We would like to first emphasize that ideally, this is what a compression algorithm should do. If an

image compression algorithm maps an image to a codeword that is far from the original image, that

is an indication of the fact that the compression algorithm is not good. However, it is also reasonable

to consider situations in which multiple codewords are close to an image and the compression

algorithm does not pick the one which is the closest to the image because of some non-ideal

strategies that is chosen to reduce the computational complexity. Hence, again we can ask whether

the GD-COPER algorithm is robust to such non-ideal compression algorithms? In the rest of this

section, we pursue the following two goals:

1. Provide a few examples to convince the readers that most of the standard compression
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algorithms try to mimic a projection onto the codewords.

2. Suppose that even though the compression algorithm is non-ideal and does not find the

closest codeword, it is still capable of finding a codeword that is in the vicinity of the closest

codeword. We aim to show that the performance of GD-COPER algorithm is robust to such

non-idealities.

Let us start with an example that is the cornerstone of several important compression algorithms.

Suppose Q ⊂ [0, 1]= is the set of approximately sparse signals. For instance, for some ? < 1

Q =
{
x ∈ [0, 1)=, ‖x‖? ≤ Z

}
.

The main idea of many compression algorithms is to approximate the signals in Q with :-sparse

signals and encode the :-sparse signal. For simplicity suppose that we are given the : . Let

AC = : dlog2 =e + : (C + 1) denote the rate of our compression algorithm. Let E1 : Q → {0, 1}: dlog2 =e

encode the location of : largest elements of x. Furthermore, to code the magnitudes of the non-zero

coefficients we consider E2 : Q → {0, 1}: (C+1) that consider the : largest components of x and

codes each of them with C + 1 bits (does a binary expansion and keeps the C + 1 most significant bits).

More precisely, if x = (x1, x2, ..., x=) ∈ Q, where 1 ≤ 81 < 82 < ... < 8: ≤ = are the location of

its :-largest elements, then

E1(x) =
(
�(81), ..., �(8: )

)
, (5.48)

where �(8) denotes the binary expansion of positive integer 8. Note that since indices are less than

or equal to =, log2 = bits are enough to code each of them. Moreover, if G8 =
∑∞
9=1 n8, 92− 9 with

n8, 9 ∈ {0, 1}, denote the binary expansion of G8, then

E2(x) =
(
(n81,1, . . . , n81,C+1), ..., (n8: ,1, . . . , n8: ,C+1)

)
. (5.49)

Note that this type of coding is very close to what happens in e.g. JPEG and embedded zero tree

wavelet (EZW) compression algorithms. Both compression algorithms first transform the image
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to a domain that is more compressible, e.g. Fourier and wavelet, and then code the location and

magnitudes of the largest coefficients similar to what we did above.3 The decoder of the compression

algorithms has access to the locations of the largest coefficients from the : log2 = bits that it received

from the encoder. Hence, it can easily use (n81,1, n81,2, . . . , n81,C+1), ..., (n8: ,1, n8: ,2, . . . , n8: ,C+1) to find

the magnitudes of the signals at those locations. Define Γ: = {x ∈ [0, 1]= : ‖x‖0 ≤ :}. One can

easily confirm that

CAC = DAC
(
EAC (Q)

)
=

y ∈ Γ: , H8 =
C∑
9=1
n8, 92− 9 , n8, 9 ∈ {0, 1}

 .
It is straightforward to show that in these types of compression algorithms PCA (·) = DA ◦ EA (·). For

the sake of completeness we include a brief proof below. Suppose that the choice of codeword for

the projection is unique. For notational simplicity we drop the subscript C. To prove this formally, let

x ∈ [0, 1)= be an arbitrary vector and let y = DA (EA (x)) and z = PCA (x). We have to show y = z.

Since z ∈ CA , it has at most : non-zero coordinates. Firstly, we claim location of these non-zero

coordinates have to match with the largest coordinates of x. If this does not hold, one can swap two

coordinates of z and get smaller distance to x by noting that if G8 < G 9 and I8 > 0, I 9 = 0 then

(G8 − I8)2 + G2
9 <

(
G 9 − I8

)2 + G2
8 ,

which contradicts with z being the projection of x. Furthermore, if H8 =
∑C
9=1 n8, 92

− 9 and I8 =∑C
9=1 ñ8, 92

− 9 then
��G8 − H8�� ≤ 2−C−1 and |G8 − I8 | ≤ 2−C−1 implies

��H8 − I8�� ≤ 2−C which yields
��G8 − H8�� =

|G8 − I8 |. Note that there can be a case where H8 ≠ I8 while they have the same distance from G8. As

an example, consider C = 0, G8 = 0.5, H8 = 0, z8 = 1. This yields for every 8 that
��G8 − H8�� ≤ |G8 − I8 |.

3There are some minor tweaks in the actual JPEG and EZW. Since coding the locations of the largest coefficients
requires a large number of bits, they often use techniques such as counting zero runs or coding along the trees to reduce
the number of bits.
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Hence 

x − y

 ≤ ‖x − z‖ ,
which means y = D(E(x)) is also a projection on CA .

Now, let us turn to another point we would like to make, that is, even if the compression

algorithm is not an accurate projection, GD-COPER can still perform an accurate recovery. Towards

this goal we assume that the operation of D(E(x)) is not a projection, but has some error. In other

words, we assume that

‖D(E(x)) − PCA (x)‖ ≤ W.

Our next theorem proves that if W is not too large, then GD-COPER given by the following iteration

can still perform well:

sC+1 = zC − `∇3� (zC),

zC+1 = DA (EA (sC+1)).

Theorem 11. For a fixed signal x ∈ Q, define zC ∈ CA as in (5.21) with ` = 1
8< . Suppose that for

all \ ∈ R, e8\x ∈ Q. Define \C , arg min
\∈R



zC − e8\x


. For all n ≥ �2<

− 1
3 , with probability at least

1 − �3e−�1
√
<n+(3 log 2)A , where �1, �2, �3 > 0 are absolute constants, for C = 1, 2, . . ., we have




zC+1 − e8\Cx



 ≤ (


zC − e8\Cx




 + 2n
)


zC − e8\Cx




 + 3XA

+ 2W +
√

2W(XA + 1 + n). (5.50)

Before we prove this theorem, let us interpret it. Everything in the theorem is similar to what

we had in Theorem 9. The only difference, is the term 2W +
√

2W(XA + 1 + n) added to the error.

Again given the geometric convergence of the algorithm the total error after ) iterations does not

accumulate much and remains at the same order. It is clear that if W is small, then the GD-COPER

algorithm performs well.
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Proof of Theorem 11. Since the proof is very similar to the proof of Theorem 9 we do not repeat

the entire proof and only emphasize on the aspects of this proof that change. Let x̃ = PCA (e8\Cx),

and define wC+1 = PCA (sC+1). In this case, we know that zC+1 = D(E(sC+1)) and we have

‖wC+1 − zC+1‖ ≤ W. (5.51)

Since x̃ ∈ CA , we have

‖sC+1 − x̃‖2 ≥ ‖sC+1 − wC+1‖2

= ‖sC+1 − zC+1‖2 + ‖zC+1 − wC+1‖2

+ 2Re
(
(zC+1 − wC+1)∗(sC+1 − zC+1)

)
≥ ‖sC+1 − zC+1‖2

+ 2Re
(
(zC+1 − wC+1)∗(sC+1 − zC+1)

)
,

where to obtain the last inequality we used the Cauchy-Schwartz inequality, (5.51), and the fact

that both sC+1 and zC+1 have unit norms. Therefore, we have

‖sC+1 − x̃‖2 ≥ ‖sC+1 − zC+1‖2

+ 2Re
(
(zC+1 − wC+1)∗(sC+1 − zC+1)

)
= ‖sC+1 − x̃‖2 +‖x̃ − zC+1‖2

+ 2Re
(
(x̃ − zC+1)∗(sC+1 − x̃)

)
+ 2Re

(
(zC+1 − wC+1)∗(sC+1 − x̃)

)
+ 2Re

(
(zC+1 − wC+1)∗(x̃ − zC+1)

)
.
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Hence,

‖x̃ − zC+1‖2 ≤ 2Re
(
(x̃ − zC+1)∗(x̃ − sC+1)

)
+ 2Re

(
(wC+1 − zC+1)∗(sC+1 − x̃)

)
+ 2Re

(
(wC+1 − zC+1)∗(x̃ − zC+1)

)
(5.52)

Recall that E
[
∇3� (z)

]
= 8<(zz∗ − xx∗)z. Thus,

x̃ − sC+1 = x̃ − e8\Cx + e8\Cx −
(
zC −

1
8<
E

[
∇3� (zC)

]
+ 1

8<

(
E

[
∇3� (zC)

]
− ∇3� (zC)

))
= x̃ − e8\Cx + e8\Cx −

(
zC − zC + (x∗zC)x

)
+ 1

8<

(
∇3� (zC) − E

[
∇3� (zC)

] )
= x̃ − e8\Cx + (1 − (e8\Cx)∗zC)e8\Cx

+ 1
8<

(
∇3� (zC) − E

[
∇3� (zC)

] )
. (5.53)

Note that


x̃ − e8\Cx



 ≤ XA . Also, since 1 − (e8\Cx)∗zC = 1
2


e8\Cx − zC

2 and



e8\Cx

 = ‖vC ‖ = 1. Let

vC ,
x̃ − zC+1
‖x̃ − zC+1‖

. (5.54)

and

ṽC ,
wC+1 − zC+1
‖wC+1 − zC+1‖

. (5.55)
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Then we have

‖x̃ − zC+1‖2 ≤ 2Re
(
(x̃ − zC+1)∗(x̃ − sC+1)

)
+ 2Re

(
(wC+1 − zC+1)∗(sC+1 − x̃)

)
+ 2Re

(
(wC+1 − zC+1)∗(x̃ − zC+1)

)
≤ 2‖x̃ − zC+1‖|Re

(
v∗C (x̃ − sC+1)

)
|

+ 2W |Re
(
(ṽC+1)∗(sC+1 − x̃)

)
|

+ 2W |Re
(
(ṽC+1)∗(x̃ − zC+1)

)
|

≤ 2‖x̃ − zC+1‖
(
XA +

1
2




e8\Cx − zC


2

+
�����Re

(
v∗C (

1
8<

(
∇3� (zC) − E

[
∇3� (zC)

]
)
))�����

)
+ 2W

(
XA +

1
2




e8\Cx − zC


2

+
�����Re

(
v∗C (

1
8<

(
∇3� (zC) − E

[
∇3� (zC)

]
)
))�����

)
+ 2W‖x̃ − zC+1‖. (5.56)

Define events G and G̃ as follows

G ,
{

1
4<

Re
(
v∗

(
∇3� (z) − E

[
∇3� (z)

] ))
(5.57)

≤ n inf
\∈R




e8\x − z


 , v =
x̃ − z′
‖x̃ − z′‖ , ∀z, x̃ ∈ CA

}
,

G̃ ,
{

1
4<

Re
(
ṽ∗

(
∇3� (z) − E

[
∇3� (z)

] ))
≤ n inf

\∈R




e8\x − z


 , ṽ =
z − z′
‖z − z′‖ , ∀z, z

′ ∈ CA
}
. (5.58)

Similar to the proof of Theorem 9, we can bound the probabilities of these events. In particular,
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we have constants �1, �2, �3 > 0 such that for every n ≥ �2<
− 1

3 ,

P

(�����Re
(
v∗

(
∇3� (z) − E

[
∇3� (z)

] ))�����
> 4<n inf

\∈R




e8\x − z


) ≤ �3e−�1
√
<n . (5.59)

Hence, combining (5.59) with the union bound, for every n ≥ �2<
− 1

3 , we have

P (G) ≥ 1 − 23A�3e−�1
√
<n . (5.60)

Similarly, we have

P
(
G̃

)
≥ 1 − 23A�3e−�1

√
<n . (5.61)

Therefore, conditioned on G ∩ G̃ we have

1
4<

Re
(
v∗C

(
∇3� (zC) − E

[
∇3� (zC)

] ))
≤ n inf

\∈R




e8\x − zC


 = n


e8\Cx − zC


 .
Hence, (5.56) implies that, for all C ∈ {1 · · · , )},

‖x̃ − zC+1‖2

≤ 2‖x̃ − zC+1‖
(
XA +

1
2




e8\Cx − zC


2
+ n




e8\Cx − zC


)
+ 2W

(
XA +

1
2




e8\Cx − zC


2
+ n




e8\Cx − zC


)
+ 2W‖x̃ − zC+1‖

≤ 2‖x̃ − zC+1‖
(
XA +

1
2




e8\Cx − zC


2

+n



e8\Cx − zC


 + W) + 2W(XA + 1 + n).

Given that we have a quadratic function of ‖x̃ − zC+1‖ with one negative and one positive root, it
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is straightforward to see that ‖x̃ − zC+1‖ should be smaller than the positive root. By bounding the

positive root we obtain

‖x̃ − zC+1‖ ≤ 2
(
XA +

1
2




e8\Cx − zC


2
+ n




e8\Cx − zC


 + W)
+

√
2W(XA + 1 + n).

Hence,




e8\Cx − zC+1


 ≤ XA + 2
(
XA +

1
2




e8\Cx − zC


2

+n



e8\Cx − zC


 + W) + √

2W(XA + 1 + n)

≤ 3XA + 2W +
√

2W(XA + 1 + n)

+



e8\Cx − zC


 (

2n +



e8\Cx − zC


) . (5.62)

�

5.6 Proofs

5.6.1 Preliminaries

Lemma 46. inf
\∈[0,2c)



e8\x − y

 achieves its minimum at a value of \ that makes e−8\x∗y a positive

real number, and for that \ we have




e8\x − y


2
= ‖x‖2 +



y

2 − 2
��x∗y��

=

(
‖x‖ −



y

)2
+ 2

(
‖x‖



y

 −��x∗y��) .
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Proof. Let z = e8\x



z − y

2
=

(
z − y

)∗ (
z − y

)
= ‖z‖2 +



y

2 − 2Re(z∗y)

≥ ‖z‖2 +


y

2 − 2

��z∗y��
= ‖x‖2 +



y

2 − 2
��x∗y�� .

Note that equality holds only when Re(z∗y) =
��z∗y��, which proves our claim. �

Lemma 47. For any two vectors x and x̂ in C=, we have

1
8

(
inf
\




e8\x − x̂


2
)2

≤ 1
2

(
‖x‖2 −‖x̂‖2

)2
+

(
‖x‖2‖x̂‖2 −

��x∗x̂��2) .
Proof. Note that according to Lemma 46 we have

( (
‖x‖ −‖x̂‖

)2 + 2
(
‖x‖‖x̂‖ −

��x∗x̂��) )2

≤ (1 + 1)
( (
‖x‖ −‖x̂‖

)4 + 4
(
‖x‖‖x̂‖ −

��x∗x̂��)2
)

≤ 2
(
‖x‖2 −‖x̂‖2

)2
+ 8

(
‖x‖2‖x̂‖2 −

��x∗x̂��2) .
Hence,

1
8

(
inf
\




e8\x − x̂


2
)2

≤ 1
4

(
‖x‖2 −‖x̂‖2

)2
+

(
‖x‖2‖x̂‖2 −

��x∗x̂��2)
≤ 1

2

(
‖x‖2 −‖x̂‖2

)2
+

(
‖x‖2‖x̂‖2 −

��x∗x̂��2) .
�
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Lemma 48. Let Φ(G) denote the CDF of a standard normal variable. Then, for any D > 0,

6(D) = e
1
D2Φ

(
−
√

2
D

)
≤ 1.

Proof. With a change of variable E =
√

2
D

, proving 6(D) ≤ 1 is equivalent to proving ℎ(E) =

e− E
2

2 −Φ(−E) ≥ 0 for all E ≥ 0. We have

ℎ′(E) =
(
−E + 1

√
2c

)
e−

E2
2 =⇒


ℎ′(E) ≥ 0 E ≤ 1

√
2c

ℎ′(E) < 0 E >
1
√

2c

.

In addition, ℎ(0) = 1
2 > 0 and ℎ(∞) = 0. �

Lemma 49 (Chi squared concentration). For any g ≥ 0, we have

P
(
j2(<) > <(1 + g)

)
≤ e−

<
2 (g−log(1+g)) .

The proof of this lemma can be found in [138].

5.6.2 Heavy-tailed concentration

In this section, we discuss a few lemmas regarding the concentration of heavy-tailed random

variables. A more complete discussion of such concentration results can be found in [44].

Lemma 50 (Bounded random variable MGF upper bound). Let - be a random variable and 2, 2′

positive constants such that

P
(��- − E [-]�� > g) ≤ 2′ exp

(
−2
√
g

)
∀g ≥ 0.

Then there exist constants 22, 23, depending only on the distribution of - , such that for all ! ≥ 23
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and _ = 2

2
√
!

log2 E

[
exp

(
_

(
-1-≤! − E [-]

) )]
≤ 22

2
_2.

Proof. For simplicity of the notation let -! , -1-≤! denotes the truncated version of the - . By

Taylor expansion of exponential function at E [-], one can get

exp (_-!) = exp
(
_E [-]

)
+ _

(
-! − E [-]

)
exp

(
_E [-]

)
+_

2

2
(
-! − E [-]

)2 exp (_. ) ,

where . is a random variable whose value is between E [-] and -! . Therefore

E

[
exp

(
_

(
-! − E [-]

) )]
= 1 + _

(
E [-!] − E [-]

)
+_

2

2
E

[ (
-! − E [-]

)2 exp
(
_

(
. − E [-]

) )]
. (5.63)

Note that E [-! − -] ≤ 0 and log2(1 + G) ≤ G ∀G ≥ 0, hence by (5.63) we obtain

log2 E

[
exp

(
_

(
-! − E [-]

) )]
≤ _

2

2
E

[ (
-! − E [-]

)2 exp
(
_

(
. − E [-]

) )]
,

which means if for some 23 we show

sup
!≥23, _=

2

2
√
!

E

[ (
-! − E [-]

)2 exp
(
_

(
. − E [-]

) )]
≤ 22, (5.64)

the Lemma holds with 22, 23.
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Note that since . is bounded between E [-] and -! we get

E

[ (
-! − E [-]

)2 exp
(
_

(
. − E [-]

) )]
≤ E

[
-! − E [-]

]2

+ E
[ (
-! − E [-]

)2 exp
(
_

(
-! − E [-]

) )]
. (5.65)

Since -!
!→∞−−−−→ - and it is dominated by - , by the dominated convergence Theorem we get

E
[
-! − E [-]

]2 → +0A (-), hence for ! > 2′3 we have

E
[
-! − E [-]

]2 ≤ 2+0A (-). (5.66)

Now, we bound the second term in (5.65).

E

[ (
-! − E [-]

)2 exp
(
_

(
-! − E [-]

) )]
= E

[ (
-! − E [-]

)2 exp
(
_

(
-! − E [-]

) )
1-!<E [-]

]
+ E

[ (
-! − E [-]

)2 exp
(
_

(
-! − E [-]

) )
1-!≥E [-]

]
.

Note that

E

[ (
-! − E [-]

)2 exp
(
_

(
-! − E [-]

) )
1-!<E [-]

]
≤ E

[
-! − E [-]

]2 ≤ 2+0A (-), (5.67)

for ! > 2′3.

Moreover, if* , -! − E [-]
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E
[
*2 exp (_*) 1*≥0

]
=

∫ ∞

0
P

(
*2 exp (_*) > D, * ≥ 0

)
3D

=

∫ ∞

0
P

(
-! − E [-] > C

)
3D, C2 exp (_C) = D,

=

∫ !−E [-]

0
P

(
- − E [-] > C

)
exp (_C)

(
2C + _C2

)
3C

≤
∫ !−E [-]

0
2′ exp

(
−2
√
C + 2

2
√
!
C

) (
2C + _C2

)
3C. (5.68)

Note that for large enough ! and 0 ≤ C ≤ ! − E [-], we have −2
√
C + 2

2
√
!
C ≤ − 2

√
C

3 . More

specifically,

−
√
C + C

2
√
!
≤ −
√
C

3
, ∀! ≥ −9E [-]

7
, 0 ≤ C ≤ ! − E [-] ,

hence by (5.68) we obtain

E

[ (
-! − E [-]

)2 exp
(
_

(
-! − E [-]

) )
1-!≥E [-]

]
≤ 2′

∫ !−E [-]

0
exp

(
−2
√
C

3

)
(2C + _C2)3C

≤ 2′
∫ ∞

0
exp

(
−2
√
C

3

)
(2C + _C2)3C

= 2′
∫ ∞

0
exp(−I)

(
18
22 I

2 + 81_
24 I

4
)

18I
22 3I

=
1822′

24 Γ(4) + 182′ × 81_
26 Γ(6)

=
1822′

24 Γ(4) + 92′ × 81
25
√
!
Γ(6)

≤ 3242′

24 Γ(4) + 7292′

25√23
Γ(6), ∀! ≥ 23. (5.69)

Hence. if we set 22 = 4+0A (-) + 3242′
24 Γ(4) + 7292′

25√23
Γ(6) and 23 ≥ 2′3, (5.66), (5.67), (5.69) yield
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(5.64) which concludes the proof. �

Lemma 51 (Heavy tail concentration). Let {.: }:∈N be i.i.d. random variables. Assume there are

constants 2 > 0, 2′ ≥ 1 such that P
(��.: − E [.: ]�� > g) ≤ 2′e−2√g, for all g > 0 . Then, there exist

a positive constant �3 > 0, such that, for every n > �3<
− 1

3 ,

P
©­­«
������ 1
<

<∑
:=1

.: − E [.: ]

������ > nª®®¬ ≤ 4e−
2
2
√
<n . (5.70)

Proof. Following the notion in the proof of the Lemma 50, let . !
:
= .:1.:≤! . Then,

P
©­« 1
<

<∑
:=1

.: − E [.: ] > n
ª®¬

≤ P ©­« 1
<

<∑
:=1

. !: − E [.: ] > n
ª®¬ + P (∃:, .: > !)

≤ exp (−_n) E
[
exp

(
_

<
(. !1 − E [.1])

)]<
+ <P

(
.1 − E [.1] > ! − E [.1]

)
≤ exp

(
−_n + 22

2
_2

<2<

)
+ <2′ exp

(
−2

√
! − E [.1]

)
, (5.71)

for _
<
= 2

2
√
!

. Note that the last inequality is obtained by the Lemma 50. Set ! = <n and hence

_ =
2
√
<

2
√
n

, then by (5.71) we have

P
©­« 1
<

<∑
:=1

.: − E [.: ] > n
ª®¬ ≤ exp

(
−2
√
<n + 222

2

8
1
n

)
+<2′ exp

(
−2

(√
<n −

√��E [.1]
��)) . (5.72)
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Note that if n ≥
(
222
4

) 2
3
<−

1
3 , we have 222

2

8
1
n
≤ 2

2
√
<n , hence,

exp

(
−2
√
<n + 222

2

8
1
n

)
≤ exp

(
−2

2
√
<n

)
. (5.73)

Furthermore,

<2′ exp

(
−2

(√
<n −

√��E [.1]
��))

= exp
(
log2 2

′ + log2< + 2
√��E [.1]

�� − 2√<n )
≤ exp

(
−2

2
√
<n

)
, (5.74)

whenever

log2 2
′ + log2< + 2

√��E [.1]
�� ≤ 2

2
√
<n. (5.75)

since <n ≥ �3<
2
3 for n ≥ �3<

− 1
3 we have

2

2
√
<n ≥ 2

√
�3

2
<

1
3 . (5.76)

Given <
1
3 grows faster than log2<, by choosing large enough �3 we can make (5.73) and (5.74)

hold for all integer <, thus we obtain

P
©­« 1
<

<∑
:=1

.: − E [.: ] > n
ª®¬ ≤ 2 exp

(
−2

2
√
<n

)
. (5.77)

By repeating the exact same line of the proof for −.: instead of .: we can obtain

P
©­« 1
<

<∑
:=1

.: − E [.: ] < −n
ª®¬ ≤ 2 exp

(
−2

2
√
<n

)
. (5.78)

Combining (5.77) and (5.78) yields
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P
©­­«
������ 1
<

<∑
:=1

.: − E [.: ]

������ > nª®®¬ ≤ 4 exp
(
−2

2
√
<n

)
. (5.79)

�

5.6.3 Properties of 3� (·, ·)

Lemma 52. If _1(c) and _2(c) denote the two non-zero eigenvalues of xx∗ − cc∗, then we have

1. _1(c) + _2(c) = ‖x‖2 −‖c‖2.

2. _1(c)2 + _2(c)2 =
(
‖x‖2 −‖c‖2

)2
+ 2

(
‖x‖2‖c‖2 −|x∗c |2

)
.

3. _1(c)_2(c) =
(
|x∗c |2 −‖x‖2‖c‖2

)
≤ 0

Proof. First note that

_1(c) + _2(c) = Tr(xx∗ − cc∗) = ‖x‖2 −‖c‖2 . (5.80)

Similarly,

_1(c)2 + _2(c)2 = Tr(xx∗ − cc∗)2

= Tr(xx∗xx∗) + Tr(cc∗cc∗) − Tr(cc∗xx∗)

− Tr(xx∗cc∗)

= ‖x‖4 +‖c‖4 − 2
��x∗c��2

=

(
‖x‖2 −‖c‖2

)2
+ 2

(
‖x‖2‖c‖2 −

��G∗2��2) . (5.81)
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Finally,

2_1(c)_2(c) = (_1(c) + _2(c))2 − (_1(c)2 + _2(c)2)

= 2
(��x∗c��2 −‖x‖2‖c‖2)

≤ 0.

�

Lemma 53. Let / = (_1(c)* + _2(c)+)2, where * and + are independent j2(2). Then, for any

U > 0, we have

5 (U) , E
[
e−U/

]
≤

(
c

_max(c)2U

) 1
2

.

Proof.

5 (U) =
∫
G,H≥0

e−U(_1 (c)G+_2 (c)H)2 e− G2
2

e−
H

2

2
3G3H. (5.82)

Consider changing the variable (G, H) in the above integral to (D, E) defined as

(D, E) =
(
_1(c)G + _2(c)H,

G + H
2

)
.

The determinent of the Jacobian of this mapping is given by

����mD, EmG, H

���� =
�������_1(c) _2(c)

1
2

1
2

������� = _1(c) − _2(c)
2

.

Furthermore,

E − D

2_2(c)
=

(
1
2
+ _1(c)
−2_2(c)

)
G.
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Since _1 (c)
−2_2 (c) > 0, we have

G ≥ 0 ⇐⇒ E ≥ D

2_2(c)
.

Similarly,

E ≥ D

2_1(c)
.

Therefore,

5 (U) = 2
4(_1(c) − _2(c))

∫ ∫
E≥ D

2_1 (c)
,E≥ D

2_2 (c)

e−UD
2−E3E, D

=
1

2(_1(c) − _2(c))

∫
D≥0

∫ ∞

E= D
2_1 (c)

e−UD
2
e−E3E3D + 1

2(_1(c) − _2(c))

∫
D<0

∫ ∞

E= D
2_2 (c)

e−UD
2
e−E3E3D

=
1

2(_1(c) − _2(c))

∫ ∞

D=0
e−UD

2− D
2_1 (c) 3D + 1

2(_1(c) − _2(c))

∫ 0

D=−∞
e−UD

2− D
2_2 (c) 3D

=
e

1
16_1 (c)2U

2(_1(c) − _2(c))

∫ ∞

D=0
e−U(D+

1
4_1U
)2
3D + e

1
16_2 (c)2U

2(_1(c) − _2(c))

∫ 0

D=−∞
e−U(D+

1
4_2 (c)U

)2
3D

=

√
ce

1
16_1 (c)2U

2(
��_1(c)

�� +��_2(c)
��)√UΦ

(
−

√
2

4
��_1(c)

��√U
)
+

√
ce

1
16_2 (c)2U

2(
��_1(c)

�� +��_2(c)
��)√UΦ

(
−

√
2

4
��_2(c)

��√U
)
,

(5.83)

where Φ(G) = 1√
2c

∫ ∞
G

e− 1
2D

2
. According to Lemma 48 we have

e
1

16_1 (c)2UΦ

(
−

√
2

4
��_1(c)

��√U
)
= 6

(
4
��_1(c)

��√U) ≤ 1. (5.84)

Hence, by combining (5.83), (5.84), and the fact that 1
|_1 (c) |+|_2 (c) | ≤

1
|_max (c) | we can complete the

proof. �

Theorem below is showing how the distance function 3� concentrates when we have sufficient

measurements.

Theorem 12 (Concentration of 3� (·, ·)). Let CA denote the set of codewords at rate A , and x denotes

the signal of interest. For a given c ∈ C=, let _2
min(c) ≤ _2

max(c) be squared of the two non-zero
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eigenvalues of xx∗ − cc∗. For any positive real numbers g1, g2,

P
(
3� (|�x | ,|�c |) > _2

max(c)g1, ∀c ∈ �A
)

≥ 1 − 2Ae
<
2 ( +log g1−log<) , (5.85)

where  = log 2ce and

P
(
3� (|�x | ,|�c |) < _2

max(c)
(
4<(1 + g2)

)2
)

≥ 1 − e−2<(g2−log(1+g2)) . (5.86)

Proof. Recall from (5.2) that

3� (|�x | ,|�c |) =
<∑
:=1

(
a:
∗(xx∗ − cc∗)a:

)2
. (5.87)

First, for fixed x and c, we derive the distribution and the moment-generating function (mgf) of

3� (|�x | ,|�c |). Note that xx∗ − cc∗ is a Hermitian matrix of rank at most two, and therefore it can

be written as

xx∗ − cc∗ = &)

©­­­­­­­­­«

_1(c)

_2(c)
. . .

0

ª®®®®®®®®®¬
&, (5.88)

where &)& = �=. Combining (5.87) and (5.88), we have
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<∑
:=1

(
a:
∗(xx∗ − cc∗)a:

)2

=

<∑
:=1

©­­­­­­­­­­«
a:
∗&)

©­­­­­­­­­«

_1(c)

_2(c)
. . .

0

ª®®®®®®®®®¬
&a:

ª®®®®®®®®®®¬

2

=

<∑
:=1

©­­­­­­­­­­«
H∗:

©­­­­­­­­­«

_1(c)

_2(c)
. . .

0

ª®®®®®®®®®¬
H:

ª®®®®®®®®®®¬

2

=

<∑
:=1

(
_1(c)

���:,1��2 + _2(c)
���:,2��2)2

,

where H: = &a: .

Since & is an orthonormal matrix, � = &� has the same distribution as �, and therefore the j2

variables in the above sum are all independent. Let /: =
(
_1(c)

���:,1��2 + _2(c)
���:,2��2)2

. Then we

have

3� (|�x | ,|�c |) =
<∑
8=1

/8, (5.89)

where /1, . . . , /< are i.i.d. as (_1(c)* + _2(c)+)2, where* and + are independent j2(2) random

variables. Define _min(c), _max(c) to denote _1(c), _2(c) with smaller and larger absolute value

respectively, i.e.,
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��_min(c)
�� = min

{��_1(c)
�� ,��_2(c)

��} ,��_max(c)
�� = max

{��_1(c)
�� ,��_2(c)

��} .
To derive (5.85), note that according to Lemma 53 for any U > 0, we have

P
(
3� (|�x | ,|�c |) ≤ C

)
= P

©­«e
−U

<∑
8=1
/8
≥ e−UCª®¬

≤ eUCE
[
e−U/1

]<
≤ eUC 5 (U)<

≤ eUC
(

c

_max(2)2U

) <
2

,

where U > 0 is a free parameter. Let U = <

2_2
max (c)g1

and C = _2
max(c)g1. Therefore,

P
(
3� (|�x | ,|�c |) ≤ _2

max(c)g1
)
≤ e

<
2

(
2cg1
<

) <
2

≤ e
<
2 ( +log g1−log<) ,

where  = log 2c4. Hence, we have

P
(
3� (|�x | ,|�c |) > _2

max(c)g1
)
≥ 1 − e

<
2 ( +log g1−log<) ,

and with an union bound on �A we get

P
(
3� (|�x | ,|�c |) > _2

max(c)g1 ∀c ∈ �A
)

≥ 1 − 2Ae
<
2 ( +log g1−log<) .
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To prove (5.86), note that for /8 defined in (5.89), one has /8 ≤
(��_max(c)

�� j2(4)
)2

, thus

<∑
8=1

/8 ≤ _2
max

<∑
8=1

j4(4)

≤ _2
max

©­«
<∑
8=1

j2(4)ª®¬
2

3
= _2

max

(
j2(4<)

)2
,

where the notation 3
= implies that they have the same distributions. Therefore, by Lemma 49 we

have

P
(
3� (|�x | ,|�c |) ≥ _2

max(c)
(
4<(1 + g2)

)2
)

= P
©­«
<∑
8=1

/8 ≥ _2
max

(
4<(1 + g2)

)2ª®¬
≤ P

(
j2(4<) ≥ 4<(1 + g2)

)
≤ e−2<(g2−log(1+g2)) .

Hence, for any g2 > 0, we have

P
(
3� (|�x | ,|�c |) < _2

max(c)
(
4<(1 + g2)

)2
)

≥ 1 − e−2<(g2−log(1+g2)) .

�

Remark 28 (Expectation of 3� (., .)). Note that (5.89) implies

E
[
3

(
|�x | ,|�c |

) ]
= 8<

(
_1(c)2 + _2(c)2 + _1(c)_2(c)

)
(5.90)
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Proof. By (5.89) we obtain

E
[
3

(
|�x | ,|�c |

) ]
= <E [/1]

= <

(
_1(c)2E

[
*2

]
+ _2(c)2E

[
+2

]
+2_1(c)_2(c)E [*+]

)
= <

(
8_1(c)2 + 8_2(c)2 + 2 × 4_1(c)_2(c)

)
= 8<

(
_1(c)2 + _2(c)2 + _1(c)_2(c)

)
�

5.6.4 Concentration of the gradient

Lemma 54. Let v ∈ C= with ‖v‖ = 1 and z ∈ CA be fixed. Then there exist constants �1, �2, �3 > 0

such that,

P

(�����Re
(
v∗

(
∇3� (z) − E

[
∇3� (z)

] ))����� > <n inf
\∈R




e8\x − z


)
≤ �2e−�1

√
<n , ∀ n ≥ �3<

− 1
3 .

Proof. In this proof, we will use the notations we introduced in (5.88) in the proof of Theorem

12. Since we have assumed that for any codeword c, ‖x‖2 = ‖c‖2 = 1, according to Lemma 52,
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_1(c) + _2(c) = 0. Hence,

∇3� (z)

= 2
<∑
:=1

(��a∗: z��2 −��a∗:x��2) a: a∗: z,

= 2
<∑
:=1
a: a

∗
: z

(
&ak

)∗ ©­­­­­­­­­«

−_1(z)

_1(z)
. . .

0

ª®®®®®®®®®¬
&a:

= 2_1(z)
<∑
:=1
a: a

∗
: z*: , (5.91)

where _8 (z), & are as defined in (5.88), and

*: ,

(����(&a: )2

����2 −����(&a: )1

����2) . (5.92)

It is straightforward to check that

E
[
∇3� (z)

]
= 8<(zz∗ − xx∗)z. (5.93)

We also have

_1(z) = −_2(z) = _max(z).
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By (5.91) we have,

Re
(
v∗

(
∇3� (z) − E

[
∇3� (z)

] ))
= 2_max(z)

<∑
:=1

Re
(
(v∗a: ) (a∗: z)*:

−E
[
(v∗a: ) (a∗: z)*:

] )
= 2_max(z)

©­«
<∑
:=1

Re
(
(v∗a: ) (a∗: z)*:

)
−

<∑
:=1
E

[
Re

(
(v∗a: ) (a∗: z)*:

)]ª®¬
= 2_max(z)

<∑
:=1

.: − E [.: ] , (5.94)

where .: = Re
(
(v∗a: ) (a∗: z)*:

)
. We claim .: satisfies all assumptions of Lemma 51. To prove

this note that since ‖v‖ = ‖z‖ = 1, all v∗a: , a∗: z, (&a: )1, (&a: )2 have the same distribution as

N(0, 1) + 8N(0, 1). Therefore, .: can be written as

.: =

16∑
9=1
,1, 9 ,:,2, 9 ,:,3, 9 ,:,4, 9 ,: , (5.95)

where ,;, 9 ,: ∼ N(0, 1) 1 ≤ ; ≤ 4, 1 ≤ 9 ≤ 16, 1 ≤ : ≤ <. We should emphasize that

,1, 9 ,: ,,2, 9 ,: ,,3, 9 ,: ,,4, 9 ,: may be dependent on each other but are independent of,1, 9 ,: ′,,2, 9 ,: ′,

,3, 9 ,: ′,,4, 9 ,: ′, if : ≠ :′. Hence, we have
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P
(
|.: | > g

)
≤ P

(
∃ 9 ≤ 16;

��,1, 9 ,:,2, 9 ,:,3, 9 ,:,4, 9 ,:
�� > g

16

)
≤ P

(
∃ 9 ≤ 16, ; ≤ 4;

��,;, 9 ,:

�� > 4

√
g

16

)
≤ 16 × 4 × e−

1
22
√

g
16

≤ 64e−2
′√g . (5.96)

To have (5.96), one may choose 2′ = 1
422 , where 2 is a constant for which P

(��N(0, 1)�� > g) ≤
e−

g2
22 .

Hence, by Lemma 51, there exist constants �3 such that

P
©­­«
������ <∑:=1

.: − E [.: ]

������ > <n2ª®®¬ ≤ 4e−
2′
2
√
<n , ∀ n ≥ �3<

− 1
3 . (5.97)

Thus,

P

(�����Re
(
v∗

(
∇3� (z) − E

[
∇3� (z)

] ))����� > <n_max(z)
)

≤ �2e−�1
√
<n , ∀ n ≥ �3<

− 1
3 .

Furthermore, note that by (5.81) and Lemma 47 we have

_max(z)2 ≤ _1(z)2 + _2(z)2

= 2(1 −
��x∗z��)

= inf
\∈R




e8\x − z


2
.

�
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5.7 Conclusions

In this chapter, we have studied the problem of employing compression codes to solve the phase

retrieval problem. Given a class of structured signals and a corresponding compression code, we

have proposed COPER, which provably recovers structured signals in that class from their phaseless

measurements using the compression code. Our results have shown that, in noiseless phase retrieval,

asymptotically, the required sampling rate for almost zero-distortion recovery, modulo the phase, is

the same as noiseless compressed sensing.

COPER is based on a combinatorial optimization problem. Hence, we have also introduced an

iterative algorithm named gradient descent COPER (GD-COPER). We have shown that GD-COPER

can return an accurate estimate of the signal in polynomial time (under mild assumptions on the

compression code and the initialization of the algorithm). However, GD-COPER requires more

measurements than COPER. The simulation results not only confirms the excellent performance of

GD-COPER, but also shows the GD-COPER can perform pretty well even with a far initial point

from the target. This confirms that the very mild condition we had in Corollary 9 for the theoretical

guarantee, also works in practice.
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Table 5.1: Results for the Gaussian measurement matrices. Both the GD-COPER algorithm and
the Wirtinger flow are initialized with a white image. The setting of all the other parameters is
described in Section 5.4.2. The notation DVG in the table refers to the fact that the algorithm either
stops since the norm of I diverges to infinity, or returns a result with negative PSNR.

Target <
=

GD-COPER Wirtinger Flow
PSNR Run time PSNR Run time

0.5 23.22 11.2 DVG 8.68
0.73 24.44 15.2 DVG 15.2
1.0 25.63 18.9 DVG 30.6
2.0 31.79 29.3 DVG 106.
0.5 22.58 13.1 4.83 39.3
0.73 24.79 15.6 6.5 60.3
1.0 26.43 17.9 8.68 79.6
2.0 31.91 31.3 17.71 135.
0.5 21.42 11.9 DVG 13.4
0.73 23.73 15.2 DVG 33.1
1.0 25.84 18.8 10.94 82.8
2.0 32.36 30.1 29.66 136.
0.5 25.5 12.2 DVG 14.2
0.73 27.43 13.9 DVG 22.1
1.0 29.15 18.3 DVG 41.7
2.0 34.76 29.6 33.36 140.
0.5 22.03 12.4 3.92 43.1
0.73 24.08 15.1 5.68 59.0
1.0 26.67 17.4 7.94 74.2
2.0 33.07 28.4 14.35 143.
0.5 21.83 11.2 DVG 7.64
0.73 23.35 15.7 DVG 20.7
1.0 24.52 19.9 DVG 34.1
2.0 32.67 28.8 35.65 135.
0.5 17.49 10.9 DVG 10.9
0.73 18.68 14.4 DVG 20.9
1.0 21.44 19.0 DVG 37.8
2.0 29.04 29.8 32.74 140.
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Table 5.2: Comparison between the Wirtinger flow and the GD-COPER with the coded diffraction
patterns for different values of </=. The true images of the simulations are shown in the first
column.

Target <
=

GD-COPER Wirtinger Flow
PSNR Run time PSNR Run time

1 27.8 13.0 DVG 1.2
2 34.7 16.9 DVG 2.0
3 36.2 18.1 DVG 2.7
4 39.7 19.8 DVG 4.2
5 42.1 14.2 DVG 4.1
6 38.5 14.6 DVG 4.3
7 42.7 15.4 DVG 5.7
8 44.5 15.6 DVG 6.2
9 38.9 16.1 23.6 18.9

10 49.1 15.1 17.8 12.7
15 38.6 17.3 13.0 23.0
1 19.4 14.3 4.1 2.8
2 28.6 19.5 7.2 5.1
3 33.4 17.6 10.1 7.4
4 34.5 14.4 13.1 5.9
5 39.0 14.9 16.2 7.4
6 40.2 15.0 18.9 8.0
7 44.0 14.8 22.4 9.1
8 45.9 15.3 25.2 10.0
9 45.6 15.1 28.0 11.4

10 47.4 15.7 31.8 12.9
15 50.9 19.6 44.1 29.8
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Table 5.3: Comparison between the Wirtinger flow and the GD-COPER with the coded diffraction
patterns for different values of </=. The true images in the simulations are shown in the leftmost
column.

Target <
=

GD-COPER Wirtinger Flow
PSNR Run time PSNR Run time

1 29.3 14.2 DVG 1.4
2 34.0 18.5 DVG 2.7
3 36.8 17.6 DVG 4.7
4 38.0 15.1 17.6 6.1
5 40.7 15.9 20.4 8.0
6 44.2 14.6 22.8 8.2
7 42.1 14.9 28.1 9.2
8 40.7 16.2 30.5 9.8
9 42.2 16.0 33.8 11.8

10 49.9 16.3 37.6 13.1
15 41.8 16.9 52.1 23.0
1 27.2 13.8 DVG 1.4
2 32.3 16.6 DVG 2.1
3 35.8 16.9 DVG 3.9
4 36.4 17.1 15.6 7.3
5 38.7 15.1 17.9 6.7
6 39.4 14.9 20.1 7.8
7 42.9 15.1 27.1 8.9
8 47.5 15.6 30.5 10.1
9 40.9 18.2 33.2 18.9

10 47.6 15.9 36.9 13.0
15 48.6 17.7 53.3 23.0

Target <
=

GD-COPER Wirtinger Flow
PSNR Run time PSNR Run time

1 23.1 13.8 DVG 1.4
2 28.0 17.9 DVG 2.6
3 32.0 17.9 DVG 3.7
4 34.3 18.4 16.2 7.1
5 38.1 16.9 19.0 9.2
6 38.5 15.3 21.2 8.0
7 42.0 15.2 22.6 9.2
8 44.6 15.6 29.2 9.9
9 43.2 19.4 32.3 14.7
10 43.0 16.3 36.1 13.1
15 52.0 17.5 49.7 23.4
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Table 5.4: Wirtinger Flow performance with spectral and all-white initialization

Target <
=

All-white Spectral
n-init-err PSNR Run time n-init-err PSNR Run time

1 0.57 DVG 1.7 1.39 DVG 2.4
2 0.57 DVG 1.4 1.39 DVG 4.4
3 0.57 17.1 4.3 1.39 DVG 6.2
4 0.57 20.3 5.5 1.37 DVG 7.4
5 0.57 23.2 6.5 1.37 DVG 9.3
6 0.57 26.9 7.7 1.38 DVG 11.2
7 0.57 29.4 9.8 1.13 DVG 12.3
8 0.57 32.8 13.5 0.89 DVG 16.2
9 0.57 36.2 17.5 0.63 9.4 74.8

10 0.57 39.0 44.5 0.64 DVG 32.5
15 0.57 51.3 50.6 0.49 20.5 99.4

Target <
=

All-white Spectral
n-init-err PSNR Run time n-init-err PSNR Run time

1 0.86 DVG 2.8 1.39 DVG 4.8
2 0.86 12.1 9.1 1.39 DVG 8.4
3 0.86 15.1 11.4 1.39 DVG 10.9
4 0.86 18.2 14.9 1.39 DVG 13.6
5 0.86 21.1 20.0 1.41 DVG 15.1
6 0.86 24.2 25.1 1.37 DVG 17.1
7 0.86 27.4 28.2 1.06 DVG 19.5
8 0.86 30.4 28.4 0.9 DVG 22.8
9 0.86 33.4 31.6 1.33 DVG 26.0

10 0.86 35.5 32.2 0.6 24.4 56.1
15 0.86 56.7 43.7 0.48 11.0 81.7

Target <
=

All-white Spectral
n-init-err PSNR Run time n-init-err PSNR Run time

1 0.98 DVG 2.6 1.39 DVG 5.0
2 0.98 DVG 2.8 1.39 DVG 7.2
3 0.98 14.0 9.6 1.39 DVG 8.9
4 0.98 17.0 11.9 1.4 DVG 10.6
5 0.98 20.0 15.9 1.38 DVG 12.6
6 0.98 23.2 17.7 1.21 DVG 15.0
7 0.98 26.1 21.8 1.31 DVG 17.0
8 0.98 29.0 24.1 1.39 DVG 17.9
9 0.98 32.2 26.2 0.65 20.4 30.8

10 0.98 34.7 13.6 0.6 21.3 30.9
15 0.98 57.1 21.9 0.48 21.2 55.3
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Table 5.5: Wirtinger Flow performance with spectral and all-white initialization

Target <
=

All-white Spectral
n-init-err PSNR Run time n-init-err PSNR Run time

1 2.84 5.1 2.6 1.39 DVG 3.1
2 2.84 8.1 3.6 1.4 DVG 4.9
3 2.84 11.0 4.7 1.39 DVG 7.1
4 2.84 14.1 5.5 1.4 DVG 8.8
5 2.84 17.3 6.9 1.38 DVG 10.6
6 2.84 20.3 8.3 1.36 DVG 12.3
7 2.84 22.9 9.7 1.36 DVG 14.2
8 2.84 26.2 11.1 1.39 DVG 16.2
9 2.84 28.4 12.8 1.1 DVG 17.8

10 2.84 32.3 13.4 0.6 20.8 30.8
15 2.84 45.0 22.2 0.48 39.7 53.4

Target <
=

All-white Spectral
n-init-err PSNR Run time n-init-err PSNR Run time

1 0.83 DVG 1.4 1.39 DVG 3.1
2 0.83 12.6 3.8 1.39 DVG 5.1
3 0.83 15.6 4.7 1.39 DVG 6.8
4 0.83 18.6 5.6 1.39 DVG 8.7
5 0.83 21.5 6.7 1.31 DVG 10.1
6 0.83 24.8 8.1 1.36 DVG 12.2
7 0.83 28.0 9.5 1.27 DVG 14.1
8 0.83 30.9 10.7 0.7 DVG 21.6
9 0.83 33.6 12.3 1.05 DVG 17.9

10 0.83 36.3 13.0 0.85 DVG 19.6
15 0.83 59.3 22.5 0.48 28.5 54.0

Target <
=

All-white Spectral
n-init-err PSNR Run time n-init-err PSNR Run time

1 1.25 7.4 2.5 1.4 DVG 3.0
2 1.25 10.4 3.3 1.39 DVG 4.9
3 1.25 13.5 4.9 1.39 DVG 6.5
4 1.25 16.5 5.7 1.38 DVG 8.1
5 1.25 19.3 7.1 1.4 DVG 10.2
6 1.25 22.6 8.0 1.32 DVG 12.2
7 1.25 25.9 9.9 1.02 DVG 13.7
8 1.25 28.6 10.6 0.71 11.1 23.9
9 1.25 31.9 22.3 0.77 DVG 22.1

10 1.25 34.3 27.3 0.64 DVG 25.2
15 1.25 55.2 42.8 0.49 24.2 79.6
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Table 5.6: The impact of initialization on the performance of GD-COPER and Wirtinger flow.
“n-init-error" is the normalized mean square error of the initialization. The initializations chosen in
this simulation are in the form of xinit = _x> + (1 − _)x, where x> is an all-white image and x is the
true signal.

Target n-init-error _
<
=
= 1 <

=
= 2 <

=
= 3

GD-C WF GD-C WF GD-C WF
0.0 0.0 29.94 inf 32.55 inf 34.23 inf

0.49 0.1 29.46 DVG 32.03 DVG 33.79 26.78
0.98 0.2 29.25 DVG 32.03 DVG 34.03 24.11
1.48 0.3 28.36 14.55 32.19 17.57 33.96 20.59
1.97 0.4 27.12 12.06 31.22 15.07 33.18 18.09
2.46 0.5 25.0 10.13 30.63 13.13 33.59 16.15
2.95 0.6 23.03 8.54 30.67 11.55 33.32 14.57
3.44 0.7 21.41 7.2 29.66 10.21 33.21 13.22
3.94 0.8 20.59 6.04 28.51 9.04 31.37 12.05
4.43 0.9 20.36 5.01 27.69 8.01 30.89 11.01
4.92 1.0 18.52 4.09 27.95 7.09 31.82 10.07

Target n-init-error _
<
=
= 1 <

=
= 2 <

=
= 3

GD-C WF GD-C WF GD-C WF
0.0 0.0 30.17 inf 34.68 inf 37.67 inf
0.08 0.1 29.53 DVG 34.59 DVG 37.32 DVG
0.17 0.2 29.6 DVG 33.67 DVG 37.35 DVG
0.25 0.3 29.65 DVG 33.6 DVG 37.74 DVG
0.34 0.4 29.32 DVG 33.7 DVG 37.51 DVG
0.42 0.5 28.18 DVG 34.19 DVG 36.64 18.73
0.5 0.6 27.68 DVG 34.92 DVG 35.95 19.86
0.59 0.7 28.37 DVG 35.08 DVG 35.92 18.66
0.67 0.8 28.13 DVG 35.12 14.24 36.23 17.56
0.76 0.9 29.21 DVG 34.79 13.43 36.04 16.54
0.84 1.0 29.15 DVG 34.16 12.59 35.64 15.63

295



Table 5.7: The impact of initialization on the performance of GD-COPER and Wirtinger flow.
“n-init-error" is the normalized mean square error of the initialization. The initializations chosen in
this simulation are in the form of xinit = _x> + (1 − _)x, where x> is an all-white image and x is the
true signal.

Target n-init-error _
<
=
= 1 <

=
= 2 <

=
= 3

GD-C WF GD-C WF GD-C WF
0.0 0.0 27.84 inf 31.55 inf 35.11 inf
0.09 0.1 28.04 DVG 31.5 DVG 35.19 DVG
0.17 0.2 27.44 DVG 31.24 DVG 35.12 DVG
0.26 0.3 26.99 DVG 31.47 DVG 35.26 DVG
0.35 0.4 26.68 DVG 31.23 DVG 35.02 DVG
0.43 0.5 26.89 DVG 31.62 DVG 34.66 19.12
0.52 0.6 26.5 DVG 32.18 DVG 33.89 18.97
0.61 0.7 26.69 DVG 32.4 DVG 33.54 17.94
0.7 0.8 26.56 DVG 31.97 13.86 33.71 17.13
0.78 0.9 26.26 DVG 31.74 12.92 34.16 16.12
0.87 1.0 26.71 DVG 32.0 12.11 34.6 15.21

Target n-init-error _
<
=
= 1 <

=
= 2 <

=
= 3

GD-C WF GD-C WF GD-C WF
0.0 0.0 23.65 inf 26.23 inf 27.53 inf
0.1 0.1 23.55 DVG 26.26 DVG 27.65 DVG
0.2 0.2 23.69 DVG 26.14 DVG 27.68 DVG
0.3 0.3 23.49 DVG 26.28 DVG 27.46 DVG

0.39 0.4 23.45 DVG 26.14 DVG 27.49 DVG
0.49 0.5 23.49 DVG 26.13 DVG 27.6 DVG
0.59 0.6 23.45 DVG 26.19 DVG 27.56 DVG
0.69 0.7 23.48 DVG 26.18 DVG 27.43 16.88
0.79 0.8 22.82 DVG 26.44 12.72 27.53 15.9
0.89 0.9 22.97 DVG 26.43 11.9 27.5 14.92
0.99 1.0 22.62 DVG 26.27 11.03 27.56 14.0
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Chapter 6: Future research directions

In this chapter, we cover several open questions and challenges regarding topics we discussed in

this thesis.

6.1 Probabilistic toolbox

The growing literature of high-dimensional statistics and machine learning has created a major

demand for understanding the behavior of heavy-tailed probability measures. For instance, it is

straightforward to see how heavy-tailed distributions appear in the analyses of deep learning models.

In a deep neural network of the form

y = f

(
]3

(
...f

(
]2f (]1x + b1) + b2

)
+ ...

)
+ b3

)
,

where 3 is the depth of the network and ]8, b8, f denote weights, biases, and the non-linearity

respectively, we usually have a heavy-tailed distribution for the output y because of the iterative

multiplications from a layer to the next one. More examples of the appearance of heavy-tailed

distributions in current studies are discussed in [48, 168].

Although there are several results in the probability theory literature to address questions

about heavy-tailed distributions [49, 64], they are either too general with many free parameters to

tune, or are incapable of offering sharp results we require for statistical analyses. Sometimes, the

optimization problems that have to be solved for setting free parameters appropriately in such results

is as challenging as the concentration problem we aim to address. Hence, many of the existing

results are not suitable to address questions raised in the statistical analyses in the high-dimensional

settings. For more detailed discussion about this issue refer to Chapter 2.

While the average of heavy-tailed iid random variables have been discussed in Chapter 2, there
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are many more forms of statistics of dependent heavy-tailed distributions that need to be analyzed.

For instance, in the study of random matrices, studying quadratic sums of the form x) Gx, where x

is a random vector and G is a matrix independent from x is quite important [169]. Note that the

well-known Hanson-Wright inequality is applicable only when x is a subGaussian vector [170, 65].

Hence, obtaining accurate and easy-to-use concentration inequalities for the functions of dependent

heavy-tailed distributions is one of the open questions that need to be investigated more carefully in

the future.

6.2 Theoretical gap for recovery of a structured signal

As discussed in Chapter 5, there is a gap between the sufficient number of measurements to

recover a structured signal and the sample complexity that is required for a convergence guarantee

of almost all proposed algorithms. If the signal is known to lie in a compact set with effective

dimension : , then $ (: log =) random measurements are sufficient to determine the signal uniquely

[42, 41]. However, the required sample complexity for most of the known algorithms is at least

$ (:2 log =). A few results have suggested that it is possible to reduce the sample complexity

of practical methods to $ (: log =). For instance, [171] shows that for a very specific form of

sensing vectors, which is far from what one has in practice, it is possible to prove convergence

with $ (: log =) observations. A more realistic result for real signals, i.e. x ∈ R=, with optimal

sample complexity appeared in [43] where it is assumed a generative model for representing the

signal of interest and a gradient descent method is used on the input domain of the generative model.

Nevertheless, this result suffers from some limitations as well; First, it is proved only for real valued

signals. Second, it assumes some technical conditions on the sensing vectors which makes the result

inapplicable to many practical settings. Finally, training generative models requires thousands of

samples which may not be available for cutting-edge applications such as nano-particle imaging. In

general, the optimal sample complexity and the optimal recovery method for generic structures and

practical setups for the measurement system is still unknown. Exploring this issue is an excellent

direction for future studies.
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6.3 Rigorous analysis in practical setups

Despite the major progress that has been made in the theory of the phase retrieval problem, the

existing theory is still limited and incapable of addressing many challenges that arise in applications.

We discuss an instance of such limitations in more details below.

In non-convex optimization problems, which are used ubiquitously for solving inverse problems

such as phase retrieval, it is essential to start with a point close to the signal of interest. Finding such

an initial point, however, is a cumbersome task. As discussed in Chapters 3 and 4, spectral methods

are very common for such initializations. In these methods, one uses the leading eigenvector of the

following matrix

S =
1
<

<∑
8=1
T (H8)a8a∗8 (6.1)

as an initial point. In an ideal scenario, we want to understand the performance of the spectral

methods for matrix ensembles that are used in practice and for realistic prior assumptions about the

signal of interest. Unfortunately, the scope of the most of the theoretical works in phase retrieval

have remained limited to simple random sensing matrices, such as Gaussian ensembles [29], uniform

sample from orthogonal group [32], right invariant distributions [172]; and independent [172] and

Gaussian distribution for entries of the signal [33]. On the other hand, the sensing matrices that

are used in real systems, are often structured with limited amount of randomness. There are recent

empirical evidence that some of the results on simpler matrix ensembles explain the behavior of

more structured sensing matrices [173]. However, most such hypotheses have remained unproven.

We already have taken some steps toward filling this gap. For instance, [172] conjectures,

based on tools borrowed from statistical physics, the optimal performance of spectral methods

is in fact attained by a matrix of the form (6.1). Hence, working with this specific form has no

cost for generality of our results. Moreover, Chapter 4 which is based on [33] extends the results

obtained in Chapter 3, for partial orthogonal matrices, to partial Hadamard matrices which are better

approximation for the sensing matrices that are being used in practice. We hope that this progress
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starts a more serious investigations of structured sensing matrices and signals.

6.4 Extension to other inverse problems

Phase retrieval is a very specific instance of inverse problems that emerge in imaging systems.

Extension of the tools we developed in the context of phase retrieval, such as GD-COPER and

spectral methods for initialization, to more complex versions of the phase retrieval or even other

imaging systems, such as phase retrieval with multiplicative noise [174], coherent diffraction single-

shot imaging with random rotation [175], hyperspectral imaging [176], and Nuclear Magnetic

Resonance (NMR) [177], or other inverse problems, such as blind deconvolution [178], is an

interesting direction of research. Below, I describe a few examples in more details.

Phase retrieval from a randomly rotated object appears in the imaging of nano-particles, where

we can obtain a single shot from a particle and have no control over the orientation of the particle in

the imaging system [175]. In this case, the mathematical formulation of the measurements would be

H8 =
��a∗8 X8x�� + n8, (6.2)

where X8s are uniform independent samples from the Unitary or the Orthogonal group.

Another example is blind deconvolution problem. In this problem, one would like to recover the

signal 6(x), from blurry and noisy measurements

y =

∫
ℎ( t)6(x − t)3 t + & , (6.3)

where & denotes the measurement noise and ℎ represents an unknown convolution kernel.

Utilizing compression codes, discussed in Chapter 5 for COPER, to take advantage of the prior

knowledge about the signal in order to minimize the sample complexity sounds promising for

the inverse problems mentioned above. Furthermore, insights developed in the context of simple

phase retrieval can pave the path for investigating more challenging problems with a similar nature.

For instance, the geometry of local minimas and formulations of the cost functions for the phase
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retrieval which have shown the state-of-the-art performances can be inspiring to obtain the same

level of knowledge for such more challenging inverse problems.
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