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ABSTRACT

Numerically exact quantum dynamics of low-dimensional lattice

systems

Benedikt Kloss

In this thesis I present contributions to the development, analysis and application of

tensor network state methods for numerically exact quantum dynamics in one and two-

dimensional lattice systems. The setting of numerically exact quantum dynamics is intro-

duced in Chapter 2. This includes a discussion of exact diagonalization approaches and

massively parallel implementations thereof as well as a brief introduction of tensor network

states. In Chapter 3, I perform a detailed analysis of the performance of n-ary tree tensor

network states for simulating the dynamics of two-dimensional lattices. This constitutes the

first application of this class of tensor network to dynamics in two spatial dimensions, a long-

standing challenge, and the method is found to perform on par with existing state-of-the

art approaches. Chapter 4 showcases the efficacy of a novel tensor network format I devel-

oped, tailored to electron-phonon coupled problems in their single-electron sector, through

an application to the Holstein model. The applicability of the approach to a broad range of

parameters of the model allows to reveal the strong influence of the spread of the electron

distribution on the initial state of the phonons at the site where the electron is introduced,

for which a simple physical picture is offered. I depart from method development in Chapter

5 and analyse the prospects of using tensor network states evolved using the time-dependent

variational principle as an approximate approach to determine asymptotic transport prop-

erties with a finite, moderate computational effort. The method is shown to not yield the

correct asymptotics in a clean, non-integrable system and can thus not be expected to work



in generic systems, outside of finely tuned parameter regimes of certain models. Chapters 6

and 7 are concerned with studies of spin transport in long-range interacting systems using

tensor network state methods. For the clean case, discussed in Chapter 6, we find that for

sufficiently short-ranged interactions, the spreading of the bulk of the excitation is diffusive

and thus dominated by the local part of the interaction, while the tail of the excitation

decays with a powerlaw that is twice as large as the powerlaw of the interaction. Similarly,

in the disordered case, analysed in Chapter 7, we find subdiffusive transport of spin and sub-

linear growth of entanglement entropy. This behaviour is in agreement with the behaviour

of systems with local interactions at intermediate disorder strength, but provides evidence

against the phenomelogical Griffith picture of rare, strongly disordered insulating regions.

We generalize the latter to long-ranged interactions and show that it predicts to diffusion,

in contrast to the local case where it results in subdiffusive behaviour.
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Chapter 1

Introduction

1.1 Motivation

Gaining insight into the non-equilibrium dynamics of quantum system is important for a va-

riety of reasons. Many processes in nature or technology are inherently off-equilibrium and

quantum, including light harvesting in photosynthetic complexes, solar energy conversion in

photovoltaic cells and heat or electron conduction through molecular junctions [1–3]. Fur-

thermore, driving a system out of equilibrium may allow to induce exotic physical behaviour

and phases of matter which are difficult to realize in equilibrium[4]. Understanding the ap-

proach to equilibrium, or lack thereof, of an initially out-of-equilibrium quantum system is

another question of both significant fundamental and technological relevance [5–7].

While perturbation theory and analytical approaches are successful in describing the

essential physics of many interesting systems, certain parameter regimes and classes of models

defy such approximate methods and require a numerically exact solution. Existing exact

quantum dynamical methods suffer from severe limitations of the attainable system sizes, as

1



CHAPTER 1. INTRODUCTION

is the case for exact diagonalization techniques, or timescales, for example methods based on

tensor network states. This is due to an exponential scaling of the computational effort with

these parameters. Numerically exact approaches nonetheless offer crucial insights, and give

access to time and lengthscales comparable to many current cold-atom simulator experiments

[8]. Thus, in the absence of exact, non-exponentially scaling approaches, it is crucial to

improve the scalability and efficiency of existing numerical techniques.

1.2 Thesis outline

The focus of this thesis lies in the development, analysis and application of tensor network

state methods for quantum dynamics in low-dimensional lattice systems. We begin with an

introduction to commonly used exact quantum dynamical methods in Chapter 2, discussing

exact diagonalization and direct methods in the exact Hilbert space as well as tensor network

states.

Chapter 3 assesses the performance of tree tensor network states, a specific format of

tensor network states, for computing the dynamics of two-dimensional lattice systems, a

longstanding challenge. Models with coupling of electronic degrees of freedom to lattice

vibrations constitute another challenge due to the large local Hilbert space dimension, and

we showcase a promising, novel tensor network state ansatz for such models in Chapter 4.

Given the exponential scaling of tensor network state approaches with time, it is pertinent

to ask whether extraction of asymptotic behaviour may be possible when employing tensor

network states as an approximate method, weakening the requirement of numerical exactness.

We address this question in Chapter 5 in the context of spin transport.

The last two chapters apply tensor network state dynamical methods to systems with
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long-range interactions in one dimension, which require lengthscales beyond the reach of

exact diagonalization techniques. Despite the limited accessible timescales, these simulations

allow us to draw conclusions regarding the nature of transport in both clean, see Chapter 6,

and weakly disordered, see Chapter 7, spin chains with long-range interactions.
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Chapter 2

Numerically exact quantum dynamical

methods

2.1 Exact diagonalization

The dynamics of a closed quantum system is described by the time-dependent Schroedinger

equation

i∂tΨ = ĤΨ =
∑

i

Eiψi. (2.1)

Given the spectrum of the Hamiltonian, Ei and its eigenbasis {ψi}, it is thus straightfor-

ward to compute the time-evolved state for any time. For a generic system with a finite-

dimensional Hilbert space, eigenvalues and eigenvectors can be obtained via the eigende-

composition of the Hamiltonian matrix. H = VEV†, where E is a diagonal matrix of the

eigenvalues Ei and the i-th row vector of V is the i-th eigenvector. The eigendecomposition,

or exact diagonalization, is a well-established matrix decomposition for which robust and

performant numerical implementations exist [9]. However, the computational cost of this
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decomposition scales cubically with the size of the matrix. Furthermore, the eigenbasis V

is generally a dense matrix, requiring the storage of a number of elements that grows as

the square of the matrix dimension. For a lattice system with a local d-dimensional Hilbert

space and N sites, the total Hilbert space dimension is dN , leading to an overall exponential

complexity of exact diagonalization with the number of lattice sites. The maximum dimen-

sion of matrices that can routinely be diagonalized on a modern workstation computer or

moderate compute cluster is ∼ 100000, which translates to about 16 sites for a spin-1/2

system without making use of any symmetries of the Hamiltonian.

2.2 Direct methods in the exact Hilbert space

Besides the scaling of the computational effort and memory requirements, exact diagonal-

ization suffers from a lack of scalability on current supercomputing resources. The latter

are large networks of independent compute nodes, which introduce exchange of data, or

communication, between nodes as an additional resource and potential bottleneck. Known

algorithms for exact diagonalization require a lot of communication, and are thus not ca-

pable of fully making use of existing resources. However, in order to compute dynamics,

it is not necessary to know the full spectrum and all eigenvectors of the system. Instead,

we can use standard solvers for linear differential equations to integrate the time-dependent

Schroedinger equation which require as input only the wavefunction and the map between

wavefunction and its time-derivative. The time-derivative of the wavefunction can be com-

puted by evaluating the action of the Hamiltonian on the wavefunction.

If we consider the Hamiltonian as a dense matrix, the resulting matrix-vector multi-

plication scales quadratically with the matrix dimension, but otherwise it shares the same
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limitations as computing the full eigendecomposition. Fortunately, the vast majority of

physical systems have a sparse Hamiltonian in a basis, which is convenient to construct

and physically motivated. Sparse matrix-vector multiplication can scale as low as linearly

with the matrix dimension in terms of computational effort and storage requirements for

the Hamiltonian. Parallelizability is strongly dependent on the structure of the Hamilto-

nian, but it can generally be expected to behave similarly to a dense matrix-vector multiply

in that respect, with a greatly reduced prefactor due to the larger number of zero matrix

elements. Since most Hamiltonians can be written as a sum over products of operators

with local support, an explicit, sparse or dense, matrix representation of the Hamiltonian

can be circumvented alltogether. This allows for efficient, massively parallel evaluation of

their action on the wavefunction with linear scaling in computational effort and storage,

enabling the simulation of dynamic of systems more than twice as large as with full exact

diagonalization, see for example Ref. 10 for a current state-of-the art calculation. For many

systems, an equally performant alternative is to approximate the exact propagator for a short

timestep by a Trotter decomposition of the matrix exponential, for example to first order

e−iH∆t = e−iH0∆te−iH1∆t + O (∆t2). Both e−iH0∆t and e−iH1∆t need to be chosen such that

they can be evaluated efficiently, for example as products of operators with non-overlapping

local support.

2.3 Tensor network state approaches

The exponential scaling of the size of Hilbert space imposes a limitation to the size of systems

for which we can store the wavefunction within classical computing paradigms. On the other

hand, it is possible to construct an ansatz for the wavefunction with a limited number of
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parameters. Product states, for example, can be represented using dN coefficients. In order

for a family of ansaetze to be successful in the numerically exact study of generic systems, it

should satisfy a few properties. First, it should allow to describe states of interest with arbi-

trary accuracy using resources that scale subexponentially in the system size. Furthermore,

the ansatz should offer a way to systematically improve the accuracy of the approximation

by increasing the number of parameters. And finally, there need to be efficient algorithms

available to, in our case, solve the time-dependent Schroedinger equation within the mani-

fold of states expressible by the ansatz and to compute observables. Within the last two to

three decades, tensor network states (TNS) have become a powerful and widely used class

of wavefunction representations, fulfilling these requirements at least partially. They express

the wavefunction as a network of low order tensors and their computational complexity is

closely connected to the entanglement of the state. In the following, a brief introduction to

tensor network states will be given, followed by a discussion of their application to lattice

systems.

2.3.1 Tensor network states - concepts

The tensor product structure of the many-body Hilbert space of quantum lattice systems

allows us to understand the wavefunction coefficients as a high-dimensional tensor. For a

system with N sites and local Hilbert space dimension d, the dN coefficients are arranged into

a tensor of order n, where each mode has dimension d. Tensors here are understood simply as

multi-dimensional arrays, with scalars, vectors and matrices being tensors of order 0, 1 and

2 respectively. Operations like matrix-matrix or matrix-vector multiplication are examples

of tensor contractions, i.e. as takings sums over slices of tensors sharing a common index.

Algebraically, in a matrix-matrix multiplication for instance, the left matrices’ column indices
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are shared with the right matrices’ row-indices
∑

j AijBjk = Cik. It is helpful to introduce

a diagrammatic representation of tensors and tensor contractions, where a shape represents

a tensor and its modes are indicated by legs. A tensor of order n has n legs, and if one or

more legs of two tensors join this indicates a contraction along the participating modes, for

example

Tijkl = T

i

j

k l , A B li
j

= C ii . (2.2)

A network of tensors is a collection of individual tensors, each of which shares one or

more legs with another tensor. Consider for example the Schmidt decomposition of a state

in the many-body Hilbert space given a bipartition of the lattice into partitions A and B,

algebraically:

Ψσ1,σ2,...,σN−1σN =
r∑

i=1

φA(σjj∈A),iλiφ
B
i,(σjj∈B) = SVD(Ψσjj∈A,σjj∈B), (2.3)

or diagramatically,

Ψ = Ψ
SVD−→ ψA Λ ψB = ψA Λ ψB . (2.4)

Indices which are grouped together into a multi-index for the purpose of e.g. reshaping a

tensor into matrix, are indicated by (. . . ) in the index and thick legs in diagrams. Usually,

the Schmidt decomposition is thought of in terms of generating orthonormal Schmidt vectors,

and Schmidt coefficients, λi. It is synonymous with the singular value decomposition (SVD)

of the coefficient-tensor reshaped into a matrix, with the row (respectively column) indices

corresponding to a multi-index of the indices for sites in partition A (respectively B). In the
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language of tensor networks, the SVD has introduced an auxiliary, non-physical, mode and

decomposed the order N wavefunction tensor into two tensors of smaller order. They share

the newly introduced, auxiliary index, which is also refered to as bond. The SVD can be

applied repeatedly to the resulting tensors to reduce their order further, treating auxiliary

indices in the same manner as physical indices. For concreteness, take a subdivision of

partition A into two parts, A1 and A2, and compute the singular value decomposition of

φAσjj∈A,i along the bipartition:

φAσjj∈A,i = φAσjj∈A1
,σjj∈A2

,i = φA
σjj∈A1

,(σjj∈A2
,i) =

r∑

k=1

φ̃A1

(σjj∈A1),k
λ̃kφ̃

A2

k,(σjj∈B ,i)

φA Λ φB
SVD−→ ψA1 Λ̃ ψA2 Λ ψB . (2.5)

It is straightforward to check that the singular values λ̃k obtained from this decomposition

are identical to those obtained from the SVD of the full wavefunction given partitions A1

and A2

⋃
B. Thus, the singular value decomposition, along other matrix decompositions, is

useful to decompose tensors into networks of smaller order tensors.

2.3.2 Tensor network states and entanglement entropy

Writing a large order tensor in terms of networks of smaller order tensors does not neces-

sarily give a reduction in the parameters necessary to represent the wavefunction. From the

Schmidt decomposition, it is clear that a lossless compression is only achieved if the number

of non-vanishing Schmidt coefficients r is significantly smaller than the Hilbert space dimen-

sion of the smaller of the two bipartitions. Keeping only the largest χ ≤ r singular values in
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the decomposition results in an error of |Ψ − Ψχ| =
√∑r

i=q+1 λ
2
i . The number of singular

values retained at each decomposition, i.e. the dimension of the shared indices of the tensor

network is commonly refered to as bond dimension. If the bond dimension of a tensor net-

work scales subexponentially with the system size, so does its storage requirements, and for

loopless tensor network also the effort to manipulate the tensor network state. As long as

an arbitrarily good approximation to the exact wavefunction can be obtained with a bond

dimension that scales slower than exponential in the system size, we may say that the tensor

network state offers an efficient representation of the wavefunction.

In order to gain insight into what kind of states are efficiently encoded as tensor network

states, the von Neumann or entanglement entropy is a very useful quantity,

SA = −tr
(
ρAlnρA

)
= −

∑

i

λ2
i lnλ

2
i = SB. (2.6)

Here, A and B a bipartition of the lattice, and we denote the half-system entanglement

entropy as S, where the bipartition corresponds to dividing the system into two equally

sized halves, such that the entanglement entropy is minimized. For square lattices this is

usually a cut along a straight line. A state is said to obey an area-law of entanglement

entropy if S grows at most as fast as the size of the boundary of the bipartition. An

important example of area-law states are ground states of one and two-dimensional gapped

systems [11, 12]. States sampled randomly from the Haar-measure, on the other hand, are

maximally entangled with probability approaching 1. Their entanglement entropy grows

with the volume of the partition and one speaks of a volume-law state.
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2.3.3 Tensor network states for one and two-dimensional lattices

In one spatial dimension, an area-law translates to a constant entanglement entropy with

system size, which in turn implies that a constant bond dimension is sufficient to approximate

the state with a tensor network with arbitrary precision [11]. For this reason, ground states

of gapped one-dimensional systems can be represented most efficiently by matrix product

states (MPS)[13], here an example for 5 sites

A (1)

σ1

A (2)

σ2

A (3)

σ3

A (4)

σ4

A (5)

σ5

(2.7)

or more generally algebraically,

|Ψ[A]〉 =
d∑

{σn}=1

Aσ1(1)Aσ2(2) . . . AσN (L) |σ1σ2 . . . σL〉 . (2.8)

Aσi(i) denotes matrix of dimension min
(
x, 2i, 2N−i

)
×min

(
x, 2i+1, 2N−i−1

)
, and σi labels the

state for the physical degree of freedom at site i. The coefficient for a many-body basis state

|σ1σ2 . . . σL〉 is thus encoded in a product of matrices, which explains the tensor network’s

name. A variety of algorithms based on MPS have been developed in the last decades,

beginning with the density matrix renormalization group (DMRG) [14], an algorithm to

variatonally determine the ground state of quantum system using MPS that pioneered the

use of tensor networks in condensed matter physics.

In two spatial dimensions, the area-law implies a linearly growing entanglement entropy

with the linear length of the lattice, which rules out an efficient representation by tensor

networks without loops. However, a tensor network that mimics the lattice connectivity

in two-dimensions, similar to MPS in one spatial dimension, was developped: Projector
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Entangled Pair States (PEPS) [15]

(2.9)

Due to the linear number of bonds connecting two halves of the system, PEPS can accomo-

date the growing entanglement entropy of ground states in two dimensions [16]. However, the

presence of loops in the tensor network make its manipulation cumbersome and inefficient,

although significant progress has been achieved in recent years [17, 18].

With non-equilibrium dynamics being the subject of this thesis, it is natural to ask

whether time-evolved quantum states can be efficiently described by tensor networks. Again,

an answer to this question is provided via the entanglement entropy: A generic system evolv-

ing from a weakly entangled non-equilibrium state shows a linear growth of entanglement

entropy with time until saturation to a volume-law state [19]. This implies an exponential

growth in the bond dimension of a loop-free tensor network, regardless of spatial dimension-

ality of the lattice, and thus an exponential computational effort with time. Algorithms to

compute time-evolution of a quantum state with tensor networks include the Time Evolving

Block decimation (TEBD) [20] and the Time-Dependent Variational Principle (TDVP) [21,

22], among others. In this thesis, both the results obtained and algorithmic contributions

made, are based on the TDVP, primarily due to the ease with which non-local interactions

are handled.
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Chapter 3

Studying dynamics in two-dimensional

quantum lattices using tree tensor

network states

This chapter was published as: B. Kloss et al., SciPost Phys. 9, 70 (2020)

3.1 Introduction

The exact simulation of the non-equilibrium dynamics of interacting quantum lattice sys-

tems is generally an unsolved challenge, due to the exponential growth of the Hilbert space

with the size of the system. Tensor network state (TNS) methods allow for a significant

extension of accessible length scales by trading in the exponential cost in system size for

an exponential cost in time. This becomes possible due to a reduction of the exact Hilbert

space in terms of a structured product of low-order tensors, referred to as a tensor network.

The set of the states expressible by a given tensor network spans only a small region in
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CHAPTER 3. STUDYING DYNAMICS IN TWO-DIMENSIONAL QUANTUM
LATTICES USING TREE TENSOR NETWORK STATES

Figure 3.1: Illustration of binary TTNS structure for a 4x4 lattice. The physical degrees of
freedom are on the topmost layer and the top node is in the bottom-layer of the figure.

the full Hilbert space, but the coverage can be improved systematically by increasing the

number of variational parameters, i.e. the bond dimension. For partitions of the lattice that

lead to simply-linked tensor network parts, the logarithm of the bond-dimension gives an

upper bound to the entanglement entropy. Since the entanglement of a generic system after

a global quench grows linearly with time [19, 24, 25], the accessible timescales are limited.

In one-dimensional systems, these timescales are often comparable to those attainable in ex-

perimental realizations [26], however going to higher spatial dimensions becomes extremely

challenging due to a number of reasons.

While in one-dimensional systems, matrix product states (MPS) are known to efficiently

represent area-law entangled states (which includes ground-states of gapped one-dimensional

systems), this does not hold in two spatial dimensions [11, 13, 14]. The generalization of MPS

to two-dimensional lattices is called Projector-Entangled Pair States (PEPS) [15], which pro-

vides an efficient representation of two-dimensional area-law entangled states [16], but PEPS

are challenging to manipulate numerically [17] (see also Ref. [18] for a recent review). Ap-

proximations that are hard to control are typically used in PEPS algorithms in order to tame
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the computational effort. Even with such approximations, the computational scaling is usu-

ally unfavorably steep. Nonetheless, PEPS-derived methods are state-of-the art numerical

techniques for computing ground-states of two-dimensional systems [27]. Extensions of PEPS

methods to the time-domain have been recently developed, however the accessible timescales

are extremely limited [28–31]. An alternative approach is to use tensor network structures,

which are more numerically tractable. One way to achieve this is to map the two-dimensional

lattice into a one-dimensional chain and apply MPS methods, which are adjusted to handle

the long-ranged interactions that arise from the mapping [32–37]. Ref. [35], for example, in-

troduced an algorithm which expresses the propagator as a matrix product operator (MPO)

acting on the states encoded as MPS. The application of this approach to two-dimensional

lattices shares the very limited timescale of the more recent approaches based on PEPS,

since the advantages in the computational scaling of simpler tensor networks are balancing

out the disadvantages in non-optimal representation of entanglement by the tensor network

structure for the problem at hand. A novel development is the use of artificial neural net-

works (ANN) to encode the wavefunction and its time-evolution [38]. They have been shown

to perform competitively with state-of-the art TNS techniques in recent applications to two-

dimensional systems [39, 40]. However, much remains to be learned about the possibilities

and limitations of such methods.

It is important to explore computationally tractable tensor network structures other

than MPS, since they may enable progress in the computation of the exact dynamics of

interacting two-dimensional systems. For this purpose, in this work we propose to employ

Tree Tensor Network States (TTNS), which encompass all loop-free tensor network states.

While similarly to MPS, hierarchical, tree-like TTNS can only efficiently encode states with

area-law entanglement in one dimensional systems they offer a more robust description of
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Figure 3.2: Same as Fig. 3.1 but for a quaternary TTNS.

ground states of critical one dimensional systems [41, 42], and therefore might provide more

flexibility in encoding complex entanglement structures in two and higher dimensional sys-

tems. TTNS are used in the context of interacting lattice systems [43–48], but they fea-

ture more prominently in applications like electronic structure methods [49–51] or molecular

quantum dynamics in the chemical physics literature. In this context they are called the

Multi-Configuration Time-Dependent Hartree (MCTDH) method and its multi-layer gener-

alization (ML-MCTDH) [52–54]. In ML-MCTDH, the time-dependent variational principle

[55, 56] (TDVP) is applied to a TTNS as a variational ansatz for the wavefunction. Up

to differences in the numerical integrations scheme, these methods are similar to the more

recent applications of the TDVP tailored specifically to matrix product states [21, 22, 57–59].

The TDVP applied to TNS has been discussed as a method that may enable the accurate

description of hydrodynamic transport in non-integrable systems when used with a moderate

bond dimension [60], but was shown to not be a robust approximation for generic systems

[61]. Several tensor network techniques have been designed to circumvent the entanglement

growth on intermediate timescales with the goal of a reliable approximation to the long-time

dynamics [62–68]. Despite promising results, the stability of such approximations for generic
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systems, especially beyond one dimension, is not sufficiently established at this point. In this

work, we thus consider the TDVP applied to TNS as a numerically exact technique, allowing

to compute the dynamics of a system within a controllable accuracy up to some finite time,

and generalize the algorithms of Refs. [22, 59, 69] to general TTNS. We note in passing that

such algorithms have been used to find the ground state of a two-dimensional spin system

[70] and to obtain the dynamics of a zero-dimensional model [71]. Recently, similar versions

of this algorithm were reported in detail in Refs. [72, 73], which we became aware of during

the preparation of this manuscript. While in our work we focus on two-dimensional systems,

Ref. [72] showcases a promising application of a TTNS as an impurity-solver, which is an

effectively zero-dimensional problem. On the other hand, Ref. [73] proves the algorithm’s

exactness property as well as a linear error-bound for the total time evolution in the time-

step.

The purpose of this work is to investigate the performance of TTNS as a numerically ex-

act method to study the dynamics of two-dimensional systems. In Sec. 7.2, we introduce the

main concepts of TTNS along with the TDVP before presenting the algorithm and comment-

ing on some caveats which are relevant to the applications of the TDVP. We benchmark the

method on an exactly solvable, non-interacting two-dimensional system, and compare our

approach to previously published results for two-dimensional interacting hardcore bosons in

Sec. 7.4. Notably, we identify the reachable timescales and investigate convergence properties

of the algorithm alongside with practical considerations regarding how to assess the accuracy

of the results. We conclude by placing the results in the context of existing techniques and

recent developments in Sec. 4.4.
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3.2 Theory

Tensor network states represent a pure state, |Ψ〉 =
∑

s1...sN
Ψs1...sN |s1 . . . sN〉, of a lattice

system as a product of tensors {T}. Each tensor Ti may have a number of indices corre-

sponding to physical degrees of freedom and also auxiliary indices which do not correspond

to physical degrees of freedom. Consider the Schmidt decomposition, corresponding to a bi-

partition of the lattice into a set of sites A and its complement B, Ψs1...sN =
∑

i,j φ
A
isA
λijφ

B
jsB

with λij = δijλi. This expression can be also understood as a product of three tensors, where

a single auxiliary index of each tensor is shared with the diagonal matrix of the Schmidt coef-

ficients (or singular values) λi. In a general tensor network any auxiliary index will appear on

two tensors, and summation over the common index implies contraction of the two tensors.

Tensor networks can be represented diagrammatically, see Fig. 3.3a, where the nodes corre-

spond to tensors and the links, dubbed legs in the following, indicate a shared index between

the two tensors. Any tensor network for which the legs do not form closed loops is considered

a Tree Tensor Network (TTN), with matrix product states (MPS) serving as a prominent

special case, which is mostly applicable for one-dimensional lattices. Here, we focus on more

general TTNS with a simple hierarchical structure: n-ary TTNS in which every node has

one parent node and n child nodes, except for those in the top and bottom layers. We group

all physical degrees of freedom into the bottom layer such that all layers above the bottom

layer contain only nodes with auxiliary legs (see Figs. 3.2, 3.3a) for illustration). Without

restricting the generality, in this Section we will limit the discussion to binary TTNS. In such

TTNS, a general node represents a third order tensor Λ[l,i], where l denotes the layer of the

tree to which the node belongs, and i enumerates the nodes in that layer. Each such node

has two child nodes. Due to the lack of loops in the tensor network, the physical degrees

of freedom separate naturally into two groups from the perspective of a node Λ[l,i]: those
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reachable by only descending in the tree towards the bottom layer, i.e. those in the subtree

of Λ[l,i], and their complement. We define the number of non-zero singular values of the

Schmidt decomposition along this bipartition as the rank r of node Λ[l,i]. For a state with

volume law entanglement, the exact rank r will generally scale exponentially with the system

size. Thus we introduce a cutoff in the number of kept singular values, namely the bond

dimension of the tree χ. In the following, we consider a TTNS of rank χ, which implies that

all its tensors Λ[l,i] have a rank of min
(
χ, dN(l,i)

)
, where d denotes the local Hilbert space

dimension and N(l, i) is the number of sites in the subtree of Λ[l,i]. The set of TTNS with

a given rank χ constitutes a smooth manifold of statesMχ. The computational complexity

for a binary TTNS is O (N logNχ3) in memory and O (N logNχ4) in computation where

N is the number of physical degrees of freedom.

We next present a method for time-propagation on the manifold Mχ of tree tensor

networks with tree rank χ using a time-dependent variational principle (TDVP) [55, 56]. We

start by introducing a few properties and manipulations of TTNS and then describe TDVP

and its application to TTNS. We finally highlight important technical details in the use of

the TDVP.

3.2.1 TTNS - Basics

A TTNS of a rank χ is unique up to unitary transformations. This can be seen by inserting

a unit matrix between two linked nodes of the tree

Λ[l,i]
α1α2α3

Iα3β1Λ
[l+1,j]
β1β2β3

= Λ[l,i]
α1α2α3

U∗α3γ
Uγβ1Λ

[l+1,j]
β1β2β3

= Λ̃[l,i]
α1α2γ

Λ̃
[l+1,j]
γβ2β3

, (3.1)
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a) b)

Figure 3.3: a) A binary TTNS for an 8-site system. The black dots correspond to physical
sites and the square boxes with n legs represent n-th order tensors. b) Application of
the QR decomposition to tensors in the TTNS. The upper and lower diagram represent
the same TTNS. The arrow on the link indicates the direction along which the tensor is
orthonormalized.

where repeated indices are summed over, I represents a χ × χ unit matrix and U∗ indi-

cates complex conjugation of the corresponding tensor. This property can be exploited to

isometrize the tree around any of its nodes [47, 74], which is a generalization of the mixed

canonical representation of MPS. To illustrate this concept, consider the isometrization about

the top-node. In this perspective, every tensor in the tree, except the top-node, represents a

truncated orthonormal basis in the space of the bases of child nodes, called isometry in the

language of real-space or tensor RG. Through recursion, a structured, incomplete basis for

the physical lattice sites is obtained. The coefficients for these basis functions are contained

in the top node. Any general TTNS can be brought into this form using a sequence of

QR decompositions. Practically, one applies QR factorization Λ
[l,i]
α1α2α3 = Q

[l,i]
βα2α3

R
[l,i]
βα1

with

Q
[l,i]∗
βα2α3

Q
[l,i]
γα2α3 = δβ,γ, for each of the nodes proceeding layer by layer from bottom to top

and absorbing the matrices R into the parent node after each factorization (see also Fig.

3.3b). Graphically, the direction along which the tensors are orthogonalized is indicated by

an arrow on the linking leg. Isometrization around a specific node in the tree translates into

arrows pointing in the direction of this node on any (direct) path between the node and a
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a) b)

Figure 3.4: A TTNS isometrized about node [1,1], a), and its shorthand notation, b). The
thick black bars on the environment tensors represent the set of physical sites belonging to
each of the environment tensors. Note that orthogonality of the environment tensors in b)
is not indicated by arrows on the legs, but implicit in their definition.

physical site, see Fig. 3.4b). We may rewrite the TTNS in the following manner:

Ψ[l, i]s = Λ[l,i]
α1α2α3

V [l−1,p(i)]
α1s1

V [l+1,c1(i)]
α2s2

V [l+1,c2(i)]
α3s3

. (3.2)

Here, we take the TTNS to be isometrized about node [l, i], indicated as Ψ[l, i], and an

environment tensor V [l±1,p(i)/cj(i)]
αjsj is the contraction of all tensors between the legs of node

Λ[l,i], labeled by αj, and the physical sites sj, linked by paths from leg αj that do not

cross node Λ[l,i]. cj(i) and p(i) are placeholders for the child and parent of node Λ[l,i], re-

spectively. We note in passing that similarly to MPS methods, such a contraction is never

explicitly carried out, and we only use it for notational convenience. For future reference,

we define projectors onto environment tensors of the lower and upper levels in the hierar-

chy:
(
Ω[l+1,cj−1(i)]

)
s′jsj = V

[l+1/cj−1(i)]
αjs′j V

[l+1/cj−1(i)]∗
αjsj and

(
Ω[l−1,p(i)]

)
s′1s1 = V

[l−1/p(i)]
α1s′1 V

[l−1/p(i)]∗
α1s1 .

A useful property of the environment tensors is their orthogonality, which allows for ef-

ficient calculation of certain physical quantities. For example, if the state is isometrized

about node [l, i], the norm of the state is given by 〈Ψ[l, i]|Ψ[l, i]| =〉Λ[l,i]∗
α1α2α3Λ

[l,i]
α1α2α3 since

V
[l±1,p(i)/cj(i)]∗
αjsj V

[l±1,p(i)/cj(i)]

α′jsj
= δα′jαj

. To improve the readability of the presentation, in the

following we will omit the indices specifying the elements of the tensors.
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3.2.2 TDVP

The time-dependent variational principle generates classical dynamics in the space of varia-

tional parameters, α, described by the Lagrangian

L[α, α̇] = 〈Ψ[α]| i∂t |Ψ[α]〉 − 〈Ψ[α]| Ĥ |Ψ[α]〉 . (3.3)

The associated action is minimized along a path on a certain variational manifold, which in

our case is the manifold of TTNS with tree rank χ,Mχ. The principle of least-action yields

the following equation of motion,

i∂t |Ψ[α]〉 = PT (Ψ[α])Ĥ |Ψ[α]〉 , (3.4)

where PT (Ψ[α]) is the projector onto the tangent space of the manifold Mχ at the point

Ψ[α]. An expression for PT (Ψ[α]) was derived for general binary TTNS in Refs. [75, 76].

Here, we will use an additive splitting of PT (Ψ[α]), in an analogy to those presented for

TTNS with only two layers, i.e. Tucker tensors [69] and matrix product states [22, 59],

respectively. Note that the latter two TNS are subclasses of a general TTNS and that the

expressions for the projector, PT (Ψ[α]), is not restricted to binary TTNS and is valid for any

TTNS with straightforward modifications. In particular,

PT (Ψ[α]) = P0 +
∑

[l,i]

P
[l,i]
+ − P [l,i]

− (3.5)

with

P0 = Ω[1,1]Ω[1,2] (3.6)
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P
[l,i]
+ = Ω[l+1,c1(i)]Ω[l+1,c2(i)]Ω[l−1,p(i)] (3.7)

P
[l,i]
− = Ω[l,i]Ω[l−1,p(i)]. (3.8)

Inserting this splitting into (3.4) leads to a set of projected Schrödinger equations for the

tensors Λ[l,i] and matrices R[l,i]. For example under the action of P [l,i]
+ (see also 3.5):

i∂tΨ[α] = iΛ̇[l,i](V [l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)]) + iΛ[l,i]∂t(V
[l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)])

= (V [l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)])H
[l,i]
effΛ

[l,i], (3.9)

with the effective Hamiltonian environment

H
[l,i]
eff = (V [l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)])∗Ĥ(V [l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)]). (3.10)

We choose a convenient gauge in which the time-derivative of any tensor of the TTNS

representation is orthogonal to itself. This must be done to avoid over-completeness of the

basis of the tangent space. In this gauge the time derivative simplifies to

iΛ̇[l,i] = H
[l,i]
effΛ

[l,i], (3.11)

which is obtained by contracting Eq. (3.9) with (V [l−1,p(i)]V [l+1,c1(i)]V [l+1,c2(i)])∗. Similarly, we

obtain for R[l,i], which results from the action of P [l,i]
− ,

iṘ[l,i] = H̃
[l,i]
effR

[l,i]. (3.12)
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Figure 3.5: Graphical representation of the last line of Eq. (3.9), with identification of the
effective Hamiltonian environment, H [l,i]

eff , of Eq. (3.5) as well as part of the tangent space
projector, P [l,i]

+ , of Eq. (3.7). In contrast to Fig. 3.4, the environment tensors have been
brought on the same level regardless of layer for better readability.

with the effective Hamiltonian environment

H̃
[l,i]
eff = (V [l−1,p(i)]V [l,i])∗Ĥ(V [l−1,p(i)]V [l,i]) (3.13)

Time-evolution is obtained by integrating the linear differential equations Eqs. (3.11) and

(3.12) using the projector splitting integrator. Evaluating the action of the Hamiltonian

environments in Eqs. (3.10) and (3.13) generally requires a compressed representation of

the Hamiltonian, for example as a matrix product operator (MPO) or tree tensor network

operator (TTNO), in which case the environments are recursively contractible with the

TTN. Alternatively one can express the Hamiltonian as a sum of rank-1 terms, in which case

evaluating Eqs. (3.11) and (3.12) simplifies to a sum over matrix multiplications applied to

the tensor for which the time-derivative is calculated. The number of Hamiltonian terms to

be evaluated for a given site can be reduced by combining terms in the rank-1 decomposition
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of the Hamiltonian during the recursive contraction.

3.2.3 Splitting integrator

Formally, the splitting integrator is obtained using a Trotter splitting applied to the additive

decomposition of the tangent-space-projected evolution operator. Practically, it consists of a

forward walk on the tree, propagation of the top-level tensor Λ[0,1] for a full time step, and a

backward walk on the tree. A pseudo-code is given in algorithms 3.1-3.3. During the walks on

the tree, isometrization of the TTNS is always maintained about the currently visited node

and the effective Hamiltonian matrices are updated when going from one node to another

along the direction of the step. The forward walk (backward walk) starts from the top-level

node and proceeds from the current node to the adjacent node in a clockwise direction (in a

counter-clockwise direction) closest to the previous/incoming node and propagation for half

a time step is performed only while ascending (descending). A walk on the tree is finished

once the top-node is reached after visiting all physical sites, i.e. after each tensor (and the

associated matrix R) is propagated save those of the top node.

3.2.4 Remarks

The algorithm introduced above is a generalization of a previously published projector-

splitting integrator for TTNS with a single-layer [69, 77]. Ref. [73] describes an algorithm

for a general TTNS, which is identical to the above algorithm with a single (either forward

or backward) walk per time-step. The main differences between the algorithm of Ref. [72]

and the one presented here are in the definition of the walk on the tree and in the absence

of a top-node, including it’s separate propagation routine.

While the TDVP applied to MPS has been demonstrated to be capable of simulating

25



CHAPTER 3. STUDYING DYNAMICS IN TWO-DIMENSIONAL QUANTUM
LATTICES USING TREE TENSOR NETWORK STATES

Algorithm 3.1 Forward walk
Input: Ψ[l, i], current node [l, i], next node [l − 1, p(i)]
Output: Ψ[l − 1, p(i)]
1: if in forward loop then:
2: Λ[l,i](t1/2)← propagate(Λ[l,i](t0), h/2)
3: compute QR fact. Λ[l,i](t1/2) = Q[l,i](t1/2)R[l,i](t1/2)
4: Λ[l,i](t1/2)← Q[l,i](t1/2)
5: R[l,i](t0)← propagate(R[l,i](t1/2),−h/2)
6: Λ[l−1,p(i)](t0)←← Q[l−1,p(i)](t0)R[l,i](t0)
7: else
8: compute QR fact. Λ[l,i](t1) = Q[l,i](t1)R[l,i](t1)
9: Λ[l,i](t1)← Q[l,i](t1)
10: Λ[l−1,p(i)](t1)← Q[l−1,p(i)](t1)R[l,i](t1)
11: end if

Algorithm 3.2 Backward walk
Input: Ψ[l, i], current node [l, i], next node [l + 1, cj(i)]
Output: Ψ[l + 1, cj(i)]
1: if in backward loop then:
2: compute QR fact. Λ[l,i](t1) = Q[l,i](t1)R[l,i](t1)
3: Λ[l,i](t1)← Q[l,i](t1)
4: R[l,i](t1/2)← propagate(R[l,i](t1),−h/2)
5: Λ[l+1,cj(i)](t1/2)← Q[l+1,cj(i)](t1/2)R[l,i](t1/2)
6: Λ[l+1,cj(i)](t1)← propagate(Λ[l+1,cj(i)](t1/2), h/2)
7: else
8: compute QR fact. Λ[l,i](t0) = Q[l,i](t0)R[l,i](t0)
9: Λ[l,i](t0)← Q[l,i](t0)
10: Λ[l+1,cj(i)](t0)← Q[l+1,cj(i)](t0)R[l,i](t0)
11: end if

Algorithm 3.3 Propagation of top-node’s tensor
Input: Ψ[0, 1](t0)
Output: Ψ[0, 1](t1)
1: Λ[0,1](t1)← propagate(Λ[0,1](t0), h)
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dynamics in two-dimensional systems [36], a detailed analysis and comparison with other

tensor network structures is absent in the literature. In particular, the numerical stability of

the TDVP cannot be taken for granted [78], especially when interactions between sites are

long-ranged and not smoothly decaying, as discussed in the following.

The application of TDVP formally requires the TTNS corresponding to the initial condi-

tion to possess a full tree rank of r. However, many physical initial conditions of interest can

be represented with a low rank TTNS or even as a product state. If the initial condition is

not contained in the manifold of TTNS with tree rank of r due to rank deficiency, the TDVP

doesn’t provide a prescription for how to choose and evolve the redundant parameters, which

will gain weight in the wavefunction representation at later times. Stability and exactness of

the dynamics under such circumstances is then dependent on details of the implementation

and the model. For the projector splitting integrator, the initial rank-deficiency translates

into non-uniqueness of the matrix decompositions employed in the change of isometrization.

While the algorithm is not guaranteed to be exact in this case, numerical experiments and

prior applications of the algorithm in one-dimensional systems indicate that it is generally

reliable even for product state initial conditions. As a check, one may choose to regularize

the initial condition by the addition of weak noise, and test for invariance of the resulting

dynamics at short times. The initial evolution of redundant variational parameters depends

on arbitrary choices such as their initialization, the choice of regularization (if applied), as

well as the details of the linear algebra routines used. Thus, different initializations of the

same physical state may not converge to the same solution [79, 80]. Several approaches have

been developed to address this problem. In one-dimensional systems with nearest-neighbour

interactions, the commonly used two-site version of the TDVP algorithm of Ref. [22] is free

of this issue, although this comes at the cost of breaking unitarity of the evolution when the
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results cease to be close to the exact solution. For generic interactions and arbitrary TTNS,

a scheme to optimally initialize redundant parameters was introduced [80]. However, this

scheme requires the evaluation of an effective Hamiltonian matrices for Ĥ2 and its compat-

ibility with the integration scheme employed here is an open question. Recently, another

approach based on a global basis expansion for MPS has been presented, and should also be

applicable to general TTNS [78].

Practically, we observe that the dependence of our results on non-optimal initializations of

redundant parameters systematically decreases with increasing bond-dimension, which is also

expected from the derivation of the optimization scheme mentioned above. The dependence

on initialization becomes noticeable only when the wavefunction markedly departs from the

exact result, which provides an additional handle to access the convergence of the method.

3.3 Results

We first benchmark the method developed in this work by comparison with exact results

obtained for non-interacting fermions on a 2D lattice. In the second stage we propagate a

2D system of hard-core bosons with nearest neighbor interactions and compare our results to

propagation using MPS [35]. The mapping of physical sites to the respective tensor network

structure is illustrated in Figs. 3.1 and 3.2. All calculations employ a regularization of the

initial product state, which consists of addition of white noise sampled uniformly from the

interval [−10−20, 10−20] and subsequent renormalization of the TTNS.

28



3.3. RESULTS

3.3.1 Non-interacting fermions

We compute the dynamics of non-interacting fermions on a 2D lattice with on-site disorder

Ĥ = J
∑

<i,j>

(
ĉ†i ĉj + ĉ†j ĉi

)
+
∑

i

hi

(
ĉ†i ĉi −

1

2

)
, (3.14)

where the index i = (x, y) indicates the position of the fermion on the lattice, 〈.〉 is a sum

over nearest-neighbours, hi is drawn from a uniform distribution [−W,W ] and J = 1. All

simulations use an identical initial state which is a random product state at half-filling, and

use a time step dt = 0.01. The tensor network state calculations employ the Jordan-Wigner

transformation of (3.14)

Ĥ =
∑

<j,k>,j<k

Ŝ+
j

( ∏

j≤l<k
2Ŝzl

)
Ŝ−k + Ŝ−j

( ∏

j<l≤k
2Ŝzl

)
Ŝ+
k + W

∑

i

hiŜ
z
i . (3.15)

Different paths along which the sites are enumerated can be chosen, and this choice poten-

tially influences the performance of the TNS algorithm. Here, we choose the path such that

the Jordan-Wigner strings span a minimal distance on the graph of the tree tensor network

structure. While solving the non-interacting problem in the fermionic representation is triv-

ial, the presence of Jordan-Wigner strings renders its solution with tensor network states just

as difficult as that of an interacting problem. We compute the dynamics of this mode both

for a clean system (W = 0) and for one realization of a moderately strong quenched disorder

(W = 10). Two-dimensional non-interacting fermions show Anderson localization at any

finite disorder strength. While the localization length may exceed the lattice dimensions

chosen, disorder nonetheless slows the growth of entanglement and should allow access to

longer timescales. Indeed, we observe good agreement for the density profiles, n̂x,y = ĉ†x,y ĉx,y
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with x, y ∈ [1, L], along a horizontal cut of the lattice between the exact result and data from

both binary and quaternary TNS only up to times t ≤ 1 for the clean system, while longer

times are accessible in the disordered case (see Fig. 3.6). If the time-step is chosen sufficiently

small, errors associated to the linearization of Eq. (3.4) are negligible compared to inaccu-

racies related to the finite bond dimensions at all but the earliest times (see lower panel of

Fig. 3.6). To get a more complete picture of the growth of errors with time as well as their

dependence on TNS structure and bond dimension, in Fig. 3.7 we show the average error in

the expectation value of the local density as a function of time. Both TNS structures show

systematic improvement with increasing bond dimension, and the error grows more mildly

at intermediate times in the disordered case. In both cases, smaller deviations from exact

results are achievable for binary TTNS than for quaternary TTNS at the employed bond

dimensions. We find that a convergence criterion of an average error in the local density of

about 2% agrees well with the qualitative analysis of Fig. 3.6 and gives a good estimate of

the times up to which the TNS results are reliable.

3.3.2 Hard-Core Bosons (XXZ model in 2D)

We consider the dynamics of hard-core bosons on a 2D lattice ,

Ĥ = −J
∑

<i,j>

(
b̂†i b̂j + b̂†j b̂i

)
+ V

∑

<i,j>

b̂†i b̂ib̂
†
j b̂j

with nearest-neighbor interactions and we set V = J = 1. We choose an initial condition

with a central square sublattice occupied and all other lattice sites empty. This system

and initial condition have been studied previously in Ref. [35] using MPS, where results up

to tJ = 2.0 were presented for a square lattice of linear length L = 14. To establish the
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Figure 3.6: Density profiles of a central, horizontal cut in the fourth row for a random product
state configuration of non-interacting fermions on a 8x8 lattice. Upper panels : Profiles for
W = 0 (left) and W = 10 (right). Later times are spaced upwards by 1 for readability.
TDVP results for binary tensor network with χb = 64 (light blue crosses) and quaternary
tensor network with χb = 16 (dark blue crosses), both with dt = 0.01, shown on top of
exact results (solid lines). Lower panels : The caps of the error bars represent the maximal
and minimal deviation of the profiles in the above panels from the exact result for different
bond-dimensions, tensor network structures and time-steps.
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Figure 3.7: Average deviation from exact 〈n̂ (t)〉 expectation value per site for non-interacting
fermions on a clean (top panels) and a disordered (bottom panels, W = 10) 8x8 lattice with
open boundary conditions. Left panels are binary TTNS and right panels are quaternary
TTNS.The time step used is dt = 0.01.
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numerical exactness of the algorithm for this non-integrable model, we compare the results

for the local bosonic density n̂x,y = b̂†x,y b̂x,y with x, y ∈ [1, L], for both binary and quaternary

tensor networks with exact diagonalization for a square lattice of linear length L = 4, with

the central 4 lattice sites occupied (see Fig. 3.9). Deviations from the exact result become

noticeable only for times t ≈ 2.

Having established the validity of the algorithm, we investigate the dynamics of an initial

product state of a filled, central 4x4 sublattice in a square lattice of a linear length L = 16,

see Fig. 3.8. In the upper panel of Fig. 3.10, we focus on the bosonic density for the site in

the fourth row and fourth column of the lattice. In contrast to the non-interacting model

and the small two-dimensional lattice discussed above, no exact results are available for this

interacting system and L = 16. Therefore, the convergence of the results is assessed by com-

paring the deviation of the local density between different bond dimensions. All examined

bond dimensions agree well up to times t ∼ 1.0. For later times we see agreement for all

but the lowest bond dimensions in both quaternary and binary TNS. However, quantitative

agreement (within a deviation of 0.001) up to t = 1.5 only holds between the binary TNS

results with χb = 128, χb = 64 and the MPS results of Ref. [35] at χ = 400 and χ = 500.

Since the accuracy of n-ary TTNS can show site-dependence [70], we also report the average

density deviation with respect to the best available calculation in the respective TNS struc-

tures in Fig. 3.10. The averaged density supports the observations made for a diagonal site

both quantitatively and qualitatively. Particularly, an average deviation of 0.001 is reached

at t = 1.5 for binary TNS, while quaternary TNS saturate the threshold at t = 1.2. The

MPS results of Ref. [35] are converged to within this accuracy up to t = 1.3, while the

deviation between the reference results of both binary TNS and MPS reach the threshold at

t = 1.4.
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Furthermore, since the Hamiltonian and the initial condition are isotropic, distance from

the exact solution can also be assessed by the anisotropy,

A(t) =
1∑L

x,y=1 nx,y(t)

L∑

x,y=1

|n̂x,y(t)− n̂y,x(t)| ,

of the bosonic density, also reported in Fig. 3.10. We note however, that while the isotropy

of the numerical solution is required, it is not a sufficient condition for the solution to be

numerically exact. For both quaternary and binary TTNS, small anisotropies (< 0.3%)

are obtained up to their respective convergence times. In Ref. [35], an anisotropy of 4%

was reported at t = 2.0 using MPS, a threshold which neither binary nor quaternary TTNS

saturate at the longest simulated times. Generally, the quaternary TTNS has less anisotropic

error since the partitioning of the lattice through the tree structure is isotropic, although

the result is less tightly converged than the binary TTNS. Thus, anisotropy is only a useful

indicator of convergence when comparing TTNS of the same structure. Given the small

deviations in both anisotropy and local densities, we consider our results to be numerically

exact up t = 1.5 for binary TTNS with χb = 128 , and up to t = 1.2 for quaternary TTNS

with χq = 16. The performance of the TDVP applied to binary TTNS is thus comparable

with the results of Ref. [35], providing the gain of better isotropy of the solution. Note that

the bond dimension used for MPS calculations do not correspond to the current state-of-the-

art, and larger bond dimension may be feasible for binary TNS when using symmetries of the

Hamiltonian. Due to the lack of an exact solution to compare to, the convergence criterion

employed is significantly tighter than in the case of free fermions to ensure quantitatively

accurate results.
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Figure 3.8: Spreading of hard-core boson density 〈n̂x,y〉, initially occupying the central
4-by-4 sublattice of a square lattice with L = 16. Time step used is dt = 0.01, and the scale
is restricted to a maximum of ni = 0.5 for clarity.
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Figure 3.9: Bosonic site density as a function of time for a 4x4 lattice with the central 2x2
sites filled at t = 0. Two special sites are shown (corner and central). Exact results (solid
lines) and TNS results for binary (dashed lines) and quaternary (dotted lines) TNS. Time
step used for both panels is dt = 0.01.
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Figure 3.10: Measures of convergence for hard-core bosons in 16x16 lattice for binary (left
panels) and quaternary (right panels) TTNS as well as MPS [35] (all panels, blue shades).
Upper panels : Bosonic density for the 4th left and 4th topmost site. Middle panels : Average
deviation of the local bosonic density with respect to best available result within the respec-
tive TNS structure, for binary TTNS and MPS (left panel) as well as quaternary TTNS and
MPS (right panel). For χmps = 500, the deviation is reported with respect to χb = 128. .
Bottom panels : Anisotropy (see text) of bosonic density. The time step used is dt = 0.01.
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3.4 Discussion

In this work we have assessed the performance of TTNS for simulating the dynamics of

two-dimensional many-body lattice systems. We introduced an algorithm based on the

time-dependent variational principle for arbitrary TTNS and benchmarked it on systems

of non-interacting fermions and interacting hard-core bosons in two dimensions, comparing

the performance to previously published results using matrix product states. During the

preparation of the manuscript we became aware of a recent complementary work introducing

a similar versions of the algorithm, which were applied in rather different settings (as an

impurity solver [72], and in a more formal derivation of the algorithm [73]).

Currently, no efficient technique exists for exactly simulating the non-equilibrium dynam-

ics of interacting, two-dimensional quantum systems. Despite recent progress, the timescales

accessible by tensor network techniques for such systems are generally extremely short. We

have found tree tensor networks to perform at least as well as matrix product state tech-

niques, with binary TTNS generally providing a more robust performance than their quater-

nary counterparts. The issue of analyzing the convergence, and thus ensuring the numerical

exactness of the computed result, was discussed. We believe the availability of an alterna-

tive to matrix product states in the form of more general TTNS is important and can offer

additional insight in situations when slow convergence is observed.

Our analysis has been mostly qualitative and a promising future avenue is the exploration

of the entanglement structure of out-of-equilibrium states in 2D lattices . This will aid in

the identification of optimal tensor network structures in order to best exploit the increased

flexibility of TTNS, which already has proven to be important in applications for zero-

dimensional systems, such as impurity models and also for molecular quantum dynamics

[71, 72, 81–83]. The dynamics of one-dimensional systems quenched to a critical point
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is another application where such an increased flexibility may be of advantage. For critical

systems in equilibrium, the multi-scale entanglement renormalization (MERA) [84, 85] ansatz

provides an efficient tensor network structure, which bears resemblance with the n-ary tree

structures employed here. However, since a time-evolution approach for MERA is missing,

it is interesting to compare the performance of MPS and n-ary TTNS for critical systems

out-of-equilibrium. We leave such an investigation to a future work.
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Chapter 4

Multi-set Matrix Product State

Calculations Reveal Mobile

Franck-Condon Excitations Under

Strong Holstein-type Coupling

This chapter was published as: B. Kloss et al., Phys. Rev. Lett. 123, 126601 (2019).

4.1 Introduction

Holstein-type vibronic coupling, the coupling of local vibrations to the transition energies of

electrons, holes, and excitons, is at the core of myriad important dynamical phenomena in

the physical sciences. In addition to its importance in many inorganic systems, of particular

current interest is its manifestation in organic molecular materials [87], with implications for
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photosynthetic energy transfer [88–90] and singlet exciton fission [91–95], among many other

applications. At the same time, the Holstein model continues to pose a considerable chal-

lenge for theory, encompassing a rich parameter space involving energy scales that include

the electronic interaction strength (J), the vibrational energy (ω0), the vibrational reorgani-

zation energy (g2ω0), and the temperature. While certain limits of this space are amenable

to perturbative approaches [96–100], no (semi)analytical treatment is available in the regime

where J , ω0, and g2ω0 are comparable. This regime, where strong mixing between vibrational

and electronic coordinates occurs, is representative of many organic materials, and has been

the target of various numerically-exact techniques that have emerged over the recent years.

Such techniques are based on either an elimination of vibrational coordinates (by means of

a system-bath decomposition) [101–104] or an explicit but truncated representation of the

entire vibronic system [105, 106]. However, both approaches rapidly become prohibitively ex-

pensive with increasing number of electronic and vibrational degrees of freedom. This scaling

issue drastically worsens with increasing vibrational reorganization energies, as system-bath

decompositions become difficult to converge and explicit descriptions demand the inclusion

of an ever increasing set of bosonic states representing the vibrational coordinates. As a

result of this lack of viable methodologies, much remains to be learned about how charges

and excitons dynamically interact with strongly-coupled vibrations.

In this Letter, we employ the remarkable computational benefits offered by tensor network

states to explore the nonequilibrium excitation dynamics resulting from the single-mode

Holstein model in its electronic single-particle sector, covering the full range of the vibronic

coupling strength, g, and including the strong-mixing regime. We pay special attention to

initial conditions corresponding to different local excitations of the uncoupled Hamiltonian.

For initial excitations that are vibrationally relaxed in the (shifted) excited state vibrational
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potential, we find the mobility to decline with increasing g, as expected for Holstein polarons.

However, for Franck-Condon (sudden) excitations, we find the g-dependence to be markedly

weakened for a surprisingly long time period after initialization. Concomitantly, we find the

quasi-ballistic transport found in the weak coupling limit to be replaced by a pulsed transfer

mechanism. An analysis of transient vibrational overlap factors shows that this mechanism

is driven by a vibrational oscillation of the Franck-Condon excitation, which protects the

excited state from self-localizing while allowing periodic resonances during which effective

excitation transfer occurs. This mechanism allows the excitation to attain a substantial

root mean square displacement (RMSD) in coupling regimes where vibrationally-relaxed

excitations are essentially immobile.

Tensor network states, in particular in their matrix product state (MPS) form, have grad-

ually attained popularity as an efficient and accurate framework for describing large interact-

ing quantum systems [13, 14]. Ground states of gapped one-dimensional systems are known

to be efficiently representable by MPSs [11, 107]. Similarly, MPSs have gained considerable

traction in the application to nonequilibrium dynamics, although considerable challenges re-

main due to the exponential scaling of their computational cost with time for general, ergodic

systems [24]. Furthermore, while ample applications can be found in strongly-correlated

many-body physics, MPSs have remained relatively underrepresented in single-particle elec-

tronic problems and in particular those concerning the single-mode Holstein model, even

though examples targeting the ground state of its Hamiltonian have appeared as early as

two decades ago [108]. Exceptions can be found for zero-dimensional models with few elec-

tronic states coupled to a potentially large number of modes, the dynamics of which have

been treated by related tensor network state techniques since the 1990s [71, 81, 109, 110].

The last few years have seen the appearance of a few notable works showing promising re-
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sults for MPS-based calculations of the Holstein model [111–113], yet the utility of tensor

network states to this class of problems has remained largely unexplored. In this Letter,

by demonstrating that MPSs allow access to unprecedented time and length scales for the

single-particle Holstein model in the strong-mixing regime, we showcase their potential for

studying a host of polaronic phenomena.

4.2 Theory

For a lattice consisting of N sites, the Holstein Hamiltonian in its electronic single-particle

sector can be expressed in terms of J , g, and ω0 as

Ĥ = ω0

N∑

α=1

b̂†αb̂α + gω0

N∑

α=1

(b̂†α + b̂α) |α〉〈α|+ J
N∑

<α,β>

|α〉〈β| , (4.1)

where b̂(†)
α is the annihilation (creation) operator for a local mode coupled to an electronic

excitation |α〉 = ĉ†α |0〉 at site α, with ĉ†α as the electronic creation operator and |0〉 as the

electronic vacuum. The last summation is limited to nearest-neighboring sites, α and β. Note

that this Hamiltonian includes local coupling of each electronic site to a single, dispersionless

Einstein oscillator. More general coupling schemes would pose no difficulty for the applied

methodology, but are beyond the scope of the present study.

Tensor network states employ the principle that the wavefunction coefficients of a state

in a Hilbert space for N sites can be thought of as a tensor of order N . Decomposing this

tensor into a product of smaller tensors, and truncating these tensor products, replaces the

exponential scaling with N by a low polynomial (usually linear) scaling. In case of MPSs,
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such a decomposition takes the form

|Ψ〉 =
∑

{σi}
Aσ11 A

σ2
2 . . . AσNN |σ1σ2 . . . σN〉 , (4.2)

where the indices σi label the physical basis states, and the A-tensors satisfy Aσii ∈ Cχi−1×χi .

Here, the “bond dimension” χi controls the truncation applied to the internal (virtual) in-

dices. The degree of entanglement between bipartitions of the system that can be accounted

for by a tensor network is determined by its bond dimensions as well as its connectivity.

Nonequilibrium dynamics generally leads to a (stretched) exponential increase of the bond

dimension necessary to describe the state accurately with time, with the exception of local-

ized systems [114, 115]. Thus, it is crucial to select a tensor network ansatz that captures

the entanglement build-up efficiently in order to simulate physically-relevant time scales.

For the Holstein model, an obvious choice for the tensor network ansatz is to consider

the Hamiltonian as a chain of spinless noninteracting fermions, each of which is coupled to

its respective vibrational mode. After performing a Jordan-Wigner transformation on the

fermions, this problem can straightforwardly be treated as an MPS. However, the reachable

timescale under this ansatz is limited due to the relatively fast growth of entanglement

entropy. An alternative approach considers the single-particle Holstein model as an N -level

impurity, the levels of which correspond to the electronic single-particle states, where each

level is coupled to its respective mode. Within the realm of MPSs, this impurity model

is treated as an effectively one-dimensional problem. However, the resulting connectivity

introduces long-range interactions between the vibrational coordinates and the impurity

site, again leading to a rapid growth of entanglement.

Our tensor network ansatz is closely related to the N -level impurity approach, but instead

43



CHAPTER 4. MULTI-SET MATRIX PRODUCT STATE CALCULATIONS REVEAL
MOBILE FRANCK-CONDON EXCITATIONS UNDER STRONG HOLSTEIN-TYPE

COUPLING

of solving the entire system as a single MPS, we express its wavefunction in terms of a set

of products of electronic states and associated vibrational wavefunctions,

|Ψ〉 =
N∑

α=1

|Ψα〉 |α〉 . (4.3)

The vibrational wavefunctions, |Ψα〉, are then each expanded independently as an MPS

with a bond dimension χ′, analogous to Eq. 4.2, the norm of which corresponds to the

electronic population at site α. The indices σi label the vibrational states using the bosonic

occupation number basis associated with the (unshifted) ground state harmonic potential,

which are truncated beyond a maximum number of quanta, νmax. Note that such a multi-

set approach was first introduced [109, 116] for multi-configuration time-dependent Hartree

methods [52, 53], a related tensor network state technique, and was very recently employed

in an MPS setting close in spirit to the one applied here [113]. Our multi-set MPS at a given

bond dimension χ′ can be converted to a standard MPS for the Jordan-Wigner transformed

Holstein model mentioned above. The resulting bond dimension χ is tightly lower-bounded

by χ′ and loosely upper-bounded by Nχ′. As such, the favorable bond dimension of the

multi-set MPS renders it a promising tensor network for obtaining both ground states and

nonequilibrium time evolution, the latter being explored in this Letter. Despite introducing

a quadratic scaling with the system size, we find the multi-set MPS approach to achieve

remarkably long length and time scales.

To obtain the time evolution of |Ψ〉, we use the time-dependent variational principle

[55, 56], which allows the (time-local) optimal approximate solution of the time-dependent

Schrödinger equation to be computed, given a variational ansatz (such as the multi-set MPS
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as employed in this work) [21, 22]. It amounts to solving the projected Schrödinger equation,

i ˙|Ψ〉 = P̂M[|Ψ〉]Ĥ |Ψ〉 , (4.4)

where P̂M[|Ψ〉] is the projector onto the tangent space of the variational manifold M at-

tached to |Ψ〉 ∈ M. The resulting dynamics is numerically exact up to times for which

the variational ansatz fails to capture the produced entanglement accurately, and can be

systematically converged to longer times by increasing the bond dimension. All presented

data is obtained with a timestep of dt = 0.1 and is tightly (< 1% deviation in the RMSD)

converged with respect to boundary effects as well as all numerical parameters (see Table 4.1

and Section 4.7). Applying less stringent convergence criteria is tempting; however, there is

numerical evidence that loose convergence of asymptotic properties can yield qualitatively

incorrect results [61].

1D 2D
g 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.5 2.0

νmax 8 16 16 64 64 64 128 128 8 64
χ′ 16 16 16 16 32 32 32 32 16 32
N 301 75 75 51 25 25 25 25 15× 15 11× 11
dt 0.1 0.1

Table 4.1: Numerical parameters for the different applied coupling strengths, g, in one and
two spatial dimensions: local bosonic Hilbert space dimension, νmax, bond dimension, χ′,
number of lattice sites, N , and timestep, dt.

Not being limited to ground state or band-edge excited states, we are free to differentiate

between the following two vibrational initial conditions for a local (in real space) electronic

excitation. The first condition is that of an excitation vibrationally relaxed in the (electroni-

cally) excited state potential (referred to as “relaxed”), whereas the second corresponds to an

excitation created upon a vertical transition starting from the zero-vibrational (electronic)
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Figure 4.1: Excitation density ρ as a function of time (vertical) and site (horizontal) for
Franck-Condon (upper panels) and relaxed (lower panels) excitations. Red curves show the
excitation density profile at t/2π = 6.

ground state level (known as a Franck-Condon excitation). These two cases can be regarded

as the two extremes spanning the scope of commonly used nonequilibrium initial conditions.

The Franck-Condon excitation is representative of an impulsive optical excitation of a vi-

bronic system involving a vibration whose energy is large compared to the thermal quantum,

which is satisfied by most functionally-relevant Holstein modes studied in the literature. The

relaxed excitation, on the other hand, is a pragmatic initial condition for models involving

a “shifted” basis for describing (electronically) excited state vibrations [117], and can be

regarded as a proxy for optical pumping into the lowest-energy vibronic (0 − 0) transition.

For the dynamics of electronic excitations localized in momentum space, we refer the reader

to Ref. 118.
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4.3 Results

In Fig. 7.1 we present excitation dynamics for a linear chain with open boundaries, following

an initial excitation located at the chain center, under the two aforementioned vibrational

preparations. Shown as heatmaps are the calculated chain populations as a function of time

(in units of inverse energy, with ~ = 1) resulting from the Holstein model with ω0 = J = 1

and for varying values of g. The dynamics for g = 0.5 is near-identical for both initial

vibrational conditions, which is consistent with the notion that these conditions become

equivalent in the limit of g → 0, and is dominated by a ballistic component characteristic

of a vibronically-uncoupled excitation. The excitation mobility can be seen to decrease with

increasing g, indicative of the formation of a polaron with increasing effective mass, including

a rapid decline of the mobility of a relaxed excitation in the regime of strong coupling, as a

result of self-localization. However, in marked contrast to the relaxed excitation, the Franck-

Condon excitation is seen to retain a substantial mobility even under strong coupling. This

trend is shown more systematically in Fig. 7.2, which depicts the transient RMSD for values

of g ranging from 0 to 4. For g = 2.5, the Franck-Condon excitation spread rapidly reaches

∼6 sites, whereas the relaxed excitation remains essentially stalled on a single site.

An alternative means of demonstrating the contrasting dynamics emerging from relaxed

and Franck-Condon excitations is by plotting the RMSD at a fixed time for varying g.

This is shown in Fig. 4.3 for t/2π = 6. Here, the delocalization of the relaxed excitation

shows a pronounced drop with g exceeding unity, which is almost entirely absent for the

Franck-Condon excitation. Interestingly, within this coupling range we see the emergence of

a beating pattern for the Franck-Condon excitation dynamics in Fig. 7.2, with 2π-periodic

enhancements in the RMSD becoming more abrupt with increasing g. This indicates that

their dynamics stems from a mechanism that is radically different from that of relaxed
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Figure 4.2: Upper panels: RMSD against time for Franck-Condon (solid lines) and relaxed
(dashed lines) excitations. The inset shows a schematic of the vibrationally-induced transfer
mechanism for Franck-Condon excitations. Data for g = 1.5 is reproduced in both panels for
comparison. Lower panel: Overlap F0 between the vibrational wavepacket in the electron-
ically excited potential and that of the zero-vibrational state in the ground state potential
for the central site.
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Figure 4.3: RMSD at time t/2π = 6 as a function of the vibronic coupling strength for
Franck-Condon (black crosses) and relaxed (red dots) excitations.

excitations in the strong coupling limit. In order to understand the nature of this mechanism

it is insightful to consider the transient overlap of the vibrational wavefunction inside the

electronically excited potential with that of the zero-vibrational state in the ground state

potential. Shown together with the RMSDs in Fig. 7.2, this overlap exhibits a beating

pattern roughly in sync with that seen for excitation transport, such that regions of large

vibrational overlap coincide with abrupt enhancements in the RMSD.

The physical picture of the dynamics of strongly-coupled Franck-Condon excitations

emerging from our results is shown schematically in the inset of Fig. 7.2. Upon initial

excitation, the vibrational wavepacket oscillates in and out of the Franck-Condon region, as

indicated by the beatings apparent in the calculated vibrational overlap. When inside this

region, excitation transfer to neighboring sites is effective due to a resonance between the

(inverted) Franck-Condon transition at the donor site and that at the neighboring site. Mov-

ing out of this region, however, the transition energy at the donor site will rapidly decrease,

leaving the vibrationally-relaxed neighboring site without an energy-matching transition with

significant vibrational overlap. Importantly, the sustained motion of the strongly-coupled

vibration protects the electronic excitation from self-localizing while periodic resonant trans-

fers occur.
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Figure 4.4: Excitation density ρ for two-dimensional lattices at weak (g = 0.5, 15×15 sites,
left panel) and strong coupling (g = 2.0, 11 × 11 sites, right panel). Upper (lower) panels
show Franck-Condon (relaxed) excations. Log scale is used for clarity.

Next, we briefly discuss the manifestation of the dynamics in two dimensions. Higher-

dimensional tensor network structures are computationally demanding, while mapping higher-

dimensional problems to a one-dimensional tensor network induces long-range connectivity,

resulting in complicated entanglement structures. This renders the application of tensor

network states in two dimensions and above a challenging endeavor, particularly so for dy-

namical problems involving strongly-correlated electronic systems for which the time scales

reached in state-of-the-art calculations have been limited [35]. Interestingly, for the two-

dimensional Holstein model mapped to a chain in a row-by-row manner (from left to right

and from bottom to top), again with ω0 = J = 1, we are able to reach time scales (t/J ∼ π)

comparable to earlier efforts with modest computational resources. Although a detailed

investigation of the performance of our method in higher dimensions is beyond the scope

of the present Letter, we speculate that the principle that entanglement is introduced in-
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directly (by coupling between different sets) aids in obtaining a favorable computational

performance even in two dimensions. In Fig. 4.4, we show the excitation densities for select

reorganization energies and excitation conditions, given a square lattice with open boundary

conditions and an excitation initiated at the center. For weak coupling, both the relaxed and

Franck-Condon excitation are equally spread-out, exhibiting a well-resolved two-dimensional

interference pattern. Consistent with the one-dimensional case, with increasing g we find

the spread of the Franck-Condon excitation to be significantly more pronounced than that

of the relaxed excitation.

4.4 Discussion

We have shown that mixing of electronic coordinates with strongly-coupled vibrational modes

results in Franck-Condon excitations whose initial dynamics is markedly different from that

known for vibrationally-relaxed excitations. Sustained vibrational motion is found to gener-

ate periodic resonances between neighboring electronic sites, during which effective energy

transfer occurs, allowing a Franck-Condon excitation to spread over substantial distances in

parameter regimes where relaxed excitations are essentially self-trapped on a single site. Of

course, over much longer time scales one expects that this mechanism no longer governs the

dynamics, and behavior akin to that of the relaxed initial condition takes over. In addition

to providing fundamental insights into strongly-coupled vibronic systems, these results have

implications for the nonequilibrium behavior of materials upon vertical transitions from a

vibrationally-relaxed (ground state) initial condition, in particular when the functionally-

relevant dimensions of the material are in the range of the mean square displacements found

in our calculations. In many practical cases excitation conditions are near-vertical, resulting
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from impulsive perturbations of the electronic degrees of freedom, and our findings reveal

that the subsequent ultra-fast dynamics can not be understood based on vibrationally-relaxed

steady-state principles. In unraveling this remarkable photophysical behavior, we have ac-

cessed a notoriously difficult region of the single-particle Holstein model, employing the

computational benefits offered by a multi-set matrix product state approach. As such, this

work highlights the potential of this tensor network state method in addressing problems in-

volving charged and excitonic polarons. The flexibility of this approach also allows to make

progress in more complex situations, such as long-range electronic hopping or higher dimen-

sionality, for which encouraging results have been presented in this work. Lastly, given that

ground states of gapped, one-dimensional systems follow the area law of entanglement en-

tropy, we expect this approach to also perform well for finding ground and low-lying excited

states within the one-dimensional single-particle Holstein model.

4.5 Explicit form of the projector onto tangent space

We obtain dynamics within the variational manifold of sets of matrix-product states (MPSs)

with a given bond dimension via the time-dependent variational principle, which amounts

to solving the tangent-space projected Schrödinger equation

i ˙|Ψ〉 = P̂M[|Ψ〉]Ĥ |Ψ〉 . (4.5)

For completeness we will give the explicit, closed form of the tangent space projector em-

ployed in this work. To this end, it is first necessary to introduce the mixed-canonical form of

MPSs. MPSs are unique up to unitary transformations of the site tensors, Ãσii = G−1
i−1A

σi
i Gi.

This allows one to define a gauge with a center of orthogonality at a given site j, i.e., all
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tensors to the left and right of site j contract with their complex conjugate to the identity

matrix I of dimension χi−1 × χi−1 or χi × χi:

|Ψ〉 =
∑

{σi}
Lσ11 . . . L

σj−1

j−1 A
σj
j R

σj+1

j+1 . . . RσN
N |σ1σ2 . . . σN〉 , (4.6)

with
∑

σi
Lσii
†Lσii = I and

∑
σi
Rσi
i R

σi
i
† = I, respectively. In the following, we will use the

shorthand notation

|Lj〉 =
∑

{σi}|i<j

Lσ11 . . . L
σj−1

j−1 |σ1 . . . σj−1〉 (4.7)

and

|Rj〉 =
∑

{σi}|i>j

R
σj+1

j+1 . . . RσN
N |σj+1 . . . σN〉 . (4.8)

|Lj〉 (|Rj〉) can be thought of as representing a truncated orthonormal basis in an MPS format

for the physical degrees of freedom to the left (right) of site j, i.e., 〈Lj|Lj| =〉 I (〈Rj|Rj| =〉 I).

Defining |Aj〉 =
∑

σj
A
σj
j |σj〉, the wavefunction can now be written compactly as |Ψ〉 =

|Lj〉 |Aj〉 |Rj〉, for which the center of orthogonality is located at site j. Alternatively, we

can write |Ψ〉 = |Lj+1〉C
σj
j |Rj〉 with the center of orthogonality between sites j and j + 1,

where Cj is a matrix. For future reference, we also define the third-order tensor Aj, a slice

of which along the physical index σj is given by A
σj
j , and its equivalents in left or right

orthonormal gauge, Lj and Rj. For multi-set MPSs, a superscript α is introduced to denote

the MPS associated with electronic state |α〉. The tangent space projector for the multi-set

MPS ansatz can be decomposed into orthogonal contributions:

P̂M[|Ψ〉] =
N−1∑

j=1

(
P̂+
j − P̂−j

)
+ P̂+

N , (4.9)
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where

P̂+
j =

∑

α

P̂+,α
j =

∑

α

∣∣Lαj
〉 〈
Lαj
∣∣⊗ Îj ⊗

∣∣Rα
j

〉 〈
Rα
j

∣∣⊗ |α〉 〈α| , (4.10)

with Îj =
∑

σj
|σj〉 〈σj| being the identity operator for the physical degree of freedom at site

j, and

P̂−j =
∑

α

P̂−,αj =
∑

α

∣∣Lαj+1

〉 〈
Lαj+1

∣∣⊗
∣∣Rα

j

〉 〈
Rα
j

∣∣⊗ |α〉 〈α| . (4.11)

4.6 Equations of motion

Each of the tangent space projectors generates one of the equations of motion to be solved.

For example, for P̂+,α
j we obtain

P̂+,α
j Ĥ |Ψ〉 =

∣∣Lαj
〉
(
〈
Rα
j

∣∣ 〈Lαj
∣∣∑

β

Ĥαβ |Lβj 〉 |A
β
j 〉 |R

β
j 〉

)
∣∣Rα

j

〉
|α〉 , (4.12)

where Ĥαβ = 〈α| Ĥ |β〉. Thus, the right-hand side of Eq. 4.12 takes the form
∣∣Lαj
〉 (
i ˙∣∣Aαj (t)

〉) ∣∣Rα
j

〉
|α〉, consistent with the time variations in parts of the wavefunction

other than
∣∣Aαj (t)

〉
being projected out by the tangent space projector, with i ˙∣∣Aαj (t)

〉
given

by

i ˙∣∣Aαj (t)
〉

=
〈
Rα
j

∣∣ 〈Lαj
∣∣∑

β

Ĥαβ |Lβj 〉 |A
β
j (t)〉 |Rβ

j 〉 . (4.13)

Similarly, iĊα
j (t) is generated by P̂−,αj ,

iĊα
j (t) =

〈
Rα
j

∣∣ 〈Lαj+1

∣∣∑

β

Ĥαβ |Lβj+1〉C
β
j (t) |Rβ

j 〉 . (4.14)
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These equations of motion are identical to those given in Ref. 22, except for the appearance

of the label for the electronic state α and summations thereover. Consequently, we apply

the same linearization of Eq. 4.5 along the physical sites j as in Ref. 22. Note that for a

given site j the equations of motion for tensors of different electronic states α are coupled.

We thus choose to simultaneously solve the equations of motion for all electronic states

at site j, i.e., as one large uncoupled linear differential equation. The resulting scheme

outlined in Algorithm 4.1 updates Aαj and Cα
j alternately, sweeping forward and backward

through the lattice, and using matrix decompositions, specifically the QR decomposition,

and multiplications to move the center of orthogonality accordingly. For an introduction

to the application of matrix decompositions and multiplications to the third-order tensors,

which is obtained via ’unfolding’ or reshaping the tensor into a matrix, we refer to Refs. 22

and 119.
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Algorithm 4.1 Symmetric second-order integrator for the time-dependent variational prin-
ciple applied to multi-set matrix product states. Each line is executed for each electronic
state (∀α), with the exception of the for loops.
Input: |Ψα(t)〉 in right-orthogonal form ∀α
1: Āα1 ← Rα

1 = Aα1
2: for j = 1 . . . N − 1 do
3: ¯̄Aαj ← solve Eq. 4.13 from t→ t+ ∆t

2
with Aαj (t) = Āαj

4: obtain Lαj (t + ∆t
2

) and C̄α
j from QR decomposition of ¯̄Aαj unfolded along its right

virtual index
5: ¯̄Cα

j ← solve Eq. 4.14 from t+ ∆t
2
→ t with Cα

j (t+ ∆t
2

) = C̄α
j

6: Āαj+1 = ¯̄Cα
j R

α
j+1(t)

7: end for
8: ¯̄AαN ← solve Eq. 4.13 from t→ t+ ∆t with AαN(t) = ĀαN
9: for j = N − 1 . . . 1 do
10: obtain C̄α

j and Rα
j+1(t + ∆t) from QR decomposition of ¯̄Aαj+1 unfolded along its left

virtual index
11: ¯̄Cα

j ← solve Eq. 4.14 from t+ ∆t→ t+ ∆t
2

with Cα
j (t+ ∆t) = C̄α

j

12: Āαj = Lαj (t+ ∆t
2

) ¯̄Cα
j

13: ¯̄Aαj ← solve Eq. 4.13 from t+ ∆t
2
→ t+ ∆t with Aαj (t+ ∆t

2
) = Āαj

14: end for
Output: |Ψα(t+ ∆t)〉 in right-orthogonal form ∀α

4.7 Convergence

Below we provide proof of convergence and exactness of the multi-set MPS approach. Fur-

thermore, we compare the convergence behavior of the multi-set MPS method with that

of the more conventional approach of using an MPS for the Jordan-Wigner transformed

Holstein model, henceforth referred to as standard MPS. The comparison with exact diago-

nalization in Fig. 4.5 establishes both exactness of the method at short times and at exact

bond dimension, as well as the appropriateness of the chosen timestep for a 5-site Holstein

model. For the system sizes presented in the main text, such a comparison is not feasible and

we instead report in Fig. 4.6 the maximum relative deviation of the root mean square dis-
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Figure 4.5: Root mean square displacement of the electronic wavepacket as a function of
time, computed with exact diagonalization (solid yellow line) and multi-set MPS at exact
(red dashed line) and approximate (black dotted line) bond dimensions for a 5-site Holstein
model. g = 1.0, νmax = 4, dt = 0.1.

placement (RMSD) with respect to a reference calculation with twice as large a local Hilbert

space dimension, νmax, or bond dimension, χ′. In all cases, only the numerical parameter

with respect to which the deviation is evaluated is varied, while other parameters are kept

fixed at the values reported in Table I in the main text. To explore the relative performance

of the multi-set MPS approach compared to a standard MPS approach (the local Hilbert

space corresponding to a direct product of electronic and vibrational local Hilbert spaces),

we plot the relative deviation of the RMSD obtained at various bond dimensions with re-

spect to a reference calculation in Fig. 4.7. The results for the standard MPS are obtained

with tenpy [120], using the time-dependent variational principle in its two-site formulation

[22] and making use of conserved quantities (the number of electronic particles). Timings

for these calculations are reported in Table 4.2. The two-site algorithm for the standard

MPS, used for technical reasons, results in a somewhat worse scaling with the local Hilbert

space dimension than the single-site algorithm used in our multi-set approach. Thus, the

timings should only be considered as rough estimates of the computational effort and not as

a thorough performance comparison between the two methods.
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Figure 4.6: Maximum relative deviation of the root mean square displacement with respect
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0 1 2 3 4 5 6

t/2π

10−5

10−4

10−3

10−2

re
l.

er
ro

r
√
σ

2

χ = 16

χ = 32

χ = 64

χ′ = 8

χ′ = 16

χ′ = 32

Figure 4.7: Maximum relative deviation of the root mean square displacement with respect
to a doubling of the bond dimension for a vertical excitation at g = 1.5 in the multi-set
MPS approach (solid lines; reference calculation with χ′ = 64) and in the standard MPS
approach (dashed lines; reference calculation with χ = 128). The convergence threshold of
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4.8 Computational effort

The multi-set MPS algorithm scales quadratically with the system size and linearly with

the local Hilbert space dimension in both computation and storage. To leading order, the

scaling of computation and storage with bond dimension is cubic and quadratic, respectively.

It thus has the same formal scaling as other MPS-based time evolution approaches, with the

exception of the quadratic scaling with system size. The latter is inherent in the multi-set

nature of the approach, and can be remedied by parallelization up to a factor of the system

size, such that the walltime and memory requirement per core or CPU again scales linearly

with system size. To provide an estimate of the computational effort of the method, Table

4.3 shows execution times and memory requirements for a select number of calculations on

which the data in the main text is based. A lower bound of the required memory can be

calculated straightforwardly from the number of variational parameters in the multi-set MPS

wavefunction, which are complex numbers in double precision, up to a prefactor of O(1) for

storing partial contractions of the Hamiltonian and other implementation-dependent memory

overhead.
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MPS format χ(′) tmax #processes (proc.) walltime [h]

multi-set

8 50 1 12.0
16 50 1 17.1
16 50 15 3.3
32 50 1 54.3
32 50 15 11.7

standard
16 50 1 16.4
32 50 1 26.5
64 50 1 44.3
128 50 1 149.9

Table 4.2: Code execution times for simulations up to time tmax on a local cluster with two
Xeon E5-2690 v3 @ 2.60GHz with Hyperthreading per node. Calculation parameters are
g = 1.5, N = 75, νmax = 16, dt = 0.1, and a discarded weight of ε = 10−8 for the standard
MPS approach. As shown in Fig. 4.7, the standard approach with a bond-dimension of
χ = 64 achieves a comparable accuracy to the multi-set approach with a bond-dimension of
χ′ = 16.

g N χ′ νmax dt tmax #proc. walltime [h] mem. / proc. mem. for Ψ
4.0 25 32 128 0.1 40 1 156.0 4.3 GB 1.2 GB
0.5 301 32 8 0.1 50 43 38.4 1.1 GB 11.7 GB

Table 4.3: Code execution times and memory requirements for simulations up to time tmax

on a local cluster with two Xeon E5-2690 v3 @ 2.60GHz with Hyperthreading per node. The
memory requirements are given in the second-to-last and last column as the memory per
process required by the calculation and the memory required to store a single copy of the
wavefunction, respectively.
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Chapter 5

Time-dependent variational principle in

matrix-product state manifolds: pitfalls

and potential

This chapter was published as: B. Kloss et al., Phys. Rev. B 97, 024307 (2018)

5.1 Introduction

The numerically exact simulation of the dynamics of strongly interacting quantum systems is

a grand challenge in condensed matter science. For ground states of gapped one-dimensional

systems with short-range interactions, the density matrix renormalization group (DMRG)

proves to be a powerful and efficient approach [13, 14]. Its success is linked to the fact

that the ground states of these systems are optimally representable by matrix product states

(MPS), with a moderate number of variational parameters, normally referred to as the bond

dimension. While DMRG has been extended into the time-domain, the timescales that may
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be reached are usually quite short as a consequence of correlations that develop within the

propagated wavefunction [13, 14]. Time evolution tends to quickly displace states from the

space efficiently representable by MPS, leading to a rapid (typically exponential) growth of

the bond dimension. If the bond dimension of the wavefunction is not dynamically adjusted

to accommodate the growing correlations in the wavefunction the dynamics quickly becomes

approximate and nonunitary. It is possible to construct a unitary time-propagation scheme

on the manifold of MPS with a fixed bond dimension using the Dirac-Frenkel time-dependent

variational principle (TDVP) [21, 22, 55, 56]. This principle, which is rather generic, projects

an infinitesimal time evolution under the Hamiltonian to a variational manifold which the

resulting wavefunction is restricted to occupy. An advantage over conventional DMRG tech-

niques is that the TDVP can be applied to a more general class of states, such as tree tensor

network states, thus potentially opening the door to efficiently simulating higher dimensional

systems as well as systems with long-ranged interactions.

The description of transport properties requires the investigation of large system sizes and

long times, a limit which is sometimes referred to as the hydrodynamic limit. While this limit

appears to be out of reach for numerically exact methods, an approximate coarse-grained

treatment might be sufficient to obtain accurate macroscopic observables like transport co-

efficients, analogous to the success of classical hydrodynamics. In this respect the TDVP is

particularly attractive, since it generates effectively chaotic classical dynamics in the space

of variational parameters which obey a set of macroscopic conservation laws, such as those

associated with the total number of particles and the total energy [121]. Indeed, a surpris-

ingly fast convergence of the heat diffusion constant with respect to bond dimension has

been very recently reported for a nonintegrable spin chain [60].

In this work, we examine the applicability of TDVP for the long time description of
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quantum interacting systems. While the method cannot be expected to work for quantum

integrable systems (c.f. generalization of hydrodynamic approaches to such systems [122]),

by utilizing the exact solvability of such systems we show that the long time limit, which is

necessary to obtain hydrodynamic observables, and the large bond-dimension limit, where

the method becomes numerically exact, do not generically “commute.” In particular, the

apparent convergence of hydrodynamic observables with the bond dimension does not guar-

antee the accuracy of the result, which has to be established by other means. This problem

persists also for nonintegrable systems, although for the case of a disordered nonintegrable

quantum system that we consider, this problem appears to be ameliorated.

5.2 Theory

The Hilbert-space dimension of a quantum lattice systems scales exponentially with the size

of the system. Any wavefunction in the Hilbert space can be written as a matrix product

state (MPS),

|Ψ[A]〉 =
d∑

{sn}=1

As1(1)As2(2) . . . AsN (N) |s1s2 . . . sN〉 (5.1)

where d is the local Hilbert space dimension, Asi(i) ∈ CDi−1×Di are complex matrices and

D0 = DN = 1, such that the product of matrices evaluates to a scalar coefficient for a

given configuration |s1s2 . . . sn〉. To be an exact representation of the wavefunction the

dimension of the matrices the bond dimension must scale exponentially with the systems size.

Typically one approximates the wavefunction by truncating the dimension of the matrices

to a predetermined dimension with computationally tractable number of parameters. Exact

results are obtained when the approximate dynamics are converged with respect to the bond
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dimension.

The time-dependent variational principle (TDVP) allows one to obtain a locally optimal

(in time) evolution of the wavefunction on the manifold of MPS,Mr, with some fixed bond

dimension r. It amounts to solving a tangent-space projected Schrödinger equation [22]:

d |Ψ[A]〉
dt

= −iPMĤ |Ψ[A]〉 , (5.2)

where PM is the tangent space projector to the manifoldMr. Equation (6.5) is solved using

a Trotter-Suzuki decomposition of the projector(see Ref. [22] for details).

The dynamics generated by the TDVP can be viewed as resulting from a classical, non-

quadratic Lagrangian in the space of variational parameters [21, 60]. It can be shown that any

conserved quantity of the Hamiltonian will be also conserved by TDVP if the corresponding

symmetry group members of the associated quantity applied to a state in the manifoldMr

do not take it out of the manifold [121]. The nonlinearity of the equations of motion of

TDVP disappears in the limit of infinite bond dimension, since in this limit the action of the

Hamiltonian on the state keeps it on the manifold for all times.

5.3 Results

We study transport properties of the one-dimensional XXZ model,

Ĥ = Jxy

N−1∑

i=1

(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1

)
+ ∆

∑

i

Ŝzi Ŝ
z
i+1 +

N∑

i=1

hiŜ
z
i , (5.3)

where hi is uniformly distributed in the interval [−W,W ] and Ŝ
(x,y,z)
i are the appropriate

projections of the spin operators on site i. In the following, we use Jxy = 1, which sets
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the time unit of the problem. Using the Jordan-Wigner transformation the XXZ model can

be mapped to a model of spinless fermions [123]. For ∆ = 0, the corresponding model is

noninteracting and can be solved exactly. In particular for W 6= 0 the system becomes

Anderson localized [124]. For ∆ 6= 0 and at sufficiently high disorder the system becomes

many-body localized and exhibits a dynamical phase transition [6, 7] which, for ∆ = 1,

occurs at W ≈ 3.5 [125, 126].

To study the dynamical properties of this model in its various limits we calculate the

spreading of a spin-excitation as a function of time,

σ2(t) =
L∑

i=1

(
L

2
− i)2

〈
Ŝzi (t)ŜzL/2(0)

〉
. (5.4)

Here the expectation value is calculated at infinite temperature, namely
〈
Ô
〉

= Tr Ô/N

where N is the Hilbert space dimension. The spread of the excitation is analogous to the

classical mean-square displacement (MSD). Transport is characterized by assuming a power

law scaling of the MSD, σ2(t) ∼ tα. For example, a dynamical exponent of α = 2 (α = 1)

indicates ballistic (diffusive) transport. A dynamical exponent 0 < α < 1 corresponds to

subdiffusive transport, and α = 0 for localized systems. We also define a time-dependent

diffusion constant D(t) as the time-derivative of σ2(t) [127–130]. Throughout this work the

hydrodynamic variable that we will consider will be the asymptotic spin diffusion coefficient,

limt→∞D (t)→ D.

To calculate the MSD we numerically evaluate the correlation function starting from a

random configuration of up and down spins and also a random configuration of the disordered

field, when appropriate. By sampling simultaneously both spin configurations and disorder

configurations we obtain the required infinite temperature initial conditions and disorder
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average. The size of the system is chosen to be L = 100−200, such that all finite size effects

are negligible on the simulated time scales, and the averages are obtained using at least 100

realizations.

The integration time-step is chosen such that no qualitative influence on the MSD is

observed. For the models studied in this work time-steps of 0.05− 0.2 were found to satisfy

this criterion. Because of the nonlinearity introduced in Eq. (6.5) due to PM, chaos emerges

on a time-scale, dubbed the Lyapunov time, which depends both on the bond-dimension,

the realization studied, and the parameters of the system. Beyond this time, it becomes ex-

ponentially expensive (in time) to obtain convergence of the results on the level of individual

configurations. We note in passing, that the Lyapunov time becomes longer for larger bond

dimension [60].

To assess the convergence of the method, for each configuration determined by the ini-

tial configuration of the spins and the disorder configuration, we calculate the convergence

time, t∗ (ω) (here ω designates the configuration). For times t < t∗ (ω) the dynamics gen-

erated starting from a given configuration is converged within a required accuracy (2%) by

increasing the bond dimension. For the infinite temperature initial condition we use in this

work, the convergence time, t∗, is calculated by averaging t∗ (ω). It is crucial to consider

individual configurations to assess the numerical convergence of the method since averaging

over realizations introduces a fortuitous cancellation of errors, thus while t∗ demarcates a

strict, well-defined convergence metric, apparent convergence of either transport coefficients

or dynamics may occur after this time. The averaged convergence times for which TDVP

is numerically exact are comparable to convergence times of conventional DMRG or MPS

techniques.

We first demonstrate that the long time limit essential for the study of hydrodynam-
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Figure 5.1: Clean XX model (∆ = 0, W = 0). Upper panel: MSD as a function of time for
various bond dimensions (32, 64, 128) averaged over 200-500 realizations of initial spin con-
figurations and disorder. More intense shades represent larger bond dimensions and shaded
areas indicate the standard-deviation of the observables obtained using a bootstrap proce-
dure. The black solid line is an exact solution, obtained numerically. The inset shows the
log-log scale of the main panel with the black dotted corresponding to diffusion. Lower panel:
Time-dependent diffusion constant D (t). The dashed black line on both plots represents the
convergence time, t∗.
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Figure 5.2: Same as Fig. (5.1) but for the disordered XX model (∆ = 0, W = 1) for 100
realizations of initial spin configurations and disorder.
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Figure 5.3: Same as Fig. (5.1) but for clean XX ladder of length L = 50 with isotropic
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Figure 5.4: Same as Fig. (5.1) but for disordered XXZ model in the subdiffusive regime
(∆ = 1, W = 1.5) for 200 realizations of initial spin configurations and disorder.
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ics properties and the large bond-dimension limit, when the method becomes exact, do not

“commute,” in the sense that spurious, apparently converged long time behavior may emerge.

For this purpose we will first consider two integrable models with a known dynamical behav-

ior. We stress that true hydrodynamic behavior (at least in the usual sense) is not expected

for such models.

Ballistic regime (∆ = 0, W = 0, L = 200). The expected ballistic transport is accurately

reproduced only up to t∗ w 12 for the largest bond-dimension employed (see Fig. 5.1).

While this system corresponds to free fermions, the entanglement still grows limiting the

accessible times. Beyond the convergence time transport appears to be diffusive with a

diffusion constant of approximately 2.0. There is little variation of this value across the

different bond-dimensions.

Anderson localized regime (∆ = 0, W = 1, L = 150). This system is also effectively

noninteracting with a MSD which saturates in time, indicating localization. TDVP fails to

reproduce the plateau for all studied bond dimensions and displays growth of the MSD with

time although the diffusion coefficient is rather small (see Fig. 5.2). Results obtained using

the largest bond-dimension (128) follow the exact result closely up to about t = 70, while

those of smaller bond-dimensions deviate significantly earlier, resulting in t∗ = 19.

Since asymptotically the nonlinear equations of TDVP are expected to result in diffusion,

the striking failure of the method for the two integrable systems above is not surprising.

Diffusive XX-ladder (∆ = 0, L = 50). This model is a generalization of (5.3) to a two

leg ladder. It is nonintegrable and shows convincing diffusion with a diffusion coefficient of

about D ∼ 0.95 [131, 132]. As expected for short times the calculations based on the TDVP
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reproduce this numerically exact results (see Fig. 5.3) However, for times longer than the

convergence time, t > t∗ = 8, a crossover to yet another diffusive regime with much lower

diffusion constant appears (D ∼ 0.2). Moreover this diffusion coefficient does not appear to

strongly depend on the bond-dimension.

The above examples illustrate that the seemingly converged transport coefficients and

long time dynamics within the TDVP framework can be highly misleading. After demon-

strating the pitfalls in determining the long-time properties using TDVP, we examine its

potential as a hydrodynamic method for a disordered nonintegrable system.

Subdiffusive regime (∆ = 1.0, W = 1.5, L = 100). For moderate disorder 0 < W < 3.7

the system is nonintegrable [130]. While the convergence time here is about t∗ = 18, semi-

quantatively similar subdiffusive transport appears also at much longer times (see inset in

Fig. 5.4). Interestingly, the exponent extracted from the long-time behavior, α = 0.54, is in

excellent agreement with previously reported value, extracted from the short time dynamics

of the same system using exact diagonalization [130, 133–135]. This indicates that for such

a system, true asymptotic dynamical behavior may indeed be uncovered using moderate

numerical costs (small bond-dimensions).

5.4 Discussion

In this work we have examined how well TDVP captures the long time behavior of quantum

interacting systems. For any finite time the method is formally numerically exact, since it

can be converged with respect to the bond dimension and other numerical parameters. For

longer times convergence cannot be guaranteed generically, but one hopes that on average

the method will still produce the correct result, due to ergodicity of the TDVP trajectories
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on the MPS manifold. This assumes that the MPS ansatz captures all the relevant local

correlations that produce long time behavior.

By examining integrable and nonintegrable models for which the asymptotic dynamics in

known, we have shown that the apparent convergence of long time observables, such as the

diffusion coefficient, obtained using TDVP is not indicative of the accuracy of the method

and may be very misleading. While the dramatic failure of TDVP to reproduce ballistic and

localized dynamics is expected, it is quite unfortunate that the method appears to fail also

for a nonintegrable diffusive model.

Interestingly, the most promising results are obtained for the nonintegrable disordered

XXZ model in the ergodic subdiffusive phase [130], which is the only presented example

where the short time and long time behavior appear to agree very well, although the same

caveats concerning convergence apply. This is quite surprising, in light of the expectation of

asymptotic diffusion in TDVP generated dynamics due to the underlying nonlinearity of the

equations of motion. Nevertheless, we find that the MSD calculated by TDVP is strongly

sublinear, although we cannot rule out a slow approach of the dynamical exponent to its

diffusive value. We would like to point out a possible connection between the nonlinearity

introduced by the tangent space projector into the TDVP equations of motion and the

nonlinear dependence on the wave function in the self-consistent second Born approximation,

[6, 136, 137] and the nonlinear Schrödinger equation (NLSE), both of which also show

subdiffusive transport in the presence of disorder [138].

In summary, we have shown that great care must be exercised examining the apparent

convergence of long time properties within the TDVP approach, which appears to generi-

cally produce either qualitatively or quantitatively incorrect results. Nevertheless, we have

presented one nontrivial system were the short time (numerically exact) dynamics and the
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long time dynamics agree, and therefore hint at the possibility of an accurate asymptotic

description, obtained at a modest computational effort. It is of great importance to further

investigate the origins of the apparent success of the method in this case as well as to extend

this study to other nonintegrable systems in one and two-dimensions.

74



Chapter 6

Spin transport in long-range interacting

spin chain

This chapter was published as: B. Kloss and Y. Bar Lev, Phys. Rev. A 99, 032114 (2019)

6.1 Introduction

Be it gravity, electromagnetic force or dipole-dipole interactions, power-law interactions are

ubiquitous. While sufficiently dense mobile charges are able to screen the interaction and

effectively truncate its range, in many cases long-range interactions are important. A few

of the notable examples in conventional condensed matter systems are nuclear spins [140],

dipole-dipole interactions of vibrational modes [141–143], Frenkel excitons [144], nitrogen

vacancy centers in diamond [145–149] and polarons [150]. Long range interactions are also

common in atomic and molecular systems, where interaction can be dipolar [151–156], van

der Waals like [151, 157], or even of variable range [158–161].

It was rigorously established by Lieb and Robinson that generic correlations in quantum
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system with short-range interactions propagate within a linear “light-cone”, t/v = x, with

a finite velocity [162]. Outside this “light-cone” correlations are exponentially suppressed

[162]. Specifically this implies that transport in local quantum systems cannot be faster

than ballistic.

For systems with long-range interactions the result of Lieb and Robinson doesn’t hold, but

was later generalized by Hastings and Koma, who showed that for α > 1, the causal region

in such systems becomes at most logarithmic, t ∼ log x [163]. This result was subsequently

improved to an algebraic “light-cone”, t ∼ rδ for α > 2 and 0 < δ < 1 [164]. A Hastings-

Koma type bound was also obtained for α < 1 after a proper rescaling of time [165]. While

the spreading of generic correlations was numerically studied in a number of studies [58,

166–173], much less is known about transport in long-range interacting systems. Some

information can be gained from quadratic fermionic models with long-range hopping [174,

175], however these systems are integrable and can thus show nongeneric features. The

results of Ref. [164] suggest that transport in long-range systems is at most superdiffusive

for α > 2, but leaves a number of important questions open: (a) Is there an α above which

diffusion is recovered, similarly to the situation for classical Lévy flights? [176] (b) Is there

an α, below which mean-field like dynamical behavior takes place?

In this work we address these questions by studying spin-transport using the time-

dependent variational principle in the manifold of matrix product states (TDVP-MPS) [21,

22, 121, 177]. The main outcome of our study can be read from the cartoon in Fig. 6.1.

TDVP-MPS belongs to the family of matrix product states (MPS) methods [13], and

thus allows to study long spin chains (chains up to L = 1201 were considered here), way

beyond what is accessible using exact diagonalization. The main advantage of this method

over the conventional time-evolving block decimation (TEBD) or time-dependent density

76



6.1. INTRODUCTION

Mean field

Thermodynamics fails

Superdiffusion Emergent diffusion

α1/2 1 3/2

Figure 6.1: A cartoon describing the nature of transport in one-dimensional interacting
systems, with an interaction decreasing as r−α with the distance. For 0 < α < 1 the energy
of the system is superextensive, resulting in the failure of conventional thermodynamics. For
0 < α < 1/2, dynamics corresponds to dynamics of the infinite-range (α→ 0) mean-field
model in the limit of L → ∞. For α > 1/2 transport combines diffusive and superdiffusive
features, with a finite diffusion coefficient for α > 3/2 and 〈x2q〉 (t) ∼ tq for q < α− 1/2.

matrix renormalization group (tDMRG) approaches for time-evolution [20, 178, 179] is that

the evolution is unitary by construction, and the method explicitly conserves a number of

macroscopic quantities, such as the total energy, total magnetization and total number of

particles [21, 22, 121, 177]. Moreover unlike TEBD and tDMRG the method can be directly

applied for long-range interacting systems. While the method is numerically exact in the

limit of large bond dimension (which sets the number of variational parameters), it is limited

by the growth of entanglement entropy with time [13]. For a fixed bond dimension, the

equations of motion of TDVP-MPS can be derived from a classical nonquadratic Lagrangian

in the space of variational parameters [21, 60]. These equations are typically chaotic and

yield diffusive transport. Based on this observation as well as the conservation properties of

TDVP-MPS it was argued that the method could potentially recover correct hydrodynamic

behavior also for a relatively small bond dimension [60], a result which was challenged in

Ref. [61]. We note in passing that this line of thought is not applicable for long-range systems,

where diffusive transport is not expected a-priori, and the entire hydrodynamic approach is

questionable. Therefore here we strictly use TDVP-MPS as a numerically exact method.
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6.2 Model

We study a one-dimensional spin-chain of length L, given by the Hamiltonian Ĥ = Ĥloc +Ĥlr

where

Ĥloc =
L−1∑

i=1

(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1

)
+

L−2∑

i=1

(
Ŝxi Ŝ

x
i+2 + Ŝyi Ŝ

y
i+2

)
, (6.1)

is the local part and,

Ĥlr =
L−1∑

i=1

L∑

j>i+1

1

(j − i− 1)α

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)
, (6.2)

includes power-law decaying long-range interactions and Ŝxi and Ŝyi are spin-1/2 operators.

The Hamiltonian conserves the total magnetization, and thus supports energy and spin

transport. We introduce a next-nearest neighbor term in order to break integrability in the

limit of α→∞. In this limit the Hamiltonian reduces to the XX ladder, which has diffusive

spin transport [61, 131, 180, 181].

6.3 Method

To assess spin transport in the system we numerically compute the two-point spin-spin

correlation function at infinite temperature,

Cx (t) =
4

2L
Tr
(
ŜzL/2+x (t) ŜzL/2 (0)

)
, (6.3)

which corresponds to the time-dependent profile of a local excitation at the center of the chain

performed at t = 0. We choose to work at infinite temperature, since such a state corresponds

to a typical initial state [182], which increases the generality of our results. The excitation
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Figure 6.2: Upper panels. Spin excitation profiles as a function of time for two representative
α. The dashed black lines correspond to results obtained in the α → ∞. Darker tones
represent longer times. Lower panels. Logarithmic derivative of the spin excitation profiles.
The dashed black lines are guides to the eye for 2α. L = 201, χ = 256 .
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profile is obtained by propagating the operators, Ŝzi (t) , under the Heisenberg evolution and

accessible timescales are limited by the growth of entanglement entropy. Using the cyclic

property of the trace Cx (t) can be written as,

Cx (t) =
4

2L
Tr
(
ŜzL/2+x

(
− t

2

)
ŜzL/2

(
t

2

))
, (6.4)

which allows us to reach twice as large times [183]. Since we work with an approximately

translationally invariant system (we use open boundary conditions), in practice, we propagate

only one operator at the center of the lattice, because operators which are far enough from

the boundaries of the chain can be obtained approximately by a simple translation (see

Appendix 6.7). To mitigate the boundary effects introduced by this approximation we show

Cx (t) only for the central L/2 sites of the chain. If not stated otherwise, we use spin-chains

of length L = 201, which is sufficient to have finite size effects under control for most ranges

of the interaction.

To propagate the operators we use the time-dependent variational principle (TDVP),

which yields a locally optimal (in time) evolution of the wavefunction on some variational

manifold. It amounts to solving a tangent-space projected Schrödinger equation [22],

d

dt

∣∣∣Ô (t)
〉

= −iPMĤ
∣∣∣Ô (t)

〉
, (6.5)

where PM is the tangent space projector to the variational manifold M and
∣∣∣Ô (t)

〉
is

a vectorization of a general operator Ô (t). We use the matrix product operator (MPO)
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representation of the operator,

Ô (A) =
∑

{σi},{σ′i}
A
σ1σ′1
1 . . . A

σNσ
′
N

N |σ1 . . . σn〉 〈σ′1 . . . σ′n| , (6.6)

where σi = ±1/2 correspond to the states of a spin at site i and A
σiσ
′
i

i ∈ Cχi−1×χi are

complex matrices where χi is the bond-dimension of the matrix (χ0 = χN = 1) [13]. An

exact representation of a general operator requires the bond dimension to grow exponentially

with system size L. Therefore truncating the maximal bond-dimension to a fixed value

introduces an approximation, but allows to keep the MPO representation tractable. We use

a family of fixed finite bond-dimension MPOs to parameterize the variational manifold,M.

Numerically exact results are achieved by convergence with respect to the bond-dimension

(in this work we used bond-dimension of up to 512, see Appendix 6.6). The evolution of (6.5)

is performed using a second-order Trotter decomposition with time-steps from 0.005 to 0.1.

The Hamiltonian is approximated as a sum of exponentials and a short-ranged correction,

which can be efficiently represented as an MPO. The number of exponentials is chosen such

that the resulting couplings do not differ by more than 2% from the exact couplings for any

pair of sites [32]. We note in passing that since the evolution is unitary in the enlarged vector

space of the vectorized operators, the method explicitly conserves the norm of the operator,
〈
Ô (t)

∣∣∣ Ô (t)
〉
≡ Tr Ô† (t) Ô (t) = Tr Ô†Ô, but not its trace, Tr Ô (t).

6.4 Results

Figure 6.2 shows the spin excitation profile, Cx (t), for short times and two values of α = 1

and 2.5. Since the excitation profile is symmetric with respect to the center of the lattice in
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Figure 6.3: Left panel. Spin excitation profiles at t = 2.0 and various α. Darker tones
represent larger α-s. The black dots represent a Gaussian fit. Right panel. Logarithmic
derivative of the spin excitation profiles. The dashed black lines are guides to the eye for
2α. L = 201, χ = 256.

the following figures we only show its right side (x > 0). For α = 2.5, and small distances

from the initial excitation, the profile resembles a Gaussian and superimposes well with the

α→∞ profile calculated at same time points. For larger distances there is a crossover from a

Gaussian form to a power-law form, x−γ. For smaller α, the crossover is less pronounced and

there is no apparent region of Gaussian behavior (although it might develop at later times).

Since the accessible times in this work are short (t ≤ 4) due to fast growth of entanglement

entropy, it is pertinent to question what our results imply on bulk transport? From Fig. 6.2

it is apparent that the power-law tail appears already at very short times, and its exponent

γ seems to be independent of time, as can be judged from convergence of the logarithmic

derivative, d logCx (t) /d log x, to the same value of γ (see bottom panels of Fig. 6.2). This

leads us to argue that the long-range nature of the interactions speeds up the approach to

asymptotic transport and allows us to observe at least some of its features.

In Fig. 6.3 we show the spin excitation profile at t = 2 for all analyzed α. The power-

law regime, x−γ, is visible for all α and the exponent γ (α) is α dependent. To assess this

dependence we calculate the corresponding logarithmic derivative (see right panel of Fig. 6.3),
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Figure 6.4: The power-law exponent, γ, of the power-law tail in the spin excitation profiles
obtained by averaging over the logarithmic derivative in Fig. 6.3 in different spatial regions.
The yellow (light) line is the exponent γ computed for the noninteracting model in Eq. (6.7).
The dashed black line corresponds to γ = 2α.

which converges to its asymptotic value, γ, at large distances. The logarithmic derivative

becomes increasingly noisy at large distances, x, (where Cx (t) < 10−8 ), due to decreasing

signal-to-noise ratio, which prohibits us to obtain an even better convergence.

To assess the convergence of the results we have extracted γ by averaging the logarithmic

derivative on various spatial intervals, and we note that γ converges to the γ = 2α line. To

further substantiate the power-law tail of Cx (t) we compare our results to a noninteracting

long-range hopping model,

Ĥnonint =
L∑

i=1

L−1∑

x=1

1

xα
ĉ†i ĉi+x, (6.7)

where ĉ†i creates a spinless fermion at site i (for analytical results at the groundstate, see

Refs. [174, 184, 185]). The probability of a particle to hop for site i to site i+x is P (x,∆t) =
∣∣∣
〈
i+ x

∣∣∣exp
(
−iĥ∆t

)∣∣∣ i
〉∣∣∣

2

, where ĥ is the single-particle Hamiltonian, yielding for small ∆t,

P (x) ≈ h2
i+x,i∆t

2 ∼ |x|−2α. This suggests γ = 2α , which we indeed observe numerically for

α ≥ 1, see Fig. 6.4. Interestingly, the two models differ for α < 1, where the interacting

model continues to follow the γ = 2α line.
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Many-times transport is characterized by considering the time-dependence of the mo-

ments of the spin excitation profile,

〈
x2q
〉

(t) =
1

2

L∑

x=0

x2qCx (t) . (6.8)

Specifically, the first nonvanishing moment (q = 1), also known as the mean-square displace-

ment (MSD), is directly related to the the time-dependent diffusion coefficient , D (t) =

d 〈x2〉 /dt, which converges to the linear response diffusion coefficient for t → ∞ (see Ap-

pendix of Ref. [130]). Since we obtain that asymptotically Cx (t) ∼ x−2α, all moments with

q > α − 1/2 diverge in the limit L→∞. In the left panels of Fig. 6.5 we demonstrate this

behavior for q = 1. While α = 1.3 shows a divergence of D (t) with system size, for α = 3 the

time-dependent diffusion coefficient does not depend on the system size, and approaches a

plateau as a function of time, indicative of diffusive transport, 〈x2〉 ∼ Dt. This is consistent

with our observation that the central part of the excitation profile is well described by the

dynamics of a local system (α→∞), which is diffusive [61, 131, 180, 181].

We note that α = 1/2 plays a special role, since for α < 1/2, Cx (t) ∼ x−2α becomes

nonintegrable. This is in a contradiction to the fact that
∑

xCx (t) =
∑

xCx (0) = 1,

which follows from the conservation of total magnetization. The resolution of this apparent

paradox follows from the dependence of Cx (t) on the system size for α < 1/2, which makes

the entire excitation profile (for any finite time) vanish in the limit L→∞ [186–189]. The

dependence of the excitation profile on the system size for α < 1/2 can be eliminated by a

proper rescaling of time, t→ tf (L) , where f (L) is some increasing function of L. We have

empirically found that taking f (L) =
√

2H
(2α)
L/2 ≡

(
2
∑L/2

x=1 x
−2α
)1/2

(namely the `2-norm of

the long-range part) gives a perfect scaling collapse (see right panels of Fig. 6.5) for α < 11.
1For 1/2 < α such a rescaling is not required for sufficiently large system sizes. For small system sizes
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Figure 6.5: Left panels. Time-dependent diffusion constant D (t) for α = 1.3 and 3 and three
different system sizes, L = 101 (χ = 512), 201 and 301 (χ = 256). Middle and right panels.
Short-time relaxation of the central spin, C0 (t) for α = 0.3 and 0.7 versus time (middle) and

rescaled time (right) using the square root of the generalized harmonic numbers,
√
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L/2

(see text) for L = 301, 601 and 1, 201 and χ = 128.

In the limit of large system sizes and for α < 1/2, this rescaling corresponds to τ ∼ tL1/2−α

and is consistent with the analytically obtained rescaling for a classical model [186, 189].

6.5 Discussion

Using a numerically exact method (TDVP-MPS) we study infinite temperature spin trans-

port in a nonintegrable one-dimensional spin chain, with interactions which decay as x−α

with the distance. While the method allows us to address chains far beyond what is accessi-

ble using exact diagonalization, it is inherently limited to short times due to fast growth of

entanglement entropy. Nevertheless, we show that the long-range of the interactions allows

to access some of the asymptotic features of transport in our simulations.

We find two pronounced regimes in the dynamics of a spin excitation. For α < 1/2, we

a notable residual dependence on the system size might exist, especially for α close to 1/2, due to slow
convergence of H(2α)

L . The same rescaling of time as we use for α < 1/2 eliminates this residual dependence.
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find that the decay of the excitation depends on the system size, such that the relaxation time

t0 ∝ (
∑

k J
2
0k)
−1/2 ∼ Lα−1/2 (where Jij ∼ |i− j|−α is the long-range part of the Hamiltonian),

and goes to zero in the limit of L → ∞. For finite system sizes the spatial decay of the

excitation profile is Cx (t) ∼ x−2α.

For α > 1/2, there is a residual dependence of the excitation profiles on the system size,

which vanishes in the L → ∞ limit. For short distances the spatial excitation profiles are

well described by the corresponding profiles of a local system, which for generic systems

are Gaussian, corresponding to diffusive transport. For longer distances the Gaussian form

crosses-over to a power-law behavior with an exponent, which approaches, Cx (t) ∼ x−2α.

The crossover is much more apparent for larger α, and is barely visible for the smaller α.

Our data is inconclusive with respect to the existence of a critical αc > 1/2 below which the

crossover vanishes, since it is possible that longer times are needed to observe the crossover

for the smaller α. The crossover point drifts to longer distances for larger α and longer times,

but we were not able to determine its precise functional dependence.

Due to the asymptotic power-law dependence of the excitation profile, only moments

〈x2q〉 (t) with q < α − 1/2 exist (see Eq. 6.8). We find that for α > 3/2 the MSD, which

corresponds to q = 1, exists and is not system-size dependent. Moreover it appears to

increase linearly with time, which we demonstrated by calculating its derivative. While

this behavior corresponds to diffusion, the dynamics is not truly diffusive for any α, due

to the divergence of higher moments. This is in stark contrast to classical superdiffusive

systems, such as Lévy flights, where a critical α exists, above which diffusion is restored.

The nice agreement of the “core” of the excitation profile with a Gaussian form, corresponding

to diffusion, leads us to speculate that all the existing moments have a diffusive time-

dependence, namely, 〈x2q〉 (t) ∼ tq, for q < α − 1/2. While the functional dependence
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of 〈x2q〉 that we observe, could still be not asymptotic due to the limited times of our

numerical simulations, the divergence of moments for q > α − 1/2 follows solely from the

power-law dependence of the tail of Cx (t), which develops already at very early times and

was motivated both analytically and numerically by considering a related noninteracting

model. It is thus very likely that the power-law tails exist also at asymptotic times.

In this work we consider one model, which is nonintegrable for all α. While groundstate

properties where shown to be model dependent [168], such microscopic sensitivity is not

expected for sufficiently high temperatures, where the system is sufficiently far from any

ordered quantum phase, and is not well described using quasiparticles. We therefore expect

our results, obtained in the limit of infinite temperature, to hold for a broad family of

nonintegrable long-range models and any typical initial state. It would be interesting to

extend our results to higher dimensions.

6.6 Convergence Tests

Numerical exactness of the dynamics generated by TDVP-MPS is obtained by converging

with respect to the bond-dimension, χ. In Figures 6.6 and 6.7, we provide comparisons

of calculations with bond-dimensions up to χ = 512 for quantities of interest in this study.

Evaluating the spatial spin excitation profile in the tails becomes sensitive to numerical noise

for small values of Cx (smaller than 10−8) and is limited by a complex interplay of time-

step errors and accumulation of numerical round-off errors. Therefore, obtaining accurate

tails of Cx is harder for the large α, where Cx decreases faster with the distance. α = 2.5

is the shortest-ranged system for which it is possible to calculate a meaningful tail of Cx.

In contrast, the mean square displacement is robust to the numerical noise in the far tails
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Figure 6.6: Convergence of the spin excitation profile with respect to bond-dimension, χ, at
t = 2.0, L = 201 and dt = 0.005.
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for the system sizes and times considered here, and longer times are accessible for larger

α. The relaxation of the central spin, C0(t), at short times is converged with a moderate

bond-dimension χ = 64, see Fig. 6.8.
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6.7 Approximate evaluation of Cx (t)

Obtaining the correlation function,

Cx(t) =
1

2L
Tr ŜzL/2

(
− t

2

)
ŜzL/2+x

(
t

2

)
, (6.9)

of a spin-chain of length L scales as O(L2), since for each operator, a separate calculation

has to be performed. However, the scaling can be reduced to O(N) by making use of the

approximate translational invariance of the Ŝzi (t). In the limit of large system and for sites

i close to the center, the correlation function can be evaluated approximately using only

ŜzL/2(t),

Cx (t) ≈ 1

2L
Tr ŜzL/2

(
− t

2

)
T xŜ

z
L/2

(
t

2

)
, (6.10)

where the action of the translation operator T x is illustrated in Fig. 6.9. It can be understood

as relabeling of the lattice sites i in a cyclically translated manner: ∀i ∈ [1, L] : i→ (i + x)

mod L. The trace in Eq. (6.10) can be performed if the matrix product operator (MPO)

is expanded at both ends with virtual sites connected containing identity operators and

89



CHAPTER 6. SPIN TRANSPORT IN LONG-RANGE INTERACTING SPIN CHAIN

1 2 3 4 5 6 7 8 9

1 2 3 4 5 67 8 9

Figure 6.9: Tensor network diagram for Eq. (6.10). Each tensor in the network is labeled with
the physical site it represents. The upper MPO corresponds to the untranslated operator
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(
t
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)
.

connected with a bond-dimension of 1. There is no need to evaluate ŜzL/2
(
− t

2

)
, since it is

just the complex conjugate of ŜzL/2
(
t
2

)
. In a vectorized notation the calculation of Cx (t)

therefore amounts to the calculation of
〈
ŜzL/2

(
t
2

)
|T x|ŜzL/2

(
t
2

)〉
.

The deviation between Cx(t) obtained from the explicit propagation of all Ŝzx and Cx(t)

calculated within this approximation is negligible for the chain lengths we use in this study,

see Fig. 6.10. We have verified that the large errors after site 40 are not related to a

breakdown of the approximate scheme, but occur due to the small signal-to-noise ratio for

very small Cx(t). For lattice sites close to the end of the chain, the approximation is expected

to cause significant errors.
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Chapter 7

Spin transport in disordered long-range

interacting spin chain

This chapter was published as: B. Kloss and Y. Bar Lev, Phys. Rev. B 102, 060201 (2020)

7.1 Introduction

Many-body localization (MBL) extends the notion of Anderson localization to interacting

systems [124]. For local interactions, its existence is well established theoretically [6, 191]

and experimentally in one-dimensional systems [192–194] (see [7] for a recent review), but

there is evidence of localization also in two-dimensional systems [137, 195–199]. For long-

range interactions the fate of MBL is less clear. Some studies suggest that the many-body

localization is stable for α > 2d [200–203], with d the spatial dimension, some suggest it is

stable for α > d/2 [204], and some claim it is unstable for any finite α in the thermodynamic

limit [205–207]. Understanding the dynamics of disordered systems with long-range inter-

actions is of great importance to a number of physical systems, such as nuclear spins [140],
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dipole-dipole interactions of vibrational modes [141–143], Frenkel excitons [144], nitrogen

vacancy centers in diamond [145–149] and polarons [150]. Long range interactions are also

common in atomic and molecular systems, where interactions can be dipolar [151–156], van

der Waals like [151, 157], or even of variable range [158–161]. Some aspects of the dynamics

in such systems were studied numerically in Ref. [203, 208, 209], analytically in Ref. [210]

and experimentally in Ref. [211], however spin transport in such systems was not considered.

The delocalized phase of disordered one-dimensional systems with local interactions shows

subdiffusive transport [133–136, 212], accompanied by sublinear growth of the entanglement

entropy [213–215] and intermediate statistics of eigenvalue spacing [216]. Anomalous trans-

port is commonly explained by rare insulating regions, which effectively suppress transport

in one-dimensional systems. This mechanism is known as the Griffith’s picture [134, 217,

218] (see Ref. [219] for a recent review and also Ref. [220] were rare regions were introduced

externally). In dimensions higher than one the Griffiths picture predicts diffusion, since rare

regions can be circumvented [218], however approximate numerical studies [137] as also recent

experiments [196, 197] suggest that at least for short to intermediate times the relaxation

and transport appears to be anomalous. It is crucial to understand if this discrepancy fol-

lows from incompleteness of the Griffiths picture or the approximation of the method. While

there are no efficient numerically exact methods to study the dynamics of two-dimensional

interacting systems, some progress can be obtained for one-dimensional long-range interact-

ing systems. The Griffiths picture was not generalized to this setting, but in analogy to the

reasoning of higher dimensions [218], normal diffusive behavior is expected.

In a previous work we have shown that for clean systems with long-range interactions the

local part of the Hamiltonian dictates the spreading of the bulk of a local spin excitation,

while the long-range part of the Hamiltonian only introduces a weak perturbative effect, in

93



CHAPTER 7. SPIN TRANSPORT IN DISORDERED LONG-RANGE INTERACTING
SPIN CHAIN

the face of power-law tails of the excitation profile, with an exponent proportional to α

[139]. The tails yield a superdiffusive signature of transport for all α, if a sufficiently high

moment of the excitation profile is considered, and for α < 3/2 the diffusion constant diverges

with system size [139]. A natural question which arises is whether the effect of long-range

interactions in disordered systems goes beyond a perturbative correction as it happens for

their clean counterparts. Moreover, if localization is destabilized by long-range interactions,

what is the resulting nature of spin transport?

In this work we consider and answer these questions using a numerically exact matrix

product state (MPS) method. The study of long-ranged interacting systems naturally re-

quires large system sizes. In fact, in Section 7.7 we show that for α = 1.75, finite size effects

are pronounced even for a chain of 51 spins, which is currently considered as the state-of-

the-art limit of exact diagonalization based techniques [221]. MPS techniques are therefore

indispensable to obtain numerically exact results for chains with long-range interaction, al-

beit only up to some finite time. This limitation arises since the required numerical effort

scales exponentially with the entanglement entropy of the state, which for nonintegrable

systems is known to grow linearly with time [222]. We stress that our aim here is not to

address the question of stability of the MBL phase in the presence of long-range interactions,

but to study the dynamics in the delocalized phase. Moreover, since it is technically hard

to distinguish between very slow transport and absence of transport, especially in a limited

time-interval, our method is not well suited for such purpose.

Time-evolution of long-ranged systems can be conveniently obtained by the time-dependent

variational principle (TDVP) applied to the manifold of MPS [21, 22, 121]. It was success-

fully utilized to study the dynamics of spin chains with local interactions in disordered or

quasiperiodic potentials [223, 224]. For low bond dimensions and very far from the numeri-
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cally exact limit this method was proposed as an inexpensive candidate to achieve accurate

hydrodynamic description of transport [60], however it was shown to be unreliable for generic

systems [61]. In this study, we use TDVP as a numerically exact method, and study the

nature of transport in long-range-interacting disordered one-dimensional spin chain. We

focus on parameter regimes in which the interaction is sufficiently short-ranged such that

the corresponding clean system shows asymptotic diffusive behavior, and disorder ranges for

which the system is argued to be delocalized by all existing theories.

7.2 Model

We study transport properties of the one-dimensional long-ranged disordered Heisenberg

model,

Ĥ = J
L−1∑

i=1

L∑

j>i

1

(j − i) α
(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j

)
+

L∑

i=1

hiŜ
z
i , (7.1)

where hi is uniformly distributed in the interval [−W,W ] and Ŝ
(x,y,z)
i are the appropriate

projections of the spin-1/2 operators on site i. In the following, we use J = 1, which sets

the time unit of the problem. To study the dynamical properties of this model we start the

system from a random product state, |n〉, in the eigenbasis of Ŝzi and calculate the growth

of the entanglement entropy S (t) as also the spreading of a spin-excitation as a function of

time, which is assessed from the two-point spin correlation function,

Cn
x (t) =

〈
n
∣∣∣ŜzL/2+x (t) ŜzL/2 (0)

∣∣∣n
〉
. (7.2)

The entanglement entropy is directly available since we use the two-site TDVP method [22].

We then average both S (t) and Cn
x (t), by randomly sampling both the disorder and the
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initial state of the system, such that any state has an equal probability to occur. This

corresponds to an infinite temperature ensemble, Cx (t) = N−1
∑
Cn
x (t), where N is the

Hilbert space dimension. It is convenient to characterize the spreading by the width of the

averaged excitation profile,

σ2 (t) =

L/2∑

x=−L/2
x2Cx (t) (7.3)

which is analogous to the classical mean-square displacement (MSD). Typically the MSD

scales as, σ2(t) ∼ tγ, with γ = 2 (γ = 1) for ballistic (diffusive) transport and 0 < γ < 1

corresponding to subdiffusive transport. We use the log-derivate to define a time-dependent

dynamical exponent γ (t) = d lnσ2 (t) /d ln t, which asymptotically converges to γ. We also

compute the linear derivative of the MSD, dσ2/dt, which corresponds to a time-dependent

diffusion coefficient D (t) . In the limit of long times it converges to constant a constant

for diffusion and zero for subdiffusion. Similarly, we define the time-dependent dynamical

exponent δ (t) = d lnS (t) /d ln t, to characterize the spread of the entanglement.

7.3 Method

The Hilbert-space dimension of a quantum lattice systems scales exponentially with the size

of the system. Any wavefunction in the Hilbert space can be written as a matrix product

state (MPS),

|Ψ[A]〉 =
d∑

{sn}=1

As1(1)As2(2) . . . AsN (L) |s1s2 . . . sL〉 (7.4)

where d is the local Hilbert space dimension, Asi(i) ∈ CDi−1×Di are complex matrices and

D0 = DL = 1, such that the product of matrices evaluates to a scalar coefficient for a given
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configuration |s1s2 . . . sL〉. To be an exact representation of the wavefunction the dimension

of the matrices, the bond dimension, must scale exponentially with the systems size. Typ-

ically one approximates the wavefunction by truncating the dimension of the matrices to

a predetermined dimension with a computationally tractable number of parameters. Exact

results are obtained when the approximate dynamics are converged with respect to the bond

dimension.

The time-dependent variational principle (TDVP) allows one to obtain a locally optimal

(in time) evolution of the wavefunction on the manifold of MPS,Mχ, with some fixed bond

dimension χ. It amounts to solving a tangent-space projected Schrödinger equation [22]:

d |Ψ[A]〉
dt

= −iPMĤ |Ψ[A]〉 , (7.5)

where PM is the tangent space projector to the manifold Mχ. Equation (7.5) is solved

using a second-order Trotter-Suzuki decomposition of the projector. The Hamiltonian is

approximated as a sum of exponentials, which can be efficiently represented as an MPO [32].

The number of exponentials is chosen such that the resulting couplings do not differ by more

than 2% from the exact couplings for any pair of sites. Through this work we have used a

bond-dimension of up to χ = 1024 and timestep of dt = 0.1 and verified that our results

are convergent with respect to these numerical parameters (see Section 7.6). We average

over initial conditions and disorder realizations at the same time and use 1000 realizations

unless stated otherwise. All calculations are performed using the TenPy library using a two-

site version of the TDVP for MPS and exploiting that the Hamiltonian conserves the total

magnetization [120].
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Figure 7.1: Rescaled magnetization profiles at different times on log-log scale for bond di-
mension χ = 512, system size L = 75, and different disorder strengths (W = 2.0, 4.0 and 6.0
from left to right). The shaded area shows the standard deviation of the profile obtained
from a bootstrapping procedure. Profiles are smoothed by a Gaussian filter with a standard
deviation of 2.0. Black dotted line is a guide to the eye of a power-law, x−2α.

7.4 Results

For transport that is not purely diffusive, the MSD contains only partial information on

transport, since in this case the asymptotic shape of the profile is not described by a Gaussian.

To get a full picture of transport it is therefore pertinent to examine the evolution in time

of the excitation profiles, which we do in Fig. 7.1. Similarly to the clean case in Refs. [139,

225], the tails of the excitation profile follow a power-law of −2α regardless of the disorder

strength, which shows that the disorder cannot suppress long-range hops of the spin. These

tails are responsible for the divergence of the MSD and the diffusion coefficient with system

size for α < 3/2. As is clear from Fig. 7.1, a rescaling of data, which is consistent with

diffusion, fails (c.f. Fig. 7.5, where it works), indicating that transport is not diffusive.

To assess the influence of the disorder on the dynamics we focus on α = 1.75 and compute

the averaged bipartite entanglement and the MSD (6.8) for a number of disorder strengths

W ∈ [2, 12], which are predicted to be in the delocalized phase [206]. Figure 7.2 shows the

MSD (6.8) and the entanglement entropy, S(t), as a function of time for various disorder

strengths together with the corresponding linear and logarithmic derivatives. All data is
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Figure 7.2: Right column. MSD (top panel) and entanglement entropy S(t) (bottom panel)
on log-log scale after numerical filtering (see main text) as a function of time for different
disorder strengths (W = 2− 12) and χ = 512. Left column. γ (t) and D (t) computed from
filtered MSD data, smoothed with a moving average of width t = 4 (two upper panels), and
similarly δ (t) and dS/dt computed from filtered S (t).

converged with respect to the system size (L = 75) except for the weakest disorder strength

(W = 2) (see Section 7.7). At strong disorder, oscillatory features emerge, with a period of

the order of the hopping rate. These oscillations are common in disordered systems, and

typically correspond to oscillations between nearby localization centers. Such oscillations

hinder the reliable extraction of dynamical exponents. In order to rectify this issue we filter-

out the corresponding frequency in the Fourier domain (for raw data and a description of the

procedure see Section 7.8). As can be seen from Fig. 7.2 the linear derivatives of MSD and

S (t) are monotonically decreasing with time, while their log-derivatives appear to converge

to a constant value smaller than 1. This observation points towards a sub-linear dependence

of MSD and S (t), which is indicative of subdiffusive transport.

In Fig. 7.3 we examine the dependence of the dynamics on the range of the interaction by

fixing the disorder strength (W = 3.0) and varying 2.0 ≤ α ≤ 3.25. The disorder is chosen,
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Figure 7.3: Similar to Fig. 6.8, but forW = 3.0 and 2.0 ≤ α ≤ 3.25. System sizes are L = 75
for α ≤ 2.5, L = 51 for α > 2.5 and L = 35 for local interactions.

such that in the local limit, α → ∞ (black line in Fig. 7.3), the system is delocalized and

subdiffusive [133]. Similarly to Fig. 7.2, the dynamical exponents γ and δ converge to a

constant value smaller than 1 for all studied α’s, which is monotonically decreasing with α.

In Fig. 7.4 we plot the dynamical exponents as extracted from Figs. 7.2, 7.3 for different

W ’s and α’s. We use the relation between the exponents proposed in Refs. [226, 227] (see

also Ref. [130]), 1/z = γ/2 = δ/ (1 + δ). While the relation is not satisfied well, the overall

dependence of the exponents appears similar, with both exponents monotonically decreasing

with α and converging to the α→∞ limit. The dynamical exponent δ (t) is reliable in the

entire range of parameters, but the oscillations in the MSD result in large error bars in the

extraction of γ (t) for α > 2.5.

Since the exact numerical study of long-range systems is rather limited in time, it is bene-

ficial to find a phenomenological model which attempts to reproduce the relevant dynamical

features, and at the same time suggests an effective mechanism. For disordered local systems

the Griffiths picture serves this purpose [134, 217, 218]. We generalize the Griffiths picture
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Figure 7.4: Dynamical exponent 1/z = γ/2 for MSD (orange hues) and S(t),1/z = δ/ (1 + δ)
(blue hues) as a function of α for W = 3.0 (left panel) and as a function of W for α = 1.75
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left panel and [tS, t
∗] for right panel, where t∗ is the time up to which the averaged raw data

for MSD and S(t), respectively, is converged within 2% (see Section 7.6). The horizontal
lines correspond to the limit α→∞.
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to long-range systems by introducing a finite probability for long jumps with a rate which

decays as x−2α in accord with the long-range part of the Hamiltonian 1. This reduces to the

following master equation,

∂Pn
∂t

=
∑

i

WinPi −

(∑

j

Wnj

)
Pn (7.6)

Wij =
e−hij

|i− j|2α
i 6= j

where hij is a symmetric matrix composed of independent random variables, which stand

for the heights of the barriers. The precise shape of the distribution of the barrier heights

is not important, as long as it is unbounded, guaranteeing the existence of very weak links.

To be concrete, we take it to be p (h) = h−1
0 exp [−h/h0]. We note in passing, that while

the form of the transition matrix is similar to the power-law random banded matrices used

to study Anderson localization with power-law hopping [228], there are crucial differences:

(a) we are applying it to a classical problem, (b) Wij has many-elements close to zero, and

must satisfy, Wii = −
∑

i 6=jWij to conserve probability. Since long-range hops effectively

avoid weak links, such a model is expected to be diffusive, but it is important to see how

it approaches diffusion as a function of time. To examine that, we numerically solve (7.6)

for about 500 realizations of the transitions rate matrix, Wij, with h0 = 8 and a lattice size

of L = 1000. At time t = 0 the walker is initiated at the origin, Pn (t = 0) = δn0. The

probability to find a walker at site n for various times has a Gaussian form in the bulk,

followed by a power-law tail, which can be better seen after the rescaling,
√
tPn

(
n/
√
t
)
(see

Fig. 7.5). Thus transport in this model is asymptotically diffusive. In Fig. 7.5 we show

D (t) and γ (t) for this generalized Griffiths model as a function of time. We note that while

1The factor of 2 stems from the difference between amplitude and probability
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t, computed from the solution of the generalized Griffiths model (7.6). Left panels. The
corresponding dynamical exponent γ (t) (top panel) and D(t) (bottom panel).

γ (t) converges to 1 and D (t) converges to a constant, indicative of diffusive transport, the

convergence is quite slow.

7.5 Discussion

Using a numerically exact method we performed an extensive study of transport of a disor-

dered spin-chain with interactions between the spins decaying as x−α with the distance. We

have chosen α and W such that the system exhibits non-vanishing transport and therefore is

in the ergodic phase. Because it is very hard to distinguish slow transport from localization

using our method, we didn’t attempt to locate the critical α or W or to demonstrate the

absence thereof.

Over the full range of the studied parameters we observe a sublinear growth of the entan-

glement entropy and the MSD, which is consistent with subdiffusive spin-transport. Since

long-range interactions introduce an effective channel to circumvent rare-blocking regions,

our study puts in question the prevailing theoretical explanation of subdiffusive transport

in disordered interacting systems, known as the Griffiths picture [218]. We generalized the
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Griffiths picture to long-range systems and numerically solved the corresponding master

equation (7.6), showing that within this picture, transport in long-range systems is asymp-

totically diffusive, though the convergence of the time-dependent diffusion coefficient to its

asymptotic value is quite slow. The numerically exact results are therefore inconsistent with

the rare-blocking regions mechanism, at least up to the studied times.

There could be at least two possible interpretations to our findings. First, it could be that

diffusion is recovered for times which are inaccessible by numerically exact studies. While

this scenario would make our results consistent with the Griffiths picture [218], one would

have to understand the origin of the emerging time-scale at which a crossover to diffusion

occurs. Second, if subdiffusion persists asymptotically, our findings add up to the mounting

evidence against the importance of rare-blocking regions for subdiffusion, as was shown

already in Refs. [137, 229] (cf. [230, 231], and see also the very recent [232]), suggesting

that our understanding of the mechanism of anomalous transport in the vicinity of the MBL

transition is far from being complete. It would be interesting to consider transport of other

conserved quantities, such as the energy, which in principle can exhibit different dynamical

behavior, and indeed was predicted to be diffusive in Ref. [210].

7.6 Convergence with respect to numerical parameters

Numerical exactness of the dynamics generated by TDVP-MPS is obtained by converging

with respect to the bond-dimension, χ, as well as the time-step, dt. In Fig. 7.6 , we provide

comparisons of the mean-square displacement (MSD) and the entanglement entropy S(t)

from calculations with bond-dimensions up to χ = 1024. All results for the MSD and S(t)

reported in the main article are converged up to a deviation of 2 % between the two largest
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Figure 7.6: Convergence of the MSD and S (t) with respect to the bond dimension at α = 1.75
for various disorder strengths W . Upper panel : MSD and S (t) at reference bond dimensions
χ = 1024 (W = 2 and 3, solid) and χ = 512 (W = 4, 6 and 12 solid) and half the reference
bond dimension (dashed). Lower panel : Relative errors ∆σ2(left panel) and ∆S (right)
between calculations at the reference and half the reference bond dimension. The system
size for all panels is L = 75 and a time-step of dt = 0.1 was used.
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bond dimensions. In order to check for convergence with the time-step it is sufficient to use

a smaller bond dimension, since time-step errors are usually more severe at smaller bond

dimension. Fig. 7.8 shows the relative deviation of the MSD at several time-steps from a

reference calculation at time-step dt = 0.005. The large relative error initially is caused by an

approximately constant error in absolute terms and that becomes negligible in relative terms

after times larger than a few units of the hopping. A time-step of dt = 0.1 is thus sufficient

to obtain a converged MSD within the range of disorder strengths studied. Evaluating the

spatial spin excitation profile in the tails at strong disorder becomes sensitive to numerical

noise for small values of the correlation function, Cx, and is limited by a complex interplay

of time-step errors and accumulation of numerical round-off errors. As shown in Fig. 7.9,

the convergence of the tails of the spin excitation profile with respect to bond dimension is

generally well controlled (< 5%) up to times for which the MSD is converged as well.
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Figure 7.10: Comparison of the MSD for various disorder strengths at α = 1.75 for system
sizes L = 75 (solid lines) and L = 51 (dashed lines). The shaded area indicates the standard
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7.7 Finite size effects

In Fig. 7.10 we provide evidence that the MSD is converged with respect to system size for

L = 75 for the data presented in the main article at α = 1.75 for all but the smallest disorder

strengths W = 2.0.

7.8 Filtering out high-frequency oscillations

The presence of strong disorder leads to high frequency oscillations which average only slowly

and are an obstacle in analyzing transport properties quantitatively. Hence, we smooth our

data by removing the high frequency oscillations according to the following protocol. The

linear time derivative of the data is Fourier transformed and a Gaussian broadening is applied

in the Fourier domain before transforming back to the time domain, from which the filtered

data is obtained by integration. We find that applying a weak broadening at low frequencies,

and successively increasing the strength of the broadening at higher frequencies results in

an efficient and unbiased removal of the high frequency oscillations. First a broadening of
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width w = 0.25 is applied to the range of all nonzero frequencies, followed by a broadening

of width w = 0.75 excluding the two lowest frequencies, and finally a broadening of width

w = 1.5 applied to all but the 4 lowest frequencies. We note that the result depends weakly

on the exact values of these parameters. This processing does not result in a systematic bias

compared to the raw data, as shown in Fig. 7.11. The smoothing becomes inefficient towards

the boundaries of the support of the data in the time-domain. When available, the raw

data has been used past its convergence time as an input for the filtering to circumvent this

problem. In the main text, we report only the filtered data and only up to the convergence

time determined from Figs. 7.6 and 7.7. While this can in principle introduce a bias for the

filtering at late times, we verified that the filtered data is consistent with the raw data for

all converged times.
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Figure 7.11: Comparison of filtered (solid lines) and unfiltered (dashed lines) MSD (upper
panels) and entanglement entropy S (t) (lower panels) for various disorder strengths at α =
1.75 (left panels) and for various α with a disorder strength of W = 3.0 (right panels). For
improved visibility, the data for α = 1.75 (left panels) is rescaled with the disorder strength.
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