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Abstract

High-dimensional Asymptotics for Phase Retrieval with Structured Sensing Matrices

Rishabh Dudeja

Phase Retrieval is an inference problem where one seeks to recover an unknown complex-

valued n-dimensional signal vector from the magnitudes of m linear measurements. The linear

measurements are specified using a m× n sensing matrix. This problem is a mathematical model

for imaging systems arising in X-ray crystallography and other applications where it is infeasible

to acquire the phase of the measurements. This dissertation presents some results regarding the

analysis of this problem in the high-dimensional asymptotic regime where the number of mea-

surements and the signal dimension diverge proportionally so that their ratio remains fixed. A

limitation of existing high-dimensional analyses of this problem is that they model the sensing

matrix as a random matrix with independent and identically (i.i.d.) distributed Gaussian entries.

In practice, this matrix is highly structured with limited randomness. This work studies a correc-

tion to the i.i.d. Gaussian sensing model, known as the sub-sampled Haar sensing model which

faithfully captures a crucial orthogonality property of realistic sensing matrices. The first result of

this thesis provides a precise asymptotic characterization of the performance of commonly used

spectral estimators for phase retrieval in the sub-sampled Haar sensing model. This result can

be leveraged to tune certain parameters involved in the spectral estimator optimally. The second

part of this dissertation studies the information-theoretic limits for better-than-random (or weak)

recovery in the sub-sampled Haar sensing model. The main result in this part shows that appro-

priately tuned spectral methods achieve weak recovery with the information-theoretically optimal



number of measurements. Simulations indicate that the performance curves derived for the sub-

sampled Haar sensing model accurately describe the empirical performance curves for realistic

sensing matrices such as randomly sub-sampled Fourier sensing matrices and Coded Diffraction

Pattern (CDP) sensing matrices. The final part of this dissertation tries to provide a mathematical

understanding of this empirical universality phenomenon: For the real-valued version of the phase

retrieval problem, the main result of the final part proves that the dynamics of a class of iterative

algorithms, called Linearized Approximate Message Passing schemes, are asymptotically identi-

cal in the sub-sampled Haar sensing model and a real-valued analog of the sub-sampled Fourier

sensing model.
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Chapter 1: Introduction

1.1 The Phase Retrieval Problem

Phase retrieval is a statistical inference problem that arises in various imaging applications like

electron microscopy, crystallography, astronomy, and optical imaging [1]. This problem origi-

nated in the field of X-ray crystallography [2], and we use this application to describe the physical

considerations giving rise to the phase retrieval problem.

Figure 1.1: A schematic diagram of a typical X-ray crystallography setup. Source: Shechtman,
Eldar, Cohen, Chapman, Miao, and Segev [1]

X-ray crystallography: The goal of X-ray crystallography is to infer the structure of a molecule

of a compound from its crystalline sample. The structure of a molecule is captured by its elec-

tron density function which describes the probability of observing an electron in any given spatial

location. In this imaging technology, the crystalline sample is irradiated with an X-ray beam.

As the X-rays pass through the sample, they interact with the electron density of the sample and

diffract. The intensity (or magnitude) of the diffraction pattern at various spatial locations is cap-

tured by a photographic plate. Due to physical limitations, it is infeasible to capture the phase

of the diffraction pattern. The relationship between the spatial intensity of the diffraction pattern

1



and the electron density function of the sample is described by Fraunhofer (or far-field) diffraction

principle. According to this principle, the intensity of the diffraction pattern at a specific spatial lo-

cation is proportional to the magnitude of the Fourier transform of the electron density function at

a suitable frequency (see [1, Page 4] for a precise formula). Hence, in the phase retrieval problem,

one seeks to infer the unknown electron density function of the molecule from the magnitude of

its Fourier transform. Since the Fourier transform is invertible, recovering the unknown electron

density function is equivalent to recovering the Fourier transform of the electron density function.

Since the magnitude of the Fourier transform is already observed, one simply needs to recover the

unobserved phase information. This is why this problem is called “phase retrieval”. A schematic

diagram of a typical X-ray crystallography setup (reproduced from [1]) is shown in Figure 1.1.

Mathematical Formulation: A common mathematical formulation of the phase retrieval prob-

lem is to recover an unknown n-dimensional, complex-valued signal vector x? ∈ Cn from the

magnitudes of m linear measurements. The measurements are denoted by a m-dimensional vector

y ∈ Rm. The relationship between the signal x? and the observed measurements is given by:

y = |Ax?|2. (1.1)

In the above equation, A ∈ Cm×n is a m× n matrix, known as the sensing matrix. The operation

| · |2 is understood to act entry-wise on the vector Ax? ∈ Cm. The sensing matrix A is assumed

to be known. This general mathematical formulation can be specialized to the setup of X-ray

crystallography as follows:

• The signal vector x? encodes the unknown electron density function of the molecule of

interest. It is constructed by sampling (or discretizing) the electron density function on a 2D

grid of size d× d and encoding the resulting d× d matrix as a vector of dimension n = d2.

If X ∈ Cd×d denotes the sampled (or discretized) electron density function, then one such
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encoding is given by:

(x?)(i−1)d+j = Xij, i, j ∈ {1, 2, 3 . . . , d}. (1.2)

• The sensing matrix A = Fn, the n × n linear operator which maps x? ∈ Cn to the 2D

Discrete Fourier Transform (DFT) of X? (encoded as a vector). For the encoding specified

in (1.2), the sensing matrix is given by:

(Fn)(i1−1)d+j1,(i2−1)d+j2 =
1√
n

exp

(
2πi√
n
· (i1 − 1)(i2 − 1) +

2πi√
n
· (j1 − 1)(j2 − 1)

)
,

(1.3)

where i =
√
−1.

Redundant Measurements: Note that in the Fourier phase retrieval problem discussed so far

(1.3), the number of measurements equals the signal dimension, i.e., m = n. However, the math-

ematical formulation in (1.1) allows for the acquisition of m > n redundant measurements. Ac-

quiring m > n redundant measurements is desirable for two reasons:

• For arbitrary signal vectors, the magnitude of the Fourier transform does not uniquely de-

termine the signal [3]. Hence, acquiring redundant measurements can help ensure that the

signal is uniquely determined (up to some trivial ambiguities) by magnitude-only measure-

ments.

• Even for signal classes that are uniquely determined by the magnitude of their Fourier trans-

form, acquiring redundant measurements can improve the stability properties of the inverse

problem and provide robustness to some amount of noise in the measurements.

In this dissertation, we will be particularly interested in the following two approaches for ob-

taining redundant measurements.
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Masks: In this scheme, proposed by Candès, Eldar, Strohmer, and Voroninski [4], a mask or a

phase plate is placed between the sample and the photographic plate. By modulating the

sample with several different masks, redundant measurements are obtained obtained. A

schematic diagram of this setup is shown in Figure 1.2. The sensing matrix in this scheme is

called the Coded Diffraction Pattern (CDP) ensemble and is given by:

ACDP =



FnD1

FnD2

...

FnDδ


. (1.4a)

where Fn denotes the n×n 2D-DFT matrix (defined in (1.3)), δ ∈ N is the number of masks

used andD1:δ are diagonal matrices representing phase masks used to modulate the signal:

D` = Diag
(
eiθ1,` , eiθ2,` , · · · , eiθn,`

)
. (1.4b)

A popular proposal for designing the phase masks is to sample them randomly [4, 5], for e.g.

θi,`
i.i.d.∼ Unif

({
−π

2
, 0,

π

2
, π

})
. (1.4c)

Figure 1.2: A schematic diagram of a typical setup for diffraction imaging with phase masks.
Source: Candès, Eldar, Strohmer, and Voroninski [4]
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Oversampling: Another strategy to obtain redundant measurements is to oversample the diffrac-

tion pattern on a grid of resolution finer than the Nyquist frequency [6]. This requires sur-

rounding the sample with a background of known transmission properties [7, 8]. Mathemat-

ically, this is formulated as zero padding the n-dimensional signal vector with m − n zeros

[1]. The measurements are given by the magnitude of m-point 2D-DFT of the zero-padded

signal. Consequently, in the oversampled Phase retrieval problem, the sensing matrix is

given by sub-sampling the first n columns of the m ×m 2D-DFT matrix Fm (as defined in

(1.3)). In this dissertation, we will be interested in a semi-random model for oversampled

phase retrieval, where the n columns are chosen uniformly at random (without replacement).

Formally, the sensing matrix will be given by:

APDFT = Fm · P · Sm,n, (1.5a)

where, Fm is the m×m 2D-DFT matrix defined in (1.3) and,

P ∼ Uniformly Random m×m Permutation Matrix, (1.5b)

S =

 In

0(m−n)×n

 . (1.5c)

The subscript PDFT in APDFT stands for Partial DFT. We call this sensing ensemble the

(randomly) sub-sampled Fourier ensemble.

1.2 A Statistical Perspective on Phase Retrieval

Modern statistical analyses of the phase retrieval problem seek to design computationally effi-

cient estimators for recovering the signal x? using the minimum number of measurements.

A commonly used performance measure to quantify the quality of an estimator x̂ is the squared

cosine similarity:
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cos2(∠(x?, x̂))
def
=
|〈x?, x̂〉|2
‖x?‖2‖x̂‖2

. (1.6)

This performance measure accounts for the inherent phase ambiguity in the phase retrieval prob-

lem: Since the signal vectors x? and x?eiφ result in identical measurement vectors y for any φ ∈ R,

it is possible to determine x? only upto a global phase. An estimator x̂ has good performance when

cos2(∠(x?, x̂)) ≈ 1. In this case, the estimator provides an accurate estimate of the direction of

the signal vector. On the other hand, when cos2(∠(x?, x̂)) ≈ 0, the estimator is nearly orthogonal

to the signal vector, and hence uninformative.

Existing statistical analyses of the phase retrieval problem fall into roughly two categories:

Order-of-Magnitude Analyses: A number of recent statistical analyses of the phase retrieval

problem design computationally efficient estimators which recoverx? with information-theoretically

rate-optimal m = O(n) (or nearly optimal m = O(n polylog(n))) measurements. A representa-

tive, but necessarily incomplete, list of such works includes the analysis of convex relaxations like

PhaseLift [9, 10], PhaseMax [11, 12], and analysis of non-convex optimization-based methods

[13, 5, 14]. The number of measurements required if the underlying signal has a low dimen-

sional structure has also been investigated [15, 16, 17]. Though a number of these works study a

physical unrealizable and stylized model of the sensing matrix, the order of magnitude of measure-

ments required to solve the phase retrieval problem with certain sensing matrices that are close to

practice such as the CDP ensemble (see (1.4)) is also understood: the works by Candès, Li, and

Soltanolkotabi [18, 5] exhibit computationally efficient estimators for solving phase retrieval with

CDP sensing ensembles with m = O(n polylog(n)) measurements.

High-dimensional Asymptotic Analysis: The previously mentioned order-of-magnitude analy-

ses show that a variety of different methods succeed in solving the phase retrieval problem with the

optimal or nearly optimal order of magnitude of measurements. However, in practice, these meth-
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ods can have a vast difference in performance, which is not captured by the order-of-magnitude

analyses. Consequently, efforts have been made to complement these results with sharp high di-

mensional asymptotic analyses which shed light on the performance of different estimators and

information-theoretic lower bounds in the high dimensional limit:

m,n→∞, m/n→ δ. (1.7)

The parameter δ is called the sampling ratio. This provides a high-resolution framework to compare

different estimators based on the critical value of δ at which they achieve non-trivial performance

(i.e. better than a random guess) or exact recovery of x?. Comparing this to the critical value of

δ required information-theoretically allows us to reason about the optimality of known estimators.

This dissertation focuses on understanding the phase retrieval problem in the high-dimensional

asymptotic regime.

A key challenge in analyzing the phase retrieval problem in the high-dimensional asymptotic

regime (1.7) is that current techniques are unable to handle the highly-structured semi-random

sensing matrices like the CDP ensemble (1.4) and the sub-sampled Fourier ensemble (1.5) that

arise in practice. Consequently, various mathematically tractable, approximate models for sensing

matrices have been proposed, which we introduce next. We refer to such a model as an ansatz,

to emphasize that such a model is physically unrealizable, and has been chosen for mathematical

convenience with the hope that it is a good approximation to sensing matrices that are closer to

practice.

I.I.D. Gaussian Ansatz: In this ansatz, the entries of the sensing matrix are assumed to be i.i.d.

Gaussian (real or complex). This is the most well-studied ensemble in the high dimensional

asymptotic limit. For this ansatz, the precise performance curves for various estimators such

as spectral methods [19, 20, 21], convex relaxation methods like PhaseLift [22] and Phase-

Max [23], and a class of iterative algorithms called Approximate Message Passing [24] are

now well understood. The precise asymptotic limit of the Bayes risk [25] for Bayesian phase
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retrieval is also known. However, this ansatz does not accurately predict the performance of

estimators on sensing ensembles closer to practice such as the CDP ensemble (1.4) and the

sub-sampled Fourier ensemble (1.5).

Sub-sampled Haar Ansatz: In the sub-sampled Haar sensing ansatz, the sensing matrix is gen-

erated by picking the first n columns of a uniformly random m×m unitary matrix:

A = Hm · Sm,n, (1.8a)

Hm ∼ Unif (Um) , Sm,n =

 In

0(m−n)×n

 . (1.8b)

The sub-sampled Haar ansatz captures a crucial aspect of sensing matrices that arise in prac-

tice: namely they have orthogonal columns (note that for both the CDP and the sub-sampled

Fourier ensembles we haveAH
PDFTAPDFT = AH

CDPACDP = In).

Rotationally Invariant Ansatz: This is a broad class of unstructured sensing ensembles that in-

clude the i.i.d. Gaussian ansatz and the sub-sampled Haar ansatz as special cases. Here, it is

assumed that the SVD of the sensing matrix is given by:

A = USV H, (1.9a)

where U ,V are independent and uniformly random orthogonal matrices (or unitary in the

complex case): U ∼ Unif
(
U(m)

)
, V ∼ Unif

(
U(n)

)
and S is a deterministic matrix

such that the empirical spectral distribution of STS converges to a limiting measure µS .

This ansatz is able to exactly model the spectrum of sensing matrices of interest, but treats

the singular vectors of the sensing matrix as generic. In comparision to the i.i.d. Gaussian

ansatz, the subsampled Haar ansatz and the rotationally invariant ansatz are significantly less

studied.
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Universality Phenomena: Even though the sub-sampled Haar ansatz (1.8) is faithful only to

a relatively coarse feature (column orthogonality) of the practically relevant sensing models, nu-

merical simulations reveal an intriguing universality phenomenon: It has been observed that the

performance curves derived theoretically for sub-sampled Haar ansatz provide a nearly perfect fit

to the empirical performance on practical sensing ensembles likeACDP,APDFT. This has been ob-

served by several authors in the context of various signal processing problems. It was first pointed

out by Donoho and Tanner [26] in the context of `1 norm minimization for noiseless compressed

sensing and then again by Monajemi, Jafarpour, Gavish, and Donoho [27] for the same setup,

but for many more structured sensing ensembles. More recently, Abbara, Baker, Krzakala, and

Zdeborová [28] have observed this universality phenomenon in the context of approximate mes-

sage passing algorithms for noiseless compressed sensing. For noiseless compressed sensing both

the Gaussian ansatz and the sub-sampled Haar ansatz lead to identical predictions (and hence the

simulations with structured sensing matrices match both of them). However, in noisy compressed

sensing and non-linear inverse problems like phase retrieval, the predictions from the sub-sampled

Haar ansatz and the Gaussian ansatz are different. The predictions from the sub-sampled Haar

ansatz seem to be correct in simulations. Oymak and Hassibi [29] pointed out that structured

ensembles generated by sub-sampling deterministic orthogonal matrices empirically behave like

Sub-sampled Haar sensing matrices for noisy compressed sensing. In the context of phase retrieval,

this phenomenon was reported by Ma, Dudeja, Xu, Maleki, and Wang [30] for the performance

of the spectral method. The current theoretical understanding of this universality phenomenon is

limited.

1.3 Overview of Contributions

The goal of this dissertation is to present some results that further our understanding of the

phase retrieval problem in the high-dimensional asymptotic regime (1.7) for semi-random sensing

matrices such as the CDP ensemble (1.4) and sub-sampled Fourier ensemble (1.5).

Towards this goal, we focus on understanding the performance of the spectral estimator for
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phase retrieval. The spectral estimator is given by the largest eigenvector of a matrix M con-

structed using the measurements y and the sensing matrixA as follows:

x̂
def
= arg max

‖u‖=1
uHMu, (1.10a)

M
def
= AHTA, (1.10b)

T
def
= Diag(T (y1), T (y2), . . . , T (ym)). (1.10c)

In the above equation the function T : [0,∞)→ R is a suitable trimming function. This is a tuning

parameter that can be chosen to optimize the performance of the spectral estimator. The spectral

estimator is a widely used pilot estimator for phase retrieval. It is often used to initialize iterative

algorithms which seek to solve the phase retrieval problem by optimizing a non-convex loss [13,

5, 31].

We study the performance of the spectral estimator under the sub-sampled Haar ansatz for the

sensing matrix (1.8). Our choice of this ansatz is inspired by the empirical evidence for univer-

sality provided by previously mentioned prior works [26, 27, 28, 29, 30] which suggest that the

sub-sampled Haar ansatz accurately describes the empirical performance of various estimators on

practical sensing ensembles likeACDP,APDFT. The main results obtained are summarized below:

1. In Chapter 3, we provide an expression for the limiting value of squared cosine similarity

between the spectral estimator and the true signal for a broad class of trimming functions.

Our analysis builds on the techniques introduced by Lu and Li [19] who analyzed the perfor-

mance of the spectral estimator for the i.i.d. Gaussian ansatz. The precise expression for the

limiting value had been previously conjectured by Ma, Dudeja, Xu, Maleki, and Wang [30],

and the results of this chapter provide a proof for this conjecture. Figure 1.3 compares the

theoretical performance curves for the sub-sampled Haar ansatz (obtained in Chapter 3) and

the i.i.d. Gaussian ansatz (obtained by Lu and Li) with the empirical performance curves

for the CDP ensemble. The figure suggests that the sub-sampled Haar ansatz accurately de-

scribes the empirical performance of spectral estimators on practical sensing ensembles like
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the CDP ensemble, whereas the i.i.d. Gaussian ansatz does not.

Figure 1.3: Comparison of the theoretical performance curves for the sub-sampled Haar ansatz
(obtained in Chapter 3) and the i.i.d. Gaussian ansatz (obtained by Lu and Li) with the empirical
performance curves for the CDP ensemble for three different trimming functions. T? is the optimal
trimming function for the Gaussian [21] and the sub-sampled Haar sensing models [30]

2. Based on the conjectured formula for the limiting value of squared cosine similarity, Ma,

Dudeja, Xu, Maleki, and Wang [30] derived the optimal choice of the trimming function T .

When δ > 2, the optimal trimming functions achieves a non-trivial (or weak) recovery, that

is,

lim
m,n→∞
m=δn

E
[
cos2(∠(x?, x̂))

]
> 0.

In Chapter 4, we show that the threshold δ = 2 is information-theoretically optimal: When

δ < 2, no estimator can achieve non-trivial (or weak) recovery. Our analysis in this chapter

builds on the techniques used by Mondelli and Montanari [20], who proved the analogous

result for the i.i.d. Gaussian ansatz.

3. In Chapter 5, we present some partial progress towards a mathematical understanding of the

empirically observed universality. For the real-valued version of the phase retrieval problem,

we show that the dynamics of a class of iterative algorithms that can match the performance

11



of any spectral estimator are asymptotically identical in the sub-sampled Haar ansatz (1.8)

and a real-valued analog of the sub-sampled Fourier ensemble (1.5).

1.4 Notations

Notations for common sets

We use N,N0,R,C to denote the sets of natural numbers, non-negative integers, real numbers,

and complex numbers, respectively.

Rn and Cn denote the n dimensional real and complex vector spaces respectively. Sn−1 ⊂ Cn

is the set of complex n-dimensional vectors with unit norm.

The set of m × n real matrices is denoted by Rm×n and the set of m × n complex matrices is

denoted by Cm×n. O(m) refers to the set of all m×m orthogonal matrices and U(m) refers to the

set of all m×m unitary matrices.

[k] denotes the set {1, 2, · · · , k} and [i : j] denotes the set {i, i+ 1, i+ 2 · · · , j − 1, j}.

For Linear Algebraic Aspects

For a matrix A, AH refers to the conjugate transpose of A and Tr(·) denotes the trace of a

square matrix.

For a matrixA ∈ Cn×n, with real eigenvalues, we use λ1(A) ≥ λ2(A) · · · ≥ λn(A) to denote

the eigenvalues arranged in descending order. We use σ(A) to refer to the spectrum of A which

is simply the set of eigenvalues {λ1(A), λ2(A) . . . λn(A)}. We denote the largest and smallest

eigenvalue of A by λmax(A) and λmin(A). Finally we define the spectral measure of A, denoted

by µA as,

µA
def
=

1

n

n∑
i=1

δλi(A).

For m,n ∈ N, we denote the m × m identity matrix by Im and a m × n matrix of all zero
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entries by 0m,n. For m ≥ n, We also define the special matrix Sm,n as:

Sm,n
def
=

 In

0m−n,n

 . (1.11)

We use e1, e2 . . . , en to denote the standard basis vectors in Rn.

For vectors and matrices ‖ · ‖ denotes the `2 and the Frobenius norm respectively. For complex

matrices ‖ · ‖op denotes the operator norm. For vectors a, b ∈ Cn, the inner product 〈a, b〉 is

defined as aHb. For matricesA,B ∈ Cm×n the inner product 〈A,B〉 is defined as Tr(AHB).

For Complex Analytic Aspects

For a complex number z ∈ C, Re(z), Im(z),Arg(z), |z|, z refer to the real part, imaginary part,

argument, modulus and conjugate of z. We denote the complex upper half plane and lower half

planes by

C+ def
= {z ∈ C : Im(z) > 0} and C− def

= {z ∈ C : Im(z) < 0}.

Notation for Asymptotic Analysis

We say a sequence f(n) is o(n) if f(n)/n → 0 as n → ∞. We use the generic constant

C to refer to a positive finite constant that does not depend on m,n. This constant may change

from line to line and may depend on the noise level σ (introduced in Chapter 4) and the sampling

ratio δ unless stated otherwise. If this constant depends on any other parameters we will make

this dependence explicit: For example, C(ε) denotes a positive, finite constant depending on some

parameter ε, the noise level σ and possibly the sampling ratio δ but independent of m,n.

For Probabilistic Aspects

We denote almost sure convergence, convergence in probability and convergence in distribution

by a.s.→, P→ and d→ respectively. If for a sequence of random variables we have Xn
P→ c for a

deterministic c, we say p-limXn = c. Two random variables X, Y are equal in distribution,
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denoted by X d
= Y if they have the same distribution. For an event E , 1E denotes the indicator

function of E . For a probability measure µ, we use Supp(µ) to denote the support of µ.

Some Special Distributions

The (real) multivariate Gaussian distribution with meanµ and variance Σ is denoted byN (µ,Σ).

We say a complex random variable Z is standard complex Gaussian distributed, denoted by Z ∼

CN (0, 1) if Re(Z) and Im(Z) are i.i.d. N
(
0, 1

2

)
. We say a complex n-dimensional random vector

Z ∼ CN (0, In) if each entry Zi
i.i.d.∼ CN (0, 1). Unif(Um) denotes the Haar measure on the unitary

group.
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Chapter 2: Related Work

There are a large number of results on the phase retrieval problem with varying assumptions on

the sensing matrix, studying different classes of estimators under different analysis frameworks. In

this chapter, we summarize a few important and representative results. We organize our discussion

as follows:

1. In Section 2.1, we summarize results that study the order-of-magnitude of measurements

required to solve the phase retrieval problem.

2. In Section 2.2 we summarize results about the phase retrieval problem in the high-dimensional

asymptotic regime (1.7).

3. In Section 2.3, we discuss empirical and theoretical studies of universality phenomena rele-

vant to our work.

2.1 Order-of-Magnitude Analyses

A large number of estimators are known to solve the phase retrieval problem with the rate-

optimal number of measurements m = O(n) or the nearly optimal order-of-magnitude of mea-

surements m = O(n · poly(log(n))). The earliest such estimator is PhaseLift SDP relaxation

proposed by Candès, Strohmer, and Voroninski [9]. A linear programming based relaxation called

PhaseMax has also been proposed and analyzed by Goldstein and Studer [12] and Bahmani and

Romberg [11]. More recently, approaches based on non-convex optimization have been analyzed.

This includes an alternating minimization approach due to Netrapalli, Jain, and Sanghavi [13] and

a gradient descent-based algorithm due to Candès, Li, and Soltanolkotabi [5]. Though a number

of these works study a physical unrealizable and stylized model of the sensing matrix, order-of-

magnitude analyses are flexible enough to extend to CDP sensing matrices. We refer the reader to
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[18] for the analysis of PhaseLift for CDP matrices and to Candès, Li, and Soltanolkotabi [5] and

Qu, Zhang, Eldar, and Wright [32] for the analysis of non-convex optimization approach for CDP

matrices and random circulant sensing matrices respectively.

2.2 High-dimensional Asymptotic Analyses

Results for Gaussian Sensing Matrices: Order-of-magnitude analyses, though flexible, lack

the resolution to compare the performance of various estimators which achieve the optimal sample

complexity of O(n) measurements. Consequently, recent years have seen a number of works

that provide an analysis in the high dimensional asymptotic framework where m,n → ∞ and

m/n = δ. Lu and Li [19] analyzed a class of spectral estimators in this asymptotic framework

for Gaussian sensing matrices. Their analyses was leveraged by Mondelli and Montanari [20]

and Luo, Alghamdi, and Lu [21] to design spectral estimators with optimal performance. Convex

relaxation-based approaches, such as PhaseLift and PhaseMax have also been analyzed in this

framework for Gaussian sensing matrices [23, 22]. Bayati and Montanari [24] have analyzed the

dynamics of a broad class of iterative algorithms called Approximate Message Passing schemes,

which seem to be capable of computing many estimators for a broad range of inference problems,

including phase retrieval.

Information Theoretic Lower Bounds for Gaussian Sensing Matrices Mondelli and Monta-

nari [20] showed that the weak recovery threshold for Gaussian sensing matrices was δweak = 1.

Barbier, Krzakala, Macris, Miolane, and Zdeborová [25] have used interpolation methods to obtain

expressions for the asymptotic Bayes risk for estimating generalized linear models. This includes

real-valued phase retrieval with Gaussian sensing matrices as a special case. In particular, their

results recover the results of Mondelli and Montanari [20] as a special case and also shed light on

the minimum mean square error achievable above the weak recovery threshold. This work also

shows that the expression of the Bayes risk for any sensing matrix with i.i.d. entries with some

mild moment assumptions is the same as the Bayes risk for Gaussian sensing matrices.
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Sharp Asymptotic Analyses for Non-i.i.d. Sensing Matrices Rigorous results for non-i.i.d.

sensing matrices in the high dimensional asymptotic framework are limited. Thrampoulidis and

Hassibi [33] provide an analysis of the generalized Lasso estimator for compressed sensing using

uniformly random row orthogonal matrices using the Convex Gaussian Minmax Theorem (CGMT)

framework. The analysis of Approximate Message Passing algorithms has been extended to the

rotationally invariant ansatz (1.9) by Schniter, Rangan, and Fletcher [34], Rangan, Schniter, and

Fletcher [35], and Takeuchi [36]. We note that the non-rigorous replica method can be used to

derive conjectures for the asymptotic Bayes risk for the large class of rotationally invariant sensing

ansatz (1.9) which includes sub-sampled Haar sensing ansatz (1.8) as a special case. The ap-

plication of the replica method to rotationally invariant ensembles was pioneered in a sequence of

papers by Takeda, Uda, and Kabashima [37], Takeda, Hatabu, and Kabashima [38] and Kabashima

[39]. We refer the reader to Reeves [40] for a recent derivation of these conjectures. To the best of

our knowledge, these conjectures have not been rigorously proved except in a few special cases,

none of which cover the sub-sampled Haar sensing matrix. The only rigorous result about sharp

information-theoretic lower bounds for non-i.i.d. sensing matrices is due to Barbier, Macris, Mail-

lard, and Krzakala [41] who provide the expression for the limiting Bayes risk for a certain class of

sensing matrices. The class of sensing matrices they consider are formed by a product of indepen-

dent matrices each consisting of i.i.d. entries. This is significantly different from the sub-sampled

Haar sensing model which we consider here. Moreover, the sensing problem they study is the real

linear sensing problem and not the phase retrieval problem that we study here. Lastly, we note

that the non-rigorous replica method has also been used to analyze convex relaxation methods like

LASSO [42, 43] for rotationally invariant sensing matrices.

2.3 Universality Results

Empirical Results: It has been observed that the performance curves derived theoretically for

sub-sampled Haar sensing provide a nearly perfect fit to the empirical performance of estimators

on practical sensing ensembles like ACDP,ADFT. This has been observed by a number of authors
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in the context of various signal processing problems. It was first pointed out by Donoho and Tanner

[26] in the context of `1 norm minimization for noiseless compressed sensing and then again by

Monajemi, Jafarpour, Gavish, and Donoho [27] for the same setup but for many more structured

sensing ensembles. For noiseless compressed sensing both the Gaussian ensemble and the sub-

sampled Haar ensemble lead to identical predictions (and hence the simulations with structured

sensing matrices match both of them). However, in noisy compressed sensing, the predictions

from the sub-sampled Haar model and the Gaussian model are different. Oymak and Hassibi

[29] pointed out that structured ensembles generated by sub-sampling deterministic orthogonal

matrices empirically behave like Sub-sampled Haar sensing matrices. More recently, Abbara,

Baker, Krzakala, and Zdeborová [28] have observed this universality phenomenon in the context

of approximate message passing algorithms for noiseless compressed sensing. In the context of

phase retrieval, this phenomenon was reported by Ma, Dudeja, Xu, Maleki, and Wang [30] for the

performance of the spectral method.

Gaussian Universality: A number of papers have tried to explain the observations of Donoho

and Tanner [26] regarding the universality in performance of `1 minimization for noiseless linear

sensing. For noiseless linear sensing, the Gaussian sensing ensemble, sub-sampled Haar sensing

ensemble, and structured sensing ensembles like sub-sampled Fourier sensing ensemble behave

identically. Consequently, a number of papers have tried to identify the class of sensing matrices

which behave like Gaussian sensing matrices. It has been shown that sensing matrices with i.i.d.

entries under mild moment assumptions behave like Gaussian sensing matrices in the context of the

performance of general (non-linear) Approximate Message Passing schemes [24, 44], the limiting

Bayes risk [41], and the performance of estimators based on convex optimization [45, 46]. The

assumption that the sensing matrix has i.i.d. entries has been relaxed to the assumption that it

has i.i.d. rows (with possible dependence within a row) [22]. Finally, we emphasize that in the

presence of noise or when the measurements are non-linear, the structured ensembles that we

consider here, obtained by sub-sampling a deterministic orthogonal matrix like the DFT matrix or
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the Hadamard-Walsh matrix, no longer behave like Gaussian matrices, but rather like sub-sampled

Haar matrices.

A result for highly structured ensembles: While the results mentioned above move beyond

i.i.d. Gaussian sensing, the sensing matrices they consider are still largely unstructured and highly

random. In particular, they do not apply to the sub-sampled Fourier or CDP ensembles. A notable

exception is the work of Donoho and Tanner [47] which considers a random undetermined system

of linear equations (in x) of the form Ax = Ax0 for a random matrix A ∈ Rm×n and a k-

sparse non-negative vector x0 ∈ Rn
≥0. Donoho and Tanner show that as m,n, k → ∞ such

that n/m → κ1, k/m → κ2, the probability that x0 is the unique non-negative solution to the

system sharply transitions from 0 to 1 depending on the values κ1, κ2. Moreover, this transition is

universal across a wide range of random A, including Gaussian ensembles, random matrices with

i.i.d. entries sampled from a symmetric distribution, and highly structured ensembles whose null

space is given by a random matrix B ∈ Rn−m×n generated by multiplying the columns of a fixed

matrix B0 whose columns are in general position by i.i.d. random signs. The proof technique of

Donoho and Tanner uses results from the theory of random polytopes and it is not obvious how to

extend their techniques beyond the case of solving underdetermined linear equations.

Universality Results in Random Matrix Theory: The phenomena that structured orthogonal

matrices, such as Hadamard and Fourier matrices, behave like random Haar matrices in some as-

pects has been studied in the context of random matrix theory [48] and in particular free probability

[49]. A well known result in free probability (see the book of Mingo and Speicher [49] for a text-

book treatment) is that ifU ∼ Unif
(
U(m)

)
andD1,D2 are deterministicm×m diagonal matrices

then UD1U
H and D2 are asymptotically free and consequently the limiting spectral distribution

of matrix polynomials in D2 and UD1U
H can be described in terms of the limiting spectral dis-

tribution of D1 and D2. Tulino, Caire, Shamai, and Verdu [50] and Farrell [51] have obtained an

extension of this result where a Haar unitary matrix is replaced by m ×m Fourier matrix Fm: If

D1,D2 are independent diagonal matrices then FmD1F
H
m is asymptotically free from D2. The
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result of these authors has been extended to other deterministic orthogonal/unitary matrices (such

as the Hadamard-Walsh matrix) conjugated by random signed permutation matrices by Anderson

and Farrell [52].

Non-rigorous Results from Statistical Physics: In the statistical physics literature Cakmak,

Opper, Winther, and Fleury [53, 54, 55, 56, 57] have developed an analysis of message passing

algorithms for rotationally invariant ensembles via a non-rigorous technique called the dynamical

functional theory. These works are interesting because they do not heavily rely on rotational invari-

ance, but instead rely on results from Free probability. Since some of the free probability results

have been extended to Fourier and Hadamard matrices [50, 51, 52], there is hope to generalize

their analysis beyond rotationally invariant ensembles. However, currently, their results are non-

rigorous due to two reasons: 1) due to the use of dynamical field theory, and 2) their application

of Free probability results neglects dependence between matrices. In our work in Chapter 5, we

avoid the use of dynamical functional theory since we analyze linearized AMP algorithms, and

furthermore, we properly account for dependence that is heuristically neglected in their work.

The Hidden Manifold Model: Lastly, we discuss the recent works of Goldt, Mézard, Krzakala,

and Zdeborová [58], Gerace, Loureiro, Krzakala, Mézard, and Zdeborová [59], and Goldt, Reeves,

Mézard, Krzakala, and Zdeborová [60], where they study statistical learning problems where the

feature matrix A ∈ Rm×n (the analogue of the sensing matrix in statistical learning) is generated

as:

A = σ(ZF ),

where F ∈ Rd×n is a generic (possibly structured) deterministic weight matrix and Z ∈ Rm×d is

an i.i.d. Gaussian matrix. The function σ : R → R acts entry-wise on the matrix ZF . For this

model, the authors have analyzed the dynamics of online (one-pass) stochastic gradient descent

(first non-rigorously [58] and then rigorously [60]) and the performance of regularized empirical
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risk minimization with convex losses (non-rigorously) via the replica method [59] in the high

dimensional asymptotic m,n, d → ∞, n/m → κ1, d/m → κ2. Their results show that in this

case the feature matrix behaves like a certain correlated Gaussian feature matrix. We note that

the feature matrix A here is quite different from the sub-sampled Fourier ensemble (1.5) or the

CDP ensemble (1.4) since it uses O(m2) i.i.d. random variables (Z) where as the sub-sampled

Fourier ensemble only uses m random variables (to specify the permutation matrix P ). However,

a technical result proved by the authors (Lemma A.2 of [58]) appears to be a special case of a

classical result of Mehler [61] and Slepian [62] which we find useful in our analysis in Chapter 5.
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Chapter 3: Analysis of Spectral Estimators

In this chapter1, we provide an analysis of the performance of spectral estimators for the sub-

sampled Haar sensing ansatz.

3.1 Problem Formulation

3.1.1 Measurement Model and Spectral Estimator

In the phase retrieval problem we are given m observations y ∈ Rm generated as:

y = |Ax?|2

where x? ∈ Cn is the unknown signal vector and A ∈ Cm×n is the sensing matrix. We assume

that ‖x?‖ =
√
m and that the matrix A is generated according to the following process: Sample

Hm ∈ U(m) from the Haar measure on the unitary group U(m) and setA to be the matrix formed

by picking the first n columns ofHm. More formally,

A = HSm,n, H ∼ Unif(U(m)),

and S is defined in (1.11). An important parameter for our analysis will be the sampling ratio,

denoted by δ def
= m/n. Let T : R≥0 → R be a trimming function. We study spectral estimators x̂

constructed as the leading eigenvector of the matrixM , defined below:

x̂ = arg max
‖u‖=1

uHMu,

1The results obtained in this chapter have been published in the paper R. Dudeja, M. Bakhshizadeh, J.
Ma, and A. Maleki, “Analysis of spectral methods for phase retrieval with random orthogonal matrices,”
IEEE Transactions on Information Theory, 2020
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whereM = AHTA and T = Diag(T (y1), T (y2) . . . T (ym)).

3.1.2 Assumptions & Asymptotic Framework

We analyze the performance of the spectral estimator in an asymptotic setup where n,m →

∞,m/n = δ > 1. In particular, we consider a sequence of independent phase retrieval prob-

lems realized on the same probability space with increasing n,m. We assume some regularity

assumptions on the trimming function T which are stated below.

Assumption 1. The trimming function T satisfies the following conditions:

1. T is Lipschitz continuous.

2. supy≥0 T (y) = 1, infy≥0 T (y) = 0.

3. The random variable T , defined by Z ∼ CN (0, 1) and T = T (|Z|2) has a density with

respect to the Lebesgue measure on R.

In the following remarks, we discuss why each of these assumptions are required and whether

they can be relaxed.

Remark 1. We need the trimming function T to be Lipschitz continuous so that the trimmed mea-

surements T (yi) can be approximated in distribution by T (|Z|2), Z ∼ CN (0, 1). We expect this

approximation to hold under weaker smoothness hypothesis on T than Lipschitz continuity.

Remark 2. The assumptions:

sup
y≥0
T (y) = 1, inf

y≥0
T (y) = 0

are no stronger than the assumption that T is a bounded trimming function. In fact, given any

arbitary bounded trimming function with infy≥0 T (y) = a and supy≥0 T (y) = b, the spectral

estimator constructed using T has the same performance as the spectral measure constructed
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using

T̃ (y)
def
= (T (y)− a)/(b− a).

This is because,

M̃
def
= AHT̃A =

1

b− aA
HTA− a

b− aIn

=
1

b− aM − a

b− aIn.

In particular M and M̃ have the same leading eigenvector. We require the assumption that the

trimming function is bounded since a number of results in free probability theory that we rely on

assume this.

Remark 3. We need (3) in Assumption 1 to ensure that the limiting spectral measure of the matrix

M has no discrete component. We expect that this assumption can be completely removed by a

careful analysis since the location of point masses in the limiting spectral measure of M is well

understood.

3.2 Main Result

In order to state our main result about the performance of the spectral estimator, we need to

introduce the following four functions:

Λ(τ) , τ − (1− 1/δ)

E
[

1
τ−T

] , ψ1(τ) ,
E
[
|Z|2
τ−T

]
E
[

1
τ−T

] ,
ψ2(τ) ,

E
[

1
(τ−T )2

]
(
E
[

1
τ−T

])2 , ψ
2
3(τ)

def
=

E
[
|Z|2

(τ−T )2

]
(
E
[

1
τ−T

])2 . (3.1)

In the above display, the random variables Z, T have the joint distribution given by Z ∼ CN (0, 1),

T = T (|Z|2). The functions Λ, ψ1 are defined on [1,∞) and the functions ψ2, ψ3 are defined on

(1,∞).
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Remark 4. Under Assumption 1, the support of the random variable T is the interval [0, 1]. Hence

the definition of these functions at τ = 1 needs some clarification. First, note that the random

variable (1 − T )−1 ≥ 0. Hence, the E[(1 − T )−1] is well-defined, but maybe ∞. If it is finite,

each of the above functions are well-defined at τ = 1. If E[(1 − T )−1] = ∞, we define, Λ(1) =

1, ψ1(1) = 1. This corresponds to interpreting 1/∞ = 0 and∞/∞ = 1 in the definition of these

functions.

Theorem 1. Define τr , arg minτ∈[1,∞) Λ(τ). Also, let θ? denote the unique value of θ > τr that

satisfies ψ1(θ) = δ
δ−1

. Then, under Assumption 1, we have

λ1(M )
a.s.→


Λ(τr), ψ1(τr) ≤ δ

δ−1
,

Λ(θ?), ψ1(τr) >
δ
δ−1

.

Furthermore,

|xH
? x̂|2
‖x?‖2

a.s.→


0, ψ1(τr) <

δ
δ−1

,

( δ
δ−1)

2
− δ
δ−1
·ψ2(θ?)

ψ3(θ?)2− δ
δ−1
·ψ2(θ?)

, ψ1(τr) >
δ
δ−1

.

Remark 5. The proof of Theorem 1 shows that if ψ1(τr) > δ/(δ − 1), there exists exactly one

solution to the equation ψ1(θ) = δ/(δ − 1), θ ∈ (τr,∞). Hence, θ? is well-defined.

The proof of this result is postponed until Section 3.5. Before we proceed to the proof of

this theorem, let us clarify some of its interesting features. First, note that similar to the Gaussian

sensing matrices, even in the case of partial orthogonal matrices, the maximum eigenvector exhibits

a phase transition behavior. For certain values of δ > 1, the inequality ψ1(τr) <
δ
δ−1

holds, and

hence the maximum eigenvector does not carry information about x∗. For other values of δ, the

inequality ψ1(τr) >
δ
δ−1

holds and hence, the direction of the maximum eigenvector starts to offer

information about the direction of x∗. For typical choices of the trimming function T , there exists
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Figure 3.1: Plot of the asymptotic cosine similarity between x̂ and x? for three different choices
of the trimming function.

a critical value of δ, denoted by δT such that, when δ < δT , the spectral estimator is asymptotically

orthogonal to the signal vector. When δ > δT , the spectral estimator makes a non-trivial angle

with the signal vector. This phase transition phenomena is illustrated in Figure 3.1 for 3 different

choices of T .

Remark 6 (Choice of Trimming function). In Figure 3.1, we plot the asymptotic cosine similarity

given by Theorem 1 for various values of the sampling ratio δ and 3 different trimming functions.

The trimming function T?(y) = y/(y + 0.1) is a regularized version of the optimal trimming

function for the i.i.d. Gaussian sensing model computed by Luo, Alghamdi, and Lu [21].

Remark 7 (Extensions to generalized linear measurements). While we focus on the phase retrieval

problem in this dissertation, our results extend straightforwardly to the generalized linear estima-

tion, where the measurements yi are generated as follows:

yi ∼ f(·|(Ax?)i),

26



where f(·|·) denotes a conditional distribution modelling a possibly randomized output channel.

Under suitable regularity assumptions on f , Theorem 1 holds with the change that the joint distri-

bution of the random variables T, Z is now given by:

Z ∼ CN (0, 1) , Y ∼ f(·|Z), T = T (Y ).

3.3 Optimal Trimming Functions

Theorem 1 can used to design the trimming function T optimally in order to obtain the best

possible value of |xH
? x̂|2. Most of the work towards this goal was already done in [30] where

the result in Theorem 1 was stated as a conjecture and was used to design the optimal trimming

function. In particular, [30] showed the following impossibility result.

Proposition 1 ([30]). Let T be any trimming function for which Theorem 1 holds. Then,

lim sup
m,n→∞
m=nδ

|xH
? x̂|2
‖x?‖2

a.s.

≤ ρ2
opt(δ),

where,

ρ2
opt(δ)

def
=


0, δ ≤ 2

θopt? −1

θopt? − 1
δ

, δ > 2

,

where θopt? is the solution to the equation (in τ ):

ψopt
1 (τ) =

δ

δ − 1
, ψopt

1 (τ)
def
=

E
[
|Z|2
τ−Topt

]
E
[

1
τ−Topt

] , τ ∈ (1,∞),

which exists uniquely when δ > 2 and, the random variable Topt is distributed as:

Z ∼ CN (0, 1) , Topt = 1− 1

|Z|2 .
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The work [30] also provided a candidate for the optimal trimming function:

Topt(y) = 1− 1

y
.

They showed that if the characterization given in Theorem 1 holds for Topt, then it achieves the

asymptotic squared correlation ρ2
opt(δ). Unfortunately, since Topt is unbounded, Theorem 1 does

not apply to it. Extending Theorem 1 to unbounded trimming functions would likely require ex-

tending previously known results in free probability to unbounded measures, and we don’t pursue

this approach in our work. Instead, we suitably modify the arguments of [30] to show that the

family of bounded trimming functions:

Topt,ε(y) = 1− 1

y + ε
, ε > 0,

attains an asymptotic squared correlation that can be made arbitrarily close to ρ2(δ) as ε ↓ 0.

Proposition 2. Let x̂ε denote the spectral estimator for x? obtained by using Topt,ε as the trimming

function. We have, almost surely,

lim
ε↓0

lim
m,n→∞
m=nδ

|xH
? x̂ε|2
‖x?‖2

= ρ2
opt(δ).

We provide a proof of this result in Appendix A.2.

The regularized trimming functions Topt,ε are not only useful from a theoretical point of view

to prove an achievability result, but also from a computational stand point: In simulations we have

observed that the power iterations are slow to converge when Topt is used as the trimming function

due to presence of large negative eigenvalues and this problem is mitigated by using Topt,ε with a

small value of ε (such as 0.1 or 0.01) with a negligible degradation in performance.

3.4 Some Additional Notation

In this section, we introduce some additional notation we will find useful in this chapter.
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The random variables Z, T : Throughout this chapter, the random variables Z, T refer to the

pair of random variables with the joint distribution given by Z ∼ CN (0, 1) , T = T (|Z|2).

Notation for topological aspects: Let A be a subset of R or C. A denotes the closure of A.

The distance from a point x ∈ R to A is defined by dist(x,A) = infy∈A |x − y|. We define the ε

neighborhood of A, denoted by Aε as

Aε
def
= {x : dist(x,A) < ε}.

The symbol ∅ is used to denote the empty set.

3.5 Proof of Theorem 1

3.5.1 Roadmap

Our proof follows the general strategy taken by Lu and Li [19]. In this subsection, we state

several key lemmas and show how they fit together in the proof of Theorem 5. First we note that

without loss of generality, for the purpose of analysis of the spectral estimator, we can assume

x? =
√
me1. The following lemma supports this claim.

Lemma 1. The distribution of the cosine similarity, ρ2 = |xH
? x̂|2/‖x?‖2 is independent of x?.

Proof. Let x? be an arbitrary signal vector with ‖x?‖ =
√
m. Let y,T , x̂ denote the measure-

ments, trimmed measurements and spectral estimate generated when the sensing matrix wasA and

the signal vector was x?. Note that the cosine similarity ρ2 is a (deterministic) function of A,x?

and hence we use the notation ρ2(A,x?) to denote the cosine similarity when the sensing matrix

isA and the signal vector is x?.

Let Γ ∈ U(n) be such that
√
mΓe1 = x?. We have xH

? x̂ =
√
meH1 ΓHx̂. Next we note that

x̂′
def
= ΓHx̂ is the leading eigenvector of the matrix M ′ def

= ΓHMΓ = (AΓ)HTAΓ = A′HTA′,

where we defined A′ def
= AΓ. Noting that T is a diagonal matrix consisting of the trimmed obser-

vations y = |Ax?|2 =
√
m|A′e1|, we conclude that x̂′ is the spectral estimate generated when the
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sensing matrix wasA′ and the signal vector was
√
me1. Hence, we have concluded that

ρ2(A,x?) = ρ2(A′,
√
me1).

Next we note thatAwas generated from the sub-sampled Haar model, that isA = HmSm,n where

Hm ∼ Unif(U(m)). Since the Haar measure on U(n) is invariant to right multiplication by unitary

matrices, we have

Hm
d
= Hm ·

Γ 0

0 Im−n

 ,
where the notation d

= means that two random vectors have the same distributions. Consequently

A = HmSm,n
d
= AΓ = A′. Therefore, ρ2(A,x?) = ρ2(A′,

√
me1)

d
= ρ2(A,

√
me1), and the

distribution of ρ2 is independent of x?.

In the light of the above lemma, in the rest of the chapter, we will assume x? =
√
me1. Next,

we partitionA by separating the first column

A = [A1,A−1],

where A−1 denotes all the remaining columns of A (except A1). Hence we can partition AHTA

in the following way:

AHTA =

AH
1TA1 AH

1TA−1

AH
−1TA1 AH

−1TA−1

 . (3.2)

Our strategy will be to reduce questions about the spectrum of the matrixM to questions about the

spectrum of a matrix of the formX = EUFUH, where U is a uniformly random unitary matrix,

E is a random matrix independent of U and F is deterministic. This matrix model has been well

studied in Free Probability [64]. The starting point of our reduction is Proposition 2 from Lu and
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Li [19], stated below.

Proposition 3 (Lu and Li [19]). LetD be an arbitrary deterministic symmetric matrix partitioned

as:

D =

a qH

q P

 .
Then, we have

λ1(D) = L(ϑ?),

where L(ϑ) = λ1(P + ϑqqH), and ϑ? > 0 is the unique solution to the fixed point equation

L(ϑ) = 1
ϑ

+ a. Furthermore, let v1 be the eigenvector corresponding to the largest eigenvalue of

D. Then,

|eH1 v1|2 ∈
[

∂−L(ϑ?)

∂−L(ϑ?) + (1/ϑ?)2
,

∂+L(ϑ?)

∂+L(ϑ?) + (1/ϑ?)2

]
,

where ∂− and ∂+ denote the left and right derivatives respectively. In particular, if L(ϑ) is differ-

entiable at ϑ?, then

|eH1 v1|2 =
L′(ϑ?)

L′(ϑ?) + (1/ϑ?)2
.

A straightforward corollary of the above proposition to our problem is given below. Define the

function

Lm(ϑ)
def
= λ1

(
AH
−1(T + ϑTA1(TA1)H)A−1

)
.

Corollary 1. Let ϑm > 0 be the unique solution of Lm(ϑ) = 1/ϑ+AH
1TA1. Then, λ1(AHTA) =
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Lm(ϑm) and

|eH1 x̂|2 ∈
[

∂−Lm(ϑm)

∂−Lm(ϑm) + (1/ϑm)2
,

∂+Lm(ϑm)

∂+L(ϑm) + (1/ϑm)2

]
.

In particular, if Lm(ϑ) is differentiable at ϑm, then

|eH1 x̂|2 =
L′m(ϑm)

L′m(ϑm) + (1/ϑm)2
.

Hence, we shift our focus to characterizing the functionLm(ϑ). Recall the decomposition of the

matrix M given in (3.2). Recall that since x? =
√
me1, the diagonal matrix T is a deterministic

function of A1. If the sensing matrix A consisted of independent Gaussian entries, then T ,A1

would have been independent of A−1. This is no longer true when A is a partial unitary matrix.

In order to take care of this, the following lemma leverages a conditioning trick to get rid of the

dependence. The following lemma also establishes the link between the function Lm(ϑ) and the

study of the spectrum of a matrix of the form X = EUFUH, where U is a uniformly random

unitary matrix, E is a random matrix independent of U and F is deterministic.

Lemma 2. We have

Lm(ϑ) = λ1

(
BH(T + ϑTA1(TA1)H)BHm−1RH

H
m−1

)
, (3.3)

where

R =

 In−1 0n−1,m−n

0m−n,n−1 0m−n,m−n

 ,
B ∈ Cm×m−1 is an arbitrary basis matrix for A⊥1 , which denotes the subspace orthogonal to A1,

andHm−1 ∼ Unif(U(m− 1)) is independent ofA1.
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Proof. We condition onA1. Conditioned onA1, we can realizeA−1 as:

A−1 = BHm−1Sm−1,n−1.

In the above equation, B ∈ Cm×m−1 is matrix whose columns form an orthonormal basis of the

orthogonal complement of A1 and Hm−1 is a Haar Unitary of size m − 1 independent of A1.

Hence, we obtain

Lm(ϑ) = λ1

(
AH
−1(T + ϑTA1(TA1)H)A−1

)
a
= λ1

(
BH(T + ϑTA1(TA1)H)B ·Hm−1RH

H
m−1

)
.

In the step marked (a), We used the fact that for any two matrices Λ,Γ (of appropriate dimensions),

ΛΓ and ΓΛ have the same non-zero eigenvalues. In particular, we used this fact with:

Λ = SH
m−1,n−1H

H
m−1

Γ = BH(T + ϑTA1(TA1)H)BHm−1Sm−1,n−1.

Define the matrix,

E(ϑ)
def
= BH(T + ϑTA1(TA1)H)B. (3.4)

The following lemma characterizes the asymptotic limit of the function Lm(ϑ). Define Λ+(τ) as

Λ+(τ) =


τ − (1−1/δ)

E[ 1
τ−T ]

if τ > τr,

minτ≥1

(
τ − (1−1/δ)

E[ 1
τ−T ]

)
if τ ≤ τr,
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where T = T (|Z|2) and Z ∼ CN (0, 1), and

τr , arg min
τ≥1

τ − (1− 1/δ)

E
[

1
τ−T

]
 .

Lemma 3. Let ϑc
def
=

(
1−

(
E
[
|Z|2
1−T

])−1

− E[|Z|2T ]

)−1

. Define the function θ(ϑ) as:

• When ϑ > ϑc: Let θ(ϑ) be the unique value of λ that satisfies the equation:

λ− E[|Z|2T ]− 1/ϑ =

E

[
|Z|2
λ− T

]−1

,

in the interval:

λ ∈
(
max(1,E[|Z|2T ] + 1/ϑ),∞

)
.

• When ϑ ≤ ϑc: θ(ϑ)
def
= 1.

Then, we have Lm(ϑ)
a.s.→ Λ+(θ(ϑ)), where Lm(ϑ) is defined in (3.3).

The proof of Lemma 3 can be found in Section 3.5.5.

From Corollary 1, we know that λ1(M) solves the fixed point equation (in ϑ): Lm(ϑ) = 1/ϑ+

AH
1TA1. Simple concentration arguments (see Lemma 7, Section 3.5.3) show that asymptotically:

AH
1TA1 ≈ E|Z|2T.

Combining this with Lemma 3 suggests that asymptotically λ1(M ) behaves like the solution to

the following fixed point equation (in ϑ):

Λ+(θ(ϑ)) = 1/ϑ+ E|Z|2T.
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The following lemma analyzes the behavior of this asymptotic fixed point equation. The proof of

this lemma can be found in Section 3.5.5.

Lemma 4. The following hold for the equation:

Λ+(θ(ϑ)) = 1/ϑ+ E[|Z|2T ], ϑ > 0.

1. This equation has a unique solution.

2. Let ϑ? denote the solution of the above equation. Then:

Case 1 If ψ1(τr) ≤ δ
δ−1

, we have

Λ+(θ(ϑ?)) = Λ(τr).

Furthermore,if the inequality is strict that is, ψ1(τr) < δ/(δ − 1) then,

dΛ+(θ(ϑ))

dϑ

∣∣∣∣
ϑ=ϑ?

= 0,

Case 2 If ψ1(τr) >
δ
δ−1

, we have

Λ+(θ(ϑ?)) = Λ(θ?),

and,

dΛ+(θ(ϑ))

dϑ

∣∣∣∣
ϑ=ϑ?

=
1

ϑ2
?

δ

δ − 1
·

(
δ

δ − 1
− ψ2(θ?)

)
· 1

ψ2
3(θ?)− δ2

(δ−1)2

.

where θ? > 1 is the unique θ ≥ τr that satisfies ψ1(θ) = δ
δ−1

.

We are now in the position to prove our main result (restated below for convenience). Recall

the definitions of the functions Λ(τ), ψ1(τ), ψ2(τ), ψ3(τ) from (3.1).
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Theorem 1 Define τr , arg minτ∈[1,∞) Λ(τ). Also, let θ? denote the unique value of θ > τr that

satisfies ψ1(θ) = δ
δ−1

. Then, we have

λ1(M )
a.s.→


Λ(τr), if ψ1(τr) ≤ δ

δ−1
,

Λ(θ?), if ψ1(τr) >
δ
δ−1

.

Furthermore,

|eH1 x̂|2
a.s.→


0, if ψ1(τr) <

δ
δ−1

,

( δ
δ−1)

2
− δ
δ−1
·ψ2(θ?)

ψ3(θ?)2− δ
δ−1
·ψ2(θ?)

, if ψ1(τr) >
δ
δ−1

.

Proof. We start with the analysis of the largest eigenvalue. We recall the claim of Corollary 1,

which tells us that λ1(M ) is given byLm(ϑm) where ϑm denotes the solution ofLm(ϑ) = 1/ϑ+am

and am = AH
1TA1.

We also know that there exists a probability 1 event E , on which, Lm(ϑ)
a.s.→ Λ+(θ(ϑ)) (Lemma

3) and am
a.s.→ E[|Z|2T ] (see Lemma 7 in Section 3.5.3).

We claim that on E , ϑm → ϑ?, where ϑ? is the solution of the limiting fixed point equation

Λ+(θ(ϑ)) = 1/ϑ + E[|Z|2T ] (which was analyzed in Lemma 4). To see this let ϑ = lim supϑm.

Consider a subsequence ϑmk → ϑ. Then applying Lemma 3 (in Appendix E) of Lu and Li [19],

we obtain,

0 = lim
k→∞

(
Lmk(ϑmk)−

1

ϑmk
− amk

)

= Λ+(θ(ϑ))− 1

ϑ
− E|Z|2T.

That is, ϑ is also a solution to the limiting fixed point equation Λ+(θ(ϑ)) = 1/ϑ + E[|Z|2T ]. But

since this equation has a unique solution (Lemma 4), we have lim supϑm = ϑ = ϑ?. Likewise, an
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analogous argument shows lim inf ϑm = ϑ?.

Now for any realization in the event E , we have,

λ1(M) = Lm(ϑm)
(a)→ Λ+(θ(ϑ?)).

In the above display, in the step marked (a), we again appealed to Lemma 3 (Appendix E) of Lu

and Li [19] and the fact that ϑm → ϑ?. Finally, appealing to the alternative characterization of

Λ+(θ(ϑ?)) given in Lemma 4 gives us the claim of the theorem.

We now discuss our result about the cosine similarity. We recall that from Corollary 1, we have

|eH1 x̂|2 ∈
[

∂−Lm(ϑm)

∂−Lm(ϑm) + (1/ϑm)2
,

∂+Lm(ϑn)

∂+L(ϑm) + (1/ϑm)2

]
.

Appealing to Lemma 4 in Appendix E of Lu and Li [19], we have,

∂−Lm(ϑm)→ ∂−Λ+(θ(ϑ?)), ∂+Lm(ϑm)→ ∂+Λ+(θ(ϑ?)).

The derivative of Λ+(θ(ϑ)) at ϑ = ϑ? was calculated in Lemma 4. Plugging this in the above

expression gives the statement of the theorem.

The remainder of this section is dedicated to the proof of Lemmas 3 and 4, and is organized as

follows:

• Recall that (cf. 3.3)

Lm(ϑ) = λ1

(
E(ϑ)Hm−1RH

H
m−1

)
,

where

E(ϑ)
def
= BH(T + ϑTA1(TA1)H)B.

Note that E(ϑ) is independent of Hm−1. The spectrum of such a matrix product has been

studied in free probability theory, and we collect some results regarding this in Section 3.5.2.
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• In order to apply the free probability results, we need to understand the spectrum of E(ϑ).

This is done in Section 3.5.3.

• It turns out that the limiting spectrum measure of E(ϑ)Hm−1RH
H
m−1 is given by the free

convolution (defined in Section 3.5.2) of the measures γ and LT , where γ def
= 1

δ
δ1+

(
1− 1

δ

)
δ0

and LT is the law of the random variable T = T (|Z|/
√
δ). Section 3.5.4 is devoted to

understanding the support of the free convolution.

• Finally, Section 3.5.5 proves lemmas 3 and 4.

3.5.2 Free Probability Background

Our analysis of the spectral estimators relies on a well-studied model in the theory of free

probability; We will reduce the problem to the problem of understanding the spectrum of matrices

of the formX = EUFUH, whereE andF are deterministic matrices andU is a Haar-distributed

unitary matrix. Then, the limiting spectral distribution of X is the free multiplicative convolution

of the limiting spectral distributions of E and F . This section is a collection of the results and

definitions regarding these aspects. Here is the organization of this section. Section 3.5.2 collects

various facts from free harmonic analysis. Section 3.5.2 describes the two fundamental results

about the model X = EUFUH that will be useful for our analysis. Section 3.5.2 reviews some

results about the support of singular part of the free convolution of two measures. Throughout this

section, we assume that γ and ν are two arbitrary compactly supported probability measures on

[0,∞) and that neither of the two measures is completely concentrated at a single point.

Facts from Free Harmonic Analysis

In this section, we collect some facts from the field of free harmonic analysis. All these results

can be found in Chapter 3 of Mingo and Speicher [49] or the papers by Belinschi, Bercovici,

Capitaine, and Fevrier [64] and Belinschi [65].
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Definition 1. The Cauchy transform Gγ of γ at z is defined as follows:

Gγ(z) =

∫
γ(dt)

z − t , z ∈ C\[0,∞).

Definition 2. The moment generating function of γ, ψγ at z is defined as follows:

ψγ(z) =

∫
zt

1− ztγ(dt), z ∈ C\[0,∞).

The Cauchy transform and the moment generating function are related via the relation

Gγ(z) =
1

z
·
(
ψγ

(
1

z

)
+ 1

)
.

Definition 3. The η-transform of a measure is defined as,

ηγ(z) =
ψγ(z)

1 + ψγ(z)
.

The Cauchy transform (and hence the Moment Generating function) uniquely characterizes a

measure. The measure can be obtained by the following inversion formula. The particular version

we state is taken from Section 3.1 of Belinschi, Bercovici, Capitaine, and Fevrier [64].

Theorem 2. For a < b ∈ [0,∞), we have

γ((a, b)) +
1

2
γ({a, b}) =

1

π
lim
ε→0+

∫ b

a

Im(Gγ(x− iε)) dx.

Furthermore, if γ satisfies γ = γac + γs, where γac and γs denote the absolutely continuous and

the singular part of the measure with respect to the Lebesgue measure, then the density of the
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absolutely continuous part is given by

dγac
dx

(x) = lim
ε→0+

1

π
Im(Gγ(x− iε)).

Next we recall the definition of the free convolution based on the subordination functions from

Belinschi and Bercovici [66]. The statement we provide below appears in a more general form as

Proposition 2.6 in Belinschi, Speicher, Treilhard, and Vargas [67].

Definition 4. Let (γ, ν) be a pair of probability measures. There exist analytic functions wγ, wν

defined on C\[0,∞) such that, for all z ∈ C+ we have

1. wγ(z), wν(z) ∈ C+; wγ(z) = wγ(z), wν(z) = wν(z) and Arg(wγ(z)) ≥ Arg(z),Arg(wν(z)) ≥

Arg(z).

2. For any z ∈ C+, wν(z) is the unique solution in C+ of the fixed point equation Qz(w) = w,

where Qz is given by

Qz(w) =
w

ην(w)
ηγ

(
zην(w)

w

)
.

An analogous characterization holds for wγ with the role of γ and ν changed.

The free convolution of the measures γ and ν denoted by γ � ν is the measure whose moment

generating function satisfies

ψγ�ν(z) = ψγ(wγ(z)) = ψν(wν(z)) =
wγ(z)wν(z)

z − wγ(z)wν(z)
.

Remark 8. We emphasize that each of the subordination functions wγ, wν depend on both the

measures γ, ν. This is clear since the function Qz(w) defining wν depends on both ν, γ.
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Note that the above definition defines wν and wγ on C\[0,∞). However these functions can be

continously extended to C+ ∪ {∞} (Lemma 3.2 in [64]). These extensions to the real line will be

important for Theorem 3.5.2.

Lemma 5. The restrictions of subordination functions wγ, wν on C+ have extensions to C+∪{∞}

with the following properties:

1. wγ, wν : C+ ∪ {∞} → C+ ∪ {∞} are continuous.

2. If 1/x ∈ [0,∞)\Supp(γ� ν), then the functions wγ, wν continue analytically to a neighbor-

hood of x and

1

wγ(x)
=
wν(x)

x
· 1 + ψν(wν(x))

ψν(wν(x))
∈ R\Supp(γ),

1

wν(x)
=
wγ(x)

x
· 1 + ψγ(wγ(x))

ψγ(wγ(x))
∈ R\Supp(ν).

Spectrum of X = EUFUH

As we discussed before, we will convert the problem of analyzing the spectrum ofM to prob-

lems involving the spectrum of matrices of the form XN = ENUNFNUH
N , whereUN is a sequence

of Haar distributed N ×N random matrices, and EN and FN are sequences of deterministic pos-

itive semidefinite matrices. In this section, we review two important results from the field of free

probability regarding such matrices.

Suppose that EN and FN satisfy the following hypotheses:

(i) µEN
d→ µe and µFN

d→ µf , where µe, µf are compactly supported measures on [0,∞).

(ii) EN has a single outlying eigenvalue θ not contained in Supp(µe). FN has no eigenvalues

outside Supp(µf ).
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(iii) The set of eigenvalues of EN not equal to θ converge uniformly to Supp(µe) in the sense,

lim
N→∞

max
i:λi(EN )6=θ

dist(λi(EN),Supp(µe)) = 0.

Our next theorem characterizes the bulk distribution of XN . The first part of this theorem is

due to Voiculescu [68] and the second and third parts are due to Belinschi, Bercovici, Capitaine,

and Fevrier [64] (Theorem 2.3).

Theorem 3. Let we and wf denote the subordination functions for the free multiplicative convolu-

tion of µe and µf . Define

τe(1/z) =
1

we(1/z)
, K = Supp(µe � νf ) ∪ τ−1

e (θ).

Then we have, almost surely for large enough N ,

1. µXN

d→ µe � µf .

2. Given ε > 0, we have σ(XN) ⊂ Kε, where Kε is the ε-neighborhood of K and σ(XN)

denotes the set of eigenvalues ofXN .

3. For any ρ ∈ τ−1
e (θ) such that ∃ε > 0 with (ρ − 2ε, ρ + 2ε) ∩K = {ρ}, we have |σ(XN) ∩

(ρ− ε, ρ+ ε)| = 1.

Remark 9. The hypothesis in the above theorem can be relaxed (as mentioned in Remark 5.11 of

[64]) in the following two ways: 1) EN is random, independent of UN and FN is deterministic,

provided µEN
d→ µe occurs almost surely, 2) The spike locations depend on N , θN provided

θN → θ almost surely.

Remark 10. The above theorem is a simplified version of Theorem 2.3 in [64] which allows for

multiple spikes in both EN and FN .
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Remark 11. The function τ might not be invertible. In such cases, τ−1(θ) can be a non-singleton

set, and hence a single spike in EN can create multiple spikes in XN . But we will see that this

doesn’t happen in our problem.

Singular Part of Free Convolution

In the last section we discussed the bulk distribution of XN = ENUNFNUN . The main

objective of this section is to mention a result regarding the largest eigenvalue of XN . We state

regularity results for the singular part of γ � ν from Belinschi [69] (Corollary 3.4) and Belinschi

[65] (Theorem 4.1).

Theorem 4 (Singular Part of γ�ν). Decompose the singular part of γ�ν as (γ�ν)s = (γ�ν)d+

(γ � ν)sc where (γ � ν)d denotes the discrete part and (γ � ν)sc denotes the singular continous

part. Then we have,

1. There can be at most two atoms. The possible locations of the atoms are:

(a) 0, with γ � ν({0}) = max(γ({0}), ν({0})).

(b) Any a ∈ (0,∞) such that there exist u, v ∈ (0,∞) with uv = a and γ({u})+ν({v}) >

1 and we have, γ � ν({a}) = γ({u}) + ν({v})− 1. Note that there can be atmost one

such a.

2. Suppose neither of γ, ν is completely concentrated at a single point. We have, Supp((γ �

ν)sc) ⊂ Supp((γ � ν)ac). Hence,

Supp(γ � ν) = Supp((γ � ν)ac) ∪ Supp((γ � ν)d).

3.5.3 Analysis of the Spectrum of E(ϑ)

In order to apply Theorem 3, we need to understand the spectrum ofBH(T+ϑTA1(TA1)H)B.

This is done in the following lemma.
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Lemma 6. Let

T(1) ≥ T(2) · · · ≥ T(m)

denote the sorted trimmed measurements. Let E(ϑ)
def
= BH(T + ϑTA1(TA1)H)B. Then,

1. The eigenvalues of E(ϑ) interlace with T(1), T(2) . . . T(m) in the sense,

λi(E(ϑ)) ≤ T(i−1) ∀ i = 2, 3, . . .m, &

λi(E(ϑ)) ≥ T(i+1) ∀ i = 1, 3, . . .m− 1.

2. E(ϑ) can have at most one eigenvalue bigger than T(1), which (if it exists) is given by the

root of the following equation:

Qm(λ) =
1

λ− am − 1/ϑ
, λ > max(am + 1/ϑ, T(1)),

where Qm(λ) is defined as

Qm(λ)
def
=

m∑
i=1

|A1i|2
λ− Ti

.

3. Furthermore, λ1(E(ϑ)) ≤ 1 + ϑ and λm−1(E(ϑ)) ≥ 0.

Proof. Define the matrix E(ϑ) = BH(T + ϑTA1(TA1)H)B. The main trick will be to choose

the orthonormal basis matrixB conveniently, which will make our calculations easier. Recall that

the columns of matrix B, i.e. B1,B2 . . .Bm−1, span the subspace A⊥1 . Any basis for subspace

A⊥1 can serve as matrixB. Hence, we chose the following specific construction ofB:

B1 =
TA1 − amA1√

bm − a2
m

,
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where am = AH
1TA1 and bm = AH

1T
2A1. With this choice, we note that

BHTA1 = [BH
1 TA1,B

H
2 TA1 . . .B

H
m−1TA1]H

=
√
bm − a2

me1.

Hence E(ϑ) = BHTB + ϑ(bm − a2
m)e1e

H
1 . To obtain the eigenvalues of E(ϑ) we use its char-

acteristic polynomial. To evaluate the characteristic polynomial of E(ϑ), we connect it to the

characteristic polynomial of OHTO, where O = [A1,B]. Note that O is a unitary matrix. First,

we have

OHTO =

AH
1TA1 AH

1TB

BHTA1 BHTB


=

 am
√
bm − a2

me
H
1√

bm − a2
me1 BHTB

 .
Consider the following matrix equation:

am + 1
ϑ

0H

0 E(ϑ)

 =

am + 1
ϑ

0H

0 BHTB

+ ϑ(bm − a2
m)e2e

H
2

=

 am
√
bm − a2

me
H
1√

bm − a2
me1 BHTB

+


1/ϑ −

√
bm − a2

m 0H
m−2,1

−
√
bm − a2

m ϑ(bm − a2
m) 0H

m−2,1

0m−2,1 0m−2,1 0m−2,m−2



= OHTO +


1/
√
ϑ

−
√
ϑ(bm − a2

m)

0m−2,1




1/
√
ϑ

−
√
ϑ(bm − a2

m)

0m−2,1


H

= OH(T + uuH)O, (3.5)
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where

u = O ·


1/
√
ϑ

−
√
ϑ(bm − a2

m)

0m−2,1

 =
1√
ϑ
A1 −

√
ϑ(bm − a2

m)B1

=

(
1√
ϑ

+ am
√
ϑ

)
A1 −

√
ϑTA1

Therefore,

|ui|2 =
(1 + amϑ− ϑTi)2|A1i|2

ϑ
.

Now, we can compute the characteristic polynomial of E(ϑ). We have

det(λI −E(ϑ))

=
1

λ− am − 1
ϑ

det

λI −
am + 1

ϑ
0H

0 E(ϑ)




=
1

λ− am − 1/ϑ
· det(λI − T − uuH)

=
det(λI − T )

λ− am − 1/ϑ
· (1− uH(λI − T )−1u).

Note that

1− uH(λI − T )−1u = 1−
m∑
i=1

|ui|2
λ− Ti

= 1− 1

ϑ

m∑
i=1

(1 + amϑ− λϑ+ (λ− Ti)ϑ)2|A1i|2
λ− Ti

= 1− (1 + amϑ− λϑ)2

ϑ
·

 m∑
i=1

|A1i|2
λ− Ti

− ϑ ·
 m∑

i=1

(λ− Ti) · |A1i|2
− 2(1 + amϑ− λϑ).
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Defining Qm(λ) in the following way:

Qm(λ)
def
=

m∑
i=1

|A1i|2
λ− Ti

,

we obtain,

det(λI −E(ϑ)) = det(λI − T )(ϑ+ (1− λϑ+ amϑ)Qm(λ)). (3.6)

We emphasize that the above equation does not imply that T1, T2, . . . , Tm are the eigenvalues of

E(ϑ). This is because while det(λI−T ) has zeros at Ti, the function Qm(λ) has poles at Ti. This

prevents us from concluding that det(λI −E(ϑ)) = 0 when λ = Ti. However, we can make the

following observations:

1. By Cauchy’s interlacing theorem, we have

λ1(T + ϑ(TA1)(TA1)H) ≥ T(1)

≥ λ2(T + ϑ(TA1)(TA1)H)

≥ T(2). (3.7)

The above is also true for the eigenvalues of:

OH(T + ϑ(TA1)(TA1)H)O,

sinceO is a unitary matrix.

2. (3.5) shows that E(ϑ) is a principal submatrix of

OH(T + ϑ(TA1)(TA1)H)O.
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Hence, the eigenvalues ofE(ϑ) will interlace the eigenvalues ofOH(T+ϑ(TA1)(TA1)H)O:

λ1(T + ϑ(TA1)(TA1)H ≥ λ1(E(ϑ))

≥ λ2(T + ϑ(TA1)(TA1)H

≥ λ2(E(ϑ)). (3.8)

Combining (3.7) and (3.8), one obtains

λ2(E(ϑ)) ≤ T(1), λ1(E(ϑ)) ≥ T(2).

This proves statement (1) in the lemma. This means that E(ϑ) has atmost one eigenvalue

bigger than T(1). If λ1(E(ϑ)) ≤ T(1), then it has no outlying eigenvalue, if λ1(E(ϑ)) > T(1),

it has exactly one. We call this eigenvalue an outlying eigenvalue for reasons that will be

clear later.

3. The outlying eigenvalue of E(ϑ) (if it exists) is a root of the characteristic polynomial:

det(λI −E(ϑ)) =

det(λI − T ) · (ϑ+ (1− λϑ+ amϑ)Qm(λ)).

Since this root lies in (T(1),∞), it must be a root of:

Qm(λ) =
1

λ− am − 1/ϑ
, λ > T(1). (3.9)

Observing that:

λ > T(1) =⇒ Qm(λ) > 0,

λ > am + 1/ϑ =⇒ (λ− am − 1/ϑ)−1 > 0,
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we conclude the outlying eigenvalue is the unique solution (if it exists) to:

Qm(λ) =
1

λ− am − 1/ϑ
, λ > max(am + 1/ϑ, T(1)).

This proves statement (2).

4. Finally, we observe that E(ϑ) is a positive semidefinite matrix for all ϑ ≥ 0, which shows

λm−1(E(ϑ)) ≥ 0. Also, we have λ1(E(ϑ)) ≤ ‖E(ϑ)‖ ≤ ‖B‖2‖T +ϑTA1(TA1)H‖. Note

that ‖B‖ ≤ 1 and ‖T ‖ ≤ 1 and ‖TA1(TA1)H‖ = AH
1T

2A1 ≤ T 2
(1) ≤ 1. Hence, by the

triangle inequality we have λ1(E(ϑ)) ≤ 1 + ϑ. This proves statement (3) of the lemma.

The following lemma analyzes the concentration of the function Qm(λ) to the deterministic

function Q(λ).

Lemma 7. Suppose m
n

= δ. For a Lipschitz function T whose range is in [0, 1], there exists an

event of probability 1, on which the following three statements hold:

1. 1
m

∑m
i=1 δTi

d→ LT ,

2. Qm(λ)→ Q(λ) ∀ λ ∈ (1,∞),

3. am → E|Z|2T .

In the above equations, Z ∼ CN (0, 1), and T = T (|Z|2). Furthermore, LT denotes the law of

the random variable T , and

Q(λ) = E

[
|Z|2
λ− T

]
.

The proof of the above result is provided in Appendix A.1
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The next lemma analyzes the properties of the limiting fixed point equation Q(λ) = (λ −

E|Z|2T − 1/ϑ)−1. Define the critical value ϑc as:

ϑc
def
=

1−

E

[
|Z|2

1− T

]−1

− E[|Z|2T ]


−1

≥ 0.

Lemma 8. Consider the fixed point equation (in λ)

λ− E[|Z|2T ]− 1/ϑ =
1

E
[
|Z|2
λ−T

] , (3.10)

on the domain:

λ > max(1,E[|Z|2T ] + 1/ϑ).

We have

1. If ϑ > ϑc, then the above equation has exactly 1 solution, denoted by λ = θ(ϑ). Further-

more,

λ− E[|Z|2T ]− 1/ϑ >
1

E
[
|Z|2
λ−T

]
∀ λ ∈

(
max(1,E[|Z|2T ] + 1/ϑ), θ(ϑ)

)
,

λ− E[|Z|2T ]− 1/ϑ <
1

E
[
|Z|2
λ−T

] ∀ λ ∈ (θ(ϑ),∞
)
.

Furthermore, we have θ(ϑ) is an increasing function of ϑ and limϑ→∞ θ(ϑ) =∞.

2. If ϑ ≤ ϑc, then the equation has no solutions. For any ϑ ≤ ϑc, we define θ(ϑ) = 1.
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Proof. The following change of measure simplifies some of the proofs:

p(z)
def
=
|z|2
π

exp(−|z|2),

Ẽ[f(Z)]
def
=

∫
f(z)p(z) dz.

Note that p(z) is a proper probability density function since
∫
p(z) dz = E[|Z|2] = 1. With this

notation, (3.10) can be written as

λ− Ẽ[T ]− 1/ϑ =
1

Ẽ
[

1
λ−T

] , λ > max(1, Ẽ[T ] + 1/ϑ).

Define the random variable G(λ) = (λ− T )−1. Note that G′(λ) = −G2(λ). Further, define

f(λ)
def
=

1

Ẽ
[
G(λ)

] ; λ ∈ [1,∞).

The first two derivatives of f(λ) are

f ′(λ) =
Ẽ[G2]

Ẽ[G]2
,

f ′′(λ) = −2 · Ẽ[G3]Ẽ[G]− Ẽ[G2]2

Ẽ[G]3
.

First, since f ′(λ) ≥ 0, the function f(λ) is increasing. By Jensen’s Inequality f ′(λ) ≥ 1. Since the

equality holds if and only if G is deterministic, and we have assumed that the support of T is [0, 1],

we conclude that f(λ) > 1. Noting that G ≥ 0 and applying Chebychev’s association inequality

(See Fact 1, Appendix A.3) with B = A = G and f(a) = g(a) = a gives f ′′(λ) ≤ 0. Hence f(λ)

is an increasing, concave function and f ′(λ) > 1.

Next, we claim that f(λ) = λ − Ẽ[T ] − 1/ϑ can have atmost one solution in (1,∞). To see

this, let λ1 be the first point at which the two curves intersect. Hence f(λ1) = λ1 − Ẽ[T ] − 1/ϑ.
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Furthermore

f ′(λ) > 1 =
d(λ− Ẽ[T ]− 1/ϑ)

dλ
.

Hence there can be no other intersection point of the two curves after λ1.

Now consider the following two cases:

Case 1: ϑ > ϑc. First note that since (1− x)−1 is a convex function on (−∞, 1], according to

Jensen’s Inequality

Ẽ
[

1

1− T

]
≥ 1

1− Ẽ[T ]
≥ 0.

Hence,

1

ϑc
= 1−

(
Ẽ
[

1

1− T

])−1

− Ẽ[T ] ≥ 0.

This shows that ϑc ≥ 0. Furthermore,

ϑ > ϑc ⇐⇒ (λ− Ẽ[T ]− 1/ϑ)λ=1 > f(1).

On the other hand, we can also compare the limiting behavior of λ − Ẽ[T ] − 1/ϑ and f(λ) as

λ→∞. We have

λ− Ẽ[T ]− 1/ϑ

λ
= 1− Ẽ[T ] + 1/ϑ

λ
,

and

f(λ)

λ
=

1

Ẽ
[

1
1−T/λ

] =

Ẽ

[
∞∑
n=0

(
T

λ

)n]−1

=
(

1 + Ẽ[T ]/λ+ o(1/λ)
)−1

= 1− Ẽ[T ]

λ
+ o(λ−1).
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Hence, f(λ) > λ−Ẽ[T ]−1/ϑ for λ large enough and f(1) < 1−Ẽ[T ]−1/ϑ. Hence the functions

f(λ) and 1− Ẽ[T ]− 1/ϑ intersect once in (1,∞). Finally note that,

1

ϑ
+ Ẽ[T ] <

1

ϑc
+ Ẽ[T ] = 1−

(
Ẽ
[

1

1− T

])−1

≤ 1.

Hence f(λ) = λ − Ẽ[T ] − 1/ϑ has exactly one solution in λ ≥ max(1, Ẽ[T ] + 1/ϑ) as claimed.

By the Implicit Function Theorem, we can compute

θ′(ϑ) =
1/ϑ2

f ′(θ(ϑ))− 1
≥ 0. (3.11)

Hence θ(ϑ) is an increasing function of ϑ. Finally, we verify that limϑ→∞ θ(ϑ) =∞. Suppose that

this is not the case, i.e. θ(ϑ)→ θ∞ <∞ as ϑ→∞. Recalling the fixed point characterization of

θ(ϑ), we obtain that θ∞ satisfies the fixed point equation

θ∞ − Ẽ[T ] =
1

Ẽ
[

1
θ∞−T

] .
This means that Jensen’s Inequality applied to the strictly convex function (θ∞ − t)−1 should be

tight. This means under the tilted measure (Ẽ), T is deterministic. This is not possible since we

have assumed that T is supported on [0, 1].

Case 2: ϑ ≤ ϑc As in Case 1 we argue (this time with the opposite conclusion) that

ϑ ≤ ϑc =⇒ f(1) ≥ (λ− Ẽ[T ]− 1/ϑ)λ=1

Furthermore, since f ′(λ) > d(λ−Ẽ[T ]−1/ϑ)
dλ

= 1, f(λ) = λ− Ẽ[T ]− 1/ϑ has no solution in (1,∞).

Combining the above sequence of lemmas, we obtain the following proposition about the spec-
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trum of the matrix E(ϑ).

Proposition 4. LetE(ϑ) = BH(T +ϑTA1(TA1)H))B. Then, there exists an event of probability

1, on which we have,

1. µE(ϑ)
d→ LT .

2. If ϑ ≤ ϑc, σ(E(ϑ)) ⊂ [0, 1].

3. If ϑ > ϑc, then λi(E(ϑ)) ∈ [0, 1] ∀ i ≥ 2, and,

λ1(E(ϑ))
a.s.→ θ(ϑ),

where θ(ϑ) is the unique solution to the equation (in λ):

λ− E[|Z|2T ]− 1/ϑ =
1

E
[
|Z|2
λ−T

] ,
in the domain:

λ > max(1,E[|Z|2T ] + 1/ϑ).

Proof. We restrict ourselves to the event guaranteed by Lemma 7, on which,

1. am → E|Z|2T

2. 1
m

∑m
i=1 δTi

d→ LT

3. Qm(λ)→ Q(λ) ∀ λ ∈ (1,∞).

Let us denote this event by E . Define the sequence of (random) functions fm(λ) as:

fm(λ) = λ− am − 1/ϑ−

 m∑
i=1

|A1i|2
λ− Ti

−1

,
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with the domain:

λ > max(1, am + 1/ϑ).

Define the (deterministic) function f(λ):

f(λ) = λ− E[|Z|2T ]− 1/ϑ−

E

[
|Z|2
λ− T

]−1

,

with the domain:

λ > max(1,E[|Z|2T ] + 1/ϑ).

Note that on E , we have fm(λ)→ f(λ) ∀ λ > 1.

1. By Lemma 6, we know that the eigenvalues of E(ϑ) interlace with the eigenvalues of the

diagonal matrix T . On the event E , µT → LT . Hence indeed µE(ϑ)
d→ LT . This proves

statement (1) of the proposition.

2. Consider the case ϑ ≤ ϑc. By Lemma 6, we already know that λ2(E(ϑ)) ≤ T(1) ≤ 1 and

λm−1(E(ϑ)) ≥ 0. Hence to prove (2), it is sufficient to show that

λ1
def
= lim sup

m→∞
λ1(E(ϑ)) ≤ 1, on E .

For the sake of contradiction, suppose that there is a realization in E such that λ1 > 1. On this

realization we consider a subsequence such that λ1(E(ϑ))→ λ1. All the analysis henceforth

is along this subsequence. Since for all m large enough λ1(E(ϑ)) > 1, by Lemma 6, we

must have fm(λ1(E(ϑ)) = 0. Applying Lemma 3 from Lu and Li [19] (Appendix E), we
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obtain

0 = fm(λ1(E(ϑ))→ f(λ1).

Since ϑ ≤ ϑc, we know by Lemma 8 that f(λ) = 0 does not have any solution in λ >

max(1,E[|Z|2T ] + 1/ϑ). Hence,

1 < λ1 ≤ E[|Z|2T ] + 1/ϑ.

However,

f(λ1) = λ1 − E[|Z|2T ]− 1/ϑ︸ ︷︷ ︸
≤0

−
(
E

[
|Z|2
λ− T

]
︸ ︷︷ ︸

>0

)−1

< 0.

This contradicts f(λ1) = 0. Hence, lim sup
m→∞

λ1(E(ϑ)) ≤ 1, on E . This concludes the proof

of statement (2).

3. Now consider the case ϑ > ϑc. Again by Lemma 6, we know λi(E(ϑ)) ∈ [0, 1] for all i ≥ 2.

By Lemma 8, we know that f(λ) = 0 has a unique solution in λ > max(1,E|Z|2T + 1/ϑ)

denoted by θ(ϑ). Fix an ε small enough such that [θ(ϑ) − ε, θ(ϑ) + ε] lies in the domain of

f(λ). Note that f(θ(ϑ)) = 0, while f(θ(ϑ)− ε) > 0 and f(θ(ϑ) + ε) < 0 (by Lemma 8).

Since am → E|Z|2T , for all m large enough, [θ(ϑ)− ε, θ(ϑ) + ε] also lies in the domain of

fm(λ). By Lemma 7, we have fm(λ)→ f(λ) for all λ ∈ [θ(ϑ)− ε, θ(ϑ) + ε]. In particular,

we have, for all n large enough fm(θ(ϑ) − ε) > 0 while fm(θ(ϑ) + ε) < 0. Hence, by

Lemma 6, we have λ1(E(ϑ)) ∈ [θ(ϑ) − ε, θ(ϑ) + ε] for all n large enough. Hence indeed,

λ1(E(ϑ))
a.s.→ θ(ϑ). This proves (3).
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3.5.4 Analysis of the Support of γ � LT

We recall that LT is the law of the random variable T = T (|Z|2), and γ = 1
δ
δ1 +

(
1− 1

δ

)
δ0.

To keep the notation clean, we will refer to the analytic transforms corresponding to the measure

LT with the subscript T , for example the Cauchy transform for the measure LT will be referred to

as GT .We begin by computing the Cauchy transform of γ � T .

Lemma 9. Let z ∈ C−. Then, we have,

Gγ�T (z) =
1

z
· 1− 1/δ

1− zwT (1/z)
.

In the above display, the subordination function, wT (1/z), is the unique solution in C+ to the

equation Λ(1/w) = z, where the function Λ is defined as:

Λ(τ)
def
= τ − (1− 1/δ)

E
[

1
τ−T

] .

Proof. First we can compute the moment generating functions:

ψγ(z) =
1

δ
· z

1− z ,

ψT (z) = −1 + E
[

1

1− zT

]
.

The η-transforms of the two measures are given by,

ηγ(z) =
z/δ

z/δ − z + 1
,

ηT (z) =
E
[

zT
1−zT

]
E
[

1
1−zT

] .
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Hence, we can compute the function Qz, given in Definition 4,

Qz(w) =
1/δ

(1/δ − 1)
E[ T

1−wT ]
E[ 1

1−wT ]
+ 1/z

.

HencewT is the unique solution in C+ of the equationQz(w) = w. This equation can be simplified

to

1

z
= Λ(1/w),

where the function Λ is defined as Λ(τ)
def
= τ − (1−1/δ)

E[ 1
τ−T ]

. Hence, we can compute the moment

generating function of γ � T in the following way:

ψγ�T (z) = ψT (wT (z))

= −1 + E
[

1

1− wT (z)T

]
(a)
= −1 +

1− 1/δ

1− wT (z)/z
.

In the above display, in the step marked (a), we used the fact thatwT solves Λ(1/w) = 1/z. Finally,

the Cauchy transform of γ � T is given by

Gγ�T (z) =
1

z

(
ψγ�T

(
1

z

)
+ 1

)

=
1

z
· 1− 1/δ

1− zwT (1/z)
.

Our next goal is to characterize Supp(γ � T ). Theorem 4 gives a complete characterization of

the support of the singular part of γ � T . Hence, we now need to understand the support of the

absolutely continuous part of γ�T . According to the Stieltjes Inversion theorem, (Theorem 2) the
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density of the continuous part is given by

d(γ � T )ac
dx

(x) =
1

π
lim
ε→0+

Im Gγ�T (x− iε)

=
1

πx
Im

(
1− 1

δ

1− x limε→0+ wT (1/(x− iε))

)
.

Since τT (x − iε)
def
= 1/wT (1/(x − iε)) uniquely solves Λ(τ) = x − iε in C−, our interest will

be to study the solutions of this equation for ε ≈ 0. Hence, we begin by studying the solutions

of Λ(τ) = x. Before doing so, we clarify the definition of Λ(τ) at τ = 1 which is a subtle case

because 1 ∈ Supp(T ). We note that the random variable (1− T )−1 is non-negative and hence the

expectation E[(1−T )−1] is well defined but might be∞. If it is finite, then Λ(τ) is well defined at

τ = 1. If the expectation is∞, we define Λ(1) = 1 which is consistent with intepreting 1/∞ = 0.

Λ(τ) is defined at τ = 0 analogously. This definition ensures Λ(τ) is a continuous function on

(−∞, 0] ∪ [1,∞). Next we discuss the solutions of Λ(τ) = x. Figure 3.2 shows a typical plot

Λ(τ). As is clear from this figure we expect the following two quantities to play major roles in

determining the existence of a solution of Λ(τ) = x: Define

λl = max
τ∈(−∞,0]

Λ(τ), τl = arg max
τ∈(−∞,0]

Λ(τ)

λr = min
τ∈[1,∞)

Λ(τ), τr = arg min
τ∈[1,∞)

Λ(τ).

Our next lemma proves the properties of Λ(τ) suggested by Figure 3.2.

Lemma 10. The following statements are true about Λ(τ):

1. Λ(τ) is a convex function on [1,∞) and a concave function on (−∞, 0].

2. limτ→∞ Λ(τ) =∞, limτ→−∞ Λ(τ) = −∞.

3. λr > λl ≥ 0.

4. Consider the 3 mutually exclusive and exhaustive cases:
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Figure 3.2: An Illustrative plot of the function Λ(τ): When λl < x < λr, the equation Λ(τ) = x
has no solutions. When x ≥ λr, the equation Λ(τ) = x,Λ′(τ) > 0 has a unique solution in [1,∞).
When x < λl, then Λ(τ) = x,Λ′(τ) > 0 has a unique solution in (−∞, 0].

Case A: x ≤ λl. There is at least one and at most two solutions to Λ(τ) = x. All solutions

lie in (−∞, 0]. Furthermore, when x < λl, there is exactly one solution for the equation

Λ(τ) = x,Λ′(τ) > 0. This unique solution additionally satisfies τ < τl ≤ 0.

Case B: λl < x < λr. There are no solutions of the equation Λ(τ) = x, τ ∈ (−∞, 0] ∪

[1,∞).

Case C: x ≥ λr. There is at least one and at most two solutions to Λ(τ) = x. All

solutions lie in [1,∞). Furthermore, when, x > λr, there is a unique solution to

Λ(τ) = x,Λ′(τ) > 0. This solution additionally satisfies τ > τr ≥ 1.

Proof. 1. We define the random variable G(τ),

G(τ)
def
=

1

τ − T .

We observe that for any τ ∈ [1,∞), G(τ) ≥ 0 where as for τ ∈ (−∞, 0], G(τ) ≤ 0. It is

straightforward to see that G′(τ) = −G2(τ) ≤ 0. For notational simplicity, we will often
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short hand G(τ) as G. We have

Λ′(τ) = 1−
(

1− 1

δ

)
· EG2

(EG)2
,

Λ′′(τ) = 2

(
1− 1

δ

)
· (EG3) · (EG)− (EG2)2

(EG)3
.

Consider the following two cases,

Case 1: τ ∈ [1,∞). Applying Chebychev’s Association Inequality (Fact 1) withA = B =

G and f(a) = g(a) = a gives us that Λ′′(τ) ≥ 0. In fact, an inspection of the proof of the

Chebychev’s Association Inequality from [70] allows us to rule out the equality case under

the assumptions imposed on T , and we have Λ′′(τ) > 0. Hence, Λ is strictly convex in

(1,∞). Since Λ(τ) is continuous on [1,∞), we have Λ is convex on [1,∞)

Case 2: τ ∈ (−∞, 0]. Again, applying Chebychev’s Association Inequality withA = B =

−G and f(a) = f(b) = a gives us Λ′′(τ) ≤ 0, Hence Λ is concave in this region. As before,

an inspection of the proof of Chebychev’s Association inequality allows us to rule out the

equality case under the assumptions imposed on T , and we have Λ′′(τ) < 0. Hence, Λ is

strictly concave in (−∞, 0). Since Λ(τ) is continuous on (−∞, 0), we have Λ is concave on

(−∞, 0]. This concludes the proof of statement (1) in the lemma.

2. Note that,

lim
τ→∞

τ − (1− 1/δ)

E
[

1
τ−T

] = τ

1− (1− 1/δ)

E
[

τ
τ−T

]
 =∞.

This shows limτ→∞ Λ(τ) = ∞. The claim about the limit as τ → −∞ can be analogously

obtained. This proves item (2) in the statement of the lemma.

3. The infimum in the definition of λr is attained due to item (2) in the statement of the lemma.

61



Analogously, the supremum in the definition of λl is attained. Next consider any τ+ ∈ (1,∞)

and any τ− ∈ (−∞, 0). Since the function f(t) = (τ+ − t)−1 is convex on [0, 1], according

to Jensen’s Inequality, we have

Λ(τ+) ≥ τ+ −
(

1− 1

δ

)
· (τ+ − E[T ])

=
τ+

δ
+

(
1− 1

δ

)
· E[T ].

On the other hand, since the function f(t) = (τ− − t)−1 is concave on [0, 1], we have

Λ(τ−) ≤ τ− −
(

1− 1

δ

)
· (τ− − E[T ])

=
τ−
δ

+

(
1− 1

δ

)
· E[T ].

Hence,

Λ(τ+) ≥ 1

δ
+

(
1− 1

δ

)
· E[T ]

>

(
1− 1

δ

)
· E[T ]

≥ Λ(τ−).

Taking the minimum over τ+ and maximum of τ− gives us λr > λl. Furthermore we note

that Λ(0−) ≥ 0. Hence λl ≥ 0. This concludes the proof of item (3) in the statement of the

lemma.

4. For any x ∈ (λl, λr), Λ(τ) = x doesn’t have a solution in (−∞, 0] ∪ [1,∞) since Λ(τ) ≤

λl ∀ τ ≤ 0 and Λ(τ) ≥ λr ∀ τ ≥ 1. Now consider any x ≥ λr. Since λ(τ) ≤ λl < λr ∀ τ ≤

0, we know that all solutions of Λ(τ) = x lie in [1,∞). Since Λ is strictly convex in (1,∞),

there can be atmost 2 solutions. Now consider any x > λr. Let τr = arg minτ≥1 Λ(τ). Due

to strict convexity of Λ(τ), we have Λ′(τ) > 0 for any τ ∈ (τr,∞). Hence Λ(τ) is strictly
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increasing on [τr,∞). Since λr = Λ(τr) < x < Λ(∞) = ∞, we are guaranteed to have

exactly one solution to Λ(τ) = x on (τr,∞) which indeed satisfies Λ′(τ) > 0. The analysis

for the case when x ≤ λl can be done in a similar way. This concludes the proof of item (4)

in the statement of the lemma.

We are now in the position to characterize the support of γ � T which is the content of the

following proposition.

Proposition 5. The support of γ � T is given by

Supp(γ � T ) = [λl, λr] ∪ Supp((γ � T )d),

where (γ � T )d denotes the discrete part of the measure γ � T . If the random variable T has a

density with respect to the Lebesgue measure, then,

Supp(γ � T ) = [λl, λr].

Proof. We first claim that (λl, λr) ⊂ Supp(γ � T ). Since the support of a measure is closed,

this means that [λl, λr] ⊂ Supp(γ � T ). We prove this claim by contradiction. Suppose that

∃λ ∈ (λl, λr) such that λ 6∈ Supp(γ � T ). To simplify notation, for z ∈ C−, we introduce the

following reciprocal subordination function τT (z)

τT (z)
def
=

1

wT (1/z)
.

According to Lemma 5, we have

τT (λ)
def
= lim

ε→0+
τT (λ− iε) ∈ (−∞, 0) ∪ (1,∞).

By Lemma 9, τT (λ − iε) uniquely solves the equation Λ(τ) = λ − iε in C−. Taking ε → 0, we
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obtain,

λ = lim
ε→0+

Λ(τT (λ− iε))

= lim
ε→0+

τT (λ− iε)− 1− 1/δ

E
[

1
τT (λ−iε)−T

]


(a)
= τT (λ)− 1− 1/δ

E
[

1
τT (λ)−T

] .
In the step marked (a), we used the fact that since limε→0+ τT (λ− iε) 6∈ Supp(T ), we have ∃c > 0,

such that for any ε small enough dist(τT (λ−iε),Supp(T )) ≥ c. This gives us a dominating function

for an application of the dominated convergence theorem. Hence, we have found a solution for the

equation λ = Λ(τ), τ ∈ (−∞, 0) ∪ (1,∞). But this contradicts Lemma 10. Hence, we have,

(λl, λr) ⊂ Supp(γ � T ).

Next, we claim that any x ∈ [0, λl)∪ (λr,∞) is not in the support of the absolutely continuous

part of γ � T . To show this, we first compute a first order asymptotic expansion of τT (x− iε) for

ε ≈ 0. From Lemma 10, we know there exists a unique solution for the equation Λ(τ) = x, τ ∈

(−∞, 0)∪ (1,∞) and Λ′(τ) > 0. We denote this solution by τ?. Since τ? 6∈ Supp(T ), the function

Λ(τ) is analytic in the neighborhood (in C) of τ?. The implicit function theorem guarantees us a

solution τ(ε) = τR(ε) + iτI(ε) of the equation Λ(τ) = x − iε. However, this τ(ε) may not be the

reciprocal subordination function τT (x − iε) since we still need to verify it is in C−. To take care

of this, again by the implicit function theorem we have

Λ′(τ?) ·
dτ

dε
(0) = −i.

This gives us

dτI
dε

(0) = − 1

Λ′(τ?)
< 0,

dτR
dε

(0) = 0.
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Hence, we have

τ(ε) = τ? − i
ε

Λ′(τ?)
+ o(ε).

This verifies that τ(ε) ∈ C− for ε small enough. Finally since τT (x− iε) is the unique solution to

the equation Λ(τ) = x− iε in C−, we have

τT (x− iε) = τ? − i
ε

Λ′(τ?)
+ o(ε).

According to the Stieltjes Inversion Formula, Theorem 2, we obtain

d(γ � T )ac
dx

(x) =
1

πx
· Im

(
1− 1

δ

1− x · limε→0+ wT

(
1

x−iε

))
(b)
=

1

πx
· Im

(
(1− 1/δ) · τ?

τ? − x

)
= 0.

In the step marked (b), we are relying on the assumption that τ? 6= x. To verify this, we recall that

τ? solves, Λ(τ?) = x and τ? 6∈ [0, 1]. This means that

|τ? − x| =
1− 1/δ∣∣∣∣E [ 1

τ?−T

]∣∣∣∣
≥ 1− 1/δ

E
[∣∣∣ 1

τ?−T

∣∣∣]
≥ (1− 1/δ) · dist(τ?, [0, 1]) > 0.

Hence, we have shown

d(γ � T )ac
dx

(x)
a.s.
= 0,∀x ∈ [0, λl) ∪ (λr,∞).
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This implies,

[0, λl) ∪ (λr,∞) ⊂ R\Supp((γ � T )ac).

Taking complements, we have Supp((γ � T )ac) ⊂ [λl, λr]. Hence, we have shown that

[λl, λr] ∪ Supp((γ � T )d) ⊂ Supp(γ � T )

= Supp((γ � T )ac) ∪ Supp((γ � T )d)

⊂ [λl, λr] ∪ Supp((γ � T )d).

Therefore, Supp(γ � T ) = [λl, λr] ∪ Supp((γ � T )d) which proves the claim of the proposition.

Finally, when T has a density with respect to Lebesgue measure, Theorem 4 gives us Supp((γ �

T )d) = ∅ which yields the second claim in the proposition.

Finally we note that in order to apply Theorem 3, it is necessary to understand the set:

τ−1
T ({θ}) ∩ (R\Supp(γ � T )), θ ∈ R

(see Theorem 3 to recall the definition of τT ). This is done in the following lemma.

Lemma 11. Let (wγ, wT ) denote the subordination functions corresponding to the free multiplica-

tive convolution of γ,LT . Define

τT (z) =
1

wT (1/z)
.

Then, we have

τ−1
T ({θ}) ∩ (R\Supp(γ � T )) =


θ ∈ [τl, τr] : ∅

θ 6∈ [τl, τr] : {Λ(θ)}
,

66



where where, τl , arg maxτ≤0 Λ(τ), τr , arg minτ≥1 Λ(τ).

Proof. From Proposition 5, we know that Supp(γ � T ) = [λl, λr], where λl
def
= maxτ≤0 Λ(τ) and

λr
def
= minτ≥1 Λ(τ). Furthermore, we showed that for any x 6∈ [λl, λr], the reciprocal subordination

function τT (x) is the unique solution to the equations: Λ(τ) = x,Λ′(τ) > 0, τ 6∈ [0, 1]. From

Lemma 10, we know that when x > λr, the unique solution to Λ(τ) = x,Λ′(x) > 0 satisfies

τ > τr and when x < λl, the unique solution satisfies τ < τl. These considerations immediately

yield the claim of the lemma.

3.5.5 Proof of Lemmas 3 and 4

Recall we defined Λ+(τ) as

Λ+(τ) =


τ − (1−1/δ)

E[ 1
τ−T ]

if τ > τr,

minτ≥1

(
τ − (1−1/δ)

E[ 1
τ−T ]

)
if τ ≤ τr,

where T = T (|Z|/
√
δ) and Z ∼ CN (0, 1), and

τr , arg min
τ≥1

τ − (1− 1/δ)

E
[

1
τ−T

]
 .

We first prove Lemma 3, which we restated below for convenience.

Lemma 3. Let ϑc
def
=

(
1−

(
E
[
|Z|2
1−T

])−1

− E[|Z|2T ]

)−1

. Define the function θ(ϑ) as:

• When ϑ > ϑc: Let θ(ϑ) be the unique value of λ that satisfies the equation:

λ− E[|Z|2T ]− 1/ϑ =

E

[
|Z|2
λ− T

]−1

,
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in the interval:

λ ∈
(
max(1,E[|Z|2T ] + 1/ϑ),∞

)
.

• When ϑ ≤ ϑc: θ(ϑ)
def
= 1.

Then, we have Lm(ϑ)
a.s.→ Λ+(θ(ϑ)), where Lm(ϑ) is defined in (3.3).

Proof. In Proposition 6, we obtained an asymptotic characterization of the spectrum of E(ϑ).

More specifically, we proved that

µE(ϑ)
d→ LT , λ1(E(ϑ))→ θ(ϑ).

We recall the matrixR was defined as

R =

 In−1 0n−1,m−1

0m−n,n−1 0m−1,m−1

 .
In particular, µR

d→ γ, where the measure γ is given by

γ =
1

δ
δ1 +

(
1− 1

δ

)
δ0.

Applying Theorem 3, we obtain:

1. The spectral measure of E(ϑ)Hm−1RH
H
m−1 converges to:

µE(ϑ)Hm−1RHH
m−1

d→ γ � LT .

2. For any ε > 0, we have, almost surely, for m large enough that, σ(E(ϑ)Hm−1RH
H
m−1) ⊂

Kε, where Kε is the ε-neighborhood of the set K = Supp(γ � LT ) ∪ τ−1
T ({θ(ϑ)}).
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3. For any λ ∈ τ−1
T ({θ(ϑ)})∩(R\Supp(γ�LT )), we have almost surely exactly one eigenvalue

of E(ϑ)Hm−1RH
H
m−1 in a small enough neighborhood of λ for large enough n.

In Proposition 5, we characterized Supp(γ � LT ) as [λl, λr], where λl = maxτ≤0 Λ(τ), λr =

minτ≥1 Λ(τ) and the function Λ(τ) is given by:

Λ(τ) = τ − (1− 1/δ)

E
[

1
τ−T

] .
In Lemma 11, we characterized the set:

τ−1
T ({θ}) ∩ (R\Supp(γ � T )) =


∅ θ ∈ [τl, τr],

{Λ(θ)} θ 6∈ [τl, τr],

where, τl , arg maxτ≤0 Λ(τ), τr , arg minτ≥1 Λ(τ). Putting these together, one obtains the

following two cases:

Case 1: θ(ϑ) ≤ τr. In this case, the set τ−1
T ({θ}) ∩ (R\Supp(γ � T )) = ∅. The matrix

E(ϑ)Hm−1RH
H
m−1 has no eigenvalues outside the support of the bulk distribution, and

Lm(ϑ)
a.s.→ λr = Λ(τr).

Case 2: θ(ϑ) > τr. In this case, the set

τ−1
T ({θ}) ∩ (R\Supp(γ � T )) = {Λ(θ(ϑ))}.

Hence, there is an eigenvalue in the neighborhood of Λ(θ(ϑ))). Since θ(ϑ) > τr, and Λ is

a strictly increasing function on [τr,∞) (Lemma 10), we have Λ(θ(ϑ)) > λr. Hence the

eigenvalue in the neighborhood of Λ(θ(ϑ)) is the largest one, and we have

Lm(ϑ)
a.s.→ Λ(θ(ϑ)).
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It is now straightforward to check that the above two cases can be combined into a concise form

stated in the claim of the lemma.

We end this section by proving Lemma 4, restated below for convenience.

Lemma 4. The following hold for the equation:

Λ+(θ(ϑ)) = 1/ϑ+ E[|Z|2T ], ϑ > 0.

1. This equation has a unique solution.

2. Let ϑ? denote the solution of the above equation. Then:

Case 1 If ψ1(τr) ≤ δ
δ−1

, we have

Λ+(θ(ϑ?)) = Λ(τr).

Furthermore if ψ1(τr) < δ/(δ − 1), then,

dΛ+(θ(ϑ))

dϑ

∣∣∣∣
ϑ=ϑ?

= 0,

Case 2 If ψ1(τr) >
δ
δ−1

, we have

Λ+(θ(ϑ?)) = Λ(θ?),

and,

dΛ+(θ(ϑ))

dϑ

∣∣∣∣
ϑ=ϑ?

=
1

ϑ2
?

· δ

δ − 1
·
(

δ

δ − 1
− ψ2(θ?)

)
· 1

ψ2
3(θ?)− δ2

(δ−1)2

.

where θ? > 1 is the unique θ ≥ τr that satisfies ψ1(θ) = δ
δ−1

.
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Proof. Before we begin the proof of this lemma, it is helpful to list the conclusions of some of the

previous lemmas.

Lemma 8: In this lemma, for ϑ > ϑc we defined the function θ(ϑ) as the unique value of λ >

max(1,E[|Z|2T ] + 1/ϑ) that satisfies

λ− E[|Z|2T ]− 1/ϑ =
1

E
[
|Z|2
λ−T

] .
We also set θ(ϑ) = 1 when ϑ ≤ ϑc. We also showed that θ(ϑ) is strictly increasing on

[ϑc,∞) and θ(∞) =∞. In particular θ(ϑ) has a well defined inverse defined on the domain

[1,∞) given by:

θ−1(λ) =

λ− E[|Z|2T ]− 1

E
[
|Z|2
λ−T

]

−1

. (3.12)

Lemma 10: We defined the function Λ(τ) as

Λ(τ) , τ − (1− 1/δ)

E
[

1
τ−T

] . (3.13)

We showed the that Λ(τ) is strictly convex on [1,∞). We defined (τr, λr) to be the mini-

mizing argument and the minimum value of Λ(τ) in [1,∞). In particular τr ≥ 1. We also

showed that Λ(∞) =∞. We further defined Λ+(τ) in the following way:

Λ+(τ) =


λr, τ ≤ τr.

Λ(τ), τ > τr.

Some simple implications of the above assertions are: First, since θ(ϑ) and Λ+ are both non-

decreasing continuous functions Λ+(θ(ϑ)) is non-decreasing and continuous. Second, since Λ(τ) =

λr for τ ≤ τr, we have, for all ϑ ≤ θ−1(τr), Λ+(θ(ϑ)) = λr. Third since θ(∞) = ∞ and
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Λ(∞) =∞, we have, Λ+(θ(ϑ))→∞ as ϑ→∞. The only possible point of non-differentiability

of Λ+(θ(ϑ)) is at ϑ = θ−1(τr). It is straightforward to compute the derivative of Λ(θ(ϑ)) at all

other points using implicit function theorem and obtain

dΛ+(θ(ϑ))

dϑ
=


0 ϑ < θ−1(τr),

Λ′(θ(ϑ)) · θ′(ϑ) ϑ > θ−1(τr).

(3.14)

The derivatives of Λ, θ can be calculated as,

Λ′(τ) =
δ − 1

δ

(
δ

δ − 1
− ψ2(τ)

)
. (3.15)

θ′(ϑ) =
1

ϑ2


(
E
[
|Z|2

θ(ϑ)−T

])2

E
[

|Z|2
(θ(ϑ)−T )2

]
−
(
E
[
|Z|2

θ(ϑ)−T

])2

 . (3.16)

A representative plot of the function Λ+(θ(ϑ)) is shown in Figure 3.3.
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Figure 3.3: Typical Plots of the functions Λ+(θ(ϑ)) (Blue) and E[|Z|2T ] + 1
ϑ

(Red). Case 1 (Left):
The two functions intersect at the constant part of Λ+(θ(ϑ)), Case 2 (Right): The The two functions
intersect at the increasing part of Λ+(θ(ϑ))

We are now in a position to prove the claims of the lemma.
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1. Since Λ+(θ(ϑ)) is continuous and non-decreasing and 1/ϑ + E[|Z|2T ] is continuous and

strictly decreasing, the fixed point equation can have at most one solution. On the other hand

comparing the values of the two sides of the fixed point equation at ϑ → 0 and ϑ → ∞

shows that there is at least one solution.

2. Let ϑ? be denote the solution of the fixed point equation Λ+(θ(ϑ)) = 1/ϑ + E[|Z|2T ]. A

typical plot of these two functions is shown in Figure 3.3. The figure shows two possible

cases for the intersection of the two curves: Case 1: The curves intersect at a point ϑ? ≤

θ−1(τr) (or on the flat part of Λ+(θ(α)). In this case we have, Λ+(θ(ϑ?)) = λr.

Case 2: The curves intersect at a point ϑ? > θ−1(τr) or the rising part of Λ+(θ(α). We have

Λ+(θ(ϑ?)) > λr. We can distinguish between the two cases by comparing the value of the

function 1/ϑ+ E[|Z|2T ] at ϑ = θ−1(τr) with λr. In particular, we have,

Case 1:

Λ+(θ(ϑ?)) = λr ⇔ 1/θ−1(τr) + E[|Z|2T ] ≤ λr,

Case 2:

Λ+(θ(ϑ?)) > λr ⇔ 1/θ−1(τr) + E[|Z|2T ] > λr.

Substituting the formula for θ−1(τr), mentioned in (3.12), and λr = Λ(τr) and the formula

for Λ from (3.13), the 2 cases can be simplified slightly more.

Case 1: This case occurs when

1

θ−1(τr)
+ E[|Z|2T ] ≤ λr ⇔

E
[
|Z|2
τr−T

]
E
[

1
τr−T

] ≤ δ

δ − 1
.

In this situation, we have, Λ+(θ(ϑ?)) = λr. Furthermore, if we additionally have

E
[
|Z|2
τr−T

]
E
[

1
τr−T

] < δ

δ − 1
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Then Λ+(θ(ϑ)) is differentiable at ϑ? and, from (3.14), we have

dΛ+(θ(ϑ))

dϑ

∣∣∣∣
ϑ=ϑ?

= 0.

Case 2: This case occurs when

1

θ−1(τr)
+ E[|Z|2T ] > λr

⇔
E
[
|Z|2
τr−T

]
E
[

1
τr−T

] > δ

δ − 1
.

In this situation, we have, Λ+(θ(ϑ?)) > λr. It turns out that we can give a simpler expression

for Λ+(θ(ϑ?)). In this case, ϑ? ≥ θ−1(τr) solves,

Λ(θ(ϑ?)) =
1

ϑ?
+ E[|Z|2T ], (3.17)

and θ(ϑ?) ≥ 1 is the solution of the equation

E[|Z|2T ] +
1

ϑ?
= θ(ϑ?)−

1

E
[
|Z|2

θ(ϑ?)−T

] . (3.18)

By definition the function Λ(τ(α)) is

Λ(θ(ϑ?)) = θ(ϑ?)−
(1− 1/δ)

E
[

1
θ(ϑ?)−T

] . (3.19)

We first eliminate ϑ? from Equations (3.17)-(3.19) and conclude that θ?
def
= θ(ϑ?) solves

E
[
|Z|2
θ?−T

]
E
[

1
θ?−T

] =
δ

δ − 1
, θ? ≥ τr, (3.20)
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and ϑ? is given by

ϑ? =

θ? − 1

E
[
|Z|2
θ?−T

] − E[|Z|2T ]


−1

.

Since the solution to Equations (3.17)-(3.19) was guaranteed to be unique, the solution to

(3.20) is guaranteed to be unique. Finally we can compute the derivative of Λ+(θ(ϑ)) at

ϑ = ϑ?. It will be convenient to introduce the random variable G = (θ? − T )−1 to write the

equations in a compact form. From (3.14)-(3.16), we have

dΛ+(θ(ϑ))

dϑ

∣∣∣∣
ϑ=ϑ?

= Λ′(θ?) · θ′(ϑ?)

=
δ − 1

δϑ2
?

(
δ

δ − 1
− ψ2(θ?)

)
E[|Z|2G]2

E[|Z|2G2]− E[|Z|2G]2

(a)
=

δ ·
(

δ
δ−1
− ψ2(θ?)

)
ϑ2
? · (δ − 1) · ψ2

1(θ?)
· E[|Z|2G]2

E[|Z|2G2]− E[|Z|2G]2

=
δ ·
(

δ
δ−1
− ψ2(θ?)

)
ϑ2
? · (δ − 1)

· E[G]2

E[|Z|2G2]− E[|Z|2G]2

=
δ

ϑ2
?(δ − 1)

(
δ

δ − 1
− ψ2(θ?)

)
1

ψ2
3(θ?)− δ2

(δ−1)2

.

In the above display, in the step marked (a) we used the fact that θ? satisfies ψ1(θ?) =

δ/(δ − 1). This concludes the proof of the characterization (2) given in the statement of the

lemma.

3.6 Conclusion

We analyzed the asymptotic performance of a spectral method for phase retrieval under a ran-

dom column orthogonal matrix model. Our results provides a rigorous justification for the conjec-

tures in [30], which were obtained by analyzing an expectation propagation algorithm.
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Chapter 4: Information Theoretic Limits

4.1 Problem Formulation

In this chapter1, we study information theoretic lower bounds for Phase Retrieval problem in

the presence of (arbitrarily small) Gaussian measurement noise:

yi = m|(Ax?)i|2 + σεi, i = 1, 2 . . .m, (4.1a)

εi
i.i.d.∼ N (0, 1) . (4.1b)

We study this problem under the sub-sampled Haar ansatz for the sensing matrix:

A = Hm · Sm,n, (4.2a)

Hm ∼ Unif (Um) , Sm,n =

 In

0(m−n)×n

 . (4.2b)

We assume that the signal vector is a uniformly random unit vector: x? ∼ Unif (Sn−1). This

is intended to model situations where we don’t have apriori knowledge regarding the structure of

the signal (for example it is not known if it is sparse). Moreover, as we will clarify in a moment,

this is the least favorable prior for this problem. The particular choice of scaling in (4.1) has been

made so that the rescaled noiseless measurementm ·(|Ax?|)2
i satisfiesm ·E|Ax?|2i = 1. We adopt

the sharp high-dimensional asymptotic framework for our analysis and study a sequence of phase

retrieval problems with m,n→∞, such that the oversampling ratio δ def
= m/n remains fixed.

1The results obtained in this chapter have been published in the paper R. Dudeja, J. Ma, and
A. Maleki, “Information theoretic limits for phase retrieval with sub-sampled Haar sensing matrices,”
IEEE Transactions on Information Theory, vol. 66, no. 12, pp. 8002–8045, 2020
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4.2 Main Result

Our main result is summarized in the following theorem:

Theorem 5. For any δ < 2 and for any noise level σ > 0, the Bayes risk satisfies:

lim
m,n→∞
m
n

=δ

E
∥∥∥∥x?xH

? − E
[
x?x

H
?

∣∣y,A]∥∥∥∥2

→ 1,

where ‖ · ‖ denotes the Frobenius norm.

We interpret the above result in two ways. First note that according to this theorem, for δ < 2,

the Bayes risk is the same as the risk of the estimator x̂ = 0. Hence it is information theoretically

impossible for any estimator to have a better performance than the trivial estimator x̂ = 0. Second,

we can make the above point more explicit as follows: Let x̂(A,y) be any estimator for x? and let

r ≥ 0 be an arbitrary constant. By the optimality of the Bayes estimator, we have,

min
r≥0

E

∥∥∥∥∥x?xH
? − r

x̂(A,y)x̂(A,y)H

‖x̂(A,y)‖2

∥∥∥∥∥
2

≥ E
∥∥∥∥x?xH

? − E
[
x?x

H
?

∣∣y,A]∥∥∥∥2

.

Taking m,n → ∞ and some simple algebraic manipulations give us the following conclusion.

When δ < 2, then for any estimator x̂(A,y) we have,

lim
m,n→∞
m
n

=δ

E

[
|xH

? x̂(A,y)|2
‖x̂(A,y)‖2

]
= 0.

That is, when δ < 2, Theorem 5 provides an impossibility result: any estimator is asymptotically

orthogonal to the signal vector x?. This result complements our previous results [30, 63] which

showed that the optimally designed spectral estimator is orthogonal to the signal vector in this

regime. Moreover, these papers also provide the achievability result and exhibit estimators which

achieve a strictly positive correlation with the signal vector when δ > 2 and σ = 0. Hence,

the sharp threshold for achieving a non-trivial correlation with the signal vector (called the weak

recovery threshold in the literature) is δweak = 2 for phase retrieval with subsampled Haar sensing
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matrix and vanishing measurement noise. This also shows that the uniform prior on x? as the least

favorable prior in the following sense: The achievability results of these papers actually hold for

an arbitrary signal vector (not necessarily drawn from a prior distribution). Consequently, when

δ > 2, for any prior on the signal vector, the Bayes risk for noiseless phase retrieval is non-trivial

(< 1). Hence the uniform prior maximizes the δ threshold below which the Bayes risk is trivial

and hence is least favorable.

Proof Techniques Our proof of Theorem 5 builds on the techniques of Mondelli and Monta-

nari [20]: namely relating the Bayes risk to the Mutual Information and bounding the Mutual

Information by the χ2 divergence. However, unlike in the case of Gaussian sensing matrices, the

evaluation of χ2 divergence for our model is non trivial due to the dependence in the entries of

the subsampled Haar sensing matrix. In our model, understanding the asymptotics of the χ2 diver-

gence reduces to understanding the asymptotics of a pair of high dimensional integrals defined on

Sm−1 and Sm−1 × Sm−1 (see Lemma 13) which we accomplish using Large Deviation techniques.

These integrals are related to low rank Harish-Chandra-Itsker-Zuber (HCIZ) integrals studied by

Guionnet and Maida [72] and our analysis is inspired by their approach. More specifically, our

analysis of these integrals is based on the classical approach of Chaganty and Sethuraman [73] for

obtaining strong large deviation results (i.e. results characterizing the leading exponential order as

well as the second order polynomial factors in large deviation quantities of interest) using change

of measure and local central limit theorems.

4.3 Some Additional Notation

In this section, we introduce some additional notations which we will find useful in this chapter.
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Notations for special distributions N
(
µ, σ2

)
denotes the (real) Gaussian distribution with

mean µ and variance σ2. ψσ denotes the probability density function of N
(
0, σ2

)
:

ψσ(x) =
1√

2πσ2
e−

x2

2σ2 .

A random matrix W is a GUE(n) random matrix if it is a Hermitian n × n random matrix whose

entries are sampled as follows:

Wii ∼ N (0, 1) ∀ i ∈ [n], Wij ∼ CN (0, 1) ∀ j < i, Wji = W ij ∀ j > i.

Exp (λ) denotes the exponential distribution with parameter λ which has the pdf:

f(x) =


λe−λx : x ≥ 0

0 : x < 0

.

Gamma (α, β) denotes the Gamma distribution with shape parameter α and rate parameter β and

has the pdf:

f(x;α, β) =


βα

Γ(α)
xα−1e−βx : x ≥ 0

0 : x < 0

.

Beta (α, β) denotes the Beta distribution with shape parameters α, β ≥ 0 which has the pdf:

f(x;α, β) =


Γ(α+β)

Γ(α)Γ(β)
· xα−1(1− x)β−1 : x ∈ [0, 1]

0 : x 6∈ [0, 1]

.

Let g1, g2 . . . , gn
i.i.d.∼ CN

(
0, Ip

)
. Then the matrix S =

∑n
i=1 gig

H
i has a complex Wishart distri-

bution with parameters n, p denoted by Wis (n, p). The complex Wishart distribution is supported

79



on positive definite Hermitian matrices and has the pdf:

f(S;n, p) =
det(S)n−p · e−Tr(S)

π
p(p−1)

2 .
∏p

j=1(n− j)!
.

The distribution Unif (Um) denotes the uniform (Haar) probability measure on U(m).

Notation for other probabilistic aspects We will use p(y) to denote the density of the mea-

surements y with respect to the Lebesgue measure. Likewise p(y|A) and p(y|A,x) denote the

conditional density of the measurements y given the measurement matrix A and the conditional

density of the y given the measurement matrixA and the signal vector x respectively.

Notation for Information Theoretic Aspects For random variables A1, A2, . . . Ak, we denote

the entropy of (A1 . . . , Ak) by H (A1, A2 . . . , Ak). If (A1, A2 . . . Ak) have a joint density p(a1, a2 . . . , ak)

with respect to the Lebesgue measure, this is defined as:

H (A1:k) = −
∫
Rk
p(a1:k) ln p(a1:k) da1:k.

Let B1, B2 . . . Bl be another collection of random variables. We denote the conditional entropy

of (A1, . . . Ak) given (B1, . . . , Bl) by H
(
A1, A2 . . . , Ak | B1, B2 . . . , Bl

)
. When the conditional

distribution of (A1, A2 . . . , Ak) given (B1, B2 . . . , Bl) has a density p(a1, a2 . . . , ak|b1, b2 . . . , bl)

(with respect to Lebesgue measure) and (B1, B2 . . . , Bl) has a marginal density p(b1, b2 . . . , bl)

(with respect to Lebesgue measure), then H
(
A1:k | B1:l

)
is given by:

H
(
A1, . . . Ak | B1 . . . , Bl

)
=

∫
Rl
p(b1:l)

∫
Rk
p(a1:k|b1 . . . , bl) ln p(a1, . . . ak|b1, . . . bl) da1:k db1:l.
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The mutual information betweenA1, A2, . . . Ak andB1, B2 . . . Bl is denoted I (A1, . . . Ak;B1, . . . Bl)

and is defined by the following equivalent formulae:

I (A1, . . . Ak;B1, . . . Bl)
def
= H (A1, . . . Ak)−H

(
A1, . . . Ak | B1, . . . Bl

)
= H (B1, . . . Bl)−H

(
B1, . . . Bl | A1, . . . Ak

)
.

The random variable Y We reserve the random variable Y to denote the random variable with

one of the following two special distributions:

1. Y can be sampled from the empirical distribution of the phase retrieval measurements:

Y ∼ 1

m

m∑
i=1

δyi .

For any f : R 7→ R, we define Êf(Y ) to be the expectation of f(Y ) with respect to the

empirical measure of the measurements:

Êf(Y )
def
=

1

m

m∑
i=1

f(yi). (4.3)

2. Alternatively the distribution of Y can be given by Y = |Z|2+σεwhereZ ∼ CN (0, 1) , ε ∼

N (0, 1). For any f : R 7→ R, we define Ef(Y ) denotes the expectation of f(Y ) with respect

to this measure, that is, Ef(Y ) = Ef(|Z|2 + σε). This special distribution is important to us

because we will see that for a large class of test functions f , Êf(Y )→ Ef(Y ) as m→∞.
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Notations for linear algebraic aspects: For a 2 × 2 Hermitian matrix A we define the Vec (·)

operation by:

Vec (A) =



A11

A22

Re(A12)

Im(A12)


.

4.4 Organization of the Proof

The remainder of this chapter is dedicated to proving Theorem 5. The proof consists of different

steps which are split into various sections as follows:

In Section 4.5, we relate the Bayes risk to the Mutual Information for the phase retrieval problem

with a small amount of side information and show that if the mutual information is o(m),

then the asymptotic Bayes risk is trivial. Hence, our focus shifts to showing that when

δ < 2, the Mutual information is o(m). We then bound the mutual information by the

χ2 divergence. Understanding the χ2 divergence in the Phase retrieval model requires us to

understand the asymptotics of two high dimensional integrals denoted by L and U on Sm−1

and Sm−1 × Sm−1 respectively.

In Section 4.6, we study the asymptotics of the integrals U ,L by change of measure techniques

and local central limit theorems.

In Section 4.7, we use a stochastic version of the Laplace Principle along with the asymptotics of

U ,L to understand the asymptotics of the χ2 divergence. This results in a explicit condition

on the sampling ratio δ and the noise level σ which guarantees that the mutual information

is o(m) and hence the Bayes risk is trivial.

In Section 4.8, we simplify the condition on δ, σ obtained previously in the low noise limit σ → 0.
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4.5 Mutual Information and Bayes Risk

We first relate the Bayes risk to the mutual information in the phase retrieval problem where

one observes a small amount of side information about the signal vector x?. The amount of side

information we observe will be controlled by a parameter ∆ > 0 which will be a constant indepen-

dent of n,m. The side information we observe will be linear gaussian measurements of the matrix

x?x
H
? . More precisely, for i = 1, 2 . . . b∆ ·mc we observe a measurement pair (wi, zi) drawn from

the following model:

wi
i.i.d.∼ GUE(n), zi

i.i.d.∼ N
(
〈wi,x?x

H
? 〉, 1

)
∀ i = 1, 2, . . . b∆ ·mc. (4.4)

We collect all the side information measurements zi’s in a vector z ∈ Rb∆mc. We denote the

collection of the GUE sensing matrices by W def
= {w1,w2 . . .wb∆mc}. The following proposition

establishes the connection between the Bayes Risk and I (y, z;A,W ).

Proposition 6. Suppose that there exists a constant ∆ > 0 (independent of m,n) such that the

mutual information I (y, z;A,W ) = o(m). Then we have,

lim
m,n→∞
m=nδ

Ex?,y,A‖x?xH
? − E[x?x

H
? |y,A]‖2 = 1.

In light of Proposition 6, in order to show that the Bayes risk is trivial, it is sufficient to show

that an upper bound on the mutual information is o(m). We will use the second moment upper

bound (or the χ2-divergence uppper bound) on mutual information. This upper bound was utilized

by Mondelli and Montanari [20] for determining the weak recovery threshold for Gaussian sensing

matrices. In our setup, the result of these authors can be stated as:

I (y, z;A,W ) ≤ Ey,z

[
EA,W p2(y, z|A,W )

p2(y, z)

]
− 1.

It is also well known that the second moment upper bound is sensitive to bad but rare events that can
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cause the upper bound to blow up. In order to exclude these bad events we will use a conditional

version of the above bound which is stated below. A similar result was used by Reeves, Xu,

and Zadik [74] in the context of a linear regression problem. The proof of this result is given in

Appendix B.1.2.

Lemma 12. Let Em be any sequence of events depending only y. We have,

I (y, z;A,W ) ≤
(∫
Em

EA,W p2(y, z|A,W )

p(y, z)
dy dz − 1

)
+ C ·m ·

√
P(Ecm).

In the above display, C ≥ 0 denotes a finite constant depending only on δ,∆, σ2.

The following lemma simplifies the upper bound on I (y, z;A,W ). For any y ∈ Rm and any

positive semidefinite 2× 2 Hermitian matrixQ, introduce the functions:

U (y,Q)
def
= E

 m∏
i=1

ψσ(yi − |G1i|2)ψσ(yi − |G2i|2)

∣∣∣∣GHG = mQ

 , (4.5)

L (y)
def
= E

 m∏
i=1

ψσ(yi − |G1i|2)

∣∣∣∣‖G1‖2 = m

 , (4.6)

where G1,G2
i.i.d.∼ CN (0, Im) and the matrix G = [G1 G2]. We emphasize that in the definitions

of U (y,Q) and L (y), the measurements y are fixed, and the expectation is only with respect to

the Gaussian matrixG.

Lemma 13. We have,

∫
Em

EA,W p2(y, z|A,W )

p(y, z)
dy dz =

2

n− 1
Ey



∫ 1

0
U

y,
1 q

q 1


 · q·(1−q2)n−2

(1−q2/2)b∆mc
dq

L 2(y)
· 1Em
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Proof. We have,

EA,W p2(y, z|A,W ) = EA,W ,x,x′p(y, z|A,W ,x)p(y, z|A,W ,x′)

= E

 m∏
i=1

ψσ(yi −m|〈ai,x〉|2)ψσ(yi −m|〈ai,x′〉|2)

b∆mc∏
i=1

ψ1(zi − 〈wi,xx
H〉)ψ1(zi − 〈wi,x

′x′H〉)


Define the scalar random variable:

q = xHx′,

and the associated random matrices:

Q =

1 q

q 1

 , C =

1 q

0
√

1− |q|2


Note that we have CHC = Q. It is easy to see that, conditioned on x,x′:

 〈wi,xx
H〉

〈wi,x
′x′H〉

 i.i.d.∼ N

0,

 1 |q|2

|q|2 1


 ,

Ax,Ax′
d
= U1, qU1 +

√
1− |q|2U2.

In the above display, U = [U1 U2] is a uniformly random m × 2 partial unitary matrix. By the

rotational invariance of U , we have,

√
m ·
[
Ax Ax′

]
d
=
√
m ·UC

= UCQ−1/2(m ·Q)1/2

d,(1)
= U(mQ)1/2.

In the step marked (1), we used the fact thatCQ−1/2 is unitary consequentlyUCQ−1/2 d
= U . Let
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G be a m× 2 matrix consisting of CN (0, 1) entries. Then we have,

√
m ·
[
Ax Ax′

]
d
= U (mQ)1/2

d,(2)
= G(GHG)−1/2(m ·Q)1/2

d,(3)
= G(GHG)−1/2(m ·Q)1/2|GHG = mQ

= G|GHG = mQ.

In step (2) we used the well known fact that a uniformly random partial unitary matrix can be

realized as U d
= G(GHG)−1/2. In the step marked (3) we used the fact that G(GHG)−1/2 is

independent of GHG, and hence conditioning on the event GHG does not change the distribution

ofG(GHG)−1/2. Hence we have shown that, conditioned on x,x′, the matrix
√
m · [Ax Ax′] has

the same distribution as a Gaussian matrixG conditioned on the eventGHG = mQ:

√
m ·
[
Ax Ax′

]
d
= G|GHG = mQ.

Hence we have,

EA,W p2(y, z|A,W ) = EA,W ,x,x′p(y, z|A,W ,x)p(y, z|A,W ,x′)

= Eq
[
Ψ1(q;y) ·Ψ2(q; z)

]
.

In the above display, we defined,

Ψ1(q;y)
def
= E

 m∏
i=1

ψσ(yi − |G1i|2)ψσ(yi − |G2i|2)

∣∣∣∣GHG = mQ

 ,
and,

Ψ2(q; z)
def
= EZ,Z′ψ1(zi − Z)ψ1(zi − |q|2Z −

√
1− |q|4Z ′),
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where Z,Z ′ i.i.d.∼ N (0, 1). We observe that the conditional expectation:

E

 m∏
i=1

ψσ(yi − |G1i|2)ψσ(yi − |G2i|2)

∣∣∣∣GHG = mQ

 ,
depends on q only via |q|. Consequently, we redefine the matrixQ as:

Q =

 1 |q|

|q| 1

 .
The following integral has been evaluated in Lemma 46 in Appendix B.9.

EZ,Z′ψ1(z − Z)ψ1(z − |q|2Z −
√

1− |q|4Z ′) =
1

4π
√

1− |q|4/4
exp

(
− z2

2(1 + |q|2/2)

)
.

Hence,

EA,W p2(y, z|A,W )

= Eq

E
 m∏
i=1

ψσ(yi − |G1i|2)ψσ(yi − |G2i|2)

∣∣∣∣GHG = mQ

 · e
− 1

2(1+|q|2/2)
·
∑b∆mc
i=1 z2

i

(4π
√

1− |q|4/4)b∆mc

 .
Next we compute p(y, z). Since y and z are independent, p(y, z) = p(y)p(z). p(y) can be

computed by following similar steps as before:

p(y) = E

 m∏
i=1

ψσ(yi − |G1i|2)

∣∣∣∣‖G1‖2 = m

 .
It is also easy to check that zi

i.i.d.∼ N (0, 2). Hence:

p(y, z) = E

 m∏
i=1

ψσ(yi − |G1i|2)

∣∣∣∣‖G1‖2 = m

 · b∆mc∏
i=1

ψ√2(zi).
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Consequently, introducing the functions:

U (y,R)
def
= E

 m∏
i=1

ψσ(yi − |G1i|2)ψσ(yi − |G2i|2)

∣∣∣∣GHG = mR

 ,
L (y)

def
= E

 m∏
i=1

ψσ(yi − |G1i|2)

∣∣∣∣‖G1‖2 = m

 .
we obtain,

Ez
EA,W p2(y, z|A,W )

p2(y, z)
= Eq



U

y,
 1 |q|

|q| 1




L 2(y)
·


EZ∼N (0,2) exp

(
|q|2

2

1+
|q|2

2

· Z2

2

)
√

1− |q|4
4


b∆mc



(a)
= Eq



U

y,
 1 |q|

|q| 1




L 2(y)
· 1

(1− |q|2/2)∆m


.

In the step marked (a), we used the MGF of χ2 distribution to compute:

EZ∼N (0,2) exp

 |q|2
2

1 + |q|2
2

· Z
2

2

 =

√
1 + |q|2/2
1− |q|2/2
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Hence we have,

∫
Em

EA,W p2(y, z|A,W )

p(y, z)
dy dz = Ey,|q|



U

y,
 1 |q|

|q| 1




L 2(y)
· 1

(1− |q|2/2)b∆mc
· 1Em


Next we observe that,

|q|2 ∼ Beta (1, n− 1) .

Utilizing the formula for the pdf of Beta random variables we have,

∫
Em

EA,W p2(y, z|A,W )

p(y, z)
dy dz =

1

n− 1
Ey



∫ 1

0
U

y,
 1

√
b

√
b 1


 · (1−b)n−2

(1−b/2)b∆mc
db

L 2(y)
· 1Em


.

Finally making the change of variable b = q2 gives us:

∫
Em

EA,W p2(y, z|A,W )

p(y, z)
dy dz ≤ 2

n− 1
Ey



∫ 1

0
U

y,
1 q

q 1


 · q·(1−q2)n−2

(1−q2/2)∆m dq

L 2(y)
· 1Em


.
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Remark 12. At this point, it is instructive to compare the claim of Lemma 13 to its counterpart

from [20]. IfA were Gaussian, then, Mondelli and Montanari [20] have shown that,

∫
EA,W p2(y, z|A,W )

p(y, z)
dy dz =

2

n− 1
Ey



∫ 1

0
UGauss

y,
1 q

q 1


 · q·(1−q2)n−2

(1−q2/2)b∆mc
dq

L 2
Gauss(y)

·


,

(4.7)

where the functions UGauss and LGauss are defined as follows:

UGauss

y,
1 q

q 1


 def

= E

 m∏
i=1

ψσ(yi − |G1i|2)ψσ(yi − |qG1i +
√

1− q2G2i|2)

 ,
LGauss(y)

def
= E

 m∏
i=1

ψσ(yi − |G1i|2)


Because the conditioning is absent in the definitions of UGauss and LGauss, one can leverage the

independence inG1,G2 and obtain straightforwardly:

UGauss

y,
1 q

q 1




L 2
Gauss(y)

=
m∏
i=1

EG1,G2

[
ψσ(yi − |G1|2)ψσ(yi − |qG1 +

√
1− q2G2|2)

]
E2
G

[
ψσ(yi − |G|2)

] .

Furthermore when the sensing matrix is Gaussian, the observations y1, y2 . . . ym are i.i.d. Let Y be

a random variable with the same distribution as yi. The expression in (4.7) simplifies significantly:

∫
EA,W p2(y, z|A,W )

p(y, z)
dy dz =

2

n− 1

∫ 1

0

FGauss(q)
m · q · (1− q

2)n−2

(1− q2/2)b∆mc
dq, (4.8)
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where,

FGauss(q)
def
= EY

EG1,G2

[
ψσ(Y − |G1|2)ψσ(Y − |qG1 +

√
1− q2G2|2)

]
E2
G

[
ψσ(Y − |G|2)

]
 .

Mondelli and Montanari [20] analyze the integral in 4.8 by a straightforward application of the

Laplace Principle. Note that this whole approach breaks down in our case because the condition-

ing in the definition of U ,L introduces dependence between the Gaussian random vectorsG1,G2

and their entries. This dependence is a manifestation of the dependence present in a subsampled

Haar unitary matrix.

4.6 Asymptotic Analysis of L and U

In order to evaluate the upper bound on the mutual information that is given in Lemma 13, one

needs to understand the asymptotic behaviour of the functions L and U introduced in Lemma 13.

4.6.1 Analysis of L

Recall that L (y) was defined as:

L (y)
def
= E

 m∏
i=1

ψσ(yi − |G1i|2)

∣∣∣∣‖G1‖2 = m

 .
We can rewrite L (y) as follows:

L (y)
def
= E

exp

 m∑
i=1

lnψσ(yi − |G1i|2)

∣∣∣∣ 1

m
‖G1‖2 = 1

 .
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The above equation suggests that the asymptotics of L are determined by the large deviation

properties of the random variables:

 1

m

m∑
i=1

lnψσ(yi − |G1i|2),
1

m
‖G1‖2

 . (4.9)

Note that the random variables in the display above are a sum of independent random variables. In

our analysis we treat y as a fixed vector in Rm and only leverage the randomness in G1. Conse-

quently, the two random variables in (4.9) are sums of independent, but not identically distributed

random variables. This makes our analysis a bit delicate. Large deviation theory tells us that the

Cramer Transform plays a crucial role in understanding the large deviations of sums of indepen-

dent random variables. Hence, we define the Tilted Exponential distribution which is the Cramer

Transform (or the exponential tilting) of the pair of random variables (lnψσ(y−|G|2), |G|2) where

G ∼ CN (0, 1) and y ∈ R is a fixed scalar below.

Definition 5 (The Tilted Exponential Distribution). The Tilted Exponential distribution with pa-

rameters (λ, y) denoted by TExp (λ, y) is the distribution on [0,∞) with the pdf:

f(u) =
e−(1−λ)uψσ(u− y)

ZTExp (λ, y)
,

where, ZTExp (λ, y) denotes the normalizing constant:

ZTExp (λ, y)
def
=

∫ ∞
0

e−(1−λ)uψσ(u− y) du = EE∼Exp(1)e
λEψσ(E − y).

We also denote the variance of TExp (λ, y) by σ2
TExp (λ, y).

In Appendix B.6.1 we prove some essential properties of the Tilted Exponential distribution

which will be useful in our analysis.

The analysis of L (y) uses two standard techniques from large deviation theory: performing an

exponential change of measure and then applying a central limit theorem under the tilted measure.
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The following lemma is a change of measure result that we use in our analysis. In order to

state it we first introduce some notation. Fix any y ∈ Rm and any λ ∈ R. Let u1, u2 . . . um be

independent non-negative random variables with ui ∼ TExp (λ, yi). Let Fλ,y be the density of the

random variable
∑m

i=1 ui.

Lemma 14. For any λ ∈ R,y ∈ Rm we have,

L (y) =
(m− 1)! · em(1−λ) · Fλ,y(m)

mm−1
·
m∏
i=1

ZTExp (λ, yi) .

In the above display, Fλ,y is the density of the random variable
∑m

i=1 ui where the random vari-

ables ui are sampled independently with marginal distribution ui ∼ TExp (λ, yi).

Proof. Define the random variables:

U =
m∑
i=1

ui, T =
m∑
i=1

lnψσ(yi − ui).

Consider two possible probability distributions for U and T :

1. ui are i.i.d. Exp (1). Let G(u, t) be the joint pdf of U and T in this setup.

2. ui are sampled independently from TExp (λ, yi) defined in the statement of the lemma. Let

Fλ,y(u, t) denote the joint pdf of U, T in this setup.

We can compute Fλ,y(u, t) in terms of G(u, t) in the following way:

Fλ,y(u, t) =
exp(t+ λu)∏m
i=1 ZTExp (λ,yi)

·G(u, t). (4.10)

Let G(t|u) denote the conditional density of T given U = u and G(u) denote the marginal density

of U under Setup 1. Analogously define Fλ,y(t|u) and Fλ,y(u). We can then compute L (y) as
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follows:

L (y) = Eg∼CN (0,Im)

exp

 m∑
i=1

lnφσ(yi − |gi|2)

∣∣∣∣‖g‖2 = m


= e−mλE

exp

 m∑
i=1

lnφσ(yi − |gi|2) + λm

∣∣∣∣‖g‖2 = m


(a)
= e−mλ

∫
et+mλG(t|m) dt

=
e−mλ

G(m)

∫
et+mλG(m, t) dt.

In the step marked (a), we used the fact that if G ∼ CN (0, 1), then |G|2 ∼ Exp (1). Next,

appealing to (4.10), we obtain:

L (y)
(b)
=
e−mλ

∏m
i=1 ZTExp (λ, yi)

G(m)

∫
Fλ,y(m, t) dt

=
Fλ,y(m)e−mλ

G(m)
·
m∏
i=1

ZTExp (λ, yi)

(c)
=

(m− 1)! · em(1−λ) · Fλ,y(m)

(m)m−1
·
m∏
i=1

ZTExp (λ, yi) .

The equality marked (b) follows from (4.10). In the step (c), we used the fact that under Setup 1,

U is a sum of exponential random variables and hence U ∼ Gamma (m, 1). Therefore the density

of the Gamma distribution can be used to evaluate G(m). This proves the claim of the lemma.

Our next step will be to develop the asymptotics of Fλ,y by means of a local CLT. Note that in

Lemma 14, λ ∈ R was arbitrary. We will set λ = λ̂1(σ), where

λ̂1(σ)
def
= arg max

λ∈R

(
λ− ÊY lnEE∼Exp(1)e

λEψσ(E − Y )
)
. (4.11)
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We also define,

Ξ̂1(σ)
def
= max

λ∈R

(
λ− ÊY lnEE∼Exp(1)e

λEψσ(E − Y )
)
. (4.12)

The notation Ê in the above display, has been introduced in (4.3). Note that the above quantities

depend on the vector y, but we have not made the dependence explicit in the notation. The intu-

ition for setting λ in this way is that the first order stationarity condition applied to the concave

variational problem in (4.11) and (4.12) give us:

1

m

m∑
i=1

EEeλ̂1(σ)Eψσ(E − yi)
ZTExp

(
λ̂1(σ), yi

) = 1 =⇒ E

 m∑
i=1

ui

 = m.

Consequently, by the central limit theorem, we expect that, m−
1
2 · ((∑i ui) − m) is close to a

Gaussian distribution with variance:

v̂(σ)
def
=

1

m

m∑
i=1

σ2
TExp

(
λ̂1(σ), yi

)
= ÊY σ2

TExp

(
λ̂1(σ), Y

)
. (4.13)

Hence, Fλ̂1(σ),y, which is the density of
∑m

i=1 ui can be approximated by the density ofN
(
m,mv̂(σ)

)
.

Fλ̂1(σ),y(m) ≈ ψm·v̂(σ)(0) =
1√

2πv̂(σ) ·m
.

This intuition is made rigorous in the following proposition.

Proposition 7 (A Local Central Limit Theorem). Suppose that there exists a constant 0 < K <∞,

such that,

|λ̂1(σ)| ≤ K, ÊY (|Y |+ |Y |2 + |Y |3) ≤ K,
1

K
≤ v̂(σ) ≤ K.

Then, there exists a constant C(K), depending only on K such that we have the following asymp-
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totic expansion for Fλ̂1(σ),y(m):

∣∣∣∣∣Fλ̂1(σ),y(m)− 1√
2πv̂(σ) ·m

∣∣∣∣∣ ≤ C(K) ln(m)

m
,

where λ̂1(σ) and v̂(σ) have been defined in (4.11) and (4.13).

There is a large literature on local central limit theorems. We refer the reader to Bhattacharya

and Rao [75] for a textbook treatment of these results. We are unable to use the statements of local

central limit theorems already available in the literature because we require a local central limit

theorem for sums of independent but not identically distributed random variables and we further

require some control on the error of normal approximation. The proof of Proposition 7 can be

found in Appendix B.2.1. It closely follows the classical proofs of local central limit theorems

based on characteristic functions (see for example Feller [76, Chapter 16]).

We conclude our analysis of L with the following result which is a straightforward corollary of

the change of measure result given in Lemma 14 and the local central limit theorem in Proposition

7.

Corollary 2 (Lower Bound on L ). Under the assumptions of Proposition 7, there exists M(K) ∈

N depending only on K such that,

L (y) ≥ 1

2
√
K

exp
(
−m · Ξ̂1(σ)

)
, ∀m ≥M(K),

where the function Ξ̂1(σ) has been defined in (4.12).

Proof. Applying Lemma 14 with λ̂ = λ̂1(σ), we have,

L (y) =
(m− 1)! · em(1−λ̂) · Fλ̂,y(m)

(m)m−1
·
m∏
i=1

ZTExp

(
λ̂, yi

)
.
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Note by Stirling’s Approximation, we have:

(m− 1)!

mm−1
≥
√

2π(m− 1) · e−(m−1) ·
(

1− 1

m

)m−1

(a)

≥
√

2π(m− 1) · e−m

In the step marked (a), we used the bound 1 − x ≥ e−
x

1−x , x ∈ (0, 1). From Proposition 7, we

conclude that there exists a constant M(K), depending only on K, such that,

Fλ̂,y(m) ≥ 1√
2πv̂(σ)m

− C(K) ln(m)

m
.

In particular, this means that there exists M(K) depending only on K such that,

Fλ̂,y(m) ≥ 1

2
√

2πKm
∀m ≥M(K).

This gives us the lower bound:

L (y) ≥ 1

2
√

2K
· e−mλ̂ ·

m∏
i=1

ZTExp

(
λ̂, yi

)
, ∀m ≥M(K)

=
1

2
√
K

exp

−mmax
λ∈R

λr − 1

m

m∑
i=1

lnEE∼Exp(1)e
λEψσ(E − yi)




=
1

2
√
K

exp
(
−m · Ξ̂1(σ)

)
.

In the last step, we used (4.11) and (4.12).

4.6.2 Analysis of U

We recall the function U was defined as follows:

U (y,Q)
def
= E

 m∏
i=1

ψσ(yi − |G1i|2)ψσ(yi − |G2i|2)

∣∣∣∣GHG = mQ

 ,
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where the matrixQ is of the form:

Q =

1 q

q 1

 , q ∈ (0, 1). (4.14)

We observe that U can be rewritten as:

U (y,Q) = E

exp

 m∑
i=1

lnψσ(yi − |G1i|2) + lnψσ(yi − |G2i|2)

∣∣∣∣ 1

m
GHG = Q

 .
The asymptotics of U are determined by the large deviation properties of the pair of random

variables:  1

m

m∑
i=1

lnψσ(yi − |G1i|2) + lnψσ(yi − |G2i|2),
1

m
GHG

 .

Both of these random variables are a sum of independent random variables. The Tilted Wishart

distribution which is defined below will play a key role in our analysis. This distribution is the

Cramer transform (or the exponential tilting) of the random variables defined above.

Definition 6 (The Tilted Wishart Distribution with Parameters (λ, φ, y)). A 2×2 Hermitian matrix

S is said to be TWis (λ, φ, y) if

S =

 s
√
ss′eiθ

√
ss′e−iθ s′

 ,
and the random variables s ∈ [0,∞), s′ ∈ [0,∞), θ ∈ (−π, π] are sampled from the pdf:

h(s, s′, θ)
def
=

1

2 · π · ZTWis (λ, φ, y)
· e−(1−λ)(s+s′)+φ

√
ss′ cos(θ) · ψσ(s− y) · ψσ(s′ − y).
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In the above display, the normalizing constant ZTWis (λ, φ, y) is defined as:

ZTWis (λ, φ, y)
def
=

1

2π

∫ ∞
0

∫ ∞
0

∫ π

−π
e−(1−λ)(s+s′)+φ

√
ss′ cos(θ) · ψσ(s− y) · ψσ(s′ − y) dθ ds ds′.

We denote the covariance matrix of the tilted Wishart distribution by ΣTWis (λ, φ, y), that is:

ΣTWis (λ, φ, y) = E
[
Vec (S − ES)Vec (S − ES)H

]
.

Similar to the analysis of L , the analysis of U consists of two steps: First, a change of

measure step which is given in Lemma 15 and second, an application of the local central limit

theorem which is given in Proposition 8.

We begin with the change of measure result. Let λ, φ ∈ R be arbitrary. Let S1,S2 . . .Sm be

independent Hermitian random matrices with

Si ∼ TWis (λ, φ, yi) , ∀ i ∈ [m].

Define the random variable S as:

S =
m∑
i=1

Si.

Let Hλ,φ,y be the density of the random matrix S.

Lemma 15. For any y ∈ Rm and any 2× 2 positive definite Hermitian matrixQ, we have,

U (y,Q) =
π(m− 1)!(m− 2)!

m2m−2 · det(Q)m−2
· em(1−λ)Tr(Q)−mφRe(Q12) ·

 m∏
i=1

ZTWis (λ, φ, yi)

 ·Hλ,φ,y(mQ).
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Proof. Let us index the entries of Sk, k ∈ [m] as follows:

Sk =

 sk
√
sks′ke

iθk√
sks′ke

−iθk r′k


Define the random variables:

S =
m∑
k=1

Sk, T =
m∑
k=1

lnψσ(yk − rk) + lnψσ(yk − r′k).

Consider two possible probability distributions for S, T :

Setup 1: Sk = gkg
H
k where gk ∼ CN

(
0,I2

)
. Equivalently, si and s′i are i.i.d. Exp (1) and θi are

i.i.d. Unif(−π, π]. Let H(·, ·) be the joint pdf of S, T in this setup.

Setup 2: Sk are independent and distributed as Sk ∼ TWis (λ, φ, yk). Let Hλ,φ,y(·, ·) denote the

joint pdf of S, T in this setup.

We can compute Hλ,φ,y in terms of G as follows:

Hλ,φ,y(S, T ) =
exp(T + λ · Tr(S) + φ · Re(S12))∏m

i=1 ZTWis (λ, φ, yi)
·H(S, T ).

Let H(·|S) denote the conditional density of T given S and H(S) denote the marginal density

of S under Setup 1. Analogously define Hλ,φ,y(·|S) and Hλ,φ,y(S) under Setup 2. We can then

compute U (y,Q) as follows:

U (y,Q)
def
= E

 m∏
i=1

φσ(yi − |G1i|2)φσ(yi − |G2i|2)

∣∣∣∣GHG = mQ


= E

exp

 m∑
i=1

lnφσ(yi − |g1i|2) + lnφσ(yi − |g2i|2)

∣∣∣∣GHG = mQ


(a)
=

∫
etH(t|mQ) dt.
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In the step marked (a), we used the fact that under Setup 1, we have

(S, T )
d
=

GHG,
m∑
i=1

lnφσ(yi − |g1i|2) + lnφσ(yi − |g2i|2)

 .

Hence,

U (y,Q) =

∫
etH(t|mQ) dt

=
e−mλTr(Q)−mφRe(Q12)

H(mQ)

∫
et+mλTr(Q)+mφRe(Q12)H(mQ, t) dt

=
e−mλTr(Q)−mφRe(Q12)

H(mQ)
·
m∏
i=1

ZTWis (λ, φ, yi) ·
∫
Hλ,φ,y(mQ, t) dt

=
e−mλTr(Q)−mφRe(Q12)

H(mQ)
·
m∏
i=1

ZTWis (λ, φ, yi) ·Hλ,φ,y(mQ)

(b)
=

π(m− 1)!(m− 2)!

m2m−2 · det(Q)m−2
· em(1−λ)Tr(Q)−mφRe(Q12) ·

 m∏
i=1

ZTWis (λ, φ, yi)

 ·Hλ,φ,y(mQ).

In the step marked (b), we used the fact that under Setup 1, S is distributed as a complex

Wishart random matrix and hence,

H(mQ) =
1

π
· m2m−2

(m− 1)!(m− 2)!
· exp(−mTr(Q)) · det(Q)m−2.

This concludes the proof of the lemma.

Next, we will use a local central limit theorem to characterize the asymptotics of Hλ,φ,y(mQ).

Note that Lemma 15 holds for any λ, φ ∈ R. We will set λ = λ̂2(q;σ), φ = φ̂(q;σ), where

(λ̂2(q;σ), φ̂(q;σ))
def
= arg max

(λ,φ)∈R

(
2λ+ qφ− ÊY lnZTWis (λ, φ, Y )

)
. (4.15)
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We also define

Ξ̂2(q;σ)
def
= max

(λ,φ)∈R

(
2λ+ qφ− ÊY lnZTWis (λ, φ, Y )

)
. (4.16)

The rational behind this choice of λ, φ is that the first order optimality conditions for the above

concave variational problem give us:

2 =
1

m

m∑
i=1

∂λZTWis

(
λ̂2(q;σ), φ̂(q;σ), yi

)
ZTWis

(
λ̂2(q;σ), φ̂(q;σ), yi

) (a)
=

1

m

m∑
i=1

E(si + s′i)

q =
1

m

m∑
i=1

∂φZTWis

(
λ̂2(q;σ), φ̂(q;σ), yi

)
ZTWis

(
λ̂2(q;σ), φ̂(q;σ), yi

) (a)
=

1

m

m∑
i=1

E
√
sis′i cos(θi).

In the steps marked (a), we used the formula for the normalizing constant ZTWis (λ, φ, y), given in

Definition 6, to compute the partial derivatives. It is also clear by the symmetry of Definition 6

that:

Esi = Es′i, E
√
sis′i sin(θ) = 0.

Hence, the first order optimality conditions imply:

ES =
m∑
i=1

ESi = mQ.

By the Multivariate Central Limit Theorem, we expect that m−
1
2 · (S −mQ) to be asymptotically

Gaussian. We also define the covariance matrix of m−
1
2 · (S −mQ) as V̂ (q;σ):

V̂ (q;σ)
def
=

EVec (S − ES)Vec (S − ES)H

m
= ÊΣTWis

(
λ̂2(Q;σ), φ̂(Q;σ), Y

)
. (4.17)
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By the CLT, we expect

m−
1
2 · Vec (S −mQ) ≈ N

(
0, V̂ (q;σ)

)
.

Hence,

Hλ̂2(q;σ),φ̂(q;σ),y(mQ) ≈ 1√
(2πm)4 det(V̂ (q;σ))

.

The following proposition makes this argument rigorous.

Proposition 8 (A Local Central Limit Theorem). Suppose that there exists a constant 0 < K <∞

such that:

|λ̂2(q;σ)|+ |φ̂(q;σ)| ≤ K, ÊY |Y |40 ≤ K,
1

K
≤ λmin

(
V̂ (q;σ)

)
≤ λmax

(
V̂ (q;σ)

)
≤ K.

Then, there exists a constant C(K), depending only on K such that we have the following asymp-

totic expansion for Hλ̂2(q;σ),φ̂(q;σ),y:

∣∣∣∣∣∣∣Hλ̂2(q;σ),φ̂(q;σ),y −
1√

(2πm)4 det(V̂ (q;σ))

∣∣∣∣∣∣∣ ≤
C(K) ln5(m)

m2
√
m

.

The proof of this proposition appears in Appendix B.2.2 and closely follows classical proofs of

local central limit theorems based on characteristic functions (see for example, Feller [76, Chapter

16]). We conclude our analysis of U with the following upper bound on U which is a straightfor-

ward corollary of Lemma 15 and Proposition 8.

Corollary 3. Under the assumptions of Proposition 2, there exists M(K) ∈ N depending only on

K such that

U (y,Q) ≤ C(K)

m2 · (1− q2)m−2
· exp

(
−m · Ξ̂2(q;σ)

)
,
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for all m ≥M(K).

Proof. From Lemma 5, we know that

U (y,Q) =

π(m− 1)!(m− 2)!

m2m−2
· det(Q)m−2 · em(1−λ)Tr(Q)−mφRe(Q12) ·

 m∏
i=1

ZTWis (λ, φ, yi)

 ·Hλ,φ,y(mQ).

In Proposition 8, we obtained the bound

∣∣∣∣∣∣∣Hλ̂,φ̂,y(mQ)− 1√
(2πm)4 det(V̂ (q;σ))

∣∣∣∣∣∣∣ ≤
C(K) ln5(m)

m2
√
m

.

Note that under the assumptions of Proposition 8, we have

det(V̂ (q;σ)) ≥ λ4
min(V̂ (q;σ)) ≥ 1

K4
.

This tells us, that there is a M(K) ∈ N depending only on K, such that,

Hλ̂,φ̂,y(mQ) ≤ C(K)

m2
, ∀m ≥M(K).

By Stirling’s approximation, we have

π(m− 1)!(m− 2)!

m2m−2
≤ πe5

e2m
.

These estimates give us the upper bound:

U (y,Q) ≤ C(K)em(Tr(Q)−2)

m2 · det(Q)m−2
· e−mmax(λ,φ)∈R(λTr(Q)+φRe(Q12)− 1

m

∑m
i=1 lnZTWis(λ,φ,yi)),

for all m ≥M(K). Recalling the definition of Ξ̂2(q;σ) (See (4.15)) and the form of the matrix Q

(see (4.14)) gives us the claim of the corollary.

104



4.7 The Stochastic Laplace Method

Recall that in Lemmas 12 and 13 we have shown the following upper bound on I (y, z;A,W ):

I (y, z;A,W ) ≤ 2

n− 1
Ey



∫ 1

0
U

y,
1 q

q 1


 · q·(1−q2)n−2

(1−q2/2)∆m dq

L 2(y)
· 1Em


− 1 + Cm

√
P(Ecm),

where Em is an arbitrary event depending on y and the functions U ,L were defined in (4.5) and

(4.6). Let us for the moment, also assume that the conditions required for Corollary 2 and 3 are

met. Then, tracking only the exponential order terms, we obtain,

I (y, z;A,W ) / Ey

[∫ 1

0

e−m·F̂(q;δ,∆,σ) dq · 1Em

]
, (4.18)

where,

F̂(q; δ,∆, σ) = Ξ̂2(q;σ)− 2Ξ̂1(σ) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
. (4.19)

Our goal will be to evaluate the integral in (4.18) via the Laplace Method. However, we ob-

serve that the function F̂(q; δ,∆, σ) is stochastic since it depends on the empirical distribution

of the phase retrieval observations y. It turns out that Ξ̂2(q;σ), defined in (4.15), and Ξ̂1(σ), de-

fined in (4.12), and hence F̂(q; δ,∆, σ) concentrate around deterministic functions Ξ2(q;σ), Ξ1(σ),

F(q; δ,∆, σ) defined below:

Ξ1(σ)
def
= max

λ∈R

(
λ− EY lnEE∼Exp(1)e

λEψσ(E − Y )
)
, (4.20)

Ξ2(q;σ)
def
= max

(λ,φ)∈R

(
2λ+ qφ− EY lnZTWis (λ, φ, Y )

)
, (4.21)
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F(q; δ,∆, σ)
def
= Ξ2(q;σ)− 2Ξ1(σ) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
. (4.22)

In the above display, the random variable Y = |Z|2 +σε where Z ∼ CN (0, 1) , ε ∼ N (0, 1). We

also define the deterministic counterparts to λ̂1(σ), defined in (4.11) and λ̂2(q;σ), φ̂(q;σ), defined

in (4.15):

λ1(σ)
def
= arg max

λ∈R

(
λ− EY lnEE∼Exp(1)e

λEψσ(E − Y )
)
, (4.23)

(λ2(q;σ), φ(q;σ))
def
= max

(λ,φ)∈R

(
2λ+ qφ− EY lnZTWis (λ, φ, Y )

)
. (4.24)

The convergence to these deterministic functions allows to design a high probability event Em on

which applying Laplace method to the stochastic function F̂(q; δ,∆, σ) is essentially the same as

applying it to the deterministic function F(q; δ,∆, σ). We state our concentration result in the

proposition below.

Proposition 9. For any fixed σ > 0, we have the following convergence results:

1. Convergence of Moments: ÊY k P→ EY k for any k ∈ N, where Y = |Z|2 + σε, Z ∼

CN (0, 1) and ε ∼ N (0, 1).

2. For any R ∈ (0,∞), we have the uniform convergence of the functions:

sup
|λ|≤R

|Êσ2
TExp (λ, Y )− Eσ2

TExp (λ, Y ) | P→ 0,

sup
|λ|+|φ|≤R

‖ÊΣTWis (λ, φ, Y )− EΣTWis (λ, φ, Y ) ‖ P→ 0.

3. λ̂1(σ) is tight in the sense that, there exists a constant R ∈ (0,∞), depending only on σ such

that,

P
(
|λ̂1(σ)| > R

)
→ 0.
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4. Ξ̂1(σ)
P→ Ξ1(σ)

5. For any η ∈ (0, 1), there exists Rη ∈ (0,∞) (depending only on η, σ) such that:

P
(

max
0≤q≤1−η

|λ̂2(q;σ)|+ |φ̂(q;σ)| > Rη

)
→ 0.

6. For any η ∈ (0, 1), we have,

sup
q∈[0,1−η]

|Ξ̂2(q;σ)− Ξ2(q;σ)| P→ 0.

7. For any η ∈ (0, 1), we have,

sup
q∈[0,1−η]

|λ̂2(q;σ)− λ2(q;σ)| P→ 0, sup
q∈[0,1−η]

|φ̂(q;σ)− φ(q;σ)| P→ 0.

8. For any η ∈ (0, 1), we have,

sup
q∈[0,1−η]

∣∣∣∣∣ d2

dq2
Ξ̂2(q;σ)− d2

dq2
Ξ2(q;σ)

∣∣∣∣∣ P→ 0.

The proof of this Proposition appears in Appendix B.3. It uses standard empirical process

theory results from Van Der Vaart and Wellner [77] with some modification to account for the fact

that the observations y1, y2 . . . , ym are not independent. With the above concentration result, we

suitably design an event Em with P(Em) → 1 such that on the event Em, we are able to adapt the

usual proof of Laplace Method to obtain the following conclusion.

Proposition 10. Suppose that δ,∆, σ are such that F(q; δ,∆, σ) > F(0; δ,∆, σ) = 0 ∀ q ∈ (0, 1)

and d2F
dq2 (0; δ,∆, σ) > 0. Then, I (y, z;A,W ) = o(m).

The proof of this proposition can be found in Appendix B.4. The claim of this Proposition is

very intuitive: It says that due to the concentration of F̂(q; δ,∆, σ) to F(q; δ,∆, σ), the stochastic
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and the deterministic integrals:

∫ 1

0

e−mF̂(q;δ,∆,σ) dq ≈
∫ 1

0

e−mF(q;δ,∆,σ) dq,

behave very similarly. According to the standard Laplace method, the condition F(q; δ,∆, σ) >

F(0; δ,∆, σ) = 0 ensures that,

1

m
ln

(∫ 1

0

e−mF(q;δ,∆,σ) dq

)
→ 0,

whereas the positivity requirement on the second derivative ensures that the second order, subex-

ponential factors in the Laplace integral are sufficiently well controlled to obtain I (y, z;A,W ) =

o(m).

4.8 Low Noise Asymptotics

Proposition 10 and Proposition 6 tell us that if for some δ, σ, we can find ∆ > 0 such that:

F(q; δ,∆, σ) > F(0; δ,∆, σ) ∀ q ∈ (0, 1),
d2F
dq2

(0; δ,∆, σ) > 0, (4.25)

then,

lim
m,n→∞
m=nδ

Ex?,y,A‖x?xH
? − E[x?x

H
? |y,A]‖2 = 1.

Note that the Bayes risk increases monotonically with the noise level σ (that is, the phase retrieval

problem is harder for larger noise levels). Furthermore, the Bayes risk is atmost the risk of the

trivial estimator x̂ = 0:

lim sup
m,n→∞
m=nδ

Ex?,y,A‖x?xH
? − E[x?x

H
? |y,A]‖2 ≤ Ex?,y,A‖x?xH

? − 0‖2 = 1.
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Hence if show that the asymptotic Bayes risk is trivial (that is, equal to 1) for an arbitrarily small

σ > 0, it automatically implies the Bayes risk is trivial for larger values of noise. Consequently

we will focus on verifying condition (4.25) for small values of noise, where the analysis of the

variational problems involved simplifies considerably. We show the following result:

Proposition 11. Recall that F(q; δ,∆, σ) was defined as:

F(q; δ,∆, σ) = Ξ2(q;σ)− 2Ξ1(σ) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
.

For any δ and ∆ that satisfy

1 ≤ δ < 2, 0 < ∆ <
2− δ
δ

,

there exists a critical value of the noise level σc(δ,∆) > 0 such that, for any 0 < σ < σc(δ,∆), we

have

1. The functionF(q; δ,∆, σ) has a unique minimum at q = 0 andF(q; δ,∆, σ) > F(0; δ,∆, σ)

for any q ∈ (0, 1).

2. d2F
dq2 (q; δ,∆, σ)

∣∣∣∣
q=0

> 0.

Combined with Proposition 10 and Proposition 6 it immediately gives us Theorem 5 as a corol-

lary.

Corollary 4. Theorem 5 holds.

Proof. When δ < 2, we can set:

∆ =
2− δ

2δ
> 0.

Proposition 11 guarantees that (4.25) holds for all values of 0 < σ ≤ σc(δ,∆). Proposition 10 lets

us conclude that for all 0 < σ ≤ σc(δ,∆), I (y, z;A,W ) = o(m). Consequently, by Proposition
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6, for any 0 < σ ≤ σc(δ,∆) we have,

lim
m,n→∞
m=nδ

Ex?,y,A‖x?xH
? − E[x?x

H
? |y,A]‖2 = 1.

Since the Bayes risk is atmost 1 and increases monotonically with σ, this means for any σ > 0:

lim
m,n→∞
m=nδ

Ex?,y,A‖x?xH
? − E[x?x

H
? |y,A]‖2 = 1.

The proof of Proposition 11 can be found in Appendix B.5. The main idea of the proof is that

in the limit σ → 0, the analysis of the function F(q; δ,∆, σ) simplifies considerably.

4.9 Conclusion

In this chapter, we studied the Phase Retrieval problem with subsampled Haar sensing matrices

with non-zero but vanishing measurement noise in the high dimensional asymptotic where the

signal dimension (n) and the number of measurements (m) diverge such that the sampling ratio δ =

m/n remains fixed. We showed that when the sampling ratio δ = m/n < 2, then it is information

theoretically impossible for any estimator to obtain an asymptotically non-trivial performance: any

estimator is asymptotically uncorrelated with the signal vector. Since previous work [30, 63] has

designed estimators which achieve a non trivial correlation with the planted vector when δ > 2,

this shows that the weak recovery threshold for this model is δweak = 2.
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Chapter 5: Universality in Dynamics of Linearized Message Passing

In this chapter1, we present some partial progress towards a mathematical understanding of the

empirically observed universality. We study the real-valued analog of the phase retrieval problem

where the sensing matrix is generated by sub-sampling n columns of the m×m Hadamard-Walsh

matrix. Under an average case assumption on the signal vector, our main result (Theorem 6) shows

that the dynamics of a class of linearized Approximate message passing schemes for this structured

ensemble are asymptotically identical to the dynamics of the same algorithm in the sub-sampled

Haar sensing model in the high-dimensional limit.

5.1 Problem Formulation

In the real-valued analog of the phase retrieval problem (also called sign-retrieval), one ob-

serves magnitudes of m linear measurements (denoted by y1:m) of an unknown n dimensional

signal vector x? ∈ Rn:

yi = |(Ax?)i|2,

whereA ∈ Rm×n is a m× n sensing matrix.

We also define z def
= Ax? which we refer to as the signed measurements (which are not ob-

served).

We will study this model in the high-dimensional asymptotic regimen m,n→∞,m = nδ. In

this chapter, we will find it convenient to state the results in terms of the inverse sampling-ratio:

1The results obtained in this chapter have been submitted for possible publication in a journal and appear in the
preprint R. Dudeja and M. Bakhshizadeh, “Universality of linearized message passing for phase retrieval with struc-
tured sensing matrices,” arXiv preprint arXiv:2008.10503, 2020
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κ
def
=

1

δ
=

n

m
(5.1)

5.1.1 Sensing Models

Next, we introduce 3 different models for the sensing matrix A. In all the equations below, P

is a uniformly random m×m permutation matrix and S is the column-selection matrix:

P ∼ Uniformly Random m×m Permutation Matrix, (5.2a)

S =

 In

0(m−n)×n

 . (5.2b)

Sub-sampled Hadamard Sensing Model: Assume that m = 2` for some ` ∈ N. In the sub-

sampled Hadamard sensing model the sensing matrix is generated by sub-sampling n columns of

a m×m Hadamard-Walsh matrixH uniformly at random:

A = HPS, (5.3)

Recall that the Hadamard-Walsh matrix as a closed form formula: For any i, j ∈ [m], let i, j

denote the binary representations of i− 1, j − 1. Hence, i, j ∈ {0, 1}`. Then the (i, j)-th entry of

H is given by:

Hij =
(−1)〈i,j〉√

m
, (5.4)

where 〈i, j〉 =
∑`

k=1 ikjk. It is well known that H is orthogonal, i.e. HTH = Im. This

sensing model can be thought of as a real analogue of the sub-sampled Fourier sensing model. Our

primary goal is to develop a theory for this sensing model which is not covered by existing results.

112



We believe that our analysis can be extended to the Fourier case without much effort as well as

some other deterministic orthogonal matrices like the discrete cosine transform matrix.

Remark 13. Some authors refer to any orthogonal matrix with ±1 entries as a Hadamard matrix.

We emphasize that we claim results only about the Hadamard-Walsh construction given in (5.4)

and not arbitrary Hadamard matrices.

Sub-sampled Haar Sensing Model: In this model the sensing matrix is generated by sub-

sampling n columns, chosen uniformly at random, of a m × m uniformly random orthogonal

matrix:

A = OPS, (5.5)

where O ∼ Unif
(
O(m)

)
. Existing theory applies to this sensing model and our goal will be to

transfer these results to the sub-sampled Hadamard model.

Sub-sampled Orthogonal Model: This model includes both sub-sampled Hadamard and Haar

models as special cases. In this model the sensing matrix is generated by sub-sampling n columns

chosen uniformly at random of a m×m orthogonal matrix U :

A = UPS, (5.6)

where U is a fixed or random orthogonal matrix. Setting U = O gives the sub-sampled Haar

model and setting U = H gives the sub-sampled Hadamard model. Our primary purpose for in-

troducing this general model is that it allows us to handle both the sub-sampled Haar and Hadamard

models in a unified way. Additionally, some of our intermediate results hold for any orthogonal

matrix U whose entries are delocalized, and we wish to record that when possible.

In addition, we introduce the following matrices which will play an important role in our anal-

ysis:
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1. We defineB def
= PSSTP T. Observe thatB is a random diagonal matrix with {0, 1} entries.

It is easy to check that the distribution ofB is described as follows: pick a uniformly random

subset S ⊂ [m] with |S| = n and set:

Bii =


1 : i ∈ S

0 : i /∈ S
.

2. Note that EB = κIm. We define the zero mean random diagonal matrixB def
= B − κIm.

3. We define the matrix Ψ
def
= UBUT = AAT − κIm.

Finally, note that all the sensing ensembles introduced in this section make sense only when n ≤ m

or equivalently κ ∈ [0, 1]. We will additionally assume that κ lies in the open interval (0, 1).

Linearized Approximate Message Passing (AMP) Algorithms

We study a class of linearized message passing algorithms. This is a class of iterative schemes

which execute the following updates:

ẑ(t+1) :=

(
1

κ
AAT − I

)
·
(
ηt(Y )− ETr(ηt(Y ))

m
I

)
· ẑ(t), (5.7a)

x̂(t+1) := ATẑ(t+1), (5.7b)

where

Y = Diag (y1, y2 . . . ym) ,

and ηt : R→ R are bounded Lipchitz functions that act entry-wise on the diagonal matrix Y . The

iterates (ẑ(t))t≥0 should be thought as estimates of the signed measurements z = Ax?. We now

provide further context regarding the iteration in (5.7).
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Interpretation as Linearized AMP: The iteration (5.7) can be thought of as a linearization of a

broad class of non-linear approximate message passing algorithms. These algorithms execute the

iteration:

ẑ(t+1) :=

(
1

κ
AAT − I

)
·Ht(y, ẑ

(t)), (5.8a)

x̂(t+1) := ATẑ(t+1). (5.8b)

where Ht : R2 → R is a bounded Lipchitz function which satisfies the divergence-free property:

1

m

m∑
i=1

E∂zHt(yi, ẑ
(t)
i ) = 0.

Indeed, if Ht was linear in the second (z) argument (or was approximated by its linearization)

one obtains the iteration in (5.7). By choosing the function Ht in the iteration appropriately, one

can obtain the state-of-the-art performance for phase retrieval with sub-sampled Haar sensing.

This algorithm achieves non-trivial (better than random) performance when κ < 2/3, and exact

recovery when κ < 0.63 [79]. While our analysis currently does not cover the non-linear iteration

(5.8), we hope our techniques can be extended to analyze (5.8).

Connection to Spectral Methods: Given that the algorithm we analyze (5.7) does not cover

the state-of-the-art algorithm, one can reasonably ask what performance can one achieve with the

linearized iteration (5.7). It turns out that the iteration in (5.7) can implement a popular class of

spectral methods which estimates the signal vector x? as proportional to the leading eigenvector of

the matrix:

M =
1

m

m∑
i=1

T (yi)aia
T
i ,

where a1:m denote the columns of A and T : R≥0 → (−∞, 1) is a trimming function. The

performance of these spectral estimators have been analyzed in the high dimensional limit [30, 63]
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for the sub-sampled Haar model and they are known to have a non-trivial (better than random)

performance when κ < 2/3. Furthermore, simulations show that the same result holds for sub-

sampled Hadamard sensing. In order to connect the iteration (5.7) to the spectral estimator, Ma,

Dudeja, Xu, Maleki, and Wang [30] proposed setting the functions ηt in the following way:

ηt(y) =

(
1

µ
− T (y)

)−1

, (5.9)

where µ ∈ (0, 1) is a tuning parameter. Ma, Dudeja, Xu, Maleki, and Wang shows that with this

choice of ηt, every fixed point of the iteration (5.7) denoted by z∞,ATz∞ is an eigenvector of the

matrixM . Furthermore, suppose µ is set to be the solution to the equation:

ψ1(µ) =
1

1− κ, ψ1(µ)
def
=

E|Z|2G
EG

, (5.10)

where the joint distribution of (Z,G) is given by:

Z ∼ N (0, 1) , G =

(
1

µ
− T (|Z|2)

)−1

.

Then, Ma, Dudeja, Xu, Maleki, and Wang have shown that the linearized message passing itera-

tions (5.7) achieve the same performance as the spectral method for the sub-sampled Haar model

as t→∞.

The State Evolution Formalism: An important property of the AMP algorithms of (5.7) and

(5.8) is that for the sub-sampled Haar model, the dynamics of the algorithm can be tracked by a

deterministic scalar recursion known as the state evolution. This was first shown for Gaussian sens-

ing matrices by Bayati and Montanari [24] and subsequently for rotationally invariant ensembles

by Rangan, Schniter, and Fletcher [35]. We instantiate their result for our problem in the following

proposition.

Proposition 12 (State Evolution [35]). Suppose that the sensing matrix is generated from the sub-
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sampled Haar model and the signal vector is normalized such that ‖?‖2
2/m

P→ 1 and the iteration

(5.7) is initialized as:

ẑ(0) = α0z + σ0w,

where α0 ∈ R, σ0 ∈ R+ are fixed and w ∼ N (0, Im). Then for any fixed t ∈ N, as m,n → ∞,

n/m→ κ, we have,

〈ẑ(t), z〉
m

P→ αt,
‖ẑ(t)‖2

2

m

P→ α2
t + σ2

t ,

〈x̂(t),x?〉
m

P→ αt,
‖x̂(t)‖2

2

m

P→ α2
t + (1− κ)σ2

t ,

where (αt, σ
2
t ) are given by the recursion:

αt+1 = (δ − 1) · αt · EZ2ηt(|Z|), (5.11a)

σ2
t+1 =

(
1

κ
− 1

)
·
(
α2
t ·
{
EZ2η2

t (|Z|)− (EZ2ηt(|Z|))2
}

+ σ2
tEη2

t (|Z|)
)
. (5.11b)

In the above display, Z ∼ N (0, 1) and ηt(z) = ηt(|z|2)− Eηt(|Z|2).

The above proposition lets us track the evolution of some performance metrics like the mean

squared error (MSE) and the cosine similarity of the iterates. The proof of Proposition 12 crucially

relies on the rotational invariance of the sub-sampled Haar ensemble via Bolthausen’s conditioning

technique [80] and does not extend to structured sensing ensembles like the sub-sampled Hadamard

sensing matrix. However, empirically, the state evolution accurately describes the dynamics of the

Linearized AMP algorithm even for the sub-sampled Hadamard ensemble. In this chapter, we seek

to understand this universality phenomenon.

A Demonstration of the Universality Phenomena: For the sake of completeness, we provide a

self contained demonstration of the universality phenomena that we seek to study in Figure 5.1. In

order to generate this figure:
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1. We used a 1024× 256 image (after vectorization, shown as inset in Figure 5.1) as the signal

vector. Each of the red, blue, green channels were centered so that that their mean was zero

and standard deviation was 1.

2. We set m = 1024× 256.

3. In order to generate problems with different κwe down-sampled the original image to obtain

a new signal with n ≈ mκ (upto rounding errors).

4. We used a randomly sub-sampled Hadamard matrix for sensing. This was used to construct

a phase retrieval problem for each of the red, blue and green channels.

5. We used the linearized message passing configured to implement the spectral estimator (c.f.

(5.9) and (5.10)) with the optimal trimming function [21, 30]:

T?(y) = 1− 1

y
.

We ran the algorithm for 20 iterations and tracked the squared cosine similarity:

cos2(∠(x̂(t),x?))
def
=
|〈x̂(t),x?〉|2
‖x̂(t)‖2

2‖x?‖2
2

.

We averaged the squared cosine similarity across the RGB channels.

6. We repeated this for 10 different random sensing matrices. The average cosine similarity

is represented by + markers in Figure 5.1 and the error bars represent the standard error

across 10 repetitions. The solid curves represent the predictions derived from State Evolution

(see Proposition 12). We can observe that the State Evolution closely tracks the empirical

dynamics.

Assumption on the signal: It is easy to see that, unlike in the sub-sampled Haar case, the state

evolution cannot hold for arbitrary worst case signal vectors for the sub-sampled Hadamard sensing
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Figure 5.1: Solid Lines: Predicted Dynamics derived using State Evolution (Prop. 12 developed
for sub-sampled Haar sensing, + markers: Dynamics of Linearized Message Passing averaged over
10 repetitions with sub-sampled Hadamard sensing and a real image (shown in inset) used as the
signal vector. The error bars represent the standard error across repetitions.

models since the orthogonal signal vectors
√
me1 and

√
me2 generate the same measurement

vector y = (1, 1 · · · , 1)T. This is a folklore argument for non-indentifiability of the phase retrieval

problem for ±1 sensing matrices [81]. Hence we study the universality phenomena under the

simplest average case assumption on the signal, namely x? ∼ N
(
0, In/κ

)
.

5.2 Main Result

Now, we are ready to state our main result.

Theorem 6. Consider the linear message passing iterations (5.7). Suppose that:

1. The functions ηt are bounded and Lipchitz.

2. The signal is generated from the Gaussian prior: x? ∼ N
(
0, 1

κ
In
)
.
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3. The sensing matrix is generated from the sub-sampled Hadamard ensemble.

4. the iteration (5.7) is initialized as:

ẑ(0) = α0z + σ0w,

where α0 ∈ R, σ0 ∈ R+ are fixed and w ∼ N (0, Im).

Then for any fixed t ∈ N, as m,n→∞, n = κm, we have,

〈ẑ(t), z〉
m

P→ αt,
‖ẑ(t)‖2

2

m

P→ α2
t + σ2

t ,

〈x̂(t),x?〉
m

P→ αt,
‖x̂(t)‖2

2

m

P→ α2
t + (1− κ)σ2

t ,

where (αt, σ
2
t ) are given by the recursion in (5.11).

Theorem 6 simply states that the dynamics of linearized message passing in the sub-sampled

Hadamard model are asymptotically indistinguishable from the dynamics in the sub-sampled Haar

model. This provides a theoretical justification for the universality depicted in Figure 5.1.

Remarks on Proof Techniques: The proof of Theorem 6 is inspired by certain universality

results in random matrix theory [48] and in particular free probability [49]. A well known result

in free probability (see the book of Mingo and Speicher [49] for a textbook treatment) is that if

U ∼ Unif
(
U(m)

)
andD1,D2 are deterministic m×m diagonal matrices then UD1U

H andD2

are asymptotically free and consequently the limiting spectral distribution of matrix polynomials

in D2 and UD1U
H can be described in terms of the limiting spectral distribution of D1 and D2.

Tulino, Caire, Shamai, and Verdu [50] and Farrell [51] have obtained an extension of this result

where a Haar unitary matrix is replaced by m × m Fourier matrix: If D1,D2 are independent

diagonal matrices then FmD1F
H
m is asymptotically free from D2. The result of these authors has

been extended to other deterministic orthogonal/unitary matrices (such as the Hadamard-Walsh

matrix) conjugated by random signed permutation matrices by Anderson and Farrell [52]. In order
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to see how the result of Tulino, Caire, Shamai, and Verdu connects with ours note that the linearized

AMP iterations (5.7) involve 2 random matrices: HBHT and q(Y ). Note that if B and the

diagonal matrix q(Y ) were independent, then the result of Tulino, Caire, Shamai, and Verdu would

imply thatHBHT and q(Y ) are asymptotically free and this could potentially be used to analyze

the linearized AMP algorithm. However, the key difficulty is that the measurements y depend

on which columns of the Hadamard-Walsh matrix were selected (specified by B). Infact, this

dependence is precisely what allows the linearized AMP algorithm to recover the signal. However,

we still find some of the techniques introduced by Tulino, Caire, Shamai, and Verdu useful in

our analysis. We also emphasize that asymptotic freeness of HBHT, q(Y ) alone seems to

be insufficient to characterize the behavior of Linearized AMP algorithms. Asymptotic freeness

implies that the expected normalized trace of certain matrix products involving HBHT, q(Y )

vanish in the limit m → ∞. On the other hand, our proof also requires the analysis of certain

quadratic forms involving HBHT, q(Y ) (see Proposition 14) which do not appear to have been

studied in the free probability literature.

5.3 Additional Notation

In this section, we introduce some additional notations we rely on in this chapter.

Linear Algebraic Aspects: We will use bold face letters to refer to vectors and matrices. For a

matrix V ∈ Rm×n, we adopt the convention of referring to the columns of V by V1,V2 · · ·Vn ∈

Rm and to the rows by v1,v2 · · ·vm ∈ Rn. For a vector v, ‖v‖1, ‖v‖2, ‖v‖∞ denote the `1, `2, and

`∞ norms, respectively. By default, ‖v‖ denotes the `2 norm. For a matrixV , ‖V ‖op, ‖V ‖Fr, ‖V ‖∞
denote the operator norm, Frobenius norm, and the entry-wise∞-norm, respectively.

Important distributions: Bern(p) denotes Bernoulli distribution with bias p. Binom(n, p) de-

notes the Binomial distribution with n trials and bias p. For an arbitrary set S, Unif (S) denotes

the uniform distribution on the elements of S.
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Order Notation and Constants: We use the standard O(·) notation. C will be used to re-

fer to a universal constant independent of all parameters. When the constant C depends on a

parameter k we will make this explicit by using the notation Ck or C(k). We say a sequence

an = O(polylog(n)) if there exists a fixed, finite constant K such that an ≤ O(logK(n)).

5.4 Proof Overview

Our basic strategy to prove Theorem 6 will be as follows: Throughout the chapter, we will

assume that Assumptions 1, 2, and 4 of Theorem 6 hold. We will seek to only show that the

observables:

〈ẑ(t), z〉
m

,
‖ẑ(t)‖2

2

m
,
〈x̂(t),x?〉

m
,
‖x̂(t)‖2

2

m
, (5.12)

have the same limit in probability under both the sub-sampled Haar and the sub-sampled Hadamard

sensing models. We will not need to explicitly identify their limits since Proposition 12 already

identifies the limit for us, and hence, Theorem 6 will follow.

It turns out the limits of the observables (5.12) depends only on normalized traces and quadratic

forms of certain alternating products of the matrices Ψ and Z. Hence, we introduce the following

definition.

Definition 7 (Alternating Product). A matrix A is said to be a alternating product of matrices

Ψ,Z if there exist polynomials pi : R → R, i ∈ 1, 2 . . . , k, and bounded, Lipchitz functions

qi : R→ R, i ∈ {1, 2 . . . k} such that:

1. If B ∼ Bern(κ), Epi(B − κ) = 0.

2. qi are even functions i.e. qi(ξ) = qi(−ξ) and if ξ ∼ N (0, 1), then, Eqi(ξ) = 0,

and, A is one of the following:

1. Type 1: A = p1(Ψ)q1(Z)p2(Ψ) · · · qk−1(Z)pk(Ψ)
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2. Type 2: A = p1(Ψ)q1(Z)p2(Ψ)q2(Z) · · · pk(Ψ)qk(Z)

3. Type 3: A = q1(Z)p2(Ψ)q2(Z) · · · pk(Ψ)qk(Z).

4. Type 4: A = q1(Z)p2(Ψ)q2(Z)p3(Ψ) · · · qk−1(Z)pk(Ψ).

In the above definitions:

1. The scalar polynomial pi is evaluated at the matrix Ψ in the usual sense, for example if

p(ψ) = ψ2, then, p(Ψ) = Ψ2.

2. The functions qi are evaluated entry-wise on the diagonal matrix Z, i.e.

qi(Z) = Diag
(
qi(z1), qi(z2) . . . qi(zm)

)
.

We note that alternating products are a central notion in free probability [49]. The difference

here is that we have additionally constrained the functions pi, qi in Definition 7.

Theorem 6 is a consequence of two properties of alternating products which may be of inde-

pendent interest. These are stated in the following propositions.

Proposition 13. Let A(Ψ,Z) be an alternating product of matrices Ψ,Z. Suppose the sensing

matrix A is generated from the sub-sampled Haar sensing model, or the sub-sampled Hadamard

sensing model, or by sub-sampling a deterministic orthogonal matrix U with the property:

‖U‖∞ ≤

√
K1 logK2(m)

m
, ∀m ≥ K3,

for some fixed constants K1, K2, K3. Then,

Tr(A(Ψ,Z))/m
P→ 0.
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Proposition 14. Let A(Ψ,Z) be an alternating product of matrices Ψ,Z. Then for the sub-

sampled Haar sensing model and for sub-sampled Hadamard (U = H) sensing model, we have,

p-lim
〈z,Az〉
m

exists and is identical for the two models.

Outline of the Remaining Chapter: The remainder of the chapter is organized as follows:

1. In Section 5.5 we provide a proof of Theorem 6 assuming Propositions 13 and 14.

2. In Section 5.6 we introduce some key tools required for the proof of Propositions 13 and 14.

3. The proof of Proposition 13 can be found in Section 5.7.

4. The proof of Proposition 14 can be found in Section 5.8.

5.5 Proof of Theorem 6

In this section we will show the analysis of the observables (5.12) reduces to the analysis of

the normalized traces and quadratic forms of alternating products. In particular, we will prove

Theorem 6 using Propositions 13 and 14.

Proof of Theorem 6. For simplicity, we will assume the functions ηt do not change with t, i.e.

ηt = η ∀ t ≥ 0. This is just to simplify notations, and the proof of time varying ηt is exactly the

same. Define the function:

q(z) = η(|z|2)− EZ∼N (0,1)[η(|Z|2)].

Note that the linearized message passing iterations (5.7) can be expressed as:
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ẑ(t+1) =
1

κ
·Ψ · q(Z) · ẑ(t).

Unrolling the iterations we obtain:

ẑ(t) =
1

κt
· (Ψ · q(Z))t · ẑ(0).

Note that the initialization is assumed to be of the form: ẑ(0) = α0z + σ0w, wherew ∼ N (0, I).

Hence:

ẑ(t) = α0
1

κt
· (Ψ · q(Z))t · z + σ0 ·

1

κt
· (Ψ · q(Z))t ·w,

x̂(t) = ATẑ(t).

We will focus on showing that the limits:

p-lim
〈x?, x̂(t)〉

m
, p-lim

‖x̂(t)‖2
2

m
, (5.13)

exist and are identical for the two models. The claim for the limits corresponding to ẑ(t) are exactly

analogous and omitted. Hence, the remainder of the proof is devoted to analyzing the above limits.

Analysis of 〈x?, x̂(t)〉: Observe that:

〈x?, x̂(t)〉 = 〈ATz,ATẑ(t)〉

= α0
1

κt
· 〈ATz,AT(Ψ · q(Z))t · z〉︸ ︷︷ ︸

(T1)

+σ0 ·
1

κt
· 〈ATz,AT · (Ψ · q(Z))t ·w〉︸ ︷︷ ︸

(T2)

.
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We first analyze term (T1). Observe that:

(T1) = zTAAT(Ψ · q(Z))tz

= zTΨ(Ψ · q(Z))tz + κzT(Ψ · q(Z))tz

= zTΨ2(q(Z)Ψ)t−1q(Z)z + κzT(Ψ · q(Z))tz

(a)
= zTp(Ψ)(q(Z)Ψ)t−1q(Z)z + κ(1− κ)zT(q(Z)Ψ)t−1q(Z)z + κzT(Ψ · q(Z))tz.

In the step marked (a) we defined the polynomial p(ψ) = ψ2 − κ(1 − κ) which has the

property Ep(B−κ) = 0 when B ∼ Bern(κ). One can check that Z ∼ N (0, 1), Eq(Z) = 0,

and q is a bounded, Lipchitz, even function. Hence, each of the terms appearing in step

(a) are of the form zTAz for some alternating product A (Definition 7) of matrices Ψ,Z.

Consequently, by Proposition 14 we obtain that term (1) divided bym converges to the same

limit in probability under both the sub-sampled Haar sensing and the sub-sampled Hadamard

sensing model. Next, we analyze (T2). Note that:

〈ATz,AT · (Ψ · q(Z))t ·w〉
m

= zTAAT(Ψ · q(Z))tw/m

d
=
‖(q(Z)Ψ)tAATz‖2

m
·W, W ∼ N (0, 1) ,

where d
= means both sides have a same distribution. Observe that:

‖(q(Z)Ψ)tAATz‖2

m
=
‖(q(Z)Ψ)tAx?‖2

m

≤ ‖(q(Z)Ψ)tA‖op ·
‖x?‖2

m

≤ ‖q(Z)‖top‖Ψ‖top‖A‖op ·
‖x?‖2

m
.

It is easy to check that: ‖q(Z)‖op ≤ 2‖η‖∞ < ∞. Similarly, ‖Ψ‖op ≤ 1, ‖A‖op = 1.
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Hence,

‖(q(Z)Ψ)tAATz‖2

m
≤ 2t‖η‖t∞ ·

√
‖x?‖2

m
· 1√

m

Observing that ‖x?‖2/m
P→ 1 we obtain:

∣∣∣∣∣〈ATz,AT · (Ψ · q(Z))t ·w〉
m

∣∣∣∣∣ ≤ 2t‖η‖t∞ ·
√
‖x?‖2

m
· |W |√

m

P→ 0.

Note the above result holds for both subsampled Haar sensing and subsampled Hadamard

sensing. This proves that the limit

p-lim
〈x?, x̂(t)〉

m

exists and is identical for the two models.

Analysis of ‖x̂(t)‖2: Recalling that:

ẑ(t) = α0
1

κt
· (Ψ · q(Z))t · z + σ0

1

κt
· (Ψ · q(Z))t ·w,

x̂(t) = ATẑ(t),

we can compute:

1

m
‖x̂(t)‖2

2 =
1

κ2t
·
(
α2

0 · (T3) + 2α0σ0(T4) + σ2
0 · (T5)

)
,

where the terms (T3 − T5) are defined as:

(T3) =
zT(q(Z)Ψ)tAAT(Ψ · q(Z))t · z

m
,

(T4) =
zT(q(Z)Ψ)tAAT(Ψ · q(Z))t ·w

m
,

(T5) =
wT(q(Z)Ψ)tAAT(Ψ · q(Z))t ·w

m
.
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We analyze each of these terms separately. First, consider (T3). Our goal will be to decom-

pose the matrix (q(Z)Ψ)tAAT(Ψ · q(Z))t as:

(q(Z)Ψ)tAAT(Ψ · q(Z))t = c0I +
Nt∑
i=1

ciAi,

where Ai are alternating products of the matrices Ψ,Z (see Definition 7) and ci are some

scalar constants. This decomposition has the following properties: 1) It is independent of

the choice of the orthogonal matrix U used to generate the sensing matrix. 2) The number

of terms in the decomposition Nt depends only on t and not on m,n. In order to see why

such a decomposition exists: first recall thatAAT = Ψ + κIm. Hence, we can write:

(q(Z)Ψ)tAAT(Ψ · q(Z))t = (q(Z)Ψ)tΨ(Ψ · q(Z))t + κzT(q(Z)Ψ)t(Ψ · q(Z))t

= (q(Z)Ψ)t−1q(Z)Ψ3q(Z)(Ψ · q(Z))t−1 + κzT(q(Z)Ψ)t−1q(Z)Ψ2q(Z)(Ψ · q(Z))t−1.

For any i ∈ N, we write Ψi = pi(Ψ) + µiI , where µi = E(B − κ)i, B ∼ Bern(κ), and

pi(ψ) = ψi − µi. This polynomial satisfies Epi(B − κ) = 0. This gives us:

(q(Z)Ψ)tAAT(Ψ · q(Z))t = (q(Z)Ψ)t−1q(Z)p3(Ψ)q(Z)(Ψ · q(Z))t−1

+ κzT(q(Z)Ψ)t−1q(Z)p2(Ψ)q(Z)(Ψ · q(Z))t−1

+ (µ3 + κµ2) · (q(Z)Ψ)t−1q(Z)2(Ψ · q(Z))t−1.

In the above display, the first two terms on the RHS are in the desired alternating product

form. We center the last term. For any i ∈ N we define qi(z) = qi(z)−νi, νi = Eq(ξ)i, ξ ∼
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N (0, 1). Hence, qi(Z) = qi(Z) + νiIm. Hence:

(q(Z)Ψ)tAAT(Ψ · q(Z))t = (q(Z)Ψ)t−1q(Z)p3(Ψ)q(Z)(Ψ · q(Z))t−1

+ κzT(q(Z)Ψ)t−1q(Z)p2(Ψ)q(Z)(Ψq(Z))t−1

+ (µ3 + κµ2)(q(Z)Ψ)t−1q2(Z)(Ψ · q(Z))t−1

+ ν2 (µ3 + κµ2)(q(Z)Ψ)t−1(Ψ · q(Z))t−1.

In the above display, each of the terms in the right hand side is an alternating product except

(µ3 + κµ2) · (q(Z)Ψ)t−1(Ψ · q(Z))t−1. We inductively center this term. Note that this cen-

tering procedure does not depend on the choice of the orthogonal matrix U used to generate

the sensing matrix. Furthermore, the number of terms is bounded by Nt ≤ Nt−1 + 3, so

Nt ≤ 1 + 3t. Hence, we have obtained the desired decomposition:

(q(Z)Ψ)tAAT(Ψ · q(Z))t = c0I +
Nt∑
i=1

ciAi. (5.14)

Therefore, we can write (T3) as:

(T3) = c0
‖z‖2

m
+

1

m

Nt∑
i=1

ci z
TAiz = c0

‖x?‖2

m
+

1

m

Nt∑
i=1

ci z
TAiz.

Observe that ‖x?‖2/m
P→ 1, and Proposition 14 guarantees zTAiz/m converges in prob-

ability to the same limit irrespective of whether U = O or U = H . Hence, term (T3)

converges in probability to the same limit for both the subsampled Haar sensing and the

subsampled Hadamard sensing model.

Next, we analyze term (T4). Repeating the arguments we made for the analysis of the term
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(T2) we find:

(T4) =
zT(q(Z)Ψ)tAAT(Ψ · q(Z))t ·w

m

d
=
‖(q(Z)Ψ)tAAT(Ψ · q(Z))tz‖2

m
·W P→ 0,

where W ∼ N (0, 1). Finally, we analyze the term (T5). Using the decomposition (5.14) we

have:

(T5) = c0
‖w‖2

2

m
+

1

m

Nt∑
i=1

ci w
TAiw.

We know that ‖w‖2
2/m

P→ 1. Hence, we focus on analyzing wTAiw/m. We decompose

this as:

wTAiw
m

=
wTAiw − E[wTAiw|Ai]

m
+

E[wTAiw|Ai]
m

.

Observe that:

E[wTAiw|Ai]
m

=
κ · Tr(Ai)

m

P→ 0 (By Proposition 13).

On the other hand, using the Hanson-Wright Inequality (Fact 4) together with the estimates

‖Ai‖op ≤ C(Ai), ‖Ai‖Fr ≤
√
m · C(Ai),

for a fixed constant C(Ai) (independent of m,n) depending only on the formula for Ai, we

obtain:

P

(∣∣∣wTAiw − E[wTAiw|Ai]
∣∣∣ > mt

∣∣∣∣ Ai
)
≤ 2 exp

(
− c

C(Ai)
·m ·min(t, t2)

)
→ 0.
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Hence,

wTAiw − E[wTAiw|Ai]
m

P→ 0.

This implies (T5)
P→ c0 for both the models. This proves the limit :

p-lim
‖x̂(t)‖2

2

m

exists and is identical for the two sensing models, which concludes the proof of Theorem 6.

5.6 Key Ideas for the Proof of Propositions 13 and 14

In this section, we introduce some key ideas that are important in the proof of Propositions 13

and 14. Recall that we wish to analyze the limit in probability of the normalized trace and the

quadratic form. A natural candidate for this limit is the limiting value of their expectation:

p-lim
1

m
TrA(Ψ,Z)

?
= lim

m→∞

1

m
ETrA(Ψ,Z),

p-lim
〈z,Az〉
m

?
= lim

m→∞

E〈z,Az〉
m

.

In order to show this, one needs to show that the variance of the normalized trace and the normal-

ized quadratic form converge to 0, which involves analyzing the second moment of these quantities.

However, since the analysis of the second moment uses very similar ideas as the analysis of the

expectation, we focus on outlining the main ideas in the context of the analysis of expectation.

First, we observe that alternating products can be simplified significantly due to the following

property of polynomials of centered Bernoulli random variables.
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Lemma 16. For any polynomial p such that if B ∼ Bern(κ), E p(B − κ) = 0 we have,

p(Ψ) = (p(1− κ)− p(−κ)) ·Ψ.

Proof. Observe that since Ψ = UBUT, andU is orthogonal, we have p(Ψ) = Up(B)UT. Next,

observe that:

p(Bii) = p(1− κ)Bii + p(−κ)(1−Bii)

= (p(1− κ)− p(−κ)) ·Bii + κp(1− κ) + (1− κ)p(−κ)︸ ︷︷ ︸
=0

,

where the last step follows from the assumption E p(B − κ) = 0. Hence, p(B) = (p(1 − κ) −

p(−κ))B and p(Ψ) = (p(1− κ)− p(−κ))Ψ.

Hence, without loss of generality we can assume that each of the pi in an alternating product

satisfy pi(ξ) = ξ.

5.6.1 Partitions

Note that the expected normalized trace and the expected quadratic form in Propositions 13

and 14 can be expanded as follows:

1

m
ETrA(Ψ,Z) =

1

m

m∑
a1,a2,...ak=1

E[(Ψ)a1,a2q1(za2) · · · qk−1(zak)(Ψ)ak,a1 ],

E〈z,Az〉
m

=
1

m

∑
a1:k+1∈[m]

E[za1(Ψ)a1,a2q1(za2)(Ψ)a2,a3 · · · qk−1(zak)(Ψ)ak,ak+1
zak+1

].

Some Notation: Let P([k]) denotes the set of all partitions of a discrete set [k]. We use |π| to

denote the number of blocks in π. Recall that a partition π ∈ P([k]) is simply a collection of

disjoint subsets of [k] whose union is [k] i.e.

π = {V1,V2 . . .V|π|}, t|π|t=1Vt = [k].
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The symbol t is exclusively reserved for representing a set as a union of disjoint sets. For any

element s ∈ [k], we use the notation π(s) to refer to the block that s lies in. That is, π(s) = Vi iff

s ∈ Vi. For any π ∈ P([k]), define the set C(π) the set of all vectors a ∈ [m]k which are constant

exactly on the blocks of π:

C(π)
def
= {a ∈ [m]k : as = at ⇔ π(s) = π(t)}.

Consider any a ∈ C(π). If Vi is a block in π, we use aVi to denote the unique value the vector a

assigns to the all the elements of Vi.

The rationale for introducing this notation is the observation that:

[m]k =
⊔

π∈P([k])

C(π),

and hence we can write the normalized trace and quadratic forms as:

ETrA(Ψ,Z)

m
=

1

m

∑
π∈P([k])

∑
a∈C(π)

E[(Ψ)a1,a2q1(za2) · · · qk−1(zak)(Ψ)ak,a1 ], (5.15a)

E〈z,Az〉
m

=
1

m

∑
π∈P([k+1])

∑
a∈C(π)

E[za1(Ψ)a1,a2q1(za2) · · · qk−1(zak)(Ψ)ak,ak+1
zak+1

]. (5.15b)

This idea of organizing the combinatorial calculations is due to Tulino, Caire, Shamai, and Verdú

[82] and the rationale for doing so will be clear in a moment.

5.6.2 Concentration

Lemma 17. Let the sensing matrixA be generated by sub-sampling an orthogonal matrix U . We

have, for any a, b ∈ [m]:

P
(
|Ψab| ≥ ε|U

)
≤ 4 exp

(
− ε2

8m‖U‖4
∞

)
.
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Proof. Recall that Ψ = U (B − κIm)UT, where the distribution of the diagonal matrix

B = Diag (B11, B22 . . . Bmm)

is described as follows: First draw a uniformly random subset S ⊂ [m] with |S| = n and set:

Bii =


0 : i 6∈ S

1 : i ∈ S
.

Due to the constraint that
∑m

i=1Bii = n, these random variables are not independent. In order to

address this issue we coupleB with another random diagonal matrix B̃ generated as follows:

1. First sample N ∼ Binom(m,κ).

2. Sample a subset S̃ ⊂ [m] with |S̃| = N as follows:

• If N ≤ n, then set S̃ to be a uniformly random subset of S of size N .

• If N > n first sample a uniformly random subset A of Sc of size N − n and set

S̃ = S ∪ A.

3. Set B̃ as follows:

B̃ii =


0 : i 6∈ S̃

1 : i ∈ S̃.
.

It is easy to check that conditional on N , S̃ is a uniformly random subset of [m] with cardinality

N . Since N ∼ Binom(m,κ), we have B̃ii
i.i.d.∼ Bern(κ). Define:

T
def
= Ψab = uT

a (B − κIm)ub =
m∑
i=1

uaiubi(Bii − EBii),

T̃
def
= uT

a (B̃ − κIm)ub =
m∑
i=1

uaiubi(B̃ii − EB̃ii).
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Observe that |T − T̃ | ≤ |N − n|‖U‖2
∞. Hence,

P
(
|T | ≥ ε

)
≤ P

(
|T̃ | ≥ ε

2

)
+ P

(
|T − T̃ | ≥ ε

2

)
= P

(
|T̃ | ≥ ε

2

)
+ P

(
|N − EN | ≥ ε

2‖U‖2
∞

)
(a)

≤ 4 exp

(
− ε2

8m‖U‖4
∞

)
.

In the step marked (a), we used Hoeffding’s Inequality.

Hence the above lemma shows that,

‖Ψ‖∞ ≤ O
(√

m‖U‖2
∞ polylog(m)

)
,

with high probability. Recall that in the subsampled Hadamard model U = H and ‖H‖∞ =

1/
√
m. Similarly, in the subsampled Haar model U = O and ‖O‖∞ ≤ O(polylog(m)/

√
m).

Hence, we expect:

‖Ψ‖∞ ≤ O

(
polylog(m)√

m

)
, with high probability. (5.16)

5.6.3 Mehler’s Formula

Note that in order to compute the expected normalized trace and quadratic form as given in

(5.15), we need to compute:

E[(Ψ)a1,a2q1(za2) · · · qk−1(zak)(Ψ)ak,a1 ],

E[za1(Ψ)a1,a2q1(za2)(Ψ)a2,a3 · · · qk−1(zak)(Ψ)ak,ak+1
zak+1

].

Note that by the Tower property:

E[(Ψ)a1,a2q1(za2) · · · qk−1(zak)(Ψ)ak,a1 ] = E
[
(Ψ)a1,a2 · · · (Ψ)ak,a1E[q1(za2) · · · qk−1(zak)|A]

]
,
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and analogously for E[za1(Ψ)a1,a2q1(za2)(Ψ)a2,a3 · · · qk−1(zak)(Ψ)ak,ak+1
zak+1

]. Suppose that a ∈

C(π) for some π ∈ P([k]). Let π = V1 t V2 · · · t V|π|. Define:

FVi(ξ) =
∏
j∈Vi
j 6=1

qj−1(ξ).

Then, we have:

E[q1(za2) · · · qk−1(zak)|A] = E

 |π|∏
i=1

FVi(zaVi )

∣∣∣∣A
 .

In order to compute the conditional expectation we observe that conditional onA, z is a zero mean

Gaussian vector with covariance:

E[zzT|A] =
1

κ
AAT =

1

κ
UBUT = I +

Ψ

κ
.

Note that since aVi 6= aVj for i 6= j, we have as a consequence of (5.16), {zaVi}
|π|
i=1 are weakly

correlated Gaussians. Hence we expect,

E[q1(za2) · · · qk−1(zak)|A] =

|π|∏
i=1

EZ∼N (0,1)FVi(Z) + A small error term,

where the error term is a term that goes to zero as m → ∞. Mehler’s formula given in the

proposition below provides an explicit formula for the error term. Observe that in (5.15):

1. the sum over π ∈ P([k]) cannot cause the error terms to add up since |P([k])| is a constant

depending on k but independent of m.

2. On the other hand, the sum over a ∈ C(π) can cause the errors to add up since:

|C(π)| = m · (m− 1) · · · (m− |π|+ 1).
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It is not obvious right away how accurately the error must be estimated, but it turns out that for

the proof of Proposition 13 it suffices to estimate the order of magnitude of the error term. For the

proof of Proposition 14 we need to be more accurate and the leading order term in the error needs

to be tracked precisely.

Before we state Mehler’s formula we recall some preliminaries regarding Fourier analysis on

the Gaussian space. Let Z ∼ N (0, 1). Let f : R → R be such that Ef 2(Z) < ∞, i.e. f ∈

L2(N (0, 1)). The Hermite polynomials {Hj : j ∈ N0} form an orthogonal polynomial basis

for L2(N (0, 1)). The polynomial Hj is a degree j polynomial. They satisfy the orthogonality

property:

EHi(Z)Hj(Z) = i! · δij.

The first few Hermite polynomials are given by:

H0(z) = 1, H1(z) = z, H2(z) = z2 − 1.

Proposition 15 (Mehler [61] and Slepian [62]). Consider a k dimensional Gaussian vector z ∼

N (0,Σ), such that Σii = 1 for all i ∈ [k]. Let f1, f2, . . . , fk : R → R be k arbitrary functions

whose absolute value can be upper bounded by a polynomial. Then,

∣∣∣∣∣∣∣∣∣E
 k∏
i=1

fi(zi)

− ∑
w∈G(k)
‖w‖≤t

 k∏
i=1

f̂i(di(w))

 · Σw

w!

∣∣∣∣∣∣∣∣∣ ≤ C

(
1 +

1

λ4t+4
min (Σ)

)(
max
i 6=j
|Σij|

)t+1

,

where:

1. G(k) denotes the set of undirected weighted graphs with non-negative integer weights on k

nodes with no self loops.

2. An element w ∈ G(k) is represented by a k × k symmetric matrix w with wij = wji ∈
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N ∪ {0}, and wii = 0.

3. di(w) denotes the degree of node i: di(w) =
∑k

j=1wij .

4. ‖w‖ denotes the total weight of the graph defined as:

‖w‖ def
=
∑
i<j

wij =
1

2

k∑
i=1

di(w).

5. The coefficients f̂i(j) are defined as: f̂i(j) = Efi(Z)Hj(Z) where Z ∼ N (0, 1).

6. Σw,w! denote the entry-wise powering and factorial:

Σw =
∏
i<j

Σ
wij
ij , w! =

∏
i<j

wij!

7. C = Ct,k,f1:k
is a finite constant depending only on the t, k, and the functions f1:k but is

independent of Σ.

This result is essentially due to Mehler [61] in the case k = 2, and the result for general k

was obtained by Slepian [62]. Actually the results of these authors show that the pdf of N (0,Σ)

denoted by ψ(z; Σ) has the following Taylor expansion around Σ = Ik:

ψ(z; Σ) = ψ(z; Ik) ·

 ∑
w∈G(k)

Σw

w!
·

k∏
i=1

Hdi(w)(zi)

 .

In Appendix C.5 of the supplementary materials we check that this Taylor’s expansion can be

integrated, and estimate the truncation error to obtain Proposition 15.

At this point, we have introduced all the tools used in the proof of Proposition 13 and we refer

the reader to Section 5.7 for the proof of Proposition 13.

5.6.4 Central Limit Theorem

We introduce the following definition.
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Definition 8 (Matrix Moment). LetM be a symmetric matrix. Given:

1. A partition π ∈ P([k]) with blocks π = {V1,V2, · · · ,V|π|}.

2. A k × k symmetric weight matrix w ∈ G(k) with non-negative valued entries and wii =

0 ∀ i ∈ [k].

3. A vector a ∈ C(π).

Define the (w, π,a) - matrix moment of the matrixM as:

M(M ,w, π,a)
def
=

∏
i,j∈[k],i<j

Mwij
ai,aj

.

By defining:

Wst(w, π)
def
=

∑
i,j∈[k],i<j

{π(i),π(j)}={Vs,Vt}

wij,

we can writeM(M ,w, π,a) in the form:

M(M ,w, π,a) =
∏

s,t∈[|π|]
s≤t

MWst(w,π)
aVs ,aVt

.

Remark 14 (Graph Interpretation). It is often useful to interpret the tuple (w, π,a) in terms of

graphs:

1. w represents the adjacency matrix of an undirected weighted graph on the vertex set [k] with

no self-edges (wii = 0). We say an edge exists between nodes i, j ∈ [k] if wij ≥ 1 and the

weight of the edge is given by wij .

2. The partition π of the vertex set [k] represents a community structure on the graph. Two

vertices i, j ∈ [k] are in the same community iff π(i) = π(j).
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3. a represents a labelling of the vertices [k] with labels in the set [m] which respects the

community structure.

4. The weights Wst(w, π) simply denote the total weight of edges between communities s, t.

The rationale for introducing this definition is as follows: When we use Mehler’s formula

to compute E[q1(za2) · · · qk−1(zak)|A] and E[za1q1(za2) · · · qk−1(zak)zak+1
|A], and substitute the

resulting expression in (5.15), it expresses:

TrA(Ψ,Z)

m
,
E〈z,Az〉

m
,

in terms of the matrix momentsM(Ψ,w, π,a).

For the proof of Proposition 13 it suffices to upper bound |M(Ψ,w, π,a)|. We do so in the

following lemma.

Lemma 18. Consider an arbitrary matrix momentM(Ψ,w, π,a) of Ψ. There exists a universal

constant C (independent of m,a, π,w) such that,

E|M(Ψ,w, π,a)| ≤


√
C‖w‖ log2(m)

m


‖w‖

,

for both the sub-sampled Haar and the sub-sampled Hadamard sensing model.

The claim of the lemma is not surprising in light of (5.16). The complete proof follows from

the concentration inequality in Lemma 17, which can be found in Appendix C.3.1.

On the other hand, to prove Proposition 14 we need a more refined analysis and we need to

estimate the leading order term in EM(Ψ,w, π,a). In order to do so, we first consider any fixed

entry of
√
mΨ:

√
mΨab =

√
m(UBUT)ab =

m∑
i=1

√
m · uai · ubi(Bii − κ).
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Observe that:

1. Bii − κ are centered and weakly dependent.

2.
√
muaiubi = O(m−

1
2 ) under the sub-sampled Haar model and the sub-sampled Hadamard

model.

Consequently, we expect
√
mΨab to converge to a Gaussian random variable and hence, we expect

that:

EM(
√
mΨ,w, π,a)

to converge to a suitable Gaussian moment. In order to show that the normalized quadratic form

E〈z,Az〉/m converges to the same limit under both the sensing models, we need to understand

what is the limiting value of EM(
√
mΨ,w, π,a) under both the models. Understanding this uses

the following simple but important property of Hadamard matrices.

Lemma 19. For any i, j ∈ [m], we have:

√
mhi � hj = hi⊕j,

where � denotes the entry-wise multiplication of vectors, and i⊕ j ∈ [m] denotes the result of the

following computation:

Step 1: Compute i, j ∈ {0, 1}m which are the binary representations of (i − 1) and (j − 1)

respectively.

Step 2: Compute i+ j by adding i, j bit-wise (modulo 2).

Step 3: Compute the number in [0 : m− 1] whose binary representation is given by i+ j.

Step 4: Add one to the number obtained in Step 3 to obtain i⊕ j ∈ [m].
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Proof. Recall by the definition of the Hadamard matrix, we have,

hik =
1√
m

(−1)〈i,k〉, hjk =
1√
m

(−1)〈j,k〉.

Hence,

√
m(hi � hj)k =

(−1)〈i+j,k〉√
m

= (hi⊕j)k,

as claimed.

Due to the structure in Hadamard matrices, EM(
√
mΨ,w, π,a) might not always converge

to the same limit under the subsampled Haar and the Hadamard models. There are two kinds of

exceptions:

Exception 1: Note that for the subsampled Hadamard Model,

√
mΨaa =

√
m

m∑
i=1

Bii|hai|2 =
1√
m

m∑
i=1

Bii = 0.

In contrast, under the subsampled Haar model, it can be shown that
√
mΨaa converges to a

non-degenerate Gaussian. These exceptions are ruled out by requiring the weight matrix w

to be dissassortative with respect to π (See definition below).

Exception 2: Define b ∈ Rm to be the vector formed by the diagonal entries of B. Observe that

for the subsampled Hadamard model:

√
mΨab = 〈b,√mha � hb〉 = 〈b,ha⊕b〉.

Consequently, if two distinct pairs (a1, b1) and (a2, b2) are such that a1 ⊕ b1 = a2 ⊕ b2, then
√
mΨa1,b1 and

√
mΨa2,b2 are perfectly correlated in the subsampled Hadamard model. In

contrast, unless (a1, b1) = (a2, b2), it can be shown they are asymptotically uncorrelated in

142



the subsampled Haar model. This exception is ruled out by requiring the labelling a to be

conflict free with respect to (w, π) (defined below).

Definition 9 (Disassortative Graphs). We say the weight matrixw is disassortative with respect to

the partition π if: ∀ i, j ∈ [k], i < j such that π(i) = π(j), we have wij = 0. This is equivalent to

Wss(w, π) = 0 for all s ∈ [|π|]. In terms of the graph interpretation, this means that there are no

intra-community edges in the graph. For any π ∈ P([k]),we denote the set of all weight matrices

dissortive with respect to π by GDA(π):

GDA(π)
def
= {w ∈ G(k) : Wss(w, π) = 0 ∀ s ∈ [|π|]}.

Definition 10 (Conflict Freeness). Let π ∈ P([k]) be a partition and let w ∈ GDA(π) be a weight

matrix disassortative with respect to π. Let s1 < t1 and s2 < t2 be distinct pairs of communities:

s1, s2, t1, t2 ∈ [|π|], (s1, t1) 6= (s2, t2). We say a labelling a ∈ C(π) has a conflict between distinct

community pairs (s1, t1) and (s2, t2) if:

1. Ws1,t1(w, π) ≥ 1, Ws2,t2(w, π) ≥ 1.

2. aVs1 ⊕ aVt1 = aVs2 ⊕ aVt2 .

We say a labelling a is conflict-free if it has no conflicting community pairs. The set of all conflict

free labellings of (w, π) is denoted by LCF(w, π).

The following two propositions show that if Exception 1 and Exception 2 are ruled out, then

indeed EM(
√
mΨ,w, π,a) converges to the same Gaussian moment under both the subsampled

Haar and the Hadamard models.

Proposition 16. Consider the sub-sampled Haar model (Ψ = OBOT). Fix a partition π ∈ P(k)

and a weight matrix w ∈ G(k). Then, there exist constants K1, K2, K3 > 0 depending only on
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‖w‖ (independent of m), such that for any a ∈ C(π) we have:

∣∣∣∣∣∣∣∣EM(
√
mΨ,w, π,a)−

∏
s,t∈[|π|]
s≤t

E
[
Z
Wst(w,π)
st

]∣∣∣∣∣∣∣∣ ≤
K1 logK2(m)

m
1
4

, ∀ m ≥ K3.

In the above display, Zst, s ≤ t, s, t ∈ [|π|] are independent Gaussian random variables with

the distribution:

Zst ∼


s < t : N

(
0, κ(1− κ)

)
s = t : N

(
0, 2κ(1− κ)

) .

Proposition 17. Consider the sub-sampled Hadamard model (Ψ = HBHT). Fix a partition

π ∈ P(k) and a weight matrix w ∈ Nk×k
0 . Then,

1. Suppose that w 6∈ GDA(π), then,

M(
√
mΨ,w, π,a) = 0.

2. Suppose that w ∈ GDA(π). Then, there exist constants K1, K2, K3 > 0 depending only on

‖w‖ (independent of m), such that for any conflict free labelling a ∈ LCF(w, π), we have:

∣∣∣∣∣∣∣∣EM(
√
mΨ,w, π,a)−

∏
s,t∈[|π|]
s<t

E
[
ZWst(w,π)
κ

]∣∣∣∣∣∣∣∣ ≤
K1 logK2(m)

m
1
4

, ∀ m ≥ K3.

In the above display, Zκ ∼ N
(
0, κ(1− κ)

)
.

The proof of these Propositions can be found in Appendix C.3.2 in the supplementary materials.

The proofs use a coupling argument to replace the weakly dependent diagonal matrixB with a i.i.d.

diagonal entries (as in the proof of Lemma 17) along with a classical Berry Eseen inequality due

to Bhattacharya [83].
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Finally, in order to finish the proof of Proposition 14 regarding the universality of the normal-

ized quadratic form we need to argue the exceptional labellings for which EM(
√
mΨ,w, π,a)

doesn’t converge to the same Gaussian moment under the sub-sampled Hadamard and Haar models

are an asymptotically negligible fraction of the total labellings.

Lemma 20. Let π ∈ P([k]) be a partition andw ∈ GDA(π) be a weight matrix disassortative with

respect to π. We have, |C(π)\LCF(w, π)| ≤ |π|4 ·m|π|−1, and

lim
m→∞

LCF(w, π)

m|π|
= 1.

Proof. Let (s1, t1) 6= (s2, t2) be two distinct community pairs such that:

Ws1,t1(w, π) ≥ 1, Ws2,t2(w, π) ≥ 1.

Let L(s1,t1;s2,t2)(w, π) denote the set of all labellings a ∈ C(π) that have a conflict between distinct

community pairs (s1, t1) and (s2, t2):

L(s1,t1;s2,t2)(w, π)
def
= {a ∈ C(π) : aVs1 ⊕ aVt1 = aVs2 ⊕ aVt2}.

Then, we note that

C(π)\LCF(w, π) =
⋃

s1,t1,s2,t2

L(s1,t1;s2,t2)(w, π),

where the union ranges over s1, t1, s2, t2 such that 1 ≤ s1 < t1 ≤ |π|, 1 ≤ s2 < t2 ≤ |π| and

(s1, t1) 6= (s2, t2) and Ws1,t1(w, π) ≥ 1,Ws2,t2(w, π) ≥ 1. Next, we bound |L(s1,t1;s2,t2)(w, π)|.

Since we know that (s1, t1) 6= (s2, t2) and s1 < t1 and s2 < t2 out of the 4 indices s1, t1, s2, t2,

there must be one index which is different from all the others. Let us assume that this index is t2

(the remaining cases are analogous). To count |L(s1,t1;s2,t2)(w, π)| we assign labels to all blocks of

π except t2. The number of ways of doing so is at most m|π|−1. After we do so, we note that aVt2
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is uniquely determined by the constraint:

aVs1 ⊕ aVt1 = aVs2 ⊕ aVt2 .

Hence, |L(s1,t1;s2,t2)(w, π)| ≤ m|π|−1. Therefore,

|C(π)\LCF(w, π)| =
∑

s1,t1,s2,t2

|L(s1,t1;s2,t2)(w, π)| ≤ |π|4m|π|−1.

Finally, we note that,

|C(π)| − |C(π)\LCF(w, π)| = |LCF(w, π)| ≤ |C(π)|.

|C(π)| is given by:

|C(π)| = m(m− 1) · · · (m− |π|+ 1) = m|π| · (1 + om(1)).

Combining this with the already obtained upper bound |C(π)\LCF(w, π)| ≤ |π|4 ·m|π|−1, we obtain

the second claim of the lemma.

We now have all the tools required to finish the proof of Proposition 14 and we refer the reader

to Section 5.8 for the proof of this result.

5.7 Proof of Proposition 13

In this Section we prove Proposition 13.

Let us consider a fixed alternating productA(Ψ,Z) as given in Definition 7. As a consequence

of Lemma 16 we can assume that all the polynomials pi(ξ) = ξ. We begin by stating a few

intermediate lemmas which will be used to prove Proposition 13.

Lemma 21 (A high probability event). LetU denote them×m orthogonal matrix used to generate
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the sensing matrix . Define the event:

E =

{
max
i 6=j
|(AAT|)ij ≤

√
32 ·m · ‖U‖4

∞ · log(m),

max
i∈[m]
|(AAT)ii − κ| ≤

√
32 ·m · ‖U‖4

∞ · log(m)

}
. (5.17)

Then,

P(E|U) ≥ 1− 4/m2.

Furthermore, for the subsampled Haar model, when U = O ∼ Unif
(
O(m)

)
, we have:

P

{‖O‖∞ ≤√8 log(m)

m

}
∩ E

 ≥ 1− 6/m2.

The above Lemma follows from the concentration result in Lemma 17 and a union bound.

Complete details are provided in Appendix C.1 in the supplementary materials.

Lemma 22 (A Continuity Estimate). LetA(Ψ,Z) be an alternating product of the matrices Ψ,Z

(see Definition 7). Then the map Z 7→ TrA(Ψ,Z)/m is Lipchitz in Z, i.e. for any two diagonal

matrices Z = Diag (z1, z2 . . . , zm) , Z ′ = Diag (z′1, z
′
2 . . . , z

′
m) we have:

∣∣∣∣TrA(Ψ,Z)

m
− TrA(Ψ,Z ′)

m

∣∣∣∣ ≤ C(A)√
m
· ‖Z −Z ′‖Fr,

where C(A) denotes a constant depending only on the formula for the alternating product A

(independent of m,n).

This lemma follows from a straightforward computation provided in C.1 in the supplementary

materals.

Lemma 23 (Analysis of Expectation). Let the sensing matrixA be drawn either from the subsam-
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pled Haar model or be generated using a deterministic orthogonal matrix U with the property:

‖U‖∞ ≤

√
K1 logK2(m)

m
,

for some universal constants K1, K2 ≥ 0, then, we have:

1

m
E[Tr(A(Ψ,Z))|A]

P→ 0.

Lemma 24 (Analysis of Variance). LetA(Ψ,Z) be any alternating product of the matrices Ψ,Z.

Then,

Var

(
TrA(Ψ,Z)

m

∣∣∣∣A
)
≤ C(A)

n
,

where C(A) denotes a constant depending only on the formula for the alternating product A

(independent of m,n).

Proofs of Lemmas 23 and 24 can be found at Section 5.7.1. Before moving forward to the

proofs of these lemmas, let us conclude the proof of Proposition 13 assuming Lemmas 23 and 24

are true.

Proof of Proposition 13. We write Tr(A(Ψ,Z))/m as:

Tr(A(Ψ,Z))

m
= E

[
Tr(A(Ψ,Z))

m

∣∣∣∣A
]

+

Tr(A(Ψ,Z))

m
− E

[
Tr(A(Ψ,Z))

m

∣∣∣∣A
] .

We will show each of the two terms on the right hand side converge to zero in probability. Lemma

23 already gives:

E

[
Tr(A(Ψ,Z))

m

∣∣∣∣A
]

P→ 0.

148



On the other hand, by Chebychev’s Inequality and Lemma 24 we have:

P

[∣∣∣∣Tr(A(Ψ,Z))− E[Tr(A(Ψ,Z))|A]

m

∣∣∣∣ > ε

∣∣∣∣A
]
≤ 1

ε2
· Var

(
TrA(Ψ,Z)

m

∣∣∣∣A
)
≤ C(A)

nε2
.

Hence,

P

[∣∣∣∣Tr(A(Ψ,Z))− E[Tr(A(Ψ,Z))|A]

m

∣∣∣∣ > ε

]
→ 0.

This concludes the proof of the proposition.

5.7.1 Proof of Lemmas 23 and 24

Proof of Lemma 23. Recall the notation regarding partitions introduced in Section 5.6.1. We will

organize the proof into various steps.

Step 1: Restricting to a Good Event. We first observe that Tr(A(Ψ,Z))/m is uniformly bounded:

TrA(Ψ,Z)

m
≤ ‖A(Ψ,Z)‖op ≤

k∏
i=1

‖qi‖∞ = C(A) <∞,

where ‖qi‖∞ = supξ∈R |qi(ξ)|, and C(A) denotes a finite constant independent of m,n.

Recall the definition of E in (5.17). If the sensing matrixA was generated by subsampling a

deterministic orthogonal matrix U with the property

‖U‖∞ ≤

√
K1 logK2(m)

m
,

then Lemma 21 gives P(Ec) ≤ 4/m2. On the other hand, ifAwas generated by subsampling

a uniformly random column orthogonal matrix O then we set K1 = 8, K2 = 1 and Lemma

21 gives P(Ec) ≤ 6/m2. Using this event, we decompose E[Tr(A(Ψ,Z)|A]/m as:

E[TrA(Ψ,Z)|A]

m
=

E[TrA(Ψ,Z)|A]

m
· I (E) +

E[TrA(Ψ,Z)|A]

m
· I (Ec) .
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Since P(Ec) → 0 and E[Tr(A(Ψ,Z)|A]/m < C(A) < ∞ is uniformly bounded, we

immediately obtain E[Tr(A(Ψ,Z)|A] · I (Ec) /m P→ 0. Hence, we simply need to show:

E[TrA(Ψ,Z)|A]

m
· I (E)

P→ 0.

Step 2: Variance Normalization. Recall that Z = Diag (z) , z = Ax? ∼ N
(
0,AAT/κ

)
. We

define the normalized random vector z̃ as:

z̃i =
zi
σi
, σ2

i =
(AAT)ii

κ
. (5.18)

Note that conditional onA, z̃ is a zero mean Gaussian vector with:

E[z̃i
2|A] = 1, E[z̃iz̃j|A] =

(AAT)ij/κ

σiσj
.

We define the diagonal matrix Z̃ = Diag (z̃). Using the continuity estimate from Lemma 22

we have,

∣∣∣∣∣TrA(Ψ,Z)

m
− TrA(Ψ, Z̃)

m

∣∣∣∣∣ ≤ C(A)√
m
‖z − z̃‖2

≤ C(A) ·

 1

m

m∑
i=1

z2
i

 1
2

·
(

max
i∈[m]

∣∣∣∣ 1

σi
− 1

∣∣∣∣
)

≤ C(A) ·

 1

m

m∑
i=1

x2
i

 1
2

·
(

max
i∈[m]

∣∣∣∣ 1

σi
− 1

∣∣∣∣
)
.

We observe that ‖x?‖2/m
P→ κ−1, and on the event E ,

max
i∈[m]

∣∣∣∣ 1

σi
− 1

∣∣∣∣→ 0.
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Hence,

∣∣∣∣∣E[TrA(Ψ,Z)|A]

m
− E[TrA(Ψ, Z̃)|A]

m

∣∣∣∣∣ · I (E)
P→ 0,

and hence, to conclude the proof of the lemma we simply need to show:

E[TrA(Ψ, Z̃)|A]

m
· I (E)

P→ 0.

Step 3: Mehler’s Formula. Supposing that alternating product is of the Type 2 form (recall Def-

inition 7):

A(Ψ, Z̃) = (Ψ)q1(Z̃)(Ψ)q2(Z̃) · · · (Ψ)qk(Z̃).

The argument for the other types is very similar and we will sketch it in the end. We expand

TrA(Ψ, Z̃) as follows:

1

m
TrA(Ψ, Z̃) =

1

m

m∑
a1,a2,...ak=1

(Ψ)a1,a2q1(Z̃)a2,a2 · · · (Ψ)ak,a1qk(Z̃)a1,a1 .

Next, we observe that:

[m]k =
⊔

π∈P([k])

C(π).

Hence we can decompose the above sum as:

E[TrA(Ψ, Z̃) |A]

m
=

∑
π∈P([k])

1

m

∑
a∈C(π)

(Ψ)a1,a2 · · · (Ψ)ak,a1E[ q1(z̃a2) · · · qk(z̃ak+1
)|A].
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By the triangle inequality,

∣∣∣∣∣E[TrA(Ψ, Z̃) |A]

m

∣∣∣∣∣ ≤ ∑
π∈P([k])

1

m

∑
a∈C(π)

|(Ψ)a1,a2 · · · (Ψ)ak,a1||E[ q1(z̃a2) · · · qk(z̃a1)|A]|.

(5.19)

We first bound |E[ q1(z̃a2)q2(z̃a3) · · · qk(z̃a1)|A]|. Observe that if we denote the blocks of

π = {V1,V2 . . .V|π|}, we can write:

∣∣E[ q1(z̃a2)q2(z̃a3) · · · qk(z̃a1)|A]
∣∣ =

∣∣∣∣∣∣E
 |π|∏
i=1

∏
j∈Vi

qj−1(z̃aVi )

∣∣∣∣A
∣∣∣∣∣∣ .

In the above display, we have defined q0
def
= qk. Define the functions q1, q2 . . . q|π| as:

qi(ξ) =
∏
j∈Vi

qj−1(ξ)− νi, νi = Eξ∼N (0,1)

∏
j∈Vi

qj−1(ξ)

 .
Hence, we obtain:

∣∣E[ q1(z̃a2)q2(z̃a3) · · · qk(z̃a1)|A]
∣∣ =

∣∣∣∣∣∣E
 |π|∏
i=1

(qi(zaVi ) + νi)

∣∣∣∣A
∣∣∣∣∣∣

≤
∑
V⊂[|π|]

∏
i 6∈V

|νi|

 ·
∣∣∣∣∣∣E
∏
i∈V

qi(z̃aVi )

∣∣∣∣A
∣∣∣∣∣∣ . (5.20)

Let S (π) denote the singleton blocks of the partition π: S (π) = {i ∈ [|π|] : |Vi| = 1}.

Note that for any i ∈ S (π), νi = 0 since the functions qi satisfy Eqi(ξ) = 0 when ξ ∼

N (0, 1) (Definition 7). Hence,

∣∣E[ q1(z̃a2)q2(z̃a3) · · · qk(z̃a1)|A]
∣∣ ≤ ∑

V⊂[|π|]:S (π)⊂V

∏
i 6∈V

|νi|

 ·
∣∣∣∣∣∣E
∏
i∈V

qi(z̃aVi )

∣∣∣∣A
∣∣∣∣∣∣ .
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Next, we apply Mehler’s Formula (Proposition 15) to bound:

∣∣∣∣∣∣E
∏
i∈V

qi(z̃aVi )

∣∣∣∣A
∣∣∣∣∣∣ I (E) .

We make the following observations:

1. Recall the distribution of z̃ given in (5.18) and the definition of the event E in (5.17),

we obtain:

max
i 6=j
|E[z̃iz̃j|A]| ≤

max
i 6=j

1

κσiσj

√
32 ·K2

1 · log2K2+1(m)

m

 .

Note that for large enough m, event E guarantees mini σi ≥ 1/2. Hence,

max
i 6=j
|E[z̃iz̃j|A]| ≤

4

κ

√
32 ·K2

1 · log2K2+1(m)

m

 .

For any S ⊂ [m] with |S| ≤ k, let E[z̃z̃T|A]S,S be the principal submatrix of the

covariance matrix E[z̃z̃T|A]. By Gershgorin’s Circle Theorem we have.

λmin

(
E[z̃z̃T|A]S,S

)
≥ 1− kmax

i 6=j
|E[z̃iz̃j|A]| ≥ 1

2
(for m large enough).

2. We note that qi satisfy Eqi(ξ) = 0 and Eξqi(ξ) = 0 (since qi are even functions) when

ξ ∼ N (0, 1). Hence, the first non-zero term in Mehler’s expansion corresponds to w

such that:

di(w) ≥ 2, ∀ i ∈ V,

thus,

‖w‖ ≥ |V |.
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Hence, by Mehler’s Formula (Proposition 15), we obtain:

∣∣∣∣∣∣E
∏
i∈V

qi(z̃aVi )

∣∣∣∣A
∣∣∣∣∣∣ I (E) ≤ C ·

(
max
i 6=j

E[z̃iz̃j|A]

)|V |

≤ C ·

4

κ

√
32 ·K2

1 · log2K2+1(m)

m


|V |

,

for some finite constant C depending only on k and the functions q1:k. Substituting this

bound in (5.20) we obtain:

∣∣E[ q1(z̃a2)q2(z̃a3) · · · qk(z̃a1)|A]
∣∣ · I (E) ≤

∑
V⊂[|π|]

∏
i 6∈V

|νi|

 ·
∣∣∣∣∣∣E
∏
i∈V

qi(z̃aVi )

∣∣∣∣A
∣∣∣∣∣∣

≤ C
∑
V⊂[|π|]

∏
i 6∈V

|νi|

 ·
4

κ

√
32 ·K2

1 · log2K2+1(m)

m


|V |

≤ C(A) ·

4

κ

√
32 ·K2

1 · log2K2+1(m)

m


|S (π)|

.

In the above display, C(A) denotes a finite constant depending only on k and the functions

appearing in the definition of A. Substituting this in (5.19):

∣∣∣∣∣E[TrA(Ψ, Z̃) |A]

m

∣∣∣∣∣ I (E)

≤
∑

π∈P([k])

C(A)

m

∑
a∈C(π)

|(Ψ)a1,a2 · · · (Ψ)ak,a1|

4

κ

√
32 ·K2

1 · log2K2+1(m)

m


|S (π)|

.
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Again, recalling the definition of E in (5.17), we can upper bound |(Ψ)a1,a2 · · · (Ψ)ak,a1|:

∣∣∣∣∣E[TrA(Ψ, Z̃) |A]

m

∣∣∣∣∣ · I (E) ≤
∑

π∈P([k])

C(A)

m

∑
a∈C(π)

·


√
·K2

1 · log2K2+1(m)

m


|S (π)|+k

=
C(A)

m

∑
π∈P([k])

|C(π)| ·


√
·K2

1 · log2K2+1(m)

m


|S (π)|+k

.

(5.21)

Step 4: Conclusion. Observe that: |C(π)| ≤ m|π|. Recall that π has |S (π)| singleton blocks. All

remaining blocks of π have at least 2 elements. Hence, we can upper bound |π| as follows:

|π| ≤ k − |S (π)|
2

+ |S (π)| = k + |S (π)|
2

.

Substituting this in (5.21) along with the trivial bounds |S (π)| ≤ k, |P([k]) ≤ kk, we

obtain:

∣∣∣∣∣E[TrA(Ψ, Z̃) |A]

m

∣∣∣∣∣ · I (E) ≤ C(A) · kk · (K2
1 log2K2+1(m))k

m
→ 0,

as desired.

Step 5: Other Cases. Recall that we had assumed that the alternating product was of Type 2:

A(Ψ, Z̃) = (Ψ)q1(Z̃)(Ψ)q2(Z̃) · · · (Ψ)qk(Z̃).

The analysis for the other types is analogous, and we briefly sketch these cases:

Type 1: A(Ψ, Z̃) = (Ψ)q1(Z̃)(Ψ)q2(Z̃) · · · (Ψ)qk(Z̃)(Ψ). In this case, we can expand the
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normalized trace as:

E[TrA(Ψ, Z̃) |A]

m
=

1

m

m∑
a0,a1,...ak=1

E[(Ψ)a0,a1q1(Z̃)a1,a1 · · · qk(Z̃)ak,ak(Ψ)ak,a0|A]

=
1

m

m∑
a0=1

∑
π∈P([k])

∑
a∈C(π)

(Ψ)a0,a1(Ψ)a1,a2 · · · (Ψ)ak,a0E[q1(z̃a1) · · · qk(z̃ak)|A].

As before, we can argue on the event E , for any a0:k:

|E[q1(z̃a1) · · · qk(z̃ak)|A]| ≤ O

(polylog(m)

m

) |S (π)|
2

 ,

|(Ψ)a0,a1(Ψ)a1,a2 · · · (Ψ)ak,a0| ≤ O

(polylog(m)

m

) k+1
2

 ,

|C(π)| ≤ m
k+|S (π)|

2 ,

|P([k])| ≤ kk.

This gives us:

∣∣∣∣∣E[TrA(Ψ, Z̃) |A]

m

∣∣∣∣∣ I (E) ≤ 1

m
·

choices for a0︷︸︸︷
m ·

choices for π︷ ︸︸ ︷
|P([k])| ·

choices for a1:k︷ ︸︸ ︷
|C(k)| ·O

(
polylog(m)

m
k+|S (π)|+1

2

)

= O

(
polylog(m)√

m

)
→ 0.

Type 3: A = q0(Z)(Ψ)q1(Z) · · · (Ψ)qk(Z). This case can be reduced to Type 1 and Type

2. Define q̃k(ξ) = q0(ξ)qk(ξ)− ν, ν = Eξ∼N (0,1) q0(ξ)qk(ξ). Then:

E[TrA(Ψ,Z)|A]

m
=

E[Tr(q0(Z)(Ψ)q1(Z) · · · (Ψ)qk(Z))|A]

m

=
E[Tr((Ψ)q1(Z) · · · (Ψ)qk(Z)q0(Z))|A]

m

=
E[Tr((Ψ)q1(Z) · · · (Ψ)q̃k(Z))|A]

m︸ ︷︷ ︸
Type 2

+ν
E[Tr((Ψ)q1(Z) · · · (Ψ))|A]

m︸ ︷︷ ︸
Type 1

.
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Type 4: A(Ψ,Z) = q1(Z)(Ψ)q2(Z)(Ψ) · · · qk(Z)(Ψ). This case is exactly the same as

Type 2, and exactly the same bounds hold.

This concludes the proof of Lemma 23.

Proof of Lemma 24. We observe that since Ψ = AAT− κIm, conditioning onA fixes Ψ. Hence,

the only source of randomness in A(Ψ,Z) is Z = Diag (z) , z = Ax?,x? ∼ N
(
0, 1/κ

)
. Define

the map f(x?)
def
= Tr(A(Ψ,Diag (Ax?))/m. By Lemma 22, we have:

|f(x)− f(x′)| ≤ C(A)√
m
· ‖A(x− x′)‖2 ≤

C(A)‖A‖op√
m

· ‖x− x′‖2 =
C(A)√
m
· ‖x− x′‖2.

Hence, f is C(A)/
√
n-Lipchitz. The claim of Lemma follows from the Gaussian Poincare In-

equality (see Fact 5).

5.8 Proof of Proposition 14

In this section, we provide a proof of Proposition 14. The proof follows from the following

three results.

Lemma 25 (Continuity Estimates). We have:

∣∣∣∣∣zTA(UBUT,Diag (z))z

m
− z̃

TA(UBUT,Diag (z̃))z̃

m

∣∣∣∣∣
≤ C(A)

m
·
(
‖z‖2

2 · ‖z − z̃‖∞ + ‖z − z̃‖2 · (‖z‖2 + ‖z̃‖2)
)
,

where C(A) depends only on k, the ‖‖∞-norms, and Lipchitz constants of the functions appearing

in A.

We have relegated the proof of the above continuity estimate to Appendix C.4.1 in the supple-

mentary materials.
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Proposition 18 (Universality of the first moment of the quadratic form). For both the subsampled

Haar sensing model and the subsampled Hadamard sensing model, we have:

lim
m→∞

EzTAz
m

= (1− κ)k ·

∏
i

q̂i(2)

 ·
∏

i

(pi(1− κ)− pi(−κ))

 ,

where the index i in the product ranges over all the pi, qi functions appearing in A. In the above

display:

q̂i(2) = Eqi(ξ)H2(ξ), ξ ∼ N (0, 1) , (5.22)

where H2(ξ) = ξ2 − 1 is the degree 2 Hermite polynomial.

Proposition 19 (Universality of the second moment of the quadratic form). For both the subsam-

pled Haar sensing model and the subsampled Hadamard sensing model we have:

lim
m→∞

E(zTAz)2

m2
= (1− κ)2k ·

∏
i

q̂2
i (2)

 ·
∏

i

(pi(1− κ)− pi(−κ))2

 .

In the above expression, q̂i(2) are as defined in (5.22).

We now provide a proof of Proposition 14 using the above results.

Proof of Proposition 14. Note that Propositions 18, 19 together imply that,

Var

(
zTAz
m

)
→ 0,

for both the sensing models. Hence, by Chebychev’s inequality and Proposition 18, we have, for

both the sensing models,

p-lim
zTAz
m

= (1− κ)k ·

∏
i

q̂i(2)

 ·
∏

i

(pi(1− κ)− pi(−κ))

 .
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This proves the claim of Proposition 14.

The remainder of the section is dedicated to the proof of Proposition 18. The proof of Proposi-

tion 19 is very similar and can be found in Appendix C.2 in the supplementary materials.

5.8.1 Proof of Proposition 18

We provide a proof of Proposition 18 assuming that alternating form is of Type 1.

A(Ψ,Z) = p1(Ψ)q1(Z)p2(Ψ) · · · qk−1(Z)pk(Ψ).

We will outline how to handle the other types at the end of the proof (see Remark 15). Furthermore,

in light of Lemma 16 we can further assume that all polynomials pi(ψ) = ψ. Hence, we assume

that A is of the form:

A(Ψ,Z) = Ψq1(Z)Ψ · · · qk−1(Z)Ψ.

The proof of Proposition 18 consists of various steps which will be organized as separate lem-

mas. We begin by recall that

z ∼ N
(

0,
AAT

κ

)
.

Define the event:

E =

max
i 6=j
|(AAT|)ij ≤

√
2048 · log3(m)

m
, max
i∈[m]
|(AAT)ii − κ| ≤

√
2048 · log3(m)

m

 .

(5.23)

By Lemma 21, we know that P(Ec)→ 0 for both the subsampled Haar sensing and the subsampled

Hadamard model. We define the normalized random vector z̃ as:

z̃i =
zi
σi
, σ2

i =
(AAT)ii

κ
.
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Note that conditional onA, z̃ is a zero mean Gaussian vector with:

E[z̃i
2|A] = 1, E[z̃iz̃j|A] =

(AAT)ij/κ

σiσj
.

We define the diagonal matrix Z̃ = Diag (z̃).

Lemma 26. We have,

lim
m→∞

EzTA(Ψ,Z)z

m
= lim

m→∞

Ez̃TA(Ψ, Z̃)z̃

m
I (E) ,

provided the latter limit exists.

The proof of the lemma uses the fact that P(Ec) → 0, and that on the event E since σ2
i ≈ 1,

we have z ≈ z̃ and hence, the continuity estimates of Lemma 25 give the claim of this result.

Complete details have been provided in Appendix C.4.2 in the supplementary materials.

The advantage of Lemma 26 is that z̃i ∼ N (0, 1), and on the event E the coordinates of z̃ have

weak correlations. Consequently, Mehler’s Formula (Proposition 15) can be used to analyze the

leading order term in E[z̃TA(Ψ, Z̃)z̃ I (E)]. Before we do so, we do one additional preprocessing

step.

Lemma 27. We have:

lim
m→∞

Ez̃TA(Ψ, Z̃)z̃

m
I (E) = lim

m→∞

E〈A(Ψ, Z̃), z̃z̃T − Z̃2〉I (E)

m
,

provided the latter limit exists.

Proof Sketch. Observe that we can write:

z̃TAz̃ = 〈A(Ψ, Z̃), z̃z̃T〉
(a)
= 〈A(Ψ, Z̃), z̃z̃T − Z̃2〉+ Tr(A(Ψ, Z̃) · q(Z̃)) + Tr(A(Ψ, Z̃)).
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In the step marked (a), we defined q(ξ) = ξ2 − 1 which is an even function. Note that we know

|Tr(A)|/m ≤ ‖A‖op ≤ C(A) < ∞. Furthermore, by Proposition 13, we know Tr(A)/m
P→ 0,

and hence by Dominated Convergence Theorem ETr(A)I (E) /m → 0. Additionally, note that

Tr(Aq(Z̃)) is also an alternating form except for minor issue that q(ξ) is not uniformly bounded

and Lipchitz. However, the combinatorial calculations in Proposition 13 can be repeated to show

that ETr(A · q(Z̃))/m → 0. Since we will see a more complicated version of these arguments in

the remainder of the proof, we omit the details of this step.

Note that, so far, Lemmas 26 and 27 show that:

lim
m→∞

EzTA(Ψ,Z)z

m
= lim

m→∞

E〈A(Ψ, Z̃), z̃z̃T − Z̃2〉I (E)

m
,

provided the latter limit exists. We now focus on analyzing the RHS. We expand

〈A(Ψ, Z̃), z̃z̃T − Z̃2〉
m

=
1

m

∑
a1:k+1∈[m]
a1 6=ak+1

z̃a1(Ψ)a1,a2q1(z̃a2) · · · qk−1(z̃ak)(Ψ)ak,ak+1
z̃ak+1

.

Recall the notation for partitions introduced in Section 5.6.1. Observe that:

{(a1 . . . ak+1) ∈ [m]k+1 : a1 6= ak+1} =
⊔

π∈P([k+1])
π(1)6=π(k+1)

C(π).

Hence,

E〈A(Ψ, Z̃), z̃z̃T − Z̃2〉 · I (E)

m
=

1

m

∑
π∈P([1:k+1])
π(1)6=π(k+1)

∑
a∈C(π)

E z̃a1(Ψ)a1,a2q1(z̃a2)(Ψ)a2,a3 · · · qk−1(z̃ak)(Ψ)ak,ak+1
z̃ak+1

· I (E) .

Fix a π ∈ P([k + 1]) such that π(1) 6= π(k + 1), and consider a labelling a ∈ C(π). By the tower
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property,

Ez̃a1(Ψ)a1,a2q1(z̃a2)(Ψ)a2,a3 · · · qk−1(z̃ak)(Ψ)ak,ak+1
z̃ak+1

I (E) =

E
[
(Ψ)a1,a2(Ψ)a2,a3 · · · (Ψ)ak,ak+1

· E[z̃a1q1(z̃a2)q2(z̃a3) · · · qk−1(z̃ak)z̃ak+1
|A]I (E)

]
.

We will now use Mehler’s formula (Proposition 15) to evaluate the conditional expectation upto

leading order. Note that some of the random variables z̃a1:k+1
are equal (as given by the partition

π). Hence, we group them together and recenter the resulting functions. The blocks corresponding

to a1, ak+1 need to be treated specially due to the presence of z̃a1 , z̃ak+1
in the above expectations.

Hence, we introduce the following notations:

F (π) = π(1), L (π) = π(k + 1), S (π) = {i ∈ [2 : k] : |π(i)| = 1}.

We label all the remaining blocks of π as V1,V2 . . .V|π|−|S (π)|−2. Hence, the partition π is given

by:

π = F (π) tL (π) t

 ⊔
i∈S (π)

{i}

 t
|π|−|S (π)|−2⊔

t=1

Vi

 .

Note that:

z̃a1 z̃ak+1

k∏
i=2

qi−1(z̃ai) = QF (z̃a1)QL (z̃ak+1
)

 ∏
i∈S (π)

qi−1(z̃ai)

 · |π|−|S (π)|−2∏
i=1

(QVi(zaVi ) + µVi),

where:

QF (ξ) = ξ ·
∏

i∈F (π),i 6=1

qi−1(ξ), (5.24)

(5.25)
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QL (ξ) = ξ ·
∏

i∈L (π),i 6=k+1

qi−1(ξ), (5.26)

µVi = Eξ∼N (0,1)

∏
j∈Vi

qj−1(ξ)

 , (5.27)

QVi(ξ) =
∏
j∈Vi

qj−1(ξ)− µVi . (5.28)

With this notation in place, we can apply Mehler’s formula. The result is summarized in the

following lemma.

Lemma 28. For any π ∈ P([k + 1]) such that π(1) 6= π(k + 1), and any labelling a ∈ C(π) we

have:

I (E) ·

∣∣∣∣∣∣E[z̃a1q1(z̃a2)q2(z̃a3) · · · qk−1(z̃ak)z̃ak+1
|A]−

∑
w∈G1(π)

g(w, π) · M(Ψ,w, π,a)

∣∣∣∣∣∣
≤ C(A) ·

(
log3(m)

mκ2

) 2+|S (π)|
2

, (5.29a)

where M(Ψ,w, π,a) is the matrix moment as defined in Definition 8. The coefficients g(w, π)

are given by:

g(w, π) =
1

κ‖w‖w!
·

Q̂F (1)Q̂L (1)
∏

i∈S (π)

q̂i−1(2)

 ·
 ∏
i∈[|π|−|S (π)|−2]

µVi

 , (5.29b)

and, the set G1(π) is defined as:

G1(π)
def
=
{
w ∈ G(k + 1) : d1(w) = 1, dk+1(w) = 1, di(w) = 2 ∀ i ∈ S (π),

di(w) = 0 ∀ i /∈ {1, k + 1} ∪S (π)
}
. (5.29c)

The proof of the lemma is obtained by instantiating Mehler’s formula for this situation and
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identifying the leading order term. Additional details for this step are provided in Appendix C.4.3

in the supplementary materials.

With this, we return to our analysis of:

E〈A(Ψ, Z̃), z̃z̃T − Z̃2〉 · I (E)

m
=

1

m

∑
π∈P([1:k+1])
π(1)6=π(k+1)

∑
a∈C(π)

E z̃a1(Ψ)a1,a2q1(z̃a2)(Ψ)a2,a3 · · · qk−1(z̃ak)(Ψ)ak,ak+1
z̃ak+1

· I (E) .

We define the following subsets of P(k + 1) as:

P1([k + 1])
def
=

{π ∈ P(k + 1) : π(1) 6= π(k + 1), |π(1)| = 1, |π(k + 1)| = 1, |π(j)| ≤ 2 ∀ j ∈ [k + 1]},

(5.30a)

P2([k + 1])
def
= {π ∈ P(k + 1) : π(1) 6= π(k + 1)}\P1([k + 1]), (5.30b)

and the error term which was controlled in Lemma 28:

ε(Ψ,a)
def
= I (E) ·

E[z̃a1q1(z̃a2) · · · qk−1(z̃ak)z̃ak+1
|A]−

∑
w∈G1(π)

g(w, π) · M(Ψ,w, π,a)

 .

With these definitions we consider the decomposition:

E〈A(Ψ, Z̃), z̃z̃T − Z̃2〉 · I (E)

m
=

1

m

∑
π∈P1([k+1])

∑
a∈C(π)

∑
w∈G1(π)

g(w, π)E
[
(Ψ)a1,a2 · · · (Ψ)ak,ak+1

M(Ψ,w, π,a)
]
− I + II + III,
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where:

I
def
=

1

m

∑
π∈P([k+1])
π(1)6=π(k+1)

∑
a∈C(π)

∑
w∈G1(π)

g(w, π)E
[
(Ψ)a1,a2 · · · (Ψ)ak,ak+1

M(Ψ,w, π,a)I (Ec)
]
,

II
def
=

1

m

∑
π∈P([k+1])
π(1)6=π(k+1)

∑
a∈C(π)

E
[
(Ψ)a1,a2 · · · (Ψ)ak,ak+1

ε(Ψ,a)I (E)
]
,

III
def
=

1

m

∑
π∈P2([k+1])

∑
a∈C(π)

∑
w∈G1(π)

g(w, π)E
[
(Ψ)a1,a2 · · · (Ψ)ak,ak+1

M(Ψ,w, π,a)
]
.

Define `k+1 ∈ G(k + 1) to be the weight matrix of a simple line graph, i.e.

(`k+1)ij =


1 : |j − i| = 1

0 : otherwise
.

This decomposition can be written compactly as:

I =
1

m

∑
π∈P([1:k+1])
π(1)6=π(k+1)

∑
a∈C(π)

∑
w∈G1(π)

g(w, π) · E
[
M(Ψ,w + `k+1, π,a)I (Ec)

]
,

II =
1

m

∑
π∈P([1:k+1])
π(1)6=π(k+1)

∑
a∈C(π)

E
[
M(Ψ, `k+1, π,a)ε(Ψ,a)I (E)

]
,

III =
1

m

∑
π∈P2([1:k+1])

∑
a∈C(π)

∑
w∈G1(π)

g(w, π) · E
[
M(Ψ,w + `k+1, π,a)

]
.

We will show that I, II, III→ 0. Showing this involves the following components:

1. Bounds on matrix moments E
[
M(Ψ,w + `k+1, π,a)

]
, which have been developed in Lemma

18.

2. Controlling the size of the set |C(π)| (since we sum over a ∈ C(π) in the above terms).
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Since,

|C(π)| = m(m− 1) · · · (m− |π|+ 1) � m|π|,

we need to develop bounds on |π|. This is done in the following lemma. In contrast, the sums

over π ∈ P([k + 1]) and w ∈ G1(π) are not a cause of concern since |P([k + 1])|, |G1(π)|

depend only on k (which is held fixed), and not on m.

Lemma 29. For any π ∈ P1([k + 1]), we have:

|π| = k + 3 + |S (π)|
2

=⇒ |C(π)| ≤ m
k+3+|S (π)|

2 .

For any π ∈ P2([k + 1]), we have:

|π| ≤ k + 2 + |S (π)|
2

=⇒ |C(π)| ≤ m
k+2+|S (π)|

2 .

Proof. Consider any π ∈ P([k + 1]) such that π(1) 6= π(k + 1). Recall that the disjoint blocks of

|π| were given by:

π = F (π) tL (π) t

 ⊔
i∈S (π)

{i}

 t
|π|−|S (π)|−2⊔

t=1

Vi

 .

Hence,

k + 1 = |F (π)|+ |L (π)|+ |S (π)|+
|π|−|S (π)|−2∑

t=1

|Vi|.
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Note that:

|F (π)| ≥ 1 (Since 1 ∈ F (π)), (5.31a)

|L (π)| ≥ 1 (Since k + 1 ∈ L (π)), (5.31b)

|Vi| ≥ 2 (Since Vi are not singletons). (5.31c)

Hence,

k + 1 ≥ |F (π)|+ |L (π)|+ |S (π)|+ 2|π| − 2|S (π)| − 4,

which implies:

|π| ≤ k + 5 + |S (π)| − |F (π)| − |L (π)|
2

≤ k + 3 + |S (π)|
2

, (5.32)

and hence,

|C(π)| ≤ m|π| ≤ m
k+3+|S (π)|

2 .

Finally, observe that:

1. For any π ∈ P1([k + 1]) each of the inequalities in (5.31) are exactly tight by the definition

of P1([k + 1]) in (5.30), and hence:

|π| = k + 3 + |S (π)|
2

.

2. For any π ∈ P2([k + 1]), one of the inequalities in (5.31) must be strict (see (5.30)). Hence,
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when π ∈ P2([k + 1]), we have the improved bound:

|π| ≤ k + 2 + |S (π)|
2

.

This proves the claims of the lemma.

We will now show that I, II, III→ 0.

Lemma 30. We have,

I→ 0, II→ 0, III→ 0 as m→∞,

and hence:

lim
m→∞

EzTAz
m

= lim
m→∞

1

m

∑
π∈P1([k+1])

∑
a∈C(π)

∑
w∈G1(π)

g(w, π)E
[
M(Ψ,w + `k+1, π,a)

]
,

provided the latter limit exists.

Proof. First, note that for any w ∈ G1(π), we have:

‖w‖ =
1

2

k+1∑
i=1

di(w) =
1 + 1 + 2|S (π)|

2
= 1 + |S (π)| (See (5.29)).

Furthermore, recalling that `k+1 is the weight matrix of a simple line graph, ‖`k+1‖ = k. Now, we

apply Lemma 18 to obtain:

|E
[
M(Ψ,w + `k+1, π,a)I (Ec)

]
| ≤

√
E
[
M(Ψ, 2w + 2`k+1, π,a)

]√
P(Ec)

(a)

≤
(
Ck log2(m)

m

) |S (π)|+1+k
2

·
√
P(Ec)

≤
(
Ck log2(m)

m

) |S (π)|+1+k
2

· Ck
m
.
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Analogously we can obtain:

E|M(Ψ, `k+1, π,a)| ≤
(
Ck log2(m)

m

) k
2

,

E
[
|M(Ψ,w + `k+1, π,a)|

]
≤
(
Ck log2(m)

m

) |S (π)|+1+k
2

Further, recall that by Lemma 28 we have:

|ε(Ψ,a)| ≤ C(A) ·
(

log3(m)

mκ2

) 2+|S (π)|
2

.

Using these estimates, we obtain:

|I| ≤ C(A)

m
·

∑
π:P([k+1])
π(0)6=π(k+1)

|C(π)| ·
(
Ck log2(m)

m

) |S (π)|+1+k
2

· Ck
m

(a)

≤ C(A)

m
·

∑
π:P([k+1])
π(0)6=π(k+1)

m
k+3+|S (π)|

2 ·
(
Ck log2(m)

m

) |S (π)|+1+k
2

· Ck
m

= O

(
polylog(m)

m

)
.

In addition:

|II| ≤ C(A)

m
·
(
Ck log2(m)

m

) k
2

·
∑

π:P([k+1])
π(0)6=π(k+1)

|C(π)| ·
(

log3(m)

mκ2

) 2+|S (π)|
2

(a)

≤ C(A)

m
·
(
Ck log2(m)

m

) k
2

·
∑

π:P([k+1])
π(0)6=π(k+1)

m
k+3+|S (π)|

2 ·
(

log3(m)

mκ2

) 2+|S (π)|
2

= O

(
polylog(m)√

m

)
.
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Furthermore:

|III| ≤ C(A)

m
·

∑
π:P2([k+1])

|C(π)| ·
(
Ck log2(m)

m

) |S (π)|+1+k
2

(a)

≤ C(A)

m
·

∑
π:P2([k+1])

m
k+2+|C(π)|

2 ·
(
Ck log2(m)

m

) |S (π)|+1+k
2

= O

(
polylog(m)√

m

)
.

In each of the above displays, in the steps marked (a), we used the bounds on |C(π)| from Lemma

29. Ck denotes a constant depending only on k and C(A) denotes a constant depending only on k

and the functions appearing in A. This concludes the proof of this lemma.

So far we have shown that:

lim
m→∞

EzTAz
m

= lim
m→∞

1

m

∑
π∈P1([k+1])

∑
a∈C(π)

∑
w∈G1(π)

g(w, π) · E
[
M(Ψ,w + `k+1, π,a)

]
,

provided the latter limit exists. Our goal is to show that the limit on the LHS exists and is universal

across the subsampled Haar and Hadamard models. In order to do so, we will leverage the fact that

the first order term in the expansion of E
[
M(Ψ,w + `k+1, π,a)

]
is the same for the two models if

w+`k+1 is dissortive with respect to π and if a is a conflict-free labelling (Propositions 16 and 17).

Hence, we need to argue that the contribution of terms corresponding to w : w + `k+1 6∈ GDA(π)

and a 6∈ LCF(w + `k+1, π) are negligible. Towards this end, we consider the decomposition:

1

m

∑
π∈P1([k+1])

∑
a∈C(π)

∑
w∈G1(π)

g(w, π) · E
[
M(Ψ,w + `k+1, π,a)

]
=

1

m

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

∑
a∈LCF(w+`k+1,π)

g(w, π) · E
[
M(Ψ,w + `k+1, π,a)

]
+ IV + V,
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where:

IV
def
=

1

m

∑
π∈P1([k+1])

∑
a∈C(π)

∑
w∈G1(π)

w+`k+1 /∈GDA(π)

g(w, π) · E
[
M(Ψ,w + `k+1, π,a)

]
,

V
def
=

1

m

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

∑
a∈C(π)\LCF(w+`k+1,π)

g(w, π) · E
[
M(Ψ,w + `k+1, π,a)

]
.

Lemma 31. We have IV→ 0,V→ 0, as m→∞, and hence:

lim
m→∞

EzTAz
m

=

lim
m→∞

1

m

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

∑
a∈LCF(w+`k+1,π)

g(w, π) · E
[
M(Ψ,w + `k+1, π,a)

]
,

provided the latter limit exists.

Proof. We will prove this in two steps.

Step 1: IV→ 0. We consider the two sensing models separately:

1. Subsampled Hadamard Sensing: In this case, Proposition 17 tells us that ifw+ `k+1 6∈

GDA(π), then:

E
[
M(Ψ,w + `k+1, π,a)

]
= 0,

and hence, IV = 0.

2. Subsampled Haar Sensing: Observe that, since ‖w‖ + ‖`k+1‖ = 1 + |S (π)| + k, we

have:

E
[
M(Ψ,w + `k+1, π,a)

]
=

E
[
M(
√
mΨ,w + `k+1, π,a)

]
m

1+|S (π)|+k
2

.
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By Proposition 16, we know that:

∣∣∣∣∣∣∣∣E
[
M(
√
mΨ,w + `k+1, π,a)

]
−

∏
s,t∈[|π|]
s≤t

E
[
Z
Wst(w+`k+1,π)
st

]∣∣∣∣∣∣∣∣ ≤
K1 logK2(m)

m
1
4

,

where K1, K2, K3 are universal constants depending only on k. Note that since w +

`k+1 /∈ GDA(π), we must have some s ∈ [|π|] such that:

Wss(w + `k+1, π) ≥ 1.

Recall that di(w) = 0 for any i 6∈ {1, k + 1} ∪ S (π) (since w ∈ G1(π)), and fur-

thermore, |π(i)| = 1 ∀ i ∈ {1, k + 1} ∪ S (π) (since π ∈ P1(k + 1)). Hence,

we have w ∈ GDA(π) and in particular, Wss(w, π) = 0. Consequently, we must have

Wss(`k+1, π) ≥ 1. Recall that `k+1 is the weight matrix of a line graph:

(`k+1)ij =


1 : |i− j| = 1

0 : otherwise
.

Consequently, since Wss(`k+1, π) ≥ 1, we must have for some i ∈ [k], π(i) = π(i +

1) = Vs. However, since π ∈ P1(k + 1), |Vs| ≤ 2, and hence, Vs = {i, i + 1}. This

means that Wss(`k+1, π) = 1 = Wss(w + `k+1, π). Consequently, since EZss = 0, we

have:

∏
s,t∈[|π|]
s≤t

E
[
Z
Wst(w+`k+1,π)
st

]
= 0,

or

|E
[
M(Ψ,w + `k+1, π,a)

]
| = Ck logK(m)

m
1+|S (π)|+k

2
+ 1

4

,
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where Ck, K are constants that depend only on k. Recalling Lemma 29,

|C(π)| ≤ m|π| ≤ m
k+3+|S (π)|

2 ,

we obtain:

|IV| ≤ C(A)

m

∑
π∈P1([k+1])

|C(π)| · Ck logK(m)

m
1+|S (π)|+k

2
+ 1

4

= O

(
polylog(m)

m
1
4

)
→ 0.

Step 2: V→ 0. Using Lemma 20, we know that

|C(π)\LCF(w + `k+1, π)| ≤ (k + 1)4m|π|−1.

In Lemma 29, we showed that for any π ∈ P1([k + 1]),

|π| = k + 3 + |S (π)|
2

.

Hence,

|C(π)\LCF(w + `k+1, π)| ≤ (k + 1)4 ·m k+1+|S (π)|
2 .

We already know from Lemma 18 that:

|E
[
M(Ψ,w + `k+1, π,a)

]
| ≤

(
Ck log2(m)

m

) ‖w‖+‖`k+1‖
2

≤
(
Ck log2(m)

m

) |S (π)|+1+k
2

.
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This gives us:

|V| ≤ C

m

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

|C(π)\LCF(w + `k+1, π)| ·
(
Ck log2(m)

m

) |S (π)|+1+k
2

= O

(
polylog(m)

m

)

which goes to zero as claimed.

To conclude, we have shown that:

lim
m→∞

EzTAz
m

=

lim
m→∞

1

m

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

∑
a∈LCF(w+`k+1,π)

g(w, π) · E
[
M(Ψ,w + `k+1, π,a)

]
,

provided the limit on the RHS exists. In the following lemma we explicitly evaluate the limit on

the RHS, and in particular, show it exists and is identical for the two sensing models.

Lemma 32. For both the subsampled Haar sensing and Hadamard sensing model, we have:

lim
m→∞

EzTAz
m

=
∑

π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

g(w, π) · µ(w + `k+1, π),

where,

µ(w + `k+1, π)
def
=

∏
s,t∈[|π|]
s<t

E
[
ZWst(w+`k+1,π)

]
, Z ∼ N

(
0, κ(1− κ)

)
.

Proof. By Propositions 17 (for the subsampled Hadamard model) and 16 (for the subsampled Haar
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model) we know that, if w + `k+1 ∈ GDA(π) and a ∈ LCF(w + `k+1, π), we have:

M(
√
mΨ,w + `k+1, π,a) = µ(w + `k+1, π) + ε(w, π,a),

where

|ε(w, π,a)| ≤ K1 logK2(m)

m
1
4

, ∀ m ≥ K3,

for some constants K1, K2, K3 depending only on k. Hence, we can consider the decomposition:

1

m

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

∑
a∈LCF(w+`k+1,π)

g(w, π)E
[
M(Ψ,w + `k+1, π,a)

]
= VI + VII,

where:

VI
def
=

1

m

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

∑
a∈LCF(w+`k+1,π)

g(w, π) · µ(w + `k+1, π)

m
1+S (π)+k

2

,

VII
def
=

1

m

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

∑
a∈LCF(w+`k+1,π)

g(w, π) · ε(w, π,a)

m
1+S (π)+k

2

.

We can upper bound |VII| as follows:

|LCF(w + `k+1, π)| ≤ |C(π)| ≤ m
k+3+|S (π)|

2 .

Thus:

|VII| ≤ C(A)

m
· Ck · |LCF(w + `k+1, π)| · 1

m
1+|S (π)|+k

2

· K1 logK2(m)

m
1
4

= O

(
polylog(m)

m
1
4

)
→ 0.
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Moreover, can compute:

lim
m→∞

(VI) = lim
m→∞

1

m

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

∑
a∈LCF(w+`k+1,π)

g(w, π) · µ(w + `k+1, π)

m
1+S (π)+k

2

= lim
m→∞

1

m

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

g(w, π) · µ(w + `k+1, π)

m
1+|S (π)|+k

2

· |LCF(w + `k+1, π)|

(a)
= lim

m→∞

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

g(w, π) · µ(w + `k+1, π) · |LCF(w + `k+1, π)|
m|π|

(b)
=

∑
π∈P1([k+1])

∑
w∈G1(π)

w+`k+1∈GDA(π)

g(w, π) · µ(w + `k+1, π).

In the step marked (a) we used the fact that |π| = (3 + |S (π)| + k)/2 for any π ∈ P1([k + 1])

(Lemma 29), and in step (b) we used Lemma 20 (|LCF(w + `k+1, π)|/m|π| → 1). This proves the

claim of the lemma.

In the following lemma, we show that the combinatorial sum obtained in Lemma 32 can be

significantly simplified.

Lemma 33. For both the subsampled Haar sensing and Hadamard sensing models, we have:

lim
m→∞

EzTAz
m

= (1− κ)k ·
k−1∏
i=1

q̂i(2).

In particular, Proposition 18 holds.

Proof. We claim that the only partition with a non-zero contribution is:

π =
k+1⊔
i=1

{i}.

In order to see this, suppose π is not entirely composed of singleton blocks. Define:

i?
def
= min{i ∈ [k + 1] : |π(i)| > 1}.
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Note that i? > 1 since we know that |π(1)| = |F (π)| = 1 for any π ∈ P1(k + 1). Since

π ∈ P1([k + 1]), we must have |π(i?)| = 2, hence, denote:

π(i?) = {i?, j?},

for some j? > i? + 1 (i? ≤ j? since it is the first index which is not in a singleton block, and

j? 6= i? + 1 since otherwise w + `k+1 will not be disassortative). Let us label the first few blocks

of π as:

V1 = {1}, V2 = {2}, . . . ,Vi?−1 = {i? − 1}, Vi? = {i?, j?}.

Next, we compute:

Wi?−1,i?(w + `k+1, π) = Wi?−1,i?(`k+1, π) +Wi?−1,i?(w, π)

(a)
= Wi?−1,i?(`k+1, π)

(b)
= 1i?−1∈Vi?−1

+ 1i?+1∈Vi?−1
+ 1j?−1∈Vi?−1

+ 1j?+1∈Vi?−1

(c)
= 1i?−1=i?−1 + 1i?+1=i?−1 + 1j?−1=i?−1 + 1j?+1=i?−1

(d)
= 1.

In the step marked (a), we used the fact that since w ∈ G1(π) and |π(i?)| = |π(j?)| = 2, we must

have di?(w) = dj?(w) = 0 and Wi?−1,i?(w, π) = 0. In the step marked (b), we used the definition

of `k+1 (that it is the line graph). In the step marked (c), we used the fact that Vi?−1 = {i?−1}. In

the step marked (d), we used the fact that j? > i? + 1.

Hence, we have shown that for any π 6= tk+1
i=1 {i}, we have:

µ(w, π) = 0 ∀ w such that w ∈ G1(π), w + `k+1 ∈ GDA(π).
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Next, let π = tk+1
i=1 {i}. We observe for anyw such thatw ∈ G1(π), w+`k+1 ∈ GDA(π), we have:

µ(w + `k+1, π) =
∏

s,t∈[|π|]
s<t

E
[
ZWst(w+`k+1,π)

]
, Z ∼ N

(
0, κ(1− κ)

)
=

∏
i,j∈[k+1]
i<j

E
[
Zwij+(`k+1)ij ,π)

]
, Z ∼ N

(
0, κ(1− κ)

)
.

Note that since EZ = 0, for µ(w + `k+1, π) 6= 0, we must have:

wij ≥ (`k+1)ij, ∀ i, j ∈ [k].

However, since w ∈ G1(π) we have:

d1(w) = dk+1(w) = 1, di(w) = 2 ∀ i ∈ [2 : k],

so, w = `k+1. Hence, recalling the formula for g(w, π) from Lemma 28, we obtain:

lim
m→∞

EzTAz
m

= (1− κ)k ·
k−1∏
i=1

q̂i(2).

This proves the statement of the lemma and also Proposition 18 (see Remark 15 regarding how the

analysis extends to other types).

Throughout this section, we assumed that the alternating productA was of Type I. The follow-

ing remark outlines how the analysis of this section extends to other types.

Remark 15. The analysis of the other cases can be reduced to Type 1 as follows: Consider an

alternating form A(Ψ,Z) of Type 1:

A = p1(Ψ)q1(Z)p1(Ψ) · · · qk−1(Z)pk(Ψ),
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but the more general quadratic form:

1

m
Eα(z)TA(Ψ,Z)β(z), (5.33)

where α, β : R→ R are odd functions whose absolute values can be upper bounded by a polyno-

mial. They act on the vector z entry-wise. This covers all the types in a unified way:

1. For Type 1 case: We take α(z) = β(z) = z.

2. For the Type 2 case, we write:

zTp1(Ψ)q1(Z)p1(Ψ) · · · qk(Z)pk(Ψ)qk(Z)z = α(z)TA(Ψ,Z)β(z),

where α(z) = z, β(z) = zqk(z).

3. For the Type 3 case:

zTq0(Z)p1(Ψ)q1(Z)p1(Ψ) · · · qk−1(Z)pk(Ψ)qk(Z)z = α(z)TA(Ψ,Z)β(z),

where α(z) = zq0(z), β(z) = zqk(z).

4. For the Type 4 case:

zTq0(Z)p1(Ψ)q1(Z)p2(Ψ) · · · qk−1(Z)pk(Ψ)z = α(z)TA(Ψ,Z)β(z),

where α(z) = zq0(z), β(z) = z.

The analysis of the more general quadratic form in (5.33) is analogous to the analysis outlined in

this section. Lemmas 26 and 27 extend straightforwardly. Inspecting the proof of Lemma 28 shows

that the same error bound continues to hold (after suitably redefining c(w, π)), since α, β are odd

(as in the case α(z) = β(z) = z). The subsequent lemmas after that hold verbatim for the more

general quadratic form (5.33).
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5.9 Conclusion

In this chapter, we analyzed the dynamics of linearized Approximate message passing algo-

rithms for phase retrieval when the sensing matrix is generated by sub-sampling n columns of a

m ×m Hadamard-Walsh matrix under an average-case Gaussian prior assumption on the signal.

We showed that the dynamics of linearized AMP algorithms for these sensing matrices are asymp-

totically indistinguishable from the dynamics in the case when the sensing matrix is generated by

sampling n columns of a uniformly random m×m orthogonal matrix. This provides a theoretical

justification for an empirically observed universality phenomena in a particular case.
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Chapter 6: Conclusion and Future Directions

We end this dissertation by mentioning some interesting directions for future work.

6.1 Beyond Spectral Estimators for Phase Retrieval

In Chapter 3, we provided an analysis of the performance of spectral methods under the sub-

sampled Haar ansatz for the sensing matrix. However, spectral estimators are not the state-of-the-

art estimators for the Phase retrieval problem. It would be interesting to analyze the following

estimators for the phase retrieval problem with sub-sampled Haar sensing matrices:

Analysis of Maximum Likelihood Estimator: The maximum likelihood estimator for the (noise-

less) phase retrieval problem is any solution to the following feasibility problem:

Find u ∈ Cn : |Au|2 = y. (6.1)

It would be interesting to understand at what value of δ does this feasibility problem have

u = x as the unique solution. Maillard, Loureiro, Krzakala, and Zdeborová [79] have analyzed

the conjectured replica-symmetric prediction for the Bayes risk for this problem. Their analysis

suggests that exact recovery is possible as soon as δ > 2. This leads to the conjecture that the

feasibility problem (6.1) has a unique solution when δ > 2. It would be interesting to prove this

conjecture. Combined with the results of Chapter 2 of this dissertation, such a result would show

that this problem exhibits a “all-or-nothing” phase transition [74]: When δ < 2 any estimator is

asymptotically orthogonal to the signal and when δ > 2, there is an estimator which recovers x

exactly.
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Analysis of Bayes Optimal Approximate Message Passing with Spectral Initialization: It

is not clear if the maximum likelihood estimator in (6.1) can be computed efficiently. Maillard,

Loureiro, Krzakala, and Zdeborová have also studied the performance of a computationally effi-

cient Bayes-optimal Approximate Message Passing algorithm. Their analysis suggests that this

algorithm achieves exact recovery of the unknown signal vector when δ > 2.265. Unfortunately,

since the state evolution of the Bayes-optimal AMP algorithm for this problem has an uninforma-

tive fixed point, it requires an arbitrarily small amount of side information to recover the signal.

Consequently, it does not yield a valid estimator. It would be interesting to provide an analysis of

the Bayes optimal AMP algorithm initialized with the spectral initialization similar to the work of

Montanari and Venkataramanan [84] and Mondelli and Venkataramanan [85] for Gaussian sensing

matrices.

6.2 Understanding Bayes risk above the Weak Recovery Threshold

In Chapter 4, we studied the Phase Retrieval problem with sub-sampled Haar sensing matrices

with non-zero but vanishing measurement noise in the high dimensional asymptotic regime. We

showed that when the sampling ratio δ = m/n < 2, then it is information-theoretically impossible

for any estimator to obtain an asymptotically non-trivial performance: any estimator is asymptot-

ically uncorrelated with the signal vector. Since Chapter 3 exhibits an estimator which achieves

a nontrivial correlation with the signal vector when δ > 2, this shows that the weak recovery

threshold for this model is δweak = 2.

Our proof techniques in this chapter do not offer any information about the behavior of Bayes

risk above the weak recovery threshold, particularly in the presence of measurement noise. For

Gaussian sensing matrices Barbier, Krzakala, Macris, Miolane, and Zdeborová [25] have devel-

oped interpolation-based methods to compute the exact expression of Bayes risk. Furthermore,

this technique appears to be general enough to handle interesting models of measurement noise

and prior information about the signal (e.g. sparsity). It would be interesting to see if this tech-

nique can be extended beyond i.i.d. sensing matrices to sub-sampled Haar sensing matrices. Re-
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cent works by Barbier, Macris, Maillard, and Krzakala [41] and Maillard, Loureiro, Krzakala, and

Zdeborová [79] take a step in this direction and study generalized linear models where the sensing

matrix is a Gaussian matrix whose rows are sampled i.i.d. from a correlated multivariate Gaussian

distribution.

6.3 Further exploration of Universality Phenomenon

In Chapter 5, we analyzed the dynamics of linearized Approximate message passing algo-

rithms for phase retrieval when the sensing matrix is generated by sub-sampling n columns of a

m ×m Hadamard-Walsh matrix under an average-case Gaussian prior assumption on the signal.

We showed that the dynamics of linearized AMP algorithms for these sensing matrices are asymp-

totically indistinguishable from the dynamics in the case when the sensing matrix is generated by

sampling n columns of a uniformly random m×m orthogonal matrix. This provides a theoretical

justification for an empirically observed universality phenomenon in a particular case. It would be

interesting to extend our results in the following ways:

Other structured ensembles: While we focused on the sub-sampled Hadamard sensing model

in Chapter 5, we believe our results should extend to other popular structured matrices with or-

thogonal columns such as randomly sub-sampled Fourier, Discrete Cosine Transform matrices,

and CDP matrices. For these ensembles, there exist analogs of Lemma 19 which would make it

possible to prove counterparts of Proposition 17.

Non-linear AMP Algorithms: Our results hold for linearized AMP algorithms which are not the

state-of-the-art message-passing algorithms for phase retrieval. It would be interesting to extend

our results to include general non-linear AMP algorithms. This could provide a unified approach

to understanding universality in a broad class of estimators.

Non-Gaussian Priors: Simulations show that the universality of the dynamics of linearized

AMP algorithms continues to hold even if the signal is not drawn from a Gaussian prior, but is
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an actual image. Hence it would be interesting to extend our results to general i.i.d. priors and

more realistic models for signals.
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Appendix A: Omitted Proofs from Chapter 3

A.1 Proof of Lemma 7

This section is dedicated to the proof of Lemma 7.

Proof of Lemma 7. It is sufficient to show each item holds almost surely.

1. The argument for this part is a minor modification of the argument sketched in [86]. To

prove statement (1) it suffices to show that

1

m

n∑
i=1

δ√m|Ai1|
d−→ |Z|, (A.1)

almost surely. Because if we have (A.1), then for every bounded continuous function f ,

f

(
T
(
m|Ai1|2

))
= g

(√
m|A1i|

)
,

where g(x) = f(T (x2)) is a bounded continuous function as well. Hence by (A.1),

1

m

m∑
i=1

f(Ti)→ E
[
g(Z)

]
= E

[
f
(
T
(
|Z|2

))]
,

which implies 1
m

∑m
i=1 δTi

d−→ LT .

To show (A.1), note that A1 has the same distribution as z
‖z‖ , where z = (z1, ..., zm), and
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zi
i.i.d.∼ CN (0, 1). Let Φ denote the cumulative distribution function of |Z| and define

Fm(t)
def
=

1

m

m∑
i=1

1
(√

m|A1i| ≤ t
)
,

Gm(t)
def
=

1

m

m∑
i=1

1
(
|zi| ≤ t

)
.

Then, we have

Fm(t)
d
= Gm

(
t
‖z‖√
m

)
. (A.2)

Moreover,

Gm

(
t
‖z‖√
m

)
− Φ(t) =

Gm

(
t
‖z‖√
m

)
− Φ

(
t
‖z‖√
m

)
+ Φ

(
t
‖z‖√
m

)
− Φ(t)

a.s.−−→ 0 + 0.

Gm(t‖z‖) − Φ(t‖z‖) goes to 0 almost surely by Glivenko-Cantelli lemma. Furthermore,

since
‖z‖√
m

a.s.−−→ 1,

and Φ is a continuous function we conclude that

Φ

(
t
‖z‖√
m

)
− Φ(t)

a.s.→ 0.

Hence,

Fm(t)→ Φ(t),

almost surely which yields (A.1).
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2. We now focus on the proof of statement (2). Let

Ck def
=

[
1 +

1

k
, k

]
, k ∈ N.

We will show that

Qm(λ)→ Q(λ) ∀ λ ∈ Ck, (A.3)

almost surely. This means there is a set C ′k, with measure 0, out of which we have the

convergence for all λ ∈ Ck. If we define C ′ def
=
∞⋃
k=1

C ′k, then Qm(λ) → Q(λ) ∀λ ∈ (1,∞)

out of C ′ and clearly P (C ′) = 0.

First note that A1
d
= z
‖z‖ , where

z = (z1, ..., zm) , zi
i.i.d.∼ CN (0,1).

Define

Q̃m(λ)
def
=

1

m

m∑
i=1

|zi|2
λ− T

(
|zi|2

) . (A.4)

Note that for a fixed λ we have Q̃m(λ) → Q(λ) almost surely by the strong law of large

numbers. Since Q̃m(λ) is a decreasing function in λ and we have Q̃m(λ) → Q(λ) ∀λ ∈

Ck ∩Q almost surely, we obtain Q̃m(λ)→ Q(λ) for all λ ∈ Ck with probability 1. Hence, it

suffices to show under an event that holds with probability 1,

Qm(λ)− Q̃m(λ)→ 0 ∀λ ∈ Ck. (A.5)

To prove (A.5), we will find a sequence τm such that τm → 0 as m→∞, and,

∑
m≥1

P

(
sup
λ∈Ck

∣∣∣Qm(λ)− Q̃m(λ)
∣∣∣ > τm

)
<∞.

195



With this, Borel-Cantelli lemma yields that event

E =

{
sup
λ∈Ck

∣∣∣Qm(λ)− Q̃m(λ)
∣∣∣ > τm infinitely often

}

has measure 0. Out of the event E we have (A.5) as it was desired.

Define the events:

E1 ,

{
sup
i≤m
|zi| ≤

√
6 logm

}
,

E2,ε ,


∣∣∣∣∣‖z‖2

m
− 1

∣∣∣∣∣ ≤ ε

 ,

where ε is parameter we will set later. Note that,

∣∣∣Qm(λ)− Q̃m(λ)
∣∣∣ ≤

m∑
i=1

|zi|2

‖z‖2

∣∣∣∣∣∣∣
‖z‖2
m

λ− T
(
|zi|2

) − 1

λ− T
(

m
‖z‖2 |zi|

2
)
∣∣∣∣∣∣∣

≤ I + II,

where we defined the terms I, II as:

I =

∣∣∣∣∣‖z‖2

m
− 1

∣∣∣∣∣ ·
m∑
i=1

|zi|2
‖z‖2

·
∣∣∣∣∣ 1

λ− T
(
|zi|2

)∣∣∣∣∣
II =

m∑
i=1

|zi|2
‖z‖2

·

∣∣∣T (|zi|2)− T (m|zi|2‖z‖2
)∣∣∣∣∣∣λ− T (|zi|2)∣∣∣ · ∣∣∣λ− T (m|z2

i |
‖z‖2

)∣∣∣ .
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Using the fact that z ∈ E1 ∩ E2,ε and λ ∈ Ck, we have,

I ≤ kε,

II ≤ k2 ·max
i≤n

∣∣∣∣∣T
(
|zi|2

)
− T

(m|zi|2
‖z‖2

)∣∣∣∣∣ .
Observe that, on the event E1 ∩ E2,ε,

∣∣∣∣∣|zi|2 − m

‖z‖2 |zi|
2

∣∣∣∣∣ ≤ |zi|2
∣∣∣∣∣1− m

‖z‖2

∣∣∣∣∣
≤ 6 log(m) · ε

1− ε.

Since T was assumed to be Lipchitz,

II ≤ k2 · ‖T ‖Lip · 6 log(m) · ε

1− ε,

where ‖T ‖Lip denotes the Lipchitz constant of T . Hence, when m ≥ e2, setting ε =

1
log2(m)

≤ 0.5, we obtain, on the event E1 ∩ E2,ε

∣∣∣Qm(λ)− Q̃m(λ)
∣∣∣ ≤ τm, ∀ λ ∈ Ck. (A.6)

where

τm =
k

log2(m)
+

2k2 · ‖T ‖Lip
log(m)

.
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Note that τm → 0 as m→∞ as required. And,

P

(
sup
λ∈Ck

∣∣∣Qm(λ)− Q̃m(λ)
∣∣∣ > τm

)

≤ P (Ec
1) + P

(
Ec

2,ε

)
≤ 2 ·m−2 + 2e

− m
8 log4(m) ,

where the last step follows from standard bounds on the tail Gaussian random variables and

χ2 random variables. In particular, we have,

∑
m≥1

P

(
sup
λ∈Ck

∣∣∣Qm(λ)− Q̃m(λ)
∣∣∣ > τm

)
<∞,

as required.

3. The proof is similar to the proof of the second statement. Hence, we skip the details.

A.2 Proof of Proposition 2

This section is devoted to the proof of Proposition 2. We denote the functions Λ, ψ1, ψ2, ψ3

(recall (3.1)) with T = Topt as Λopt, ψ
opt
1 , ψopt

2 , ψopt
3 and those with T = Topt,ε as Λε, ψ

ε
1, ψ

ε
2, ψ

ε
3.

Define the random variables:

Z ∼ CN (0, 1) , Topt = Topt(|Z|2), Tε = Topt,ε(|Z|2).

Next we observe that the function Topt,ε is a bounded, strictly increasing, Lipchitz function and

consequently Tε has a density with respect to the Lebesgue measure. Hence by the rescale and shift

argument outlined in Remark 2, Theorem 1 applies to a equivalent modification of Topt,ε which can

used to infer the corresponding result for Topt,ε (after another rescale and shift argument). This

gives us the result:
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|xH
? x̂ε|2
‖x‖2

a.s.→


0, ψε1(τ εr ) <

δ
δ−1

,

( δ
δ−1)

2
− δ
δ−1
·ψε2(θε?)

ψε3(θε?)2− δ
δ−1
·ψε2(θε?)

, ψ1(τ εr ) >
δ
δ−1

.

, (A.7)

where τ εr
def
= arg minτ∈[1,∞) Λε(τ) and θε? is the solution to the fixed point equation (in τ ): ψε1(τ) =

δ/(δ − 1) which is guaranteed to exist uniquely provided ψ1(τ εr ) > δ/(δ − 1). First we observe

that,

Λ′ε(τ) = 1−
(

1− 1

δ

)
· EG2

ε(τ)

(EGε(τ))2
, Gε(τ) = (τ − Tε)−1.

In particular, at τ = 1, we have,

Λ′ε(1) = 1−
(

1− 1

δ

)
· (1 + ε)2 + 1

(1 + ε)2

=⇒ lim
ε↓0

Λ′(1) =
2− δ
δ

,

and,

ψε1(1) = 2 + ε.

We consider the following two cases.

Case 1: 1 < δ < 2. Lemma 10 shows that Λε(τ) is convex on [1,∞). When δ < 2, Λ′ε(1) > 0

for ε small enough, and hence Λε is strictly increasing and τ εr = 1. Moreover, in this case, for ε

small enough,

δ

δ − 1
= 2 +

2− δ
δ − 1

> 2 + ε = ψε1(1).
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Hence, using (A.7),

lim
ε↓0

lim
m,n→∞
m=δn

|xH
? x̂ε|2
n

= 0.

Case 2: δ > 2 In this case, for small enough ε, Λ′ε(1) < 0. Hence the τ εr , the minimizer of the

convex function Λε occurs in the region (1,∞). This means it satisfies the optimality condition:

Λ′ε(τ
ε
r ) = 0⇔ ψ2(τ εr ) =

δ

δ − 1
.

Next we claim that, ∀τ ∈ [1,∞),

ψε1(τ) > ψε2(τ)⇔ E[Gε(τ)] · E[|Z|2Gε(τ)] > E[G2
ε(τ)],

which is a consequence of Chebychev’s association inequality (Fact 1) with the choice:

B = Gε(τ), A = |Z|,

f(a) = a2
(
τ − Tε

(
a2
))
, g(a) =

(
τ − Tε

(
a2
))−1

.

In particular we have ψε1(τ εr ) > δ/(δ − 1), and hence Theorem 1 gives us:

1. There exists a unique solution θε? ∈ (τ εr ,∞) such that ψε1(θε?) = δ/(δ − 1),

2. and,

|xH
? x̂ε|2
‖x‖2

a.s.→

(
δ
δ−1

)2

− δ
δ−1
· ψε2(θε?)

ψε3(θε?)
2 − δ

δ−1
· ψε2(θε?)

.

Next we claim that,

1 < lim inf
ε↓0

θε? ≤ lim sup
ε↓0

θε? <∞.
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To see this, observe

ψε1(θε?) =
E |Z|2(|Z|2+ε)

(θε?−1)(|Z|2+ε)+1

E (|Z|2+ε)
(θε?−1)(|Z|2+ε)+1

.

If lim infε↓0 θ
ε
? = 1, one can select a subsequence along which ψε1(θε?)→ E|Z|4 = 2 by dominated

convergence which contradicts: ψε2(θε?) = δ/(δ − 1) < 2. Likewise if lim supε↓0 θ
ε
? = ∞, one can

find a subsequence along which θε? →∞ and, by dominated convergence,

ψε1(θε?) =
E |Z|

2(|Z|2+ε)(θε?−1)
(θε?−1)(|Z|2+ε)+1

E (|Z|2+ε)(θε?−1)
(θε?−1)(|Z|2+ε)+1

→ 1,

which contradicts ψε1(θε?) = δ/(δ − 1) < 1 ∀ δ ∈ (2,∞). We can now conclude that,

lim inf
ε↓0

θε? = lim sup
ε↓0

θε? = θopt? ,

where θopt? is the unique solution to ψopt
1 (τ) = δ/(δ − 1) in τ ∈ (1,∞) guaranteed by Proposition

1 (due to [30]). This is because, by selecting a subsequence along with θε? → lim infε↓0 θ
ε
?, we can

conclude that, along that subsequence,

δ

δ − 1
= ψε1(θε?)→ ψopt

1

(
lim inf
ε↓0

θε?

)
.

This implies,

ψopt
1

(
lim inf
ε↓0

θε?

)
=

δ

δ − 1
,

and analogously,

ψopt
1

(
lim sup

ε↓0
θε?

)
=

δ

δ − 1
.

Since Proposition 1 guarantees that the equation ψopt
1 (τ) = δ/(δ − 1) has a unique solution in
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(1,∞) we get,

lim inf
ε↓0

θε? = lim sup
ε↓0

θε? = θopt? .

Dominated convergence now yields,

ψεi (θ
ε
?)→ ψopt

i (θopt? ), as ε ↓ 0 ∀ i = 1, 2, 3,

and consequently, almost surely,

lim
ε↓0

lim
m,n→∞,
m=nδ

|xH
? x̂ε|2
n

a.s.
=

(
δ
δ−1

)2

− δ
δ−1
· ψopt

2 (θopt? )

ψopt
3 (θopt? )2 − δ

δ−1
· ψopt

2 (θopt? )
.

The right hand side of the above display can be simplified to:

(
δ
δ−1

)2

− δ
δ−1
· ψopt

2 (θopt? )

ψopt
3 (θopt? )2 − δ

δ−1
· ψopt

2 (θopt? )
=
θopt? − 1

θopt? − 1
δ

.

This clean formula is due to [30] and we refer the reader to Appendix B in [30] for a proof.

A.3 Miscellaneous results

Fact 1 (Chebychev Association Inequality, [70]). Let A,B be r.v.s and B ≥ 0. Suppose f, g are

two non-decreasing functions. Then,

E[B]E[Bf(A)g(A)] ≥ E[f(A)B]E[g(A)B].

Furthermore, if, P (B = 0) = 0 and,

P
(
f(A) = x

)
= 0, P

(
g(A) = x

)
= 0, ∀ x ∈ R,
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then, the above inequality is strict.

Proof. The proof of the inequality appears in [70]. Inspecting the proof we can derive a sufficient

condition for the inequality to be strict. The proof in [70] shows,

2 · (E[B]E[Bf(A)g(A)]− E[f(A)B]E[g(A)B]) =

EBB′(f(A)− f(A′)) · (g(A)− g(A′)).

where (B′, A′) is an independent sample of the random variables (B,A). Since, f, g are increasing

(f(A)− f(A′)) · (g(A)− g(A′)) ≥ 0 and B ≥ 0, B′ ≥ 0. Hence the equality is tight iff:

BB′(f(A)− f(A′)) · (g(A)− g(A′))
a.s.
= 0,

which is ruled out by the assumptions of the claim.
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Appendix B: Omitted Proofs from Chapter 4

B.1 Proofs from Section 4.5

In this section, we collect the missing proofs from Section 4.5. We begin with a lemma de-

scribing the joint distribution of the phase retrieval measurements y and the side information z.

Lemma 34. Let x?,y and z denote the signal vector, the measurements and side information

sampled from the phase retrieval with side information model (see (4.2), (4.1) and (4.4)). Then

conditioned on x?, y and z are independent with marginal distributions:

y
d
= m|U |2 + σε, U ∼ Unif

(
Sm−1

)
, ε ∼ N (0, Im) ,

z ∼ N
(
0, 2 · Ib∆·mc

)
.

Furthermore, since the above distributions do not depend on x?, this result holds even without

conditioning on x?.

Proof. From (4.2), (4.1) and (4.4), we know that,

y = m|Ax?|2 + σε, zi
i.i.d.∼ N

(
〈wi,x?x

H
? 〉, 1

)
, i ∈ {1, 2 . . . , b∆mc},

where A is a uniformly random m × n partial unitary matrix and the matrices wi
i.i.d.∼ GUE(n).

Since A is independent of w1,w2 . . . ,wb∆mc, we have y, z are conditionally independent given

x?. Let B be the n × n unitary matrix whose first column B1 = x? (and the remaining columns
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can be arbitrary). Then note that, conditioned on x?,

Ax?
(1)
= ABBHx?

= ABe1

d,(2)
= Ae1.

In the above display, the step marked (1) used the fact that BBH = In, the distribution inequality

(2) used the fact that since A is a uniformly random partial unitary matrix, its distribution is

invariant to left multiplication by a unitary matrix. Finally note that the first column of a partial

unitary matrixAe1 ∼ Unif
(
Sm−1

)
. This gives us:

y
d
= m|U |2 + σε, U ∼ Unif

(
Sm−1

)
, ε ∼ N (0, Im) . (B.1)

Next observe that since wi ∼ GUE(n), conditioned on x?,

〈wi,x?x
H
? 〉

i.i.d.∼ N (0, 1) , i ∈ {1, 2 . . . , b∆mc}.

Hence, conditioned on x?,

zi
i.i.d.∼ N (0, 2) .

This proves the claim of the lemma. Note that since the conditional distributions do not depend on

x?, this result holds even without conditioning on x?

The remainder of this section is organized as follows:

1. Section B.1.1 is devoted to the proof of Proposition 6.

2. Section B.1.2 is devoted to the proof of Lemma 12.
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B.1.1 Proof of Proposition 6

Proof. Let ∆ > 0 be fixed to any value that guarantees:

I (y, z;A,W ) = o(m).

By the chain rule for mutual information,

I (y, z;A,W ) = I (y;A,W ) + I
(
z;A,W |y

)
= I (y;A) + I

(
z;A,W |y

)
≥ I (y;A) .

Consequently I (y;A) = o(m). This means,

H
(
y | A

)
= H (y)− o(m) (B.2)

H
(
y, z | A,W

)
= H (y, z)− o(m). (B.3)

In order to prove the claim of the proposition, we will costruct an upper bound and a lower bound

on the quantity H
(
z | y,A,W

)
. Comparing the upper and lower bound will give us the claim of

the proposition.

H
(
z | y,A,W

)
= H

(
y, z | A,W

)
−H

(
y | A,W

)
= H

(
y, z | A,W

)
−H

(
y | A

)
(a)
= H (y, z)−H (y)− o(m)

(b)
= H (z)− o(m)

(c)
= b∆mc · h(2) · (1− o(1)) (B.4)

= ∆m · h(2) · (1− o(1)). (B.5)
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In the equality marked (a), we used the conclusions derived in (B.2) and (B.3). In the step marked

(b), we used the fact that y, z are independent (see Lemma 34). In step (c) we defined h(v)
def
=

1
2

ln(2πv), which is the entropy of N (0, v) and recalled the claim of Lemma 34: zi
i.i.d.∼ N (0, 1).

On the other hand we can upper bound H
(
z | y,A,W

)
as follows:

H
(
z | y,A,W

)
≤
b∆mc∑
i=1

H
(
zi | y,A,W

)
(a)

≤
b∆mc∑
i=1

Eh
(
Var(zi|y,A,W)

)
(b)

≤
b∆mc∑
i=1

h(EVar(zi|y,A,W )) (B.6)

In the step marked (a) we used the fact that the Gaussian Distribution has the maximal entropy for a

fixed variance and in step (b) we used the concavity of h. Next we compute EVar(Zi|Y ,A,W1:∆m).

We have,

EVar(zi|y,A,W ) = E(zi − E[zi|Y ,A,W ])2

(a)
= E〈wi,x?x

H
? − E[x?x

H
? |y,A,W ]〉2 + 1

(b)
= E〈wi,x?x

H
? − E[x?x

H
? |y,A]〉2 + 1

(c)
= E‖x?xH

? − E[x?x
H
? |y,A]‖2 + 1. (B.7)

In the above display, the equality (a) follows from the fact that zi ∼ N
(
〈wi,x?x

H
? 〉, 1

)
and equality

(b) used the fact thatW is independent of x?,y,A. In the step (c), we used the following property

of a GUE matrix: for a deterministic Hermitian matrixM , 〈wi,M〉 ∼ N
(
0, ‖M‖2

)
. (B.5), (B.6)

and (B.7) give us the conclusion:

∆m · h(E‖x?xH
? − E[x?x

H
? |Y ,A]‖2 + 1) ≥ ∆m · h(2)(1− o(1)).
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Since h is an increasing function this gives us:

lim inf
m,n→∞
m=δn

Ex?,y,A‖x?xH
? − E[x?x

H
? |y,A]‖2 ≥ 1.

On the other hand, by the optimality of the Bayes estimator, we have: Ex?,y,A‖x?xH
?−E[x?x

H
? |y,A]‖2 ≤

Ex?,y,A‖x?xH
? − 0‖2 = 1. Hence,

lim
m,n→∞
m=nδ

Ex?,y,A‖x?xH
? − E[x?x

H
? |y,A]‖2 = 1.

This concludes the proof of the proposition.

B.1.2 Proof of Lemma 12

Proof. Through out this proof C refers to a finite non-negative constant independent of m,n that

can possibly depend on δ, σ2,∆. This constant may change from line to line. Recall that,

I (y, z;A,W ) = H (y, z)−H
(
y, z|A,W

)
.

We can split H
(
y, z|A,W

)
as follows:

H
(
y, z|A,W

)
= −EA,W

(∫
p(y, z|A,W ) ln p(y, z|A,W ) dy dz

)
= −EA,W

(∫
Em
p(y, z|A,W ) ln p(y, z|A,W ) dy dz

)

− EA,W

(∫
Ecm
p(y, z|A,W ) ln p(y, z|A,W ) dy dz

)
(a)
= −

∫
Em

EA,W
[
p(y, z|A,W ) ln p(y, z|A,W )

]
dy dz

−
∫
Ecm

EA,W p(y, z|A,W ) ln p(y, z|A,W ) dy dz.
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In the step marked (a) we used Fubini’s Theorem. Likewise we can split H (y, z) as follows:

H (y, z) = −
∫
Em
p(y, z) ln p(y, z) dy dz −

∫
Ecm
p(y, z) ln p(y, z) dy dz.

Hence,

I (y, z;A,W ) = I + II + III,

where the terms I, II, III are defined as:

I
def
= −

∫
Em
p(y, z) ln p(y, z) dy dz +

∫
Em

EA,W
[
p(y, z|A,W ) ln p(y, z|A,W )

]
dy dz,

II
def
= −

∫
Ecm
p(y, z) ln p(y, z) dy dz,

III
def
=

∫
Ecm

EA,W p(y, z|A,W ) ln p(y, z|A,W ) dy dz.

Analysis of I : Consider the following inequality:

ln(x) ≤ (x− 1) =⇒ x ln(x) ≤ x(x− 1), ∀x ≥ 0.

Applying this to p(y,z|A,W )
p(y,z)

, we obtain,

p(y, z|A,W ) ln p(y, z|A,W ) ≤ p(y, z|A,W ) ln(p(y, z))− p(y, z|A,W ) +
p2(y, z|A,W )

p(y, z)
.

Substituting this in the expression for I we obtain,

I ≤ −
∫
Em
p(y, z) ln p(y, z) dy dz +

∫
Em
p(y, z) ln p(y, z) dy dz − Pr(Em)

+

∫
Em

EA,W p2(y, z|A,W )

p(y, z)
dy dz

=

(∫
Em

EA,W p2(y, z|A,W )

p(y, z)
dy dz − 1

)
+ P(Ecm).
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Hence we have,

I ≤
(∫
Em

EA,W p2(y, z|A,W )

p(y, z)
dy dz − 1

)
+ P(Ecm). (B.8)

Analysis of II : We can handle II as follows:

II
def
= −

∫
Ecm
p(y, z) ln p(y, z) dy dz

(a)
= −

∫
Ecm
p(y) ln p(y) dy + H (z)P(Ecm)

(b)

≤ −
∫
Ecm
p(y) ln p(y) dy + C ·m · P(Ecm)

= −
∫
Ecm
p(y) lnEx,Ap(y|x,A) dy + C ·m · P(Ecm)

(c)

≤ −Ex,A,y1Ecm ln p(y|x,A) + C ·m · P(Ecm)

=
1

2σ2
E‖y −m|Ax|2‖21Ecm +

m ln(2πσ2)

2
P(Ecm) + C ·m · P(Ecm)

≤ C ·
(
m2P(Ecm)E‖Ax‖4

4 + E‖y‖21Ecm
)

+ C ·m · P(Ecm).

In the step marked (a) we used the fact that y, z are marginally independent. In the step marked

(b) we used the fact that H (z) ≤ Cm for a suitable C. In the step marked (c) we applied Jensen’s

Inequality and note that the random variables x,A and y are independent. Note that by Cauchy

Schwartz Inequality, we have,

E‖y‖21Ecm ≤
√

E‖y‖4 · P(Ecm).

It is also straightforward to obtain the following estimates by simple moment computations:

E‖Ax‖4
4 =

m∑
i=1

E|〈ai,x〉|4 =
m∑
i=1

E‖ai‖4|x1|4 ≤ mE|x1|4 ≤
C

m
, E‖y‖4 ≤ Cm2.

210



for some 0 ≤ C <∞. This gives us:

II ≤ Cm
(
P(Ecm) +

√
P(Ecm)

)
. (B.9)

Analysis of III : Next we analyze the term III:

III =

∫
Ecm

EA,W p(y, z|A,W ) ln p(y, z|A,W ) dy dz

Noting that:

ln p(y, z|A,W ) = lnExp(y, z|A,W ,x)

= lnExe−‖y−m|Ax|
2‖2/2σ2

+ lnEx

b∆mc∏
i=1

e−(zi−〈xxH,wi〉)2/2

− m ln(2πσ2) + b∆mc ln(2π)

2

≤ −m ln(2πσ2) + b∆mc ln(2π)

2

≤ Cm.

Hence we obtain,

III ≤ CmP(Ecm).

Combining the estimates on I, II, III we obtain,

I (y, z;A,W ) ≤
(∫
Em

EA,W p2(y, z|A,W )

p(y, z)
dy dz − 1

)
+ C ·m ·

√
P(Ecm).
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B.2 Proofs of Local Central Limit Theorems

The proofs of the Local central limit theorems are based on the classical approach using char-

acteristic functions. Section B.2.1 contains the proof of the local CLT in Proposition 7 and Section

B.2.2 contains the proof of the local CLT in Proposition 8. The proofs use some standard prop-

erties of characteristic functions which have been collected in Appendix B.8 for reference. We

will also rely on some analytic properties of the Tilted Exponential distribution and Tilted Wishart

distribution given in Appedices B.6.1 and B.6.2.

B.2.1 Proof of Proposition 7

Proof. Recall the random variable U was defined as:

U =
m∑
i=1

ui, ui ∼ TExp
(
λ̂1(σ), yi

)
, i ∈ [∆m],

where,

λ̂1(σ)
def
= arg max

λ∈R

(
λ− ÊY lnEE∼Exp(1)e

λEψσ(E − Y )
)
.

Note that λ = λ̂1(σ) satisfies the first order stationarity condition:

1 =
1

m

m∑
i=1

EE∼Exp(1)E · eλ̂1(σ)Eψσ(E − yi)
EE∼Exp(1)eλ̂1(σ)Eψσ(E − yi)

⇔
m∑
i=1

Eui = m.

From here on, throughout this proof, we will shorthand λ̂1(σ) as simply λ̂1. Define the centered

random variables: ǔi = ui − Eui and centered and normalized random variable:

Ǔ =
U −m√

m
=

∑m
i=1 ǔi√
m

.
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Let v̂(σ) denote the variance of Ǔ :

v̂(σ)
def
=

1

m

m∑
i=1

Eǔ2
i =

1

m

m∑
i=1

σ2
TExp

(
λ̂1, yi

)
.

Again for ease of notation we will short hand v̂(σ) as v̂. Let F̌ denote the density of Ǔ . Let

ψ̌(t) = EeitǓ denote the characteristic function of Ǔ . By the change of variable formula, we have,

Fλ̂1,y
(m) =

F̌ (0)√
m

Hence we focus on computing F̌ (0). By the Fourier Inversion formula (Lemma 7, Appendix B.8)

we have,

|F̌ (u)− φ√v̂(u)| = 1

2π

∣∣∣∣∣
∫
R
e−itu

(
ψ̌(t)− e− v̂t

2

2

)
dt

∣∣∣∣∣
(a)

≤ 1

2π

(∫
|t|≤t1

∣∣∣∣ψ̌(t)− e− v̂t
2

2

∣∣∣∣ dt+

∫
t1≤|t|≤t2

√
m

|ψ̌(t)| dt+

∫
|t|≥t2

√
m

|ψ̌(t)| dt+

∫
|t|≥t1

e−
v̂t2

2 dt

)

(b)

≤ 1

2π


∫
|t|≤t1

∣∣∣∣ψ̌(t)− e− v̂t
2

2

∣∣∣∣ dt︸ ︷︷ ︸
(1)

+

∫
t1≤|t|≤t2

√
m

|ψ̌(t)| dt︸ ︷︷ ︸
(2)

+

∫
|t|≥t2

√
m

|ψ̌(t)| dt︸ ︷︷ ︸
(3)

+
2

v̂
e−

v̂t21
2



In the step marked (a), the cutoff parameters t1, t2 are arbitrary and will be fixed later. In the step

marked (b), we used standard bounds on the tail of a gaussian integral (see Lemma 47, Appendix

B.9). In the following sequence of steps, we upper bound each of the error terms (1), (2) and (3).

We will be able to show, for a suitable selection of t1, t2, that,

(1) + (2) + (3) +
2

v̂
e−

v̂t21
2 ≤ C(K) · ln(m)√

m
.
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This gives us,

∣∣∣∣F̌ (0)− 1√
2πv̂

∣∣∣∣ ≤ C(K) ln(m)√
m

=⇒
∣∣∣∣Fλ̂1,y

(m)− 1√
2πv̂ ·m

∣∣∣∣ ≤ C(K) ln(m)

m
,

which is the claim of this proposition. The remaining proof is devoted to the analysis of (1), (2)

and (3).

Analysis of (1): Recall ψ̌(t) = EeitǓ and f(x) = eitx is bounded, t-Lipchitz function of x.

Applying the Berry-Eseen Inequality (Theorem 9, Appendix B.8), we have,

∣∣∣∣ψ̌(t)− e− v̂t
2

2

∣∣∣∣ ≤ C · (1 +
√
v̂|t|) · ρ3√

m · v̂3
.

In the above display, C is a universal constant and ρ3 is given by:

ρ3 =
1

m

m∑
i=1

E|ui − Eui|3

≤ 8

m

m∑
i=1

E|ui|3

(c)

≤ C

1 + |λ̂1|3 +
1

m

m∑
i=1

|yi|3
 .

In the step marked (c) we used the estimate on E|ui|3 proved in Lemma 43. Integrating the

pointwise bound above we obtain:

(1) ≤ C ·

1 + |λ̂1|3 +
1

m

m∑
i=1

|yi|3
 · t1(1 +

√
v̂t1)√

m · v̂3
.

We set:

t1 =

√
2 ln(m)

v̂
.
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This gives us:

(1) ≤ C

v̂2
·

1 + |λ̂1|3 +
1

m

m∑
i=1

|yi|3
 · ln(m)√

m
≤ C(K) · ln(m)√

m
.

Analysis of (2): Let (u′1, u
′
2 . . . u

′
m) be independent and identically distributed as (u1, u2 . . . um).

Note that,

∣∣∣Eeitǔi

∣∣∣2 =
∣∣∣Eeitui

∣∣∣2 = Eeit(ui−u′i).

Hence,

∣∣∣ψ̌(t)
∣∣∣2 =

m∏
i=1

∣∣∣∣∣E exp

(
itǔi√
m

)∣∣∣∣∣
2

=
m∏
i=1

E exp

(
it(ui − u′i)√

m

)
.

By the Taylor’s theorem for CF (Theorem 8, Appendix B.8), we have,

E exp

(
it(ui − u′i)√

m

)
= 1− E(ui − u′i)2 · t2

2m
+ Ei, |Ei| ≤

E|ui − u′i|3 · |t|3
6m
√
m

.

Now consider any t ≤ t2
√
m:

|ψ̌(t)|2 =
m∏
i=1

(
1− E(ui − u′i)2 · t2

2m
+ Ei

)

≤
m∏
i=1

(
1− E(ui − u′i)2 · t2

2m
+

E|ui − u′i|3 · |t|3
6m
√
m

)

≤ exp

− t2

2m

m∑
i=1

E(ui − u′i)2 +
|t|3

6m
√
m

m∑
i=1

E|ui − u′i|3
 .

Next we observe that,

1

2m

m∑
i=1

E(ui − u′i)2 = v̂.
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We set:

t2 =
v̂

2
·

 1

m

m∑
i=1

E|ui − u′i|3
−1

.

This ensures, for any |t| ≤ t2
√
m, we have,

|ψ̌(t)|2 ≤ exp

− t2

2m

m∑
i=1

E(ui − u′i)2 +
t3

6m
√
m

m∑
i=1

E|ui − u′i|3
 ≤ exp

(
− v̂t

2

2

)
.

Consequently,

(2) =

∫
t1≤|t|≤t2

√
m

|ψ̌(t)| dt ≤
∫
t1≤|t|≤t2

√
m

e−v̂t
2/4 dt ≤

∫
t1≤|t|

e−v̂t
2/4 dt

(d)

≤ 4

v̂
exp

(
− v̂t

2
1

4

)
(e)
=

4

v̂
√
m
≤ C(K)√

m
.

In the step marked (d), we used the standard bound on gaussian tail integrals (Lemma 47)

and in the step marked (e) we substituted the value of t1 fixed in the analysis of (1). Finally,

to wrap up this step, we note that there exists a finite positive constant C(K) such that,

t2 ≥
1

C(K)
.

Indeed,

1

m

m∑
i=1

E|ui − u′i|3 ≤
8

m

m∑
i=1

E|ui|3 ≤ C

1 + |λ̂1|3 +
1

m

m∑
i=1

|yi|3
 ≤ C(K),
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and,

t2 =
v̂

2
·

 1

m

m∑
i=1

E|ui − u′i|3
−1

≥ 1

C(K)
.

Analysis of (3): Recall the term (3) was given by:

(3) =

∫
|t|≥t2

√
m

|ψ̌(t)| dt =
√
m

∫
|t|≥t2

|ψ̌(t
√
m)| dt.

By AM-GM for non-negative real numbers we have,

∣∣∣ψ̌(t
√
m)
∣∣∣2 =

m∏
i=1

∣∣∣Eeitui

∣∣∣2 ≤
 1

m

m∑
i=1

∣∣∣Eeitui

∣∣∣2
m

.

We use two different strategies to further control the above bound:

1. Applying Lemma 43, we obtain,

1

m

m∑
i=1

∣∣∣Eeitui

∣∣∣2 ≤ C

|t|2 ·
1

m

m∑
i=1

(1 + |λ̂1|+ |y|i)2 ≤ C(K)

|t|2 .

2. The above bound tells us that for |t| ≥
√

2C(K), we have,

1

m

m∑
i=1

∣∣∣Eeitui

∣∣∣2 ≤ 1

2
.

Applying Lemma B.51 in Appendix B.8, we can find a constant 0 < η(K) < 1 de-

pending only on K such that,

1

m

m∑
i=1

∣∣∣Eeitui

∣∣∣2 ≤ (1− η(K)), ∀|t| ≥ t2.
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We can combine the above to bounds to control (3) as follows:

(3) =
√
m

∫
|t|≥t2

|ψ̌(t
√
m)| dt

≤ √m
∫
|t|≥t2

 1

m

m∑
i=1

∣∣∣Eeitui

∣∣∣2
m

2

dt

≤ √m · C(K)

∫
|t|≥t2

 1

m

m∑
i=1

∣∣∣Eeitui

∣∣∣2
m

2
−1

· 1

|t|2 dt

≤ C(K) · √m · (1− η(K))
m
2
−1 ·

∫
|t|≥t2

1

|t|2 dt

≤ C(K)√
m

.

This concludes the proof of the proposition.

B.2.2 Proof of Proposition 8

Proof. Recall that the random variable S was defined as:

S =
m∑
k=1

Sk, Sk =

 sk
√
sks′ke

iθk√
sks′ke

−iθk r′k

 ∼ TWis
(
λ̂2(q;σ), φ̂2(q;σ), yi

)
,

where (λ̂2(q;σ), φ̂(q;σ)) solved the concave variational problem:

(λ̂2(q;σ), φ̂(q;σ))
def
= arg max

(λ,φ)∈R

(
2λ+ qφ− ÊY lnZTWis (λ, φ, Y )

)
.

Throughout this proof for easy of notation we will omit the dependence of quantities like λ̂2(q;σ),

φ̂(q;σ) and V̂ (q;σ) on q, σ and denote them by λ̂2, φ̂, V̂ . Since the optimizer of the variational
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problem lies in a compact set, we know that λ̂2, φ̂ satisfy the first order optimality conditions:

2 =
1

m

m∑
i=1

∂λZTWis

(
λ̂2, φ̂, yi

)
ZTWis

(
λ̂2, φ̂, yi

) (a)
=

1

m

m∑
i=1

E(si + s′i)

q =
1

m

m∑
i=1

∂φZTWis

(
λ̂2, φ̂, yi

)
ZTWis

(
λ̂2, φ̂, yi

) (a)
=

1

m

m∑
i=1

E
√
sis′i cos(θi).

In the steps marked (a), we used the formula for the normalizing constant ZTWis (λ, φ, y) given in

Definition 6 to compute the partial derivatives. It is also clear from Definition 6 that:

Esi = Es′i, E
√
sis′i sin(θ) = 0.

Hence the first order optimality conditions imply:

ES = mQ.

Next we define the centered random variables:

Ši = Si − ESi, Š =
S − ES√

m
=

1√
m

m∑
i=1

Ši.

Note that,

EVec
(
Š
)
Vec

(
Ŝ
)H

=
1

m

m∑
i=1

ΣTWis

(
λ̂2, φ̂, yi

)
= V̂ .

Let Ȟ denote the density of Š. We note that it is sufficient to study the asymptotics of Ȟ(0) since
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by the change of variable formula we have:

Hλ̂2,φ̂,y
(mQ) =

Ȟ(0)

m2
.

In the remainder of the proof we focus on developing asymptotic expansions for Ȟ . We define the

characteristic function of Š:

Ψ̌(t) = E exp

(
i〈t,Vec

(
Š
)
〉
)
.

By the Fourier Inversion formula (Lemma 7) we have,

Ȟ(U) =
1

(2π)4

∫
R4

e−i〈t,Vec(U)〉Ψ̌(t) dt.

Applying the inversion formula to N
(
0, V̂

)
gives us:

1√
(2π)4 det(V̂ )

e−
1
2
Vec(U)HV̂ −1Vec(U) =

1

(2π)4

∫
R4

e−i〈t,Vec(U)〉e−
1
2
tHV̂ t dt.

SettingU = 0 and computing the error between the above two displays we obtain: Appendix B.8)

we have,

(2π)4

∣∣∣∣∣∣∣Ȟ(0)− 1√
(2π)4 det(V̂ )

∣∣∣∣∣∣∣ =

∣∣∣∣∫
R4

e−i〈t,Vec(U)〉
(

Ψ̌(t)− e− 1
2
tHV̂ t

)
dt

∣∣∣∣
(a)

≤
(
(1) + (2) + (3) + (4)

)
,
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where,

(1)
def
=

∫
‖t‖≤t1

∣∣∣Ψ̌(t)− e− 1
2
tHV̂ t

∣∣∣ dt,
(2)

def
=

∫
t1≤‖t‖≤t2

√
m

|Ψ̌(t)| dt,

(3)
def
=

∫
‖t‖≥t2

√
m

|Ψ̌(t)| dt,

(4)
def
=

∫
‖t‖≥t1

e−
1
2
tHV̂ t dt.

In the step marked (a), the cutoff parameters t1, t2 are arbitrary and will be fixed later. We will be

able to choose t1, t2 such that the following bound holds:

(1) + (2) + (3) + (4) ≤ C(K) · ln5(m)√
m

.

This gives us,

∣∣∣∣∣∣∣Ȟ(0)− 1√
(2π)4 det(V̂ )

∣∣∣∣∣∣∣ ≤
C(K) ln5(m)√

m
,

and hence,

∣∣∣∣∣∣∣Hλ̂2,φ̂,y
(mQ)− 1√

(2πm)4 det(V̂ )

∣∣∣∣∣∣∣ ≤
C(K) ln5(m)

m2
√
m

,

which is the claim of this proposition. The remaining proof is devoted to the analysis of (1), (2),

(3) and (4).

Analysis of (1): Recall Ψ̌(t) = Eei〈t,Vec(Š)〉 and f(x) = ei〈t,x〉 is bounded, ‖t‖-Lipchitz function
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of x. Applying the Berry-Eseen Inequality (Theorem 9, Appendix B.8), we have,

∣∣∣Ψ̌(t)− e− 1
2
tHV̂ t

∣∣∣ ≤ C · (1 + ‖V̂ ‖1/2‖t‖) · ρ3√
m · λ3

min(V̂ )
.

In the above display, C is a universal constant and ρ3 is given by:

ρ3 =
1

m

m∑
i=1

E‖Vec (Si)− EVec (Si) ‖3

≤ 8

m

m∑
i=1

E‖Vec (Si) ‖3

≤ 16

m

m∑
i=1

E(s3
i + Es′i

3
)

(a)

≤ C

1 + |λ̂2|3 + |φ̂|3 +
1

m

m∑
i=1

|yi|3
 .

In the step marked (a) we used the estimate on Es3
i proved in Lemma 44. Recalling the

assumptions

K−1 ≤ λmin(V̂ ) ≤ λmax(V̂ ) ≤ K, |φ̂|+ |λ̂2| < K,
1

m

m∑
i=1

|yi|3 ≤ K,

we obtain,

∣∣∣Ψ̌(t)− e− 1
2
tHV̂ t

∣∣∣ ≤ C(K) · (1 + ‖t‖)√
m

Integrating the pointwise bound above we obtain:

(1) ≤ C(K) · (1 + t1) · t41√
m
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We set:

t21 =
4 ln(m)

λmin(V̂ )

This gives us:

(1) ≤ C(K) · ln5(m)√
m

.

Analysis of (2): Let (S̃1, S̃2 . . . S̃m) be independent and identically distributed as (S1,S2 . . .Sm).

Note that,

∣∣∣Eei〈t,Vec(Ši)〉
∣∣∣2 =

∣∣∣Eei〈t,Vec(Si)〉
∣∣∣2 = Eei〈t,Vec(Si−S̃i)〉

Hence,

∣∣∣Ψ̌(t)
∣∣∣2 =

m∏
i=1

∣∣∣Eei〈t,Vec(Ši)〉/
√
m
∣∣∣2 =

m∏
i=1

Eei〈t,Vec(Si−S̃i)〉/
√
m.

By the Taylor’s theorem for CF (Theorem 8, Appendix B.8), we have,

E exp

i
〈t,Vec

(
Si − S̃i

)
〉

√
m

 = 1−
E〈t,Vec

(
Si − S̃i

)
〉2

2m
+ Ei,

where |Ei| is controlled by:

|Ei| ≤
E|〈t,Vec

(
Si − S̃i

)
〉|3

6m
√
m

≤
‖t‖3E‖Vec

(
Si − S̃i

)
‖3

6m
√
m

.
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Now consider any ‖t‖ ≤ t2
√
m:

|Ψ̌(t)|2 =
m∏
i=1

1−
E〈t,Vec

(
Si − S̃i

)
〉2

2m
+ Ei


≤

m∏
i=1

1−
E〈t,Vec

(
Si − S̃i

)
〉2

2m
+
‖t‖3E‖Vec

(
Si − S̃i

)
‖3

6m
√
m


≤ exp

− m∑
i=1

E〈t,Vec
(
Si − S̃i

)
〉2

2m
+
‖t‖3E‖Vec

(
Si − S̃i

)
‖3

6m
√
m

 .

Next we observe that,

1

2m

m∑
i=1

E〈t,Vec
(
Si − S̃i

)
〉2 = tHV̂ t.

We set:

t2 = 3λmin(V̂ ) ·

 1

m

m∑
i=1

E‖Vec
(
Si − S̃i

)
‖3

−1

.

This ensures, for any |t| ≤ t2
√
m, we have,

|Ψ̌(t)|2 ≤ exp

− m∑
i=1

E〈t,Vec
(
Si − S̃i

)
〉2

2m
+
‖t‖3E‖Vec

(
Si − S̃i

)
‖3

6m
√
m


≤ exp

(
−t

HV̂ t

2

)
≤ exp

(
−λmin(V̂ )‖t‖2

2

)
.
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Consequently,

(2) =

∫
t1≤‖t‖≤t2

√
m

|Ψ̌(t)| dt (B.10)

≤
∫
t1≤‖t‖≤t2

√
m

exp

(
−λmin(V̂ )‖t‖2

4

)
dt (B.11)

(a)

≤ C

∫ ∞
t1

exp

(
−λmin(V̂ )

4
l2

)
l3 dl (B.12)

(b)

≤ C(K) ·
(
λmin(V̂ )t21

4
+ 1

)
· exp

(
−λmin(V̂ )t21

4

)
(B.13)

In the step marked (a), we converted the integral into polar coordinates from cartesian

coordinates. In the step marked (b), we used Lemma 47 and used the assumption that

λmin(V̂ ) ≥ K−1. Recalling that we set:

t21 =
4 ln(m)

λmin(V̂ )
,

we obtain,

(2) ≤ C(K) · ln(m)

m
.

Finally, to wrap up this step, we note that there exists a finite positive constant C(K) such

that,

t2 ≥
1

C(K)
.

Indeed,

1

m

m∑
i=1

E‖Vec
(
Si − S̃i

)
‖3 ≤ C

m

m∑
i=1

E|si|3 ≤ C

1 + |λ|3 + |φ|3 +
1

m

m∑
i=1

|yi|3
 ≤ C(K),
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and,

t2 = 3λmin(V̂ ) ·

 1

m

m∑
i=1

E‖Vec
(
Si − S̃i

)
‖3

−1

≥ 1

C(K)
.

Analysis of (3): Recall the term (3) was given by:

(3) =

∫
‖t‖≥t2

√
m

|Ψ̌(t)| dt = m2

∫
‖t‖≥t2

|Ψ̌(t
√
m)| dt.

By AM-GM for non-negative real numbers we have,

|Ψ̌(t
√
m)|2 =

m∏
i=1

∣∣∣Eei〈t,Vec(Si)〉
∣∣∣2 ≤

 1

m

m∑
i=1

∣∣∣Eei〈t,Vec(Si)〉
∣∣∣2
m

.

We use two different strategies to further control the above bound:

1. Applying Lemma 44, we obtain,

1

m

m∑
i=1

∣∣∣Eei〈t,Vec(Si)〉
∣∣∣2 ≤ C

‖t‖ 2
3

· 1

m

m∑
i=1

(1 + |λ̂2|20 + |φ̂|20 + |y|20
i )2 ≤ C(K)

‖t‖ 2
3

.

(B.14)

2. The above bound tells us that for ‖t‖ ≥
√

8C3(K), we have,

1

m

m∑
i=1

∣∣∣Eei〈t,Vec(Si)〉
∣∣∣2 ≤ 1

2
.

Applying Lemma B.51 in Appendix B.8, we can find a constant 0 < η(K) < 1 de-

pending only on K such that,

1

m

m∑
i=1

∣∣∣Eei〈t,Vec(Si)〉
∣∣∣2 ≤ (1− η(K)), ∀ ‖t‖ ≥ t2 ≥

1

C(K)
. (B.15)
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We can combine the above to bounds to control (3) as follows:

(3) = m2

∫
‖t‖≥t2

|Ψ̌(t
√
m)| dt

≤ m2

∫
‖t‖≥t2

 1

m

m∑
i=1

∣∣∣Eei〈t,Vec(Si)〉
∣∣∣2
m

2

dt

(a)

≤ m2 · C(K) ·
∫
‖t‖≥t2

 1

m

m∑
i=1

∣∣∣Eei〈t,Vec(Si)〉
∣∣∣2
m

2
−9

· 1

‖t‖6
dt

(b)

≤ C(K) ·m2 · (1− η(K))
m
2
−9 ·

∫
‖t‖≥t2

1

‖t‖6
dt

(c)

≤ C(K)√
m
·
∫ ∞
t2

1

l6
· l3 dl

≤ C(K)√
m

In the above display, in step (a), we utilized the bound in (B.14). In the step marked (b) we

utilized the bound in (B.15). In the equation marked (c) we converted the integral into polar

coordinates and checked that the integral was finite.

Analysis of (4): We recall that:

(4) =

∫
‖t‖≥t1

e−
1
2
tHV̂ t dt

≤
∫
‖t‖≥t1

e−
λmin(V̂ )

2
‖t‖2 dt.

After this, we can exactly repeat the arguments following (B.10) and obtain,

(4) ≤ C(K) ln(m)

m
.

This concludes the proof.
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B.3 Concentration Analysis

This section is devoted to proving the concentration result Proposition 9. Throughout this

section, we will use Y to denote the random variable |Z|2 + σε, where Z ∼ CN (0, 1) and ε ∼

N (0, 1). Hence, for any f : R → R, Ef(Y ) = Ef(|Z|2 + σε). We also recall the Ê notation, for

any real valued function f on R:

Êf(Y )
def
=

1

m

m∑
i=1

f(yi),

where y1, y2 . . . , ym are the observations in the phase retrieval problem. The main intuition behind

all of the results in this section is that the empirical measure of the measurements converges to the

law of Y . Hence for a large class test functions f , Êf(Y ) ≈ Ef(Y ). This intuition is made rigorous

in terms of a general Weak Law of Large Numbers (WLLN) and a Uniform WLLN (ULLN) for

the empirical measure of the measurements in Section B.3.1. We then use these general results to

prove Proposition 9 in Section B.3.2.

B.3.1 A General Uniform Weak Law of Large Numbers

The following proposition establishes a weak law of large numbers (WLLN) for empirical

averages of measurements y1, y2 . . . ym in the phase retrieval model.

Proposition 20 (A WLLN). Let y1, y2 . . . ym be the m measurements from the Phase Retrieval

model. Let f : R→ R satisfy the local Lipchitz assumption:

|f(a)− f(b)| ≤ L · (1 + |a|k + |b|k) · |a− b|,

for some L > 0, k ∈ N. Then we have,

1

m

m∑
i=1

f(yi)
P→ Ef(|Z|2 + σε).
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In the above display, Z, ε are independent r.v.s with the distributions: Z ∼ CN (0, 1) , ε ∼

N (0, 1).

Proof. Recall that in the phase retrieval model, we have,

(y1, y2 . . . ym)
d
=

(
m|g1|2
‖g‖2

+ σε1,
m|g2|2
‖g‖2

+ σε2 . . .
m|gm|2
‖g‖2

+ σεm

)
.

In the above display g and ε are independent with g ∼ CN (0, Im) and ε ∼ N (0, Im). To obtain

the claim of the proposition we write,

1

m

m∑
i=1

f(yi)− Ef(|Z|2 + σε)
d
=

1

m

m∑
i=1

f

(
m|gi|2
‖g‖2

+ σεi

)
− Ef(|Z|2 + σε)

= (1) + (2).

where the terms (1), (2) are defined below:

(1)
def
=

 1

m

m∑
i=1

f

(
m|gi|2
‖g‖2

+ σεi

)
− 1

m

m∑
i=1

f
(
|gi|2 + σεi

) ,

(2)
def
=

 1

m

m∑
i=1

f
(
|gi|2 + σεi

)
− Ef(|Z|2 + σε)

 .

Note that,

(2)
P→ 0,

by WLLN for sums of i.i.d. random variables. On the other hand, by the local Lipchitz assumption
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on f :

(1) ≤ L ·
(

m

‖g‖2
− 1

)
· 1

m

m∑
i=1

|gi|2
(

1 +
mk|gi|2k
‖g‖2k

+ |gi|2k
)

= L ·
(

m

‖g‖2
− 1

)
·

 1

m

m∑
i=1

|gi|2 +

((
m

‖g‖2

)k
+ 1

)
1

m

m∑
i=1

|gi|2k+2

 (B.16)

By WLLN and continuous mapping theorem:

m

‖g‖2
− 1

P→ 0

1

m

m∑
i=1

|gi|2 P→ E|Z|2 <∞,((
m

‖g‖2

)k
+ 1

)
· 1

m

m∑
i=1

|gi|2k+2 P→
(

1

(E|Z|2)k
+ 1

)
· E|Z|2k+2 <∞.

Hence (1)
P→ 0. This proves the claim of the proposition.

The following proposition proves a Uniform Law of Large Numbers (ULLN) for empirical

averages of the measurements y1, y2 . . . ym using some results from empirical process theory [77].

Proposition 21 (A Uniform Law of Large Numbers). Let FT be a collection of functions ft : R→

R indexed by a parameter t which takes values in the set T , a bounded subset of Rk. Suppose that

the collection FT satisfies the following Lipchitz conditions:

Lipchitz in parameter: |ft(y)− fs(y)| ≤ L · ‖t− s‖ · (1 + |y|l) ∀ t, s ∈ T, y ∈ R,

Lipchitz in argument: |ft(y)− ft(y′)| ≤ L · |y − y′| · (|y|l + |y′|l + 1) ∀ t ∈ T, y, y′ ∈ R.

for some L > 0, l ∈ N. Then we have,

sup
t∈T

 1

m

m∑
i=1

ft(yi)− Eft(|Z|2 + σε)

 P→ 0.
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Proof. As in the proof of Proposition 20, we have the decomposition:

1

m

m∑
i=1

f(yi)− Ef(|Z|2 + σε) = (1) + (2).

where,

(1)
def
=

 1

m

m∑
i=1

ft

(
m|gi|2
‖g‖2

+ σεi

)
− 1

m

m∑
i=1

ft
(
|gi|2 + σεi

) ,

(2)
def
=

 1

m

m∑
i=1

ft
(
|gi|2 + σεi

)
− Eft(|Z|2 + σε)

 .

The analysis (1) is exactly the same as in Proposition 20. The upper bound in (B.16) holds uni-

formly over T and hence,

sup
t∈T

(1)
P→ 0.

For the term (2), we appeal to standard empirical process theory results from Van Der Vaart and

Wellner [77]. By Theorem 2.7.11 of Van Der Vaart and Wellner [77], the function class FT has

bounded bracketting number. Consequently, by Theorem 2.4.1 of Van Der Vaart and Wellner [77],

FT is Glivenko-Cantelli, that is,

sup
t∈T

(2)
P→ 0.

This concludes the proof of the proposition.

Next we will apply the ULLN of Proposition 21 to obtain uniform convergence of empirical

averages of the log-normalizing constants and moments of the Tilted Exponential and Wishart
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distributions. In particular, we recall the definitions:

lnZTExp (λ, y)
def
= lnEE∼Exp(1)e

λEψσ(y − E),

lnZTWis (λ, φ, y)
def
= lnEg∼CN (0,I2)e

λ(|g1|2+|g2|2)+φRe(g1g2)ψσ(y − |g1|2)ψσ(y − |g2|2).

For any a, b, c, d ∈ N we also define the moments of the tilted exponential and wishart distributions:

µ
(a)
TExp (λ, y)

def
= ET j, T ∼ TExp (λ, y)

µ
(a,b,c,d)
TExp (λ, φ, y)

def
= ESa11Re(S12)bIm(S12)cSd22, S ∼ TWis (λ, φ, y) .

Recalling the Definitions 5 and 6, we have,

µ
(a)
TExp (λ, y) =

EEaeλEψσ(y − E)

EE∼Exp(1)eλEψσ(y − E)
,

µ
(a,b,c,d)
TExp (λ, φ, y) =

E|g1|2aRe(g1g2)bIm(g1g2)c|g2|2deλ(|g1|2+|g2|2)+φRe(g1g2)ψσ(y − |g1|2)ψσ(y − |g2|2)

Eeλ(|g1|2+|g2|2)+φRe(g1g2)ψσ(y − |g1|2)ψσ(y − |g2|2)
.

In the above display E ∼ Exp (1) , g ∼ CN (0, I2). The following corollary applies the obtained

ULLN to the above functions to obtain uniform convergence for these functions.

Corollary 5 (Uniform Convergence of Log-Normalizing Constants and Moments). For anyR > 0

and a, b, c, d ∈ N, we have,

1) sup
|λ|≤R

 1

m

m∑
i=1

lnZTExp (λ, yi)− EZ,ε lnZTExp

(
λ, |Z|2 + σε

) P→ 0,

2) sup
|λ|+|φ|≤R

 1

m

m∑
i=1

lnZTWis (λ, φ, yi)− EZ,ε lnZTWis

(
λ, φ, |Z|2 + σε

) P→ 0,

3) sup
|λ|≤R

 1

m

m∑
i=1

µ
(a)
TExp (λ, yi)− EZ,εµ(a)

TExp

(
λ, |Z|2 + σε

) P→ 0,

4) sup
|λ|+|φ|≤R

 1

m

m∑
i=1

µ
(a,b,c,d)
TExp (λ, φ, yi)− EZ,εµ((a,b,c,d))

TExp

(
λ, φ, |Z|2 + σε

) P→ 0.
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Proof. In order to prove the corollary, we just need to verify the Lipchitz conditions in Proposition

21. In order to do so, we observe that,

∂

∂y
lnZTExp (λ, φ) =

µ
(1)
TExp (λ, y)− y

σ2
,
∂

∂λ
lnZTExp (λ, φ) = µ

(1)
TExp (λ, y) .

The moments of the Tilted Exponential distribution are bounded in Lemma 43. Using this we

obtain,

max
|λ|≤R

∣∣∣∣ ∂∂y lnZTExp (λ, y)

∣∣∣∣ ≤ C(R + |y|), max
|λ|≤R

∣∣∣∣ ∂∂λ lnZTExp (λ, y)

∣∣∣∣ ≤ C(R + |y|).

Integrating these derivative bounds gives us the following Lipchitz estimates:

∣∣∣lnZTExp (λ, y)− lnZTExp

(
λ, y′

)∣∣∣ ≤ C · (R + |y|+ |y′|) · |y − y′| ∀ |λ| ≤ R, y, y′ ∈ R,∣∣∣lnZTExp (λ, y)− lnZTExp

(
λ′, y

)∣∣∣ ≤ C · (R + |y|) · |λ− λ′| ∀ |λ| ≤ R, |λ′| ≤ R, y ∈ R,

which verifies the assumptions of Proposition 21 and hence (1) follows. Likewise the uniform

convergence in (3) follows from the observation:

∂

∂y
µ

(a)
TExp (λ, y) =

µ
(a+1)
TExp (λ, y)− µ(a)

TExp (λ, y)µ
(1)
TExp (λ, y)

σ2
,

∂

∂λ
µ

(a)
TExp (λ, y) = µ

(a+1)
TExp (λ, y)− µ(a)

TExp (λ, y)µ
(1)
TExp (λ, y) .

The proofs of (2) and (4) are analogous and rely on moment bounds for the tilted wishart distribu-

tion given in Lemma 44.

B.3.2 Proof of Proposition 9

We now present the proof of Proposition 9.

Proof. Since polynomial functions are locally Lipchitz, the claim (1) follows from the WLLN

proved in Proposition 20. Item (2) is a special case of Corollary 5. The proofs of items (3-4) is
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very similar to (and easier) items (5-6) and is omitted. Hence we focus on proving claims 5-8.

Define the concave (in λ, φ) potential functions:

V2(λ, φ; q)
def
= 2λ+ φq − EY lnZTWis (λ, φ, Y ) ,

V̂2(λ, φ; q)
def
= 2λ+ φq − ÊY lnZTWis (λ, φ, Y ) .

The potential functions are important because:

(λ2(q;σ), φ(q;σ)) = arg max
λ,φ∈R

V2(λ, φ; q), Ξ2(q;σ) = max
λ,φ∈R

V2(λ, φ; q).

And likewise,

(λ̂2(q;σ), φ̂(q;σ)) = arg max
λ,φ∈R

V̂2(λ, φ; q), Ξ̂2(q;σ) = max
λ,φ∈R

V̂2(λ, φ; q).

The proof of this proposition relies on coercivity estimates for the above potential functions which

have been proved in Appendix B.7.

For the ease of notation, in this proof we will short hand Ξ2(q;σ), Ξ̂2(q;σ), λ2(q;σ), λ̂2(q;σ),

φ(q;σ) and φ̂(q;σ) as Ξ2(q), Ξ̂2(q), λ2(q), λ̂2(q), φ(q) and φ̂(q), omitting the dependence on σ.

We consider each of the claims (5-8) one by one:

5. In Proposition 23 (Appendix B.7), we have shown that the solutions to the variation problems

lie in the compact intervals:

|λ2(q)|+ |φ(q)| ≤ C

(
1 + q +

1

1− q

)
· (E|Y |2 + 1),

|λ̂2(q)|+ |φ̂(q)| ≤ C

(
1 + q +

1

1− q

)
· (Ê|Y |2 + 1)

On the other hand we know from Proposition 20 that,

ÊY 2 P→ EY 2 <∞.
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Consequently, we can find constant R that depends only on η, σ such that,

max
0≤q≤1−η

|λ2(q)|+ |φ(q)| ≤ R, P
(

max
0≤q≤1−η

|λ̂2(q)|+ |φ̂(q)| > R

)
→ 0.

For instance taking R as:

R = C

(
2 +

1

1− η

)
(2 + EY 2),

is sufficient. This proves item (5) of the proposition.

6. We upper bound Ξ2(q)− Ξ̂2(q) and Ξ̂2(q)− Ξ2(q) separately:

Ξ2(q)− Ξ̂2(q) = V2(λ2(q), φ(q); q)− V̂ (λ̂2(q), φ̂(q); q)

= V2(λ2(q), φ(q); q)− V̂2(λ2(q), φ(q); q) + V̂2(λ2(q), φ(q); q)− V̂2(λ̂2(q), φ̂(q); q)︸ ︷︷ ︸
≤0

≤ V2(λ2(q), φ(q); q)− V̂2(λ2(q), φ(q); q)

≤ sup
q∈[0,1−η],|λ|+|φ|≤R

|V2(λ, φ; q)− V̂2(λ, φ; q)|.

Analogously, we can obtain Ξ̂2(q)−Ξ2(q) ≤ supq∈[0,1−η],|λ|+|φ|≤R |V2(λ, φ; q)− V̂2(λ, φ; q)|.

Consequently we have,

sup
q∈[0,1−η]

|Ξ2(q)− Ξ̂2(q)| ≤ sup
q∈[0,1−η],λ,φ∈R

|V2(λ, φ; q)− V̂2(λ, φ; q)|

= sup
λ,φ:|λ|+|φ|≤R

∣∣∣EY lnZTWis (λ, φ, Y )− ÊY lnZTWis (λ, φ, Y )
∣∣∣

P→ 0.

In the last step we appealed to Corollary 5. This concludes the proof of item (6).

7. For the purpose of demonstrating convergence in probability it is sufficient to restrict our-
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selves to the event:

max
0≤q≤1−η

|λ̂2(q)|+ |φ̂(q)| ≤ R,

since this event occurs with probability tending to 1. Proposition 23 shows that the function

EY lnZTWis (λ, φ, Y ) is strongly convex on compact intervals. Hence for some universal

constant C <∞, we have, for any λ, φ : |λ|+ |φ| ≤ R, ∀q ∈ [0, 1− η],

V2(λ, φ; q) ≤ V2(λ2(q), φ(q); q)− 1

C
· (|λ− λ2(q)|2 + |φ− φ(q)|2).

Applying the strong convexity estimate to λ = λ̂2(q), φ = φ̂(q) gives us:

|λ̂2(q)− λ2(q)|2 + |φ̂(q)− φ(q)|2 ≤ C(V2(λ2(q), φ(q); q)− V2(λ̂2(q), φ̂(q); q))

= C ·
(
(1) + (2) + (3)

)
.

In the above display, we defined the terms (1), (2) and (3) as:

(1) = V2(λ2(q), φ(q); q)− V̂2(λ2(q), φ(q); q),

(2) = V̂2(λ2(q), φ(q); q)− V̂2(λ̂2(q), φ̂(q); q),

(3) = V̂2(λ̂2(q), φ̂(q); q)− V2(λ̂2(q), φ̂(q); q).

Since (λ̂2(q), φ̂(q)) maximizes V̂2(λ, φ; q), we have,

(2) ≤ 0.
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On the other hand, both (1) and (2) can be bounded by:

(1) ≤ sup
λ,φ:|λ|+|φ|≤R,q∈[0,1−η]

∣∣∣V2(λ, φ; q)− V̂2(λ, φ; q)
∣∣∣ ,

(2) ≤ sup
λ,φ:|λ|+|φ|≤R,q∈[0,1−η]

∣∣∣V2(λ, φ; q)− V̂2(λ, φ; q)
∣∣∣ .

Hence we have obtained,

|λ̂2(q)− λ2(q)|2 + |φ̂(q)− φ(q)|2 ≤ 2C · sup
λ,φ:|λ|+|φ|≤R,q∈[0,1−η]

∣∣∣V2(λ, φ; q)− V̂2(λ, φ; q)
∣∣∣ .

Corollary 5 gives us the uniform convergence:

sup
λ,φ:|λ|+|φ|≤R,q∈[0,1−η]

∣∣∣V2(λ, φ; q)− V̂2(λ, φ; q)
∣∣∣ =

sup
λ,φ:|λ|+|φ|≤R

∣∣∣EY lnZTWis (λ, φ, Y )− ÊY lnZTWis (λ, φ, Y )
∣∣∣ P→ 0.

Hence we obtain,

sup
q∈[0,1−η]

|λ̂2(q)− λ2(q)|2 + |φ̂(q)− φ(q)|2 P→ 0.

This shows claim (7) of the proposition.

8. A simple computation shows that:

d2Ξ2(q)

dq2
− d2Ξ̂2(q)

dq2
= eH2

(
∇2
λ,φV2(λ2(q), φ(q); q)−1 −∇2

λ,φV̂2(λ̂2(q), φ̂(q); q)−1
)
e2.

Hence,

sup
q∈[0,1−η]

∣∣∣∣∣d2Ξ2(q)

dq2
− d2Ξ̂2(q)

dq2

∣∣∣∣∣ ≤ sup
q∈[0,1−η]

∥∥∥∇2
λ,φV2(λ2(q), φ(q); q)−1 −∇2

λ,φV̂2(λ̂2(q), φ̂(q); q)−1
∥∥∥
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Hence it is sufficient to show that,

sup
q∈[0,1−η]

∥∥∥∇2
λ,φV2(λ2(q), φ(q); q)−1 −∇2

λ,φV̂2(λ̂2(q), φ̂(q); q)−1
∥∥∥ P→ 0.

By triangle inequality, we can write,

sup
q∈[0,1−η]

∥∥∥∇2V̂2(λ̂2(q), φ̂(q); q)−∇2 V2(λ2(q), φ(q); q)
∥∥∥ ≤ (1) + (2),

where we define the terms (1) and (2) as:

(1)
def
= sup

q∈[0,1−η]

∥∥∥∇2V̂2(λ̂2(q), φ̂(q); q)−∇2 V2(λ̂2(q), φ̂(q); q)
∥∥∥ ,

(2)
def
= sup

q∈[0,1−η]

∥∥∥∇2V2(λ̂2(q), φ̂(q); q)−∇2 V2(λ2(q), φ(q); q)
∥∥∥ .

We control the first term as follows:

(1) ≤ sup
q∈[0,1−η],λ,φ:|λ|+|φ|≤R

∥∥∥∇2V̂2(λ, φ; q)−∇2 V2(λ, φ; q)
∥∥∥

= sup
λ,φ:|λ|+|φ|≤R

‖∇2EY lnZTWis (λ, φ, Y )−∇2ÊY lnZTWis (λ, φ, Y ) ‖

Noting that the entries of matrix ∇2
λ,φ lnZTWis (λ, φ, Y ) are moments of the Tilted Wishart

distribution and appealing to Corollary 5 gives us the uniform convergence:

(1) ≤ sup
q∈[0,1−η],λ,φ:|λ|+|φ|≤R

∥∥∥∇2V̂2(λ, φ; q)−∇2 V2(λ, φ; q)
∥∥∥ P→ 0. (B.17)

To control the second term, we first note that ∇2V2(λ, φ; q) is independent of q. It is also

easy to check that it is locally Lipchitz of λ, φ, consequently we have the estimate,

∥∥∥∇2V2(λ̂2(q), φ̂(q); q)−∇2 V2(λ2(q), φ(q); q)
∥∥∥ ≤ C

(
|λ2(q)− λ̂2(q)|+ |φ(q)− φ̂(q)|

)
,
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for some constant C depending only on R (in particular, C does not depend on q). Combin-

ing this with the conclusion obtained in item (4) of the lemma gives us:

(2)
P→ 0.

Hence we have,

sup
q∈[0,1−η]

∥∥∥∇2V̂2(λ̂2(q), φ̂(q); q)−∇2 V2(λ2(q), φ(q); q)
∥∥∥ P→ 0. (B.18)

In order to obtain the analogous result for the inverse-hessian, we note that by Proposition

23, V2(λ, φ; q) is strongly concave on compact sets. Furthermore, ∇2V2(λ, φ; q) does not

depend on q. Hence we have,

λmax(∇2V2(λ, φ; q)) ≤ − 1

C
, ∀|λ|+ |φ| ≤ R, ∀q,

for a large enough universal constant C. Recalling the uniform convergence in (B.17), we

have,

P
(

max
λ,φ:|λ|+|φ|≤R

λmax(∇2V̂2(λ, φ; q)) ≤ − 1

2C

)
→ 1.

Since both V, V̂ are concave functions (c.f. Proposition 23), we have,

sup
q∈[0,1−η]

‖∇2V2(λ2(q), φ(q); q)−1‖op = O(1), sup
q∈[0,1−η]

‖∇2V̂2(λ̂2(q), φ̂(q); q)−1‖op = OP (1).

(B.19)

Wedin [87] has shown the following perturbation bounds for matrix inverse for any two

invertible matrices A,B:

‖A−1 −B−1‖ ≤
√

2 ·max(‖A−1‖op, ‖B−1‖op) · ‖A−B‖.
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Combining the tightness result in (B.19) and the uniform convergence of hessians (see

(B.17)) gives us,

sup
q∈[0,1−η]

‖∇2V2(λ2(q), φ(q); q)−1 −∇2V̂2(λ̂2(q), φ̂(q); q)−1‖ P→ 0.

This concludes the proof of item (8).

B.4 Proof of Proposition 10

Recall that we had introduced the following functions:

F(q; δ,∆, σ) = Ξ2(q;σ)− 2Ξ1(σ) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)

F̂(q; δ,∆, σ) = Ξ̂2(q;σ)− 2Ξ̂1(σ) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
,

where,

Ξ2(q;σ)
def
= max

(λ,φ)∈R

(
2λ+ φq − EY lnZTWis (λ, φ, Y )

)
,

Ξ̂2(q;σ)
def
= max

(λ,φ)∈R

(
2λ+ φq − ÊY lnZTWis (λ, φ, Y )

)
,

Ξ1(σ)
def
= max

λ∈R

(
λ− EY lnEE∼Exp(1)e

λEψσ(E − Y )
)
,

Ξ̂1(σ)
def
= max

λ∈R

(
λ− EY ln ÊE∼Exp(1)e

λEψσ(E − Y )
)
.

Consider any δ that satisfies the assumptions of Proposition 10:

F(0; δ,∆, σ) < F(q; δ,∆, σ) ∀ q ∈ (0, 1), (B.20)
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and,

d2F
dq2

(0; δ,∆, σ) > 0. (B.21)

In Lemmas 12 and 13, we showed that,

I (y, z;A,W ) ≤ 2

n− 1
Ey



∫ 1

0
U

y,
1 q

q 1


 · q(1−q2)n−2

(1−q2/2)∆m dq

L 2(y, 1)
· 1Em


+ C ·m ·

√
P(Ecm).

(B.22)

We will set Em as:

Em = E (1)
m (L) ∩ E (2)

m (R, η) ∩ E (3)
m (R, η) ∩ E (4)

m (η) ∩ E (5)
m (η, ε2) ∩ E (6)

m (R, ε2) (B.23)

where:

E (1)
m (L) =

{
y : 1 + ÊY 40 ≤ L

}
, (B.24)

E (2)
m (R, η) =

{
y : sup

|λ|≤R

∣∣∣Êσ2
TExp (λ, Y )− Eσ2

TExp (λ, Y )
∣∣∣ ≤ η

}
, (B.25)

E (3)
m (R, η) =

{
y : sup

|λ|+|φ|≤R

∥∥∥ÊΣTWis (λ, φ, Y )− EΣTWis (λ, φ, Y )
∥∥∥ ≤ η

}
, (B.26)

E (4)
m (η) =

y : sup
q≤1/2

∣∣∣∣∣ d2

dq2
F(q; δ,∆, σ)− d2

dq2
F̂(q; δ,∆, σ)

∣∣∣∣∣ ≤ η

 , (B.27)

E (5)
m (η, ε2) =

{
y : |Ξ1(σ)− Ξ̂1(σ)| ≤ η, sup

q∈[0,1−ε2]

|Ξ2(q;σ)− Ξ̂2(q;σ)| ≤ η

}
, (B.28)

E (6)
m (R, ε2) =

{
y : |λ̂1(σ)| ≤ R, sup

q∈[0,1−ε2]

|λ̂2(q;σ)|+ |φ̂(q;σ)| ≤ R

}
. (B.29)
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In the above display L,R, η, ε2 are parameters which will be set appropriately later. Recall that the

notation Ê is used to denote empirical averages:

Êf(Y ) =
1

m

m∑
i=1

f(yi),

and the notation Ef(Y ) = EZ,εf(|Z|2 + σε) where Z ∼ CN (0, 1) , ε ∼ N (0, 1). Recall the

upper bound in (B.22). Our goal in this section is to show I (y, z;A,W ) = o(m). Towards this

goal, the remainder of this section is organized as follows:

1. In Lemma 35 we show that P(Ecm) = o(1).

2. In Lemmas 36 and 37 we show that under the event Em, the assumptions of Corollary 2 and

3 are met, and hence we can use them to obtain an upper bound on U and a lower bound on

L .

3. Finally the proof of Proposition 10 is restated and proved.

Lemma 35 (Analysis of P(Em)). For any ε2 ∈ (0, 1), there exists a critical value Rc(ε2) such that,

for any L > 1 + EY 40, any R > Rc(ε2) and any η > 0, we have, for the event,

Em = E (1)
m (L) ∩ E (2)

m (R, η) ∩ E (3)
m (R, η) ∩ E (4)

m (η) ∩ E (5)
m (η, ε2) ∩ E (6)

m (R, ε2),

P(Em)→ 1.

Proof. This lemma is essentially a consequence of the concentration analysis in Proposition 9. By

claim (1) of Proposition 20 we know that,

ÊY 40 P→ EY 40 <∞.

Consequently any L > EY 40 we have,

P(E (1)
m (L))→ 1.
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For any ε2 > 0. Claims (3) and (5) of Proposition 9 guarantee the existence of Rc(ε2) such that,

P(E (6)
m (R, ε2))→ 0, ∀ R > Rc(ε2), ∀ ε2 > 0.

Claim (2) of Proposition 9 gives for any R ∈ (0,∞), η > 0,

P(E (2)
m (R, η))→ 1, E (3)

m (R, η)→ 1.

Like wise Claim (4) and (6) 9 guarantee for any ε2 ∈ (0, 1) and in η > 0, we have, P(E (5)
m (η, ε2))→

1. Finally we observe that:

∣∣∣∣∣ d2

dq2
F(q; δ,∆, σ)− d2

dq2
F̂(q; δ,∆, σ)

∣∣∣∣∣ =

∣∣∣∣∣ d2

dq2
Ξ2(q;σ)− d2

dq2
Ξ2(q;σ)

∣∣∣∣∣ ,
Hence Claim (8) of Proposition 9 shows that for any η > 0, we have,P(E (4)

n (η)) → 1. Finally a

union bound gives us the claim P(Em)→ 1.

Lemma 36 (A Lower Bound on L ). For any R,L ∈ (0,∞), there exists a critical value of

η denoted by η1(R) depending only on R such that for any η < η1(R), ε2 > 0 on the event

E (1)
m (L) ∩ E (6)

m (R, ε2) ∩ E (2)
m (R, η) ∩ E (6)

m (R, ε2), we have the lower bound,

L (y, 1) ≥ 1

C(L,R)
e−m·Ξ̂1 , ∀m ≥M(L,R). (B.30)

where C(L,R),M(L,R) are large enough, finite constants depending only on L,R.

Proof. Recall that from Corollary 2, we obtained the lower bound:

L (y, 1) ≥ 1

2
√
K

exp

(
−mmax

λ∈R

(
λ− ÊY lnEE∼Exp(1)e

λEψσ(E − Y )
))

=
1

2
√
K
e−mΞ̂1 , ∀m ≥M(K).

provided we can verify:

• Ê(|Y |+ |Y |2 + |Y |3) ≤ K: This can be ensured by taking K ≥ 3L and observing that under
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event E (1)
m (L) we have 1 + ÊY 40 ≤ L.

• λ̂ which is the solution of the variational problem:

λ̂ = arg max
λ∈R

(
λ− ÊY lnEE∼Exp(1)e

λEψσ(E − Y )
)
,

lies in a compact set |λ̂1(σ)| ≤ K. TakingK ≥ R guarantees this under the event E (6)
m (R, ε2).

• Finally we need to check:

1

K
≤ Êσ2

TExp

(
λ̂, Y

)
≤ K, (B.31)

for some value of K. Note that event E (6)
m (R, ε2), guarantees |λ̂1(σ)| ≤ R. The function

λ 7→ Eσ2
TExp (λ, Y ) is strictly positive and finite on compact sets, that is:

0 < min
|λ|≤R

Eσ2
TExp (λ, Y ) ≤ max

|λ|≤R
Eσ2

TExp (λ, Y ) <∞.

This can be checked by observing λ 7→ Eσ2
TExp (λ, Y ) is continuous and if Eσ2

TExp (λ, Y ) = 0

for some λ then, σ2
TExp (λ, Y )

a.s.
= 0. This is clearly not possible since TExp (λ, y) is not

deterministic for any finite λ, y. Hence there exists a constant depending only on R such

that,

1

C1(R)
≤ Eσ2

TExp

(
λ̂, Y

)
≤ C1(R).

The event E (2)
m (R, η) guarantees:

sup
|λ|≤R

∣∣∣Êσ2
TExp (λ, Y )− Eσ2

TExp (λ, Y )
∣∣∣ ≤ η.

Since |λ̂1(σ)| ≤ R, the above error bound holds for λ = λ̂1(σ). Taking η ≤ (2C1(R))−1
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guarantees:

1

2C1(R)
≤ Êσ2

TExp

(
λ̂1(σ), Y

)
≤ C2(R) +

1

C2(R)
.

This verifies (B.31) for a suitable K.

Hence, all the requirements of Proposition 22 are satisfied which gives us the claim of the lemma.

Lemma 37 (An Upper Bound on U ). We have the following upper bounds on U :

1. Unconditional Upper Bound: For any y ∈ Rm, for any q ∈ [0, 1), we have,

U

y,
1 q

q 1


 ≤ eCU ·m,

for a universal constant CU which depends only on the noise level σ.

2. For any R,L ∈ (0,∞), there exists a critical value of η denoted by η2(R) depending only

on R such that for any η < η2(R), ε2 > 0, we have the upper bound,

U

y,
1 q

q 1


 ≤ C(L,R) · e−mΞ̂2(q)

m2 · (1− q2)m−2
∀ q ∈ [0, 1− ε2],

for any y ∈ E (1)
m (L) ∩ E (3)

m (R, η) ∩ E (6)
m (R, ε2). In the above display, C(L,R) is a constant

depending only on the choice of L,R.

Proof. 1. We recall the definition of U :

U (y,Q)
def
= E

 m∏
i=1

ψσ(yi −m|G1i|2)ψσ(yi −m|G2i|2)

∣∣∣∣GHG = Q

 .
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Observing that, ψσ(x) ≤ (2πσ2)−1/2, we obtain, ∀y ∈ Rm, ∀q ∈ (0, 1),

U

y,
1 q

q 1


 ≤ eCU ·m,

for a universal constant CU <∞ that depends only on σ.

2. Recall that Corollary 3 shows,

U

y,
1 q

q 1


 ≤ C(K)e−mΞ̂2(q)

m2 · (1− q2)m−2
.

provided we can show:

• ÊY 40 ≤ K. This is true under the event E (1)
m (L) if we choose K ≥ L.

• The minimizing arguments (λ̂2(q;σ), φ̂(q;σ)) satisfy |λ̂2(q;σ)| + |φ̂(q;σ)| ≤ K for

any q ∈ [0, 1− ε2]. This is guaranteed by the event E (6)
m (R, ε2) if K ≥ R.

• Finally, we need to check:

1

K
≤ λmin

(
ÊΣTWis

(
λ̂, φ̂, Y

))
≤ λmax

(
ÊΣTWis

(
λ̂, φ̂, Y

))
≤ K. (B.32)

The event E (6)
m (R, ε2) guarantees |λ̂2(q;σ)| + |φ̂(q;σ)| ≤ R, ∀ q ∈ [0, 1 − ε2]. The

matrix function (λ, φ) 7→ EΣTWis (λ, φ, Y ) is:

(a) Bounded on the compact set |λ|+ |φ| ≤ R. Indeed:

‖EΣTWis (λ, φ, Y ) ‖ ≤ E‖ΣTWis (λ, φ, Y ) ‖
(a)

≤ C(1 + |λ|2 + |φ|2 + EY 2) ≤ C(1 +R2).

In the inequality marked (a), we used the moment bounds for the tilted Wishart
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distribution derived in Claim (4) of Lemma 44.

(b) Strictly positive definite on the compact set |λ|+ |φ| ≤ R. To see this we note that

if λmin(EΣTWis (λ, φ, Y )) = 0 for some λ, φ then since

λmin(EΣTWis (λ, φ, Y )) ≥ Eλmin(ΣTWis (λ, φ, Y )),

we have λmin(ΣTWis (λ, φ, Y )) = 0 almost surely (with respect to the distribution

of Y ). This contradicts Claim (6) of Lemma 44.

Hence, there exists a positive and finite constant C2(R) depending only on R such that,

1

C2(R)
≤ λmin

(
EΣTWis

(
λ̂, φ̂, Y

))
≤ λmax

(
EΣTWis

(
λ̂, φ̂, Y

))
≤ C2(R).

The event E (3)
m (R, η) guarantees:

∣∣∣∣∣λmin

(
EΣTWis

(
λ̂, φ̂, Y

))
− λmin

(
ÊΣTWis

(
λ̂, φ, Y

))∣∣∣∣∣ ≤ η,∣∣∣∣λmax

(
EΣTWis (λ, φ, Y )

)
− λmax

(
ÊΣTWis (λ, φ, Y )

)∣∣∣∣ ≤ η.

Choosing η ≤ (2C2(R))−1, we have,

≤ λmin

(
ÊΣTWis

(
λ̂, φ̂, Y

))
≥ 1

2C2(R)
,

λmax

(
ÊΣTWis

(
λ̂, φ̂, Y

))
≤ C2(R) +

1

2C2(R)
,

which verifies (B.32) for a suitable K.

Hence all the assumptions of Corollary 3 have been verified, which gives us the claim in

item (2) of the lemma.

Finally we restate and prove Proposition 10.
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Proposition 10. Suppose that δ,∆, σ are such that F(q; δ,∆, σ) > F(0; δ,∆, σ) = 0 ∀ q ∈ (0, 1)

and d2F
dq2 (0; δ,∆, σ) > 0. Then, I (y, z;A,W ) = o(m).

Proof. In Lemmas 12 and 13, we showed that,

I (y, z;A,W ) ≤ 1

n− 1
Ey



∫ 1

0
U

y,
 1

√
b

√
b 1


 · (1−b)n−2

(1−b/2)∆m db

L 2(y, 1)
· 1Em


+ C ·m ·

√
P(Ecm)

=
2

n− 1
Ey



∫ 1

0
U

y,
1 q

q 1


 · q(1−q2)n−2

(1−q2/2)∆m dq

L 2(y, 1)
· 1Em


+ C ·m ·

√
P(Ecm)

(a)
= (1) + (2) + (3) + C ·m ·

√
P(Ecm). (B.33)
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In the step marked (a), we split the integral into three parts:

(1)
def
=

2

n− 1
Ey



∫ 1

1−ε2 U

y,
1 q

q 1


 · q(1−q2)n−2

(1−q2/2)∆m dq

L 2(y, 1)
· 1Em


,

(2)
def
=

2

n− 1
Ey



∫ 1−ε2
ε1

U

y,
1 q

q 1


 · q(1−q2)n−2

(1−q2/2)∆m dq

L 2(y, 1)
· 1Em


,

(3)
def
=

2

n− 1
Ey



∫ ε1
0

U

y,
1 q

q 1


 · q(1−q2)n−2

(1−q2/2)∆m dq

L 2(y, 1)
· 1Em


.

In the above display ε1, ε2 ∈ (0, 1) are parameters which will be set appropriately. We also recall

that we had set:

Em = E (1)
m (L) ∩ E (2)

m (R, η) ∩ E (3)
m (R, η) ∩ E (4)

m (η) ∩ E (5)
m (η, ε2) ∩ E (6)

m (R, ε2).

where the various events have been defined in Equations B.24. We now describe how to set the

parameters L,R, η, ε1, ε2 so that each of the terms in (B.33) is o(m). We also draw the readers

attention to the point that the parameter ε2 used to define the cutoff points for the integrals (1) and
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(2) is same as the ε2 in the definition of the event E (5)
m (η, ε2), E (6)

m (R, ε2). Notice also the same

parameter R is involved in the definitions of the events E (2)
m (R, η), E (3)

m (R, η), E (6)
m (R, ε2).

Analysis of (1): By Lemma 37, we know that,

U

y,
1 q

q 1


 ≤ eCU ·m.

We next appeal to Lemma 36. We enforce the requirement

η < η1(R) (B.34)

and obtain,

L (y, 1) ≥ 1

C(L,R)
· e−mΞ̂1 .

The event E (5)
m (η, ε2) guarantees that Ξ̂1(σ) ≤ Ξ1(σ) + η. By enforcing:

η ≤ 1, (B.35)

we have Ξ̂1(σ) ≤ Ξ1(σ) + 1 which is an absolute constant (depending only on the noise

level). Consequently, we have L (y, 1) ≥ C(L,R)−1 · e−CL ·m for some universal constant
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CL ∈ (0,∞) depending only on the noise level. Hence we have, for min(n,m) ≥ 4

(1) ≤ 2 · C2(L,R) · e(CU +2CL )·m

n− 1
·
∫ 1

1−ε2
(1− q2)n−2 dq

≤ 2 · C2(L,R)

n− 1
· e(CU +2CL )·m · (1− (1− ε2)2)

n
2

≤ 2 · C2(L,R)

n− 1
· e(CU +2CL )·m · (2ε2)

n
2

=
2 · C2(L,R)

n− 1
· exp

m ·(CU + 2CL +
ln(2)

2δ
−

ln 1
ε2

2δ

)
We set:

ε2 =
1

2
· e−2δ(CU +2CL ) < 1, (B.36)

which gives us (1) = O(1/n) = o(1).

Analysis of P(Ecm): As suggested by Lemma 35, we set L > E|Y |40. For example, we can set

L = 1 + EY 40. We will also enforce the constraint R > Rc(ε2) for example by setting

R = Rc(ε2) + 1 (note that ε2 has been set in (B.36)). This ensures that P(Ecm) = o(1). At

this set we have set R, ε2, L and we are still free to set η > 0, ε1 ∈ (0, 1) arbitrarily subject

to the requirements in (B.34)-(B.35).

Analysis of (2): We enforce:

η < min(η1(R), η2(R)) (B.37)

which is enough to satisfy the assumptions of Lemma 36 and item (2) of Lemma 37, which
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gives us,

U

y,
1 q

q 1




L 2(y, 1)
≤ C · e−m(Ξ̂2(q)−2Ξ̂1)

m2 · (1− q2)m−2
∀ q ∈ [0, 1− ε2]. (B.38)

This allows us to upper bound the term (2) as follows:

(2)
def
=

2

n− 1
Ey



∫ 1−ε2
ε1

U

y,
1 q

q 1


 · q(1−q2)n−2

(1−q2/2)∆m dq

L 2(y, 1)
· 1Em


≤ C

(n− 1) ·m2
· Ey

[∫ 1−ε2

ε1

e−mF̂(q;δ,∆,σ) dq · 1Em

]

Since event E (5)
m (η, ε2) guarantees |Ξ̂1(σ)−Ξ1(σ)| ≤ η, supq∈[0,1−ε2] |Ξ̂2(q;σ)−Ξ2(q;σ)| ≤

η, we have,

|F̂(q; δ,∆, σ)−F(q; δ,∆, σ)| ≤ 3η ∀ q ∈ [0, 1− ε2].

Since δ < δc(σ
2,∆) and ε1 > 0, Recall that we have, infq∈[ε1,1]F(q; δ,∆, σ) > 0 =

F(0; δ,∆, σ) (see (B.20)). Hence, we can enforce that η, ε1 satisfy:

η <
1

6
inf

q∈[ε1,1]
F(q; δ,∆, σ) (B.39)
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This guarantees, for any q ∈ [ε1, 1− ε2],

F̂(q; δ,∆, σ) ≥ F(q; δ,∆, σ)− 3η

≥ inf
q∈[ε1,1]

F(q; δ,∆, σ)− 3η

≥ 1

2
inf

q∈[ε1,1]
F(q; δ,∆, σ) > 0.

Hence,

(2) ≤ C

(n− 1) ·m2
· exp

(
−m

2
· inf
q∈[ε1,1]

F(q; δ,∆, σ)

)
= o(1).

Analysis of (3): We recall that Term (3) was given by:

(3) =
2

n− 1
Ey



∫ ε1
0

U

y,
1 q

q 1


 · q(1−q2)n−2

(1−q2/2)∆m dq

L 2(y, 1)
· 1Em


.

The upper bound in (B.38) applies to q ∈ [0, ε1]. Hence we obtain,

(3) ≤ C

(n− 1) ·m2
· Ey

[∫ ε1

0

e−mF̂(q;δ,∆,σ) dq · 1Em
]

Next we approximate F̂ by its taylors expansion at q = 0. First observe that, F̂(0; δ,∆, σ) =

0 and,

dF̂
dq

(q; δ,∆, σ) = φ̂(q;σ)− 2

(
1− 1

δ

)
q

1− q2
− ∆q

1− q2/2
=⇒ dF̂

dq
(0; δ,∆, σ) = 0.
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We enforce the constraint

η <
1

4

d2F
dq2

(0; δ,∆, σ). (B.40)

We set ε1 ∈ (0, 1/2) which guarantees:

∣∣∣∣∣d2F
dq2

(q; δ,∆, σ)− d2F
dq2

(0; δ,∆, σ)

∣∣∣∣∣ ≤ 1

2

d2F
dq2

(0; δ,∆, σ).

(B.21) and the fact that F(·; δ,∆, σ) has a continuous second derivative at q = 0 ensures this

is possible. Hence we have,

d2F
dq2

(q; δ,∆, σ) > 2η, ∀ q < ε1.

The event E (4)
m (η) guarantees:

sup
q∈[0,1/2]

∣∣∣∣∣d2F̂
dq2

(q; δ,∆, σ)− d2F
dq2

(q; δ,∆, σ)

∣∣∣∣∣ ≤ η =⇒ d2F̂
dq2

(q; δ,∆, σ) > η, ∀ q < ε1.

Then by Taylor’s theorem, we have, ∀ q ∈ [0, ε1),

F̂(q; δ,∆, σ) ≥ F̂(0; δ,∆, σ) +
dF̂
dq

(0; δ,∆, σ) · q +

(
inf

x∈[0,ε1)

d2F̂
dq2

(x; δ,∆, σ)

)
· q

2

2

≥ ηq2

2
.

Hence we obtain,

(3) ≤ C

(n− 1) ·m2
·
∫ ε1

0

e−
ηq2

2
·m ≤ C

(n− 1) ·m2
= o(1).
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Finally we note that set η as,

η = min

(
1, η1(R), η2(R),

1

6
inf

q∈[ε1,1]
F(q; δ,∆, σ),

1

4

d2F
dq2

(0; δ,∆, σ)

)

satisfies requirements in (B.34),(B.35),(B.37), (B.39) and (B.40) and also ensures η is a fixed

positive constant.

This concludes the proof of the proposition.

B.5 Proofs from Section 4.8

This section is devoted to proving Proposition 11. Recall that the function F(q; δ,∆, σ) was

defined as:

F(q; δ,∆, σ)
def
= Ξ2(q;σ)− 2Ξ1(σ) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
,

where the functions, Ξ1,Ξ2 are defined as follows:

Ξ2(q;σ)
def
= max

(λ,φ)∈R

(
2λ+ φq − EY lnZTWis (λ, φ, Y )

)
,

Ξ1(σ)
def
= max

λ∈R

(
λ− EY lnZTExp (λ, Y )

)
.

In the above display the random variable Y = |G|2 + σε, where G ∼ CN (0, 1) and ε ∼ N (0, 1).

Our goal is to identify conditions on (δ,∆, σ) such that,

F(q; δ,∆, σ) > F(0; δ,∆, σ) ∀ q ∈ (0, 1),
d2

dq2
F(q; δ,∆, σ) > 0. (B.41)

We will not be able to solve this for a general σ > 0, but only for small enough σ since in the limit

σ → 0, the variational problems in the definition of Ξ2,Ξ1 simplify considerably.

We first begin with a heuristic derivation of the zero noise limit of the functions Ξ2(q;σ) and
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Ξ1(σ). Recalling the definition of ZTExp (λ, y) (Definition 5):

lnZTExp (λ, Y ) = EE∼Exp(1)e
λEψσ(E − |G|2 − σε)

= e(λ−1)(|G|2+σε)Eω∼N (0,1)e
σ(λ−1)ω1|G|2+σε+σω≥0

σ → 0→ e(λ−1)|G|2 .

This gives us,

λ− EY lnZTExp (λ, Y )
σ → 0→ 1.

In the zero noise limit, the variational problem in the definition of Ξ1 is trivial. Hence, it makes

sense to extend the definition of Ξ1(σ) to include σ = 0 as Ξ1(0)
def
= 1. Likewise, recalling

Definition 6, we have,

ZTWis (λ, φ, Y ) = ZTWis

(
λ, φ, |G|2 + σε

)
= E exp

(
(λ− 1)(2Y + σ(ω1 + ω2)) + φ

√
(Y + σω1)(Y + σω2) cos(θ)

)
1Y+σω1≥0,y+σω2≥0

σ → 0→ e2(λ−1)|G|2Eθeφ|G|
2 cos(θ)

= e2(λ−1)|G|2I0(|G|2φ).

In the last step we used the definition of Modified Bessel function I0(x)
def
= Eex cos θ. Hence we

extend the definition of Ξ2(q;σ) to σ = 0 as:

Ξ2(q; 0)
def
= 2 + max

φ∈R
qφ− EZ∼CN (0,1) ln I0(φ|Z|2).

This allows to guess the correct zero noise limit of F(q; δ,∆, σ) as:

F(q; δ,∆, 0)
def
= Ξ2(q; 0)− 2Ξ1(0) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
.
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The remainder of this section is organized as follows:

1. In Section B.5.1 we analyze the zero noise limit function F(q; δ,∆, 0) and find a condition

on (δ,∆) such that (B.41) holds for F(q; δ,∆, 0).

2. In Section B.5.2, we show that Ξ1(σ) converges to Ξ1(0) and Ξ2(q;σ) converges to Ξ2(q; 0)

in an appropriate sense.

3. Finally Section B.5.3 contains the proof of Proposition 11.

Throughout this section, C denotes a universal constant that does not depend on σ. As before this

constant may change from line to line.

B.5.1 Analysis in the Low Noise Limit

The following lemma shows that if δ < 2, and ∆ is small enough (but positive), the function

F(q; δ,∆, 0) is strictly increasing.

Lemma 38 (Limiting Variational Problems). Consider the following functions for q ∈ [0, 1):

Ξ2(q; 0)
def
= 2 + max

φ∈R
qφ− EZ∼CN (0,1) ln I0(φ|Z|2),

φ2(q; 0)
def
= arg max

φ∈R
qφ− EZ∼CN (0,1) ln I0(φ|Z|2).

Then we have,

1. The function φ 7→ qφ − EZ∼CN (0,1) ln I0(φ|Z|2) has a unique maximizer φ2(q; 0) which

satisfies: 0 ≤ φ2(q; 0) < ∞ for any q ∈ [0, 1). Furthermore, maxq∈[0,1−η] φ2(q; 0) < ∞ for

any η ∈ (0, 1).

2. The function:

f(q)
def
= Ξ2(q; 0) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
,
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is a strictly increasing function of q with f(0) < f(q) ∀q ∈ [0, 1), provided,

0 < δ < 2, 0 < ∆ <
2− δ
δ

.

Proof. 1. The function φ 7→ qφ − EZ∼CN (0,1) ln I0(φ|Z|2) is strictly concave (see Fact 3,

item (5), Appendix B.9). Hence, qφ − EZ∼CN (0,1) ln I0(φ|Z|2) has at most one maximizer.

Next observe that any maximizer must lie in [0,∞]. This is because E ln I0(|φ||Z|2) =

E ln I0(−|φ||Z|2) since I0 is even (see Fact 3, Appendix B.9), but q|φ| ≥ −q|φ|. This shows

that if φ2(q; 0) exists, we must have, φ2(q; 0) ≥ 0. In order to show existence of φ2(0, q) it

is sufficient to find a solution to the first order optimality conditions:

E|Z|2 · I
′
0(φ|Z|2)

I0(φ|Z|2)
= q.

Note that:

E|Z|2 · I
′
0(φ|Z|2)

I0(φ|Z|2)

∣∣∣∣
φ=0

= 0.

In order to check that φ2(q; 0) <∞, it is sufficient to show that,

lim
φ→∞

q − E|Z|2 · I
′
0(φ|Z|2)

I0(φ|Z|2)
< 0.

By Monotone convergence theorem and the fact that I
′
0(x)

I0(x)
↑ 1 as x ↑ ∞ (see Fact 3, Appendix

B.9), we have,

lim
φ→∞

q − E|Z|2 · I
′
0(φ|Z|2)

I0(φ|Z|2)
= q − 1 < 0, ∀ q < 1.
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This confirms φ2(q; 0) <∞ for any q < 1. Further inspection of the stationarity condition:

E|Z|2 · I
′
0(φ|Z|2)

I0(φ|Z|2)

∣∣∣∣
φ=φ2(q;0)

= q

reveals that φ2(q; 0) is an increasing function of q since the function on the left is an increas-

ing function of φ (see Fact 3, Appendix B.9). Hence,

max
q∈[0,1−η]

φ2(q; 0) = φ2(q, 1− η) <∞.

This concludes the proof of item (1).

2. It is sufficient to show that the function

f(q)
def
= Ξ2(q; 0) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
,

is strictly increasing or:

df(q)

dq
> 0.

We can compute the first derivative:

df(q)

dq
= φ2(q; 0)− 2

(
1− 1

δ

)
q

1− q2
− ∆q

1− q2

2

.

Hence,

df(q)

dq
> 0⇔ φ2(q; 0) > 2

(
1− 1

δ

)
q

1− q2
+

∆q

1− q2

2

def
= φ3(q)

Note that since φ2(q; 0) is the maximizing argument of the strictly concave function qφ −
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E ln I0(φ|Z|2), we have,

df(q)

dq
> 0⇔ d

dφ

(
qφ− E ln I0(φ|Z|2)

) ∣∣∣∣
φ=φ3(q)

> 0⇔ q > E|Z|2 · I
′
0(φ3(q) · |Z|2)

I0(φ3(q) · |Z|2)

Next we make the following sequence of observations:

(a) φ3(0) = 0, hence,

E
I ′0(φ3(q) · |Z|2)

I0(φ3(q) · |Z|2)

∣∣∣∣
q=0

= 0.

(b) We can compute the first derivative:

d

dq
E|Z|2 I

′
0(φ3(q) · |Z|2)

I0(φ3(q) · |Z|2)

∣∣∣∣
q=0

=
d

dφ

(
E|Z|2 I

′
0(φ · |Z|2)

I0(φ · |Z|2)

)∣∣∣∣
φ=0

· dφ3(q)

dq

∣∣∣∣
q=0

(a)
=

E|Z|4
2
·
(

2

(
1− 1

δ

)
+ ∆

)

= 1−
(

2− δ
δ
−∆

)
< 1,

where the step marked (a) used Fact 3 and the definition of φ3(q) to compute the rele-

vant derivatives.

(c) Finally we note that, the function,

q 7→ E|Z|2 · I
′
0(φ3(q) · |Z|2)

I0(φ3(q) · |Z|2)
,

is concave and increasing since I′0(x)

I0(x)
is concave and increasing (Fact 3, Appendix B.9)

and φ3(q) is convex and increasing.

The above three observations immediately imply:

E|Z|2 · I
′
0(φ3(q) · |Z|2)

I0(φ3(q) · |Z|2)
< q, ∀ q > 0 =⇒ df

dq
(q) > 0, ∀ q > 0.

260



Furthermore,

df

dq
(0) = 0.

Hence f(q) is a stricly increasing function of q and hence so is F(q; δ,∆, 0). This concludes

the proof of item (2).

B.5.2 Convergence to the Low Noise Limit

The following lemma shows that limσ→0 Ξ1(σ) = Ξ1(0) = 1.

Lemma 39. Recall that Ξ1(σ) and λ1(σ) denote the optimal value and solution of the variational

problem:

Ξ1(σ)
def
= max

λ∈R

(
λ− EY lnEE∼Exp(1)e

λEψσ(E − Y )
)
,

λ1(σ)
def
= arg max

λ∈R

(
λ− EY lnEE∼Exp(1)e

λEψσ(E − Y )
)
.

Then we have,

1. λ1(σ) ≤ 1 for all σ > 0.

2. Ξ1(σ) is a decreasing function of σ.

3. limσ→0 Ξ1(σ) = 1.

Proof. First we can write EE∼Exp(1)e
λEψσ(E − Y ) as follows:

EE∼Exp(1)e
λEψσ(E − Y ) = e(λ−1)YEω∼N (0,1)e

σ(λ−1)ω1Y+σω≥0
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Note that Y d
= |Z|2 + ε, Z ∼ CN (0, 1) , ε ∼ N

(
0, σ2

)
. Hence, we have,

Ξ1(σ) = max
λ∈R

1− EY lnEω∼N (0,1)e
σ(λ−1)ω1Y+σω≥0

= 1−min
γ∈R

EY lnEω∼N (0,1)e
σγω1Y+σω≥0. (B.42)

Likewise,

λ1(σ2) = 1 + arg min
γ∈R

EY lnEω∼N (0,1)e
σγω1Y+σω≥0

Now we consider the three claims one by one:

1. Observe that, by the Chebychev Association Inequality ( Fact 2 , Appendix B.9),

Eωe−σ|γ|ω1Y+σω≥0 ≤ Eωe−σ|γ|ω · P(Y + σω ≥ 0)

= Eωeσ|γ|ω · P(Y + σω ≥ 0)

≤ Eωeσ|γ|ω1Y+σω≥0.

This shows that λ1(σ2) ≤ 1.

2. A gaussian integral shows that:

Eωeσγω1Y+σω≥0 =
1√
2π

∫ ∞
−Y
σ

eσγω−
ω2

2 =
e
γ2σ2

2√
2π

∫ ∞
−Y
σ

e−
(ω−γσ)2

2 = e
γ2σ2

2 · Φ
(
Y

σ
+ γσ

)

Hence,

Ξ1(σ) = 1−min
t

(
EY ln Φ

(
Y

σ
+ t

)
+
t2

2

)

= 1−min
t

EZ,ε ln Φ

(
|Z|2
σ

+ ε+ t

)
+
t2

2
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Note that Φ
(
|Z|2
σ

+ ε+ t
)

increases as σ ↓ 0. Consequently, we have, Ξ1(σ) is a decreasing

function of σ.

3. Recall that in the previous step, we showed that,

Ξ1(σ) = 1−min
t

EZ,ε ln Φ

(
|Z|2
σ

+ ε+ t

)
+
t2

2

 .

Proposition 22 shows that for any σ > 0, the objective in the definition of Ξ1 is cooercive.

Consequently we can identify −∞ < t1 < t2 <∞ such that,

(
EZ,ε ln Φ

(
|Z|2 + ε+ t

)
+
t2

2

)
> 0, ∀ t ∈ (−∞, t1) ∪ (t2,∞).

Since Φ is an increasing function,

EZ,ε ln Φ

(
|Z|2
σ

+ ε+ t

)
+
t2

2

 > 0, ∀ t ∈ (−∞, t1) ∪ (t2,∞), ∀σ ≤ 1.

On the other hand,

EZ,ε ln Φ

(
|Z|2
σ

+ ε+ t

)
+
t2

2

∣∣∣∣
t=0

≤ 0.

Hence we have,

Ξ1(σ) = 1− min
t∈[t1,t2]

EZ,ε ln Φ

(
|Z|2
σ

+ ε+ t

)
+
t2

2

 .

Observing that
(
EZ,ε ln Φ

(
|Z|2
σ

+ ε+ t
)

+ t2

2

)
is a convex function such that for every fixed
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t we have,

lim
σ→0

EZ,ε ln Φ

(
|Z|2
σ

+ ε+ t

)
+
t2

2

 =
t2

2
.

Due to convexity, this convergence can be made uniform on compact sets:

lim
σ→0

max
t∈[t1,t2]

∣∣∣∣∣∣EZ,ε ln Φ

(
|Z|2
σ

+ ε+ t

)∣∣∣∣∣∣ = 0.

This uniform convergence immediately yields limσ→0 Ξ1(σ) = 1.

The following lemma analyzes the convergence of Ξ2(q;σ) to Ξ2(q; 0). For our purposes, it

turns out, that we don’t need to show that Ξ2(q;σ) → Ξ2(q; 0) as σ → 0. It is sufficient to show

the weaker result that Ξ2(q;σ) is asymptotically lower bounded by Ξ2(q; 0) as σ → 0. This is the

content of the following lemma.

Lemma 40. For any 0 < η < 1, we have,

lim inf
σ→0

min
q∈[0,1−η]

Ξ2(q, σ)− Ξ2(q; 0) ≥ 0.

Furthermore we have,

lim
σ→0

Ξ2(0, σ) = Ξ2(0, 0).
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Proof. We lower bound Ξ2(q, σ2) as follows:

Ξ2(q, σ)
def
= max

(λ,φ)∈R

(
2λ+ φq − EY lnEe((λ−1)(2Y+σ(ω1+ω2))+φ

√
(Y+σω1)(Y+σω2) cos(θ)1Y+σω1≥0,y+σω2≥0

)
≥ 2 + qφ2(q; 0)− EY lnEω1,ω2I0

(
φ2(q; 0) ·

√
(Y + σω1)(Y + σω2)

)
1Y+σω1≥0,y+σω2≥0

= Ξ2(q; 0) + E ln I0(φ2(q; 0)|Z|2)

− EY lnEω1,ω2I0

(
φ2(q; 0)

√
(Y + σω1)(Y + σω2)

)
1Y+σω1≥0,y+σω2≥0.

In the above display, we recall that φ2(q; 0) was defined as,

φ2(q; 0)
def
= arg max

φ∈R
qφ− EZ∼CN (0,1) ln I0(φ|Z|2).

Note that for any fixed φ ∈ R, we have, by Dominated convergence, as σ → 0, we have,

EY lnEω1,ω2I0

(
φ
√

(Y + σω1)(Y + σω2)
)

1Y+σω1≥0,y+σω2≥0 → EZ∼CN (0,1) ln I0(φ|Z|2).

Observing that the function on the left hand side is convex in φ we have the above convergence

holds uniformly on all compact sets. Lemma 38 guarantees that supq∈[0,1−η] |φ2(q; 0)| <∞. Con-

sequently, we have,

lim
σ→0

EY lnEω1,ω2I0

(
φ2(q; 0) ·

√
(Y + σω1)(Y + σω2)

)
1Y+σω1≥0,y+σω2≥0 = E ln I0(φ2(q; 0)|Z|2),

where the convergence is uniform on q ∈ [0, 1 − η]. Combining this with the lower bound on

Ξ2(q, σ) immediately gives:

lim inf
σ→0

min
q∈[0,1−η]

Ξ2(q, σ)− Ξ2(q; 0) ≥ 0.

Finally when q = 0 we note that, Ξ2(0, σ) = 2Ξ1(0, σ). Lemma 39 guarantees that Ξ2(0, σ) → 1

as σ → 0. Note that since I0(x) is minimized at x = 0 (see Fact 3, Appendix B.9), we have
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Ξ2(0, 0) = 2. Hence we indeed have Ξ2(0, σ)→ Ξ2(0, 0) as σ → 0.

B.5.3 Proof of Proposition 11

Recall that our goal is to find conditions on (δ,∆, σ) such that F(q; δ,∆, σ) > F(0; δ,∆, σ),

where,

F(q; δ,∆, σ)
def
= Ξ2(q;σ)− 2Ξ1(σ) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
.

The following lemma provides a lower bound on the curvature of Ξ2(q;σ)− 2Ξ1(σ) in the neigh-

borhood of q ≈ 0.

Lemma 41 (Analysis for q ≈ 0). There exists a universal constant C (independent of σ) such that,

for any 0 ≤ q < 1/2, σ < 1 we have,

Ξ2(q, σ)− 2Ξ1(σ) ≥ (1− σ2) · q
2

2
− Cq3.

Proof. We can write ZTWis (λ, φ, Y ) (c.f. Definition 6) as:

ZTWis (λ, φ, y)

def
=

1

2π

∫ ∞
0

∫ ∞
0

∫ π

−π
exp(−(1− λ)(s+ s′) + φ

√
ss′ cos(θ)) · ψσ(s− y) · ψσ(s′ − y) dθ ds ds′

= E exp
(

(λ− 1)(2y + σ(ω1 + ω2)) + φ
√

(y + σω1)(y + σω2) cos(θ)
)

1y+σω1≥0,y+σω2≥0.

In the above display ω1, ω2, θ are independent r.v.s with distributions ω1 ∼ N (0, 1) , ω2 ∼

N (0, 1) , θ ∼ Uniform[−π, π]. We lower bound Ξ2 as follows:

Ξ2(q, σ) = max
(λ,φ)∈R

(
2λ+ φq − EY lnZTWis (λ, φ, Y )

)
≥
(

2λ1(σ2) + q2 − EY lnZTWis

(
λ1(σ), q, Y

))
.
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Next we will approximate lnZTWis

(
λ1(σ), q, Y

)
by its taylor series around q ≈ 0. We can compute

the first three derivatives:

d

dq
lnZTWis

(
λ1(σ), q, y

) ∣∣∣∣
q=0

= 0,

d2

dq2
lnZTWis

(
λ1(σ), q, Y

) ∣∣∣∣
q=0

=
E(y + σω1)(y + σω2) cos2(θ)e(λ1(σ)−1)(2y+σ(ω1+ω2))1y+σω1≥0,y+σω2≥0

Ee(λ1(σ)−1)(2y+σ(ω1+ω2))1y+σω1≥0,y+σω2≥0

=
1

2
· E(y + σω1)(y + σω2)e(λ1(σ)−1)(2y+σ(ω1+ω2))1y+σω1≥0,y+σω2≥0

Ee(λ1(σ)−1)(2y+σ(ω1+ω2))1y+σω1≥0,y+σω2≥0

=
1

2

(
E(y + σω1)e(λ1(σ)−1)(y+σω1)1y+σω1≥0

Ee(λ1(σ)−1)(y+σω1)1y+σω1≥0

)2

(a)

≤ 1

2
·
(
E(y + σω1)1y+σω1≥0

)2

≤ 1

2
· E(y + σω1)2

=
y2

2
+
σ2

2
.

In the step marked (a), we used the fact that λ1(σ2) ≤ 1 (see Lemma 39) and Chebychev’s Asso-

ciation Inequality (Fact 2, Appendix B.9). Similarly we control the third derivative:

d3

dq3
lnZTWis

(
λ1(σ), q, Y

)
= T3 − 3T2T1 + 2T 3

1 ,

where, for i = 1, 2, 3:

Ti
def
=

E(y + σω1)
i
2 (y + σω2)

i
2 cosi(θ)e(λ1(σ)−1)(2y+σ(ω1+ω2))+q

√
(y+σω1)(y+σω2) cos(θ)1y+σω1≥0,y+σω2≥0

Ee(λ1(σ)−1)(2y+σ(ω1+ω2))+q
√

(y+σω1)(y+σω2) cos(θ)1y+σω1≥0,y+σω2≥0

.
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We can control Ti as follows, for any q ∈ [0, 1] and any σ ≤ 1, we have,

|Ti| ≤
E(y + σω1)

i
2 (y + σω2)

i
2 e(λ1(σ)−1)(2y+σ(ω1+ω2))+q

√
(y+σω1)(y+σω2) cos(θ)1y+σω1≥0,y+σω2≥0

Ee(λ1(σ)−1)(2y+σ(ω1+ω2))+q
√

(y+σω1)(y+σω2) cos(θ)1y+σω1≥0,y+σω2≥0

(a)
=

E(y + σω1)
i
2 (y + σω2)

i
2 e(λ1(σ)−1)(2y+σ(ω1+ω2))I0(q

√
(y + σω1)(y + σω2))1y+σω1≥0,y+σω2≥0

Ee(λ1(σ)−1)(2y+σ(ω1+ω2))I0(q
√

(y + σω1)(y + σω2))1y+σω1≥0,y+σω2≥0

(b)

≤ E(y + σω1)
i
2 (y + σω2)

i
2 e(λ1(σ)−1)(2y+σ(ω1+ω2))eq

√
(y+σω1)(y+σω2)1y+σω1≥0,y+σω2≥0

Ee(λ1(σ)−1)(2y+σ(ω1+ω2))1y+σω1≥0,y+σω2≥0

≤ E(y + σω1)
i
2 (y + σω2)

i
2 e(λ1(σ)−1)(2y+σ(ω1+ω2))e

q
2
·(y+σω1+y+σω2)1y+σω1≥0,y+σω2≥0

Ee(λ1(σ)−1)(2y+σ(ω1+ω2))1y+σω1≥0,y+σω2≥0

=

(
E(y + σω1)

i
2 e(λ1(σ)−1+ q

2
)(y+σω1)1y+σω1≥0

Ee(λ1(σ)−1+ q
2

)(y+σω1)1y+σω1≥0

)2

(c)

≤
(
E(y + σω1)

i
2 e

q
2

(y+σω1)1y+σω1≥0

)2

≤ E|y + σω1|ieq(y+σω1)

≤ C(|y|3 + 1)eqy.

where, C is a universal constant independent of σ. In the step marked (a), we used the definition

of Modified Bessel Function (see Fact 3, Appendix B.9). In the step marked (b), we used 1 ≤

I0(x) ≤ ex for any x ∈ R. In the step marked (c) we recalled λ1(σ) ≤ 1 and applied Chebychev’s

Association Inequality. In conclusion, we obtained the following:

d

dq
lnZTWis

(
λ1(σ), q, y

) ∣∣∣∣
q=0

= 0,

d2

dq2
lnZTWis

(
λ1(σ), q, y

) ∣∣∣∣
q=0

≤ y2 + σ2

2
,

d3

dq3
lnZTWis

(
λ1(σ), q, y

)
≤ C(|y|3 + 1)eqy.

This allows us to upper bound lnZTWis

(
λ1(σ), q, Y

)
for any q < 1/2, σ < 1 as follows:

E lnZTWis

(
λ1(σ), q, Y

)
≤ EY

[
lnZTWis

(
λ1(σ), 0, Y

)
+
q2

4
· (σ2 + Y 2) + Cq3(|Y |3 + 1)e

Y
2

]
.
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Observing that EY 2 = E|Z|4 + σ2 = 2 + σ2. We obtain,

Ξ2(q, σ)− 2Ξ1(σ) ≥ q2

2

(
1− σ2

)
− Cq3.

Next we show that at q → 1, Ξ2(q;σ)− 2Ξ1(σ)→∞ in the following lemma.

Lemma 42 (Analysis at q ≈ 1). There exists a universal finite constant C > 0 (independent of

σ, q) such that, for all σ ≤ 1,

Ξ2(q, σ)− 2Ξ1(σ) ≥ −C − ln(1− q)
2

, ∀σ > 0, ∀ q ∈ [0, 1).

Proof. We lower bound Ξ2 as follows:

Ξ2(q, σ)
def
= max

(λ,φ)∈R

(
2λ+ φq − EY lnZTWis (λ, φ, Y )

)
≥ − 1

2(1− q) +
q

2(1− q) − EY

[
lnZTWis

(
− 1

4(1− q) ,
1

2(1− q) , Y
)]

= −2− EY

[
lnZTWis

(
− 1

4(1− q) ,
1

2(1− q) , Y
)]

.

Recall that,

ZTWis

(
− 1

4(1− q) ,
1

2(1− q) , y
)

= Ee−(2y+σ(ω1+ω2))
(

1
4(1−q) +1

)
+

√
y+σω1

√
y+σω2 cos(θ)

2(1−q) 1y+σω1≥0,y+σω2≥0

(a)

≤ e−
y

2(1−q) · Ee−
σ(ω1+ω2)

4(1−q) · I0

(√
y + σω1

√
y + σω2

2(1− q) ·
)

1y+σω1≥0,y+σω2≥0

(b)

≤ e−
y

2(1−q) · Ee−
σ(ω1+ω2)

4(1−q) · I0

(
2y + σω1 + σω2

4(1− q)

)
1y+σω1≥0,y+σω2≥0.

In the above display ω2, ω2, θ are independent with ω ∼ N (0, 1) , ω2 ∼ N (0, 1) , θ ∼ Uniform[−π, π].

In the step marked (a), we used the definition of Bessel Function I0 (see Fact 3). In the step marked

(b), we used AM-GM Inequality and the fact that I0(x) is increasing on x ≥ 0 (Fact 3). Further
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applying the upper bound I0(x) ≤ Cx−
1
2 · ex, x ≥ 0 (see Fact 3), gives,

ZTWis

(
− 1

4(1− q) ,
1

2(1− q) , y
)
≤ C ·

√
1− q · E 1√

|2y + σω1 + σω2|
.

Hence we have,

EY lnZTWis

(
− 1

4(1− q) ,
1

2(1− q) , Y
)

= EZ,ε lnZTWis

(
− 1

4(1− q) ,
1

2(1− q) , |Z|
2 + ε

)
≤ EZ lnEεZTWis

(
− 1

4(1− q) ,
1

2(1− q) , |Z|
2 + ε

)
≤ lnC +

ln(1− q)
2

+ EZ lnEε,ω1,ω2

1√
|2y + σω1 + σω2|

(c)

≤ lnC +
ln(1− q)

2
+ ln(4)− 1

2
EZ ln |Z|2

(d)

≤ C +
ln(1− q)

2

In the step marked (c), we appealed to Lemma 48. In the step marked (d), we used the fact that

E ln |Z|2 =
∫∞

0
ln(r)e−r dr ≈ −0.58 is finite. Hence we have the lower bound on Ξ2:

Ξ2(q, σ) ≥ −C − ln(1− q)
2

.

Lemma 39 shows that Ξ1(σ) ≤ Ξ1(1) which is an absolute constant, consequently,

Ξ2(q, σ)− 2Ξ1(σ) ≥ −C − ln(1− q)
2

We finally put together all the different auxiliary results we have established so far and prove

Proposition 11 which is restated below for convenience.
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Proposition 11. Recall that F(q; δ,∆, σ) was defined as:

F(q; δ,∆, σ) = Ξ2(q;σ)− 2Ξ1(σ) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
.

For any δ and ∆ that satisfy

1 ≤ δ < 2, 0 < ∆ <
2− δ
δ

,

there exists a critical value of the noise level σc(δ,∆) > 0 such that, for any 0 < σ < σc(δ,∆), we

have

1. The functionF(q; δ,∆, σ) has a unique minimum at q = 0 andF(q; δ,∆, σ) > F(0; δ,∆, σ)

for any q ∈ (0, 1).

2. d2F
dq2 (q; δ,∆, σ)

∣∣∣∣
q=0

> 0.

Proof. We will prove the above claims in 3 steps: 1) Step 1: Analysis around q ≈ 0, 2) Step 2:

Analysis around q ≈ 1 and 3) Step 3: Analysis for all other values of q.

Step 1: q ≈ 0. Lemma 41 guarantees the existence of a universal constant C1 > 0 independent of

σ, δ,∆ such that, for any q ∈ [0, 0.25], σ < 1, we have,

F(q; δ,∆, σ)−F(0; δ,∆, σ) ≥ q2

2
·
(

2− δ
δ
−∆− σ2

)
− C1q

3 −
(

1− 1

δ

)
q4 − ∆

2
q4

≥ q2

2
·
(

2− δ
δ
−∆− σ2

)
− (C1 + 2) · q3

In particular ensuring that,

σ ≤ 1

2

(
2− δ
δ
−∆

)
, q ≤ 1

8(C1 + 2)
·
(

2− δ
δ
−∆

)
,
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gives us,

F(q; δ,∆, σ) ≥ q2

8
·
(

2− δ
δ
−∆

)
. (B.43)

Note that F(0; δ,∆, σ) = 0. Hence, (B.43) verifies claim (1) of the proposition for small q:

F(q; δ,∆, σ) ≥ F(0; δ,∆, σ) +
q2

8
·
(

2− δ
δ
−∆

)
, ∀ q ∈ [0, η1(δ,∆)], σ ≤ σ1(δ,∆),

where,

η1(δ,∆)
def
=

1

8(C1 + 2)
·
(

2− δ
δ
−∆

)
, σ1(δ,∆)

def
=

1

2

(
2− δ
δ
−∆

)
.

Furthermore since,

dF
dq

(q; δ,∆, σ)

∣∣∣∣
q=0

= 0,

by Taylor’s Theorem,

F(q; δ,∆, σ) = F(0; δ,∆, σ) +
q2

2
· d2F

dq2
(q; δ,∆, σ)

∣∣∣∣
q=0

+ o(q).

Comparing the above display with (B.43), gives us claim (2) of the proposition:

d2F
dq2

(q; δ,∆, σ)

∣∣∣∣
q=0

≥ 1

4
·
(

2− δ
δ
−∆

)
> 0.

Step 2: q ≈ 1. Lemma 42 guarantees the existence of a universal constant C2 such that,

Ξ2(q, σ)− 2Ξ1(σ) ≥ −C2 −
ln(1− q)

2
, ∀σ > 0, ∀ q ∈ [0, 1), ∀σ ≤ 1.
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Consequently,

F(q; δ,∆, σ) ≥ −
(

2− δ
2δ

)
ln(1− q) +

(
1− 1

δ

)
ln(1 + q) + ∆ ln

(
1− q2

2

)
− C2

≥ −
(

2− δ
2δ

)
ln(1− q)− (C2 + 1).

Hence we have,

F(q; δ,∆, σ) ≥ 1 ≥ 0 = F(0; δ,∆, σ) ∀ q ∈ [1− η2(δ), 1), σ ≤ 1,

where,

η2(δ) = exp

(
−δ(C2 + 2)

2− δ

)
> 0.

This verifies claim (1) of the proposition for large q.

Case 3: Other values of q. In Steps (1) and (2), we have verified Claim (1) for q ∈ [0, η1(δ,∆)]∪

[η2(δ), 1]. Now we focus our attention to:

q ∈ [η1(δ,∆), 1− η2(δ)].

Note that it is sufficient to show that,

f(q; δ,∆, σ)
def
= Ξ2(q, σ) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
,

satisfies f(q; δ,∆, σ) > f(0; δ,∆, σ) ∀q ∈ [η1(δ,∆), 1 − η2(δ)]. In Lemma 38, we had

shown that the function:

f(q; δ,∆, 0)
def
= Ξ2(q; 0) +

(
1− 1

δ

)
ln(1− q2) + ∆ ln

(
1− q2

2

)
,

273



is strictly increasing and has the property that f(0; δ,∆, 0) < f(q; δ,∆, 0), ∀ q ∈ (0, 1).

Consequently, η3(δ,∆) defined below is strictly positive:

η3(δ,∆)
def
= min

q∈[η1(δ,∆),1)
f(q; δ,∆, 0)− f(0; δ,∆, 0) (B.44)

= f(η1(δ,∆); δ,∆, 0)− f(0; δ,∆, 0) > 0. (B.45)

Furthermore, Lemma 40 shows that f(q; δ,∆, σ) is asymptotically lower bounded by f(q; δ,∆, 0)

in the following sense:

lim inf
σ→0

min
q∈[0,1−η2(δ)]

f(q; δ,∆, σ)− f(q; δ,∆, 0) ≥ 0.

Furthermore, it also guarantees f(0; δ,∆, σ) → f(0; δ,∆, 0) as σ → 0. Consequently there

exists σ3(δ,∆) > 0 such that,

f(q; δ,∆, σ)− f(q; δ,∆, 0) ≥ −η3(δ,∆)

3
, ∀q ∈ [0, 1− η2(δ)], ∀σ ≤ σ3(δ,∆), (B.46)

|f(0; δ,∆, σ)− f(0; δ,∆, 0)| ≤ η3(δ,∆)

3
∀σ ≤ σ3(δ,∆). (B.47)

Hence, ∀q ∈ [η1(δ,∆), 1− η2(δ)],

f(q; δ,∆, σ)
(B.46)

≥ f(q; δ,∆, 0)− η3(δ,∆)

3

≥ f(0; δ,∆, 0) +
(
f(q; δ,∆, 0)− f(0; δ,∆, 0)

)
− η3(δ,∆)

3
(B.44)

≥ f(0; δ,∆, 0) +
2η3(δ,∆)

3
(B.47)

≥ f(0; δ,∆, σ) +
η3(δ,∆)

3

> f(0; δ,∆, σ).

This concludes the proof of the proposition.
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B.6 Properties of the Tilted Exponential and Wishart Distributions

B.6.1 Properties of the Tilted Exponential Distribution

The following lemma collects some properties of TExp (λ, y) random variables which were

used to prove the local CLT given in Proposition 7.

Lemma 43 (Properties of TExp (λ, y) Distribution). Let T ∼ TExp (λ, y). We have,

1. Moment Bounds: For any k ∈ N we have:

E|T |k ≤ Ck

(
|y|k + |λ|k + 1

)
.

In the above display, Ck is a universal constant independent of y, λ but depends on k.

2. Decay of characteristic function: For any t ∈ R

|EeitT | ≤ C(1 + |y|+ |λ|)
|t| ,

where C is a constant independent of t, y, λ.

Proof. 1. Since T ≥ 0, |T | = T . We first observe that,

ET k = ET k1T≤|y|+σ2|λ| + ET k1T≥|y|+σ2|λ|

≤ (|y|+ σ2|λ|)k + ET k1T≥|y|+σ2|λ|.

Let E ∼ Exp (1). Using the formula for the density of TExp (λ, y) distribution in Definition

14, it is easy to see that,

ET k1T≥|y|+σ2|λ| =
EEkeλEψσ(E − y)1E≥|y|+σ2|λ|

EeλEψσ(E − y)
.

We observe that f(e) = ek is increasing and g(e) = eλeψσ(e − y) is decreasing when

e ≥ |y|+σ2|λ|. Consequently by Chebychev’s Association Inequality (Lemma 2, Appendix
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B.9) we obtain,

ET 31T≥|y|+σ2|λ| ≤ EEk = k!.

Hence for a suitable constant Ck, independent of λ, y we have,

ET k ≤ Ck(|y|k + |λ|k + 1).

2. Let f(u) denote the pdf of TExp (λ, y). We bound the characteristic function as follows:

|EeitT | =
∣∣∣∣∫ ∞

0

eituf(u) du

∣∣∣∣
=

1

|t|

∣∣∣∣∫ ∞
0

d

du
eituf(u) du

∣∣∣∣
=

1

|t| ·
∣∣∣∣−f(0) +

∫ ∞
0

f ′(u)eitu du

∣∣∣∣
≤ f(0) + ‖f ′‖1

|t| .

We further upper bound ‖f ′‖1. Note that:

f ′(u) = f(u) ·
(
λ− 1− u

σ2

)
.

Consequently, for a suitable constant C (independent of λ, y) we obtain the estimate,

‖f ′‖1 ≤ |λ|+ 1 +
ET
σ2

≤ C(1 + |y|+ |λ|).

In the last step, we used the estimate on ET from part (1) of this lemma. Next we upper
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bound f(0). Note that,

f(0) =

∫ ∞
0

exp

(
u

(
λ− 1 +

y

σ2

)
− u2

2σ2

)
du

−1

≤

∫ 1

0

exp

(
u

(
λ− 1 +

y

σ2

)
− u2

2σ2

)
du

−1

(a)

≤

∫ 1

0

exp

(
u

(
λ− 1 +

y

σ2
− 1

2σ2

))
du

−1

≤

∫ (|λ|+|y|/σ2+1+1/2σ2)−1/2

0

exp

(
u

(
λ− 1 +

y

σ2
− 1

2σ2

))
du

−1

(b)

≤

∫ (|λ|+|y|/σ2+1+1/2σ2)−1/2

0

(
1 + u

(
λ− 1 +

y

σ2
− 1

2σ2

))
du

−1

(c)

≤ C(|λ|+ |y|+ 1).

In the step marked (a) we used u2 ≤ u, u ∈ (0, 1). In the step marked (b) we used the lower

bound ex ≥ 1 + x. Finally in the step marked (c), we observed that the integrand is larger

than 1/2 in the domain of integration. Combining the bounds on f(0) and ‖f ′‖1 gives us the

required result:

|EeitT | ≤ C(1 + |y|+ |λ|)
|t| .

B.6.2 Properties of the Tilted Wishart Distribution

The following lemma collects some properties of the tilted Wishart distribution which were

used to prove the Local CLT given in Proposition 8.
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Lemma 44. Suppose that:

S =

 r
√
rr′eiθ

√
rr′e−iθ r2

 ∼ TWis (λ, φ, y)

Then, there exists a universal constant 0 < C <∞ depending only on σ such that:

1. Equivalent Characterization: For any bounded measurable function f we have,

Ef(S) =
Eg∼CN (0,I2)f(ggH)e〈Λ,gg

H〉ψσ(y − |g1|2)ψσ(y − |g2|2)

Eg∼CN (0,I2)e〈Λ,gg
H〉ψσ(y − |g1|2)ψσ(y − |g2|2)

.

In the above display, Λ is given by:

Λ =

 λ φ/2

φ/2 λ

 .

2. The density:

h̃λ,φ,y(g, g
′) =

e−(1−λ)(|g|+|g′|2)+φRe(gg′)ψσ(|g|2 − y)ψσ(|g′|2 − y)

ZTWis (λ, φ, y)
,

on C2 is locally bounded, that is:

h̃λ,φ,y(g0, g
′
0) ≤ C(1 + |λ|4 + |φ|4 + |y|4)(1 + |g0|12 + |g′0|12).

3. Tail Bound: With probability 1− ε,

r ≤ C
√

1 + |y|2 + |φ|2 + |λ|2 + C

√
ln

1

ε
.

The analogous result holds for r′.

4. Moment Bounds: For any k ∈ N, There exists a universal constant Ck depending only on k
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such that

Erk ≤ C(1 + |λ|k + |φ|k + |y|k).

5. Decay of Characteristic Function:

∣∣∣Eei〈T ,S〉
∣∣∣ ≤ C · (1 + |λ|20 + |φ|20 + |y|20)

‖T ‖ 1
3

.

6. For any y, λ, φ ∈ R, we have,

0 < λmin

(
ΣTWis (λ, φ, y)

)
< λmax

(
ΣTWis (λ, φ, y)

)
<∞.

Proof. Throughout this proof, we use C to denote constants that depend only on the noise level σ

and in particular are independent of the parameters λ, φ, y.

1. We write g1 =
√
reiω, g2 =

√
r′eiω′ . Using standard properties of the complex gaussian

distribution, we know that r, r′ ∼ Exp (1) and ω, ω′ ∼ Unif(−π, π]. Consequently,

ggH =

 r
√
rr′ei(ω−ω′)

√
rr′ei(ω′−ω) r′


Let θ ∼ Unif(−π, π]. Then we have ei(ω−ω′) d

= eiθ. Consequently,

Ef(ggH)e〈Λ,gg
H〉ψσ(y − |g1|2)ψσ(y − |g2|2)

=
1

2π

∫ ∞
0

∫ ∞
0

∫ π

−π
f(r, r′, θ)e−(1−λ)(r+r′)+φ

√
rr′ cos(θ)ψσ(y − r)ψσ(y − r′) dr dr′ dθ.

Comparing this with the density of S from Definition 6 gives us the claim of item (1). Note

that the Tilted Wishart distribution is supported on rank-1 Hermitian matrices. In particular,

it does not have a density with respect to the Lebesgue measure on Hermitian matrices. The
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advantage of the alternate way of computing expectations of functions of S is that they can

be computed by integrating with respect to the proper PDF h̃λ,φ,y(g, g′) on C2:

Ef(S) =

∫
C2

f


|g|2 gg′

gg′ |g′|2


 h̃λ,φ,y(g, g

′) dg dg′,

where the pdf h̃λ,φ,y(g, g′) is given by:

h̃λ,φ,y(g, g
′) =

e−(1−λ)(|g|+|g′|2)+φRe(gg′)ψσ(|g|2 − y)ψσ(|g′|2 − y)

ZTWis (λ, φ, y)
.

This density function is much nicer, in particular it is locally bounded.

2. We first note that ln h̃λ,φ,y is a degree 4 polynomial in g, g′. Consequently it is local Lipchitz,

that is,

| ln h̃λ,φ,y(g, g′)− ln h̃λ,φ,y(g0, g
′
0)|

≤ C(1 + |g|+ |g′|+ |g0|+ |g′0|)3(1 + |λ|+ |φ|+ |y|)(|g − g0|+ |g′ − g′0|).

In particular this means that there exists a large enough constant C depending only on σ such

that,

∀g, g′ : max(|g − g0|, |g′ − g′0|) ≤ R, | ln h̃λ,φ,y(g, g′)− ln h̃λ,φ,y(g0, g
′
0)| ≤ ln(2),

where,

R
def
=

1

C(1 + |λ|+ |φ|+ |y|)(1 + |g0|3 + |g′0|3)
.
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We can use this to show that h̃λ,φ,y is locally bounded. We have:

h̃λ,φ,y(g0, g
′
0) =

h̃λ,φ,y(g0, g
′
0)∫

C2 h̃λ,φ,y(g, g′) dg dg′

=

(∫
C2

exp
(

ln h̃λ,φ,y(g, g
′)− ln h̃λ,φ,y(g0, g

′
0)
)

dg dg′
)−1

≤
(∫
|g−g0|≤R,|g′−g′0|≤R

exp
(

ln h̃λ,φ,y(g, g
′)− ln h̃λ,φ,y(g0, g

′
0)
)

dg dg′

)−1

≤
(

1

2

∫
|g−g0|≤R,|g′−g′0|≤R

dg dg′

)−1

=
2

π2R4

≤ C(1 + |λ|4 + |φ|4 + |y|4)(1 + |g0|12 + |g′0|12).

3. We begin by computing the log-mgf of r:

lnEetr = A−B,

where,

A
def
=

(
1

2π

∫ ∞
0

∫ ∞
0

∫ π

−π
e(λ−1+t)r+(λ−1)r′+φ

√
rr′ cos(θ)ψσ(r1 − y)ψσ(r2 − y) dθ dr dr′

)

B
def
= lnZTWis (λ, φ, y) .

We upper bound (A):

A =
1

2π

∫ ∞
0

∫ ∞
0

∫ π

−π
e(λ−1+t)r+(λ−1)r′+φ

√
rr′ cos(θ)ψσ(r1 − y)ψσ(r2 − y) dθ dr dr′

(a)

≤
∫ ∞

0

∫ ∞
0

e(λ−1+t+|φ|)r+(λ−1+|φ|)r′ψσ(r1 − y)ψσ(r2 − y) dr dr′

≤
∫ ∞
−∞

∫ ∞
−∞

e(|λ|+1+|t|+|φ|)(r+r′)ψσ(r1 − y)ψσ(r2 − y) dr dr′

(b)
= exp

(
2y(|λ|+ 1 + |t|+ |φ|) + σ2(|λ|+ 1 + |t|+ |φ|)2

)
.
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In the step marked (a), we used the fact the fact that
√
rr′ cos(θ) ≤ r + r′. In the step

marked (b) we used the formula for the MGF of a gaussian distribution. Hence, there exists

a universal constant C depending only on σ such that:

lnA ≤ C
(
1 + |λ|2 + |φ|2 + |y|2 + |t|2

)
.

Next we upper bound (B):

B = ln

(
1

2π

∫ ∞
0

∫ ∞
0

∫ π

−π
e(λ−1+t)r+(λ−1)r′+φ

√
rr′ cos(θ)ψσ(r − y)ψσ(r′ − y) dθ dr dr′

)
(c)

≥ 1

2π

∫ ∞
0

∫ ∞
0

∫ π

−π

(
(λ+ t)r + λr′ + φ

√
rr′ cos(θ) + lnψσ(r − y) + lnψσ(r′ − y)

)
e−r−r

′

(d)

≥ −C
(
1 + |y|2 + |λ|+ |t|

)
In the step marked (c) we applied Jensen’s inequality and in the step marked (d) we used per-

formed the integration involving the moments of the Exp (1) distribution and used straight-

forward algebraic bounds. This gives us:

lnEetr ≤ C
(
1 + |λ|2 + |φ|2 + |y|2 + |t|2

)
.

For notational convenience we define:

κ
def
= 1 + |λ|2 + |φ|2 + |y|2.

By Markov’s Inequality we have,

P(r > x) ≤ exp

(
Cκ− x2

4C

)
.
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Setting the tail probability to ε gives us the result:

P

(
r > C

√
1 + |y|2 + |φ|2 + |λ|2 + C

√
ln

1

ε

)
≤ ε,

for a suitable constant C.

4. Integrating the tail bound obtained above gives us the moment bound:

Erk = k

∫ ∞
0

xk−1P(r > x) dx

= k

(∫ 2C
√
κ

0

xk−1 · 1 dx+

∫ ∞
2C
√
κ

xk−1 · eCκ− x2

4C

)

≤ Ck · κ
k−1

2 +

∫ ∞
2C
√
κ

exp

(
Cκ− x2

4C

)
· k · xk−1 dx

(a)

≤ Ck · κ
k−1

2

≤ Ck(1 + |λ|k + |φ|k + |y|k).

In the step marked (a), we used the a bound on the truncated gaussian integral given in

Lemma 47 in Appendix B.9.

5. Let T be a 2 × 2 Hermitian matrix. The characteristic function of the Tilted Wishart distri-

bution evaluated at T is given by Eei〈T ,S〉. Let w ∈ C2 be a random vector sampled from

the pdf hλ,φ,y:

w =

w
w′

 ∼ hλ,φ,y.

Using the alternate characterization derived in item (1) of this lemma we have,

Eei〈T ,S〉 = Eei〈T ,wwH〉
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Consider the spectral decomposition of T :

T = B

t 0

0 t′

BH, B =

bH1
bH2

 .
Since we have,

‖T ‖2 = t2 + t′
2

=⇒ max(|t|, |t′|) ≥ ‖T ‖√
2
.

We will assume that infact,

|t| ≥ ‖T ‖√
2
.

Define the random vector:

z =

z
z′

 = BHg.

We will often use the polar representation of z:

z =

 seiν

s′eiν′


Let d(z, z′) denote the density of z. This density can be obtained by a simple unitary trans-

formation of the density hλ,φ,y. While the exact formula is complicated it is easy to see that

it is of the form:

d(seiν , s′eiν
′
) =

exp
(∑

k,l:k+l≤4 ak,l(ν, ν
′)sks′l

)
ZTWis (λ, φ, y)

The exact formula for the coefficients ak,l(ν) is not important. It is sufficient to see they

284



satisfy the bound:

|ak,l(ν, ν ′)| ≤ C(1 + |y|+ |λ|+ |φ|).

We can now analyze the decay of the characteristic function:

|Eei〈T ,S〉| = |E exp
(
it|z|2 + it′|z′|2

)
|

≤ |Eeit|z|2+it′|z′|21|z|≤ε,|z′|<R|+ |Eeit|z|2+it′|z′|21|z|>ε,|z′|<R|+ |Eeit|z|2+it′|z′|21|z′|>R|

≤ P(|z| ≤ ε, |z′| ≤ R)︸ ︷︷ ︸
(I)

+ |E exp
(
it|z|2 + it′|z′|2

)
1|z|>ε,|z′|<R|︸ ︷︷ ︸

(II)

+P(|z′| > R)︸ ︷︷ ︸
(III)

In the above display 0 < ε < 1 < R are parameters which will be chosen later. We analyze

the terms (I), (II) and (III) separately.

Analysis of (I): Recall that in part (2) of this Lemma we had shown the density of w is

locally bounded:

hλ,φ,y(w,w
′) ≤ C(1 + |λ|4 + |φ|4 + |y|4)(1 + |w|12 + |w′|12).

The density of z, z′, denoted by d(z, z′) is a unitary transformation of the density hλ,φ,φ.

Consequently, we have the estimate:

d(z, z′) ≤ C(1 + |λ|4 + |φ|4 + |y|4) ·R12, ∀|z| ≤ ε, |z′| ≤ R. (B.48)

Using this we can easily bound A:

(1) = P(|z| ≤ ε, |z′| ≤ R) ≤ C(1 + |λ|4 + |φ|4 + |y|4) ·R12 · ε2 ·R2

≤ C · (1 + |λ|4 + |φ|4 + |y|4)R14 · ε2.
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Analysis of (II): Recall that term B was given by:

(II) = |E exp
(
it|z|2 + it′|z′|2

)
1|z|>ε,|z′|<R|

=

∣∣∣∣∣
∫ π

−π

∫ π

−π

∫ R

0

∫ ∞
ε

exp(its2 + it′s′
2
)d(seiν , s′eiν′)ss′ ds ds′ dν dν ′

∣∣∣∣∣
=

1

|t|

∣∣∣∣∣
∫ π

−π

∫ π

−π

∫ R

0

∫ ∞
ε

∂ exp(its2 + it′s′2)

∂s
d(seiν , s′eiν′)s′ ds ds′ dν dν ′

∣∣∣∣∣
(a)

≤ (IIa) + (IIb).

In the step marked (a), we applied integration by parts and defined the terms (IIa), (IIb)

as follows:

(IIa) =
1

|t|

∣∣∣∣∣
∫ π

−π

∫ π

−π

∫ R

0

eitε2+it′s′2d(εeiν , s′eiν′)s′ ds′ dν dν ′

∣∣∣∣∣ .
(IIb) =

1

|t|

∣∣∣∣∣
∫ π

−π

∫ π

−π

∫ R

0

∫ ∞
ε

eits2+it′s′2 ∂

∂s
d(seiν , s′eiν′)s′ ds ds′ dν dν ′

∣∣∣∣∣ .
The previously obtained bound on d(z, z′) immediately gives the following bound:

(IIa) ≤ C

|t| · (1 + |λ|4 + |φ|4 + |y|4) ·R14.
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We can control (IIb) as follows:

(IIb)
(b)

≤ 1

|t|

(∫ π

−π

∫ π

−π

∫ R

0

∫ ∞
ε

∣∣∣∣ ∂∂sd(seiν , s′eiν′)

∣∣∣∣ s′ ds ds′ dν dν ′

)

(c)
=

1

|t|

∫ π

−π

∫ π

−π

∫ R

0

∫ ∞
ε

∣∣∣∣∣∣
∑
k+l≤4

aij(ν, ν
′)sk−1s′

l

∣∣∣∣∣∣ d(seiν , s′eiν′)s′ ds ds′ dν dν ′


≤ 1

|t|

1

ε

∫ π

−π

∫ π

−π

∫ R

0

∫ ∞
ε

∣∣∣∣∣∣
∑
k+l≤4

aij(ν, ν
′)sk−1s′

l

∣∣∣∣∣∣ d(seiν , s′eiν′)ss′ ds ds′ dν dν ′


(d)

≤ C(1 + |λ|4 + |φ|4 + |y|4)

|t| ·

1

ε

∑
k+l≤3

E|z|k|z′|l


(e)

≤ C(1 + |λ|4 + |φ|4 + |y|4)

|t| ·
(

1 + |λ|2 + |φ|2 + |y|2
ε

)

In the step marked (b) we used the local Lipchitz bound on d. In the step marked

(c) we recalled the formula for the density d (see (B.48)). In the step marked (d) we

used the bound on the coefficients ak,l(ν). In the step marked (e) we used the fact that

the random vector z is a unitary transformation of w and the third moment of w was

bounded in item (4) of this lemma. Combining the bounds on IIa, IIb we obtain,

(II) ≤ C(1 + |λ|4 + |φ|4 + |y|4)

‖T ‖ ·
(
R14 +

1 + |λ|2 + |φ|2 + |y|2
ε

)
.
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Analysis of (III): We have:

(III) = P
[
|z′| ≥ R

]
≤ P

[
‖z‖ ≥ R

]
(f)

≤ P
[
‖w‖ ≥ R

]
≤ P

[
|w| ≥ R

]
+ P

[
|w′| ≥ R

]
(g)

≤ 2P
[
|w| ≥ R

]
.

In the step marked (f) we used the fact that since z is a unitary transformation ofw, we

have ‖z‖ = ‖w‖. In the step marked (g) we used the fact that |w|, |w|′ are identically

distributed. Finally we set R as:

R = C
√

1 + |y|2 + |φ|2 + |λ|2 + C

√
ln

1

ε
,

and apply the concentration inequality from item (3) of this lemma to obtain:

(3) ≤ 2ε.

Combining the bounds on (1), (2) and (3) and setting ε = O(1/‖T ‖1/2) gives us the final

bound on the characteristic function of S:

∣∣∣Eei〈Λ,S〉
∣∣∣ ≤ C · (1 + |λ|20 + |φ|20 + |y|20) · ln10(‖T ‖)√

‖T ‖

≤ C · (1 + |λ|20 + |φ|20 + |y|20)

‖T ‖ 1
3

.

6. The claim λmax

(
ΣTWis (λ, φ, y)

)
<∞ follows from the moment estimates derived in claim
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(4) of the lemma. To show that λmin

(
ΣTWis (λ, φ, y)

)
> 0 we note that if

λmin

(
ΣTWis (λ, φ, y)

)
= 0,

we can find a matrix T with ‖T ‖ = 1 such that 〈T ,S〉 is deterministic. If this happens

then the characteristic function Eeit〈S,T 〉 = 1 which contradicts the O(t−
1
3 ) decay proved in

Claim (5) of this lemma.

B.7 Analysis of the Variational Problems

In this section, we study the potential functions involved in the definition of the key functions

Ξ1(σ), Ξ̂1(σ) and Ξ2(q;σ), Ξ̂2(q;σ). Define the two concave potential functions:

V1(λ; r) = λr − EY lnZTExp (λ, Y ) , λ ∈ R

V2(λ, φ; q) = 2αλ+ βφ− EY lnZTWis (λ, φ, Y ) , λ, φ ∈ R.

In this section, we study the two variational problems:

P1: max
λ∈R

V1(λ),

P2: max
λ,φ∈R

V2(λ, φ; q).

The analysis in this section will consider an arbitrary distribution on the random variable Y . The

reason for doing so is to handle the following two cases in a unified way:

1. Y is sampled from the empirical distribution of the phase retrieval observations:

Y ∼ 1

m

m∑
i=1

δyi .
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This case covers the analysis of Ξ̂1(σ), Ξ̂2(q;σ).

2. Y = |Z|2 + σε where Z ∼ CN (0, 1) and ε ∼ N (0, 1). This case covers the analysis of

Ξ1(σ),Ξ2(q;σ).

We also note that the potential functions V1, V2 depend on the noise level σ even though the depen-

dence is not explicit in our notation. In this section, we consider a fixed σ > 0 and the universal

constants C of this section may depend on σ. However, they do not depend on the distribution of

Y . Finally we note that the variation problem P1 is more general than we require in the sense that

for the analysis of Ξ1, Ξ̂1, we can set r = 1. The reason for studying this more general variational

problem is that we can reduce the analysis of P2 to this more general variational problem.

B.7.1 Analysis of Variational Problem P1

The following proposition analyzes the variational problem P1 and shows that it has a unique

minimizer which is guaranteed to lie in a ball of a certain radius.

Proposition 22 (Analysis of P1). There exists a universal constant 0 < C < ∞ depending only

on the noise level σ such that:

1. The following coercivity estimate holds:

V1(λ; r) ≤ −r|λ|
2C

, ∀|λ| ≥ C

(
r +

1

r

)
(E|Y |2 + 1).

2. All minimizers of the variational problem lie in the compact set:

{
λ : |λ| ≤ C

(
r +

1

r

)
(E|Y |2 + 1)

}
.

3. The function V1(λ; r) is strongly concave on every compact set. Consequently, the varia-

tional problem has a unique minimizer.
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Proof. Throughout this proof, C refers to a universal constant depending only on σ which may

change from line to line.

1. We need to show that V1 is coercive, that is:

V1(λ; r)→ −∞ as |λ| → ∞.

In order to do so we need to obtain lower bounds on lnZTExp

(
±|λ|, Y

)
. First we consider:

ZTExp

(
|λ|, y

) (a)
=

∫ ∞
0

e−(1−|λ|)uψσ(u− y) du

=
e−

y2

2σ2

√
2πσ2

∫ ∞
0

exp

(
|λ|u− u2

2σ2
+

uy

2σ2
− u
)

du

(b)
=
|λ|e− y2

2σ2

√
2πσ2

∫ ∞
0

exp

(
|λ|2u

(
1− u

2σ2

)
+
|λ|uy
2σ2

− |λ|u
)

du

≥ |λ|e
− y2

2σ2

√
2πσ2

∫ σ2

σ2

2

exp

(
|λ|2u

(
1− u

2σ2

)
+
|λ|uy
2σ2

− |λ|u
)

du

(c)

≥ |λ|e
− y2

2σ2

√
2πσ2

∫ σ2

σ2

2

exp

(
|λ|2σ2

4
− |λ|

( |y|
2

+ σ2

))
du.

In the step marked (a), we used Definition 5. In the step marked (b), we performed a change

of variable u = |λ|u. In the step marked (c), we used the fact that:

u

(
1− u

2σ2

)
≤ |λ|

2σ2

4
,
σ2

2
≤ u ≤ σ2.

Hence we obtain, for a universal constant 0 < C <∞ depending only on σ2, we have,

EY lnZTExp

(
|λ|, y

)
≥ ln |λ|+ |λ|

2

C
− C|λ|(E|Y |2 + 1).
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Hence,

V1(|λ|; r) ≤ |λ|(r + C(y2 + 1))− ln |λ| − |λ|
2

C

≤ −|λ|
2

2C
, ∀|λ| ≥ 2C(r + C(E|Y |2 + 1)). (B.49)

Next we consider:

ZTExp

(
−|λ|, y

)
=

∫ ∞
0

e−(1+|λ|)uψσ(u− y) du

= |λ|
∫ ∞

0

e−u · ψσ
(
u

|λ| − y
)
· e− u

|λ| du

By Jensen’s Inequality,

lnZTExp

(
−|λ|, y

)
= ln |λ|+ ln

(
EE∼Exp(1)e

− E
|λ|ψσ

(
E

|λ| − y
))

≥ ln |λ| − 1

|λ| −
1

2σ2

(
2

|λ|2 + y2 − 2y

|λ|

)
≥ ln |λ| − C(y2 + 1), ∀ |λ| ≥ 1.

Consequently we have,

V1(−|λ|; r) ≤ −r|λ| − ln |λ|+ C(E|Y |2 + 1), ∀ |λ| ≥ 1

≤ −r|λ|
2
, ∀|λ| ≥ 2C(E|Y |2 + 1))

r
+ 1. (B.50)

Combining the estimates in (B.49) and (B.50), we obtain that for a large enough constant C,

V1(λ; r) ≤ −r|λ|
2C

, ∀|λ| ≥ C

(
r +

1

r

)
(E|Y |2 + 1).
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2. We observe that,

V1(0; r) = −EY lnEE∼Exp(1)ψσ(E − Y )

≥ − ln

(
1√

2πσ2

)
≥ −C.

Hence,

|λ| ≥ C

(
r +

1

r

)
(E|Y |2 + 1) =⇒ V1(λ; r) ≤ V1(0; r).

Hence,

arg min
λ∈R

V1(λ; r) ⊂
{
λ : |λ| ≤ C

(
r +

1

r

)
(E|Y |2 + 1)

}
.

3. In the light of item (2) of the lemma, it is sufficient to study the variational problem:

max
|λ|≤R

V1(λ; r), R
def
= C

(
r +

1

r

)
(E|Y |2 + 1).

In order to show uniqueness of the solution it is sufficient to show that V1(λ; r) is strictly

concave on |λ| ≤ R, for which it is sufficient to check that:

min
|λ|≤R

d2V1

dλ2
(λ) < 0⇔ d2

dλ2
EY lnZTExp (λ, Y ) > 0.

Note that by convexity we have,

d2

dλ2
EY lnZTExp (λ, Y ) ≥ 0.
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In order to obtain a strict inequality, suppose there is a λ0 such that:

d2

dλ2
EY lnZTExp (λ, Y )

∣∣∣∣
λ=λ0

= 0.

This means that,

EY

EE2eλ0Eψσ(E − Y )

Eeλ0Eψσ(E − Y )
−
(
EEeλ0Eψσ(E − Y )

Eeλ0Eψσ(E − Y )

)2
 = 0.

Recalling Definition 5,

σ2
TExp (λ0, Y )

a.s.
= 0.

However this contradicts the decay rate property of the characteristic function of Tilted Ex-

ponential distribution proved in Lemma 43 in Appendix B.6.1 since the amplitude of the

characteristic function of deterministic random variables is constant.

B.7.2 Analysis of Variational Problem P2

The following proposition analyzes the variational problem P2 and shows that it has a unique

minimizer which is guaranteed to lie in a ball of a certain radius.

Proposition 23 (Analysis of P2). Suppose that q ∈ (0, 1). There exists a universal constant

0 < C <∞ depending only on the noise level σ such that:

1. The following coercivity estimate holds:

V2(λ, φ; q) ≤ −(1− q)
2C

· (|λ|+ |φ|), |λ|+ |φ| ≥ C

(
1 + q +

1

1− q

)
(EY 2 + 1).
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2. All minimizers of the variational problem lie in the compact set:

{
(λ, φ) ∈ R2 : |λ|+ |φ| ≤ C

(
1 + q +

1

1− q

)
(E|Y |2 + 1)

}
.

3. The function V2(λ, φ; q) is strongly concave on any compact set. Consequently, the varia-

tional problem has a unique minimizer.

Proof. Throughout this proof, C refers to a universal constant depending only on σ which may

change from line to line. It will be helpful to write the variational problem in the following matrix

notation. Define,

Λ =

λ φ
2

φ
2

λ


Then the problem P2 can be rewritten as:

max
Λ

V2(Λ), V2(Λ) = 〈Λ,Q〉 − EY lnEg∼CN (0,I2) exp(〈Λ, ggH〉)ψσ(Y − |g1|2)ψσ(Y − |g2|2),

where,

Q =

1 q

q 1

 .
To obtain the above display, we recalled the definition of the normalizing constant of the Tilted

Wishart Distribution (Definition 6).

1. In order to obtain a coercivity estimate we need to lower bound lnZTWis (λ, φ, y). Our lower

bound will depend only on the spectrum of Λ. We consider the eigendecomposition of Λ:

Λ =

bH1
bH2

 ·
γ1 0

0 γ2

 · [b1 b2

]
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In the above display γ1 ≥ γ2 are the ordered eigenvalues of Λ. We have the following lower

bound on lnZTWis (λ, φ, y):

lnZTWis (λ, φ, y) = lnE exp(〈Λ, ggH〉)ψσ(y − |g1|2)ψσ(y − |g2|2)

= lnE exp(γ1|g1|2 + γ2|g2|2)ψσ(y − |bH1 g|2)ψσ(y − |bH2 g|2)

= lnE exp

(
γ1|g1|2 + γ2|g2|2 −

1

2σ2
(2y2 − 2y(|bH1 g|2 + |bH2 g|2) + |bH1 g|4 + |bH2 g|4)

)
(a)

≥ lnE exp

(
γ1|g1|2 + γ2|g2|2 −

1

2σ2
(2y2 − 2y(|g1|2 + |g2|2) + 2|g1|4 + 2|g2|4)

)
≥ lnE exp(γ1|g1|2)ψσ

(
y√
2
−
√

2|g1|2
)

+ lnE exp(γ2|g2|2)ψσ

(
y√
2
−
√

2|g2|2
)
− y2

2σ2

= lnEE∼Exp(1)e
γ1Eψσ

(
y√
2
−
√

2E

)
+ lnEE∼Exp(1)e

γ2Eψσ

(
y√
2
−
√

2E

)
− y2

2σ2

In the step marked (a), we used the fact that,

‖Bg‖2
2 = ‖g‖2, ‖Bg‖4

4 ≤ ‖g‖4
2 ≤ 2(|g1|4 + |g2|4).

Next note that,

〈Λ,Q〉 ≤ γ1λ1(Q) + γ2λ2(Q),

where λ1(Q) ≥ λ2(Q) are the ordered eigenvalues of Q. It is easy to check that λ1(Q) =

1 + q and λ2(Q) = 1− q which means,

〈Λ,Q〉 ≤ γ1(1 + q) + γ2(1− q).
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This gives us,

V2(Λ; q) ≤ γ1(1 + q)− E lnEeγ1Eψσ

(
Y√

2
−
√

2E

)
+ γ2(1− q)

− E lnEeγ2Eψσ

(
y√
2
−
√

2E

)
+

EY 2

σ2

Utilizing the coercivity estimates from Proposition 22, we obtain,

(
γ1 · (1 + q)− EY lnEeγ1Eψσ

(
Y√

2
−
√

2E

))
≤ −(1 + q) · |γ1|

2C
,(

γ2(1− q)− EY lnEeγ2Eψσ

(
Y√

2
−
√

2E

))
≤ −(1− q)|γ2|

2C
,

for all:

|γ1| ≥ C

(
1 + q +

1

1 + q

)(
EY 2 + 1

)
,

|γ2| ≥ C

(
(1− q) +

1

1− q

)(
EY 2 + 1

)
.

Since,

‖Λ‖2 ≥ t =⇒ max(γ2
1 , γ

2
2) ≥ t

2
, ∀t,

we obtain,

V2(Λ; q) ≤ −1− q
2C

· ‖Λ‖, ‖Λ‖ ≥ C

(
1 + q +

1

1− q

)
(EY 2 + 1).

This is equivalent to the estimate:

V2(λ, φ; q) ≤ −1− q
2C

· (|λ|+ |φ|), |λ|+ |φ| ≥ C ·
(

1 + q +
1

1− q

)
(EY 2 + 1).

This concludes the proof of item (1) in the statement of the lemma.
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2. The proof is analogous to the proof of item (2) in Proposition 22.

3. The proof is analogous to the proof of item (3) in Proposition 22.

B.8 Background on Characteristic Functions

In this section we collect some basic facts about characteristic functions (CF). Most of these

results are taken from Chapter XV of Feller [76]. The characteristic function is simply the Fourier

transform of the probability density function.

Definition 11 (Characteristic Function). Let f be a probability density function on R. Then the

characteristic function of f is defined as:

ψ(t) =

∫
R
eitxf(x) dx.

If the characteristic function is absolutely integrable, the probability density function can be

recovered from it using the Fourier inversion formula.

Theorem 7 (Fourier Inversion of CFs). Let ψ be the CF of density f . Then,

f(x) =
1

2π

∫
R
ψ(t)e−itx dt.

The moments of the PDF can be recovered from the Taylors expansion of the CF.

Theorem 8 (Taylors Series of CF). Let X be a random variable with probability density function

f . Let ψ be the CF of f . We have, for any t ∈ R.

∣∣∣∣∣∣ψ(t)−

1 +
n−1∑
k=1

EXk

k!
· (it)k

∣∣∣∣∣∣ ≤ E|X|ntn
n!

The following bound on CFs will be useful in the proofs of the local central limit theorems.
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Lemma 45 (Bounds on CF). Let ψ be a multivariate CF and suppose that, there exists 0 < c < 1

and b > 0 such that,

|ψ(t)| ≤ c ∀ ‖t‖ > b. (B.51)

Then, for any ‖t‖ ≤ b we have,

|ψ(t)| ≤ 1− 1− c2

8b2
‖t‖2.

Proof. A univariate version is given as Theorem 1 in Chapter 1 of Petrov [88]. A multivariate

version is given as Theorem 1.8.13 in Ushakov [89].

Finally we state a Multivariate Berry-Eseen bound due to Bhattacharya [83].

Theorem 9 (A Multivariate Berry-Eseen Bound, [83]). Let X1, X2 . . . Xn be independent random

vectors in Rk. Suppose that:

EXi = 0,
1

n

n∑
i=1

EXiX
T
i = Ik.

Define:

ρ3
def
=

1

n

n∑
i=1

E‖Xi‖3.

Then, there exists a universal constant Ck depending only on the dimension k, such that for any

bounded, Lipchitz function f we have,

∣∣∣∣∣∣Ef
(∑n

i=1Xi√
n

)
− EZ∼N (0,Ik)f(Z)

∣∣∣∣∣∣ ≤ Ck · ρ3 · (‖f‖∞ + ‖f‖Lip)√
n

.
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B.9 Some Miscellaneous Results

This appendix collects some miscellaneous facts and results that are useful in our analysis. The

first is a classical correlation inequality.

Fact 2 (Chebychev Association Inequality, [70]). Let A,B be r.v.s and B ≥ 0. Suppose f, g are

two non-decreasing functions. Then, E[B]E[Bf(A)g(A)] ≥ E[f(A)B]E[g(A)B].

The following collects some useful properties of Modified Bessel Function of the first kind.

These results can be found in the standard references [90, 91]. Item (5) of the following is relatively

less known and is due to Watson [92, Appendix A].

Fact 3 (Properties of Modified Bessel Function of the First Kind). For x ∈ R, the Modified Bessel

Function of the First Kind, denoted by, I0(x) is defined as:

I0(x)
def
=

1

2π

∫ π

−π
ex cos(θ).

It satisfies the following properties:

1. I0(x) is an increasing function on x ≥ 0 and I0(0) = 1.

2. I0(x) is an even function.

3. There exists a universal constant C such that,

I0(x) ≤ Cex√
x
, ∀x ≥ 0.

4. I0 is infinitely differentiable.

5. The function I′0
I0

is an increasing concave function with,

I ′0(0)

I0(0)
= 0, lim

x→∞

I ′0(x)

I0(x)
= 1,
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and,

d

dz

(
I ′0(z)

I0(z)

) ∣∣∣∣
z=0

=
1

2
.

The following lemma is about a bivariate Gaussian integral.

Lemma 46. Let Z1, Z2 be distributed as:

Z1

Z2

 ∼ N

0

0

 ,
1 ρ

ρ 1


 .

Then the integral:

J(a, b)
def
= EZ1,Z2ψ1(a− Z1)ψ1(b− Z2),

is given by:

J(a, b) =
1

4π
√

1− ρ2/4
· exp

(
−a

2 + b2 − ρab
4(1− ρ2/4)

)
.

Proof. Note that J(a, b) is the Joint PDF of the random variables (A,B) with distribution:

A = Z1 + ε1, B = Z2 + ε2,

Z1

Z2

 ∼ N

0

0

 ,
1 ρ

ρ 1


 , ε1 ∼ N (0, 1) , ε2 ∼ N (0, 1) .

We can directly find the distribution of A,B from this description:

A
B

 ∼ N

0

0

 ,
2 ρ

ρ 2


 .
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Hence by the formula for the bivariate Gaussian pdf,

J(a, b) =
1

4π
√

1− ρ2/4
· exp

(
−a

2 + b2 − ρab
4(1− ρ2/4)

)
.

We will also find the following bound on truncated Gaussian integrals useful.

Lemma 47 (Truncated Gaussian Integrals). Suppose that a,A > 0 and k ∈ N. Then, we have,

∫ ∞
a

xke−
x2

2A2 dx ≤ Ck · A · (Ak + ak) · e−a
2

2 .

In the above display Ck is a universal constant depending only on k.

Proof. Let us first consider the case when A = 1. Then we have,

∫ ∞
a

xke−
x2

2 dx
(a)
= 2

k−1
2

∫ ∞
a2/2

u
k−1

2 e−u du

(b)
= 2

k−1
2 · e−a

2

2 ·
∫ ∞

0

(
x+

a2

2

) k−1
2

e−x dx

(c)

≤ 2k−1 · e−a
2

2 ·
∫ ∞

0

(
x
k−1

2 +
ak−1

2
k−1

2

)
e−x dx

≤ 2k−1 · e−a
2

2 ·

√∫ ∞
0

e−xxk−1 dx+
ak−1

2
k−1

2


≤ 2k−1 · e−a

2

2 ·
(√

(k − 1)! +
ak−1

2
k−1

2

)

≤ Ck(1 + ak)e−
a2

2

In the step marked (a), we substituted u = x2/2 in the step marked (b) we substituted u = x + a.

In the step marked (c) we used the inequality (a+ b)k ≤ 2k(ak + bk), a, b ≥ 0 k ≥ 0. Making the
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substitution x = Ax in the above bound gives us:

∫ ∞
a

xke−
x2

2A2 dx ≤ Ck · A · (Ak + ak) · e−a
2

2 .

This concludes the proof.

The following lemma contains a useful upper bound on E|G|− 1
2 where G ∼ N (0, 1).

Lemma 48 (Fractional Moments of Gaussian Distribution). Let G ∼ N
(
µ, σ2

)
. Then we have,

E
1√
|G|
≤ 4√

|µ|
.

Proof. We have,

E
1√
|G|
≤ E

1√
|G|

1|G|≤0.5|µ| + E
1√
|G|

1|G|>0.5|µ|

≤
∫ 0.5|µ|

−0.5|µ|

1√
|x|
· 1√

2πσ2
e−

(x−µ)2

2σ2 dx+

√
2√
|µ|

≤ e−
µ2

8σ2

√
2πσ2

·
∫ 0.5|µ|

−0.5|µ|

1√
|x|

dx+

√
2√
|µ|

=
2
√
|µ|e− µ2

8σ2

√
πσ2

+

√
2√
|µ|

≤ 4√
|µ|

In the last step we used the fact that maxx≥0

√
xe−x ≤ 1√

2e
.
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Appendix C: Omitted Proofs from Chapter 5

C.1 Proof of Lemmas 21 and 22

C.1.1 Proof of Lemma 21

Proof of Lemma 21. Recall that,AAT = UBUT, Ψ = AAT−E[AAT|U ] = U(B−κIm)UT

where B is a uniformly random m × m diagonal matrix with exactly n entries set to 1 and the

remaining entries set to 0. Using the concentration inequality of Lemma 17:

P
(
|(AAT)ij − E(AAT)ij| > ε

∣∣ U) ≤ 4 exp

(
− ε2

8m‖U‖4
∞

)
. (C.1)

Setting ε =
√

32 ·m · ‖U‖4
∞ · log(m) in (C.1) we obtain,

P
(
|(AAT)ij − E(AAT)ij| >

√
32 ·m · ‖U‖4

∞ · log(m)
∣∣ U) ≤ 4

m4
.

By a union bound, P(Ec|U) ≤ 4/m2 → 0. In order to prove the claim of the lemma for the

subsampled Haar model, we first note that by Fact 7 we have,

P

(
|Oij| >

√
8 log(m)

m

)
≤ 2

m4
.
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By a union bound P(‖O‖∞ >
√

8 log(m)/m) ≤ 2m−2. This gives us:

P

{‖O‖∞ ≤√8 log(m)

m

}
∩ E

 ≥ 1− P

(
‖O‖∞ >

√
8 log(m)

m

)
− P(Ec)

≥ 1− 2

m2
− EP(Ec|U )

≥ 1− 6

m2
.

This concludes the proof of the lemma.

C.1.2 Proof of Lemma 22

Proof of Lemma 22. Consider any alternating product A (see Definition 7):

A(Ψ,Z) = (Ψ)q1(Z)(Ψ) · · · qk(Z).

Note that in the above expression, we have assumed the alternating product is of Type 2 but the

following argument applies to all the other types too. We define:

Ai = (Ψ)q1(Z)(Ψ)q2(Z) · · · (Ψ)qi(Z)(Ψ)qi+1(Z ′)(Ψ)qi+2(Z ′) · · · (Ψ)qk(Z
′).

Then we can express A(Ψ,Z ′)−A(Ψ,Z) as a telescoping sum:

A(Ψ,Z)−A(Ψ,Z ′) =
k∑
i=1

(Ai −Ai−1).

Hence,

∣∣∣∣TrA(Ψ,Z)

m
− TrA(Ψ,Z ′)

m

∣∣∣∣ ≤ 1

m

k∑
i=1

|Tr(Ai −Ai−1)|.
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Next we observe that:

|Tr(Ai −Ai−1)|

= |Tr((Ψ)q1(Z) · · · (Ψ)qi−1(Z) · (qi(Z)− qi(Z ′)) · (Ψ)qi+1(Z ′) · · · (Ψ)qk(Z
′))|

≤
∥∥(Ψ)q1(Z) · · · (Ψ)qi−1(Z) · (Ψ)qi+1(Z ′) · · · (Ψ)qk(Z

′)
∥∥
op
·

 m∑
j=1

|qi(zj)− qi(z′j)|


≤ ‖(Ψ)‖op‖q1(Z)‖op · · · ‖(Ψ)‖op‖qk(Z ′)‖op ·

 m∑
j=1

|qi(zj)− qi(z′j)|


(a)

≤

 k∏
j=1

‖qj‖∞

 · ‖qi‖Lip ·
 m∑

j=1

|zj − z′j|


≤ √m · C(A) · ‖Z −Z ′‖Fr.

In the step marked (a), we observed that: ‖(Ψ)‖op = ‖U (B)UT‖op ≤ max(|κ)|, |1 − κ|) ≤ 1.

Similarly, ‖qj(Z)‖op ≤ ‖qj‖∞ def
= supξ∈R |qj(ξ)|. We also recalled the functions qi are assumed to

be Lipchitz and denoted the Lipchitz constant of qi by ‖qi‖Lip. Hence we obtain:

∣∣∣∣TrA(Ψ,Z)

m
− TrA(Ψ,Z ′)

m

∣∣∣∣ ≤ k · C(A)√
m

· ‖Z −Z ′‖Fr.

This concludes the proof of the lemma.

C.2 Proof of Proposition 19

The proof of Proposition 19 is very similar to the proof of Proposition 18 and hence we will be

brief in our arguments.

As discussed in the proof of Proposition 18, we will assume that alternating form is of Type 1.

The other types are handled as outlined in Remark 15. Furthermore, in light of Lemma 16 we can

further assume that all polynomials pi(ψ) = ψ. Hence we assume that A is of the form:

A(Ψ,Z) = Ψq1(Z)Ψ · · · qk−1(Z)Ψ.
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The proof of Proposition 19 consists of various steps which will be organized as separate lem-

mas. We begin by recall that

z ∼ N
(

0,
AAT

κ

)
.

Define the event:

E =

max
i 6=j
|(AAT|)ij ≤

√
2048 · log3(m)

m
, max
i∈[m]
|(AAT)ii − κ| ≤

√
2048 · log3(m)

m

 (C.2)

By Lemma 21 we know that P(Ec)→ 0 for both the subsampled Haar sensing and the subsampled

Hadamard model. We define the normalized random vector z̃ as:

z̃i =
zi
σi
, σ2

i =
(AAT)ii

κ

Note that conditional onA, z̃ is a zero mean Gaussian vector with:

E[z̃i
2|A] = 1, E[z̃iz̃j|A] =

(AAT)ij/κ

σiσj
.

We define the diagonal matrix Z̃ = Diag (z̃).

Lemma 49. We have,

lim
m→∞

E(zTA(Ψ,Z)z)2

m2
= lim

m→∞

E(z̃TA(Ψ, Z̃)z̃)2

m2
I (E) ,

provided the latter limit exists.

The proof of this lemma is analogous the proof of Lemma 26 and is omitted. The advantage of

Lemma 49 is that z̃i ∼ N (0, 1) and on the event E the coordinates of z̃ have weak correlations.

Consequently, Mehler’s Formula (Proposition 15) can be used to analyze the leading order term in

E[z̃TA(Ψ, Z̃)z̃ I (E)]. Before we do so, we do one additional preprocessing step.
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Lemma 50. We have,

lim
m→∞

E(z̃TA(Ψ, Z̃)z̃)2

m2
I (E) = lim

m→∞

E Tr(A · (z̃z̃T − Z̃2) · A · (z̃z̃T − Z̃2))I (E)

m2
,

provided the latter limit exists.

Proof Sketch. Observe that we can write:

(z̃TAz̃)2 = Tr(A · z̃z̃T · A · z̃z̃T)

= Tr(A · (z̃z̃T − Z̃2 + Z̃2) · A · (z̃z̃T − Z̃2 + Z̃2))

= Tr(A · (z̃z̃T − Z̃2) · A · (z̃z̃T − Z̃2)) + Tr(A · Z̃2 · A · z̃z̃T) + Tr(A · z̃z̃T · Z̃2 · A)

− Tr(A · Z̃2 · A · Z̃2)

= Tr(A · (z̃z̃T − Z̃2) · A · (z̃z̃T − Z̃2)) + 2z̃TA · Z̃2 · A · z̃ − Tr(A · Z̃2 · A · Z̃2).

Next we note that:

|z̃TA · Z̃2 · A · z̃| ≤ ‖z̃‖2 · ‖A‖2
op ·
(

max
i∈[m]
|z̃i|2

)
≤ OP (m) ·O(1) ·OP (polylog(m)),

Hence it can be shown that,

E|z̃TA · Z̃2 · A · z̃|
m2

→ 0.

Similarly,

|Tr(A · Z̃2 · A · Z̃2)| ≤ m‖A · Z̃2 · A · Z̃2‖op ≤ m‖A‖2
op ·
(

max
i∈[m]
|z̃i|4

)
≤ O(m) ·O(1) ·OP (polylog(m)),
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and hence one expects that,

E|Tr(A · Z̃2 · A · Z̃2)|
m2

→ 0.

We omit the detailed arguments. This concludes the proof of the lemma.

Note that, so far, we have shown that:

lim
m→∞

E(zTA(Ψ,Z)z)2

m2
= lim

m→∞

E Tr(A · (z̃z̃T − Z̃2) · A · (z̃z̃T − Z̃2))I (E)

m2
,

provided the latter limit exists. We now focus on analyzing the RHS. We expand

Tr(A · (z̃z̃T − Z̃2) · A · (z̃z̃T − Z̃2)) =∑
a1:2k+2∈[m]
a1 6=a2k+2
ak+1 6=ak+2

(Ψ)a1,a2q1(z̃a2) · · · (Ψ)ak,ak+1
z̃ak+1

z̃ak+2
(Ψ)ak+2,ak+3

q1(z̃ak+3
) · · · (Ψ)a2k+1,a2k+2

z̃a2k+2
z̃a1 .

This can be written compactly in terms of matrix moments (Definition 8) as follows: Let `⊗2
k+1 ∈

G(2k+2) denote the graph formed by combining two disconnected copies of the simple line graph

on vertices [1 : k + 1] and [k + 2 : 2k + 2]:

(`⊗2
k+1)ij =


1 : |i− j| = 1, {i, j} 6= {k + 1, k + 2},

0 : otherwise
.

Recall the notation for partitions introduced in Section 5.6.1. Observe that:

{(a1 . . . a2k+2) ∈ [m]2k+2 : a1 6= a2k+2, ak+1 6= ak+2} =
⊔

π∈P0([2k+2])

C(π),
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where,

P0([2k + 2])
def
= {π ∈ P(2k + 2) : π(1) 6= π(2k + 2), π(k + 1) 6= π(k + 2)}.

Recalling Definition 8, we have,

(Ψ)a1,a2 · · · (Ψ)ak,ak+1
(Ψ)ak+2,ak+3

· · · (Ψ)a2k+1,a2k+2
=M(Ψ, `⊗2

k+1, π,a)

Hence,

E Tr(A · (z̃z̃T − Z̃2) · A · (z̃z̃T − Z̃2))I (E)

m2
=

1

m2

∑
π∈P0(2k+2)
a∈C(π)

EM(Ψ, `⊗2
k+1, π,a) · (z̃a1q1(z̃a2) · · · z̃ak+1

z̃ak+2
q1(z̃ak+3

) · · · z̃a2k+2
) · I (E) .

By the tower property,

EM(Ψ, `⊗2
k+1, π,a) · (z̃a1q1(z̃a2) · · · z̃ak+1

z̃ak+2
q1(z̃ak+3

) · · · z̃a2k+2
) · I (E) =

E
[
M(Ψ, `⊗2

k+1, π,a) · E[z̃a1q1(z̃a2) · · · z̃ak+1
z̃ak+2

q1(z̃ak+3
) · · · z̃a2k+2

|A]I (E)
]
.

We will now use Mehler’s formula (Proposition 15) to evaluate E[· · · |A] upto leading order. Note

that some of the random variables z̃a1:2k+2
are equal (as given by the partition π). Hence we group

them together and recenter the resulting functions. The blocks corresponding to a1, ak+1, ak+2, a2k+2

need to be treated specially due to the presence of z̃a1 , z̃ak+1
, z̃ak+2

, z̃a2k+2
in the above expectations.

Hence, we introduce the following notations: We introduce the following notations:

F1(π) = π(1), L1(π) = π(k + 1), F2(π) = π(k + 2), L2(π) = π(2k + 2)

S (π) = {i ∈ [1 : 2k + 2]\{1, k + 1, k + 2, 2k + 2} : |π(i)| = 1}.
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We label all the remaining blocks of π as V1,V2 . . .V|π|−|S (π)|−4. Hence the partition π is given by:

π = F1(π) tL1(π) tF2(π) tL2(π) t

 ⊔
i∈S (π)

{i}

 t
|π|−|S (π)|−4⊔

t=1

Vi

 .

To simplify notation, we additionally define:

qk+1+i(ξ)
def
= qi(ξ), i = 1, 2 . . . k − 1.

Note that:

z̃a1 z̃ak+1
z̃ak+2

z̃a2k+2

2k∏
i=1

i 6=k,k+1

qi(z̃ai+1
) =

QF1(z̃a1)QL1(z̃ak+1
)QF2(z̃ak+2

)QL2(z̃a2k+2
)

 ∏
i∈S (π)

qi−1(z̃ai)

 |π|−|S (π)|−4∏
i=1

(QVi(zaVi ) + µVi),

where,

QF1(ξ) = ξ ·
∏

i∈F1(π),i 6=1

qi−1(ξ),

QL1(ξ) = ξ ·
∏

i∈L1(π),i 6=k+1

qi−1(ξ),

QF2(ξ) = ξ ·
∏

i∈F2(π),i 6=k+2

qi−1(ξ),

QL2(ξ) = ξ ·
∏

i∈L2(π),i 6=2k+2

qi−1(ξ),

µVi = Eξ∼N (0,1)

∏
j∈Vi

qj−1(ξ)

 ,
QVi(ξ) =

∏
j∈Vi

qj−1(ξ)− µVi ,

311



With this notation in place we can apply Mehler’s formula. The result is summarized in the fol-

lowing lemma.

Lemma 51. For any π ∈ P0([2k + 2]) and any a ∈ C(π) we have,

I (E)

∣∣∣∣∣∣E[z̃a1q1(z̃a2) · · · z̃ak+1
z̃ak+2

q1(z̃ak+3
) · · · z̃a2k+2

|A]−
∑

w∈G2(π)

G(w, π) · M(Ψ,w, π,a)

∣∣∣∣∣∣
≤ C(A) ·

(
log3(m)

mκ2

) 3+|S (π)|
2

,

where,M(Ψ,w, π,a) is the matrix moment as defined in Definition 8,

G(w, π) =
1

κ‖w‖w!

Q̂F1(1)Q̂L1(1)Q̂F2(1)Q̂L2(1)
∏

i∈S (π)

q̂i−1(2)

 ∏
i∈[|π|−|S (π)|−4]

µVi



G2(π)
def
=
{
w ∈ G(2k + 2) : di(w) = 1 ∀ i ∈ {1, k + 1, k + 2, 2k + 2},

di(w) = 2 ∀ i ∈ S (π), di(w) = 0 ∀ i /∈ {1, k + 1, k + 2, 2k + 2} ∪S (π)
}
,

The proof of the lemma involves instantiating Mehler’s formula for this situation and identi-

fying the leading order term. Since the proof is analogous to the proof of Lemma 28 provided in

Appendix C.4.3, we omit it.

We return to our analysis of:

E Tr(A · (z̃z̃T − Z̃2) · A · (z̃z̃T − Z̃2))I (E)

m2
=

1

m2

∑
π∈P0(2k+2)
a∈C(π)

EM(Ψ, `⊗2
k+1, π,a) · (z̃a1q1(z̃a2) · · · z̃ak+1

z̃ak+2
q1(z̃ak+3

) · · · z̃a2k+2
) · I (E) .
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We define the following subsets of P0(2k + 2) as:

P1([2k + 2])
def
=
{
π ∈ P0(2k + 2) : |π(i)| = 1, ∀ i ∈ {1, k + 1, k + 2, 2k + 2}, (C.4a)

|π(j)| ≤ 2 ∀ j ∈ [k + 1]
}
,

P2([2k + 2])
def
= P0([2k + 2])\P1([2k + 2]), (C.4b)

and the error term which was controlled in Lemma 28:

ε(Ψ,a)
def
=

I (E)

E[z̃a1q1(z̃a2) · · · z̃ak+1
z̃ak+2

q1(z̃ak+3
) · · · z̃a2k+2

|A]−
∑

w∈G2(π)

G(w, π) · M(Ψ,w, π,a)


.

With these definitions we consider the decomposition:

E Tr(A · (z̃z̃T − Z̃2) · A · (z̃z̃T − Z̃2))I (E)

m2
=

1

m2

∑
π∈P1([2k+2])

∑
a∈C(π)

∑
w∈G2(π)

G(w, π) · E
[
M(Ψ,w + `⊗2

k+1, π,a)
]
− I + II + III,

where,

I =
1

m2

∑
π∈P0([2k+2])

∑
a∈C(π)

∑
w∈G2(π)

G(w, π) · E
[
M(Ψ,w + `⊗2

k+1, π,a)I (Ec)
]
,

II =
1

m2

∑
π∈P0(2k+2])

∑
a∈C(π)

E
[
M(Ψ, `⊗2

k+1, π,a)ε(Ψ,a)I (E)
]
,

III =
1

m2

∑
π∈P2([2k+2])

∑
a∈C(π)

∑
w∈G2(π)

G(w, π) · E
[
M(Ψ,w + `⊗2

k+1, π,a)
]
.

We will show that I, II, III→ 0. Showing this involves the following components:

1. Bounds on matrix moments E
[
M(Ψ,w + `⊗2

k+1, π,a)
]

which have been developed in Lemma

18.
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2. Controlling the size of the set |C(π)| (since we sum over a ∈ C(π) in the above terms).

Since,

|C(π)| = m(m− 1) · · · (m− |π|+ 1) � m|π|,

we need to develop bounds on |π|. This is done in the following lemma. In contrast, the sums

over π ∈ P0([2k+2]) andw ∈ G1(π) are not a cause of concern since |P0([2k+2])|, |G1(π)|

depend only on k (which is held fixed) and not on m.

Lemma 52. For any π ∈ P1([2k + 2]) we have,

|π| = 2k + 6 + |S (π)|
2

=⇒ |C(π)| ≤ m
2k+6+|S (π)|

2 .

For any π ∈ P2([2k + 2]), we have,

|π| ≤ 2k + 5 + |S (π)|
2

=⇒ |C(π)| ≤ m
2k+5+|S (π)|

2 .

Proof. Consider any π ∈ P0([2k + 2]). Recall that the disjoint blocks of |π| were given by:

π = F1(π) tL1(π) tF2(π) tL2(π) t

 ⊔
i∈S (π)

{i}

 t
|π|−|S (π)|−4⊔

t=1

Vi

 .

Hence,

2k + 2 = |F1(π)|+ |F2(π)|+ |L1(π)|+ |L2(π)|+ |S (π)|+
|π|−|S (π)|−4∑

t=1

|Vi|.
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Note that:

|F1(π)| ≥ 1 (Since 1 ∈ F1(π)) (C.5a)

|F2(π)| ≥ 1 (Since k + 2 ∈ F2(π)) (C.5b)

|L1(π)| ≥ 1 (Since k + 1 ∈ L1(π)) (C.5c)

|L2(π)| ≥ 1 (Since 2k + 2 ∈ L1(π)) (C.5d)

|Vi| ≥ 2 (Since Vi are not singletons). (C.5e)

Hence,

2k + 2 ≥ 4 + 2|π| − |S (π)| − 8,

which implies,

|π| ≤ 2k + 6 + |S (π)|
2

, (C.6)

and hence,

|C(π)| ≤ m|π| ≤ m
2k+6+|S (π)|

2 .

Finally observe that:

1. For any π ∈ P2([2k + 2]) each of the inequalities in (C.5) are exactly tight by the definition

of P1([k + 1]) in (C.4), and hence,

|π| = 2k + 6 + |S (π)|
2

.

2. For any π ∈ P2([2k + 2]), one of the inequalities in (C.5) must be strict (see (C.4)). Hence,
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when π ∈ P2([k + 1]) we have the improved bound:

|π| ≤ 2k + 5 + |S (π)|
2

.

This proves the claims of the lemma.

We will now show that I, II, III→ 0.

Lemma 53. We have,

I→ 0, II→ 0, III→ 0 as m→∞,

and hence,

lim
m→∞

E(zTA(Ψ,Z)z)2

m2
=

lim
m→∞

1

m2

∑
π∈P1([2k+2])

∑
a∈C(π)

∑
w∈G2(π)

G(w, π) · E
[
M(Ψ,w + `⊗2

k+1, π,a)
]
,

provided the latter limit exists.

Proof. First note that for any w ∈ G1(π), we have,

‖w‖ =
1

2

2k+2∑
i=1

di(w) =
1 + 1 + 1 + 1 + 2|S (π)|

2
= 2 + |S (π)| (See Lemma 51).
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Furthermore recalling the definition of `⊗2
k+1, ‖`⊗2

k+1‖ = 2k. Now we apply Lemma 18 to obtain:

|E
[
M(Ψ,w + `⊗2

k+1, π,a)I (Ec)
]
| ≤

√
E
[
M(Ψ, 2w + 2`⊗2

k+1, π,a)
]√

P(Ec)

≤
(
Ck log2(m)

m

) |S (π)|+2+2k
2

·
√

P(Ec),

(a)

≤
(
Ck log2(m)

m

) |S (π)|+2+2k
2

· Ck
m
.

E|M(Ψ, `⊗2
k+1, π,a)| ≤

(
Ck log2(m)

m

)k

,

E
[
|M(Ψ,w + `k+1, π,a)|

]
≤
(
Ck log2(m)

m

) |S (π)|+2+2k
2

In the step marked (a) we used Lemma 21. Further recall that by Lemma 28 we have,

|ε(Ψ,a)| ≤ C(A) ·
(

log3(m)

mκ2

) 3+|S (π)|
2

.
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Using these estimates, we obtain,

|I| ≤ C(A)·
m2

·
∑

π:P0([2k+2])

|C(π)| ·
(
Ck log2(m)

m

) |S (π)|+2+2k
2

· Ck
m

≤ C(A)·
m2

·
∑

π:P0([2k+2])

m
2k+6+|S (π)|

2 ·
(
Ck log2(m)

m

) |S (π)|+2+2k
2

· Ck
m

= O

(
polylog(m)

m

)

|II| ≤ C(A)

m2
·
(
Ck log2(m)

m

)k

·
∑

π:P0([2k+2])

|C(π)| ·
(

log3(m)

mκ2

) 3+|S (π)|
2

≤ C(A)

m2
·
(
Ck log2(m)

m

)k

·
∑

π:P0([2k+2])

m
2k+6+|S (π)|

2 ·
(

log3(m)

mκ2

) 3+|S (π)|
2

= O

(
polylog(m)√

m

)

|III| ≤ C(A)·
m2

·
∑

π:P2([2k+2])

|C(π)| ·
(
Ck log2(m)

m

) |S (π)|+1+k
2

≤ C(A)·
m2

·
∑

π:P2([2k+2])

m
2k+5+|S (π)|

2 ·
(
Ck log2(m)

m

) |S (π)|+2+2k
2

= O

(
polylog(m)√

m

)
.

This concludes the proof of this lemma.

Next, we consider the decomposition:

1

m2

∑
π∈P1([2k+2])

∑
a∈C(π)

∑
w∈G2(π)

G(w, π) · E
[
M(Ψ,w + `⊗2

k+1, π,a)
]

=

1

m2

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

∑
a∈LCF(w+`⊗2

k+1,π)

G(w, π) · E
[
M(Ψ,w + `⊗2

k+1, π,a)
]

+ IV + V,
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where,

IV
def
=

1

m2

∑
π∈P1([2k+2])

∑
a∈C(π)

∑
w∈G2(π)

w+`⊗2
k+1 /∈GDA(π)

G(w, π) · E
[
M(Ψ,w + `⊗2

k+1, π,a)
]
,

V
def
=

1

m2

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

∑
a∈C(π)\LCF(w+`⊗2

k+1,π)

G(w, π) · E
[
M(Ψ,w + `⊗2

k+1, π,a)
]
.

Lemma 54. We have, IV→ 0,V→ 0 as m→∞, and hence,

lim
m→∞

E(zTAz)2

m2
=

lim
m→∞

1

m2

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

∑
a∈LCF(w+`⊗2

k+1,π)

G(w, π) · E
[
M(Ψ,w + `⊗2

k+1, π,a)
]
,

provided the latter limit exists.

Proof. We will prove this in two steps.

Step 1: IV→ 0. We consider the two sensing models separately:

1. Subsampled Hadamard Sensing: In this case, Proposition 17 tells us that ifw+ `⊗2
k+1 6∈

GDA(π), then,

E
[
M(Ψ,w + `⊗2

k+1, π,a)
]

= 0

and hence IV = 0.

2. Subsampled Haar Sensing: Observe that, since ‖w‖+ ‖`⊗2
k+1‖ = 2 + |S (π)|+ 2k, we

have,

E
[
M(Ψ,w + `⊗2

k+1, π,a)
]

=
E
[
M(
√
mΨ,w + `⊗2

k+1, π,a)
]

m
2+|S (π)|+2k

2

.
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By Proposition 16 we know that,

∣∣∣∣∣∣∣∣E
[
M(
√
mΨ,w + `⊗2

k+1, π,a)
]
−

∏
s,t∈[|π|]
s≤t

E
[
Z
Wst(w+`⊗2

k+1,π)

st

]∣∣∣∣∣∣∣∣ ≤
K1 logK2(m)

m
1
4

,

∀ m ≥ K3, where K1, K2, K3 are universal constants depending only on k. Note that

since w + `⊗2
k+1 /∈ GDA(π), must have some s ∈ [|π|] such that:

Wss(w + `⊗2
k+1, π) ≥ 1.

Recall that, di(w) = 0 for any i 6∈ {1, k + 1, k + 2, 2k + 2} ∪ S (π) (since w ∈

G2(π)) and furthermore, |π(i)| = 1∀ i ∈ {1, k + 1, k + 2, 2k + 2} ∪ S (π) (since

π ∈ P1(2k + 2)). Hence, we have w ∈ GDA(π) and in particular, Wss(w, π) = 0.

Consequently, we must have Wss(`
⊗2
k+1, π) ≥ 1. Recall the definition of `⊗2

k+1, since

Wss(`k+1, π) ≥ 1 we must have that for some i ∈ [2k+ 2], we have, π(i) = π(i+ 1) =

Vs. However, since π ∈ P1(2k + 2), |Vs| ≤ 2, and hence Vs = {i, i + 1}. This means

that Wss(`
⊗2
k+1, π) = 1 = Wss(w + `⊗2

k+1, π). Consequently since EZss = 0, we have,

∏
s,t∈[|π|]
s≤t

E
[
Z
Wst(w+`⊗2

k+1,π)

st

]
= 0,

or,

∣∣∣E [M(Ψ,w + `⊗2
k+1, π,a)

]∣∣∣ =
polylog(m)

m
2+|S (π)|+2k

2
+ 1

4

.

Recalling Lemma 52,

|C(π)| ≤ m|π| ≤ m
2k+6+|S (π)|

2 ,
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we obtain,

|IV| ≤ C(A)

m2

∑
π∈P1([2k+2])

|C(π)| · polylog(m)

m
2+|S (π)|+2k

2
+ 1

4

= O

(
polylog(m)

m
1
4

)
→ 0.

Step 2: V→ 0. Using Lemma 20, we know that

|C(π)\LCF(w + `⊗2
k+1, π)| ≤ O(m|π|−1)

In Lemma 52, we showed that for any π ∈ P1([k + 1]),

|π| = 2k + 6 + |S (π)|
2

.

Hence,

|C(π)\LCF(w + `⊗2
k+1, π)| ≤ O(m

2k+4+|S (π)|
2 ).

We already know from Lemma 18 that,

|E
[
M(Ψ,w + `⊗2

k+1, π,a)
]
| ≤

(
Ck log2(m)

m

) ‖w‖+‖`⊗2
k+1
‖

2

≤
(
Ck log2(m)

m

) |S (π)|+2+2k
2

,

This gives us:

|V| ≤ C

m2

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

|C(π)\LCF(w + `⊗2
k+1, π)|

(
Ck log2(m)

m

) |S (π)|+2+2k
2

= O

(
polylog(m)

m

)

which goes to zero as claimed.

This concludes the proof of the lemma.
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So far we have shown that:

lim
m→∞

E(zTAz)2

m2
=

lim
m→∞

1

m2

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

∑
a∈LCF(w+`⊗2

k+1,π)

G(w, π) · E
[
M(Ψ,w + `⊗2

k+1, π,a)
]
.

provided the latter limit exists. In the following lemma we explicitly calculate the limit on the

RHS and hence show that it exists and is same for the subsampled Haar and subsampled Hadamard

sensing models.

Lemma 55. For both the subsampled Haar sensing and Hadamard sensing model, we have,

lim
m→∞

E(zTAz)2

m2
=

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

G(w, π) · µ(w + `⊗2
k+1, π),

where,

µ(w + `⊗2
k+1, π)

def
=

∏
s,t∈[|π|]
s<t

E
[
ZWst(w+`⊗2

k+1,π)
]
, Z ∼ N

(
0, κ(1− κ)

)
.

Proof. By Propositions 17 (for the subsampled Hadamard model) and 16 (for the subsampled Haar

model) we know that, if w + `⊗2
k+1 ∈ GDA(π), a ∈ LCF(w + `⊗2

k+1, π), we have,

M(
√
mΨ,w + `⊗2

k+1, π,a) = µ(w + `⊗2
k+1, π) + ε(w, π,a),

where

|ε(w, π,a)| ≤ K1 logK2(m)

m
1
4

, ∀ m ≥ K3,
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for some constants K1, K2, K3 depending only on k. Hence, we can consider the decomposition:

1

m2

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

∑
a∈LCF(w+`⊗2

k+1,π)

G(w, π)·E
[
M(Ψ,w + `⊗2

k+1, π,a)
]

= VI + VII,

where,

VI
def
=

1

m2

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

∑
a∈LCF(w+`⊗2

k+1,π)

G(w, π) · µ(w + `⊗2
k+1, π)

m
2+S (π)+2k

2

,

VII
def
=

1

m2

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

∑
a∈LCF(w+`⊗2

k+1,π)

G(w, π) · ε(w, π,a)

m
2+S (π)+2k

2

We can upper bound |VII| as follows:

|LCF(w + `⊗2
k+1, π)| ≤ |C(π)| ≤ m

2k+6+|S (π)|
2 ,

|VII| ≤ C(A)

m2
· Ck · |LCF(w + `⊗2

k+1, π)| · 1

m
2+|S (π)|+2k

2

· K1 logK2(m)

m
1
4

= O

(
polylog(m)

m
1
4

)
→ 0.
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We can compute:

lim
m→∞

(VI) = lim
m→∞

1

m2

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

∑
a∈LCF(w+`⊗2

k+1,π)

G(w, π) · µ(w + `⊗2
k+1, π)

m
2+S (π)+2k

2

= lim
m→∞

1

m2

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

G(w, π) · µ(w + `⊗2
k+1, π)

m
2+S (π)+2k

2

· |LCF(w + `⊗2
k+1, π)|

=
∑

π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

G(w, π) · µ(w + `⊗2
k+1, π) · m|π|

m
6+S (π)+2k

2

· |LCF(w + `⊗2
k+1, π)|

m|π|

(a)
=

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

G(w, π) · µ(w + `⊗2
k+1, π) · |LCF(w + `⊗2

k+1, π)|
m|π|

(b)
=

∑
π∈P1([2k+2])

∑
w∈G2(π)

w+`⊗2
k+1∈GDA(π)

G(w, π) · µ(w + `⊗2
k+1, π).

In the step marked (a) we used the fact that |π| = (6 + |S (π)| + 2k)/2 for any π ∈ P1([2k + 2])

(Lemma 52) and in step (b) we used Lemma 20 (|LCF(w + `⊗2
k+1, π)|/m|π| → 1). This proves the

claim of the lemma and Proposition 19.

We can actually significantly simply the combinatorial sum obtained in Lemma 55 which we

do so in the following lemma.

Lemma 56. For both the subsampled Haar sensing and Hadamard sensing models, we have,

lim
m→∞

E(zTAz)2

m2
= (1− κ)2k ·

k−1∏
i=1

q̂2
i (2).

In particular, Proposition 19 holds.

Proof. We claim that the only partition with a non-zero contribution is:

π =
2k+2⊔
i=1

{i}.
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In order to see this suppose π is not entirely composed of singleton blocks. Define:

i?
def
= min{i ∈ [2k + 2] : |π(i)| > 1}.

Note i? > 1 since we know that |π(1)| = |F1(π)| = 1 for any π ∈ P1(2k + 2). Since π ∈

P1([2k + 2]) we must have |π(i?)| = 2, hence denote:

π(i?) = {i?, j?}.

for some j? > i? + 1 (i? ≤ j? since it is the first index which is not in a singleton block, and

j? 6= i? + 1 since otherwise w + `⊗2
k+1 will not be disassortative. Similarly we know that i?, j? 6=

k + 1, k + 2, 2k + 2 because |π(k + 1)| = |π(k + 2)| = |π(2k + 2)| = 1 since π ∈ P1([2k + 2]).

Let us label the first few blocks of π as:

V1 = {1}, V2 = {2}, . . .Vi?−1 = {i? − 1}, Vi? = {i?, j?}.

Next we compute:

Wi?−1,i?(w + `⊗2
k+1, π) = Wi?−1,i?(`

⊗2
k+1, π) +Wi?−1,i?(w, π)

(a)
= Wi?−1,i?(`

⊗2
k+1, π)

(b)
= 1i?−1∈Vi?−1

+ 1i?+1∈Vi?−1
+ 1j?−1∈Vi?−1

+ 1j?+1∈Vi?−1

(c)
= 1i?−1=i?−1 + 1i?+1=i?−1 + 1j?−1=i?−1 + 1j?+1=i?−1

(d)
= 1.

In the step marked (a), we used the fact that since w ∈ G2(π) and |π(i?)| = |π(j?)| = 2, we must

have di?(w) = dj?(w) = 0 and Wi?−1,i?(w, π) = 0. In the step marked (b) we used the definition

of `⊗2
k+1. In the step marked (c) we used the fact that Vi?−1 = {i?−1}. In the step marked (d) we

used the fact that j? > i? + 1.
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Hence we have shown that for any π 6= t2k+2
i=1 {i}, we have

µ(w, π) = 0 ∀ w such that w ∈ G2(π), w + `⊗2
k+1 ∈ GDA(π).

Next, let π = t2k+2
i=1 {i}. We observe for any w such that w ∈ G2(π), w + `⊗2

k+1 ∈ GDA(π), we

have,

µ(w + `⊗2
k+1, π) =

∏
s,t∈[|π|]
s<t

E
[
ZWst(w+`⊗2

k+1,π)
]
, Z ∼ N

(
0, κ(1− κ)

)
=

∏
i,j∈[2k+2]

i<j

E
[
Zwij+(`k+1)ij ,π)

]
, Z ∼ N

(
0, κ(1− κ)

)

Note that since EZ = 0, for µ(w + `⊗2
k+1, π) 6= 0 we must have:

wij ≥ (`⊗2
k+1)ij, ∀ i, j ∈ [2k + 2].

However since w ∈ G2(π) we have,

d1(w) = dk+1(w) = dk+2(w) = d2k+2(w) = 1,

di(w) = 2 ∀ i ∈ [2k + 2]\{1, k + 1, k + 2, 2k + 2},

hence w = `⊗2
k+1. Hence, recalling the formula for g(w, π) from Lemma 28 we obtain:

lim
m→∞

E(zTAz)2

m2
= (1− κ)2k ·

k−1∏
i=1

q̂2
i (2).

This proves the statement of the lemma and also Proposition 18 (see Remark 15 regarding how the

analysis extends to other types).
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C.3 Proofs from Section 5.6.4

C.3.1 Proof of Lemma 18

Proof of Lemma 18. Recall that,

E|M(Ψ,w, π,a)| = E
∏
i,j∈[k]
i<j

|Ψwij
ai,aj
|

(a)

≤
∑
i,j∈[k]
i<j

wij
‖w‖E|Ψ

‖w‖1
ai,aj
|

≤ max
i,j∈[m]

E|Ψij|‖w‖,

where step (a) follows from the AM-GM inequality. We now consider the subsampled Haar and

Hadamard cases separately.

Hadamard Case: By Lemma 17, Ψij is subgaussian with with variance proxy bounded by C/m

for some universal constant C. Hence,

E|M(Ψ,w, π,a)| ≤
(
C‖w‖
m

) ‖w‖
2

.

Haar Case: By Lemma 17, conditional on O, Ψij is sub-Gaussian. The variance proxy is

bounded by Cm‖oi‖2
∞‖oj‖2

∞. Hence,

E|M(Ψ,w, π,a)| ≤ max
i,j∈[m]

E|Ψij|‖w‖

= max
i,j∈[m]

E[E[|Ψij|‖w‖|O]]

≤ max
i,j∈[m]

(C‖w‖m)
‖w‖

2 E
[
‖oi‖‖w‖∞ ‖oj‖‖w‖∞

]
≤ max

i,j∈[m]
(C‖w‖m)

‖w‖
2

(
E‖oi‖2‖w‖

∞ + E‖oj‖2‖w‖
∞

)
.

327



Note that oi
d
= oj

d
= u ∼ Unif (Sm−1). Applying Fact 8 gives us,

E|M(Ψ,w, π,a)| ≤


√
C‖w‖ log2(m)

m


‖w‖

.

C.3.2 Proofs of Propositions 16 and 17

This section is dedicated to the proof of Propositions 16 and 17. We consider the following

general setup. Let v1,v2 · · · ,vm be fixed vectors in Rd for a fixed d ∈ N. Define the statistic:

T =
√
m

m∑
i=1

Biivi,

whereB denotes a diagonal matrix whose n diagonal entries are set to 1− κ uniformly at random

and the remaining m− n are set to −κ.

Analogously, we define the statistic:

T̂ =
√
m

m∑
i=1

B̂iivi,

where,

B̂ii
i.i.d.∼


1− κ : with prob. κ

−κ : with prob. 1− κ
.

As in the proof of Lemma 17 weB and B̂ in the same probability space as follows:

1. We first sampleB. Let S = {i ∈ [m] : Bii = 1− κ}

2. Next sample N ∼ Binom(m,κ).

3. Sample a subset Ŝ ⊂ [m] with |Ŝ| = N as follows:
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• If N ≤ n, then set Ŝ to be a uniformly random subset of S of size N .

• If N > n first sample a uniformly random subset A of Sc of size N − n and set

Ŝ = S ∪ A

4. Set B̂ as follows:

B̂ii =


−κ : i 6∈ Ŝ

1− κ : i ∈ Ŝ.
.

We stack the vectors v1:m along the rows of a matrix V ∈ Rm×d and refer to the columns of V as

V1,V2 · · ·Vd:

V = [V1,V2 · · ·Vd] =



vT1

vT2
...

vTm


.

Lastly we introduce the matrix Σ̂ ∈ Rd×d:

Σ̂
def
= E[T̂ T̂ T|V ] = mκ(1− κ)V TV .

These definitions are intended to capture the matrix momentsM(Ψ,w, π,a) as follows: Consider

any k ∈ N, π ∈ P([k]),w ∈ G(k) and any a ∈ C(π). Let the disjoint blocks of π be given by

π = V1 t V2 · · · t V|π|.

In order to captureM(Ψ,w, π,a) in the subsampled Hadamard case Ψ = HBHT and the

subsampled Haar case Ψ = OBOT we will set V1:d as follows:
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1. In the subsampled Haar case, we set:

{V1,V2, · · ·Vd} = {(oaVs � oaVt )− δ(s, t)ê : s, t ∈ [|π|], s ≤ t, Wst(w, π) > 0},

where,

eT =

(
1

m
,

1

m
· · · 1

m

)
, δ(s, t) =


1 : s = t

0 : s 6= t

.

If for some i ∈ [d] and some s, t ∈ [|π|] we have Vi = oaVs � oaVt − δ(s, t)ê, we will abuse

notation and often refer to Vi as Vst. Likewise the corresponding entries of T , T̂ , Ti, T̂i will

be referred to as Tst, T̂st.

2. In the subsampled Hadamard case, we set:

{V1,V2, · · ·Vd} = {haVs � haVt − δ(s, t)ê : s, t ∈ [|π|], s ≤ t, Wst(w, π) > 0}.

If for some i ∈ [d] and some s, t ∈ [|π|] we have Vi = haVs �haVt − δ(s, t)ê, we will abuse

notation and often refer to Vi as Vst. Likewise the corresponding entries of T , T̂ : Ti, T̂i will

be referred to as Tst, T̂st.

With the above conventions and the observation that
∑m

i=1Bii = 0 we have:

M(
√
mΨ,w, π,a) =

∏
s,t∈[|π|]
s≤t

Wst(w,π)>0

T
Wst(w,π)
st .

The remainder of this section is organized as follows:

1. First, in Lemma 57 we show that Σ̂ converges to a fixed deterministic matrix Σ and bound

the rate of convergence in terms of E‖Σ̂−Σ‖2
Fr.

330



2. In Lemma 58 we upper bound E‖T̂ − T ‖2
2. Consequently a Gaussian approximation result

for T̂ implies a Gaussian approximation result for T .

3. In Lemma 59, we use a standard Berry Eseen bound of Bhattacharya [83] to derive a Gaus-

sian approximation result for T̂ since it is a weighted sum of i.i.d. centered random variables.

4. Finally we conclude by using the above lemmas to provide a proof for Propositions 17 and

16.

Lemma 57. 1. For the Hadamard case suppose w is disassortative with respect to π and a is

a conflict free labelling of (w, π). Then,

Σ̂ = κ(1− κ)Id.

2. For the Haar case there exists a universal constant C < ∞ such that for any partition

π ∈ P([k]), any weight matrix w ∈ G(k) and any labelling a ∈ C(π) we have,

E‖Σ̂−Σ‖2
Fr ≤

C · k4 · (κ2(1− κ)2)

m
.

where the matrix Σ is a diagonal matrix whose diagonal entries are given by:

Σst,st =


κ(1− κ) : s 6= t

2κ(1− κ) : s = t

.

Proof. Recall that,

Σ̂ = mκ(1− κ)V TV .

We consider the Hadamard and the Haar case separately.
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Hadamard Case: Consider two pairs (s, t) and (s′, t′) such that:

s ≤ t, Wst(w, π) > 0, s, t ∈ [|π|].

and the analogous assumptions on the pair (s′, t′). Then the entry Σ̂st,s′t′ is given by:

Σ̂st,s′t′ = mκ(1− κ)〈Vst,Vs′t′〉

= mκ(1− κ)〈haVs � haVt − δ(s, t)ê,haV′s � haV′t − δ(s
′, t′)ê〉

(a)
= κ(1− κ)〈haVs⊕aVt −

√
mδ(s, t)ê,haV′s⊕aV′t

−√mδ(s′, t′)ê〉
(b)
= κ(1− κ)〈haVs⊕aVt ,haV′s⊕aV′t 〉
(c)
= κ(1− κ)δ(s, s′)δ(t, t′).

In the step marked (a) we appealed to Lemma 19. In the step marked (b), we noted that

ê = h1/
√
m and ê ⊥ haVs⊕aVt unless s = t which is ruled out by the fact that w is

disassortative with respect to π i.e. Wss(w, π) = 0. In the step marked (c) we used the fact

that a is a conflict free labelling. Consequently, we have shown that Σ̂ = κ(1− κ)Id.

Haar case: By the bias-variance decomposition:

E‖Σ̂−Σ‖2
Fr = E‖Σ̂− EΣ̂‖2

Fr + ‖EΣ̂−Σ‖2
Fr.

We will first compute EΣ̂. Consider the (st, s′t′) entry of Σ̂:

Σ̂st,s′t′ = mκ(1− κ)〈Vst,Vs′t′〉

= mκ(1− κ)〈oaVs � oaVt − δ(s, t)ê,oaV′s � oaV′t − δ(s
′, t′)ê〉

= mκ(1− κ)

 m∑
i=1

(
(oaVs )i(oaVt )i −

δ(s, t)

m

)(
(oaV′s

)i(oaV′t
)i −

δ(s′, t′)

m

) .
Note that Oi is a uniformly random unit vector. Hence we can compute EΣ̂ using Fact 6.
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We obtain:

EΣ̂st,s′t′

κ(1− κ)
=



2− 6
m+2

: s = s′ = t = t′

2
(m−1)(m+2)

: s = t, s′ = t′, s 6= s′

1 + 2
(m−1)(m+2)

: s = s′, t = t′, s 6= t

0 : otherwise

.

Hence, the bias term can be bounded by:

‖EΣ̂−Σ‖2
Fr ≤

36 · k4 · κ2(1− κ)2

(m+ 2)2
.

On the other hand, applying the Poincare Inequality (Fact 9) and a tedious calculation in-

volving 6th moments of a random unit vector (see for example Proposition 2.5 of Meckes

[93]) shows that,

Var(Σ̂st,s′t′) ≤
C · κ2(1− κ)2

m
,

for some universal constant C. Hence,

E‖Σ̂− EΣ̂‖2
Fr ≤

C · k4 · κ2(1− κ)2

m
,

for some universal constant C, and consequently the claim of the lemma holds.

Lemma 58. We have,

E
[
‖T − T̂ ‖2

2

]
≤ Ck3

√
m
,

for a universal constant C.
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Proof. Let b, b̂ ∈ Rm be the vectors formed by the diagonals ofB, B̂, respectively. Define:

p1 = P(b1 6= b̂1), p2 = P(b1 6= b̂1, b2 6= b̂2).

We have,

E
[
‖T − T̂ ‖2

2 | V
]

= mE
[
(b− b̂)TV V T(b− b̂)

]
= mTr

(
V V TE

[
(b− b̂)(b− b̂)T

])
= mTr

(
V V T(1− 2κ)2

(
p211T + (p1 − p2)Im

))
= m(1− 2κ)2

(
p2

∥∥∥V T1
∥∥∥2

2
+ (p1 − p2)Tr

(
V V T

))
.

Now, since V T has centered coordinate-wise product of columns of an orthogonal matrix we have

V T1 = 0. Hence,

E
[
‖T − T̂ ‖2

2 | V
]

= (p1 − p2)Tr
(
V V T

)
.

Next we compute p1 = P(b1 6= b̂1). Observe that conditional onN , the symmetric difference S4Ŝ

is a uniformly random set of size |N − n|. Hence,

P(b1 6= b̂1|N) = P(1 ∈ S4Ŝ|N) =
|n−N |
m

.

Therefore

p1 =
E [N − n]

m
≤
√

Var(N))

m
=

√
κ(1− κ)√

m
.

Hence, we obtain

E
[
‖T − T̂ ‖2

2|V
]
≤ (1− 2κ)2√

m · κ(1− κ)
· Tr(Σ̂). (C.7)
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By Lemma 57 we have,

ETr(Σ̂) ≤ ETr(Σ) +

√
d · E‖Σ̂−Σ‖2

Fr

≤ Cκ(1− κ)k3.

where constant Cκ,d depends only on κ, d. And hence,

E
[
‖T − T̂ ‖2

2

]
≤ Ck3

√
m
,

for a universal constant C.

Lemma 59. Under the assumptions and notations of Lemma 57 for both the subsampled Haar

sensing and the subsampled Hadamard sensing models, we have, for any bounded Lipschitz func-

tion f : Rd → R:

E
∣∣∣E[f(T̂ )|V ]− Ef(Σ̂1/2Z)

∣∣∣ ≤ Ck · (‖f‖∞ + ‖f‖Lip)√
m

. (C.8)

where Z ∼ N (0, Id), Ck is a constant depending only on k.

Proof. Note that T̂ =
√
mV Tb̂ and

√
mΣ̂

−1
2 V Tb̂ has the identity covariance matrix. Hence, by

the Berry Eseen bound of Bhattacharya [83] for any bounded and Lipschitz function g we have

∣∣∣∣∣E
[
g
(
Σ̂
−1
2 T̂
)]
− E [Z]

∣∣∣∣∣ ≤ Cd · ρ′3 ·
(
‖g‖∞ +‖g‖Lip

)
√
m

, (C.9)
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where Cd is a constant only dependent on d and

ρ′3 = m2

m∑
i=1

E
[
b̂i‖Σ̂

−1
2 vi‖3

2|V
]

= m2
(
κ(1− κ)3 + (1− κ)κ3

) m∑
i=1

‖Σ̂−1
2 vi‖3

2

≤ m2 ·
√
d · ‖Σ̂− 1

2‖3
op · (κ(1− κ)) ·

m∑
i=1

‖vi‖3
3

.

Define g(X)
def
= f(Σ̂

1
2X),hence , g(Σ̂

−1
2 V Tb̂) = f(T̂ ). Moreover, ‖g‖∞ ≤ ‖f‖∞ and

‖g‖Lip ≤ ‖Σ‖
1
2
op‖f‖Lip. Hence we obtain:

∣∣∣E[f(T̂ )|V ]− Ef(Σ̂1/2Z)
∣∣∣ ≤

Cd(κ(1− κ)) ·m 3
2 · (‖f‖∞ + ‖Σ̂‖

1
2
op‖f‖Lip) · ‖Σ̂−

1
2‖3

op ·
m∑
i=1

‖vi‖3
3. (C.10)

We define the event:

E def
=

{
V : ‖Σ̂−Σ‖2

Fr ≤
κ2(1− κ)2

4

}
.

By Markov Inequality and Lemma 57, we know that, P(Ec) ≤ Ck4/m for some universal constant

C. Hence,

E
∣∣∣E[f(T̂ )|V ]− Ef(Σ̂1/2Z)

∣∣∣ ≤ 2C · ‖f‖∞ · k4

m
+ E

∣∣∣E[f(T̂ )|V ]− Ef(Σ̂1/2Z)
∣∣∣ I (E) .
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On the event E we have,

‖Σ̂‖op ≤ ‖Σ‖op +
κ(1− κ)

2
≤ 5κ(1− κ)

2
,

‖Σ̂− 1
2‖op ≤ ‖Σ−

1
2‖op + ‖Σ̂− 1

2 −Σ−
1
2‖op

(a)

≤ 1

κ(1− κ)
+

1

2
≤ 9

8(κ(1− κ))
,

E‖vi‖3 =
d∑
j=1

E|vij|3
(b)

≤ Cd

m3
.

In the step marked (a) we used the continuity estimate for matrix square root in Fact 10. In the

step marked (b), we recalled the definition of vi and used the moment bounds for a coordinate of a

random unit vector from Fact 6. Substituting these estimates in (C.10) we obtain:

E
∣∣∣E[f(T̂ )|V ]− Ef(Σ̂1/2Z)

∣∣∣ ≤ 2C · ‖f‖∞ · k4

m
+
Ck · (‖f‖∞ + ‖f‖Lip)√

m
.

Using the above lemmas, we can now provide a proof of Propositions 17 and 16.

Proof of Propositions 17 and 16. Define the polynomial p(z) as:

p(z)
def
=

∏
s,t∈[|π|]
s≤t

Wst(w,π)>0

z
Wst(w,π)
st ,

and the indicator function:

I (E) (z)
def
=


1 : z ∈ E

0 : z 6∈ E
,

where:

E def
=

{
max
s,t
|zst| ≤

(
2048 log3(m)

) 1
2

}
.
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Recall that we had,

M(
√
mΨ,w, π,a) =

∏
s,t∈[|π|]
s≤t

Wst(w,π)>0

T
Wst(w,π)
st = p(T ),

and in Lemma 21 we showed that,

P(T /∈ E) ≤ C

m2
.

We additionally define the function p̃(z)
def
= p(z)I (E) (z). observe that:

‖p̃‖∞ ≤
(

2048 log3(m)
) ‖w‖

2
, ‖p̃‖Lip ≤ ‖w‖

(
2048 log3(m)

) ‖w‖
2
.

Let Z ∼ N (0, Id). Then, we can write:

∣∣∣Ep(T )− Ep(Σ
1
2Z)

∣∣∣ ≤ ∣∣∣Ep̃(T )− Ep̃(Σ
1
2Z)

∣∣∣+ |Ep(T )I (Ec) (T )|+ |Ep(T )I (Ec) (Σ
1
2Z)|

≤
∣∣∣Ep̃(T )− Ep̃(T̂ )

∣∣∣︸ ︷︷ ︸
(I)

+
∣∣∣Ep̃(T )− Ep̃(Σ̂

1
2Z)

∣∣∣︸ ︷︷ ︸
(II)

+

∣∣∣∣Ep̃(Σ 1
2Z)− Ep̃( ˆ

Σ
1
2Z)

∣∣∣∣︸ ︷︷ ︸
(III)

+ |Ep(T )I (Ec) (T )|︸ ︷︷ ︸
(IV)

+ |Ep(Σ 1
2Z)I (Ec) (Σ

1
2Z)|︸ ︷︷ ︸

(V)

.

We control each of these terms separately.

Analysis of (I): In order to control I observe that:

(I) ≤ ‖p̃‖LipE‖T − T̂ ‖2

≤ ‖p̃‖Lip · (E‖T − T̂ ‖2
2)

1
2

≤ C · ‖w‖ ·
(

2048 log3(m)
) ‖w‖

2 ·
√
k3

m
1
4

.

In the last step, we appealed to Lemma 58.
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Analysis of (II): In order to control I, recall that:

‖p̃‖∞ ≤
(

2048 log3(m)
) ‖w‖

2
, ‖p̃‖Lip ≤ ‖w‖

(
2048 log3(m)

) ‖w‖
2
.

Hence, by Lemma 59 we have,

(II) ≤ Ck · (2048 log3(m))
‖w‖

2 (1 + ‖w‖)√
m

.

Analysis of (III): Again using the Lipchitz bound on p̃ we have,

(III) ≤ E|p̃(Σ 1
2Z)− p̃( ˆ

Σ
1
2Z)|

≤ ‖w‖
(

2048 log3(m)
) ‖w‖

2 · E‖(Σ̂ 1
2 −Σ

1
2 )Z‖2

≤ ‖w‖
(

2048 log3(m)
) ‖w‖

2 ·
√
E‖(Σ̂ 1

2 −Σ
1
2 )Z‖2

2

≤ ‖w‖
(

2048 log3(m)
) ‖w‖

2 ·
√
E‖Σ̂ 1

2 −Σ
1
2‖2

Fr

(a)

≤ ‖w‖
(

2048 log3(m)
) ‖w‖

2 · k2

λmax(Σ)
· E‖Σ̂−Σ‖2

Fr

(b)

≤ C · k6 · ‖w‖(2048 log3(m))
‖w‖

2

m
.

In the step marked (a) we used the fact that the continuity estimate for matrix square roots

given in Fact 10. In the step marked (b) we recalled the definition of Σ and observed that

λmax(Σ) ≥ κ(1 − κ) for the subsampled Haar and the Hadamard sensing model. We also

used the bound on E‖Σ̂−Σ‖2
Fr obtained in Lemma 57.
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Analysis of (IV): We can control (III) as follows:

(IV) ≤
√

Ep2(T ) ·
√
P(T 6∈ E)

(c)

≤ C
√
EM(

√
mΨ, 2w, π,a)

m

(d)

≤ (C‖w‖ log2(m))
‖w‖

2

m

In the step marked (c) we recalled that P(T /∈ E) ≤ C/m2 and expressed p2(T ) as a matrix

moment. In the step marked (d) we used the bounds on matrix moments obtained in Lemma

18.

Analysis of (IV): We recall that Σ was a diagonal matrix with |Σii| ≤ 2κ(1− κ) ≤ 1. Hence,

(V) ≤
√
Ep2(Σ

1
2 ) ·
√
P(Σ

1
2Z /∈ E)

(e)

≤ k‖w‖ ‖w‖2

m
.

In the step marked (e) we used standard moment and tail bounds on Gaussian random vari-

ables.

Combining the bounds on I− V immediately yields the claims of Proposition 17 and 16.

C.4 Missing Proofs from Section 5.8

C.4.1 Proof of Lemma 25

Proof of Lemma 25. We will assume thatA is of Type 1 (the proof of the other types is analogous):

A(Ψ,Z) = p1(Ψ)q1(Z)p2(Ψ) · · · qk−1(Z)pk(Ψ).
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Define for any i ∈ [k]:

A0
def
= p1(Ψ)q1(Diag (z))p2(Ψ) · · · qk−1(Diag (z))pk(Ψ),

Ai def
= p1(Ψ)q1(Diag (z̃)) · · · qi(Diag (z̃))pi+1(Ψ)qi+1(Diag (z)) · · · qk−1(Diag (z))pk(Ψ).

where Ψ = UBUT. Observe that we can write:

zTA(UBUT,Diag (z))z − z̃TA(UBUT,Diag (z̃))z̃ = zTA0z − z̃TAk−1z̃

= zTA0z − zTAk−1z + zTAk−1z + z̃TAk−1z̃

=

k−2∑
i=0

zT(Ai −Ai+1)z

+ 〈Ak−1, zz
T − z̃z̃T〉.

We bound each of these terms separately. First observe that:

|zT(Ai −Ai+1)z| ≤ ‖z‖2
2 · ‖Ai −Ai+1‖op

≤ C(A) · ‖z‖2
2 · ‖z − z̃‖∞.

Next we note that,

|〈Ak−1, zz
T − z̃z̃T〉| ≤ 2‖Ak−1‖op · ‖zzT − z̃z̃T‖op

= C(A) · ‖z − z̃‖2 · (‖z‖2 + ‖z̃‖2).

This gives is the estimate:

∣∣∣∣∣zTA(UBUT,Diag (z))z

m
− z̃

TA(UBUT,Diag (z̃))z̃

m

∣∣∣∣∣ ≤
C(A)

m
·
(
‖z‖2

2 · ‖z − z̃‖∞ + ‖z − z̃‖2 · (‖z‖2 + ‖z̃‖2)
)
,
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where C(A) denotes a finite constant depending only on the ‖‖∞ norms and Lipchitz constants of

the functions appearing in A.

C.4.2 Proof of Lemma 26

Proof of Lemma 26. Using the continuity estimate from Lemma 25 we know that on the event E ,

∣∣∣∣∣zTA(Ψ,Z)z

m
− z̃

TA(Ψ, Z̃)z̃

m

∣∣∣∣∣ ≤ C(A)

m
·
(
‖z‖2

2 · ‖z − z̃‖∞ + ‖z − z̃‖2 · (‖z‖2 + ‖z̃‖2)
)

≤ C(A)

m
·
(
‖z‖2

2 · ‖z‖∞ + ‖z‖2 · (‖z‖2 + ‖z̃‖2)
)
·
(

max
i∈[m]

∣∣∣∣ 1

σi
− 1

∣∣∣∣
)

≤ C(A)

mκ
·
(
‖z‖2

2 · ‖z‖∞ + ‖z‖2 · (‖z‖2 + ‖z̃‖2)
)
·

√
log3(m)

m

Hence,

∣∣∣∣∣EzTA(Ψ,Z)z

m
− E

z̃TA(Ψ, Z̃)z̃

m
I (E)

∣∣∣∣∣ ≤
∣∣∣∣∣EzTA(Ψ,Z)z

m
I (Ec)

∣∣∣∣∣
+
C(A) log

3
2 (m)

m
√
mκ

·
(
E‖z‖2

2 · ‖z‖∞ + E‖z‖2 · (‖z‖2 + ‖z̃‖2)
)
.

Observe that zTAz ≤ ‖A‖op‖z‖2 ≤ C(A)‖z‖2
2 ≤ C(A)‖x‖2

2. Hence,

∣∣∣∣∣EzTA(Ψ,Z)z

m
I (Ec)

∣∣∣∣∣ ≤ C(A)

√
E‖x?‖4

2 · P(Ec)
m

≤ C(A)
√
P(Ec)

κ2
→ 0,

E‖z‖2
2 + E‖z‖2‖z̃‖2 ≤ 2E‖z‖2

2 + E‖z̃‖2
2 ≤ 2E‖x?‖2

2 + E‖z̃‖2
2 =

2m

κ
+m,

E‖z‖2
2 · ‖z‖∞ ≤ mE‖z‖3

∞ ≤ m
(
E‖z‖9

9

) 1
3 ≤ Cm

4
3 .

This gives us,

∣∣∣∣∣EzTA(Ψ,Z)z

m
− E

z̃TA(Ψ, Z̃)z̃

m
I (E)

∣∣∣∣∣→ 0,
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and hence we have shown,

lim
m→∞

EzTA(Ψ,Z)z

m
= lim

m→∞
E
z̃TA(Ψ, Z̃)z̃

m
I (E) ,

provided the latter limit exists.

C.4.3 Proof of Lemma 28

Proof of Lemma 28. Recall that:

z̃a1 z̃ak+1

k∏
i=1

qi(z̃ai) = QF (z̃a1) ·QL (z̃ak+1
)

 ∏
i∈S (π)

qi−1(z̃ai)

 |π|−|S (π)|−2∏
i=1

(QVi(zaVi ) + µVi)

Hence,

E[z̃a1q1(z̃a2)q2(z̃a3) · · · qk−1(z̃ak)z̃ak+1
|A] =

∑
V⊂[|π|−|S (π)|−2]

E

QF (z̃a1)QL (z̃ak+1
)

 ∏
i∈S (π)

qi−1(z̃ai)

∏
i∈V

(QVi(z̃aVi ))

∣∣∣∣A

∏
i/∈V

µVi


(C.11)

We now apply Mehler’s formula to estimate the above conditional expectations. We first check the

conditions for Mehler’s formula:

1. The random variables z̃ are marginally N (0, 1). Define Σ = E[z̃z̃T|A]. z̃ and are weakly

correlated on the event E since:

max
i 6=j
|Σij| =

∣∣∣∣∣(AAT)ij/κ

σiσj

∣∣∣∣∣
=

∣∣∣∣∣(Ψ)ij/κ

σiσj

∣∣∣∣∣
≤ C

√
log3(m)

mκ2
, for m large enough,
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where C denotes a universal constant.

2. Let S ⊂ [m] with |S| ≤ k + 2. Let ΣS,S denote the principal submatrix of Σ formed by

picking rows and columns in S. Then by Gershgorin’s Circle theorem, on the event E ,

λmin(Σ) ≥ 1− (k + 1) max
i 6=j
|Σij|

≥ 1− C(k + 1)

√
log3(m)

mκ2

≥ 1

2
, for m large enough.

3. Note that for ξ ∼ N (0, 1), we have,

EQF (ξ) = 0, EQL (ξ) = 0 (Since they are odd functions, see (5.24), (5.26)),

Eqi−1(ξ) = Eξqi−1(ξ) = 0 ∀ i ∈ S (π) (They are centered, even functions, see Def. 7),

EQVi(ξ) = EξQVi(ξ) = 0 ∀ i ∈ [|π| − |S (π)| − 2] (See (5.28))

Hence applying the first non-zero term in Mehler’s Expansion (Proposition 15) of the condi-

tional expectation:

E

QF (z̃a1) ·QL (z̃ak+1
) ·

 ∏
i∈S (π)

qi−1(z̃ai)

 ·∏
i∈V

(QVi(z̃aVi ))

∣∣∣∣A


has total weight ‖w‖ given by:

‖w‖ ≥ 1 + 1 + 2|S (π)|+ 2|V |
2

= 1 + |S (π)|+ |V |.
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Hence, by Proposition 15 we have,

I (E) ·

∣∣∣∣∣∣∣E
QF (z̃a1) ·QL (z̃ak+1

) ·

 ∏
i∈S (π)

qi−1(z̃ai)

 ·∏
i∈V

(QVi(z̃aVi ))

∣∣∣∣A

∣∣∣∣∣∣∣

≤ C(A)(max
i 6=j
|Σi,j|)1+|S (π)|+|V | ≤ C(A) ·

(
log2(m)

mκ2

) 1+|S (π)|+|V |
2

, (C.12)

where C(A) denotes a finite constant depending only on the functions q1:k. When V = ∅ we will

also need to estimate the leading order term more accurately. Define,

G1(π)
def
=
{
w ∈ G(k + 1) : d1(w) = 1, dk+1(w) = 1, di(w) = 2 ∀ i ∈ S (π),

di(w) = 0 ∀ i /∈ {1, k + 1} ∪S (π)
}
.

By Mehler’s formula, on the event E , we have:

∣∣∣∣∣∣∣E
QF (z̃a1) ·QL (z̃ak+1

) ·

 ∏
i∈S (π)

qi−1(z̃ai)

∣∣∣∣A
− ∑

w∈G1(π)

ĝ(w,Ψ) · M(Ψ,w, π,a)

∣∣∣∣∣∣∣
≤ C(A) ·

(
log3(m)

mκ2

) 2+|S (π)|
2

,

where,

ĝ(w,Ψ) =
1

w!
·

k+1∏
i=1

1

σ
di(w)
ai

 ·
Q̂F (1)Q̂L (1)

∏
i∈S (π)

q̂i−1(2)

 1

κ‖w‖
,

and M(Ψ,w, π,a) are matrix moments as defined in Definition 8. Note that the coefficients

ĝ(w,Ψ) depend on Ψ since,

σ2
i = 1 +

Ψii

κ
,
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but we can remove this dependence. On the event E , note that,

max
i∈[m]
|σ2
ii − 1| ≤ C

√
log3(m)

mκ2
.

Hence defining:

ĝ(w, π) =
1

w!
·

Q̂F (1)Q̂L (1)
∏

i∈S (π)

q̂i−1(2)

 1

κ‖w‖
,

we have, for m large enough and on the event E ,

|ĝ(w, π)− ĝ(w,Ψ)| ≤ Ck

√
log3(m)

mκ2
.

Furthermore, we have the estimate,

|M(Ψ,w, π,a)| ≤ (max
i,j
|Ψij|)‖w‖1

(a)

≤ C

(
log3(m)

mκ2

) 1+|S (π)|
2

,

where in the step (a), we used the definition of the event E in (5.23) and the fact that ‖w‖ =

1 + |S (π)| for any w ∈ G1(π). Hence we obtain, on the event E ,

∣∣∣∣∣∣∣E
QF (z̃a1) ·QL (z̃ak+1

) ·

 ∏
i∈S (π)

qi−1(z̃ai)

∣∣∣∣A
− ∑

w∈G1(π)

ĝ(w, π) · M(Ψ,w, π,a)

∣∣∣∣∣∣∣
≤ C(A) ·

(
log3(m)

mκ2

) 2+|S (π)|
2

,
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Combining this estimate with (C.11) and (C.12) gives us:

I (E) ·

∣∣∣∣∣∣E[z̃a1q1(z̃a2)q2(z̃a3) · · · qk−1(z̃ak)z̃ak+1
|A]−

∑
w∈G1(π)

g(w, π) · M(Ψ,w, π,a)

∣∣∣∣∣∣
≤ C(A) ·

(
log3(m)

mκ2

) 2+|S (π)|
2

,

where,

g(w, π) =
1

κ‖w‖w!
·

Q̂F (1)Q̂L (1)
∏

i∈S (π)

q̂i−1(2)

 ·
 ∏
i∈[|π|−|S (π)|−2]

µVi



G1(π)
def
=
{
w ∈ G(k + 1) : d1(w) = 1, dk+1(w) = 1, di(w) = 2 ∀ i ∈ S (π),

di(w) = 0 ∀ i /∈ {1, k + 1} ∪S (π)
}
,

and C(A) denotes a constant depending only on the functions appearing in A and k. This was

precisely the claim of Lemma 28.

C.5 Proof of Proposition 15

Proof of Proposition 15. Let ψ(z; Σ) denote the density of a k dimensional zero mean Gaussian

vector with positive definite covariance matrix Σ i.e. z ∼ N (0,Σ). Suppose that Σii = 1 ∀ i ∈

[k]. In this situation Slepian [62] has found an explicit expression for the Taylor series expansion

of ψ(z; Σ) around Σ = Ik given by:

ψ(z; Σ) =
∑
w∈G(k)

Dw
Σ ψ(z; Ik)

w!
·

∏
i<j

Σ
wij
ij

 ,
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where Dw
Σ ψ(z; Ik) denotes the derivative:

Dw
Σ ψ(z; Ik)

def
=

∂‖w‖

∂Σw12
12 ∂Σw13

13 · · · ∂Σw23
23 ∂Σw24

24 · · · ∂Σ
wk−1,k

k−1,k

ψ(z; Σ)

∣∣∣∣
Σ=Ik

=

 k∏
i=1

Hdi(w)(zi)

 · ψ(z; Ik).

We intend to integrate the Taylor series for ψ(z; Σ) to obtain the expansion for the expectation in

Proposition 15. In order to do so we need to understand the truncation error in the Taylor Series.

By Taylor’s Theorem, we know that:

ψ(z; Σ)−
∑

w∈G(k):‖w‖≤t

Dw
Σ ψ(z; Ik)

w!
·

∏
i<j

Σ
wij
ij

 =
∑

w∈G(k):‖w‖=t+1

Dw
Σ ψ(z; Σγ)

w!
·Σw,

(C.14)

where Σγ = γΣ + (1 − γ)Ik for some γ ∈ (0, 1). Slepian has further showed the following

remarkable identity:

Dw
Σ ψ(z; Σ) =

∂2‖w‖

∂z
d1(w)
1 ∂z

d2(w)
2 · · · ∂zdk(w)

k

ψ(z; Σ).

An inductive calculation shows that the ratio:

1

ψ(z; Σ)

∂2‖w‖

∂z
d1(w)
1 ∂z

d2(w)
2 · · · ∂zdk(w)

k

ψ(z; Σ),

is a polynomial of degree 4‖w‖ in the variables z1, z2 . . . zk, {(Σ−1)ij}i<j . Hence:

∣∣∣∣∣ 1

ψ(z; Σ)

∂2‖w‖

∂z
d1(w)
1 ∂z

d2(w)
2 · · · ∂zdk(w)

k

ψ(z; Σ)

∣∣∣∣∣ ≤
C‖w‖ · (1 +

∑
i<j

|(Σ−1)ij|4‖w‖ +
k∑
i=1

|zi|4‖w‖),
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where C‖w‖ denotes a constant depending only on ‖w‖. Observing that:

(Σ−1)ij ≤ ‖Σ−1‖op =
1

λmin(Σ)
<∞.

This gives us:

∣∣∣∣∣ 1

ψ(z; Σ)

∂2‖w‖

∂z
d1(w)
1 ∂z

d2(w)
2 · · · ∂zdk(w)

k

ψ(z; Σ)

∣∣∣∣∣ ≤ C‖w‖

1 +
k2

λ
4‖w‖
min (Σ)

+
k∑
i=1

|zi|4‖w‖
 .

Substituting this estimate in (C.14) gives us:

∣∣∣∣∣∣ψ(z; Σ)−
∑

w∈G(k):‖w‖≤t

Dw
Σ ψ(z; Ik)

w!
·Σw

∣∣∣∣∣∣
≤ Ct,k ·

1 +
k2

λ4t+4
min (Σγ)

+
k∑
i=1

|zi|4t+4

 · (max
i 6=j
|Σij|

)t+1

· ψ(z; Σγ).

Note that λmin(Σγ) = γ + (1− γ)λmin(Σ) ≥ min(1, λmin(Σ)). Hence,

∣∣∣∣∣∣ψ(z; Σ)−
∑

w∈G(k):‖w‖≤t

Dw
Σ ψ(z; Ik)

w!
·Σw

∣∣∣∣∣∣
≤ Ct,k ·

1 +
k2

min(λ4t+4
min (Σ), 1)

+
k∑
i=1

|zi|4t+4

 · (max
i 6=j
|Σij|

)t+1

· ψ(z; Σγ).

Using this expansion to compute the expectation of
∏k

i=1 fi(zi) we obtain:

∣∣∣∣∣∣∣∣∣E
 k∏
i=1

fi(zi)

− ∑
w∈G(k)
‖w‖≤t

 k∏
i=1

f̂i(di(w))

 · Σw

w!

∣∣∣∣∣∣∣∣∣ ≤ C

(
1 +

1

λ4t+4
min (Σ)

)(
max
i 6=j
|Σij|

)t+1

,

where C = Ct,k,f1:k
denotes a constant depending only on t, k and the functions f1:k. In obtain-

ing the above estimate we use the fact that since the functions fi have polynomial growth and
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marginally zi ∼ N (0, 1) under the measure N
(
0,Σγ

)
(since (Σγ)ii = 1) we have,

Ez∼N(0,Σγ)

|zi|4t+4

k∏
j=1

|fj(zj)|

 ≤ k∑
j=1

Ez∼N(0,Σγ)

[
|zi|4t+4|fj(zj)|k

]
= Ct,k,f1:k

<∞.

C.6 Some Miscellaneous Facts

Fact 4 (Hanson-Wright Inequality [94]). Let x = (x1, x2 . . . , xn) ∈ Rn be a random vector with

independent 1-subgaussian, zero mean components. Let A be an n × n matrix. Then, for every

t ≥ 0,

P
(
|xTAx− ExTAx| > t

)
≤ 2 exp

−cmin

(
t2

‖A‖2
Fr

,
t

‖A‖op

) .

Fact 5 (Gaussian Poincare Inequality). Let x ∼ N (0, In). Then, for any L-Lipchitz function

f : Rn → R we have,

Var(f(x)) ≤ L2.

Fact 6 (Moments of a Random Unit vector, Lemma 2.22 & Proposition 2.5 of [93]). Let x ∼

Unif (Sn−1). Let i, j, k, ` be distinct indices. Then:

Ex4
i =

3

n(n+ 2)
, Ex2

ix
2
j =

n+ 1

n(n− 1)(n+ 2)
Ex3

ixj = 0 Exixjx2
k = 0, Exixjxkxl = 0.

Furthermore, there exists a universal constant C such that, for any t ∈ N:

E|xi|t ≤
(
Ct

m

) t
2

.
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Fact 7 (Concentration on the Sphere, Ball [95]). Let x ∼ Unif (Sn−1). Then

P
(
|x1| ≥ ε

)
≤ 2e−nε

2/2.

Fact 8 (`∞ norm of a random unit vector). x ∼ Unif (Sn−1). Then

E‖x‖t∞ ≤
(
C log(n)

n

) t
2

,

for a universal constant C.

Proof. For a random unit vector we can control E‖x‖t∞ as follows. Let q ∈ N be a parameter to

be set suitably. Then,

E‖x‖t∞ ≤
(
E‖x‖qt∞

) 1
q

≤

 n∑
i=1

E|xi|qt
 1

q

(a)
=
(
nE|x1|qt

) 1
q

(b)
= n

1
q · q t2 ·

(
Ct

n

) t
2

(c)

≤ et · (2 log(n))
t
2 ·
(
C

n

) t
2

.

In the step marked (a) we used the fact that the coordinates of a random unit vector are ex-

changeable, in (b) we used the fact that u1 is C/m-subgaussian (see Fact 7) and in (c) we set

q = b2 log(n)
t
c.

Fact 9 (Poincare Inequality for Haar Measure, Gromov and Milman [96]). Consider the following

setups:
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1. LetO ∼ Unif
(
O(m)

)
and f : Rm×m → R be a function such that:

f(O) = f(OD), D = Diag
(
1, 1, 1, . . . , 1, sign(det(O))

)
, (C.15)

then,

Var(f(O)) ≤ 8

m
· E‖∇f(O)‖2

Fr.

for any m ≥ 4.

2. LetO ∼ Unif
(
U(m)

)
and f : Cm×m → R. Then,

Var(f(O)) ≤ 8

m
· E‖∇f(O)‖2

Fr.

Proof. This result is due to Gromov and Milman [96]. Our reference for these inequalities was the

book of Meckes [93]. Theorem 5.16 of Meckes shows that Haar measures on SO(m),U(m) satisfy

Log-sobolev inequality with constant 8/m. It is well known that Log-Sobolev Inequality implies

the Poincare Inequality (see for e.g. Lemma 8.12 in Handel [97]). Note that, in the real case we

only obtain the Poincare inequality for the Haar measure on SO(m), condition (C.15) ensures the

result still holds forO ∼ Unif
(
O(m)

)
.

Fact 10 (Continuity of Matrix Square Root [98, Lemma 2.2]). For any two symmetric positive

semi-definite matricesM1,M2 we have,

‖M
1
2

1 −M
1
2

2 ‖op ≤
‖M1 −M2‖op√

λmin(M1)
.
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