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Abstract 

A Rigorous Analysis of Diffraction Stress Formalism 

Mehmet Hazar Şeren 

 

Diffraction strain/stress analysis has been widely used in the determination of residual and 

applied stresses in the surface layers and bulk volumes of materials for a long time. The technique 

has been used for almost 100 years. However, there are still issues that have not been yet addressed. 

In this dissertation, we address these issues. The basic theory of diffraction strain/stress 

analysis is extensively reviewed and the weaknesses of the analysis are explained carefully. The 

current definitions that have been used for describing residual stresses are unified under this 

expanded analysis. In addition, the homogeneous continuum analysis is extended to the 

polycrystalline materials under various loading types. 

To search for answers to the questions asked in this dissertation, finite element modeling. 

was used. This approach provides both local and global stress and strain information at all locations 

of a virtual specimen.  

The results show that St. Venant regions such as edges, voids, or geometric constraints 

cause local inhomogeneous strain/stress distribution which can cause deviations from linear 

deformation theory. Even if the far-field load region is sampled by X-rays, the representative 

volume element should be determined by preliminary experiments because almost all single-phase 

polycrystalline materials (with the exception of tungsten) are composite materials within which 

variations of elastic moduli are observed along with sample directions. In the multiphase 



 

 
 

polycrystalline materials, this problem becomes more serious due to the differential deformation 

of each phase with respect to each other. Therefore, an experimenter needs to be careful during the 

experiment, in acquiring representative data; this requires significant preparation and material 

characterization.  

With the findings of the dissertation, a set of rules are written for users and experimenters 

to apply during or before the experiments to collect accurate and representative data. 
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1- INTRODUCTION AND BASIC THEORY 

 

1.1- Analysis of Residual Stress Fields 
Residual stresses are self-equilibrating internal stresses existing in a free body that has no 

external forces acting on its boundary [2]. In such bodies the net sums of resultant forces and 

moments must be zero over the entire volume:  

∫ E()!a.24K6(2+ = 0
9$%&,-.%/

               Eq. (1-1-a) 

 ∫ E()u)!a.24K6(2+ = 0
9$%&,-.%/

              Eq. (1-1-b) 

Residual stresses in engineering components can be generated during service life and/or 

manufacturing processes. These stresses arise from the elastic response of the material to an 

inhomogeneous distribution of non-elastic strains within the component. In other words, residual 

stresses will be created by elastic deformation of surrounding material to preserve dimensional 

continuity [3]. 

Three main mechanisms causing residual stresses are: 

a) Non-uniform plastic deformation: occurs in the manufacturing process that changes the 

dimensions of the body including forging, extrusion, drawing, and during service life as in 

railway rails. 

b) Surface modification: occurs in surface processing operations such as machining, grinding, 

polishing, carburizing, and shot peening and, during service life, as corrosion. 
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c) Material phase and/or density changes: occur during manufacturing, heat treatment, and 

service life in the presence of large thermal gradients. Examples are welding, casting, 

quenching, annealing, precipitation hardening in alloys, and polymerization in plastics. 

Local corrosion can also cause density changes in the corroded volume. Also, grain scale 

anisotropic thermal expansion will cause residual stresses, as well. 

 

 

Figure 1.1: a) Schematic description of the normal shot-peening process. b) Free body 
deformation of the surface and bulk layers without mutual constraint (b) and with mutual 

constraint (c) of a hypothetical shot-peened specimen. 

 

One of the best examples of the formation of residual stresses is shot peening. This is a 

surface modification process where spherical balls (shot) randomly impact the surface of a flat 

workpiece (of dimensions L0 in the x1 and x2 directions and initial thickness t0) and plastically 

deform the material close to the surface layers, (Fig. 1.1-a). For a homogeneous, isotropic material 
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that is peened with a large number of shots impinging randomly on the surface, the plastic strain 

tensor, -()
C , in the surface layer can be written as:  

-()
C = v

-&&
C 0 0
0 -##

C 0
0 0 -$$

C
w                  Eq. (1-2) 

In the direction of x3, a compressive plastic strain, -$$
C  , is produced due to the force exerted 

by impinging shot. From the conservation of volume, tensile plastic flow, 
_00
1 `_''

1 `G_22
1

#
, will also 

occur in the direction of x1 and x2. The plastic strain terms, -&&
C , -##

C  and -$$
C  imply length and 

thickness changes in the surface layers. Due to the random nature of the deformation process, the 

distribution of plastic flow is homogeneous in the plane of surface layers.  

Let us assume that the surface layer, of initial length L0 and thickness s&A (s&A ≪	sA) can be 

peened separately from the rest of the sample. The final dimensions of the surface layer become: 

2% = 2A + ∫ -&&
C !u& = 2A + z2                 Eq. (1-3-a) 

s&% = s&A + ∫ -$$
C !u$ = s&A + zs                 Eq. (1-3-b) 

where it is assumed that the plastic deformation is constant within the surface layer (Fig. 1.1-b). If 

this layer is placed back on the top of the bulk, the lateral dimensions will not match since the bulk 

of the sample did not undergo any plastic deformation and is still of length L0. To match the sample 

dimensions, forces must be applied on the ends of both parts such that the final length L, 2% > 2 >

2A, of bulk and the surface layer will be equal (Fig. 1.1-c). Consequently, residual stress fields of 

opposite signs in the surface and bulk volumes will be formed after the layers are glued together 
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and the applied forces, F are relaxed. Fig. 1.2 shows the variation of the residual stresses in the 

workpiece after reattachment. 

 

Figure 1.2: Distribution of the in-plane stress along the x3 direction in a virtual specimen 
shot peened on both sides. 

 

The residual stress state of a component can have a significant impact on its service life 

and reliability. Consequently, there have been many efforts to measure and categorize these 

stresses. However, at this point, there is no consensus among the scientific community about such 

definitions. In what follows, we will review definitions of residual stress currently in use. 
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1.2- Residual Stress Definitions 
 

1.2.1- Process-Based Definitions 

Almost all processes used to manufacture components and to modify their properties can 

cause deformation gradients which, in turn, result in the formation of manufacturing residual 

stresses. Thus, many definitions identify the residual stress state in a component by the type of the 

manufacturing process. For example, in a multiphase component, phases having different 

coefficients of thermal expansion will constrain each other during heating and cooling. This 

phenomenon will cause thermal residual stresses due to the constrained expansion/contraction 

[4, 5]. Differential deformation of a component during machining and forming will cause 

mechanical residual stresses [4]. Volumetric change due to shrinkage of resin during the curing 

process of thermosetting resin composites forms chemical residual stresses [6]. 

In polymers, two special kinds of residual stresses are defined. First, due to the viscoelastic 

nature of the polymeric melt, flow-induced residual stresses will be formed during the filling, 

packaging, and holding stages during the manufacture of polymer components. Second, due to the 

rapid increase of rigidity of the polymer as it passes the glass transition region, if each point in the 

material solidifies at different times, differential contraction will cause the formation of thermally-

induced residual stresses [5].  
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Table 1.1: Some sources of process-based residual stresses [4]. 
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1.2.1.1- Thin-Film Residual Stresses  

Thin film structures are extensively used in modern technology such as transistors and solar 

panels etc. Researchers at different disciplines working on thin films have used a different set of 

definitions. Residual stresses, introduced during processing are separated into two categories. 

Incompatibility of displacements caused by coefficient of thermal expansion mismatch between 

the film and substrate are termed extrinsic residual stresses. On the other hand, all film stresses 

introduced during the deposition process are classified as intrinsic residual stresses [7]. Due to 

the locked-in nature of residual stresses, two other definitions were also proposed: Interlayer 

residual stresses are formed due to the mutual elastic constraint of the film and its substrate. These 

stresses are balanced between the film and the substrate. All processes which cause unequal 

dimensional changes within either the film or the substrate will form intralayer residual stresses 

within these volumes [8]. The formation of intralayer stresses will also cause interlayer stresses 

between the film and the substrate. 

 

1.2.2- Solid Mechanics Based Definitions 

Solid Mechanics based definitions are more comprehensive than process-based ones 

described above. Any definition based on the processing technique can be described with the 

mechanics-based definitions in which residual stresses are categorized by the length scale over 

which the stress field is assumed to act. The equations written for mechanics-based definitions 

usually treat stress and strain components as tensor quantities. All such definitions assume, usually 

implicitly, that the material under investigation is homogeneous, and use Hooke’s Law to link 

stress and strain tensors at a geometric point. These tensors are, then, extrapolated to volumes of 
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relevant scale. In what follows we review some definitions of basic solid mechanics used in these 

definitions, after which the definitions, themselves, are presented.  

A homogeneous material is a material that has uniform properties at every point in its 

volume [9]. An isotropic solid is a homogeneous material that possesses non-direction-dependent 

physical properties as opposed to anisotropy, where the material properties are identical at all 

points but are direction-dependent [10].  

Let’s assume that a homogeneous isotropic solid bar with a cross-sectional area, |A and 

volume, aA is axially loaded with a force, F, distributed over |A in elastic compression as shown 

in Fig. 1.3.  

 

Figure 1.3: Homogeneous, isotropic solid bar elastically deformed with the distributed load. 
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The stress field can be defined as the distribution of normalized internal forces in a body 

that balances a given set of external forces/tractions1. To determine the internal stress field, the 

experimenter needs to choose the region of interest (ROI) which is the area or the volume 

centered at a position u7UV , 	}7UV , 	~7UV. Stresses/strains existing at a point are called local 

stresses/strains (G�abHc,d,e, GÄabHc,d,e).  

In practice, we would not define stress/strain at a point because the body of interest is finite 

in engineering problems. However, modeling of the body of interest containing infinitesimal points 

forming a continuum allows us to use mathematical tools of continuous functions. To illustrate 

this, let’s assume a body subjected to arbitrary forces, F1, F2, and F3 as shown in Fig. 1.4.  

 

Figure 1.4: A body subjected to arbitrary forces, F1, F2, and F3. 

 

 
1 The residual stress fields balance each other within the material volume. 
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To keep the body in equilibrium, the load, ∆Fn, over the point O in the squared region of 

∆A with a normal vector, $3⃗ , will have a moment, ∆Mn. This is because ∆Fn by itself is a distributed 

force over the area, ∆A, and therefore, it is equivalent to the addition of a point load and a moment. 

As long as, ∆Fn exerts on a finite area, the moment will exist. To be able to define the stress 

uniquely, the moment has to be zero. This is possible if and only if ∆A goes to zero. Thus, we can 

define stress vector as 5⃗1 = lim
∆0→A	

∆hi

∆M
. From this vector, components of stress tensor can be 

derived. 

 The stress field within the sample of uniform cross-section caused by a statically 

equivalent system of forces distributed uniformly over the relevant surfaces is called far-field 

stress G�abj H. For all measurement locations, the far-field stress can be considered constant and 

equivalent to a distributed force applied at the boundary of the appropriate free-body section 

containing the measurement locations. At all points within ROI, the average stress (〈�Çab〉klm) and 

average strain (〈ÄZab〉klm) will be equal to the local stresses/strains for a homogeneous bar. 

E()A = 〈EZ()〉7UV = GE()H:,3,; = É
0 0 0
0 0 0
0 0 ,

0(

Ñ                           Eq. (1-4) 

In addition, stiffness tensor at a point which links strain and stress tensor is equal to the average 

stiffness tensor. 

〈:(̅)*+〉7UV = G:()*+H:,3,; = :()*+O                  Eq. (1-5) 

A heterogeneous material is a material in which properties vary with the position [11]. 

Polycrystalline materials, which consist of grains (crystallites), grain boundaries, etc. are 
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heterogeneous. In general, the global stress/strain response of polycrystalline materials is treated 

using some simplifying assumptions.  The most common treatment of polycrystalline materials 

assumes that the material is quasi-homogeneous: that is, the material is homogeneous at a 

macroscopic level and heterogeneous at the microscale [12]. The local and global stress/strain 

fields will be different due to local heterogeneity. Therefore, we can define a representative 

volume element (Ökno) such that, within its volume, a79-, the following relationships hold: 

a) The average elastic moduli are equal to the bulk moduli for the material: 

〈:(̅)*+〉79- =
∫ qE.34/r5,7,8

[9*9*:
99*:

=	:()*+A            Eq. (1-6-a) 

b) The average stresses/strains are equal to the far-field values: 

E()A = 〈EZ()T〉9( = 〈EZ()〉79- =
∫ qs.3r5,7,8

[9*9*:
99*:

                   Eq. (1-6-b) 

-()A = 〈-(̅)T 〉9( = 〈-(̅)〉79- =
∫ q_.3r5,7,8

[9*9*:
99*:

                                     Eq. (1-6-c) 

c) The addition of any random volume to the RVE does not change these average values.  

E()A = 〈EZ()T〉79-S∆9 =
∫ qs.3r5,7,8

[9*9*:;∆*
99*:S∆9

= 〈EZ()T〉9( = É
0 0 0
0 0 0
0 0 ,2

0(

Ñ         Eq. (1-6-d) 

 

1.2.2.1- Scale Based Definitions 

Due to the scale dependency of the stress/strain fields in polycrystalline materials yet 

another set of definitions were formulated. These are briefly reviewed below. 
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a) Macherauch classified residual stresses in polycrystalline materials into three categories 

(Fig. 1.5): Type I residual stresses are nearly homogeneous across large scales, several 

grains, of a material and are equilibrated with respect to the whole component. Type II 

residual stresses are nearly homogeneous across a grain or part of a grain of the material 

and are equilibrated across a sufficient number of grains. Finally, type III residual stresses 

are inhomogeneous across submicroscopic small areas, several atomic distances within a 

grain, and are equilibrated across small parts of the grain [4]. In these definitions, 

homogeneous means “constant in magnitude and direction” [13].  

 

 

Figure 1.5: Schematical depiction of residual stresses of the first, second and, third types 
[4]. 

 

b) Cullity first classified residual stresses into two categories and later defined a third category 

[14]. Macrostress is a type of residual stress which is reasonably constant in magnitude, 

sign, and direction over a fairly large distance (many grain diameters). Microstress fields 
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act over small distances (one grain diameter or less). Then pseudo-macrostress [15] 

(fictitious stresses [16], anomalous stresses [17]) were defined as a special kind of average 

microstress field.  Pseudo-macrostresses are constant over large volumes, similar to 

macrostress, however, they do not satisfy the equations of equilibrium applicable to 

macrostresses. In addition, pseudo-macrostress fields were detected by diffraction and 

magnetic methods whereas mechanical relaxation methods failed to reveal their presence 

[18, 14].  The definition by Cullity captures both aspects of such residual stress fields.   

c) Noyan and Cohen defined macrostress and microstress similar to Cullity and 

Macherauch. However, they define pseudo-macrostress as the average microstress within 

a large number of grains selected by diffraction for a given reflection [19].  

d) Baczmanski provided three different kinds of residual stress. First order stress was defined 

as the average stress over a sample volume containing a large number of grains. The 

difference in the behavior of grains with varying lattice orientations will introduce second 

order stresses which are the deviation from first order one. Third order stress was defined 

to characterize stress heterogeneity around defects of the crystal lattice in grain [20] 

 

1.2.2.2- Effect of Sample Geometry and St. Venant’s Principle 

It is well known that even in homogeneous materials geometric features such as voids, 

corners, surfaces, etc. as well as point applied loads, can cause position-dependent elastic strain 

and stress fields (Fig. 1.6).   These effects were originally discussed by Barre de Saint Venant, who 

defined his principle as “The difference between the effects of two different but statically 
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equivalent loads become very small at sufficiently large distances from load” [21]. In addition, the 

different versions of the principle with further clarifications [22], [23], [24], [25] were described. 

Many authors had efforts to solve and quantify St. Venant’s principle to obtain critical 

length (?∗) for certain applications by finding the position dependency of stress, strain, and strain 

energy density in various geometries [24], [26], [27], [28]. However, an exact solution that is valid 

for all linear elastic bodies is not currently available. 

 

 

Figure 1.6: Stress profile around an internal void [29].  

 

For this thesis, we will define position-dependent elastic stresses which arise in a material 

with homogeneous elastic properties due to finite size effects, point loading, changes in cross-

section, local voids, etc., as “St. Venant stresses”.  Stresses arising in and around inclusions will 

be termed “Eshelby stresses” because the stress field inside inclusions are uniform. In this case, 
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even if the matrix and inclusion possess homogeneous elastic properties, the overall material is a 

heterogeneous composite. 

From the discussion presented so far, one can conclude that a priori knowledge of the type 

and dimensionality of the stress/strain fields existing in a given sample will be important in 

choosing the stress measurement technique for the particular system. For example, for a two-phase 

material, one might wish to determine the stress carried by the individual phases. In what follows, 

we will present a brief overview of available techniques, followed by an extensive discussion on 

diffraction-based stress determination methods which are the main thrust of this thesis. 

 

1.3- Residual Stress Measurement Methods 
Various methods can be used to determine the residual stresses existing in a manufactured 

part. Those methods can be separated into destructive and non-destructive categories. Mechanical 

relaxation methods such as hole-drilling [30], sectioning [31, 32], slitting [33, 34], or the contour 

technique utilize the dimensional changes induced in the sample by material sectioning and/or 

removal to determine the initial stress state. Other methods, such as magnetic [35, 36], ultrasonic 

[37, 38], thermoelastic [39], photoelastic [40], and indentation [41] methods, measure changes in 

a given property (such as magnetic susceptibility, the velocity of sound, refractive index, and 

hardness) and relate it to the stress state of the region under investigation. Diffraction techniques, 

which utilize laboratory or synchrotron x-rays, electrons, or thermal neutrons, measure atomic 

plane spacings in diffracting volumes and relate these to stresses. These are widely used due to 

their non-destructive and phase-sensitive nature;  this enables the measurement of lattice strain the 

calculation of stress in different phases in multiphase crystalline materials [19, 42, 43, 44].  
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1.3.1- Diffraction Strain/Stress Analysis 

The lattice plane spacing, “dhkl” of the reflection, hkl, can be obtained from the angular 

position, q, of the appropriate diffraction peak through Bragg’s Law, Ü = 2! sin i, where l is the 

wavelength of the incoming beam [43]. Almost all diffraction techniques utilize, “dhkl”, of a 

crystalline material as an internal strain gage. The “dhkl” of grains aligned at various angles to the 

surface of the polycrystalline samples will deviate from their unstressed values proportional to the 

resolved stress normal to them. By measuring the plane spacings of grains at different orientations 

(termed different %-tilts) one can compute the stress state acting on the aggregate (Fig.  1.7). For 

this purpose, the material is assumed to be homogeneous (isotropic or anisotropic as the case might 

be) and two coordinate systems are defined as shown in Fig. 1.8. Here the sample coordinate 

system axes 5⃗( define the surface of the specimen, with 5⃗& and 5⃗# in the surface plane. 

 

 

Figure 1.7: a) Certain grains (hkl) satisfy Bragg's Law and diffract beam at a 2θ value 
which depends on the spacing of the hkl planes which is affected by stresses. Once the 

specimen is tilted, diffraction occurs from other grains (hkl)2 but the same set of planes. b) 
Since the normal stress component for (hkl)1 is different than (hkl)2, the interatomic 

spacing will be different as will the diffraction angle. 
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The axes of the laboratory coordinate system, 23⃗ ( , are defined such that 23⃗ $ (23⃗ !") is in the 

direction of the normal to the family of crystallographic planes (hkl) whose spacing is measured 

by diffraction. The angle between 23⃗ $ and 5⃗# is termed %. 23⃗ # is in the plane defined by 5⃗& and 5⃗# 

and makes an angle , with 5⃗# [45, 46, 47, 48]. From this point on, tensor quantities referred to the 

laboratory coordinate system 23⃗ ( will be denoted with primes. Unprimed quantities are referred to 

the sample coordinate system 5⃗( [49].  

Once “!!"” in the direction of any GL3⃗ $H!" is measured, the strain â(-$$% )!"ä9=.>>. within 

the diffraction volume can be obtained from:  

â(-$$% )!"ä9=.>>. ≡
(-$$% )!" =

[@+G[(

[(
                Eq. (1-8) 

where d0 is the unstressed lattice spacing for the material under investigation. Since the measured 

strain is a tensor quantity, the second-rank tensor transformation rule can be used to express the 

measured strain in terms of the strains in the sample coordinate system [50]. Furthermore, Hooke’s 

law links the stresses with strains in both sample and laboratory coordinate systems. As a result, 

the stresses/strains in both coordinate systems can be expressed in terms of each other. These 

relationships are described below: 
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Figure 1.8: Definition of the angles ϕ and % and orientation of the laboratory coordinate 
system, å33⃗ a, with respect to the sample coordinate system, ç33⃗ a, and the measurement 

direction, ç33⃗ t. 

 

1.3.2- Computation of Strains from Regular “ étu” vs. èêëví Data  

The strain, (-$$% )!", computed from the measured plane spacing, !!", via Eq. 1.8 can be 

expressed in terms of strains -*+ in the sample coordinate system using the second-rank tensor 

transformation rule: 

(-$$% )!" = ;$*;$+-*+ 	, (h, ì = 1,3)                 Eq. (1-9) 
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Here ;$* and ;$+ are components of the direction cosine matrix linking coordinate systems S3⃗ (  and 

L3⃗ ( , which : 

;$+ = î
cos, cos% sin, cos% − sin%
− sin, − cos, 0

cos, sin% sin, sin% cos%
ñ                        Eq. (1-10) 

By substituting the direction cosine terms into Eq. (1-9), we obtain: 

(-$$% )!" =
[@+G[(

[(
= [-&& cos# , + -&# sin 2, + -## sin# , − -$$] sin# % +	[-&$ cos, +

-#$ sin,] sin 2% + -$$                Eq. (1-11) 

Two different regular	!!" vs. sin# % behavior can be predicted by Eq. (1-11) predicts two types 

of dependencies of the “measured” strain   (-$$% )!" on the tilt-angle . (1) When -&$ and -#$ are 

zero, Eq. (14) predicts a linear “ !!"” vs. sin# % (Fig. 1.9-a); (2) When either or both of these 

components are non-zero, the measured spacing, “ !!"”, will be different at positive and negative 

% tilts (Fig. 1.9-b). The reason for this phenomenon, called %-splitting, is that sin 2% is an odd 

function, which causes a split in the “!!"” vs. sin# % [49, 51]. Following Noyan, we term these 

two predicted dependencies “regular” !!" vs. sin# % behavior.  We note that when the measured 

strain data has a regular dependency on sin# %, we can conclude, with high certainty, that the 

strains in the two coordinate systems,	S3⃗ (  and L3⃗ (,  are linked by Eq. (1-9).  Thus, by determining 

six or more independent strain values in L3⃗ ( coordinates, one can determine all terms of the strain 

tensor in the S3⃗ ( 	coordinate system. 
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Figure 1.9: Regular  étu vs. èêëví plots. Linear behavior is predicted when shear strains 
normal to the surface (along ç33⃗ w), Äxw, and Ävw,	are zero. If either or both of these terms are 

finite, the étu vs. èêëví plot “splits” into two branches for ∓í [1]. 

 

1.3.3- Computation of Stresses from Regular “ étu” vs. èêëví Data in 

Homogeneous Materials 

Hooke’s Law can be written for the strains/stresses in laboratory coordinate system as: 

-()% = 5()*+% E*+%                   Eq. (1-12) 

Where 5()*+%  is the compliance tensor in the laboratory coordinate system. Einstein notation, 

indicating summation over repeated indices is used. Through the transformation rule, stresses in 

laboratory coordinate system can also be expressed in terms of the stresses in the sample coordinate 

system: 

E*+% = ;*Q;+1EQ1                  Eq. (1-13) 
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To link the strains along the diffraction vector 23⃗ $ and to the stresses along 5⃗(, Eqs. (1-12 & 13) 

can be combined: 

-$$% = 5$$*+% ;*Q;+1EQ1                Eq. (1-14) 

This equation can be expanded and used for homogeneous materials, with arbitrary stress states. 

The generalized version is given below: 

 -$$% = (5$$$$% − 5$$&&% )[E&& cos# , + E&# sin 2, + E## sin# , − E$$] sin# % + (5$$$$% −

5$$&&% )E$$ + 5$$&&% (E&& + E## + E$$) + (5$$$$% − 5$$&&% )[E&$cos	 , + E#$ sin,] sin 2%  Eq. (1-15)  

In the case of an isotropic material, Eq. (1-15) can be significantly simplified: 

-$$% = b&SW
-
c [E&& cos# , + E&# sin 2, + E## sin# , − E$$] sin# % + b

&SW

-
c E$$ − b

W

-
c (E&& +

E## + E$$) + b
&SW

-
c [E&$ cos, + E#$ sin,] sin 2%                  Eq. (1-16)  

Here E is Young’s modulus and ν is Poisson’s ratio of the (isotropic) material. It can be seen from 

Eq. (1-16) that only four type of stress states can yield linear “ !!"” vs. "#$# % behavior (Fig. 1.9-

a). The stress tensors for these cases are shown below: 

ô
E&& E&# 0
E&# E## 0
0 0 0

ö ;  ô
E&& 0 0
0 E## 0
0 0 0

ö                 Eq. (1-17-a & b) 

ô
E&& 0 0
0 E## 0
0 0 E$$

ö ; ô
E&& E&# 0
E&# E## 0
0 0 E$$

ö                       Eq. (1-17-c & d) 

In such cases, the components of the stress tensor can be determined using various data reduction 

techniques. These are described below. 
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1.3.3.1- Biaxial Stress Analysis 

If the stress state is biaxial, Eq. (1-16) will become: 

-$$% = [@+G[(

[(
= b&SW

-
c E! sin# % − b

W

-
c (E&& + E##)                       Eq. (1-18) 

Here E! is the stress component along 5⃗! direction, which can be written in two different forms 

depending on whether the in-plane shear stress (E&#) is finite or zero:  

E! = E&& cos# , + E&# sin 2, + E## sin# ,              Eq. (1-19) 

E! = E&& cos# , + E## sin# ,               Eq. (1-20) 

Eq. (1-18) predicts a linear variation of “ !!"” vs. "#$# % for both cases. From the slope of a least 

square fit to “ !!"” vs. "#$# % data, the stress in 5⃗! direction can be obtained, if the elastic 

constants (E and ν) and unstressed lattice spacing, “ !A” are known. The terms 
&SW

-
	;$! − W

-
 in Eq. 

(1-18) are known as diffraction elastic constants in the literature [52, 53, 54]. For most of the 

materials, experimentally measured diffraction elastic constants for the commonly used reflections 

can be found in the literature [55]. If measured values are not available the constants can be 

calculated from single crystal elastic constants [2, 56]. Moreover, for biaxial stress states, the 

lattice spacing measured at % = 0 can be used as “ !A” without introducing too much error since 

it is a multiplicand in Eq. (1-18) [19]. 
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1.3.3.2- Triaxial Stress Analysis 

 

1.3.3.2.1-  Analysis of Linear õyz vs. úùûvü data 

If the stress tensor within the diffraction volume can be described by Eq. (1.17-c,d) the   

!!" vs. "#$# %  plot will still be linear.  In this case, Eq. (1-16) becomes:  

-$$% = [@+G[(

[(
= b&SW

-
c [E&& cos# , + E&# sin 2, + E## sin# , − E$$] sin# % + b

&SW

-
cE$$ −

		bW
-
c (E&& + E## + E$$)                              Eq. (1-21) 

Comparing Eq. (1-18) and Eq. (1-21), we observe that, since E$$ is finite within the penetration 

volume, there will be an extra E$$ term in the stress term E!. For such cases, the following analysis 

is used [57]:  First, strain data, 
[@+G[(

[(
, are collected over a set of %-angles for two different , tilts, 

, = ,0	;$!	, = ,0 + 90°	 where ,0 is an arbitrary angle. The slopes of  the corresponding	-$$%  

vs. "#$# %  plots (O!A ,	O!A;B(°) are: 

O!A = b&SW
-
c [E&& cos# , + E&# sin 2, + E## sin# , − E$$]                  Eq. (1-22-a) 

O!A = b&SW
-
c [,0 − E$$]              Eq. (1-22-b) 

O!A;B(° = b&SW
-
c °E&& cos

#(,0 + 90°) + E&# sin 2(,0 + 90°) +
E## sin#(,0 + 90°) − E$$

¢        Eq. (1-22-c) 

O!A;B(° = b&SW
-
c [,0S{A° − E$$]            Eq. (1-22-d) 

The sum of the slopes is: 
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O!A;B(° +O!A = b&SW
-
c [E&&+E## − 2E$$]              Eq. (1-23) 

The intercept (I) of “ !!"” vs. "#$# %  does not depend on ,:  

N = b&SW
-
c E$$ −

W

-
[E&&+E## + E$$]               Eq. (1-24) 

To obtain E$$, first, E&& and E## are computed from Eq. (1-22-b) and Eq. (1-22-d), and then Eq. 

(1-23) and Eq. (1-24) are solved together to obtain E$$. 

 

1.3.3.2.2-  Analysis of Split in õyz vs. úùûvü data 

If the measurement volume is in a general tri-axial stress state, with stress tensor: 

ô
E&& E&# E&$
	 E## E#$
	 	 E$$

ö                 Eq. (1-25) 

The terms, ;& and ;# are defined for use in the analysis [49]:  

;& = £[@+;S[@+D
#

§ = b&SW
-
c [E&& cos# , + E&# sin 2, + E## sin# , − E$$] sin# % + b

&SW

-
cE$$  

−bW
-
c (E&& + E## + E$$)                  Eq. (1-26-a)  

;# = £[@+;G[@+D
#

§ = b&SW
-
c [E&$ cos, + E#$ sin,] sin 2%                    Eq. (1-26-b) 

These terms are linear in sin# % and sin 2% , respectively. Consequently, stresses E&&, E&#, E## and 

E$$ may be obtained from the slopes and intercepts of regression-fitted  ;& vs. sin# % plots for 

, = 0°, 45°, 90°. Shear stresses E&$, E#$ are obtained  from the slopes of regression-fitted ;# vs. 

sin|2%| plots for , = 0°, 90°, respectively. 
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1.3.4- Non-regular “ étu” vs. èêëví Data  

For polycrystalline samples, there are two further categories of !!" vs. sin# %	 plots 

reported in the literature (in addition to the regular responses discussed above). Parabolic (curved)  

“ !!"” vs. sin# % variation with no %–splitting (Fig. 1.10-a)  are usually taken as the indication 

of the presence of strain or concentration gradients along the surface normal S3⃗ $ [1]. While such 

strain distributions cannot be analyzed with current formalisms, (Fig. 1.10-a) various 

modifications, based on the different penetration depths of the x-rays at different % −tilts, etc. 

have been proposed [1]. These approaches can predict such plots without adjustable parameters 

and are considered reliable. On the other hand, there is no consensus on the analysis of  oscillatory 

“	!!"	” vs. sin# % (Fig. 1.10-b). Such data can be neither predicted nor analyzed by Eq. (1-11) or 

its rigorous extensions.  The cause of these oscillations has been investigated in many articles and 

various explanations have been provided [58, 46, 49, 59, 60, 61, 62, 63, 64, 53] [65, 66]. In what 

follows, we will present a brief overview of these approaches.  

 

Figure 1.10: Non-regular “ étu” vs. èêëví plots; a) curved and b) oscillatory behavior. 
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1.3.5- Methods Proposed to Analyze Oscillatory Behavior of “ étu	” vs. úùûví 

The simplest approach to oscillatory  !!"	 vs. sin# % data has been to ignore the 

oscillations, fit the data with a straight line, and use the traditional analysis presented above.  In 

extreme cases of this “approach” !!"	 data are acquired at only two, arbitrary, % − angles, 

avoiding any oscillations which might be present, and a straight line is fitted to the data. This 

approach is termed the “two-tilt” method and is quite popular with industrial users.  

More serious approaches from research groups are described below. 

 

1.3.5.1- Greenough Model 

The first scientist that attempted to explain oscillations in “ !!"	” vs. sin# % was 

Greenough [67]. In this model, the polycrystalline aggregate was replaced by some elastically 

isotropic and plastically anisotropic single crystals of an equal cross-section but random 

orientations. The crystals were all parallel, (Fig. 1.11). Once the loading starts, some of the grains 

exceed the yield point much faster and the strain on these grains is no longer completely elastic. 

After plastically deforming all grains, the load is removed and let the grains contract elastically. 

The grains deformed first will be under compression by the grains that have a higher yield point. 

The possible plastic deformation because of compression is neglected. By using Taylor’s plasticity 

analysis and Schmid equation for the resolved shear stress, the residual lattice strain is calculated.  
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Figure 1.11: Model of polycrystalline aggregate. P is the applied stress, A is the cross-
sectional area of each grain, and T1, T2… Tr are the stresses in the crystals of orientations 

1, 2, … r. 

 

Several experiments were performed to validate the model by comparing the experimental 

curves with simulated curves [68, 69]. It was shown that the calculated lattice strains did not 

possess the same angular dependence on % exhibited by the measured strains. Also, the values 

were smaller by a factor of 10 [70, 71]. The biggest source of error in this is that the transverse 

stresses are neglected. 

 

1.3.5.2- The Marion-Cohen Method 

In this method, dynamic recovery of dislocation-poor crystallite regions (plastic 

deformation followed by localized elastic recovery) is assumed to be the reason for oscillations. 

To utilize the method, the following assumptions were made [72, 73, 68]: 
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a) Only crystal regions with a small amount of dislocation density contribute to the maximum 

of a diffraction peak. 

b) The regions of small dislocation density are initially under compressive stress state in a 

material subjected to plastic deformation (because of expansion in dislocation-rich 

regions). 

c) Some of the dislocation-poor crystallite regions will adjust themselves by rotating in the 

direction of slip during deformation to be in a more energetically favorable position (A 

orientation and A regions) relative to the deformation geometry. The compressive stress 

will be relieved and there will be an increase in lattice spacing. Thus, the lattice parameter 

of A regions, !0 = !.2:, has higher values than other regions (B orientation and B regions) 

whose dislocation density is also small and those crystallites cannot relieve the 

compressive stresses due to an unfavorable orientation to the applied load.  

d) The lattice constant measured by X-rays possesses a maximum “!.2:” for each orientation 

(hkl) of the sample under investigation. From this maximum value, the lattice constant 

varies with the orientation of the sample according to a distribution function. 

With these assumptions, the relationship between lattice spacing and orientation may be expressed 

as follows: 

! = (!.2: − !X)Y(9, ß) + !X               Eq. (1-27) 

Here Y(9, ß) is the distribution function of a particular (hkl) plane relative to the sample 

coordinates and 9 and ß are defined in Fig. 1.12. 
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Figure 1.12: Specimen geometry and the definition of α and β in the Marion-Cohen 
method. 

 

If there is also a macroscopic stress field in the material in addition to the microstrain 

distribution, Eq. (1-27) becomes: 

!!" = (!.2: − !X)Y(9, ß) + !X + !A
&SW

-
E! sin# %               Eq. (1-28) 

where it is assumed that the macrostress contribution to E! yields a linear  !!"	 vs. sin# % 

dependence. Therefore, elastic interaction strains are assumed to be zero.  

The unknowns, !.2:, !X and	E!  in Eq. (1-28) can be solved by curve-fitting techniques, if Y(9, ß) 

and !!" are measured as a function of % for a particular ,. This method predicts that oscillations 

in “ !!"	” vs. sin# % and Y(9, ß) vs. sin# % will have the same form. However, it was proven that 

this is not always the case [72]. Depending on the %-range, the assumption that the maximum 

range in oscillations is observed in a given measurement can fail. The method assumes that elastic 
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interaction effects are negligible. This assumption is not true especially for stress relieved textured 

materials [60]. 

 

1.3.5.3- Dölle-Hauk Method (Oscillation-free Reflections) 

In this method, it was proposed that oscillations in “ !!"	” vs. sin# % are primarily due to 

elastic anisotropy [53, 60]. Since grains with different orientations are sampled at % and , tilts, 

the diffraction elastic constants can vary with different tilts in strongly-textured materials. The 

relation between interplanar spacing “ !!"	” and applied stress is: 

[@+G[(

[(
= 〈-$$% 〉 = 〈G5$$()% + s$$()% HE()〉                  Eq. (1-29) 

where 5$$()%  are the single-crystal elastic compliances in laboratory coordinate system 23⃗ (, and  s$$()%  

are the elastic interaction terms of a grain and its surrounding matrix (“elastic susceptibility”). The 

brackets in Eq. (1-29) indicate that the average is taken over all the diffracting crystallites. This 

equation neglects the inhomogeneous microstrain distributions due to an inhomogeneous 

distribution of plastic deformation. The proposed solution to solve Eq. (1-29) simplifies the system 

even further by assuming the Reuss limit to describe the stress state in the material. Then 5$$()%  are 

calculated in the Reuss limit and E() can be determined from a non-linear least-squares solution. 

The diffraction elastic constants in the Reuss limit is given as below: 

5&7(ℎhì) = 5®&&## + 5®AΓ	 and  
&

#
5#7(ℎhì) = 5®&&&& − 5®&&## − 35®AΓ	  

5®A = 5®&&&& − 5®&&## − 25®&#&#  and Γ = D'*'SD'+'S*'+'

(D'S*'S+')'
                      Eq. (1-30) 
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The method predicts no oscillations for (h00) and (hhh) type reflections in cubic materials 

since the calculated diffraction elastic constants are equal to the isotropic elastic constants. In other 

words, for these reflections, the anisotropic crystal behaves like isotropic material [49]. It was 

concluded that if one switches (h00) and (hhh) reflections once oscillations in “ !!"	” vs. sin# % 

in another (hkl) reflection was observed one should obtain regular “ !!"	” vs. sin# % which can 

be analyzed with current formalism.  

Experiments were performed to check the theory of oscillation-free reflections, and it was 

summarized that the theory does not work owing to using the Reuss model approximation in which 

all interaction stresses and strains are assumed to be zero [74]. As a result, it does not satisfy 

compatibility conditions and would cause the formation of voids at boundaries between grains that 

have different crystallographic orientations with respect to the applied load axis. In a textured 

material, non-random inhomogeneous solids, interactions cannot be assumed to be zero. 

 

1.3.5.4- X-ray Integral Methods (Löde and Peiter) 

In this method, it was claimed that the reason for oscillations in “ !!"	” vs. sin# % are non-

monotonic stress gradients with depth [75]. Since X-ray penetration depth changes at each %-tilt, 

the net average stress affecting individual ψ-tilts will change sign and it will cause oscillations in 

“ !!"	” vs. sin# %. 

Two methods were proposed and both are based on a strain field analysis in a thin layer, 

the developments of the local displacements in a 〈-!"〉 Taylor’s series and the weighting of the 

measured values [76].  
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〈-!"〉 =
∫ _@+K

D8 8(E 	
80
( [;

∫ KD
8 8(E 	

80
( [;

                 Eq. (1-31) 

where z is the penetration depth which is a function of %, z0 is the maximum penetration depth and 

z1 is the limit of integration. The integration should be performed over the region illuminated by 

the beam; the depth of penetration can be computed for the particular geometry utilizing the 

photoelectric absorption coefficient of x-rays of the selected (monochromatic) radiation for the 

material under investigation [62]. From this point, two different methods can be used for 

evaluation: 

 

1.3.5.4.1-  í-integral Method 

 The form of 〈-!"〉 can be expressed as a trigonometric polynomial: 

〈-!"〉 = eA + e# cos 2% + |# sin 2% + e� cos 4% + |� sin 4%           Eq. (1-32) 

In this equation, the coefficients depend on local displacement values and can be evaluated by 

integrating Eq. (1-32) between % = −45° and % = 45°. 

|*
e*

= #

Ä
∫ 〈-!"〉
�Å

G�Å

sin h%
cos h%!%                Eq. (1-33) 

From these coefficients, one can obtain the strains and the stresses from the appropriate form of 

Hooke’s Law. 
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1.3.5.4.2-  ™-integral Method 

This method is similar to the %-integral method with two exceptions. The strain 〈-!"〉 is 

expressed as a polynomial in terms of , and integrated over , from , = 0° to , = 360° to obtain 

the coefficients from which the strains are evaluated. 

〈-!"〉 =
X(
#
+ e& cos, + |& sin, + e# cos# , + |# sin# ,           Eq. (1-34) 

These techniques are not popular: The ,-integral method is time-consuming. However, its 

results are in excellent agreement with  sin# % method for homogeneous stress/ strain distributions. 

The biggest advantage of this technique over sin# % method is having same x-ray (depth) average 

at all , rotations because the variation of , does not alter the penetration depth of x-rays [77, 78]. 

On the other hand, %-integral technique is not reliable due to ill-conditioned matrix coefficients. 

These magnify experimental error, causing large errors in final stress values [79]. Both of these 

methods were developed for oscillations due to macrostress gradients in the direction of the surface 

normal and therefore, they should not be used unless it is known that the reason for oscillations is 

caused by a macrostress gradient.  

 

1.3.5.5- The Crystallite-group Method 

The Crystallite-group method was proposed for strongly textured materials. It was first 

introduced for drawn wires, and then further improved for rolled materials and fiber texture [80, 

81, 82, 83]. This method treats all crystallites with the same orientation as one crystal. It is assumed 

that the stresses within all crystals belonging to a particular crystallite group are the same. Also in 

strong textured materials, diffraction intensities are much lower for reflections that are not oriented 
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in the direction of texture, the measuring directions are chosen with respect to texture [84]. Once 

the strains are determined for a crystallite group, its stress state can be evaluated as follows:  

-QÇ = ´5&# + 5A(9#9(# + ß#ß(# + k#k(#) +
&

#
5��(99( + ßß( + kk()#¨ E(                   Eq. (1-35) 

with 5A =	5&& − 5&# −
&

#
5�� 

where  -QÇ  is the measured strain in the direction OÇ  and 9( , ß( , k( are the components of the 

transformation matrix which gives the relationship between crystal and sample coordinate system. 

The measuring directions are given in the form of 9, ß and k where                                                 

9 = cos, sin% , ß = sin, sin%	and k = cos%. 

The strain measured in OÇ  direction is the average of individual strain values of all 

crystallites having the reflection (hkl) under study, oriented perpendicular to OÇ . And the strains 

measured should be weighed by the frequency of the orientation distribution function.  The main 

assumption in this method is that all influences of other crystallites which have different (hkl) but 

still diffracts in OÇ  direction are neglected. In other words, the strain and stress were determined 

from only one reflection (in general, corresponds to texture axis) and this calculated local stress is 

assumed to be macroscopic stress in the material [84]. This method neglects interaction strains 

between grains. This assumption, alongside the assumption of constant stress within crystallite 

groups is weak argument in need of systematic investigation.  
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1.3.5.6- The Glancing Angle Technique 

In “ !!"	” vs. sin# % technique, the penetration depth of the beam varies with % angle 

during the measurement, with the penetration depth decreasing with the tilt angle. While this is not 

an issue for homogeneous strain/stress fields in the depths sampled, this is not always the case: In 

very thin coatings with steep strain gradients, measurement of residual stress with  !!"	 vs. sin# % 

technique yields an average which does not represent the true stress state. Further, diffraction may 

occur in the substrate as well, complicating the interpretation and analysis of the diffraction pattern 

[85, 86, 87]. Usage of the Seemann-Bohlin geometry with the glancing angle technique was 

proposed to overcome this problem [85, 87]. As shown in Fig. 1.13, this technique uses low-angle-

of-incidence (glancing) incident beams. During the measurement, the glancing angle “α” should 

be fixed in order to keep the penetration depth constant, and multiple (hkl) reflections are measured 

at different % angles. In this model, the penetration depth is shallower and thus, the strain data 

collected from this technique is limited to layers very close to the film surface. 

In this technique, small changes in “α” due to alignment produces a larger error in the 

measured data. Therefore, a correction should be done by using a zero-stress polycrystalline 

powder sample. Any measured stress from the powder sample is due to errors in the alignment of 

the instrument. Once the correction is made, the strain component, -s  for  the condition where 

E&& = E## = E and E$$ = 0	can be written as:  

-s = b25& +
&

#
5#c E ≠1 −

0
'8'

#80S
0
'8'
cos# %Æ              Eq. (1-36) 

where 5&	and 
8'
#

 are the diffraction elastic constants (DEC). From the slope of -s vs. cos# % graph, 

stress value can be evaluated if DECs are known. 
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Since theoretical analysis showed that this model will not work for thin films that have 

texture, a combined model was developed to analyze the -s vs. cos# % for textured materials [88]. 

In this model, the mechanical response of the material is assumed to be a weighted average of the 

Reuss and Voigt model. 

-!" = -$$% = âuY() + (1 − u)Ø$*Ø$+5*+()9 äE()             Eq. (1-37) 

Here x is the “fraction” of the Reuss response and Y() represents DECs based on the Reuss model 

which can be computed by calculating the weighted average of the single crystal elastic moduli 

over all the crystal orientations that can diffract.	5*+()9  is the compliance tensor in Voigt model. 

Ø$*Ø$+ are the direction cosines which enable the transformation of strains from sample to 

laboratory system [88].  

Another complication encountered in the usage of the technique is the accuracy of the peak 

positions at low 2i angles. A considerable amount of error in strain/stress values can result from 

the analysis of these peaks [1]. Calculating overall stress or strain tensor from multiple reflections 

can be deceiving because all stress/strain tensor is assumed to be the same for all reflections. 
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Figure 1.13: Definition of the glancing angle Seemann-Bohlin geometry. The diffracting 
plane normal (å33⃗ w) makes an angle í with the surface normal (ç33⃗ w). The incidence angle ∞ is 

a function of the tilt angle í and the diffraction angle θ. 

 

Although it was stated that the compound model gives a better fit for textured materials, 

the model has no physical meaning. In other words, the “x” value can be any number between 0 

and 1, depending on the stress state of the material. More importantly, the method does not take 

the interaction strains between grains into account.  

 

1.3.5.7- Fixed Crystal Orientation Technique 

Fixed crystal orientation technique was introduced to measure residual macroscopic 

stresses in textured materials [89]. If crystallites of a cubic material have lattice planes (h1k1l1) 

preferentially oriented parallel to the substrate surface, the (h’k’l’) lattice planes of these 

crystallites make an angle % with the surface of the substrate shown as: 
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% = cosG& D0D
FS*0*

FS+0+
F

ÉqD0
'S*0

'S+0
'rÑDF

'
S*F

'
S+F

'
ÖÜ
0 '⁄               Eq. (1-38) 

The relation between % and the incident angle (iV) between incident beam and surface of 

the substrate can be written as: 

% = i − iV                  Eq. (1-39) 

It should be noted that the incident angle is not constant in this method. In order to 

determine % angles from Eq. (1-38), it was assumed that the texture of the material is invariant 

under the rotation of the sample around its surface normal. This method is claimed to be superior 

over glancing angle and sin# % technique in textured materials and thin films. A good signal-to-

noise ratio can be obtained for the reflections that are not oriented along the texture axis. For thin 

films, although the incident angle in this method is not small like in glancing angle, the signal to 

noise ratio is still strong for all reflections. 

If the material is considered as homogeneous and in a biaxial stress state, the relation 

between lattice parameter, a, and stress can be written as: 

; = E;AY(%) + ;A where Y(%) = &

#
5#D*+ sin# % + 25&D*+ and ; = [

D'S*'S+'
                     Eq. (1-40) 

5&D*+ and 5#D*+ are DECs. Stress can be determined by least-square fitting from the plot of ; vs. 

Y(%). 

In this method, it was claimed that the problems observed in “ !!"	” vs. sin# % technique 

due to elastic incompatibility between grains with a different orientation do not occur because the 

stress is determined using different reflections from one family of grains [86]. However, the 
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possibility of obtaining data from other grains which satisfy the Bragg condition in the 

measurement volume may cause measuring elastic incompatibility strains. In addition to this, there 

is a chance that the calculated stress is not purely residual macrostress because it is not known for 

sure that the effect of interaction strains due to elastic incompatibility are averaged to zero. 

Moreover, only a limited number of grains contribute to diffraction thus, employing this technique 

affects the grain statistics.  

 

1.3.5.8- The Generalized sin2í (Matrix) Method 

The most recent method developed to help us understand oscillations in “ !!"	” vs. sin# % 

is called the generalized sin# % or matrix method [90, 91]. In this method, instead of using 

traditional 
!

"
 angles, any distribution of measurement points (

!

"
) can be employed. In addition, 

performing each pole figure measurement with a linear detector yields 2i positions of various 

(hkl) reflections (nearly full diffractogram) at a great number of measurement directions which 

can be defined by 
!

"
 pair [92]. Almost the whole orientation sphere with densely distributed 

measurement directions can be scanned. The theoretical basis for this method starts with a 

modified form of  the Dölle-Hauk equation (a special form of Hooke’s law) [49]: 

-(,, %, ℎhì) = d()(,, %, ℎhì)E()               Eq. (1-41) 

where -(,, %, ℎhì) is the measured average strain from a particular reflection that contributes the 

diffraction and d()(,, %, ℎhì) is called X-ray elastic factors and given in the same coordinate 
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system with stress, E(). Eq. (1-42) can be simplified by defining a vector (?⃗) for the measurement 

direction instead of 
!

"
.  

ô
?&
?#
?$
ö = ô

cos, sin%
sin, sin%
cos%

ö                 Eq. (1-42) 

The relations among ?⃗ and
!

"
 can be implemented to Eq. (1-41) and the resultant equation is given: 

-(?⃗, ℎhì) = d()(?⃗, ℎhì)E()                    Eq. (1-43)  

It was stated that if the coordinate system changes, all of the quantities must be kept the 

same. In other words, the only way to keep all quantities unchanged is to accept that -(?⃗, ℎhì) is a 

scalar quantity. As a result, d()(?⃗, ℎhì) must be tensor [93]. For biaxial stress state, this equation 

becomes: 

!(#, %, ℎ'() = !" + ,##(#, %, ℎ'()!"-## + ,$$(#, %, ℎ'()!"-$$ + ,#$(#, %, ℎ'()!"-#$      Eq.(1-44) 

Here ;(,, %, ℎhì) is the lattice parameter and calculated from the measured interplanar spacing 

!(,, %, ℎhì). With enough measurements, a system of linear equations can be obtained and solved 

together for the unknowns. All d-values are going to be used in the solutions however, not all 

equations are going to contribute equally. Depending on the standard deviations (calculated the 

using counting statistics, the background level, the peak line width etc.) of the corresponding 

measurements, the weights are introduced [93].  

The provided proof shows that the claim of the x-ray stress factor being a tensor quantity 

is not accurate because the measured strains are not tensor quantities that must obey the appropriate 
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transformation rules and both sets of tensor quantities (original and transformed one) represent the 

same physical quantity [50]. 

Other problems of this method: (1) Materials having a strong stress gradient cannot be 

analyzed. (2) Eq. (1-43) assumes that inhomogeneous micro-strain distribution due to 

inhomogeneous distribution of plastic deformation is negligible.   This second assumption is not 

very reliable and may invalidate the approach in presence of plastic flow. 

 

1.3.5.9- Other Methods 

There are three recent methods that are claimed to be capable of analyzing both regular and 

non-regular !!"	 vs. sin# % data. These methods are: 

- The g method (Grazing Incidence X-ray Diffraction) [94, 95]. 

- The cos# i method [96]. 

- The cos 9 method [97]. 

While these approaches use different tilt and rotation schemes, they are still based on the 

measurement of lattice strains through diffraction which is then used, along with the appropriate 

elastic moduli in Hooke’s law for stress computation. Consequently, they have the same limitations 

as all of the previously mentioned techniques did.     
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1.3.6- Summary 

All stress determination techniques discussed above are based on the measurement of 

lattice strains through diffraction which are then transformed into the (sample) coordinate system 

of interest. These transformed strains are used,  along with the appropriate elastic moduli, in 

Hooke’s law for stress computation2.  These equations are strictly valid at geometric points. Their 

utilization in analyzing data using strains measured over “volumes” is possible only when the 

material, and the stress state within the data acquisition volume, are homogeneous. Ascribing the 

stress/strain fields obtained from a measurement volume to a given specimen requires assuming 

further that the material and the stress/strain state within the sample volume are homogeneous.  

 These requirements show that extension of the diffraction formalisms to strain/stress 

determination in polycrystalline materials is not straightforward since strain information is 

obtained only from subsets of grains for each orientation due to the orientation selectivity of 

Bragg’s law.  Strictly speaking, even a single-phase polycrystalline material (with the exception 

of tungsten) is a composite material within which variations of elastic moduli are observed along 

with sample directions. As a result, there are several issues which need to be addressed when 

applying diffraction-based stress determination techniques to such systems. 

 

1.4- Problems and Questions 
Consider the case where a polycrystalline dog-bone tensile test sample is loaded in tension, 

and diffraction analysis is used to measure  !!"	 vs. sin# % data (Fig. 1.14). Generally, the volume 

 
2 While the discussion was presented for the analysis of strains obtained by diffraction, any technique which would 
yield strains along six or more independent !"⃗ H(!"⃗ IJ) directions (Fig. 1.8) could be used with Eqs. (1-8 to 1-25).   
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of interest, the measurement volume, and the diffraction volume are not the same. Since only 

certain grains which satisfy Bragg’s condition diffract at each %-tilt, and these grains are not 

necessarily next to each other [98], the experiment is performed over discontinuous volumes. Thus, 

there are several questions which must be answered before one links the (measured) lattice strains 

to the applied stresses: 

a) What is the distribution of stresses and strains within the sampled grains in the 

measurement volume? 

b) How many grains over how many ψ–tilts, and how many reflections need to be sampled 

for the diffraction measurement to yield the applied stress? 

 

 

Figure 1.14: Schematic of a tensile test sample and volumes defined during a 
diffraction experiment and mechanical testing. 
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c) How do plastic flow and the attendant stress/strain re-distribution change the stress 

obtained from XRD measurements? 

d) Once the applied load is relaxed to zero after plastic deformation, what is the stress/strain 

distribution in the sample? 

In addition, based on our review of the past literature, the following questions need to be 

answered to provide a rigorous theoretical basis for diffraction-based stress analysis formalisms: 

e) What are the origins of  oscillations in  !!"	 vs. sin# % data? 

f) Is it possible to rigorously link oscillations in  !!"	 vs. sin# % data to a unique stress state 

in the material? 

g) How do the answers to the above questions change for multiphase polycrystalline 

materials? 

 

Answering these questions in a statistically meaningful way through experiments requires 

the measurement of stress and strain within many individual grains of a polycrystalline sample. 

Such experiments would be quite hard to conduct at this point.  In the rest of the thesis, we will try 

to answer these questions through rigorous finite-element modeling. First, however, we will try to 

illustrate the issues described above using a simple model and provide a more appropriate set of 

definitions based on solid mechanics.  
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2- EXPANDED ANALYSIS AND DEFINITIONS  

 

2.1- Residual Stresses in Homogeneous Materials 
An ideal model system with a simple residual stress state is depicted in Fig. 2.1, where a 

homogeneous solid cylinder (the sample) of initial length, 2A, and cross-section, |A , is elastically 

compressed by a C-clamp to a final length, 2, = 2A − ∆2 .  In this model, the compressive residual 

stresses in the sample are balanced by the tensile residual stresses in the clamp, and the system is 

at static equilibrium; the effect of the clamp on the free-body diagram sample can be represented 

by two-point loads3.  In the following discussion, we will only focus on the elastic strain/stress 

distributions in the sample induced by these point loads.   As can be seen from the photo-elastic 

stress contours, the stress field within the cylinder can be classified into two distinct types. In the 

central region (Region 2) we observe a homogeneous stress distribution. In both end regions 

(Regions 1 and 3) the internal stress depends on the position. Thus, for ease of stress analysis, the 

cylinder can be represented with three additional free-body diagrams (Fig. 2.2) representing these 

regions. We will utilize these free-body diagrams to define the stress fields in the cylinder. 

 
3 Even though the clamp will exert distributed forces over the finite contact surfaces since these areas are assumed to 
be much smaller than the cylinder’s cross-section we represent the clamp forces as point loads for simplicity. This 
yields the classical Boussinesq-Cerruti problem in the theory of elasticity, where the stresses vary as the inverse of 
the distance from the loaded point. 
 



 

90 
 
 

 

Figure 2.1: Formation of the residual stress in the homogeneous bar constrained by a c-
shape clamp [99]. 
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Figure 2.2: Free-body diagrams corresponding to the different regions of the ideal cylinder. 
Regions FBD-1 and FBD-3 represent the St. Venant regions where end-effects and 

geometry modulate the stress fields.  The stress/strain field in the central region, FBD-2, is 
homogeneous. 

 

2.1.1- Homogeneous Stress/Strain Fields and Far-field Stresses 

Consider free-body diagram for region 2 (FBD-2) first. In this region the stress field, i.e. 

the distribution of normalized internal forces which balance the forces/tractions at the boundary, 

is homogeneous. Thus, the local stresses, G�abHc,d,e,	are independent of position, and the average 

stress for any measurement volume, 〈EZ()〉9$ , or within any region of interest (ROI), including the 

total FBD-2 volume, will be equal to the local stress:  

 〈EZ()〉9$ = 〈EZ()〉7UV = 〈EZ()〉,XPG# = GE()H:,3,; = É
0 0 0
0 0 0
0 0 E$$A = ,

0(

Ñ                       Eq. (2-1) 

Here E$$A  is a component of the far-field stress tensor,	E()A , which we define as the stress field 

within the free body caused by a statically equivalent system of forces distributed uniformly over 

its relevant boundaries. The elastic strains within FBD-2 are also homogeneous, with equal local 

and global strain tensors: 
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〈-(̅)〉9$ = 〈-(̅)〉7UV = 〈-(̅)〉,XPG# = G-()H:,3,; = É
-&&A 0 0
0 -##A 0
0 0 -$$A

Ñ                                        Eq. (2-2) 

Stress and strain tensors are linked via the same stiffness tensor for all length scales: 

〈:̅()*+〉9$ = 〈:(̅)*+〉7UV = 〈:(̅)*+〉,XPG# = G:()*+H:,3,;                                               Eq. (2-3) 

This line of reasoning has two consequences: 

a) Any average strain tensor measured within any volume subset of FBD-2 can be 

transformed to an arbitrary new coordinate system using the second-rank tensor 

transformation rule4, Eq. (1-9); 

b) Stress/strain analysis in the homogeneous region, FBD-2, is scale and location-

independent; measured average strains can be linked to the far-field stresses using Hooke’s 

law: 

E()A = :()*+〈-*̅+〉9$                               Eq. (2-4) 

 

 

2.1.2- St. Venant Stress/Strain Fields  

In the free-body diagrams representing the end regions, FBD-1, FBD-3,  (Fig. 2.2-a & c) 

the local stress and strain tensors, GE()H:,3,;	, G-()H:,3,; are tri-axial [100, 101, 102] and depend on 

position due to the boundary conditions associated with point loading. We term these tensors St. 

Venant stresses and strains respectively:  

 
4 It was assumed that a homogeneous cylinder has a cubic symmetry. 
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GE()89H:,3,; = É
E&&89 E&#89 E&$89

E#&89 E##89 E#$89

E$&89 E$#89 E$$89
Ñ ; 	G-()89H:,3,; = É

-&&89 -&#89 -&$89

-#&89 -##89 -#$89

-$&89 -$#89 -$$89
Ñ                                Eq. (2-5) 

For all points (x,y,z), these tensors are linked via Hooke’s law: GE()H:,3,; = :()*+ 	(-*+):,3,;.  Thus, 

if local strains could be measured at a point, the local stress at that point could be calculated.  

Average stresses, strains for a given region of interest, 〈EZ()〉7UV , 〈-(̅)〉7UV , will also be functions of 

the volume and position of the ROI, and/or the measurement volume within the ROI. In general, 

we cannot assume, a priori, that the average stress tensor, 〈EZ()〉7UV ,	for a given region-of-interest is 

equal to the far-field or nominal stress tensor. Consequently, E()A ≠ :()*+〈-*̅+〉7UV; in such regions, 

one cannot obtain the far-field stresses only from Hooke’s law or measure the actual stiffness 

tensor of the material by correlating the nominal applied stress and (measured) average strains.  

 

2.2- Residual Stresses/Strains in Polycrystalline Materials 
We now expand the treatment given above to polycrystalline materials by substituting a 

single-phase, polycrystalline material with very small, equiaxed, grains for the homogeneous 

material of our cylindrical sample (Fig. 2.1). For consistency, we will assume that the chemistry 

of the material remains the same, with the same stiffness/compliance tensors, while the 

microstructure is transformed. In this case, the (residual) stress applied by the clamp will cause 

local stress perturbations around grain boundaries due to elastic moduli variations between grains 

along a given sample direction. These will be superposed on the elastic strain/stress distributions 

for the homogeneous material cause by the clamp stresses and boundary conditions. For simplicity, 

we will treat the case for FBD-2 first, and extend the discussion to FBD-1 and FBD-3. 
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2.2.1- Polycrystalline Materials – Homogeneous Far-field Stress  

Fig. 2.3 depicts the FBD-2 of the polycrystalline cylinder which has compressive forces, 

d⃗$,  uniformly distributed on its horizontal faces. We assume the system is in the elastic loading 

regime. The stress/strain tensors at any position can be expressed as: 

GE()TH:,3,; = É
0 0 0
0 0 0
0 0 E$$A = ,

0(

Ñ+É
E&&∗ E&#∗ E&$∗
E#&∗ E##∗ E#$∗
E$&∗ E$#∗ E$$∗

Ñ           Eq. (2-6-a) 

G-()T H:,3,; = É
-&&A 0 0
0 -##A 0
0 0 -$$A

Ñ + É
-&&∗ -&#∗ -&$∗
-#&∗ -##∗ -#$∗
-$&∗ -$#∗ -$$∗

Ñ               Eq. (2-6-b) 

The interaction stresses and strains, E()∗ , -()∗ ,	 respectively, arise to maintain material continuity 

(compatibility) along a given vector across grain boundaries of grains with different elastic moduli.  

These stresses/strains are proportional to the far-field stress and the distribution of elastic moduli 

around the point of interest.  

 

Figure 2.3: FBD-2 of a single-phase polycrystalline cylinder of uniform cross-section A0 
loaded in tension.  
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Due to equations of equilibrium, and boundary conditions, the interaction stress/strain field is self-

equilibrating and will yield a null value when integrated over the entire FBD-2. 

E()A = 〈EZ()T〉9( =
∫ Ñs.3

KÖ
5,7,8

[9*(

9(
= É

0 0 0
0 0 0
0 0 E$$A = ,

0(

Ñ                          Eq. (2-7) 

The average stress/strain for any random volume subset, V, of FBD-2 will yield the volume-

weighted average of the stress field within V: 

〈EZ()T〉9 =
∫ Ñs.3

KÖ
5,7,8

[9*

9
                                          Eq. (2-8-a) 

〈-(̅)T 〉9 =
∫ Ñ_.3

K Ö
5,7,8

[9*

9
                    Eq. (2-8-b) 

Within FBD-2, we can define a representative volume element (Ökno) such that, within its 

volume, a79-, the following relationships hold as it was mentioned in Chapter 1.2.2: 

a) The average elastic moduli are equal to the bulk moduli for the material: 

〈:(̅)*+〉79- =
∫ qE.34/r5,7,8

[9*9*:
99*:

=	:()*+A            Eq. (2-9-a) 

b) The average stresses/strains are equal to the far-field values: 

E()A = 〈EZ()T〉9( = 〈EZ()〉79- =
∫ qs.3r5,7,8

[9*9*:
99*:

=	É
0 0 0
0 0 0
0 0 E$$A = ,

0(

Ñ          Eq. (2-9-b) 

-()A = 〈-(̅)T 〉9( = 〈-(̅)〉79- =
∫ q_.3r5,7,8

[9*9*:
99*:

=	É
-&&A 0 0
0 -##A 0
0 0 -$$A

Ñ                         Eq. (2-9-c) 

c) The addition of any random volume to the RVE does not change these average values. 
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Measurements are performed over volumes larger than a79- will yield identical stress and 

strain tensors, independent of the center of location of the particular a79- within the sample 

volume. Thus, the material can be considered as quasi-homogeneous for measurement volumes, 

a. > a79- .  The stress/strain tensors for a. < a79- will be heterogeneous. In addition, if a. <

a79- ,	the relationship between the average strains and stresses existing in a. 	cannot be described 

by the theoretical stiffness/compliance tensors for the material. 

 

2.2.2- Polycrystalline Materials – St. Venant Regions 

If the material in the free-body diagrams representing the end regions, FBD-1, FBD-3, (Fig. 

2.2-a & c) is polycrystalline, interaction stresses/strains will also arise around grain boundaries, so 

that the total stress/strain tensors at any point can be written as:  

GE()89H:,3,;
H = É

E&&89 E&#89 E&$89

E#&89 E##89 E#$89

E$&89 E$#89 E$$89
Ñ + É

E&&∗ E&#∗ E&$∗
E#&∗ E##∗ E#$∗
E$&∗ E$#∗ E$$∗

Ñ	        Eq. (2-10-a) 

G-()89H:,3,;
H = É

-&&89 -&#89 -&$89

-#&89 -##89 -#$89

-$&89 -$#89 -$$89
Ñ + É

-&&∗ -&#∗ -&$∗
-#&∗ -##∗ -#$∗
-$&∗ -$#∗ -$$∗

Ñ               Eq. (2-10-b) 

 

In the St. Venant regions, the interaction stresses/strains arising to maintain compatibility 

across grain boundaries will be proportional to the St. Venant stress field at that point, as well as 

the distribution of the elastic moduli around the point. Consequently, defining a representative 

volume element becomes problematic, especially in regions with steep St. Venant stress/strain 

gradients. That is, even if one defines an RVE which yields quasi-homogeneous elastic moduli, 

the interaction stresses within such RVEs will be heterogeneous due to the heterogeneity of the St. 
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Venant stresses within. We expect that, when materials consisting of highly anisotropic grains are 

point loaded with large forces, the resulting interaction stresses could be quite high, and 

comparable in magnitude to the St. Venant stresses. Finally, the interaction stresses in the St. 

Venant regions are also self-equilibrating and will integrate out to zero if the integral is taken over 

the entire free-body volume. 

 

2.3- Residual Stresses/Strains: Effects of Plastic Flow 
Plastic flow within the sample under load has two major consequences with regards to 

residual or applied stress/strain fields.  First, plastic flow limits stresses within the yield point, Eá, 

of the material. Second, if the distribution of plastic flow within the sample volume is 

heterogeneous, the load is transferred from the plastically deformed regions to the undeformed 

regions. Consequently, the elastic stress/strain fields in these regions will be different. If the far-

field load on such a system is relaxed subsequent to the (heterogeneous) plastic flow, the mutual 

constraint of the regions with different amounts of plastic flow will cause a heterogeneous residual 

stress field to form within the material. These points are discussed in more detail below. 
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2.3.1- Effects of Plastic Flow – Homogeneous Materials 

 

2.3.1.1- Regions with Uniform Far-field Stresses 

Consider an infinitely long homogeneous isotropic solid cylinder with cross-sectional area 

|A, and volume aA axially loaded in tension, without boundary constraints, to its yield point5, Eá 

and deformed to total (elastic plus plastic) strain -# (Fig. 2.4). It is assumed that the material is 

ideally plastic. For total strain between -& and -#, the local and average stress/ elastic strain tensors 

for any point within the volume can be written as  

GE()H:,3,; = EZ() = ô
0 0 0
0 0 0
0 0 �à

ö                      Eq. (2-11-a) 

G-()H:,3,; = -(̅) = É
−r-$$ 0 0
0 −r-$$ 0
0 0 -$$ ≅

âL
-

Ñ                           Eq. (2-11-b) 

Since all points within the ideal elastoplastic solid bar undergo identical plastic flow, all points 

and all ROIs within the material volume will be stress/elastic strain-free when it is unloaded from 

(Eá , -#) to zero load all points: 

GE()H:,3,; = 〈EZ()〉9 = 0 ;  G-()H:,3,; = 〈-(̅)〉9 = 0                   Eq. (2-12) 

 

 
5 The tensile force acting on the cylinder is &#. 



 

99 
 
 

2.3.1.2- Regions with St. Venant Stresses 

If geometric stress concentrations (Fig. 2.2) exist, local (heterogeneous) yielding can occur 

before the homogeneous regions reach the yield point. Such differential yielding will modify the 

stress distributions in the St. Venant regions.  

GE()H:,3,; = É
E&&89 E&#89 E&$89

E#&89 E##89 E#$89

E$&89 E$#89 E$$89
Ñ + É

E&&∗∗ E&#∗∗ E&$∗∗
E#&∗∗ E##∗∗ E#$∗∗
E$&∗∗ E$#∗∗ E$$∗∗

Ñ            Eq. (2-13) 

Where E()∗∗represents the local heterogeneous stresses due to differential yielding. Furthermore, 

upon full relaxation of the applied load, neighboring regions with different plastic strains can 

mutually constraint each other from achieving their unconstrained (rest) dimensions, resulting in 

local residual stress fields balanced between these regions: 

GE()7H:,3,; = É
E&&∗∗∗ E&#∗∗∗ E&$∗∗∗
E#&∗∗∗ E##∗∗∗ E#$∗∗∗
E$&∗∗∗ E$#∗∗∗ E$$∗∗∗

Ñ               Eq. (2-14) 

These stresses are self-equilibrating over the relevant FBD volume:  

〈EZ()7〉9)* =
∫ Ñs.3

9Ö
5,7,8

[9*)*

[9)*
= 0               Eq. (2-15) 

The final magnitude and distribution of this residual stress field at zero applied load will depend 

on the sample and loading geometries as well as the magnitude and distribution of plastic flow. 
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Figure 2.4: Stress vs. strain curve of a homogeneous isotropic solid showing perfect 
plasticity (no strain hardening). 

        

2.3.2- Effects of Plastic Flow – Polycrystalline Materials 

 

2.3.2.1- Regions with Homogeneous Far-field Stresses 

Plastic deformation (slip) in a single crystal occurs most easily on slip systems comprising 

of close-packed atomic planes along with close-packed crystal directions. Thus, in a 

polycrystalline solid subjected to a far-field load those grains favorably aligned for slip, with the 

maximum resolved shear stress acting on an active slip system, will yield first, causing local stress 

re-distribution. This will modify the local stress distribution such that the total stress tensor at a 

point can be written as: 
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GE()TH:,3,; = É
0 0 0
0 0 0
0 0 ,#

0(

Ñ + É
E&&∗ E&#∗ E&$∗
E&#∗ E##∗ E#$∗
E&$∗ E$#∗ E$$∗

Ñ + É
E&&# E&## E&$#

E&## E### E#$#

E&$# E#$# E$$#
Ñ                              Eq. (2-16) 

Here E()# 	is the stress tensor due to load transfers caused by plastic flow. At static equilibrium, this 

tensor is also self-equilibrating over the relevant free-body diagram. If the plastic deformation is 

randomly distributed among grains, which would be the case for a non-textured solid, the average 

stresses measured over a volume should tend to the far-field stresses acting on the boundaries of 

the FBD once the measurement volume equals or exceeds that of the appropriate RVE. 

E()A = 〈EZ()〉79-# =
∫ qs.3r5,7,8[9*9*:#

99*:#
= É

0 0 0
0 0 0
0 0 ,#

0(

Ñ             Eq. (2-17) 

Heterogeneous distribution of plastic strain among constituent grains of a polycrystalline 

material will also cause an extra residual stress field to form since undeformed grains will constrain 

plastically deformed grains from achieving their “rest” dimensions. The magnitude of this stress 

field, which we denote with  E()##, will increase during unloading as E()A  decreases, and can cause 

reverse yielding in most of the material before the material is fully unloaded to E()A = 0.  The 

Bauschinger effect,  the lowering of elastic limit in compression observed in materials deformed 

in tension beyond the elastic limit, is due to such residual stresses [103].  

Once the system is unloaded, local residual stresses balanced between grains with different plastic 

strain fields will exist: 

GE()H:,3,; = É
E&&## E&### E&$##

E&### E#### E#$##

E&$## E#$## E$$##
Ñ                     Eq. (2-18) 
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In the fully unloaded case,  stresses averaged over the total volume of the sample, over the 

appropriate a79-%%   if the sample volume is large enough, as well as averaged across any sample 

cross-section, must be equal to zero. 

 

2.3.2.2- Polycrystalline Regions with St. Venant Stresses 

This configuration results in the most complicated residual distribution. Due to the 

presence of end effects and/or stress concentrators such as cracks or voids, the applied stress 

distribution is inhomogeneous in the sample volume. In addition, the heterogeneous distribution 

of elastic moduli will cause a heterogeneous distribution of interaction residual stresses. The 

superimposition of these stress fields, coupled with the heterogeneous distribution of active slip 

systems will cause a complicated distribution of local yielding and resultant load shedding. During 

unloading a self-equilibrated residual stress field will be set up between the yielded and unyielded 

regions. The final magnitude and distribution of this residual stress field at zero applied load will 

depend on the sample and loading geometries, size and orientation distribution of the grains, as 

well as the magnitude and distribution of plastic flow.   

 

2.4- Revised Definitions for Diffraction Stress Analysis 
The discussion so far has shown that heterogeneous distribution of elastic and/or plastic 

strains within a region of interest can cause complicated residual stress/strain profiles. While the 

residual stress tensor can be obtained for all cases from Hooke’s law if the elastic lattice strains at 

a geometric point could be obtained, this approach might not always be feasible if the measured 

strains are averages that are taken over volumes which contain non-monotonic stress/strain 
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gradients. If the volume over which such an average taken is systematically selective-such as 

diffraction where only grains satisfying Bragg’s law are sampled-obtaining the stress tensor in the 

ROI from measured average strains becomes complicated.  In such cases selection of a useful 

measurement volume within an ROI requires, in addition to the averaging process employed by 

the particular measurement technique, a priori knowledge of the stress distribution such as those 

caused by end effects, plus the representative volume element for the microstructure of the material 

under investigation. The average stresses reported from such ROI must be defined in a manner that 

conveys information about these factors. In what follows we provide a set of revised definitions 

for this purpose. 

 

2.4.1- Microstress 

Strictly defined microstresses are total stresses acting at a point within an ROI. In terms 

of diffraction based measurements, these stresses are computed from strains measured from or 

within a single grain. Thus, x-ray diffraction based microstresses are average stresses. For 

homogeneous samples, such as a large single crystal, we assume the diffraction volume is much 

smaller than the size of the ROI, and the ROI size is small compared to the steepness of the stress 

gradients within the specimen. For polycrystalline specimens, it is assumed that the grain size is 

much smaller than the size of the specimen.  For both cases, the volume from which lattice strains 

are obtained has homogeneous elastic moduli, :()*+ , such that the stress tensor can be computed 
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from Hooke’s law. The average microstress tensor reported for such small domains might contain 

contributions from all possible sources such as end effects and/or Heyn stresses6. 

 

2.4.2- Macrostress 

We define macrostresses as the average stresses within a measurement volume 

wherein the measurement technique has sampled sufficient volume so that all self-

equilibrating stresses (i.e. Heyn stresses) have been averaged out. Consequently, the 

macrostress tensor will tend to the far-field stresses acting on the boundaries of the free-body 

diagram of the ROI.  

For ROIs which are homogeneous with respect to material properties and stress 

distributions, the residual macrostress tensor for all volume subsets, a( ≥ a7UV , will be equal to 

the far-field stress tensor: 

〈E().〉9. = E()A                    Eq. (2-19) 

For polycrystalline materials with no preferred orientation, macrostresses are defined for 

volumes which are equal to or larger than the representative volume elements7 within the ROI.  

Consequently, the material within the FBD is assumed to be an equivalent isotropic material 

 
6 We use the term Heyn stresses and strains, to denote self-equilibrating heterogeneous stress/strain fields arising 
from all causes discussed previously. 

7 For smaller volumes, the interaction stresses due to heterogeneous distribution of elastic constants and/or plastic 
deformation will be finite. 
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with (effective) Young’s Modulus and Poisson’s ratio, qZ and r̅ , respectively8. Representative 

volume elements in the free-body diagram of the real system are mapped onto points within the 

equivalent isotropic material (Fig. 2.5). In this case, the standard elasticity analysis described in 

Chapter 2 for isotropic materials with homogeneous strain and stress fields, can be used directly: 

(-$$% )!" =
[@+G[(

[(
= [-&& cos# , + -&# sin 2, + -## sin# , − -$$] sin# % +	[-&$ cos, +

-#$ sin,] sin 2% + -$$                Eq. (2-20) 

-$$% = [@+G[(

[(
= b&SW

-
c [E&& cos# , + E&# sin 2, + E## sin# , − E$$] sin# % + b

&SW

-
cE$$ −

bW
-
c (E&& + E## + E$$)                       Eq. (2-21)  

Thus, for such averages, strains obtained from diffraction data for various tilt angles,  -*+%  vs. 

"#$# %,  should exhibit regular behavior (Figs. 2-6-a & b) and the stress terms can be obtained 

using the formalisms discussed before. 

 

 
8 These terms are obtained from averaging single crystal elastic constants over all crystal orientations. 
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Figure 2.5: Transformation of a random polycrystalline FBD (a) composed of anisotropic 
grains with moduli, µabãå, (c), A collection of such grains yield a representative volume 

element, RVE with moduli E, n  (b), and a collection of RVE form the FBD of the 
equivalent isotropic material (EIM). In both the RVE and the EIM the stresses, elastic 
strains, and elastic moduli are homogeneous; and RVE in the polycrystalline FBD is 

represented by a point in the EIM. 

 

2.5- Representative Volume Definition for Diffraction Techniques 
In the case of diffraction techniques which utilize Eqs. (2-20 & 21) definition of the RVE 

is complicated. Due to the selectivity of diffraction, a different set of grains are selected at each 

%–tilt. Following [74], we term these í–volumes, Öu. For Eq. (2-20) to apply, the average strains 

in the sample coordinate system,  -(̅), must be identical in each and every a"	utilized in the 

experiment. For this case, a necessary (but not always sufficient) condition is the equality of 

average elastic moduli of all  a". A schematic free-body diagram of the representative-volume 

element for a particular a" of a particular reflection hkl, def9+
D*+ ,	extracted from the irradiated 
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volume of the random polycrystalline specimen is shown in Fig. 2.5.  The distributed stresses 

acting on the boundary of the def9+
D*+ are assumed to be the same as the far-field stresses acting 

on the random polycrystalline FBD.  Since all of the grains in def9+
D*+ , diffract into the hkl 

reflection at the particular %–tilt, they all have one member of the <hkl> family of directions 

parallel to the laboratory axis 2$ ≡ 2!,".  Thus the elastic moduli along this direction can be 

computed from single crystal elastic moduli. The crystallographic orientations of the grains in the 

plane normal to <hkl>: along 2&, 2#  at the particular tilt and rotation angles,	,, %, are not specified 

by diffraction.  For all def9+
D*+ extracted from a non-textured polycrystalline solid, it is reasonable 

to assume that all crystallographically allowable directions are equally represented. Consequently, 

we can assume that, for such conditions, the elastic moduli of all a" will be identical, including at 

, = 0,% = 0 where the sample and diffraction coordinate systems coincide.  If the average elastic 

moduli of all a"	are identical, Hooke’s law requires that all -(̅) are also identical, and a diffraction 

measurement will yield regular -$$	%  vs. "#$#% plots. 

 

2.5.1- Oscillatory Äww	%  vs. èêëví Plots and Pseudo-Macro Stresses 

If the average strains in the sample coordinates vary non-monotonically with %–tilt 

oscillations in -$$	%  vs. "#$#% plots will occur.  In the absence of St. Venant stress fields, which is 

the case we are examining here, such variation can occur for several reasons: 

1) The same far-field stress acts on all grains for the a", but the elastic moduli of individual 

a" are different due to texture or incomplete sampling, the -(̅) for elastically stiff  a" will 
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be different than those for more compliant %–volumes, resulting in oscillatory  -$$	%  vs. 

"#$#% plots. 

2) Consider an RVE with no far-field stress, unloaded after suffering plastic flow. In this case, 

the grains belonging for a particular a" might have suffered more plastic deformation 

compared to other grains within the RVE this might be due to the favorable orientation of 

their slip systems for the particular %–tilt. Consequently, this population would have higher 

elastic constraints from surrounding undeformed or less deformed grains, and the average 

stresses in the sample coordinates, -(̅) , will be different for different a" . This will also 

result in oscillatory  -$$	%  vs. "#$#% plots. 

We note that there might be cases where all a" sampled during a diffraction experiment 

might possess comparable average plastic strain fields, 〈-(̅)H 〉D*+, where this plastic strain is different 

than the plastic strains in grains scattering into other reflections. In this case, the average elastic 

strains arising to constrain the heterogeneous plastic flow in the RVE will be equal to 

〈-(̅)
⋕ 〉D*+within all a" of the particular reflection. This will result in regular (linear or % –split) -$$	%  

vs. "#$#% plots. In this case the stresses are balanced between grains of different reflections and/or 

different phases (for a multiphase alloy) and mechanical sectioning of the RVE would yield no 

macro-residual stresses.  Consequently, we define pseudo-macro stresses for a reflection hkl as 

the stress state where:  (1) There is no far-field stress; (2) The -$$	%  vs. "#$#% plots exhibit regular 

(linear or % –split) for % –tilts used in the experiment. The presence of pseudo-macro stresses for 

one reflection hkl does not imply that all reflections have pseudo-macro stresses. The overall stress 

state might be balanced by other grains or grain boundary regions. The pseudo-macro stress field 
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is NOT a stress field in Cartesian space. It refers to diffraction selected volumes,  a"D*+, which are 

discontinuous in real space. Consequently, such “stresses” do not have to obey the standard 

equations of equilibrium since one cannot draw a continuous cross-section through the RVE such 

that it only contains cross-sections of a"D*+ .  

 

2.6- Summary 
Based on solid mechanics, three kinds of stresses were defined: 

a) Local stresses: The total stress tensor which exists at a point. Local stresses will have 

contributions from applied loads and Heyn stresses arising from elastic and plastic 

incompatibility. If the sample has stress concentrators such as void or cross-sectional 

changes, the far-field stress field which would exist in an equivalent homogeneous sample 

will be modified. These modified stresses are called St. Venant stresses.  

b) Average stresses: These are averages of local stresses over a given volume. Their value 

depends on the size and type of the sampling volume.  Diffraction measurements always 

yield average lattice strain/stress values. Linking these to the stress state existing in an ROI 

requires a priori knowledge of the microstructure of the material and its previous 

deformation history. 

c) Pseudo-macro stresses:  These are a particular type of average stresses. They cannot be 

referred to as a continuous volume in Cartesian space even though they yield regular -$$	%  

vs. "#$#% plots.  
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The Bragg selectivity of the diffraction process makes the separation of these various stress 

types very complicated. Decomposing experimental values into the particular stress types and 

identifying the volumes to which they refer is an ill-conditioned inverse problem [104]. We 

decided to use finite element analysis for a rigorous simulation of such decomposition since our 

previous attempts [105, 106, 74] were not comprehensive. This effort is discussed in the remaining 

chapters. We will start by describing the modeling procedures we used. 
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3- MODELING PROCEDURE 

 

3.1- Introduction 
Our discussion in the previous sections showed that continuum elasticity assumptions are 

not necessarily satisfied in polycrystalline aggregates analyzed by diffraction methods.  This is 

due to the selective nature of the diffraction: not all possible grain orientations are present in the 

measurement volume and different measurement volumes may yield different results even in 

utilizing the same reflections [107]. The transformation of the average strains measured in the 

laboratory coordinate system into stresses in the sample coordinate system is not a trivial task and 

requires a lot of assumptions whether the experimenter uses stress or strain as a starting point of 

the transformation. In cases where the experimenter wants to determine the strain/stress state of a 

particular grain (microstresses), average strains should be measured from individual grains and 

utilized with elastic moduli to compute stresses using Hooke’s law. This can be accomplished 

using 3D diffraction imaging where strain from individual grains can be collected however, this 

method is time-consuming, complicated, and requires expensive purpose-built optical and 

software systems [108, 109]. 

To search for answers to the questions asked at the end of chapter two, we used finite 

element modeling. This approach provides both local and global stress and strain information at 

all locations of a virtual specimen. Thus, we avoid dealing with only average strain quantities and 

the associated inverse problem. In literature, there have been some efforts to simulate a diffraction 

experiment on a virtual specimen under different loading regimes [74, 106, 105]. However, these 

efforts were limited and did not answer a lot of the key issues. 
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In this study, we employed two state-of-the-art finite element codes, ABAQUS CAE [110] 

and Finite Element Polycrystal Plasticity (FEpX) [111] for different kinds of numerical 

simulations. First, to investigate St. Venant’s effects under ideal conditions, we utilized a thermally 

loaded homogeneous isotropic composite system with spherical symmetry. Second, to understand 

the nature of elastic Heyn strains and the strain partitioning in single and multiphase 

polycrystalline materials, we modeled a virtual thin film sample under thermal loading where the 

boundaries were constrained. In both cases, thermal loading was chosen instead of mechanical 

loading since, in cubic materials, the coefficient of thermal expansion is isotropic. Both of these 

simulations were performed in ABAQUS CAE.  Finally, to simulate in-situ diffraction tensile tests 

on single and multiphase materials loaded into the plastic regime and unloaded, we used the FEpX 

code which has an advanced single-crystal plasticity module. In this chapter, we will present the 

particulars of setting up and executing the models for the above three cases. 

 

3.2- St. Venant’s Stresses in a Homogeneous Isotropic Sample 
To investigate the development of St. Venant’s stresses in homogeneous isotropic material 

systems, we developed a simple model to investigate the stresses caused by the thermal expansion 

of a spherical inclusion inside a spherical shell. A schematic of the system is shown in Fig. 3.1.   

The thermal expansion was input by pre-defined field modules [110]. The whole sample 

system was heated to 100°C. Plastic deformation is not allowed in the system. For all contact 

surfaces, tie-constraint was defined to prevent sliding of the inclusion with respect to the shell. The 

composite model does not have prescribed displacement or rotation boundary conditions, but 

rather equation constraints that instead define a relation between two points to impose symmetry 
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conditions. Equation constraints allow the inclusion and the matrix to deform symmetrically and 

prevent global displacement of the composite system. The material properties specified using 

Handbook data are listed in Table 3.1. 

During model execution the C3D8R (8-node linear brick with reduced integration), 3D 

mesh element, was tried at first, to save computation power.  However, this approach created 

resolution problems at the interface. Then the mesh was converted to C3D20 (20-node linear brick) 

elements to discretize all of the components to obtain a satisfactory level of spatial resolution at 

the interface. Several mesh sizes were tested to minimize any effects of mesh-size dependency. 

For an inclusion having a 5 mm radius and a matrix shell with a 50 mm radius, a mesh size of 0.5 

mm was employed within the interface between the inclusion and the matrix to capture the large 

stress gradients. (grey area in Fig. 3.1). The mesh size in the central part of inclusion is 0.3 mm 

(green region in Fig. 3.1) and a coarser mesh (red region in Fig. 3.1), 2mm, was used within the 

central region of the matrix for the same system since the effect of large stress gradients is not 

observed in this part of the matrix. The final model contains more than 50,000 elements. 

Calculations are converged approximately 12 hours on a workstation when the system is fully 

elastic. 
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Table 3.1: Mechanical and thermal properties of the components along the loading axis. 
The mechanical parameters of steel, aluminum alloy, copper, and tungsten were obtained 

from the Metals Handbook, [112, 113]. 

 
Young’s 
Modulus 
E / GPa 

Poisson’s 
Ratio 

n 

Shear 
Modulus 
G / GPa 

Yield Strength 
sy / MPa 

Room-
temperature 

CTE /  
10–6/ °C 

1018 Carbon Steel (Fe) 200 0.29 78 ~ 370 (tensile) 12.5 
Aluminum Alloy 6061 (Al) 69 0.33 26 ~ 270 (tensile) 23.6 

Copper (Cu) 115 0.31 44 ~ 235 (tensile) 17.3 
Tungsten (W) 400 0.28 156 ~ 750 (tensile) 4.4 

 

 

 

Figure 3.1: Schematic diagrams of the FEM model for rInc = 5 mm and RMat = 50 mm (The 
different mesh sizes are delineated by color). 
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3.3- Thermal Expansion of Single and Multiphase Materials under Constraint 

 

In this study, we used numerical simulation is used to construct a self-consistent model of 

x-ray stress/strain analysis in order to investigate the origin of elastic Heyn stresses/strains in a 

homogeneously loaded region where St. Venant’s stress fields were minimized. 

 

3.3.1- Grain Definition and Mesh Geometry 

In this model, we constructed a polycrystalline thin-film specimen, one single grain thick, 

wherein the orientation and the location of the individual anisotropic crystallites were exactly 

known. All grains were randomly distributed in a mesh generated using ABAQUS CAE. In the 

single-phase model, 400 hexagonal crystallites are arranged in a 20 x 20 x 1 matrix (Fig. 3.2). To 

increase the sampling statistics, in the multiphase model 676 hexagonal crystallites are arranged 

in a 26 x 26 x 1 matrix. We used hexagonal prism-shaped grains to increase elastic grain-to-grain 

interactions. These hexagonal grains were complemented by partial grains (shaded gray) at the 

edges to obtain a smooth boundary. These edge grains were defined to be elastically isotropic.  

 



 

116 
 
 

 

Figure 3.2: Top view of ABAQUS mesh containing 400 anisotropic grains with isotropic 
edge (and corner) grains.  

 

All of the interior crystallites were defined to be fully anisotropic. C3D20 (20-node linear 

brick) elements with a mesh size of 0.5 mm were used to discretize these crystallites. All grain 

surfaces were connected with tie-constraints. In addition, equation constraints were defined to 

prevent the global displacement of the model. To induce thermal expansion step-wise 

homogeneous thermal loading and unloading steps were applied over the entire mesh as predefined 

temperature fields (Fig. 3.3). Since the coefficient of thermal expansion is isotropic in cubic 

materials, symmetrically distributed constraints were introduced at the boundaries to create both 

far-field stresses in the film and resultant interaction (Heyn) stresses between crystals. These 

boundary conditions were defined such that the mesh could only expand out of the film plane. In 
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other words, the mesh was placed under (compressive) far-field plane-stress conditions. This 

served two purposes: (1) It maximized the interaction stresses between crystals and (2) For an 

isotropic material the problem could be solved analytically as well. 

 

 

Figure 3.3: Step-wise thermal loading and unloading of the numerical model. 

 

3.3.2- Definition of Grain Orientations 

We used the approach and programs developed by Song [107] to calculate the 

crystallographic directions coincident with the axes of the sample coordinate system for crystallites 

that would diffract with a particular reflection (hkl) for various % angles between 0 and 90 degrees. 

This procedure is as follows: 

A general unit cell was shown in Fig. 3.4 where ∂, ∑	∂ëé	∏ are the lattice vectors and ∞,

π	∂ëé	∫ are the angles between lattice vectors. When ∂, ∑	∂ëé	∏ vectors are equal to each other 

and the angles ∞, π	∂ëé	∫ are equal to 90º  the resultant unit cell is called a cubic cell.  
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Figure 3.4: Illustration of a general unit cell with three basis vectors, ∂, ∑	∂ëé	∏. 

 

In cubic structures, the cartesian crystal frame, shown in Fig. 3.5, is parallel to the cubic 

unit cell. However, this is not the case for non-cubic structures. In this thesis, we will not go into 

the conversion of non-cubic structure basis vectors to cartesian crystal frame. These calculations 

can be found in the literature [114].  
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Figure 3.5: The relationship between basis vectors and cartesian crystal coordinates.   

 

In a diffraction experiment, four different coordinate systems are necessary to fully define 

the orientation relationships between the sample, diffracting grains, and the diffractometer. With 

the relationships between all of the axes, the diffracting set of planes can be predicted for a given 

specimen orientation.  Sample axes denoted as 5⃗( 	where #	 ∈ (1,3) or z,y,x defines the sample 

orientation with respect to the diffraction process and the loading direction if any. In our case, the 

loading direction is assumed as 5⃗& ≡ ~. Grain axes define the crystal axes which are coincident 

with the sample axes for a given grain. Suppose that a hypothetical material consists of “M” grains. 

The g⃗(
) , 	#	º(1,3), Ω	º(1,\) coordinates are specific to the grain defined by the index j. g⃗(

) which 
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is parallel to the 5⃗( are the crystal directions. g⃗(
) = â;⃗(

) , <3⃗ (
) , =(

)ä where ;⃗(
) , <3⃗ (

) , =(
) are the indices of 

the crystal directions in the jth grain along 5⃗( (Fig. 3.6).  

The grain axes, g⃗(
), are related to the crystal axes 〈ℎ00〉 through crystal symmetry. The 

angles, shown in Fig. 3.7, æ, 	ø, 	¿ between g⃗(
) and unit cell axes, 〈ℎ00〉 are defined by vector 

algebra: 

[00ℎ]. g⃗$
) = ¡                 Eq. (3-1-a) 

[0ℎ0]. g⃗#
) = ¬                 Eq. (3-1-b) 

[ℎ00]. g⃗&
) = ?                 Eq. (3-1-c) 
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Figure 3.6: Hypothetical material consisting of grains whose crystal axes are parallel to the 
sample coordinates. 

 

These are needed to compute the elastic modulus for the g⃗(
) coordinate system through the 

fourth-rank tensor transformation rule. In addition, the Schmid factors of each grain which are 

necessary for plastic deformation can be calculated. 
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Figure 3.7: The relationship between grain, sample and, crystal coordinate systems.   

 

At this point, laboratory axes (diffractometer axes) in which diffraction takes place 

should be introduced. These are defined with respect to sample axes. Here incident and transmitted 

beam vectors, h3⃗ A, h3⃗ 4 are defined in the sample coordinate system, 5⃗(. The orientation of the sample 

with respect to  h3⃗ A is adjusted to obtain diffraction from a particular reflection (hkl) of a particular 

(jth) grain. In the diffraction condition, the angle between the crystal direction [hkl] and h3⃗ A is called 

the complementary Bragg angle, 
Ä

#
− iX. Then a diffracted beam, h3⃗ [ , forms. From the Laue 

conditions, h3⃗ A, h3⃗ [ , h3⃗ 4 and [ℎhì] has to be co-planar and the angle between h3⃗ [ 	;$!	h3⃗ 4 is 2iX (Fig. 

3.8-a). The orientation of 5⃗( with respect to [ℎhì] is defined by the Euler angles, ,,% (Fig. 3.8-b). 
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Since the crystallographic orientation of the (jth) grain in 5⃗( is fixed by the crystal directions g⃗(
) =

â;⃗(
) , <3⃗ (

) , =(
)ä, ,,% can be computed from vector algebra, assume that , = 0: 

cosG90 − %)H =
D20

3S*ç0
3S+50

3

√D'S*'S+'è20
3'Sç0

3'S50
3'

             Eq. (3-2-a) 

g# = [ℎhì]	u g&                     Eq. (3-2-b) 

g$ = g#	u g&                      Eq. (3-2-c) 

Consequently, for each (jth) grain in the diffraction condition for a particular (hkl) reflection, there 

is a specific set of orientation angles, ,), %).  

For a polycrystalline sample, multiple grains, \!,"
P , can be in the diffraction condition for 

a given set of Euler angles, ,), %). We define the laboratory axes 23⃗ ((,, %)	iº(1,3) as the global 

diffraction coordinate system for all \!,"
P . For all of these grains, the normal of the family of 

diffracted (jth)  grain, ⟨ℎhì⟩), is parallel to the 23⃗ $. Therefore, these grains form a set with virtual 

fiber texture, with texture axis (hkl). However, for each such grain, the crystal directions along 

g⃗(
) = â;⃗(

) , <3⃗ (
) , =(

)ä are different.  

In the present study, these calculations were carried out for (200), (222), and (420) 

reflections for eight % angles between 0 and 90 degrees. In general, four to eighteen grains at each 

% tilt were defined. Then, all of these grains were placed randomly through random number 

generator in the mesh. First of all, all chosen grains for the simulation were listed starting from 

200-ψ-0 to 420-ψ-71.57 and then each grain was assigned to a random number between 1 and 400. 

Secondly, a second random number generator in the form of a 20 x 20 box was utilized to 
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determine the position of the grains in the mesh by assigning numbers between 1 to 400. Finally, 

the designated “jth” grain was placed into the  “jth” position in the mesh. 

To check the randomness of the mesh, stereographic projection of the grains that belong to 

(200) reflection was shown in Fig. 3.9. The r axis represents the % angle and the theta axis shows 

the grains having different orientations around 200 reflections. Grains at all ψ-ensembles are 

distributed homogeneously around the theta axis.  

 

 

Figure 3.8: a) Schematic of diffraction geometry with a) the sample axes b) laboratory axes.  



 

125 
 
 

 

Figure 3.9: Stereographic projection of the 200 grains placed in the mesh of finite element 
modeling. 

 

3.3.3- Material Constants Calculations 

Precise calculation of stress values from the strains measured via diffraction requires the 

knowledge of Young’s Modulus, E, and Poisson’s ratio, ν, for specific orientations within the 

crystallographic plane defining the surface of the thin films. Therefore, in order to obtain stress 

values, elastic constants must be defined with respect to sample axes, 5⃗(. The modulus of elasticity 

for an arbitrary crystallographic direction hkl, is given by: 

qD*+ =
&

80000
N                     Eq. (3-3) 
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Where the compliance is defined in the sample coordinate system, 5⃗( and can be calculated from 

the tensor transformation as shown: 

5&&\ = 5&&&&\ = ;(Q;)1;*O;+C5Q1OC	(#, Ω, h, ì = 1; ;$!	O, $, ∆, ¡ = 1,2,3)            Eq. (3-4) 

After changing the tensor notation suffixes into the matrix notation ones [50] and getting rid of the 

zero components due to thermodynamics and symmetry, the equation becomes: 

&

-O4/
= 5&&\ = 5&& − 2 ´(5&& − 5&#) −

8PP
#
¨ (;&&# ;&## + ;&## ;&$# + ;&$# ;&&# )            Eq. (3-5)  

Where one needs three independent variables in compliance matrices and direction cosines in order 

to define Young’s Modulus of an individual crystal. Compliance matrix  

(5&&\ , 5##\ , 5$$\ , 5&#\ , 5&$\ , 5#$\ ) can be calculated by using the similar formula: 

5&#\ = 5&# − ´(5&& − 5&#) −
8PP
#
¨ (;&&# ;#&# + ;&## ;### + ;&$# ;#$# )	            Eq. (3-6) 

5&$\ = 5&$ − ´(5&& − 5&#) −
8PP
#
¨ (;&&# ;$&# + ;&## ;$## + ;&$# ;$$# )             Eq. (3-7) 

The Poisson’s ratio (ν) for an anisotropic crystal varies with orientation as follows: 

r&# = − 80'
N

800
N                  Eq. (3-8-a) 

r&$ = − 802
N

800
N                  Eq. (3-8-b) 

Where r&# and r&$ are the Poisson’s ratios along orthogonal axes perpendicular to the longitudinal 

stress direction. 
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Since the crystallographic orientation of the (jth) grain in 5⃗(, g⃗(
) = â;⃗(

) , <3⃗ (
) , =(

)ä is known the 

effective elastic constants of individual crystals can be calculated by converting the (Eq. 3-5): 

&

-)QQ⃗ 0
= 5&&% = 5&& − 2 ´(5&& − 5&#) −

8PP
#
¨ q20

'ç0
'Sç0

'50
'S50

'20
'r

q20
'Sç0

'S50
'r
'                        Eq. (3-9)  

Here 5&&, 5&#, 5�� are the three independent elastic compliances of the crystal if we assume the 

crystal is cubic [50] and 5&&%  is defined in the specimen coordinate system for a particular grain. 

The rest of the elastic constants of the grain in the sample axes can be evaluated in the same way. 

With g⃗(
) = â;⃗(

) , <3⃗ (
) , =(

)ä, the Schmid factor of each crystal can be calculated as well. 

 Two different ways exist to define orientation and materials constants for each crystal in 

ABAQUS CAE. The first way is by altering the g⃗(
) = â;⃗(

) , <3⃗ (
) , =(

)ä to Euler angles (any convention). 

This enables the user to define same materials constants (5&&, 5&#, 5��) for each crystal. A 

subroutine can be employed to introduce Euler angles. The second approach is much easier: since 

we have the elastic constants of each grain in the sample axes, these can be introduced to the 

simulation directly as anisotropic crystal properties in the sample (model) coordinates. We used 

this (second) the second approach in our ABAQUS CAE calculations.  

 

3.4- Elastoplastic Loading of Single and Multiphase Polycrystalline Materials 

For this model, we used the Finite Element Polycrystals (FEpX) modeling framework of 

Dawson and Boyce for simulating the mechanical loading of single/multiphase polycrystalline 

materials due to its ease of use and proven applicability [111]. With this framework, the 



 

128 
 
 

mechanical behavior of polycrystalline solids can be simulated. Complete descriptions of FEpX 

can be found in references [115, 116, 111].  

 In these models, virtual polycrystalline samples containing approximately 600,000, 10-

node tetrahedral elements for single-phase materials and 1000,000, 10-node tetrahedral elements 

for multiphase materials were constructed using Romain Quey’s Neper code [117] which builds a 

Voronoi construction of the domain to define grains and then discretizes the grains into the finite 

elements. The single-phase Cu and W models had 1500 grains. The two-phase Cu – W system had 

2500 grains, equally distributed between Cu and W. The initial model dimensions (Fig. 3.10) were 

1 mm x 1 mm x 3 mm9.  

 We determined the average grain size and nearest number of grains in the model by taking 

XY and YZ cross-sections and performing a basic stereological analysis. The grain size for the 

two-phase model was approximately .08±.01 mm, with each grain having 8±1 nearest neighbors. 

In addition, the grain size for the single-phase model was around .12±.02 mm, with each grain 

having 7±1 nearest neighbors.  More details about these calculations will be presented in the results 

section.  

 
9 While we use metric units as a convenience, these values are really defined as FEpX model units.  
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Figure 3.10: Phase and grain distributions for the copper-tungsten virtual composite. For 
the phase distribution, red indicates copper; blue indicates tungsten.  
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The evolution of the slip system strengths was modeled with a modified Voce type 

hardening law:  

j̇ê = ℎA b
ëN(í̇)Gë

S

ëN(í̇)Gë(
c
1F

k̇             Eq. (3-10-a) 

j\(k̇) = j& b
í̇

í̇N
c
QF

;$!	k̇ = ∑ |k̇ê|ê             Eq. (3-10-b) 

Where jA,	j&, k̇, k̇\,	ℎA,	O% and $% are initial slip system strength, reference value of saturation 

strength, fixed-state strain rate scaling coefficient, saturation strength strain rate scaling 

coefficient, strength hardening rate coefficient, saturation strength rate scaling exponent, and 

power on modified Voce hardening term. The single crystal compliance constants (5&&, 5&#, 5��) 

are converted into the stiffness constants (:&&, :&#, :��). 

The grain orientations calculated for individual crystals can be implemented FEpX in the 

form of Euler angles. Thus, Euler angles are obtained from grain orientations with three steps for 

each grain: 

a) The rotation matrix is calculated for each crystal from the dot product of sample basis axes 

(:⃗(*) and grain orientations (g⃗(*) in the normalized form as shown: 

n3⃗ () = :⃗(* . g⃗(* = î
1 0 0
0 1 0
0 0 1

ñ

⎣
⎢
⎢
⎢
⎢
⎢
⎡

20

è20
'Sç0

'S50
'

ç0

è20
'Sç0

'S50
'
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è20
'Sç0

'S50
'
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è2'
'Sç'
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'Sç'

'S5'
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è2'
'Sç'
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'Sç2

'S52
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⎥
⎥
⎥
⎥
⎥
⎤

          Eq. (3-11) 

 



 

131 
 
 

b) The generalized rotation matrix can be written in the form of three Euler angles 

representing the rotation around three axes (,, i, %): 

n3⃗ () = î
n&& n&# n&$
n#& n## n#$
n$& n$# n$$

ñ                        Eq. (3-12-a) 

!"⃗ %& = %
cos ) cos* sin ) sin- cos* − cos- sin* sin ) cos- cos* + sin- sin*
cos ) sin* sin ) sin- sin* + cos- cos* sin ) cos- sin* − sin- cos*
−sin ) cos ) sin- cos ) cos-

0   Eq.(3-12-b) 

c) The Euler angles can be evaluated by solving the rotation matrix with a software package; 

in this research, MATLAB was used. We note that in FEpX, Kocks’ convention of Euler 

angles (rather than the more common Bunge convention) must be used [118]. 

The loading mode was designed to replicate a tensile test in which the grips of the tensile 

tester hold the sample. Consequently, the stress fields in the material close to both grips should 

contain St. Venant stresses, while the free-body diagram of the mid-section of the material should 

have uniform tensile stresses distributed at its lateral boundaries.  The simulation was performed 

in displacement control where the sample was loaded at a constant macroscopic strain rate (-̇). 

The strain rate can be calculated from the velocity which is the input in FEpX as follows: 

-̇ = [_

[4
= &

î(

[î(4)

[4
= W(4)

î(
                Eq. (3-13) 

 

3.5- Summary 

In this chapter we described the finite element programs we used to study the distribution 

of stress/strain in (1) homogeneous solids with St. Venant stress fields, (2) Polycrystalline 
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materials under elastic load with only elastic interaction stresses, and (3) single-phase and two-

phase polycrystalline materials which were loaded into the plastic regime and then relaxed. These 

last sets of models were used to study the formation of both elastic interaction strains as well as 

residual stresses due to the distribution of heterogeneous flow. In the following chapters, these 

results will be described, [119].  
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4- ST. VENANT AND FAR-FIELD STRESS FIELDS IN AN 

IDEAL SYSTEM 

 

Based on our discussions presented in chapters 2 and 3 we decided to test if it is possible 

to identify residual stress fields in a model sample using our expanded definitions and see if we 

could define useful representative volume elements for virtual measurements in such a sample. 

While there have been efforts to compute the sizes of a79-, employing both analytical and 

numerical approaches [120, 121],  extension of these approaches to measurement volumes, a. , 

for diffraction experiments are not available. Further, due to the complexity of most models, a 

simpler approach might enjoy better usage for the specification of a. for diffraction experiments. 

In what follows, we investigate the applicability of St. Venant’s principle in specifying a. for the 

stress fields arising in a quasi-homogeneous sample using analytical and numerical approaches. 

Our ideal model consists of a spherical inclusion embedded in a spherical shell of a different 

material (Fig. 4.1 & Fig. 3.4) where the inclusion and the shell have different coefficients of 

thermal expansion. For this system, both analytical and numerical solutions can be used to evaluate 

stress fields. 

 

4.1- Material Definition 
We considered Fe (Steel), Al alloy, Cu, and W (Table 4.1) as the materials for 

inclusion/shell models. For simplicity, we assumed that (1) both the inclusion and the shell are 

isotropic, with elastic moduli and coefficients of thermal expansion, q( , r( , 9(, with i=m for the 

shell, and i=p for the inclusion, respectively, and (2) separate diffraction peaks can be measured 
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from both components. To maximize the tangential stress at the interface and to increase the 

hydrostatic stress exerted on the inclusion by the shell, the difference between the coefficient of 

thermal expansion and Young’s Modulus between the inclusion and the shell must be large. 

Consequently, we chose Al – Fe, Cu –W, and Al – W as the ideal pairs for our study, with the 

second (higher CTE) material as the shell. Thus, the inclusion expands more than the shell during 

heating. 

 

 

Figure 4.1: Spherical Eshelby inclusion in a finite spherical shell. 

 

Table 4.1: Mechanical and thermal properties of the components along the loading axis. 
The mechanical parameters of steel, aluminum alloy, copper and tungsten were 

obtained from the Metals Handbook, [112, 113]. 

 
Young’s 
Modulus 
E / GPa 

Poisson’s 
Ratio 

n 

Shear 
Modulus 
G / GPa 

Yield Strength 
sy / MPa 

Room-
temperature 

CTE /  
10–6/°C 

1018 Carbon Steel (Fe) 200 0.29 78 ~ 370 (tensile) 12.5 
Aluminum Alloy 6061 (Al) 69 0.33 26 ~ 270 (tensile) 23.6 

Copper (Cu) 115 0.31 44 ~ 235 (tensile) 17.3 
Tungsten (W) 400 0.28 156 ~ 750 (tensile) 4.4 
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4.2- General Analytical Solution of Spherical Eshelby Inclusion in a Finite 

Spherical Shell 

In this part, the equations of average and position-dependent stress fields for a spherical 

Eshelby inclusion are presented10. To calculate stress fields within metal shell we make the 

following assumptions: 

a) The shape of the inclusion is unchanged during heating. Consequently, the strain and stress 

in the enclosed inclusion will be uniform per the Eshelby formulation. 

b) There is no yielding in either component. 

All internal stresses existing in a free body at equilibrium, with no body forces or surface 

tractions applied at the surfaces, must obey the following differential equations:  

E(),) = 0                 Eq. (4-1-a) 

E() 	. $) = 0                 Eq. (4-1-b) 

From Eq. (4-1-a & b), it can be shown that the average of any stress over the whole body (V) is 

zero [2]: 

∫ E()!a = 0
9

                    Eq. (4-2) 

It should be pointed out that Eq. (4-2) is valid if and only if Eqs. (4-1-a & b) are satisfied. It can 

be shown by applying integration by parts to Eq. (4-2) and with x the distance coordinate in the j 

direction. 

 
10 These equations will also apply to composite materials where all neighboring inclusions are non-interacting with 
non-overlapping stress fields. 
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∫ E()!a9
= ∫ E(*$*u)!58

− ∫ E(*,*u)!a9
                Eq. (4-3) 

Where S is the surface of the body. The first integral on the right side is over the S at which 

E(* 	. $* = 0, Eq. (4-1-b), and the second integral is zero over the V where E(*,* = 0, Eq. (4-1-a). 

For a two-phase material, in our case a spherical Eshelby inclusion with a finite spherical matrix 

(Fig. 4-1), Eq. (4-2) can be written as: 

∫ E()!a = ∫ E()!a9Gï
+ ∫ E()!aï

= 0
9

               Eq. (4-4) 

Where Ω is the volume of the inclusion. Eq. (4-4) can be written by obtaining the fractions: 

(a − Ω)〈E()〉8DK++ + (Ω)〈E()〉V15 	= 0                Eq. (4-5) 

If both sides are divided by V: 

(1 − Y)〈E()〉8DK++ + Y〈E()〉V15 	= 0                Eq. (4-6) 

Here f is the volume fraction of the inclusion and 〈E()〉V15 	, 〈E()〉8DK++ 	are the average stresses in the 

inclusion and matrix, respectively. Eqs. (4-3 & 6) and the above statements are valid for all 

arbitrary systems which have multiple phases. 

In our analysis, the whole composite system is heated so that the difference between the 

coefficient of thermal expansions of both constituents will cause misfit stresses between inclusion 

and the shell. As mentioned before, since the shape of the inclusion remains spherical the inclusion 

will be placed under hydrostatic pressure (p) by the shell. For the solution of the average stress 

field, all equations are solved for “p” starting from the displacements. Here using spherical 

coordinates makes the derivation simpler (Fig. 4.2).  
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Figure 4.2: Representation of spherical coordinates in the composite system. 

 

œ6!"#(?, i, ,) = œ6!"#(?) = :&? +
EP
6'

              Eq. (4-7-a) 

œ7)O,//(?, i, ,) = œ7)O,//(?) = :#? +
E2
6'

             Eq. (4-7-b) 

Here œ6!"#(?, i, ,) and œ7)O,//(?, i, ,) are the radial displacement fields in the spherical inclusion 

and matrix, respectively. From Eq. (4-7-a), C4 becomes zero because at r = 0 the displacement 

should also be zero. In addition, boundary conditions at the interface dictate that the displacement 

and force should be continuous. Therefore, displacements should be equal to each other at the 

boundary:  

:& = :# +
E2
6!"#
2                    Eq. (4-8) 
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The constitutive equations for three-dimensional problems in spherical coordinates for thermal 

loading can be expressed as:  

-66V15 − ∆9∆– =
&

-!"#
âE66V15 − 2(V15E]]V15ä             Eq. (4-9-a) 

-]]V15 − ∆9∆– =
&

-!"#
âE]]V15 − (V15GE66V15 + E]]V15Hä            Eq. (4-9-b) 

-668DK++ =
&

-)O,//
âE668DK++ − 2(8DK++E]]8DK++ä            Eq. (4-9-c) 

-]]8DK++ =
&

-)O,//
âE]]8DK++ − (8DK++GE668DK++ + E]]8DK++Hä            Eq. (4-9-d) 

where -66V15, -]]V15, -668DK++ and -]]8DK++ are radial and tangential strains in the inclusion and shell, and 

E66V15, E]]V15, E668DK++ and E]]8DK++ are radial and tangential stresses in the inclusion and shell. The elastic 

constants are denoted by qV15, q8DK++, (V15 and (8DK++. “∆9” represents the difference in thermal 

expansion between inclusion and shell and ΔT is the temperature deviation from equilibrium. To 

simplify the analysis, we assumed that only inclusion is heated, in this case, there will be no αΔT 

term in shell strain. Then strain components can be evaluated from displacements as follows: 

-66 =
[F

[6
                Eq. (4-10-a) 

-]] =
F

6
               Eq. (4-10-b) 

From Eqs. (4-10-a & b), Eqs. (4-9-a, b, c & d), Eq. (4-8) and Eqs. (4-7-a & b), the expressions for 

radial and tangential stresses were derived as: 

E66V15 = E]]V15 =
-!"#ñE'S

T2
-!"#
2 G∆ê∆Tó

&G#W!"#
            Eq. (4-11-a) 
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E668DK++ =
-)O,//E'
&G#W)O,//

− #-)O,//
&SW)O,//

E2	

62
            Eq. (4-11-b) 

E]]8DK++ =
-)O,//E'
&G#W)O,//

+ -)O,//
&SW)O,//

E2
62

            Eq. (4-11-c) 

To solve for C1, C2, and C3, two different boundary conditions must be prescribed: The radial stress 

at the interface should be equal to each other and the radial stress at the outer surface should be 

zero.  After boundary conditions applied, C1, C2 and C3 are found as: 

:& =
-!"#∆ê∆Tò(&SW)O,//)7)O,//

2 S#(&G#W)O,//)6!"#
2 ô

[#-)O,//(&G#W!"#)S-!"#(&SW)O,//)]7)O,//
2 S[#-!"#(&G#W)O,//)G#-)O,//(&G#W!"#)]6!"#

2        Eq. (4-12-a) 

:# =
#-!"#∆ê∆T(&G#W)O,//)6!"#

2

[#-)O,//(&G#W!"#)S-!"#(&SW)O,//)]7)O,//
2 S[#-!"#(&G#W)O,//)G#-)O,//(&G#W!"#)]6!"#

2        Eq. (4-12-b) 

:$ =
-!"#∆ê∆T(&SW)O,//)7)O,//

2 6!"#
2

[#-)O,//(&G#W!"#)S-!"#(&SW)O,//)]7)O,//
2 S[#-!"#(&G#W)O,//)G#-)O,//(&G#W!"#)]6!"#

2        Eq. (4-12-c) 

The position-dependent stress field of spherical Eshelby inclusion in finite spherical shell can be 

written by plugging C1, C2, and C3 into Eqs. (4-11-a, b & c): 

E66V15 = E]]V15 = ¡ = #-!"#-)O,//∆ê∆Tq6!"#
2 G7)O,//

2 r

ò#-)O,//(&G#W!"#)q7)O,//
2 G6!"#

2 rS-!"#(&SW)O,//)7)O,//
2 S#-!"#(&G#W)O,//)6!"#

2 ô
 Eq. (4-13-a) 

E668DK++ = ¡ ∗ q6!"#
2 62G7)O,//

2 6!"#
2 r

62q6!"#
2 G7)O,//

2 r
            Eq. (4-13-b) 

	E]]8DK++ = ¡ ∗ q#6!"#
2 62S7)O,//

2 6!"#
2 r

#62q6!"#
2 G7)O,//

2 r
            Eq. (4-13-c) 

Since the equations for stress fields are known, strain fields can be calculated by using Eqs. (4-9-

a, b, c & d). Using both stress and strain fields, strain energy density which is very important for 

decay rate calculation in St. Venant’s principle, can be evaluated: 
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œ8DK++ =
&

#
(E66-66 + 2E]]-]])            Eq. (4-14-a) 

œ8DK++ =
$C'6!"#

U

#-)O,//(W!ℎ#$$
3 −Y&'(

3 )
' [(1 − 2(8DK++ +

7)O,//
U

#6U
(1 + (8DK++)]        Eq. (4-14-b) 

 

4.2.1- Force Balance at Overall Volume 

Since the force balance at overall volume must be maintained over the composite system. 

We would like to check this. Eq. (4-2) can be written explicitly: 

∫ -%&/0 = 3∫ -''()* ∗ /0()*+!"# + ∫ -'',-.// ∗ /0,-.//+$%&'' + 2∫ -00,-.// ∗ /0,-.//+$%&''+ = 0       Eq. (4-15) 

Since the inclusion is under hydrostatic stress “p”, the first term of the Eq. (4-15) is: 

∫ ¡ ∗ !aV159!"#
= ∫ !i#Ä

A ∫ "#$,!,Ä

A ∫ ¡?#!?6."#
A

= �

$
—¡?(15$           Eq. (4-16) 

The second and third terms of the Eq. (4-15) is evaluated by using Eq. (4-13-b & c) 

∫ -112ℎ455 ∗ !a8DK++9)O,//
= − �

$
—¡?(15$ + 4—¡

6."#
27)O,//

2

q7)O,//
2G6."#2r

ln b7)O,//
6."#

c       Eq. (4-17-a) 

∫ -662ℎ455 ∗ !a8DK++9)O,//
= − �

$
—¡?(15$ − 2—¡

6."#
27)O,//

2

q7)O,//
2G6."#2r

ln b7)O,//
6."#

c        Eq. (4-17-b) 

The addition of Eq. (4-16), Eqs. (4-17-a & b) is equal to Eq. (4-15) and gives us zero, indicating 

that the forces- and, hence, the residual stresses-  are balanced over the entire volume of the shell-

inclusion system; the hydrostatic compressive stress in the inclusion is balanced by a multi-axial 

stress state in the shell.  
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Since the explicit form of “p” is known, the average stress of the shell can be calculated as 

follows: 

〈E()〉8DK++ =
∫ 7(()ℎ+,,∗[9)O,//*)O,//

S#∫ 7--)ℎ+,,∗[9)O,//*)O,//

$∫ 7(()ℎ+,,∗[9)O,//*)O,//

                 Eq. (4-18-a) 

〈E()〉8DK++ =
#-!"#-)O,//∆ê∆T6!"#

2

ò#-)O,//(&G#W!"#)q7)O,//
2 G6!"#

2 rS-!"#(&SW)O,//)7)O,//
2 S#-!"#(&G#W)O,//)6!"#

2 ô
      Eq. (4-18-b) 

 

4.2.2- Effect of Geometry and Material on the Critical Length (r*) 

An important parameter arising from  St. Venant’s principle is the critical length, r*, 

beyond which the effects of an applied point force or geometric constraint are negligible [24]. 

Since the definition of “negligible” is somewhat subjective, the r* values reported in the literature 

do not always agree with each other. Rather than using absolute (numerical) values, we defined a 

new variable, the stress threshold, Γ, to identify r* in our shell-inclusion system.  In this approach, 

we express r* in terms of radial and tangential stress values at the internal boundary between the 

inclusion and the shell. As specified by one of the boundary conditions at the interface, the radial 

stress component in the shell at the interface must be equal to “p”. The maximum tangential stress 

will also occur in the  shell section at the interface, and can be expressed  as [122]:  

E]]8DK++ = ¡ ∗ ú

úG&
∗ b1 + 7)O,//

2

#62
c               Eq. (4-19) 

We now define the threshold ratio, “, as the ratio of tangential stress at critical length, r*, to 

maximum tangential stress.  
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                 Eq. (4-20) 

This expression can be expressed in terms of the hydrostatic stress, p, and configurational 

parameters:  
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            Eq. (4-21-a) 

Since the fraction of the inclusion, f, is equal to 
6!"#
2

7)O,//
2 , Eq. (4-21-a) can be simplified: 

Γ =
#úñ&S

9)O,//
2

'-∗2
ó

#úS&
              Eq. (4-21-b) 

For a given shell/inclusion system, whether the stresses in the shell, caused by the thermal 

expansion of the inclusion, decay below a given threshold value at its outer surface depend on the 

thickness of the shell and the radius of the inclusion11.  The relationship between G, r*, and f is 

given by: 

6!"#
2

6∗
2 = 2Y(Γ − 1) + Γ                 Eq. (4-22) 

Since the ratio of the radii cannot be negative: 

Y > ù

#(&Gù)
                  Eq. (4-23) 

 
11 These values also define the volume fraction, f, of the inclusion. 
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Consequently, whether a given threshold value can be achieved or not in a particular system 

depends only on the volume fraction of the inclusion. 

  

4.3- FEM Analysis vs. Analytical Computations 
We used the ABAQUS program to check the analytical solutions. To see the effect of 

material properties and geometry, we investigated shell/inclusion systems with different diameters.  

For the Al – Fe system 15 different models, with a constant inclusion radius but varying shell radii 

(n.24 = 7.5, 25, 27.5, 30, 32.5, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80	OO) were analyzed. For all 

cases the temperature increase was 100°C. In Fig. 4.3, the hydrostatic stress in the spherical Al 

inclusion as a function of (Fe) shell radius is plotted. We observe that: (1) The stress values 

calculated using our equations match those obtained by FEM, and (2) In the ranges studied, and in 

the absence of yielding, the thickness of the (Fe) shell matrix has little effect on the hydrostatic 

stress in the inclusion. We also observe acceptable agreement between radial and tangential 

stresses in the shells for all three systems (Al – Fe, Cu – W, and Al – W) as shown in Figs. 4.4 & 

5.  In these models, the shell radius was set to 50 mm, 10x of the inclusion radius, for all 

metallurgies. For these dimensions both the radial stress and the tangential stress components in 

the shell tend tangentially to zero at the shell surface; the limit of the tangential stress at infinity 

will be zero. Lim
6→û

	E]]8DK++ = lim
6→û

¡ ∗ q#6!"#
2 62S7)O,//

2 6!"#
2 r

#62q6!"#
2 G7)O,//

2 r
= 0            Eq. (4-24) 
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Figure 4.3: a) Hydrostatic stress state of the 5 mm inclusion with different shell radius and 
b) the surface tangential stress at the different shell radius in Al – Fe  system (∆αAl – Fe  = 

11.1E-06).  

 

The radial stress of the shell at the interface is equal to the hydrostatic pressure, p, in the 

inclusion. The highest value of the tangential stress is also observed at the interface of the 

composite system. In order to evaluate the critical length (r*), we chose a threshold ratio (Γ) of 

3%. In Fig. 4.6, r* values evaluated from Eq. (4-19), for 15 different diameter ratios for the Al – 

Fe system, and the r* values obtained from the FEM models are plotted.  Again, we observe the 

reasonable agreement. 
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Figure 4.4: Radial stress distribution of three different systems in 5 mm inclusion with 50 
mm matrix (For all three systems,  the differences between FEM and closed-form solutions 

are less than 0.1%, ∆αCu – W =12.9E-06, ∆αAl – Fe =11.1E-06 and ∆αAl – W =19.2E-06). 

 

Figure 4.5: Tangential stress distribution of three different systems in 5 mm inclusion with 
50 mm shell (For all three systems, FEM and quantification of the difference between them 

is less than 0.1%). 
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Figure 4.6: Critical lengths, r*,  for 15 different Fe shells encapsulating a 5 mm Al inclusion 
(∆αAl – Fe =11.1E-06). The top abscissa and right ordinate show the volume fraction, f, 

corresponding to a given shell radius, and ∆¿ = ¿üo†∗ − ¿°¢£åd§a•£å∗ , respectively. 

 

The small differences between the r* values computed from  FEM and analytical equations 

for larger shell radii are due to errors caused by the coarse discretization of the outer regions in 

FEM for large shells: For large n. 	stress magnitudes close to the outer surface of the shell are 

very small and fluctuate slightly due to the larger mesh elements used.  

For a fixed inclusion radius, ?V15, as the radius of the shell, n., decreases the volume 

fraction, f, of the inclusion increases. Consequently, the shell material over which the St. Venant 

stress fields can decay decreases. This results in steeper radial stress gradients (Fig. 4-7-a) within 

the shell volume and non-negligible tangential stresses at the shell surface (Fig. 4-7-b). 
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Figure 4.7: Variation of radial (a) and tangential (b) stresses with the position in three 
inclusion-shell systems with ¶]^_

k`ab
= ‘. ’÷.  In this case, f=0.3 while the maximum inclusion 

volume fraction required to achieve Γ=0.03, computed from Eq. (4-23) is 0.016. 

  

 

Figure 4.8: The calculated ratio of critical length to the radius of inclusion vs. radius of 
inclusion in the Al – Fe system. The volume fraction of the inclusion to the shell is kept 

constant. 
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To test the validity of Eq. (4-23) which predicts the maximum inclusion volume fraction 

allowable to achieve a given threshold value we modeled six inclusion-shell systems having the 

same volume fraction for three unique material pairs. The results are summarized in Fig. 4.8.  As 

expected, for equal volume fractions (for constant f ) the critical length is constant for a given 

threshold value for all sizes. This is also shown in Table 4.2 where we tabulate the critical lengths, 

r*, obtained from FEM and Eq. (4-23) for 3 different metallurgies, where all systems had the same 

geometry in which a 5 mm radius inclusion was surrounded by a 50 mm radius spherical shell. 

The results show that, as expected, the critical length depends only on the configurational 

parameters/geometry and not the material chemistry. 

 

Table 4.2: The critical lengths, r*, for 3 different metallurgies,  with all systems consisting 
of  a 5 mm radius  inclusion surrounded by a 50 mm radius spherical shell. 

G=.03 Al – W Al – Fe Cu – W 

n.24 = 50	OO 

?V15 = 5	OO 

?∗

?V15
 

Analytical 3.4 3.4 3.4 

FEM 3.4 3.4 3.4 

 

4.3.1- Strain Energy Approach for Critical Radius Determination 

The decay of strain energy with distance from the point of application of a point load is 

another approach used to quantify the critical radius, r*.  In particular, Toupin [24] formulated an 

approach which yielded an exponential energy density decay profile for an elastic cylinder  of 
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arbitrary length and regular cross-section, loaded only on one end :A with an arbitrary system of 

self-equilibrated forces: 

◊(") ≤ ◊(0)ŸG
(ND/)
N#(/)                    Eq. (4-25) 

Here ◊(") is the elastic energy stored in the sub-cylinder located beyond the distance s from the 

loaded end, ◊(0) is the total energy, "5(ì) is the characteristic decay length (≡ ?∗), l is the 

parameter  (ì > 0) chosen to provide a small value of "5(ì) , being the length of the section between 

the cross-sections :\	and :\S+ of the cylinder. 

  Toupin’s formulation is independent of the material. Subsequently, many studies used 

Toupin’s decay formula for characteristic (critical) length calculations [123, 124, 125, 126].  

However, Zhao provided a mathematical analysis showing that Toupin-type decay is different than 

Saint Venant’s principle [127]. Consequently, the critical radii computed by both approaches 

should be different. In what follows we evaluate the critical radius, r*, using both approaches.  

Using the Eshelby analysis presented earlier, we find that the elastic strain energy in the 

entire inclusion-shell volume possesses the following form: 

◊ = #ÄC'6!"#
U (&G#W)O,//)q6

2G6!"#
2 r

-)O,//q	6!"#
2 G7)O,//

2 r
' − ÄC'6!"#

U 7)O,//
U (&SW)O,//)

-)O,//q	6!"#
2 G7)O,//

2 r
' ⁄ &

62
− &

6!"#
2 ¤               Eq. (4-26) 

Eq. (4-26) describes a power-law decay profile. Consequently, an exponential strain energy decay 

function should not be applied to non-cylindrical bodies despite previous claims that this is a viable 

approach [123, 28].  However, even though Toupin’s decay equation is not a rigorous universal 

solution when we plotted the strain energy density values obtained from Eqs. (4-25 & 26) and the 

FEM model, we observed that it provides a reasonable approximation for evaluating the critical 
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length. This is shown in Fig. 4.9, where the elastic strain energies obtained with these approaches 

are plotted for a spherical Al inclusion encapsulated in a Fe shell. We observe that the Toupin-type 

decay is rigorously correct and is equivalent to the St. Venant principle- in the regions close to the 

interface.  The agreement is worse away from the inclusion-shell interface as shown in the inset 

figure. Still, we conclude that Toupin-type decay is an acceptable approximation because the 

differences between Toupin and power-law decay are very small in this range, and all three 

approaches would yield a critical radius close to the 20 mm value for G=.03.  

Fig.4.9 also shows that Eq. (4-26), based on the Eshelby formulation, coincides with FEM 

results over the entire Al Inclusion-Fe shell system.  To see if there was any material dependency 

of the internal energy decay, we modeled two additional systems, Al-inclusion, W-shell and Cu-

inclusion, W-shell with identical dimensions, and compared results from FEM and Eq. (4-26). 

 

Figure 4.9: Strain energy for 5 mm inclusion and 50 mm shell in Al – Fe system. The log-
scale inset shows the difference between the two types of decay.    
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Table 4.3: Fitted strain energy for 3 different couplings having 5 mm radius of inclusion 
and 50 mm radius shell. 

?V15 = 5	OO Al – Fe  Al – W Cu – W 

n8DK++ = 50	OO Analytical FEM Analytical FEM Analytical FEM 

A 19684±48 21774±129 45183±133 49450±305 51370±153 49519±295 

n -3.9 ± 0.1 -3.9 ± 0.1 -3.9 ± 0.1 -3.9 ± 0.1 -3.9 ± 0.1 -3.9 ± 0.1 

 

For ease of comparison we regression-fitted all results to a power-law of the form: 

} = |u1                  Eq. (4-27) 

The results are tabulated in Table 4.3. While the constants, A, are different for each system, we 

observe the same decay exponent, n, for all cases.  

 

4.3.2- Effect of Shell Geometry 

To investigate the effects of shell geometry we modeled the stress distributions caused by 

the thermal expansion of a spherical inclusion contained within a cubical shell (SICS unit). For 

this case, there is no analytical solution. Our model showed that the hydrostatic stress in a spherical 

5mm Al inclusion surrounded by a 100 mm x 100 mm x 100 mm (4RMatrix) Fe cube differs only 1 

MPa from that for the spherical inclusion within a 50 mm radius spherical shell. In addition, the 

variation of stresses with position within the cube and the sphere are comparable. (Figs. 4.10-a & 

b). We conclude that for shells with dimensions much larger than the critical radius, the shape of 

the shell is not a critical parameter in defining the stress distribution within the system12. 

 
12 This conclusion follows directly from St. Venant’s principle. 
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To construct a system more suitable for discussing residual definitions presented in Chapter 

3, we constructed a model metal matrix composite (MMC) by stacking eight SICS units in a 2x2x2 

arrangement (Fig. 4.11). 

 

Figure 4.10: a) Spherical inclusion-in-cubic shell b) Variation of tangential and radial 
stresses with the position in shell and cube models. 

 

 

Figure 4.11: Eight spherical inclusion-in-cubic shell (SICS) units stacked in a 2x2x2 
arrangement to form a metal-matrix composite (MMC) system. 
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We investigated the variations in the stress field distributions within the MMC system 

shown in Fig. 4.11 by changing the dimensions of the cubic shells which make up the matrix. In 

Fig. 4.12 the variation of radial and tangential stresses within two neighboring SICS of the MMC 

are plotted as a function of position for four different cubic-shell dimensions.   

 

Figure 4.12: Variation of radial and tangential stresses within two neighboring SICS of the 
MMC as a function of position for four different cubic-shell dimensions. For all cases, the 

inclusion radius is 5 mm. The cube edge lengths are a) 200 mm, b) 72 mm, c) 40 mm, and d) 
30 mm, respectively. 
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For the thicker cube shells (Figs. 4.12-a & b) both tangential and radial stresses decay to 

zero at the midpoint between the SICS; the tangential stresses decay to negligible values at the 

external surfaces13.  If these SICS were sectioned out of the MMC, their stress states would not 

change. On the other hand, the stress fields of the thinner cube shells (Figs. 4.12 c & d) overlap in 

the MMC volume. For these cases, both the tangential and radial stresses are finite at the midpoint 

of the MMC and the tangential stresses are non-negligible at the free surfaces. In addition, the 

hydrostatic stress state within the inclusion is perturbed slightly, with such perturbation being more 

pronounced for the smallest system. 

 

4.4- Implications of the MMC Stress Distribution for Diffraction Strain/Stress 
Measurements 

 

4.4.1- Local vs. Average Stress Values 

We used the residual stress distributions generated in the MMC model to check the validity 

of the definitions used in classifying residual stress fields. To make the discussion simpler we 

converted the radial and tangential stresses to Cartesian coordinates and plotted all six terms of the 

stress tensor over the central cross-section of the MMC corresponding to models shown in Figs. 

4.12-a & d. These plots are shown in Figs. 4.13-a & b, respectively. For both cases, the local stress 

tensors associated with the matrix and inclusions are given by:  

 
13 The radial stresses must decay to zero at the free surfaces. 
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GE().H:,3,; = É
E&&. E&#. 0
E&#. E##. 0
0 0 E$$.

Ñ             Eq. (4-28-a) 

E()V = É
E&&V 0 0
0 E##V 0
0 0 E$$V

Ñ             Eq. (4-28-b) 

The stress components, GE().H:,3,;, depend on position. In the inclusion, the stress state is 

hydrostatic14. Consequently, the volume-averaged stress within the inclusion is equal to the local 

stress values, “p”.  

 

 

Figure 4.13: Variation of stress components over the central cross-section of a 2x2x2 MMC.  
For (a) the MMC is constructed of eight Fe Shell-Al inclusion SICS, with 200 mm edges. 

For (b) The SICS have edge lengths of 30 mm. In all cases, the inclusions have 5 mm radii.  

 

 
14 For simplicity, we neglect the small 'cde 	perturbations in Fig. 4.13-d caused by the interactions of the stress fields. 
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4.4.2- Representative Volume Element Definition 

To simplify the definition of the RVE for diffraction measurements we used the volume 

over which the force-balance is achieved. In the case of the MMC constructed from eight 200 mm 

edge-length SICS units (Fig. 4.11), each SICS achieves force equilibrium independently. In this 

case, proper removal15 or the addition of one SICS unit would not change the stress distribution of 

the remaining SICS units or the stress state of the overall composite. The addition or removal of 

partial SICS units (same size inclusion but partial matrix) might change the stress distribution 

within the MMC if the inclusion was too close to the free surface. For MMCs consisting of a large 

number of SICS units, such change would be negligible. For such an MMC specimen the average 

residual stresses measured from the matrix and the inclusions would be independent of the size of 

the MMC.  

In the case of the MMC constructed from eight 30 mm edge-length SICS units, the stress 

fields in the SICS unit overlap. Consequently, one cannot add or remove a SICS unit w/out 

modifying the overall stress distribution. Consequently, modeling would be needed to define the 

RVE in this case. 

 

4.4.3- Effect of Beam Size and Position on étu	‹è. èêëví 

Consider a virtual diffraction experiment, where the representative volume of the MMC 

having 200 mm edge (it is the quadrant of the MMC) is illuminated with a monochromatic, plane-

wave X-ray beam such that the incident and diffracted beam vectors are in the x-z plane.  

 
15 We assume a hypothetical separator which segments the system without inducing material waster or deformation. 
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In this geometry, diffraction strain measurements performed on inclusion reflections for 

stress fields depicted in Fig. 4.14, would yield identical flat (zero-slope), 
[+
. G[(

.

[(
. = (-&&% )( 	(". sin#% 

plots regardless of the beam size and the position of the beam. From the intercepts of which the 

stress, 〈E$$( 〉, could be obtained using Eq. (1-11). 

 

 

Figure 4.14: Variation of stress components over the representative volume of the central 
cross-section of a 2x2x2 MMC having a 200 mm edge. 

 

 The stress variation over the central cross-section of this volume is shown in Fig. 

4.14. We observed that E&# component shows different responses close to the matrix inclusion 

interface. We chose three directions where E&# shows positive, negative, and zero stress as shown 

in Fig. 4.15. Thus, we decided to perform virtual diffraction experiments along with these 

directions, 1, 2, and 3 by using different beam sizes and positions of the beam. 
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Figure 4.15: Variation of �xv over the representative volume of the central cross-section of 
a 2x2x2 MMC having 200 mm edge. Three directions, 1, 2, and 3 are shown with dashed 

lines. 

 

 We calculated the average stresses for the matrix along with three directions in the sample 

coordinate system by using different beam sizes. These are shown in Fig. 4.16. For all directions, 

the larger the beam size is, the stress components are closer to zero. For better resolution, the 

experimenter needs to choose smaller beam sizes.  
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Figure 4.16: Average stresses calculated along 1,2 and 3 directions in sample coordinate 
system for different beam sizes. 
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Neglecting absorption effects, and assuming an infinitesimal grain size, such that all ψ-tilts 

sample infinitely many grains across the representative volume, the  
[+
$G[(

$

[(
$ 	(". sin#% plots for 

matrix reflections will be linear and have finite slopes16 depending on the position of the beam.  

 

 

Figure 4.17: a) Position (shown in purple square box) of the 5 mm beam on the matrix 
along three directions on the representative volume, b) the (Äxx% )	‹è. èêëví plots belong to 

experiment performed in different beam positions. 

 

In the case of Fig. 4.13-a, corresponding to the stress state shown in Fig. 4.12-a, almost 

70% of the matrix volume is stress-free. Consequently, the volume-weighted strains obtained over 

the entire matrix by diffraction, 〈-&̅&% 〉. , will be very close to zero, yielding small average stress, 

〈EZ$$〉., acting normal to the cross-section of Fig. 4.13-a. However, as it is shown in Fig. 4.16, the 

 
16 The stress state within the matrix is not hydrostatic.  
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results would be different if a 5 mm beam size is used at various positions. We performed the 

virtual experiments 5 mm and 20 mm away from the boundary along with different directions. The 

results can be seen from Fig. 4.17-b. Using the same beam sizes at different positions in the matrix 

yields different average stresses. This shows that the average stress can be used in computing the 

force-balance required for static equilibrium of the cross-section however, it is inadequate to 

represent the state of the matrix. 

In the case of Fig. 4.13-b, the average stress components, 〈EZ$$〉. , in the matrix will be 

much higher due to the interacting stress fields around the inclusions. However, these average 

stress values would still be inadequate in representing the stress state within the matrix. Reporting 

such 〈EZ$$〉. without the underlying distribution, GE().H:,3,;, could be misleading. 

 

4.4.4- Classification of Local and Average Stress Distributions 

In the cubic composite system, the FEM showed that all inclusions are under hydrostatic 

compressive stress and the average stress, 〈E$$V15〉, in each inclusion is the same and approximately 

-250 MPa. On the other hand, the average radial stress,  〈E66.24〉, and tangential stress,	〈E]].24〉, are 

approximately 0 MPa for the MMCs formed with larger SICS units and finite for the smaller ones.  

We now examine each constituent one by one: 

a) The hydrostatic stress state in the inclusion can be called pseudo-macro stress because (1) 

it is constant at all points within a given inclusion; (2) It is constant in all inclusions; (3) If 

a mechanical technique was used to section the specimen across any cross-section of an 
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MMC larger than the relevant RVE, the remaining material would not exhibit dimensional 

changes since residual stresses are balanced locally.  

b) In the case of the matrix, the measured average residual stress depends on the sampling 

volume (beam size) (Fig 4.18). In such a case stress mapping over the entire SICS or MMC 

volume should be conducted since, due to the complex stress gradients close to the 

inclusion, average stresses would be of limited utility.  In real piecewise isotropic MMCs 

containing high volume fractions of precipitates, the average stresses would be termed 

pseudo-macro stresses as well. 

 

 

Figure 4.18: Metal matrix composite system with different sampling volumes. 

 

4.5- Distribution of Applied Stresses in a SICS Systems 
SICS system contained only residual stresses balanced between the shell and the inclusion. 

These stresses were generated to maintain compatibility/continuity of the material at the SICS 
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interface when the system was uniformly heated, and the inclusion tried to expand more than the 

surrounding shell; the surfaces of the SICS were free of applied stresses and tractions before, 

during and after heating. Numerical modeling of the stress field showed that the uniform 

hydrostatic stresses in the inclusion volume were balanced by position-dependent tangential and 

radial stresses in the shell. Modeling a metal-matrix composite system consisting of multiple, non-

interacting, SICS units yielded similar results17. We observed that in this case: (1) the average 

(hydrostatic) residual stress tensor over all inclusions was equal to the residual stress tensor within 

any one inclusion and (2) if one only considered the stress state of the inclusions intersected by a 

given cross-section across the MMC- and thus ignoring the matrix stress fields contained in the 

same cross-section-, one would obtain a net force violating a condition of static equilibrium. 

Consequently, the residual stresses within the inclusions fit the definition of “pseudo-macro 

stresses” presented in Chapter 2. On the other hand, the residual stresses within the matrix 

exhibited highly localized distributions with strong gradients. These terms cannot be adequately 

represented by their average values unless: (1) the form of the gradients are known a priori and, 

(2) the volumes over which the averages are taken are accurately known. In the absence of such 

data, reporting average stress values from the matrix might not be useful for total life prediction, 

or fracture mechanics application [128].  

In this section, we simulate the stress states generated in spherical inclusion contained 

within a cubical shell (SICS) system induced by forces applied at the cubic shell boundary and 

compare them to the residual stress distributions generated by mutual constraint of the shell and 

 
17 Similar considerations apply to MMCs with high inclusion volume fractions. However, in this case the inclusion 
stress tensors may have deviatoric components depending on the boundary conditions imposed by overlapping 
interaction stress fields. 
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the inclusion during uniform heating. We use two modes of loading: (1) uniaxial loading and (2) 

biaxial loading. For both cases, the cubic shell is Fe and the inclusion (volume fraction, f=0.001) 

is Al. The relevant geometry and dimensions are shown in Fig. 4.10-a. This model was loaded in 

uniaxial compression by applying distributed compression surface stress fields, E$$A , along the z-

direction on the x-y faces. Bi-axial loading was modeled by adding distributed tensile surface stress 

fields along the x-direction, E&&A , on the y-z faces. The magnitude of the distributed applied stresses 

was -460 MPa and -425 MPa for uniaxial and biaxial loadings, respectively. No plastic flow was 

permitted.  

 

4.5.1- Uniaxially Loaded SICS Model 

The variation of the stress tensor components over the central x-y plane of the model is 

shown in Fig. 4.19. In regions far away from the inclusion, the stress field is uniaxial, and the stress 

component E$$ is equal to the stresses applied at the free boundary, E$$A . The stress field becomes 

triaxial in the shell regions near the inclusion due to St. Venant effects and is hydrostatic within 

the inclusion, this is expected from previous theoretical studies [129, 130].  

Using the discussion presented in Section 2.12, the components of the stress tensor at any 

point, GE()H:,3,;, can be expressed as the sum of the far-field and St. Venant stresses. Consequently, 

we can obtain the St. Venant stresses at any point from: 

É
E&&89 E&#89 E&$89

E#&89 E##89 E#$89

E$&89 E$#89 E$$89
Ñ

:,3,;

= ô
E&& E&# E&$
E&# E## E#$
E&$ E#$ E$$

ö
:,3,;

− ô
0 0 0
0 0 0
0 0 E$$A

ö          Eq. (4-29) 
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Variation of GE()89H:,3,; across the SICS along the x-axis for } = ~ = 0 is shown in Fig. 4.20. Using 

these figures, we define three unique regions within the SICS model: 

a) Regions with uniform stresses in the cubic shell: These regions have homogeneous stress 

states and can be represented by free-body diagrams with uniform far-field stresses acting 

on their boundaries. For the case analyzed here, the stress states of these regions can be 

considered as uniaxial compression. 

b) St. Venant regions in the shell material close to the inclusion: The stress tensor components 

in this region have steep gradients and the stress state is tri-axial. The stress distributions 

on the face of free-body diagrams containing the inclusion interface are not uniform. 

c) The inclusion volume: The stress state within the inclusion is homogeneous. The uniform 

internal stress within the inclusion is not equal to the far-field stress. 

 

Figure 4.19: Variation of stress components over the central cross-section of a uniaxially 
loaded SICS. The SICS is constructed of Fe Shell-Al inclusion with 100 mm edges.  
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Figure 4.20: Variation of G�abßnHc,d,e across the uniaxially loaded SICS along the x-axis. 

 

4.5.2- Biaxially Loaded SICS Model 

The variation of the stress tensor components over the central x-y plane of the model is 

shown in Fig. 4.21. In regions far away from the inclusion, the stress field is biaxial, and the stress 

components E$$ and E## are equal to the stresses applied at the free boundary, E##A  and E$$A . The 

stress field becomes triaxial in the shell regions near the inclusion due to St. Venant effects and is 

hydrostatic within the inclusion, this is expected from previous theoretical studies [129, 130].  

Using the discussion presented in Section 2.12, the components of the stress tensor at any 

point, GE()H:,3,;, can be expressed as the sum of the far-field and St. Venant stresses. Consequently, 

we can obtain the St. Venant stresses at any point from: 

É
E&&89 E&#89 E&$89

E#&89 E##89 E#$89

E$&89 E$#89 E$$89
Ñ

:,3,;

= ô
E&& E&# E&$
E&# E## E#$
E&$ E#$ E$$
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:,3,;

− É
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0 E##A 0
0 0 E$$A

Ñ          Eq. (4-29) 
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Variation of GE()89H:,3,; across the SICS along the x-axis for } = ~ = 0 is shown in Fig. 4.22. Using 

these figures, we define three unique regions within the SICS model: 

a) Regions with uniform stresses in the cubic shell: These regions have homogeneous stress 

states and can be represented by free-body diagrams with uniform far-field stresses acting 

on their boundaries. For the case analyzed here, the stress states of these regions can be 

considered as biaxial compression. 

b) St. Venant regions in the shell material close to the inclusion: The stress tensor components 

in this region have steep gradients and the stress state is tri-axial. The stress distributions 

on the face of free-body diagrams containing the inclusion interface are not uniform. 

c) The inclusion volume: The stress state within the inclusion is homogeneous. The uniform 

internal stress within the inclusion is not equal to the far-field stress. 

 

 

Figure 4.21: Variation of stress components over the central cross-section of a biaxially 
loaded SICS. The SICS is constructed of Fe Shell-Al inclusion with 100 mm edges.  
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Figure 4.22: Variation of G�abßnHc,d,e across the biaxially loaded SICS along the x-axis. 

 

4.6- Summary 
In the case of thermally loaded SICS and MMC systems, there is no macrostress field and 

the observed residual stress field in the inclusion is called pseudo-macro stress. On the other hand, 

the residual stresses within the matrix exhibited highly localized distributions with strong gradients 

due to St. Venant stresses. However, in the case of uniaxially and biaxially loaded SICS models, 

there is far-field stress which corresponds to the macrostress field in the matrix away from the 

inclusion-shell interface. From this point, we can argue that any definition provided in the literature 

(e.g. Macherauch) that depends on the scale fails to describe the stress state of the heated composite 

system. The stress field in the inclusion fits Macherauch’s type I stress definition. However, the 

scale is not enough to describe a stress field in the inclusion. In addition, If a mechanical relaxation 

method was used to section the specimen across any cross-section of an MMC larger than the 
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relevant RVE, the remaining material would not exhibit dimensional changes since residual 

stresses are balanced locally. 

The ideal composite system shows us that a simpler isotropic inclusion-shell system might 

have a relatively complex stress field and it must not be underestimated. One needs to be careful 

during the measurements, it requires significant preparation and material characterization.  

In the next chapter, we described virtual diffraction stress experiments in ideal, 

polycrystalline, thin-films at which local stress variations are observed due to the change of elastic 

moduli and/or the coefficient of thermal expansion from grain to grain. 
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5- STRESSES UNDER THERMAL EFFECTS IN IDEAL 

POLYCRYSTALLINE THIN FILMS 

 

In this chapter, we describe virtual diffraction stress experiments in ideal, polycrystalline, 

thin films18 simulated using ABAQUS CAE. Single and two-phase films, in which the crystal 

orientations of all grains were specified, were subjected to free and constrained thermal expansion 

and loaded into elastic and elastoplastic deformation regions. These models were constructed such 

that in the regions of interest there were no St. Venant stresses. Local perturbations of the far-field 

stress (Heyn stresses) arose only in models where elastic moduli and/or the coefficient of thermal 

expansion changed from grain to grain along a direction within the sample volume.  

For all models, we used finite element modeling to obtain local stress and strain 

distributions in all grains in the sample coordinates. In addition, we also computed the expected 

-%D*+ 	(". sin#% plots based on local strains in grains diffracting into several reflections, hkl, and 

analyzed these plots using the standard formalisms described in Chapter 1. Thus we were able to 

compare the real space and diffraction-averaged stresses and strains in our ideal samples. These 

studies are described below. 

 

 

 
18 In contrast, the models constructed in Chapter 4 were based on isotropic homogeneous continuum, and contained 
no grains or grain boundaries. Local stress variations in these models (St. Venant stresses) were caused solely by 
sample geometry and boundary conditions in response to thermal and/or mechanical loads. 
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5.1- Materials Selection 
We constructed single-phase Cu and W models as well as a two-phase Cu – W model. 

Selected properties of Cu and W are shown in Table 5.1. These elements were chosen to 

simplify/optimize both modeling and any future experiments. The following were considered: 

a) Cu and W single crystals have cubic symmetry, FCC and BCC respectively, and 

consequently have isotropic coefficients of thermal expansion (CTE). Thus, in the 

unconstrained state polycrystalline, single-phase Cu and W specimens should expand 

isotropically, without the formation of thermal Heyn stresses between grains of various 

orientations in either case. 

b) At room temperature, the CTE of Cu is almost 3.6x the CTE of W. Thus, Cu and W grains 

should mutually constrain each other from achieving their equilibrium dimensions during 

unconstrained heating of the two-phase sample, causing the formation of inter-phase Heyn 

stresses. Due to the large difference in the CTEs of the individual phases, these stresses are 

expected to be quite large. 

c) The Zener index, p^ =
2:��

(:&& − :&#)› , of W is 1.0. Thus, W grains are elastically 

isotropic. When a polycrystalline W sample is externally loaded there should be no elastic 

strain incompatibility between grains of different crystal orientations along any sample 

direction; inter-grain Heyn stresses due to elastic incompatibility will be zero for all grains. 

d) For Cu, literature values for p^	are between 2.8 to 3.2. Thus, in Cu single crystals the <111> 

directions will be almost 3x stiffer than the <100> directions. Other <hkl> directions will 

have stiffness values between these extrema. Consequently, when a polycrystalline Cu 

sample is externally loaded, elastic strain incompatibility between grains of different 
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crystal orientations along any sample direction should cause significant inter-grain Heyn 

stresses to keep displacements in adjoining grains equal across the relevant grain boundary. 

e) Cu and W have quite different stiffness coefficients; W crystals are much stiffer than Cu 

along any direction. Consequently, inter-phase Heyn stresses are expected in both Cu and 

W grains in a two-phase system subjected to external loads. The interphase stresses in 

isotropic W grains should occur due to the mutual constraint between neighboring Cu and 

W grains. The interphase stresses in anisotropic Cu grains should contain contributions 

from constraints by surrounding W grains as well as a constraint from surrounding Cu 

grains with different orientations. 

f) Cu and W have quite different plastic flow properties. W has a very high yield point and is 

quite brittle. Cu is ductile. In a Cu – W sample loaded beyond the yield point of the two-

phase sample, plastic strains in Cu grains would be larger. Consequently, if such a sample 

is unloaded after plastic deformation, Heyn stresses due to plastic incompatibility should 

be observed in both Cu and W grains due to mutual constraint.  

g) Cu and W can be considered mutually insoluble in each other for all compositions between 

RT and 2700°C (Fig. 5.1-a). Consequently, any Cu – W sample is a mechanical mixture of 

pure Cu and W crystallites bonded to each other with rigid boundaries. This simplifies the 

specification of elastic constants in each grain and justifies using rigidly bonded (tie-

constrained) boundaries between grains. 

h) Finally, for most practical x-ray wavelengths, non-overlapping diffraction peaks are 

accessible for diffraction measurements for both Cu and W phases (Fig. 5.1-b).  
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Table 5.1: The Zener index, stiffness, and compliance constants for selected crystals and 
coefficients of thermal expansion of Cu and W [131].  

   1010 Pa 10-11 Pa-1 GPa  1/°C 

 Structure 
Zener 
Index 

C11 C12 C44 S11  S12 S44 E v 
Room-

temperature 
CTE / 10–6 

Cu FCC 3.20 16.84 12.14 7.54 1.50 -0.63 1.33 112 0.34 16.7 
W BCC 1.00 50.1 19.8 15.14 0.26 -0.07 0.66 385 0.27 4.6 
 

 

Figure 5.1: a) X-ray diffraction pattern of Cu – W sample containing 50% Cu – 50% W, 
and b) binary phase diagram of Cu and W [132]. 

 

5.2- Modelling Approach 
Fig. 5-2 depicts the mesh used in single-phase W or Cu finite-element models. All 400 

hexagonal-prism shaped anisotropic grains in this model, arranged as a 20 x 20 x 1 array, are 

oriented in the sample coordinate system, 5⃗(, such that they will diffract into one of the chosen 
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reflections, 200, 222 or 420 (Figs. 5.2-a, b & c, respectively) at the y-tilts specified19 in Table 5.2.  

Here the population number for each y–ensemble20, K"D*+ , and its volume fraction,  )Jfgh, are also 

tabulated.  

 

 

Figure 5.2: Distribution of (200), (222) & (420) reflections for the single-phase W finite 
element mesh.  

 

 
19 Extended details of the computation of the grain orientations and the placement of the particular grains in the mesh 
were presented in Section 3.3. 
 
20 We define a “y–ensemble” as the population of grains diffracting into a given reflection at a given y–tilt.  
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Table 5.2: The color coding of each ψ angle for each reflection in the finite element mesh. 

ψ(°) 0 18.43 26.57 33.21 39.23 45 56.79 71.57 

Color Red Orange 
Dark 

Blue 

Light 

Blue 
Turquoise Green Purple Yellow 

*i
jkk, ,ijkk 16, 0.040 16, 0.040 14, 0.035 14, 0.035 15, 0.038 17, 0.043 17, 0.043 12, 0.030 

*i
jjj, ,ijjj 18, 0.045 18, 0.045 18, 0.045 17, 0.043 16, 0.040 18, 0.045 18, 0.045 17, 0.043 

*i
ljk, ,iljk 18, 0.045 18, 0.045 17, 0.043 16, 0.040 18, 0.045 18, 0.045 17, 0.043 17, 0.043 

 

 

Figure 5.3: Scattering geometry for a single grain of the FEM mesh, oriented for 
diffraction at y=0 into the hkl reflection. In this figure, the [hkl] direction is coincident 

with the	fi⃗w sample axis, and fi⃗w is in coplanar with the incident and diffracted beam vectors  
fl®, fl©™´¨, respectively. 

 

The diffraction geometry for a single crystal of the FEM mesh, oriented properly to 

contribute to the hkl reflection at % = 0 is shown in Fig. 5.3. In this figure, the incident and 

diffracted beam vectors, h3⃗ ( , h3⃗ [D*+ 	 are in the plane defined by the sample axes, 5⃗&, 5⃗$. Hence the in-
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plane angle (Fig. 1.7), , = 0.  This geometry applies to all grains belonging to the y–volume for 

% = 0. For grains diffracting at other y–tilts, the relevant [hkl] direction will make the appropriate 

angle, % , with sample axis 5⃗$.    

It is important to note that all grains belonging to a given y–ensemble for a particular 

reflection contribute to the diffraction peak for that y–tilt. Since each grain may have a different 

average lattice strain due to the local Heyn stresses, we can write the fundamental equation of 

diffraction stress/strain analysis, Eqs. (1-11 & 16), for the ith grain within a given y–volume as21: 

5〈9./0,2
%3' 〉;90%3'

90%3'
6
%,=
= 〈8>=-?/〉%,= = 〈8##,=@ 〉%,= = :;〈8##〉%,= − 〈8AA〉%,== ∗ sin$ % + 〈8AA〉%,=A       Eq. (5-1-a) 

〈2##,=@ 〉%,= = 〈1+Ø
∞
〉-?/ 〈4AA〉%,=sin$ - − 〈

Ø

∞
〉-?/ 5〈4##〉%,= + 〈4$$〉%,= + 〈4AA〉%,=6          Eq. (5-1-b) 

In these equations, carats, 〈−〉(,", indicate averages of the relevant strain terms over the ith grain of 

a particular y–ensemble.  

To simulate the 〈-&&,"% 〉( 	(". sin#%	 plot which would be obtained by diffraction for a given 

reflection we used two approaches; first utilizing the strain output of the FEM model with Eq. (5-

1-a) and second, utilizing the stress output of the FEM model with Eq. (5-1-b). We describe below 

the first approach:  

a) For each grain belonging to a given y–ensemble of a specific reflection, we first obtained 

the average strains in sample coordinates, 〈-&&〉(,", 〈-$$〉(,", by computing the numerical 

 
21 Eqs. (1-11 & 16) and Eqs. (5-1-a &b) are similar. For practical reasons, we changed the coordinate system. 



 

177 
 
 

averages of the corresponding strain components reported by the FEM program at all nodes 

within the grain volume22.  

b) Then, we computed the average strain,	〈-&&,"% 〉(,",  for this grain by substituting the average 

strain terms, 〈-&&〉(,", 〈-$$〉(,", and the y angle in Eq. (5-1-a). 

c) We repeated steps 1 and 2 for all grains belonging to the particular y–ensemble. 

d) We repeated steps 1, 2, and 3 for all eight y–ensembles used in the model for each 

particular reflection.  

We then plotted the computed 〈-&&,"% 〉(," vs. sin# % for the particular reflection. This yielded a 

scatter plot with K"D*+ strain values at each y–tilt, with each strain value corresponding to a 

particular diffracting grain. Using this formalism we obtained  〈-$$,"% 〉(," vs. sin# %  scatter plots 

for the 200, 222, and 420 reflections of the relevant phases for all Cu, W, and Cu – W models.  

The second approach, utilizing the stress output of the FEM model, is similar23. In this 

formalism, we substituted the average stress tensor of each grain into the Eq. (5-1-b), along with 

the diffraction elastic constants, 〈1+Ø
∞
〉-?/ , 〈

Ø

∞
〉-?/, for the particular reflection, calculated at the 

Kröner and/or Neerfeld-Hill limits, to compute the 〈-&&,"% 〉(," vs. sin# %  scatter plots for all 

reflections. 

The 〈-&&,"% 〉(," vs. sin# %	scatter plots were then analyzed for diffraction-averaged 

stress/strain values for the entire model using the approaches described in Chapter 1. This approach 

 
22 This approach is justified since all grains have identical volumes and the same number of elements and nodes.  
 
23 This approach was only employed when the stress tensor of the film contained at least one non-zero term, 'cd ≠ 0. 
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is analogous to grain-by-grain measurement of the average lattice strain within single grains of a 

polycrystalline ensemble, where these strains are grouped according to their orientation (y–tilt) 

and analyzed using the classical approaches to obtain stress/strain values for the entire diffracting 

volume.     

 

5.3- Results and Discussion 
 

5.3.1- Free Thermal Expansion of Single-phase W & Cu Films 

In this section, we simulated unconstrained expansion of the single-phase W and Cu 

models by modeling a 75 °C temperature excursion. These models served as a rigorous test of our 

model since their output could be rigorously predicted from theory: Since (1) the films were free 

to expand along the sample axes,  S3⃗ <, # = 1,3, at all points, and (2) the CTE of both W and Cu are 

isotropic, thermal strains, -()TD must be isotropic and no residual stresses, at any scale, are expected.  

Further, since the thermal stresses are independent of direction, -()TD ≠ Y(%), we expect linear, 

zero-slope, 〈-&&,"% 〉(," vs. "#$#%  plots for all reflections, independent of the form of the material’s 

:()*+ tensor. 

For both the W and Cu models, we observed the expected grain average strain and stress 

tensors at all points: 

〈-()〉(," = î
-TD 0 0
0 -TD 0
0 0 -TD

ñ              Eq. (5-2-a) 
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〈E()〉(," = î
0 0 0
0 0 0
0 0 0

ñ                    Eq. (5-2-b) 

where -TD = 9) . Δ–, Ω = Cu,W. Given Eq. (5-1-a), the average strain,	〈-&&,"% 〉(,", for each grain in 

both models was constant, 〈-&&,"% 〉(," = 〈-&&〉( = -TD, and independent of y, for all reflections. This 

yielded the expected linear, zero-slope plots of 〈-&&,"% 〉(," vs. "#$#% for all reflections of both W 

and Cu, (Figs. 5.4-a & b). We note that all terms of the strain tensor, Eq. (5-2-a), are eigenstrains 

and thus, are not linked to stresses by Hooke’s law [2]. 

 

 

Figure 5.4: Computed 〈Äxx,u% 〉a,u vs. èêëví  plots for all reflections of W (a) and Cu (b) 
models heated 100 °C without boundary constraint. Lattice strains, 〈Äxx,u% 〉a,u, are identical 

for all grains diffracting into all reflections. 

 

5.3.2- Heating Single-phase W & Cu Films under Bi-axial Boundary Constraint 

To induce thermally residual stresses in our ideal, single-phase thin film samples, we 

specified (essential) homogeneous displacement constraints at the model boundaries in the film 
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plane. Consequently, upon heating, the grains could only expand freely normal to the film surface 

(in the 5⃗&	direction); the in-plane displacements v, w, were kept at zero by reaction forces 

distributed uniformly over the model boundaries. As we discussed in Chapters 1, 2, and the 

introduction of this chapter, the stress state within a polycrystalline solid subjected to this mode of 

loading will depend on its Zener index. Consequently, we expect different stress distributions in 

the W and Cu models. These results are presented next. 

 

5.3.2.1- Heating Single-phase W Films under Bi-axial Boundary Constraint 

Since all W grains are isotropic in elastic and thermal loading, the local strain tensor at any 

point ](u, }, ~) within the W-model is expected to be homogeneous, of the form: 

G-()H:,3,; = î
-&& 0 0
0 0 0
0 0 0

ñ                  Eq. (5-3) 

-&&(u, }, ~) is the total lattice strain along with the sample normal, 5⃗&.	It is the sum of two 

components: an elastic strain caused by the boundary constraint, (-&&X.E.):,3,; , plus the thermal 

strain, -TD, due to the temperature increase. From basic elasticity analysis we obtain; 

(-&&X.E.):,3,; ≡ -&&X.E. =
#R

(&GR)
-TD             Eq. (5-4-a) 

(-&&):,3,; ≡ -&& = -TD (&SR)
(&GR)

                Eq. (5-4-b) 

The corresponding local stress tensor at point ](u, }, ~) should have the form of an isotropic plane 

stress tensor: 
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GE()H:,3,; = î
0 0 0
0 E## 0
0 0 E$$

ñ ; 				E## = E$$ =
G-

(&GR)
-4D                    Eq. (5-5) 

for all points, ](u, }, ~).  

 

Table 5.3: Stress and strain tensor for the edge-constrained W thin film model heated to 
75°C, computed using various approaches. The XRD values are the reflection averages of 

the stress and strain terms. 

Parameter Eqs. (5-4 & 5) ABAQUS-CAE XRD Analysis 

Thermal strain , 2%&B-  
0
345 0 0
0 345 0
0 0 345

4 0
345 0 0
0 345 0
0 0 345

4 24 
- 

Boundary constraint strain, 2%&C.E.  0
255 0 0
0 −345 0
0 0 −345

4 
- - 

Total Strain  (2%&B- + 2%&C.E.)		; -(̅)  0
600 0 0
0 0 0
0 0 0

4 0
600 0 0
0 0 0
0 0 0

4 0
600 0 0
0 0 0
0 0 0

4 

Stress 4%&; EZ()  (MPa) 
0
0 0 0
0 −182 0
0 0 −182

4 0
0 0 0
0 −182 0
0 0 −182

4 0
0 0 0
0 −182 0
0 0 −182

4 

 

The stress and strain values in the sample coordinate system, computed using these 

equations for our W model, are listed in Table 5.3 for a temperature increase of 75°C. The 

corresponding results from the FEM analysis are also included. We observe excellent agreement 

between the values obtained from the FEM simulation and the analytical computations. As 

expected, the FEM simulations yielded isotropic stress and strain distributions within the model 

 
24 This tensor is obtained from Section 5.3.1, from the model where we computed the free thermal expansion of a 
single-phase W film. 
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volume (Figs. 5.5-a & b). Consequently, average stress and strains are identical to their local values 

and are independent of the type of averaging and the size and location of the averaging volume. 

 

 

Figure 5.5: Grain averaged stress values in sample coordinates, 〈�vv〉a,u = 〈�ww〉a,u (a) and 
〈�xx〉a,u (b) for the í -ensembles diffracting into the 200 reflection. At each y there are 

‰u
vjj identical stress values. Plots for the 222 and 420 reflections were identical. 

 

The stresses in the sample coordinate system were also calculated by simulating and 

analyzing 〈-&&,"% 〉(,"B 	(". sin# % graphs for all reflections using Eqs. (5-1-a & b) respectively25. In 

Fig. 5.6, the 〈-&&,"% 〉(,"B 	vs. sin# % graph for the 200 reflection is shown. As expected, 222 and 420 

reflections also yielded identical plots. Consequently, the reflection average stress tensors, 

 
25 We used the grain averages of the strain values from the FEM output to simulate the :IJ	vs. sinm? graphs using 
Eq. (5-1-a), and used Eq. (5-1-b) to obtain the reflection average stress value. 
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〈E()P〉D*+, were identical for all reflections. The diffraction elastic constants used in calculations, 

&SW

-
, W
-
,  are shown in Table 5.4. 

 

Figure 5.6: 〈Äxx,u% 〉a,u± 	‹è. èêëví plot computed from the strain output of the W model 
subjected to a 75 °C temperature increase with its in-plane edges constrained. At each y 

there are ‰u
vjj identical strain values. 

 

Table 5.4: Diffraction elastic constants of W calculated from the W stiffness tensor using 
various approaches [2, 56]. These values are independent of reflection since W is isotropic.   

(TPa)-1 Reuss Voigt Kröner Neerfeld-Hill 

−‹
Â
(çx) -0.70 -0.70 -0.70 -0.70 

xS≤

o
bßj
v
c  3.30 3.30 3.30 3.30 
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Table 5.3 and Figs. 5.5 & 6 show that the x-ray values for the reaction stresses induced in 

the heated polycrystalline W film by the edge constraints are macrostresses since: 

a) 〈E()P〉D*+ 	are independent of the reflection chosen for the measurement. 

b)  〈E()P〉D*+ will be the same for any measurement volume within the model. 

c)  All reflections yield regular (linear) 〈2##,=@ 〉%,=	:;. ;=>$ -.  

As expected, the elastic constraint imposed by the edges did not cause any Heyn stresses within 

the W film. 

 

5.3.2.2- Heating of Cu Thin Films under Biaxial Constraint 

Our first set of models showed that W and Cu thin films subjected to free thermal expansion 

contained homogeneous, isotropic thermal eigenstrains. For both cases, all components of the local 

stress tensors were zero at all points. Constrained heating of a W film also resulted in a 

homogeneous strain distribution. In this case, the fixed boundaries caused reaction stresses to 

counteract the thermal expansion and the local strains were the sum of elastic and thermal 

components. The stress/strain distributions obtained from numerical modeling agreed with all 

analytical calculations performed assuming an ideal isotropic continuum.  In the next set of 

models, we extend our modeling to elastically heterogeneous materials. These models were based 

on a thin film slab consisting of anisotropic Cu grains. The population number for each y–

ensemble, K"D*+ , and its volume fraction,  )Jfgh, diffracting into reflections, 200, 222 or 420  at the 

specified y-tilts, are identical to the W-model (Table 5.2). However, the distribution of elastic 

moduli in the film is highly heterogeneous. 



 

185 
 
 

In Fig. 5.7, we plot the effective Young’s moduli and Poisson’s ratio,	〈q〉≥
8⃗', 〈q〉≥

8⃗2, along 

with the in-plane axes, 5⃗#, 5⃗$, and the average Poisson’s ratio, 〈R'0SR20
#

〉≥, along the film normal, 

5⃗&, of the crystallites in the diffraction position for the 200, 222 and 420 Cu reflections.  These 

terms link the lattice strain along the diffraction direction, 23⃗ ′", with the in-plane stresses imposed 

by the boundary constraints.  In these figures, the average modulus of all grains belonging to a 

particular reflection, 〈q〉D*+, and the bulk average, qZEF, are shown by the dashed and dotted lines 

respectively.  We observe the following: 

a) The effective Young’s moduli, (q()"D*+ ,	and Poisson’s ratios, (r()"D*+, in sample 

coordinates, of the grains26 diffracting at various ψ tilts can be significantly different from 

each other, and average elastic moduli computed from single-crystal compliances, 5()*+ , 

of Cu at various limits (Table 5.1). 

b) The ψ-ensemble averages of the elastic moduli, 〈q〉"D*+ ,	 〈r〉"D*+, for a given reflection can 

be significantly different from each other and the isotropic bulk average. For example, the 

effective Young’s modulus of the grains in position for diffraction at ψ = 33.21° (sin#ψ =

0.4) into the 200 reflection, 〈q〉$$.#&#AA , is ~80% of qZEF. 

c) Reflection averages,  〈q〉D*+, 〈r〉D*+, taken over all grains, diffracting into a particular 

reflection for all y-tilts, approach the macroscopic average for all reflections studied here.  

 
26 (@c)Jfgh denotes the Young’s modulus, along an axis to be specified, of the ith grain diffracting into the hkl reflection 
at angle y. 
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Contrary to predictions in the literature, all 〈q〉"D*+ values were approximately constant for 

the 420 reflection, within 5% of the bulk average, qZEF,	while 〈q〉"D*+ for both 200 and 222  

reflections27 showed significant deviations from the reflection and bulk averages, 〈q〉D*+, qZEF, 

respectively [82, 49]. Thus, as far as elastic moduli are concerned, the diffraction volumes for the 

002 and 222 reflections do not constitute representative volume elements with 〈q〉D*+ ≠ qZEF. For 

the 420 reflection, even the individual y-volumes yield elastic moduli close to the values computed 

for bulk, untextured, polycrystalline Cu.  

We note, however, that the discussion above does not take into account interaction between 

grains. The grains of all reflections are intermingled (Fig. 5.2), and it does not follow, a-priori, that 

the strains within the y-volumes of the 420 reflection will yield the correct far-field stress in 

diffraction analysis. We used the FEM results to investigate this issue.   

 

 

 

 

 

 

 

 
27 These belong to the hhh and h00 families, previously suggested for use in diffraction stress analysis (Chapter 
1.3.5.3). 
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Figure 5.7: Young's modulus and Poisson's ratio distribution for Cu with reflections hkl = 
200, 222, 420 at different ψ angles 
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We used ABAQUS-CAE to model the thermo-mechanical response of the Cu thin-film 

heated under fixed boundary conditions in the film plane. The stress/strain distributions were 

computed and analyzed under (1) mostly elastic loading, and (2) elastoplastic loading. 

 

5.3.2.2.1-  Edge-constrained Cu Film at Incipient Plastic Flow 

In this simulation, the mesh was subjected to a 25°C temperature increase from room 

temperature. The expected strain and stress tensors for all points, ](u, }, ~) in an equivalent 

isotropic Cu thin film for fully elastic loading Eqs. (5-4 & 5) are presented in Table 5.5. Here we 

also tabulate numerical averages of the stress and strain tensors, EZ() , -(̅), and the standard 

deviations28 for the model parameters. There is reasonable agreement between the analytical 

calculations and the finite element model results, even though some grains deformed plastically in 

the model. 

In Fig. 5.8, we plot the average plastic strains in the plane of the film, 〈-$$
C+〉"D*+  and out of 

the plane of the film 〈-&&
C+〉"D*+ 	as a function of "#$#% for all reflections. We observe that, even 

though the average plastic strains are negligible for most y-ensembles, the grain populations 

oriented to diffract into the 200 reflection for y= 33.21°, 39.23° and 45°, and into the 222 reflection 

for y= 33.21°, exhibit small but finite averages. In Table 5.6, the position and grain average plastic 

and elastic strain tensors for the highly deformed grains in these y-ensembles are listed. For 

comparison, the values for one grain that exhibited no plastic flow are also included (last row).  

 
28 The grain average stress and strain values in the model were not normally distributed. Thus, the standard deviations 
listed do not adequately describe the dispersion associated with the numerical averages shown in Table 5.5.  
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We observe that: (1) the highly-deformed grains are randomly distributed in the mesh, (2) all such 

grains exhibit some degree of compressive flow in the plane of the film, and (3) the maximum 

plastic strain values are reasonably small. We also observe that most grains which underwent 

plastic flow exhibit much lower elastic strains than the mesh averages (Table 5.5), indicating some 

degree of load shedding to stiffer grains. 

 

Table 5.5: Stress and strain tensors for the edge-constrained Cu thin film model heated 
from 25°C obtained from Eqs. (5-4 & 5) and the finite element model. The terms in 

parentheses denote standard deviations. 

Parameter Eqs. (5-4 & 5) ABAQUS-CAE 

Thermal strain , 2%&B- 0
418 0 0
0 418 0
0 0 418

4 0
418 0 0
0 418 0
0 0 418

4 

Boundary constraint strain, 2%&C.E. 0
430 0 0
0 −418 0
0 0 −418

4 - 

Total Strain  (2%&B- + 2%&C.E.)		; -(̅)  0
848 0 0
0 0 0
0 0 0

4 A
892(110) 0(0) 0(0)
0(0) −1(90) −3(36)
0(0) −3(36) 0(86)

C 

Stress 4%&; EZ()  (MPa) 0
0 0 0
0 −74 0
0 0 −74

4 A
0(5) 0(0) 0(5)
0(0) −76(10) 0
0(5) 0 −74(10)

C 
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Figure 5.8: ψ-volume averages of plastic strain values in sample coordinates, 〈Äxx
µå 〉u∂ãå (a) 

and 〈Äww
µå 〉u∂ãå (b) for the í -ensembles diffracting into the 200, 222 & 420 reflections. 
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Table 5.6: Plastic and elastic strain tensors for the highest deformed grains in the edge-
constrained Cu thin film model. The grain in the last row is fully elastic and is included for 

comparison. 

Grain Position # Reflection, y (°) 〈-()
C+〉 (µe) 〈-()K+〉	(µe) 

4 200, 33.21 0
202 0 0
0 −106 −56
0 −56 −95

4 0
821 0 0
0 −54 −49
0 −49 134

4 

63 200, 33.21 0
182 0 0
0 −90 41
0 41 −92

4 0
828 0 0
0 −58 42
0 42 108

4 

226 200, 39.23 0
134 0 0
0 −53 −39
0 −39 −81

4 0
731 0 0
0 59 −54
0 −54 132

4 

251 200, 39.23 0
152 0 0
0 −44 −23
0 −23 −108

4 0
772 0 0
0 9 −22
0 −22 71

4 

75 200, 45 0
85 0 0
0 −21 −16
0 −16 −63

4 0
701 0 0
0 111 −32
0 −32 40

4 

125 200, 45 0
116 0 0
0 −66 −43
0 −43 −50

4 0
721 0 0
0 −32 −63
0 −63 184

4 

305 200, 45 0
165 0 0
0 −77 19
0 19 −88

4 0
722 0 0
0 0 11
0 11 149

4 

153 222, 18.43 0
204 0 0
0 −40 34
0 34 −164

4 0
930 0 0
0 69 67
0 67 −111

4 

222 420, 26.57 0
0 0 0
0 0 0
0 0 0

4 0
1147 0 0
0 −64 11
0 11 −168

4 

 

5.3.2.2.2-  Stress Distribution in Sample Coordinates 

Finite element analysis of our model yielded the local stress/strain components for each 

node in the sample coordinate system. In order to simplify the analysis and match it to the 
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diffraction measurements we computed four types of average stress tensor terms from these local 

values [74]: 

a) Grain average stress tensor, 〈�ab〉a: the average stress tensor within a particular, ith,  grain 

obtained by averaging stresses at each node within that grain. 

b) ψ-volume average stress tensor, 〈�ab〉≥∂ãå: the average stress tensor within a particular ψ-

volume for a given reflection obtained by averaging the stress tensor of all grains in the 

diffraction condition at the designated ψ for the given reflection. 

c) Reflection average stress tensor, 〈�ab〉∂ãå: the average stress tensor where the average 

was taken over all grains diffracting at all ψ-tilts for a particular reflection, hkl. 

d) Global average stress tensor, �Çab: the average stress tensor for the entire sample volume, 

where the average was taken over all grains in the model. EZ() of the current model is listed 

in Table 5.5. 

In Fig. 5.9, we plot the grain average stress tensors along in-plane29 and normal sample 

axes,5⃗$, 5⃗& ;	〈E$$〉(,", 〈E&&〉(," , respectively, for all reflections as a function of sin2y. In these plots, 

the corresponding ψ-volume averages 〈E()〉≥D*+ and their standard deviations are also shown. These 

average stresses contain contributions from Heyn stresses caused by elastic and (minimal) plastic 

incompatibility. These terms can be obtained from: 

〈E()〉(∗ = 〈E()〉( − EZ()                 Eq. (5-6-a)  

〈E()〉≥
∗,D*+ = 〈E()〉≥D*+ − EZ()               Eq. (5-6-b) 

 
29 The stress values and distributions for 〈'mm〉c were similar to 〈'HH〉c . 
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For the out-of-plane direction, 5⃗&, the global average normal stress must be zero,  EZ&& ≡

0.	Consequently, all stress terms in this direction are Heyn stresses: 〈E&&〉( = 〈E&&〉(∗,	 〈E()〉≥D*+ =

〈E()〉≥
∗,D*+. The stress values plotted in Fig. 5.9 show that, for the in-plane directions, 5⃗#, 5⃗$,	the 

grain averaged Heyn stresses can be up to 40% of the global average constraint stress. The ψ-

volume averages of the stress components, 〈E()〉≥D*+, are closer to the global average stresses, EZ(). 

However, 〈E()〉≥D*+ can be up to 15% different from EZ(), especially for the 200 and 222 reflections. 

Consequently, such volumes cannot be considered representative volume elements (RVE).  For 

the 420 reflection, on the other hand, 〈E()〉≥�#A were within a few percent of EZ() for all y.  

 In Table 5.7 the reflection average stress tensors, 〈E()〉D*+, are listed for the 200, 222, and 

420 reflections. We observe that  〈E()〉D*+ 	for all three reflections are quite close to the global 

average stress tensor, EZ()  shown in Table 5.5. Thus, to precision within the error of typical 

diffraction measurements, the Heyn stresses were averaged out from all three (mutually exclusive) 

reflection volumes, aD*+. From this perspective  aD*+ can be considered RVEs. We next investigate 

if the diffraction stress analysis formalism, which forces a linear least-squares average on the 

strains along the diffraction vectors of various y–volumes, yields correct stress values when 

applied to a sample that contains such heterogeneous stress states. 
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Table 5.7: Reflection average stress tensors, 〈�ab〉∂ãå, for the 200, 222, and 420 reflections. 
The terms in parentheses denote standard deviations. 

〈�ab〉vjj (MPa) 〈�ab〉vvv (MPa) 〈�ab〉∑vj (MPa) 

A
1(5) 0(0) 0(5)
0 −70(8) 0

0(5) 0 −78(10)
C A

1(5) 0(0) −1(5)
0 −78(10) 0

−1(5)(0) 0 −75(9)
C A

0(5) 0(0) −1(5)
0 −74(9) 0

−1(5)(0) 0 −76(10)
C 
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Figure 5.9: The grain stress averaged values along in-plane (a, c, e) and normal (b, d, f) 
sample axes;	〈�ww〉a,u, 〈�xx〉a,u , respectively, for all reflections as a function of sin2ψ. 
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5.3.2.2.3- Diffraction Strain/Stress Analysis 

To simulate the diffraction stress analysis for our virtual sample we computed the average 

strain for each grain in the model, 〈-&&,"% 〉(,", by substituting its average strain tensor obtained from 

the finite element model into Eq. (1-11). This yielded the 〈-&&,"% 〉(,"EF 		(". sin# %  plots shown in 

Figs. 5.6-a, c & e. We also computed the Heyn interaction strains,	〈-&&,"% 〉(,"∗GEF, for each grain from: 

〈-&&,"% 〉(,"∗GEF = 〈-&&,"% 〉(,"EF − 〈-&&,"% 〉(,"AGEF                Eq. (5-7)     

Here -"A  is the strain at the particular y-angle for the equivalent isotropic Cu slab subjected to edge 

constraint during heating30. 〈-&&,"% 〉(,"∗GEF	(". sin# % plots are shown in Figs. 5.6-b, d & f. 

To obtain the reflection average stress, 〈E$$P 〉D*+, we used Eq. (5-1-b), the slopes of least 

squares lines fitted to the 〈-&&,"% 〉(,"EF 	(". sin# % data for each reflection, and diffraction elastic 

constants at Voigt, Reuss, Kröner, and Neerfeld-Hill limits shown in Table 5.8.  These results are 

shown in Table 5.9.   

 

 

 

 

 
30 This is computed by substituting the strain tensor for the equivalent isotropic Cu slab (Table 5.5) into Eq. (1-11). 
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Figure 5.10: 〈Äxx,u% 〉a,u∏π 	‹è. èêëví (a, c, e) and  〈Äxx,u% 〉a,u∗G∏π	‹è. èêëví (b, d, f) plots for studied 
reflections of the edge constrained Cu film at incipient plastic flow. 
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Table 5.8: Diffraction Elastic Constants of non-textured polycrystalline Cu at various limits.  

(TPa)-1 hkl Voigt Reuss Neer.-Hill Kröner 

−‹
Â
(çx) 200 2.24 6.28 4.26 3.73 

−‹
Â
(çx) 222 2.24 1.40 1.82 1.93 

−‹
Â
(çx) 420 2.24 3.94 3.09 2.87 

È + ‹
Â ⁄

çv
Í ¤ 200 9.17 21.28 15.23 13.63 

È + ‹
Â ⁄

çv
Í ¤ 222 9.17 6.65 7.86 8.24 

È + ‹
Â ⁄

çv
Í ¤ 420 9.17 14.26 11.73 11.04 

 

Table 5.9: The average stresses obtained from simulated diffraction analysis of the plots 
shown in Fig. 5.10. 

 〈�ww∫ 〉∂ãå (MPa) Voigt Reuss Neer.-Hill Kröner 

200 -119 ± 6 -51 ± 3 -71 ± 4 -80 ± 5 

222 -72 ± 7 -100 ± 8 -84 ± 8 -81 ± 7 

420 -107 ± 4 -69 ± 2 -84 ± 3 -89 ± 3 
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Comparing Tables 5.7 & 9, we observe that, while the stress values obtained from 

diffraction analysis,  〈E$$P 〉D*+, using the Kröner and Neerfeld-Hill limits31 for all three reflections 

are close to the expected average stress values in the sample coordinates: they are, in general, 

slightly higher.  

To further investigate this issue we analyzed the plots in Figs. 5.10-a, c & e in terms of 

strain in the sample coordinates using Eq. (5-1-a). Table 5.10 lists the reflection average strain 

values, 〈-$$P 〉D*+, 〈-&&P 〉D*+, obtained directly from the slopes and intercepts of these plots. We also 

list the arithmetic averages of these terms, 〈-&&〉D*+, 〈-$$〉D*+ , computed from the average strains in 

the sample coordinates for grains belonging to particular reflections. The averages obtained from 

diffraction analysis are different from the arithmetic averages in real space. In particular, while the 

real space average strains in the direction of the film normal, 〈-&&〉D*+, are almost identical for all 

three reflections and the model average, -&̅&, the magnitudes of diffraction averages of this strain 

term reflect the anisotropic compliances associated with these reflections: the stiffest direction, 

[222], shows the smallest strain, while the most compliant, [200], has the highest elastic 

deformation. The differences in the in-plane strain terms, 〈-$$P 〉D*+ and 〈-$$〉D*+ for all reflections 

probably arise due to the forced linear fit on non-linear 〈-&&,"% 〉(,"EF 	(". sin# % data, where the non-

linearities are caused primarily by Heyn stresses arising in response to elastic incompatibility. 

 
31 Voigt and Reuss limits are limiting cases and are not physical. Thus we will not discuss these results. They are 
included for completeness. 
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We note that the uncertainty values for the diffraction values are not directly comparable 

to those associated with real space values. The former are “fit” errors, reflecting the inadequacy of 

the linear model; the latter describe real population dispersions.  

 

Table 5.10: The average strains in sample coordinates obtained from simulated diffraction 
analysis of the plots shown in Fig. 5.10. The averages for the reflection-ensembles in real 

space are also included, along with the model averages. 

Reflection 

Strain term 

Isotropic 

(Eq. 5-4) 

Model 

average 
200 222 420 

 〈-$$P 〉D*+(Î-) - - -81±21 44±21 -27±23 

〈-&&P 〉D*+ (Î-) - - 1009±9 790±9 -919±10 

〈-$$〉D*+ 	(Î-) 0 0±82 44±95 -30±72 5±85 

〈-&&〉D*+ 	(Î-) 848 892±110 889±120 872±120 890±106 

 

5.3.2.3- Pervasive Plastic Deformation 

In this simulation, the mesh was heated from room temperature to 100°C. The expected 

strain and stress tensors for all points, ](u, }, ~), in an equivalent isotropic Cu thin film for 

elastoplastic loading (Eqs. (5-4 & 5)) are presented in Table 5.11. In this table, numerical averages 

of the stress and strain tensors, EZ() , -(̅) and the standard deviations for the model parameters are 

also tabulated. The analytical calculations were carried out assuming that the material is fully 

elastically loaded. Since all of the grains deformed plastically in this model, there is no agreement 

between the analytical calculations and finite element results.  
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Table 5.11: Stress and strain tensors for the edge-constrained Cu thin film model heated 
from 25°C obtained from Eqs. (5-4 & 5) and the finite element model. The terms in 

parentheses denote standard deviations. 

Parameter Eqs. (5-4 & 5) ABAQUS-CAE 

Thermal strain , 2%&B- 0
1253 0 0
0 1253 0
0 0 1253

4 0
1253 0 0
0 1253 0
0 0 1253

4 

Boundary constraint strain, 2%&C.E. 0
1290 0 0
0 −1253 0
0 0 −1253

4 - 

Total elastic strain   

(2%&B- + 2%&C.E.)		; -(̅)  
0
2543 0 0
0 0 0
0 0 0

4 A
1959(312) 0(0) 0(0)

0(0) 640(226) 0(34)
0(0) 0(34) 653(249)

C 

Stress 4%&; EZ() (MPa) 0
0 0 0
0 −222 0
0 0 −222

4 A
−1(4) 0(0) 0(5)
0(0) −105(10) 0
0(5) 0 −105(10)

C 

Plastic strain (2%&F/) - A
1333(656) 0(2) 0(0)

0(2) −659(350) 6(231)
0(0) 6(231) −674(344)

C 

 

In Fig. 5.11, we plot the average plastic strains in the plane of the film, 〈-$$
C+〉"D*+  and out of 

the plane of the film 〈-&&
C+〉"D*+ 	as a function of "#$#% for all reflections. We observe that: (1) average 

plastic strains for all ψ-ensembles are finite. (2) the grain populations oriented to diffract into the 

200 reflection for y= 0° exhibit a small amount of plastic strains. (3) all grains exhibit some degree 

of compressive flow in the plane of the film. (4) average plastic strain for grains oriented to diffract 

into the 420 reflection is approximately equal to the global average plastic strain. In other words, 

uniform plastic deformation is observed for the grains that belong to the ψ-ensembles of 420 

reflection. 
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Figure 5.11: ψ-volume averages of plastic strain values in sample coordinates, 〈Äxx
µå 〉u∂ãå (a) 

and 〈Äww
µå 〉u∂ãå (b) for the í -ensembles diffracting into the 200, 222 & 420 reflections. 

 

5.3.2.3.1-  Stress Distribution in Sample Coordinates 

Finite element analysis of our model yielded the local strain/stress components for each 

node in the sample coordinate system. We computed four types of average stress tensor terms from 

these local values as it was summarized in Section 5.3.2.2.1.  

In Fig. 5.12, we plot the grain average stress tensors along in-plane and normal sample 

axes, 5⃗$, 5⃗& ;	〈E$$〉(,", 〈E&&〉(," , respectively,  for all reflections as a function of sin2y. The 

corresponding ψ-volume averages 〈E()〉≥D*+ and their standard deviations are also plotted in these 

figures. These average stresses contain contributions from Heyn stresses caused by elastic and 

plastic incompatibility and they can be obtained from Eqs. (5-6-a & b). For the out-of-plane 

direction, 5⃗&, the global average normal stress must be zero. Consequently, all stress terms in this 

direction are Heyn stresses. The stress values plotted in Fig. 5.12 shows that, the grain average 

Heyn stresses can be up to 20% of the global average constrain stress for the in-plane directions, 
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5⃗#, 5⃗$. The ψ-volume averages of the stress components, 〈E()〉≥D*+, are closer to the global average 

stresses, EZ(). However, 〈E()〉≥D*+ can be up to 10% different from EZ(), especially for 200 reflections. 

Consequently, such volumes cannot be considered as a representative volume element (RVE). For 

222 and 420 reflection, on the other hand, 〈E()〉≥### and 〈E()〉≥�#A were within a few percent of EZ() 

for all ψ.  

In Table 5.12, the reflection average stress tensors, 〈E()〉D*+, are listed for 200, 222 and 420 

reflections. We observe that 〈E()〉D*+ are similar to the global average stress tensor, EZ() shown in 

Table 5.11. Thus, Heyn stresses were averaged out from all three mutually exclusive reflection 

volumes, aD*+, within the error of typical diffraction measurements. From this perspective, aD*+ 

can be considered RVEs. 

 We next investigate if the diffraction stress analysis formalism yields the correct stress 

values when applied to a sample containing heterogeneous stress states. 

 

Table 5.12: Reflection average stress tensors, 〈�ab〉∂ãå, for the 200, 222, and 420 reflections. 
The terms in parentheses denote standard deviations. 

〈�ab〉vjj (MPa) 〈�ab〉vvv (MPa) 〈�ab〉∑vj (MPa) 

A
−1(4) 0(0) 0(0)
0 −105(9) 0(5)

0(0) 0(5) −105(10)
C A

1(4) 0(0) 0(0)
0 −106(9) 0(5)

0(0) 0(5) −105(9)
C A

−1(4) 0(0) 0(0)
0 −104(9) 0(5)

0(0) 0(5) −106(9)
C 
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Figure 5.12: The grain stress averaged values along in-plane (a, c, e) and normal (b, d, f) 
sample axes;	〈�ww〉a,u, 〈�xx〉a,u, respectively, for all reflections as a function of sin2ψ. 
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5.3.2.3.2-  Diffraction Strain/Stress Analysis 

The average strain for each grain in the model, 〈-&&,"% 〉(,", were computed by substituting 

its average strain tensor obtained from the finite element model into Eq. (1-11). This yielded the 

〈-&&,"% 〉(,"EF 		(". sin# %  plots shown in Figs. 5.13.a, c & e. For each grain, we also computed the 

Heyn interaction strains,	〈-&&,"% 〉(,"∗GEF, from Eq. (5-7). 〈-&&,"% 〉(,"∗GEF	(". sin# % plots are shown in 

Figs. 5.13-b, d & f.  

To obtain the reflection average stress, 〈E$$P 〉D*+, we used Eq. (5-1-b), the slopes of least 

squares lines fitted to the 〈-&&,"% 〉(,"EF 	(". sin# % data for each reflection, and diffraction elastic 

constants at Voigt, Reuss, Kröner, and Neerfeld-Hill limits shown in Table 5.8. These results are 

shown in Table 5.13. 
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Figure 5.13: 〈Äxx,u% 〉a,u∏π 	‹è. èêëví	(a, c, e) and 〈Äxx,u% 〉a,u∗G∏π	‹è. èêëví (b, d, f) plots for 
studied reflections of the Cu mesh under plastic loading. 
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Table 5.13: The average stresses obtained from simulated diffraction analysis of the plots 
shown in Fig. 5.14. 

〈�ww∫ 〉∂ãå (MPa) Voigt Reuss Neer.-Hill Kröner 

200 -233 ± 35 -100 ± 15 -140 ± 20 -156 ± 22 

222 -76 ± 16 -104 ± 21 -88 ± 17 -84 ± 17 

420 -161 ± 8 -104 ± 4 -126 ± 4 -134 ± 5 

   

Comparing Tables 5.12 & 13, we observe that the stress values obtained from diffraction 

analysis, 〈E$$P 〉D*+, obtained using the Kröner and Neerfeld-Hill limits for all three reflections, are 

different from the expected average stress values in the sample coordinates. The stiffest direction, 

[222] has the lowest 〈E$$P 〉###, whereas the most compliant direction, [200], has the highest 

〈E$$P 〉#AA values. 

To further investigate this issue, Figs. 5.13-a, c & e were analyzed in terms of strains in the 

sample coordinates using Eq. (5-1-a). Table 5.14 lists the reflection average strain values, 〈-&&P 〉D*+, 

〈-$$P 〉D*+, obtained directly from the slopes and intercepts of these plots. We also list the arithmetic 

averages of these terms, 〈-&&〉D*+, 〈-$$〉D*+ , computed from the average strains in the sample 

coordinates for grains belonging to particular reflections. The averages obtained from diffraction 

analysis are different from the arithmetic averages in real space. The real space average strains in 

the direction of the film normal, 〈-&&〉D*+, are almost identical for all three reflections, and the 

model average,  -&̅&. However, the magnitudes of diffraction averages of this strain term reflect the 

anisotropic compliances associated with these reflections: the stiffest direction, [222] shows the 

smallest strain, while the most compliant, [200] has the highest elastic deformation. The 
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differences in the in-plane strain terms, 〈-$$P 〉D*+ and 〈-$$〉D*+ for all reflections probably arise due 

to the forced linear fit on non-linear 〈-&&,"% 〉(,"EF 	(". sin# % data, where the non-linearities are caused 

primarily by Heyn stresses arising in response to elastic and plastic incompatibility.  

 

Table 5.14: The average strains in sample coordinates obtained from simulated diffraction 
analysis of the plots shown in Fig. 5.14. The averages for the reflection-ensembles in real 

space are also included, along with the model averages. 

Reflection 

Strain term 

Isotropic 

(Eq. 5-4) 

Model 

average 
200 222 420 

〈-$$P 〉D*+ (Î-) - - 273±303 854±138 581±50 

〈-&&P 〉D*+ (Î-) - - 2404±118 1548±23 2057±22 

〈-$$〉D*+ 	(Î-) 0 653±249 712±300 569±305 654±328 

〈-&&〉D*+ 	(Î-) 2543 1959±312 1895±548 1925±592 1960±106 

 

5.3.2.3.2.1- Determination of Oscillations in 〈Äxx,u% 〉a,u vs. úùûví 

To check the significance of oscillations in 〈-&&,"% 〉(," vs. sin# %; (1) We removed the first 

two ψ-ensemble points from 〈-&&,"% 〉(," vs. sin# % plots (2) We analyzed the plots for diffraction-

averaged stress values. (3) the computed averaged stresses from these plots were compared with 

the ones calculated from 〈-&&,"% 〉(," vs. sin# % plots containing all ψ-ensembles. (4) If the change 

of the computed stress is within the error limit of the diffraction measurement, plots are called 

linear; if not, standard diffraction formalism cannot be used to analyze 〈-&&,"% 〉(," vs. sin# % plots. 

This analysis must be performed in all measurements because the agreement with the computed 
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average stresses is insufficient to prove the validity of a stress computation. Thus, we performed 

this analysis to our plastically deformed hypothetical Cu sample. 

Comparing Tables 5.13 & 15, we observe that the stress values obtained from diffraction 

analysis after removal of first two ψ-ensembles, 〈E$$P 〉D*+, obtained using the Kröner and Neerfeld-

Hill limits for all three reflections are different from the ones obtained from without removing the 

first two ψ-ensembles. The change of 〈E$$P 〉D*+ values for [222] and [200] directions can be up to 

60% different whereas, for [420] direction, the change is around 15%. We conclude that 〈-&&,"% 〉(," 

vs. sin# % for all three reflections show oscillatory behavior.  

 

Table 5.15: The average stresses obtained from simulated diffraction analysis of the plots 
shown in Fig. 5.14 after removal of the first two ψ-ensemble points. 

〈�ww∫ 〉∂ãå (MPa) Voigt Reuss Neer.-Hill Kröner 

200 -150 ± 16 -65 ± 7 -90 ± 9 -101 ± 11 

222 -129 ± 9 -177 ± 15 -150 ± 10 -143 ± 6 

420 -141 ± 6 -91 ± 4 -111 ± 5 -118 ± 4 

  

5.3.3- Free Expansion of Cu – W Virtual Sample 

The final model utilizing the virtual single-layer polycrystalline thin film sample simulated 

the free thermal expansion of a two-phase Cu – W sample heated from RT to 90°C. These elements 

are mutually insoluble in each other. Consequently, the sample is essentially a mechanical mixture 

of the two sets of grains where the grains are connected across rigid boundaries normal to the film 

surfaces. When such a film is heated uniformly, the film boundaries are free to expand. However, 
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since the CTEs of Cu and W are very different, 16.7 vs. 4.6 ppm, respectively, grains belonging to 

the two-phases are expected to mutually constrain each other. In particular, in the direction of the 

film normal, 5⃗&, the W grains will constrain the Cu grains from expanding to their equilibrium 

heights, placing them in compression. Such constraints can result in plastic flow within the softer 

Cu grains. Concurrently, the Cu grains will pull the W grains past their equilibrium heights, placing 

them in tension. Since the yield point of W is much higher than Cu, there should be no plastic flow 

in the W grains. There will also be an in-plane constraint, resulting in Heyn stresses due to thermal 

and elastic incompatibility. Overall, we expect triaxial stress states in the grains of both phases, 

even though there will be no external forces or tractions on any of the film’s boundaries. 

Consequently, the overall global averages of all stress components, EZ(), should be zero.  

 

5.3.3.1- State of Stress in Sample Coordinates 

Tables 5.16 & 17 show the global average stress and lattice strain32 tensors and their 

distribution parameters. These averages were computed over all grains, both Cu and W, in the 

model. The minimum (MIN), maximum (MAX) values reflect the extrema in the relevant grain 

average stresses/strains. We observe that, as expected, all EZ() = 0. However, four stress terms, EZ(( 

and EZ&# exhibit wide distributions. The full width (FW) of these in-plane stresses are quite large, 

indicating that some grains possess significant interaction stresses. Both the extrema and the 

dispersion of the out-of-plane normal stress, EZ&&, is much smaller, approximately half of the in-

 
32 This average is the sum of thermal and elastic strains.  
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plane stresses. The out-of-plane shear stresses, EZ)&, are zero with approximately zero dispersion. 

This is due to the isotropic CTEs of the (cubic) Cu and W grains.  

 

Table 5.16: Global average stress tensor of the entire Cu – W film heated to 90°C and its 
dispersion parameters. The model contains 676 grains, 352 Cu, and 324 W. All values are 

in MPa. 

(MPa) �Çxx �Çvv �Çww �Çvw �Çxw �Çxv 

Average 0 0 0 0 0 0 

STD 28 55 55 28 0 0 

FW 112 259 273 203 0 1 

MAX 51 156 178 100 0 1 

MIN -61 -103 -95 -103 0 0 

 

Table 5.17: Average lattice strain tensor of the entire Cu – W film heated to 90°C and its 
dispersion parameters. All values are in microstrain (με). 

(ÏÄ) ÄZxx ÄZvv ÄZww ÄZvw ÄZxw ÄZxv 

Average 300 374 370 0 0 -2 

STD 38 105 107 0 0 57 

FW 187 486 560 1 1 296 

MAX 406 690 646 0 0 141 

MIN 219 205 85 -1 0 -155 
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In contrast to the stress values, all lattice strain values are finite, as expected from thermal 

expansion. However, the two-phase film, consisting of cubic grains, exhibits anisotropic average 

thermal expansion; the out-of-plane normal strain, -&̅&, is larger than the in-plane strains. All 

average shear strains,  -(̅),(ª) = 0. Consequently, we can attribute the (average) anisotropic thermal 

expansion to the film geometry; the in-plane boundary conditions are equal to each other; -$̅$ =

-#̅#; 	-#̅$ = 0,	 but the film can expand more out of the plane; -&̅& = 1.14	u	-$̅$. 

 Tables 5.18, 19 & 20 list the average stress, lattice strain, and plastic strain tensors in the 

Cu phase and their dispersion parameters. All normal stresses, EZ((EF, are finite and compressive 

while the shear stresses EZ(),(ª)EF , are zero. The dispersion parameters for these shear stress 

components are much smaller than the corresponding values of the global stress tensor, EZ().  

 The average normal lattice strains of the Cu phase, -(̅(EF, are much larger, 2.5 to 4 x, than 

the global average strains of the entire model, -(̅(. The strain dispersions are also much larger in 

the Cu phase. In addition, while the average plastic strain for the Cu phase can be considered zero 

(Table 5.20), the dispersion parameters of the plastic strains show that some have significant 

plastic flow. We note that the average in-plane plastic shear strain and its dispersion is the largest 

component in this case. 
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Table 5.18: Average stress tensor for the Cu phase of the Cu – W film heated to 90°C and 
its dispersion parameters. This phase contains 352 grains. All values are in MPa. 

(MPa) �Çxx∏π �Çvv∏π �Çww∏π �Çxv∏π �Çxw∏π �Çvw∏π 

Average -24 -44 -44 0 0 -1 

STD 13 24 24 0 0 23 

FW 67 131 137 1 0 101 

MAX 6 28 42 1 0 54 

MIN -61 -103 -95 0 0 -47 

 

Table 5.19: Average lattice strain tensor for the Cu phase of the Cu – W film heated to 
90°C and its dispersion parameters. All values are in microstrain (µe). 

 ÄZxx∏π ÄZvv∏π ÄZww∏π ÄZxv∏π ÄZxw∏π ÄZvw∏π 

Average 1158 911 920 1 0 -9 

STD 86 206 211 1 0 142 

FW 612 1123 1329 4 2 868 

MAX 1452 1539 1642 4 1 397 

MIN 840 416 313 -1 0 -470 
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Table 5.20: Average plastic strain tensor for the Cu phase of the Cu – W film heated to 
90°C and its dispersion parameters. All values are in microstrain (µe). 

 ÄZxx
µå,∏π ÄZvv

µå,∏π ÄZww
µå,∏π ÄZxv

µå,∏π ÄZxw
µå,∏π ÄZvw

µå,∏π 

Average -5 2 4 3 1 -14 

STD 13 54 55 3 1 167 

FW 142 581 587 17 5 1466 

MAX 84 187 365 15 4 798 

MIN -58 -394 -222 -1 -1 -668 

 

Tables 5.21 & 22 list the average stress and lattice strain tensors in the W phase and their 

dispersion parameters. The phase and grain average plastic strains in this phase were negligible. 

All normal stresses, EZ((B 	 , are finite and tensile; opposite in sign to the corresponding Cu phase-

average stress terms.  All shear stresses, EZ(),(ª)B , are zero. Comparing Tables 5.16, 18 & 21, we 

observe that the average normal phase stresses obey the average stress equilibrium condition [57]: 

YEFEZ((EF + YBEZ((B = 0                   Eq. (5-8) 

The dispersion parameters for the phase-average W stress components are smaller than the 

corresponding values for the global stress tensor, EZ() . 
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Table 5.21: Average stress tensor for the W phase of the Cu – W film heated to 90°C and 
its dispersion parameters. This phase contains 324 grains. All values are in MPa. 

(MPa) �Çxx±  �Çvv±  �Çww±  �Çxv±  �Çxw±  �Çvw±  

Average 27 49 47 0 0 1 

STD 10 35 38 0 0 34 

FW 55 174 210 1 0 203 

MAX 51 156 178 0 0 100 

MIN -4 -18 -32 0 0 -103 

 

Table 5.22: Average lattice strain tensor for the W phase of the Cu – W film heated to 90°C 
and its dispersion parameters. All values are in microstrain (µe). 

 ÄZxx±  ÄZvv±  ÄZww±  ÄZxv±  ÄZxw±  ÄZvw±  

Average 301 373 370 0 0 1 

STD 40 103 110 0 0 56 

FW 210 523 648 1 1 335 

MAX 425 690 734 0 0 165 

MIN 215 168 85 -1 0 -170 

 

Comparing Tables 5.17 & 22, we observe that the overall lattice strain tensor of the model 

is almost equal to the average lattice strain tensor of the W phase. This is expected since W is 

much stiffer than Cu. Since the average lattice strain tensors of the W and Cu grains are so 
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different, we expect the Cu grains to expand more toward their center, away from any neighboring 

W grains. Thus, the surface of such a sample should exhibit some roughness. 

 

5.3.3.1.1-  Phase-average Stress Components in Sample Coordinates Selected by 

Diffraction 

Tables 5.18 & 21 listed phase-average stress tensors. Due to the phase-specific nature of 

diffraction, the intensity obtained from a given reflection measured at a given ,,% angle contains 

contributions only from the grain population of the y-ensemble of the particular phase. Thus, we 

need to add phase (Ph) superscripts to the grain average stress tensor, 〈E()〉(,"HD , the ψ-volume 

average stress tensor, 〈E()〉≥HDGD*+, and reflection average stress tensor , 〈E()〉HDGD*+, to specify the 

phase-dependency of these terms. Similar terms are defined for the corresponding strain averages. 

In Figs. 5.14 & 15, we plot the grain averages of the stress terms, 〈E&&〉(,"HD , 〈E$$〉(,"HD , of all grains 

for all y-tilts of all three reflections of the Cu and W phases (]ℎ = :œ,Ì). The solid symbols in 

these plots are the corresponding ψ-volume average stress values, 〈E&&〉"HDG	D*+ , 〈E$$〉"
HD,GD*+. Their 

standard deviations are also marked. We see that, for each reflection, the ψ-volume average stress 

values are close to each other for all y. The reflection average stresses, Table 5.22, are close to the 

phase-average stress tensors. Thus, the reflection volumes can be considered representative 

volume elements for specific phases, but they CANNOT BE REPRESENTATIVE of the sample 

as a whole. This shows that these phase-specific average stresses are not macro-stresses or far-

field stresses. They are pseudo-macro stresses. 
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Table 5.23: Reflection average stress tensors for the Cu and W phases of the Cu – W film 
heated to 90°C. The phase-average stress tensor is also included for ease of comparison. All 

values are in MPa. 

Reflection Cu-phase W-phase 

200 〈E()〉EFG#AA = î
−23 0 0
0 −43 0
0 0 −42

ñ 〈E()〉BG#AA = î
27 0 0
0 49 0
0 0 48

ñ 

222 〈E()〉EFG### = î
−24 0 0
0 −45 0
0 0 −45

ñ 〈E()〉BG### = î
26 0 0
0 50 0
0 0 43

ñ 

420 〈E()〉EFG�#A = î
−24 0 0
0 −44 0
0 0 −44

ñ 〈E()〉BG�#A = î
27 0 0
0 49 0
0 0 48

ñ 

 EZ()EF = î
−24 0 0
0 −44 0
0 0 −44

ñ EZ()B = î
27 0 0
0 49 0
0 0 47

ñ 
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Figure 5.14: The phase-average, Cu (a, c, e) and W (b, d, f), grain stress values along in-
plane sample axis;	〈�ww〉a,u, , respectively, for all reflections as a function of sin2ψ. 
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Figure 5.15: The phase-average, Cu (a, c, e) and W (b, d, f), grain stress values along out-
of-plane sample axis;	〈�xx〉a,u, , respectively, for all reflections as a function of sin2ψ. 
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5.3.3.2- Diffraction Stress Analysis 

In Fig. 5.18, we plot the 〈2##@ 〉%,=F- 	(". sin2%	data  for all three reflections of the two-phases 

computed from the output of the FEA model. While the strain data is quite scattered, the average 

values are close to linear for both phases. Linear regression fits to both sets yielded opposite slopes 

as expected. 

Analysis of the slopes and intercepts of the fitter linear regression models were first used 

to compute the phase-averages of strains in the sample coordinate system.  In this case, the relevant 

equation is: 

〈-!`A,"D*+ 〉(,"HD = 〈-&&,"% 〉(,"HD = âG〈-$$,"〉(,"HD − 〈-&&,"〉(,"HD H ∗ sin# % + 〈-&&,"〉(,"HD ä            Eq. (5-9)  

Where the index “i” refers to a particular grain of phase, Ph, diffracting at angle y. 
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Figure 5.16: 〈Äxx,u% 〉a,uΩ∂ 	‹è. èêëví plots for studied reflections of each phase in Cu – W mesh 
under the thermal loading. 
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From the slopes and intercepts of lines fitted to the data shown in Fig. 5.12, we obtain the 

phase-specific reflection average strains, 〈-()P〉HDGD*+, in sample coordinates. These results and their 

regression-fit errors are presented in Tables 5.24 & 25 for Cu and W phases, respectively33. Also 

included are the reflection average strain tensors in the sample coordinates, computed from real 

space strain values,	〈-()〉HDGD*+ , obtained from the finite element analysis for each phase, as well 

as the overall phase average. The values in parentheses show the “regression-fit-errors” and 

standard deviations for the regression analysis values and real space averages, respectively. We 

observe that the strain tensors obtained from linear regression from all reflections agree quite well 

with the real space averages for both phases. On the other hand, the slopes of the 

〈2##,=@ 〉%,=F- 	(". sin2% plots are quite different. Consequently, any computation which utilized only 

slopes would have yielded significantly different answers for each reflection. 

Table 5.26 shows the reflection average stress tensors for each phase computed from the 

average strain tensors listed in Tables 5.24 & 25 and isotropic Hooke’s law. In this computation 

the isotropic elastic constants of bulk Cu and W were used, not reflection-specific diffraction 

elastic constants. We observe reasonable agreement with the real space values shown in Table 

5.23. 

Finally, in Table 5.27, we list the reflection-specific stress terms, 〈E$$P − E&&P 〉HDGD*+, 

obtained only from the slopes of the 〈-&&,!% 〉(,"HD 	(". sin# % for each phase. Since the magnitudes of  

〈E&&〉HDGD*+, 〈E$$〉HDGD*+ are comparable, this parameter is not useful in absolute terms. 

 
33 In these tables, we used symmetry of the model in the film plane to set 〈:nn〉ofpfgh = 〈:mm〉ofpfgh for the diffraction 
analysis. The actual strain values from each grain along the relevant sample axes were used to compute real space 
averages. 
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Table 5.24: Slopes and intercepts of lines fitted to 〈Äxx,G% 〉a,uΩ∂ 	‹è. èêëví	data and the 
corresponding reflection average strain tensors for the Cu phase. The corresponding real 

space averages are also included. All values are in microstrain (με). 

Reflection Slope Intercept 〈Äab∫〉Ω∂G∂ãå 〈Äab〉Ω∂G∂ãå 

200 -290 (46) 1200(19) A
1200(19) 0 0

0 910(50) 0
0 0 910(50)

C A
1164(84) 0 0

0 893(221) 0
0 0 939(197)

C 

222 -192(27) 1125(13) A
1125(13) 0 0

0 934(30) 0
0 0 934(30)

C A
1152(85) 0 0

0 925(205) 0
0 0 906(217)

C 

420 -247(35) 1161(17) A
1161(17) 0 0

0 914(39) 0
0 0 914(39)

C A
1158(87) 0 0

0 909(195) 0
0 0 920(215)

C 

Phase 

average 

   
A
1158(86) 0 0

0 911(206) 0
0 0 920(211)

C 

 

Table 5.25: Slopes and intercepts of lines fitted to 〈Äxx,G% 〉a,uΩ∂ 	‹è. èêëví	data and the 
corresponding reflection average strain tensors for the W phase. The corresponding real 

space averages are also included. All values are in microstrain (με). 

Reflection Slope Intercept 〈Äab∫〉Ω∂G∂ãå 〈Äab〉Ω∂G∂ãå 
200 53(15) 307(7) 

?
307(7) 0 0
0 359(17) 0
0 0 359(17)

G ?
300(38) 0 0

0 374(105) 0
0 0 370(107)

G 

222 78(19) 294(8) 
?
294(8) 0 0
0 371(21) 0
0 0 371(21)

G ?
302(38) 0 0

0 380(94) 0
0 0 357(101)

G 

420 89(21) 300(11) 
?
300(11) 0 0

0 389(23) 0
0 0 389(23)

G ?
302(45) 0 0

0 369(109) 0
0 0 379(122)

G 

Phase 

average 

   
?
302(40) 0 0

0 373(103) 0
0 0 370(110)

G 
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Table 5.26: The computed reflection average stresses from the average strain tensors listed 
in Tables 5.24 & 25, and isotropic Hooke’s law.  

Reflection Cu-phase W-phase 

200 v
−12(13) 0 0

0 −37(15) 0
0 0 −37(15)

w v
25(9) 0 0
0 41(12) 0
0 0 41(12)

w 

222 v
−21(8) 0 0

0 −38(9) 0
0 0 −38(9)

w v
23(11) 0 0
0 47(15) 0
0 0 47(15)

w 

420 v
−18(10) 0 0

0 −40(12) 0
0 0 −40(12)

w v
33(14) 0 0
0 60(17) 0
0 0 60(17)

w 

Phase 

average 
v
−17(10) 0 0

0 −38(12) 0
0 0 −38(12)

w v
27(11) 0 0
0 49(15) 0
0 0 49(15)

w 

 

Table 5.27: The reflection-specific stress terms, 〈�ww∫ − �xx∫ 〉Ω∂G∂ãå obtained from the slopes 
of the 〈Äxx% 〉a,uΩ∂ 	‹è. èêëví. 

Reflection 200 222 420 

(MPa) 〈�ww∫ − �xx∫ 〉Ω∂G∂ãå 〈�ww∫ − �xx∫ 〉Ω∂G∂ãå 〈�ww∫ − �xx∫ 〉Ω∂G∂ãå 

Cu -42 ± 44 -44 ± 44 -44 ± 44 

W 48 ± 37 45 ± 37 50 ± 41 

 

5.4- Summary 
In this chapter, we used finite element modeling to obtain local stress and strain 

distributions of virtual materials under thermal loading. In addition, the expected -%D*+ 	(". sin#% 
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plots were computed for several reflections, and these plots were analyzed using the standard 

formalisms. We compared these results with the real space stresses/strains in our ideal samples. 

We found that macrostresses were observed in the constrained W and Cu samples. Due to 

having heterogeneous elastic constants, Heyn stresses are seen in Cu. In addition, variations in 

local stresses/strains were observed in ψ-ensembles for 200 and 222 reflections in this sample. 

Therefore, we can say that these volumes are not representative volume elements. Consequently, 

non-linearities in -%D*+ 	(". sin#% plots were observed. We found out that these non-linearities are 

oscillations by following a procedure defined in section 5.3.2.3.2.1. 

In the case of the Cu – W sample, only Heyn stresses (average of microstresses) were 

observed due to differential deformation and different amounts of expansion of phases. In addition, 

phase-specific average stresses are pseudo-macro stresses. -%D*+ 	(". sin#% plots were computed. 

And it was found that even though calculated average strains from linear least square fitting are in 

agreement with the real space values, any computation of stresses utilizing only slopes would have 

yielded significantly different answers for each reflection. 

In the next chapter, we will go one step further and increase the complexity of our virtual 

diffraction stress experiments in ideal, 3-D polycrystalline samples at which local stress variations 

are caused due to the change of elastic moduli from grain to grain and/or St. Venant fields. 
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6- FAR-FIELD MECHANICAL STRESSES IN IDEAL 

POLYCRYSTALLINE SYSTEMS 

 

The sample geometries modeled in Chapter 5 were based on an ideal thin film that 

contained hexagonal-prism-shaped grains arranged in either a 20x20x1 array (400 grains) or a 

26x26x1 array (676 grains). Simulation of the diffraction stress/strain formalism with this simple 

model was useful in clarifying the effects of heterogeneous distributions of elastic and plastic 

strains on the computed results. However, since these were not realistic samples, the applicability 

of our conclusions to actual tensile deformation of polycrystalline single-phase W and Cu, and 

two-phase Cu – W samples. These models are three-dimensional, contain many more grains, and 

utilize more realistic grain shapes and grain size distributions. In addition, we incorporated in these 

models more realistic plastic deformation responses which included experiment-based strain 

hardening as needed. 

In this chapter, we first present the extended details of our model and define the gage and 

grip sections of our virtual three-dimensional specimen through preliminary finite element 

analysis. We then present our work in five steps. In the first step, we examine the partitioning of 

stresses and strains within the grains of single-phase W and Cu samples loaded in the elastic regime 

under displacement control and determine the diffraction elastic constants of these (virtual) 

samples in simulated experiments. In the second step, we extend the single-phase Cu sample past 

its yield point, and discuss the partitioning of elastic strains within the sample at maximum 

extension and after unloading. In the third step, we present the partitioning of internal stresses in 

a Cu – W sample loaded in the elastic regime under displacement control, and determine the 
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diffraction elastic constants of the individual phases in this regime. In the fourth step, we extend 

the Cu – W past its yield point, and discuss the partitioning of elastic strains within the sample at 

maximum extension and after unloading. Finally, we discuss the types of deformation distributions 

in these samples and show that plastic flow smooths out stress distributions in both single-phase 

and two-phase samples.  

 

6.1- Materials Selection 
Selected elastic properties of Cu and W are shown in Chapter 5. The refined Voce 

hardening parameters were estimated from fitting an experimental stress-strain data for single-

phase Cu and are listed in Table 6.1. In the case of a single-phase W sample, these parameters 

were not estimated, we used higher hardening parameters to prevent the plastic deformation of the 

W phase. The stress-strain curves for single-phase Cu and W are shown in Fig. 6.1. 

 

Table 6.1: Refined Voce hardening parameters of Cu and W. 

 109 Pa 109 Pa  

 Eá h0 g0 g1 k̇A m k̇\ 

Cu 222 350 106 130 0.001 0.025 5 
W 1200 32 1200 2000 0.001 0.025 5 
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Figure 6.1: Refined and Experimental Stress-Strain Curve of a) Cu, b) W. The 
experimental data is collected from the Atlas of Stress-Strain Curves [133]. 

 

6.2- Model Definition and Meshing 
We specified a virtual sample in the shape of a square prism with dimensions 1x1x3 mm, 

and used Voronoi tessellation to create a three-dimensional grain structure within it. The Neper 

program was, then, used to mesh our virtual polycrystalline sample [119]. Fig. 6.2 depicts the mesh 

used in single-phase W and Cu finite element models. All 1500 grains have realistic three-

dimensional grain shapes. The distribution of the grain volumes is log-normal (Fig. 6.3). Each 

grain is oriented in the sample coordinate system, 5⃗(, such that it will diffract into one of the chosen 

reflections, 111, 200, 220, 311, 420 for Cu and 110, 200, 211, 220, 310 for W, at the y-tilts 

specified in Tables 6.2 & 3, respectively. In these tables, the population for each y-ensemble, K"D*+ 

, and its volume fraction, )Jfgh, are also listed.  
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Figure 6.2: Schematic of the virtual sample used in FEpX. ParaView software was used for 
visualization. 

 

Figure 6.3: Distribution of Grain Volumes in W and Cu mesh. 
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Table 6.2: The population number for each y-ensemble ‰u
∂ãå , and its volume fraction, Óu∂ãå 

in finite element mesh of Cu sample. 

ψ(°) 0 18.43 26.57 33.21 39.23 45 56.79 71.57 

*i
qqq, ,iqqq 96, 0.069 21, 0.014 31, 0.020 11, 0.007 57, 0.040 110, 0.072 

119, 

0.081 
23, 0.016 

*i
jkk, ,ijkk 39, 0.025 46, 0.032 59, 0.035 73, 0.048 74, 0.048 14, 0.010 45, 0.033 12, 0.008 

*i
jjk, ,ijjk 41, 0.029 17, 0.011 24, 0.017 7, 0.005 23, 0.013 12, 0.008 35, 0.022 13, 0.007 

*i
rqq, ,irqq 14, 0.008 44, 0.030 8, 0.005 14, 0.008 12, 0.007 10, 0.008 17, 0.009 49, 0.033 

*i
ljk, ,iljk 66, 0.046 32, 0.023 87, 0.061 15, 0.009 20, 0.014 75, 0.048 18, 0.010 17, 0.011 

 

Table 6.3: The population number for each y-ensemble ‰u
∂ãå , and its volume fraction, Óu∂ãå 

in finite element mesh of W sample. 

ψ(°) 0 18.43 26.57 33.21 39.23 45 56.79 71.57 

*i
qqk, ,iqqk 29, 0.019 35, 0.020 23, 0.017 32, 0.023 11, 0.007 12, 0.008 38, 0.026 15, 0.009 

*i
jkk, ,ijkk 34, 0.024 36, 0.024 54, 0.033 60, 0.042 61, 0.041 69, 0.054 35, 0.023 28, 0.018 

*i
jqq, ,ijqq 66, 0.044 29, 0.018 35, 0.023 36, 0.022 41, 0.026 36, 0.024 37, 0.024 55, 0.036 

*i
jjk, ,ijjk 44, 0.028 12, 0.007 41, 0.027 29, 0.022 27, 0.017 44, 0.031 37, 0.021 34, 0.023 

*i
rqk, ,irqk 42, 0.028 51, 0.038 41, 0.026 39, 0.028 41, 0.026 46, 0.032 38, 0.023 28, 0.019 

 

6.3- Loading Geometry 
We used displacement control to simulate tensile tests of our virtual specimens, with 

tractions applied at the square faces of the cubic prisms. Since FEpX also applies local stresses to 

ensure static equilibrium, we first computed the stress/strain distributions in an isotropic 
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polycrystalline virtual sample34 to identify regions where St. Venant stresses caused by these 

additional tractions might be finite. In Fig. 6.4-a, we plot the grain average stress values in sample 

coordinates, 〈σ$$〉æ,≥, with position, z, along the	5$ axis35 for the isotropic cubic prism loaded in 

tension to 790 MPa. The stress profile is symmetric with three unique sections: In sections A, there 

are significant St, Venant effects, with 〈σ$$〉æ,≥ ∈ (700,950)	MPa. “B sections” are transition 

regions, with 〈σ$$〉æ,≥ ∈ (725, 825)	MPa. In section C, the grain average stresses are within 3% of 

the far-field stresses. Consequently, for stress analysis we define two regions: 

a) Grip regions: these are sections A and B close to the sample ends in which St. Venant 

effects are finite even for an isotropic material. These sections in our sample are defined 

between 0 < z < 0.75 and 2.25 < z < 3. 

b) Gage region: In this region, the far-field stress (E$$O ) is within 5% of the applied stress 

(E$$
0CC.) with ~ ∈ (0.75	,2.25) (Fig. 6.4-b). 

 

 
34 For this sample, the Zener anisotropy index was specified as exactly 1.00. The plastic flow was not permitted. 
 
35 For a given position, z, along H⃗H, the average stresses at any position (x,y) in the H⃗n −	H⃗m plane are plotted. 
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Figure 6.4: Grain average stress values in sample coordinates, 〈�ww〉a,u along z a) between 0 
to 3 b) between 0.5 and 2.25. 

 

We also investigated the dependency of the axial stress distributions on the applied load. 

In Fig. 6.5, the variation with axial position, z, of all grain average stress components, 〈σ<ø〉æ,≥,	are 

shown for five different applied loads36. We observe that 〈σ<ø〉æ,≥(~) ≠ Y(E$$
0CC.). 

 

 
36 In these plots, stress tensor components were normalized with the 'HH

stt. :	〈'cdu〉v,w =
〈y)*〉),,
{-.
/00. . 
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Figure 6.5: Variation of 〈�ab¿〉a,u with position for five different tensile loads in the isotropic 
bar. 
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6.4- Results  
 

6.4.1- Uniaxial Tension of Single-phase W Bar 

We simulated uniaxial tension of single-phase W specimens by elastically extending the 

bar by 0.25%. This corresponds to the applied tensile stress of 989 MPa in the tensile test curve 

(Fig. 6.1). Table 6.4 shows the global average stress tensors and their distribution parameters. 

These values were computed over all grains, both in grip and gage sections, in the model. The 

minimum and maximum values reflect the extrema in the relevant grain average stresses/strains. 

We observe that, while the average axial stress is quite close to the far-field stress, EZ$$ = 987	MPa, 

the average transverse normal stresses are finite: EZ&& = EZ## = 32	MPa. Five stress terms, EZ(( , 

EZ&$	;$!	EZ#$ exhibit wide distributions; the full width of these in-plane stresses are quite large, 

indicating that some grains are under triaxial stress states. This is due to grip boundary conditions. 

Only the mean out-of-plane shear stress, EZ&#, is zero with approximately zero dispersion. This is 

due to the isotropic elastic properties of W.  

 

Table 6.4: Global average stress tensor of the entire W bar loaded to 989 MPa and its 
dispersion parameters. The model contains 1500 grains. All values are in MPa. 

(MPa) EZ&& EZ&# EZ&$ EZ## EZ#$ EZ$$ 

Average 32 0 0 32 0 987 

Std. Dev 75 2 31 75 31 28 

Maximum 363 7 257 389 201 1189 

Minimum -10 -7 -215 -10 -226 879 

Full Width 374 15 471 399 427 310 
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Table 6.5: Average lattice strain tensor of the entire W bar loaded to 989 MPa and its 
dispersion parameters. The model contains 1500 grains. All values are in microstrain (με). 

(με) -&̅& -&̅# -&̅$ -#̅# -#̅$ -$̅$ 

Average -660 0 1 -660 -1 2490 

Std. Dev 146 6 103 146 102 134 

Maximum -29 25 846 -45 662 2760 

Minimum -776 -24 -706 -795 -744 1790 

Full Width 747 49 1552 750 1406 970 

 

Similar to the stress values, all lattice normal strain values are finite and we observe 

compressive out-of-plane normal strains, -&̅&	and	-#̅#. All average shear strains -(̅),(ª) = 0. These 

results show that we need to investigate the W bar under two sections; gage and grip sections (Fig. 

6.6). 

 

 

Figure 6.6: Schematic free-body diagram of W bar extended along L3 direction. The gage 
and grip sections are defined and they have equal volume fractions. 
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6.4.1.1- Analysis of Gage Section of W Bar 

The gage section of this model served as a rigorous test since the stress/strain distributions 

could be rigorously predicted from theory. Since the elastic properties of W are isotropic, the local 

elastic strain tensor at any point ](u, }, ~) within the gage section of the W model is expected to 

be homogeneous, of the form:  

G-()H:,3,; = î
−r-$$ 0 0
0 −r-$$ 0
0 0 -$$

ñ                Eq. (6-1) 

Here -()(u, }, ~) is the total lattice strain along the loading direction, 5⃗$ caused by the applied load. 

From the linear elasticity theory: 

GE()H:,3,; = î
0 0 0
0 0 0
0 0 E$$

ñ ; 		-() = 5()*+E*+                           Eq. (6-2) 

for all point ](u, }, ~). 

The stress and strain values in the sample coordinate system, computed using these 

equations for the gage section of our W model, are listed in Table 6.6. The corresponding results 

from the FEM analysis are also included. We observe excellent agreement between the values 

obtained from the FEM simulation and the analytical calculations. As expected, the FEM 

simulations yield isotropic stress, strain distributions within the model (Fig. 6.7-a & b). 

Consequently, average stress and strains are identical to their local values and are independent of 

the type of averaging and the size and location of the averaging volume. 
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Table 6.6: Stress and strain tensor for the gage section of the extended W model, computed 
using various approaches. The XRD values are the reflection averages of the stress and 

strain terms. 

Parameter Eqs. (6-1 & 2) FEpX XRD Analysis 

Elastic 

strain , -()   
0
−716 0 0
0 −716 0
0 0 2555

4 A
−724(7) 0 0

0 −723(7) 0
0 0 2540(14)

C A
−724(1) 0 0

0 −724(1) 0
0 0 2546(2)

C 

Stress 4%&; 

EZ()  (MPa) 
0
0 0 0
0 0 0
0 0 987

4 A
−2(2) 0 0(2)
0(2) −2(2) 0(2)
0(2) 0(2) 987(5)

C 0
0 0 0
0 0 0
0 0 988(1)

4 

 

 

Figure 6.7: Grain average stress values in sample coordinates, 〈�ab〉a,u a) sorted with 
respect to z b) for í -ensembles diffracting into all reflections. At each y there are ‰u

∂ãå 
identical stress values. Plots for the individual reflections were identical. 

 

The stresses in the sample coordinate system were also computed by simulating and 

analyzing 〈-&&,"% 〉(,"B 	(". sin# % graphs for all reflections using Eqs. (5-1-a & b) respectively. In Fig. 

6.8, the 〈-&&,"% 〉(,"B 	(". sin# % graph for 110 reflection is shown. All other reflections also yielded 
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identical plots. Consequently, the reflection average stress tensors 〈E()P〉D*+, were identical for all 

reflections. The diffraction elastic constants used in calculations, 
&SW

-
, W
-
, are shown in Table 5.4. 

 

Figure 6.8: 〈Äxx,u% 〉a,u± 	‹è. èêëví plot computed from the strain output of the W model 
extended along the z-direction. At each ψ, there are ‰u

xxj identical strain values. 

 

Table 6.6 and Figs. 6.7 & 8 show that St. Venant effects are negligible in the gage section. 

Consequently, the stress components obtained from diffraction analysis are macrostresses since: 
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a) 〈E()P〉D*+ 	are independent of the reflection chosen for the measurement. 

b)  〈E()P〉D*+ will be the same for any measurement volume within the gage section of the 

model. 

c)  All reflections yield regular (linear) 〈2##,=@ 〉%,=	:;. ;=>$ -.  

 

6.4.1.2- Analysis of Grip Sections of W Bar 

The gage section of our W model showed that the W bar subjected to applied stress 

contained homogeneous, isotropic stress and strain distributions. Local stress and strain tensors 

were equal to global ones. The stress/strain distributions obtained from numerical modeling agreed 

with all analytical calculations performed assuming an ideal isotropic continuum. In the case of 

grip sections of the W bar, we expect some grains to have triaxial stress states due to the grip 

boundary conditions (Table 6.4). We tabulated numerical averages of the stress and strain tensors 

EZ() , -(̅), and the standard deviations for the model parameters. The expected strain and stress 

tensors for all points ](u, }, ~) in a homogeneous, isotropic W bar for fully elastic loading Eqs. 

(6-2 & 3) are also presented in Table 6.7. We observe non-negligible differences between the 

analytical and the finite element model results for most stress and strain components. These 

differences are due to St. Venant effects only and change the dimensionality of the stress tensor. 
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Table 6.7: Stress and strain tensor for the grip section of the extended W model, computed 
using various approaches. The XRD values are the reflection averages of the stress and 

strain terms (terms in parentheses are STD values, not errors). 

Parameter Eqs. (6-1 & 2) FEpX 

Elastic strain , -(); -(̅)  0
−716 0 0
0 −716 0
0 0 2555

4 A
−600(186) 0(8) 2(145)

0(8) −600(186) −3(143)
2(145) −3 2450(175)

C 

Stress 4%&; EZ()  (MPa) 0
0 0 0
0 0 0
0 0 987

4 A
66(94) 0(3) 1(44)
0(3) 66(94) −1(44)
1(44) −1(44) 987(39)

C 

 

6.4.1.2.1-  Stress Distributions in Sample Coordinates 

In Fig. 6.9, we plot the grain average stress components for all grains in the grip section as 

a function of sin2ψ. These average stresses contain contributions from St. Venant effects caused 

by boundary conditions. We observe that individual grains can have very different (average) stress 

tensors from each other and the global averages of the gage region. 
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Figure 6.9: The grain stress average values a) 〈�xx〉a,u, b) 〈�vv〉a,u, c) 〈�ww〉a,u d) shear 
stresses, for all grains as a function of sin2ψ. 

 

The ψ-volume averages of the stress components, 〈E()〉≥D*+, are listed in Table 6.8. 〈E$$〉≥D*+ 

averages are closer to the global average stresses, EZ$$. For the out-of-plane direction, 5⃗& and 5⃗#, 

ψ-volume averages, 〈E&&〉≥D*+ , 〈E##〉≥D*+ can be up to 40% different than EZ&&, EZ##. Consequently, 

these volumes cannot be considered to be representative volume elements.



 

 
 
 

24
2 

 

Table 6.8: ψ-ensemble average stress tensors, 〈"!"〉#$%&, for the 110, 200, 211, 220, and 310 reflections.  

 0 18.43 26.57 33.21 39.23 45 56.79 71.57 

110 !
40 0 −6
0 39 −8
−6 −8 1000

* !
54 1 6
1 71 0
6 0 999

* !
95 1 −23
1 96 6
−23 6 984

* !
48 0 1
0 26 9
1 9 974

* !
87 2 −23
2 48 −33
−23 −33 990

* !
26 0 −2
0 13 1
−2 1 991

* !
52 0 −2
0 37 −11
−2 −11 995

* !
38 0 18
0 60 33
18 33 1001

* 

200 !
97 0 11
0 74 −13
11 −13 991

* !
70 0 −18
0 64 6
−18 6 979

* !
59 0 12
0 69 0
12 0 985

* !
87 0 16
0 93 −17
16 −17 981

* !
77 0 4
0 77 −3
4 −3 975

* !
59 0 2
0 38 −2
2 −2 981

* !
48 0 −12
0 47 −1
−12 −1 992

* !
98 0 −7
0 112 −7
−7 −7 984

* 

211 !
54 −1 −8
−1 53 −1
−8 −1 982

* !
61 −1 −4
−1 64 −2
−4 −2 1009

* !
105 1 22
1 120 11
22 11 989

* !
76 0 15
0 82 −11
15 −11 989

* !
60 0 10
0 73 2
10 2 980

* !
19 1 0
1 35 −11
0 −11 1005

* !
87 −1 6
−1 81 −9
6 −9 974

* !
71 0 0
0 69 6
0 6 988

* 

220 !
63 0 −10
0 69 1
−10 1 993

* !
77 0 1
0 69 −6
1 −6 986

* !
59 0 24
0 70 1
24 1 982

* !
59 0 −8
0 58 −5
−8 −5 993

* !
46 2 −15
2 37 −12
−15 −12 1011

* !
69 0 0
0 75 15
0 15 990

* !
54 −1 −9
−1 45 11
−9 11 999

* !
71 1 14
1 78 0
14 0 985

* 

310 !
83 1 3
1 84 1
3 1 975

* !
53 0 −4
0 67 5
−4 5 994

* !
75 0 16
0 70 2
16 2 978

* !
52 0 −11
0 66 2
−11 2 969

* !
85 0 3
0 72 12
3 12 988

* !
66 0 −12
0 72 −12
−12 −12 1005

* !
73 −1 −8
−1 59 14
−8 14 978

* !
39 0 −6
0 42 10
−6 10 986

* 
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Table 6.9: Reflection average stress tensors, 〈"!"〉#$%, for the 110, 200, 211, 220, and 310 
reflections. The components of these tensors were obtained by averaging the particular 

average stress components, 〈"!"〉!,', (in the sample coordinates) of all grains for all y-tilts 
for each reflection.  

〈"!"〉(() (MPa) 〈"!"〉*)) (MPa) 〈"!"〉*(( (MPa) 〈"!"〉**) (MPa) 〈"!"〉+() (MPa) 

!
54 0 −3
0 48 −1
−3 −1 991

* !
72 0 2
0 70 −6
2 −6 982

* !
67 0 4
0 71 0
4 0 987

* !
67 0 −2
0 67 3
−2 3 986

* !
66 0 1
0 66 −2
1 −2 987

* 

 

In Table 6.9, the reflection average stress tensors, 〈$,-〉./0, are listed for the 110, 200, 211, 

220, and 310 reflections. We observe that 〈$,-〉./0 	for all five reflections are close to the global 

average stress tensor of the grip region, $&,- shown in Table 6.7. From this perspective './0 can be 

considered representative volume elements. 

We next investigate if the diffraction stress analysis formalism, which forces a linear least-

squares average along the diffraction vectors of various y–volumes, yields correct stress values 

when applied to a sample that contains St. Venant stresses. 

 

6.4.1.2.2-  Diffraction Strain/Stress Analysis of the Grip Regions 

To simulate the diffraction stress analysis for the grip regions of our sample, we computed 

the average strain for each grain in this region, 〈(11,23 〉,,2, by substituting its average strain tensor 

obtained from the finite element model into Eq. (1-11). This yielded the 〈(11,23 〉,,24 	)*. sin5 / plots 

shown in Fig. 6.10. Compared to the corresponding plots for the gage section (Fig. 6.9), these plots 

show significant scatter in the grain strains, and exhibit some non-linearities. 
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Figure 6.10: 〈0((,'3 〉!,'6 	12. 234*5 plots for studied reflections of the grip section of 
uniaxially loaded W bar. 
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To obtain the reflection average stress, 〈$778 〉./0, we used Eq. (5-1-b), the slopes of least 

squares lines fitted to the 〈(11,23 〉,,24 	)*. sin5 / data for each reflection, and the diffraction elastic 

constants at Voigt, Reuss, Kröner, and Neerfeld-Hill limits (Table 5.8). The computed stresses are 

shown in Table 6.10. Since the elastic moduli of W are identical for these four limits, the same 

stress value is obtained for each limit for a given reflection. The differences between the 

reflections, on the other hand, are due to St. Venant effects. 

 

Table 6.10: The average stresses, 〈"++9 〉:;<#$%, obtained from simulated diffraction analysis 
of the plots shown in Fig. 6.10. 

〈"++9 〉#$%	(MPa) Voigt Reuss Neer.-Hill Kröner 

110 959±11 959±11 959 ±11 959±11 

200 901±14 901±14 901±14 901±14 

211 922±13 922±13 922±13 922±13 

220 929±12 929±12 929±12 929±12 

310 923±18 923±18 923±18 923±18 
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Table 6.11: The average strains in sample coordinates obtained from simulated diffraction 
analysis of the plots shown in Fig. 6.10. The averages for the reflection-ensembles in real 

space are also included, along with the model averages. 

   Reflection 

Strain term 

Isotropic 

(Eq. 6-3) 

Model 

average 
110 200 211 220 310 

 〈/!!" 〉#$%(!") - - -660±17 -562±21 -590±19 -593±19 -618±28 

〈/&&" 〉#$% (3/) - - 2503±36 2408±45 2450±42 2455±42 2422±59 

〈/!!〉#$%	(3/) -716 -660±146 -618±158 -581±198 -600±197 -611±167 -597±188 

〈/&&〉#$%	(3/) 2555 2490±134 2480±127 2430±181 2430±197 2460±161 2440±177 

 

To further investigate this issue we analyzed the plots in Fig. 6.11 in terms of strain in the 

sample coordinates using Eq. (5-1-a). Table 5.10 lists the reflection average strain values, 〈(118 〉./0, 

〈(778 〉./0, obtained directly from the slopes and intercepts of these plots. We also list the arithmetic 

averages of these terms, 〈(11〉./0, 〈(77〉./0 , computed from the average strains in the sample 

coordinates for grains belonging to particular reflections. The averages obtained from diffraction 

analysis are different from the arithmetic averages in real space. The real space average strains in 

the transverse direction, 〈(11〉./0, are almost identical for all five reflections, and the model 

average, (1̅1. The same argument is also valid for the average strains along the loading direction. 

The differences in the in-plane strain terms, 〈(778 〉./0 and 〈(77〉./0 for all reflections probably arise 

due to the forced linear fit on non-linear 〈(11,23 〉,,24 	)*. sin5 / data, where the non-linearities are 

caused primarily by St. Venant stresses arising in response to boundary conditions. 
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 In conclusion, the grip sections contain complicated stress/strain profiles due to FEpX 

boundary conditions. Such distributions introduce non-linearity in 〈(11,23 〉,,24 	)*. sin5 / plots. The 

gage section, on the other hand, is under homogeneous uniaxial stress and yields the expected 

response for isotropic and W specimens. The introduction of crystal anisotropy and plastic flow 

will add interaction stresses into the model. Decomposition of these contributions from the St. 

Venant effects will be non-trivial for the stress distributions in the grip sections Consequently, in 

the following models, we will only consider the stress/strain distributions in the gage sections. 

 

6.4.2- Uniaxial Tension of Single-phase Cu Bar 

In this model, the single-phase Cu bar was extended to 5% strain corresponding to 334 

MPa applied load (Fig. 6.1). In Fig. 6.11-a, we plot the global average stress components for the 

gage section vs. applied load during this extension. The average stress, $&77, increases linearly with 

applied load, $=>>. All other average stress components, $&,-,,?-@7, have zero values for all $77
A>>.. 

The dispersions of all $&,-, on the other hand, increase significantly with the plastic flow. In Fig. 

6.11-b, we plot the global average strain components for the gage section vs. macroscopic 

extension strain, (77
A>>.

. The dispersions of all (,̅- also increase significantly with the plastic flow. 
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Figure 6.11: a) global average stress vs. applied stress b) global average lattice strain vs. 
applied strain. 

 

By analyzing the data shown in Figs. 6.11-a & b we determined the proportional limit of 

the model material to be 220	MPa, corresponding to ~0.16% strain. These values are indicated by 

dashed lines in Fig. 6.11.  

 

6.4.2.1- Uniaxial Tension of Single-phase Cu Bar at Elastic Regime 

To analyze the distribution of Heyn stresses due to elastic incompatibility, we extended our 

virtual Cu sample to 1198 µe, corresponding to 169.5 MPa applied load, along the =⃗7 direction. 

As it can be seen from Fig. 6.11, this loading step is still within the macroscopic elastic limit. The 

expected strain and stress tensors for all points, ?(A, B, C), in an equivalent isotropic Cu bar for 

elastic loading (Eqs. (6-1 & 2)) are presented in Table 6.12. In this table, global average stress and 

lattice-strain tensors, $&,- , (,̅- and their standard deviations computed from the finite element model 

are also tabulated. We observe reasonable agreement between the analytical and the FEpX results 
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for both stresses and strains. However, the model averages show significant dispersions. These 

dispersions are due to the Heyn stresses arising to counteract elastic incompatibility between 

neighboring anisotropic Cu grains in the mesh. 

 

Table 6.12: Stress and strain tensor for the gage section of the extended Cu model, 
computed using various approaches. The XRD values are the reflection averages of the 

stress and strain terms. 

Parameter Eqs. (6-1 & 2) FEpX 

Elastic strain (,-; (,̅-  !
−383 0 0
0 −383 0
0 0 1198

* 5
−429(159) −5(121) −4(145)
−5(121) −385(150) −6(155)
−4(145) −6(155) 1220(165)

6 

Stress !#$; $&,-  (MPa) !
0 0 0
0 0 0
0 0 169.5

* 5
5(17) 0(11) 0(12)
0(11) 7(18) 0(14)
0(12) 0(14) 169(21)

6 

 

6.4.2.1.1-  Stress Distributions in Sample Coordinates 

In Table 6.13, we list the # of grains for each psi tilt and the volume fraction of the psi-

volume for the gage section of the Cu specimen. Due to the random placement of grains, some psi-

volumes have very small populations, notably those at ψ=33.21°, 45° for the 200 reflection.  
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Table 6.13: The population number for each y-ensemble E'
#$% in the gage section of the Cu 

sample. 

ψ(°) 0 18.43 26.57 33.21 39.23 45 56.79 71.57 

E'
((( 47 14 18 4 35 59 59 11 

E'
*)) 19 23 37 38 26 8 23 6 

E'
**) 20 9 11 1 9 2 22 8 

E'
+(( 6 19 6 7 9 5 7 23 

E'
C*) 32 14 41 6 11 30 8 9 

 

 In Fig. 6.12, we plot the grain average stress tensors for the 420 reflection37 as a function 

of sin2y. The corresponding ψ-volume averages, 〈$,-〉D./0, are also plotted in these figures. For the 

transverse directions, =⃗1, =⃗5, the global average normal stresses must be zero. Consequently, all 

stress terms in these directions are Heyn stresses. From the stress values plotted in Fig. 6.12, we 

observe that the grain average Heyn stresses due to elastic incompatibility, 〈$,-〉,,2 can be up to 

25% of the global average stress, $&77.	The ψ-volume averages of the stress components, 〈$,-〉D./0, 

are generally closer to the global average stresses, $&,-. However, there are ψ-volumes where 

〈$,-〉D./0 can be up to 10% different than $&,-. Consequently, these volumes cannot be considered as 

RVEs.  

 
3737 Other reflections exhibited similar responses and will not be shown for brevity. 
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In Table 6.14, the reflection average stress tensors, 〈$,-〉./0, are listed for the 111, 200, 220, 

311, and 420 reflections. We observe that all reflection averages, 〈$,-〉./0 , are quite close to the 

global average stress tensor, $&,-, shown in Table 6.12. Thus, to precision within the error of typical 

diffraction measurements, the Heyn stresses were averaged out from all (mutually exclusive) 

reflection volumes, './0. From this perspective './0 can be considered RVEs. 

We next investigate if the diffraction stress analysis formalism, which forces a linear least-

squares average on the strains along the diffraction vectors of various y–volumes, yields correct 

stress values when applied to a sample that contains such heterogeneous stress states. 
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Figure 6.12: The grain stress average values a) 〈"((〉!,', b) 〈"**〉!,', c) 〈"++〉!,' d) shear 
stresses, for all grains diffracting into 420 reflection as a function of sin2ψ. 

 

Table 6.14: Reflection average stress tensors, 〈"!"〉#$%, for the 111, 200, 220, 311 and 420 
reflections. The components of these tensors were obtained by averaging the particular 

average stress components, 〈"!"〉!,', (in the sample coordinates) of all grains for all y-tilts 
for each reflection.  

〈"!"〉((( (MPa) 〈"!"〉*)) (MPa) 〈"!"〉**) (MPa) 〈"!"〉+(( (MPa) 〈"!"〉C*) (MPa) 

!
6 0 1
0 −4 −1
1 −1 165

* !
−5 1 1
1 1 2
1 2 173

* !
−4 0 −2
0 4 0
−2 0 173

* !
2 3 1
3 1 −1
1 −1 167

* !
−5 −1 0
−1 2 0
0 0 170

* 
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6.4.2.1.2-  Diffraction Strain/Stress Analysis 

To simulate diffraction stress analysis for the gage section of our virtual Cu sample, we 

computed the average strain for each grain in the model, 〈(11,23 〉,,2, by substituting its average 

strain tensor obtained from the finite element model into Eq. (1-11). This yielded the 

〈(11,23 〉,,2EF 	)*. sin5 / plots shown in Fig. 6.13. We also computed the Heyn interaction 

strains,	〈(11,23 〉,,2∗EF	, for each grain from Eq. (5-7). These are shown in Fig. 6.14. To obtain the 

reflection average stress 〈$778 〉./0, we used Eq. (5-1-b), the slopes of least squares lines fitted to 

the 〈(11,23 〉,,2EF 	)*. sin5 / data for each reflection, and diffraction elastic constants at Voigt, Reuss, 

Kröner, and Neerfeld-Hill limits shown in Table 5.8. These results are shown in Table 6.15.  

Comparing Tables 6.14 & 15, we observe that, for the 111, 200, 220, and 311 reflections, 

the axial stress values obtained from diffraction analysis, 〈$778 〉./0, using the Kröner values for S2/2 

are not close to the expected average stress values in the sample coordinates. On the other hand, 

〈$778 〉./0 for 420 reflection is approximately the same as the global average stress, $&77 = 169	MPa. 

To further investigate this issue, we analyzed Fig 6.13 in terms of strain in the sample 

coordinates using Eq. (5-1-a). Table 6.16 lists the reflection average strain, 〈(118 〉./0, 〈(778 〉./0, 

obtained directly from the slopes and intercepts of these plots. We also list the arithmetic averages 

of these terms, 〈(11〉./0, 〈(77〉./0 , computed from the average strains in the sample coordinates for 

grains belonging to particular reflections. The averages obtained from diffraction analysis for 

reflections except 220 are similar to the arithmetic averages in real space. For 220 reflection, the 

sampling statistics might be a problem since there is only 1 grain at ψ=33.21° and two grains at 

ψ=45°. The differences in the in-plane strain terms, 〈(778 〉./0 and 〈(77〉./0 for all reflections 
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probably arise due to the forced linear fit on non-linear 〈(11,23 〉,,2EF 	)*. sin5 / data, where the non-

linearities are caused primarily by Heyn stresses arising in response to elastic incompatibility. 
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Figure 6.13: 〈0((,'3 〉!,':; 	12. 234*5 plots for all reflections of gage section of Cu bar uniaxially 
loaded to 169.5 MPa. 



 

256 
 

 

FA
R-

FI
EL

D
 M

EC
H

AN
IC

AL
 S

TR
ES

SE
S 

IN
 ID

EA
L 

PO
LY

CR
YS

TA
LL

IN
E 

SY
ST

EM
S 

FA
R-

FI
EL

D
 M

EC
H

AN
IC

AL
 S

TR
ES

SE
S 

IN
 ID

EA
L 

PO
LY

CR
YS

TA
LL

IN
E 

SY
ST

EM
S 

FA
R-

FI
EL

D
 M

EC
H

AN
IC

AL
 S

TR
ES

SE
S 

IN
 ID

EA
L 

PO
LY

CR
YS

TA
LL

IN
E 

SY
ST

EM
S 

 

Figure 6.14: 〈0((,'3 〉!,'∗<:;	12. 234*5 plots for all reflections of gage section of Cu bar 
uniaxially loaded to 169.5 MPa. 
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Table 6.15: The average stresses,	〈"++9 〉:;<#$%, obtained from simulated diffraction analysis 
of the plots shown in Fig. 6.14. 

〈"++9 〉#$% (MPa) Voigt Reuss Neer.-Hill Kröner 

111 165±6 228±8 192±7 184±6 

200 210±12 90±5 126±7 141±8 

220 204±15 182±14 192±14 196±15 

311 181±7 116±5 141±6 150±6 

420 197±9 127±6 154±7 164±7 

 

Table 6.16: The average strains in sample coordinates obtained from simulated diffraction 
analysis of the plots shown in Fig. 6.14. The averages for the reflection-ensembles in real 

space are also included, along with the model averages. 

   Reflection 

Strain term 

Isotropic 

(Eq. 6-3) 

Model 

average 
111 200 220 311 420 

〈/!!" 〉#$%(!") - - -369±28 -553±53 -491±70 -423±33 -459±35 

〈/&&" 〉#$% (3/) - - 1245±53 1370±110 1383±140 1240±65 1347±79 

〈/!!〉#$%	(3/) -383 -429±156 -384±130 -572±118 -359±125 -402±154 -404±163 

〈/&&〉#$%	(3/) 1198 1220±165 1200±151 1300±156 1170±141 1210±168 1280±320 

. 
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6.4.2.2- Determination of Diffraction Elastic Constants for Single-phase W & Cu  

In what follows we simulate the measurement of diffraction elastic constants (DECs). For 

this purpose, we employed the traditional procedure [19]. As before, these computations were 

performed only for the gage sections of our virtual W and Cu samples. 

 

6.4.2.2.1- Diffraction Determination of DECs for Single-phase W 

The loads to which the W model was loaded, and the slopes, J./0, and intercepts, K./0 of 

the 〈(11,23 〉,,24 	)*. *LM5/ plots for these loads (and their fit errors), are listed in Table 6.17. As 

expected, we obtain identical J./0 , K./0 	for all reflections.  

 

Table 6.17: N#$%, and O#$% of the 〈0((,'3 〉!,'6 	12. 234*5 plots for the loads, 198, 396, 594, 792, 
990 MPa. 

 mhkl Ihkl "++
HII. (MPa) 

(110) 654± 0.4 -145±0.2 198 

(200) 1310±1.0 -289±0.4 396 

(211) 1960±1.6 -434±0.6 594 

(220) 2610±2.1 -579±0.8 792 

(310) 3260±2.7 -723±1.0 990 

 

In Fig. 6.15, we plot the variation of these slopes and intercepts with applied load. Since 

J./0 =
J'
5
$77
A>>.

 and K./0 = −=1$77
A>>.

, these DEC values can be obtained from the slopes of Figs. 

6.15-a & b. These values, =1JK<J,L and 
J'
5

JK<J,L
, are listed in Table 6.18. We observe that the 
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diffraction analysis yields exactly the elastic moduli computed from the single crystal compliances 

of W. We conclude that, as expected, the analysis formalism is valid for fully isotropic materials. 

 

Figure 6.15: Variation of O#$% and N#$% with respect to "++
HII. for all reflections in the gage 

section of W.  

 

Table 6.18: Diffraction elastic constants,	Q(MN<M!O and M(
*

MN<M!O
, obtained from the FEA 

analysis of the gage section of single-phase W. Values computed from single-elastic 
compliances at the Voigt. Reuss, Neerfeld-Hill and Kröner limits are also shown. 

 Reuss/Voigt/Neer.-Hill/Kröner Simulation 

(TPa)
-1

 S
1
 S

2
/2 Q(MN<M!O Q*

R

MN<M!O

 

(110) -0.73 3.30 -0.73 3.30 

(200) -0.73 3.30 -0.73 3.30 

(211) -0.73 3.30 -0.73 3.30 

(220) -0.73 3.30 -0.73 3.30 

(310) -0.73 3.30 -0.73 3.30 

 

6.4.2.2.2- Diffraction Determination of DECs for Single-phase Cu 

To test the effects of Heyn stresses arising due to elastic incompatibility at the grain 

boundaries of a polycrystalline sample with anisotropic crystallites, we modeled the DEC 
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measurement for our single-phase Cu sample. In this set of simulations, the (virtual) Cu sample 

was loaded to 56.5, 113, and 159.5 MPa along =⃗7. All of these loads are in the elastic region for 

Cu (Fig. 6.11). Diffraction elastic constants =1JK<J,L and 
J'
5

JK<J,L
 for the gage section of single-

phase Cu bar, computed from the variation of the slopes and intercepts of the 〈ε11,D3 〉P,DQR 	vs. sin5ψ 

with applied load, are tabulated, respectively, in Tables 6.19 & 20. DEC values computed from 

single-elastic compliances at the Voigt. Reuss, Neerfeld-Hill and Kröner limits are also shown. 

For ease of comparison, we include the deviation of the simulation values from the Kröner limit. 

In the case of 111, 311, and 420 reflections the =1JK<J,L and 
J'
5

JK<J,L
 values are within 

11% or less of the Kröner limit, and can be considered acceptable. The values for 200 and 222 

reflections, on the other hand, are problematic. For the 220 reflection, both =1JK<J,L and 
J'
5

JK<J,L
 

values fall outside the ranges, 0.38 TPa-1, 1.14 TPa-1, respectively, spanned by the Voigt and Reuss 

limits. This might be a sampling issue: For the 220 reflection, the y-ensembles for the 33.21° and 

45° y-tilts contain one and two grains, respectively. These y-ensembles cannot be considered 

representative volume elements. 

For the 200 reflection, both =1JK<J,L and 
J'
5

JK<J,L
 are between the Voigt and Reuss limits. 

However, in both cases, these are about 20% different than the Kröner limit, which usually agrees 

much better with experimental values reported in the literature [107]. This might also be a sampling 

issue, however, the populations of the y-ensembles for the 200 reflection are comparable with 

those of the 111, 311, and 420 reflections, and this reflection has the second-highest reflection 

population. To investigate these issues further, we performed a larger simulation by modeling the 
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stress-strain responses of four additional (random) models, each with 1500 grains, and analyzing 

the results together with the original model. An example 〈ε11,D3 〉P,DQR 	vs. sin5ψ plot is shown in Fig. 

6.16. 

 

Table 6.19: Diffraction elastic constant, Q(MN<M!O, obtained from the FEA analysis of the 
gage section of single-phase Cu. Values are computed from single-elastic compliances at the 

Voigt, Reuss, Neerfeld-Hill and Kröner limits. % Deviation of simulated Q(MN<M!O from 
Kröner was also shown. 

S1 (TPa)
-1

 Reuss Voigt Neer.-Hill Kröner Q(MN<M!O % Dev. From 
Kröner 

(111) -1.40 -2.24 -1.83 -1.93 -2.17±0.01 11 

(200) -6.28 -2.24 -4.26 -3.73 -2.92±0.01 22 

(220) -2.62 -2.24 -2.43 -2.38 -2.76±0.01 9 

(311) -3.98 -2.24 -3.11 -2.88 -2.62±0.01 11 

(420) -3.94 -2.24 -3.09 -2.87 -2.75±0.01 4 

 

Table 6.20: Diffraction elastic constant, M(
)*+),-

*
, obtained from the FEA analysis of the gage 

section of single-phase Cu. Values are computed from single-elastic compliances at the 

Voigt, Reuss, Neerfeld-Hill and Kröner limits. % Deviation of simulated M(
*

MN<M!O
 from 

Kröner was also shown. 

S
2
/2 (TPa)

-1
 Reuss Voigt Neer.-Hill Kröner Q*

R

MN<M!O

 
% Dev. From 

Kröner 
(111) 6.65 9.17 7.91 8.24 8.78±0.01 6 

(200) 21.28 9.17 15.23 13.63 10.90±0.01 20 

(220) 10.31 9.17 9.74 9.58 10.82±0.01 11 

(311) 14.39 9.17 11.78 11.09 9.87±0.01 11 

(420) 14.26 9.17 11.72 11.04 10.14±0.01 8 
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Figure 6.16: 〈0((,'3 〉!,':; 	12. 234*5 plot for the Cu 220 reflection of the combined model at 
"++
HII. = VVW	XYZ. Strain values from all 417 grains of the 220 reflection in the gage section 

are plotted. 
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Table 6.21: Population distribution of grains in the gage section of the combined model. 

ψ(°) 0 18.43 26.57 33.21 39.23 45 56.79 71.57 E#$%
STUV% 

E'
((( 212 62 76 30 150 245 292 55 1122 

E'
*)) 94 121 159 168 175 37 132 33 919 

E'
**) 98 56 58 15 44 20 95 31 417 

E'
+(( 36 130 31 26 27 17 55 98 420 

E'
C*) 167 81 226 36 48 191 45 38 832 

E'
STUV% 607 450 550 275 444 510 619 255 3710 

 

The population distribution of grains in the gage section of the combined model, with a total 

of 3710 grains, is shown in Table 6.21. All populations have increased approximately five-fold. 

The y-ensemble with the smallest population, 15 grains, still belongs to the 220 reflection at 

ψ=33.21°.  

In Table 6.22, we summarize the results of the stress analysis of the combined model. The 

slopes, J./0, and intercepts, K./0 obtained from regression fit the 〈(11,23 〉,,2EF 	)*. *LM5/ plots, and 

their fit errors are listed. In contrast to the W response (Table 6.17), the J./0 , K./0 	values for all 

reflections are different, reflecting the anisotropy of the Cu.  
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Table 6.22: Slopes, N#$%, and intercepts, O#$% ,of regression fits of 〈0((,'3 〉!,':; 	12. 234*5 plots 
for applied loads, 56.5, 113, 159.5 MPa for the gage section of the combined sample. 

"++
HII. (MPa) 56.5 MPa 113 MPa 159.5 MPa 

 mhkl Ihkl mhkl Ihkl mhkl Ihkl 
(111) 493±5 -121±2 985±10 -241±5 1480±14 -361±7 

(200) 609±8 -158±3 1220±17 -315±7 1830±25 -473±10 

(220) 605±10 -145±5 1210±20 -290±9 1820±30 -435±14 

(311) 558±8 -141±4 1120±16 -282±9 1670±24 -422±13 

(420) 580±8 -145±3 1160±15 -289±6 1740±23 -433±9 

 

 

Figure 6.17: Variation of O#$% and N#$% with respect to "++
HII. for all reflections in the gage 

section of combined Cu sample 
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Table 6.23: Diffraction elastic constant, Q(MN<M!O, obtained from the FEA analysis of the 
gage section of combined Cu sample. Values are computed from single-elastic compliances 

at the Voigt, Reuss, Neerfeld-Hill and Kröner limits. % Deviation of simulated Q(MN<M!O 
from Kröner was also shown. 

S1 (TPa)
-1

 Reuss Voigt Neer.-Hill Kröner Q(MN<M!O % Dev. From 
Kröner 

(111) -1.40 -2.24 -1.83 -1.93 -2.13±0.01 9 

(200) -6.28 -2.24 -4.26 -3.73 -2.79±0.01 25 

(220) -2.62 -2.24 -2.43 -2.38 -2.55±0.01 6 

(311) -3.98 -2.24 -3.11 -2.88 -2.49±0.01 14 

(420) -3.94 -2.24 -3.09 -2.87 -2.55±0.01 11 

 

Table 6.24: Diffraction elastic constant, M(
*

MN<M!O
, obtained from the FEA analysis of the 

gage section of combined Cu sample. Values are computed from single-elastic compliances 

at the Voigt, Reuss, Neerfeld-Hill and Kröner limits. % Deviation of simulated M(
*

MN<M!O
 

from Kröner was also shown. Young’s Modulus, Ehkl, and Poisson’s ratio, νhkl, are 

calculated from Q(MN<M!O	Z4[	
M(
*

MN<M!O
 values. 

S
2
/2 (TPa)

-1
 Reuss Voigt Neer.-

Hill Kröner M(
*

MN<M!O
  

% Dev. 
From 

Kröner 

Ehkl 
(GPa) νhkl 

(111) 6.65 9.17 7.91 8.24 8.70±0.01 5 152 0.32 

(200) 21.28 9.17 15.23 13.63 10.77±0.01 21 125 0.35 

(220) 10.31 9.17 9.74 9.58 10.68±0.01 10 123 0.31 

(311) 14.39 9.17 11.78 11.09 9.87±0.01 10 136 0.34 

(420) 14.26 9.17 11.72 11.04 10.24±0.01 7 130 0.33 

 

In Fig. 6.17, we plot the variation of these slopes and intercepts with applied load. The 

values for =1JK<J,L and 
J'
5

JK<J,L
 obtained from the slopes of regression fits in Figs. 6.17-a & b, 

respectively, are listed in Tables 6.23 & 24. Comparing these values with those for the original 

(small) model, Tables 6.18 & 19, respectively, we observe that a five-fold population increase has 

changed the 
J'
5

JK<J,L
 values for all reflections by 1% or less. The 

J'
5

JK<J,L
value for the 220 
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reflection is still outside the Reuss – Voigt  range, and the deviation of the 
J'
5

JK<J,L
 value for the 

200 reflection is still around 20%. We observe larger changes in the =1JK<J,L values, between 2 to 

8 %, obtained for the combined model. Notably, the =1JK<J,L value for the 220 reflection is, now, 

in the Reuss – Voigt  range, having dropped by 8%. We note that the real space stress and strain 

averages for all of these reflections were equal to the macroscopic values, indicating that the 

reflection volumes could be considered RVEs. We decided to compare the DECs obtained from 

our models with the 
<W

X
 and 

1YW

X
 values obtained from the macroscopic values for Young’s modulus, 

E=138 GPa, n=0.33, calculated from the stress-strain curve of Cu shown in Fig. 6.1. This 

comparison is shown in Table 6.2538. We observe agreement within 10% for all reflections, 

including the 200. We conclude that, for our model, it is better to use macroscopic elastic moduli 

rather than DEC values. 

As a final check of the results, we combined all 〈ε11,D3 〉P,DZ[\ data from all reflections at each 

y and computed the elastic constants of the gage section using the full data-set, rather than relying 

on taking averages of averages. These values are shown in Table 6.26 and they agree with 

macroscopic elastic moduli values within 4%. 〈Ε11,D3 〉P,DQR 	vs. sin5ψ sketched from all reflections at 

each ψ is shown in Fig. 6.18. 

 

 
38 Here we list 81/0−/23 and 4!

"#$"%&

5  values computed by assuming that the ψ-volume strains are linear or volume-

weighted averages of the grain strains. The results are equivalent within the dispersion of the data. 
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Table 6.25: DEC values for each model used in the combined analysis, their averages, and 
<]

^
 and (Y]

^
 values computed from macroscopic values. All values are in TPa-1.  

Macroscopic 
−1
]  

V + 1
]    

(TPa)
-1

 -2.38 9.63 - - 

 Arithmetic Averages Volume-weighted Averages 

(TPa)
-1

 Q(MN<M!O Q*
R

MN<M!O

 Q(MN<M!O Q*
R

MN<M!O

 
Model 0 -2.76±0.01 10.81±0.02 -3.01±0.01 11.01±0.02 

Model 1 -2.77±0.01 10.82±0.02 -2.69±0.01 10.55±0.02 

Model 2 -2.92±0.01 11.14±0.02 -2.62±0.01 10.64±0.02 

Model 3 -2.75±0.01 10.99±0.02 -2.84±0.01 10.96±0.02 

Model 4 -2.63±0.01 10.79±0.02 -2.64±0.01 10.82±0.02 

Average -2.77±0.09 10.91±0.14 -2.76±0.09 10.80±0.14 

 

 

Table 6.26: DEC values for the combined model computed using the full data set from all 
reflections at each ψ. Young’s Modulus, E, and Poisson’s ratio, ν, are calculated from DEC 

values. 

(TPa)
-1

 Q(MN<M!O 
Q*
R

MN<M!O

 E ν 

All -2.47±0.01 9.81±0.02 136 0.34 
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Figure 6.18: 〈0((,'3 〉!,':; 	12. 234*5 plot from all reflection at each ψ for the combined model 
at "++

HII. = VVW	XYZ. Strain values from all 3710 grains in the gage section are plotted. 

 

6.4.2.3- Uniaxial Tension of Single-phase Cu Bar at Plastic Regime 

To investigate the effect of plastic flow on Heyn stresses, we extended our virtual Cu 

sample39 to 5000 µe, corresponding to 334.5 MPa applied load, along the =⃗7 direction. This load 

is within the macroscopic plastic region (Fig. 6.11). In Fig. 6.19, we plot the equivalent plastic 

strains, 〈(_`>0〉2./0 as a function of *LM5/ for all reflections. We observe that: (1) average equivalent 

plastic strains are finite for all ψ-ensembles. (2) average equivalent plastic strain for grains oriented 

to diffract into all reflections is approximately equal to the global average equivalent plastic strain. 

As a result, uniform plastic deformation is observed for all reflections. 

 
39 We use the 7500 grain Cu sample for better statistics. 
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The expected strain and stress tensors for all points, ?(A, B, C), in an equivalent isotropic 

Cu bar for elastic loading (Eqs. (6-1 & 2)) are presented in Table 6.27. In this table, global average 

stress and lattice-strain tensors, $&,- , (,̅- and their standard deviations computed from the finite 

element model are also tabulated. We note that analytical calculations were carried out assuming 

a linear elastic model. Even though all grains underwent extensive plastic flow in this model, there 

is reasonable agreement between the analytical calculations and FEpX results. However, the strain 

and stress components reported by the model exhibit large dispersions due to the Heyn stresses 

arising to counteract elastic and plastic incompatibility between neighboring anisotropic Cu grains 

in the mesh. 

 

Table 6.27: Stress and strain tensor for the gage section of the extended Cu model, 
computed using various approaches. The XRD values are the reflection averages of the 

stress and strain terms. 

Parameter Eqs. (6-1 & 2) FEpX 

Elastic strain (,-; (,̅-  !
−756 0 0
0 −756 0
0 0 2364

* 5
−815(373) −5(229) −30(425)
−5(229) −816(391) −2(448)
−30(425) −2(448) 2470(539)

6 

Stress !#$; $&,-  (MPa) !
0 0 0
0 0 0
0 0 334.5

* 5
−3(59) 0(37) 0(30)
0(37) −3(59) 0(32)
0(30) 0(14) 351(48)

6 
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Figure 6.19: ψ-volume averages of equivalent plastic strain values in sample coordinates, 
〈0abI%〉'#$% for the 5 -ensembles diffracting into the 111, 200, 220,311 & 420 reflections. 

 

6.4.2.3.1-  Stress Distributions in Sample Coordinates 

 In Fig. 6.20, we plot the grain average stress tensors for the 420 reflection as a function of 

sin2y. The corresponding ψ-volume averages 〈$,-〉D./0 are also plotted in these figures. For the 

transverse directions, =⃗1, =⃗5, the global average normal stresses must be zero. Consequently, all 

stress terms in these directions are Heyn stresses. From the stress values plotted in Fig. 6.20, we 

observe that the grain average Heyn stresses due to elastic and plastic incompatibility, 〈$,-〉,,2 can 

be up to 70% of the global average stress, $&77.	The dispersion of stress in sample coordinates 

increases with the increasing plastic flow. The ψ-volume averages of the stress components, 

〈$,-〉D./0, are generally close to the global average stresses, $&,-; the maximum difference between 
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〈$,-〉D./0 and $&,- is less than 10%. Consequently, within the precision of a routine measurement, 

most of these y-volumes can be considered representative volume elements. 

In Table 6.28, the reflection average stress tensors, 〈$,-〉./0, are listed for the 111, 200, 220, 

311, and 420 reflections. We observe that all reflection averages, 〈$,-〉./0 	, except 111 reflection, 

are quite close to the global average stress tensor, $&,- shown in Table 6.27; for the 111 reflection, 

we observe finite transverse normal stresses. Since Heyn stresses were averaged out from the 

(mutually exclusive) reflection volumes, './0, for the 200, 220, 311 and 420 reflections, these './0 

can be considered RVEs. 

 

Table 6.28: Reflection average stress tensors, 〈"!"〉#$%, for the 111, 200, 220, 311, and 420 
reflections. The components of these tensors were obtained by averaging the particular 

average stress components, 〈"!"〉!,', (in the sample coordinates) of all grains for all y-tilts 
for each reflection.  

〈"!"〉((( (MPa) 〈"!"〉*)) (MPa) 〈"!"〉**) (MPa) 〈"!"〉+(( (MPa) 〈"!"〉C*) (MPa) 

!
22 0 0
0 −21 −1
0 −1 343

* !
−14 0 0
0 4 0
0 0 357

* !
−12 2 −3
2 8 1
−3 1 354

* !
−5 1 −1
1 4 2
−1 2 353

* !
−17 −1 4
−1 2 −1
4 −1 353

* 
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Figure 6.20: The grain stress average values a) 〈"((〉!,', b) 〈"**〉!,', c) 〈"++〉!,' d) shear 
stresses, for all grains diffracting into 420 reflection as a function of sin2ψ.. 

 

6.4.2.3.2-  Diffraction Strain/Stress Analysis 

To simulate diffraction stress analysis for the gage section of our virtual Cu sample, we 

computed the average strain for each grain in the model, 〈(11,23 〉,,2, by substituting its average 

strain tensor obtained from the finite element model into Eq. (1-11). This yielded the 

〈(11,23 〉,,2EF 	)*. sin5 / plots shown in Fig. 6.21. We also computed the Heyn interaction 

strains,	〈(11,23 〉,,2∗EF	, for each grain from Eq. (5-7). These are shown in Fig. 6.22.  
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Figure 6.21: 〈0((,'3 〉!,':; 	12. 234*5 plots for all reflections of gage section of Cu bar uniaxially 
loaded to 334.5 MPa. 
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Figure 6.22: 〈0((,'3 〉!,'∗<:;	12. 234*5 plots for all reflections of gage section of Cu bar 
uniaxially loaded to 334.5 MPa. 
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To obtain the reflection average stress 〈$778 〉./0, we used Eq. (5-1-b), the slopes of least 

squares lines fitted to the 〈(11,23 〉,,2EF 	)*. sin5 / data for each reflection, and diffraction elastic 

constants at Voigt, Reuss, Kröner, Neerfeld-Hill shown in Table 5.8 and simulated ones 

(_`aJK<J,L.) shown in Table 6.24. These results are shown in Table 6.29.  

 

Table 6.29: The average stresses,	〈"++9 〉:;<#$%, obtained from simulated diffraction analysis 
of the plots shown in Fig. 6.19. For comparison, "b!" = WcV	XYZ. 

〈"++9 〉#$% (MPa) Voigt Reuss Neer.-Hill Kröner d]eMN<M!O. 

111 313±9 431±13 363±11 348±10 330±10 

200 451±40 194±17 272±24 303±27 384±35 

220 419±33 373±30 394±31 401±32 360±29 

311 387±22 246±14 301±17 320±19 359±20 

420 397±17 343±11 310±13 329±14 355±15 

 

Comparing Tables 6.28 & 29, we observe that, for the 220, 311, and 420 reflections, the 

axial stress values obtained from diffraction analysis, 〈$778 〉./0, using 
J'
5

JK<J,L
 are quite close to 

the global average stress, $&77 = 351	MPa,	in the sample coordinates. On the other hand, 〈$778 〉./0 

for 111 and 200 reflections deviate, respectively, -6% and +9% from this value. While not ideal, 

these values are acceptable for routine practice. We note, however, that the 〈(11,23 〉,,2 vs. sin5 / 

plots in Fig. 6.21 are non-linear. To check the significance of these non-linearities, we utilized our 
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method introduced in Chapter 5, where we remove the first two values 〈(11,23 〉,,2 and re-calculate 

the stresses. These results are shown in Table 6.30: 

 

Table 6.30: The average stresses obtained from simulated diffraction analysis of the plots 
shown in Fig. 6.21 after removal of first two ψ-ensemble points. 

〈"++9 〉#$% (MPa) Simulated % Dev. from Table 6.29 

111 315±18 5% 

200 415±45 8% 

220 398±37 10% 

311 331±15 8% 

420 383±19 7% 

 

Comparing Tables 6.29 & 30, we observe that, the stress values obtained from diffraction 

analysis after removal of first two ψ-ensembles, 〈$778 〉./0, obtained using the simulated limits for 

all reflections are different than the ones obtained from without removing the first two ψ-

ensembles. The change of 〈$778 〉./0 values for all directions can be up to 10 % different. We 

conclude that 〈(11,23 〉,,2 vs. sin5 / for all reflections show some oscillatory behavior.  
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Table 6.31: The average strains in sample coordinates obtained from simulated diffraction 
analysis of the plots shown in Fig. 6.21. The averages for the reflection-ensembles in real 

space are also included, along with the model averages. 

   Reflection 

Strain term 

Isotropic 

(Eq. 6-3) 

Model 

average 
111 200 220 311 420 

〈/!!" 〉#$%(!") - - -694±45 -1120±176 -1090±146 -904±73 -937±62 

〈/&&" 〉#$% (3/) - - 2176±85 3020±371 2750±304 2650±198 2744±155 

〈/!!〉#$%	(3/) -756 -814±373 -778±370 -822±378 -886±396 -825±366 -815±360 

〈/&&〉#$%	(3/) 2364 2470±539 2520±538 2410±481 2540±610 2490±599 2430±520 

 

To further investigate this issue, we analyzed Fig 6.21 in terms of strain in the sample 

coordinates using Eq. (5.1-a). Table 6.31 lists the reflection average strain, 〈(118 〉./0, 〈(778 〉./0, 

obtained directly from the slopes and intercepts of these plots. We also list the arithmetic averages 

of these terms, 〈(11〉./0, 〈(77〉./0 , computed from the average strains in the sample coordinates for 

grains belonging to particular reflections. Table 6.32 summarizes these strain tensors. In Table 

6.33, we list the stresses in the sample coordinates obtained from these strain tensors. For this 

computation, we used the isotropic Hooke’s law with (1) the elastic moduli of individual 

reflections, Ehkl, nhkl, computed from Tables 6.24 & 25, (2) the elastic moduli of the combined 

model, E, ν, computed from Tables 6.27.  

Thus, for the entire sample, we have the following strain tensors: 
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Table 6.32: Global strain tensors from the isotropic equation, model average, and for the 
reflections in the model. 

0!" (Eq. (6-1 &2)) h
−756

−756
2364

k 

0&!" h
−814

−814
2470

k 

〈0!"9〉((( h
−694

−694
2176

k 

〈0!"9〉*)) h
−1120

−1120
3020

k 

〈0!"9〉**) h
−1090

−1090
2750

k 

〈0!"9〉+(( h
−904

−904
2650

k 

〈0!"9〉C*) h
−937

−937
2744

k 
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Table 6.33: The computed reflection average stresses from the average strain tensors listed 
in Table 6.32 and (1) Ehkl, νhkl, (2) E, ν. 

(MPa) Ehkl, νhkl E, ν 

111 h
4

4
333

k h
12

12
304

k 

200 h
−20

−20
364

k h
−32

−32
389

k 

220 h
−57

−57
302

k h
−52

−52
340

k 

311 h
−3

−3
357

k h
−4

−4
358

k 

420 h
−7

−7
352

k h
−5

−5
370

k 

 

In Table 6.33, we observe that computed reflection average stresses from Ehkl, νhkl are in 

reasonable agreement with the computed ones from E, ν. The difference in the axial stresses 

between the two is up to % 11. Comparing Tables 6.28 & 33, we observe that 311 and 420 

reflections have close values whereas, other reflections have differences. Even though 200, 222, 

311, and 420 reflections were considered as RVEs, the computed stress tensors for those 

reflections are not equal to real space reflection averages. We see that diffraction stress formalism 

does not work even if some reflections are considered as RVEs. We can conclude for diffraction 

stress formalism work, each ψ volume must be RVEs. We also understand that the calculated stress 

tensors from Table 6.32 are representative for 311, 420 reflections. 
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6.4.2.4- Single-phase Cu Bar at Zero External Load after Tensile Plastic Flow 

In this simulation, the virtual single-phase Cu bar was unloaded completely after being 

extended to 5 % total strain. The far-field stress is zero. Consequently, any stress components 

which might exist within the sample volume must be self-equilibrating. Table 6.34 shows the 

global average stress tensors and their distribution parameters. These values were calculated over 

all grains in gage sections. The minimum and maximum values reflect the extrema in the relevant 

grain average stresses/strains. The average stress tensor components are zero. However, all stress 

terms exhibit wide distributions; These are caused in response to the heterogeneous distribution of 

plastic flow in the grains, and also contain contributions from the heterogeneous distribution of 

elastic moduli. Similar to the global stress averages, all average lattice strain values are also 

approximately zero, with wide distributions (Table 6.35).  

 

Table 6.34: Global average stress tensor of the gage section of Cu bar at zero external load 
after plastic flow and its dispersion parameters. All values are in MPa. 

(MPa) $&11 $&15 $&17 $&55 $&57 $&77 

Average -2 0 0 -2 0 0 

Std. Dev 33 22 18 34 19 32 

Maximum 126 80 74 118 77 109 

Minimum -154 -79 -92 -142 -60 -139 

Full Width 280 159 176 260 137 248 
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Table 6.35: Average lattice strain tensor of the gage section of Cu bar at zero external load 
after plastic flow and its dispersion parameters. All values are in microstrain (με). 

(με) (1̅1 (1̅5 (1̅7 (5̅5 (5̅7 (7̅7 

Average 16 5 -3 22 3 -47 

Std. Dev 410 326 239 422 252 320 

Maximum 1540 1450 957 1510 865 1390 

Minimum -1490 -1120 -934 -1320 -859 -1270 

Full Width 3020 2570 1891 2830 1720 2660 

 

6.4.2.4.1-  Stress Distributions in Sample Coordinates 

In Fig. 6.23, we plot the grain average stress components for all grains in the grip section 

as a function of sin2ψ. These average stresses contain contributions because of elastic and plastic 

incompatibility. We observe that individual grains can have very different (average) stress tensors 

from each other and the global averages of the gage region. 
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Figure 6.23: The grain stress average values a) 〈"((〉!,', b) 〈"**〉!,', c) 〈"++〉!,' d) shear 
stresses, for all grains as a function of sin2ψ. 

 

The ψ-volume averages of the stress components, 〈$,-〉D./0, are listed in Table 6.36. 13 out 

of 25, psi-volumes have stress tensors that have large determinants, these cannot be considered 

representative volumes, and will cause oscillations in 〈(11,23 〉,,2EF 	)*. sin5 /. plots of the particular 

reflections. However, if we check the reflection averages of the stresses in sample coordinates, 

Table 6.37, we observe that these variations are averaged out to zero. Consequently, for our virtual 



 

283 
 

 

FA
R-

FI
EL

D
 M

EC
H

AN
IC

AL
 S

TR
ES

SE
S 

IN
 ID

EA
L 

PO
LY

CR
YS

TA
LL

IN
E 

SY
ST

EM
S 

FA
R-

FI
EL

D
 M

EC
H

AN
IC

AL
 S

TR
ES

SE
S 

IN
 ID

EA
L 

PO
LY

CR
YS

TA
LL

IN
E 

SY
ST

EM
S 

FA
R-

FI
EL

D
 M

EC
H

AN
IC

AL
 S

TR
ES

SE
S 

IN
 ID

EA
L 

PO
LY

CR
YS

TA
LL

IN
E 

SY
ST

EM
S 

sample with its relatively low plastic strain distribution, reflection volumes are representative 

volume elements.
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28
4 

 

 

Table 6.36: ψ-ensemble average stress tensors, 〈"!"〉#$%&, for the 111, 200, 220, 311, and 420 reflections. 

 0 18.43 26.57 33.21 39.23 45 56.79 71.57 

111 '
−2 0 −2
0 −3 1
−2 1 −6

. '
−10 −1 1
−1 7 3
1 3 2

. '
−10 −1 −2
−1 −5 1
−2 1 −2

. '
−2 −1 5
−1 −1 −4
5 −4 −6

. '
6 1 4
1 −9 1
4 1 7

. '
15 1 −2
1 −19 0
−2 0 1

. '
24 −1 −1
−1 −27 1
−1 1 1

. '
4 −1 −5
−1 −4 −6
−5 −6 −8

. 

200 '
28 −1 −2
−1 −22 2
−2 2 16

. '
3 1 −4
1 0 −1
−4 −1 3

. '
−12 1 −3
1 5 −2
−3 −2 −2

. '
−16 −1 2
−1 7 0
2 0 −2

. '
−16 0 1
0 12 −1
1 −1 −8

. '
−13 −5 6
−5 6 −1
6 −1 −10

. '
−6 0 2
0 6 −3
2 −3 −4

. '
−9 1 4
1 5 2
4 2 20

. 

220 '
−12 −1 −1
−1 1 2
−1 2 −5

. '
9 0 −5
0 5 −5
−5 −5 −4

. '
0 3 −12
3 −5 0
−12 0 7

. '
−5 4 −2
4 −3 0
−2 0 1

. '
−17 −2 −3
−2 7 3
−3 3 8

. '
−13 3 3
3 −6 −3
3 −3 2

. '
−15 −2 4
−2 7 1
4 1 7

. '
−17 3 −2
3 13 −1
−2 −1 −11

. 

311 '
−12 5 −3
5 7 0
−3 0 6

. '
3 −7 −3
−7 −4 1
−3 1 2

. '
−2 −3 −1
−3 −6 1
−1 1 −14

. '
−3 2 1
2 10 −6
1 −6 7

. '
−2 7 0
7 2 −5
0 −5 1

. '
−8 7 −4
7 −9 −5
−4 −5 −8

. '
−5 7 4
7 7 −4
4 −4 8

. '
−6 5 0
5 7 9
0 9 6

. 

420 '
5 −1 2
−1 9 −2
2 −2 −3

. '
−31 −1 1
−1 17 −1
1 −1 3

. '
−9 0 0
0 4 0
0 0 −4

. '
−4 4 −2
4 0 3
−2 3 3

. '
−7 0 2
0 9 0
2 0 −2

. '
−14 −2 1
−2 8 −2
1 −2 −1

. '
−9 −3 −2
−3 4 0
−2 0 7

. '
−3 4 5
4 6 −1
5 −1 2

. 
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Table 6.37: Reflection average stress tensors, 〈"!"〉#$%, for the 111, 200, 220, 311 and 420 
reflections. The components of these tensors were obtained by averaging the particular 

average stress components, 〈"!"〉!,', (in the sample coordinates) of all grains for all y-tilts 
for each reflection. 

〈"!"〉((( (MPa) 〈"!"〉)** (MPa) 〈"!"〉))* (MPa) 〈"!"〉+(( (MPa) 〈"!"〉,)* (MPa) 

!
9 0 −1
0 −13 0
−1 0 0

' !
−7 0 0
0 4 −1
0 −1 0

' !
−9 0 −2
0 3 0
−2 0 1

' !
−3 1 −1
1 2 1
−1 1 3

' !
3 −1 1
−1 4 −1
1 −1 −1

' 

 

6.4.2.4.2-  Diffraction Strain/Stress Analysis 

To simulate diffraction stress analysis for the gage section of our virtual Cu sample, we 

substituted the relevant average strain tensor components for each grain in the model, 〈$--,./ 〉0,., 

into Eq. (1-11). This yielded the 〈$--,./ 〉0,.
12 	&'. sin3 , plots shown in Fig. 6.24. The average 

response is oscillatory. 

To obtain the reflection average stress 〈-445 〉678, we used Eq. (5-1-b), the slopes of least 

squares lines fitted to the 〈$--,./ 〉0,.
12 	&'. sin3 , data for each reflection. We used diffraction elastic 

constants at Voigt, Reuss, Kröner, Neerfeld-Hill limits, shown in Table 5.8, and the simulation 

DEC values, .-9:;90< and 9!
3

9:;90<
, shown in Table 6.24. These stress results are shown in Table 

6.38. We observe that all reflections yield zero stress values within typical experimental limits. To 

test for oscillations, we removed the first two points from each plot and re-analyzed the data. The 

results are shown in Table 6.39. 
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Figure 6.24: 〈/((,'
/ 〉!,'

=> 	01. 123)4 plots for all reflections of the gage section of Cu bar at 
zero external load after plastic flow. 
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Table 6.38: The average stresses,	〈"++
? 〉=>;#$%, obtained from simulated diffraction analysis 

of the plots shown in Fig. 6.19. For comparison, "5!" = 7	89:. 

〈"++
? 〉#$% (MPa) Voigt Reuss Neer.-Hill Kröner ;<=@!A. 

111 -15±18 -21±25 -18±21 -17±20 -14±17 

200 24±30 10±13 15±18 16±21 23±29 

220 4±16 4±14 4±15 4±16 4±16 

311 12±23 8±8 9±10 10±11 11±12 

420 5±16 3±10 4±12 4±13 5±15 

 

Table 6.39: The average stresses obtained from simulated diffraction analysis of the plots 
shown in Fig. 6.24 after removal of first two ψ-ensemble points. 

〈"++
? 〉#$% (MPa) Simulated 

111 -28±22 

200 56±24 

220 10±22 

311 5±11 

420 10±9 

 

To further investigate this issue, we analyzed Fig 6.24 in terms of strain in the sample 

coordinates using Eq. (5.1-a). Table 6.40 lists the reflection average strain, 〈$--5 〉678, 〈$445 〉678, 

obtained directly from the slopes and intercepts of these plots. We also list the arithmetic averages 

of these terms, 〈$--〉678, 〈$44〉678 , computed from the average strains in the sample coordinates for 
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grains belonging to particular reflections. The averages obtained from diffraction analysis for 

reflections are not similar to the arithmetic averages in real space. 

 

Table 6.40: The average strains in sample coordinates obtained from simulated diffraction 
analysis of the plots shown in Fig. 6.24. The averages for the reflection-ensembles in real 

space are also included, along with the model averages. 

   Reflection 

Strain term 

Isotropic 

(Eq. 6-3) 

Model 

average 
111 200 220 311 420 

〈,""# 〉$%&(!") - - 71±86 -85±137 -92±72 -85±58 -62±72 

〈,''# 〉$%& (0,) - - 210±164 308±278 131±150 194±119 107±145 

〈,""〉$%&	(0,) 0 0±32 -58±334 -58±288 1±339 -23±347 -55±306 

〈,''〉$%&	(0,) 0 -2±33 212±416 -62±389 -103±370 -29±599 -82±364 

 

In Table 6.41, we list the stresses in the sample coordinates obtained from these strain 

tensors. For this computation, we used the isotropic Hooke’s law with (1) the elastic moduli of 

individual reflections, Ehkl, nhkl, computed from Tables 6.24 & 25, (2) the elastic moduli of the 

combined model, E, ν, computed from Tables 6.27. 

Comparing Tables 6.37 & 41, we observe that 111 and 200 reflection average and 

computed stress tensors are quite different whereas the rest of the reflections have a reasonable 

agreement. In Table 6.33, we observe that computed reflection average stresses from Ehkl, νhkl are 

in reasonable agreement with the computed ones from E, ν. The difference in the axial stresses 
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between the two is up to % 11. Even though all reflections were considered as RVEs, the computed 

stress tensors for those reflections are not equal to real space reflection averages for 111 and 200 

reflections. Diffraction stress formalism does not work for these reflections. We can conclude for 

diffraction stress formalism work, each ψ volume must be RVEs. 

 

Table 6.41: The computed reflection average stresses from the average strain tensors listed 
in Table 6.32 and (1) Ehkl, νhkl, (2) E, ν. 

(MPa) Ehkl, νhkl E, ν 

111 ?
45

45
61
D ?

44
44

58
D 

200 ?
−11

−11
9
D ?

6
6

46
D 

220 ?
−13

−13
8
D ?

−15
−15

8
D 

311 ?
−6

−6
22
D ?

−6
−6

22
D 

420 ?
−8

−8
9
D ?

−8
−8

9
D 

 

Finally, we used all grains in the gage section of the unloaded Cu bar to obtain the 〈-445 〉678 

from the slope of 〈ε--,B/ 〉C,B
DE 	vs. sin3ψ. We found, as expected, that the slope is zero and the 

calculated average stress is zero, satisfying force equilibrium. 
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Figure 6.25: 〈/((,'
/ 〉!,'

=> 	01. 123)4 plot for all grains in the gage section of unloaded Cu bar.  

 

6.4.2.5- Partitioning of Internal Stresses/Strains in a Two-phase, Cu – W sample 

In this section, we will extend our simulations to the tensile loading of a two-phase, Cu – 

W, sample. For such a sample we will model, in order, (1) the determination of diffraction elastic 

constants, (2) the stress/strain distributions when the sample undergoes macroscopic plastic flow, 

with plasticity limited to the weaker, Cu, phase, and (3) the stress/strain distributions when it is 

unloaded after plastic deformation.  

The two-phase sample consisted of 2500 grains, 1252 of which were in the gage section. 

In Tables 6.42 & 43, we list the # of grains for each y tilt and the volume fractions of 

the y-volumes for Cu and W phases in the gage section of the two-phase specimen. Overall 49% 



 

291 
 
 

of the volume contains Cu grains. Due to the random placement of grains, some y - volumes have 

very small populations, notably those at ψ=45° for the 110 reflection of W phase and ψ= 39.23° 

and 45° for 311 reflection of Cu phase. Still, the volume fractions of all y-volumes are comparable 

to those of the single-phase specimens treated previously.  

In Fig. 6.26, we plot the uniaxial stress-strain curve of our two-phase specimen obtained 

from the finite element analysis. This plot was computed from the model where our input was 

single elastic compliances and single-phase yield responses of the W and Cu phases. In Table 6.44, 

we list the effective Young’s modulus, E, Poisson’s ratio, n, and .2% offset yield stress of the two-

phase sample determined from Figure 6.26. We also provide values for E and n computed using 

Vegard’s law. The differences show the presence of strong interaction between grains of the two-

phases. The model can be considered elastic below 100 MPa applied load. It exhibits significant 

hysteresis when unloaded after plastic flow. As such, we expect a significant residual stress field 

to set up between the Cu and W grains after unloading. 
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Table 6.42: The population number and volume fraction for each y-ensemble M'
#$% for the 

Cu phase in the gage section of the Cu – W sample. 

ψ(°) 0 18.43 26.57 33.21 39.23 45 56.79 71.57 Total 

2(
))), 4())) 37, 0.015 8, 0.003 12, 0.006 5, 0.003 24, 0.010 41, 0.015 44, 0.017 7, 0.004 178 

2(
*++, 4(*++ 11, 0.005 18, 0.007 29, 0.011 22, 0.009 29, 0.012 7, 0.003 24, 0.008 5, 0.002 145 

2(
**+, 4(**+ 20, 0.008 12, 0.005 10, 0.005 4, 0.002 5, 0.002 3, 0.001 17, 0.007 7, 0.002 78 

2(
,)), 4(,)) 6, 0.003 17, 0.005 5, 0.001 5, 0.003 2, 0.001 2, 0.001 11, 0.005 13, 0.006 61 

2(
-*+, 4(-*+ 32, 0.011 13, 0.005 44, 0.019 4, 0.002 12, 0.004 28, 0.011 9, 0.003 6, 0.003 148 

2(
./012 106 68 100 40 72 81 105 38 610 

 

Table 6.43: The population number and volume fraction for each y-ensemble M'
#$% for the 

W phase in the gage section of the Cu – W sample. 

ψ(°) 0 18.43 26.57 33.21 39.23 45 56.79 71.57 Total 

2(
))+, 4())+ 15, 0.006 15, 0.006 8, 0.003 16, 0.007 4, 0.002 1, 0.001 21, 0.008 5, 0.003 85 

2(
*++, 4(*++ 24, 0.009 6, 0.003 17, 0.007 31, 0.013 19, 0.008 24, 0.010 23, 0.010 16, 0.007 160 

2(
*)), 4(*)) 27, 0.011 12, 0.004 16, 0.006 16, 0.006 14, 0.006 10, 0.005 14, 0.006 22, 0.009 131 

2(
**+, 4(**+ 18, 0.007 4, 0.001 16, 0.006 16, 0.007 19, 0.007 17, 0.007 19, 0.007 14, 0.004 123 

2(
,)+, 4(,)+ 21, 0.010 18, 0.008 17, 0.005 16, 0.007 24, 0.009 20, 0.007 20, 0.008 7, 0.002 143 

2(
./012 105 55 74 95 80 72 97 64 642 
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Table 6.44: Young’s Modulus, E, Poisson’s ratio, v, and yield strength of the two-phase Cu 
– W sample, computed from Fig 6.36 and Vegard’s Law 

 E (GPa) n "F (MPa) 

Model (Fig. 6.26) 239 - 406 

Vegard’s Law 264 0.3 - 

 

 

Figure 6.26: Refined stress-strain curve of the Cu – W by using single-phase compliances, 
yield response, and modified Voce parameters of the individual phases. 
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6.4.2.6- Determination of Diffraction Elastic Constants for Two-phase Cu – W 

Sample 

In what follows we simulate the measurement of diffraction elastic constants (DECs). For 

this purpose, we employed the traditional procedure [19]. As before, these computations were 

performed only for the gage section of our virtual Cu – W sample. 

For this purpose, the (virtual) Cu – W sample was loaded to 9.5, 19, 28.5, 38 and 47.5 MPa 

along .⃗4. All of these loads are in the elastic region. (Fig. 6.25). 

Diffraction elastic constants, .-G:;90< and  9!
3

G:;90<
, of two-phases for the gage section of 

Cu – W bar, computed from the variation of the slopes and intercepts of the 〈ε--,B/ 〉C,B
H 	vs. sin3ψ 

〈ε--,B
/ 〉C,B

DE 	vs. sin3ψ with applied load. DEC values computed from single-elastic compliances at 

the Voigt. Reuss, Neerfeld-Hill, Kröner limits, and simulated ones for single-phase W and Cu 

samples are also shown. For ease of comparison, we include the deviation of the simulation values 

from the Kröner limit. 

 

6.4.2.6.1- Determination of Diffraction Elastic Constants for W Phase  

The loads to which the Cu – W model was loaded, and the slopes, O678, and intercepts, 

P678 of the 〈$--,./ 〉0,.
I 	&'. 'QR3, plots for these loads (and their fit errors), are listed in Table 6.45. 

As expected, we obtain similar O678 , P678 	for all reflections of the W phase.  
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Table 6.45: Slopes, S#$%, and intercepts, T#$% ,of regression fits of 〈/((,'
/ 〉!,'

J 	01. 123)4 plots 
for applied loads, 9.5, 19, 28.5, 38, 47.5 MPa. 

5,,344. 
(MPa) 

9.5 MPa 19 MPa 28.5 MPa 38 MPa 47.5 MPa 

 mhkl Ihkl mhkl Ihkl mhkl Ihkl mhkl Ihkl mhkl Ihkl 

(110) 39±1 -9±1 78±1 -18±1 117±1 -27±1 156±2 -36±1 195±2 -45±1 
(200) 41±1 -9±1 81±2 -19±1 122±3 -28±1 162±3 -38±1 203±4 -47±2 
(211) 41±1 -9±1 82±2 -19±1 123±3 -28±1 164±4 -37±1 205±5 -47±2 
(220) 40±1 -9±1 80±1 -18±1 119±2 -27±1 159±3 -36±1 199±4 -46±1 
(310) 40±1 -9±1 79±2 -18±1 119±2 -27±1 158±3 -36±1 198±4 -45±1 

 

In Fig. 6.27, we plot the variation of these slopes and intercepts with applied load. Since 

O678 =
9!
3
-44
KLL. and P678 = −.--44

KLL., these DEC, .-G:;90< and  9!
3

G:;90<
values for W in two-

phase Cu – W sample can be obtained from the slopes of Figs. 15-a & b. These values are listed 

in Table 6.46.  

 

Figure 6.27: Variation of T#$% and S#$% with respect to "++
NOO. for all W reflections in the 

gage section of two-phase Cu – W specimen. 
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Table 6.46: Diffraction elastic constants obtained from the FEA analysis of W phase for the 
gage section of two-phase Cu – W specimen. Values computed from single-elastic 

compliances at the Voigt. Reuss, Neerfeld-Hill and Kröner limits are also shown. Young’s 

Modulus, Ehkl, and Poisson’s ratio, νhkl, are calculated from U(
PQ;@!A and 

@*
)

PQ;@!A
 values. 

 Reuss/Voigt/Neer.-
Hill/Kröner/;<=@!A. 

Simulation 
 

(TPa)
-1

 S
1
 S

2
/2 U(

PQ;@!A 
U)
V

PQ;@!A

 Ehkl (GPa) νhkl 

(110) -0.73 3.30 -0.94±0.01 4.09±0.01 318 0.30 
(200) -0.73 3.30 -0.98±0.01 4.25±0.01 306 0.30 
(211) -0.73 3.30 -0.98±0.01 4.28±0.01 303 0.30 
(220) -0.73 3.30 -0.95±0.01 4.15±0.01 313 0.30 
(310) -0.73 3.30 -0.94±0.01 4.13±0.01 314 0.30 

 

We observe that .-G:;90< and 9!
3

G:;90<
 values are similar for all reflections of the W phase. 

In fact, one can say that the W reflection volumes in the two-phase material exhibit reasonable 

isotropic elastic response. However, these DECs are higher than ones computed for single-phase 

W. Consequently, the presence of the more compliant Cu phase in the material causes a more 

compliant W elastic response. This is caused by the fact that the W phase carries significantly more 

load than the nominal applied stress.  

 

6.4.2.6.2- Determination of Diffraction Elastic Constants for Cu Phase  

In Table 6.47, we summarize the results of the stress analysis of the Cu phase of the 

combined model. The slopes, O678, and intercepts, P678 obtained from regression fits to the 

〈$--,.
/ 〉0,.

12 	&'. 'QR3, plots and their fit errors are listed in Table 6.45. The O678 , P678 	values for all 

reflections have a slightly tighter distribution compared to those for single-phase Cu (Table 6.22); 

the ratio of the slopes of the 111 and 200 reflections has dropped from 1.31 to 1.15.  
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Table 6.47: Slopes, S#$%, and intercepts, T#$% ,of regression fits of 〈/((,'
/ 〉!,'

=> 	01. 123)4 plots 
for applied loads, 9.5, 19, 28.5, 38, 47.5 MPa. 

5,,344. 
(MPa) 

9.5 MPa 19 MPa 28.5 MPa 38 MPa 47.5 MPa 

 mhkl Ihkl mhkl Ihkl mhkl Ihkl mhkl Ihkl mhkl Ihkl 

(111) 63±2 -15±1 124±4 -29±2 187±5 -44±2 249±8 -58±3 311±9 -73±4 
(200) 71±4 -17±1 144±9 -34±3 216±13 -50±5 289±17 -67±6 360±21 -84±8 
(220) 59±5 -13±1 120±10 -26±3 179±15 -40±5 241±20 -53±7 299±25 -66±8 
(311) 69±3 -15±1 138±5 -30±3 206±8 -45±4 276±11 -60±5 345±13 -75±7 
(420) 68±2 -15±1 136±4 -30±2 203±5 -46±2 271±7 -61±3 338±9 -76±4 

 

In Fig. 6.28, we plot the variation of these slopes and intercepts with applied load. In Tables 

6.48 & 49, we tabulate the DEC values obtained from these figures. .-G:;90< and 9!
3

G:;90<
 are the 

DEC values of the Cu phase in two-phase Cu – W sample. .-G:;90< and 9!
3

G:;90<
 values for all 

reflections are outside the interval bracketed by the Reuss and Voigt limits for single-phase 

polycrystalline Cu. As shown in Table 6.50, these diffraction elastic constants are very different 

from the DEC values,	.-9:;90< and 9!
3

9:;90<
, obtained for the single-phase Cu sample simulation. 

We note that, although grain populations are quite small in a few ψ-ensembles for the 220 and 311 

reflections, all reflections show similar effects. Therefore, it is not likely that these effects are due 

to sampling40. 

 

 
40 In the single-phase Cu model, increasing the diffracting population by 5x changed the DEC results by only 10% or 
less. 



 

298 
 
 

 

Figure 6.28: Variation of T#$% and S#$% with respect to "++
NOO. for all Cu reflections in the 

gage section of Cu – W sample. 

 

Table 6.50 shows that the mechanical response of the Cu phase appears to be stiffer in the 

two-phase sample. In Table 6.51, we tabulate Young’s moduli, Ehkl, and Poisson’s ratios, νhkl, for 

the grains diffracting in the Cu reflection volumes. These values were computed from the 

diffraction elastic constants shown in Table 6.50. The Young’s moduli of all reflections are high 

and close to each other in magnitude. 
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Table 6.48: Diffraction elastic constant,	U(
PQ;@!A, obtained from the FEA analysis of Cu 

phase for the gage section of two-phase Cu – W specimen. Values are computed from 
single-elastic compliances at the Voigt, Reuss, Neerfeld-Hill and Kröner limits. % 

Deviation of simulated U(
PQ;@!A from U(

@Q;@!A was also shown. 

S1 

(TPa)
-1

 
Reuss Voigt 

Neer.-
Hill 

Kröner U(
@Q;@!A U(

PQ;@!A 
% Dev. 
From 	
U(
@Q;@!A 

(111) -1.40 -2.24 -1.83 -1.93 -2.17±0.01 -1.52±0.01 30 
(200) -6.28 -2.24 -4.26 -3.73 -2.92±0.01 -1.75±0.01 40 
(220) -2.62 -2.24 -2.43 -2.38 -2.76±0.01 -1.39±0.01 50 
(311) -3.98 -2.24 -3.11 -2.88 -2.62±0.01 -1.57±0.01 40 
(420) -3.94 -2.24 -3.09 -2.87 -2.75±0.01 -1.59±0.01 42 

 

 

Table 6.49: Diffraction elastic constant,	
@*
)

PQ;@!A
, obtained from the FEA analysis of Cu 

phase for the gage section of two-phase Cu – W specimen. Values are computed from 
single-elastic compliances at the Voigt, Reuss, Neerfeld-Hill and Kröner limits. % 

Deviation of simulated 
@*
)

PQ;@!A
 from 

@*
)

@Q;@!A
 was also shown.  

S
2
/2 

(TPa)
-1

 
Reuss Voigt 

Neer.
-Hill 

Kröner U)
V

@Q;@!A

 
U)
V

PQ;@!A

 

% Dev. 
From 	
U)
V

@Q;@!A

 

(111) 6.65 9.17 7.91 8.24 8.78±0.01 6.51±0.01 26 
(200) 21.28 9.17 15.23 13.63 10.90±0.01 7.54±0.01 31 
(220) 10.31 9.17 9.74 9.58 10.82±0.01 6.30±0.01 42 
(311) 14.39 9.17 11.78 11.09 9.87±0.01 7.23±0.01 27 
(420) 14.26 9.17 11.72 11.04 10.14±0.01 7.09±0.01 31 
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Table 6.50: Diffraction elastic constants obtained from the FEA analysis of Cu phase for 
the gage section of single-phase Cu and two-phase Cu – W specimen. 

Single-phase Cu  (Table 6.24) Cu phase in Cu – W sample 

U(
@Q;@!A U)

V

@Q;@!A

 U(
PQ;@!A U)

V

PQ;@!A

 

-2.13±0.01 8.70±0.01 -1.52±0.01 6.51±0.01 
-2.79±0.01 10.77±0.01 -1.75±0.01 7.54±0.01 
-2.55±0.01 10.68±0.01 -1.39±0.01 6.30±0.01 
-2.49±0.01 9.87±0.01 -1.57±0.01 7.23±0.01 
-2.55±0.01 10.24±0.01 -1.59±0.01 7.09±0.01 

 

Table 6.51: Young’s moduli, Ehkl, and Poisson’s ratios, νhkl, computed from DECs of Cu 
phase in Cu – W shown in Table 6.50. 

Reflection Ehkl  (GPa) νhkl 

(111) 200 0.30 
(200) 173 0.30 
(220) 204 0.28 
(311) 177 0.28 
(420) 182 0.29 

 

In the calculation of DECs for multiphase materials, we used -44
KLL., following the standard 

practice in the field. This approach is, of course, not justified theoretically. The stiffer phase is 

expected to carry a larger share of the load. In Table 6.52, we list the global stress tensors for each 

phase in the Cu – W sample, the global stress tensor in the gage volume of the sample (taken over 

all grains for both phases), and the applied stress tensor computed using the tensile plot (Fig. 6.26) 

for all loads used for the calculation of the DECs for Cu and W phases. Consequently, the DEC 

values described in Tables 6.46 & 50 are “effective elastic constants”. Since load partitioning 

within the phases of such a sample is not available in a routine experiment, these effective 

constants must be measured. They cannot be computed analytically from the first principles using 
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only the stiffness values of the individual phases. As a corollary, using single-phase DEC values 

in diffraction stress analysis of two-phase samples is not theoretically justified.  

 

Table 6.52: Applied stress tensor and global average stress tensor of the entire Cu – W and 
each Cu and W phase elastically loaded. All values are in MPa. 

-0R
KLL. -W0R -W0R

12 -W0R
I 

?
0 0 0
0 0 0
0 0 9.5

D ?
0 0 0
0 0 0
0 0 9.5

D ?
0 0 0
0 0 0
0 0 7

D ?
0 0 0
0 0 0
0 0 12

D 

?
0 0 0
0 0 0
0 0 19

D ?
0 0 0
0 0 0
0 0 19

D ?
1 0 0
0 1 0
0 0 14

D ?
−1 0 0
0 −1 0
0 0 24

D 

?
0 0 0
0 0 0
0 0 28.5

D ?
0 0 0
0 0 0
0 0 28.5

D ?
1 0 0
0 1 1
0 0 22

D ?
−1 0 0
0 −1 −1
0 0 35

D 

?
0 0 0
0 0 0
0 0 38

D ?
0 0 0
0 0 0
0 0 38

D ?
1 0 0
0 2 0
0 0 29

D ?
−1 0 0
0 −2 −1
0 −1 47

D 

?
0 0 0
0 0 0
0 0 47.5

D ?
0 0 0
0 0 0
0 0 48

D ?
2 0 0
0 2 0
0 0 37

D ?
−2 0 0
0 −2 −1
0 −1 59

D 

 

6.4.2.7- Uniaxial Tension of Cu – W Bar at Plastic Regime 

The final model utilizing the virtual three-dimensional polycrystalline specimen simulated 

the 3% extension (corresponds to 1019 MPa) of our two-phase Cu – W specimen. When such a 

specimen is loaded uniformly along .⃗4 direction, the bar will extend this direction and contract in 

the transverse directions. However, since the isotropic Young’s Modulus of Cu and W are very 
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different, 138 vs 387 GPa, respectively, grains belonging to the two-phases are expected to 

mutually constrain each other. In the direction of loading, .⃗4, the W grains will constrain the 

elongation of Cu grains and place them in compression. Such constrain can result in plastic flow 

within the softer Cu grains. Concurrently, the Cu grains will pull the W grains (slightly) past their 

equilibrium lengths, placing them in tension. Even though the yield point of W is much higher 

than Cu, some W grains might also suffer from the plastic flow. There will also be transverse 

strains due to Poisson’s contraction resulting in Heyn stresses due to elastic and plastic 

incompatibility. Overall, we expect triaxial stress states in the grains of both phases. The global 

averages of all stress components, -W0R, should be equal to the far-field stress, -0R
KLL.. 

 

6.4.2.7.1-  Stress Distribution in Sample Coordinates 

Tables 6.53 & 54 list the global average stress and lattice strain tensors and their 

distribution parameters. These averages were computed over all grains, both Cu and W, in the 

model. The minimum and maximum values reflect the extrema in the relevant grain-average 

stresses/strains. We observe that, as expected, all -W0R = -0R
KLL.. However, all stress components 

exhibit wide distributions, the full widths of these stresses are quite large, indicating that some 

grains possess significant interaction stresses. The dispersion of the shear stresses, -W0R,0SR, are 

similar and are approximately 1/4th  of the axial stress, -W44. Moreover, the minimum -W44 is -347 

MPa, indicating that some grains are under compression even in the direction of loading.  
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Table 6.53: Global average stress tensor of the gage section of Cu – W bar extended 3 % 
and its dispersion parameters. The model contains 1252 grains, 610 Cu and, 642 W. All 

values are in MPa. 

(MPa) -W-- -W-3 -W-4 -W33 -W34 -W44 
Average -20 6 11 -19 -45 1065 
Std. Dev 417 203 208 426 207 733 

Maximum 1340 879 1103 1410 841 3650 
Minimum -1948 -969 -880 -1843 -1046 -347 

Full Width 3287 1848 1983 3253 1887 3996 
 

Table 6.54: Global average lattice strain tensor of the gage section of Cu – W bar extended 
3 % and its dispersion parameters. The model contains 1252 grains, 610 Cu and, 642 W. 

All values are in microstrain (με). 

(με) $-̅- $-̅3 $-̅4 $3̅3 $3̅4 $4̅4 
Average -842 38 16 -856 -202 3467 
Std. Dev 1183 717 779 1201 762 1557 

Maximum 2934 2963 3978 2766 2703 8677 
Minimum -5284 -3157 -2911 -4921 -3452 11 

Full Width 8218 6120 6889 7687 6155 8666 
 

Table 6.55 lists the average stress in the Cu phase and their dispersion parameters. All 

normal stresses -W0012, are finite, and -W--12 and -W3312 are much larger than -W-- and -W33 while the -W4412 

is smaller than the -W44. The shear stresses -W0R,0SR12  are close to zero. The dispersion parameters for 

these shear stress components are much smaller than the corresponding values of the global stress 

tensor, -W0R. 
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Table 6.55: Average stress tensor for the Cu phase of the gage section of Cu – W bar 
extended 3 % and its dispersion parameters. This phase contains 610 grains. All values are 

in MPa. 

(MPa) -W--
12 -W-3

12 -W-4
12 -W33

12 -W34
12 -W44

12 
Average 224 5 1 225 -6 509 
Std. Dev 264 46 52 271 52 281 

Maximum 1340 132 142 1410 185 1657 
Minimum -482 -118 -162 -674 -151 -347 

Full Width 1822 250 304 2084 236 2004 
 

Table 6.56: Average lattice strain tensor for the Cu phase of the gage section of Cu – W bar 
extended 3 % and its dispersion parameters. This phase contains 610 grains. All values are 

in microstrain (με). 

(με) $-̅-
12 $-̅3

12 $-̅4
12 $3̅3

12 $3̅4
12 $4̅4

12 
Average -31 51 -31 -61 -103 2440 
Std. Dev 727 381 475 796 457 821 

Maximum 2934 1680 1420 2766 1380 5480 
Minimum -1940 -1200 -1540 -2950 -1910 11 

Full Width 4870 2880 2960 5716 3290 5469 
 

Table 6.56 lists average lattice strain tensors in the Cu phase and its dispersion parameters. 

The average transverse normal strains of the Cu phase, $-̅-12	[R\	$3̅312, are almost zero, and much 

smaller than the global average strains of the entire model. The strain dispersions are also much 

smaller. In addition, the average equivalent plastic strain for the Cu phase is finite and the 

dispersion parameters of the equivalent plastic strain show that each grain experience a different 

but significant amount of plastic flow (Table 6.57). Some grains have negative equivalent plastic 

strains. 
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Table 6.57: Average equivalent plastic strain for the Cu phase of the gage section of Cu – 
W bar extended 3 % and its dispersion parameters. This phase contains 610 grains. All 

values are in microstrain (με). 

(με) $T̅UL8,12 
Average 63650 
Std. Dev 36902 

Maximum 212022 
Minimum -4181 

Full Width 207842 
 

Tables 6.58, 59 & 60 list the average stress, lattice strain tensors, and equivalent plastic 

strain in the W phase and their dispersion parameters. All normal stresses, -W00I, are finite, and 

-W--
I	[R\	-W33

I are compressive; opposite sign to the corresponding Cu phase-average stress terms. 

All shear stresses, -W0R,0SRI , are close to zero. We calculate the average normal stress for the gage 

section of the Cu – W sample from the average normal phase stresses showed in Tables 6.55 & 

58. We observe that the average normal phase stresses obey the average stress equilibrium 

condition shown in Eq. (5-8). The dispersion parameters for the phase-average W stress 

components are similar to the corresponding values for the global stress tensor, -W0R . 
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Table 6.58: Average stress tensor for the W phase of the gage section of Cu – W bar 
extended 3 % and its dispersion parameters. This phase contains 642 grains. All values are 

in MPa. 

(MPa) -W--
I -W-3

I -W-4
I -W33

I -W34
I -W44

I 
Average -253 6 21 -251 -83 1594 
Std. Dev 403 281 285 417 280 631 

Maximum 836 879 1103 829 841 3650 
Minimum -1948 -969 -880 -1843 -1046 269 

Full Width 2784 1848 1983 2671 1887 3380 
 

Table 6.59: Average lattice strain tensor for the W phase of the gage section of Cu – W bar 
extended 3 % and its dispersion parameters. This phase contains 642 grains. All values are 

in microstrain (με). 

(με) $-̅-
I  $-̅3

I  $-̅4
I  $3̅3

I  $3̅4
I  $4̅4

I  
Average -1613 25 60 -1610 -297 4446 
Std. Dev 1004 930 983 1022 958 1457 

Maximum 854 2983 3978 799 2703 8677 
Minimum -5284 -3157 -2911 -4921 -3452 11 

Full Width 6138 6140 6889 5720 6155 7906 
 

Comparing Tables 54 & 59, we observe that the overall lattice strain tensor of the model is 

in the same form as the average lattice tensor of the W phase. This is expected since W is much 

stiffer than Cu. The amount of equivalent plastic strain in the W phase is much smaller than the 

one in the Cu phase (Table 6.60). In addition, several grains do not undergo plastic deformation. 
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Table 6.60: Average equivalent plastic strain for the W phase of the gage section of Cu – W 
bar extended 3 % and its dispersion parameters. This phase contains 642 grains. All values 

are in microstrain (με). 

(με) $T̅UL8,I 
Average 9478 
Std. Dev 10458 

Maximum 81005 
Minimum 0 

Full Width 81005 
 

 

6.4.2.7.1.1- Phase-averaged Stress Components in Sample Coordinates 

Selected by Diffraction 

In Figs. 6.29 & 30, we plot the grain averages of the stress terms, 〈---〉0,.:6 , 〈-33〉0,.:6 , 〈-44〉0,.:6  

, (^ℎ = `a,b)and shear stress components of all grains for all ψ-tilts of 200 reflections of the Cu 

and W phases. The solid symbols in these plots are the corresponding ψ-volume average stress 

values, 〈---〉.:6 , 〈-33〉.:6 , 〈-44〉.:6 , 〈--3〉.:6 , 〈--4〉.:6	[R\	〈-34〉.:6. We see that, for each reflection, 

the ψ-volume average stress values are close to each other for all y. The reflection average stresses, 

Table 6.61, are close to the phase-averaged stress tensors. Thus, the reflection volumes can be 

considered representative volume elements for specific phases. However, these volumes cannot be 

representative of the sample as a whole since these values are different than the global stress 

averages. Consequently, these phase-specific average stresses are not solely macro-stresses or far-

field stresses. They also contain pseudo-macro stress components. 
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Figure 6.29: The phase-averaged grain stress values a) 〈"((〉!,'
=> , b) 〈"))〉!,'

=> , c) 〈"++〉!,'
=>  d) 

the shear stresses, for all grains as a function of sin2ψ. 
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Figure 6.30: The phase-averaged grain stress values a) 〈"((〉!,'
J , b) 〈"))〉!,'

J , c) 〈"++〉!,'
J  d) 

the shear stresses, for all grains as a function of sin2ψ. 
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Table 6.61: Reflection average stress tensors for the Cu and W phases of the gage section of 
the Cu – W bar extended 3 %. The phase-average stress tensor is also included for ease of 

comparison. All values are in MPa. 

Cu  Cu-phase W  W-phase 

111 〈"!"〉#$,&&& = %
264 3 −2
3 216 −6
−2 −6 512

- 110 〈"!"〉',&&( = %
−222 36 66
36 −250 −79
66 −79 1551

- 

200 〈"!"〉#$,)(( = %
200 5 −4
5 232 −7
−4 −7 512

- 200 〈"!"〉',)(( = %
−300 22 −14
22 −214 −86
−14 −86 1606

- 

220 〈"!"〉#$,))( = %
255 1 7
1 268 −11
7 −11 547

- 211 〈"!"〉',)&& = %
−158 −11 9
−11 −208 −79
9 −79 1663

- 

311 〈"!"〉#$,*&& = %
198 13 −4
13 225 2
−4 2 495

- 220 〈"!"〉',))( = %
−279 −6 3
−6 −304 −136
3 −136 1579

- 

420 〈"!"〉#$,+)( = %
195 4 7
4 205 −6
7 −6 486

- 310 〈"!"〉',*&( = %
−282 −1 59
−1 −287 −40
59 −40 1557

- 

 "2!"#$ = %
224 5 1
5 225 −6
1 −6 509

- 
 

"2!"' = %
−253 7 21
7 −251 −83
21 −83 1594

- 

 

 

6.4.2.7.2-  Diffraction Stress/Strain Analysis 

In Figs. 6.31 & 32, we plot the 〈"##$ 〉%,'() 	&'. sin2,	data for all five reflections of the two-

phases computed from the output of the FEpX model. Analysis of the slopes and intercepts of the 

linear regression fits were first used to compute the phase-averages of strains in the sample 

coordinate system by using Eq. (5-9). 
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Figure 6.31:	〈/((,'
/ 〉!,'

=> 	01. 123)4 plots for studied reflections of the Cu phase in the Cu – W 
mesh after plastic flow. 
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Figure 6.32:	〈/((,'
/ 〉!,'

J 	01. 123)4 plots for studied reflections of the W phase in the Cu – W 
mesh after plastic flow. 
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To obtain the reflection average stress 〈-445 〉678, we used Eq. (5-1-b), the slopes of least 

squares lines fitted to the 〈$--,./ 〉0,.
12 	&'. sin3 , and 〈$--,./ 〉0,.

I 	&'. sin3 , data for each reflection. We 

used diffraction elastic constants at Voigt, Reuss, Kröner, Neerfeld-Hill limits, shown in Table 

5.8, and the simulation DEC values shown in Tables 6.46, 48 & 49. These stress results are shown 

in Tables 6.62 & 63. We observe that all reflections yield stress values different from the -44
KLL. for 

the both phases. To test for oscillations, we removed the first two points from each plot and re-

analyzed the data. The results are shown in Table 6.64.  

 

Table 6.62: The average stresses, 〈"++
? 〉=>;#$%, obtained from simulated diffraction analysis 

of the plots shown in Fig. 6.31. For comparison, "5!" = d7de	89:. 

〈"++
? 〉=>;#$%	(MPa) Voigt Reuss Neer.-Hill Kröner ;<=@!A. 

111 248±15 342±21 287±18 276±17 349±21 

200 219±24 95±10 132±14 148±16 267±29 

220 319±36 284±32 300±34 305±35 464±53 

311 347±44 221±28 271±34 287±37 440±56 

420 255±14 164±9 200±11 212±12 330±19 
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Table 6.63: The average stresses, 〈"++
? 〉J;#$%, obtained from simulated diffraction analysis 

of the plots shown in Fig. 6.32. For comparison, "5!" = d7de	89:. 

〈"++
? 〉J;#$%	(MPa) Voigt/Reuss/Neer.-Hill/Kröner ;<=@!A. 

110 1700±189 1371±152 

200 1637±137 1270±107 

211 1797±93 1386±71 

220 1734±137 1379±109 

310 1553±98 1241±79 

 

Table 6.64: The average stresses obtained from simulated diffraction analysis of the plots 
shown in Figs. 6.31 & 32 after removal of first two ψ-ensemble points. 

〈"++
? 〉=>;#$% (MPa) Simulated 〈"++

? 〉J;#$% (MPa) Simulated 

111 381±15 110 1477±214 

200 289±19 200 1298±164 

220 504±84 211 1268±80 

311 437±135 220 1421±142 

420 302±25 310 1263±147 

 

The computed average stresses after the removal of the first two ψ-ensemble points yield 

that the change of the stresses can be up to 10 %. 200, 220 and 310 reflections of W, and 111, 200, 

and 311 reflections of Cu show linear behavior whereas the rest of the reflections show some 

oscillatory behavior.  
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From the slopes and intercepts of lines fitted to the data shown in Figs. 6.31 & 32, we 

obtain the phase-specific reflection average strains, 〈$0R5〉:6;678, in sample coordinates. These 

results and their regression-fit errors are presented in Tables 6.65 & 66 for Cu and W phases, 

respectively. The reflection average strain tensors in the sample coordinates, computed from real 

space strain values,	〈$0R〉:6;678 , obtained from the finite element analysis for each phase, as well 

as the overall phase average are also included. 

 

Table 6.65: Slopes and intercepts of lines fitted to 〈/((,*
/ 〉!,'

Q# 	01. 123)4	data and the 
corresponding reflection average strain tensors for the Cu phase. The corresponding real 

space averages are also included. All values are in microstrain (με). 

hkl Intercept Slope 〈/!"
?〉Q#;#$% 〈/!"〉Q#;#$% 

111 1(68) 2274(139) !
1 0 0
0 1 0
0 0 2273

' !
90 34 −61
34 −121 −143
−61 −143 2460

' 

200 -23(96) 2014(219) !
−23 0 0
0 −23 0
0 0 1991

' !
−118 45 −42
45 −23 7
−42 7 2419

' 

220 -181(161) 2925(334) !
−181 0 0
0 −181 0
0 0 2744

' !
67 24 56
24 23 −99
56 −99 2529

' 

311 -219(155) 3184(404) !
−219 0 0
0 −219 0
0 0 2965

' !
−84 91 −143
0 26 −32
0 0 2308

' 

420 -119(110) 2341(131) !
−119 0 0
0 −119 0
0 0 2222

' !
−121 77 17
77 −139 −134
17 −134 2428

' 

Phase 

average 

   
!
−31 51 −31
51 −61 −103
−31 −103 2436

' 
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Table 6.66: Slopes and intercepts of lines fitted to 〈/((,*
/ 〉!,'

Q# 	01. 123)4	data and the 
corresponding reflection average strain tensors for the W phase. The corresponding real 

space averages are also included. All values are in microstrain (με). 

hkl Intercept Slope 〈9678〉9:;:<2 〈967〉9:;:<2 

110 -1477(315) 5484(656) !
−1477 0 0
0 −1477 0
0 0 4008

' %
−1496 123 226
36 −1595 −291
66 −79 4302

- 

200 -1522(190) 5400(453) !
−1522 0 0
0 −1522 0
0 0 3878

' %
−1769 75 −68
75 −1486 −311
−68 −311 4480

- 

211 -1479(147) 5931(305) !
−1479 0 0
0 −1479 0
0 0 4452

' %
−1455 −37 26
−37 −1620 −260
26 −260 4534

- 

220 -1423(196) 5721(450) !
−1423 0 0
0 −1423 0
0 0 4298

' %
−1638 −17 −1
−17 −1714 −465
−1 −465 4469

- 

310 -1146(176) 5124(325) !
−1146 0 0
0 −1146 0
0 0 3978

' %
−1634 2 192
2 −1654 −162
192 −162 4396

- 

Phase average 
   

%
−1613 25 60
25 −1610 −297
60 −297 4446

- 

 

We observe that the strain tensors obtained from linear regression from all reflections agree 

quite well with the real space averages for both phases. On the other hand, the slopes of the 

〈"##,'$ 〉%,'() 	&'. sin2, plots are quite different. Consequently, any computation which utilized only 

slopes would have yielded significantly different answers for each reflection. 

In Table 6.67, we list the stresses in the sample coordinates obtained from 	

〈9678〉9:;:<2	strain tensors for each phase. For this computation, we used the isotropic Hooke’s law 

with the elastic moduli of individual reflections, Ehkl, nhkl, computed from Tables 6.46 & 49. 
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Comparing Tables 6.61 & 6.67, the computed reflection average stresses of reflections of 

Cu phase have similar results with the real space reflection average stresses. On the other hand, 

we do not observe similar behavior for the W phase. The real space reflection average stresses are 

1.5x larger than the computed ones for all reflections. 

 

Table 6.67: The computed reflection average stresses from the average strain tensors listed 
in Tables 6.65 & 66 and Ehkl, νhkl. 

Cu 
Computed reflection  

average stresses 
W 

Computed reflection 

 average stresses 

111 ?
263

263
612

D 110 ?
−167

−167
1174

D 

200 ?
286

286
544

D 200 ?
−211

−211
1060

D 

220 ?
213

213
678

D 211 ?
−83

−83
1298

D 

311 ?
192

192
632

D 220 ?
−80

−80
1297

D 

420 ?
176

176
507

D 310 ?
28

28
1266

D 
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6.4.2.8- Two-phase Cu – W Bar at Zero External Load after Tensile Plastic Flow 

In this simulation, the virtual two-phase Cu – W bar was unloaded to -44
KLL. = 9 MPa tensile 

load41 after being extended to 3% total strain. At this load, the retained tensile plastic strain in the 

Cu – W sample is approximately 0.5 % (Fig. 6.26). Most of the plastic deformation is in the softer 

Cu phase. In Tables 6.68 & 69, we show the equivalent plastic strains and their dispersion 

parameters for the Cu and W phases, respectively. The effective plastic strain in the copper phase 

is almost 7.5x of that in W. 

The tensile test plot (Fig. 6.26) of the virtual sample model shows that the sample starts 

macroscopic yielding when the applied load is ~406 MPa during the loading cycle. During the 

unloading cycle (Fig. 6.33) the stress-strain response of the specimen is linear for far-field stresses, 

350 MPa< -44W <1019 MPa, which corresponds to 1.8% < $44
W < 3%. Significant macroscopic 

flow in the sample occurs for lower stresses; For 9 MPa < -44
W <	350 MPa. If the sample had 

continued to unload elastically (dashed arrow in Figure 6.33), the specimen would have unloaded 

to 1.2% tensile plastic strain. We observe that at -44W = 9	MPa, the retained plastic strain is 0.5% 

tensile. Thus, the sample yielded in compression 0.7%, at far-field loads, -44W  , much lower than 

the macroscopic yield stress during loading. Most of the plastic flow during unloading also 

occurred in the Cu phase. Comparing Tables 6.68 &.69 with Tables 6.57 & 60, respectively, we 

observe that while the equivalent plastic strain in W decreased ~3% after unloading, it went up by 

~7% in the Cu phase. 

 

 
41 Since the model is being executed in strain control, unloading to exactly zero load was problematic. For the concepts 
we are concerned about  :''=>>. =9 MPa is close enough to zero. 
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Table 6.68: Average equivalent plastic strain for the Cu phase of the gage section of Cu – 
W bar unloaded after extended 3 % and its dispersion parameters. This phase contains 610 

grains. All values are in microstrain (με). 

(με) $T̅UL8,12 
Average 68192 
Std. Dev 37969 

Maximum 217680 
Minimum 4487 

Full Width 213194 
 

Table 6.69: Average equivalent plastic strain for the W phase of the gage section of Cu – W 
bar unloaded after extended 3 % and its dispersion parameters. This phase contains 642 

grains. All values are in microstrain (με). 

(με) $T̅UL8,I 
Average 9181 
Std. Dev 10048 

Maximum 81634 
Minimum 0 

Full Width 81634 
 

The significant plastic flow of the overall specimen for 9 MPa < -44W <350 MPa indicates 

that the local stresses at the grain scale are much higher than the yield point of Cu. This local stress 

enhancement is due to the Heyn stresses which form due to the compatibility conditions imposed 

on the Cu grains by the (deformation-free) W grains. The Cu grains, which had yielded in tension 

during the loading cycle are placed in compression by the (undeformed, hard) W grains trying to 

relax to their zero load configurations, and deform plastically. This would relax the local stress to 

the local yield stress of a particular Cu grain. Further decrease of the far-field load would cause 

the average grain stress, which is the sum of far-field and Heyn stress terms, to decrease as well, 
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but since  -44W  is already quite low, we expect a significant inter-phase Heyn stress field to be finite 

after unloading, with Cu grains in compression and W grains in W. We will now examine these 

stress fields. 

 

 

Figure 6.33: Unloading portion of the tensile plot in Fig. 6.26. We observe significant 
reverse yielding for far-field stresses, "++

X , below 350 MPa 

 

6.4.2.8.1- Stress Distribution in Sample Coordinates 

Tables 6.70 & 71 list the global average stress and lattice strain tensors and their 

distribution parameters in the gage section for both phases. These averages were computed over 

all grains, both Cu and W, in the model. We observe that, as expected, all -W44 = -44
KLL. within the 

error regime of a diffraction experiment. With the exception of -W34, all other -W0R can be considered 

zero. However, all stress components exhibit wide distributions, the full widths are quite large, 
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indicating that some grains possess significant interaction stresses. The minimum -W44 value is -

801 MPa, indicating that some grains are quite highly compressed. We observe similar behavior 

for the average lattice strains.  

 

Table 6.70: Global average stress tensor of the gage section of Cu – W bar unloaded after 
extended 3 % and its dispersion parameters. The model contains 1252 grains, 610 Cu, and 

642 W. All values are in MPa. 

(MPa) -W-- -W-3 -W-4 -W33 -W34 -W44 
Average -9 4 5 -8 -25 13 
Std. Dev 282 150 146 285 149 343 

Maximum 1073 645 861 906 675 1353 
Minimum -1297 -636 -796 -1328 -888 -801 

Full Width 2370 1280 1657 2234 1887 2154 
 

Table 6.71: Global average lattice strain tensor of the gage section of Cu – W bar unloaded 
after extended 3 % and its dispersion parameters. The model contains 1252 grains, 610 Cu, 

and 642 W. All values are in microstrain (με). 

(με) $-̅- $-̅3 $-̅4 $3̅3 $3̅4 $4̅4 
Average 291 18 31 300 -65 -547 
Std. Dev 975 515 525 966 541 1489 

Maximum 3442 2119 2934 2998 2205 3422 
Minimum -3020 -2122 -2612 -3146 -2917 -3636 

Full Width 6462 4241 5546 6144 5122 7058 
 

When we examine distributions of stresses and lattice strains in the individual phases we 

observe a very different case. Table 6.72 lists the average stress in the Cu phase and their dispersion 

parameters. All normal stresses -W0012, are finite, with tensile transverse stresses,	-W--12 ≅ -W33
12 ≫ 0 , 

and compressive axial stress	-54412 ≪ 0;  the magnitudes of the average phase stress components, 
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-W77
12  are an order of magnitude larger than the corresponding global average stresses -W77. Average 

shear stress components, -W0R,0SR12 , are zero. The corresponding average lattice strains are tabulated 

in Table 6.73.  If all Cu grains were contiguous and formed a continuous solid in Cartesian space, 

Tables 6.72 & 73 would indicate that this solid was under a normal tri-axial stress state, with 

isotropic tension in the cross-section of the gage section and compression along the axial, .⃗4, 

direction.  

 

Table 6.72: Average stress tensor for the Cu phase of the gage section of Cu – W bar 
unloaded after extended 3 % and its dispersion parameters. This phase contains 610 

grains. All values are in MPa. 

(MPa) -W--
12 -W-3

12 -W-4
12 -W33

12 -W34
12 -W44

12 
Average 131 -2 -2 130 1 -190 
Std. Dev 179 31 34 178 34 169 

Maximum 1073 90 94 906 107 623 
Minimum -414 -119 -94 -375 -88 -649 

Full Width 1487 209 188 1281 196 1272 
 

Table 6.73: Average lattice strain tensor for the Cu phase of the gage section of Cu – W bar 
unloaded after extended 3 % and its dispersion parameters. This phase contains 610 

grains. All values are in microstrain (με). 

(με) $-̅-
12 $-̅3

12 $-̅4
12 $3̅3

12 $3̅4
12 $4̅4

12 
Average 1031 3 27 1038 47 -1893 
Std. Dev 541 225 312 506 325 509 

Maximum 3442 957 1037 2998 1300 293 
Minimum -255 -1072 -962 -442 -1133 -3636 

Full Width 3697 2029 1999 3440 2433 3929 
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Tables 6.74 & 75 list the average stress and lattice strain tensors in the W phase and their 

dispersion parameters. The stress state in the W phase is opposite to that of the Cu phase, with 

	-W--
I ≅ -W33

I ≪ 0 , and tensile axial stress	-54412 ≫ 0. Interestingly, the average in-plane shear stress 

component, -W34I, is finite for the W phase.   

 

Table 6.74: Average stress tensor for the W phase of the gage section of Cu – W bar 
unloaded after extended 3 % and its dispersion parameters. This phase contains 642 

grains. All values are in MPa. 

(MPa) -W--
I -W-3

I -W-4
I -W33

I -W34
I -W44

I 
Average -143 9 11 -140 -51 207 
Std. Dev 297 207 201 304 202 355 

Maximum 609 645 861 649 675 1353 
Minimum -1297 -636 -796 -1328 -887 801 

Full Width 1806 1281 1657 1977 1562 2154 
 

Table 6.75: Average lattice strain tensor for the W phase of the gage section of Cu – W bar 
unloaded after extended 3 % and its dispersion parameters. This phase contains 642 

grains. All values are in microstrain (με). 

(με) $-̅-
I  $-̅3

I  $-̅4
I  $3̅3

I  $3̅4
I  $4̅4

I  
Average -413 32 35 -400 -171 731 
Std. Dev 749 685 667 754 669 849 

Maximum 1627 2119 2934 1324 2205 3422 
Minimum -3020 -2122 -2612 -3146 -2917 -1681 

Full Width 4647 4241 5546 4470 5122 5103 
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6.4.2.8.1.1- Phase-averaged Stress Components in Sample Coordinates 

Selected by Diffraction 

In Figs. 6.34 & 35, we plot the grain averages of the stress and strain components, 〈-0R〉0,.:6 , 

〈$0R〉0,.
:6 , (^ℎ = `a,b)for all ψ-tilts of the 200 reflections of the Cu and W phases. The solid 

symbols in these plots are the corresponding ψ-volume average stress and strain values, 〈-0R〉.:6 ,

〈$0R〉.
:6. We see that the ψ-volume averages of the stress and strain components show little variation 

with y angle for both phases. We observed similar behavior for all reflections of all phases.  

The reflection average stresses are tabulated in Table 6.76 for both W and Cu phases. For 

the W phase, all reflection volumes are under compression in the plane of the gage section and in 

tension along the axial direction, .⃗4. The opposite stress state is observed for all reflection volumes 

of the Cu phase. The magnitudes of the reflection averages of the stress components, 〈-0R〉0,.:6 , are 

close to the relevant phase averages, -W0R:6 (Tables 6.72 & 74), however, they are different enough 

that they could not be considered representative volume elements. 
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Figure 6.34: The phase-averaged grain stress values a) 〈"((〉!,'
=> , b) 〈"))〉!,'

=> , c) 〈"++〉!,'
=>  d) 

the shear stresses, for all grains as a function of sin2ψ. 
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Figure 6.35: The phase-averaged grain stress values a) 〈"((〉!,'
J , b) 〈"))〉!,'

J , c) 〈"++〉!,'
J  d) 

the shear stresses, for all grains as a function of sin2ψ. 
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Table 6.76: Reflection average stress tensors for the Cu and W phases of the gage section of 
the Cu – W bar unloaded after extended 3 %. The phase-average stress tensor is also 

included for ease of comparison. All values are in MPa. 

Cu  Cu-phase W  W-phase 

111 〈"!"〉#$,&&& = %
119 0 −3
0 149 4
−3 4 −174

- 110 〈"!"〉',&&( = %
−119 29 37
29 −140 −54
37 −54 181

- 

200 〈"!"〉#$,)(( = %
142 −4 4
−4 128 0
4 0 −190

- 200 〈"!"〉',)(( = %
−186 25 −10
25 −123 −50
−10 −50 201

- 

220 〈"!"〉#$,))( = %
158 −2 2
−2 134 −2
2 −2 −186

- 211 〈"!"〉',)&& = %
−76 −5 11
−5 −100 −48
11 −48 255

- 

311 〈"!"〉#$,*&& = %
134 −3 −5
−3 116 5
−5 5 −205

- 220 〈"!"〉',))( = %
−161 1 −6
1 −177 −90
−6 −90 187

- 

420 〈"!"〉#$,+)( = %
120 0 −8
0 113 −1
−8 −1 −209

- 310 〈"!"〉',*&( = %
−155 0 34
0 −163 −18
34 −18 201

- 

 "2!"#$ = %
131 −2 −2
−2 130 −1
−2 −1 −191

- 
 

"2!"' = %
−143 9 11
9 −140 −51
11 −51 207

- 

 

6.4.2.8.2-  Diffraction Stress/Strain Analysis 

In Figs. 6.36 & 37, we plot the 〈"##$ 〉%,'() 	&'. sin2,	data for all five reflections of the two-

phases computed from the output of the FEpX model. To obtain the reflection average stress 

〈-44
5 〉678, we used the slopes of linear regression fits to the 〈"##$ 〉%,'() 	&'. sin2,	data with diffraction 

elastic constants at Voigt, Reuss, Kröner, Neerfeld-Hill limits (Table 5.8), and the simulation DEC 

values (Tables 6.46, 48 & 49). These stress results are shown in Tables 6.77 & 78. We observe 

that all reflections yield stress values different from the far-field stress, -44W  for both phases.  
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Figure 6.36:	〈/((,'
/ 〉!,'

=> 	01. 123)4 plots for studied reflections of the Cu phase of the 
unloaded the Cu – W model. 
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Figure 6.37:	〈/((,'
/ 〉!,'

J 	01. 123)4 plots for studied reflections of the W phase of the 
unloaded the Cu – W model. 
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Table 6.77: The average stresses, 〈"++
? 〉=>;#$%, obtained from simulated diffraction analysis 

of the plots shown in Fig. 6.35. For comparison, "5++ = e	89:. 

〈"++
? 〉=>;#$%	(MPa) Voigt Reuss Neer.-Hill Kröner ;<=@!A. 

111 -227±8 -313±10 -253±8 -263±9 -320±11 

200 -240±15 -104±6 -162±10 -145±9 -293±18 

220 -190±25 -169±22 -182±24 -179±24 -277±37 

311 -247±24 -158±15 -205±20 -193±18 -314±30 

420 -238±9 -153±6 -198±8 -186±7 -308±12 

 

Table 6.78: The average stresses, 〈"++
? 〉J;#$% obtained from simulated diffraction analysis 

of the plots shown in Fig. 6.36. For comparison, "5++ = e	89:. 

〈"++
? 〉J;#$%	(MPa) Voigt/Reuss/Neer.-Hill/Kröner ;<=@!A. 

110 285±123 230±100 

200 194±110 151±85 

211 340±70 262±54 

220 221±98 176±78 

310 101±56 81±45 

 

The   〈$--,./ 〉0,.
:6.	&'. 'QR3 ,  plots shown in Figs. 6.36 & 37 show deviations from linearity. 

To test if these deviations could be considered “oscillations” and influence the computed stress 

results, we removed the first two ψ-ensemble points and repeated the stress analysis. The results 

are summarized in Table 6.79 for both phases. For most reflections the removal of the first two ψ-

ensemble points results in a significant change of the computed stress, 〈-445 〉:6.;678 .  By inspection, 
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we conclude that all 〈$--,./ 〉0,.
:6.	&'. 'QR3 , plots are oscillatory and should not be analyzed by linear 

least-squares fitting. 

 

Table 6.79: The average stresses obtained from simulated diffraction analysis of the plots 
shown in Figs. 6.31 & 32 after removal of first two ψ-ensemble points. 

〈"++
? 〉=>;#$%	(MPa) Simulated 〈"++

? 〉J;#$% (MPa) Simulated 

111 -362±46 110 275±136 

200 -471±47 200 204±123 

220 -502±69 211 183±69 

311 -352±35 220 224±98 

420 -547±32 310 75±86 

 

From the slopes and intercepts of lines fitted to the data shown in Figs. 6.36 & 37, we 

obtain the phase-specific reflection average strains, 〈$0R5〉:6;678, in sample coordinates. These 

results and their regression-fit errors are presented in Tables 6.80 & 81 for Cu and W phases, 

respectively. The reflection average strain tensors in the sample coordinates, computed from real 

space strain values,	〈$0R〉:6;678 , obtained from the finite element analysis for each phase, as well 

as the overall phase average are also included. 

We observe that the strain tensors obtained from linear regression from all reflections agree 

quite well with the real space averages for both phases. On the other hand, the slopes of the 
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〈"##,'$ 〉%,'() 	&'. sin2, plots are quite different. Consequently, any computation which utilized only 

slopes would have yielded significantly different answers for each reflection. 

 

Table 6.80: Slopes and intercepts of lines fitted to 〈/((,*
/ 〉!,'

Q# 	01. 123)4	data and the 
corresponding reflection average strain tensors for the Cu phase. The corresponding real 

space averages are also included. All values are in microstrain (με). 

hkl Intercept Slope 〈/!"
?〉Q#;#$% 〈/!"〉Q#;#$% 

111 832(92) -2525 (223) !
832 0 0
0 832 0
0 0 −1693

' !
1123 10 30
10 1019 69
30 69 −1909

' 

200 1309(265) -3765(265) !
1309 0 0
0 1309 0
0 0 −2456

' !
977 −12 38
−12 1071 17
38 17 −1850

' 

220 1083(138) -2946(386) !
1083 0 0
0 1083 0
0 0 −1863

' !
1071 0 33
0 1071 27
33 27 −1881

' 

311 893(91) -2613(186) !
893 0 0
0 893 0
0 0 −2394

' !
977 15 11
15 965 77
11 77 −1828

' 

420 1262 (116) -3596(216) !
1262 0 0
0 1262 0
0 0 −2334

' !
976 5 16
5 1039 49
16 49 −1950

' 

Phase 

average 

   
!
1032 3 27
3 1038 47
27 47 −1893

' 
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Table 6.81: Slopes and intercepts of lines fitted to 〈/((,*
/ 〉!,'

Q# 	01. 123)4	data and the 
corresponding reflection average strain tensors for the W phase. The corresponding real 

space averages are also included. All values are in microstrain (με). 

hkl Intercept Slope 〈9678〉9:;:<2 〈967〉9:;:<2 

110 -302(214) 1049(449) !
−302 0 0
0 −302 0
0 0 747

' %
−328 99 129
99 −398 −185
129 −185 642

- 

200 -353(117) 628(283) !
−353 0 0
0 −353 0
0 0 275

' %
−529 −83 −36
−83 −322 −172
−36 −172 734

- 

211 -281(145) 1219(302) !
−281 0 0
0 −281 0
0 0 938

' %
−306 −14 34
−14 −385 −159
34 −159 782

- 

220 -195(134) 720(324) !
−195 0 0
0 −195 0
0 0 525

' %
−420 4 −24
4 −469 −296
−24 −296 723

- 

310 -40(153) 350(185) !
−40 0 0
0 −40 0
0 0 310

' %
−422 2 112
2 −445 −67
112 −67 741

- 

Phase average 
   

%
−412 32 35
32 −401 −171
35 −171 731

- 

 

In Table 6.82, we list the stresses in the sample coordinates obtained from 	

〈$0R
5〉:6;678 	strain tensors for each phase. For this computation, we used the isotropic Hooke’s law 

with the elastic moduli of individual reflections, Ehkl, nhkl, computed from Tables 6.46 & 49. 

Comparing Tables 6.76 & 82, the computed reflection average stresses of reflections of Cu 

and W phase do not agree with the real space reflection average stresses in magnitude, even though 

we do obtain the correct sign for all cases.  
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Table 6.82: The computed reflection average stresses from the average strain tensors listed 
in Tables 6.80 & 81 and Ehkl, νhkl. 

Cu 
Computed reflection  

average stresses 
W 

Computed reflection 

 average stresses 

111 ?
125

125
−264

D 110 ?
−47

−47
209

D 

200 ?
190

190
−310

D 200 ?
−159

−159
−11

D 

220 ?
203

203
−266

D 211 ?
0

0
284

D 

311 ?
70

70
−385

D 220 ?
−23

−23
151

D 

420 ?
197

197
−311

D 310 ?
32

32
117

D 

 

6.4.2.9- Deformation Distributions of Virtual Cu Sample 

In previous sections, we observe that some grains in the virtual Cu sample might be under 

larger triaxial stress (Figs. 6.11 & 12). Thus, we decided to investigate the distributions of the 

trace, jkl-0Rm, of the stress tensors for all grains in the gage section of the Cu sample, and their 

corresponding Von Mises stress values. These are scalar parameters, similar to the equivalent 

plastic strain, and are given by:  

jkl-0Rm = -77                 Eq. (6-3-a) 
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-YZ = n
4

3
-0R-0R −

-

3
(-77)3               Eq. (6-3-b) 

 

Figure 6.38: The distribution of a) the trace and b) Von Mises stresses of 3 elastic loadings 
for virtual Cu. Trace and Von Mises stresses are normalized by the applied stress to aid in 

plotting. 

 

Fig. 6.37 shows the distribution of normalized  jkl-0Rm and -YZ parameters for the elastic 

region of our virtual sample. The distribution of jkl-0Rm
-44
KLL.o  for 57, 114, and 169 MPa show that 

for 0.8% of the grain population (~5 grains), the trace is less than 50% of the ideal homogeneous 

value. 10 grains or so have traces greater than 1.4x of the ideal value. The distribution of 

-YZ
-44
KLL.o 	for the same loads is much narrower.  We note that the grains with the lowest trace 

values did not correspond to those with the lowest VM stress values. The shape of the distribution 

for these loads is very similar for all elastic loading steps.  
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The shape of the jkl-0Rm
-44
KLL.o  distribution changes markedly for 222 MPa applied load. 

This is due to the onset of local plastic flow. With the increasing applied load and resultant plastic 

strain, the jkl-0Rm
-44
KLL.o   distribution keeps changing. At -44

KLL. = 304	p^[, the distribution has 

changed dramatically from its shape in the elastic region: Only 4% of the grains are at 50% of the 

ideal trace ratio, with some grains having zero trace values. In addition, approximately 9% of the 

grains are 1.5-2x of the ideal trace value. After large-scale plastic flow, the distribution stabilizes. 

The distribution at -44
KLL. = 320	p^[ applied load is very similar to that at -44

KLL. = 304	p^[. 

We also observe similar distributions at -44
KLL. = 329, 333	&	334.5	p^[ (Fig. 6.38-a). The 

changes of the distribution profiles for -YZ
-44
KLL.o  Are similar to those for the normalized trace 

parameter (Fig. 6.38-b).  

 

 

Figure 6.39: The distribution of a) the trace and b) Von Mises stresses of seven elastoplastic 
loading steps for the single-phase Cu model. Trace and Von Mises stresses are normalized 

by the applied stress. 
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We tested the normality of all distributions using the conventional Shapiro-Wilk (SW) and 

Kolmogorov-Smirnov (KS) tests [134, 135, 136].  Both SW and KS tests showed that the trace 

ratio is not normally distributed in the elastic regime. With increasing plastic flow under increasing 

applied load, the KS test starts to accept normality, whereas the SW test rejects normality for these 

distributions. The situation changes gradually during unloading: In the first unloading step where 

-44
KLL. = 269	p^[, the SW test rejects normality whereas the KS test cannot reject normality. For 

the next two unloading steps,	-44
KLL. = 169	&	72	p^[, normality is rejected by both tests. At 

approximately zero external load42, the distribution satisfies both normality tests and the profile is 

well fitted with a Gaussian function (Figure 6.40-a). This profile shows that, while the unloaded 

material has a normal stress distribution centered at 6 MPa, it has a very wide stress distribution; 

the FWHM is 200 MPa, and 30% of the grain population will have stresses larger than ±100 MPa.  

We note that, in contrast to the trace ratio, the distribution of the von Mises ratio did not approach 

normality after unloading (Fig. 6.40-b). 

 
42 We relaxed the applied stress to 1 MPa so that the trace ratio, <=>:?@?@  , was finite. In the absence of Heyn stresses, 
<=>:?@? should be equal to :''=>>.. 
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Figure 6.40: Trace (a) and von Mises (b) ratio distributions in the Cu sample after 
unloading from the plastic flow. 

 

As in the case of single-phase Cu, to avoid a sampling issue, we performed a larger 

simulation. The population distribution of grains in the gage section of the combined model, with 

a total of 6260 grains. All populations have increased approximately five-fold. There are at least 

12 grains in each y - volume for both phases. The smallest populated y - volumes are ψ= 26.57°, 

39.23° and 45° for 311 reflection of Cu phase. The results of the combined model are within 10% 

of the results of the model consisting of 1252 grains in the gage section. Therefore, we decided to 

show the results belong to smaller simulations. 

 

6.4.2.10- Effect of Sampling on Results of Two-phase Cu – W Simulations 

In the two-phase Cu – W simulations containing 2500 diffracting grains, some 

y - volumes had very small populations due to the random placement of grains. Thus, we wanted 

to check the effect of sampling on the results of Cu – W  simulations. To investigate these issues, 
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we performed a larger simulation by modeling the stress-strain responses of four additional 

(random) models, each with 2500 grains, and analyzing the results together with the original 

model. 

The population distribution of grains for Cu and W phases in the gage section of the 

combined model, with a total of 6260 grains, is shown in Tables 6.83 & 84. All populations have 

increased approximately five-fold. The y-ensemble with the smallest population, 12 grains, 

belongs to the 311 reflection at ψ=26.57° in the Cu phase.  

 

Table 6.83: The population distribution for the Cu phase in the gage section of the Cu – W 
sample. 

ψ(°) 0 18.43 26.57 33.21 39.23 45 56.79 71.57 Total 

2(
))), 4())) 199 46 66 30 107 226 225 47 946 

2(
*++, 4(*++ 65 106 135 140 148 32 118 31 775 

2(
**+, 4(**+ 66 58 46 17 36 23 67 27 340 

2(
,)), 4(,)) 18 86 12 25 16 14 48 82 301 

2(
-*+, 4(-*+ 137 59 196 36 45 141 45 29 688 

2(
./012 485 355 455 248 352 436 503 217 3050 
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Table 6.84: The population distribution for the W phase in the gage section of the Cu – W 
sample. 

ψ(°) 0 18.43 26.57 33.21 39.23 45 56.79 71.57 Total 

2(
))+, 4())+ 75 56 49 66 17 25 87 30 405 

2(
*++, 4(*++ 83 68 112 130 123 136 77 59 788 

2(
*)), 4(*)) 149 69 101 84 92 64 103 106 768 

2(
**+, 4(**+ 97 23 79 53 64 87 87 68 558 

2(
,)+, 4(,)+ 109 81 91 70 97 101 87 55 691 

2(
./012 513 297 432 403 393 413 441 318 3210 

 

We compared DEC values, .-G:;90<;1W<. and 9!
3

G:;90<;1W<.
, of the combined model with 

those for the original (small) model, respectively. These results are shown in Tables 6.85, 86 & 

87. We observe that a five-fold population increase has changed the .-G:;90< and 9!
3

G:;90<
 values 

for all reflections by 20% or less for both phases. The DEC values for the 220 reflection of the Cu 

phase have the largest deviation, 18 to 20 %.  This change is not the result of sampling because the 

lowest populated reflection belonged to 311 reflection of the Cu phase in the original model. We 

observe smaller changes in DEC values obtained from the combined model for the reflections of 

both phases except 220 reflection of Cu phase between 1 to 9 %.  
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Table 6.85: Diffraction elastic constants obtained from the FEA analysis of W phase for the 

gage section of the combined model. % Deviation of simulated U(
PQ;@!A;=XA.&

@*
)

PQ;@!A;=XA.
 

from U(
PQ;@!A	&	

@*
)

PQ;@!A
 was also shown. 

(TPa)
-1

 U(
PQ;@!A;=XA. 

U)
V

PQ;@!A;=XA.

 U(
PQ;@!A U)

V

PQ;@!A

 

%Dev. 
From 	
U(
PQ;@!A 

%Dev. From 	
U)
V

PQ;@!A

 
(110) -0.96±0.01 4.26±0.01 -0.94±0.01 4.09±0.01 2 4 
(200) -0.97±0.01 4.22±0.01 -0.98±0.01 4.25±0.01 2 1 
(211) -0.96±0.01 4.21±0.01 -0.98±0.01 4.28±0.01 2 2 
(220) -1.01±0.01 4.29±0.01 -0.95±0.01 4.15±0.01 6 3 
(310) -0.96±0.01 4.19±0.01 -0.94±0.01 4.13±0.01 2 2 
 

Table 6.86: Diffraction elastic constant,	U(
PQ;@!A;=XA., obtained from the FEA analysis of 

Cu phase for the gage section of the combined model. % Deviation of simulated 
U(
PQ;@!A;=XA. from U(

PQ;@!A was also shown. 

S1 

(TPa)
-1

 
U(
PQ;@!A;	=XA. U(

PQ;@!A 
% Dev. 
From 	
U(
PQ;@!A 

(111) -1.47±0.01 -1.52±0.01 3 
(200) -1.73±0.01 -1.75±0.01 1 
(220) -1.69±0.01 -1.39±0.01 18 
(311) -1.56±0.01 -1.57±0.01 1 
(420) -1.74±0.01 -1.59±0.01 9 

 

Table 6.87: Diffraction elastic constant,	
@*
)

PQ;@!A;=XA.
, obtained from the FEA analysis of 

Cu phase for the gage section of the combined model. % Deviation of simulated 
@*
)

PQ;@!A;=XA.
 from 

@*
)

PQ;@!A
 was also shown.  

S
2
/2 (TPa)

-1
 

U)
V

PQ;@!A;=XA.

 
U)
V

PQ;@!A

 

% Dev. From 	
U)
V

PQ;@!A

 

(111) 6.38±0.01 6.51±0.01 2 
(200) 7.35±0.01 7.54±0.01 3 
(220) 7.58±0.01 6.30±0.01 20 
(311) 6.90±0.01 7.23±0.01 5 
(420) 7.34±0.01 7.09±0.01 4 
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Finally, we compared the global average stress and lattice strain tensor of gage section of 

the combined model shown in Tables 6.88 & 89 and the original model extended 3% which was 

shown in Tables 6.70 & 71. We observe that a five-fold population increase has changed the 

average stress and lattice strain values and their standard deviation parameters by 5% or less for 

both phases. The full width of stress and lattice strain tensor components for the combined model 

is much larger than the original model.  

 

Table 6.88: Global average stress tensor of the gage section of the Cu – W bar extended 3 
% and its dispersion parameters. The model contains 6260 grains, 3050 Cu, and 3210 W. 

All values are in MPa. 

(MPa) -W-- -W-3 -W-4 -W33 -W34 -W44 
Average -18 6 12 -15 -47 1065 

Std. Dev 425 203 207 423 207 730 
Maximum 1505 959 1237 1494 848 4126 
Minimum -2333 -994 -934 -1843 -1205 -347 

Full Width 3835 1953 2271 3337 2053 4473 

 

Table 6.89: Global average lattice strain tensor of the gage section of the Cu – W bar 
extended 3 % and its dispersion parameters. The model contains 6260 grains, 3050 Cu, and 

3210 W. All values are in microstrain (με). 

(με) $-̅- $-̅3 $-̅4 $3̅3 $3̅4 $4̅4 
Average -838 35 24 -840 -197 3460 

Std. Dev 1200 710 774 1190 760 1540 
Maximum 3550 3110 4290 2870 2700 9970 
Minimum -6310 -3290 -3110 -5020 -4020 -1280 

Full Width 9860 6400 7400 7890 6720 11250 
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 Consequently, increasing diffracting grains 5 times does not change results drastically. We 

concluded that the sampling does not play an important role in our simulations. Therefore, we 

presented the results of the original model of the two-phase Cu – W specimen in this thesis. 

However, we also need to acknowledge that the increase of full-width also shows us that we need 

to have more grains in virtual samples in order to have a representative polycrystalline sample. 

 

6.5- Summary 
In this chapter, we used an advanced crystal-based polycrystalline FEM program, FEpX, 

to obtain local stress and strain distribution in three-dimensional virtual, untextured, 

polycrystalline bars deformed in tension through plastic flow and unloaded. These values were, 

then, used to conduct virtual diffraction experiments for the determination of lattice strains and 

stresses, and the determination of diffraction elastic constants (DECs). We modeled, in sequence, 

an isotropic material, two single-phase materials (Cu and W), and one two-phase material (Cu – 

W).   

We used the isotropic material, with a unity Zener index, to check for St. Venant effects 

due to boundary conditions. Our results showed that the central ~3/8 of the bar was under uniform 

uniaxial tension, while the ends had triaxial stresses and strong stress/strain gradients. We named 

the central portion the “gage” section of our virtual tensile test. 

In the W sample, with the Zener index equal to 0.99,  $/678 	&'. sin3, plots were linear in 

the gage section and standard diffraction formalism yielded excellent results, with computed 

stresses exactly equal to the applied stresses. On the other hand, we observed oscillatory 
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$/678 	&'. sin3, in the regions closer to the edges due to grip boundary conditions. For our Cu and 

Cu – W samples we only analyzed the gage region. We observed the following: 

a) Interaction stresses arising to constrain incompatible displacements across grain 

boundaries cause oscillations in $/678 	&'. sin3, plots. 

b) Stresses computed from the slopes of lines fitted to oscillatory $/678 	&'. sin3, plots can 

yield large errors. 

c) It is not possible to study stresses in two-phase materials using $/678 	&'. sin3, plots with 

single-phase elastic constants. 

d) In single-phase or two-phase samples which underwent plastic flow, the distribution of 

Heyn stresses complicates diffraction analysis. In such samples, multiple reflections must 

be measured and the results compared to each other before stresses are reported. 

e) In two-phase samples, multiple reflections from both phases must be measured. 

f) Even for untextured samples stress and lattice strain dispersions caused by Heyn effects 

cannot be assumed to be Gaussian in nature. These dispersions can become Gaussian after 

unloading from the plastic flow.   

 

 

 

 



 

345 
 
 

7- CONCLUSIONS & FUTURE WORK 

 

In this dissertation, we presented a rigorous analysis of diffraction stress measurement via 

computation simulations. We introduced a detailed literature review of residual stress and stress 

determination techniques based on measurement of lattice strains through diffraction and showed 

that, even though the basic approach has been in use for almost a century, there are still cases 

where the results are suspect. There are cases where the reported stress states violate equations of 

equilibrium or other cases where diffraction results show stress where sectioning methods do not.  

To formulate an adequate answer to these issues we started with a rigorous analysis of basic theory.  

The equations used in these techniques are valid only at geometric points. Therefore, their 

utilization in analyzing data using strains measured over volumes sampled by diffraction is 

possible only when the material and the stress/strain state within this volume are homogeneous. 

Consequently, the extension of the diffraction formalisms to stress/strain determination in 

polycrystalline materials is not straightforward since such materials are quasi-homogeneous unless 

the single crystals constituting the material are, themselves, isotropic. To address these issues, we 

provided a more appropriate set of definitions based on solid mechanics and performed series of 

rigorous finite element modeling as follows: 

a) We used a homogeneous solid cylinder sample compressed by a C-clamp as an ideal model 

with a simple residual stress state. We saw that: 

i. The stress/strain state within the sample can change with position depending on the 

deformation history and boundary conditions of the system. We suggested, for the 

first time, the use of proper free-body diagrams for the volume of interest. 
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ii. Representative volume elements in real space and diffraction space might be 

different. 

iii. Heterogeneous stress/strain distributions in the volume of interest can cause 

oscillatory  $678	/  vs. 'QR3, plots. 

iv. It is possible to define three types of residual stresses which are compatible with 

both real and diffraction spaces, respectively. 

b) We tested these concepts further by modeling inclusions within a matrix in several 

geometries.  

i. We observed that our expanded definitions work well in such systems. We were 

also able to clearly define the macrostresses, microstresses, and pseudo-macro 

stresses in such systems. 

ii. We showed that the scale-dependent definitions used in the literature, first proposed 

by Macherauch, fail to describe these stress states. 

iii. We cannot always define a proper representative volume element when there are 

stresses within a sample that exhibited highly localized distributions with strong 

gradients. In such cases, the beam size used in the experiment must be selected 

taking into account the grain sizes in the ROI and any St. Venant effects. 

Our simple models showed that experimenters need to be very careful preparing for the 

measurements: significant metallographic material characterization and modeling may be 

necessary for real samples.  

c) We simulated a virtual diffraction stress experiment in ideal polycrystalline thin films using 

ABAQUS CAE. Models were constructed such that no St. Venant stresses existed in the 
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region of the interests. We then compared the real space and diffraction average 

stresses/strains in our ideal samples (this is NOT possible in real experiments).  

i. We observed that sub-volumes sampled by diffraction during different parts of the 

experiment, which we term y-volumes, volumes are not necessarily representative 

volume elements, consequently, they can cause non-linearities in $678	/  vs. 'QR3, 

plots.  

ii. $678	
/  vs. 'QR3, can show linear behavior if and only if ψ-ensembles of the particular 

hkl reflections are representative volume elements. 

iii. In addition, we found out that even though calculated average strains from linear 

least square of fitting of  $678	/  vs. 'QR3, plots are in agreement with the real space 

values, any computation of stresses utilizing only slopes of these plots would have 

yielded significantly different answers in two-phase materials.  

d) We extended our analysis in Chapter 6 into a more realistic simulation where three-

dimensional polycrystalline single and two-phase materials were used. In this simulation, 

we performed a virtual in-situ diffraction experiment where the sample was pulled along 

the axial direction. 

i. We first used an isotropic material to check for St. Venant effects. By using free-

body diagrams, we partitioned the sample into two regions: a) gage sections b) grip 

sections.  

ii. We found out that in tungsten (W), oscillatory $678	/  vs. 'QR3, plots were observed 

in the grip sections due to St. Venant effects, whereas in the gage section, linear 

$678	
/  vs. 'QR3, plots were observed under homogeneous uniaxial stress.  
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iii. In Cu and two-phase Cu – W samples, we observed that interaction stresses arising 

to constrain incompatible displacement across grain boundaries cause oscillations 

in $678	/  vs. 'QR3, plots, and stresses calculated from the linear least square of fitting 

of these plots can yield large errors. 

iv. It is not possible to study stresses in two-phase materials using $678	/  vs. 'QR3, plots 

with single-phase elastic constants.  

v. It was found that more grains must be sampled in a material under plastic loading 

because the number of interaction strains/stresses increases significantly compared 

to elastic loading. Multiple reflections must be measured. 

vi. After unloading from plastic flow, the dispersions of stress and lattice strain caused 

by the Heyn effect can be assumed to be Gaussian. 

Within this information, we would like to provide a recipe for the users wishing to perform 

an accurate experiment: 

a) Since we cannot know exactly the history of the specimen under investigation, significant 

preliminary material characterization must be performed. For example, a phase analysis, 

grain size measurement, hardness test, and tensile test are necessary to have ideas about 

the history of the sample. Additional measurements can be done if the user thinks that it is 

necessary. 

b) Since the local stress/strain distribution of the sample can be different depending on 

microstructure, loading type, presence of the second phase, etc. crystal-based finite element 

analysis must be performed in order to have an idea about the stress/strain of the material.  

The model results can, then, be used to guide beam location and size on the sample. 
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c) To maximize sampling and minimize bias introduce by Bragg selectivity of diffraction, the 

time of flight neutron diffraction experiment with at least 3 detectors would be the best 

approach for residual stress measurements. This type of system enables us to determine the 

principal stresses using all reflections. In other words, the strain will be calculated over a 

much larger volume which includes at least 4 and 5 reflections. Also, the number of 

detectors helps the experimenter to perform sin3 , analysis. If this technique is not 

possible, experimenters must use at least three or four reflections in CW-neutron or 

monochromatic XRD systems. 

d) For all samples, diffraction elastic constants should be determined experimentally for all 

reflections used before a systematic study of residual stresses in actual components is 

attempted. 

e) We recommend the use of advanced crystal-based finite element modeling software.  Even 

in simple sample geometries, the stress/strain state can be complicated. 

 

FUTURE WORK 

In our simulations, we only simulated the measurement volume, and also, all of the grains 

positioned in the virtual sample diffracted at certain reflections and –tilts. However, in real-life 

measurement, the majority of the grains do not diffract. We want to verify our observations using 

much larger models with at least 10000 grains or more. Ideally, these should have real grain 

boundary structures. Instead of using strain values from the FEM Mesh, we should use these local 

strain values to calculate the intensity vs. sin2θ for each ψ-volume and reflections by employing 

the kinematic theory of diffraction. Strain will be calculated by single peak and profile fitting of 
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the simulated diffraction profiles in order to compare results. Hooke’s Law will then be used to 

calculate the average stress.  

A further extension of this work is to validate our expanded definitions with 3D diffraction 

microscopy. The grain-scale measurement allows users to find out the residual stress state of 

individual grains. In this way, the stress state of the sample can be mapped easily and new 

definitions can be tested. 

Further basic analysis, just like in this thesis, a fiber and Goss textured sample must be 

simulated and tested. The oscillations will be more visible because of the incomplete sampling of 

the non-textured reflections. 
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