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ABSTRACT

Deconvolution Problems for Structured Sparse Signal

Han-Wen Kuo

This dissertation studies deconvolution problems of structured sparse signals appears in nature, science

and engineering. We discuss about the intrinsic solution to the problem of short-and-sparse deconvolution,

how these solutions structured the optimization problem, and how do we design an efficient and practical

algorithm base on aforementioned analytical findings. To fully utilized the information of structured sparse

signals efficiently, we also propose a sensing method while the sampling acquisition is expansive, study its

sample limit and algorithms for signal recovery with limited samples.
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1.1 Signals and data under short-and-sparse convolutional model. In calcium imaging (top),

the neuron fires at different time, leading the calcium(II) ion bound indicator to emit short

pulses of fluorescence signal. For natural images (mid), the image is taken when the camera

is shaken, causing a blurring artifact for the final image. And for transmission electronic

microscopy (bot), an image of NaFeCoAs is taken with the brighter part are Co defects. All of

these signals can be effectively modeled as convolution between short and sparse components. 2

2.1 Scanning electrochemical microscope with continuous line probe [OKL+18]. Left: the lab

made SECM device with line probe, mounted on an automated probe arms with a rotating

sample stage. Right: closeup side view of the line probe near the sample surface. . . . . . . . 11

2.2 Scanning procedure of SECM with continuous line electrode probe. The user begins with

mounting the sample on a rotational stage of microscope and chooses m scanning angles.

The microscope then carries on sweeping the line probe across the sample, and measures

the accumulated current generated between the interreaction of probe and the sample at

equispaced intervals of moving distance. After a sweep ends, the sample is rotated to another

scanning angle and the scanning sweep procedure repeats, until allm line scans are finished.

Collecting all scan lines, and providing the information of the scanning angles, the microscope

system parameters (such as the point spread function) and the sparse representing basis of

image, the final sample image is produced via computationwith sparse reconstruction algorithm. 12
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2.3 Mathematical expression of a single measurement from the line probe. When the stage

rotate by θ clockwise, the relative rotation of probe to sample is counterclockwise by θ. The

grey line in the figure represents the rotated line probe, orienting in directionuθ = (cos θ, sin θ),

and is sweeping in direction u⊥θ = (sin θ,− cos θ). When it comes across the point wi where

t = 〈u⊥θ , wi〉, it integrates over the contact region `θ,t between the probe and substate and

produces a measurementRθ(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Side view schematic of SECM line probe [OKL+18]. Cross-sectional side-view of a CLP in

contact with a sample surface. The angle of the CLP with respect to the sample surface θCLP

and thickness of the bottom insulating layer of the probe tI determine the mean separation

distance between the active sensing element and the sample surface (dm). . . . . . . . . . . . 16

2.5 Schematic top views for rotation and translation scheme for CLP sample stage [DKS+19].

We illustrate example contains 3 electroactive disks. The scanning area of the previous scan

AN is shaded in green, while the axis of rotation is located at (xr, yr) and marked with a dot

(left). After the stage is rotated with respect to (xr, yr) by an angle θs (mid), then translate

of the sample stage using the X- and Y -motors to a new position corresponding to the start

location for the next scan (right). The new scan area, AN+1, for the next scan is shaded gray,

while the black circle marks the common area of analysis for both scan angles, which contains

all of the electroactive objects of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Proof sketch for sufficiency of image recovery from three line projections. Given a sample

with separated tiny discs w1, . . .wk (black dots), randomly choosing three lines projection

forms lines R̃1, R̃2, R̃3, in which all the discs after line projection (red dots) are well-separated.

From each of these lines, we construct the dual Q̃ as center of red dots, and a back projection

image form the dual (dash lines), forming the set ∪kj=1`θi,tj . Intersection of three such line sets

is exactly the set of ground truth disc centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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2.7 Least eigenvalue of G̃ with Gaussian motifs on hexagonal lattice. We show an example

image of local features which are placed on the lattice locations (left), and calculate the least

eigenvalue with varying number of motifs and distance-to-diameter ratio (right). When the

motifs are highly overlapping d/2r = 0.5, then G̃ is almost rank-deficient; when d/2r ≥ 1, then

G̃ is stably full rank regardless of number of motifs. The result remains almost identical when

the lattice is of other form such as rectangular grid, we therefore consider the distance-to-

diameter ratio is the determining factor for injectivity of line projections even in more general

settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 The point spread function of line probe. The PSF of line probe is skewed in the probe

sweeping direction. We show an estimated PSF with close form used for reconstruction

(left); and the software (LabVIEW) simulated PSF whose shape and intensity changes as the

contacting angle varies (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Signal model of superposing electroactive species at different location. Left: An optical

microscope view of a disc Right: the heatmap image of the substate Y is convolution between

electroactive speciesD and its activation mapX0. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Phase transition [OKL+18] of fixed image size (top) and fixed density (bot) on support

recovery with Lasso. In each experiments, d/2r ≥ 1 is ensured. In either cases, the phase

transitions (left) show the number of samples required is almost linearly proportional to the

number of discs for exact reconstruction. And the the advancement of scanning efficiency

(right) is presented in comparison with the point probe scans. For the fixed size case, we let

(image area)/(disc area) ≈ 1200; for the fixed density case, we let density ≈ (1/6)·(max density). 28

2.11 Back projection image from the scan lines. We demonstrate a simple example (left) where

four discs are line projected with angles {0◦, 45◦, 90◦, 135◦} then undergo convolution with

the simulated PSF (mid). Here, the arrows indicates the probe sweeping direction. The back

projection image (right) is the superposition of back projection image of each line; and the

back projection of a single lineRθ assigns valueRθ(t) along the sweeping directions (arrows)

onto the support `θ,t for every t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



2.12 SECM image reconstruction with pure Lasso and reweighted Lasso. We apply three algo-

rithm to reconstruct the image (left) with 6 line scans with simulated PSF in Figure 2.8. The

reconstruction from Lasso with large λ (mid left) has unbalanced magnitude due to the coher-

ence of line scans, and from Lasso with small λ (mid right) gives blurry image by weakened

sparsity regularizer. Reweighing Lasso can adjust the sparse regularizer in each iteration and

consistently gives good result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.13 SECM image reconstruction with reweighed Lasso and reweighed calibrating Lasso. We

simulate a line scan with uneven magnitude (left), and reconstruct the image (mid left) with

two algorithm. The algorithm with reweighting only (mid right) cannot identify the correct

support; where the reweighting plus calibration (right) method well approximates the image. 34

2.14 Performance of reweightingmethod versus Lasso. We use 8 line scans when the disc number

is below 16, and 16 line scans when disc number is above for reconstruction. The experiments

show reweighting method outperforms vanilla Lasso with various penalty variable λ set-

ting w.r.t. normalized (to 1) magnitude difference between the ground truth images and

reconstructed images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.15 Real signal experiments on three platinum discs [DKS+19]. We show the reconstruction

result of a three disc sample (up-left), which is scanned with line probe in seven different

directions (up-right). The arrow in optical image represents the line probe sweeping direction,

while as θs stands for clockwise rotation of the sample. The black circle indicates the correct

disc location in each images. Compare to the point probe, in which the shifts of disc location

are resulted from the skew of PSF (down-left), our line scan reconstruction accurately recovers

the exact location (down-right). For both of the reconstructed images, the resolution is 10µm

per pixel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.16 Real signal experiments of 8, 10 platinum discs. Showing the optimal image of the 8 discs

(up) and 10 discs (down) sample, and their corresponding line scans, reconstructed image

and reconstructed disc location map. In optical image, the arrows represent the line probe

sweeping direction, while as θs stands for clockwise rotation of the sample. In both examples,

our algorithm is able to successfully obtain these images of the discs, with most of the disc

locations can be approximately represented by an one-sparse vector. Here, the image resolution

is 20µm per pixel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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3.1 Shift symmetry in Short-and-Sparse deconvolution. An observation y (left) which is a con-

volution of a short signal a0 and a sparse signal x0 (top right) can be equivalently expressed

as a convolution of s`[a0] and s−`[x0], where s`[·] denotes a shift ` samples. The ground truth

signals a0 and x0 can only be identified up to a scaled shift. . . . . . . . . . . . . . . . . . . . 43

3.2 Sparsity-coherence tradeoff: Top: three families of motifs a0 with varying coherence µ. Bot-

tom: maximum allowable sparsity θ and number of copies θp0 within each length-p0 window.

Here, we suppress constants and logarithmic factors. When the target motif has smaller

shift-coherence µ, our result allows larger θ, and vise versa. This sparsity-coherence tradeoff is

made precise in our main result Theorem 3.3.1, which, loosely speaking, asserts that when

θ / 1/(p0
√
µ+
√
p0), our method succeeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Geometry of ϕρ near a shift of a0. Bottom: a portion of the sphere Sp−1, colored according

to ϕρ. Top: ϕρ visualized as height. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Geometry of ϕρ near the span S{`1,`2} of two shifts of a0. Left: each pair of shifts s`1 [a0],

s`2 [a0] defines a linear subspace S{`1,`2} of Rp. Center/right: every local minimum of ϕρ near

S{`1,`2} (red line) is close to either s`1 [a0] or s`2 [a0]; there is a negative curvature in the middle

of s`1 [a0], s`2 [a0], and ϕρ is convex in direction away from S`1,`2 . . . . . . . . . . . . . . . . . . 48

3.5 Geometry of ϕρ over the span S{`1,`2,`3} of three shifts of a0. The subspace S{`1,`2,`3} is three-

dimensional; its intersection with the sphere Sp−1 is isomorphic to a two-dimensional sphere.

On this set, ϕρ has local minimizers near each of the s`i [a0], and are the only minimizers near

S`1,`2,`3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Geometry of ϕρ over the union of subspaces Σ4θp0 . Left: schematic representation of the

union of subspaces Σ4θp0 . For each set τ of at most 4θp0 shifts, we have a subspace Sτ . Right:

ϕρ has good geometry near this union of subspaces. . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Data-driven initialization: using a piece of the observed data y to generate an initial point

a(0) that is close to a superposition of shifts s`[a0] of the ground truth. Top: data y = a0 ∗ x0

is a superposition of shifts of the true kernel a0. Bottom: a length-p0 window contains pieces

of just a few shifts. Bottom middle: one step of the generalized power method approximately

fills in the missing pieces, yielding a near superposition of shifts of a0 (right). . . . . . . . . . 52

3.8 Growth of ϕρ away from Sτ . Because ϕρ grows away from Sτ , small-stepping descent meth-

ods stay near Sτ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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3.9 Local minimization and refinement. Left: data-driven initialization a(0) consisting of a near-

superposition of two shifts. Middle: minimizingϕρ produces a near shift ofa0. Right: rounded

solution â using the Lasso. â is very close to a shift of a0. . . . . . . . . . . . . . . . . . . . . 54

3.10 Gradient Sparsifies Correlations. Left: the soft thresholding operator Sλ[β] shrinks the

entries of β towards zero, making it sparser. Middle left: the negative gradient −∇ϕ`1 is

a superposition of shifts s`[a0], with coefficients χ`[β] ≈ Sλ[β]`. Because of this, gradient

descent sparsifies β. Middle right: β(a) before, and β(a+) after, one projected gradient step

a+ = PSp−1 [a− t · grad[ϕ`1 ](a)]. Notice that the small entries of β are shrunk towards zero.

Right: the gradient grad[ϕ`1 ](a) is large whenever it is easy to sparsify β; in particular, when

the largest entry β(0) � β(1) � 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Hessian Breaks Symmetry. Left: contribution of −si[a0]si[a0]∗ to the Euclidean hessian. If

|βi| � λ the Euclidean hessian exhibits a strong negative component in the si[a0] direction.

The Riemmanian hessian exhibits negative curvature in directions spanned by si[a0] with

corresponding |βi| � λ and positive curvature in directions spanned by si[a0] with |βi| �

λ. Middle: this creates negative curvature along the subspace Sτ and positive curvature

orthogonal to this subspace. Right: our analysis shows that there is always a direction of

negative curvature when β(1) >
4
5β(0); conversely when β(1) � λ there is positive curvature
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Chapter 1

Introduction

1.1 Signals and data of short-and-sparse convolution model

Many signals and datasets in a wide range of areas, from natural science such as biomedical and astronomy

[Lew98, Sah07], engineering science like microscopy and sound engineering [SCI75, Can76, CLC+17], to

modern data in information era coming from time-series and natural images [Don81, WT14, CVR14], can

be effectively modeled as superpositions of multiple translated copies of a basic pattern. Signals and data

of this nature are mathematically described as the convolution of two components; where one component

represents the repeating pattern whose size or length is comparably smaller than that of the signal, and the

other component is regarded as the sparsely populated activation map which often stands for timestamp

or location in the temporal or spatial axis. These type of signals and data are being addressed to be under

short-and-sparse (SaS) convolutional model, and applications associated with information finding from these

instances often can be effectively characterized as to identify either one or sometimes both of the convolving

components.

In neural science, neuron produces a short pulse of action potential when excited, which is often referred

to as the spikes, since the pulse often exhibits a characteristic rise and decay in potential, whereas these

electronic spikes or its associated emission of chemical elements can be detected via electrodes or fluorescence

indicators [BCOC14, ODB+15]. Neurons communicate to each other via these spikes, with its messages

believed to be encoded by the firing rate and the temporal pattern [SKS+09]. In order to resolve these cellular

messages, scientists employs spike detection or spike sorting techniques for analysis of electronic signal

activated by one or more neurons in brain. Here, the spike detection refers to the process of finding the
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Figure 1.1: Signals and data under short-and-sparse convolutional model. In calcium imaging (top), the neuron fires
at different time, leading the calcium(II) ion bound indicator to emit short pulses of fluorescence signal. For natural
images (mid), the image is taken when the camera is shaken, causing a blurring artifact for the final image. And for
transmission electronic microscopy (bot), an image of NaFeCoAs is taken with the brighter part are Co defects. All of
these signals can be effectively modeled as convolution between short and sparse components.

frequency or temporal pattern by identifying the timestamps when the neuron is excited, while spike sorting

is a methodology to sort out different neurons base on the variety of spikes shape recorded by the electrode.

Since the spike patterns of each neurons are unique and reproducible overtime [Lew98], the detected signal

follows short-and-sparse convolutional model, and the spike detection and sorting problem can be effectively

cast as to deconvolve both of the convolving components.

In microscopic imaging of material and biomedical science, researchers are interested in visualizing

microscale to nanoscale structure from crystalline solids such as semiconductors and superconductors, to the

cellar structure of biological sample including proteins and viruses [BJT+07, Rei13]. The superconductivity

and semiconductivity of metal, metalloid, alloy and compound materials can be determined by its repeating

impurities or doping patterns in the lattice structure [ZZW13, VJJW+16, CSL+20], whose structure is usually

investigated via studying its transmission electron microscopic (TEM) images [HHMN13]; similarly for many

biological specimens formed by repeating pattern of molecules or cells, single-particle analysis is performed

to enhance the resolution of these patterns under TEM imaging [LBC99, SNRS+08]. In these problems the

microscopic image can also be regarded as the convolution between the repeating pattern and its occurrence

location, so its pattern recognition problem is de facto a deconvolution problem.

Another common example is deblurring or super-resolution problem in image processing. Image de-

blurring is a process to remove the blurring artifact of an image taken with moving, defocused camera or
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other similar phenomenons [HNO06], which has become a a basic but increasingly important application

due to proliferation of digital camera and amateur photograpy. The blurring process can be regarded as the

convolution between a blurring kernel and the original image, which in cases of natural image scenes are

often assumed to have only a few of sharp edges. To identify the blurring kernel and thus to subsequently

recover the image, people exploit this particular phenomenon of sharp edges by deblurring via the use of

the gradient images, which is known to be sparse [BT09]. As such, the gradient of the blurred image is

the convolution of blurring kernel and the original sparse gradient image, and the blurring kernel can be

identified via deconvolution methods, which can used to produce the high-resolution image.

In Figure 1.1 we illustrates several concrete examples for short-and-sparse convolution model in practice.

The first row shows an instance of luminous intensity of the calcium(II) ion bound indicator from the firing

of a single neuron captured by a fluorescence microscope, which is effectively the convolution between the

neuron firing pulse and its specific temporal pattern. In the second row, we show a blurred image capture by

a shaking camera, virtually an outcome of convolution between the blurring kernel and the original sharp

image. At last we demonstrate a TEMmicroscopic image of a superconductor NaFeCoAs with Co defects

which exhibits repeating dumbbell pattern in the lattice. These surveyed examples can all be characterized as

the convolution between a short (or small) pattern with a sparse activation map signal; and more importantly,

deconvolution of these two convolving components more than often plays an essential role in their relating

applications respectively.

In this introduction, we well first mathematically define the short and sparse convolutional model in

Section 1.2, and base on the proposed signal model, discuss about some related application classes base

on SaS signals in Section 1.3. Then in Section 1.4.1 and Section 1.4.2 we will present two examples for such

applications, which will be elucidated in details in later chapters. Finally in Section 1.5 we will briefly

highlight the major contributions of this thesis.

1.2 Mathematical formulation of short-and-sparse convolution

In continuum, a one-dimensional integrable signal y has intensity at t where t ∈ R depending whether

these integrable patterns a0 are activating at t. When the intensity is linear superpositions of the translated

patterns base on an activation map x0 =
∑k
i=1 αiδti

1 as finite sum of Dirac measures, the intensity y(t) is

1The Dirac measure δ satisfies
∫
y(t)δti (dt) = y(ti) for continuous and compactly supported y and has total variation

∫
|δti | (dt) =

1, so y ∗ δt represents y with center at t.
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obtained as

y(t) = (a0 ∗ x0)(t) + n(t) =

∫ ∞
−∞

a0(t− s) x0(ds) + n(t)

=

k∑
i=1

αia0(t− ti) + n(t). (1.1)

where (∗) is known as the convolution operator, and additive noise n(t) model subject to different signal

assumptions. Similarly, in two dimension, the intensity Y (x, y) can be calculated via

Y (x, y) = (A0 ∗X0)(x, y) + n(x, y) =

∫ ∞
−∞

∫ ∞
−∞

A0(x− x′, y − y′)X0(dx′, dy′) + n(x, y)

=

k∑
i=1

αiA0(x− xi, y − yi) + n(x, y) (1.2)

When a sampled or discretized data is considered, assuming the activation map is a sparse vector x0 =∑k
i=1 αieti , similarly we get

yt = (a0 ∗ x0)t + nt =

∞∑
j=−∞

a0t−jx0j + nt =

k∑
i=1

αia0t−ti + nt. (1.3)

The general objective of the short-and-sparse deconvolution (SaSD) problem can be realized as to resolve

key properties of either or both of a0 and x0 given the signal y with some prior knowledges of a0, x0 and the

noise model. Without any priors of either of the convolving component, even under noiseless and discrete

cases, and knowing the a0 and x0 are short and sparse, the SaSD problem will be ill-posed. To be more

specific, it is known that the "pattern" of solutions for (1.3) is non-unique [CVR14], and moreover in many

cases the existence of solutions cannot be verified [BB98].

Fortunately in many applications, an educated guess or assumption on properties of either a0 or x0 could

often be assured, thereby in general the SaSD problems come with various type of constraints inspired by

prior knowledges on various associated problems. In the spike detection/sorting problem and single-particle

analysis in neuroscience and biology, the pattern of the short a0 can be reasonably assumed. The electronic

signal shape of excited neurons spikes can often characterized by a sharp depolarization (rise), repolarization

(decay), and refractory (recovery) phase [PAF+04] with various possible increase/decrease rates in each

phases for different spike types [AG77], which provides a good assumption on modeling of the short pattern

a0. For certain case in single-particle analysis, the shape of the target specimen can be reasonably estimated

and used for the initial condition for the analysis algorithms [Jen10]. Also in image deblurring scenarios, it is

known that the aperture defocus problem is well related to the imaging physics, thereby adequate modeling
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of blurring kernel can be applied to the deconvolution problems [ZN09].

1.3 Classifications of Short-and-Sparse Deconvolution problems

Depending on its associated applications, the SaSD problems can be classified into three categories base on

the prior informations for the given signals:

Deconvolution with known short pattern. When the short pattern a0 in SaSD problem is known, it is

effectively reduced to a sparse deconvolution problem, which can be regarded as a subproblem of sparse

linear regression [BDE09] since the operation of convolution with a known a0 is linear. In the noiseless

scenario, given y = a0 ∗ x0 with x0 to be the only component being unknown, when a0 is an all-pass filter,

then x0 can be retrieved via simply inverse the linear operation.

From convolution theory, the condition number of the linear operator (a0 ∗ · ) is related to the Fourier

spectrum of the kernel a0. In many real-world applications where a0 resembles a bell-shape function with

slow rise and decay, which is a common response of physical systems or shape of particles appears in many

detection problems. It’s Fourier transform is close to the bell shape, meaning that a0 is low-pass, therefore in

practice, direct linear inversion via a0 from given y will be highly sensitive to noise.

A common way to address the loss of information through low-pass filter in practical applications is

to exploit the a priori knowledge of the target signal x0 we try to recover, in which a vast body of works

has devoted to find various signal conditions sufficient conditions for the signal given cut-off frequency

of a0 to be appropriately small. Characteristic examples includes when x0 is known to be consist of shift-

invariant components, then we can reasonably expect the signal recovery is achievable if x0 is appropriately

preprocessed [EP10]; also when x0 is spatially sparse and sufficiently separated, this signal can then be

efficiently recovered via `1-minimization techniques [CFG14a].

The SaSD problem when a0 is known with sparse x0 can also being view through lens in sparse recovery

perspective. If a0 is randomly generated as entrywise i.i.d. Gaussian variables, then the convolution is

invertible as long as x0 is sufficiently sparse [KMR14].

Deconvolution with partial knowledge of the short pattern As we noted, in common practices SaSD

often arise from are the signal recovery problem with unknown linear system response and the detection

problem of a structured signal. In these scenarios, an educated guess can usually be made base on either

the understanding of the physical properties from the linear system, or the signature characteristic of the
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structured signal. Such a priori knowledge of the short pattern a0 is mathematically modeled for which

recovery of a0 and x0 are utilized.

Perhaps the most common approach to incorporate the prior knowledge of the short pattern a0 into the

SaSD problem is the parametric model in which the generating a0 lies within a set of function which can

be characterized by a few parameters, which can be regarded classical in image deblurring, where a0 is

modeled base on the physical properties of imaging devices [CE17]. This approach is especially popular on

areas of scientific imaging, such as telescopic imaging [GSM06, DMWD08], microscopic imaging [PZBF+07],

and medical imaging [MIPAV: https://mipav.cit.nih.gov/]. Common blurring kernel in these cases, for

instance, can be characterized into linear motion blur (a0(x) = x
2L , x ∈ [−L,L]); Gaussian or exponential

blur (a0(x) = Ke−
|x|
s ), and many other more complicated blur models depending on the system properties.

In the area of signal detection, the parametric method is likewise popular in spike sorting problems

[LS00, Lew98, FZP17], in which the shape neuron spikes is estimated by various parametric model such as

Gaussian interpolation or autoregressive model depending on the signal sampling modality of the neurons.

Deconvolution with unknown short pattern Without prior knowledge of the short pattern a0, the blind

deconvolution becomes a subclass of bilinear inverse problem, which is known to be a problem without

unique solution in general. An apparent example to the non-uniqueness is the scaling ambiguity, where given

y = a0 ∗x0, then the convolution of another signal pair ( 1
αa0) ∗ (αx0) also generates y. To make the problem

more complex, even if we disregard the simple scaling ambiguity, without further constraining either of the

convoluting components a0 and x0 the problem is unsolvable, a good example can be found in [CM14].

As such, there are various way to constraint both a0 and x0 to which an efficient algorithm from deconvo-

lution can be applied. Recently the popular topic for SaSD problem is to regard the short a0 to be reside in a

lower dimensional random subspace and x0 to be sparse [ARR14, KK17], which can be readily recovered via

`1-minimization technique. The randomness of a0 ensures the deconvolution problem to have no further

unidentifiably problem beyond scaling ambiguity hence exists algorithms to exactly solve SaSD, which has

applications in communication where the subspace of a0 can be designed.

For SaSD in more general scenarios, however, such randomness assumption for the short signal is often

too restrictive, hence a more general condition is preferred. In this thesis we will devote a section to discuss

this problem, we will show when a0 is sufficiently non-smooth and x0 is sufficiently sparse, then SaSD can

be solved with efficient algorithm.
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1.4 Selected Topics Short-and-Sparse Deconvolution Problems

In this thesis we will focus on two problems of short and sparse deconvolution the author encountered when

interacting with collaborators in different areas:

1.4.1 Scanning electrochemical microscopy with line probe

Scanning probe microscopy is a popular mean in nanotechnology for imaging the nanoscale phenomenon

in fields of chemical, biological or material science when the the image resolution is required well beyond

diffraction limit of traditional optical microscope. The conventional electrochemical microscope scans the

subject with a point probe, and the image is scanned by adopting a point-by-point samplingmethod, measures

the electrochemical reaction locally in each measurement. This can be tremendously time consuming

especially when high-resolution imaging.

In many application, as aforementioned, the subject species is often well structured; in particular, we

consider the case when the subject is consist of repeating small electrochemical reactive profileA at sparse

locations with mapX0. This special structure makes a more efficient scanning method beyond point probe

possible.

Instead of the point probe, we study a novel non-localized probe, whose contacting surface between

the probe and the subject is a straight line. We address it as the line probe. The overall scanning procedure

can be described as follows: We first select a scanning angle θ, orient the body of the probe along the

direction (cos θ, sin θ), and then sweeps the probe in the orthogonal direction (sin θ,− cos θ). At each position

t(sin s,− cos s) along this sweeping direction, the probe produces a single measurement, which is generated

along the enter length of the active sensing element of the line probe. This procedure is repeated many times

with each time a different scanning angle is chosen, generates a couple of “line scans” instead of an image

with conventional point probe.

Our study asks if scanning with line probe can effectively reconstruct Y = A ∗X0 with much fewer

measurements versus the point probe, which effectively, is a sparse deconvolution problem with incomplete

observation of Y .

1.4.2 Deconvolution of both short-and-sparse

In practice, the actual motifA of sparse convoluting signal is commonly unknown, inwhich the deconvolution

problem is often cast as identifying both A and X0 solely with Y . We address it as the short-and-sparse
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deconvolution. Themain difficulty for deconvoluting short-and-sparse signal, is that there aremultiple possible

solution to the problem. Generally speaking, lacking of unique solution in an inverse problem inevitably

makes the task highly convoluted, and even sometimes notoriously hard for designing efficient algorithm, let

alone developing analytical understanding to the problem.

One good thing in short-and-sparse deconvolution, is that these multiple solutions can be completely

characterized in two types: the scaling ambiguity and shift ambiguity:

• Scaling ambiguity: Let α > 0, then the convolution of the reversely scaled pairs (αA, 1
αX0) generates

the same observation, since (αA) ∗
(

1
αX0

)
= A ∗X0.

• Shift ambiguity: Let τ be integers, then the convolution of reversely shifted pairs (sτ [A], s−τ [X0]) also

generates the same observation, by seeing (sτ [A]) ∗ (s−τ [X0]) = A ∗ eτ ∗ e−τ ∗X0 = A ∗X0.

The existence of multiple discrete and separated solutions, implies when solving short-and-sparse deconvo-

lution by means of optimization, the problem will inherently become highly non-convex. This non-convex

objective landscape can be hard to fathom, reflecting the complexity of solving the inverse problem with

multiple solutions. Nevertheless, by understanding the structure of the solutions (i.e the scaled/shifted

copies of (A,X0)), one can possibly grasp the geometric structure in the associated optimization problem,

and even to design a more stable and efficient algorithm toward solving short-and-sparse deconvolution.

1.5 Contribution of this thesis

The thesis is mostly contributing to corroborate our theoretical understanding toward the two aforementioned

problems. In particular, our main result can be summarized as follows:

In the scanning line probe microscopy, we show:

• When the profileA is infinitesimally small and well separated, merely three sweep of line scans are

suffice to reconstruct Y = A ∗X0.

• WhenA is distributed uniformly and both number and radius ofA is sufficiently (not trivially) small,

finite number of line scan sweeps is an injective measurement restricted on the sparse location ofX0.

In the short-and-sparse deconvolution, we show:
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• WhenA is shift-incoherent orX0 is sufficiently sparse, then there exists an efficient method guarantees

solving Y = A ∗X0 up to scaled-shift ambiguity when bothA0 andX0 are unknown.

• We provide a geometric analysis of the objective landscape when solving short-and-sparse deconvolu-

tion via optimization method. This understanding of geometry helps us designing a more efficient

algorithm in practice.

1.6 Outline

The rest of the thesis is organized as follows. In Chapter 2 wewill introduce the scanning line probe procedure

in mathematical terms, and provide some primitive theoretical result on how sparse deconvolution problem

interact with line scans. In Chapter 3 we present the short-and-sparse deconvolution problem, in which

we provide the theory and an efficient algorithm, exactly solving both (A,X0) when unknown. In the last

section Chapter 4, we summarize future works for each of these projects, as well as related open problem of

interest.
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Chapter 2

Compressed Sensing Microscopy with

Scanning Line Probe

In this chapter we study the compressed sensing microscopy with scanning line probe. In applications of

scanning probe microscopy, images are acquired by raster scanning a point probe across a sample. Viewed

from the perspective of compressed sensing (CS), this pointwise sampling scheme is inefficient, especially

when the target image is structured. While replacing point measurements with delocalized, incoherent

measurements has the potential to yield order-of-magnitude improvements in scan time, implementing the

delocalized measurements of CS theory is challenging. In this paper we study a partially delocalized probe

construction, in which the point probe is replaced with a continuous line, creating a sensor which essentially

acquires line integrals of the target image. We show through simulations, rudimentary theoretical analysis,

and experiments, that these line measurements can image sparse samples far more efficiently than traditional

point measurements, provided the local features in the sample are enough separated. Despite this promise,

practical reconstruction from line measurements poses additional difficulties: the measurements are partially

coherent, and real measurements exhibit nonidealities. We show how to overcome these limitations using

natural strategies (reweighting to cope with coherence, blind calibration for nonidealities), culminating in an

end-to-end demonstration.
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Figure 2.1: Scanning electrochemical microscope with continuous line probe [OKL+18]. Left: the lab made SECM
device with line probe, mounted on an automated probe arms with a rotating sample stage. Right: closeup side view of
the line probe near the sample surface.

2.1 Introduction

Scanning probe microscopy (SPM) is a fundamental technique for imaging interactions between a probe

and the sample of interest. Unlike traditional optical microscopy, the resolution achievable by SPM is

not constrained by the diffraction limit, making SPM especially advantageous for nanoscale, or atomic

level imaging, which has widespread applications in chemistry, biology and materials science [WR94].

Conventional implementations of SPM typically adopt a raster scanning strategy, which utilizes a probe with

small and sharp tip, to form a pixelated heatmap image via point-by-point measurements from interactions

between the probe tip and the surface. Despite their capability of nanoscale imaging, SPM with pointwise

measurement is inherently slow, especially when scanning a large area or producing high-resolution images.

When the target signal is highly structured, compressed sensing (CS) [D+06, CW08, FR17] suggests it is

possible to design a data acquisition scheme in which the number of measurements is largely dependent

on the signal complexity, instead of the signal size, from which the signal can be efficiently reconstructed

algorithmically. In nanoscalemicroscopy, images are often spatially sparse and structured. CS theory suggests

for such signals, localized measurements such as pointwise samples are inefficient. In contrast, delocalized,

spatially spread measurements are better suited for reconstructing a sparse image.

Unfortunately, the dense (delocalized) sensing schemes suggested by CS theory (and used in other

applications, e.g., [LDSP08, SBC+12, VRR11]) are challenging to implement in the settings ofmicro/nanoscale

imaging. Motivated by these concerns, [OKL+18] introduced a new type of semilocalized probe, known as a

line probe, which integrates the signal intensity along a straight line, and studied it in the context of a particular

microscopy modality known as scanning electrochemical microscopy (SECM) [BFLZ80, BFP+91]. In SECM

with line probe, the working end of the probe constitutes a straight line, produces a single measurement by

11




θ1
θ2
...
θm


input
scan

angles

scan
m lines

sample

line
probe

scan
path

rotate
θ2−θ1

rotate
θ3−θ2

· · ·

line
scans

...

input
angles,
lines,
basis

sample
image

sparse
recon-

struction

Microscopic Line Scans Computational Image Reconstruction

Figure 2.2: Scanning procedure of SECM with continuous line electrode probe. The user begins with mounting the
sample on a rotational stage of microscope and choosesm scanning angles. The microscope then carries on sweeping the
line probe across the sample, andmeasures the accumulated current generated between the interreaction of probe and the
sample at equispaced intervals of moving distance. After a sweep ends, the sample is rotated to another scanning angle
and the scanning sweep procedure repeats, until allm line scans are finished. Collecting all scan lines, and providing the
information of the scanning angles, the microscope system parameters (such as the point spread function) and the sparse
representing basis of image, the final sample image is produced via computation with sparse reconstruction algorithm.

collecting accumulated redox reaction current induced by the probe and sample. These line measurements

are semilocalized, sample a spatially sparse image more efficiently than measurements from point probes,

and “has an edge” on high resolution imaging since a thin and sharp line probe can be manufactured with

ease. Moreover, experiments in [OKL+18] suggest that a combination of line probes and compressed sensing

reconstruction could potentially yield order-of-magnitude reductions in imaging time for sparse samples.

Realizing the promise of line probes (both in SECM and in microscopy in general) demands a more careful

study of the mathematical and algorithmic problems of image reconstruction from line scans. Because these

measurements are structured, they deviate significantly from conventional CS theory, and basic questions

such as the number of line scans required for accurate reconstruction are currently unanswered. Moreover,

practical reconstruction from line scans requires modifications to accommodate nonidealities in the sensing

system. In this paper, we will address both of these questions through rudimentary analysis and experiments,

showing that if the local features are either small or separated, then stable image reconstruction from line

scans is attainable.

In the following, we will first describe the scanning procedure and introduce the line scan model under

mathematical context in Section 2.2. Later, Section 2.4 presents several important properties of line scans as a

measurement model, including a rudimentary study of compressed sensing with line scans over spatially

sparse image. Lastly Section 2.5, Section 2.6 are the algorithm and experiment sections, in which we elaborate

the algorithm for image reconstruction from line scans, and the result on both the simulated and the actual

SECM examples.
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2.1.1 Contribution

• We expose the lowpass property of line scans, and with rudimentary analysis showing that the exact

reconstruction of a sparse image is possible with only three line scans provided these features are

well-separated.

• We show the difficulty of image reconstruction from line scan in practice, due to the high coherence

of measured signal and inaccurate estimate of point-spread-function. Our reconstruction algorithm

addresses above issues.

• Finally, we display the complete algorithm for image reconstruction of SECM with line scans, which in-

cludes an efficient algorithm for computation of line scans, showing our improvement of reconstruction

result compares to [OKL+18].

2.1.2 Related work

2.1.2.1 Compressed sensing tomography

Line measurements also arise in computational tomography (CT) imaging, a classical imaging modality which

has long history and strong precedent in literature [Hou73, Kak79, Her09], with great variety of applications

ranging from medical imaging to material science [WV+87, Fra92, DLB+05]. Classical CT reconstruction

recovers an image fromdensely sampled line scans, by approximately solving an inverse problem [NDMD+98,

SL74]. These methods do not incorporate the prior knowledge of the structure of the target image, and

degrade sharply when only a few CT scans are available. Compressed sensing offers an attractive means

of reducing the number of measurements needed for accurate CT image reconstruction, and has been

employed in applications ranging from medical imaging to (cryogenic) electron transmission microscopy

[CTL08, Mal13, GBVdB+12, SHL+11, LSMH13, DNT+17, BDD+12, NdLPL+13]. The dominant approach

assumes that the target image is sparse in a Fourier or wavelet basis, and reconstructs it via `1 minimization

or related techniques. Images in SECM and related modalities typically exhibit much stronger structure: they

often consist some number of small particles [DZC+10, BLK15], or other repeated motifs [CSL+18]. In this

situation, CS is especially promising. On the other hand, as we will see below, understanding the interaction

between line scans and spatially localized features demands that we move beyond conventional CS theory.
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2.1.2.2 Mathematical theory of line scans: Radon transform and image super-resolution

The question of recoverability from line measurements is related to the theory of the Radon transform, which

corresponds to a limiting situation in which line scans at every angle are available [Rad05, Cor63, Nat01]. The

Radon transform is invertible, meaning perfect reconstruction is possible (albeit not stable) in this limiting

situation. Due to the projection slice theorem [Hel10], the line projections are inherently lowpass, and so the

line scan reconstruction problem is related to superresolution imaging [FREM04]. When the image of interest

consists of sparse point sources, the image can be stably recovered from its low-frequency components,

provided the point sources are sufficiently separated [CFG14b]. Similarly, we can hope to achieve stable

recovery of localized features from line scans as long as the features are sufficiently separated.

2.2 Line scans measurement model

To implement line scans for SECM, a line probe (Figure 2.1) is mounted on an automated armwhich positions

the probe onto the sample surface. The line scan signal is generated by placing this line probe in different

places, and measuring the integrated current induced by the interaction between the line probe and the

electroactive part of the sample. In a pragmatic scanning procedure (Figure 2.2), the user will choose distinct

scanning angles θ1, . . . , θm. For each angle θ, the line probe is oriented in direction uθ = (cos θ, sin θ) and

swept along the normal direction u⊥θ = (sin θ,− cos θ). Each sweep of probe generates the projection of the

target image along the probe direction uθ; collecting these projections for each θi, we obtain our complete set

of measurements.

2.2.1 Line projection

To describe the scanning procedure more precisely, we begin with a mathematical idealization, in which the

probe measures a line integral of the image. In this model, when the probe body is oriented in direction uθ

at position t, we observe the integral of the image over `θ,t := {w ∈ R2
∣∣ 〈u⊥θ , w〉 = t}:

Lθ[Y ](t) :=

∫
`θ,t

Y (w) dw

=

∫
s

Y
(
s · uθ + t · u⊥θ

)
ds. (2.1)
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`θ,t
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Y

Figure 2.3: Mathematical expression of a single measurement from the line probe. When the stage rotate by θ clock-
wise, the relative rotation of probe to sample is counterclockwise by θ. The grey line in the figure represents the rotated
line probe, orienting in direction uθ = (cos θ, sin θ), and is sweeping in direction u⊥θ = (sin θ,− cos θ). When it comes
across the pointwi where t = 〈u⊥θ , wi〉, it integrates over the contact region `θ,t between the probe and substate and
produces a measurementRθ(t).

Collecting these measurements for all t, we obtain a function Lθ[Y ] which is the projection of the image along

the direction uθ. We refer to the operation Lθ : L2(R2)→ L2(R) as a line projection. Combining projections in

m directions Θ = {θi}mi=1, we obtain an operator LΘ : L2(R2)→ L2(R× [m]):

LΘ[Y ] :=
1√
m

[Lθ1 [Y ], . . . ,Lθm [Y ] ] . (2.2)

2.2.2 Line scans

In reality, it is not possible to fabricate an infinitely sharp line probe, and hence our measurements do

not correspond to ideal line projections. The line probe has response in its normal direction, causing the

blurring effect that can be modeled as convolution with point spread functionψ along the sweeping direction.

In SECM, ψ is typically skewed with a long tail in the sweeping direction. Accounting for this effect is

important, if we wish to obtain accurate reconstructions in practice, thereby in this more realistic model, our

measurements R̃ ∈ L2(R× [m]) become

R̃ =
1√
m

[ψ ∗ Lθ1 [Y ] , . . . ,ψ ∗ Lθm [Y ]]

=: ψ ∗ LΘ [Y ] . (2.3)

This measurement consists ofm functions ψ ∗ Lθi [Y ] (t) of a single (real) variable t, which corresponds to

the translation of the probe in the u⊥θi direction. In practice, we do not measure this function at every t, but
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Figure 2.4: Side view schematic of SECM line probe [OKL+18]. Cross-sectional side-view of a CLP in contact with a
sample surface. The angle of the CLP with respect to the sample surface θCLP and thickness of the bottom insulating
layer of the probe tI determine the mean separation distance between the active sensing element and the sample surface
(dm).

rather collect n equispaced samples. Write the sampling operator as S : L2[R]→ Rn, then our discretized

measurements Ri with scanning angle θi is defined as Ri = S{R̃i}. Collect all m discrete line scans, the

final measurementR ∈ Rn×m is written as

R = [S{R̃1}, . . . ,S{R̃m}] =: S{R̃}. (2.4)

Our task is to understand when and how we can reconstruct the target image Y from these samples.

2.3 Setup of SECMmicroscope

2.3.1 Fabrication of Redox line probe

A CLP is composed of three layers: an insulating substrate, an electroactive layer, and a thin insulating

layer. As shown in Figure 2.4, the electroactive sensing element is sandwiched between the two insulating

layers. The thicker of the two insulating layers serves as the probe substrate, while the thinner insulating

layer serves as a spacer between the electroactive layer and the sample during imaging that sets the average

probe-substrate separation distance (dm). The thickness of the electroactive layer (tE), sets the imaging

resolution. The CLP also simultaneously senses features along the width of the probe. In contrast, an

ultramicroelectrode (UME), or "point-probe", typically consists of a metal wire that has been sealed in glass

and polished at the end to obtain an exposed disk-shaped sensing element that is surrounded by a glass ring.

16



The required to attain a quasi-steady state response is expected to decrease for nanoscale CLPs

CLPs were fabricated using a procedure similar to that described by Wehmeyer et al. for nanoband

electrodes [WDW85]. First, 50µm thick platinum foil was laminated to an insulating polycarbonate substrate

using a two-part 5min Araldite epoxy. In order to ensure a tight seal with minimal gaps between the platinum

and the polycarbonate substrate, a vice was used to apply pressure uniformly for several hours while the

epoxy cured. The top surface of the Pt foil was electrically insulated using Kapton tape (thickness ≈ 70µm).

The end of the CLP was polished using 1 µm alumina lapping paper (McMaster-Carr), followed by 0.3 and

0.05 µm alumina slurries. Electrodes were characterized with optical microscopy and cyclic voltammetry

employing the oxidation of 1mM K4[Fe(CN)6] as a redox probe.

2.3.2 Execution of a single CLP line scan

Before a line scan is carried out, the sample stage must be positioned such that (i) the center of the sample area

to be imaged is aligned with the midpoint of the CLP, (ii) the distance from the CLP midpoint to the center

of the imaging area is set to half of the desired scan length, and (iii) the sample has the proper rotational

orientation with respect to the X-scan direction such that the CLP scan will occur at the user-specified scan

angle θs. After lowering the CLP using the Z-positioner, the line scan measurement begins by initiating

potentiostatic control of the substrate and CLP potential, during which the CLP and substrate currents are

measured as a function of time. Current measured during these chronoamperometry (CA) measurements is

recorded after an initial hold time, typically 240s, which allows for dampening of transient signals from the

CLP and/or substrate before imaging starts. Next, the CA data for the CLP are recorded and saved to the PC

while the X-positioner is used to move the sample stage at the user specified step size and dwell time over

the user specified scan distance.

2.3.3 Sample repositioning between successive scans

Once a line scan finishes, the Z-positioner lifts the CLP off of the substrate and the sample stage must

be repositioned for the next scan to be measured at a new scan angle θs. Figures Figure 2.5 illustrate the

procedure used for repositioning the sample stage between scans. After the stage is rotated by the user-

specified angle θs with respect to the rotational center xr, yr, the stage then translates in the X − Y plane

with the probe position remaining fixed in the X − Y coordinate system. For every substrate position (x, y),

its newly translated position T (x, y) is calculated by assigning the location of the rotational center (xr, yr) of
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Figure 2.5: Schematic top views for rotation and translation scheme for CLP sample stage [DKS+19]. We illustrate
example contains 3 electroactive disks. The scanning area of the previous scan AN is shaded in green, while the axis
of rotation is located at (xr, yr) and marked with a dot (left). After the stage is rotated with respect to (xr, yr) by an
angle θs (mid), then translate of the sample stage using theX- and Y -motors to a new position corresponding to the start
location for the next scan (right). The new scan area, AN+1, for the next scan is shaded gray, while the black circle marks
the common area of analysis for both scan angles, which contains all of the electroactive objects of interest.

the stage and its rotational angle θs at the current scan, using the following equation:

T (x, y) =

cos θs − 1 sin θs

− sin θs cos θs − 1


xr
yr

+

xr
yr

 . (2.5)

The translation automatically relocates the substrate to the scanning area AN+1, which contains the identical

inscribed circle as that of initial areaA1. The translation scheme allows us to perform a sequence of CLP scans

without the need to position the stage rotational center right at the center of the substrate. This is important

since the center of the area to be imaged can be located far from the axis of rotation for the rotational stage.

Accurate translation of the stage between scans can be ensured as long as the (i) location of the rotation center

of the stage (xr, yr) relative to the bottom end of the probe is known and (ii) all the reactive species reside

within the inscribed circle of scanning area A1. A more detailed description of this positioning algorithm is

presented in Algorithm 1.

2.4 Promises and problems of line scans

The line projections Lθ measurements enjoy two major advantages as an imaging modality model: (i)

comparing to the pointwise measurements, the line projections are more delocalized, hence can be more

efficient while measuring a spatially sparse signal; and (ii) it is easier to build a sharp edge for the line probe
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Algorithm 1 CLP-SECM Automatic Scanning Procedure
Require: Probe lengthL, reactive part of sample lies within inscribed circle of scan area, scan angles θ1, . . . , θk
where θ1 = 0◦, and first center of rotation (xr, yr)

(1) as relative position to left end of probe plus
(
−L2 ,

L
2

)
,

for i = 1, . . . , k do
Scan the sample from

[(
−L2 ,

L
2

)
,
(
L
2 ,

L
2

)]
to
[(
−L2 ,−

L
2

) (
L
2 ,−

L
2

)]
;

if i = k then
break;

else
1. Move the stage to where the scan starts, such that probe position is at

[(
−L2 ,

L
2

)
,
(
L
2 ,

L
2

)]
;

2. Rotate the stage by angle θ∆ = −θi+1 + θi;
3. Move the stage by (x∆, y∆) where(

x∆

y∆

)
=

(
cos θ∆ − 1 sin θ∆

− sin θ∆ cos θ∆ − 1

)(
x

(i)
r

y
(i)
r

)
;

4. Get the new rotational center as (xr, yr)
(i+1) ← (xr, yr)

(i) + (x∆, y∆);
end if

end for

(even sharper then the diameter for tip of point probe), which is amenable to detect the ultra-high frequency

components in the probe sweeping direction. It makes possible fast and high resolution imaging for scanning

microscopes.

Nevertheless, the line projection comes with a few apparent disadvantages as a means for imaging.

Supposedly, if we uses infinitely many line projection at every angles in [0, 2π) as measurements, then

projection slice theorem suggests such measurement procedure is invertible, from which the image can always

be perfectly reconstructed. However, this imaging modality is not stable, since when viewing in Fourier

domain, the line projections are lowpass. This means even if a single line projection can be highly sensitive

to the directional high frequency components, the cumulative line projections is not. Thus, in order to stably

reconstruct an image consist of multiple localized features, it is required for the localized features in image to

be either sufficiently small or separated.

The other disadvantage of line projections can be viewed from the CS perspective, that the line measure-

ments are not incoherent to the sparse signal representing bases—even if the local features are well separated.

This means in practice, when using only a few line scans for reconstruction, the number of lines required for

exact reconstruction with line scans can not be reasoned via conventional CS theory. More importantly, the

coherence of line projections could become a cause for concern during algorithmic reconstruction; it leads

the reconstructed image to have incorrect magnitudes via conventional method.

Lastly, as with most of the imaging systems, deblurring from the effect of PSF ψ has always been an
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important and fundamental task for imaging algorithm. We will demonstrate some example for showing

difficulties on modeling PSF in SECM system with line probe. Later on in the next section, we provide an

algorithmic solution addressing both issues from the coherence of line projections and incomplete information

of PSF.

2.4.1 Compressed Sensing of line projections for highly localized image

Compressed sensing, in its simplest form, asserts that if the target signal has sparse representation, then only

a fewmeasurements that are incoherent to the representing basis would suffice for exact reconstruction. Since

in many cases of microscopic imaging the underlying signal is structured and spatially localized, CS theory

suggests the delocalized measurements, such as line projections, is more preferable than point measurements

for more efficient scanning speed.

Assimilating ideas from CS, we study the conditioning of the line projection LΘ when it is restricted to

an image with sparsely populated motifsD ∈ L2(R2). First, we demonstrate the following rudimentary

analysis, providing sufficient conditions for to be recovery of such images from line measurements via total

variation minimization [KKS17]:

Proposition 2.4.1. [Certificate of TV-norm minimization] LetX0 =
∑
w∈W αwδw

1 with |W| <∞. Given con-

tinuous compactly supported circular symmetricD ∈ L2(R2), scanning angles Θ = {θ1, . . . , θm} and measurement

R̃ = LΘ[D ∗X0]. Suppose there exists Q̃ as finite sum of weighed Diracs such that
D ∗ L∗Θ

[
Q̃
]
(w) = sign (αw) , w ∈ W∣∣∣D ∗ L∗Θ[Q̃](w)

∣∣∣ < 1, w 6∈ W.

(2.6)

If the Gram matrixG ∈ R|W|×|W|, defined as

Gij =
〈
LΘ[D ∗ δwi ], LΘ[D ∗ δwj ]

〉
, wi,wj ∈ W (2.7)

is positive definite, thenX0 is the unique optimal solution to

minX∈BV(R2)

∫
w
|X| (dw) s.t. R̃ = LΘ[D ∗X]. (2.8)

Proof. See Appendix A.1.1.

1The Dirac measure δ satisfies
∫
D(w)δwi (dw) = D(wi) for continuous and compactly supported D and has total variation∫

|δwi | (dw) = 1, so D ∗ δw represents D with center at w [Rud06]. As a functional, we write 〈δwi , ·〉 : L2(R2) → R where
〈δwi ,D〉 =D(wi).
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Figure 2.6: Proof sketch for sufficiency of image recovery from three line projections. Given a sample with separated
tiny discsw1, . . .wk (black dots), randomly choosing three lines projection forms lines R̃1, R̃2, R̃3, in which all the discs
after line projection (red dots) are well-separated. From each of these lines, we construct the dual Q̃ as center of red dots,
and a back projection image form the dual (dash lines), forming the set ∪kj=1`θi,tj . Intersection of three such line sets is
exactly the set of ground truth disc centers.

Specifically, when the signal image is highly spatially sparse and its components are well separated,

the line projections can be a very efficient measurement model. A concrete example is demonstrated in

Theorem 2.4.2, where we assume the sparse component of the image signal are small and separated discs; if

the radius of the discs are sufficiently small, then, perhaps surprisingly, only three line projections is required

to exactly reconstruct the image via efficient algorithm.

Lemma 2.4.2. [Reconstruction from three line projection] Consider an image consists of k ≥ 2 discs radius r. If

the centersw1, . . .wk are at least separated by 2
C k

2r, then three continuous line projections with probe direction chosen

independent uniformly at random suffice to recover the image with probability at least 1− C via solving (2.8).

Proof. See Appendix A.1.4.

The proof idea can be depicted pictorially in Figure 2.6, in which we show the construction of dual

certificate Q̃, and the back projection operation L∗Θ on Q̃ which we used in the proof to certify the optimality.

In fact, as we will show later, the operation L∗Θ is the cornerstone for most of the reconstruction algorithms in

computed tomography, as well as in our sparse reconstruction algorithm.

2.4.2 Reconstructability from line projections of localized image in practice

While the microscopic images are often sparse in spatial domain, they rarely satisfy the conditions of

Theorem 2.4.2, in which the local features are uncharacteristically small and far apart. In the following, we
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will show in practical application of line scans, when the image consists of multiple localized motifs, the

performance of line measurements degrades once the ratio between the size of motifs and its separating

distance increases.

2.4.2.1 Coherence of line projection of two localized motif

We start from a simple case considering an image with two motifs located at different locations. Define a

2× 2 GrammatrixGwith its ij-th entries being coherence [DET06] between line projected signal of two motifs

D with center at wi and wj respectively,

Gij =
〈
LΘ[D ∗ δwi ], LΘ[D ∗ δwj ]

〉
. (2.9)

If the off-diagonal entryGij is small in magnitude compared to the diagonal entriesGii,Gjj , then it suffices

to reconstruct the image exactly with efficient algorithm. Conversely, ifG is ill-conditioned or even rank-

deficient, then exact recovery will be impossible.

Lemma 2.4.3. [Coherence of line projection Gaussians] LetD be the two-dimensional Gaussian functions with

covariance rI2 and normalized in a sense that ‖L0[D]‖L2 = 1. If θ is uniformly random, then the expectation of inner

product between two line projectedD at different locations wi,wj is bounded by(
1− d2

8r2

)
1{d≤2r} +

r

2d
1{d>2r} ≤ Eθ

〈
Lθ[D ∗ δwi ], Lθ[D ∗ δwj ]

〉
≤ 1√

1 + d2/4r2
. (2.10)

where d = ‖wi −wj‖2.

Proof. See Appendix A.1.3.

Theorem 2.4.3 shows the coherence between line projections of two bell-shaped motif with radius ≈r and

center distance d is dominated by the distance-to-diameter ratio d/2r. Because of the projection slice theorem,

the matrix EθG is always positive definitive. However, its condition number greatly increases when the

image consists of highly overlapping local features. When the ratio is small, say d/2r < 1, in which the two

projected motifs are overlapping, then EθGij will be close to one as with the diagonals, implies EθG become

severely ill-conditioned even in the two-sparse case. Generally speaking, line scans are not CS-theoretical

optimal sampling method for sparse recovery for image of superposing discs.
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Figure 2.7: Least eigenvalue of G̃ with Gaussian motifs on hexagonal lattice. We show an example image of local
features which are placed on the lattice locations (left), and calculate the least eigenvalue with varying number of
motifs and distance-to-diameter ratio (right). When the motifs are highly overlapping d/2r = 0.5, then G̃ is almost
rank-deficient; when d/2r ≥ 1, then G̃ is stably full rank regardless of number of motifs. The result remains almost
identical when the lattice is of other form such as rectangular grid, we therefore consider the distance-to-diameter ratio
is the determining factor for injectivity of line projections even in more general settings.

2.4.2.2 Injectivity of line projection of multiple motifs with minimum separation

To extend the study of the coherence of matrixG to samples that contain k > 2 motifsD. We first investigate

a model configuration whose motif centers are allocated on a hexagonal lattice with edges of length d. It

turns out that the smallest eigenvalue of an approximationGwith respect to the locations {w1, . . . ,wk} is

largely determined by the distance-to-diameter ratio d/2r, and depends only weakly on the total number of

motifs.

In Figure 2.7, we calculate an approximation of EθGwith G̃, where

G̃ij = (1 + ‖wi −wj‖22 /4r
2)−1/2 (2.11)

is obtained from the upper bound in Theorem 2.4.3 with motifs being the Gaussian function of deviation r

placed on hexagonal lattice. We show thatwhen thesemotifs are highly overlappingwith distance-to-diameter

ratio d/2r = 0.5, the least eigenvalue of G̃ is very close to zero and the matrix is nearly rank-deficient; when

the motifs are separated, say d/2r ≥ 1, the least eigenvalue of G̃ is steadily larger then zero and approaches

one as the ratio d/2r increases. Interestingly, in our experiments the least eigenvalue does not depend strongly

on the number of motifs, suggesting that the distance-to-diameter ratio is the dominant factor for injectivity
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of line projections on motifs with hexagonal placement2. Since the hexagonal configuration is the densest

circle packing on a plane [Tót14], we suspect that λmin(EθG) is also determined by the ratio d/2r for every

configurations satisfying the minimum separation property.

This conjecture gains more ground when viewing this problem from the point source super-resolution

perspective [CFG14b]. It is known that an image consisting of point measures x =
∑
i αiδwi can be stably

recovered from its low frequency information (with frequency cutoff fc) whenever the point sources have

minimum separation d > C/fc for some constant C, regardless of the number of such point measures in x.

In our scenario, we will show that the expected line projection EθL∗θLθ is also a low-pass filter; and since

the local features D is also often consists of low frequency components, our line projections LΘ[D ∗X]

can be modeled as the low-pass measurements from sparse mapX , implying stable and efficient sparse

reconstruction is possible as long asX is enough separated under infinitely many line measurements of all

angles.

Lemma 2.4.4. [Lowpass property of line projections] SupposeD is two-dimensional Gaussian of covariance r2I

with ‖L0[D]‖L2 = 1 andX is finite summation of Dirac measure. If θ is uniformly random, then EθD ∗L∗θLθ[D ∗X]

is a low-pass filter K onX with cut-off frequency fc satisfies

fc =
1

r
·min

{
2r2ε−1,

√
|log (8r2ε−1)|+ 0.2

}
(2.12)

in a sense that max‖ξ‖2≥fc |F2 {K} (ξ)| ≤ ε.

Proof. See Appendix A.1.4.

Remark 2.4.5. When radius of motif is sufficiently large, then the cut-off frequency fc is dominated by the cut-off

frequency of motif, roughly C/r, and is sufficient to recover its locations as long as the separation d satisfies d > C ′r

(reflects the observation of Figure 2.7). In cases with small (pointy)D, the cut-off frequency is mainly determined by the

low-pass property of line projection, which requires minimum separation d > Cε/r for exact reconstruction.

Finally, base on [CFG14b], when the separation condition is ensured, the image of separated discs can be

recovered from infinitely many line projections via total variation minimization (or `1 whenX0 on discrete

grid), regardless of number of discs.

2The result of λmin(G̃) remains almost identical with other dense motif allocation on lattice such as rectangular grid.
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Figure 2.8: The point spread function of line probe. The PSF of line probe is skewed in the probe sweeping direction.
We show an estimated PSF with close form used for reconstruction (left); and the software (LabVIEW) simulated PSF
whose shape and intensity changes as the contacting angle varies (right).

2.4.3 Obstacles of image reconstruction from line scans

Besides the apparent nonideality of coherence of line scan measurements which is not CS theoretical optimal,

this specific sampling method and its corresponding hardware limitations causes other practical nuisances

during image reconstruction.

High coherence of line scans To show the coherence is a cause for concern, we rewrite the linear operator

LΘ[D ∗ · ] asA, and consider the nonnegative Lasso

min
X≥0

λ ‖X‖1 +
1

2
‖A[X]−R‖22 (2.13)

using the observed signal R = A[X0] and linear, column normalized and coherent sampling method A.

Denote Ω as the support set of solution of (2.13), writeAΩ as the submatrix ofA restricted on columns of

support Ω, the unique solutionX of program (2.13) (provided ifAΩ is injective) can be written as
Xij =

[
X0ij − λ(A∗ΩAΩ)−11

]
+

wij ∈ Ω

Xij = 0 wij 6∈ Ω.

(2.14)

WhenA is coherent, columns ofA have large inner product, implies many entries of the matrixA∗ΩAΩ have

large, positive off-diagonal entries close to its diagonals. When the sparse penalty λ is large in (2.13), its

solution will have incorrect relative magnitudes sinceA∗ΩAΩ is not close to identity matrix as conventional CS

measurements [CT05]. When λ is small, the solution of programwill be highly sensitive to noise, occasionally
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= ∗

Y = D ∗ X0

Figure 2.9: Signal model of superposing electroactive species at different location. Left: An optical microscope view of a
disc Right: the heatmap image of the substate Y is convolution between electroactive speciesD and its activation map
X0.

lead to incorrect results.

Incomplete information of PSF of line scans Another layer of complexity for line probe scans is the

difficulty to correctly identify its PSF due to hardware limitations, especially when operating line scans in

nanoscale. For instance in Figure 2.8, we show if the contacting angle between the probe and the sample

varies, the corresponding PSF changes drastically in both the peak magnitude and the shape. It turns out that

even with seemingly small changes of probe condition, the corresponding PSF can be inevitably variated.

2.5 Reconstruction from line scans

In this section, we will introduced the algorithm for SECM image reconstruction with line scans. In all

following experiments, we consider a representative class of images Y characterized by superposing reactive

speciesD at locationsW =
{
w1, . . . ,w|W|

}
⊂ R2 with intensities

{
α1, . . . , α|W|

}
⊂ R+. Define the activation

mapX0 as sum of Dirac measure atW , then Y can simply be written as convolution betweenD andX0:

Y = D ∗X0 =

|W|∑
j=1

αjD ∗ δwj . (2.15)

The imaging reconstruction problem then can be cast as finding the best fitting sparse map X̂ from line

scansR = S{Ψ ∗ LΘ[Y ]}, and the reconstructed image is simplyD ∗ X̂ . Since all associated operations on

X0 (convolution withD,ψ and line projection LΘ) are all linear, this becomes a sparse estimation problem,

which can be solved via the Lasso. In practice, due the resolution limit of probe and the sampling operation

S , we do not aiming to find exactX in a continuous space. Instead, we will solve the discretized version of
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this sparse recovery problem, which assumeX resides on a grid. As such, the associated Lasso problem can

be written as:

min
X≥0

λ
∑
ij

Xij +
1

2
‖R− S{Ψ ∗ LΘ[D ∗X]}‖22 . (2.16)

2.5.1 Sparse recovery with Lasso from line projections

In light of Section 2.4.2, the measurement performance using infinitely many line scans is almost dependent

only on the distance-to-diameter ratio of the local features. Since in practice, only finite number line scan

is available, we want to study how many line scans will be sufficient for efficient and exact sparse image

reconstruction. We do this by studying the performance of algorithm (2.16) while assuming the line scan are

idealized where the PSF is ideally all-pass in the sense that ψ = δ.

Figure 2.10 shows the reconstruction performance from line scans with varying number of lines used and

number of discs in the target image Y . Each image Y is generated by randomly populating the discs of size

r while satisfying d/2r ≥ 1 via rejection sampling, and the scan angles are also uniformly random chosen.

Here, two experiment settings are presented. The first is assumed that the imaging area of line scan is fixed

(so the density increases linearly with more discs) and the second is considering the cases where the density

is a constant (so the imaging area is proportional to the disc amount). In the phase transition (PT) image

(Figure 2.10, left), each pixel represents the average of 50 experiments; and in each experiment, given random

image Y and its line scans of randomly chosen angles, if solving (2.16) correctly identify the support map of

Y , then the algorithm succeeds, and vice versa. It shows clear transition lines in both PT images, and the

comparison of scanning time between line/point probes shows clear improvement of scanning efficiency.

Interestingly if we compare the result with CS theory, which asserts the number measurement of samples

required is close to linear proportional to signal sparsity; here, though the line scans are not CS-optimal, both

PT images exhibits similar phenomenon. When the image size is fixed (up), total number of samplesm is

proportional to the line count N , with PT transition line showing linear proportionality between number of

line scans and discs N ∝ k, givesm ∝ k; on the other hand, when the image density is fixed, the number of

samples m is proportional to N ×
√
k3 while the transition line in PT is showing N ∝

√
k, again suggests

linear proportionality between the number of measurements and sparsity would bem ∝ N
√
k ∝ k. To wrap

up, these experimental results hinted that if minimum separation of discs are ensured, then to ensure exact

3With fixed density, imaging area is proportional to disc count, and the number of samples is (line count)×
√

(imaging area) =
N ×

√
k.
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Figure 2.10: Phase transition [OKL+18] of fixed image size (top) and fixed density (bot) on support recovery with
Lasso. In each experiments, d/2r ≥ 1 is ensured. In either cases, the phase transitions (left) show the number of samples
required is almost linearly proportional to the number of discs for exact reconstruction. And the the advancement of
scanning efficiency (right) is presented in comparison with the point probe scans. For the fixed size case, we let (image
area)/(disc area) ≈ 1200; for the fixed density case, we let density ≈ (1/6)·(max density).

signal reconstruction with efficient algorithm, the number of samples required is approximately linearly

proportional to the sparsity of image.

Finally, to formally elucidate the sample time reduction from point probe to line scans, we compare the

consumed scanning time using different probes in both settings under specific scenarios. (Figure 2.10, right).

In the fixed area experiment we let the image area be 3×3 mm2 and the disc radius and the image resolution

are both 50µm (image area/disc area ratio around 1200); for the fixed density we let all experiments have

equal density 20 discs/mm2 (nearly 1/6 of maximum density in separating case) with same resolution. Both

of the results show clear improvement of scanning efficiency, with reduction of scanning time by 3 to 10

times under these signal settings.

In either case, line measurements are substantially more efficient than measurements with a point probe.

28



Realizing this gain in practice requires us to modify the Lasso to cope with the following nonidealities: (i) line

scans are coherent, (ii) the PSF ψ is typically only partially known, and (iii) naive approaches to computing

with line scans are inefficient when the target resolution is large. Below, we show how to address these issues,

and give a complete reconstruction algorithm.

2.5.2 Computation of line projection

2.5.2.1 Fast computation of discrete line projection

The line projection of an image Y in direction of angle θ is equivalent to the line projection at 0◦ of clockwise

rotated Y by angle θ. This enables an efficient line projection computationally via fast image rotation with

shear transform in Fourier domain [LOK97].

The clockwise rotation of image Y by angle θ is

Rotθ [Y ] (x, y) = Y


cos θ − sin θ

sin θ cos θ


x
y


 (2.17)

where the rotational matrix can be decomposed into three shear transformscos θ − sin θ

sin θ cos θ

 =

 1 0

tan θ
2 1


1 − sin θ

0 1


 1 0

tan θ
2 1

 ;

write both x, y-shear transforms as

Shr-xs[Y ](x, y) = Y (x+ sy, y),

Shr-yt[Y ](x, y) = Y (x, y + tx),

then

Rotθ[Y ] = Shr-ytan θ
2
◦ Shr-x− sin θ ◦ Shr-ytan θ

2
[Y ] . (2.18)

Each of the shear transform can be efficiently computed in Fourier domain. Define

Ŝx,t(u, y) = ej2πtyu, Ŝy,t(x, v) = ej2πtxv, (2.19)

and Fx, Fy as n-DFT in x,y-domain, where

Fx{Y }(u, y) =
∑
x

Y (x, y)e−j2πxu, (2.20)
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Fy{Y }(x, v) =
∑
y

Y (x, y)e−j2πyv. (2.21)

From (2.19)-(2.21), the y-shearing transform can be written as

Y (x, y + tx) =
∑
y′

Y (x, y′)δ(y′ − tx− y)

=
1

n

∑
y′

Y (x, y′)
∑
v

e−j2πv(y′−tx−y)

=
1

n

∑
v

∑
y′

Y (x, y′)e−j2πv(y′−tx)

 ej2πvy

= F−1
y

[
Fy [Y ] ◦ Ŝy,t

]
; (2.22)

and x-shear transform likewise,

Y (x+ ty, y) = F−1
x

[
Fx [Y ] ◦ Ŝx,t

]
. (2.23)

Combine (2.17)-(2.23), we obtain a computational efficient algorithm for line projections Algorithm 2.

Algorithm 2 Fast computational discrete line projections

Require: Discrete image Y ∈ Rn×n, line scan angles {θ1, . . . , θm}.
for i = 1, . . . ,m do

y-shearing: Y ← F−1
y

[
Fy [Y ] ◦ Ŝy,tan(θi/2)

]
;

x-shearing: Y ← F−1
x

[
Fx [Y ] ◦ Ŝx,− sin θi

]
;

y-shearing: Y ← F−1
y

[
Fy [Y ] ◦ Ŝy,tan(θi/2)

]
;

for t = 1, . . . , n do
Ri(t)← 1√

m

∑
y Y (t, y);

end for
end for

Ensure: Discrete lines LΘ[Y ] = {R1, . . . ,Rm} ∈ Rn×m

Since the image Y is discrete, its rotation will naturally incurs interpolation error. To mitigate its effect, it

is advised to limit the rotation operation to angle θ ∈ [−45◦, 45◦] in Algorithm 2, then flip the image vertically

or horizontally to form the image rotated by [−180◦, 180◦).

Although the Fourier rotationmethoddemandsO(n2 log n) for computational time, which is slightly larger

then the direct rotationO(n2), in practice we found Fourier rotation more appealing: its actual computational

time is usually slightly better then other methods, since it gets around the problematic pixelated interpolation

from direct rotation; and more importantly, its adjoint is easier to be calculated in a similarly explicit manner

as well.
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Figure 2.11: Back projection image from the scan lines. We demonstrate a simple example (left) where four discs are
line projected with angles {0◦, 45◦, 90◦, 135◦} then undergo convolution with the simulated PSF (mid). Here, the arrows
indicates the probe sweeping direction. The back projection image (right) is the superposition of back projection image
of each line; and the back projection of a single lineRθ assigns valueRθ(t) along the sweeping directions (arrows) onto
the support `θ,t for every t.

2.5.2.2 Adjoint of line projection

The adjoint operator4 of line projections L∗Θ : L2([m] × R) → L2(R2) is deeply connected with the well-

known tomography image reconstruction technique back projection. The adjoint of a single line projection

L∗θi : L2(R) → L2(R2) of scanning angle θi is exactly the back projection of a continuous line R̃i which

generates an image L∗θi [R̃i] whose value over `θi,t defined in in (A.8) is equivalent to R̃i(t):

L∗θi [R̃i](w) = R̃i(t), ∀w ∈ `θi,t, (2.24)

then incorporate with definition of `θi,t, we obtain a simpler form for L∗θi as

L∗θi [R̃i](w) = R̃i(〈u⊥θiw〉). (2.25)

Extending the derivation of (2.25) tom-lines R̃, the back projection ofm angles L∗Θ on R̃ is the superposition

of images from allm back projected lines L∗θi [R̃i] of different scanning angles:

L∗Θ[R̃](w) =
1√
m

m∑
i=1

L∗θi [R̃i](w)

=
1√
m

m∑
i=1

R̃i(
〈
u⊥θi ,w

〉
). (2.26)

In the following proposition, we show that the line projections defined in (2.26) is indeed the adjoint operator

of line projections.

Proposition 2.5.1. The back projection L∗Θ in (2.26) is the adjoint of line projection LΘ in (2.2), where 〈R̃,LΘ[Y ]〉 =

4We invoke the canonical definition of inner product of L2-space for both image and lines. For every images Y ,Y ′ ∈ L2(R2), we
define 〈Y ,Y ′〉 =

∫
Y (w)Y ′(w) dw; and for every lines R̃, R̃′ ∈ L2(R× [m]), we define 〈R̃, R̃′〉 =

∑m
i=1

∫
R̃i(t)R̃

′
i(t) dt.
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〈L∗Θ[R̃],Y 〉.

2.5.2.3 Fast computation of discrete back projection

Similar to the line projection, the discrete back projection of a single line Ri ∈ Rn at angle θ is the image

Yi = [Ri,Ri, · · · ,Ri] ∈ Rn×n counterclockwise rotated by θ, and the back projection of multiple lines is the

sum of all such images, as shown in Figure 2.11. The discrete back projection thereby can be also calculated

efficiently in Fourier domain, as presented in Algorithm 3.

Algorithm 3 Fast computational discrete back projections

Require: Discrete lines {R1, . . . ,Rm} ∈ Rn×m, line scan angles {θ1, . . . , θm}.
Initialize Y ← 0 ∈ Rn×n;
for i = 1, . . . ,m do

for x = 1, . . . , n do
Yi(x, :)← 1√

m
R;

end for
y-shearing: Yi ← F−1

y

[
Fy [Yi] ◦ Ŝy,− tan(θi/2)

]
;

x-shearing: Yi ← F−1
x

[
Fx [Yi] ◦ Ŝx,sin θi

]
;

y-shearing: Yi ← F−1
y

[
Fy [Yi] ◦ Ŝy,− tan(θi/2)

]
;

Y ← Y + Yi
end for

Ensure: Discrete image Y ∈ Rn×n

Remark 2.5.2. The discrete back projection from Algorithm 3 is the adjoint operator of discrete line projection from

Algorithm 2, which satisfies 〈R̃,LΘ[Y ]〉 = 〈L∗Θ[R̃],Y 〉.

2.5.3 Coping with nonidealities of practical line scans with reconstruction algorithm

As aforementioned in Section 2.4.3, in practice solving vanilla Lasso formulation in (2.16) does not provide

convincing solution for practical problems in SECMwith line probe, due to high coherence of line projections

with respect to sparse signals and the nonidealities of PSF. These issues can be remedied by implementing

well known techniques such as reweighting and blind calibration method.

2.5.3.1 Reweighting Lasso for coherent measurements

To cope with the coherence phenomenon, we adopt the reweighting scheme [CWB08] by solving Lasso

formulation (2.16) multiple times while updating penalty variable λ in each iterate. At k-th iterate, the

32



Original image Lasso w/big λ Lasso w/small λ Reweight Lasso

Figure 2.12: SECM image reconstruction with pure Lasso and reweighted Lasso. We apply three algorithm to recon-
struct the image (left) with 6 line scans with simulated PSF in Figure 2.8. The reconstruction from Lasso with large λ
(mid left) has unbalanced magnitude due to the coherence of line scans, and from Lasso with small λ (mid right) gives
blurry image by weakened sparsity regularizer. Reweighing Lasso can adjust the sparse regularizer in each iteration and
consistently gives good result.

algorithm chooses the regularizer λ in (2.16) base on the previous outcome of lasso solutionX(k), where

λ
(k)
ij ← C(X

(k−1)
ij + ε)−1 (2.27)

Reweighting [CWB08] is a technique in sparse recovery which is typically utilized for enhancing the sparsity

regularizer, by solving Lasso formulation (2.16) multiple times while updating penalty variable λ in each

iterate. At k-th iterate, the algorithm chooses the regularizer λ(k)
ij base on the previous outcome of lasso

solutionX(k), where

λ
(k)
ij ← C(X

(k−1)
ij + ε)−1 (2.28)

with ε being the machine precision constant and C being close to the smooth part in (2.16). The effect of

reweighting method is two-fold: (i) it is a majorization-minimization algorithm of sparse regression using

log-norm as sparsity surrogate [CWB08], hence, discovers sparse solution more effectively compares to the

use of `1-norm in Lasso; and (ii) the sparsity surrogate in final stages of reweighting approaches `0-norm,

by seeing X
(k+1)
ij

X
(k)
ij +ε

≈ 1 ifX(k)
ij 6= 0 as k →∞. As a result, in the final stages, problem (2.16) effectively turns

into least squares, restricted to the support ofX , which produces a sparse solution with correct magnitude.

Figure 2.12 (left) displays an example of reweighting scheme, showing better reconstruction result than

vanilla Lasso.

In Figure 2.12, we display an example of reweighting scheme versus the vanilla Lasso with different

penalty variable in a noiseless scenario. When λ is large, the reconstructedX does not recover correct relative

magnitudes; when λ is small, the effect of sparsity surrogate is weakened, resulting imprecise support

recovery and offers blurry image. Using reweighting method correctly reconstruct the exact result. To show

how the addressed modification in Lasso algorithm improves success rate of image reconstruction from line
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Figure 2.13: SECM image reconstruction with reweighed Lasso and reweighed calibrating Lasso. We simulate a line
scan with uneven magnitude (left), and reconstruct the image (mid left) with two algorithm. The algorithm with
reweighting only (mid right) cannot identify the correct support; where the reweighting plus calibration (right) method
well approximates the image.

scans, we present a series of simulated experiments, comparing the reconstruction between the vanilla Lasso

with different λ settings and reweighting method in Figure 2.14. Each data point consists of average of 30

experiments; in each of the experiment, the ground truth discs are generated at random with minimum

separation (rejection sampling), which is then reconstructed from 8 random lines scans if disc number <16,

or 16 lines scans when disc number >16. All discs are assumed to have equal magnitude. The correctness of

the image reconstruction is measured by calculating the relative error between the pixel values of image,

which measures the difference between normalized ground truth image and reconstructed image. The

experiments show the reweighting method steadily outperforms the vanilla Lasso under various settings

when measurements are incoherent.

2.5.3.2 Blind calibration for incomplete PSF information

Due to natural physical limitation, the incorrect estimation of PSF can be inevitable especially in nanoscale.

A remedy therein is to parameterize the PSF to accommodate all of its possible variations which can leads to

significant impact on the accuracy of reconstruction result. We assume ψ(pi) is a single instance of PSF with

parameter pi, where the vector pi can represent the peak value, the width of peak, and the rise/decay of PSF

in Figure 2.8 for the scan of angle θi. For the reconstruction algorithm, we replace the PSF ψ in (2.16) with

the parameterized version ψ(pi), and optimize both the parameter pi and the sparse mapX via alternating

minimization.

Figure 2.13 exhibits a simulated example in which the PSF of line scans has unbalanced magnitudes due

to the variation of probe scanning angle. In this example, the line scan with largest overall magnitude is four

times as much as the smallest, which shows the comparison of image reconstruction results from algorithm of

reweighting or of reweighting plus rescaling calibration. The figures show the calibration achieves successful
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Figure 2.14: Performance of reweighting method versus Lasso. We use 8 line scans when the disc number is below 16,
and 16 line scans when disc number is above for reconstruction. The experiments show reweighting method outperforms
vanilla Lasso with various penalty variable λ setting w.r.t. normalized (to 1) magnitude difference between the ground
truth images and reconstructed images.

reconstruction while the former non-calibration method fell short on this simulated problem which has more

than enough line scans are utilized to reconstruct a simplistic four disc example.

2.5.4 Image reconstruction algorithm from line scans

Finally we formally state the complete algorithm Algorithm 5 for reconstruction of SECM image from its line

scans. The algorithm solves multiple iteration of

min
X≥0,p∈P

∑
ij

λ
(k)
ij Xij +

m∑
i=1

1

2
‖S{ψ(pi) ∗ Lθi [D ∗X]} −Ri‖22 . (2.29)

while updating the penalty variable λ(k) in each iterate base on (2.28). To solve a single iterate of (2.29), the

algorithm utilize an accelerated alternating minimization method specifically for non-smooth, non-convex

objective called iPalm algorithm [PS16] stated in Algorithm 4. Since this formulation is nonconvex and the

gradients of objective (2.29) could have terribly large gradient Lipchitz constant locally, we adopt backtracking

method for choosing step size of each individual gradient steps. The our real data experiments, the analytic

form of PSF ψ̂(p) is relized as a two-side-exponential decaying function. Define a one-side exponential-decay

function as

Ec,α(t) = (c·t+ 1)−α1{t>0}, E

∧

c,α(t) = Ec,α(−t) (2.30)
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Algorithm 4 iPalm(Xinit, pinit,λ, h,P): Accelerated iPalm for calibrating sparse regression

Require: InitializationXinit ∈ Rn×n and pinit ∈ P , sparse penaltyλ ∈ Rn×n, smooth function h, and number
of iterations L.
LetX(0) ←Xinit; p(0) ← pinit; α← 0.9; tX0, tp0 ← 1
for ` = 1, . . . , L do

// Accelerated Proximal Gradient for mapX .
Y (`) ←X(`) + α (X(`) −X(`−1));
t← tX0;
repeat

t← t/2;
X(`+1) ← Soft+

tλ

[
Y (`) − t ∂Xh(Y (`),p(`))

]
;

until h(X(`+1),p(`)) ≤ h(Y (`),p(`))
+
〈
∂Xh(Y (`),p(`)),X(`+1) − Y (`)

〉
+ 1

2t‖X
(`+1) − Y (`)‖22;

tX0 ← 4t;
// Accelerated Proximal Gradient for parameters p.
q(`) ← p(`) + α (p(`) − p(`−1));
t← tp0;
repeat

t← t/2;
p(`+1) ← ProjP

[
q(`) − t ∂ph(X(`+1), q(`))

]
;

until h(X(`+1),p(`+1)) ≤ h(X(`+1), q(`))
+
〈
∂ph(X(`+1), q(`)),p(`+1) − q(`)

〉
+ 1

2t‖p
(`+1) − q(`)‖22;

tp0 ← 4t;
end for

Ensure: (X(L),p(L)) as the approximated minimizers of minX≥0,p∈P
∑
ij λijXij + h(X,p)

then ψ̂(p) = ψ̂(c`, α`, cr, αr, σ) is defined as

ψ̂(p) =
[
E

∧

c`,α` + Ecr,αr
]
∗ fσ (2.31)

where fσ is zero-mean Gaussian function with deviation σ.

Here, we will write the smooth part of (2.29) as

h(X,p) :=

m∑
i=1

1

2
‖S {ψ(pi) ∗ Lθi [D ∗X]} −Ri‖22

in the algorithms.
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Algorithm 5 Reconstruct SECM image with line scans via reweighted iPalm.

Require: Line scans {Ri}mi=1, scan angles {θi}mi=1, profileD, estimated psf ψ̂, initial guess of system param-
eters of line scans pinit within convex set P , and number of iterationsK.
LetX(0) ← 0, p(0) ← pinit,
Let h(X,p)←

∑m
i=1

1
2‖ψ̂ ∗ Lθi [p] [D ∗X]−Ri‖22;

for k = 1, . . . ,K do
if k = 1 then λ← C maxij

{
L∗Θ
[
ψ̂ ∗R

]
ij

}
· 1;

else
∀ i, j ∈ [n], λ(k)

ij ← Ch(X(k),p(k))/(X
(k−1)
ij + ε);

end if
(X(k+1),p(k+1))← iPalm(X(k),p(k),λ, h,P);

end for
Ensure: Reconstructed image Y ←D ∗X(K)

2.6 Real data experiments

We present two sets of experiments to demonstrate an end-to-end result of line probe SECM.

Figure 2.15 displays the comparison of the line probe/point probe scan on a simplistic three disc samples

(75µm in radius, platinum). In these experiments, the point probe tip diameter and the line probe edge

thickness are equivalent (≈ 20µm), and the probe moving speed (100ms), the sampling rate (10µm), and

the probe end material (platinum) are identical as well. Four images are shown here, including the optical

closeup image for the three discs, the line scans, and the reconstruction image of either point probe or the

line probe. In the optical image, the arrow (scan direction) represents the line probe sweeping direction

when θs = 0◦, which generates the 0◦ line scan. The three discs sample is then rotated by θs (45◦ in this case)

clockwise, proceeds with another sweep of line probe, produces the 45◦ line scans. This routine continues

until all seven scans are carried out.

In the reconstructed images, the black circles indicated the ground truth size and location of the platinum

discs derived from the optimal image. The reconstruction algorithm Algorithm 5 is setup with 6 reweighting

iterates, where each iterates runs 50 iterates of Ipalm. We can see the reconstructed result from the point

probe exhibits distortion in the image due to the skewness of probe PSF along its proceeding direction during

raster scans; while the image of line scan reconstruction presents three circular features with its size and

locations are agreeing with the ground truth, since the skewness of PSF has been successfully corrected by

the reconstruction algorithm.

In Figure 2.16, we reconstructed the image of samples consist of platinum discs arranged in a more

complicating configuration. Two sets of the experiment are presented here, which are the samples consist of 8
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Figure 2.15: Real signal experiments on three platinum discs [DKS+19]. We show the reconstruction result of a three
disc sample (up-left), which is scanned with line probe in seven different directions (up-right). The arrow in optical image
represents the line probe sweeping direction, while as θs stands for clockwise rotation of the sample. The black circle
indicates the correct disc location in each images. Compare to the point probe, in which the shifts of disc location are
resulted from the skew of PSF (down-left), our line scan reconstruction accurately recovers the exact location (down-right).
For both of the reconstructed images, the resolution is 10µm per pixel.

or 10 discs, while the disc diameter/image resolution/probe dimension/sampling rate are all identical to the

three discs case in Figure 2.15. The reconstruction algorithm are also setup similarly, with reweighting(ipalm)

procedures with 6(50) iterates, generating the images of interest of much larger dimension. Notice that here

we use 7(9) line scans on 8(10) disc sample respectively, and demonstrate both of the resulting reconstructed

image and the location map, in which the location map is a binary image defined by 1{Xij≥0.5‖X‖∞} at

(i, j)-th entry.

We can see for these more complicating images, our algorithm are still able to reconstruct the image

of platinum discs with correct location and shape. The corresponding location maps are approximately

recovered, with most of the discs locations are represented by a single one-sparse vector, and some other

locations are represented by a two-sparse vector due to the inevitable discretization error.

Our code for the reconstruction of SECM image from scans from line probe can be found via the following

link:

https://github.com/clpsecm/clpsecm_imaging
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Figure 2.16: Real signal experiments of 8, 10 platinum discs. Showing the optimal image of the 8 discs (up) and 10
discs (down) sample, and their corresponding line scans, reconstructed image and reconstructed disc location map. In
optical image, the arrows represent the line probe sweeping direction, while as θs stands for clockwise rotation of the
sample. In both examples, our algorithm is able to successfully obtain these images of the discs, with most of the disc
locations can be approximately represented by an one-sparse vector. Here, the image resolution is 20µm per pixel.

2.7 Summary & Discussion

This section presents the development of a novel scanning probe microscope technique involving the use of

line probe. The microscope operates line integrals in each measurement, such measurements are non-local,

hence more efficient then conventional raster scans for microscopic image with localized sparse structure.

This paper shows the increment in efficiency of line probe via rudimentary analysis and experiments; and

proposes a simple modification in conventional CS algorithm for image reconstruction, with its effect on

both the simulated and the actual datasets. Due to the strong relation between computational tomography

and line scans, we also view our work can potentially being applied to ares of CT or other similar imaging

modalities involving the use of projection measurements.

We envision the possibilities of future work are in multiple dimension. First, the current studied mi-

croscopic images are circumscribed in sparse convolutional model; while it has an immediate access to
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applications such as lattice structure imaging in material science, we aim to expand the potential application

of line scans tomore general purpose imaging problems. Furthermore, unlikemany other imagingmodalities,

in SPM the design of probe topography (i.e. the sampling pattern) is not limited to a straight line, therefore it

is possible adopt various different probe design to achieve CS-like sample reduction. Lastly, in this paper

we have shown via simple reasoning and experiments to exhibit the relationship between the complexity of

image and the required number of line scan measurements to achieve exact reconstruction. We consider

rigorously demonstrating the relationship can also be an interesting direction in CS, especially since the line

scans are not the CS optimal measurement model.

Acknowledgment

For the SECM work, I want to thank Prof. Daniel Esposito for contributing the principle idea, as well as my

colleagues Dr. Anna Elisabeth Dorfi and Prof. Glen O’Neil for the construction of the microscope, execution

of data collections and many helpful advices for reconstruction algorithm designs.

40



Chapter 3

Short-and-Sparse Deconvolution

In this chapter we study the Short-and-Sparse (SaS) deconvolution problem of recovering a short signal a0

and a sparse signal x0 from their convolution. We propose a method based on nonconvex optimization,

which under certain conditions recovers the target short and sparse signals, up to a signed shift symmetry

which is intrinsic to this model. This symmetry plays a central role in shaping the optimization landscape

for deconvolution. We give a regional analysis, which characterizes this landscape geometrically, on a union

of subspaces. Our geometric characterization holds when the length-p0 short signal a0 has shift coherence

µ, and x0 follows a random sparsity model with sparsity rate θ ∈
[
c1
p0
, c2
p0
√
µ+
√
p0

]
· 1

log2 p0
. Based on this

geometry, we give a provable method that successfully solves SaS deconvolution with high probability.

3.1 Introduction

Datasets in a wide range of areas, including neuroscience [Lew98], microscopy [CLC+17] and astronomy

[Sah07], can be modeled as superpositions of translations of a basic motif. Data of this nature can be modeled

mathematically as a convolution y = a0 ∗ x0, between a short signal a0 (the motif) and a longer sparse signal

x0, whose nonzero entries indicate where in the sample the motif is present. A very similar structure arises

in image deblurring [CW98], where y is a blurry image, a0 the blur kernel, and x0 the (edge map) of the

target sharp image.

Motivated by these and related problems in imaging and scientific data analysis, we study the Short-

and-Sparse (SaS) Deconvolution problem of recovering a short signal a0 ∈ Rp0 and a sparse signal x0 ∈ Rn
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(n� p0) from their length-n cyclic convolution y = a0 ∗x0 ∈ Rn1. This SaS model exhibits a basic scaled shift

symmetry: for any nonzero scalar α and cyclic shift s`[·],(
α s`[a0]

)
∗
(

1
α s−`[x0]

)
= y. (3.1)

Because of this symmetry, we only expect to recover a0 and x0 up to a signed shift (see Figure 3.1). Our

problem of interest can be stated more formally as:

Problem 3.1.1 (Short-and-Sparse Deconvolution). Given the cyclic convolution2 y = a0 ∗ x0 ∈ Rn of a0 ∈ Rp0

short (p0 � n), and x0 ∈ Rn sparse, recover a0 and x0, up to a scaled shift.

Despite a long history and many applications, until recently very little algorithmic theory was available

for SaS deconvolution. Much of this difficulty can be attributed to the scale-shift symmetry: natural convex

relaxations fail3, and nonconvex formulations exhibit a complicated optimization landscape, with many

equivalent global minimizers (scaled shifts of the ground truth) and additional local minimizers (scaled

shift truncations of the ground truth), and a variety of critical points [ZLK+17, ZKW18]. Currently available

theory guarantees approximate recovery of a truncation4 of a shift s`[a0], rather than guaranteeing recovery

of a0 as a whole, and requires certain (complicated) conditions on the convolution matrix associated with a0

[ZKW18].

In this paper, describe an algorithm which, under simpler conditions, exactly recovers a scaled shift of

the pair (a0,x0). Our algorithm is based on a formulation first introduced in [ZLK+17], which casts the

deconvolution problem as (nonconvex) optimization over the sphere. We characterize the geometry of this

objective function, and show that near a certain union of subspaces, every local minimizer is very close to a

signed shift of a0. Based on this geometric analysis, we give provable methods for SaS deconvolution that

exactly recover a scaled shift of (a0,x0) whenever a0 is shift-incoherent and x0 is a sufficiently sparse random

vector. Our geometric analysis highlights the role of symmetry in shaping the objective landscape for SaS

deconvolution.

Organization of this paper. The remainder of this paper is organized as follows. Section 3.2 introduces

our optimization approach and modeling assumptions. Section 3.3 introduces our main results — both

1In this paper, the cyclic convolution a0 ∗ x0 assumes a0 to be zeropadded [a0,0n−p0 ] to length n.
2Our result can be applied to recovering direct convolutions. Let y ∈ Rp0+n−1 be the direct convolution between a0 ∈ Rp0 and

x0 ∈ Rn, then y can also be expressed as circular convolution between a0 and [x0;0p0−1].
3Such as matrix lifting relaxation [ARR14, LLB16], in which a0 or x0 resides in random subspaces w/o shift symmetry.
4I.e., the portion of the shifted signal s`[a0] that falls in the window {0, . . . , p0 − 1}.
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Figure 3.1: Shift symmetry in Short-and-Sparse deconvolution. An observation y (left) which is a convolution of a
short signal a0 and a sparse signal x0 (top right) can be equivalently expressed as a convolution of s`[a0] and s−`[x0],
where s`[·] denotes a shift ` samples. The ground truth signals a0 and x0 can only be identified up to a scaled shift.

geometric and algorithmic — and compares them to the literature. Section 3.4-3.5 describes the main ideas of

our analysis. Finally, Section 3.8 discusses two main limitations of our analysis and describes directions for

future work.

3.2 Formulation and Assumptions

3.2.1 Nonconvex SaS over the Sphere

Bilinear Lasso. Our starting point is the (natural) formulation

min
a,x

1
2 ‖a ∗ x− y‖

2
2

Data Fidelity
+ λ ‖x‖1

Sparsity
s.t. ‖a‖2 = 1. (3.2)

We term this optimization problem the Bilinear Lasso, for its resemblance to the Lasso estimator in statistics.

Indeed, letting

ϕlasso(a) ≡ min
x

{
1
2 ‖a ∗ x− y‖

2
2 + λ ‖x‖1

}
(3.3)

denote the optimal Lasso cost, we see that (3.2) simply optimizes ϕlasso with respect to a:

min
a

ϕlasso(a) s.t. ‖a‖2 = 1. (3.4)

In (3.2)-(3.4), we constrain a to have unit `2 norm. This constraint breaks the scale ambiguity between a and

x. Moreover, the choice of constraint manifold has surprisingly strong implications for computation: if a is

instead constrained to the simplex, the problem admits trivial global minimizers. In contrast, local minima of

the sphere-constrained formulation often correspond to shifts (or shift truncations [ZLK+17]) of the ground

truth a0.
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Simplifications and approximations. The problem (3.4) is defined in terms of the optimal Lasso cost. This

function is challenging to analyze, especially far away from a0. [ZLK+17] analyzes the local minima of a

simplification of (3.4), obtained by approximating5 the data fidelity term as

1
2 ‖a ∗ x− y‖

2
2 = 1

2 ‖a ∗ x‖
2
2 − 〈a ∗ x,y〉+ 1

2 ‖y‖
2
2 ,

≈ 1
2 ‖x‖

2
2 − 〈a ∗ x,y〉+ 1

2 ‖y‖
2
2 . (3.5)

This yields a simpler objective function

ϕ`1(a) = min
x

{
1
2 ‖x‖

2
2 − 〈a ∗ x,y〉+ 1

2 ‖y‖
2
2 + λ ‖x‖1

}
. (3.6)

We make one further simplification to this problem, replacing the nondifferentiable penalty ‖·‖1 with a

smooth approximation ρ(x).6 Our analysis allows for a variety of smooth sparsity surrogates ρ(x); for

concreteness, we state our main results for the particular penalty7

ρ(x) =
∑
i

(
x2
i + δ2

)1/2
. (3.7)

For δ > 0, this is a smooth function of x; as δ ↘ 0 it approaches ‖x‖1. Replacing ‖·‖1 with ρ(·), we obtain the

objective function which will be our main object of study,

ϕρ(a) = min
x

{
1
2 ‖x‖

2
2 − 〈a ∗ x,y〉+ 1

2 ‖y‖
2
2 + λρ(x)

}
. (3.8)

Core optimization problem. As in [ZLK+17], we optimize ϕρ(a) over the sphere Sp−1:

min
a

ϕρ(a) s.t. a ∈ Sp−1. (3.9)

Here, we set p = 3p0 − 2. As we will see, optimizing over this slightly higher dimensional sphere enables

us to recover a (full) shift of a0, rather than a truncated shift. Our approach will leverage the following

fact: if we view a ∈ Sp−1 as indexed by coordinates W = {−p0 + 1, . . . , 2p0 − 1} , then for any shifts

` ∈ {−p0 + 1, . . . , p0 − 1}, the support of `-shifted short signal s`[a0] is entirely contained in intervalW . We

will give a provable method which recovers a scaled version of one of these canonical shifts.

5For a generic a, we have 〈si[a], sj [a]〉 ≈ 0 and hence ‖a ∗ x‖22 = x∗C∗aCax ≈ x∗Ix = ‖x‖22.
6The objective ϕ`1 is not twice differentiable everywhere, and hence cannot be minimized using conventional second order methods.
7This particular surrogate is sometimes being named as the pseudo-Huber function.
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Figure 3.2: Sparsity-coherence tradeoff: Top: three families of motifs a0 with varying coherence µ. Bottom: maximum
allowable sparsity θ and number of copies θp0 within each length-p0 window. Here, we suppress constants and
logarithmic factors. When the target motif has smaller shift-coherence µ, our result allows larger θ, and vise versa.
This sparsity-coherence tradeoff is made precise in our main result Theorem 3.3.1, which, loosely speaking, asserts that
when θ / 1/(p0

√
µ+
√
p0), our method succeeds.

3.2.2 Analysis Setting and Assumptions

For convenience, we assume that a0 has unit `2 norm, i.e., a0 ∈ Sp0−1.8 Our analysis makes two main

assumptions, on the short motif a0 and the sparse map x0, respectively:

Shift incoherence of a0. The first is that distinct shifts a0 have small inner product. We define the shift

coherence of µ(a0) to be the largest inner product between distinct shifts:

µ(a0) = max
6̀=0
|〈a0, s`[a0]〉| (3.10)

The quantity µ(a0) is bounded between 0 and 1. Our theory allows any µ smaller than some numerical

constant. Figure 3.2 shows three examples of families of a0 that satisfy this assumption:

• Spiky. When a0 is close to the Dirac delta δ0, the shift coherence µ(a0) ≈ 0.9 Here, the observed signal

y consists of a superposition of sharp pulses. This is arguably the easiest instance of SaS deconvolution.

8This is purely a technical convenience. Our theory guarantees recovery of a signed shift (±s`[a0],±s−`[x0]) of the truth. If a0

does not have unit norm, identical reasoning implies that our method recovers a scaled shift
(
αs`[a0], α−1s−`[x0]

)
with α = ± 1

‖a0‖2
.

9The use of “≈” here suppresses constant and logarithmic factors.
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• Generic. If a0 is chosen uniformly at random from the sphere Sp0−1, its coherence is bounded as

µ(a0) /
√

1/p0 with high probability.

• Tapered Generic Lowpass. Here, a0 is generated by taking a random conjugate symmetric superposition of

the first L length-p0 Discrete Fourier Transform (DFT) basis signals, windowing (e.g., with a Hamming

window) and normalizing to unit `2 norm. When L = p0

√
1− β, with high probability µ(a0) / β. In

this model, µ does not have to diminish as p0 grows – it can be a fixed constant.10

Intuitively speaking, problems with smaller µ are easier to solve, a claim which will be made precise in our

technical results.

Random sparsity model on x0. We assume that x0 is a sparse random vector. More precisely, we assume

that x0 is Bernoulli-Gaussian, with rate θ:

x0i = ωigi, (3.11)

where ωi ∼ Ber(θ), gi ∼ N (0, 1) and all random variables are jointly independent. We write this as

x0 ∼i.i.d. BG(θ). (3.12)

Here, θ is the probability that a given entry x0i is nonzero. Problems with smaller θ are easier to solve. In the

extreme case, when θ � 1/p0, the observation y contains many isolated copies of the motif a0, and a0 can be

determined by direct inspection. Our analysis will focus on the nontrivial scenario, when θ ' 1/p0.

Sparsity-Coherence tradeoffs. Our technical results will articulate sparsity-coherence tradeoffs, in which

smaller coherence µ enables larger θ, and vice-versa. More specifically, in our main theorem, the sparsity-

coherence relationship is captured in the form

θ / 1/(p0
√
µ+
√
p0). (3.13)

When the target a0 is highly shift-incoherent (µ ≈ 0), our method succeeds when each length-p0 window

contains about√p0 copies of a0. When µ is larger (as in the generic lowpass model), our method succeeds as

long as relatively few copies of a0 overlap in the observed signal. In Figure 3.2, we illustrate these tradeoffs

for the three models described above.

10The upper right panel of Figure 3.2 is generated using random DFT components with frequencies smaller then one-third Nyquist.
Such a kernel is incoherent, with high probability. Many commonly occurring low-pass kernels have µ(a0) larger – very close to one.
One of the most important limitations of our results is that they do not provide guarantees in this highly coherent situation.
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3.3 Main Results: Geometry and Algorithms

In this section, we introduce our main results – on the geometry of ϕρ (Section 3.3.1) and its algorithmic

implications (Section 3.3.2). Finally, in Section 3.3.3, we compare these results with the literature on deconvo-

lution.

3.3.1 Geometry of the Objective ϕρ

The goal in SaS deconvolution is to recover a0 (and x0) up to a signed shift — i.e., we wish to recover some

±s`[a0]. The shifts ±s`[a0] play a key role in shaping the landscape of ϕρ. In particular, we will argue that

over a certain subset of the sphere, every local minimum of ϕρ is close to some ±s`[a0].

B`2,r(s`[a0]) ∩ Sp−1

s`[a0]

ϕρ(a)

Figure 3.3: Geometry of ϕρ near a shift of a0.
Bottom: a portion of the sphere Sp−1, colored
according to ϕρ. Top: ϕρ visualized as height.

ϕρ is strongly convex in this region, and it

has a minimizer very close to s`[a0].

Geometry near a single shift. To gain intuition into the prop-

erties of ϕρ, we first visualize this function in the vicinity of a

single shift s`[a0] of the ground truth a0. In Figure 3.3, we plot

the function value of ϕρ over

B`2,r(s`[a0]) ∩ Sp−1,

where B`2,r(a) is a ball of radius r around a. We make two

observations:

• The objective function ϕρ is strongly convex on this neigh-

borhood of s`[a0].

• There is a local minimizer very close to s`[a0].

Geometry near the span of two shifts. We next visualize the objective function ϕρ near the linear span of

two different shifts s`1 [a0] and s`2 [a0]. More precisely, we plot ϕρ near the intersection (Figure 3.4, left) of the

sphere Sp−1 and the linear subspace

S{`1,`2} = { α1s`1 [a0] +α2s`2 [a0] |α1,α2 ∈ R } .
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s`2 [a0]

s`1 [a0]

S{`1,`2}

S{`1,`2} ∩ Sp−1

ϕρ(a)

Figure 3.4: Geometry of ϕρ near the span S{`1,`2} of two shifts of a0. Left: each pair of shifts s`1 [a0], s`2 [a0] defines a
linear subspace S{`1,`2} of R

p. Center/right: every local minimum of ϕρ near S{`1,`2} (red line) is close to either s`1 [a0]
or s`2 [a0]; there is a negative curvature in the middle of s`1 [a0], s`2 [a0], and ϕρ is convex in direction away from S`1,`2 .

We make three observations:

• Again, there is a local minimizer near each shift s`[a0].

• These are the only local minimizers in the vicinity of S{`1,`2}. In particular, the objective function ϕ

exhibits negative curvature along S{`1,`2} at any superposition α1s`1 [a0] +α2s`2 [a0] whose weights α1

and α2 are balanced, i.e., |α1| ≈ |α2|.

• Furthermore, the function ϕρ exhibits positive curvature in directions away from the subspace S`1,`2 .

Geometry in the span of multiple shifts. Finally, we visualize ϕρ over the intersection (Figure 3.5, left) of

the sphere Sp−1 with the linear span of three shifts s`1 [a0], s`2 [a0], s`3 [a0] of the true kernel a0:

S{`1,`2,`3} = { α1s`1 [a0] +α2s`2 [a0] +α3s`3 [a0] |α1,α2,α3 ∈ R }

Again, there is a local minimizer near each signed shift. At roughly balanced superpositions of shifts, the objective

function exhibits negative curvature. As a result, again, the only local minimizers are close to signed shifts.
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S{`1,`2,`3} ∩ Sp−1

s`1 [a0]

s`2 [a0]s`3 [a0]

ϕρ(a)

s`1 [a0]

s`2 [a0]
s`3 [a0]

S{`1,`2,`3}

Figure 3.5: Geometry of ϕρ over the span S{`1,`2,`3} of three shifts of a0. The subspace S{`1,`2,`3} is three-dimensional;
its intersection with the sphere Sp−1 is isomorphic to a two-dimensional sphere. On this set, ϕρ has local minimizers
near each of the s`i [a0], and are the only minimizers near S`1,`2,`3 .

Geometry of ϕρ over a union of subspaces. Our main geometric result will show that these properties

obtain on every subspace spanned by a few shifts of a0. Indeed, for each subset

τ ⊆ {−p0 + 1, . . . , p0 − 1} , (3.14)

define a linear subspace

Sτ =

{∑
`∈τ

α`s`[a0]

∣∣∣∣∣α−p0+1, . . . ,αp0−1 ∈ R

}
. (3.15)

The subspace Sτ is the linear span of the shifts s`[a0] indexed by ` in the set τ . Our geometric theory will

show that with high probability the function ϕρ has no spurious local minimizers near any Sτ for which τ is

not too large – say, |τ | ≤ 4θp0. Combining all of these subspaces into a single geometric object, define the

union of subspaces

Σ4θp0 =
⋃

|τ |≤4θp0

Sτ . (3.16)

Figure 3.6 (left) gives a schematic representation of this set. We claim:

• In the neighborhood of Σ4θp0 , all local minimizers are near signed shifts.

• The value of ϕρ grows in any direction away from Σ4θp0 .
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S`1,`2 S`1,`3

S`2,`3

Σ4θp0
ϕρ(a)

Figure 3.6: Geometry of ϕρ over the union of subspaces Σ4θp0 . Left: schematic representation of the union of subspaces
Σ4θp0 . For each set τ of at most 4θp0 shifts, we have a subspace Sτ . Right: ϕρ has good geometry near this union of
subspaces.

Main Geometric Result. Our main result formalizes the above observations, under two key assumptions:

first, that the sparsity rate θ is sufficiently small (relative to the shift coherence µ of p0), and, second, the

signal length n is sufficiently large:

Theorem 3.3.1 (Main Geometric Theorem). Let y = a0 ∗ x0 with a0 ∈ Sp0−1 µ-shift coherent and x0 ∼i.i.d.

BG(θ) ∈ Rn with sparsity rate

θ ∈
[
c1
p0
,

c2
p0
√
µ+
√
p0

]
· 1

log2 p0

. (3.17)

Choose ρ(x) =
√
x2 + δ2 and set λ = 0.1/

√
p0θ in ϕρ. Then there exists δ > 0 and numerical constant c such

that if n ≥ poly(p0), with high probability, every local minimizer ā of ϕρ over Σ4θp0 satisfies ‖ā− σs`[a0]‖2 ≤

cmax
{
µ, p−1

0

}
for some signed shift σs`[a0] of the true kernel. Above, c1, c2 > 0 are positive numerical constants.

Proof. This follows from Theorem 3.4.1.

The upper bound on θ in (3.17) yields the tradeoff between coherence and sparsity described in Figure 3.2.

Simply put, when a0 is better conditioned (as a kernel), its coherence µ is smaller and x0 can be denser.

At a technical level, our proof of Theorem 3.3.1 shows that (i) ϕρ(a) is strongly convex in the vicinity of

each signed shift, and that at every other point a near Σ4θp0 , there is either (ii) a nonzero gradient or (iii)

a direction of strict negative curvature; furthermore (iv) the function ϕρ grows away from Σ4θp0 . Points
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(ii)-(iii) imply that near Σ4θp0 there are no “flat” saddles: every saddle point has a direction of strict negative

curvature. We will leverage these properties to propose an efficient algorithm for finding a local minimizer

near Σ4θp0 . Moreover, this minimizer is close enough to a shift (here, ‖ā− s`[a0]‖2 / µ) for us to exactly

recover s`[a0]: we will give a refinement algorithm that produces (±s`[a0],±s−`[x0]).

3.3.2 Provable Algorithm for SaS Deconvolution

The objective function ϕρ has good geometric properties on (and near!) the union of subspaces Σ4θp0 . In this

section, we show how to use give an efficient method that exactly recovers a0 and x0, up to shift symmetry.

Although our geometric analysis only controls ϕρ near Σ4θp0 , we will give a descent method which, with

appropriate initialization a(0), produces iterates a(1), . . . ,a(k), . . . that remain close to Σ4θp0 for all k. In

short, it is easy to start near Σ4θp0 and easy to stay near Σ4θp0 . After finding a local minimizer ā, we refine it

to produce a signed shift of (a0,x0) using alternating minimization.

The next two paragraphs give the main ideas behind the main steps of the algorithm. We then describe

its components in more detail (Algorithm 6) and state our main algorithmic result (Theorem 3.3.2), which

asserts that under appropriate conditions this method produces a signed shift of (a0,x0).

Minimization: Starting and staying near Σ4θp0 . Our algorithm starts with a initialization scheme which

generates a(0) near the union of subspaces Σ4θp0 , which consists of linear combinations of just a few shifts of

a0. How can we find a point near this union? Notice that the data y also consists of a linear combination of just a

few shifts of a0 Indeed:

y = a0 ∗ x0 =
∑

`∈supp(x0)

x0`s`[a0]. (3.18)

A length-p0 segment of data y0,...,p0−1 = [y0, . . . ,yp0−1]∗ captures portions of roughly 2θp0 � 4θp0 shifts

s`[a0].

Many of these copies of a0 are truncated by the restriction to {0, . . . , p0 − 1}. A relatively simple remedy

is as follows: first, we zero-pad y0,...,p0−1 to length p = 3p0 − 2, giving

[
0p0−1;y0; · · · ;yp0−1; 0p0−1

]
. (3.19)

Zero padding provides enough space to accommodate any shift s`[a0] with ` ∈ τ . We then perform one step
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Data y Kernel a0 Sparse x0

Windowed Data a(−1) Initialization a(0)

= ∗

≈

αisi[a0] + αjsj [a0]

Figure 3.7: Data-driven initialization: using a piece of the observed data y to generate an initial point a(0) that is close
to a superposition of shifts s`[a0] of the ground truth. Top: data y = a0 ∗x0 is a superposition of shifts of the true kernel
a0. Bottom: a length-p0 window contains pieces of just a few shifts. Bottom middle: one step of the generalized power
method approximately fills in the missing pieces, yielding a near superposition of shifts of a0 (right).

of the generalized power method11, writing

a(0) = −PSp−1∇ϕ`1
(
PSp−1

[
0p0−1;y0; · · · ;yp0−1; 0p0−1

])
, (3.20)

where PSp−1 projects onto the sphere. The reasoning behind this construction may seem obscure. We will

explain it at a more technical level in Section 3.5 after interpreting the gradient∇ϕρ in terms of its action on

the shifts s`[a0] in Section 3.4. For now, we note that this operation has the effect of (approximately) filling in

the missing pieces of the truncated shifts s`[a0] – see Figure 3.7 for an example. We will prove that with high

probability a(0) is indeed close to Σ4θp0 .

11The power method for minimizing a quadratic form ξ(a) = 1
2
a∗Ma over the sphere consists of the iteration a 7→ −PSp−1Ma.

Notice that in this mapping, −Ma = −∇ξ(a). The generalized power method, for minimizing a function ϕ over the sphere consists
of repeatedly projecting −∇ϕ onto the sphere, giving the iteration a 7→ −PSp−1∇ϕ(a). (3.20) can be interpreted as one step of the
generalized power method for the objective function ϕρ.

52



Sτ

ϕρ

Figure 3.8: Growth of ϕρ away
from Sτ . Because ϕρ grows away
from Sτ , small-stepping descent
methods stay near Sτ .

The next key observation is that the function ϕρ grows as we move away

from the subspace Sτ – see Figure 3.8. Because of this, a small-stepping

descent method will not move far away from Σ4θp0 . For concreteness, we

will analyze a variant of the curvilinear search method [Gol80, GMWZ17],

which moves in a linear combination of the negative gradient direction −g

and a negative curvature direction −v. At the k-th iteration, the algorithm

updates a(k+1) as

a(k+1) ← PSp−1

[
a(k) − tg(k) − t2v(k)

]
(3.21)

with appropriately chosen step size t. The inclusion of a negative curvature direction allows the method to

avoid stagnation near saddle points. Indeed, we will prove that starting from initialization a(0), this method

produces a sequence a(1),a(2), . . .which efficiently converges to a local minimizer ā that is near some signed

shift ±s`[a0] of the ground truth.

Refinement: Rounding a near-solution with homotopy alternating minimization. The second step of

our algorithm rounds the local minimizer ā ≈ σs`[a0] to produce an exact solution â = σs`[a0]. As a

byproduct, it also exactly recovers the corresponding signed shift of the true sparse signal, x̂ = σs−`[x0].

Our rounding algorithm is an alternating minimization scheme, which alternates between minimizing the

Lasso cost over awith x fixed, andminimizing the Lasso cost over xwith a fixed. Wemake twomodifications

to this basic idea, both of which are important for obtaining exact recovery. First, unlike the standard Lasso

cost, which penalizes all of the entries of x, we maintain a running estimate I(k) of the support of x0, and

only penalize those entries that are not in I(k):

1
2 ‖a ∗ x− y‖

2
2 + λ

∑
i 6∈I(k)

|xi| . (3.22)

This can be viewed as an extreme form of reweighting [CWB08]. Second, our algorithm gradually decreases

penalty variable λ to 0, so that eventually

â ∗ x̂ ≈ y. (3.23)

This can be viewed as a homotopy or continuationmethod [OPT00, EHJ+04]. For concreteness, at k-th iteration
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a0

â

Initial a(0) a(100) Converged ā Est. â and true a0

Figure 3.9: Local minimization and refinement. Left: data-driven initialization a(0) consisting of a near-superposition
of two shifts. Middle: minimizing ϕρ produces a near shift of a0. Right: rounded solution â using the Lasso. â is very
close to a shift of a0.

the algorithm reads:

Update x: x(k+1) ← argmin
x

1
2‖a

(k) ∗ x− y‖22 + λ(k)
∑
i 6∈I(k)

|xi| , (3.24)

Update a: a(k+1) ← PSp−1

[
argmin

a

1
2‖a ∗ x

(k+1) − y‖22
]
, (3.25)

Update λ and I : λ(k+1) ← 1
2λ

(k), I(k+1) ← supp
(
x(k+1)

)
. (3.26)

We prove that the iterates produced by this sequence of operations converge to the ground truth at a linear

rate, as long as the initializer ā is sufficiently nearby.

Algorithm andMain Algorithmic Result. Our overall algorithm is summarized as Algorithm 6. Figure 3.9

illustrates the main steps of this algorithm. Our main algorithmic result states that under closely related

hypotheses as above, Algorithm 6 produces a signed shift of the ground truth (a0,x0):

Theorem 3.3.2 (Main Algorithmic Theorem). Suppose y = a0 ∗x0 where a0 ∈ Sp0−1 is µ-truncated shift coherent

such that maxi 6=j
∣∣〈ι∗p0si[a0], ι∗p0sj [a0]

〉∣∣ ≤ µ and x0 ∼i.i.d. BG(θ) ∈ Rn with θ, µ satisfying

θ ∈

[
c1
p0
,

c2(
p0
√
µ+
√
p0

)
log2 p0

]
, µ ≤ c3

log2 n
(3.32)

for some constant c1, c2, c3 > 0. If the signal lengths n, p0 satisfy n > poly(p0) and p0 > polylog(n), then there exist

δ, ηv > 0 such that with high probability, Algorithm 6 produces (â, x̂) that are equal to the ground truth up to signed

shift symmetry: ∥∥(â, x̂)− σ(s`[a0], s−`[x0]
)∥∥

2
≤ ε (3.33)

for some σ ∈ {−1, 1} and ` ∈ {−p0 + 1, . . . , p0 − 1} ifK1 > poly(n, p0) andK2 > polylog(n, p0, ε
−1).

Proof. See Theorem 3.5.1 and Theorem 3.5.2.
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Algorithm 6 Short and Sparse Deconvolution
Input: Observation y, motif length p0, sparsity θ, shift-coherence µ, and curvature threshold −ηv .
Minimization:
Set a(0) ← −PSp−1∇ϕρ

(
PSp−1

[
0p0−1;y0; · · · ;yp0−1; 0p0−1

])
.

Set λ = 0.1/
√
p0θ

12and δ > 0 in ϕρ. For k = 1, 2, . . . ,K1, let
a(k+1) ← PSp−1 [a(k) − tg(k) − t2v(k)] (3.27)

where g(k) is the Riemannian gradient; v(k) is the eigenvector of smallest Riemannian Hessian eigenvalue
if less then −ηv with

〈
v(k), g(k)

〉
≥ 0, otherwise let v(k) = 0; and t ∈ (0, 0.1/nθ] satisfies

ϕρ(a
(k+1)) < ϕρ(a

(k))− 1
2 t‖g

(k)‖22 − 1
4 t

4ηv‖v(k)‖22 (3.28)
to obtain a near local minimizer ā← a(K1).
Refinement:
Set a(0) ← ā, λ(0) ← 10(pθ + log n)(µ+ 1/p) and I(0) ← Sλ(0) [supp(y

∧∗ ā]). For k = 1, 2, . . . ,K2, let
x(k+1) ← argminx

1
2‖a

(k) ∗ x− y‖22 + λ(k)∑
i 6∈I(k) |xi| , (3.29)

a(k+1) ← PSp−1

[
argmina

1
2‖a ∗ x

(k+1) − y‖22
]
, (3.30)

λ(k+1) ← λ(k)/2, I(k+1) ← supp(x(k+1)), (3.31)
to obtain (â, x̂)← (a(K2),x(K2)).

Output: Return (â, x̂).

When solving SaS deconvolution via minimizing bilinear Lasso objective (3.3) in practice, the algorithm is

analogous to the provable method introduced in Algorithm 6, where the curvilinear descent and the refine-

ment step can be realized as alternating gradient descent of both variables a,x in (3.3). Unlike Algorithm 6,

this alternating gradient method has yet come with theoretical guarantees, but shown to be an effective and

efficient method for SaS deconvolution problems both in simulation and in reality [LQK+19].

3.3.3 Relationship to the Literature

Blind deconvolution is a classical problem in signal processing [SCI75, Can76], and has been studied under a

variety of hypotheses. In this section, we first discuss the relationship between our results and the existing

literature on the short-and-sparse version of this problem, and then briefly discuss other deconvolution

variants in the theoretical literature.

Applications of SaS Deconvolution. The short-and-sparse model arises in a number of applications. One

class of applications involves finding basic motifs (repeated patterns) in datasets. Thismotif discovery problem

arises in extracellular spike sorting [Lew98, ETS11] and calcium imaging [PSG+16], where the observed signal

exhibits repetitive short neuron excitation patterns occurring sparsely across time and/or space. Similarly,

12In practice, we suggest setting λ = cλ/
√
p0θ with cλ ∈ [0.5, 0.8].
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electron microscopy images [CLC+17] arising in study of nanomaterials often exhibit repeated motifs.

Another significant application of SaS deconvolution is image deblurring. Typically, the blur kernel is

small relative to the image size (short) [AD88, YK96, Car01, LFDF07, LWDF11]. In natural image deblurring,

the target image is often assumed to have relatively few sharp edges [FSH+06, JSK08, LWDF11], and hence

have sparse derivatives. In scientific image deblurring, e.g., in astronomy [Lan92, HHSS09, BDH+13] and

geophysics [KT98], the target image is often sparse, either in the spatial or wavelet domains, again leading to

variants of the SaS model. The literature on blind image deconvolution is large; see, e.g., [KH96, CE16] for

surveys.

Variants of the SaS deconvolution problem arise in many other areas of engineering as well. Examples

include blind equalization in comunications [Sat75, SW90, JSE+98], dereverberation in sound engineering [MK88,

NG10] and image super-resolution [BK02, SGG+09, YWHM10].

Algorithmic theory for SaS deconvolution. These applications have motivated a great deal of algorithmic

work on variants of the SaS problem [LB87, BPSW95, BS95, KH96, MC99, CE16, WJPH17]. In contrast,

relatively little theory is available to explain when and why algorithms succeed. Our algorithm minimizes

ϕρ as an approximation to the Lasso cost over the sphere. Our formulation and results have strong precedent

in the literature. Lasso-like objective functions have been widely used in image deblurring [YK96, CW98,

FSH+06, LFDF07, SJA08, XJ10, DZSW11, KTF11, LWDF11,WZ14, PF14, ZLK+17]. A number of insights have

been obtained into the geometry of sparse deconvolution – in particular, into the effect of various constraints

on a on the presence or absence of spurious local minimizers. In image deblurring, a simplex constraint

(a ≥ 0 and ‖a‖1 = 1) arises naturally from the physical structure of the problem [YK96, CW98]. Perhaps

surprisingly, simplex-constrained deconvolution admits trivial global minimizers, at which the recovered

kernel a is a spike, rather than the target blur kernel [LWDF11, BVG13].

[WZ14] imposes the `2 regularization on a and observes that this alternative constraint gives more reliable

algorithm. [ZLK+17] studies the geometry of the simplified objective ϕ`1 over the sphere, and proves that in

the dilute limit in which x0 has one nonzero entry, all strict local minima of ϕ`1 are close to signed shifts

truncations of a0. By adopting a different objective function (based on `4 maximization) over the sphere,

[ZKW18] proves that on a certain region of the sphere every local minimum is near a truncated signed shift

of a0, i.e., the restriction of s`[a0] to the window {0, . . . , p0 − 1}. The analysis of [ZKW18] allows the sparse

sequence x0 to be denser (θ ∼ p
−2/3
0 for a generic kernel a0, as opposed to θ . p

−3/4
0 in our result). Both

[ZLK+17] and [ZKW18] guarantee approximate recovery of a portion of s`[a0], under complicated conditions
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on the kernel a0. Our core optimization problem is very similar to [ZLK+17]. However, we obtains exact

recovery of both a0 and relatively dense x0, under the much simpler assumption of shift incoherence.

Identifiability in SaS deconvolution. Other aspects of the SaS problem have been studied theoretically.

One basic question is under what circumstances the problem is identifiable, up to the scaled shift ambiguity.

[CM15] shows that the problem ill-posed for worst case (a0,x0) – in particular, for certain support patterns

in which x0 does not have any isolated nonzero entries. This demonstrates that some modeling assumptions

on the support of the sparse term are needed. At the same time, this worst case structure is unlikely to occur,

either under the Bernoulli model, or in practical deconvolution problems.

Other lowdimensional deconvolutionmodels. Motivated by a variety of applications, many low-dimensional

deconvolution models have been studied in the theoretical literature. In communication applications, the

signals a0 and x0 either live in known low-dimensional subspaces, or are sparse in some known dictio-

nary [ARR14, LLB16, Chi16, LS15, LLB17, LS17, KK17]. These theoretical works assume that the subspace /

dictionary are chosen at random. This low-dimensional deconvolution model does not exhibit the signed

shift ambiguity; nonconvex formlations for this model exhibit a different structure from that studied here.

In fact, the variant in which both signals belong to known subspaces can be solved by convex relaxation

[ARR14]. The SaS model does not appear to be amenable to convexification, and exhibits a more complicated

nonconvex geometry, due to the shift ambiguity. The main motivation for tackling this model lies in the

aforementioned applications in imaging and data analysis.

[WC16, LB18] study the related multi-instance sparse blind deconvolution problem (MISBD), where there

areK observations yi = a0 ∗ xi consisting of multiple convolutions i = 1, . . . ,K of a kernel a0 and different

sparse vectors xi. Both works develop provable algorithms. There are several key differences with our work.

First, both the proposed algorithms and their analysis require the kernel to be invertible. Second, despite the

apparent similarity between the SaS model and MISBD, these problems are not equivalent. It might seem

possible to reduce SaS to MISBD by dividing the single observation y intoK pieces; this apparent reduction

fails due to boundary effects.

3.3.4 Notations

Vectors and indices. All vectors/matrices are written in bold font a/A; indexed values are written as

ai, Aij . Zeros or ones vectors are defined as 0 or 1, and i-th canonical basis vector defined as ei. The
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indices for vectors/matrices all start from 0 and is taking modulo-n, thus a vector of length n should has

its indices labeled as {0, 1, . . . , n− 1}. We write [n] = {0, . . . , n− 1}. We often use captial italic symbols

I, J for subsets of [n]. We abuse notation slightly and write [−p] = {n− p+ 1, . . . , n− 1, 0} and [±p] =

{n− p+ 1, . . . , n− 1, 0, 1, . . . , p− 1}. Index sets can be labels for vectors; aI ∈ R|I| denotes the restriction

of the vector a to coordinates I . Also, we use check symbol for reversal operator on index set I

∧

= −I and

vectors a∧i = a−i.

Operators. We let PC denote the projection operator associated with a compact set C. The zero-filling

operator ιI : R|I| → Rn injects the input vector to higher dimensional Euclidean space, via (ιIx)i = xI−1(i)

for i ∈ I and 0 otherwise. Its adjoint operator ι∗I can be understood as subset selection operator which picks

up entries of coordinates I . A common zero-filling operator through out this paper ι is abbreviation of ι[p],

which is often being addressed as zero-padding operator and its adjoint ι∗ as truncation operator.

Convolution The convolution operator are all circular with modulo-n: (a ∗ x)i =
∑
j∈[n] ajxi−j , also, the

convolution operator works on index set: I ∗ J = supp (1I ∗ 1J). Similarly, the shift operator s`[·] : Rp → Rn

is circular with modulo-n without specification: (s`[a])j = (ι[p]a)j−`. Notice that here a can be shorter p ≤ n.

Let Ca ∈ Rn×n denote a circulant matrix (with modulo-n) for vector a, whose j-th column is the cyclic shift

of a by j: Caej = sj [a]. It satisfies for any b ∈ Rn,

Cab = a ∗ b. (3.34)

The correlation between a and b can be also written in similar form of convolution operator which reverse one

vector before convolution. Define two correlation matrices C∗a and C

∧

a as C∗aej = sj [a

∧

] and C

∧

aej = s−j [a].

The two operators will satisfy

C∗ab = a

∧∗ b, C

∧

ab = a ∗ b

∧

. (3.35)

3.4 Geometry of ϕρ in Shift Space

Underlying our main geometric and algorithmic results is a relationship between the geometry of the function

ϕρ and the symmetries of the deconvolution problem. In this section, we describe this relationship at a
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more technical level, by interpreting the gradient and hessian of the function ϕρ in terms of the shifts s`[a0]

and stating a key lemma which asserts that a certain neighborhood of the union of subspaces Σ4θp0 can

be decomposed into regions of negative curvature, strong gradient, and strong convexity near the target

solutions ±s`[a0].

3.4.1 Shifts and Correlations

The set Σ4θp0 is a union of subspaces. Any point a in one of these subspaces Sτ is a superposition of shifts of

a0:

a =
∑
`∈τ

α`s`[a0]. (3.36)

This representation can be extended to a general point a ∈ Sp−1 by writing

a =
∑
`∈τ

α`s`[a0] +
∑
`/∈τ

α`s`[a0]. (3.37)

The vector α can be viewed as the coefficients of a decomposition of a into different shifts of a0. This

representation is not unique. For a close to Sτ , we can choose a particular α for which ατc is small, a notion

that we will formalize below.

For convenience, we introduce a closely related vector β ∈ Rn, whose entries are the inner products

between a and the shifts of a0: β` = 〈a, s`[a0]〉. Since the columns of Ca0 are the shifts of a0, we can write

β = C∗a0
ιa (3.38)

= C∗a0
ιι∗Ca0α =: Mα. (3.39)

The matrixM is the Grammatrix of the truncated shifts ι∗s`[a0]: Mij = 〈ι∗si[a0], ι∗sj [a0]〉. When µ is small,

the off-diagonal elements ofM are small. In particular, on Sτ we may take ατc = 0, and β ≈ α, in the sense

that βτ ≈ ατ and the entries of βτc are small. For detailed elaboration, see Appendix B.2.

3.4.2 Shifts and the Calculus of ϕ`1

Our main geometric claims pertain to the function ϕρ, which is based on a smooth sparsity surrogate

ρ(·) ≈ ‖·‖1. In this section, we sketch the main ideas of the proof as if ρ(·) = ‖ · ‖1, by relating the geometry

of the function ϕ`1 to the vectors α, β introduced above. Working with ϕ`1 simplifies the exposition; it is

also faithful to the structure of our proof, which relates the derivatives of the smooth function ϕρ to similar

quantities associated with the nonsmooth function ϕ`1 .
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The function ϕ`1 has a relatively simple closed form:

ϕ`1(a) = − 1
2 ‖Sλ [y

∧∗ a ]‖22 . (3.40)

Here, Sλ is the soft thresholding operator, which is defined for scalars t as Sλ[t] = sign(t) max {|t| − λ, 0}, and is

extended to vectors by applying it elementwise. The operator Sλ[x] shrinks the elements of x towards zero.

Small elements become identically zero, resulting in a sparse vector.

Gradient: Sparsifying the Correlations β

Gradient over Euclidean space. Our goal is to understand the local minimizers of the function ϕ`1 over

the sphere. The function ϕ`1 is differentiable. Clearly, any point a at which its gradient (over the sphere) is

nonzero cannot be a local minimizer. We first give an expression for the gradient of ϕ`1 over Euclidean space

Rp, and then extend it to the sphere Sp−1. Using y = a0 ∗ x0 and calculus gives

∇ϕ`1(a) = −ι∗Ca0
C

∧

x0
Sλ
[
C

∧

x0
C∗a0

ιa
]

= −ι∗Ca0 C

∧

x0Sλ
[
C

∧

x0β
]

= −ι∗Ca0
χ[β], (3.41)

where we have simplified the notation by introducing an operator χ : Rn → Rn as χ[β] = C

∧

x0
Sλ
[
C

∧

x0
β
]
.

This representation exhibits the (negative) gradient as a superposition of shifts of a0 with coefficients given

by the entries of χ[β]:

−∇ϕ`1(a) =
∑
`

χ[β]` s`[a0]. (3.42)

The operator χ appears complicated. However, its effect is relatively simple: when x0 is a long random vector,

χ[β] acts like a soft thresholding operator on the vector β. That is,

1

nθ
· χ[β]` ≈


β` − λ, β` > λ

β` + λ, β` < −λ

0, otherwise

. (3.43)

We show this rigorously below, in the proof of our main theorems. Here, we support this claim pictorially,

by plotting the `-th entry χ[β]` as β` varies – see Figure 3.10 (middle left) and compare to Figure 3.10 (left).

Because χ[β] suppresses small entries of β, the strongest contributions to −∇ϕ`1 in (3.42) will come from
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Figure 3.10: Gradient Sparsifies Correlations. Left: the soft thresholding operator Sλ[β] shrinks the entries ofβ towards
zero, making it sparser. Middle left: the negative gradient −∇ϕ`1 is a superposition of shifts s`[a0], with coefficients
χ`[β] ≈ Sλ[β]`. Because of this, gradient descent sparsifies β. Middle right: β(a) before, and β(a+) after, one projected
gradient step a+ = PSp−1 [a− t · grad[ϕ`1 ](a)]. Notice that the small entries of β are shrunk towards zero. Right: the
gradient grad[ϕ`1 ](a) is large whenever it is easy to sparsify β; in particular, when the largest entry β(0) � β(1) � 0.

shifts s`[a0] with large β`. In particular, the Euclidean gradient is large whenever there is a single preferred shift

s`[a0], i.e., the largest entry of β is significantly larger than the second largest entry.

Gradient over Sphere. The (Euclidean) gradient∇ϕ`1 measures the slope of ϕ`1 over Rn. We are interested

in the slope of ϕ`1 over the sphere Sp−1, which is measured by the Riemannian gradient

grad[ϕ`1 ](a) = Pa⊥∇ϕ`1(a)

= −Pa⊥
∑
`

χ`[β] s`[a0]. (3.44)

The Riemannian gradient simply projects the Euclidean gradient onto the tangent space a⊥ to Sp−1 at a. The

Riemannian gradient is large whenever

(i) Negative gradient points to one particular shift: there is a single preferred shift s`[a0] so that the

Euclidean gradient is large and

(ii) a is not too close to any shift: it is possible to move in the tangent space in the direction of this shift.13

Since the tangent space consists of those vectors orthogonal to a, this is possible whenever s`[a0] is not

too aligned with a, i.e., a is not too close to s`[a0].

Our technical lemma quantifies this situation in terms of the ordered entries of β. Write |β(0)| ≥ |β(1)| ≥ . . . ,

with corresponding shifts s(0)[a0], s(1)[a0], . . . . There is a strong gradient whenever |β(0)| is significantly

larger than |β(1)| and |β(1)| is not too small compared to λ: in particular, when 4
5 |β(0)| > |β(1)| > λ

4 log2 θ−1 .

13...so the projection of the Euclidean gradient onto the tangent space does not vanish.
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In this situation, gradient descent drives a toward s(0)[a0], reducing |β(1)|, . . . , and making the vector β

sparser. We establish the technical claim that the (Euclidean) gradient of ϕ`1 sparsifies vectors in shift space

in Appendix B.3.

Hessian: Negative Curvature Breaks Symmetry

When there is no single preferred shift, i.e., when |β(1)| is close to |β(0)|, the gradient can be small. Similarly,

when a is very close to ±s(0)[a0], the gradient can be small. In either of these situations, we need to study

the curvature of the function ϕ to determine whether there are local minimizers.

Nonsmoothness. Strictly speaking, the function ϕ`1 is not twice differentiable, due to the nonsmoothness

of the soft thresholding operator Sλ[t] at t = ±λ. Indeed, ϕ`1 is nonsmooth at any point a for which some

entry of y∧∗ a has magnitude λ. At other points a, ϕ`1 is twice differentiable, and its Hessian is given by

∇̃2ϕ`1(a) = −ι∗Ca0
C

∧

x0
PIC

∧

x0
C∗a0

ι, (3.45)

with I = supp
(
Sλ
[
C

∧

yιa
])

. We (formally) extend this expression to every a ∈ Rn, terming ∇̃2ϕ`1 the

pseudo-Hessian of ϕ`1 . For appropriately chosen smooth sparsity surrogate ρ, we will see that the (true)

Hessian of the smooth function ∇2ϕρ is close to ∇̃2ϕ`1 , and so ∇̃2ϕ`1 yields useful information about the

curvature of ϕρ.

Curvature over Euclidean Space. As with the gradient, the Hessian is complicated, but becomes simpler

when the sample size is large. The following approximation

∇̃2ϕ`1(a) ≈ −
∑
`

s`[a0]s`[a0]∗
(

∂

∂β`
χ`[β]

)
(3.46)

can be obtained from (3.42) noting that ∂
∂aχ`[β] =

∑
j sj [a0] ∂

∂βj
χ`[β], that ∂

∂βj
χ`[β] ≈ 0 for j 6= `, and that

1

nθ
· ∂χ`[β]

∂β`
≈


0 |β`| � λ

1 |β`| � λ

(3.47)

Again, we corroborate this approximation pictorially – see Figure 3.11.

From this approximation, we can see that the quadratic form v∗∇̃2ϕ`1v takes on a large negative value

whenever v is a shift s`[a0] corresponding to some |β`| ≥ λ, or whenever v is a linear combination of such

shifts. In particular, if for some j, |β(0)|, |β(1)|, . . . , |β(j)| � λ, then ϕ`1 will exhibit negative curvature in any
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nθ
〈−∇ϕ`1 (a),a〉
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βi

∂
∂βi

1
nθEχi[β]

S⊥τ
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Negative curvature: β(1) >
4
5
β(0)

Strong convexity: β(1) < νλ

Figure 3.11: Hessian Breaks Symmetry. Left: contribution of −si[a0]si[a0]∗ to the Euclidean hessian. If |βi| � λ the
Euclidean hessian exhibits a strong negative component in the si[a0] direction. The Riemmanian hessian exhibits negative
curvature in directions spanned by si[a0] with corresponding |βi| � λ and positive curvature in directions spanned by
si[a0] with |βi| � λ. Middle: this creates negative curvature along the subspace Sτ and positive curvature orthogonal
to this subspace. Right: our analysis shows that there is always a direction of negative curvature when β(1) >

4
5
β(0);

conversely when β(1) � λ there is positive curvature in every feasible direction and the function is strongly convex.

direction v ∈ span(s(0)[a0], s(1)[a0], . . . , s(j)[a0]).

Curvature over the Sphere. The (Euclidean) Hessian measures the curvature of the function ϕ`1 over Rn.

The Riemannian Hessian

H̃ess[ϕ`1 ](a) = Pa⊥

(
∇̃2ϕ`1(a)

Curvature of ϕ`1
+ 〈−∇ϕ`1(a),a〉 · I

Curvature of the sphere

)
Pa⊥ . (3.48)

measures the curvature of ϕ`1 over the sphere. The projection Pa⊥ restricts its action to directions v ⊥ a

that are tangent to the sphere. The additional term 〈−∇ϕ`1(a),a〉 accounts for the curvature of the sphere.

This term is always positive. The net effect is that directions of strong negative curvature of ϕ`1 over Rn

become directions of moderate negative curvature over the sphere. Directions of nearly zero curvature over

Rn become directions of positive curvature over the sphere. This has three implications for the geometry of

ϕ`1 over the sphere:

(i) Negative curvature in symmetry breaking directions: If |β(0)|, |β(1)|, . . . , |β(j)| � λ, ϕ`1 will exhibit

negative curvature in any tangent direction v ⊥ awhich is in the linear span

span(s(0)[a0], s(1)[a0], . . . , s(j)[a0])

of the corresponding shifts of a0.

(ii) Positive curvature in directions away from Sτ : The Euclidean Hessian quadratic form v∗∇̃2ϕ`1v takes

on relatively small values in directions orthogonal to the subspace Sτ . The Riemannian Hessian is
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positive in these directions, creating positive curvature orthogonal to the subspace Sτ .

(iii) Strong convexity around minimizers: Around a minimizer s`[a0], only a single entry β` is large. Any

tangent direction v ⊥ a is nearly orthogonal to the subspace span(s`[a0]), and hence is a direction

of positive (Riemmanian) curvature. The objective function ϕρ is strongly convex around the target

solutions ±s`[a0].

Figure 3.11 visualizes these regions of negative and positive curvature, and the technical claim of positiv-

ity/negativity of curvature in shift space is presented in detail in Appendix B.4.

3.4.3 Any Local Minimizer is a Near Shift

We close this section by stating a key theorem, which makes the above discussion precise. We will show that

a certain neighborhood of any subspace Sτ can be covered by regions of negative curvature, large gradient,

and regions of strong convexity containing target solutions ±s`[a0]. Furthermore, at the boundary of this

neighborhood, the negative gradient points back—retracts—toward the subspace Sτ , due to the (directional)

convexity of ϕρ away from the subspace.

Widened subspace region. To formally state the result, we need a way of measuring how close a is to the

subspace Sτ . For technical reasons, it turns out to be convenient to do this in terms of the coefficients α in

the representation

a =
∑
`∈τ

α`s`[a0] +
∑
`′∈τc

α`′s`′ [a0]. (3.49)

If a ∈ Sτ , we can take α with ατc = 0. We can view the energy ‖ατc‖2 as a measure of the distance from a

to Sτ . A technical wrinkle arises, because the representation (3.49) is not unique. We resolve this issue by

choosing the α that minimizes ‖ατc‖2, writing:

dα(a,Sτ ) = inf {‖ατc‖2 :
∑
`α`s`[a0] = a} . (3.50)

The distance dα(a,Sτ ) is zero for a ∈ Sτ . Our analysis controls the geometric properties of ϕρ over the set of

a for which dα(a,Sτ ) is not too large. Similar to (3.16), we define an object which contains all points that are

close to some Sτ , in the above sense:

Σγ4θp0 :=
⋃

|τ |≤4θp0

{a : dα(a,Sτ ) ≤ γ} . (3.51)

The aforementioned geometric properties hold over this set:
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Theorem 3.4.1 (Three subregions). Suppose that y = a0 ∗ x0 where a0 ∈ Sp0−1 is µ-shift coherent and x0 ∼i.i.d.

BG(θ) ∈ Rn satisfying

θ ∈
[
c′

p0
,

c

p0
√
µ+
√
p0

]
· 1

log2 p0

(3.52)

for some constants c′, c > 0. Set λ = 0.1/
√
p0θ in ϕρ where ρ(x) =

√
x2 + δ2. There exist numerical constants

C, c′′, c′′′, c1-c4 > 0 such that if δ ≤ c′′λθ8

p2 log2 n
and n > Cp5

0θ
−2 log p0, then with probability at least 1 − c′′′/n, for

every a ∈ Σγ4θp0 , we have:

• (Negative curvature): If
∣∣β(1)

∣∣ ≥ ν1

∣∣β(0)

∣∣, then
λmin (Hess[ϕρ](a)) ≤ −c1nθλ; (3.53)

• (Large gradient): If ν1

∣∣β(0)

∣∣ ≥ ∣∣β(1)

∣∣ ≥ ν2(θ)λ, then

‖grad[ϕρ](a)‖2 ≥ c2nθ
λ2

log2 θ−1 ; (3.54)

• (Convex near shifts): If ν2(θ)λ ≥
∣∣β(1)

∣∣, then
Hess[ϕρ](a) � c3nθPa⊥ ; (3.55)

• (Retraction to subspace): If γ2 ≤ dα(a,Sτ ) ≤ γ, then for every α satisfying a = ι∗Ca0α, there exists ζ

satisfying grad[ϕρ](a) = ι∗Ca0
ζ, such that

〈ζτc ,ατc〉 ≥ c4 ‖ζτc‖2 ‖ατc‖2 ; (3.56)

• (Local minimizers): If a is a local minimizer,

min
`∈[±p]
σ∈{±1}

‖a− σ s`[a0]‖2 ≤
1
2 max

{
µ, p−1

0

}
, (3.57)

where ν1 = 4
5 , ν2(θ) = 1

4 log2 θ−1 and γ =
c·poly(

√
1/θ,
√

1/µ)

log2 θ−1 · 1√
p0
.

Proof. See Appendix B.6.5.

The retraction property elaborated in (3.56) implies that the negative gradient at a points in a direction

that decreases dα(a,Sτ ). This is a consequence of positive curvature away from Sτ . It essentially implies
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that the gradient is monotone in ατc space: choose any a ∈ Sτ ∩ Sp−1, write α to be its coefficient, and let ζ

be the coefficient of grad[ϕρ](a). Then ατc = 0, ζτc ≈ 0 and

〈ζτc − ζτc , ατc −ατc〉 ≈ 〈ζτc − 0, ατc − 0〉 = 〈ζτc ,ατc〉 > 0.

Ourmain geometric claim in Theorem 3.3.1 is a direct consequence of Theorem 3.4.1. Moreover, it suggests

that as long as we can minimize ϕρ within the region Σγ4θp0 , we will solve the SaS deconvolution problem.

3.5 Provable Algorithm

In light of Theorem 3.4.1, in this section we introduce a two-part algorithm Algorithm 6, which first applies

the curvilinear descent method to find a local minimum of ϕρ within Σγ4θp0 , followed by refinement algorithm

that uses alternating minimization to exactly recover the ground truth. This algorithm exactly solves SaS

deconvolution problem.

3.5.1 Minimization

There are three major issues in finding a local minimizer within Σγ4θp0 . We want . . .

(i) Initialization. the initializer a(0) to reside within Σγ4θp0 ,

(ii) Negative curvature. the method to avoid stagnating near the saddle points of ϕρ,

(iii) No exit. the descent method to remain inside Σγ4θp0 .

In the following paragraphs, we describe how our proposed algorithm achieves the above desiderata.

Initialization within Σγ4θp0 . Our data-driven initialization scheme produces a(0), where

a(0) = −PSp−1∇ϕρ
(
PSp−1

[
0p0−1;y0; · · · ;yp0−1; 0p0−1

])
= −PSp−1∇ϕρPSp−1

[
P[p0](a0 ∗ x0)

]
,

≈ −PSp−1∇ϕρ
[
P[p0](a0 ∗ x̃0)

]
,

is the normalized gradient vector from a chunk of data a(−1) := P[p0](a0 ∗ x̃0) with x̃0 a normalized Bernoulli-

Gaussian random vector of length 2p0 − 1. Since ∇ϕρ ≈ ∇ϕ`1 , expand the gradient ∇ϕ`1 and rewrite the
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gradient ∇`1(a(−1)) in shift space, we get

−∇ϕρ1(a(−1)) ≈ ι∗Ca0C

∧

x0Sλ
[
C

∧

x0C
∗
a0
P[p0](a0 ∗ x̃0)

]
= ι∗Ca0

χ
[
C∗a0

P[p0]Ca0
x̃0

]
≈ ι∗Ca0

χ [x̃0]

≈ nθ · ι∗Ca0
Sλ [x̃0] ,

where the approximation in the third equation is accurate if the truncated shifts are incoherent

max
i 6=j

∣∣〈ι∗p0si[a0], ι∗p0sj [a0]
〉∣∣ ≤ µ� 1. (3.58)

With this simple approximation, it comes clear that the coefficients (in shift space) of initializer a(0),

a(0) ≈ PSp−1ι∗Ca0
Sλ [x̃0] , (3.59)

approximate Sλ [x̃0], which resides near the subspace Sτ , in which τ contains the nonzero entries of x̃0

on {−p0 + 1, . . . , p0 − 1}. With high probability, the number of non-zero entries is |τ | / 4θp0, we therefore

conclude that our initializer a(0) satisfies

a(0) ∈ Σγ4θp0 . (3.60)

Furthermore, since x̃0 is normalized, the largest magnitude for entries of |x̃0| is likely to be around 1/
√

2p0θ.

To ensure that Sλ [x̃0] does not annihilate all nonzero entries of x̃0 (otherwise our initializer a(0) will become

0), the ideal λ should be slightly less then the largest magnitude of |x̃0|. We suggest setting λ in ϕρ as

λ =
c√
p0θ

. (3.61)

for some c ∈ (0, 1).

Minimize ϕρ within Σγ4θp0 . Many methods have been proposed to optimize functions whose saddle points

exhibit strict negative curvature, including the noisy gradient method [GHJY15], trust region methods

[AMS09, SQW17] and curvilinear search [WY13]. Any of the above methods can be adapted to minimize ϕρ.

In this paper, we use curvilinear method with restricted stepsize to demonstrate how to analyze an optimization

problem using the geometric properties of ϕρ over Σγ4θp0 – in particular, negative curvature in symmetry-

breaking directions and positive curvature away from Sτ .

Curvilinear search uses an update strategy that combines the gradient g and a direction of negative
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curvature v, which here we choose as an eigenvector of the hessianH with smallest eigenvalue, scaled such

that v∗g ≥ 0. In particular, we set

a+ ← PSp−1

[
a− tg − t2v

]
(3.62)

For small t,

ϕ(a+) ≈ ϕ(a) + 〈g, ξ〉+ 1
2ξ
∗Hξ. (3.63)

Since ξ converges to 0 only if a converges to the local minimizer (otherwise either gradient g is nonzero or

there is a negative curvature direction v), this iteration produces a local minimizer for ϕρ, whose saddle

points near any Sτ has negative curvature, we just need to ensure all iterates stays near some such subspace.

We prove this by showing:

• When dα(a,Sτ ) ≤ γ, curvilinear steps move a small distance away from the subspace:

∣∣dα (a+,Sτ
)
− dα (a,Sτ )

∣∣ ≤ γ
2 . (3.64)

• When dα(a,Sτ ) ∈
[
γ
2 , γ
]
, curvilinear steps retract toward subspace:

dα
(
a+,Sτ

)
≤ dα (a,Sτ ) . (3.65)

Together, we can prove that the iterates a(k) converge to a minimizer, and

∀ k = 1, 2, . . . , a(k) ∈ Σγ4θp0 . (3.66)

We conclude this section with the following theorem:

Theorem 3.5.1 (Convergence of retractive curvilinear search). Suppose signals a0,x0 satisfy the conditions of

Theorem 3.4.1, θ > 103c/p0 (c > 1), and a0 is µ-truncated shift coherent maxi 6=j
∣∣〈ι∗p0si[a0], ι∗p0sj [a0]

〉∣∣ ≤ µ. Write

g = grad[ϕρ](a) andH = Hess[ϕρ](a). When the smallest eigenvalue ofH is strictly smaller than −ηv let v be the

unit eigenvector of smallest eigenvalue, scaled so v∗g ≥ 0; otherwise let v = 0. Define a sequence
{
a(k)

}
k∈N where

a(0) equals (3.20) and for k = 1, 2, . . . ,K1:

a(k+1) ← PSp−1

[
a(k) − tg(k) − t2v(k)

]
(3.67)
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with largest t ∈
(
0, 0.1

nθ

]
satisfying Armijo steplength:

ϕρ(a
(k+1)) < ϕρ(a

(k))− 1
2

(
t‖g(k)‖22 + 1

2 t
4ηv‖v(k)‖22

)
, (3.68)

then with probability at least 1 − 1/c, there exists some signed shift ā = ±si[a0] where i ∈ [±p0] such that∥∥a(k) − ā
∥∥

2
≤ µ+ 1/p for all k ≥ K1 = poly(n, p). Here, ηv = c′nθλ for some c′ < c1 in Theorem 3.4.1.

Proof. See Appendix B.7.2.

3.5.2 Local Refinement

In this section, we describe and analyze an algorithmwhich refines an estimate ā ≈ a0 of the kernel to exactly

recover (a0,x0). Set

a(0) ← ā, λ(0) ← C(pθ + log n)(µ+ 1/p), I(0) ← supp(Sλ [C∗āy]). (3.69)

We alternatively minimize the Lasso objective with respect to a and x:

x(k+1) ← argmin
x

1
2‖a

(k) ∗ x− y‖22 + λ(k)
∑
i 6∈I(k)

|xi| , (3.70)

a(k+1) ← PSp−1

[
argmin

a

1
2‖a ∗ x

(k+1) − y‖22
]
, (3.71)

λ(k+1) ← 1
2λ

(k), I(k+1) ← supp
(
x(k+1)

)
. (3.72)

One departure from standard alternating minimization procedures is our use of a continuation method,

which (i) decreases λ and (ii) maintains a running estimate I(k) of the support set. Our analysis will show

that a(k) converges to one of the signed shifts of a0 at a linear rate, in the sense that

min
σ∈±1, `∈[±p0]

∥∥a(k) − σ · s`[a0]
∥∥

2
≤ C ′2−k. (3.73)

Modified coherence and support density assumptions It should be clear that exact recovery is unlikely if

x0 contains many consecutive nonzero entries: in fact in this situation, even non-blind deconvolution fails.

Therefore to obtain exact recovery it is necessary to put an upper bound on signal dimension n. Here, we

introduce the notation κI as an upper bound for number of nonzero entries of x0 in a length-pwindow:

κI := 6 max {θp, log n} , (3.74)
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where the indexing and addition should be interpreted modulo n. We will denote the support sets of true

sparse vector x0 and recovered x(k) in the intermediate k-th steps as

I = supp(x0), I(k) = supp(x(k)), (3.75)

then in the Bernoulli-Gaussian model, with high probability,

max
`

∣∣I ∩ ([p] + `)
∣∣ ≤ κI . (3.76)

The log n term reflects the fact that as n becomes enormous (exponential in p) eventually it becomes likely

that some length-p window of x0 is densely occupied. In our main theorem statement, we preclude this

possibility by putting an upper bound on signal length nwith respect to window length p and shift coherence

µ. We will assume

(µ+ 1/p) · κ2
I < c (3.77)

for some numerical constant c ∈ (0, 1).

Alternating minimization produces a that contracts toward a0. Recall that (B.25) in Theorem 3.4.1 pro-

vides that

‖ā− a0‖2 ≤ (µ+ 1/p) , (3.78)

which is sufficiently close to a0 as long as (3.76) holds true. Here, we will elaborate this by showing a single

iteration of alternating minimization algorithm (3.70)-(3.72) is a contraction mapping for a toward a0.

To this end, at k-th iteration, write T = I(k), J = I(k+1) and σ(k) = sign
(
x(k)

)
, then first observe that the

solution to the reweighted Lasso problem (3.70) can be written as

x(k+1) = ιJ
(
ι∗JC

∗
a(k)Ca(k)ιJ

)−1
ι∗J

(
C∗a(k)Ca0x0 − λ(k)PJ\Tσ

(k+1)
)
, (3.79)

and the solution to least squares problem (3.71) will be

a(k+1) =
(
ι∗C∗x(k+1)Cx(k+1)ι

)−1 (
ι∗C∗x(k+1)Cx0ιa0

)
. (3.80)

Here, we are going to illustrate the relationship betweena(k+1)−a0 anda(k)−a0 using simple approximations.
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First, let us assume that a(k) ≈ a0, C∗a0
Ca0 ≈ I , and I ≈ J ≈ T . Then (3.79) gives

x(k+1) ≈ x0, (3.81)

(x(k+1) − x0) ≈ PI
(
C∗a0

Ca0x0 −C∗a0
Ca(k)x0

)
≈ PI

[
C∗a0

Cx0
ι(a0 − a(k))

]
, (3.82)

which implies, while assuming C∗x0
Cx0

≈ nθI , that from (3.80):

(a(k+1) − a0) ≈ (nθ)−1 ι∗C∗x(k+1)Cx0
ιa0 − ι∗C∗x(k+1)Cx(k+1)ιa0

≈ (nθ)−1 ι∗C∗x0
Ca0

(x0 − x(k+1))

≈ (nθ)−1 ι∗C∗x0
Ca0

PIC
∗
a0
Cx0

ι (a(k) − a0). (3.83)

Now sinceC∗x0
PICx0

≈ nθ e0e
∗
0, this suggests that (nθ)−1 ι∗C∗x0

Ca0
PIC

∗
a0
Cx0

ι approximates a contraction

mapping with fixed point a0, as follows:

(nθ)−1 ι∗C∗x0
Ca0PIC

∗
a0
Cx0ι ≈ ι∗Ca0e0e

∗
0C
∗
a0
ι

≈ a0a
∗
0. (3.84)

Hence, if we can ensure all above approximation is sufficiently and increasingly accurate as the iterate

proceeds, the alternating minimization essentially is a power method which finds the leading eigenvector of

matrix a0a
∗
0—and the solution to this algorithm is apparently a0. Indeed, we prove that the iterates produced

by this sequence of operations converge to the ground truth at a linear rate, as long as it is initialized

sufficiently nearby:

Theorem 3.5.2 (Linear rate convergence of alternating minimization). Suppose y = a0 ∗ x0 where a0 is

µ-shift coherent and x0 ∼ BG(θ), then there exists some constants C, c, cµ such that if (µ + 1/p)κ2
I < cµ and

n > Cθ−2p2 log n, then with probability at least 1− c/n, for any starting point a(0) and λ(0), I(0) such that

∥∥a(0) − a0

∥∥
2
≤ µ+ 1/p, λ(0) = 5κI(µ+ 1/p), I(0) = supp

(
C∗a(0)y

)
, (3.85)

and for k = 1, 2, . . . ,:

x(k+1) ← argminx
1
2‖a

(k) ∗ x− y‖22 + λ(k)
∑
i 6∈I(k) |xi| , (3.86)

a(k+1) ← PSp−1

[
argmina

1
2‖a ∗ x

(k+1) − y‖22
]
, (3.87)

λ(k+1) ← 1
2λ

(k), I(k+1) ← supp
(
x(k+1)

)
(3.88)
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then

∥∥a(k+1) − a0

∥∥
2
≤ (µ+ 1/p)2−k (3.89)

for every k = 0, 1, 2, . . . .

Proof. See Appendix B.8.3.

Remark 3.5.3. The estimates x(k) also converges to the ground truth x0 at a linear rate.

3.6 From Analysis to Practical Algorithm

The algorithmic idea for minimizing ϕρ base on our understanding of its geometry can be similarly applied

to the practical algorithm—solving SaSD with Bilinear Lasso formulation (3.90):

min
a∈Sp−1,x∈Rn

λ ‖x‖1 +
1

2
‖y − a ∗ x‖22 (3.90)

Optimization over lifted space the sphere for a For both the Bilinear Lasso and ϕρ, a unit-norm constraint

ona is enforced to break the scaling symmetry betweena0 andx0. In contrast to enforcing `1-norm constraints

where it leads to spurious minimizers for deconvolution problems [LWDF11, BVG13, ZLK+17]; choosing the

`2-norm, has surprisingly strong implications for optimization. The ϕρ objective, for example, is piecewise

concave whenever a is sufficiently far away from any shift of a0, but the sphere induces positive curvature

near individual shifts to create strong convexity. These two properties combine to ensure recoverability of a0.

Likewise, the solutions of the short kernel a ∈ Rp0 is the collection of shifted a0 as well, which, is the set

of {s−p0+1[a0], . . . , sp0−1[a0]}. To ensure all the local minimizers on the subspace Sτ are the exact shifts, we

naturally optimize a in higher dimension space R3p0−2=p, to effectivly deal with the boundary issues caused

by shift symmetry.

Initializing near a few shifts. The landscape of ϕρ makes single shifts of a0 easy to locate if a is initialized

near a span of a few shifts. Fortunately, this is a relatively simple matter in SaSD, since, as we mentioned,

that y is itself a sparse superposition of shifts. Therefore, one initialization strategy is to randomly choose a

length-p0 window ỹ = [yi,yi+1 . . .yi+p0−1] from the observation and set
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a(0) .
= PSp−1

(
[ 0p0−1 ; ỹi ; 0p0−1 ]

)
. (3.91)

This brings a(0) suitably close to the sum of a few shifts of a0; any truncation effects are absorbed by padding

the ends of ỹi, which also sets the length for a to be p = 3p0 − 2.

Implications for practical computation. The regionally benign optimization landscape of ϕρ guarantees

that efficient recovery is possible for SaSD when a0 is incoherent. Applications of sparse deconvolution,

however, are often motivated by sharpening or resolution tasks [CFG14b, CE16] where the motif a0 is smooth

and coherent (i.e. µ(a0) is large). The ϕρ objective is a poor approximation of the Bilinear Lasso in such cases

and fails to yield practical algorithms, so we should optimize the Bilinear Lasso directly.

In Section 3.5.1, we introduce the algorithm for finding minimizer of ϕρ with marginal minimization over

sparse x and apply second order method (Riemannian curvilinear search) for descending a over sphere.

Though this construction of algorithm provides exact convergence guarantee, in practice we can simply adopt

several of its key ideas for practical algorithms, which works nicely on real data applications using Bilinear

lasso objective.

Besides initialize a(0) as (3.91), we initialize x(0) by marginal minimize over x in Bilinear Lasso with fixed

a(0):

x(0) = argmin
x

(
λ ‖x‖1 +

1

2

∥∥∥a(0) ∗ x− y
∥∥∥2

F

)
(3.92)

and as such

3.7 Experiments

We demonstrate that the tradeoffs between the motif length p0 and sparsity rate θ produce a transition region

for successful SaS deconvolution under generic choices of a0 and x0. For fixed values of θ ∈ [10−3, 10−2]

and p0 ∈ [103, 104], we draw 50 instances of synthetic data by choosing a0 ∼ Unif(Sp0−1) and x0 ∈ Rn with

x0 ∼i.i.d. BG(θ) where n = 5× 105. Note that choosing a0 this way implies µ(a0) ≈ 1√
p0
.

For each instance, we recover a0 and x0 from y = a0 ∗ x0 by minimizing problem (3.6). For ease of

computation, we modify Algorithm 6 by replacing curvilinear search with accelerated Riemannian gradient
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descent method (Algorithm 7), which is an adaptation of accelerated gradient descent [BT09] to the sphere.

In particular, we apply momentum and increment by the Riemannian gradient via the exponential and

logarithmic operators

Expa(u) := cos(‖u‖2) · a+ sin(‖u‖2) · u
‖u‖2

, (3.93)

Loga(b) := arccos(〈a, b〉) · P
a⊥ (b−a)

‖Pa⊥ (b−a)‖
2

, (3.94)

derived from [AMS09]. Here Expa : a⊥ → Sp−1 takes a tangent vector of a and produces a new point on the

sphere, whereas Loga : Sp−1 → a⊥ takes a point b ∈ Sp−1 and returns the tangent vector which points from

a to b.

For each recovery instance, we say the local minimizer amin generated from Algorithm 7 is sufficiently

close to a solution of SaS deconvolution problem, if

success(amin, ;a0) := {max` |〈s`[a0],amin〉| > 0.95 } . (3.95)

The result is shown in Figure 3.12. Our source code can be accessed via the following address:

https://github.com/sbdsphere/sbd_experiments.git

Algorithm 7 SaS deconvolution with Accelerated Riemannian gradient descent

Input: Observation y, sparsity penalty λ = 0.5/
√
p0θ, momentum parameter η ∈ [0, 1).

Initialize a(0) ← −PSp−1∇ϕρ
(
PSp−1

[
0p0−1; [y0, · · · ,yp0−1]; 0p0−1

])
,

for k = 1, 2, . . . ,K do
Get momentum: w ← Expa(k)

(
η · Loga(k−1)(a(k))

)
.

Get negative gradient direction: g ← − grad[ϕρ](w).
Armijo step a(k+1) ← Expw(tg), choosing t ∈ (0, 1) s.t. ϕρ(a(k+1))− ϕρ(w) < −t ‖g‖22.

end for
Output: Return a(K).

3.8 Summary & Discussion

In this section, we close by discussing the most important limitations of our results when a0 is coherent,

about scenarios when the signal setting breaches our assumption, especially when x0 is either highly sparse

or non-symmetric, and highlighting corresponding directions for future work.

The main drawback of our proposed method is that it does not succeed when the target motif a0 has
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Figure 3.12: Success probability of SaS deconvolution under generic a0, x0 with varying kernel length p0, and
sparsity rate θ. When sparsity rate decreases sufficiently with respect to kernel length, successful recovery becomes very
likely (brighter), and vice versa (darker). A transition line is shown with slope log p0

log θ
≈ −2, implying Algorithm 7 works

with high probability when θ / 1√
p0

in generic case.

shift coherence very close to 1. For instance, a common scenario in image blind deconvolution involves

deblurring an image with a smooth, low-pass point spread function (e.g., Gaussian blur). Both our analysis

and numerical experiments show that in this situation minimizing ϕρ does not find the generating signal

pairs (a0,x0) consistently—the minimizer of ϕρ is often spurious and is not close to any particular shift of

a0. We do not suggest minimizing ϕρ in this situation. On the other hand, minimizing the bilinear lasso

objective ϕlasso over the sphere often succeeds even if the true signal pair (a0,x0) is coherent and dense.

In light of the above observations, we view the analysis of the bilinear lasso as the most important

direction for future theoretical work on SaS deconvolution. The drop quadratic formulation studied here

has commonalities with the bilinear lasso: both exhibit local minima at signed shifts, and both exhibit

negative curvature in symmetry breaking directions. A major difference (and hence, major challenge) is that

gradient methods for bilinear lasso do not retract to a union of subspaces – they retract to a more complicated,

nonlinear set.

Our model assume x0 to be Bernoulli-Gaussian vector, which are sparse and symmetric iid random

variables. When x0 is sparse but non-symmetric, (e.g. Bernoulli), one can apply our result with a simple

75



symmetrization trick, by using the concatenated observation vectors [y,−y] as an input to our algorithm.

When x0 is highly sparse and if y is noiseless, it is possible to identify a short copy of a0 via looking for a

shortest consecutive non-zero entries within y. When θ � 1/p0, these isolated copies are very common. Once

θ exceeds 1/p0, or when support x0 is not Bernoulli random while being more clustered, they become very

uncommon. In particular, the probability of an isolated copy is small unless n ' exp(p0θ). Our proposed

approach succeeds when n ≥ poly(p0).

In applications involving noisy data, optimization approaches often outperform direct inspection, even for

samples with isolated copies of a0. An intuition for this is that optimization methods aggregate information

across the sample. One practical avenue for obtaining the best of both worlds is to try to optimize the choice

of data segment used for initialization. This can be a potential improvement for our data-driven initialization

scheme, both in theory and in practice.

Finally, there are several directions in which our analysis could be improved. Our lower bounds on

the length n of the random vector x0 required for success are clearly suboptimal. We also suspect our

sparsity-coherence tradeoff between µ, θ (roughly, θ / 1/(
√
µp0)) is suboptimal, even for the ϕρ objective.

Articulating optimal sparsity-coherence tradeoffs for is another interesting direction in this line of work.

Extending our current result for cases when y is affected by noise can also be a natural next step for future

work.
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Chapter 4

Discussion

Due to the broad application of many field in practice, the associate problem with sparse deconvolution

is far beyond the subject discussed in the thesis, and many possible research direction can very likely be

branched out from it. Here, we will list some potentially interesting topics, that also has accessed to real

world applications, and potentially can be extended and build on from the presented works:

• Convolutional Dictionary Learning. In this scenario, people consider the observation Y consist of

linear combination of k convoluting components (Ai,Xi), namely Y =
∑k
i Ai ∗Xi, while all of the

components {(Ai,Xi)}k are unknown. Albiet this can be viewed as a simple extension for short-and-

sparse deconvolution if the number of pairs k is relatively small, the convolutional dictionary problem

is generally way more complicated then SaS deconvolution, and the author believe so far even the

existence of stably working of a general purpose algorithm has remained unclear. Nevertheless, it is a

highly valuable problem since it can be directly being apply in many fields, and even potentially giving

access to study the convolutional neural network.

• Parametric Short-and-Sparse Deconvolution. In many cases, especially in scientific/biological signal

processing, the short event signal A can be parametrized base on the understanding of the physi-

cal/chemical phenomenon for the event, or the statistic evidence from past data. ParametrizeA can

potentially increase the solvability of short-and-spare deconvolution, for which we believe deserve a

systematic study for this subject since the method is operating in practice in many fields while gaining

successes. It is possible that with our study of short-and-sparse deconvolution, a more sophisticated

understanding for its parameterized version becomes possible.
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• Mixed probe scan in microscopic imaging. In our study of chemical microscopy, we compare the pros

and cons between the localized measurement with point probe and the non-local measurement line

scans, where the point probe can be general purpose but with inefficient scanning time, while the line

probe requires the signal to be structured in order to reconstruct the signal with more efficient scans. A

possible study, to gain advantage on both local and non-local measurements, is to combine the multiple

type of probe or even active sampling across multiple probe. This will rely on our future understanding

for line probe, or even the inventions of other type of non-localized probe.
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Appendix A

Appendix: Compressed Sensing

Microscopy with Scanning Line Probe

A.1 Analytic Derivations

A.1.1 Proof of Theorem 2.4.1

Proof. First we show the existence result. Note thatX0 satisfies the equalitiy constraint (2.8) automatically,

and since total variation of Dirac measure is exactly one,

∫
|X0| (dw′) =

∑
w

∫
|αw| δw(dw′) =

∑
w |αw|

=
∑
w αw ·D ∗ L∗Θ

[
Q̃
]
(w)

then sinceD is circular symmetric,D ∗ L∗Θ
[
Q̃
]
(w) = 〈δw,D ∗ L∗Θ

[
Q̃
]
〉 = 〈LΘ [D ∗ δw] , Q̃〉, we derive

∫
|X0| (dw′) = 〈LΘ [D ∗

∑
w αwδw] , Q̃〉 = 〈R̃, Q̃〉

which certifies thatX0 is an optimal solution to the problem since the duality gap
∫
|X0| (dw′)− 〈R̃, Q̃〉 = 0.

For uniqueness, letX ′ =
∑
w′∈W′ α

′
w′δw′ to be another optimal solution withW ′ 6⊆ W , since we knowX ′ is

primal feasible R̃ = LΘ [D ∗X ′], then

∫
|X0| (dw′) = 〈R̃, Q̃〉 = 〈LΘ [D ∗X ′] , Q̃〉

= 〈X ′,D ∗ L∗Θ[Q̃]〉
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=
∑
w′∈W′ α

′
w′D ∗ L∗Θ

[
Q̃
]
(w′)

and by knowingW ′ 6⊆ W and using the second condition in (2.6):

∫
|X0| (dw′) <

∑
w′∈W′ |α′w′ | =

∫
|X ′| (dw′)

thus X ′ is an optimal solution only if W ′ ⊆ W . Finally uniqueness of X0 is a result from injectivity of

LΘ[D ∗ · ] overW from (2.7).

A.1.2 Proof of Theorem 2.4.2

Proof. We first argue that with high probability, no pair of discs overlaps within any line scan. Let θi ∼i.i.d.

Unif[−π, π) denote the i-th scanning angle. Write d as the minimum distance between all pairs of (wi,wj),

the probability that any particular pair of two discs overlap is bounded as

P
[
Two discs overlap on line scan R̃i

]
≤ P

[
θi ∈

[
− sin−1

(
2r
d

)
, sin−1

(
2r
d

)]]
= 2

π sin−1 2r
d (A.1)

Using the assumption that R < d
8 to bound sin−1( 2r

d ) < 2πr
3d and summing the failure probability over all

three line scans and k(k−1)
2 pairs of discs, we obtain:

P
[
Two of the k discs overlap at either R̃1, R̃2, R̃3

]
≤ 3k2

2 · P
[
Two discs overlap on line scan R̃1

]
≤ 3k2

π sin−1
(

2r
d

)
≤ 2k2r

d

≤ C (A.2)

Thus, with probability at least 1− C, no pair of discs overlaps in any line scan.

Since there are no overlapping discs in any line, a single line projection R̃i(t) with scan angle θi has largest

magnitude at points t where the probe body passes the disc center wj . These points of largest magnitude βj

is located at 〈u⊥θi ,wj〉 on R̃i, or equivalently,

Lθi [D ∗ δwj ](〈u⊥θi ,wj〉) = βj , i = 1, 2, 3 (A.3)

89



Using these points, we construct the dual certificate Q̃i for angle θi, where

Q̃i =
∑k
j=1

1√
3βj
δ〈u⊥θi ,wj〉

(A.4)

and Q̃ =
[
Q̃1, Q̃2, Q̃3

]
. Using this certificate we verify (2.6) holds. For the equality, calculate at every

wj ∈ {w1, . . .wk}:

D ∗ L∗{θ1,θ2,θ3}
[
Q̃
]
(wj)

= 〈D ∗ L∗{θ1,θ2,θ3}
[
Q̃
]
, δwj 〉 = 1√

3

∑3
i=1〈Q̃i,Lθi [D ∗ δwj ]〉

= 1√
3

∑3
i=1

〈
1√
3βj
δ〈u⊥θi ,wj〉

,Lθi [D ∗ δwj ]
〉

= 1
3βj

∑3
i=1 Lθi [D ∗ δwj ](〈u⊥θi ,wj〉) = 1 (A.5)

where the third line is by plugging in Q̃ and derived with no overlap property; the forth line via plugging in

(A.3). For the inequality, calculate∣∣∣D ∗ L∗{θ1,θ2,θ3}[Q̂](w)
∣∣∣

=
∣∣∣∑3

i=1

∑k
j=1

1
3βj
Lθi [D ∗ δw](〈u⊥θi ,wj〉)

∣∣∣ (A.6)

which is derived similarly as (A.5). Now, by observing Lθ[D ∗ δw] has unique local maximum at 〈u⊥θ ,w〉,

each summand (w.r.t. i) in (A.6) is strictly less than 1 if w does not satisfy

∃ j ∈ {1, . . . , k} , 〈u⊥θi , w〉 = 〈u⊥θi , wj〉. (A.7)

Accordingly, define the back projection line set `θi,tj as

`θi,tj := {w ∈ R2
∣∣ 〈u⊥θi , w〉 = 〈u⊥θi , wj〉}, (A.8)

we want to show that for every w 6∈ {w1, . . . ,wk},

w 6∈ ∩3
i=1

(
∪kj=1 `θi,tj

)
(A.9)

then (A.6) is strictly less then 1.

W.l.o.g., write wj` = `θ1,tj ∩ `θ2,t` . Suppose the point wj` is in the third line set ∪kj=1`θ3,tj , then there

exists some disc center wq such that 〈u⊥θ3 , wj`〉 = 〈u⊥θ3 , wq〉. Since θ3 is generated uniform randomly, we
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conclude that for any j, `:

P
[
∃ q ∈ 1, . . . , k s.t. wj` ∈ `θ3,tq

]
= 0. (A.10)

The direction uθ3 is not aligned with the line formed by wj`,wq almost surely. This proves (A.9).

Finally, the diagonal entries of Gram matrixG defined in (2.7) is strictly positive, and the off-diagonal

entriesGij can be derived as

Gij = 1
3

∑3
t=1

〈
Lθt [D] ∗ δwi ,Lθt [D] ∗ δwj

〉
= 0 (A.11)

by no overlap property. HenceG is positive definite. This concludes that solving total variation minimization

successfully reconstruct the image from three line projections.

A.1.3 Proof of Theorem 2.4.3

Proof. Write d(t) = L0

[
D
]
(t), where d is a one-dimensional standard Gaussian with deviation r. SinceD is

circular symmetric, the line projection ofD in any angle is identical, that is, Lθ[D] = L0[D] for every θ. Also

write wi −wj = d(cosφ, sinφ), then

〈
Lθ[D ∗ δwi ], Lθ[D ∗ δwj ]

〉
=
〈
Lθ[D] ∗ Lθ[δwi ], Lθ[D] ∗ Lθ[δwj ]

〉
=
〈
d ∗ d, δ|u∗θ(wi−wj)|

〉
= (d ∗ d) (d cos(θ − φ))

= exp

(
−d2 cos2(θ − φ)

4r2

)
, (A.12)

where the first equality is by interchanging iterated integrals; the second equality is by knowing the adjoint

of convolution is correlation and d is symmetric; and the final equality is by observing that d ∗d is a Gaussian

function with variance
√

2r and (d ∗ d)(0) = 1.

We derive the expectation upper bound of (A.12) over θ as

Eθ
〈
Lθ[D ∗ δwi ], Lθ[D ∗ δwj ]

〉
=

1

π

∫ π

0

exp
(
−d2 cos2 θ)/4r2

)
dθ

≤ 1

π

∫ π

0

1

1 + (d2 cos2 θ)/4r2
dθ
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=
1√

1 + d2/4r2
(A.13)

by utilizing exp(−x2)(1 + x2) < 1 in the second inequality.

As for the lower bound of (A.12), from its first equality, we calculate when d > 2r, then

1

π

∫ π

0

exp
(
− (d2 cos2 θ)/4r2

)
dθ

≥ 1

π

∫ π

0

exp
(
−(d2/4r2) · (2r2/d2)

)
· 1{cos2 θ≤2r2/d2} dθ

≥ 2

π
· exp

(
−1

2

)
·
(π

2
− cos−1

√
2r2/d2

)
≥ 2

π
· exp

(
−1

2

)
· (
√

2r/d)

≥ r/2d. (A.14)

using cos−1 x ≤ π
2 − x for x ∈ [0, 0.5]. And when d ≤ 2r, we simply have

1

π

∫ π

0

exp
(
− (d2 cos2 θ)/4r2

)
dθ ≥ 1− d2/8r2 (A.15)

via Taylor expansion at d/2r = 0

A.1.4 Proof of Theorem 2.4.4

Proof. We start with restating projection slice theorem as F1Lθ[Y ] = Sθ[F2Y ], where F1, F2 are unitary

Fourier transform in one, two-dimensional Euclidean space respectively, Sθ is the slice operator defined as

Sθ[Y ](r) = Y (ru⊥θ ) [Hel10].

Notice that Y = D ∗X ∈ L1 ∩ L2(R2) therefore its Fourier transform is well defined, we expand L∗θLθ in

Fourier domain with slice operator Sθ, write Ŷ = F2Y . and derive

EθL∗θLθ[Y ](w)

= EθF∗2S∗θF−1∗
1 F−1

1 SθF2Y (w)

= Eθ
∫
ξ∈R2

exp (j2π 〈ξ,w〉) · S∗θ [Sθ[Ŷ ]](ξ) dξ

= Eθ
∫
t∈R
Sθ[exp (j2π 〈·,w〉)](t) · Sθ[Ŷ ](t) dt

=
1

2π

∫ 2π

θ=0

∫
t∈R

exp(j2πt
〈
u⊥θ ,w

〉
) · Ŷ (tu⊥θ ) dt dθ

=
2

2π

∫ 2π

θ=0

∫
t≥0

exp(j2πt
〈
u⊥θ ,w

〉
) · Ŷ (tu⊥θ ) dt dθ

92



=

∫
ξ∈R2

exp(j2πt 〈ξ,w〉) ·
(

1

π ‖ξ‖2

)
· Ŷ (ξ) dξ

=

(
F−1

2

{
1

π ‖ξ‖2

}
∗ Y

)
(w), (A.16)

where the third equality is derived from definition of adjoint operator, sixth equality is by coordinate

transformation from polar to Cartesian, and the last equality is by convolution theorem. Hence we conclude

that EθL∗θLθ[Y ] is the convolution between Y and a lowpass kernel with spectrum decay rate ‖ξ‖−1
2 .

When ‖L0[D]‖L2 = 1 and is a Gaussian functionwith deviation r, thenD(w) =

√
2r
√
π

2πr2 exp
(
−‖w‖

2
2

2r2

)
with

Fourier domain expression as F2 {D} (ξ) =
√

2r
√
π exp(−2π2r2 ‖ξ‖22). Combine with (A.16), the spectrum

of EθD ∗ L∗θLθ[D ∗ · ] becomes

F2{EθD ∗ L∗θLθ[D ∗X]}(ξ)

=
2r√
π ‖ξ‖2

exp(−4π2r2 ‖ξ‖22) · F2 {X} (ξ).

= F2 {K} (ξ) · F2 {X} (ξ) (A.17)

Plug in (2.12), when ‖ξ‖2 ≥
2r
ε then clearly |F2 {K} (ξ)| ≤ ε. Lastly for the other lower bound ‖ξ‖2 ≥

1
r

(√
|log(8r2ε−1)|+ 0.2

)
, we calculate

|F2 {K} (ξ)| ≤ 2r2

0.2
√
π
· exp

(
−4π2

∣∣log(8r2ε−1)
∣∣)

≤ 2r2

0.2
√
π
· 1

8r2ε−1
≤ ε. (A.18)

A.1.5 Proof of Theorem 2.5.1

Proof. For any linesR ∈ L2(R× [m]), image Y ∈ L2(R2), and any angles Θ = {θ1, . . . , θm},

〈R̃,LΘ[Y ]〉 =
1√
m

m∑
i=1

∫
R̃i(t)Lθi [Y ](t) dt

=
1√
m

m∑
i=1

∫
R̃i(t)

∫
Y (suθi + tu⊥θi) ds dt

=
1√
m

m∑
i=1

∫
R̃i

(〈
w,u⊥θi

〉)
Y (w) dw

=

∫ ( 1√
m

m∑
i=1

R̃i

(〈
w,u⊥θi

〉) )
Y (w) dw
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= 〈L∗Θ[R̃],Y 〉. (A.19)

The first equality comes from the definition of inner product in lines space; the second comes from (2.2); the

third uses change of variable where w = suθ + tu⊥θ for every θ; the fourth comes from linearity; and the last

equality from definition of inner product in image space.
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Appendix B

Appendix: Short-and-Sparse

Deconvolution

B.1 Basic bounds for Bernoulli-Gaussian vectors

In this section, we prove several lemmas pertaining to the sparse random vector x0 ∼i.i.d. BG(θ).

Lemma B.1.1 (Support of x0). Let x0 ∼i.i.d. BG(θ) and I0 = supp(x0) ⊆ [n]. Suppose n > 10θ−1, then for any

ε ∈
(
0, 1

10

)
, with probability at least 1− ε we have

||I0| − nθ| ≤ 2
√
nθ log ε−1. (B.1)

And suppose n ≥ Cθ−2 log p and θ, then with probability at least 1− 2/n, we have

∀ t ∈ [2p] \ {0} , 1
2nθ

2 ≤ |I0 ∩ (I0 + t)| ≤ 2nθ2 (B.2)

where C is a numerical constant.

Proof. Let x0 = ω · g ∼i.i.d. BG(θ), notice that the support of the Bernoulli-Gaussian vector x0 is almost

surely equal to the support of the Bernoulli vector ω. Applying Bernstein inequality Theorem B.10.4 with

(σ2, R) = (1, 1), then if nθ > 10 we have

P

∣∣∣∣∣∣
∑
k∈[n]

ωk − nθ

∣∣∣∣∣∣ > 2
√
nθ log ε−1

 ≤ 2 exp

(
−4nθ log2 ε−1

2nθ + 4
√
nθ log ε−1

)
≤ ε.
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For (B.2), let Jt := I0 ∩ (I0 + t). The cardinality of Jt is an inner product between shifts of ω:

|Jt| =
∑
k∈[n]

ωkωk−t, (B.3)

and define two subset Jt1 ] Jt2 = Jt, as follows: Jt1 = Jt ∩ K1, K1 := [n] ∩ {0, . . . , t− 1, 2t, . . . , 3t− 1, . . .}

Jt2 = Jt ∩ K2, K2 := [n] ∩ {t, . . . , 2t− 1, 3t, . . . , 4t− 1, . . .}
. (B.4)

Here, the size of sets K1,K2 has two-side bounds 0.4n ≤ (n− 2p) /2 ≤ |K2| ≤ |K1| ≤ (n+ 2p) /2 ≤ 0.6n,

thus the size of sets Jt1, Jt2 can be derived using Bernstein inequality Theorem B.10.4 with n > Cθ−2 log p as

P
[

max
t∈[2p]\{0}

|Jt1 | ≥ nθ2

]
= P

[
max

t∈[2p]\{0}

∑
k∈K1

ωkωk−t ≥ nθ2

]
≤ 2p · P

[∑
k∈K1

ωkωk+1 ≥ nθ2

]

≤ 2p · P

[∑
k∈K1

ωkωk+1 − E
∑
k∈K1

ωkωk+1 ≥ nθ2 − 0.6nθ2

]

≤ 4p · exp

(
−
(
0.4nθ2

)2
2 · 0.6nθ2 + 2 · 0.4nθ2

)
= exp

(
log(4p)− 0.08nθ2

)
≤ 1/n, (B.5)

where the last two inequalities hold with C > 105. The lower bound can also derived as follows

P
[

min
t∈[2p]\{0}

|Jt1 | ≤ nθ2/4

]
= P

[
min

t∈[2p]\{0}

∑
k∈K1

ωkωk−t ≤ nθ2/4

]
≤ 2p · P

[∑
k∈K1

ωkωk+1 ≤ nθ2/4

]

≤ 2p · P

[∑
k∈K1

ωkωk+1 − E
∑
k∈K1

ωkωk+1 ≤ nθ2/4− 0.4nθ2

]

≤ 4p · exp

(
−
(
0.15nθ2

)2
2 · 0.6nθ2 + 2 · 0.15nθ2

)
= exp

(
log(4p)− 0.0015nθ2

)
≤ 1/n. (B.6)

The bound for |J2| can derived similarly to (B.5)-(B.6).

Lemma B.1.2 (Norms of x0). Let x0 ∼i.i.d. BG(θ) ∈ Rn. If n ≥ 10θ−1, then for any ε ∈
(
0, 1

10

)
, with probability

at least 1− ε, ∣∣∣‖x0‖1 −
√

2/πnθ
∣∣∣ ≤ 2

√
nθ log ε−1,

∣∣∣‖x0‖22 − nθ
∣∣∣ ≤ 3

√
nθ log ε−1 (B.7)

Proof. To bound ‖x0‖1, using Bernstein inequality with (σ2, R) = (θ, 1) and with nθ ≥ 10 we have

P

[∣∣∣∣∣‖x0‖1 −
√

2

π
nθ

∣∣∣∣∣ ≥ 2
√
nθ log ε−1

]
≤ 2 exp

(
−4nθ log2 ε−1

2nθ + 4
√
nθ log ε−1

)
≤ ε

Similarly for ‖x0‖22, from Gaussian moments Theorem B.10.2 , we know the 2-norm
∑
i∈[n] E |x0i|4 = 3nθ
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and q-norm
∑
i∈[n] E |x0i|2p ≤ (nθ)(2q − 1)!! ≤ 1

2 (3nθ)2q−2q! for q ≥ 3. Let (σ2, R) = (3θ, 2) in Bernstein

inequality form Theorem B.10.4, nθ ≥ 10 we have

P
[∣∣∣‖x0‖22 − nθ

∣∣∣ ≥ 3
√
nθ log ε−1

]
≤ 2 exp

(
−9nθ log2 ε−1

2(3nθ) + 12
√
nθ log ε−1

)
≤ ε,

completing the proof.

Lemma B.1.3 (Norms of x0 subvectors). Let x0 ∼i.i.d. BG(θ) ∈ Rn and n > 10, then with probability at least

1− 3/n, we have

max
U=[2p]+j
j∈[n]

‖PUx0‖22 ≤ 2pθ + 6
(√

pθ + log n
)

(B.8)

and if a0 is µ-shift coherent and there exists a constance cµ such that both θ2p < cµ and µp2θ < cµ, then

max
U=[p]+j
j∈[n]

‖PU [a0 ∗ x0]‖22 ≤ pθ + log n. (B.9)

Proof. Use Bernstein inequality with (σ2, R) = (3θ, 2) and t = max
{√

pθ, log n
}
, with union bound we

obtain:

P

 max
U=[2p]+j
j∈[n]

‖PUx0‖22 ≥ 2pθ + 6
(√

pθ + log n
) ≤ 2n exp

(
−

36
(√
pθ + log n

)2
6pθ + 12

(√
pθ + log n

))

≤ 2 exp

(
log n− 36t2

6t2 + 12t

)
≤ 2

n
. (B.10)

For the second inequality, first we know calculate the expectation

E ‖PU [a0 ∗ x0]‖22 = E
[
x∗0C

∗
a0
PUCa0

x0

]
= θ · tr

(
C∗a0

PUCa0

)
‖a0‖22 + θ ·

p−1∑
i=1

‖ι∗si[a0]‖22

= pθ. (B.11)

Then apply Henson Wright inequality Theorem B.10.6 with
∥∥C∗a0

PUCa0

∥∥2

F
=
∥∥ι∗C∗a0

Ca0ι
∥∥2

F
≤ p (1 + µp)

and also
∥∥C∗a0

PUCa0

∥∥
2

= ‖Ca0
ι‖22 = 1 + µp, we can derive

P

 max
U=[p]+j
j∈[n]

‖PU [a0 ∗ x0]‖22 ≥ pθ + log n

 ≤ n exp

(
−min

{
log2 n

64θ2p (1 + µp)
,

log n

8
√

2θ (1 + µp)

})

≤ exp

(
log n−min

{
log2 n

128cµ
,

log n

32cµ

})
≤ 1

n
(B.12)
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when cµ < 1
300 .

Lemma B.1.4 (Inner product between shifted x0). Let x0 ∼i.i.d. BG(θ) ∈ Rn. There exists a numerical constant

C such that if n > Cθ−2 log p and pθ log2 θ−1 > 1, with probability at least 1− 4/n, the following two statements

hold simultaneously:

max
i 6=j∈[2p]

〈si[x0], sj [x0]〉 ≤ 6
√
nθ2 log n; (B.13)

and for xi = |x0,i| ∈ Rn+ the vector of magnitudes of x0,

max
i 6=j∈[2p]

〈si[x], sj [x]〉 ≤ 4nθ2. (B.14)

Proof. We will start from proving (B.14). Write x = |g| ◦ ω where g / ω are Gaussian/Bernoulli random

vectors respectively. Let I0 denote the support of ω and t = |j − i|with 0 < t < p. Then (B.14) can be written

as summation of Gaussian r.v.s. on intersection of support set between shifts:

〈si[x], sj [x]〉 =
∑

k∈I0∩(I0+t)

|gk| |gk−t| (B.15)

Define Jt := I0 ∩ (I0 + t) = Jt1 ] Jt2 same as (B.4). Notice that both
∑
k∈Jt1 |gk| |gk−t| and

∑
k∈Jt2 |gk| |gk−t|

are sum of independent r.v.s.. We are left to consider the upper bound of
∑
j∈Jti |gj |

∣∣g′j∣∣ where g, g′ are

independent Gaussian vectors. We condition on the following event

EJ :=
{
∀t ∈ [2p] \ {0} , nθ2/4 ≤ |Jt1| , |Jt2| ≤ nθ2

}
, (B.16)

which holds w.p. at least 1 − 2/n from Theorem B.1.1. Since
∑
j∈Jt1 |gj |

∣∣g′j∣∣ ≤ ‖gJt1‖2 ∥∥g′Jt1∥∥2
, we use

Gaussian concentration Theorem B.10.3 and union bound to obtain

P

 max
t∈[2p]\{0}

∑
j∈Jt1

∣∣gjg′j∣∣ > 2 |Jt1|

 ≤ 2p · P
[
‖gJt1‖2

∥∥g′Jt1∥∥2
− E ‖gJt1‖2

∥∥g′Jt1∥∥2
> |Jt1|

]
≤ 4p · P

[
‖gJt1‖2 − E ‖gJt1‖2 >

√
|Jt1|/3

]
≤ 4p exp (−(|Jt1| /9)/2) ≤ 4p exp

(
−nθ2/72

)
≤ 1/n (B.17)

where the last inequality is derived simply via assuming n = Cθ−2 log p for some C > 104, such that

C > 400 ∗ (4C)1/5 =⇒ C log p > 400 log((4C)1/5p) =⇒ C log p > 72 log(4Cp5) > 72 log(4Cp2 log3 p)

=⇒ nθ2 > 72 log(p · 4Cθ−2 log p) = 72 log(4np).
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Likewise for sum on set Jt2, we collect all above result and conclude for every i 6= j ∈ [2p],

〈si[x], sj [x]〉 =
∑
k∈Jt1

|gk|
∣∣g′k−t∣∣+

∑
k∈Jt2

|gk|
∣∣g′k−t∣∣ ≤ 2 (|Jt1 |+ |Jt2 |) ≤ 4nθ2. (B.18)

For (B.13) similarly condition on event EJ , using Bernstein inequality Theorem B.10.4 with (σ2, R) = (1, 1):

P

 max
t∈[2p]\{0}

∣∣∣∣∣∣
∑
j∈Jt1

gjg
′
j

∣∣∣∣∣∣ > 3
√
nθ2 log n

 ≤ p · exp

(
−9nθ2 log n

2 |Jt1|+ 6
√
nθ2 log n

)
≤ p · exp

(
−9nθ2 log n

3nθ2

)
≤ 1

n

(B.19)

thus for every i 6= j ∈ [2p],

|〈si[x0], sj [s0]〉| ≤

∣∣∣∣∣ ∑
k∈Jt1

gkg
′
k−t

∣∣∣∣∣+

∣∣∣∣∣ ∑
k∈Jt2

gkg
′
k−t

∣∣∣∣∣ ≤ 6
√
nθ2 log n. (B.20)

Finally, both (B.18),(B.20) holds simultaneously with probability at least

1− 2/n− 1/n− 1/n = 1− 4/n (B.21)

Lemma B.1.5 (Convolution of x0). Given y = x0 ∗ a0 where x0 ∼i.i.d. BG(θ) ∈ Rn and a0 ∈ Rp0 is µ-shift

coherent. Suppose n ≥ Cθ−2 log p for some numerical constant C > 0, with probability at least 1− 7/n, we have the

following two statement simultaneously hold:

‖Cyι‖22 ≤ 3(1 + µp)nθ (B.22)

and for all J ⊆ [n],

‖PJCyι‖22 ≤ 14 |J | (1 + µp) (pθ + log n) (B.23)

Proof. Given any a ∈ Sp−1, write β = C∗a0
ιa where |β| ≤ 2p . Apply ‖x0‖22 ≤ 2nθ from Theorem B.1.2 by

choosing ε = 1/n, also |〈si[x0], sj [x0]〉| ≤ 6
√
nθ2 log n from Theorem B.1.4 we get:

‖Cyιa‖22 = ‖Cx0
β‖22 ≤ ‖β‖

2
2 ‖x0‖22 +

∑
i6=j∈[±p]

|βiβj 〈si[x0], sj [x0]〉|

≤ ‖β‖22 ‖x0‖22 + ‖β‖21 max
i6=j∈[±p]

|〈si[x0], sj [x0]〉|

≤ ‖β‖22 · 2nθ + p ‖β‖22 · 6
√
nθ2 log n ≤ 3 ‖β‖22 nθ

where n = Cθ−2 log pwith C ≥ 104, and the statement holds with probability at least 1− 5/n.
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For the bound of ‖PJCyιa‖22. Simply apply Theorem B.1.3 and utilize norm bound of ‖β‖22, with

probability at least 1− 2/nwe have:

‖PJCyιa‖22 =
∑
i∈J
|〈si[x0],β〉|2 ≤ |J | max

U=[2p]+j
j∈[n]

‖PUx0‖22 ‖β‖
2
2 ≤ |J | · 14 (pθ + log n) · ‖β‖22

Finally apply Theorem B.2.4 and Gershgorin disc theorem obtain

‖β‖22 =
∥∥C∗a0

ιa
∥∥2

2
≤
∥∥C∗a0

ι
∥∥2

2
= σmax (M) ≤ 1 + µp. (B.24)

Remark B.1.6. When a0 is a basis vector e0, the result of Theorem B.1.5 gives upper bound of ‖Cx0
‖2 < 3nθ, whose

lower bound can be derived similarly with ‖Cx0ι‖2 ≥
2
3nθ

B.2 Vectors in shift space

In this section, we will establish a number of properties of the coefficient vectors α and correlation vector

β. Generally speaking, when a is close to the subspace Sτ , then both vectors α,β have most of their energy

concentrated on the entries τ . In this section, we derive upper bounds on ατc and βτc under various

assumptions.

In particular, we will introduce a relationship between the sparsity rate θ, coherence µ and size |τ |, which

we term the sparsity-coherence condition. In Theorem B.2.2 we prove that measuring the distance from

a to subspace Sτ in terms of ‖ατc‖2 gives a seminorm. We then use this distance to characterize a region

R(Sτ , γ(cµ)) around the subspace Sτ . Later, in Theorem B.2.4 we illustrate the relationship between α and

β, where β = C∗a0
ιι∗Ca0α. Finally in Theorem B.2.5 and Theorem B.2.6, controls the magnitude of ατc and

βτc near Sτ .

Definition B.2.1 (Sparsity-coherence condition). Let a0 ∈ Sp0−1 with shift coherence µ. We say that (a0, θ, |τ |)

satisfies the sparsity-coherence condition SCC(cµ) with constant cµ, if

θ ∈

[
1

p
,

cµ

4 max
{
|τ | ,√p

}] · 1

log2 θ−1
, µ ·max

{
|τ |2 , p2θ2

}
· log2 θ−1 ≤ cµ

4
, (B.25)

where p = 3p0 − 2.
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Lemma B.2.2 (dα is a seminorm). For every solution subspace Sτ , the function dα(·,Sτ ) : Rp → R+ defined as

dα(a,Sτ ) = inf {‖ατc‖2 | a = ι∗Ca0α} . (B.26)

is a seminorm, and for all a ∈ Sτ , dα(a,Sτ ) = 0.

Proof. It is immediate fromdefinition that d(·,Sτ ) is nonnegative andSτ ⊆ {a : dα(a,Sτ ) = 0}. Subadditivity

can be shown from simple norm inequalities and our definition of dα, for all a1, a2 we have

dα(a1 + a2,Sτ ) = inf {‖ατc‖2 | a1 + a2 = ι∗Ca0
α}

= inf {‖α1τc +α2τc‖2 | a1 = ι∗Ca0α1, a2 = ι∗Ca0α2}

≤ inf {‖α1τc‖2 + ‖α2τc‖2 | a1 = ι∗Ca0α1, a2 = ι∗Ca0α2}

= inf {‖α1τc‖2 | a1 = ι∗Ca0
α1}+ inf {‖α2τc‖2 | a2 = ι∗Ca0

α2}

= dα(a1,Sτ ) + dα(a2,Sτ ).

Similarly the absolute homogeneity, for any c ∈ R:

dα(c · a,Sτ ) = inf {‖α′τc‖2 | c · a = ι∗Ca0
α′} = inf {‖c ·ατc‖2 | a = ι∗Ca0

α}

= |c| · inf {‖ατc‖2 | a = ι∗Ca0
α} = |c| · dα(a,Sτ ),

which completes the proof that dα is a seminorm.

Definition B.2.3 (Widened subspace). For subspace Sτ let

R(Sτ , γ(cµ)) :=
{
a ∈ Sp−1

∣∣ dα(a,Sτ ) ≤ γ
}

(B.27)

denote its widening by γ, in the seminorm dα.

Our analysis works with a specific choice of width γ(cµ), which depends on the problem parameters

a0, θ, |τ | and a constant cµ, via

γ(cµ) =
cµ

4 log2 θ−1
min

{
1√
|τ |

,
1
√
µp
,

1

µp
√
θ |τ |

}
. (B.28)

Lemma B.2.4 (Properties of C∗a0
ιι∗Ca0

). LetM = C∗a0
ιι∗Ca0

, with a0 ∈ Sp0−1 µ-shift coherent. The diagonal
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entries ofM satisfy 
Mii = 1 i ∈ [−p0 + 1, p0 − 1] = [±p0],

0 ≤Mii ≤ 1 i ∈ [−2p0 + 2,−p0] ∪ [p0, 2p0 − 2],

Mii = 0 otherwise,

(B.29)

and the off-diagonal entries satisfy
|Mij | ≤ µ 0 < |i− j| < p0, {i ∈ [−p0 + 1, p0 − 1]} ∪ {j ∈ [−p0 + 1, p0 − 1]} ,

|Mij | < 1 {i, j ∈ [−2p0 + 2,−p0]} ∪ {i, j ∈ [p0, 2p0 − 2]} ,

0 otherwise.

(B.30)

Furthermore, let τ ⊂ [±p0], and τ c = [±2p0 − 1] \ τ . The singular values of submatrix ι∗τMιτ can be bounded as:
1− µ |τ | ≤ σmin (ι∗τMιτ ) ≤ σmax (ι∗τMιτ ) ≤ 1 + µ |τ | ,

σmax (ι∗τcMιτ ) ≤ µ
√
p |τ |,

σmax (ι∗τcMιτc) ≤ 1 + µp.

(B.31)

Proof. Recall the definition of ι, which selects the entries {−p0 + 1, . . . , 2p0 − 2}. The entrywise properties of

M can be derived by carefully counting the entries of the shifted support. The submatrixM on support
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{−2p0 + 2, . . . , 2p0 − 2} has an upper bound to be characterized as follows:

∣∣∣ι∗[±2p0−1]Mι[±2p0−1]

∣∣∣ ≤



J µ · 1


0

...

0

 0 0

µ · 1 I + µ · 1o


µ

...

µ

 µ · 1 0

[
0 · · · 0

] [
µ · · ·µ

]
1

[
µ · · ·µ

] [
0 · · · 0

]

0 µ · 1


µ

...

µ

 I + µ · 1o µ · 1

0 0


0

...

0

 µ · 1 J



. (B.32)

Here, the center row/column vector is indexed at 0, the matrices J , I,1 and 1o are square and of size (p0−1)2.

Among which, I is the identity matrix, 1 is the ones matrix whereas 1o has all off diagonal entries equal 1.

Also |J | has property |Jij | < 1 for all i, j.

As for the singular values, notice that the first and second inequalities consider submatrix not containing

J since τ ⊆ [±p0]; thus the first inequality can be derived with Gershgorin disc theorem directly, and the

second inequality with the upper bound with its Frobenius norm:

σmax (ι∗τcMιτ ) ≤ µ
√

(2p0 − 1) |τ | < µ
√
p |τ |. (B.33)

Finally by recalling p = 3p0 − 2 > 2p0 − 1. The last inequality is direct from bound of ι∗Ca0
:

σmax (ι∗τcMιτc) ≤
∥∥C∗a0

ιι∗Ca0

∥∥
2

=
∥∥ι∗Ca0

C∗a0
ι
∥∥

2
=
∥∥ι∗C∗a0

Ca0
ι
∥∥

2
≤ 1 + µp (B.34)

where the third equality is derived via commutativity of convolution.

Lemma B.2.5 (Shift space vectors in widened subspace). Let (a0, θ, |τ |) satisfy the sparsity-coherence condition

SCC(cµ). Then for every a ∈ R(Sτ , γ(cµ)), every α satisfying a = ι∗Ca0
α and ‖ατc‖2 ≤ γ(cµ) has

|‖ατ‖2 − 1| ≤ cµ; (B.35)
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moreover, β = C∗a0
ιa satisfies

1− 3cµ ≤ ‖βτ‖22 ≤ 1 +
cµ

|τ | log2 θ−1
, ‖βτc‖∞ ≤

cµ√
|τ | log2 θ−1

, ‖βτc‖2 ≤
cµ

|τ | θ log θ−1
min

{√
θ, γ(cµ)

}
.

(B.36)

Proof. Write −1/ log θ = θlog and γ = γ(cµ) for convenience. First, by using bounds on γ in (B.28) and

µ |τ | < 1 we obtain:

γ ·
√

1 + µp ≤ γ (1 +
√
µp) ≤ cµθ

2
log/2

γ ·
√

1 + µ2p ≤ γ
(

1 +
√
µ2p
)
≤

cµθ
2
log

4

(
1√
|τ |

+
√
µ

)
≤

cµθ
2
log

2
√
|τ |

γ · µ
√
p |τ | ≤ γ · √µp ·

√
µ |τ | ≤ cµθ

2
log/4

(B.37)

Let a = ι∗Ca0
α with ‖ατc‖2 < γ. Utilize properties of ι∗Ca0

from Theorem B.2.4 and µ |τ | < cµ/4 and

(B.37), we have:

‖ατ‖2 ≥ ‖ι
∗Ca0ιτ‖

−1
2 (‖a‖2 − ‖ι

∗Ca0ατc‖2) ≥ ‖ι∗Ca0ιτ‖
−1
2 (1− ‖ι∗Ca0‖2 ‖ατc‖2)

≥ 1√
1 + µ |τ |

(
1− γ ·

√
1 + µp

)
≥ 1− cµ/2√

1 + cµ/4
≥ 1− cµ, (B.38)

and similarly, the upper bound can be derived as:

‖ατ‖2 ≤ σ−1
min (ι∗Ca0

ιτ ) (‖a‖2 + ‖ι∗Ca0
ατc‖2) ≤ σ−1

min (ι∗Ca0
ιτ ) (1 + ‖ι∗Ca0

‖2 ‖ατc‖2)

≤ 1√
1− µ |τ |

(
1 + γ ·

√
1 + µp

)
≤ 1 + cµ/2√

1− cµ/4
≤ 1 + cµ. (B.39)

The bound of ‖βτ‖22 can be simply obtained using µ |τ | < cµ/4 and γ bound from (B.37) as:

‖βτ‖22 ≤ σ2
max (ι∗τCa0

ι) ≤ 1 + µ |τ | ≤ 1 +
cµθ

2
log

|τ |
(B.40)

‖βτ‖22 ≥ (σmin (ι∗τMιτ ) ‖ατ‖2 − σmax (ι∗τMιτc) ‖ατc‖2)
2

≥
(

(1− µ |τ |) (1− cµ)− µ
√
p |τ | · γ

)2

≥ 1− 3cµ. (B.41)

As for the upper bound of and ‖βτc‖∞, follow from (B.37), we have:

‖βτc‖∞ ≤ ‖ι
∗
τcMατ‖∞ + ‖ι∗τcMατc‖∞ ≤ µ

√
|τ | ‖ατ‖2 +

√
1 + µ2p ‖ατc‖2

≤
cµθ

2
log(1 + cµ)

4 |τ |
+ γ ·

√
1 + µ2p ≤

cµθ
2
log√
|τ |

; (B.42)
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the bound for ‖βτc‖2 requires two inequalities, we know

‖βτc‖2 ≤ ‖ι
∗
τcMατ‖2 + ‖ι∗τcMατc‖2 ≤ µ

√
p |τ | ‖ατ‖2 + (1 + µp) ‖ατc‖2 , (B.43)

for the first inequality, use
(
µ |τ |2

)3/4 (
µp2θ2

)1/4
= µ
√
pθ |τ |3/2 < cµθ

2
log/4 , definition of γ and θ |τ | ≤

cµθ
2
log/4 we have:

(B.43) ≤ µ
√
pθ |τ |3/2√
θ |τ |

(1 + cµ) +

√
θ |τ | ·

√
|τ |γ√

θ |τ |
+
µp
√
θ |τ | γ√
θ |τ |

≤
2cµθ

2
log + cµθ

3
log + cµθ

2
log

4
√
θ |τ |

≤
cµθ

2
log√

θ |τ |
, (B.44)

and similarly for the second inequality, use both conditions of µ, we have:

(B.43) ≤ γ

θ |τ |
·
µ
√
pθ |τ |3/2

γ
(1 + cµ) + γ + µpγ

≤ γ

θ |τ |
·

4µ
√
pθ |τ |3/2

cµθ2
log

·max
{√
|τ |, √µp, µp

√
θ |τ |

}
+

γ

θ |τ |
· θ |τ |+ γ

θ |τ |
· µpθ |τ |

≤ γ

θ |τ |
·

(
4

cµθ2
log

·max
{
µ |τ |2 · √pθ, µ(pθ) |τ | ·

√
µ |τ |, µ

√
pθ |τ |3/2 · µpθ |τ |

}
+
cµθ

2
log

4
+
cµθ

2
log

4

)

≤ γ

θ |τ |

(
cµθlog

4
+
cµθ

2
log

4
+
cµθ

2
log

4

)
≤ cµθlogγ

θ |τ |
, (B.45)

which completes the proof.

Corollary B.2.6 ( |〈βτc ,x0,τc〉| is small). Given x0 ∼i.i.d. BG(θ) in Rn and |τ | , cµ such that (a0, θ, |τ |) satisfies

the sparsity-coherence condition SCC(cµ). Write λ = cλ/
√
|τ | with some cλ ≥ 1/5, then if cµ ≤ cλ

25 ,

P

[∣∣∣∣∣∑
i∈τc

βix0i

∣∣∣∣∣ > λ

10

]
≤ 2θ, P

[∣∣∣∣∣∑
i

βix0i

∣∣∣∣∣ > λ

10

]
≤ θ |τ |+ 2θ. (B.46)

Proof. We bound tail probability of the first result with Gaussian moments Theorem B.10.2 and Bernstein in-

equality Theorem B.10.4. Via Hölder’s inequality,
∑
i∈τc E(βixi)

q = Exq0 ‖βτc‖
q
q ≤ θ(q−1)!! ‖βτc‖22 ‖βτc‖

q−2
∞ ,

thus

P

[∣∣∣∣∣∑
i∈τc

βix0i

∣∣∣∣∣ > λ/10

]
≤ 2 exp

(
−(λ/10)2

2θ ‖βτc‖22 + 2(λ/10) ‖βτc‖∞

)
(B.47)

Write θlog = − 1
log θ , Theorem B.2.5 imples when cµ ≤ cλ

25 , we have θ ‖βτc‖22 ≤
c2µθ

2
log

|τ |2 ≤
θlogλ

2

625 and ‖βτc‖∞ ≤
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cµθlog√
|τ |
≤ θlogλ

25 , therefore,

(B.47) ≤ 2 exp

(
−λ2/100

2θlogλ2/625 + 2(θlogλ/25) · (λ/10)

)
≤ 2 exp (log θ) ≤ 2θ (B.48)

The second tail bound is straight forward from the first tail bound as follows:

P

[∣∣∣∣∣∑
i

βix0i

∣∣∣∣∣ > λ

10

]
≤ P [|β∗τxτ |+ |β∗τcxτc | > λ/10]

≤ P [xτ 6= 0] + P [xτ = 0] · P [|β∗τcxτc | > λ/10]

≤ θ |τ |+ 2θ. (B.49)

Corollary B.2.7 (
∣∣〈βτ\(0),x0,τ\(0)

〉∣∣ is small near shifts). Suppose that x0 ∼i.i.d. BG(θ) in Rn, and |τ | , cµ such

that (a0, θ, |τ |) satisfies the sparsity-coherence condition SCC(cµ), then if cµ ≤ 1
10 , for any a such that

∣∣β(1)

∣∣ ≤
λ

4 log θ−1 , we have

P

∣∣∣∣∣∣
∑

i∈τ\(0)

βix0i

∣∣∣∣∣∣ > 2λ

5

 ≤ 2θ (B.50)

Proof. For the last tail bound, write x = ω ◦ g. Wlog define β0 be the largest correlation β(0), define random

variables s′ =
〈
βτ\{0},xτ\{0}

〉
. Firstly most of the entries of xτ would be zero since via Bernstein inequality

with θ |τ | < 0.1:

P

[∑
i∈τ

ωi > log θ−1

]
≤ P

[∑
i∈τ

ωi > θ |τ |+ 0.9 log θ−1

]
≤ exp

(
−0.92 log2 θ−1

2 (θ |τ |+ 0.9 log θ−1/3)

)
≤ θ (B.51)

thus with probability at least 1 − θ, we can write s′ as a Gaussian r.v. with variation bounded as Es′2 ≤

E
[∑log θ−1

i=1 βigi

]2
= log θ−1β2

(1), then via Gaussian tail bound Theorem B.10.1:

P [|s′| > 0.4λ] ≤ P

[
|g| > 0.4λ√

log θ−1
∣∣β(1)

∣∣
]

+ P

[∑
i∈τ

ωi > log θ−1

]
≤ 2√

2π
exp

(
−1.2 log θ−1

)
+ θ ≤ 2θ,

(B.52)
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B.3 Euclidean gradient as soft-thresholding in shift space

In this section, we will study the Euclidean gradient (3.41), by deriving bounds showing that the χ operator

approximates a soft-thresholding function in shift space (Theorem B.3.2 and Theorem B.3.4). Furthermore,

we will show the operator χ[βi] is monotone in |βi| from Theorem B.3.3. A figure of visualized χ operator is

shown in Figure B.1.

Expectation of χ operator. To understand the χ operator, we shall first consider a simple case—when x0

is highly sparse. By definition of β from (3.38) we can see that β has a short support of size at most 2p− 1,

when x0 has support entries separated by at least 2p, the entries of vector χ[β]i become sum of independent

random variables as:

χ[β]i =
〈
s−i[x0],Sλ

[
x0 ∗ β

∧]〉
=︸︷︷︸

x0 sep.

〈s−i[x0],Sλ [βis−i[x0]]〉 =
∑

j∈supp(x0)

gj · Sλ [gj · βi]

where (gj)j∈[n] are standard Gaussian r.v.s.

The following lemma describes the behavior of the summands in the above expression:

Lemma B.3.1 (Gaussian smoothed soft-thresholding). Let g ∼ N (0, 1). Then for every b, s ∈ R and λ > 0,

Eg
[
gSλ [b · g + s]

]
= b (1− erfb(λ, s)) , (B.53)

where

erfb(λ, s) =
1

2
erf

(
λ+ s√

2 |b|

)
+

1

2
erf

(
λ− s√

2 |b|

)
. (B.54)

Furthermore, for s = 0, b ∈ [−1, 1] and ε ∈ (0, 1/4), letting σ = sign(b) we have

σSν′2λ [b] ≤ σEg
[
gSλ [b · g]

]
≤ σSν′1(ε)λ [b] + ε (B.55)

where ν′1(ε) = 1/(2
√
− log ε) and ν′2 =

√
2/π.

Proof. Wlog assume b > 0. Write f as the pdf of standard Gaussian distribution. With integral by parts:∫ t

−∞
t′f(t′)dt′ = −f(t),

∫ t

−∞
t
′2f(t′)dt′ =

1

2
erf

(
t√
2

)
− tf(t)

Integrating, we obtain

E
[
gSλ [b · g + s]

]
=

∫
t≥λ−sb

(
bt2 − (λ− s)t

)
f(t)dt+

∫
t≤−λ+sb

(
bt2 + (λ+ s)t

)
f(t)dt,
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by writing L = λ− s, the integral of first summand∫
t≥Lb

(
bt2 − Lt

)
f(t)dt = b

[
1

2
− 1

2
erf

(
L√
2b

)
+
L

b
f

(
L

b

)]
− Lf

(
L

b

)
=
b

2
− b

2
erf

(
L√
2b

)
,

and similarly for the second summand, which gives

E
[
gSλ [b · g + s]

]
=
b

2
− b

2
erf

(
λ− s√

2b

)
+
b

2
− b

2
erf

(
λ+ s√

2b

)
= b (1− erfb(λ, s))

For b < 0, alternatively we have

E
[
gSλ[−|b| · g + s]

]
= −E[gSλ[|b| · g − s] = −|b|(1− erfb(λ,−s)) = b(1− erfb(λ, s)),

To show (B.55), via definition of error function, for x > 0, we know:

min

{
1− ε, 1− ε√

log(1/ε)
x

}
≤ erf(x) =

2√
π

∫ x

0

e−t
2

dt ≤ 2x√
π

(B.56)

where the lower bound is derived by first knowing erf is increasing thus for all x >
√

log(1/ε),

erf(x) ≥ 1− e−x
2

≥ 1− elog ε = 1− ε

and from concavity of erf we have for 0 < x <
√

log(1/ε) = T ,

erf(x) ≥ erf(T )− erf(0)

T − 0
x+ erf(0) ≥ 1− ε√

log(1/ε)
x.

Lastly plug (B.56) into (B.53) and apply condition |b| ≤ 1 and ε < 1/4 we have

|b| −
√

2

π
λ ≤ |b| − |b| erf

(
λ√
2 |b|

)
≤ max

{
|b| ε, |b| − λ(1− ε)√

2 log(1/ε)

}
≤ max

{
ε, |b| − λ

2
√

log(1/ε)

}
,

which completes the proof.

This lemma establishes when x0 is separated, then χ is soft thresholding operator on β with threshold about

λ/2. This phenomenon extends beyond the separated case, as long as when x0 is sufficiently sparse (when

Theorem B.2.1 holds). Recall that χ : Rn → Rn is defined as

χ[β] = C

∧

x0Sλ
[
C

∧

x0β
]
. (B.57)

The following lemma bounds its expectation:

Lemma B.3.2 (Expectation of χ(β)). Let x0 ∼i.i.d. BG(θ) and λ > 0, then for every a ∈ Sp−1 and every i ∈ [n],
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Figure B.1: A numerical example of Eχ[β]i. We provide figures for the expectation of χ when entries of x0 are 2p-
separated. Left: the yellow line is the function βi → βi (1− erfβi(λ, 0)) derived from (B.53), and the blue/red lines are
its upper/lower bound (B.55) utilized in the analysis respectively. Right: functions of βi → βi (1− erfβi(λ, 0)) with
different λ, the section of function of βi > ν2λ are close to linear.

define the operator χ as in (B.57), then

n−1Eχ[β]i = θβi (1− Esierfβi(λ, si)) (B.58)

where si =
∑
` 6=i β`x0`. Suppose (a0, θ, |τ |) satisfies the sparsity-coherence condition SCC(cµ) and λ = cλ/

√
|τ |

for some cλ > 1/5 and σi = sign(βi), then there exists some numerical constant c such that if cµ ≤ c then for every

a ∈ R(Sτ , γ(cµ)) and every i ∈ [n], (B.58) has upper bound

σin
−1Eχ[β]i ≤ σin−1Eχ[β]i :=


4θ2 |τ | |βi| |βi| < ν1λ

θ (|βi| − ν1λ/2) |βi| ≥ ν1λ

, (B.59)

and lower bound

σin
−1Eχ[β]i ≥ σin−1Eχ[β]

i
=: θSν2λ [|βi|] , (B.60)

where ν1 = 1/
(

2
√

log θ−1
)
, ν2 =

√
2/π.

This lemma shows the expectation of χ[β]i acts like a shrinkage operation on |βi|: for large |βi|, it acts

like a soft thresholding operation, and for small |βi|, it reduces |βi| by multiplying a very small number

4θ |τ | � 1. We rigorously prove this segmentation of χ operator as follows:
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Proof. First, since si[x0] ≡d sj [x0],

χ[β]i = e∗iC

∧

x0Sλ
[
C

∧

x0β
]

=
〈
s−i[x0],Sλ

[
x0 ∗ β

∧]〉
≡d
〈
s−j [x0],Sλ

[
si−j [x0] ∗ β

∧]〉
= χ[sj−i[β]]j

Thus wlog let us consider i = 0 and write x as x0. The random variable χ[β]0 can be written sum of random

variables as:

χ [β]0 =

〈
x,Sλ

β0x0 +
∑
6̀=0

β`s−`[x]

〉 =
∑
j∈[n]

xjSλ

β0xj +
∑
` 6=0

β`xj+`

 ,
and a random variable Zj(β) is defined as

Zj(β) = xjSλ

β0xj +
∑

`∈[±p]\0

β`xj+`

 , (B.61)

gives χ[β]0 =
∑
j∈[n] Zj(β) as sum of r.v.s. of same distribution and thus n−1Eχ[β]0 = EZ0(β). Define a

random variable s0 =
∑
6̀=0 β`x`, which is independent of x0. From Theorem B.3.1, we can conclude

n−1Eχ[β]0 = Ex0,s0x0Sλ [β0x0 + s0] = θβ0 (1− Es0erfβ0(λ, s0)) (B.62)

so that (B.58) holds for i = 0, and hence for all i.

1. (Upper bound of EZ) Wlog assume β0 ≥ 0 and write Z = Z0. We derive the upper bound on EZ in two

pieces.

(1). First, since Ex0Sλ [0 · x0 + s0] = 0, we have

EZ(β) ≤ β0 sup
β∈[0,β0]

d

dβ
Ex0,s0x0Sλ [βx0 + s0] = θβ0 sup

β∈[0,β0]

d

dβ

∫
|βg+s0|>λ

g (βg + s0 − sign(βg + s0) · λ) dµ(g)dµ(s0)

= θβ0 sup
β∈[0,β0]

Eg,s0
[
g21{|βg+s0|>λ}

]
≤ θβ0 sup

β∈[0,β0]

Eg,s0
[
g2
(
1{|βg|> 9λ

10 } + 1{|s0|> λ
10}
)]

≤ θβ0

((
Eg6

)1/3 P [|β0g| > (9λ/10)]
2/3

+ P [|s0| > λ/10]
)

(B.63)

We bound the tail probability of s0 using Theorem B.2.6 where

P [|s0| > λ/10] ≤ P [|
∑
i βixi| > λ/10] ≤ θ |τ |+ 2θ ≤ 3θ |τ | . (B.64)

On the other hand, the first term in (B.63) can be derived by pdf of Gaussian r.v. Theorem B.10.1 as:

(
Eg6

)1/3 P [|β0g| > (9λ/10)]
2/3 ≤ 3

√
15

(
10β0

9λ
√

2π

)2/3

exp

(
− λ2

4β2
0

)
≤ 3

2

(
β0

λ

)2/3

exp

(
− λ2

4β2
0

)
. (B.65)
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Combine (B.48), (B.65), when β0 < ν1λ, we know e
− λ2

4β2
0 ≤ elog θ ≤ θ |τ |. The first type of upper bound EZ is

derived as

∀β0 ∈ [0, ν1λ] , EZ(β) ≤ θβ0

(
3

2
ν

2/3
1 exp

(
− λ2

4β2
0

)
+ 3θ |τ |

)
≤ 4θ2 |τ |β0. (B.66)

(2). The second type of upper bound can be derived directly from Theorem B.3.1:

EZ(β) ≤ Ex0Es0x0Sλ [β0x0 + s0] ≤ Ex0x0Sλ [β0x0] + Ex0 |x0|Es0 |s0|

≤ θ ·
(
Sν′1λ [β0] + ε+

√
2/π · E |s0|

)
, (B.67)

where E |s| can be bounded with ‖β‖2 and θ |τ | < cµθlog from Theorem B.2.5. When cµ < 1
10 , observe that

E |s| ≤
√∑

`

Ex2
`β

2
` ≤
√
θ (‖βτ‖2 + ‖βτc‖2) ≤

√
θ (1 + cµ) +

cµθlog

|τ |
≤ 2cµθlog√

|τ |
. (B.68)

Now choose ε = θ ≤ cµθlog
|τ | , so that ν′1 = ν1 =

√
θlog
2 in (B.67). Since cµ < cλ

25 we gain

EZ(β) ≤ θ

(
Sν1λ [β0] +

cµθlog

|τ |
+

√
2

π
· 2cµθlog√

|τ |

)
≤ θ

(
Sν1λ [β0] +

3cµθlog√
|τ |

)

≤ θ

(
Sν1λ [β0] +

√
θlog

5
λ

)
≤ θ

(
Sν1λ [β0] +

1

2
ν1λ

)
(B.69)

(3). Combine both (B.66) and (B.69), we can thus conclude that

EZ(β) := EZ(β) ≤


4θ2 |τ |β0 β0 ≤ ν1λ

θ
(
β0 − ν1

2 λ
)

β0 > ν1λ

. (B.70)

2. (Lower bound of EZ) On the other hand, for the lower bound for EZ, use the fact that erfβ(λ, s) is concave

in s0, we have

EZ(β) = Es0Ex0x0Sλ [β0x0 + s0] = θ · Es0
[
β0 −

β0

2
· erf

(
λ− s0√

2 |β0|

)
− β0

2
· erf

(
λ+ s0√

2 |β0|

)]
≥ θ

(
β0 − β0 · erf

(
λ√

2 |β0|

))
≥ θ · Sν′2λ [β0] =: EZ(β). (B.71)

The proof of β0 < 0 is in the same vein. For cases of i 6= 0, since χ[β]i ≡d χ[s−i[β]]0, replace β0 with βi we

obtain the desired result.
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Monotonicity of χ. Another convenient fact of Eχ[β]i is that it is monotone increasing w.r.t. |βi|. The

monotonicity is clear in Figure B.1; it is demonstrated rigorously with the following lemma:

Lemma B.3.3 (Monotonicity of Eχ(β)). Suppose x0 ∼i.i.d. BG(θ) in Rn, and |τ | , cµ such that (a0, θ, |τ |) satisfies

the sparsity-coherence condition SCC(cµ). Define λ = cλ/
√
|τ | in ϕ`1 where cλ ∈

[
0, 1

4

]
, then there exists some

numerical constant c > 0, such that if cµ < c, the expectation |E[χ[β]]i| is monotone increasing in |βi|. In other words,

if |βi| > |βj | then

σiEχ[β]i ≥ σjEχ[β]j (B.72)

where σi = sign(βi).

The proof first operate simple calculus and then followed by studying cases of |βi| − |βj |when either it is

smaller are larger then λ.

Proof. 1. (Monotonicity by gradient negativity) Wlog assume βi > βj > 0, and from Theorem B.3.2 we can

write (nθ)−1Eχ[β]i = βi (1− Esierfβi(λ, si)). Consider t ∈ [0, 1] and define `(t) = tβi − tβj . Write the

random variable sij =
∑
` 6=i,j β`x`. Define h as a function of t such that

h(t) = Ex,sij
[
((1− t)βi + tβj)

(
1− erf(1−t)βi+tβj (λ, ((1− t)βj + tβi)x+ sij)

)]
= Ex,sij

[
(βi − `(t))

(
1− erfβi−`(t)(λ, x · (βj + `(t)) + sij)

)]
. (B.73)

Notice that Eχ[β]i = h(0) and Eχ[β]j = h(1) respectively, thus it suffices to prove h′(t) < 0 for all t ∈ [0, 1].

Write f as pdf of standard Gaussian r.v. where

erfβ(λ, sij) =

∫ λ+sij
β

0

f(z) dz +

∫ λ−sij
β

0

f(z) dz,

and use chain rule:

h′(t) = Ex,sij
[
(βj − βi)

(
1− erfβi−`(t)(λ, x · (βj + `(t)) + sij)

)
− (βi − `(t)) ·

d

dt

(
λ+ x · (βj + `(t)) + sij

βi − `(t)

)
· f
(
λ+ x · (βj + `(t)) + sij

βi − `(t)

)
− (βi − `(t)) ·

d

dt

(
λ− x · (βj + `(t))− sij

βi − `(t)

)
· f
(
λ− x · (βj + `(t))− sij

βi − `(t)

)]
= (βj − βi)Ex,sij

[
1− erfβi−`(t)(λ, x · (βj + `(t)) + sij)
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+

(
λ+ x(βj + `(t)) + sij

βi − `(t)
+ x

)
· f
(
λ+ x(βj + `(t)) + sij

βi − `(t)

)
︸ ︷︷ ︸

zλ+

+

(
λ− x(βj + `(t))− sij

βi − `(t)
− x
)
· f
(
λ− x(βj + `(t))− sij

βi − `(t)

)
︸ ︷︷ ︸

zλ−

]

= (βj − βi)Ex,sij
[
1−

∫ zλ+

0

f(z) dz −
∫ zλ−

0

f(z) dz + (zλ+ + x)f(zλ+) + (zλ− − x)f(zλ−)

]
. (B.74)

Consider the term only related to zλ+ , condition on cases that it is either positive or negative, observe that
µ+− := Ex,sij |zλ+≤0

[∫ zλ+
0 f(z) dz − zλ+

f(zλ+
)
]

= Ex,s|zλ+≤0

[
−
∫ −zλ+

0 f(z) dz − zλ+
f(zλ+

)
]
≤ 0

µ++ := Ex,sij |zλ+>0

[∫ zλ+
0 f(z) dz − zλ+

f(zλ+
)
]
≤ min

{
1
2 ,

1√
2π

Ex,sij |zλ+>0 zλ+

} ,

where the negativity of the first equation can be observed by writing v = −zλ+ and take derivative:
−
∫ v

0
f(z)dz + v · f(v) = 0 v = 0

d
dv

{
−
∫ v

0
f(z)dz + v · f(v)

}
= −f(v) + f(v) + v · f ′(v) < 0 v > 0

;

and similarly for zλ− :
µ−− := Ex,sij |zλ−≤0

[∫ zλ−
0 f(z) dz − zλ−f(zλ−)

]
≤ 0

µ−+ := Ex,sij |zλ−>0

[∫ zλ−
0 f(z) dz − zλ−f(zλ−)

]
≤ min

{
1
2 ,

1√
2π

Ex,sij |zλ−>0zλ−

} ,

then combine every term to (B.74) using tower property and from assumption βj − βi < 0 we obtain

(B.74) ≤ (βj − βi)
(
1− P

[
zλ+ > 0

]
· µ++ − P

[
zλ− > 0

]
· µ−+ + Ex,sij

[
x(f(zλ+)− f(zλ−))

])
≤ (βj − βi)

(
1−min

{
P
[
zλ+

> 0
]

2
,
E
∣∣zλ+

∣∣
√

2π

}
−min

{
P
[
zλ− > 0

]
2

,
E
∣∣zλ− ∣∣√

2π

}
− θ√

2π
· E |g|

)
,

(B.75)

where g is standard Gaussian r.v..

2. (Cases of varying βi,βj) Let cλ < 1
4 . Suppose βi − `(t) ≤

1

4
√
|τ |

. Recall that ‖βτ‖22 ≥ 1 − 3cµ. We are

going to show there is at least one of the entry β∗ ∈ {βr}r∈τ 6=i,j ] {βj + `(t)} is greater than 0.85√
|τ |

. First, if

both i, j 6∈ τ , the lower bound is immediate since β2
∗ = ‖βτ‖2∞ >

1−3cµ
|τ | . On the other hand if at least one of

i, j is in τ and all other βτ entries are small where
∥∥βτ\{i,j}∥∥2

∞ <
1−3cµ
|τ | , then we know via norm inequalities,

(βi + βj)
2
> β2

i + β2
j > ‖βτ‖

2
2 − (|τ | − 1)

∥∥βτ\{i,j}∥∥2

∞ ≥
1− 3cµ
|τ |

, (B.76)
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which implies if cµ < 1
100 ,

β∗ = βj + `(t) = (βi + βj)− (βi − `(t)) ≥
√

1− 3cµ√
|τ |

− 1

4
√
|τ |
≥ 0.72√

|τ |
. (B.77)

In this case, adopt result from Theorem B.2.6 such that P [|
∑
β`x`| > λ/10] ≤ 3θ |τ | ≤ .01, we have

P
[
zλ− > 0

]
= P

[
zλ+ > 0

]
= 1− P [x(βj + `(t)) + sij < −λ]

≤ 1− P [x∗β∗ < −11λ/10] · P [x(βj + `(t)) + sij − x∗β∗ < λ/10]

≤ 1− θ · P

[
g∗ ·

0.72√
|τ |

<
−11cλ

10
√
|τ |

]
·
(

1− P
[∑

β`x` >
λ

10

])
≤ 1− θ · P [0.72 · g∗ ≤ −1.1 · 0.25] · (1− 3cµ)

≤ 1− 0.35θ. (B.78)

On the other hand, when βi − `(t) ≥ 1

4
√
|τ |

, both zλ+ , zλ− are upper bounded via |τ | θ ≤ 1
800 such as:

Ex,sij
∣∣zλ−∣∣ = Ex,sij

∣∣zλ+

∣∣ ≤ Ex,sij
λ+ |x(βj + `(t))− sij |

βi − `(t)
≤ 1 + 4

√
|τ | ·

(
Ex,sij |x(βj + `(t))− sij |2

)1/2

≤ 1 + 4
√
|τ | θ ‖β‖2 ≤ 1 + 4

√
|τ | θ

(
1 + cµ +

cµ√
θ |τ |

)
≤ 1.2. (B.79)

Combine (B.75), (B.78) we have

h′(t) ≤ (βj − βi)

(
1− 2 · (1− 0.35θ)

2
− θ√

2π
·
√

2

π

)
≤ 0.03θ(βj − βi) < 0, (B.80)

and combine (B.75), (B.79) and θ < cµ we have

h′(t) ≤ (βj − βi)

(
1− 2 · 1.2√

2π
− θ√

2π
·
√

2

π

)
≤ 0.03(βj − βi) < 0, (B.81)

which proves the monotonicity.

Finite sample deviation of χ. When the signal length of y is sufficiently large, operator χ will be enough

close to its expected value.

Corollary B.3.4 (Finite sample deviation of χ(β)). Suppose x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that (a0, θ, k)

satisfies the sparsity-coherence condition SCC(cµ). Define λ = cλ/
√
k in ϕ`1 for some cλ > 1/5, then there exists

some numerical constants C, c, c > 0, such that if n ≥ Cp5θ−2 log p and cµ ≤ c, then with probability at least 1− 3/n,
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for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)) and every i ∈ [n], we have:

∣∣n−1χ[β]i − n−1Eχ[β]i
∣∣ ≤ cθ/p3/2, (B.82)

Proof. See Appendix B.9.1

B.4 Euclidean Hessian as logic function in shift space

We can express the (pseudo) curvature (3.45) in direction v ∈ Sp−1 in terms of the correlation γ = C∗a0
ιv

between v and a0, giving

v∗∇̃2ϕ`1(a)v = −γ∗C

∧

x0
PIC

∧

x0
γ,

where

I(a) = supp
(
Sλ
[
C

∧

x0
C∗a0

ιa
])

=
{
i ∈ [n]

∣∣ ∣∣∣x0 ∗ β

∧∣∣∣
i
> λ

}
. (B.83)

The i-th diagonal entry of C

∧

x0
PI(a)C

∧

x0
is

−e∗iC

∧

x0
PI(a)C

∧

x0
ei = −

∥∥∥PI(a)C

∧

x0
ei

∥∥∥2

2
= −

∥∥PI(a)s−i[x0]
∥∥2

2
, (B.84)

which is the core component for us to study the curvature of objective ϕ`1 . We illustrate the expectation of

diagonal term of Hessian in Theorem B.4.2 and Theorem B.4.3, whose figure of visualized
∥∥PI(a)s−i[x0]

∥∥
2

is shown in Figure B.1. Lastly, we also prove the off-diagonal terms e∗iC

∧

x0PI(a)C

∧

x0ej of Hessian is likely

inconsequential in calculation of curvature in Theorem B.4.4.

Expectation of Hessian diagonals. We expect the Hessian to have stronger negative component in the

si[a0] direction as
∥∥PI(a)s−i[x0]

∥∥2

2
becomes larger. This term can by tremendously simplified when x0 is very

sparse: suppose all entries of its support I0 are separated by at least 2p− 1 samples, then by implementing

the definition of support from (B.83), we can derive

−
∥∥PI(a)s−i[x0]

∥∥2

2
= −

∑
j∈I0

x2
0j1{|∑` β`x0(`+j−i)|>λ} =︸︷︷︸

sep.

−
∑
j∈I0

g2
j1{|βigj |>λ}, (B.85)

where 1 is the indicator function and gj are independent standard Gaussian r.v.s.. In expectation, the

summands in (B.85) acts like a smoothed logic function on entry βi:
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Lemma B.4.1 (Gaussian smoothed indicator). Let g ∼ N (0, 1), then for any b, s ∈ R and λ > 0.

Eg
[
g21{|b·g+s|>λ}

]
= 1− erfb (λ, s) + fb(λ, s), (B.86)

where

fb(λ, s) =
1√
2π

[(
λ+ s

|b|

)
e−

(λ+s)2

2b2 +

(
λ− s
|b|

)
e−

(λ−s)2

2b2

]
. (B.87)

Proof. The proof can be derived via same calculation of integrals in Theorem B.3.1.

Although the definition (B.86) seems incomprehensible at first glance, we can actually interpret it as a

smoothed indicator function which compares |b| to the threshold
√

2/πλ. Once we assign s = 0, then we can

see that Eg21{|b·g|>λ} is be an increasing function of |b|. Moreover by assigning different values for |b| we

obtain:

Eg21{|b·g|>λ} ≈


1, |b| ≈ 1

1/2, |b| ≈
√

2/πλ

0, |b| ≈ 0

. (B.88)

Relate (B.88) to (B.85), when |βi| is close to 1 thenwe expect− 1
nθ ‖PIs−i[x0]‖22 to be close to−1, and it increases

to 0 as |βi| decreases, suggests that the Euclidean Hessian at point a has stronger negative component at

si[a0] direction if |〈a, si[a0]〉| is larger. See Figure B.2 for a numerical example. This phenomenon can be

extend beyond the idealistic separating case as follows:

Lemma B.4.2 (Expected Hessian diagonals). Let x0 ∼i.i.d. BG(θ) and λ > 0, define the set I(a) in (B.83), write

si =
∑
` 6=i β`x0`, then for every a ∈ Sp−1 and i ∈ [n]:

n−1E
∥∥PI(a)s−i[x0]

∥∥2

2
= θ [1− Esierfβi (λ, si) + Esifβi (λ, si)] (B.89)

Proof. Write x0 as x. Observe that y ∗ a∧= x0 ∗ β

∧

=
∑
` β`s−`[x0]. Thus for any j ∈ [n] and i ∈ [±p]:

(y ∗ a∧)j−i =
(
βis−i[x] +

∑
` 6=i

β`s−`[x]
)
j−i

= βixj +
∑
` 6=i

β`xj+`−i =: βixj + sj , (B.90)

where xj is independent of sj , and both xj , sj are symmetric and identically distributed for all j ∈ [n].
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Figure B.2: A numerical example for E
∥∥PI(a)si[x0]

∥∥2
2
. We provide a figure to illustrate the expectation of

− 1
nθ

∥∥PI(a)si[x0]
∥∥2
2
when entries of x0 are 2p-separated, as a function plot of βi → 1 − erfβi (λ, 0) + fβi(λ, 0) from

(B.86) with different λ. When |βi| ≈ ν2λ where ν2 =
√

2/π, then the its function value is close to 0.5. If |βi| is much
larger then λ its value grow to 1, implies there is a negative curvature at si[a0] direction. Similarly if |βi| is much smaller
then λ the function value is 0 thus the curvature is positive in si[a0] direction.

Rewrite the random variable using (B.83) as

∥∥PI(a)s−i[x0]
∥∥2

2
=
∥∥∥PI(a)

∑
j∈[n] (x0jej−i)

∥∥∥2

2
=
∑
j∈[n]

x2
0j1{|y∗ǎ|j−i>λ} =

∑
j∈[n]

x2
0j1{|βix0j+sj |>λ}

Write x = g ◦ ω as composition of Gaussian/Bernoulli r.v.s., the expectation has a simple form:

E
∥∥PI(a)s−i[x0]

∥∥2

2
= nθ · Eg2

01{|βig0+s0|>λ} = nθ · E (1− erfβi(λ, si) + fβi(λ, si))

where si =
∑
6̀=i x0iβi with x0i ∼i.i.d. BG(θ), yielding the claimed expression.

Finite sample deviation of Hessian diagonals. When the signal length of y is sufficiently large, then i-th

diagonal term for Hessian
∥∥PI(a)s−i[x0]

∥∥2

2
will be close enough to its expected value.

Corollary B.4.3 (Large sample deviation of curvature). Suppose x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that

(a0, θ, k) satisfies the sparsity-coherence condition SCC(cµ). Define λ = cλ/
√
k in ϕ`1 for some cλ > 1/5, then there

exists some numerical constant C, c, c > 0, such that if n ≥ Cp4θ−1 log p and cµ ≤ c, then with probability at least

1− 3/n, for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)) and every i ∈ [n], we have:∣∣∣n−1
∥∥PI(a)s−i[x0]

∥∥2

2
− n−1E

∥∥PI(a)s−i[x0]
∥∥2

2

∣∣∣ ≤ cθ/p (B.91)

Proof. See Appendix B.9.2.
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Hessian off-diagonal terms near solution. The off-diagonal entries of Hessian in general are much smaller

then the diagonal entries; however, it affects the region near sign shifts of a0 the most where we need to show

strong convexity in the region. We provide an upper bound for off-diagonal entries in the vicinity of signed

shifts. In these regions, only one entry of the correlations
∣∣β(0)

∣∣ is large and the rest is small.

Lemma B.4.4 (Hessian off-diagonal term near solution). Suppose x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that

(a0, θ, k) satisfies the sparsity-coherence condition SCC(cµ). Let λ = cλ/
√
k with cλ > 1/5, then there exists some

numerical constant C, c > 0 such that if n ≥ Cθ−4 log p and cµ ≤ c, then with probability at least 1− 4/n, for every

a ∈ ∪|τ |≤kR(Sτ , γ(cµ)), where
∣∣β(1)

∣∣ ≤ 1
4 log θ−1λ and every i 6= j ∈ [±p] \ {(0)}, we have

|si[x0]∗|PI(a) |sj [x0]| < 8nθ3 (B.92)

Proof. Write θlog = −1/ log θ and x0 as x = ω ◦ g. Wlog let β0 be the largest correlation β(0). Define random

variables s′ =
〈
βτ\{0,i,j},xτ\{0,i,j}

〉
. Firstly via Theorem B.2.7 we have P [|s′| > 0.4λ] ≤ 2θ; also define

s =
〈
βτc\{0,i,j},xτc\{0,i,j}

〉
, and base on Theorem B.2.6 we have P [|s| > λ/10] ≤ 2θ. Expand the (−i,−j)-th

cross term with θ < 0.1 we have:

E |s−i[x]∗|PI(a) |s−j [x]| = E
∑
k∈[n] |xk+ixk+j |1{|β0xk+βixk+i+βjxk+j+s+s′|>λ}

= nθ2 · E |gigj |1{|β0x0+βigi+βjgj+s+s′|>λ}

≤ nθ2 · E
[
|gigj |

(
21{|βigi|>λ/4} + P [x0 6= 0] + P [|s| > 0.1λ] + P [|s′| > 0.4λ]

)]
≤ nθ2 ·

(
exp

(
− log2 θ−1

)
+ θ + 2θ + 2θ

)
≤ 6nθ3. (B.93)

Write (B.92) as two summation of independent random variables with t = j − i by separating sum into two

sets Jt1, Jt2 defined in (B.4) with both |Jt1| , |Jt2| < nθ2 with probability at least 1− 2/n from Theorem B.1.1

E |s−i[x]∗|PI(a) |s−j [x]| =
∑

(k−i)∈I(a)

|xk| |xk+t| =
∑

(k−i)∈I(a)∩Jt1

|gk| |gk+t|+
∑

(k−i)∈I(a)∩Jt2

|gk| |gk+t| ,

whose first summands can be upper bounded w.h.p. via Bernstein inequality Theorem B.10.4 with (σ2, R) =

(1, 1) and writes C := ∪|τ |≤kR(Sτ , γ(cµ)) ∩
{
a
∣∣ ∣∣β(1)

∣∣ ≤ 1
4 log θ−1λ

}
, then we have

P

 max
i 6=j∈[±p]\{0}

a∈C

 ∑
(k−i)∈I(a)∩Jt1

|gk| |gk+t| − E
∑

(k−i)∈I(a)∩Jt1

|gk| |gk+t|

 ≥ nθ3
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P

 max
i 6=j∈[±p]\{0}

 ∑
(k−i)∈∩Jt1

|gk| |gk+t| − E
∑

(k−i)∩Jt1

|gk| |gk+t|

 ≥ nθ3


≤ 4p2 · exp

(
−n2θ6

2 |Jt1|+ 2nθ3

)
≤ exp

(
8 log p− −n

2θ6

3nθ2

)
≤ exp

(
−nθ

4

10

)
≤ 1

n
(B.94)

when n = Cθ−4 log p with C > 104 and θ log2 θ−1 ≥ 1/p. Thus for all i 6= j ∈ [±p] \ {0} and a satisfies our

condition of lemma, from (B.93) and (B.94) we can conclude :

|s−i[x]∗|PI(a) |s−j [x]| ≤
∑

I(a)∩Jt1

E |gk| |gk+t|+
∑

I(a)∩Jt2

E |gk| |gk+t|+ 2nθ3 ≤ 8nθ3

which holds with probability at least 1− 2/n− 2 · 1/n = 1− 4/n base on Theorem B.1.1 and (B.94).

B.5 Geometric relation between ρ and `1-norm

In this section, we discuss how to ensure that the smooth sparsity surrogate ρ approximates ‖ · ‖1 accurately

enough that guarantees ϕρ inherits the good properties of ϕ`1 . We prove several lemmas which allow us

to transfer properties of ϕ`1 to ϕρ. Our result does not pertain to the suggested pseudo-Huber surrogate

ρ(x)i =
√
x2
i + δ2 in the main script, and is general for a class of function class defined in Theorem B.5.2 that

is smooth and well approximates `1 when the proper smoothing parameter δ is chosen from the result of

Theorem B.5.6. In particular we ask the regularizer ρδ(x) to be uniformly bounded to |x| by δ/2:

∀x ∈ R, |ρδ(x)− |x|| ≤ δ/2 (B.95)

then if δ → 0 we have for every a near subspace,

∥∥proxλ`1 [a

∧∗ y]− proxλρδ [a

∧∗ y]
∥∥

2
→ 0, (B.96)

‖∇ϕ`1(a)−∇ϕρδ(a)‖2 → 0, (B.97)

‖∇̃2ϕ`1(a)−∇2ϕρδ(a)‖2 → 0. (B.98)

An example choices of eligible smooth sparse surrogate is demonstrated in Table B.1.

Calculus of ϕρ. The marginal minimizer over x in (3.8) can be expressed in terms of the proximal operator

[BC11] of ρ at point a∧∗ y:

proxλρ [a

∧∗ y] = argmin
x∈Rn

{
λρ(x) + 1

2 ‖x‖
2
2 − 〈a ∗ x,y〉

}
.
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Plugging in, we obtain

ϕρ(a) = λρ
(
proxλρ[a

∧∗ y]
)

+ 1
2

∥∥a∧∗ y − proxλρ [a

∧∗ y]
∥∥2

2
− 1

2 ‖a

∧∗ y‖22 + 1
2 ‖y‖

2
2 (B.99)

The objective function ϕρ(a) is a differentiable function of a. This can be seen, e.g., by noting that

ϕρ(a) = ε(λρ)(a

∧∗ y)− 1
2 ‖a

∧∗ y‖22 + 1
2 ‖y‖

2
2 , (B.100)

where ε(g)(z) = g
(
proxg(z)

)
+ 1

2

∥∥z − proxg(z)
∥∥2

2
is theMoreau envelope of a function g. TheMoreau envelope

is differentiable:

Fact B.5.1 (Derivative of Moreau envelope, [BC11], Prop.12.29). Let f be a proper lower semicontinuous convex

function andλ > 0 then theMoreau envelope ε(λf)(z) = λf(proxλf [z])+ 1
2

∥∥z − proxλf [z]
∥∥2

2
is Fréchet differentiable

with ∇ε(λf)(z) = z − proxλρ[z].

Furthermore, ϕρ is twice differentiable whenever proxλρ is differentiable. In this case, the (Euclidean)

gradient and hessian of ϕρ are given by

∇ϕρ(a) = −ι∗C

∧

y proxλρ

[
C

∧

yιa
]
, (B.101)

∇2ϕρ(a) = −ι∗C

∧

y∇ proxλρ

[
C

∧

yιa
]
C

∧

yι. (B.102)

The Riemannian gradient and hessian over Sp−1 are

grad[ϕρ](a) = −Pa⊥ι∗C

∧

y proxλρ

[
C

∧

yιa
]
, (B.103)

Hess[ϕρ](a) = −Pa⊥
(
ι∗C

∧

y∇proxλρ

[
C

∧

yιa
]
C

∧

yι− 〈∇ϕρ(a),a〉 I
)
Pa⊥ . (B.104)

Sparse regularizer ρ as smoothed `1 function. Our analysis accommodates any sufficiently accurate smooth

approximation ρ to the `1 function. The requisite sense of approximation is captured in the following

definition:

DefinitionB.5.2 (δ-smoothed `1 function). We call an additively separable function ρ(x) =
∑n
i=1 ρi(xi) : Rn → R,

a δ-smoothed `1 function with δ > 0 if for each i ∈ [n], ρi is even, convex, twice differentiable and ∇2ρi(x) being

monotone decreasing w.r.t. |x|, where, there exists some constant c, such that for all x ∈ R:

|ρi(x)− |x|+ c| ≤ δ/2 (B.105)

The proximal operator of the `1 norm is the entrywise soft thresholding function Sλ; the proximal operator
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Surrogate class ρi(x) ∇ρi(x) ∇2ρi(x)

Log hyperbolic cosine δ

2
log
(
e2x/δ + e−2x/δ

) e4x/δ − 1

e4x/δ + 1

4e4x/δ

δ(e4x/δ + 1)2

Pseudo Huber
√
x2 + δ2

x√
x2 + δ2

δ2

(x2 + δ2)3/2

Gaussian convolution
∫
|x− t| fδ(t)dt erf(x/

√
2δ) 2fδ(x)

Table B.1: Classes of smooth sparse surrogate ρ and how to set its parameter. Three common classes are listed with
parameter δ to tune the smoothness. All the listed functions are greater then |x| pointwise and has largest distance to |x|
at origin where ρ(0)− |x| ≤ δ, satisfies the condition (B.105). Also its second order derivatives∇2ρi(x) are monotone
decreasing w.r.t. |x|, hence are certified to be eligible δ-smoothed `1 surrogates.

associated to a smoothed `1 function turns out to be a differentiable approximation to Sλ. In particular, we

will show that it approximates Sλ in the following sense:

Definition B.5.3 (
√
δ-smoothed soft threshold). An odd function Sδλ[·] : R→ R is a

√
δ-smoothed soft thresholding

function with parameter δ > 0 if it is a strictly monotone odd function and is differentiable everywhere, whose function

value satisfies

0 ≤ sign(z)
(
Sδλ[z]− Sλ [z]

)
≤
√
λδ, ∀z ∈ R (B.106)

and its derivative satisfies for any given B ∈ (0, λ):

∣∣∇Sδλ[z]−∇Sλ[z]
∣∣ ≤ √λδ/B, ||z| − λ| ≥ B. (B.107)

If ρ is a δ-smooth `1 function, then for all i ∈ [n], we have that proxλρ[z]i is a
√
δ-smoothed soft threshold

function of zi. This can be proven with the following lemma:

Lemma B.5.4 (Proximal operator for smoothed `1). Suppose ρ is a δ-smoothed `1 function, then zi 7→ proxλρ[z]i

is a
√
δ-smoothed soft threshold function.

Proof. We know that

xz := proxλρ[z] = argmin
x∈Rn

λρ(x) + 1
2 ‖x− z‖

2
2 . (B.108)

This optimization problem is strongly convex, and so the minimizer xz is unique. Using the stationarity

condition and since ρ is separable, for all i ∈ [n], we have λ∇ρi(xzi) + xzi − zi = 0, implies

xzi = (Id + λ∇ρi)−1(zi). (B.109)
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Since ρi is convex and even , ∇ρi is monotone increasing and odd. By inverse function theorem, we know

that strict monotonicity and differentiability of Id + λ∇ρi implies its inverse is differentiable and is a strictly

monotone increasing odd function. Furthermore, it implies ∇xzi has the form

∇xzi = ∇i(Id + λ∇ρi)−1(zi) =
1

λ∇2ρi(xzi) + 1
< 1. (B.110)

Notice that since∇2ρi(x) is monotone decreasing when x ≥ 0, hence∇xzi is monotone increasing in zi ≥ 0.

Now we are left to show that (B.106) and (B.107) hold, and since proxλρ[·]i is an odd function it suffices

to consider the case when the input vector zi is nonnegative. Firstly, via convexity and entrywise bounded

difference |ρi(x)− |x|| ≤ δ/2 we are going to show

|∇ρi(x)| ≤ 1 ∀x ∈ R, ∇ρi(x) ≥ 1−
√
δ/λ ∀x ≥

√
λδ. (B.111)

Consider a positive xwith ∇ρi(x) > 1 + ε for some ε > 0, by convexity if x̃ > x then ∇ρi(x̃) > 1 + ε, hence

ρi(x+ δ/ε) ≥ ρi(x) +∇ρi(x) · (δ/ε) > x− δ/2 + (1 + ε) · (δ/ε) = (x+ δ/ε) + δ/2,

contradicts the boundedness condition. Secondly, use mean value theorem we know for all x ≥
√
λδ:

∇ρi(x) ≥ ρi(
√
λδ)− ρi(0)√
λδ − 0

≥ (
√
λδ − δ/2)− (0 + δ/2)√

λδ − 0
≥ 1−

√
δ

λ
.

To prove (B.106), when 0 ≤ zi ≤ λ, then Sλ[zi] = 0 and xzi ≤
√
λδ since if xzi >

√
λδ, by (B.111):

λ∇ρi(xzi) + xzi > λ(1−
√
δ/λ) +

√
λδ = λ ≥ zi

then xzi violate the stationary condition in (B.109), resulting 0 ≤ xzi − Sλ [zi] ≤
√
λδ whenever 0 ≤ zi ≤ λ.

Likewise in the case of zi ≥ λwhere Sλ [zi] = zi − λ, (B.111) provides:
∀xzi > zi − λ+

√
λδ, λ∇ρi(xzi) + xzi > λ(1−

√
δ/λ) + zi − λ+

√
λδ = zi

∀xzi < zi − λ, λ∇ρi(xzi) + xzi < λ+ zi − λ = zi

again violates (B.109) and therefore (B.106) holds for all zi ∈ R.

Lastly (B.107) is a direct result of (B.106). For all zi ≤ λ−B, recall that∇xzi is monotone increasing in zi:

∇xzi ≤ min
y∈[λ−B,λ]

∇xyi ≤
xλi − x(λ−B)i

λ− (λ−B)
≤ (
√
λδ + Sλ [λ])− Sλ [λ−B]

B
=

√
λδ

B
;
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and similarly for all zi > λ+B:

∇xzi ≥ max
y∈[λ,λ+B]

∇xyi ≥
x(λ+B)i − xλi
(λ+B)− λ

≥ Sλ [λ+B]− (Sλ [λ] +
√
λδ)

B
= 1−

√
λδ

B
,

implies (B.107) holds.

Approximate geometry of ϕρ using ϕ`1 Based on (B.103)-(B.104) and denote C

∧

yιa = a

∧∗ y, the only dif-

ferences of Riemannian gradient and Hessian between ϕρ and ϕ`1 comes from the difference of proxλρ [a

∧∗ y]

and proxλ‖·‖1 [a

∧∗ y]. Thus for the purpose of obtaining good geometric approximation of ϕρ with that of

objective ϕ`1 , we may apply both Theorem B.5.3 and Theorem B.5.4, together suggest if ρ is a δ-smoothed `1

function, then the i-th entry of proxλρ[a

∧∗ y] will be
√
λδ-close to the authentic soft thresholding function

Sλ [a

∧∗ y]i, and its gradient ∇ proxλρ[a

∧∗ y] is
√
λδ/B-close to ∇Sλ [a

∧∗ y] as long as (a

∧∗ y)i is not close to

±λ by distance B.

Firsly, we will show by utilizing the random structure of y, such that with high probability, only a fraction

of entries of a∧∗ y will be close to ±λ.

Lemma B.5.5 (Gradients discontinuity entries). For each a ∈ Sp−1, let

JB(a) :=
{
i
∣∣∣ (C∧yιa)

i
∈ [−λ−B,−λ+B] ∪ [λ−B, λ+B]

}
. (B.112)

Suppose the subspace dimension is at most k and signal y satisfies Theorem B.2.1. Let λ = cλ/
√
k and B ≤

c′λθ2/p log n for some cλ, c′ ∈ (0, 1), then there is a numerical constant C > 0 such that if n ≥ Cp5θ−2 log p, then

with probability at least 1− 3/n, for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)), we have

|JB(a)| ≤ 24c′nθ2

p log n
(B.113)

Proof. See Appendix B.9.3.

The geometric approximation between ϕ`1 and ϕρ necessarily consists of three parts: the gradient, the

Hessian, and the coefficients. Here we conclude the approximation result with the following lemma:

Lemma B.5.6 (ϕ`1 approximates ϕρ). Suppose x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that (a0, θ, k) satisfies the

sparsity-coherence condition SCC(cµ). Let ρ ∈ Rn → R be a δ-smoothed `1 function with

λ =
cλ√
k
, δ ≤ c′4θ8

p2 log2 n
λ (B.114)
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with some c′, cλ ∈ (0, 1), then there is a numerical constant C, c > 0 such that if n > Cp5θ−2 log p and cµ ≤ c, then

with probability at least 1− 10/n, the following statements hold simultaneously for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)):

(1). The coefficients has norm difference∥∥∥ι∗[±p]C∧x0 proxλ`1 [a

∧∗ y]− ι∗[±p]C

∧

x0 proxλρ[a

∧∗ y]
∥∥∥

2
≤ c′nθ4. (B.115)

(2). The gradient has norm difference

‖∇ϕ`1(a)−∇ϕρ(a)‖2 ≤ c
′nθ4. (B.116)

(3). The (pesudo) Riemmannian curvature difference is bounded in all directions v ∈ Sp−1 via

∀v ∈ Sp−1,
∣∣∣v∗ (H̃ess[ϕ`1 ](a)−Hess[ϕρ](a)

)
v
∣∣∣ ≤ 200c′nθ2. (B.117)

Proof. 1. (Coefficients) From Theorem B.5.4, the proximal δ-smoothed `1 function satisfies

∣∣Sλ [a

∧∗ y]− Sδλ [a

∧∗ y]
∣∣
j
<
√
λδ ∀j ∈ [n].

Since the support of coefficient vectors are contained in [±p], using simple norm inequality:∥∥∥ι∗[±p]C∧x0Sλ [a
∧∗ y]− ι∗[±p]C

∧
x0Sδλ [a
∧∗ y]

∥∥∥
2
≤
√
λδn ·

∥∥∥ι∗[±p]C∧x0

∥∥∥
2
. (B.118)

Apply Theorem B.1.5 by replacing a0 with standard basis e0 and extend support of ι to ι[±p], notice that in

this case we have µ = 0. Condition on the event∥∥∥ι∗[±p]C∧x0

∥∥∥
2
≤
∥∥∥ι∗[±p]C∧x0

C∗e0

∥∥∥
2
≤
√

3(1 + 2µp)nθ ≤
√

3nθ,

and we gain

(B.118) ≤
√
λδn ·

√
3nθ ≤ n

√
3λθδ ≤ c′nθ4.

2. (Gradient) From definition of Riemannian gradient (B.103) and apply similar norm bound of (B.118), and

condition on the following events of Theorem B.1.5 holds, obtain

‖∇ϕ`1(a)−∇ϕρ(a)‖2 ≤
√
λδn ·

∥∥∥ι∗C∧y∥∥∥
2
≤ n

√
3λθ(1 + µp)δ ≤ c′nθ4. (B.119)

3. (Hessian) For every realization of JB(a) from a ∈ ∪|τ |≤kR(Sτ , γ(cµ)), base on Theorem B.5.5, condition
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on the event such that

B ≤ c′λθ2

p log n
, |J | ≤ 24c′nθ2

p log n
; (B.120)

and rewrite JB(a) as J . Also condition on the event using Theorem B.1.5 and (1 + µp)θ log θ−1 < 1∥∥∥ι∗C∧y∥∥∥
2
≤
√

3n,
∥∥∥ι∗C∧yPJ∥∥∥

2
≤
√

8 |J | p log n, (B.121)

then the difference of Hessian (B.104), in direction v ∈ Sp−1 can be bounded as∣∣∣v∗ (H̃ess[ϕ`1 ](a)−Hess[ϕρ](a)
)
v
∣∣∣

≤
∣∣∣v∗ι∗C∧y (PI(a) − diag

[
∇Sδλ

[
C

∧

yιa
]])

C

∧

yιv
∣∣∣+ ‖∇ϕ`1(a)−∇ϕρ(a)‖2 (B.122)

where I(a) is defined in (B.83). LetD = PI(a) − diag
[
∇Sδλ

[
C

∧

yιa
]]

and notice thatD is a diagonal matrix,

which suggests (B.122) can be decomposed using

(PJ + PJc)D(PJ + PJc) = PJDPJ + PJcDPJc ,

where, from with property of
√
δ-smoothed `1 function Theorem B.5.4:

max
j
|PJDPJ |jj ≤ 1, max

j
|PJcDPJc |jj ≤

√
λδ/B.

Finally, once again apply δ bound from (B.114) and bounds for B, |J | ,y from (B.120)-(B.121), we gain

(B.122) ≤
∥∥∥ι∗C∧yPJ∥∥∥2

2
+

√
λδ

B

∥∥∥ι∗C∧y∥∥∥2

2
+ ‖∇ϕ`1(a)−∇ϕρ(a)‖2

≤ 8 |J | p log n+
3n
√
λδ

B
+ c′nθ2

≤ 8 · 24c′nθ2

p log n
· p log n+

3n
(
c′4λ2θ8/p2 log2 n

)1/2
c′λθ2/p log p

+ c′nθ2

≤ 200c′nθ2,

where all above result holds with probability at least 1− 10/n from Theorem B.5.5 and Theorem B.1.5.

B.6 Analysis of geometry

In this section we prove major geometrical result in Theorem 3.4.1. This lemma consists of three parts of

geometry of ϕρ; including the negative curvature region Theorem B.6.2, large gradient region Theorem B.6.4,

strong convexity region near shift Theorem B.6.6, and retraction to subspace Theorem B.6.8, which are
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respectively base on geometric properties of ϕ`1 in Theorem B.6.1, Theorem B.6.3, Theorem B.6.5 and

Theorem B.6.7. We will handle each individual region in the following subsections. To shed light on

the technical detail of the proof, we will begin with two figures for illustration of a toy example, which

demonstrate the geometry near a two dimension solution subspace S{i,j}, as follows:

γ
2

γ
2

γ

γ

S{i,j}(|βi|, |βj|)

S⊥{i,j}(‖ατ c‖2)

0
si[a0] sj[a0]

4
5 ≤

|βi|
|βj | ≤

5
4

︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸
|βj| < νλ |βi| < νλ

︷ ︸︸ ︷ ︷ ︸︸ ︷νλ < |βj| < 4
5 |βi| νλ < |βi| < 4

5 |βj|

Negative

Curvature

Large

Gradient

Large

Gradient

Strong

Convex

Strong

Convex

Retractive Gradient

Retractive Gradient

Figure B.3: The top view of geometry over subspace S{i,j}. We display the geometric properties in the neighborhood
of subspace S{i,j} (horizontal axis) which contains the solutions si[a0] and sj [a0]. When a lies near middle of two shifts
(light green region) such that |βi| ≈ |βj |, then there exists a negative curvature direction in subspace S{i,j}. When a
leans closer to one of the shifts si[a0] (blue green region), its negative gradient direction points at that nearest shift. When
a is in the neighborhood of the shift si[a0] (dark green region) such that |βi| � λ, it will be strongly convex at a, and the
unique minimizer within the convex region will be close to si[a0]. Finally, the negative gradient will be pointing back
toward the subspace S{i,j} if near boundary (grey region).

Hess[ϕ](a) � 0

v∗Hess[ϕ](a)v < 0
}

}
‖grad[ϕ](a)‖2 > 0}

} PS⊥{i,j}Hess[ϕ](a)PS⊥{i,j} � 0

ϕ(a)

si[a0]

sj[a0] Sp−1∩ S{i,j}

Figure B.4: The side view of geometry of subspace S{i,j} on sphere. We illustrate the geometry of S{i,j} over the
sphere, in which the properties of the three regions are denoted. In negative curvature region, there exists a direction v
such that v∗Hess[ϕ](a)v is negative. In large gradient region, the norm of Riemannian gradient ‖grad[ϕ](a)‖2 will be
strictly greater then 0 and pointing at the nearest shift. Finally there is a convex region near all shifts such that Hess[ϕ](a)
is positive semidefinite.
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B.6.1 Negative curvature

For any a ∈ Sp−1 near the subspace Sτ such that the entries of leading correlation vector β(0),β(1) have

balanced magnitude, the Hessian of ϕρ(a) exhibits negative curvature in the span of s(0)[a0], s(1)[a0]. We

will first demonstrate the pseudo negative curvature of ϕ`1 in Theorem B.6.1, then show ϕρ approximates ϕ`1

in terms of Hessian in Theorem B.6.2 when ρ is properly defined as in Appendix B.5.

Lemma B.6.1 (Negative curvature for ϕ`1). Suppose that x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that (a0, θ, k)

satisfies the sparsity-coherence condition SCC(cµ). Set λ = cλ/
√
k in ϕ`1 with cλ ∈

[
1
5 ,

1
4

]
. There exist numerical

constants C, c, c′, c > 0 such that if n > Cp5θ−2 log p, and cµ ≤ c, then with probability at least 1− c′/n the following

holds at every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)) satisfying
∣∣β(1)

∣∣ ≥ 4
5

∣∣β(0)

∣∣: for v ∈ S{(0),(1)} ∩ Sp−1 ∩ a⊥,

v∗H̃ess[ϕ`1 ](a)v ≤ −cnθλ. (B.123)

Proof. First of all the regional condition
∣∣∣β(0)

β(1)

∣∣∣ ≤ 5
4 provides a two side bound for the two leading β’s

0.79 ≥
∣∣β(0)

∣∣√
β2

(0) + β2
(1)

‖βτ‖2 ≥
∣∣β(0)

∣∣ ≥ ∣∣β(1)

∣∣ ≥ 4

5

∣∣β(0)

∣∣ ≥ 4

5
·
‖βτ‖2√
|τ |
≥ 0.79√

|τ |
(B.124)

Set J = {(0), (1)}, choose v = ι∗Ca0ιJγ with ‖v‖2 = 1 then
∣∣∣‖γ‖22 − 1

∣∣∣ ≤ µ. There exists such v satisfies

condition above with a ⊥ v by choosing γ as

a∗v = a∗ι∗Ca0
ιJγ = γ(0)β(0) + γ(1)β(1) = 0,

hence
∣∣∣γ(1)

γ(0)

∣∣∣ =
∣∣∣β(0)

β(1)

∣∣∣ ≤ 5
4 . This implies γ2

(0) ≥
16
25γ

2
(1) ≥

16
25 (1 − µ − γ2

(0)) where µ ≤ cµ
4 ≤

1
100 , it gives the

lower bound of γ(0) as

γ2
(0) ≥

(1− µ) · 16

25 + 16
≥ 0.385 (B.125)

1. (Expand the Hessian) The (pseudo) curvature along direction v is written as

v∗H̃ess[ϕ`1 ](a)v = v∗∇̃2ϕ`1(a)v − 〈∇ϕ`1(a),a〉 = −γ∗ι∗JMC

∧

xPI(a)C

∧

xMιJγ + β∗χ[β] (B.126)

expand the first term of (B.126) we obtain

− γ∗ι∗JMC

∧

xPI(a)C

∧

xMιJγ

= −γ∗ι∗JM
(
P(0) + P(1) + PJc

)
C

∧

xPI(a)C

∧

x

(
P(0) + P(1) + PJc

)
MιJγ
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≤ −
∑
i∈J

∥∥∥PI(a)C

∧

xei

∥∥∥2

2
(e∗iMιJγ)

2
+ 2

∑
(i,j)∈{J,Jc}

(i,j)=((0),(1))

∣∣∣e∗iC∧xPI(a)C

∧

xej

∣∣∣ ∣∣(e∗iMιJγ)
(
e∗jMιJγ

)∣∣
≤ −

∑
i∈J

∥∥∥PI(a)C

∧

xei

∥∥∥2

2
(|γi| − µ)

2

+ 2 max
i 6=j∈[±p]

∣∣∣e∗iC∧xPI(a)C

∧

xej

∣∣∣ (‖ι∗JMιJγ‖1 ‖ι
∗
JcMιJγ‖1 +

(∣∣γ(0)

∣∣+ µ
) (∣∣γ(1)

∣∣+ µ
))

(B.127)

Consider the following events
Ecross :=

{
∀a ∈ Sp−1, maxi 6=j∈[±p]

∣∣∣e∗iC∧xPI(a)C

∧

xej

∣∣∣ < 4nθ2
}

Encurv :=
{
∀a ∈ R(Sτ , γ(cµ)), mini∈J

∥∥PI(a)s−i[x]
∥∥2

2
≥ nθ (1− Esi(λ, si) + Esi(λ, si))−

cµnθ
p

} ,

(B.128)

and from Theorem B.2.4 we know

‖ι∗JMιJγ‖1 ≤ ‖γ‖1 + 2µ ≤ 1.5, ‖ι∗JcMιJγ‖1 ≤ µp ‖γ‖1 ≤ 1.5µp,

on the event Ecross ∩ Encurv, we have

− γ∗ι∗JMC

∧

xPI(a)C

∧

xMιJγ

≤ −nθ ·
∑
i∈J

(|γi| − µ)2 (1− Esierfβi(λ, si) + Esifβi(λ, si))︸ ︷︷ ︸
g1(β)

+ (18µp+ 8)nθ2 +
2cµnθ√
|τ |

(B.129)

Meanwhile, for the latter term of (B.126), consider the following event Eχ where we write σi = sign(βi) as:

Eχ :=

σiχ[β]i ≤


nθ · |βi| (1− Esierfβi(λ, si)) +

cµnθ
p , ∀ i ∈ τ

nθ · |βi| 4θ |τ |+ cµnθ
p , ∀ i ∈ τ c

 , (B.130)

and use both ‖β‖1 ≤
cµp√
|τ |

, ‖βτc‖22 ≤
cµ
θ|τ |2 . On this event we have

β∗χ[β] ≤ nθ ·
∑
i∈τ

β2
i (1− Esierfβi(λ, si)) + 4nθ2 |τ | ‖βτc‖22 +

cµnθ

p
‖β‖1

≤ nθ ·
∑
i∈τ

β2
i (1− Esierfβi(λ, si))︸ ︷︷ ︸

g2(β)

+
5cµnθ√
|τ |

. (B.131)

2. (Lower bound Efβi) Combine the first term from each of the (B.129) and (B.131). Use µ ≤ cµ ≤ 1
300 and
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(B.125) to obtain
(∣∣γ(0)

∣∣− µ)2 > 0.38, we have

1

nθ
(g1(β) + g2(β)) ≤ −

∑
i∈J

[
(|γi| − µ)

2 − β2
i

]
(1− Esierfβi(λ, si))

+
∑
i∈τ\J

β2
i (1− Esierfβi(λ, si))− 0.38

∑
i∈J

Esifβi(λ, si), (B.132)

now use Taylor expansion 1 for fβi and apply upper bound Es2
i ≤ θ ‖β‖

2
2 ≤ θ

(
1 +

cµ√
|τ |

+
cµ
θ|τ |2

)
≤ 3cµ
|τ | ,

Esifβi(λ, si) ≥ Esi
1√
2π
·

(
2λ

|βi|
− λ3

|βi|3

(
1 +

3s2
i

λ2

))
≥ 1√

2π
·

(
2λ

|βi|
− 1

|βi|3

(
λ3 +

9cµλ

|τ |

))
︸ ︷︷ ︸

f(β)

,

where f(β) is concave at stationary point since
f ′(β∗) = 0 =⇒ 2λβ2

∗ = 3λ
(
λ2 +

9cµ
|τ |

)
f ′′(β∗) = 1

|β∗|3

(
4λ− 12λ

β2
∗

(
λ2 +

9cµ
|τ |

))
= 1
|β∗|3

(
4λ− 12

3/2λ
)
< 0

,

then combine with regional condition (B.124), and also apply assumption cλ ≤ 1
3 and cµ ≤ 1

300 , we gain

0.38
∑
i∈J

Esifβi(λ, si) ≥ 0.3 min
β= 0.79√

|τ|
,0.79

f(β)

≥ 0.3 min

{
2cλ
0.79

− c3λ + 9cµcλ
0.793

, λ

(
2

0.79
− c2λ + 9cµ

0.793

)}
≥ 0.3 min {2cλ, 2λ} ≥ 0.6λ. (B.133)

3. (Upper bound Eχ[β]i) When β2
(0) =

(∣∣γ(0)

∣∣− µ)2 − η for some η > 0. With monotonicity Theorem B.3.3,

which implies:

(
1− Es(0)erfβ(0)

(λ, s(0))
)
≥
(
1− Es(1)erfβ(1)

(λ, s(1))
)
≥ (1− Esierfβi(λ, si)) , (B.134)

then combine (B.133)-(B.134) and use µ ≤ cµ

4
√
|τ |

from Theorem B.2.5

(B.132) ≤ −
((∣∣γ(0)

∣∣2 − µ)2

− β2
(0) − η

)
︸ ︷︷ ︸

=0

(
1− Es(0)erfβ(0)

(λ, s(0))
)

+

 ∑
i∈τ\(0)

β2
i −

(∣∣γ(1)

∣∣− µ)2 − η
(1− Es(1)erfβ(1)

(λ, s(1))
)︸ ︷︷ ︸

<1

−0.38
∑
i∈J

Esifβi(λ, si)

1 Apply exp
[
−x2/2

]
> 1− x2/2
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≤
(
‖βτ‖22 − ‖γ‖

2
2 + 2µ ‖γ‖1

)
− 0.6λ

≤ 2cµ√
|τ |
− 0.6λ. (B.135)

On the other hand, when β2
(0) ≥

(∣∣γ(0)

∣∣− µ)2 > 0.38, combining (B.133)-(B.134) gives:

(B.132) ≤
(
‖βτ‖22 − ‖γ‖

2
2 + 2µ ‖γ‖1

)
+
((∣∣γ(0)

∣∣− µ)2 − β2
(0)

)
Es(0)erfβ(0)

(λ, s(0))

+

(∣∣γ(1)

∣∣− µ)2 − ∑
i∈τ\(0)

β2
i

Es(1)erfβ(1)
(λ, s(1))− 0.38

∑
i∈J

Esifβi(λ, si)

≤

(
cµ√
|τ |

+ 4µ

)
+
(
γ2

(1) − ‖βτ‖
2
2 + β2

(0)

)
Es(1)erfβ(1)

(λ, s(1))− 0.6λ, (B.136)

where Theorem B.3.2 provides the upper bound for Es(1)erfβ(1)
(λ, s(1)) as

Es(1)erfβ(1)
(λ, s(1)) = 1− 1

nθβ(1)
Eχ[β](1) ≤ 1−

σ(1)

nθ
∣∣β(1)

∣∣Eχ[β]
(1)

= 1− 1∣∣β(1)

∣∣
(∣∣β(1)

∣∣−√ 2

π
λ

)

≤
√

2

π
· λ∣∣β(1)

∣∣ , (B.137)

then calculate the constant for the second term in (B.136) by writing κ =
∣∣∣γ(1)

γ(0)

∣∣∣ =
∣∣∣β(0)

β(1)

∣∣∣ ≤ 5
4 , which provides

γ2
(1) ≤

(1+µ)κ2

κ2+1 and β2
(0) ≤

‖βτ‖22κ
2

κ2+1 where µ < cµ
4 , and by applying

∣∣β(1)

∣∣ > 4
5

∣∣β(0)

∣∣ ≥ 0.3, we have

(γ2
(1) − 1) + cµ + β2

(0)∣∣β(1)

∣∣ ≤ − κ

(κ2 + 1)
∣∣β(0)

∣∣ + κ
∣∣β(0)

∣∣+
µ+ cµ

0.3
≤ κ2 − 1√

κ2 + 1
+ κ

(
‖βτ‖22 − 1

)
+ 4.2cµ ≤ 0.36 + 6cµ,

(B.138)

and finally combine (B.137)-(B.138), follow from (B.136) and use cλ ≤ 1
3 :

(B.132) ≤ 2cµ√
|τ |

+

√
2

π

(
γ2

(1) − 1 + cµ + β2
(0)

) λ∣∣β(1)

∣∣ − 0.6λ

≤ 2cµ√
|τ |

+

√
2

π

(
0.36λ+

6cµcλ
0.3

)
− 0.6λ

≤ 4cµ√
|τ |
− 0.3λ (B.139)

3. (Collect all results) Combine the components of pseudo Hessian (B.129), (B.131) with bounds for g1 + g2

from (B.135) and (B.139), and use Lemma B.2.5 which provides both µpθ |τ | < cµ
4 and θ |τ | < cµ

4 where

cµ <
1

300 and cλ ≥ 1
5 , we can obtain:

v∗H̃essϕ`1 [a]v ≤ g1(β) + g2(β) +
7cµnθ√
|τ |

+ (18µp+ 8)nθ2
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≤ nθ ·

(
4cµ√
|τ |
− 0.3λ

)
+ nθ · 7cµ√

|τ |
+ nθ · 6.5cµ

|τ |

≤ nθ√
|τ |

(0.059− 0.06) ≤ −0.001nθλ (B.140)

Finally, the curvature is negative along v direction with probability at least

1− P [Eccross]︸ ︷︷ ︸
Theorem B.1.4

− P [Ecncurv]︸ ︷︷ ︸
Theorem B.4.3

− P
[
Ecχ
]︸ ︷︷ ︸

Theorem B.3.4

. (B.141)

Similarly for objective ϕρ, we have that

Corollary B.6.2 (Negative curvature for ϕρ). Suppose that x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that (a0, θ, k)

satisfies the sparsity-coherence condition SCC(cµ). Define λ = cλ/
√
k in ϕρ where cλ ∈

[
1
5 ,

1
4

]
, then there exists

some numerical constants C, c, c′, c′′, c > 0 such that if ρ is δ-smoothed `1 function where δ ≤ c′′λθ8/p2 log2 n,

n > Cp5θ−2 log p and cµ ≤ c, then with probability at least 1− c′/n, for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)) satisfying∣∣β(1)

∣∣ ≥ 4
5

∣∣β(0)

∣∣: for v ∈ S{(0),(1)} ∩ Sp−1 ∩ a⊥,

v∗H̃ess[ϕρ](a)v ≤ −cnθλ (B.142)

Proof. Choose v ∈ Sp−1 according to Theorem B.6.1 and (B.117) from Theorem B.5.6 with constant multiplier

δ satisfies c′′1/4 < 10−3c, we gain

v∗Hess[ϕρ](a)v ≤ −cnθλ+ 200c′nθ2 ≤ −cnθλ/2 (B.143)

B.6.2 Large gradient

For any a ∈ Sp−1 near subspace and the second largest correlation β(1) much smaller then the first correlation

β(0) while not being near 0, the negative gradient of ϕρ(a) will point at the largest shift. We show this in

Theorem B.6.3, and the ϕρ version in Theorem B.6.4 when ρ is properly defined as in Appendix B.5.

Lemma B.6.3 (Large gradient for ϕ`1 ). Suppose that x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that (a0, θ, k) satisfies

the sparsity-coherence condition SCC(cµ). Define λ = cλ/
√
k in ϕ`1 with some cλ ∈

[
1
5 ,

1
4

]
, then there exists some

numerical constants C, c′, c, c > 0, such that if n > Cp5θ−2 log p and cµ ≤ c, then with probability at least 1− c′/n,
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for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)) satisfying 4
5

∣∣β(0)

∣∣ > ∣∣β(1)

∣∣ > 1
4 log θ−1λ,

〈
σ(0)ι

∗s(0)[a0],−grad[ϕ`1 ](a)
〉
≥ cnθ

(
log−2 θ−1

)
λ2 (B.144)

where σi = sign(βi).

Proof. 1. (Properties for α,β) Define θlog = 1
log θ−1 , we first derive upper bound on the dominant entry

∣∣β(0)

∣∣
as follows. Write the geodesic distance between a and ι∗si[a0] as a function of βi as dS(a,±ι∗si[a0]) =

cos−1(βi), then by triangle inequality we have:

dS(a,±ι∗s(0)[a0]) ≥ dS(±ι∗s(0)[a0], ι∗s(1)[a0])− dS(a, ι∗s(1)[a0])

=⇒ cos−1±β(0) ≥ cos−1 µ− cos−1
∣∣β(1)

∣∣
=⇒ ± β(0) ≤ cos

(
cos−1 µ− cos−1

∣∣β(1)

∣∣) = µ
∣∣β(1)

∣∣+

√
(1− µ2)

(
1− β2

(1)

)
≤ 1− 1

2

(∣∣β(1)

∣∣− µ)2 .
Use the regional condition

∣∣β(1)

∣∣ ≥ θlog
4 λ and since µ |τ |3/2 < cλ

100θlog from Theorem B.2.1, implies

∣∣β(0)

∣∣ ≤ 1− β2
(1)

2

(
1− 4µ

√
|τ |

θlogcλ

)
≤ 1− 0.49β2

(1) =: βub. (B.145)

Meanwhile a lower bound for β(0) can be easily determined by the other side of regional condition:

∣∣β(0)

∣∣ ≥ 5
4

∣∣β(1)

∣∣ =: βlb. (B.146)

Also since β = Mα, based on properties ofM from Theorem B.2.4. When ‖ατ‖2 ≤ 1 + cµ and ‖ατc‖2 ≤

γ ≤ cµθ
2
log

4µ
√
p|τ | , we gain:

β(0) = α(0) + e∗(0)Mα\(0)

=⇒
∣∣α(0) − β(0)

∣∣ ≤ µ√|τ | ‖ατ‖2 + µ
√
p ‖ατc‖2 ≤

cµθ
2
log(1+cµ)

4|τ | + µ
√
pγ ≤ cµθ

2
log

|τ | . (B.147)

and therefore
∣∣α(0)

∣∣ ≤ ∣∣β(0)

∣∣+
cµθ

2
log

|τ | ≤ 1− .49
(
θlog

4 λ
)2

+
cµθ

2
log

|τ | < 1.

2. (Upper bound of β∗χ[β]) Define a piecewise smooth convex upper bound h for βiχ[β]i as:

h(βi) :=


β2
i − ν1λ

2 |βi| |βi| ≥ ν1λ

1
2β

2
i |βi| ≤ ν1λ

,
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then Theorem B.10.7 tells us since
∥∥βτ\(0)

∥∥
∞ ≤ β(1):

∑
i∈τ\(0)

h(βi) ≤
∥∥βτ\(0)

∥∥2

2

(
1−

ν1λβ(1)

2β2
(1)

)
≤

(
1 +

cµθ
2
log

|τ |
− β2

(0)

)(
1− ν1λ

2β(1)

)

≤
(

1− ν1λ

2β(1)

)(
1− β2

(0)

)
+
cµθ

2
log

|τ |
,

then condition on the following event using Theorem B.3.4,

Eχ :=

βiχ[β]i ≤


nθ · h(βi) +

cµθ

p3/2
|βi| , ∀i ∈ τ \ (0)

nθ · 4β2
i θ |τ |+

cµθ

p3/2
|βi| , ∀i ∈ τ c

 ,

which provides the upper bound of β∗χ[β] by applying 5p > log8/3(p log2 p) > (θ2
log)4/3 from lower bound

of θ from Theorem B.2.1, ‖βτc‖2 ≤
cµθlog√
θ|τ | from Theorem B.2.5 , |τ | ≤ √p from lemma assumption and let

cµ <
1

100 :

β∗χ[β] ≤ χ[β](0)β(0) +
∑

i∈τ\(0)

βiχ[β]i + 〈βτc ,χ[β]τc〉

≤ χ[β](0)β(0) + n

θ ∑
i∈τ\(0)

h(βi) + 4θ2 |τ | ‖βτc‖22 +
cµθ

p3/2

(√
|τ | ‖βτ‖2 +

√
p ‖βτc‖2

)
≤ χ[β](0)β(0) + n

(
θ · η(1− β2

(0)) + θ ·
cµθ

2
log

|τ |
+

4θ2 |τ | c2µθ2
log

θ |τ |2
+ cµθ

(
1 + cµ
p3/4 |τ |

+
cµθlog

p
√
θ |τ |

))

≤ χ[β](0)β(0) + nθ

(
η(1− β2

(0)) +
6cµθ

2
log

|τ |

)
, (B.148)

where η = 1− ν1λ
2β(1)

.

3. (Align the gradient with ι∗s(0)[a0]) Base on the definition β, since β(0) =
〈
a, ι∗s(0)[a0]

〉
, we can expect

that the negative gradient is likely aligned with direction toward one of the candidate solution ±ι∗s(0)[a0].

Wlog assume that both β(0),β(1) are positive, then expand the gradient and use incoherent property for a0

Theorem B.2.4 we have:

〈
ι∗s(0)[a0],−gradϕ`1

[a]
〉

=
〈
ι∗s(0)[a0], ι∗Ca0

(χ[β]− β∗χ[β]α)
〉

≥
(
χ[β](0) − β∗χ[β]α(0)

)
− µ

∥∥χ[β]\(0) − β∗χ[β]α\(0)

∥∥
1
, (B.149)

where \(0) is an abbreviation of the complement set [±2p0] \ (0). The latter part of (B.149) has an upper

bound using bounds of β∗χ[β] < 3nθ
2 , ‖χ[β]τc‖2 <

nθγ2
20 from (B.184), and

∥∥χ[β]τ\(0)

∥∥
2
≤ nθ

∥∥βτ\(0)

∥∥
2
in
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event Eχ, we obtain:

µ
∥∥χ[β]\(0) − β∗χ[β]α\(0)

∥∥
1

≤ µ
(√
|τ |
∥∥χ[β]τ\(0)

∥∥
2

+ β∗χ[β]
√
|τ |
∥∥ατ\(0)

∥∥
2

+
√
p ‖χ[β]τc‖2 + β∗χ[β]

√
p ‖ατc‖2

)
≤ nθ ·

[
µ
√
|τ |
(
‖βτ‖2 −

∣∣β(0)

∣∣)+ µ
√
|τ |
(
‖ατ‖2 −

∣∣α(0)

∣∣)+
1

20
µ
√
pγ2 +

3

2
µ
√
pγ2

]
≤ nθ ·

cµθ
2
log

4 |τ |

[
2 (1 + cµ)−

∣∣β(0)

∣∣− ∣∣α(0)

∣∣+

(
1

20
+

3

2

)
cµ

]
≤ nθ ·

cµθ
2
log

|τ |
(
0.5 + cµ − 0.5β(0)

)
. (B.150)

On the other hand, the former term of (B.149) possesses a lower bound using (B.147)-(B.148), χ[β](0) >

nθ
(
β(0) − ν1

2 λ−
cµ
p

)
≥ nθ

(
β(0) − 0.51ν1λ

)
and α(0) ≤ 1:

χ[β](0) − β∗χ[β]α(0)

≥
(
1−α(0)β(0)

)
χ[β](0) − nθ ·

[
η
(

1− β2
(0)

)
+

6cµθ
2
log

|τ |

]
α(0)

≥ nθ

(
1−

(
β(0) +

cµθ
2
log

|τ |

)
β(0)

)(
β(0) − 0.51ν1λ

)
︸ ︷︷ ︸

(a)

−nθ

[
η
(

1− β2
(0)

)(
β(0) +

cµθ
2
log

|τ |

)
+

6cµθ
2
log

|τ |
α(0)

]
︸ ︷︷ ︸

(b)

≥ nθ

(1− β2
(0)

) (
β(0) − 0.51ν1λ

)
−
cµθ

2
logβ

2
(0)

|τ |︸ ︷︷ ︸
(a)

−
(

1− β2
(0)

)
ηβ(0) − η

cµθlog

(
1− β2

(0)

)
|τ |

−
6cµθ

2
log

|τ |︸ ︷︷ ︸
(b)


≥ nθ

[(
1− β2

(0)

) (
(1− η)β(0) − 0.51ν1λ

)
−
cµθ

2
log

|τ |

(
(1− η)β2

(0) + 7
)]

, (B.151)

combine (B.149) with (B.150)-(B.151) and η > 0, we have

(B.149) ≥ nθ

[(
1− β2

(0)

) (
(1− η)β(0) − 0.51ν1λ

)
−
cµθ

2
log

|τ |

(
(1− η)β2

(0) + 7
)]
− nθ ·

cµθ
2
log

|τ |
(
0.5 + cµ − 0.5β(0)

)

≥ nθ

(1− β2
(0)

)( ν1λ

2β(1)
β(0) − 0.51ν1λ

)
︸ ︷︷ ︸

f(β)

−
8cµθ

2
log

|τ |

 . (B.152)

4. (Lower bound of f(β)) Given a fixed β(1), the cubic function f(β(0)) has zeros set β(0) ∈
{
±1, 1.02β(1)

}
and has negative leading coefficient. Combine with the condition of β(0) ∈ {βlb, βub} from (B.145)-(B.146),
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we can observe that

β(0) ∈ [βlb, βub] =

[
5

4
β(1), 1− 0.49β2

(1)

]
⊆
[
1.02β(1), 1

]
,

therefore the cubic term is always positive andminimizer is either one of the boundary point. Whenβ(0) = βlb,

use
(
1 + 25

16

)
β2

(1) < 1.01, and use ν1λ <

√
θlog

2
√
|τ |
≤ 1

2
√

2
, since |τ | ≥ 2, we have:

f(βlb) ≥
(
1− β2

lb

)( ν1λ

2β(1)
βlb − 0.51ν1λ

)
≥ (1− 0.616) ·

(
5

8
− 0.51

)
ν1λ ≥

1

16
√

2
ν1λ ≥

θ2
log

32
λ2. (B.153)

On the other hand when β(0) = βub:

f(βub) ≥
(
1− β2

ub

)( ν1λ

2β(1)
βub − 0.51ν1λ

)
≥ 0.49β2

(1) ·
(
ν1λ

2β(1)

(
1− 0.49β2

(1)

)
− 0.51ν1λ

)
,

which is a cubic function of β(1) with negative leading coefficient, whose zeros set is {−0.73, 0, 2.81}. Thus it

minimizes at the boundary points of β(1) ∈
[

λ
4 log θ−1 , 1

]
⊂ [0, 2.81], thus assign β(1) = λ

4 log θ−1 , we have:

f(βub) ≥ 0.49

(
λ

4 log θ−1

)2

·

(
1

2

(
1− 0.49

(
λ

4 log θ−1

)2
)
− 0.51ν1λ

)
≥ 1

6

(
λ

4 log θ−1

)2

≥
θ2

log

96
λ2.

(B.154)

Finally combine (B.152) with the lower bound of cubic function (B.153)-(B.154) together with condition

cµ <
c2λ
800 and ν1 =

√
θlog
2 , obtain

〈
ι∗s(0)[a0],−gradϕ`1

[a]
〉
≥ nθ ·

(
min {f(βub), f(βlb)} −

8cµθ
2
log

|τ |

)

≥ nθ

(
θ2

logc
2
λ

96 |τ |
−

8θ2
logc

2
λ

800 |τ |

)
≥ 6× 10−3nθθ2

logc
2
λ. (B.155)

The proof for the case where β(0) negative can be derived in the same manner.

As a consequence, we have that

Corollary B.6.4 (Large gradient for ϕρ). Suppose that x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that (a0, θ, k)

satisfies the sparsity-coherence condition SCC(cµ). Define λ = cλ/
√
k in ϕρ with cλ ∈

[
1
5 ,

1
4

]
, then there exists

some numerical constants C, c, c′, c′′, c > 0 such that if ρ is δ-smoothed `1 function where δ ≤ c′′λθ8/p2 log2 n with

n > Cp5θ−2 log p and cµ ≤ c, then with probability at least 1− c′/n, for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)) satisfying
4
5

∣∣β(0)

∣∣ > ∣∣β(1)

∣∣ > 1
4 log θ−1λ ,〈

σ(0)ι
∗s(0)[a0],−grad[ϕρ](a)

〉
≥ cnθ

(
log−2 θ−1

)
λ2 (B.156)
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where σi = sign(βi).

Proof. Choose ι∗s(0)[a0] as in Theorem B.6.3, and apply (B.116) from Theorem B.5.6 with the constant multi-

plier of δ satisfies c′′4 < c/4, then utilize θ |τ | log2 θ−1 < cµ from Theorem B.2.1 we have

〈
σ(0)ι

∗s(0)[a0],−grad[ϕρ](a)
〉
≥ cnθ(log−2 θ−1)λ− c′′nθ2 ≥ cnθ(log−2 θ−1)λ/2 (B.157)

B.6.3 Convex near solutions

For any a ∈ Sp−1 near subspace and the second largest correlation β(1) smaller then 1
4 log θ−1λ, then ϕρ will be

strongly convex at a. We show this in Theorem B.6.5, and the ϕρ version in Theorem B.6.6 when ρ is properly

defined as in Appendix B.5.

Lemma B.6.5 (Strong convexity of ϕ`1 near shift). Suppose that x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that

(a0, θ, k) satisfies the sparsity-coherence condition SCC(cµ). Define λ = cλ/
√
k in ϕ`1 with cλ ∈

[
1
4 ,

1
5

]
, then there

exists some numerical constants C, c, c′c > 0 such that if n > Cp5θ−2 log p and cµ ≤ c, then with probability at least

1− c′/n, for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)) satisfying
∣∣β(1)

∣∣ < 1
4 log θ−1λ: for all v ∈ Sp−1 ∩ v⊥,

v∗H̃ess[ϕ`1 ](a)v > cnθ; (B.158)

furthermore, there exists ā as an local minimizer such that

min
`
‖ā− s`[a0]‖2 ≤

1
2 max

{
µ, p−1

}
. (B.159)

Proof. 1. (Expectation of χ near shifts) We will write x as x0 through out this proof. When a is near one of

the shift, the χ operator shrinks all other smaller entries of correlation vector β\(0) in an even larger shrinking

ratio. Firstly we can show
∣∣〈β\(0),x\(0)

〉∣∣ is no larger then λ/2 with probability at least 1− 4θ, since

P
[∣∣〈β\(0),x\(0)

〉∣∣ > λ

2

]
≤ P

[∣∣〈βτ\(0),xτ\(0)

〉∣∣ > 2λ

5

]
+ P

[
|〈βτc ,xτc〉| >

λ

10

]
≤ 4θ (B.160)

via Theorem B.2.6 and Theorem B.2.7. Now recall from Theorem B.3.2 and the derivation of (B.62)-(B.63), we

know for every i 6= (0),

σiEχ[β]i = nθ |βi|Esi [1− erfβi (λ, si)]

≤ nθ |βi|Eg,x\i
[
g21{∣∣∣βig+β(0)x(0)+β

∗
\{(0),i}x\{(0),i}

∣∣∣>λ}
]
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≤ nθ |βi|
(
Eg21{|βig|>λ/2} + P

[
x(0) 6= 0

]
+ P

[∣∣〈β\{(0),i},x\{(0),i}
〉∣∣ > λ/2

])
≤ nθ |βi|

((
Eg2

)1/2 P [∣∣β(1)g
∣∣ > λ/2

]1/2
+ θ + 4θ

)
≤ nθ |βi|

(
exp

(
− log2 θ−1

)
+ 5θ

)
(B.161)

≤ 6nθ2 |βi|

where the third inequality is derived using union bound; the the fourth inequality is the result of (B.160),

and the fifth inequality is derived from Gaussian tail bound theorem B.10.1.

2. (Local strong convexity) Let γ = C∗a0
ιv, for any ‖v‖2 = 1 we have ‖γ‖22 ≤ 1 + µp. Furthermore:

∣∣γ(0)

∣∣ =
∣∣〈ι∗s(0)[a0],v

〉∣∣ =
∣∣〈Pa⊥ι∗s(0)[a0],v

〉∣∣ =
∣∣〈ι∗s(0)[a0]− β(0)a,v

〉∣∣
≤
∥∥ι∗s(0)[a0]− β(0)a

∥∥
2
≤
√

1− β2
(0). (B.162)

Consider any such v, the pseudo Hessian can be lower bounded as

v∗∇̃2ϕ`1(a)v = −γ∗C

∧

xPI(a)C

∧

xγ

≥ −γ2
(0)

∥∥∥PI(a)C

∧

xe(0)

∥∥∥2

2
−
∑
i6=(0)

∥∥∥PI(a)C

∧

xei

∥∥∥2

2
γ2
i − 2

∑
i6=j

∣∣∣e∗iC∧xPI(a)C

∧

xej

∣∣∣ |γi| |γj |
≥ −

(
1− β2

(0)

)
‖x‖22 − max

i 6=(0)

∥∥PI(a)s−i[x]
∥∥2

2
‖γ‖22 − 2 max

i 6=j

∣∣∣e∗iC∧xPI(a)C
∧

xej

∣∣∣ ‖γ‖21 , (B.163)

where the second term is bounded byusing its expectation derived in TheoremB.4.2, andutilizeP [|si| > λ/2] <

4θ from (B.160), Eχ from (B.161) and regional condition
∣∣β(1)

∣∣ ≤ λ
4 log θ−1 to acquire

E
∥∥PI(a)s−i[x]

∥∥2

2
= nθ [1− Esierfβi (λ, si) + Esifβi (λ, si)]

≤ |Eχ[β]i|
|βi|

+ nθ ·

(
max
|si|≤λ2

fβi(λ, si) + P
[
|si| >

λ

2

])

≤ 6nθ2 +
2nθ√

2π
max
|si|≤λ2

(
λ+ |si|
|βi|

· exp

[
− (λ− |si|)2

2β2
i

])
+ 4nθ2

≤ 10nθ2 + nθ · log θ−1 exp
(
−2 log2 θ−1

)
≤ 11nθ2, (B.164)

137



and define the events E‖x‖2 , Ecross and Epcurv as follows:
Epcurv :=

{
∀a ∈ ∪|τ |≤kR(Sτ , γ(cµ)),

∥∥PI(a)s−i[x]
∥∥2

2
≤ 11nθ2 +

cµnθ
p

}
Ecross :=

{
∀a ∈ ∪|τ |≤kR(Sτ , γ(cµ)),

∣∣β(1)

∣∣ ≤ λ
4 log θ−1 , maxi 6=j∈[±p]

∣∣∣e∗iC∧xPI(a)C

∧

xej

∣∣∣ ≤ 8nθ3
}

E‖x‖2 :=
{
‖x‖22 ≤ nθ + 3

√
nθ log n

} .

(B.165)

For the Hessian term, on the event Epcurv ∩ Ecross ∩ E‖x‖2 , and use all µp2θ2, µpθ |τ | and θ√p are all less then
cµ

4 log2 θ−1 , from Theorem B.2.5, and from lemma assumptionwith sufficiently largeC we have n > θ−136 log2 n,

thus v∗∇̃2ϕ`1(a)v can be lower bounded from (B.163) as

v∗∇̃2ϕ`1(a)v ≥ −
(

1− β2
(0)

)(
nθ + 3

√
nθ log n

)
− (1 + µp)

(
11nθ2 +

cµnθ

p

)
− 8p (1 + µp) · 8nθ3

≥ −1

2
nθ · (1− β2

(0))− nθ ·
(

11cµ
4

+ c2µ +
64cµ

4
+

64cµ
4

)
≥ −1

2
nθ ·

(
1− β2

(0) + 20cµ

)
. (B.166)

The bounds of β∗χ[β] can be derive on the event whose expectation is drawn from Theorem B.3.2 and (B.161)

as

Eχ :=



σiχ[β]i ≥ nθSν2λ [|βi|]− cµnθ

p , ∀ i ∈ [±p]

σiχ[β]i ≤ 6nθ2 |βi|+ cµnθ

p3/2
, ∀ i 6= (0)

 ,

then use ‖β‖1 ≤ 1 + λp
4 log θ−1 ≤ λp

2 , implies:

β∗χ[β] ≥ nθ
∣∣β(0)

∣∣ (∣∣β(0)

∣∣− ν2λ
)
− cµ ‖β‖1

nθ
p

≥ nθ
(
β2

(0) −
√

2
πλ−

cµ
2 λ

)
≥ nθ

(
β2

(0) − λ
)
. (B.167)

Finally via the regional condition
∣∣β(1)

∣∣ ≤ λ
4 log θ−1 , the absolute value of leading correlation

β2
(0) ≥ ‖βτ‖

2
2 − |τ |β

2
(1) ≥ 1− 2cµ − 0.12 > 0.9, (B.168)

then we collect all above results and obtain:

v∗H̃ess[ϕ`1 ](a)v = v∗∇̃2ϕ`1(a)v − β∗χ[β] ≥
(

1.5β2
(0) − 0.5− λ− 20cµ

)
nθ ≥ 0.3nθ, (B.169)
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with probability at least

1− P [Eccross]︸ ︷︷ ︸
Theorem B.4.4

− P
[
Ecpcurv

]︸ ︷︷ ︸
Theorem B.4.3

− P
[
Ec‖x‖2

]
︸ ︷︷ ︸
Theorem B.1.2

− P
[
Ecχ
]︸ ︷︷ ︸

Theorem B.3.4

≥ 1− c′/n. (B.170)

3. (Identify local minima) Wlog let a∗ be a local minimum where its gradient is zero that is close to a0. The

strong convexity (B.169), provides the upper bound on ‖a∗ − a0‖22 via

ϕ`1(a∗) ≥ ϕ`1(a0) + 〈a∗ − a0, grad[ϕ`1 ](a0)〉+ 0.3
2 nθ ‖a∗ − a0‖22

=⇒ ‖grad[ϕ`1 ](a0)‖2 ≥ 0.15nθ ‖a∗ − a0‖2 (B.171)

Thus we only require to bound the gradient at a0, whose coefficients α = e0 and correlation β has properties

β0 = 1 and
∥∥β\0∥∥∞ ≤ µhence ∥∥β\0∥∥≤√2pµ. Expand the gradient term and condition on Eχ, sinceµp2θ2 ≤ cµ

4

and θ < cµ
4
√
p , we can upper bound the gradient at a0 as

‖grad[ϕ`1 ](a0)‖2 = ‖ι∗Ca0 (χ [β]− β∗χ[β]e0)‖2 ≤ ‖ι
∗Ca0‖2

∥∥χ[β]\0
∥∥

2

≤
√

1 + µp
(

6nθ2
∥∥β\0∥∥2

+ nθ · cµ
p3/2
·
√

2p
)

≤ nθ
√

1 + µp
(

6µ
√

2p · θ +
2cµ
p

)
≤ nθ

(
3cµµ+ 6µ ·

√
2µ · pθ +

2cµ
p +

2cµ
√
µ√

p

)
≤ 7
√
cµnθ ·max

{
µ, 1

p

}
. (B.172)

Thus we conclude that with sufficiently small cµ:

‖a∗ − a0‖2 ≤ 50
√
cµ max

{
µ, p−1

}
≤ 1

2 max
{
µ, p−1

}
. (B.173)

and we complete the proof by generalize this result from minima near a0 to any of its shifts si[a0].

Similarly, for objective ϕρ we have

Corollary B.6.6 (Strong convexity of ϕρ of near shift). Suppose that x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that

(a0, θ, k) satisfies the sparsity-coherence condition SCC(cµ). Define λ = cλ/
√
k in ϕρ with cλ ∈

[
1
5 ,

1
4

]
, then there

exists some numerical constantC, c, c′, c′′, c > 0 such that if ρ is δ-smoothed `1 function where δ ≤ c′λθ8/p2 log2 n and

n > Cp5θ−2 log p and cµ ≤ c, then with probability at least 1− c′′/n, for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)) satisfying
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∣∣β(1)

∣∣ < ν1λ: for all v ∈ Sp−1 ∩ a⊥,

v∗H̃ess[ϕρ](a)v > cnθ; (B.174)

furthermore, there exists ā as an local minimizer such that

min
`
‖ā− s`[a0]‖2 ≤

1
2 max

{
µ, p−1

}
(B.175)

Proof. The strong convexity (B.174) is derived by combining (B.158) and (B.117) by letting constant multiplier

of δ satisfies c′1/4 < 10−3c. On the other hand the local minimizer near solution (B.175) is derived via

combining (B.171), (B.115) and utilize both θ√p < cµ and µp2θ2 < cµ such that:

‖grad[ϕρ](a)‖2 ≤ ‖ι
∗Ca0

‖2
∥∥∥χ[β]−C

∧

x0
Sδλ
[
C

∧

yιa
]∥∥∥

2
+ ‖ι∗Ca0

‖2
∥∥χ[β]\0

∥∥
2

≤
√

1 + µp · nθ3 + 7
√
cµnθ ·max

{
µ, p−1

}
≤ 8nθ

√
cµ ·max

{
µ, p−1

}
(B.176)

B.6.4 Retraction toward subspace

As in Figure B.4, the function value grows in direction away from subspace Sτ , we will illustrate this

phenomenon by proving the negative gradient direction −g will point toward the subspace Sτ . To show this,

we prove for every coefficients of a as α, there exists coefficients of g as ζ satisfies

〈ατc(g),ατc(a)〉 > c ‖ατc‖2 ‖ζτc‖2 (B.177)

whenever dα(a,Sτ ) ∈
[
γ
2 , γ
]
. Apparently, the gradient will decrease dα(a,Sτ ), hence being addressed as

retractive toward subspace Sτ . This retractive phenomenon is true for gradient of both ϕ`1 and ϕρ.

Lemma B.6.7 (Retraction of ϕ`1 toward subspace). Suppose that x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that

(a0, θ, k) satisfies the sparsity-coherence condition SCC(cµ). Define λ = cλ/
√
k in ϕ`1 with cλ ∈

(
0, 1

3

]
, then there

exists some numerical constants C, c, c > 0 such that if n > Cp5θ−2 log p and cµ ≤ c, then with probability at least

1− c′/n, for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)) such that if

dα(a,Sτ ) ≥ γ(cµ)/2 (B.178)
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then for every α satisfying a = ι∗Ca0α, there exists some ζ satisfying grad[ϕ`1 ](a) = ι∗Ca0ζ that

〈ζτc ,ατc〉 ≥ 1
4nθ ‖ζτc‖

2
2 . (B.179)

Proof. Write γ = γ(cµ) Recall the gradient can be derived as

grad[ϕ`1 ](a) = −Pa⊥ι∗Ca0χ[β] = (aa∗ − I) ι∗Ca0χ[β] = ι∗Ca0 (β∗χ[β]α− χ[β]) , (B.180)

for every α satisfies a = ι∗Ca0α. Now via Theorem B.3.4, condition on the event:

Eχ :=

σiχ[β]i ≤


nθ · |βi|+ cµnθ

p , ∀ i ∈ τ

nθ · |βi| 4θ |τ |+ cµnθ
p , ∀ i ∈ τ c

, σiχ[β]i ≥ nθ · S√2/πλ
[|βi|]

 , (B.181)

and on this event, utilize Theorem B.2.5, bounds of β∗χ[β] and ‖χ[β]τc‖2 can be derived with cµ < 1
100 as:

β∗χ[β] ≤ nθ
(
‖βτ‖22 + 4θ |τ | ‖βτc‖22 + cµ

)
≥ nθ

(
1 + cµ + 4c2µ + cµ

)
≤ 3

2nθ (B.182)

β∗χ[β] ≥ nθ
(
‖βτ‖22 −

√
2/πλ ‖βτ‖1 − cµ

)
≥ nθ

(
1− 4cµ −

√
2/πcλ − cµ

)
≥ 1

2nθ (B.183)

‖χ[β]τc‖2 ≤ 4nθ2 |τ | ‖βτc‖2 +
cµnθ
p

√
p ≤ nθ (4cµγ + cµγ) ≤ 1

20nθγ. (B.184)

Let α(g) = β∗χ[β]α− χ[β], derive

〈α(g)τc ,ατc〉 − 1
4nθ ‖α(g)τc‖22

= β∗χ[β] ‖ατc‖22 − 〈ατc ,χ[β]τc〉 − 1
4nθ ‖β

∗χ[β]ατc − χ[β]τc‖22

≥ β∗χ[β] ‖ατc‖22 − ‖ατc‖2 ‖χ[β]τc‖2 −
1

2nθ |β
∗χ[β]|2 ‖ατc‖22 −

1
2nθ ‖χ[β]τc‖22

≥
(
β∗χ[β]− 1

2nθ (β∗χ[β])2
)
‖ατc‖22 −

1
20nθγ ‖ατc‖2 −

1
1000nθγ

2, (B.185)

notice that this is a quadratic function of β∗χ[β] with negative leading coefficient and zeros at {0, 2nθ}, hence

(B.185) is minimized when β∗χ[β] = 1
2nθ. Plugging in,

(B.185) ≥ 3
8nθ ‖ατc‖

2
2 −

1
20nθγ ‖ατc‖2 −

1
1000nθγ

2 (B.186)

then again this is a quadratic function of ‖ατc‖2 with positive leading coefficient and zeros at
{

0, 8
60γ
}
, thus

(B.186) is minimized at ‖ατc‖2 = γ
2 . Plugging in again,

(B.186) ≥ 3
8nθ ‖ατc‖

2
2 −

1
20nθγ ‖ατc‖2 −

1
1000nθγ

2 ≥
(

3
32 −

1
80 −

1
1000

)
nθγ2 > 0 (B.187)

which concludes our proof.
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As a consequence, we have that

Corollary B.6.8 (Retraction of ϕρ toward the subspace). Suppose that x0 ∼i.i.d. BG(θ) in Rn, and k, cµ such that

(a0, θ, k) satisfies the sparsity-coherence condition SCC(cµ). Define λ = cλ/
√
|k| in ϕρ with cλ ∈

(
0, 1

3

]
, then there

exists some numerical constants C, c, c′, c′′, c > 0 such that if ρ is δ-smoothed `1 function where δ ≤ c′′λθ8/p2 log2 n

and n > Cp5θ−2 log p and cµ ≤ c, then with probability at least 1 − c′/n, for every a ∈ ∪|τ |≤kR(Sτ , γ(cµ)) such

that if

dα(a,Sτ ) ≥ γ(cµ)/2 (B.188)

then for every α satisfying a = ι∗Ca0α, there exists some ζ satisfying grad[ϕρ](a) = ι∗Ca0ζ that

〈ζτc ,ατc〉 ≥ 1
6nθ ‖ζτc‖

2
2 . (B.189)

Proof. Write γ = γ(cµ). Define

χ`1 [β] = C

∧

x0Sλ [a

∧∗ y] , χρ[β] = C

∧

x0Sδλ [a

∧∗ y] ,

which, and on event (B.181) and Theorem B.5.6, we know

β∗χ`1 [β] ≤ 3
2nθ, (B.190)

‖χ`1 [β]τc‖2 ≤
1
20nθγ, (B.191)

‖χ`1 [β]− χρ[β]‖2 ≤ c1nθ
4, (B.192)

for some constant c1 > 0. Now given any α satisfies a = ι∗Ca0
α, the gradient of both objective can be

derived as

grad[ϕ`1 ](a) = −Pa⊥ι∗Ca0
proxλ‖·‖1 [a

∧∗ y] = (aa∗ − I) ι∗Ca0
χ`1 [β]

= ι∗Ca0 (β∗χ`1 [β]α− χ`1 [β]) , (B.193)

grad[ϕρ](a) = −Pa⊥ι∗Ca0 proxλρ[a

∧∗ y] = (aa∗ − I) ι∗Ca0χρ[β]

= ι∗Ca0
(β∗χρ[β]α− χρ[β]) . (B.194)

In the same spirit, define the coefficient of each gradient vector

ζ`1 = β∗χ`1 [β]α− χ`1 [β], (B.195)

ζρ = β∗χρ[β]α− χρ[β], (B.196)
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which, by norm inequality from (B.190)-(B.192) and Theorem B.6.7 , we can derive

‖ζ`1 − ζρ‖2 ≤ ‖(I −αβ
∗) (χρ[β]− χ`1 [β])‖2 ≤ c1nθ

4, (B.197)

‖(ζ`1)τc‖2 ≥ |β
∗χ`1 [β]| ‖ατc‖2 − ‖χ`1 [β]τc‖2 ≥

1
5nθγ, (B.198)

〈(ζ`1)τc ,ατc〉 ≥ 1
4nθ ‖(ζ`1)τc‖22 , (B.199)

where the first inequality is derived by observing (I −αβ∗) is a projection operator, as such:

β∗α = a∗ι∗Ca0
α = a∗a = 1,

(I −αβ∗)2 = I − 2αβ∗ +α(β∗α)β∗ = I −αβ∗.

Now we are ready to derive (B.189):

〈(ζρ)τc ,ατc〉 ≥ 〈(ζ`1)τc ,ατc〉 − ‖ατc‖2 ‖ζρ − ζ`1‖2

≥ 1
4nθ ‖(ζ`1)τc‖22 − c1nθ

4γ

≥ 1
12nθ ‖(ζ`1)τc‖22

+ 1
6nθ

(
‖(ζρ)τc‖22 − 2 ‖(ζ`1)τc‖2 ‖ζ`1 − ζρ‖2 − ‖ζ`1 − ζρ‖

2
2

)
− c1nθ4γ

≥ 1
6nθ ‖(ζρ)τc‖

2
2 + 1

12nθ

(
1
5nθγ

)2 − 1
3nθ

(
1
5nθγ

) (
c1nθ

4
)
− 1

6nθ

(
c1nθ

4
)2 − c1nθ4γ

≥ 1
6nθ ‖(ζρ)τc‖

2
2 . (B.200)

where the last inequality is true since θ3 � γ.

B.6.5 Proof of Theorem 3.4.1

By collecting result from above, we are ready to prove the acclaimed geometric result in Theorem 3.4.1. It

guarantees that for every a near Sτ , either one of the following in true

λmin (Hess[ϕρ](a)) ≤ −c1nθλ, (B.201)〈
σ(0)ι

∗s(0)[a0],−grad[ϕρ](a)
〉
≥ c2nθ

(
log−2 θ−1

)
λ2, (B.202)

Hess[ϕρ](a) � c3nθ · Pa⊥ , (B.203)

all local minimizer ā satisfies for some a∗ ∈
{
±ι∗s`[a]

∣∣ ` ∈ [±p0]
}
,

‖ā− a∗‖2 ≤ c4
√
cµ max

{
µ, p−1

0

}
, (B.204)
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and whenever γ2 ≤ dα (a,Sτ ) ≤ γ, coefficient of a and its gradient g, α, written as ζ, satisfies

〈ζτc ,ατc〉 ≥ c5
nθ ‖ζτc‖

2
2 . (B.205)

To connect the geometric results introduced in Theorem B.6.1, Theorem B.6.3, Theorem B.6.5 and Theo-

rem B.6.7, we are only required to prove the required signal condition claimed in Theorem 3.4.1 is necessary

from Theorem B.2.1. In particular, when the subspace dimension |τ | ≤ 4p0θ. On top of that, we are also

required to show the chosen smooth parameter δ in the pseudo-Huber penalty ρ(x) =
√
x2 + δ2 approximate

|x| sufficiently well, hence results of Theorem B.6.2, Theorem B.6.4, Theorem B.6.6 and Theorem B.6.8 also

holds.

Proof. Firstly we will show when largest solution subspace dimension k = 4p0θ, the signal condition of

Theorem B.2.1 will be satisfied. Recall that the signal condition of Theorem 3.4.1 requests

2

p0 log2 p0

≤ θ ≤ c(
p0
√
µ+
√
p0

)
log2 p0

, (B.206)

since p = 3p0 − 2, this implies the lower bounds for sparsity θ as:

θ ≥ 1

2p0

(
1
2 log p0

)2 ≥ 1

p log2 θ−1
; (B.207)

the upper bound of θ via θ√p0 log2 p0 ≤ c :

θ ≤ 9c
√
p0(3 log p0)2

≤ 16c
√
p log2 θ−1

, θ ≤ 4c2

k log4 p0

≤ 36c2

k(3 log p0)2
≤ 36c2

k log2 θ−1
; (B.208)

and the upper bound for coherence µ as:

µmax
{
k2, (pθ)2

}
log2 θ−1 ≤ µmax

{
16(p0θ)

2, 9(p0θ)
2
}

log2 θ−1 ≤ 16 (
√
µp0θ)

2
log2 p0 ≤ 16c. (B.209)

Therefore Theorem B.2.1 holds if max
{

16c, 36c2
}
≤ cµ/4 via (B.207)-(B.209).

Furthermore, we know from lemma assumption all interested a are near subspace Sτ by

dα(a.Sτ ) ≤ c
√
p0 log2 θ−1

·min

{
1√
θ
,

1
√
µ
.

1

µ (p0θ)
3/2

}
≤ c

log2 θ−1
min

{
2√
k
,

1
√
p0µ

,
4

µp0

√
θk

}
≤ γ (B.210)

where γ is defined in Theorem B.2.3 of widened subspace R(Sτ , γ(cµ)).

Lastly, the pseudo-Huber function ρ(x) =
√
x2 + δ2 is an `1 smoothed sparse surrogate defined in

Theorem B.5.2, by observing that it is convex, smooth, even, whose second order derivative (according to
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Table B.1) ∇2ρ(x) = δ2

(x2+δ2)3/2
is monotone decreasing in |x|. More importantly

sup
x∈R
|ρ(x)− |x|| = |ρ(0)− |0|| = δ. (B.211)

Hence, by choosing δ ≤ c′4θ8

p2 log2 n
λ, for some sufficiently small constant c′ and letting λ = 0.2

√
k =

0.1/
√
p0θ in ϕρ. We obtain the geometrical results in Theorem B.6.2 when

∣∣β(1)

∣∣ ≥ 4
5

∣∣β(0)

∣∣, Theorem B.6.4

when 4
5

∣∣β(0)

∣∣ ≥ ∣∣β(1)

∣∣ ≥ λ
4 log2 θ−1 and Theorem B.6.6 when λ

4 log2 θ−1 ≥
∣∣β(1)

∣∣, and the retraction result in

Theorem B.6.8.

B.7 Analysis of algorithm—minimization within widened subspace

In this section, we prove convergence of the first part of our algorithm—minimization of ϕρ near Sτ . We

begin by proving the initialization method guarantees that a(0) is near Sτ , in the sense that

dα(a(0),Sτ ) ≤ γ, (B.212)

where the distance dα is defined in (3.50). We then demonstrate that small-stepping curvilinear search

converges to a desired local minimum of ϕρ at rate O(1/k), where k is the iteration number. To do this, it

is important to utilize(i) the retractive property to show that the iterates stay near Sτ and (ii) the geometric

properties of ϕρ near Sτ .

B.7.1 Initialization near subspace

The following lemma shows that the initialization a(0) = PSp−1

[
∇ϕ`1(a(−1))

]
, where

a(−1) = PSp−1

[∑
`∈τ x0`ι

∗
p0s`[a0]

]
, (B.213)

and is very close to the subspace Sτ :

Lemma B.7.1 (Initialization from a piece of data). Let x ∈ R2p0−1 indexed by [±p0], with xi ∼i.i.d. BG(θ).

Define y = x ∗ a0, and a(0) as

a(0) = −PSp−1∇ϕ`1
(
PSp−1

[
0p0−1; [y0; · · · ;yp0−1]; 0p0−1

])
, (B.214)

with λ = 0.2/
√
pθ in ϕ1. Set τ = supp(x). Suppose that (a0, θ, k) satisfies the sparsity-coherence condition SCC(cµ)

anda0 satisfiesmaxi 6=j
∣∣〈ι∗p0si[a0], ι∗p0sj [a0]

〉∣∣ ≤ µ. Then there exists some constant c, c > 0 such that if p0θ > 1000c
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and cµ ≤ c, then with probability at least 1− 1/c, we have

dα

(
a(0),Sτ

)
≤ cµ

4 log2 θ−1
min

{
1√
|τ |

,
1
√
µp
,

1

µp
√
θ |τ |

}
. (B.215)

Proof. 1. (Distance to Sτ from a(0)) Let η =
∥∥ι∗p0(a0 ∗ x)

∥∥
2

=
∥∥ι∗p0Ca0x

∥∥
2
and γ = γ(cµ), as in (B.215).

Expand the expression of a(0) from (B.214) we have

a(0) = PSp−1ι∗C

∧

ySλ
[
C

∧

yιp0PSp0−1ι∗p0(a0 ∗ x)
]

= PSp−1ι∗Ca0
χ
[

1
ηC
∗
a0
ιp0ι

∗
p0Ca0

x
]

(B.216)

To relate a(0) to its coefficient, introduce the truncated autocorrelation matrix M̃ = C∗a0
ιp0ι

∗
p0Ca0

, define

α̃, β̃ as

β̃ = 1
ηM̃x, α̃ = χ

[
1
ηM̃x

]
= χ[β̃] (B.217)

and note that M̃ is bounded entrywise as

∣∣∣M̃ij

∣∣∣ ≤


1 i = j ∈ [−p0 + 1, p0 − 1]

µ i 6= j ∈ [−p0 + 1, p0 − 1], |i− j| < p0

0 otherwise

. (B.218)

From (B.216), we can write a(0) = PSp−1ι∗Ca0
α̃, meaning that the normalized version of α̃ is a valid

coefficient vector for a(0). Let τ c = [±2p0] \ τ . The distance dα to subspace Sτ (3.50) is upper bounded as

dα(a(0),Sτ ) ≤
‖α̃τc‖2
‖ι∗Ca0

α̃‖2
≤

‖α̃τc‖2
‖ι∗Ca0

α̃τ‖2 − ‖ι∗Ca0
α̃τc‖2

≤
‖α̃τc‖2√

1− µ |τ | ‖α̃τ‖2 −
√

1 + µp ‖α̃τc‖2

where the last inequality is derived with Theorem B.2.4. Therefore, it is sufficient to show

(
1 + γ

√
1 + µp

)
‖α̃τc‖2 ≤ γ

√
1− µ |τ | ‖α̃τ‖2 (B.219)

to complete the proof that dα(a(0),Sτ ) ≤ γ.

2. (Bound η) Condition on the following two events

Eτ := {|τ | < 4p0θ} , E‖x‖2 :=
{√

p0θ ≤ ‖x‖2 ≤
√

3p0θ
}

(B.220)

and utilize µ bound from Theorem B.2.5 such that µ |τ | < 0.1. An upper bound on η can be obtained using
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properties of M̃ of (B.218):

η =
∥∥ι∗p0Ca0

x
∥∥

2
≤ ‖ι∗Ca0

x‖2 ≤
√

1 + µ |τ | ‖x‖2 ≤ 2
√
p0θ (B.221)

To lower bound η, use η2 = g∗PτM̃Pτg where g is the standard Gaussian vector. Observe the submatrix of

M̃ is diagonal dominant:
M̃ii =

∥∥ι∗p0si[a0]
∥∥2

2
∈ [0, 1]

tr
(
M̃
)

=
∑

i∈[±p0]

∥∥ι∗p0si[a0]
∥∥2

2
= ‖a0‖22 +

p0−1∑
i=1

(∥∥ι∗p0si[a0]
∥∥2

2
+
∥∥ι∗p0si−p0 [a0]

∥∥2

2

)
= p0

. (B.222)

Write x = g ◦w where w and g are Bernoulli and Gaussian vector respectively with supp(w) = τ , then the

trace of PτM̃Pτ can be written as sum of independent r.v.s as:

tr
(
PτM̃Pτ

)
=

∑
i∈[±p0]

wi
∥∥ι∗p0si[a0]

∥∥2

2
,

Bernstein inequality Theorem B.10.4 and (B.222) gives

P
[
tr
(
PτM̃Pτ

)
<

3p0θ

4

]
≤ P

[
tr
(
PτM̃Pτ

)
− p0θ ≤ −

p0θ

4

]
≤ 2 exp

(
−(p0θ/4)2

2p0θ + p0θ/2

)
≤ 2 exp

(
−p0θ

40

)
,

(B.223)

thus condition on ω satisfies tr
(
PτM̃Pτ

)
≥ 3p0θ/4 and Eτ , expectation η2 has lower bound

Eg|wη2 = Eg|w
[
g∗PτM̃Pτg

]
= tr

(
PτM̃Pτ

)
≥ 3p0θ

4

then apply Bernstein inequality again by first writing svd of PτM̃Pτ = UΣU∗ with Σ being rank |τ | < 4p0θ

and square orthobasis U . Let g′ = U∗g, then g′ is standard i.i.d. Gaussian vector, provides alternative

expression η2 <
∑4p0θ
i=1 g′i

2
σi where σi ≤ 1 + µ |τ | ≤ 1.1. We obtain probability of η2 to be small as

Pg|w
[
η2 <

p0θ

2

]
≤ Pg|w

[
η2 − Eg|wη2 < −p0θ

4

]
≤ 2 exp

(
−(p0θ/4)2

2(1 + µ |τ |)(12p0θ + p0θ/2)

)
≤ 2 exp

(
−p0θ

440

)
(B.224)

by applying moment bounds (σ2, R) = (12p0θ(1 + µ |τ |), 2(1 + µ |τ |)). We thereby define event

Eη =
{√

p0θ/2 ≤ η ≤ 2
√
p0θ
}
, (B.225)

which holds w.h.p. based on (B.220), (B.223) and (B.224).
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3. (Bound α̃) Condition on Eη ∩ E‖x‖2 ∩ Eτ . Use definition β̃ = 1
ηM̃x from (B.217), and properties of M̃

from (B.218) we can obtain:
‖β̃τc‖2 ≤ 1

η

∥∥∥ι∗τcM̃ιτ

∥∥∥
2
‖x‖2 ≤

µ
√
p0|τ |√
p0θ/2

·
√

3p0θ ≤ 3µ
√
p0 |τ |

‖β̃τ‖2 ≥ 1
η

∥∥∥ι∗τM̃ιτ

∥∥∥
2
‖x‖2 ≥

√
1−µ|τ |

2
√
p0θ

·
√
p0θ ≥ 0.45

. (B.226)

Use definition ‖α̃‖2 = ‖χ[β̃]‖2, condition on event

Eχ :=



σiχ[β]i ≥ nθSν2λ [|βi|]−

c2µnθ

p , ∀ i ∈ τ

σiχ[β]i ≤ 4nθ2 |τ | |βi|+ cµnθ
p , ∀ i ∈ τ c

 ,

also from Theorem B.2.1 we have µ (pθ)
1/2 |τ |3/2 < cµ

4 log2 θ−1 and from lemma assumption λ = 1
5
√
pθ
, provides

bounds of ‖α̃‖2 via triangle inequality as:
‖α̃τc‖2 ≤ 4nθ2 |τ | · ‖β̃τc‖2 +

cµnθ
p ·

√
2p0 ≤ 3cµnθ

( √
θ

log2 θ−1 +
cµ
p

)
‖α̃τ‖2 ≥ nθ

(
‖β̃τ‖2 − ν2λ

√
|τ | − cµ

p

√
|τ |
)
≥ nθ

(
0.45−

√
2
π ·

1
5 − cµ

)
≥ 0.2nθ

, (B.227)

since both θ |τ |, µpθ |τ | < cµ, we have
√

1 + µp ‖α̃τc‖2 ≤ 3cµnθ
√

1 + µp
(√

θ + p−1
)
≤ 6cµnθ

‖α̃τc‖2 ≤
6c3/2µ nθ

log2 θ−1 min

{
1√
|τ |
, 1√

µp ,
1

µp
√
θ|τ |

}
≤ 24

√
cµnθγ

,

which satisfies (B.219), since µ |τ | < cµ <
1

1000 ,

(1 + γ
√

1 + µp) ‖α̃τc‖2 ≤
(
24
√
cµ + 6cµ

)
nθγ ≤ 0.1nθγ ≤ γ

√
1− µ |τ | ‖α̃τ‖2 . (B.228)

Finally, given p0θ > 1000c, this result holds with probability at least

1− P [Ecτ ]︸ ︷︷ ︸
Theorem B.1.1

− P
[
Ec‖x‖2

]
︸ ︷︷ ︸
Theorem B.1.2

−P
[
Ecη
]︸ ︷︷ ︸

(B.225)

− P
[
Ecχ
]︸ ︷︷ ︸

Theorem B.3.4

≥ 1− 2

p0θ
− 1

n
− 4 exp

(
−p0θ

440

)
≥ 1− 1

c
(B.229)

B.7.2 Minimization near subspace (Proof of Theorem 3.5.1)

Before we start the proof of theorem, writing g = grad[ϕρ](a) andH = Hess[ϕρ](a), we will first restate the

results of Theorem 3.4.1 in simplified terms. The theorem shows that for any a ∈ Sp−1 whose distance to
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subspace dα(a,Sτ ) ≤ γ, then at least one of the the following statement hold:

‖g‖2 ≥ ηg (B.230)

λmin (H) ≤ −ηv (B.231)

H � ηc · Pa⊥ . (B.232)

Furthermore, ϕρ is retractive near Sτ : wherever dα(a,Sτ ) ≥ γ
2 , writing α(a), α(g) to be the coefficient of a,

g, we have

〈α(a)τc ,α(g)τc〉 ≥ ηr ‖α(g)τc‖2 . (B.233)

Also, the the gradient, Hessian and the third order derivative are all bounded as follows:

Remark B.7.2. With high probability, for every a whose dα(a,Sτ ) < γ, its max {‖g‖2 , ‖H‖2 , ‖∇H‖2} ≤ η =

poly(n, p).

We state Theorem B.7.2 without explicit proof since its derivation is similar to the proof in Theorem 3.4.1.

We prove that if the negative curvature direction−v is chosen to be the least eigenvectorwith v∗Hv < −ηv

and v∗g (if cannot, let v = 0), then the iterates

a(k+1) = PSp−1

[
a(k) − tg(k) − t2v(k)

]
(B.234)

converges toward the minimizer ā in `2-norm with rate O(1/k). Notice that here all ηg, ηv, ηc, ηr, η̄ are all

greater then 0 and are rational functions of the dimension parameters n, p.

Finally, we should note that a0 being µ-truncated shift coherent implies that a0 is at at most 2µ-shift

coherent. Hence we utilize the usual incoherence condition in the proof.

Proof. Notice that when a is in the region near some signed shift ā of a0, the function ϕρ is strongly convex,

and the iterates coincide with the Riemannian gradient method, which converges at a linear rate. Indeed, if for

all k larger than some k̄, a(k) is in this region, then
∥∥a(k) − ā

∥∥
2
≤ (1−tηc)−(k−k̄)‖a(k̄)−ā‖2 [AMS09](Theorem

4.5.6) where the step size t = Ω(1/nθ) hence tηc = Ω(1). We will argue that the iterates a(k) remain close to

the subspace Sτ and that after k̄ = poly(n, p) iterations they indeed remain in the strongly convex region

around some ā.

1. (Existence of Armijo steplength). First, we show there exists a nontrivial step size t at every iteration, in

the sense that for all a ∈ Sp−1, there exists T > 0 such that for all t ∈ (0, T ), the Armijo step condition (3.68)
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is satisfied. Note that since ϕρ is a smooth function, a→ ϕρ ◦ PSp−1(a) admits a version of Taylor’s theorem

(see also [AMS09](Section 7.1.3)): for any ξ ⊥ a, writing a+ = PSp−1 [a+ ξ],

∣∣ϕρ(a+)−
(
ϕρ(a) + 〈grad[ϕρ](a), ξ〉+ 1

2ξ
∗Hess[ϕρ](a)ξ

)∣∣ ≤ η̄ ‖ξ‖32 , (B.235)

using ‖∇H‖2 ≤ η̄. Now, let ξ = −tg − t2v as in the iterates (3.67). Suppose the Armijo step condition (3.68)

does not hold, so

ϕρ(a
+) > ϕρ(a)− 1

2

(
t ‖g‖22 + 1

2 t
4ηv ‖v‖22

)
. (B.236)

Since g∗v ≥ 0 and v∗Hv ≤ −ηv ‖v‖22 or v = 0, using ‖a+ b‖32 ≤ 4 ‖a‖32 + 4 ‖b‖32 (Hölder’s inequality) and

‖H‖2 < η̄, we can derive

〈
g,−tg − t2v

〉
+ 1

2 (tg + t2v)∗H
(
tg + t2v

)
+ c

∥∥tg + t2v
∥∥3

2
> − 1

2

(
t ‖g‖22 + 1

2 t
4ηv ‖v‖22

)
=⇒ − 1

2 t ‖g‖
2
2 + 1

2 t
2g∗Hg + t3v∗Hg − 1

4 t
4ηv ‖v‖22 + 4η̄t3 ‖g‖32 + 4η̄t6 ‖v‖32 > 0

=⇒ − 1
2 t ‖g‖

2
2 + t2

(
1
2 η̄ ‖g‖

2
2 + tη̄ ‖v‖2 ‖g‖2 + 4η̄t ‖g‖32

)
− 1

4 t
4ηv ‖v‖22 + 4η̄t6 ‖v‖32 > 0. (B.237)

If

t < T = min

{
‖g‖2

η̄ ‖g‖2 + 2η̄t ‖v‖2 + 8η̄t ‖g‖22
,

√
ηv

16η̄ ‖v‖2

}
, (B.238)

then (B.237) < 0 contradicting (B.236). Using our bounds on ‖g‖2, η̄, ηv and ‖v‖, it follows that T is lower

bounded by a polynomial poly
(
n−1, p−1

)
.

2.(Bounds on dα(g,Sτ ), dα(v,Sτ )) We will show there are numerical constants cg , cv such that

dα(g,Sτ ) ≤ cgnθγ and dα(v,Sτ ) ≤ cvnθp. (B.239)

Define

χ`1 [β] = C

∧

x0
proxλ`1 [a

∧∗ y] , χρ[β] = C

∧

x0
proxλρ [a

∧∗ y] ,

then the gradient can be written as (B.193)

grad[ϕ`1 ](a) = ι∗Ca0
(β∗χ`1 [β]α− χ`1 [β]) , (B.240)

grad[ϕρ](a) = ι∗Ca0
(β∗χρ[β]α− χρ[β]) . (B.241)
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Use the following inequalities:

1
2nθ ≤ |β

∗χ`1 [β]| ≤ 3
2nθ,

‖χ`1 [β]τc‖2 ≤
1
20nθγ,

‖I −αβ∗‖2 ≤ 4
√
p,

‖χ`1 [β]− χρ[β]‖2 ≤ nθ
4,

where the first and second bounds of χ`1 [β] based on event (B.181); the third by observing ‖α‖2 ≤ 2 and

‖β‖2 ≤ 2 + cµ
√
p; the last from (B.115) of Theorem B.5.6 when δ is sufficiently small. Hence, by definition of

dα( ·,Sτ ) (3.50) and knowing a is close to subspace ‖ατc‖2 ≤ γ, via triangle inequality, we get

dα(g,Sτ ) ≤ dα(grad[ϕ`1 ](a),Sτ ) + dα(grad[ϕρ](a)− grad[ϕ`1 ](a),Sτ )

≤ ‖β∗χ`1 [β]ατc − χ`1 [β]τc‖2 + ‖(I −αβ∗) (χρ[β]− χ`1 [β])‖2 .

≤ 3
2nθγ + 1

20nθγ + 4
√
pnθ4

≤ 3nθγ. (B.242)

To bound the dα norm of least eigenvector v, note that β∗χρ[β] > 0, we can conclude

v∗∇2ϕρ(a)v ≤ v∗Pa⊥∇2ϕρ(a)Pa⊥v + β∗χρ[β] = v∗Hv < −ηv,

expand ∇2ϕρ(a) as in (B.102), and since v is the eigenvector of smallest eigenvalue λmin < −ηv ,

Pa⊥∇2ϕρ(a)Pa⊥v = (I − aa∗) ι∗Ca0
C

∧

x0
∇proxλρ [a

∧∗ y]C

∧

x0
C∗a0

ιv = λminv, (B.243)

hence there exists α(v) satisfies v = ι∗Ca0
α(v) and

α(v) = λ−1
min

[
C

∧

x0
∇proxλρ [a

∧∗ y]C

∧

x0
C∗a0

ιv −
(
β∗C

∧

x0
∇proxλρ [a

∧∗ y]C

∧

x0
C∗a0

ιv
)
α
]
.

Now since ∇proxλρ [a

∧∗ y] is a diagonal matrix with entries in [0, 1],

dα(v,Sτ ) ≤ ‖α(v)‖2 ≤ |λmin|−1 ‖ιCa0
‖2 ‖x0‖21 ‖v‖2 (1 + ‖α‖2 ‖β‖2) < cvnθp, (B.244)

where we use upper bound of ‖x0‖1 < cnθ from Theorem B.1.2 and |λmin| > ηv > cnθλ from Theorem B.6.2.

3. (Iterates stay within widened subspace). Suppose (B.233) holds. We will show that whenever

t ≤ T ′ =
1

10nθ
, (B.245)
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then setting a+ = PSp−1

[
a− tg − t2v

]
, we have

∣∣dα (a+,Sτ
)
− dα (a,Sτ )

∣∣ ≤ γ
2 , (B.246)

and whenever dα(a,Sτ ) ∈
[
γ
2 , γ
]

d2
α

(
a+,Sτ

)
≤ d2

α (a,Sτ )− t · c′nθγ2. (B.247)

If both (B.246) and (B.247) hold, then all iterates a(k) will stay near the subspace: dα(a(k),Sτ ) < γ.

To derive (B.246), since both g ⊥ a and v ⊥ a we have
∥∥a− tg − t2v∥∥2

2
= ‖a‖22 +

∥∥tg + t2v
∥∥2

2
> 1, and

since dα(·,Sτ ) is a seminorm Theorem B.2.2:

dα
(
a+,Sτ

)
= dα(PSp−1

[
a− tg − t2v

]
,Sτ ) ≤ dα

(
a− tg − t2v,Sτ

)
≤ dα(a,Sτ ) + tdα(g,Sτ ) + t2dα(v,Sτ ) (B.248)

suggests (B.246) holds via (B.239) and let n > Cp5θ−2, we have

tdα(g,Sτ ) + t2dα(v,Sτ ) ≤ cgnθγ
10nθ + cvnθp

(10nθ)2 <
γ
2 (B.249)

with sufficiently large C.

To derive (B.247), letα(a) to be a coefficient vector satisfying dα(a,Sτ ) = ‖α(a)τc‖2, and based on (B.241)

and (B.244), define

α(g) = β∗χρ[β]α(a)− χρ[β] (B.250)

α(v) = λ−1
minC

∧

x0
∇proxλρ [a

∧∗ y]C

∧

x0
C∗a0

ιv. (B.251)

By the retraction property and norm bounds,

〈α(a)τc ,α(g)τc〉 ≥ 1
6nθ ‖α(g)τc‖22 (B.252)

‖α(a)τc‖2 ≤ γ (B.253)

‖α(v)‖2 ≤ cvnθp. (B.254)

Since ‖ατc‖2 >
γ
2 ,

‖a(g)τc‖2 ≥ ‖β
∗χ`1 [β]ατc − χ`1 [β]τc‖2 − ‖(I −αβ

∗) (χρ[β]− χ`1 [β])‖2

≥ |β∗χ`1 [β]| ‖ατc‖2 − ‖χ`1 [β]τc‖2 − ‖(I −αβ
∗)‖2 ‖(χρ[β]− χ`1 [β])‖2
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≥ 1
2nθ ×

γ
2 −

1
20nθγ + 2nθ4

≥ 1
10nθγ. (B.255)

Finally, we can bound dα(a+,Sτ ) as

d2
α(a+,Sτ ) ≤ d2

α(a− tg − t2v,Sτ )

≤
∥∥[α(a)− tα(g)− t2α(v)

]
τc

∥∥2

2

= ‖α(a)τc‖22 − 2t
〈
α(a)τc ,

[
α(g) + tα(v)

]
τc

〉
+ t2

∥∥[α(g) + tα(v)
]
τc

∥∥2

2

≤ ‖α(a)τc‖22 − 2t 〈α(a)τc ,α(g)τc〉 + 2t2 ‖α(a)τc‖2 ‖α(v)‖2 + 2t2 ‖α(g)τc‖22 + 2t4 ‖α(v)‖22

≤ d2(a,Sτ )− 2t
[(

1
3nθ − t

)
‖α(g)τc‖22 − tnθpγ − t

3(cvnθp)
2
]

≤ d2(a,Sτ )− t · c′nθγ2 (B.256)

where the last inequality holds when t < 0.1
nθ with sufficiently large n.

4. (Polynomial time convergence) The iterates a(k) remain within a γ neighborhood of Sτ for all k. At any

iteration k, a(k) is in at least one of three regions: strong gradient, negative curvature, or strong convexity.

In the gradient and curvature regions, we obtain a decrease in the function value which is at least some

(nonzero) rational function of n and p. On the strongly convex region, the function value does not increase.

The suboptimality at initialization is bounded by a polynomial in n and p,poly(n, p), and hence the total

number of steps in the gradient and curvature regions is bounded by a polynomial in n, p. After the iterates

reach the strongly convex region, the number of additional steps required to achieve ‖a(k) − ā‖2 ≤ ε is

bounded by poly(n, p) log ε−1. In particular, the number of iterations required to achieve ‖a(k)−ā‖2 ≤ µ+1/p

is bounded by a polynomial in (n, p), as claimed.

B.8 Analysis of algorithm— local refinement

In this section, we describe and analyze an algorithm which refines an estimate a(0) ≈ a0 of the kernel to

exactly recover (a0,x0). Set

λ(0) ← 5κI µ̃ and I(0) ← supp(Sλ
[
C∗a(0)y

]
), (B.257)

where as each iteration of the algorithm consists of the following key steps:
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• Sparse Estimation using Reweighted Lasso: Set

x(k+1) ← argmin
x

1
2‖a

(k) ∗ x− y‖22 +
∑
i 6∈ I(k)

λ(k) |xi| ; (B.258)

• Kernel Estimation using Least Squares: Set

a(k+1) ← PSp−1

[
argmin

a

1
2‖a ∗ x

(k+1) − y‖22
]
; (B.259)

• Continuation and reweighting by decreasing sparsity regularizer: Set

λ(k+1) ← 1
2λ

(k) and I(k+1) ← supp(x(k+1)). (B.260)

Our analysis will show that a(k) converges to a0 at a linear rate. In the remainder of this section, we describe

the assumptions of our analysis. In subsequent sections, we prove key lemmas analyzing each of the three

main steps of the algorithm.

Modified coherence and rate assumptions Below, we will write

µ̃ = max
{
µ, p−1

}
. (B.261)

Our refinement algorithm will demand an initialization satisfying

‖a(0) − a0‖2 ≤ µ̃. (B.262)

Support density of x0 Our goal is to show that the proposed annealing algorithm exactly solves the SaS

deconvolution problem, i.e., exactly recovers (a0,x0) up to a signed shift. We will denote the support sets of

true sparse vector x0 and recovered x(k) in the intermediate k-th steps as

I = supp(x0), I(k) = supp(x(k)). (B.263)

It should be clear that exact recovery is unlikely if x0 contains many consecutive nonzero entries: in this

situation, even non-blind deconvolution fails. We introduce the notation κI as an upper bound for number of

nonzero entries of x0 in a length-pwindow:

κI = 6 max {θp, log n} , (B.264)
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then in the Bernoulli-Gaussian model, with high probability,

max
`
|I ∩ ([p] + `)| ≤ κI . (B.265)

Here, indexing and addition should be interpreted modulo n. The log n term reflects the fact that as n

becomes enormous (exponential in p) eventually it becomes likely that some length-pwindow of x0 is densely

occupied. In our main theorem statement, we preclude this possibility by putting an upper bound on n (w.r.t

µ̃). We find it useful to also track the maximum `2 norm of x0 over any length-pwindow:

‖x0‖� := max
`

∥∥P([p]+`)x0

∥∥
2
. (B.266)

Below, we will sometimes work with the �-induced operator norm:

‖M‖�→� = sup
‖x‖�≤1

‖Mx‖� (B.267)

For now, we note that in the Bernoulli-Gaussian model, ‖x0‖� is typically not large

‖x0‖� ≤
√
κI . (B.268)

B.8.1 Reweighted Lasso finds the large entries of x0

The following lemma asserts that when a is close to a0, the reweighted Lasso finds all of the large entries of

x0. Our reweighted Lasso is modified version from [CWB08], we only penalize x on entries outside of its

known support subset. We write T to be the subset of true support I , and define the sparsity surrogate as

∑
i∈T c

|xi| (B.269)

The reweighted Lasso recovers more accurate x on set T compares to the vanilla Lasso problem, it turns out

to be very helpful in our analysis which proves convergence of the proposed alternating minimization.

Lemma B.8.1 (Accuracy of reweighted Lasso estimate). Suppose that y = a0 ∗x0 with a0 is µ̃-shift coherent and

‖x0‖� ≤
√
κI with κI ≥ 1. If µ̃κ2

I ≤ cµ, then for every T ⊆ I and a satisfying ‖a− a0‖2 ≤ µ̃, the solution x+ to

the optimization problem

min
x

{
1
2‖a ∗ x− y‖

2
2 + λ

∑
i∈T c

|xi|
}
, (B.270)

with

λ > 5κI‖a− a0‖2, (B.271)
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is unique with the form

x+ = ιJ (C∗aJCaJ)
−1
ι∗J
(
C∗ay − λPJ\Tσ

)
(B.272)

where σ = sign(x+). Its support set J satisfies

(T ∪ I≥3λ ) ⊆ J ⊆ I (B.273)

and its entrywise error is bounded as ∥∥x+ − x0

∥∥
∞ ≤ 3λ. (B.274)

Above, cµ > 0 is a positive numerical constant.

We prove Theorem B.8.1 below. The proof relies heavily on the fact that when a0 is shift-incoherent and

a ≈ a0, a is also shift-incoherent, an observation which is formalized in a sequence of calculations in Ap-

pendix B.8.4.

Proof. 1. (Restricted support Lasso problem). We first consider the restricted problem

min
w∈R|I|

{
1
2 ‖a ∗ ιIw − y‖

2
2 + λ

∑
i∈T c
|(ιIw)i|

}
. (B.275)

Under our assumptions, provided c < 1
9 , Theorem B.8.6 implies that

ι∗IC
∗
aCaιI = [C∗aCa]I,I � 0, (B.276)

and the restricted problem is strongly convex and its solution is unique. The KKT conditions imply that a

vector w? is the unique optimal solution to this problem if and only if

ι∗IC
∗
aCaιIw? ∈ ι∗IC∗ay − λ∂ ‖PT c [·] ‖1 (w?). (B.277)

Writing J = supp(ιIw?) ⊆ I , CaJ = CaιJ , wJ = ι∗JιIw? the corresponding sub-vector containing the

nonzero entries of w? and σJ\T = ι∗JPT c [sign(ιIw∗)], the condition (B.277) is satisfied if and only if

Ca
∗
JCaJwJ = Ca

∗
Jy − λσJ\T , (B.278)

‖Ca∗I\J (CaJwJ − y) ‖∞ ≤ λ. (B.279)
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We will argue that under our assumptions, J necessarily contains all of the large entries of x0:

I>3λ = {` ∈ I | |x0`| > 3λ} ⊆ J. (B.280)

We show this by contradiction – namely, if some large entry of x0 is not in J , then the dual condition (B.279)

is violated, contradicting the optimality of w?. To this end, note that by Theorem B.8.7, Ca∗JCaJ has full

rank. From (B.278),

wJ = [Ca
∗
JCaJ ]

−1 [
Ca
∗
Jy − λσJ\T

]
. (B.281)

Write x0J = ι∗Jx0 and (x0)I\J = PI\Jx0. We can further notice that

CaJwJ − y =
(
CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J − I

)
y − λCaJ [Ca

∗
JCaJ ]

−1
σJ\T

=
(
CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J − I

)
Ca0Jx0J +

(
CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J − I

)
Ca0I\J(x0)I\J

− λCaJ [Ca
∗
JCaJ ]

−1
σJ\T

=
(
CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J − I

)
Ca0−aJx0J +

(
CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J − I

)
Ca0I\J(x0)I\J

− λCaJ [Ca
∗
JCaJ ]

−1
σJ\T , (B.282)

where in the final line we have used that

(
CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J − I

)
CaJ = 0. (B.283)

Suppose that J is a strict subset of I (otherwise, if J = I , we are done). Take any i ∈ I \ J such that

|x0i| =
∥∥(x0)I\J

∥∥
∞, and let ξ = sign(x0i). Using (B.282), Theorem B.8.7 and Theorem B.8.8, we have

−ξsi[a]∗ (CaJwJ − y) = ξsi[a]∗
(
I −CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J

)
si[a0]x0i

+ ξsi[a]∗
(
I −CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J

)
Ca0(x0)I\(J∪{i})

+ ξsi[a]∗
(
I −CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J

)
Ca0−aJx0J

+ ξλsi[a]∗CaJ [Ca
∗
JCaJ ]

−1
σJ\T (B.284)

≥
(
〈si[a], si[a0]〉 − ‖si[a]∗CaJ‖1

∥∥∥[Ca
∗
JCaJ ]

−1
∥∥∥
∞→∞

‖Ca∗Jsi[a0]‖∞
)∥∥(x0)I\J

∥∥
∞

−
(∥∥∥si[a]∗Ca0I\{i}

∥∥∥
1

+ ‖si[a]∗CaJ‖1
∥∥∥[Ca

∗
JCaJ ]

−1
∥∥∥
∞→∞

∥∥∥Ca∗JCa0I\J

∥∥∥
∞→∞

)∥∥(x0)I\J
∥∥
∞

−
(
‖si[a]∗Ca0−aJ‖2 + ‖si[a]∗CaJ‖2

∥∥∥[Ca
∗
JCaJ ]

−1
∥∥∥
�→�

‖Ca∗JCa0−aJ‖�→�

)√
2 ‖x0‖�

− λ ‖si[a]∗CaJ‖1
∥∥∥[Ca

∗
JCaJ ]

−1
∥∥∥
∞→∞

∥∥σJ\T∥∥∞ (B.285)

≥
(

(1− ‖a− a0‖2) − C1κI µ̃× 1× µ̃
)∥∥(x0)I\J

∥∥
∞
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− C2

(
κI µ̃ + κI µ̃× 1× κI µ̃

)∥∥(x0)I\J
∥∥
∞

−
(

2
√
κI‖a− a0‖2 + C3

√
κI µ̃× 1× κI‖a− a0‖2

)
‖x0‖�

− λC4κI µ̃ (B.286)

≥
(

1 − C ′1κI µ̃− C2 (κI µ̃)
2
)
‖(x0)I\J‖∞

− 2κI‖a− a0‖2 −
(
C3κ

3/2
I µ̃

)
κI ‖a− a0‖2 − (C4κI µ̃)λ (B.287)

≥ 1
2

∥∥(x0)I\J
∥∥
∞ − λ/2, (B.288)

where the last line holds provided µ̃κ2
I ≤ cµ to be a sufficiently small numerical constants. If ‖(x0)I\J‖∞ > 3λ,

this is strictly larger than λ, implying that |a∗i (CaJwJ − y)| > λ, and contradicting the KKT conditions for

the restricted problem. Hence, under our assumptions

∥∥(x0)I\J
∥∥
∞ ≤ 3λ. (B.289)

2. (Solution of Full Lasso problem) We next argue that the solution of the restricted support Lasso problem,

wJ , when extended to Rn as x+ = ιJwJ , is the unique optimal solution to the full Lasso problem

min
x

ϕlasso(x) ≡ 1
2 ‖a ∗ x− y‖

2
2 + λ

∑
i∈T c
|xi| . (B.290)

To prove that x+ is the unique optimal solution, it suffices to show that for every i ∈ Ic,

| si[a]∗(a ∗ x+ − y) | < λ. (B.291)

Indeed, suppose that this inequality is in force. Write ε = λ−maxi∈Ic |si[a]∗(a ∗ x+ − y)|, and notice that

from the KKT conditions for the restricted problem,

0 ∈ PI∂xϕlasso(x) (B.292)

Combining with (B.291), we have that for every vector ζ with supp(ζ) ⊆ Ic and ‖ζ‖∞ ≤ 1, then εζ ∈

∂ϕlasso(x+). Let x′ be any vector with x′Ic 6= 0 and set ζ = PIcsign(x′), then from the subgradient inequality,

ϕlasso(x′) ≥ ϕlasso(x+) +
〈
εζ,x′ − x+

〉
≥ ϕlasso(x+) + ε ‖x′Ic‖1 , (B.293)

which is strictly larger than ϕlasso(x+). Hence, when (B.291) holds, any optimal solution x̄ to the full Lasso

problem must satisfy supp(x̄) ⊆ I . By strong convexity of the restricted problem, the solution to (B.290) is
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unique and equal to x+.

We finish by showing (B.291). Using the same expansion as above, we obtain

|si[a]∗(CaJwJ − y)| ≤
∣∣∣si[a]∗

(
I −CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J

)
Ca0I\J(x0)I\J

∣∣∣
+
∣∣∣si[a]∗

(
I −CaJ [Ca

∗
JCaJ ]

−1
Ca
∗
J

)
Ca0−aJx0J

∣∣∣
+ λ

∣∣∣si[a]∗CaJ [Ca
∗
JCaJ ]

−1
σJ\T

∣∣∣ (B.294)

≤
(∥∥∥si[a]∗Ca0I\J

∥∥∥
1

+ ‖si[a]∗CaJ‖1
∥∥∥[Ca

∗
JCaJ ]

−1
∥∥∥
∞→∞

∥∥∥Ca∗JCa0I\J

∥∥∥
∞→∞

)∥∥(x0)I\J
∥∥
∞

+
(
‖si[a]∗Ca0−aJ‖2 + ‖si[a]∗CaJ‖2

∥∥∥[Ca
∗
JCaJ ]

−1
∥∥∥
�→�

‖Ca∗JCa0−aJ‖�→�

)√
2 ‖x0‖�

+ λ ‖si[a]∗CaJ‖1
∥∥∥[Ca

∗
JCaJ ]

−1
∥∥∥
∞→∞

∥∥σJ\T∥∥∞ (B.295)

≤ C1 (µ̃κI + µ̃κI × 1× µ̃κI)× 2λ

+ (2
√
κI‖a− a0‖2 + C2

√
κI µ̃× 1× κI‖a− a0‖2)×

√
κI

+ λC3 × µ̃κI (B.296)

≤
(

(C1 + C3) µ̃κI + C1(µ̃κI)
2
)
λ +

(
2 + C2µ̃κI

)
κI ‖a− a0‖2 (B.297)

< λ, (B.298)

where the last line holds as long as cµ is a sufficiently small numerical constant. This establishes that x+ is

the unique optimal solution to the full Lasso problem.

3. (Entrywise difference to x0) Finally we will be controlling
∥∥x+

J − (x0)J
∥∥
∞. Indeed, from Theorem B.8.8,

∥∥x+
J − (x0)J

∥∥
∞ =

∥∥∥[Ca
∗
JCaJ ]

−1
Ca
∗
JCa0x0 − λ [Ca

∗
JCaJ ]

−1
σJ\T − (x0)J

∥∥∥
∞

≤
∥∥[Ca

∗
JCaJ ]−1Ca

∗
JCa0−aJ(x0)J

∥∥
∞ + λ

∥∥[Ca
∗
JCaJ ]−1σJ\T

∥∥
∞

+
∥∥[Ca

∗
JCaJ ]−1Ca

∗
JCaI\J(x0)I\J

∥∥
∞

≤ 2 ‖Ca∗JCa0−aJ‖�→∞ ‖(x0)J‖� + 2λ + 2
∥∥Ca∗JCaI\J∥∥∞→∞ ∥∥(x0)I\J

∥∥
∞

≤ 2
√

2κI ‖a− a0‖2 ‖x0‖� + 2λ + 2× 3µ̃× 2κI\J × 3λ

≤ 3κI‖a− a0‖2 + 2λ + 36λµ̃κI

≤ 3λ, (B.299)

establishing the claim.
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B.8.2 Least squares solution a(k) contracts

Approximation of least squares solution. In this section, given x to be the solution to the reweighted Lasso

from a, we will show the solution of the least squares problem

a+ ← argmin
a′∈Rp

1
2 ‖a

′ ∗ x − y‖22 (B.300)

is closer to a0 compared to a. Observe that in Theorem B.8.1, the solution of (B.272)

x = ιJ (C∗aJCaJ)
−1
ι∗J
(
C∗aCa0x0 − λPJ\Tσ

)
, (B.301)

by assuming C∗aJCaJ ≈ I , a ≈ a0 and J \ T ≈ ∅, is a good approximation to the true sparse map x0

x ≈ I (x0 − 0) = x0 ; (B.302)

furthermore, its difference to the true sparse map ‖x0 − x‖2 is proportional to ‖a0 − a‖2 as

x− x0 ≈ PI (C∗aCa0x0 −C∗aCax0) ≈ PI
[
C∗a0

Cx0ι(a0 − a)
]
. (B.303)

To this end, since we know the solution of least square problem a+ is simply

a+ = (ι∗C∗xCxι)
−1

(ι∗C∗xCx0
ιa0) , (B.304)

this implies the difference between the new a+ and a0, has the relationship with a− a0 roughly

a+ − a0 = (ι∗C∗xCxι)
−1

(ι∗C∗xCx0
ιa0 − ι∗C∗xCxιa0) ≈ (nθ)−1 ι∗C∗x0

Ca0
(x0 − x)

≈ (nθ)−1 ι∗C∗x0
Ca0

PIC
∗
a0
Cx0

ι(a− a0). (B.305)

To make this point precise, we introduce the following lemma:

Lemma B.8.2 (Approximation of least square estimate). Given a0 ∈ Rp0 to be µ̃-shift coherent and x0 ∼

BG(θ) ∈ Rn. There exists some constants C,C ′, c, c′, cµ such that if λ < c′µ̃κI , µ̃κ2
I ≤ cµ and n > Cp2 log p, then

with probability at least 1− c/n, for every a satisfying ‖a− a0‖2 ≤ µ̃ and x of the form

x = ιJ (C∗aJCaJ)
−1
ι∗J
(
C∗ay − λPJ\Tσ

)
(B.306)

where the set J, T satisfies I>6λ ⊆ T ⊆ J ⊆ I , we have

1

nθ

∥∥ ι∗C∗xCx−x0ιa0 − ι∗C∗x0
Ca0PIC

∗
a0
Cx0ι(a0 − a)

∥∥
2
≤ C ′λ

(
λ̃+ µ̃κI

)
+

1

32
‖a− a0‖2 (B.307)
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with λ̃ = λ+ logn√
nθ2

.

Proof. We will begin with listing the conditions we use for both x and x0. First, we know from Theorem B.8.1

and our assumptions on the set T , then x approximates x0 in the sense that

‖x− x0‖∞ ≤ 3λ (B.308)∥∥(x0)I\J
∥∥
∞ ≤ 3λ (B.309)∥∥(x0)I\T
∥∥
∞ ≤ 6λ. (B.310)

Write x0 = g ◦ ω with g iid standard normal, ω iid Bernoulli and g and ω independent. From (B.309) we

know |I \ J | = |{ i | |gi| ≤ 3λ, ωi 6= 0 }|. Since P [ωi 6= 0] = θ and P [|gi| ≤ 3λ] ≤ 3λ, Theorem B.1.1 implies

that with probability at least 1− 2/n:

|I \ J | ≤ 3λnθ + 6
√
λnθ log n ≤ 3λ̃nθ (B.311)

|I \ T | ≤ 6λnθ + 12
√
λnθ log n ≤ 6λ̃nθ, (B.312)

and

|(I \ J) ∩ s`[I]| ≤ 3λnθ2 + 6
√
λnθ2 log n ≤ 3λ̃nθ2; (B.313)

together with base on properties of Bernoulli-Gaussian vector x0 from Appendix B.1 and we conclude with

probability at least 1− c/n, all the following events hold:

1
2nθ ≤ |I| ≤ 2nθ, (B.314)

max
` 6=0
|I ∩ s`[I]| ≤ 2nθ2 (B.315)

max
` 6=0
|(I \ J) ∩ s`[I]| ≤ 6λ̃nθ2, (B.316)

‖x0‖2� ≤ κI , (B.317)

‖a∧0 ∗ x0‖2� ≤ κI , (B.318)

‖x0‖22 ≤ 2nθ, (B.319)

‖x0‖1 ≤ 2nθ, (B.320)

max
` 6=0
‖PI∩s`[I]x0‖22 ≤ 2nθ2, (B.321)

max
` 6=0

∥∥PI∩s`[I\J]x0

∥∥
1
≤ 12λ̃nθ2, (B.322)
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‖Cx0
ι‖22 ≤ 3nθ, (B.323)

provided by n ≥ Cθ−2 log p for sufficiently large constant C.

1. (Approximate Cx with Cx0
) Since

ι∗C∗xCx−x0
ιa0 = ι∗C∗x0

Cx−x0
ιa0 + ι∗C∗x−x0

Cx−x0
ιa0 (B.324)

where

∥∥ι∗C∗x−x0
Cx−x0

ιa0

∥∥
2
≤ ‖a0‖2 ‖x− x0‖22 + ‖Ca0

ι‖2
√

2pmax
` 6=0
|〈s`[x− x0],x− x0〉|

≤ ‖x− x0‖2∞ × |I| +
√

2µ̃p2

(
‖x− x0‖2∞ ×max

` 6=0
|I ∩ s`[I]|

)
≤ C1

(
λ2nθ +

√
2µ̃p2

(
λ2nθ2

))
≤ 2C1λ

2nθ, (B.325)

we have that

‖ ι∗C∗xCx−x0
ιa0 − ι∗C∗x0

Cx−x0
ιa0 ‖2 ≤ 2C1λ

2nθ. (B.326)

2. (Extract the a0 − a term) Observe that

ι∗C∗x0
Cx−x0ιa0

= ι∗C∗x0
Ca0

(x− x0)

= ι∗C∗x0
Ca0

(
ιJ (C∗aJCaJ)

−1
ι∗J
(
C∗aCa0

x0 − λPJ\Tσ
)
− ιJ (C∗aJCaJ)

−1
(C∗aJCaJ) (x0)J − PI\Jx0

)
= ι∗C∗x0

Ca0J(C∗aJCaJ)−1C∗aJ (Ca0−ax0)

+ ι∗C∗x0
Ca0J(C∗aJCaJ)−1C∗aJ (Cax0 −CaJ(x0)J)

− ι∗C∗x0
Ca0PI\Jx0

− λ ι∗C∗x0
Ca0J(C∗aJCaJ)−1ι∗JPJ\Tσ, (B.327)

where, the second term in (B.327) is bounded as

∥∥ι∗C∗x0
Ca0J(C∗aJCaJ)−1C∗aJ (Cax0 −CaJ(x0)J)

∥∥
2

≤ ‖Cx0
ι‖2 × ‖Ca0J‖2

∥∥(C∗aJCaJ)−1
∥∥

2
×
∥∥C∗aJCaI\J∥∥2

×
∥∥(x0)I\J

∥∥
2
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≤ C2

(√
nθ × 3 × µ̃κI × λ

√
λ̃nθ

)
≤ 3C2µ̃κIλnθ; (B.328)

the third term in (B.327) is bounded as

∥∥ι∗C∗x0
Ca0PI\Jx0

∥∥
2

=
∥∥ι∗Ca0

(
P[±p]\0 + e0e

∗
0

)
C∗x0

PI\Jx0

∥∥
2

≤ ‖a0‖2
∥∥(x0)I\J

∥∥2

2
+ ‖Ca0

ι‖2 ×
√

2p×max
` 6=0

∥∥PI∩s`[I\J]x0

∥∥
1
×
∥∥(x0)I\J

∥∥
∞

≤ C3

(
λ2 × λ̃nθ +

√
µ̃p2 × λ̃nθ2 × λ

)
≤ 2C3λ̃λnθ; (B.329)

and finally, write ∆ = (C∗aJCaJ)−1 − I , then the forth term in (B.327) is bounded as

λ
∥∥ι∗C∗x0

Ca0
ιJ(C∗aJCaJ)−1ι∗JPJ\Tσ

∥∥
2

= λ
∥∥ι∗Ca0

(
P[±p]\0 + e0e

∗
0

)
C∗x0

ιJ (I + ∆) ι∗JPJ\Tσ
∥∥

2

≤ λ
∥∥C∗a0

ι
∥∥

2

√
2pmax

6̀=0

∥∥PI∩s`[I\T ]x0

∥∥
1

+ λ ‖a0‖2
∥∥PI\Tx0

∥∥
1

+ λ
∥∥C∗a0

ι
∥∥

2

√
2p
∥∥PI∩s`[I]x0

∥∥
1
‖∆‖∞→∞ + λ ‖a0‖2 ‖x0‖2 ‖∆‖2

√
|J \ T |

≤ C4λ
(√

µ̃p2 × λ̃nθ2 + λλ̃nθ +
√
µ̃p2 × nθ2 × µ̃κI +

√
nθ × µ̃κI

√
λ̃nθ

)
≤ 2C4

(
λ̃+ µ̃κI

)
λnθ. (B.330)

Therefore, combining (B.328)-(B.330) we obtain

∥∥ι∗C∗x0
Cx−x0

ιa0 − ι∗C∗x0
Ca0J(C∗aJCaJ)−1C∗aJCa0−ax0

∥∥
2
≤ C5

(
λ̃+ µ̃κI

)
λnθ. (B.331)

3. (Extract the set J) Lastly, we will further simplify the term with a− a0 in (B.331) by extracting the set J :

ι∗C∗x0
Ca0J(C∗aJCaJ)−1C∗aJCa0−ax0

= ι∗C∗x0
Ca0J (I + ∆)C∗a0+(a−a0)JCx0

ι (a0 − a)

= ι∗C∗x0
Ca0

PIC
∗
a0
Cx0

ι(a0 − a)

+ ι∗C∗x0
Ca0J∆C∗a0JCx0

ι(a0 − a) + ι∗C∗x0
Ca0J (C∗aJCaJ)

−1
C∗a−a0JCx0

ι(a0 − a)

− ι∗C∗x0
Ca0

PI\JC
∗
a0
Cx0

ι(a0 − a), (B.332)
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where, the latter terms in (B.332) are bounded as

∥∥ι∗C∗x0
Ca0J∆C∗a0JCx0ι

∥∥
2
≤ ‖Cx0ι‖

2
2 ‖Ca0J‖

2
2 ‖∆‖2 ≤ C6µ̃κInθ∥∥∥ι∗C∗x0

Ca0J (C∗aJCaJ)
−1
C∗a−a0JCx0

ι
∥∥∥

2
≤ ‖Cx0

ι‖22 ‖Ca0J‖2
∥∥(C∗aJCaJ)−1

∥∥
2
‖Ca0−aιJ‖2 ≤ C7µ̃

√
κInθ∥∥PI\JC∗a0

Cx0
ι
∥∥2

2
≤ |I \ J | ‖a∧0 ∗ x0‖2� ≤ C8λ̃nθ × κI ≤ C8

(
λκI + κI logn√

nθ2

)
nθ, (B.333)

whence we conclude, that since cµκ2
I ≤ cµ and λκI ≤ 5cµ, as long as cµ < 1

100

(
1
C6

+ 1
C7

+ 1
5C8

)
and

n > 106C2
8θ
−2κ2

I log2 n, we gain:

∥∥ι∗C∗x0
Ca0J(C∗aJCaJ)−1C∗aJCa0−ax0 − ι∗C∗x0

Ca0PIC
∗
a0
Cx0ι(a0 − a)

∥∥
2

≤
(

3
100 + 1

1000

)
nθ ‖a0 − a‖2

≤ 1
32nθ ‖a0 − a‖2 . (B.334)

The claimed result therefore is followed by combining (B.326), (B.331) and (B.334).

Contraction of least square estimate of a toward a0. The next thing is to show the operator

(nθ)−1
(
ι∗C∗x0

Ca0PIC
∗
a0
Cx0ι

)
(B.335)

contracts a toward a0. We first will show that

(nθ)−1
(
ι∗C∗x0

Ca0PIC
∗
a0
Cx0ι

)
≈ a0a

∗
0 (B.336)

by seeing ι∗C∗x0
PICx0ι ≈ (nθ) e0e

∗
0 via sparsity of x0. Finally since the local perturbation on sphere is close

to a quadratic function in `2-norm of difference, we have

|〈a0,a− a0〉| ≤ 1
2 ‖a− a0‖22 . (B.337)

Again, we introduce the following lemma to solidify our claim:

Lemma B.8.3 (Contraction of a to a0). Given a0 ∈ Rp0 to be µ̃-shift coherent and x0 ∼ BG(θ) ∈ Rn. There exists

some constants C,C ′, c, c′, cµ such that if λ < c′µ̃κI , µ̃κ2
I ≤ cµ and n > Cθ−2p2 log p, then with probability at least

1− c/n, for every ‖a− a0‖2 ≤ µ̃,∥∥ ι∗C∗x0
Ca0

PIC
∗
a0
Cx0

ι(a0 − a)
∥∥

2
≤ 1

32
‖a− a0‖2 nθ. (B.338)
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Proof. Since E 〈PIsi[x0], sj [x0]〉 = 0 for all i 6= j and set I , we calculate

E
[
ι∗[±p]C

∗
x0
PICx0ι[±p]

]
=

∑
i∈[±p]

E
[
e∗iC

∗
x0
PICx0ei

]
eie
∗
i = E ‖x0‖22 e0e

∗
0 +

∑
i∈[±p]\0

E ‖PIsi[x0]‖22 eie
∗
i

= nθe0e
∗
0 + nθ2P[±p]\0 = nθ2I + nθ(1− θ) e0e

∗
0. (B.339)

whence

E
[
ι∗C∗x0

Ca0
PIC

∗
a0
Cx0

ι
]

= ι∗C∗a0
E
[
C∗x0

PICx0

]
Ca0

ι = nθ2ι∗C∗a0
Ca0

ι + nθ(1− θ)a0a
∗
0, (B.340)

implying the expectation is a contraction mapping for a0 − awhen cµ < 1
200 :∥∥E [ ι∗C∗x0

Ca0
PIC

∗
a0
Cx0

ι
]

(a0 − a)
∥∥

2
≤ nθ2

∥∥ι∗C∗a0
Ca0

ι
∥∥

2
‖a0 − a‖2 + nθ ‖a0‖2 |〈a0,a0 − a〉|

≤ nθ2 × 2µ̃p× ‖a0 − a‖2 + 1
2nθ ‖a0 − a‖22

≤
(
2cµ + 1

2cµ
)
‖a0 − a‖2 nθ

≤ 1
64 ‖a0 − a‖2 nθ. (B.341)

For each entry of C∗x0
PICx0 , again from Appendix B.1 we know with probability at least 1− c/n:

∣∣e∗iC∗x0
PICx0

ej − E
[
e∗iC

∗
x0
PICx0

ej
]∣∣ ≤

 C ′
√
nθ log n i = j = 0

C ′
√
nθ2 log n otherwise

.

Thus via Gershgorin disc theorem, when n > 103C ′2θ−2p2 log n:

λmax

(
ι∗[±p]C

∗
x0
PICx0ι[±p] − E

[
ι∗[±p]C

∗
x0
PICx0

ι[±p]

])
≤ C ′p

√
nθ2 log n ≤ 1

64nθ
2. (B.342)

Finally we combine (B.341), (B.342) and get

∥∥ ι∗C∗x0
Ca0PIC

∗
a0
Cx0ι(a0 − a)

∥∥
2
≤
(

1
64nθ + 1

64nθ
2 ‖Ca0ι±p‖

2
2

)
‖a0 − a‖2 ≤

1
32 ‖a0 − a‖2 nθ. (B.343)

Theorem B.8.1-B.8.3 together implies the single iterate of alternating minimization contracts a toward a0. We

show it with the following lemma:

LemmaB.8.4 (Contraction of least square estimate). Given a0 ∈ Rp0 to be µ̃-shift coherent andx0 ∼ BG(θ) ∈ Rn.

There exists some constants C,C ′, c, cµ such that if µ̃κ2
I ≤ cµ and n > Cθ−2p2 log n, then with probability at least
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1− c/n, for every λ and a satisfying

5µ̃κI ≥ λ ≥ 5κI ‖a− a0‖2 , (B.344)

and suppose x+ has the form of (B.272), then the solution a+ to

min
a′∈Rp

{∥∥a′ ∗ x+ − y
∥∥2

2

}
(B.345)

is unique and satisfies ∥∥PSp−1

[
a+
]
− a0

∥∥
2
≤ 1

2
‖a− a0‖2 . (B.346)

Proof. Write x as x+, then

λp (ι∗C∗xCxι) = σ2
min (Cx0ι+Cx−x0ι)

≥
[
σmin(Cx0

ι)− ‖Cx−x0
ι‖
]2

+

≥
[
σmin(Cx0ι)− 2

√
κI ‖x− x0‖2

]2
+

≥
[

2
3

√
θn− 8λ

√
κI
√
θn
]2

+

≥ 1
2θn, (B.347)

where the fourth inequality is derived from using the upper bound of sparse convolution matrix from

Theorem B.1.6, and the last line holds by knowing λ < 5cµκ
−1
I . From (B.347) we know the least square

problem of (B.345) has unique solution a+, written as

a+ = (ι∗C∗xCxι)
−1
ιC∗xy, (B.348)

whence

a+ − a0 = (ι∗C∗xCxι)
−1

(ι∗C∗xCx0ι)a0 − a0 = (ι∗C∗xCxι)
−1

(ι∗C∗xCx0−xι)a0. (B.349)

Combine Theorem B.8.2 and Theorem B.8.3, we know

‖ ι∗C∗xCx0−xι ‖2 ≤
(
C1λ

(
λ̃+ µ̃κI

)
+ 1

16 ‖a− a0‖2
)
nθ (B.350)

for some constant C1. Combine (B.347), (B.349), (B.350) and since λ < µ̃κI , by letting cµ < 1
4C1

, we gain

∥∥a+ − a0

∥∥
2
≤
‖ι∗C∗xCx0−xι‖2
λp(ι∗C∗xCxι)

≤ 2C1λ
(
λ̃+ µ̃κI

)
+

1

8
‖a− a0‖2 ≤

1

4
. (B.351)
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For the final bound,∥∥∥∥ a+

‖a+‖2
− a0

∥∥∥∥
2

≤
‖a+ − a0‖2 + |‖a+‖2 − 1|

‖a+‖2
≤

2 ‖a+ − a0‖2
1− ‖a+ − a0‖2

≤ 8

3

∥∥a+ − a0

∥∥
2
,

≤ C2λ
(
λ̃+ µ̃κI

)
+

1

3
‖a− a0‖2 , (B.352)

and since λ > κI ‖a− a0‖2, finally we gain

(B.352) ≤ C2

(
λκI +

pκI log n

nθ
+ µ̃κ2

I

)
‖a− a0‖2 +

1

3
‖a− a0‖2

≤ 1

2
‖a− a0‖2 (B.353)

as long as n > 20C2θ
−1pκI log n and cµ < 1

20C2
.

B.8.3 Linear convergence of alternating minimization (Proof of Theorem 3.5.2 )

In the first two sections we have shown the iterate contract a toward a0, under our signal assumption. We tie

up these result by showing the following theorem which proves that the iterates produced by alternating

minimization converge linearly to a0:

Proof. We will prove our claim by induction on k. Clearly, when k = 0, we have 5κI
∥∥a(0) − a0

∥∥
2
≤ λ(0) =

5µ̃κI and I(0) =
{
i :
∣∣si[a(0)]∗ι∗Ca0

x0

∣∣ > λ(0)
}
. Then for all |xj | > 6λ(0), we have∣∣∣sj[a(0)

]∗
Ca0

x0

∣∣∣ ≥ (
1−

∣∣〈a(0)a0〉
∣∣) |xj | − ∥∥∥P[±p]\{j}C

∗
a0
ιsj
[
a(0)

]∥∥∥
2
×
√

2 ‖x0‖�

≥ (1− 2µ̃) 6λ(0) − 2µ̃
√
κI ×

√
2κI

≥ 5λ(0) − 4λ(0)

= λ(0). (B.354)

hence I>6λ(0) ⊆ I(0), therefore the condition of Theorem B.8.4 is satisfied, implies (3.89) holds for k = 0.

Suppose it is true for 1, 2, . . . , k − 1, such that

κI
∥∥a(k) − a0

∥∥
2
≤ 1

2λ
(k−1) = λ(k), and I>3λ(k−1) ⊆ I(k) (B.355)

and since I>6λ(k) = I>3λ(k−1) ⊆ I(k), we can again apply Theorem B.8.4, resulting

κI
∥∥a(k+1) − a

∥∥
2
≤ 1

2κI
∥∥a(k) − a0

∥∥
2
≤ 1

2λ
(k) (B.356)
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as claimed.

B.8.4 Supporting lemmas for refinement

The following lemma controls the shift coherence of a:

Lemma B.8.5 (Coherence of a near a0 ). Suppose that a0 is µ̃-shift coherent, and ‖a− a0‖2 ≤ µ̃. Then

‖off [C∗aCa0
]‖∞ ≤ 2µ̃ (B.357)

‖off [C∗aCa]‖∞ ≤ 3µ̃ (B.358)

Proof. Notice that for any ` 6= 0, | 〈a, s`[a0]〉 | ≤ | 〈a0, s`[a0]〉 | + | 〈a− a0, s`[a0]〉 | ≤ µ̃ + ‖a0 − a‖2 ≤ 2µ̃.

Similarly, | 〈a, s`[a]〉 | ≤ | 〈a− a0, s`[a0]〉 |+ | 〈a, s`[a0]〉 | ≤ ‖a− a0‖2 + 2µ̃ ≤ 3µ̃, as claimed.

From this we obtain the following spectral control on C∗aCa, to simply the notations, we will write

C∗aICaI = ι∗IC
∗
aCaιI = [C∗aCa]I,I (B.359)

in the latter part of this section.

Lemma B.8.6 (Off-diagonals of [C∗aCa]I,I ). Suppose that a0 is µ̃-shift coherent and ‖a− a0‖2 ≤ µ̃. Then∥∥∥[C∗aCa − I]I,I

∥∥∥
2
≤ 9κI µ̃. (B.360)

We prove this lemma by noting that C∗aCa = Cra,a is the convolution matrix associated with the autocorre-

lation ra,a of a. Since supp(ra,a) ⊆ {−p+ 1, . . . , p− 1} is confined to a (cyclic) stripe of width 2p − 1, we

can tightly control the norm of this matrix by dividing it into three block-diagonal submatrices with blocks

of size p× p. Formally:

Proof. Divide I into r = dn/pe subsets I0, . . . , Ir−1 such that for all ` = 0, . . . , r − 1:

I` = I ∩ {p`, p`+ 1, . . . , p`+ (p− 1)} = I ∩ ([p] + p`).

Notice that for each `:

supp ([C∗aCa]I`,I) ⊆ I` ×
(
I`−1 ] I` ] I`+1

)
,

where `+ 1 and `− 1 are interpreted cyclically modulo r.
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For an arbitrary v ∈ R|I|, we calculate

∥∥∥[C∗aCa − I]I,I v
∥∥∥2

2
=

r−1∑
`=0

∥∥∥[C∗aCa − I]I`,I v
∥∥∥2

2
(B.361)

=

r−1∑
`=0

∥∥∥[C∗aCa − I]I`,I`−1]I`]I`+1
vI`−1]I`]I`+1

∥∥∥2

2
(B.362)

≤
r−1∑
`=0

∥∥∥[C∗aCa − I]I`,I`−1]I`]I`+1

∥∥∥2

F

∥∥vI`−1]I`]I`+1

∥∥2

2
(B.363)

≤ 3κ2
I × (3µ̃)

2 ×
r−1∑
`=0

∥∥vI`−1]I`]I`+1

∥∥2

2
(B.364)

≤ 3κ2
I × 9µ̃2 × 3 ‖v‖22 , (B.365)

giving the claimed result.

As a consequence, we have that

Corollary B.8.7 (Inverse of [C∗aCa]J,J ). Suppose that a0 is µ-shift coherent, that ‖a− a0‖2 ≤ µ̃ and that κI µ̃ < 1
18 .

Then for every J ⊆ I and any norm ‖·‖♦ ∈ { ‖·‖�→� , ‖·‖∞→∞ , ‖·‖2 }, we have∥∥∥[C∗aCa − I]J,J

∥∥∥
♦
≤ 9κI µ̃ (B.366)∥∥∥[C∗aCa]

−1
J,J − I

∥∥∥
♦
≤ 18κI µ̃ (B.367)∥∥∥[C∗aCa]

−1
J,J

∥∥∥
♦
≤ 2. (B.368)

Proof. First we prove∥∥∥[C∗aCa − I]J,J

∥∥∥
2
≤ 9κI µ̃,

∥∥∥[C∗aCa − I]J,J

∥∥∥
∞→∞

≤ 6κI µ̃,
∥∥∥[C∗aCa − I]J,J

∥∥∥
�→�

≤ 6κI µ̃ (B.369)

Where the first claim follows from Theorem B.8.6. The second follows by noting that the `∞ operator norm is

the maximum row `1 norm, and that each row has at most 2κI entries, of size at most 3µ̃. The last follows by

noting that ∥∥∥[C∗aCa − I]J,J

∥∥∥
�→�

≤ max
`,`′

∥∥∥[C∗aCa − I]J∩([p]+`), J∩([2p]+`′)

∥∥∥
F

≤ 6κI µ̃. (B.370)
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Then we prove∥∥∥[C∗aCa]
−1
J,J − I

∥∥∥
2
≤ 18κI µ̃,

∥∥∥[C∗aCa]
−1
J,J − I

∥∥∥
∞→∞

≤ 12κI µ̃,
∥∥∥[C∗aCa]

−1
J,J − I

∥∥∥
�→�

≤ 12κI µ̃, (B.371)

which are followed from the fact that if ‖ · ‖♦ is a matrix norm and ‖∆‖♦ < 1, then

∥∥(I + ∆)−1 − I
∥∥
♦ ≤

‖∆‖♦
1− ‖∆‖♦

.

Finally, (B.368) follows from the triangle inequality.

Also, we need to bound the convolution of a0 − a with ‖a0 − a‖2 requiring for bounds of the lasso solution:

Lemma B.8.8 (Convolution of a0 − a). Suppose that a0 is µ-shift coherent and ‖a− a0‖2 ≤ µ̃, then for every

J ⊆ I ,

‖[C∗aCa0−a]J,J‖�→∞ ≤
√

2κI ‖a− a0‖2 (B.372)

‖[C∗aCa0−a]J,J‖�→� ≤
√

2κI ‖a− a0‖2 (B.373)

Proof. For the first inequality, we have

‖[C∗aCa0−a]J,Jv‖�→∞ = max
j∈J, ‖v‖�=1

|〈sj [a], (a0 − a) ∗ v〉|

≤ max
j∈[n], ‖v‖�=1

∥∥P[p]+j [(a0 − a) ∗ v]
∥∥

2

≤ ‖a− a0‖2 × max
j∈[n], ‖v‖�=1

∥∥P[±p]+jv
∥∥

1

≤
√

2κI ‖a0 − a‖2 (B.374)

The second inequality is derived by

‖[C∗aCa0−a]J,J‖�→� ≤ max
`,`′

∥∥[C∗aCa0−a]J∩([p]+`),J∩([2p]+`′)

∥∥
F

≤
√

2κ2
I maxi,j |〈si[a], sj [a0 − a]〉|2

≤
√

2κI ‖a− a0‖2 , (B.375)

finishing the proof.

Again, using a variant of the argument for Theorem B.8.6, we have the following:
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Lemma B.8.9 (Off-diagonal of submatrix ofC∗aCa0 ). Suppose that a0 is µ-shift coherent and ‖a− a0‖2 ≤ µ̃. For

any J ⊂ I , if

κJ = max
`
|J ∩ {`, `+ 1, . . . , `+ p− 1}| (B.376)

κI\J = max
`
|(I \ J) ∩ {`, `+ 1, . . . , `+ p− 1}| (B.377)

Then ∥∥∥[C∗aCa0
]J,I\J

∥∥∥
2
≤ 6
√
κJκI\J µ̃. (B.378)

Proof. Take r = dn/pe and for ` = 0, . . . , r − 1, write

J` = J ∩ ([p] + p`), L` = (I \ J) ∩ ([p] + p`),

Take v ∈ R|I\J| arbitrary and notice that

∥∥∥[C∗aCa0
]J,I\J v

∥∥∥2

2
=

r−1∑
`=0

∥∥∥[C∗aCa0
]J`,I\J v

∥∥∥2

2

=

r−1∑
`=0

∥∥∥[C∗aCa0
]J`,L`−1∪L`∪L`+1

vL`−1∪L`∪L`+1

∥∥∥2

2

≤ 4µ̃2 × κJ × 3κI\J ×
r−1∑
`=0

∥∥vL`−1∪L`∪L`+1

∥∥2

2

≤ 4µ̃2 × κJ × 3κI\J × 3‖v‖22, (B.379)

giving the result.

Lemma B.8.10 (Perturbation of vector over sphere). If both a,a0 are unit vectors in inner product space, then

|〈a,a− a0〉| ≤ 1
2 ‖a− a0‖22 . (B.380)

Proof. Via simple norm inequalities:

1
2 ‖a− a0‖22 = 1− 〈a,a0〉 = 1− 〈a,a0 − a+ a〉 = 〈a,a− a0〉 > 0 (B.381)

Lemma B.8.11 (Convolution of short and sparse). Suppose δ ∈ Rp, and v ∈ Rn where supp(v) = I satisfies

max
`∈[n]

| I ∩ ([p] + `) | ≤ κ (B.382)
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then

‖δ ∗ v‖2 ≤
√

2κ ‖δ‖2 ‖v‖2 (B.383)

Proof. Since every p-contiguous segment of I has at most κ elements, by splitting I = I1 ] I2], . . . ,]Iκ ]R

such that each sets Ii are p-separated:

I1 = {i1, iκ+1, i2κ+1, . . .} ∩ {0, . . . , n− p− 1} ,

I2 = {i2, iκ+2, i2κ+2, . . .} ∩ {0, . . . , n− p− 1} ,

...

Iκ = {iκ, i2κ, i3κ, . . .} ∩ {0, . . . , n− p− 1} , (B.384)

R = I ∩ {n− p, . . . , n− 1} . (B.385)

Then the p-separating property gives ‖δ ∗ PIiv‖2 = ‖δ‖2 ‖PIiv‖2. Hence:

‖δ ∗ PIv‖2 =

∥∥∥∥∥∑
i∈κ

δ ∗ PIiv + δ ∗ PRv

∥∥∥∥∥
2

≤
∑
i∈κ
‖δ ∗ PIiv‖2 + ‖δ ∗ PRv‖

= ‖δ‖2
∑
i∈κ
‖vIi‖2 + ‖δ‖2 ‖PRv‖1

≤
√
κ ‖vI1,],...,]Iκ‖2 ‖δ‖2 +

√
κ ‖vR‖2 ‖δ‖2

≤
√

2κ ‖v‖2 ‖δ‖2 , (B.386)

where the last two inequalities were coming from Cauchy-Schwartz.

B.9 Finite sample approximation

In this section we collect several major components of proof about large sample deviation. In particular, the

concentration for shift space gradient χ(β)i, shift space Hessian diagonals
∥∥PI(a)s−i[x0]

∥∥
2
, and the set of

gradients discontinuity entries |JB(a)|.

B.9.1 Proof of Theorem B.3.4

Proof. 1. (ε-net) Write x as x0 and ‖β‖2 = η through out this proof, firstly from Theorem B.2.1 for every

a ∈ ∪|τ |≤kR(Sτ , γ(cµ)), we know η ≤ 1 + cµ +
cµ√

θk log θ−1
≤ √p. Define ε = c2

2n3/2p3/2
and consider the ε-net
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Nε for sphere of radius η. From Theorem B.10.5 we know for any c2 < 1:

|Nε| ≤
(

3η

ε

)2p

≤
(

3n3/2p2

c2

)2p

≤
(

3np2

c2

)3p

(B.387)

for each i ∈ [n] define such net as Nε,i, and define an event such that all center of subsets in Nε,i are being

well-behaved:

ENet :=

{
∀ i ∈ [n], σin

−1χ[βε]i − σin−1Eχ[βε]i <
c1θ

p3/2
∀βε ∈ Nε,i,

}
(B.388)

2. (Lipschitz constant) The Lipschitz constant L of χ[·]i w.r.t β is bounded in terms of x regardless of entry i:

|χ[β]i − χ[β′]i| ≤
∣∣∣e∗iC∧xSλ [C∧xβ]− e∗iC∧xSλ [C∧xβ′]∣∣∣ ≤ ‖x‖2 ∥∥∥Sλ [C∧xβ]− Sλ [C∧xβ′]∥∥∥

2

≤ ‖x‖2

√√√√∑
j∈[n]

∣∣∣∣Sλ [C∧xβ]
j
− Sλ

[
C

∧

xβ′
]
j

∣∣∣∣2 ≤ ‖x‖2 ∥∥∥C∧xβ −C∧xβ′∥∥∥
2

≤ ‖x‖2 · ‖x‖1 · ‖β − β
′‖2 =: L ‖β − β′‖2 (B.389)

Define the event that χ[β]i that has small Lipschitz constant as

ELip :=
{
L < 2n3/2θ

}
(B.390)

on the event ELip, for every points in R(Sτ , γ(cµ)) and i ∈ [n], there exists some βε ∈ Nε,i such that∣∣∣(σin−1χ[β]i − σin−1Eχ[β]i

)
−
(
σin

−1χ[βε]i − σin−1Eχ[βε]i

)∣∣∣ ≤ 2Lε ≤ c2θ

p3/2
(B.391)

On event ELip∩ENet, (B.388), (B.391) impliesχ[β] iswell concentrated entrywise and anywhere in∪|τ |≤kR(Sτ , γ(cµ)):∣∣∣σin−1χ[β]i − σin−1Eχ[β]i

∣∣∣ ≤ (c1 + c2)θ

p3/2
, ∀a ∈ ∪k≤kR(Sτ , γ(cµ)), ∀ i ∈ [n] (B.392)

as desired, where, using Theorem B.1.2,

P
[
EcLip

]
≤ P

[
‖x‖22 > 2nθ

]
≤ 1/n; (B.393)

and using union bound,

P [EcNet] ≤ P

 max
aε∈Nε,i
i∈[n]

σin
−1χ[βε]i − σin−1Eχ[βε]i >

c1θ

p3/2


≤ n |Nε|P

[
σ0n

−1χ[βε]0 − σ0n
−1Eχ[βε]0 >

c1θ

p3/2

]
. (B.394)
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3. ( Bound P [EcNet]) Wlog write n = t ·(2p) for some integer t and 2p ≥ 4p0−3 and replace x0 with x. Observe

that Zj(β) from (B.61) is independent of Zj+2p(β) for all j ∈ [n] while all Zj are identical distributed. We

write χ[β]0 as sum of iid r.v.s. as

χ[β]0 =
∑
j∈[n]

Zj(β) =
∑
k∈[2p]

n/2p−1∑
t=0

Zk+2tp(β)


wlog let σ0 = 1 and split the independent r.v.s, write EZ0 = EZ, bound the tail probability of χ[β]0 as

P
[
n−1χ[β]0 > n−1Eχ(β)0 +

c1θ

p3/2

]
≤ 2p · P

n/2p−1∑
t=0

Z2tp(β) >
n

2p
EZ(β) +

c1nθ

2p5/2

 (B.395)

The moments of Z0 can be bounded by using |Z0(β)| ≤ |x0| |β0x0 + s0| ≤ β0x
2
0 + |x0| |s0| where s0 =∑

` 6=0 x`β`, write x = ω ◦ g ∼i.i.d. BG(θ). For the 2-norm we know

E |s0|2 = E

∣∣∣∣∣∑
`

x`β`

∣∣∣∣∣
2

≤ θ ‖β‖22 ≤ θ
(

1 + cµ +
cµ
θk2

)
≤ 1

2
(B.396)

As for the q-norm, use the moment generating function bound, such that for all t ≥ 0:

E |s0|q ≤ q!t−qE exp [t |s0|] ≤ q!t−q
∏
`

Eω`,g` exp [tω` |g`| |β`|] ≤ 2q!t−q
∏
`

Eω` exp
[
ω`t

2β2
`/2
]

≤ 2q!t−q
∏
`

(
1− θ + θ exp

[
t2β2

`/2
])

(B.397)

notice that the entrywise twice derivative of (B.397) w.r.t. β2
` ’s are always positive, this function is convex

for all β2
` . Constrain on the polytope

∑
` β

2
` ≤ ‖β‖

2
2, the maximizer of (B.397) w.r.t. β2

` ’s occurs and a vertex

point where β2
0 = ‖β‖22. Thus

(B.397) ≤ 2q!t−q
(

1− θ + θ exp
[
t2 ‖β‖22 /2

])∏
` 6=0

(1− θ + θe0) ≤ 2q!t−q(1 + θ exp[‖β‖22 t
2/2]).

Choose t =
√
q/ ‖β‖2, use q!! > (q!/2) · (e/q)q/2, we have

E |s0|q ≤ 2q!q−q/2 ‖β‖q2 (1 + θ exp [q/2]) ≤ 8 ‖β‖q2 max
{
e−q/2, θ

}
q!!. (B.398)

Apply Jensen’s inequality
(∑N

i=1 zi

)q
≤ Nq−1

∑N
i=1 z

q
i , use Gaussian moment Theorem B.10.2 , (B.396) and

(B.398), obtain for q ≥ 3,

EZ(β)2 ≤ E
(
β0x

2
0 + |x0| |s0|

)2 ≤ 2E
[
β2

0x
4
0 + x2

0s
2
0

]
≤ 6θ + 2θ2 ‖β‖22 ≤ 7θ,

EZ(β)q ≤ E
(
β0x

2
0 + |x0| |s0|

)q ≤ 2q−1
(
Ex2q

0 + E |x0|q E |s0|q
)
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≤ θ2q−1(2q − 1)!! + θ2q−1(q − 1)!!
(

8 ‖β‖q2 max
{
e−q/2, θ

}
q!!
)

≤ θ4qq! + θ2q ‖β‖q2 q!.

Thus, recall that ‖β‖2 = η, use (σ2, R) = (8θη2, 4η), from (B.394)-(B.395), apply Bernstein inequality Theo-

rem B.10.4 with n ≥ Cp5θ−2 log p, and c1, c2 ∈ [0, 1] we have

P [EcNet] ≤ 2np |Nε| · P

n/2p−1∑
t=0

Z2tp(β) >
n

2p
EZ(β) +

c1nθ

2p5/2

 ≤ 2np

(
3np2

c2

)3p

exp

(
−
(
c1nθ/2p

5/2
)2

16nθη2/2p+ 8ηc1nθ/2p5/2

)

≤ exp

(
4p log

(
3np2

c2

)
−
(
c1nθ/2p

5/2
)2

16nθη2/p

)
≤ exp

(
4p log

(
3np2

c2

)
− c21nθ

2

64p4

)
≤ exp

(
−c21nθ2

100p4

)
≤ 1

n
(B.399)

when C
logC > 105

c21c2
. The proof of lower bound and negative β0 is derived in the same manner.

B.9.2 Proof of Theorem B.4.3

Proof. Write x as x0 though our this proof. Write βixj + sj =
∑
`∈[±p] β`x`−i+j =

〈
β,x[±p]−i+j

〉
, and the

support w.r.t. some a as I(β). Define the random variable Zij(β) as

∥∥PI(β)s−i[x]
∥∥2

2
=
∑
j∈[n]

x2
j1{|〈β,x[±p]−i+j〉|>λ} =:

∑
j∈[n]

Zij(β) (B.400)

and define
{
Zij(β)

}
j∈[n]

that are independent r.v.s. and as a upper bounding function of Zij(β) as

Zij(β) :=


x2
j ,

∣∣〈β,x[±p]−i+j
〉∣∣ > λ

0,
∣∣〈β,x[±p]−i+j

〉∣∣ < λ/2

x2
j

λ/2

(∣∣〈β,x[±p]−i+j
〉∣∣− λ/2) , otherwise

, (B.401)

Similar to proof of Theorem B.3.4. Let ‖β‖2 ≤ η ≤ √p. Define ε =
c′2λ

24np
√
pθ logn log θ−1

for some c′2 > 0 and

consider the ε-net Nε for sphere of radius η. From Theorem B.10.5 we know

|Nε| ≤
(

3η

ε

)2p

≤
(

72

c′2cλ
np2
√
θ |τ | log n log θ−1

)2p

≤
(

72

c′2cλ
np2 log n

)2p

, (B.402)
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for each i ∈ [n] define such net as Nε,i, and define an event such that all center of subsets in Nε,i are being

well-behaved:

ENet :=

∀ i ∈ [n],

∣∣∣∣∣∣n−1
∑
j∈[n]

Zij(βε)− EZi(βε)

∣∣∣∣∣∣ ≤ c′1θ

p
∀βε ∈ Nε,i

 , (B.403)

Also,
∑
j Zij(β) is a Lipchitz function over β for every i ∈ [n] as∣∣∣∣∣∣
∑
j∈[n]

Zij(β)−
∑
j∈[n]

Zij(β
′)

∣∣∣∣∣∣ ≤
∑
j∈[n]

x2
j

λ/2

∣∣〈β − β′,x[±p]−i+j
〉∣∣ ≤ ∑

j∈[n]

x2
j

∥∥x[±p]−i+j
∥∥

2

λ/2
‖β − β′‖2 ,

≤ 1

λ/2
‖x‖22 ·max

j∈[n]

∥∥x[±p]+j
∥∥

2
· ‖β − β′‖2 := L ‖β − β′‖2 , (B.404)

and define event ELip such that the Lipchitz constant is bounded as

ELip :=
{
L ≤ 12nθ

√
pθ log n log θ−1λ−1

}
, (B.405)

then on event ELip, for any pointsβ inR(Sτ , γ(cµ)) and i ∈ [n], there exists someβε inNε,iwith ‖β − βε‖2 ≤ ε,

and thus ∣∣∣∣∣∣
n−1

∑
j∈[n]

Zij(β)− EZi(β)

−
n−1

∑
j∈[n]

Zij(βε)− EZi(βε)

∣∣∣∣∣∣ ≤ 2Lε ≤ c′2θ

p
. (B.406)

On event ELip ∩ ENet, from (B.403), (B.406), we can conclude that for all β ∈ R(Sτ , γ(cµ)) and i ∈ [n] that:

n−1
∥∥PI(β)s−i[x0]

∥∥2

2
− n−1E

∥∥PI(β)s−i[x0]
∥∥2

2
≤ n−1

∑
j∈[n]

Zij(β)− EZi(β) ≤ (c′1 + c′2)θ

p
(B.407)

as desired, where the error probability of EcLip is bounded using Theorem B.1.2 and Theorem B.1.3, which

give

P
[
EcLip

]
≤ P

[
‖x‖22 > 2nθ

]
+ P

[
max
j∈[n]

∥∥x[±p]+j
∥∥

2
> 3
√
pθ log n log θ−1

]
≤ 3/n, (B.408)

when n > 103θ−1. As for EcNet use union bound and split the r.v.s since Zj ,Zj+2p are independent for all j:

P [EcNet] ≤ 2np · |Nε| · P

∣∣∣∣∣∣
n/2p∑
k

Zi,2kj(β)− n

2p
EZi(β)

∣∣∣∣∣∣ ≥ c′1nθ

2p2

 .
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Now we calculate the variance and Lq-norm of
∑
k Zi,2kj for q ≥ 3:

EZ2

i,j ≤ Ex4
j ≤ 3θ

EZqi,j ≤ Ex2q
j ≤ θ(2q − 1)!! ≤ 1

2 · (3θ) · 2
q−2q!

(B.409)

and apply Bernstein inequality with (σ2, R) = (3θ, 2), then use n ≥ Cp4θ−1 log p and c′1, c′2 < 1 to obtain

2np |Nε|P

∣∣∣∣∣∣
n/2p∑
k

Zi,2kj(β)− n

2p2
EZi

∣∣∣∣∣∣ ≥ c′1nθ

2p2

 ≤ exp

[
log(2np) + 2p log

(
72

c′2cλ
np2 log n

)
− (c′1nθ/2p

2)2

6nθ/2p+ 4c′1nθ/2p
2

]

≤ exp

[
3p log

(
72

c′2cλ
np2 log n

)
− c′21 nθ

24p3

]
≤ exp[−c′21 nθ/(50p3)] ≤ 1/n, (B.410)

where the last two inequalities holds when C
logC ≥

105

c′21 c
′
2cλ

. The other side of inequality of (B.91) can be

derived by defining Zij as

Zij(β) :=


x2
j ,

∣∣〈β,x[±p]−i+j
〉∣∣ > 3λ/2

0,
∣∣〈β,x[±p]−i+j

〉∣∣ < λ

x2
j

λ/2

(∣∣〈β,x[±p]−i+j
〉∣∣− λ) , otherwise

, (B.411)

and define ENet, ELip similarly, such that on intersection of these events,

n−1
∥∥PI(β)s−i[x]

∥∥2

2
− n−1E

∥∥PI(β)s−i[x]
∥∥2

2
≥ n−1

∑
j∈[n]

Zij(β)− EZi(β) ≥ (c′1 + c′2)θ

p
(B.412)

as desired.

B.9.3 Proof of Theorem B.5.5

Proof. 1. (Expectation upper bound) We will write x as x0. Similar to proof of Theorem B.3.4 let ‖β‖2 ≤ η ≤
√
p. For each i ∈ [n], define the random variable

Xi(β) = 1{|〈si[x],β〉−λ|≤B} + 1{|〈si[x],β〉+λ|≤B}, (B.413)
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then number of indices for vector x ∗ β

∧

that are within B of ±λ is a random variable
∑
i∈[n]Xi(β). For each

of theXi(β)’s consider an upper boundXi(β) defined as

Xi(β) =



1
M (|〈si[x],β〉| − (λ−B −M)) |〈si[x],β〉| ∈ [λ−B −M,λ−B]

1 |〈si[x],β〉| ∈ [λ−B, λ+B]

1
M ((λ+B +M)− |〈si[x],β〉|) |〈si[x],β〉| ∈ [λ+B, λ+B +M ]

0 else

(B.414)

where B < M = cλθ2/ (p log n) ≤ λ/4 for some constant 0 < c < 1.

Notice that x ∼i.i.d. BG(θ) is equal in distribution to PI(a)g, where g ∼i.i.d. N (0, 1), and I(a) ⊆ [n] is

an independent Bernoulli subset. Conditioned on I(a), 〈x,β〉 =
〈
g,PI(a)β

〉
∼ N (0,

∥∥PI(a)β
∥∥2

2
). For all

realizations of I(a), the variance
∥∥PI(a)β

∥∥2

2
is bounded by

∥∥PI(a)β
∥∥2

2
≤ ‖β‖22 ≤ p. Using these observations,

and letting fσ(t) =
(√

2πσ
)−1

exp
(
−t2/2σ2

)
denote the pdf of an N (0, σ2) random variable, the expectation

of
∑
iXi(β) can be upper bounded as

∑
i∈[n]

E
[
Xi(β)

]
≤ (2n) · P [〈x,β〉 ∈ [λ−B −M,λ+B +M ]]

≤ (2n) · 2(B +M) sup
σ2∈(0,p]

max
t∈[λ−B−M,λ+B+M ]

fσ(t)

≤ 4n(B +M) sup
σ2∈(0,p]

fσ (λ−B −M)

≤ 4n(B +M) sup
σ2∈(0,p]

fσ (λ/2) . (B.415)

Notice that

d

dσ
fσ

(
λ

2

)
=

d

dσ

1√
2πσ

exp

(
− λ2

8σ2

)
=
λ2 − 4σ2

4
√

2πσ4
exp

(
− λ2

8σ2

)
,

and hence fσ(λ/2) is maximized at either σ2 = 0, σ2 = p or σ2 = λ2/4. Comparing values at these points, we

obtain that

sup
σ2∈(0,p]

fσ(λ/2) ≤ fλ/2(λ/2) ≤ 1√
2π(λ/2)

exp

(
−1

2

)
≤ 1

2λ
, (B.416)

whence, by letting B ≤ cλθ2/ (p log n), the upper bound of expectation become:

∑
i∈[n]

E
[
Xi(β)

]
≤ 4n

2λ
(B +M) ≤ 4cnθ2

p log n
=: nEX(β). (B.417)
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2. (ε-net) Define ε = c2λθ3.5

3p2.5 log2.5 n log0.5 θ−1 . Write λ = cλ/
√
|τ | and consider the ε-net Nε for sphere of radius

η ≤ √p. From Theorem B.10.5 we know

|Nε| ≤
(

3η

ε

)2p

≤
(

81 |τ | p6 log5 n log θ−1

c4c2λθ
7

)p
≤
(

2p log n

c · cλ

)13p

(B.418)

and define an event such that all center of subsets in Nε are being well-behaved:

ENet :=

∑
i∈[n]

Xi(βε)− nEX(βε) <
18cnθ2

p log n
∀βε ∈ Nε,

 (B.419)

3. (Lipschitz constant) Furthermore, the function
∑n
i Xi(β) is Lipchitz over β such that∣∣∣∣∣∣

∑
i∈[n]

Xi(β)−
∑
i∈[n]

Xi(β
′)

∣∣∣∣∣∣ ≤
n∑

i∈[n]

1

M
|〈si[x],β − β′〉| ≤ n

M
max
i∈[n]

∥∥P[±p]+ix
∥∥

2
‖β − β′‖2 =: L ‖β − β′‖2

define the set Nε where Lipschitz constant is well bounded:

ELip :=

{
L ≤ 3n

√
pθ log n log θ−1

M

}
,

then on event ELip, for every β in R(Sτ , γ(cµ)), there exists some βε in Nε,i with ‖β − βε‖2 ≤ ε, thus∣∣∣∣∣∣
∑
i∈[n]

Xi(β)− nEX(β)

−
∑
i∈[n]

Xi(βε)− nEX(βε)

∣∣∣∣∣∣ ≤ 2Lε ≤ 2cnθ2

p log n
. (B.420)

On event ELip ∩ ENet, from (B.417), (B.419) and (B.420), we can conclude that for every β ∈ R(Sτ , γ(cµ)) and

i ∈ [n],

∑
i∈[n]

Xi(β) ≤ 24cnθ2

p log n
(B.421)

as desired, where the error probability of EcLip is bounded using Theorem B.1.3, which gives

P
[
EcLip

]
≤ P

[
max
j∈[n]

∥∥x[±p]+j
∥∥

2
> 3
√
pθ log n log θ−1

]
≤ 2/n, (B.422)

4. (Bound P [EcNet]) Wlog let us assume that 2p divides n. By applying union bound and observing thatXi(β)

is independent ofXi+2p(β) for any i ∈ [n], we split
∑
iXi(β) into n/2p independent sums of r.v.s, we have

P [EcNet] ≤ 2p |Nε| · P

n/2p−1∑
j=0

(
X2pj(β)− E

[
X(β)

])
>

9cnθ2

p2 log n

 ,
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where each summand has bounded variance and Lq-norm derived similarly as its expectation such that

EXi(β)q ≤ 2 · P [〈si[x],β〉 ∈ [λ−B −M,λ+B +M ]] ≤ 2 · 1

2λ
· 2(B +M) ≤ 4cθ2

p log n
,

and apply Bernstein inequality Theorem B.10.4 with (σ2, R) = (4cθ2/ (p log n) , 1), obtains

P

n/2p−1∑
j=0

(
X2pj(β)− E

[
X(β)

])
>

9cnθ2

p2 log n

 ≤ exp

[
−(9cnθ2/p2 log n)2

2cnθ2/p2 log n+ 2(9cnθ2/p2 log n)

]
≤ exp

[
−4cnθ2

p2 log n

]
,

thus when n = Cp5θ−2 log p:

P [EcNet] ≤ exp

[
log(2p) + 13p log

(
2p log n

c · cλ

)
− 4cnθ2

p2 log n

]
≤ 1/n (B.423)

as long as C
logC > 105/

(
c2 · cλ

)
.

B.10 Tools

Lemma B.10.1 (Tail bound for Gaussian r.v.). If X ∼ N (0, σ2), then its tail bound for t > 0 can be

P [X > t] ≤ σ

t
√

2π
exp

(
− t2

2σ2

)
(B.424)

Lemma B.10.2 (Moments of the Gaussian random variables). If X ∼ N
(
0, σ2

)
, then ifor all integer p ≥ 1,

E [|X|p] ≤ σp (p− 1)!!. (B.425)

Lemma B.10.3 (Gaussian concentration inequality). Let x = (x1, . . . ,xn) be a vector of n independent standard

normal variables. Let f : Rn → R be an L-Lipschitz function. Then for all t > 0,

P [|f(x)− Ef(x)| ≥ t] ≤ 2 exp

(
− t2

2L2

)
. (B.426)

Lemma B.10.4 (Moment control Bernstein inequality for scalar r.v.s). ([FR13], Theorem 7.30) Let x1, . . . ,xn

be independent real-valued random variables. Suppose that there exist some positive number R and σ2 such that
1
n

∑n
i=1 E

[
X2
i

]
≤ σ2 and

1
n

∑n
i=1 E [|xk|p] ≤ 1

2σ
2Rp−2p!, for all integers p ≥ 3.
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Let S .
=
∑n
i=1 xi, then for all t > 0, it holds that

P [|S − E [S]| ≥ t] ≤ 2 exp

(
− t2

2nσ2 + 2Rt

)
. (B.427)

Lemma B.10.5 (ε-net on sphere). [Ver10] Let (X, d) be a metric space and let ε > 0. A subset Nε of X is called an

ε-net ofX if for every point x ∈ X there exists some point y ∈ Nε so that d(x, y) ≤ ε. There exists an ε-netNε for the

sphere Sn−1 of size |Nε| ≤ (3/ε)
n.

Lemma B.10.6 (Hanson-Wright). [RV+13] Let x1, . . . ,xn be independent, subgaussian random variables with

subgaussian norm supp≥1 p
−1/2 (E |xpi |)

1/p ≤ σ. LetA ∈ Rn×n, then for every t > 0,

P [|x∗Ax− Ex∗Ax| ≥ t] ≤ 2 exp

(
−cmin

(
t2

64σ4 ‖A‖2F
,

t

8
√

2σ2 ‖A‖2

))
. (B.428)

Lemma B.10.7 (Maximum of separable convex function). Let f : R+ → R+ be a convex function of the form

f(x) = x− s(x) with s : R+ → R+ satisfying

s(x)

x
≤ s(y)

y
, for all x ≥ y > 0.

Then for n ∈ N and 0 < N ≤ nL,

max
0≤x≤L, ‖x‖1≤N

n∑
i=1

f(xi) ≤ N
(

1− s(L)

L

)
(B.429)

Proof. Since the feasible set is a convex polytope; the convex function
∑n
i=1 f(xi) is maximized at a vertex, and

that its vertices consist of 0 and permutations of the vector
[
L, . . . , L︸ ︷︷ ︸
bN/Lc

, r, 0, . . . , 0
]
, where r = N−bN/LcL ≤ L.

Then the function value at the maximizing vector x∗ can be derived as:

n∑
i=1

f(x∗i) =
⌊
N
L

⌋
f(L) + f(r) = N−r

L (L− s(L)) + (r − s(r))

= N
(

1− s(L)
L

)
+ r

(
s(L)
L − s(r)

r

)
≤ N

(
1− s(L)

L

)
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