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ABSTRACT

Online Decision Making in Networked Marketplaces

Pengyu Qian

Modern, technologically-enabled markets are disrupting many industry sectors, in-

cluding transportation, labor, lodging, dating services and others. While the system op-

erator is able to collect data and deploy various control levers, these systems are highly

complex, marked by a large number of interacting self-interested agents, uncertainty

about the future and imperfect demand predictions. There remain major challenges in

optimizing these marketplaces. In this dissertation, I describe work designing novel al-

gorithms and performing theoretical analysis of networked systems, including those that

arise in marketplaces. I demonstrate how to use tools from applied probability, modern

optimization, and economics to develop methodologies for online decision making in con-

texts such as queueing control, revenue management, and running a matching platform.

The first part of the dissertation designs novel algorithms for dynamic assignment and

revenue management. The work considers networked systems where agents or tasks arrive

over time, which is broadly relevant to service platforms with heterogeneous services, for

instance shared transportation systems. Firstly, we propose a near optimal “mirror back-

pressure” control methodology for joint entry/assignment/pricing control in a network

where there are a fixed number of supply units (vehicles), and demands with different

origin and destination nodes arrive over time. The MBP policy does not need demand

arrival rate predictions at all, and we prove guarantees of near optimal performance over

a finite horizon. Secondly, we study a special case of the network control problem where



the geographical imbalances in demand are small enough such that, ignoring stochastic-

ity, they can be corrected using assignment control alone. The objective is to minimize

the fraction of customers who are “lost” (not served) because there is no vehicle at a

nearby location when the customer arrives. We show that for this setting we can achieve

a refined notion of optimality, i.e., the large deviations optimality.

The second part of the dissertation analyzes equilibria in matching markets under dif-

ferent mechanisms. Firstly, we study the Gale-Shalpley “deferred acceptance” algorithm,

which has been successfully adopted in contexts such as school choice and resident match-

ing programs. Our research question is, “Which Gale-Shapley matching markets exhibit

a short-side advantage?” I.e., in which markets does being on the short side of the market

allow agents to obtain better match partners relative to a similar “balanced” market with

equal numbers of agents on the two sides? We address this problem by looking at the

“random matching market” model where each agent considers only a subset of potential

partners on the other side, and sharply characterize the resulting (nearly unique) stable

matching, overcoming significant technical challenges. Secondly, we study the waiting-list

mechanism, which is commonly used in kidney assignment, public housing allocation, and

beyond. We show that the waiting-list mechanism is near-optimal in terms of allocative

efficiency for general systems with an arbitrary number of agent types and item types, and

obtain tight bound on the efficiency loss. Comparing to existing works which could only

analyze very simple systems, we tackle the general case by taking a completely different

approach and establishing a novel connection with stochastic gradient descent.
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Introduction

Many of the marketplaces have been reshaped by technology. The deployment of

various algorithms enabled billions of people to get a ride at the click of a button via

Uber, Lyft or other ride-hailing platforms. Systems based on matching market algorithms

and mechanisms are used to match people to their potential love interests, students

to schools, and donor’s organs to patients. While the technological development have

greatly benefited the society, they lead to highly complex systems, and there remain major

challenges in optimizing these marketplaces. For instance, most ride-hailing companies

continue to make most tactical decisions in fairly “naïve” ways: e.g., without using demand

predictions, and accounting for supply availability only near the origin location. The

important issues for these systems lie at the intersection of engineering, mathematics and

economics, and, specifically, the fields of operations research and operations management.

In this dissertation, we focus on algorithms and mechanisms that not only have good

theoretical guarantees, but also are simple, robust, and hence practical for real-world

systems. The dissertation has two parts: Part I designs novel near-optimal dynamic

assignment and pricing algorithms that could be useful in a realistic environment. Part

II addresses foundational questions regarding the nature of equilibria in matching markets

under different mechanisms and market compositions.

In Part I, we study the design of dynamic assignment and pricing policies in networked

systems where agents or tasks arrive over time. We focus on the queueing network model,

which is a canonical model of these systems. This work is broadly relevant to service

platforms with heterogeneous services, for instance shared transportation systems. The

dynamic control problem in these systems are notoriously challenging for the following

reasons: (i) Control decisions not only generate payoff, but also modulate the distribution

1



of resources in the network over time, thus creating a tension. (ii) Complex network

externality. For example, vehicles relocate in ride-hailing systems, hence any control

decision affects the future availability of resources throughout the system within short

timescales.

We aim at developing approaches to tackle these challenges systematically. Prior

literature on the control of queueing networks typically solves the optimal control problem

in the fluid limit or diffusion limit, and relies on the exact predictions of future arrival

rates. As a result, these approaches are generally sensitive to the errors in predictions, and

might have poor performance in a realistic environment. Part I designs simple policies

that do not use demand predictions and still achieve near optimality, and therefore are

more useful in practice.

Part I consists of two chapters. In Chapter 1, we propose a near optimal “mirror

backpressure” control methodology for joint entry/assignment/pricing control in a net-

work where there are a fixed number of supply units (vehicles), and demands with different

origin and destination nodes arrive over time. Mirror backpressure (MBP) autocorrects

geographical supply imbalances by aggressively protecting and replenishing supply where

it is scarce, while deploying supply from regions where it is plentiful. The paper makes

several notable contributions:

1. The MBP policy is “blind”, i.e., it does not need demand arrival rate predictions at all,

in sharp contrast to previous work which relies on perfect estimates of future demand

arrival rates.

2. We prove guarantees of near optimal performance over a finite horizon, and moreover

allow demand arrival rates to be (slowly) time-varying. This is a major improvement

upon the steady state guarantees with stationary demand obtained in previous work.

3. Our methodology provides a systematic way to construct simple control policies across

a variety of levers for queueing networks with provable guarantees. Our policy design

uses two ideas: the celebrated backpressure policy for network control, and the mirror

descent algorithm for optimization (a generalization of gradient descent). Backpres-

2



sure turns out to be inadequate for our problem, because it suffers from “underflow”

when the controller wants to serve a customer but no resource is available at the

customer’s origin. Our MBP policy systematically resolves this issue. We make the

crucial observation that under MBP, the queue length vector executes dual stochastic

mirror descent on the fluid optimization problem. The policy takes a very simple

form, making it easy to communicate in practice for its implementation.

In Chapter 2, we study a special case of the network control problem where the

geographical imbalances in demand are small enough such that, ignoring stochasticity,

they can be corrected using dispatch (i.e., the assignment of vehicles to customers) control

alone. (The condition is known as the Complete Resource Pooling (CRP) condition in

the queueing literature.) The objective is to minimize the fraction of customers who are

“lost” (not served) because there is no vehicle at a nearby location when the customer

arrives. We show that for this setting we can achieve a refined notion of optimality. We

make the following contributions:

1. We show that a remarkably simple “MaxWeight” control policy serves almost all cus-

tomers. The policy simply dispatches from that location near the customer which

currently has the most vehicles. Note that the MaxWeight policy is also blind, i.e., it

requires no knowledge of demand arrival rates.

2. We obtain a large deviations optimal dispatch control policy (in terms of demand

arrival rates). Our policy, which we call “Scaled MaxWeight” is a straightforward

generalization of MaxWeight: it employs a supply “scaling factor” for each location,

and dispatches from the nearby location with the largest scaled number of vehicles.

The optimal scaling factors can be computed using the demand arrival rates if the

latter are known. Even if suboptimal scaling factors are used, very few customers

are lost. We obtain these results by performing the first large deviations analysis of

a queueing network under the CRP condition. This work may inspire similar large

deviations analyses of other queueing network settings, and lead to new fine-grained

control insights.

3



In Part II we try to demystify the nature of equilibria in various marketplaces.

An important step towards designing better marketplaces is understanding the perfor-

mance of currently widely used mechanisms/algorithms. Examples of popular mecha-

nisms/algorithms that I study include the Gale-Shalpley “deferred acceptance” algorithm,

which is the bedrock of Shapley’s Nobel Prize in Economics, and has been successfully

adopted in contexts such as school choice and resident matching programs. Another

example is the waiting-list mechanism, which is commonly used in kidney assignment,

public housing allocation, and beyond. However, due to the complex interaction of hetero-

geneous agents in these networked marketplaces, many foundational questions regarding

the equilibria remains unanswered.

Part II also consists of two chapters. In Chapter 3, we study the Gale-Shapley two-

sided matching market model, where agents on both sides have ordinal preferences over

potential partners on the other side. This model has been instrumental in the design

of numerous real-world marketplaces. We raise the following research question: “Which

Gale-Shapley matching markets exhibit a short-side advantage?” I.e., in which markets

does being on the short side of the market allow agents to obtain better match partners

relative to a similar “balanced” market with equal numbers of agents on the two sides? We

address this problem by looking at the “random matching market” model (with uniform

and independent agent preference rankings on both sides) where each agent considers

only a subset of potential partners on the other side, with n+k men and n women which

are “partially connected” (each agent considers only d potential partners on the other

side), and sharply characterize the resulting (nearly unique) stable matching, overcoming

significant technical challenges. The economic interpretation of our finding is striking and

represents a significant advance in our understanding of matching markets without money:

a market exhibits a short-side advantage if and only if the number of short side agents

who remain unmatched is smaller than the market imbalance k. One nice consequence

of this finding for researchers in the field is that they can now estimate whether a market

exhibits a short-side advantage from publicly available summary statistics alone. At the
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heart of the paper is a very simple observation: #(unmatched on short side)+ #imbalance

= #(unmatched on long side). If the first term on the left-hand side dominates, the

numbers unmatched on the two sides are comparable and there is no significant short side

advantage. In contrast, if the imbalance term dominates the left-hand side dominates,

there are many more unmatched on the long side, and the short side is matched to more

preferred partners (correspondingly, fewer short side agents entirely fail to find a partner).

In Chapter 4, we focus on the waiting list mechanisms. Waiting-lists are common

assignment mechanisms for allocating scarce goods that arrive stochastically over time.

The mechanism can be illustrated by the classic example of public housing allocation in

Boston: each family (i.e., agents) eligible for public housing can join the waiting-list of a

type of housing project, each type of housing projects (i.e., items) become available over

time, and they are offered to the families on the waiting-list in a first-come-first-served

manner. In these systems, a key metric is the quality of matches, i.e., the allocative effi-

ciency. However, despite its widespread use, relatively little is known about the efficiency

of the waiting-list mechanism. We show that the waiting-list mechanism is near-optimal

in terms of allocative efficiency for general systems with an arbitrary number of agent

types and item types, and obtain tight bound on the efficiency loss. The first fundamental

theorem of welfare economics tells us that in markets with money, competitive equilib-

rium leads to efficient allocations. But the waiting-list mechanism is non-monetary, which

makes it pleasantly surprising that it is allocatively efficient. Our approach is completely

different from previous ones, and establishes a novel connection with stochastic gradient

descent. Interestingly, the waiting costs of each waiting-list serve as shadow prices for

the items.
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CHAPTER 1

Blind Dynamic Resource Allocation in Closed Networks via

Mirror Backpressure

1.1 Introduction

The control of complex systems with circulating resources such as shared transporta-

tion platforms and scrip systems has been heavily studied in recent years. The hallmark

of such systems is that serving a demand unit causes a (reusable) supply unit to be

relocated. Closed queueing networks (i.e., networks where a fixed number of supply

units circulate in the system) provide a powerful abstraction for these applications ([1],

[2]). The key challenge is managing the distribution of supply in the network. A widely

adopted approach for this problem is to solve the deterministic optimization problem

that arises in the continuum limit (often called the static planning problem), and show

that the resulting control policy is near-optimal in a certain asymptotic regime. However,

this approach only works under the restrictive assumption that (1) the system parame-

ters (demand arrival rates) are precisely known. Furthermore, previous papers ([1], [2])

assume that (2) the system is in steady state. As is pointed out by Banerjee, Freund, and

Lykouris [1], relaxing either of these assumptions has been of interest.

In this paper, we relax both assumptions.1 We propose a family of simple, practical
1The paper Banerjee, Kanoria, and Qian [3] is similarly motivated, but restricts attention to a nar-

row special case: assignment control in networks satisfying a strong complete resource pooling (CRP)
assumption, and conducts a sharp large deviations analysis. In particular, non-idling/greedy policies
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control policies that are blind in that they use no prior knowledge of demand arrival rates,

and prove strong transient and steady state performance guarantees for these policies,

for demand arrival rates that are stationary or vary slowly in time. In simulations, our

policies achieve excellent performance that beats the state-of-the-art policies even in an

unequal contest where the latter policies are provided exact demand arrival rates whereas

our proposed policies are given no prior information about demand arrival rates.

Informal description of the model. For ease of exposition, our baseline setting is

one where entry control is the only available control lever, and demand is stationary. Later

we allow other controls including dynamic pricing, and flexible assignment of resources,

and moreover allow for time-varying demand arrival rates, and show that our machinery

and guarantees extends seamlessly. In our baseline entry control model, we consider a

closed queueing network consisting of m nodes (locations), and a fixed number K of

supply units that circulate in the system. Demand units with different origin-destination

node pairs arrive stochastically over slotted time with some stationary arrival rates which

are unknown to the controller. The controller dynamically decides whether to admit each

incoming demand unit. Each admission decision has two effects: it generates a certain

payoff depending on the origin and destination of the demand unit, and it causes a supply

unit to relocate from the origin to the destination instantaneously, if the origin node is

non-empty. The goal of the system is to maximize the collected payoff over a period of

time.

Notably, the greedy policy, which admits a demand unit if a supply unit is available, is

generically far from optimal: even as K →∞, the optimality gap per demand unit of this

policy is Ω(1) even in steady state; see Remark 1.1 in Section 1.2. The intuition is that

some nodes have no available supply an Ω(1) fraction of the time in steady state under the

greedy policy, and so the policy is forced to drop a significant proportion of the demand

suffice to achieve asymptotic optimality under CRP. In contrast, the present work is general: e.g., the
JEA setting we solve in Section 1.6 generalizes the model of that paper by dropping the CRP assumption,
necessitating a completely different non-greedy approach to control; already under our illustrative model
(Section 1.2) the CRP assumption of Banerjee, Kanoria, and Qian [3] is automatically violated and the
greedy policy fails to achieve asymptotic optimality.
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which would have been served under the optimal policy. Furthermore, if demand arrival

rates are imperfectly known, any state independent policy [such as that of 1] generically

suffers a steady state optimality gap per demand unit of Ω(1); see Banerjee, Kanoria,

and Qian [3, Proposition 4].

Preview of our main result. We propose a large class of simple and practical

control policies that are blind (i.e., require no estimates of the demand arrival rates), and

show that, under a mild connectivity assumption on the network, the policies are near

optimal. Specifically, we show that our policies lose payoff (per demand unit) at most

O
(
K
T

+ 1
K

)
relative to the optimal policy that knows the demand arrival rates, whereK is

the number of supply units, T is the number of demand units that arrive during the period

of interest. Our result is non-asymptotic, i.e., our performance guarantee holds for finiteK

and T , and thus covers both transient and steady state performance. In particular, taking

T →∞, we obtain a steady state optimality gap of O( 1
K

), matching that of the state-of-

the-art policy of Banerjee, Freund, and Lykouris [1], though that policy requires perfect

estimates of demand arrival rates, in sharp contrast to our policy which is completely

blind. Our bound further provides a guarantee on transient performance: the horizon-

dependent term K/T in our bound on optimality gap is small if the total number of

arrivals T over the horizon is large compared to the number of supply units K. Notably,

our bound does not deteriorate as the system size increases in the “large market regime”

where the number of supply units K increases proportionally to the demand arrival rates

(see the discussion after Theorem 1.1): here the number of arrivals T = Θ(K · T real),

where T real is the time horizon measured in physical time, and we can rewrite our bound

on the optimality gap as O
(

1
T real + 1

K

) K→∞−−−→ O
(

1
T real

)
.

Our policies retain their good performance if demand arrival rates vary slowly over

time: We show (see Section 1.6.2) that the loss in payoff per customer under MBP is

bounded by O
(
K
T

+ 1
K

+
√
ηK
)
, where is η is the maximum change in demand arrival

rates per customer arrival. In the aforementioned large market regime, the optimality

gap per customer can be expressed as O
(

1
T real + 1

K
+
√
ζ
)
where ζ , ηK is rate of change
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of φ with respect to physical time.

We now motivate and introduce our control policies. First, we describe how our

problem is one of controlling a closed queueing network. Next, we describe the celebrated

backpressure methodology for blind control of queueing networks. We then outline the

central challenge in using backpressure in settings like ours. Finally, we introduce our

proposed policies which significantly generalize backpressure, and may be broadly useful.

Analogy with control of a closed queueing network. Our problem can be

viewed as one of optimal control of a closed queueing network. In the terminology of

classic queueing theory, the K supply units are “jobs”, and each node in our model has

both a queue of jobs (supply units) as well as a “server” which receives a “service token”

each time a demand unit arrives with that location as the origin. (We emphasize the

reversal of the usual mapping: in our setup supply units are “jobs” and demand units

act as service tokens.) Our model also specifies the “routing” of jobs: service tokens are

labeled with a destination queue to which the served job (supply unit) moves. Since

jobs circulate in the system (they do not arrive or leave), our setup is a closed queueing

network.2 (Networks where jobs arrive, go through one or more services, and then leave,

are called open networks.)

Backpressure. Our control approach is inspired by the celebrated backpressure

methodology of Tassiulas and Ephremides [4] for the control of queueing networks. Back-

pressure simply uses queue lengths as congestion costs (the shadow prices to the flow

constraints; the flow constraint for each queue is that the inflow must be equal to the

outflow in the long run), and chooses a control decision at each time which maximizes

the myopic payoff inclusive of congestion costs. Concretely, in our baseline entry control

setting, backpressure admits a demand if and only if the payoff of serving the demand

plus the origin queue length exceeds the destination queue length. This simple approach

has been used very effectively in a range of settings arising in cloud computing, network-
2There are subtle differences between our model and “classical” closed queueing networks in the timing

of when a job joins the destination queue, and when the “service” of a job is initiated. These differences
are non-essential, see, e.g., Banerjee, Kanoria, and Qian [3, Section 8].
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ing, etc.; see, e.g. [5]. Backpressure is provably near-optimal (in the large market limit)

in many settings where payoffs accrue from serving jobs, because it has the property of

executing dual stochastic gradient descent (SGD) on the controller’s deterministic (con-

tinuum limit) optimization problem. As we discuss next, this property breaks down when

the so-called “no-underflow constraint” binds, making it very challenging to use backpres-

sure in our setting (indeed, this difficulty appears to be the reason that backpressure has

not yet been proposed as a control approach in such settings with circulating resources).

Main challenge: no-underflow constraint. The control policy must satisfy the

no-underflow constraint, namely, that each decision to admit a demand unit needs to be

backed by an available supply unit at the origin node of the demand. This constraint

couples together the present and future decisions, and presents a challenge in deploying

the backpressure methodology in numerous settings, including ours.

In certain settings this constraint does not pose a problem: For example, in the well

known “crossbar switch” problem in [6], there are no “payoffs” apart from the shadow

prices (the goal is only to prevent queues from building up), so backpressure only recom-

mends to serve a queue with positive length (after all, backpressure only serves a queue

if it is longer than the destination queue) and so the no-underflow constraint does not

bind. In several works that do include payoffs, the authors make strong assumptions to

similarly ensure the constraint does not bind.3 In our setting, payoffs are essential (there

is value generated by serving a customer), and so the constraint does bind.

A machinery that introduces virtual queues has been developed to extend backpressure

to settings where the constraint binds; see, e.g., [11]. The main idea is to introduce a

“fake” supply unit into the network each time the constraint binds, to preserve the SGD

property of backpressure. In open queueing networks, these fake supply units eventually
3For example, [7] assume that the network satisfies a so-called Extreme Allocation Available (EAA)

condition, which ensures that the no-underflow constraint does not bind; [8] assumes that payoffs are
generated only by the source nodes, which have infinite queue lengths. [9] consider networks where the
payoffs are generated only by the output nodes, and show that a variant of backpressure avoids underflow
entirely under this assumption. [10] assume that the network satisfies a so-called Dedicated Item (DI)
condition.
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leave the system, and so have a small effect (under appropriate assumptions). In our

closed network setting, these fake supply units, once created, never leave and so would

build up in the system, leading to very poor performance. In Section 1.4.3, we provide

a detailed discussion of the challenge posed by the no-underflow constraint, and how it

prevents us from using backpressure as is.

Our solution: Mirror Backpressure. In solving this problem, we introduce a

novel class of policies which we call Mirror Backpressure. MBP generalizes the cele-

brated backpressure (BP) policy and is as simple and practical as BP. Whereas BP uses

the queue lengths as congestion costs, MBP employs a flexibly chosen congestion function

to translate from queue lengths to congestion costs. MBP features a simple and intuitive

structure: for example, in the entry control setting, the platform admits a demand only

if the payoff of serving it outweighs the difference between congestion costs at the desti-

nation and origin of the demand. Crucially, the congestion function is designed so that

MBP has the property that it executes dual stochastic mirror descent [12, 13] on the plat-

form’s continuum limit optimization problem, with the chosen mirror map.4 The mirror

map can be flexibly chosen to fit the problem geometry arising from the no-underflow

constraints. Roughly, we find better performance with congestion functions which are

steep for small queue lengths, the intuition being that this makes MBP more aggressive

in protecting the shortest queues (and hence preventing underflow). In case of finite

buffers, we find it beneficial to use congestion functions which moreover increase steeply

as the queue length approaches buffer capacity, to prevent buffer overflow (Section 1.6.1).

We develop a general machinery to prove performance guarantees for MBP, which

draws inspiration from two distinct toolkits: the machinery for proving convergence of

mirror descent from the optimization literature, and the Lyapunov drift method from the

network control literature. We provide a ready Lyapunov function for any MBP policy.

Furthermore, we improve upon the Lyapunov drift method to obtain a sharp bound on the
4The special case of the congestion function being the identity function corresponds to standard BP,

which has the property of executing stochastic gradient descent, a special case of mirror descent [14].
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suboptimality caused by the no-underflow constraint. Our analysis exploits the structure

of the platform’s continuum limit optimization problem in a novel way (see Section 1.5).

Our work fits into the broad literature on the control of stochastic processing networks

[15]. Our MBP methodology for designing blind control policies with provable guarantees

applies to open queueing networks as well. We are optimistic that MBP will prove broadly

useful in the control of queueing networks.

Main contributions. To summarize, we make two main contributions in this paper:

(i) Mirror Backpressure: a class of near-optimal control policies for queueing

networks that are completely blind. In general settings that consider entry con-

trol, pricing, and flexible assignment, we propose a family of dynamic control policies

for queueing networks, the Mirror Backpressure policies, that have strong transient and

steady state performance guarantees. The MBP policies are simple and practical, and

do not require any prior knowledge of demand arrival rates (which are permitted to vary

in time), making them promising for applications. Policy design boils down to choosing

suitable congestion functions.

(ii) A framework for systematic design and analysis of MBP control policies.

Our control framework has a tight connection with mirror descent, which makes the

process of policy design and analysis both systematic and flexible, and allows us to

handle the challenging no-underflow constraint. The general machinery we develop can be

seamlessly leveraged to design policies with provable guarantees for a variety of settings.

This is in contrast with various intricate approaches in the queueing literature that do

not easily generalize.

In Section 1.6 we generalize the baseline model (which allows entry control only) and

include pricing and flexible assignment as control levers. We study joint entry-assignment

control (JEA) in Section 1.6.2 and joint pricing-assignment control (JPA) in Section 1.6.3.

Our control policies and performance guarantees extend seamlessly.

Applications. Our general model (Section 1.6) includes a number of key ingredients

common to many applications. We illustrate its versatility by discussing the application
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to shared transportation systems (Section 1.7) and the application to scrip systems (Sec-

tion 1.8). These applications and the relevant settings in the paper are summarized in

Table 1.1.

Application Control lever Corresponding setting in this paper

Ride-hailing in USA, Europe Pricing & Dispatch Joint pricing-assignment
Ride-hailing in China Admission & Dispatch Joint entry-assignment

Bike sharing Reward points Pricing (finite buffer queues)
Scrip systems Admission & Provider selection Joint entry-assignment

Table 1.1: Summary of applications of our model, the control levers therein and the
corresponding settings in this paper. See Section 1.6 for the joint entry-assignment and
joint pricing-assignment settings (which allow for finite buffers). For each setting, we
design MBP policies that are near optimal.

Shared transportation systems include ride-hailing and bike sharing systems. Here

the nodes in our model correspond to geographical locations, while supply units and

demand units correspond to vehicles and customers, respectively. Bike sharing systems

dynamically incentivize certain trips using point systems to minimize out-of-bike and

out-of-dock events caused by demand imbalance. Our pricing setting is relevant for

the design of a dynamic incentive program for bike sharing; in particular, it allows for a

limited number of docks. Ride-hailing platforms make dynamic decisions to optimize their

objectives (e.g., revenue, welfare, etc.). For ride-hailing, our pricing-assignment model

is relevant in regions such as North America, and our entry-assignment control model is

relevant in in regions where dynamic pricing is undesirable like in China. We perform

realistic simulations of ride-hailing and find that our MBP policy, suitably adapted to

account for positive travel times, performs well (Section 1.7.1 and Appendix A.4).

A scrip system is a nonmonetary trade economy where agents use scrips (tokens,

coupons, artificial currency) to exchange services (because monetary transfer is undesir-

able or impractical), e.g., for babysitting or kidney exchange. A key challenge in these

markets is the design of the admission-and-provider-selection rule: If an agent is run-

ning low on scrip balance, should they be allowed to request services? If yes, and if

there are several possible providers for a trade, who should be selected as the service
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provider? In Section 1.8, we show that a natural model of a scrip system is a special case

of our entry-assignment control setting, yielding a near optimal admission-and-provider-

selection control rule.

1.1.1 Literature Review

MaxWeight/backpressure policy. Backpressure [also known as MaxWeight, see

4, 5] are well-studied dynamic control policies in constrained queueing networks for work-

load minimization [16, 17], queue length minimization [18] and utility maximization [14],

etc. Attractive features of MaxWeight/backpressure policies include their simplicity and

provably good performance, and that arrival/service rate information is not required be-

forehand. The main challenge in using backpressure is the no-underflow constraints, as

described earlier. Most of this literature considers the open queueing networks setting,

where packets/jobs enter and leave, and there is much less work on closed networks. An

exception is a recent paper on assignment control of closed networks by Banerjee, Kano-

ria, and Qian [3], which shows the large deviations optimality of “scaled” MaxWeight

policies. Importantly, in that paper the demand arrival rates are assumed to satisfy a

strong near balance assumption (“complete resource pooling”), as a result of which it

suffices to consider non-idling policies (i.e., a “greedy” policy with assignment control

only). In the present paper, in contrast, we allow very general demand arrival rates,

which makes it necessary to deploy idling policies (e.g., entry control, pricing) to achieve

good performance. Indeed, already under our illustrative model (Section 1.2) the CRP

assumption of Banerjee, Kanoria, and Qian [3] is automatically violated and the greedy

policy fails to achieve asymptotic optimality; see Remark 1.1 in Section 1.2.

While previous works use queue lengths or their power as congestion costs [16], our

MBP policies significantly generalize backpressure by allowing a general increasing func-

tion (e.g., the logarithm) of queue lengths as congestion costs. As with backpressure,

MBP policies carry provable guarantees.

Mirror Descent. Mirror descent (MD) is a generalization of the gradient descent
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algorithm for optimization, which was proposed by [12], see also [13]. MD is much more

flexible than gradient descent as one can freely choose a “mirror map” that captures the

geometry of the problem (including its objective and its constraints). Recently, there

have been several works that use MD to solve online decision-making problems [e.g., 19].

Notably, [20] uses MD to obtain an improved approximation factor for a worst-case version

of the so-called “k-server problem”; the k-server problem bears a certain resemblance to

our setting in that the controller needs to manage the spatial distribution of supply.

A key difference between our work and the existing works is that our proposed simple

control policies remarkably have the property that they induce the queue lengths to follow

MD dynamics, whereas the existing works actively run MD to solve their algorithmic

problems.

Applications: shared transportation, scrip systems. Most of the ride-hailing

literature studied controls that require the exact knowledge of system parameters: Özkan

and Ward [21] studied payoff maximizing assignment control in an open queueing net-

work model, Braverman, Dai, Liu, and Ying [2] derived the optimal state independent

routing policy that sends empty vehicles to under-supplied locations, Banerjee, Freund,

and Lykouris [1] adopted the Gordon-Newell closed queueing network model and con-

sidered various controls that maximize throughput, welfare or revenue. Balseiro, Brown,

and Chen [22] considered a dynamic programming based approach for dynamic pricing

for a specific network of star structure. (Ma, Fang, and Parkes [23] studied the somewhat

different issue of ensuring that drivers have the incentive to accept dispatches by set-

ting prices which are sufficiently smooth in space and time, in a model with no demand

stochasticity.) Banerjee, Kanoria, and Qian [3] which assumes a near balance condition

on demands and equal pickup costs may be the only paper in this space that does not re-

quire knowledge of system parameters. Comparing with Banerjee, Freund, and Lykouris

[1] which obtains a steady state optimality gap of O( 1
K

) (in the absence of travel times)

assuming perfect knowledge of demand arrival rates which are assumed to be stationary,

our control policy achieves the same steady state optimality gap with no knowledge of
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demand arrival rates, and further achieves a transient optimality gap under time-varying

demand arrival rates of O(K
T

+ 1
K

+
√
ηK) for a finite number of arrivals T and changes

of up to η per period (i.e., per arrival) in demand arrival rates. Some of these papers

are able to formally handle travel delays: Braverman, Dai, Liu, and Ying [2], Banerjee,

Freund, and Lykouris [1], and Banerjee, Kanoria, and Qian [3] prove theoretical results

for the setting with i.i.d. geometric/exponential travel delays; Ma, Fang, and Parkes [23]

consider deterministic travel delays. On the other hand, Balseiro, Brown, and Chen [22]

ignores travel delays in their theory and later heuristically adapt their policy to accom-

modate travel delay (the present paper follows a similar approach). On the other hand,

[21] is the only paper among these which (like the present paper) allows time-varying

demand.

Our model can be applied to the design of dynamic incentive programs for bike shar-

ing systems [24] and service provider rules for scrip systems [25, 26]. For example, the

“minimum scrip selection rule” proposed in [25] is a special case of our policy, and our

methodology leads to control rules in much more general settings as described in Sec-

tion 1.8.

Other related work. A related stream of research studies online stochastic bipartite

matching, see, e.g., [27, 28, 29, 30]; the main difference between their setting and ours is

that we study a closed system where supply units never enter or leave the system. Network

revenue management is a classical set of (open network) dynamic resource allocation

problems, e.g., see [31, 32], and recent works, e.g., [33]. [34, 35, 36] and others study how

process flexibility can facilitate improved performance, analogous to our use of assignment

control to maximize payoff (when all pickup costs are equal), but the focus there is more

on network design than on control policies. Again, this is an open network setting in

that each supply unit can be used only once.
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1.1.2 Organization of the Paper

The remainder of our paper is organized as follows. From Section 1.2 to Section

1.5 we focus on the entry control setting as an illustrative example of our approach:

Section 1.2 presents our model and the platform objective. Section 1.3 introduces the

Mirror Backpressure policy and presents our main theoretical result, i.e., a performance

guarantee for the MBP policies. Section 1.4 introduces the static planning problem and

describes the connection between the MBP policies and mirror descent. Section 1.5

outlines the proof of our main result. In Section 1.6, we provide MBP policies for joint

entry-assignment and joint pricing-assignment control settings and allow for time-varying

demand arrival rates, demonstrating the versatility of our approach. In Sections 1.7

and 1.8 we discuss the applications to shared transportation systems and scrip systems,

respectively.

Notation. All vectors are column vectors if not specified otherwise. The transpose

of vector or matrix x is denoted as xT. We use ei to denote the i-th unit column vector

with the i-th coordinate being 1 and all other coordinates being 0, and 1 (0) to denote

the all 1 (0) column vector, where the dimension of the vector will be indicated in the

superscript when it is not clear from the context, e.g., eni .

1.2 Illustrative Model: Dynamic Entry Control

In this section, we formally define our model of dynamic entry control in closed queue-

ing networks. We will use this model as an illustrative example of our methodology.

We consider a finite-state Markov chain model with slotted time t = 0, 1, 2, . . . , where

a fixed number (denoted by K) of identical supply units circulate among a set of nodes

V (locations), with m , |V | > 1. In our model, t will capture the number of demand

units (customers) who have arrived so far (minus 1).

Queues (system state). At each node j ∈ V , there is an infinite-buffer queue of
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supply units. (Section 1.6.1 shows how to seamlessly incorporate finite-buffer queues.)

The system state is the vector of queue lengths at time t, which we denote by q[t] =

[q1[t], · · · , qm[t]]T. Denote the state space of queue lengths by ΩK , {q : q ∈ Zm+ ,1Tq =

K}, and the normalized state space by Ω , {q : q ∈ Rm
+ ,1

Tq = 1}.

Demand Types and Arrival Process. We assume exactly one demand unit (cus-

tomer) arrives at each period t, and denote her type by (o[t], d[t]) ∈ V × V , where o[t] is

her origin and d[t] is her destination. With probability φjk, we have (o[t], d[t]) = (j, k), in-

dependent of demands in earlier periods.5 Let φ , (φjk)j∈V,k∈V . Importantly, the system

can observe the type of the arriving demand at the beginning of each time slot, but the

probabilities (arrival rates) φ are not known. Thus we substantially relax the assumption

in previous works that the system has exact knowledge of demand arrival rates ([21], [1],

[22]).

Entry Control and Payoff. At time t, after observing the demand type (o[t], d[t]) =

(j, k), the system makes a binary decision xjk[t] ∈ {0, 1} where xjk[t] = 1 stands for

serving the demand, xjk[t] = 0 means rejecting the demand. A supply unit moves and

payoff is collected (or not) accordingly as follows:

• If xjk[t] = 1, then a supply unit relocates from j to k, immediately. Meanwhile,

the platform collects payoff v[t] = wjk in this period. Without loss of generality, let

maxj,k∈V |wjk| = 1.

• If xjk[t] = 0, then supply units remain where they are and v[t] = 0.

Because the queue lengths are non-negative by definition, we require the following no-

underflow constraint to be met at any t:

xjk[t] = 0 if qj[t] = 0 . (1.1)

As a convention, we let xj′k′ [t] = 0 if (o[t], d[t]) 6= (j′, k′). A feasible policy specifies,

for each time t ∈ {0, 1, 2, . . . }, a mapping from the history so far of demand types
5This is equivalent to considering a continuous time model where the arrivals of different types of

demands follow independent Poisson processes with rates proportional to the (φjk)s. The discrete time
model considered is the embedded chain of the continuous time model.
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(
o[t′], d[t′]

)
t′≤t and states (q[t′])t′≤t to a decision xjk[t] ∈ {0, 1} satisfying (1.1), where

(j, k) = (o[t], d[t]) as above. We allow xjk[t] to be randomized, although our proposed

policies will be deterministic. The set of feasible policies is denoted by U .

System Dynamics and Objective. The dynamics of system state q[t] ∈ ΩK is as

follows:

q[t+ 1] = q[t] + xjk[t](−ej + ek) . (1.2)

We use vπ[t] to denote the payoff collected at time t under control policy π. Let W π
T

denote the average payoff per period (i.e., per customer) collected by policy π in the first

T periods, and let W ∗
T denote the optimal payoff per period in the first T periods over

all admissible policies. Mathematically, they are defined respectively as:

W π
T , min

q∈ΩK

1

T

T−1∑
t=0

E[vπ[t]|q[0] = q] , W ∗
T , sup

π∈U
max
q∈ΩK

1

T

T−1∑
t=0

E[vπ[t]|q[0] = q] .

(1.3)

Define the infinite-horizon per period payoff W π collected by policy π and the optimal

per period payoff over all admissible policies W ∗ respectively as:

W π , lim inf
T→∞

W π
T , W ∗ , lim sup

T→∞
W ∗
T . (1.4)

We measure the performance of a control policy π by its per-customer optimality gap

(“loss”):

LπT = W ∗
T −W π

T and Lπ = W ∗ −W π . (1.5)

Note that we consider the worst-case initial system state when evaluating a given pol-

icy, and the best initial state for the optimal benchmark; see (1.3). Such a definition

of optimality gap provides a conservative bound on policy performance and avoids the

(unilluminating) discussion of the dependence of performance on initial state.

We make the following mild connectivity assumption on the demand arrival rates φ.
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Condition 1.1 (Strong Connectivity of φ). Define the connectedness of φ as

α(φ) , min
S(V,S 6=∅

∑
j∈S,k∈V \S

φjk . (1.6)

We assume that φ is strongly connected, namely, that α(φ) > 0.

Note that Condition 1.1 is equivalent to requiring that for every ordered pair of nodes

(j, k), there is a sequence of demand types with positive arrival rate that would take a

supply unit from j eventually to k.

We conclude this section with an example which shows that the greedy policy typically

has steady state optimality gap Ω(1) per period, followed by the observation that the main

assumption of Banerjee, Kanoria, and Qian [3] is automatically violated in our setting.

Example 1.1 (Greedy policy typically incurs Ω(1) loss). Consider a network with three

nodes V = {1, 2, 3}, demand arrival probabilities φ12 = ε, φ23 = 1
3

+ ε, φ21 = φ32 = 1
3
− ε

(where 0 < ε < 1
6
), and payoffs w23 = w > 0, w12 = w21 = w32 = w

2
. Let x∗ be the

optimal solution to the SPP (1.10)-(1.12). By inspection, x∗ should induce the maximum

circulation in each of the two cycles 1—2—1 and 2—3—2, hence x∗12 = x∗32 = 1, x∗21 =

ε
1
3
−ε , x

∗
23 =

1
3
−ε

1
3

+ε
. We know that there exists a policy whose performance approaches the

value of the SPP as K → ∞ [1]. We will prove by contradiction that the greedy policy

incurs an Ω(1) loss for this example, by showing that its payoff per period is Ω(1) below

the value of the SPP. Consider the steady state under the greedy policy. Suppose the loss

is vanishing, i.e., all but an o(1) fraction of type (1, 2) and type (3, 2) demand are served.

Suppose a γ fraction of the time there is a supply unit present at node 2. As a result,

since the greedy policy is being used, a γ fraction of demands of type (2, 1) are served,

and a γ fraction of demands of type (2, 3) are served. Flow-balance at nodes 1 and 3,

respectively, implies that we have (1
3
− ε)γ = ε− o(1), (1

3
+ ε)γ = 1

3
− ε− o(1). However,

these two equations cannot both be satisfied as K → ∞ unless ε = 1
9
. We infer that the

greedy policy incurs an Ω(1) loss in this network for any ε ∈ (0, 1
6
), ε 6= 1

9
.

Remark 1.1. The complete resource pooling (CRP) condition imposed in Banerjee,

22



Kanoria, and Qian [3, Assumption 3] is automatically violated in the model we have

defined in this section. Consider our setup including Condition 1.1. The CRP condi-

tion can be stated as follows: for each subset of nodes S ( V, S 6= ∅, the “net demand”

µS ,
∑

i∈S
∑

j∈V \S φij is less than the “net supply” λS ,
∑

j∈V \S
∑

i∈S φji, i.e., µS < λS.

Clearly, any demand arrival rates φ violate CRP, since if µS < λS for some S ( V, S 6= ∅

then this means that µV \S > λV \S (given that µV \S = λS and λV \S = µS by definition),

i.e., CRP is violated. In Example 1.1, the subset {2} (and the subset {1, 2}) violates this

constraint.

1.3 The MBP Policies and Main Result

In this section, we propose a family of blind online control policies, and state our main

result for these policies, which provides a strong transient and steady state performance

guarantee for finite systems.

1.3.1 The Mirror Backpressure Policies

We propose a family of online control policies which we call Mirror Backpressure

(MBP) policies. Each member of the MBP family is specified by a mapping of normalized

queue lengths f(q̄) : Ω → Rm, where f(q̄) , [f(q̄1), · · · , f(q̄m)]T and f is a monotone

increasing function.6 We will refer to f(·) as the congestion function, which maps each

(normalized) queue length to a congestion cost at that node, based on which MBP will

make its decisions. (We will defined normalized queue lengths q̄ below.)

We will later clarify the precise role of the congestion function: we will show that MBP

executes dual stochastic mirror descent [13] on the fluid limit problem with mirror map

equal to the inverse of the congestion function. Similar to the design of effective mirror

descent algorithms, the choice of congestion function should depend on the constraints
6The methodology we will propose will seamlessly accommodate general mappings f(·) such that

f = ∇F where F (·) : Ω → R is a strongly convex function, a special case of which is f(q̄) ,
[f1(q̄1), · · · , fm(q̄m)]T for some monotone increasing (fj)s. Here it suffices to consider a single congestion
function f(·), whereas in Section 1.6 we will employ queue-specific congestion functions fj(·).
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of the setting, leading to an interesting interplay between problem geometry and policy

design.

For conciseness, in this section we will state our main result for the congestion function

f(q̄j) , −
√
m · q̄−

1
2

j , (1.7)

and postpone the results for other choices of congestion functions to Appendix A.3 (see

also Remark 1.2). For technical reasons, we need to keep q̄ in the interior of the nor-

malized state space Ω, i.e., we need to ensure that all normalized queue lengths remain

positive. This is achieved by defining the normalized queue lengths q̄ as

q̄i ,
qi + δK

K̃
for δK ,

√
K and K̃ , K +mδK . (1.8)

Note that this definition leads to 1Tq̄ = 1 and therefore q̄ ∈ Ω.

Our proposed MBP policy for the entry control problem is given in Algorithm 1. MBP

admits a demand of type (j, k) if and only if the score

wjk + f(q̄j)− f(q̄k) (1.9)

is nonnegative and the origin node j has at least one supply unit (see Figure 1.1 for

illustration of the score). The score (1.9) is nonnegative if and only if the payoff wjk of

serving the demand outweighs the difference of congestion costs (given by f(q̄k) and f(q̄j))

between the demand’s destination k and origin j. Roughly speaking, MBP is more willing

to take a supply unit from a long queue and add it to a short queue, than vice versa;

see Figures 1.1 and 1.2. The policy is not only completely blind, but also semi-local, i.e.,

it only uses the queue lengths at the origin and destination. Note that the congestion

cost (1.7) increases with queue length (as required), and furthermore decreases sharply as

queue length approaches zero. Observe that such a choice of congestion function makes

MBP very reluctant to take supply units from short queues and helps to enforce the no-

underflow constraint (1.1). See Section 1.4.3 for detailed discussion on the no-underflow

constraint.

24



𝑘𝑗

𝑓( 𝑞𝑗) 𝑓( 𝑞𝑘)−𝑤𝑗𝑘 +

payoff of 

accepting

congestion cost 

at origin 𝑗
congestion cost 

at destination 𝑘

Figure 1.1: The score (1.9); MBP ad-
mits a demand unit only if the score is
non-nonnegative,

𝟎 queue 

length  𝑞

congestion 

cost 𝑓( 𝑞)

Figure 1.2: An example of a conges-
tion function (a mapping from queue
lengths to congestion costs) which ag-
gressively protects supply units in near-
empty queues.

ALGORITHM 1: Mirror Backpressure (MBP) Policy for Entry Control
At the start of period t, the platform observes (o[t], d[t]) = (j, k).

if wjk + f(q̄j [t])− f(q̄k[t]) ≥ 0 and qj [t] > 0 then

xjk[t]← 1, i.e., serve the incoming demand;

else

xjk[t]← 0, i.e., drop the incoming demand;

end

The queue lengths update as q̄[t+ 1] = q̄[t]− 1
K̃
xjk[t](ej − ek).

1.3.2 Performance Guarantee for MBP Policies

We now formally state the main performance guarantee of our paper for the dynamic

entry control model introduced in Section 1.2. We will outline the proof in Section 1.5,

and extend the result to more general settings in Section 1.6.

Theorem 1.1. Consider a set of m nodes and any demand arrival rates φ that satisfy

Condition 1.1. Then there exists K1 = poly(m, 1
α(φ)

), and a universal constant C < ∞,

such that the following holds.7 For the congestion function f(·) defined in (1.7), for any
7Here “poly” indicates a polynomial. The constant C is universal in the sense that it does not depend

on K, m or α(φ).
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K ≥ K1, the following guarantees hold for Algorithm 1

LMBP
T ≤M1 ·

K

T
+M2 ·

1

K
, and LMBP ≤M2 ·

1

K
, for M1 , Cm and M2 , Cm2 .

Remark 1.2. In Section 1.6 we obtain results similar to Theorem 1.1 in broader settings

that allow pricing and flexible assignment (Theorem 1.2, 1.3), and moreover allow for

time-varying demand arrival rates in Section 1.6.2. In Appendix A.3 (Theorem A.1), we

generalize Theorem 1.1 by showing similar performance guarantees for a whole class of

congestion functions that satisfy certain growth conditions. Informally, the congestion

function needs to be steep enough near zero to protect the nodes from being drained of

supply units. For example, for both the logarithmic congestion function, i.e. f(q̄) =

c · log(q̄), and the linear congestion function, i.e. f(q̄) = c · q̄ with c > c0 for some c0 =

poly(m, 1
α(φ)

), the same guarantee as in Theorem 1.1 holds with K1 = poly(c,m, 1
α(φ)

),

M1 = poly(c,m), M2 = poly(c,m). However, the specific polynomials depend on the

choice of congestion function.

There are several attractive features of the performance guarantee provided by The-

orem 1.1 for the simple and practically attractive Mirror Backpressure policy:

(1) The policy is completely blind. In practice, the platform operator at best has

access to an imperfect estimate of the demand arrival rates φ, so it is a very attractive

feature of the policy that it does not need any estimate of φ whatsoever. It is worth

noting that the consequent bound of O
(

1
K

)
on the steady state optimality gap remarkably

matches that provided by Banerjee, Freund, and Lykouris [1] even though MBP requires

no knowledge of φ, whereas the policy of Banerjee, Freund, and Lykouris [1] requires

exact knowledge of φ: As shown in Banerjee, Kanoria, and Qian [3, Proposition 4], if the

estimate of demand arrival rates is imperfect, any state independent policy [such as that

of 1] generically suffers a long run (steady state) per customer optimality gap of Ω(1) (as

K →∞). Note that the greedy policy (which admits a demand whenever a supply unit

is available) also typically suffers a steady state per period optimality gap of Ω(1); see

Example 1.1 in Section 1.2.
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(2) Guarantee on transient performance. In contrast with Banerjee, Freund, and

Lykouris [1] which provides only a steady state bound for finite K, we are able to provide

a performance guarantee for finite horizon and finite (large enough) K. The horizon-

dependent term K/T in our bound on optimality gap is small if the total number of

arrivals T is large compared to the number of supply units K.

It is worth noting that our bound does not deteriorate as the system size increases in

the “large market regime”, where the number of supply units K increases proportionally

to the demand arrival rates [this regime is natural in ride-hailing settings, taking the trip

duration to be of order 1 in physical time, and where a non-trivial fraction of cars are busy

at any time, see, e.g., 2]. Let T real denote the horizon in physical time. As K increases in

the large market regime, the primitive φ remains unchanged, while T = Θ(K ·T real) since

there are Θ(K) arrivals per unit of physical time. Hence, we can rewrite our performance

guarantee as

W ∗
T −WMBP

T ≤M

(
1

T real +
1

K

)
K→∞−−−→ M

T real .

Our bound on the optimality gap per customer in steady state is M2/K, matching

that of Banerjee, Freund, and Lykouris [1] in its scaling with K. (However, our constant

M2 is quadratic in the number of nodes m, whereas the constant in the other paper is

linear in m.)

(3) Flexibility in the choice of congestion function. Because of the richness of the

class of congestion functions covered in Appendix A.3 which generalizes Theorem 1.1,

the system controller now has the additional flexibility to choose a suitable congestion

function f(·). For example, in our setting the performance guarantee for the congestion

function given in (1.7) (Theorem 1.1) is more attractive than that for the linear congestion

function f(q̄) = c · q̄ (Remark 1.2) in the following way: in the latter case the coefficient c

needs to be larger than a threshold that depends on connectedness α(φ) for a non-trivial

performance guarantee to hold. (Thus, in order to choose c the platform needs to know

α(φ), whereas no knowledge of α(φ) is needed when using the congestion function (1.7).)
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From a practical perspective, this flexibility can allow significant performance gains to

be unlocked by making an appropriate choice of f(·), as evidenced by our numerical

experiments in Section 1.7.1 and Appendix A.4.

1.4 The MBP Policies and Mirror Descent

In this section, we describe the main intuition behind the success of MBP policies,

namely, that they execute (dual) mirror descent on a certain deterministic optimization

problem. In Section 1.4.1, we define the deterministic optimization problem which arises

in the continuum limit: the static planning problem (SPP), whose value we use to upper

bound the optimal finite (and infinite) horizon per period W ∗
T (and W ∗) defined in (1.3)

and (1.4). In Section 1.4.2, we first review the interpretation of the celebrated Backpres-

sure (BP) policy as a stochastic gradient descent algorithm on the dual of the SPP, and

then proceed to generalize the argument to informally show that MBP executes mirror

descent on the dual of SPP. In Section 1.4.3 we discuss the main challenge in turning the

intuition into a proof, namely, the no-underflow constraint.

1.4.1 The Static Planning Problem

We first introduce a linear program (LP) that will be used to upper bound W ∗
T and

W ∗. The LP, called the static planning problem (SPP) [see, e.g., 15, 7], is:

maximizex
∑
j,k∈V

wjk · φjk · xjk (1.10)

s.t.
∑
j,k∈V

φjk · xjk(ej − ek) = 0 (flow balance) (1.11)

xjk ∈ [0, 1] ∀j, k ∈ V . (demand constraint) (1.12)

One interprets xjk as the fraction of type (j, k) demand which is accepted, and the

objective (1.10) as the rate at which payoff is generated under the fractions x. In the SPP

(1.10)-(1.12), one maximizes the rate of payoff generation subject to the requirement that
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the average inflow of supply units to each node in V must equal the outflow (constraint

(1.11)), and that x are indeed fractions (constraint (1.12)). Let W SPP be the optimal

value of SPP. The following proposition formalizes that, as is typical in such settings,

W SPP is an upper bound on the optimal steady state (per customer) payoff W ∗. It

further establishes that the optimal finite horizon per customer payoff W ∗
T cannot be

much larger than W SPP.

Proposition 1.1. For any horizon T < ∞ and any K, the finite and infinite horizon

average payoff W ∗
T and W ∗ are upper bounded as

W ∗
T ≤ W SPP +m · K

T
, W ∗ ≤ W SPP . (1.13)

We obtain the finite horizon upper bound toW ∗
T in (1.13) by slightly relaxing the flow

constraint (1.11) to accommodate the fact that flow balance need not be exactly satisfied

over a finite horizon.

1.4.2 MBP Executes Dual Stochastic Mirror Descent on SPP

The BP policy and our proposed MBP policies are closely related to the (partial) dual

of the SPP:

minimizey g(y) ,

where g(y) ,
∑
j,k∈V

φjk · max
xjk∈[0,1]

xjk(wjk + yj − yk) =
∑
j,k∈V

φjk ·
(
wjk + yj − yk

)+
,

(1.14)

where (x)+ , max{0, x}. Here y are the dual variables corresponding to the flow balance

constraints (1.11), and have the interpretation of “congestion costs” [37], i.e., yj can be

thought of as the “cost” of having one extra supply unit at node j.

In the rest of this subsection, we informally describe the interpretation of BP as

stochastic gradient descent, and the interpretation of MBP as stochastic mirror descent,

on problem (1.14).
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Review of the interpretation of BP as dual stochastic subgradient descent.

Rich dividends have been obtained by treating the (properly scaled) current queue lengths

q as the dual variables y, resulting in the celebrated backpressure (BP, also known as

MaxWeight) control policy, introduced by Tassiulas and Ephremides [4], see also, e.g., [8,

14]. Formally, BP sets the current value of y to be proportional to the current normalized

queue lengths, i.e., y[t] = c · q̄[t] for some q̄ ∈ Ω defined, e.g., as in (1.8), and some c > 0

and greedily maximizes the inner problem in (1.14) for every origin j and destination k,

i.e.,

xBPjk [t] =

 1 if wjk + c · q̄j[t]− c · q̄k[t] ≥ 0 and qj[t] > 0 ,

0 otherwise .
(1.15)

The main attractive feature of this policy is that it is extremely simple and does not need

to know demand arrival rates φ. The BP policy can be viewed as a stochastic subgradient

descent (SGD) algorithm on the dual problem (1.14), when the current state is in the

interior of the state space, i.e., when qj > 0 for all j ∈ V [38]. To see this, denote

the subdifferential (set of subgradients) of function g(·) at y as ∂g(y). Observe that the

expected change of queue lengths under BP is proportional to the negative of a subgradient

of g(·) at y = c · q̄[t], in particular

−K̃
c
· E[y[t+ 1]− y[t]] = −E[q[t+ 1]− q[t]] =

∑
j,k∈V

φjk · xBPjk [t](ej − ek) ∈ ∂g(y[t]) ,

(1.16)

where the first equality follows from the definition y[t] = c · q̄[t] (and the definition of

normalized queue length (1.8)) and second equality is just the expectation of the system

dynamics (1.2). Here
∑

j,k∈V φjk ·xBPjk [t](ej−ek) ∈ ∂g(y[t]) since g is a maximum of linear

functions of y parameterized by x, hence g is convex and the gradient of a linear function

among these which is an argmax at y[t] (in particular, the linear function parameterized

by xBP[t]) is a subgradient of g at y[t].

Eq. (1.16) shows that the evolution of y[t] when q[t] > 0 is exactly an iteration of SGD
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with step size c
K̃
. This interpretation of BP as stochastic subgradient descent leads to

desirable properties including stability, approximate minimization of delay/workload, and

approximate revenue maximization in certain networks [see, e.g., 5, 14, etc.]. However,

as we will see in Section 1.4.3, in our setting the SGD property of backpressure breaks

on the boundary of state space, i.e., when there exists j′ ∈ V such that qj′ = 0, due to

the no-underflow constraints q ≥ 0.

MBP executes dual stochastic mirror descent on the SPP. The key innovation

of our approach is to design a family of policies generalizing BP (MBP given in Algorithm

1) that executes stochastic mirror descent on the partial dual problem (1.14) (with flow

constraints dualized), with q̄[t] given by (1.8) being the mirror point and the inverse mirror

map being the (vector) congestion function f(q̄) , [f(q̄1), · · · , f(q̄m)]T. Mathematically,

if q > 0, we have

−K̃ · E[q̄[t+ 1]− q̄[t]] = −E[q[t+ 1]− q[t]] =
∑
j,k∈V

φjk · xMBP
jk [t](ej − ek) ∈ ∂g(y)

∣∣∣
y=f(q̄[t])

,

(1.17)

where xMBP[t] is the control defined in Algorithm 1; notice that the entry rule xMBP[t] has

the same form as that for BP (1.15) except that it uses a general congestion function f(q̄j),

leading to (1.17) for MBP via the same reasoning that led to (1.16) for BP. Thus, MBP

performs stochastic mirror descent on the partial dual problem (1.14), which generalizes

the previously known fact that BP performs stochastic gradient descent.

A main advantage of mirror descent over gradient descent is that it can better capture

the geometry of the state space via an appropriate choice of mirror map [see, e.g., 12,

13]. In our setting, the congestion function f(q̄) is the inverse mirror map and can be

flexibly chosen.

Our approach blending backpressure and mirror descent with a flexibly chosen mirror

map is novel. We believe it can serve as a general framework for systematic design of

provably near optimal backpressure-like control policies for queueing networks in settings

with hairy practical constraints.
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1.4.3 Challenge: No-underflow Constraints

As we have discussed earlier, the no-underflow constraints pose a challenge when

applying backpressure to various settings. The following simple example illustrates how

BP fails when the proportionality constant c is not chosen to be sufficiently large.

Example 1.2 (BP is far from optimal if c is not large enough). Consider the network

introduced in Example 1.1. Suppose the platform employs backpressure where the shadow

prices are taken to be proportional to (normalized) queue lengths y[t] = c·q̄[t] with c < 3
2
w.

Let y∗ be the optimal dual variables in (1.14). By complementary slackness we have

that the set of dual optima are y∗ which satisfy

w

2
+ y∗1 − y∗2 ≥ 0 ,

w

2
+ y∗2 − y∗1 = 0 , w + y∗2 − y∗3 = 0 ,

w

2
+ y∗3 − y∗2 ≥ 0 .

Hence y∗ takes the form y∗ = (y∗1, y
∗
1 − w

2
, y∗1 + w

2
) for arbitrary y∗1 ∈ R. Let q̄∗ ,

y∗/c be the queue lengths corresponding to the optimal dual variables in (1.14) with the

additional constraint that the normalized queue lengths sum to 1. Simple algebra yields

q̄∗ = (1
3
, 2c−3w

6c
, 2c+3w

6c
). Because c < 3

2
w we have q̄∗2 < 0, and so q̄∗ lies outside the

normalized state space q̄∗ /∈ Ω. Hence, the q̄[t] will never converge to q̄∗ and BP is far

from optimal.

Even if the platform uses BP with sufficiently large c to ensure that q̄∗ ∈ Ω, the

existing analysis of BP still fails, as is demonstrated below.

Example 1.3 (BP has positive Lyapunov drift at a certain state). Again consider Exam-

ple 1.1 and let c ≥ 3
2
w. A typical analysis of BP is based on establishing that the “drift”

defined by

E
[
‖q̄[t+ 1]− q̄∗‖2

2

∣∣∣ q̄[t]
]
− ‖q̄[t]− q̄∗‖2

2

is strictly negative when ‖q̄[t]− q̄∗‖2 = Ω(1). Suppose at time t we have8 q̄[t] = (2
3
, 0, 1

3
);

8The integrality of the components of q[t] is non-essential, hence we assume all components of q[t]
are integers. Also, here we take the normalized queue lengths to be defined as q̄[t] , q[t]/K to simplify
the expressions.
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in particular, queue 2 is empty. Note that at q̄[t], BP can only fulfill the demand going

from 1 to 2 and from 3 to 2 because of the no-underflow constraint. Straightforward

calculation shows that the “drift” is positive for large enough K if ε < w
2c+3w

.

In the following analysis, we show that the underflow problem is provably alleviated by

MBP policies with an appropriately chosen congestion function. For example, the MBP

policy with congestion function given in (1.7) is more aggressive in preserving supply

units in near-empty queues compared to BP, making the system less likely to violate

the no-underflow constraints. Besides carrying formal guarantees, the MBP policy also

achieves better performance than BP in simulations (Section 1.7.1 and Appendix A.4).

1.5 Proof of Theorem 1.1

In this section we provide the key lemmas that lead to a proof of Theorem 1.1. Our

analysis generalizes and refines the so-called Lyapunov drift method in the network control

literature [see, e.g., 37]. It consists of three steps:

(1) In Section 1.5.1, we use Lyapunov analysis to upper bound the suboptimality that

MBP incurs in one period by the sum of several auxiliary terms (Lemma 1.1). The

auxiliary terms are easier to control and have clear interpretations.

(2) In Section 1.5.2, we utilize the structure of the dual problem (1.14) to bound the

auxiliary terms introduced in the first step (Lemmas 1.2 and 1.3).

(3) In Section 1.5.3, we average the one-step optimality gap obtained in previous steps

over a finite/infinite horizon, and conclude the proof of Theorem 1.1.

We use the antiderivative of f(·) as our Lyapunov function; for the congestion function

f in (1.7), this is

F (q̄) , −2
√
m
∑
j∈V

√
q̄j . (1.18)

Motivation for our choice of Lyapunov function. We utilize our key observation

that MBP executes mirror descent on the dual of SPP (see Section 1.4.2) to find a suitable
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(uncentered) Lyapunov function. The standard proof of convergence of mirror descent

uses the Bregman divergence BF (q̄, q̄∗), generated by the antiderivative F (·) of the inverse

mirror map, as the Lyapunov function (note that BF (q̄, q̄∗) is a “centered” function

in that it achieves its minimum at q̄∗; this function generalizes the centered quadratic

function used to analyze stochastic gradient descent). We use the “uncentered” version

of the Bregman divergence, which is nothing but F itself, as our Lyapunov function; this

choice turns out to be natural for studying the time-averaged performance (rather than

convergence of the last iterate). Since the congestion function corresponds to the inverse

mirror map, our F is simply the antiderivative of the congestion function.9

1.5.1 Single Period Analysis of MBP via Lyapunov Function

This part of the proof relies on the key observation we made in Section 1.4, i.e.,

that MBP policy executes stochastic mirror descent on the dual objective function g(y)

(the dual problem was defined in (1.14)) except when underflow happens. As a result,

our analysis combines (a modification of) the standard approach for stochastic mirror

descent algorithms [see, e.g., 12, 13] with a novel argument that bounds the suboptimality

contributed by underflow.

Recall thatW SPP is the optimal value of SPP (1.10)-(1.12), vMBP[t] denotes the payoff

collected under the MBP policy in the t-th period, and g(·) is the dual problem (1.14).

We have the following result (proved in Appendix A.2):

Lemma 1.1 (Suboptimality of MBP in one period). Consider congestion functions f(·)s

that are strictly increasing and continuously differentiable. We have the following decom-

position:

W SPP − E[vMBP[t]|q̄[t]] ≤ K̃
(
F (q̄[t])− E[F (q̄[t+ 1])|q̄[t]]

)︸ ︷︷ ︸
V1

+
1

2K̃
·max
j∈V

∣∣f ′(q̄j[t])∣∣︸ ︷︷ ︸
V2

9An alternate viewpoint is that our setting and policy fit into the “drift-plus-penalty” framework in the
network control literature [37], with the Lyapunov function which is the antiderivative of the congestion
functions. Previous work focuses on the quadratic Lyapunov function.
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+
(
W SPP − g(f(q̄[t]))

)
︸ ︷︷ ︸

V3

+1
{
qj[t] = 0,∃j ∈ V

}︸ ︷︷ ︸
V4

. (1.19)

In Lemma 1.1, the LHS of (1.19) is the suboptimality incurred by MBP (benchmark

against the value of SPP) in a single period. On the RHS of (1.19), V1 and V2 come from

the standard analysis of mirror descent; V3 is the negative of the dual suboptimality at

y = (q̄[t]), hence it is always non-positive; V4 is the payoff loss because of underflow.

In the next subsection, we outline our novel analysis showing that the sum of the last

three terms V2 + V3 + V4 is small. As a result, V1 is the main term on the right-hand

side. Observe that it is proportional to the Lyapunov drift : the negative of the expected

change in the Lyapunov function in one time step. The main intuition leading to the

finite horizon performance guarantee in Theorem 1.1 is then that if the suboptimality

of MBP in some period is large, then (1.19) implies that there is also a large negative

Lyapunov drift, and this cannot be the case on average since the Lyapunov function value

must remain bounded.

1.5.2 Bounding Single Period Payoff Loss

In this section we proceed to upper bound V2 +V3 +V4 on the RHS of (1.19). Observe

that the terms V2 and V4 are non-negative, while V3 is non-positive, thus the goal is to

show that V3 compensates for V2 +V4. First notice that V2 is large when there exist very

short queues (because the congestion function (1.7) changes rapidly only for short queue

lengths), and V4 is non-zero only when some queues are empty. Helpfully, it turns out

that V3 is more negative in these same cases; we show this by exploiting the structure of

the dual problem (1.14).

In Lemma 1.2 we provide an upper bound for V3 that becomes more negative as the

shortest queue length decreases.

Lemma 1.2. Consider congestion functions f(·)s that are strictly increasing and contin-
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uously differentiable, and any φ with connectedness α(φ) > 0. We have

V3 ≤ −α(φ) ·
[
max
j∈V

f(q̄j)−min
j∈V

f(q̄j)− 2m

]+

.

We prove Lemma 1.2 in Appendix A.2 by utilizing complementary slackness for the

SPP (1.10)-(1.12).

The following lemma bounds V2 + V3 + V4. The proof is in Appendix A.3. (In fact

we prove a general version of the lemma which applies to all congestion functions that

satisfy certain growth conditions formalized in Condition A.1 in Appendix A.3. The

growth conditions serve to ensure that V3 compensates for V2 + V4.)

Lemma 1.3. Consider the congestion function (1.7), and any φ with connectedness

α(φ) > 0. Then there exists K1 = poly
(
m, 1

α(φ)

)
such that for K ≥ K1,

V2 + V3 + V4 ≤M2 ·
1

K̃

for M2 = Cm2, where C > 0 is a universal constant (which does not depend on K, m or

α(φ)). Here K̃ was defined in (1.8).

1.5.3 Proof of Theorem 1.1: Optimality Gap of MBP

Putting Lemma 1.1 and Lemma 1.3 together leads to the following proof of Theorem

1.1. The main idea is to use the so-called Lyapunov drift argument of [37], namely, to

sum the expectation of (1.19) (the bound in Lemma 1.1) over the first T time steps. The

terms V1 form a telescoping sum.

Proof of Theorem 1.1. Plugging in Lemma 1.3 into (1.19) in Lemma 1.1 and taking ex-

pectation, we obtain

W SPP − E[vMBP[t]] ≤ K̃
(
E[F (q̄[t])]− E[F (q̄[t+ 1])]

)
+M2

1

K̃
for K ≥ K1 . (1.20)

Take the sum of both sides of the inequality (1.20) from t = 0 to t = T − 1, and divide
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the sum by T . This yields

W SPP −WMBP
T ≤ K̃

T

(
E[F (q̄[0])]− E[F (q̄[T ])]

)
+M2

1

K̃
for K ≥ K1 .

Using Proposition 1.1 and the inequality above, we have

LMBP
T = W ∗

T −WMBP
T ≤ W SPP +m

K

T
−WMBP

T

≤ K̃

T

(
m+ E[F (q̄[0])]− E[F (q̄[T ])]

)
+M2

1

K̃

≤ K̃

T

(
m+ sup

q̄1,q̄2∈Ω

(
F (q̄1)− F (q̄2)

))
+M2

1

K̃
,

Let M1 , m + supq̄1,q̄2∈Ω

(
F (q̄1)− F (q̄2)

)
. Observe that the function F (q̄) given in

(1.18) is negative F (q̄) ≤ 0 for all q̄ ∈ Ω, and is a convex function which achieves its

minimum at q̄ = 1
m

1. Therefore we have

M1 ≤ m− inf
q̄∈Ω

F (q̄) ≤ m− F
(

1

m
1

)
= 3m.

Hence the finite-horizon optimality gap of MBP is upper bounded by M1
K̃
T

+M2
1
K̃

where

M1 = Cm, M2 = Cm2 and C does not depend on m, K, or α(φ). Moreover, K̃ =

K +m
√
K ∈ [K, 2K] taking K1 ≥ m2. This concludes the proof.

1.6 Generalizations and Extensions

In this section, we allow the platform to have additional control levers beyond en-

try control and consider two general settings, namely, joint entry-assignment control

(JEA) and joint pricing-assignment control (JPA). We also allow the queues to have fi-

nite buffers. We show that the extended models enjoy similar performance guarantees to

that in Theorem 1.1 under mild conditions on the model primitives.

1.6.1 Congestion Functions for Finite Buffer Queue

Suppose the queues at a subset of nodes Vb ⊂ V have a finite buffer constraint. For

j ∈ Vb, denote the buffer size by dj = d̄jK for some scaled buffer size d̄j ∈ (0, 1). (If
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d̄j ≥ 1, the buffer size exceeds the number of supply units dj ≥ K and there is no

constraint as a result, i.e., j /∈ Vb.) We will find it convenient to define d̄j = 1 for each

j ∈ V \Vb. To avoid the infeasible case where the buffers are too small to accommodate

all supply units, we assume that
∑

j∈V d̄j > 1. Throughout Section 1.6, the normalized

state space will be

Ω ,
{

q̄ : 1Tq̄ = 1, 0 ≤ q̄ ≤ d̄
}
, where d̄j , dj/K .

Similar to the case of entry control, we need to keep q̄ in the interior of Ω, which is

achieved by defining the normalized queue lengths q̄ as

q̄j ,
qj + d̄jδK

K̃
for δK =

√
K and K̃ , K +

∑
j∈V

d̄j

 δK . (1.21)

One can verify that q̄ ∈ Ω for any feasible state q. When d̄j = 1 for all j ∈ V , the

definition of q̄j in (1.21) reduces to the one in (1.8). The congestion functions (fj(·))j∈V

are monotone increasing functions that map (normalized) queue lengths to congestion

costs. Here we will state our main results for the congestion function vector

fj(q̄j) ,


√
m · Cb ·

((
1− q̄j

d̄j

)− 1
2 −

(
q̄j
d̄j

)− 1
2 −Db

)
, ∀j ∈ Vb ,

−
√
m · q̄−

1
2

j ∀j ∈ V \Vb .
(1.22)

Here Cb and Db are normalizing constants10 chosen to ensure that (i) for all j, k ∈ V , we

have that fj(q̄j) = fk(q̄k) when both queues are empty qj = qk = 0; (ii) for all j, k ∈ Vb,

we have that fj(q̄j) = fk(q̄k) when both queues are full qj = dj, qk = dk. (We state the

results for other choices of congestion functions in Appendix A.3.)

Note that fj(·) in (1.22) is identical to f(·) in (1.7) for j /∈ Vb, i.e., (1.22) is a gen-

eralization of (1.7) to the case where some queues have buffer constraints. The intuitive

reason (1.22) is a suitable congestion function is that it enables MBP to focus on queues

10Define ε , δK
K̃
. Let hb(q̄) , (1− q̄)− 1

2 − q̄− 1
2 and h(q̄) , −q̄− 1

2 . Define Cb ,
h(ε)−h(1/

∑
j∈V d̄j)

hb(ε)−hb(1/
∑

j∈V d̄j)
and

Db , hb(1/
∑
j∈V d̄j)−C

−1
b h(1/

∑
j∈V d̄j). In addition to the properties listed in the main text, we also

have that fj(d̄j/
∑
j∈V d̄j) has the same value for all j ∈ V . These properties are useful in the following

analysis.
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which are currently either almost empty or almost full (the congestion function values for

those queues take on their smallest and largest values, respectively), and use the control

levers available to make the queue lengths for those queues trend strongly away from the

boundary they are close to.

1.6.2 Joint Entry-Assignment Setting

We first generalize the entry control setting introduced in Section 1.2 by allowing the

system to choose a flexible pickup and dropoff node for each demand, and furthermore

allowing demand arrival rates to vary in time. Formally, instead of an origin node and

a destination node, in this setting each demand unit has an abstract type τ ∈ T , and

the type for the demand unit in period t is drawn from distribution φt = (φtτ )τ∈T ,

independently across t. The demand type at period t is denoted by τ [t]. Each demand

type τ ∈ T has a pick-up neighborhood P(τ) ⊂ V,P(τ) 6= ∅ and drop-off neighborhood

D(τ) ⊂ V,D(τ) 6= ∅. The sets (P(τ))τ∈V and (D(τ))τ∈V are model primitives. (In shared

transportation systems, each demand type τ may correspond to an (origin, destination)

pair in V 2, with P(τ) being nodes close to the origin and D(τ) being nodes close to the

destination. In the special case that P(τ) and D(τ) are singletons for each τ ∈ T we

recover the illustrative model in Section 1.2.)

The platform control and payoff in this setting are as follows. At time t, after observing

the demand type τ [t] = τ , the system makes a decision

(xjτk[t])j∈P(τ),k∈D(τ) ∈ {0, 1}|P(τ)|·|D(τ)| such that
∑

j∈P(τ),k∈D(τ)

xjτk[t] ≤ 1 . (1.23)

Here xjτk[t] = 1 stands for the platform choosing pick-up node j ∈ P(τ) and drop-off

node k ∈ D(τ), causing a supply unit to be relocated from j to k. The constraint in

(1.23) captures that each demand unit is either served by one supply unit, or not served.

With xjτk[t] = 1, the system collects payoff v[t] = wjτk. Without loss of generality, we
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assume the scaling

max
τ∈T ,j∈P(τ),k∈D(τ)

|wjτk| = 1 .

Because the queue lengths are non-negative and upper bounded by buffer sizes, we

require the following constraint to be met at any t:

xjτk[t] = 0 if qj[t] = 0 or qk[t] = dk .

As a convention, let xjτ ′k = 0 if τ ′ 6= τ . The dynamics of system state q[t] is as follows:

q[t+ 1] = q[t] +
∑

τ∈T ,j∈P(τ),k∈D(τ)

(−ej + ek)xjτk[t] . (1.24)

The definition of a feasible policy is similar to the case of entry control, hence we skip

the details. We once again define the transient and steady state optimality gaps LπT and

Lπ as in Section 1.2 via (1.3)-(1.5).

The dual problem to the SPP in period t in the JEA setting (see Appendix A.1.1 for

the SPP, which we denote by SPPt) is

minimizey gtJEA(y), for gtJEA(y) ,
∑
τ∈T

φtτ max
j∈P(τ),k∈D(τ)

(
wjτk + yj − yk

)+
. (1.25)

As before, MBP is defined to achieve the argmax in the definition of the dual objective

gJEA, with the ys replaced by congestion costs: (i) Again, decisions are made based on

payoffs adjusted by congestion costs, and demand units which generate (weakly) posi-

tive adjusted payoff are admitted. (ii) The pickup and dropoff locations are chosen to
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maximize the adjusted payoff.
ALGORITHM 2: Mirror Backpressure (MBP) Policy for Joint Entry-Assignment
At the start of period t, the system observes demand type τ [t] = τ .

(j∗, k∗)← argmaxj∈P(τ),k∈D(τ)wjτk + fj(q̄j [t])− fk(q̄k[t])

if wj∗τk∗ + fj∗(q̄j∗ [t])− fk∗(q̄k∗ [t]) ≥ 0 and qj∗ [t] > 0, qk∗ [t] < dk∗ then
xj∗τk∗ [t]← 1, i.e., serve the incoming demand using a supply unit from j∗ and relocate

it to k∗ ;

else

xj∗τk∗ [t]← 0, i.e., drop the incoming demand;

end

The queue lengths update as q̄[t+ 1] = q̄[t]− 1
K̃
xj∗τk∗ [t](ej∗ − ek∗).

We make the following connectivity assumption on the primitives (φt,P ,D) for all t

in the horizon.

Condition 1.2 (Strong Connectivity of (φt,P ,D)). For any demand arrival rates φ,

define the connectedness of triple (φ,P,D) as

α(φ,P ,D) , min
S(V,S 6=∅

∑
τ∈P−1(S)∩D−1(V \S)

φτ . (1.26)

Here P−1(S) , {τ ∈ T : P(τ) ∩ S 6= ∅} is the set of demand types for which nodes S

can serve as a pickup node; and D−1(·) is defined similarly. We assume that for some

αmin > 0, for all t in the horizon it holds that (φt,P,D) is αmin-strongly connected,

namely, α(φt,P ,D) ≥ αmin.

If each type τ ∈ T corresponds to an origin-destination pair τ = (j, k) ∈ V 2 and

P(τ) = {j}, D(τ) = {k} and demand arrival rates are stationary φt = φ, then the JEA

setting reduces to entry control model in Section 1.2 and α(φ,P ,D) = α(φ) for α(φ)

defined in (1.6).

Definition 1.1. We say that demand arrival rates vary η-slowly for some η ≥ 0 if

‖φt+1 − φt‖1 ≤ η for all t ≥ 0 in the horizon of interest.

Note that any sequence of demand arrival rates varies 2-slowly, so η ∈ [0, 2], with

η = 0 being the case of stationary demand arrival rates.
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We show the following performance guarantee, analogous to Theorem 1.1.

Theorem 1.2. Fix a set V of m, |V | > 1 nodes, a subset Vb ⊆ V of buffer-constrained

nodes with scaled buffer sizes d̄j ∈ (0, 1) ∀j ∈ Vb satisfying11
∑

j∈V d̄j > 1, and a minimum

connectivity αmin > 0. Then there exists K1 = poly
(
m, d̄, 1

αmin

)
, M1 = Cm, and M2 =

C
√
m

minj∈V d̄j

( ∑
j∈V d̄j

min{
∑
j∈V d̄j−1,1}

)3/2

where C is a universal constant that does not depend on

m, d̄, η or αmin, such that for the congestion functions (fj(·))j∈V defined in (1.22), the

following guarantee holds for Algorithm 2. For any horizon T , any K ≥ K1, and any

sequence of demand arrival rates (φt)T−1
t=0 which varies η-slowly (for some η ∈ [0, 2]) and

pickup and dropoff neighborhoods P and D such that (φt,P ,D) is αmin-strongly connected

for all t ≤ T − 1, we have

LMBP
T ≤M1 ·

(
K

T
+
√
ηK

)
+M2 ·

1

K
.

In Appendix A.3 we prove a general version of Theorem 1.2 which provides a perfor-

mance guarantee for a large class of congestion functions.

1.6.3 Joint Pricing-Assignment Setting

In this section, we consider the joint pricing-assignment (JPA) setting and design the

corresponding MBP policy. The platform’s control problem is to set a price for each

demand origin-destination pair, and decide an assignment at each period to maximize

payoff. Our model here will be similar to that of Banerjee, Freund, and Lykouris [1],

except that the platform does not know demand arrival rates, and we allow a finite

horizon. The proposed algorithm will be a generalization of backpressure based joint-rate-

scheduling control policies [see, e.g., 39, 14]. The demand types τ , pick-up neighborhood

P(τ) and drop-off neighborhood D(τ) are defined in the same way as in section 1.6.2. For

simplicity, we assume that the demand type distribution φ = (φτ )τ∈T is time invariant

in this subsection.
11Recall that we define d̄j , 1 for all j ∈ V \Vb.
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The platform control and payoff in this setting are as follows. At time t, after observing

the demand type τ [t] = τ , the system chooses a price pτ [t] ∈ [pmin
τ , pmax

τ ] and a decision

(xjτk[t])j∈P(τ),k∈D(τ) ∈ {0, 1}|P(τ)|·|D(τ)| such that
∑

j∈P(τ),k∈D(τ)

xjτk[t] ≤ 1 . (1.27)

As before we require

xjτk[t] = 0 if qj[t] = 0 or qk[t] = dk .

The result of the platform control is as follows:

(1) Upon seeing the price, the arriving demand unit will decline (to buy) with proba-

bility Fτ (pτ [t]), where Fτ (·) is the cumulative distribution function of type τ demand’s

willingness-to-pay.

(2) If the demand accepts (i.e., buys), the system state updates as per

q[t+ 1] = q[t] +
∑

j∈P(τ),k∈D(τ)

(−ej + ek)xjτk[t] . (1.28)

Meanwhile, the platform collects payoff v[t] = pτ [t] − cjτk where cjτk is the “cost” of

serving a demand unit of type τ using pick-up node j and drop-off node k.

(3) If the demand unit declines, the supply units do not move and v[t] = 0.

We assume the following regularity conditions to hold for demand functions
(
Fτ (pτ )

)
τ
.

These assumptions are quite standard in the revenue management literature, [see, e.g.,

31].

Condition 1.3. (1) Assume12 Fτ (pmin
τ ) = 0 and that Fτ (pmax

τ ) = 1.

(2) Each demand type’s willingness-to-pay is non-atomic with support [pmin
τ , pmax

τ ] and

positive density everywhere on the support; hence Fτ (pτ ) is differentiable and strictly

increasing on (pmin
τ , pmax

τ ). (If the support is a subinterval of [pmin
τ , pmax

τ ], we redefine

pmin
τ and pmax

τ to be the boundaries of this subinterval.)

(3) The revenue functions rτ (µτ ) , µτ · pτ (µτ ) are concave and twice continuously dif-

ferentiable, where µτ denotes the fraction of demand of type τ which is realized (i.e.,
12The assumption Fτ (pmin

τ ) = 0 is without loss of generality, since if a fraction of demand is unwilling
to pay pmin

τ , that demand can be excluded from φ itself.
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willing to pay the price offered).

As a consequence of Condition 1.3 parts 1 and 2, the willingness to pay distribution

Fτ (·) has an inverse denoted as pτ (µτ ) : [0, 1] → [pmin
τ , pmax

τ ] which gives the price which

will cause any desired fraction µτ ∈ [0, 1] of demand to be realized. (The concavity

assumption in part 3 of the condition is stated in terms of this function pτ (·).) Without

loss of generality, let maxτ∈T p
max
τ + maxj,k∈V,τ∈T |cjτk| = 1.

In the JPA setting, the net demand φτµτ plays a role in myopic revenues but also

affects the distribution of supply, and the chosen prices need to balance myopic revenues

with maintaining a good spatial distribution of supply. Intuitively, when sufficiently

flexible pricing is available as a control lever, the system should modulate the quantity of

demand through changing the prices (and serving all the demand which is then realized)

rather than apply entry control (i.e., dropping some demand proactively). Our MBP

policy for this setting will have this feature.

The dual problem to the SPP in the JPA setting (the SPP is stated in Appendix

A.1.2) is13

minimizey gJPA(y) for gJPA(y) ,
∑
τ∈T

φτ max
{0≤µτ≤1}

(
rτ (µτ ) + µτ max

j∈P(τ),k∈D(τ)

(
−cjτk + yj − yk

))
.

(1.29)

Once again, the MBP policy (Algorithm 3 below) is defined to achieve the argmaxes

in the definition of the dual objective gJPA(·) with the ys replaced by congestion costs:

MBP dynamically sets prices pτ such that mean fraction of demand realized under the

policy is the outer argmax in the definition (1.29) of gJPA(·), and the assignment decision

of MBP achieves the inner argmax in the definition (1.29) of gJPA(·). The policy again

has the property that it executes stochastic mirror descent on the dual objective gJPA(·).

The MBP policy retains the advantage that it does not require any prior knowledge of

gross demand φ. We assume that the willingness-to-pay distributions Fτ (·)s are exactly

known to the platform; it may be possible to relax this assumption via a modified policy
13The derivation of the dual objective is in Appendix A.2.
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which “learns” the Fτ (·)s, however, pursuing this direction is beyond the scope of the

present paper.
ALGORITHM 3: Mirror Backpressure (MBP) Policy for Joint Pricing-Assignment
At the start of period t, the system observes τ [t] = τ .

(j∗, k∗)← arg maxj∈P(τ),k∈D(τ)

{
−cjτk + fj(q̄j [t])− fk(q̄k[t])

}
;

if qj∗ [t] > 0, qk∗ [t] < dk∗ then

µτ [t]← argmaxµτ∈[0,1]

{
rτ (µτ ) + µτ · (−cj∗τk∗ + fj∗(q̄j∗ [t])− fk∗(q̄k∗ [t]))

}
;

pτ [t]← F−1
τ (µτ [t]);

xj∗τk∗ [t]← 1, i.e., serve the incoming demand (if it stays) by pick up from j∗ and drop

off at k∗;

else

xj∗τk∗ [t]← 0, i.e., drop the incoming demand;

end

The queue lengths update as q̄[t+ 1] = q̄[t]− 1
K̃
xj∗τk∗ [t](ej∗ − ek∗).

Condition 1.3 ensures that Algorithm 3 has two key desirable properties:

(1) The computed prices satisfy pτ [t] ∈ [pmin
τ , pmax

τ ] (by the observation following Condi-

tion 1.3).

(2) The optimization problem for computing µτ [t] is a one-dimensional concave maxi-

mization problem (Condition 1.3 part 3), hence µτ [t] can be efficiently computed.

We have the following performance guarantee for Algorithm 3, analogous to Theorem

1.1.

Theorem 1.3. Fix a set V of m = |V | > 1 nodes, scaled buffer sizes d̄ = (d̄j)j∈V with14

d̄j ∈ (0, 1] and
∑

j∈V d̄j > 1, minimum and maximum allowed prices (pmin
τ , pmax

τ )τ∈T , any

(φ,P ,D) that satisfy Condition 1.2 (strong connectivity), and willingness-to-pay distri-

butions (Fτ )τ∈T that satisfy Condition 1.3. Then there exist K1 <∞, M1 = poly
(
m, d̄

)
,

and M2 = poly
(
m, d̄

)
such that for the congestion functions (fj(·))s defined in (1.22),

the following guarantee holds for Algorithm 3. For any horizon T and for any K ≥ K1,
14Recall that we use d̄j , 1 for nodes j ∈ V \Vb which do not have a buffer size constraint.
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we have

LMBP
T ≤M1 ·

K

T
+M2 ·

1

K
, and LMBP ≤M2 ·

1

K
.

1.7 Application to Shared Transportation Systems

Our setting can be mapped to shared transportation systems such as bike sharing and

ride-hailing systems. In this context, the nodes in our model correspond to geographical

locations, while supply units and demand units correspond to vehicles and customers,

respectively.

Dynamic incentive program for bike sharing systems. A major challenge faced by

bike sharing systems such as Citi Bike in New York City is the frequent out-of-bike and

out-of-dock events caused by demand imbalance. One popular solution is to dynamically

incentivize certain trips by awarding points (with cash value) depending on a trip’s pickup

and dropoff locations [24]. Thus the problem of designing a dynamic incentive program is

addressed (in a stylized way) by the pricing setting we study (the joint pricing-assignment

setting studied Section 1.6.3, but with no assignment flexibility). MBP tells the system

operator, quantitatively, how to reward rides that relocate bikes to locations which have

a scarcity of bikes. In docked bike sharing systems, there is a constraint on the number

of docks available at each location. Such constraints are seamlessly handled in our frame-

work as detailed earlier in Section 1.6.1. One concern may be that our model ignores

travel delays. However, in most bike sharing systems, the fraction of bikes in transit at

any time is typically quite small (under 10-20%).15 As a result, we expect our control

insights to retain their power despite the presence of delays. (Indeed, we will numerically

demonstrate in Section 1.7.1 that this is the case in a realistic ridehailing setting; see the
15The report https://nacto.org/bike-share-statistics-2017/ tells us that U.S. dock-based systems pro-

duced an average of 1.7 rides/bike/day, while dockless bike share systems nationally had an average of
about 0.3 rides/bike/day. Average trip duration was 12 minutes for pass holders (subscribers) and 28
mins for casual users. In other words, for most systems, each bike was used less than 1 hour per day,
which implies that less than 10% of bikes are in use at any given time during day hours (in fact the
utilization is below 20% even during rush hours).
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excess supply case where MBP performs well even when the vast majority of supply is in

transit at any time.) We leave a detailed study of bike sharing platforms to future work.

Online control of ride-hailing platforms. Ride-hailing platforms make dynamic de-

cisions to optimize their objectives (e.g., revenue, welfare, etc.). For most ride-hailing

platforms in North America, pricing is used to modulate demand. In certain countries

such as China, however, pricing is a less acceptable lever, hence admission control of

customers is used as a control lever instead. In both cases, the platform further decides

where (near the demand’s origin) to dispatch a car from, and where (near the demand’s

destination) to drop off a customer. These scenarios are captured, respectively, by the

joint entry-assignment (JEA)16 and joint pricing-assignment (JPA) models studied in

Section 1.6. A concern may be that travel delays play a significant role in ride-hailing,

whereas delays are ignored in our theory. In the following subsection, we summarize a nu-

merical investigation of ride-hailing focusing on entry and assignment controls only (a full

description is provided in Appendix A.4). We find that MBP performs well despite the

presence of travel delays. In order to address the case where the available supply is scarce,

we heuristically adapt MBP to incorporate the Little’s law constraint (Section 1.7.1).

1.7.1 Numerical simulations in a realistic ride-hailing setting

We simulate the MBP policy in a realistic ride-hailing environment using yellow cab

data from NYC Taxi & Limousine Commission and travel times from Google Maps. In

the interest of space, we provide only a summary of our simulations here and defer a full

description to Appendix A.4.

We allow the platform two control levers: entry control and assignment/dispatch
16The JEA setting can be mapped to ride-hailing as follows: there is a demand type τ corresponding

to each (origin, destination) pair (j, k) = V 2, with P(τ) being nodes close to the origin j and D(τ) being
nodes close to the destination k.
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control, similar to the JEA setting17,18 in Section 1.6.2. Our theoretical model made

the simplifying assumption that pickup and service of demand are instantaneous. We

relax this assumption in our numerical experiments by adding realistic travel times. We

consider the following two cases:

(1) Excess supply. The number of cars in the system is slightly (5%) above the “fluid

requirement” (see Appendix A.4.1 for details on the “fluid requirement”) to achieve

the value of the static planning problem.

(2) Scarce supply. The number of cars fall short (by 25%) of the “fluid requirement”, i.e.,

there are not enough cars to realize the optimal solution of static planning problem

(ignoring stochasticity).

Summary of findings. We make a natural modification of the MBP policy (with

congestion function (1.7)) to account for finite travel times; specifically, we employ a

supply-aware MBP policy which estimates and uses a shadow price of keeping a vehicle

(supply unit) occupied for one unit of time. This policy is described below in Section 1.7.1.

We find that in both the excess supply and the scarce supply cases, the MBP policy, which

is given no information about the demand arrival rates, significantly outperforms the

static (fluid-based) policy, even when the latter is provided with prior knowledge of exact

demand arrival rates. The MBP policy also vastly outperforms the greedy non-idling

policy, which demonstrates the practical importance and value of proactively dropping

demand.

The Supply-Aware MBP Policy

In order to heuristically modify MBP to account for travel times, we begin by ob-

serving that the SPP must now include a Little’s law constraint. (The same observation
17The correspondence between our (ride-hailing) simulation setting and the JEA setting is as follows:

In the ride-hailing setting, the type of a demand is its origin-destination pair, i.e. T = V × V . For type
(j, k) demand, its supply neighborhood is the neighboring locations of j, which we denote by (with a
slight abuse of notation) P(j). We do not consider flexible drop-off, therefore D(j, k) = {k}.

18In our simulations, we focus on the special case where demand is stationary instead of time-varying,
even though MBP policies are expected to work well if demand varies slowly over time. We make this
choice because it allows us to compare performance against that of the policy proposed in [1] for the
stationary demand setting.
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was previously leveraged by [2] and [1] to formally handle travel times, albeit under the

assumption that travel times are i.i.d. exponentially distributed.) Our heuristic modifi-

cation of MBP will maintain an estimate of the shadow price corresponding to the Little’s

law constraint, and penalize rides appropriately.

Applying Little’s Law, if the optimal solution z∗ of the SPP (A.1)-(A.3) (see Ap-

pendix A.1.1; here we work with the special case where φ does not depend on t) is

realized as the average long run assignment, the mean number of cars which are occupied

in picking up or transporting customers is
∑

j,k∈V
∑

i∈P(j)Dijk ·z∗ijk , for Dijk , D̃ij+D̂jk,

where D̃ij is the pickup time from i to j and D̂jk is the travel time from j to k. We aug-

ment the SPP with the additional supply constraint

∑
j,k∈V

∑
i∈P(j)

Dijk · zijk ≤ K . (1.30)

We propose and test in the simulation the following heuristic policy inspired by MBP,

that additionally incorporates the supply constraint. We call it supply-aware MBP. Given

a demand arrival with origin j and destination k, the policy makes its decision as per:

i∗ ← arg max
i∈P(j)

{
wijk + f(q̄i[t])− f(q̄k[t])− v[t]Dijk

}
If wi∗jk + f(q̄i∗ [t])− f(q̄k[t])− v[t]Di∗jk ≥ 0 and qi∗ [t] > 0 , dispatch from i∗, else Drop,

We define the tightened supply constraint as

∑
j,k∈V

∑
i∈P(j)

Dijk · zijk ≤ 0.95K , (1.31)

where the coefficient of K is the flexible “utilization” parameter, that we have set 0.95,

meaning that we are aiming to keep 5% vehicles free on average, systemwide.19 Here v[t]

is the current estimate of the shadow price for a “tightened” version of supply constraint

(1.30). We use the congestion function fj(q̄j) =
√
m · q̄−1/2

j , i.e. the one given in (1.7), in

our numerical simulations. An adaptation here is that the queue lengths are normalized

by the estimated number of free cars instead of K, which we set as 0.05K to be consistent
19Keeping a small fraction of vehicles free is helpful in managing the stochasticity in the system. Note

that the present paper does not study how to systematically choose the utilization parameter.
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with the “utilization” parameter we choose. We update v[t] as

v[t+ 1] =

v[t] +
1

K

( ∑
j,k∈V

∑
i∈P(j)

Dijk · 1{(o[t], d[t]) = (j, k),MBP dispatches from i} − 0.95K

)+

.

An iteration of supply-aware MBP is equivalent to executing a (dual) stochastic mirror

descent step on the supply-aware SPP with objective (A.1) and constraints (A.2), (A.3)

and (1.31).

1.8 Application to Scrip Systems

In this section, we illustrate the application of our model to scrip systems. A scrip

system is a nonmonetary trade economy where agents use scrips (tokens, coupons, ar-

tificial currency) to exchange services. These systems are typically implemented when

monetary transfer is undesirable or impractical. For example, [26] suggest that in kid-

ney exchange, to align the incentives of hospitals, the exchange should deploy a scrip

system that awards points to hospitals that submit donor-patient pairs to the central

exchange, and deducts points from hospitals that conduct transplantations. Another

well-known example is Capitol Hill Babysitting Co-op [25, 40], where married couples

pay for babysitting services by another couples with scrips. A key challenge in these

markets is the design of the admission-and-provider-selection rule: If an agent is running

low on scrip balance, should they be allowed to request services? If yes, and if there are

several possible providers for a trade, who should be selected for service?

We introduce a natural model of a scrip system with multiple agents and heterogeneous

services, where agents exchange scrips (i.e., artificial currency) for services. There is a

central planner who tries to maximize social welfare by making decisions over whether

a trade should occur when a service request arises, and if so, who the service provider

should be. The setting is seen to be a special case of the joint entry-assignment (JEA)

setting studied in Section 1.6; yielding a simple MBP control rule that comes with the

guarantee that it asymptotically maximizes social welfare.
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1.8.1 Model of Scrip Systems

We now describe a model of a service exchange (i.e., a scrip system). Consider an

economy with a finite number of agents indexed by j ∈ V . There are finitely many types

of service types Σ indexed by σ ∈ Σ. A demand type τ = (j, σ) is specified by the

requestor j ∈ V along with the requested service type σ ∈ Σ, i.e., the set of demand

types T ⊆ V × Σ. If the demand is served, the requestor pays a scrip to the service

provider. Accordingly, for each demand type τ = (j, σ), we define the compatible set

of agents who can serve it as D(τ) ⊆ V \{j}. We again consider a slotted time model,

where in each period exactly one service request arises, with demand type drawn i.i.d.

from the distribution20 φ = (φτ )τ∈T . There are a fixed number K of scrips in circulation,

distributed among the agents. For each τ = (j, σ) ∈ T , serving a demand type τ = (j, σ)

generates payoff wjσ.

Observe that our model here is a special case of the JEA setting.21

Comparison with the model in Johnson et al. [25]. The work [25] consider the case

where there is only one type of service which all agents can provide, and requests arrive

at the same rate from all agents. One one hand, we significantly generalize their model by

considering heterogeneous service types, general compatibility structures, and asymmetric

service request arrivals. They obtain an optimal rule for the symmetric fully connected

setting, whereas we develop an asymptotically optimal control rule for the general setting.

On the other hand, we only focus on the central planner setting, and leave the incentives

of agents for future work (see the remarks in Section 1.8.2).
20Time-varying demand arrival rates can be seamlessly handled since they are permitted in the JEA

setting; we work with stationary arrival rates only for the sake of brevity.
21This can be seen as follows: For each demand type τ ∈ T , the compatible set of service providers
D(τ) is identified with the “dropoff neighborhood” for τ . The “pickup neighborhood” is a singleton set
consisting of the requestor P(τ) = {j}. Finally, for each k ∈ D(τ) we define the payoff wjτk , wjσ. The
primitives V,P,D,φ and (wjτk)τ=(j,σ)∈T ,k∈D(τ) fully specify the JEA setting.
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1.8.2 MBP Control Rule and Asymptotic Optimality

Since the model above is a special case of the JEA setting, we immediately obtain an

MBP control rule for scrip systems that achieves asymptotic optimality as a special case

of Algorithm 2 and Theorem 1.2. This control rule is specified in Algorithm 4 below.

The congestion function f(·) can again be chosen flexibly; we state our formal guarantee

for the congestion function in (1.7). Denote the normalized number of scrips (defined in

(1.8)) in the possession of agent i by q̄i.

ALGORITHM 4: MBP Admission-and-provider-selection rule for scrip systems
At the start of period t, the central planner receives a request from agent j for service type

σ, i.e., demand type τ = (j, σ) arises.

if wjσ + f(q̄j [t])−mink∈D(τ) f(q̄k[t]) ≥ 0 and q̄i[t] > 0 then
k∗ ← argmink∈D(τ)f(q̄k[t]),

Let agent k∗ provide the service to j, and agent j gives one scrip to agent k∗ ;

else

Reject the service request from agent j;

end

Theorem 1.2 immediately implies the following performance guarantee for Algorithm

4.

Corollary 1.1. Consider a set of m agents and any demand type distribution and com-

patibilities (φ,P ,D) (where P is identity) that satisfy Condition 1.2. Then there ex-

ists K1 = poly
(
m, 1

α(φ,P,D)

)
and a universal C > 0 that does not depend on m, K or

α(φ,P ,D), such that for the congestion function f(·) defined in (1.7), for any K ≥ K1,

the following guarantee holds for Algorithm 4

LMBP
T ≤M1 ·

K

T
+M2 ·

1

K
, and LMBP ≤M2 ·

1

K
, for M1 , Cm and M2 , Cm2 .

A few remarks on the model and results are in order:

1. Necessity of declining trades. By considering a more general setting than in [25], we

obtain qualitatively different insights on the optimal control rule by central planner. In
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[25], it is optimal for the central planner to always approve trades, and let the agent with

fewest scrips be the service provider. In our general setting, however, in many cases the

central planner has to decline a non-trivial fraction of the trades to sustain flow balance

of scrips in the system (constraint (1.11)).22 When a trade is approved, our policy also

chooses the compatible trade partner with the fewest scrips as service provider.

2. Incentives. Our analysis of scrip systems is meant to illustrate the versatility of MBP

control policies, hence we only focused on the central planner setting. It would be in-

teresting to study the MBP control rule in the decentralized setting where the agents

recommended to be potential trading partners can decide whether to trade, but that

is beyond the scope of the current paper. (At a high level, we expect that agents will

have an incentive to provide service whenever requested by the MBP policy as long as

(i) agents are sufficiently patient, and (ii) agents benefit from trading, i.e., agents derive

more value from receiving service than the cost they incur from providing service.)

1.9 Discussion

In this paper we considered the payoff maximizing dynamic control of a closed network

of resources. We proposed a novel family of policies called Mirror Backpressure (MBP),

which generalize the celebrated backpressure policy such that it executes mirror descent

with the desired mirror map, while retaining the simplicity of backpressure. The MBP

policy overcomes the challenge stemming from the no-underflow constraint and it does

not require any knowledge of demand arrival rates. We proved that MBP achieves good

transient performance for demand arrival rates which are stationary or vary slowly over

time, losing at most O
(
K
T

+ 1
K

+
√
ηK
)
payoff per customer, where K is the number

of supply units, T is the number of customers over the horizon of interest, and η is the

maximum change in demand arrival rates per customer arrival. We considered a variety of
22For example, consider a setting with two agents j1 and j2. Denote the demand type requested by j1

as τ1 (this demand type can be served by j2) and similarly define τ2. Under the mild condition φτ1 6= φτ2 ,
the planner will be forced to decline a positive fraction of requests.
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control levers: entry control, assignment control and pricing, and allowed for finite buffer

sizes. We discussed the application of our results to the control of shared transporation

systems and scrip systems.

One natural question is whether our bounds capture the right scaling of the per

customer optimality gap of MBP with K, T and η, relative to the best policy which is

given exact demand arrival rates and horizon length T in advance. Consider the joint

entry-assignment setting (Section 1.6.2). It is not hard to construct examples showing

that each of the terms in our bound is unavoidable: a 1/K optimality gap arises in steady

state (under stationary demand arrival rates) for instance in a two-node entry-control-

only example where the two demand arrival rates are exactly equal to each other, the

K/T term arises because over a finite horizon the flow balance constraints need not be

satisfied exactly and MBP does not exploit this flexibility fully, and the
√
ηK term arises

in examples where demand arrival rates oscillate (with a period of order
√
K/η) but

MBP does not take full advantage of the flexibility to allow queue lengths to oscillate

alongside. We omit these examples in the interest of space.

We point out some interesting directions that emerge from our work:

1. Improved performance via “centering” MBP based on demand arrival rates. If the

optimal shadow prices y∗ are known (or learned by learning φ via observing demand),

we can modify the congestion function to f̃j(q̄j) = y∗j +f(q̄j). For the resulting “centered”

MBP policy, based on the result of [38] and the convergence of mirror descent, we are

optimistic that the steady state regret will decay exponentially in K.

Another promising direction is to pursue the viewpoint that there is an MBP policy

which (very nearly) maximizes the steady state rate of payoff generation, specifically for

the choice of congestion functions fj(·) that are the discrete derivatives of the relative

value function F (q̄) (for the average payoff maximization dynamic programming problem)

with respect to q̄j; see Chapter 7.4 of [41] for background on dynamic programming. Thus,

estimates of the relative value function F (q̄) can guide the choice of congestion function.

2. Other applications of MBP. MBP appears to be a powerful and general approach to
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obtain near optimal performance despite no-underflow constraints in the control of queue-

ing networks. It does not necessitate a heavy traffic assumption, and provides guarantees

on both transient and steady state performance, as well as performance under demand

arrival rates which vary slowly in time. We conclude with a concrete problem which one

may try to address using MBP: The matching queues problem studied by [10] is hard due

to no-underflow constraints and to handle them that paper makes stringent assumptions

on the network structure. MBP may be able to achieve near optimal performance for

more general matching queue systems.
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CHAPTER 2

Dynamic Assignment Control of Closed Networks under

Complete Resource Pooling

2.1 Introduction

Several real-world systems such as shared transportation platforms and scrip systems

involve resource (supply) units circulating in a network. The hallmark of such systems

is that serving a demand unit causes a (reusable) supply unit to be relocated. Closed

queueing networks provide a powerful abstraction for these applications [see, e.g., 42, 1,

2, 25, 43]. The platform operator makes tactical control decisions with the aim of max-

imizing longer-term system performance, which necessitates that the operator manage

the distribution of the supply to ensure continued availability of supply throughout the

network. In this paper, we focus on dynamic assignment control of a closed queueing

network given limited flexibility, i.e., when a demand unit arrives at a node, from which

compatible (e.g., nearby) node should a supply unit be assigned to serve it?

A central challenge in such systems is that of distributional mismatch between supply

and demand: to fulfill a demand which arrives at a node, there has to be an available

supply unit at a compatible node when the demand arrives. There are two sources of

distributional supply-demand asymmetry: structural imbalance (some nodes may have a

tendency to have a systematic net inflow, or outflow, of supply units) and stochasticity.

Previous works have studied assignment (or control) decisions made in a state-independent
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manner which handles structural imbalance by solving the fluid limit problem which arises

as the number of supply units K is taken to ∞. However, this approach fails to react

to stochasticity leading to optimality gap (fraction of demand lost) which shrinks to zero

only (slowly) as 1/K [1] as K grows if demand arrival rates are exactly known, and

non-vanishing optimality gap as K →∞ if demand arrival rates are not perfectly known

(see Proposition 2.3 in Section 2.4.2). In this paper we propose simple and practical

state-dependent assignment control policies which automatically handle both structural

imbalance and stochasticity. Our policies come with a strong performance guarantee and

do not require demand arrival rates to be known (if these rates are known, even better

performance can be obtained).

We focus on demand arrival rates satisfying an approximate balance condition (very

similar to Hall’s condition in matching and Complete Resource Pooling in queueing),

which ensures that in the absence of stochasticity (i.e., in the fluid limit), all demand

can be satisfied. The control problem remains non-trivial: all state-independent policies

provide unsatisfactory performance as summarized above (Proposition 2.3), and a naive

state-dependent policy similarly suffers Ω(1) optimality gap as K → ∞ (Example 2.4).

We provide a very simple “maximum weight” (MaxWeight) control policy which does

not use demand arrival rate information and achieves optimality gap (loss) which decays

exponentially in K. This result motivates the large deviations question: Which policy

maximizes the loss exponent? We propose a natural family of Scaled MaxWeight (SMW)

policies generalizing MaxWeight, and show that all SMW policies achieve exponentially

small loss. We then prove the surprising result that there is always an SMW policy

which is exponent-optimal among all assignment control policies, and characterize how

the parameters of the optimal SMW policy are determined by the demand arrival rates.

Our Model. We adopt a stylized model which isolates the challenge of managing

the distribution of (reusable) supply in the network given limited flexibility. (Later, we

suitably augment this baseline model to incorporate salient features of specific applica-

tions.)
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In our model, the system consists of a network with two sets of nodes, namely, the

supply nodes and the demand nodes. A fixed number of supply units circulate among

the supply nodes. Demand units arrive stochastically at demand nodes with supply

node destinations, at some time-invariant rates. For each demand node, a subset of the

supply nodes are compatible with it, and the platform dynamically decides from which

compatible supply node to assign a supply unit to serve the incoming demand unit. Thus,

compatibilities capture the limited flexibility available to the platform. After a supply

unit is assigned to a demand unit, it becomes available again at the destination of the

demand unit. (Supply units relocate only while serving demand.) Supply units do not

enter or leave the system. The platform’s goal is to meet as much demand as possible in

steady state. (Our results will extend to transient performance as well.)

Our model assumes that the supply units relocate instantaneously in the process of

serving a demand unit. This assumption facilitates a sharp theoretical analysis of general

network structures, and moreover ensures transparency about the role of supply units:

all K supply units are free when a demand unit arrives, and thus K quantifies the total

available “buffer” of free supply units. The controller’s challenge is that of managing

the distribution of the K supply units to ensure the continued availability of supply

throughout the network.

To obtain tight characterizations, we consider the asymptotic regime where the num-

ber of supply units in the system K goes to infinity, and perform a large deviations

analysis.

Complete Resource Pooling condition. A main assumption in our model is an

approximate balance condition on the demand arrival rates. This condition is very similar

to the complete resource pooling (CRP) condition in the queueing literature, therefore

we will refer to it as CRP hereafter. CRP is a standard assumption in the heavy traffic

analysis of queueing systems [see, e.g., 44, 17, 36]. It can be interpreted as requiring

enough overlap in the processing ability of servers (demand nodes in our model) so that

they form a “pooled server”. The CRP condition under our model is closely related to the
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condition in Hall’s marriage theorem in bipartite matching theory. If any CRP inequality

is strictly violated, this forces a positive fraction of demand to be lost even as K →∞.

Analogy with a classic closed queueing network scheduling problem. Using

the terminology of classic queueing theory, the K supply units are “jobs”, each demand

location is a “server”, each supply location is a “buffer”, inter-arrival times of demand units

with origin i are “service times” at server i. The distribution of demand destinations given

an origin node captures “routing probabilities”. “Servers” are flexible (i.e., they can serve

multiple queues), and assignment is equivalent to “scheduling”. We emphasize the reversal

of the usual mapping: in our setup supply units are “jobs” and demand units act as service

tokens. As a consequence, intuition based on traditional queueing systems does not easily

extend to our setup.

2.1.1 Main Contributions

We show that a simple and practical MaxWeight assignment policy effectively manages

the distribution of supply in the network, leading to a fraction of demand lost that decays

exponentially fast in K. Each time a demand arrives, MaxWeight simply assigns a supply

unit from the compatible node which currently has the largest number of supply units.

In particular, MaxWeight requires no knowledge of demand arrival rates.

This finding motivates a thorough large deviations analysis which yields surprisingly

elegant results. As a function of system primitives, we derive a large deviations rate-

optimal assignment policy that minimizes lost demand. Our optimal policy is a close

cousin of MaxWeight and its parameters depend in a natural way on demand arrival

rates. Our contribution is threefold:

1. A family of simple policies. We propose a family of state-dependent assignment

policies called Scaled MaxWeight (SMW) policies, and prove that all of them guar-

antee exponential decay of demand-loss probability under the CRP condition. An

SMW policy is parameterized by a vector of scaling factors, one for each (supply)

node; each demand is served by assigning a supply from the compatible node with the
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largest scaled number of supply units. SMW policies are simple, explicit and promis-

ing for practical applications (Section 2.6.2 and Appendix B.10 demonstrate stellar

performance in a realistic simulation environment).

2. The value of (intelligent) state-dependent control. We show (Proposition 2.3)

that no state-independent assignment policy can achieve loss which decays exponen-

tially in K, and that if demand arrival rates are not perfectly known, then the loss

of a state-independent policy (generically) does not vanish as K → ∞. Also, a naive

state-dependent control policy suffers Ω(1) loss as K → ∞ (Example 2.4). Our

SMW policies provide vastly superior performance: even the naive unscaled (“vanilla”)

MaxWeight assignment policy requiring no knowledge of demand arrival rates achieves

loss which decays exponentially in K.

3. Exponent-optimal policy and qualitative insights. For general network struc-

tures, we obtain an explicit specification for the optimal scaling factors for SMW based

on compatibilities and demand arrival rates. Further, we obtain the surprising finding

that the optimal SMW policy is, in fact, exponent-optimal among all state-dependent

policies (Theorem 2.1). A key ingredient of this result is that SMW policies satisfy

the critical subset property: for each SMW policy, there is a corresponding (fluid)

equilibrium state, and for this state there are “critical” subsets of demand nodes that

are most vulnerable to the depletion of supply in compatible supply nodes. Each

SMW policy simultaneously “protects” all critical subsets maximally by maintaining

high supply levels near structurally under-supplied nodes.

We consider the natural “large market” scaling where the demand arrival rate is pro-

portional to K, and show that each supply unit is frequently in use.

Technical contributions. To the best of our knowledge, we are the first to perform

a large deviations analysis under CRP, leading to the challenging problem of deriving an

exponent optimal control. One key difficulty in the mathematical analysis is the neces-

sity to deal with a multi-dimensional system even in the limit. Usually CRP renders the

control problem “easy” because it leads to the “collapse” of the system state to a lower
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dimensional space in the heavy traffic limit, as in many existing works that establish the

asymptotic optimality of a certain policy in minimizing the workload/holding costs of a

queueing system. In contrast, in our setting, the limit system remains m-dimensional,

where m is the number of supply nodes. A second key challenge we face is that the ideal

state for the system is a priori unknown, making it unclear how to define a Lyapunov

function. We overcome these difficulties via a novel approach. We construct a policy-

specific Lyapunov function to facilitate a sharp large deviations analysis of a given SMW

policy leveraging the machinery of [45]. The analysis applies to general network struc-

tures, and reveals that the SMW policy maximally protects all the “critical subsets” of

demand nodes. We deduce the existence of an exponent optimal SMW policy, and char-

acterize its scaling factors in terms of demand arrival rates. Happily, the fluid equilibrium

for this optimal policy is revealed as the ideal state.

Though our setting considers a closed network, we think that it could inspire similar

analyses in open networks, e.g., when there is a shared finite buffer (e.g., a common

waiting room) for multiple queues. Our technical machinery may also be broadly useful

in deriving large-deviation optimal controls in settings where the ideal state is a priori

unclear.

2.1.2 Applications

Our main model and analysis can serve as a building block towards studying various

applications. We discuss two broad applications later in the paper.

Shared transportation systems. Shared transportation platforms such as those for

ride-hailing and bikesharing make assignment control decisions under limited flexibility

to manage the distribution of supply. In these applications, the nodes in our model

correspond to geographical locations,1 while supply units and demand units correspond

to vehicles and customers, respectively. The assignment control in ride-hailing takes

the form of dispatch, i.e., the platform can decide where (near the demand’s origin) to
1The set of supply nodes and demand nodes are replicas of each other in these applications.
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dispatch a car from. Bikesharing platforms can execute assignment control by suggesting

to the customer where (near the customer’s origin or destination) to pick up (or drop off)

a bike.2

We discuss the application to shared transportation systems in Section 2.6. Trans-

portation involves positive travel times. We incorporate travel times into our theory and

show that SMW policies retain their good performance, and also demonstrate excellent

performance in realistic simulations of ridehailing:

(i) We extend our theory by letting demand have independent exponential travel times

with mean that can depend on the origin-destination pair, and assume zero pickup

times. We consider the large market scaling and assume that the total service

requirement (the average number of demands in service at any time assuming no

lost demand) is a fraction of supply which is strictly below 1, consistent with the

reality in shared transportation. We prove that for any SMW policy, the loss is

again exponentially small in K.

(ii) We demonstrate excellent performance of SMW policies in simulations of ride-

hailing based on the NYC taxi dataset. We propose data-driven approaches for

“learning” SMW scaling factors via simulations, and observe close alignment of the

resulting SMW scaling factors with those suggested by our theoretical analysis.

We also describe how state-independent “empty” relocation of vehicles can be seamlessly

incorporated in our setup.

Scrip systems. A scrip system is a nonmonetary trade economy where agents use

scrips (tokens, coupons, artificial currency) to exchange services. These systems are typ-

ically implemented when monetary transfer is undesirable or impractical. For example,

[26] suggest that in kidney exchange, to align the incentives of hospitals, the exchange

should deploy a scrip system that awards points to hospitals that submit donor-patient

pairs to the central exchange, and deducts points from hospitals that conduct transplan-
2For example, the Bike Angels program of CitiBike implicitly makes these suggestions to members

by awarding “points for taking bikes from crowded stations and bringing them to empty ones or stations
expected to soon become empty”. Notice the resemblance to a MaxWeight approach. A live map of point
awards is shown to customers.
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tations. Another well-known example is Capitol Hill Babysitting Co-op ([40], see also

[25]), where married couples pay for babysitting services by another couples with scrips.

A key challenge in these markets is the design of the service provider selection rule: among

the possible providers for a requested service/trade, who should be selected for service?

The platform operator tries to minimize discarded requests (which happen when the ser-

vice requester runs out of scrips) by choosing this rule appropriately. We will show in

Section 2.7 that with only cosmetic modifications to the setup, our results translate fully

to a model of scrip systems; in particular we derive exponent-optimal control policies for

these systems.

2.1.3 Literature Review

MaxWeight scheduling. MaxWeight is a simple scheduling policy in constrained

queueing networks which (roughly speaking) chooses the feasible control decision that

serves the queues with largest total weight (e.g. queue length, head-of-line waiting time,

etc.), at each time. MaxWeight scheduling has been shown to exhibit good performance

in various settings (see, e.g., [4, 7, 16, 17, 18, 6]), including by [36] who study an open

one-hop network version of our setting. In contrast, we find that MaxWeight achieves a

suboptimal exponent in our closed network setting.

Large deviations in queueing systems. There is a large literature on charac-

terizing the probability of building up long queues in open queueing networks, including

controlled [see, e.g., 46, 47] and uncontrolled [see, e.g., 48, 49] networks. The work closest

to ours is that of [45], who established the relationship between Lyapunov functions and

buffer overflow probability for open queueing networks. The key difficulty in extending

the Lyapunov approach to closed queueing networks is the lack of a natural reference

state where the Lyapunov function equals to 0 (in an open queueing network the refer-

ence state is simply 0). It turns out that as we optimize the MaxWeight parameters we

are also solving for the best reference state.

Applications: shared transportation systems, scrip systems. [21] studied
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revenue-maximizing state-independent assignment control by solving a minimum cost

flow problem in the fluid limit. [2] modeled the system by a closed queueing network and

derived the optimal static routing policy that sends empty vehicles to under-supplied

locations. [1] adopted the Gordon-Newell closed queueing network model and consid-

ered static pricing/repositioning/matching policies that maximizes throughput, welfare

or revenue. In contrast to our work, which studies state-dependent control, these works

consider static control that completely relies on system parameters. In terms of conver-

gence rate to the fluid-based solution, [21] did not study the convergence rate of their

policy, [2] observed from simulation an O(1/
√
K) convergence rate as the number of sup-

ply units in the closed system K goes to infinity,3 while [1] showed finite system bounds

with an O(1/K) convergence rate as K → ∞ in the absence of service times and an

O(1/
√
K) convergence rate with service times. All these works propose static policies,

and we show that no static policy can achieve exponentially small loss. In contrast, un-

der the CRP condition, we obtain exponentially small loss in K, and further obtain the

optimal exponent.

Our approach of studying control while initially ignoring travel delays is mirrored

in several papers in this literature, starting with [42]. The main model in [1] ignores

travel delays, and the paper subsequently shows that all its findings are robust to that

assumption. Similarly, subsequent to the present paper, [22] study the control of (large)

networks of circulating resources by ignoring travel delays and then show robustness of

their results to delays.

There have been a few papers that model and analyze scrip systems, e.g., [50, 51, 25,

43] etc. The closest paper to ours is [25], which considers the case where the compatibil-

ity graph is fully connected and the demand arrival rates are identical for each demand

type. They propose a service selection rule which is the same as the vanilla version of
3In the setting of [2], the loss probability can remain positive even as K grows, in contrast with our

setting where the loss probability can always be sent to 0 because of our CRP condition under which
the flows in the network can potentially be balanced. The comparison of convergence rates is most
meaningful if we restrict attention to instances in their setting where the loss probability goes to zero as
K grows.
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our proposed policy and show that it is optimal in their symmetric setting. We signif-

icantly generalize their model by considering asymmetric demand arrivals and general

skill compatibility graphs. For other examples of scrip systems, see, e.g., [40, 26], etc.

Online stochastic bipartite matching. There is a related stream of research on

online stochastic bipartite matching, see, e.g., [27, 28, 29, 30]. Different types of supplies

and demands arrive over time, and the system manager matches supplies with demands

of compatible types using a specific matching policy, and then discharges the matched

pairs from the system. Our work is different in that we study a closed system where

supply units never enter or leave the system. Moreover, this literature focuses on the

stability and other properties under a given policy instead of looking for the optimal

control [except 29].

Other related work. [34, 35, 36] and others study how process flexibility can facili-

tate improved performance, analogous to our use of dispatch control to improve demand

fulfillment. Along similar lines, network revenue management is a classical dynamic re-

source allocation problem, see, e.g., Gallego and Van Ryzin [31] and Talluri and Van

Ryzin [32], and recent works, e.g., Jasin and Kumar [52] and Bumpensanti and Wang

[33]. Different types of demands arrive over time, and a centralized decision is made at

each arrival. Again, each of these settings is “open” in that each service token or supply

unit can be used only once, in contrast to our closed setting.

2.1.4 Organization of the paper

The remainder of our paper is organized as follows. In Section 2.2 we introduce the

basic notation and formally describe our baseline model together with the performance

metric. In Section 2.3 we introduce the family of Scaled MaxWeight policies. In Section

2.4 we present our main theoretical result, i.e., that there is an exponent optimal SMW

policy for any set of primitives satisfying our main assumption. In Section 2.5 we prove

the exponent optimality of SMW policies. In Section 2.6 we discuss the application to

shared transportation systems. In Section 2.7 we discuss the application to scrip systems.
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We conclude in Section 2.8.

Notation. We use ei to denote the i-th unit vector, and 1 the all-1 vector. The di-

mensions of the vectors will be clear from the context. For a finite index set A, define

1A ,
∑

i∈A ei. For a set Ω in Euclidean space Rn, denote its relative interior by relint(Ω).

For event C, we define the indicator random variable I{C} to equal 1 when C is true,

else 0. All vectors are column vectors if not specified otherwise.

2.2 The Model and Preliminaries

2.2.1 Basic Setting

We study the dynamic assignment problem in networks with circulating resources. We

consider an infinite-horizon continuous-time model, with a fixed number K of identical

supply units that circulate in the network. Formally, we consider a sequence of systems

indexed by K ∈ Z+.

The (Assignment) Compatibility Graph. The assignment compatibility struc-

ture is described by a bipartite compatibility graph G = (VS∪VD, E), where the K supply

units are distributed over the supply nodes VS, and demand units arrive at the demand

nodes4 VD. We add a prime symbol to the indices of nodes in VD to distinguish between

the two. Let m , |VS| and n , |VD| ∈ Z+ be the number of supply and demand nodes,

respectively. Each edge (i, j′) ∈ E represents a compatible pair of supply and demand

nodes, i.e., a supply unit currently stationed at i ∈ VS can serve demand arriving at

j′ ∈ VD. See Figure 2.1 for an illustration. We denote the neighborhood of a supply node

i ∈ VS (resp. demand node j′ ∈ VD) in G as ∂(i) ⊆ VD (resp. ∂(j′) ⊆ VS). Moreover, for

any set of supply nodes A ⊆ VS, we also use ∂(A) to denote its demand neighborhood

(and vice versa).

Demand Types and Arrival Process. We denote the type of a demand as (j′, k) ∈
4The physical meaning of the nodes depends on the application. For example, in ride-hailing the

supply nodes and demand nodes are replicas of each other and both stand for physical locations. However,
our result does not require the symmetry between these two sets of nodes.
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Figure 2.1: The bipartite (assignment) compatibility graph: On the left are supply
nodes i ∈ VS, and on the right are demand nodes j′ ∈ VD. The edges entering a demand
node j′ encode compatible (e.g., nearby) supply nodes that can serve node j′. The
(normalized) rate of arrival of demand with origin j′ is 1Tφj′ . Assuming no demand is
lost, the (normalized) rate of arrival of supply units to i is 1Tφ(i) (this is the normalized
arrival rate of demand with destination i).

VD × VS, where j′ is its origin node and k is its destination node. Demand units of each

type (j′, k) arrive sequentially following independent Poisson processes with rates φ̂Kj′k.

We use φ̂K to denote the n×m matrix of demand arrival rates.

We will consider the asymptotic regime where both the number of supply units K

and demand arrival rates φ̂K , Kφ̂ (for some φ̂ which does not depend on K) go to

infinity together. We call this scaling the large market regime. We will later show that

the large market scaling ensures that each supply unit waits an O(1) amount of time in

expectation between two consecutive assignments under the family of policies we prescribe

(see Section 2.4).

The demand type distribution is φ , φ̂

1Tφ̂1
, which is the normalized version of φ̂.

We will find it convenient to carry out our technical development and analysis in terms

of φ ∈ Rn×m instead of φ̂ wherever the total arrival rate 1Tφ̂1 does not play a role.

We denote the k-th column of φ (i.e., the normalized arrival rates at different origins of

demands with destination k) as φ(k), and the transpose of the j′-th row of φ (i.e., the

normalized arrival rates of demands with origin j′ and different destination nodes) as φj′ .

Thus, the (normalized) rate of a demand units arriving at node j′ is 1Tφj′ , and, assuming

all demands are matched, the (normalized) rate of supply units arriving at node k is

1Tφ(k). Without loss of generality, we exclude demand nodes with zero demand arrival

67



rate from VD.

We use the term network to refer to a given set of primitives: an assignment compat-

ibility graph G and demand type distribution matrix φ. We make two mild assumptions

on the network.

Assumption 2.1 (Connectedness). A network (G,φ) is connected if for every ordered

pair of distinct supply nodes (k0, i) ∈ VS×VS, k0 6= i, there is a finite sequence of demand

types (j′1, k1), · · · , (j′`, k` = i) such that φj′rkr > 0 for all r = 1, · · · , `, and kr−1 ∈ ∂(j′r)

for all r = 1, · · · , `.

Assumption 2.1 requires that for every pair of supply nodes, there is a sequence of

demand types with positive arrival rates and corresponding compatible supply nodes that

would take a supply unit from one node eventually to the other node.

We now observe that if the compatibility graph affords ample flexibility, specifically,

if the destination for every demand type belongs to the compatible neighborhood of

the origin, then the control problem is trivial. The reason is simple: we can “reserve” a

supply unit for each demand origin node j′ ∈ VD, and each reserved supply unit will never

leave the corresponding neighborhood ∂(j′), ensuring that no demand is ever lost. (We

formalize this observation in Appendix B.6.) This motivates the following assumption

to ensure that the flexibility available is sufficiently limited that the assignment control

problem at hand is non-trivial.

Assumption 2.2 (Limited flexibility). A network (G,φ) has limited flexibility if there

exists an origin-destination pair j′ ∈ VD and k ∈ VS such that k /∈ ∂(j′) and φj′k > 0,

i.e., the destination k for these demand units is not a supply node compatible with their

origin j′.

Simplifying assumptions regarding relocation of supply. We make the sim-

plifying assumptions that the relocation of a supply unit upon serving a demand is in-

stantaneous, and that a supply unit does not move unless assigned. These assumptions

parallel that in an emerging line of works studying control of systems with circulating
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resources, e.g. [1, 22]. The assumptions keep the state space manageable while retaining

the complex supply externalities between nodes (namely, serving a demand redistributes

the supply by causing a supply unit to relocate to a specific destination), which is the

key challenge that we focus on. We relax the instantaneous relocation assumption in

Section 2.6.1 and in Section 2.6.2 (simulations) and show that our insights are robust

to this assumption. In Section 2.8 we observe that “empty” relocation (as may occur in

ride-hailing) which is state independent can be seamlessly integrated into our framework.

System State. For the K-th system, its state at any time is given by XK , an m-

dimensional vector that tracks the number of supply units at each supply node. The

state space of the K-th system is thus given by ΩK ,
{
x ∈ {0, 1, 2, . . . }m

∣∣1Tx = K
}
.

Note that the normalized state 1
K

XK lies in the m-probability simplex Ω = {x ∈ Rm|x ≥

0,1Tx = 1}. We use XK(0) to denote the initial state.

2.2.2 Optimal Assignment Control

Given the above setting, the problem we want to study is how to design assignment

policies which minimize the probability of losing demand. For fixed K, this problem

can be formulated as an average cost Markov decision process on a finite (albeit, very

large) state space, and is thus known to admit a stationary optimal policy (i.e., where the

assignment rule at any time only depends on the current system state XK ; see Proposition

5.1.3 in [41]).

Assignment policies. Upon the arrival of an incoming demand of type (j′, k), the

platform must immediately assign a supply unit from a compatible node of j′; subse-

quently, after serving the demand, the supply unit becomes available at the destination

node k. If no supply unit is available at any compatible node of j′, then we experience a

demand loss, wherein the demand unit leaves the system without being served. Let UK be

the set of stationary policies for the K-th system. An assignment policy U ∈ U consists

of, for each j′ ∈ VD, k ∈ VS, a sequence of mappings
(
UK ∈ UK

)∞
K=1

, which map the

current queue-length vector XK and demand type (j′, k) to UK [XK ](j′, k) ∈ ∂(j′) ∪ {∅}.
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Here UK [XK ](j′, k) = i means given the current state XK , we assign a supply unit from

i ∈ ∂(j′) to fulfill demand with origin j′ and destination k, and UK [XK ](j′, k) = ∅ means

that the platform does not assign supplies to type (j′, k) demands and hence any such

demand is lost. When XK
i = 0 for all i ∈ ∂(j′), this forces UK [XK ](j′, k) = ∅ since there

is no supply at nodes compatible to j′. For simplicity of notation, we refer to the policies

by U instead of UK .

System Evolution. Let tr be the r-th demand arrival epoch after time 0. Denote

the state of the system just before tr by XK(t−r ) (the initial state is XK(0)); note that

this incorporates the state change due to serving the (r− 1)-th demand arrival for r > 1.

Now suppose the platform uses an assignment policy U , and the r-th demand arrival has

origin node o[r] with destination d[r] (sampled from demand type distribution φ). Let

S[r] , UK [XK(t−r )](o[r], d[r]) be the chosen supply node (potentially ∅). Then, formally,

the system state updates as per

XK(tr) ,

 XK(t−r )− eS[r] + ed[r] if S[r] ∈ VS ,

XK(t−r ) if S[r] = ∅ .

Performance Measure. The platform’s goal is to find an assignment policy that

loses as few demands as possible in steady state. A natural performance measure is the

long-run average demand-loss probability. Formally, for U ∈ U we define

PK,Uo , min
XK,U (0)∈ΩK

E

 lim
T→∞

1

T

T∑
r=1

I
{
UK [XK,U(t−r )](o[r], d[r]) = ∅

} , (2.1)

PK,Up , max
XK,U (0)∈ΩK

E

 lim
T→∞

1

T

T∑
r=1

I
{
UK [XK,U(t−r )](o[r], d[r]) = ∅

} . (2.2)

Here (2.1) is an optimistic (subscript “o” for optimistic) performance measure (which

underestimates demand-loss probability), whereas (2.2) is a pessimistic (subscript “p” for

pessimistic) performance measure (which overestimates demand-loss probability). Since

U ∈ U is a stationary policy, the limits in (2.1) and (2.2) exist. Note that PK,Uo ≤ PK,Up .

We will establish the exponent optimality of our policy by showing that its pessimistic
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measure decays as fast with K as any policy’s optimistic measure can possibly decay.

The exact values of (2.1) and (2.2) for fixed K are challenging to study. To this end,

the main performance measures of interest in this work are the decay rates of PK,Uo and

PK,Up as K →∞:

γo(U) , − lim inf
K→∞

1

K
logPK,Uo , (2.3)

γp(U) , − lim sup
K→∞

1

K
logPK,Up . (2.4)

For brevity, we henceforth refer to these as the demand-loss exponents. Note that γo(U) ≥

γp(U). The definition (2.3) uses lim inf so that we can state a strong converse result by

upper bounding supU∈U γo(U), since no policy can achieve a larger demand-loss exponent.

Similarly, the definition (2.4) uses lim sup so that we can state a strong achievability result

(for our proposed policies the limit will exist; when the limit exists we write γ(U) ,

γo(U) = γp(U)).

2.2.3 The Complete Resource Pooling (CRP) Condition

We now make a few additional definitions to allow us to state our main assumption.

We say that a subset of demand nodes J ( VD has limited flexibility if there is some

demand node j′ ∈ J and supply node k /∈ ∂(J) such that φj′k > 0. (Informally, there is

a demand type which requires supply units to leave the neighborhood of J .) We denote

the set of limited-flexibility subsets by J . Assumption 2.2 guarantees that there is at

least one non-trivial singleton J and hence that J 6= ∅.

Observe that J has limited flexibility if and only if

µJ ,
∑
j′∈J

∑
k/∈∂(J)

φj′k > 0 . (2.5)

We call µJ the net demand of J , since it captures the probability that a demand arrival

has origin in J and destination outside ∂(J) (and hence requires a supply unit to leave
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∂(J)). Similarly, we define the (optimistic) net supply to J as

λJ ,
∑
j′ /∈J

∑
k∈∂(J)

φj′k . (2.6)

Informally, λJ the probability that a demand arrival is such that it can (depending on

the assignment decision) cause a supply unit to enter ∂(J).

The following is the main assumption of this paper.

Assumption 2.3 (Complete Resource Pooling). We assume that for all subsets of de-

mand nodes J with limited flexibility (i.e., J ( VD with positive net demand µJ > 0) we

have that λJ > µJ , where the net supply λJ was defined in (2.6), and the net demand µJ

was defined in (2.5).

The intuition behind this assumption is simple: it assumes the system is “balanceable”

in that for each subset J ( VD of demand nodes, supply arrives sufficiently fast at neigh-

boring nodes to meet the demand arriving to J , on average. Assumption 2.3 is equivalent

to a strict version of the condition in Hall’s marriage theorem. It is also closely related

to the Complete Resource Pooling (CRP) condition in queueing: we show (formalized

in Proposition B.2 that in Appendix B.9) if the “open queueing network counterpart” of

network (G, φ̂) satisfies the CRP condition defined in [17], then the network (G, φ̂) satis-

fies Assumption 2.3. The control problem under CRP is non-trivial: In Section 2.4.2 we

will show that all state-independent policies and a naive state-dependent policy perform

inadequately.

We remark that the condition λJ > µJ is equivalent to
∑

i∈∂(J) 1Tφ(i) >
∑

j′∈J 1Tφj′

(informally, that the total supply to J exceeds total demand of J), but the representation

λJ > µJ will turn out to be more closely related to our analysis and our main theorem.

We will find that the limited-flexibility subsets J with ratio λJ/µJ close to 1, i.e., only

a small excess of supply over demand, will be pivotal in determining the performance of

our policies and optimal policy design. We illustrate the quantities involved (J , λJ and

µJ) and their impact on policy performance and design via an example at the end of the

next section (Example 2.1).
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We show that Assumption 2.3 is necessary in order to obtain exponentially small loss

in Proposition 2.1.

Proposition 2.1. For any G and φ’s such that Assumption 2.3 is violated, it holds

that for any policy U , the demand loss probability does not decay exponentially,5 i.e.,

γo(U) = γp(U) = 0 where γo(U) and γp(U) are defined in (2.3) and (2.4).

In other words, if Assumption 2.3 is violated, this means the system has significant

distributional imbalance of demand and demand loss is unavoidable. The intuition is

similar to that of Hall’s marriage theorem [53]: if there is a limited-flexibility subset J

with net supply (weakly) less than the net demand, then it is impossible for any policy to

ensure that all but an exponentially small fraction of demand originating in J is served.

The proof of Proposition 2.1 is in Appendix B.6.

2.2.4 Sample Path Large Deviation Principle

Our main theoretical result is the culmination of a sharp large deviations analysis,

characterizing the best possible demand loss exponent. We provide a brief introduction

to classical large deviations theory in this subsection.

For each fixed K ∈ Z+ and T ∈ (0,∞), define a scaled sample path of accumulated de-

mand arrivals ĀK(·) ∈ (L∞[0, T ])n×m as follows.6 Let {AKj′k(·)}j′∈VD,k∈VS be independent

Poisson processes where AKj′k(·) has rate Kφ̂j′k. Let

ĀK
j′k(t) ,

1

K
AK
j′k(t) ∀t ∈ [0, T ] . (2.7)

Let µK be the law of ĀK(·) in (L∞[0, T ])n×m. For all f ∈ Rn×m
+ , let

Λ∗(f) ,


∑

j′∈VD

∑
k∈VS

(
fj′k log

fj′k

φ̂j′k
− fj′k + φ̂j′k

)
if f > 0 ,

∞ otherwise .
(2.8)

5If the inequality in Assumption 2.3 is strictly reversed for some J ( VD, i.e., λJ < µJ then we have
a demand loss probability which is at least ε > 0 for all K, where ε =

∑
j′∈J 1

Tφj′ −
∑
i∈∂(J) 1

Tφ(i).
6Here L∞[0, T ] denotes the space of bounded functions on [0, T ] equipped with the supremum norm.
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For any set Γ, let Γ̄ denote its closure, and Γo denote its interior. Below is the sample

path large deviation principle (also known as Mogulskii’s Theorem, see [54]):

Fact 2.1. For measures {µK} defined above, and any arbitrary measurable set Γ ⊆

(L∞[0, T ])n×m, we have

− inf
Ā∈Γo

IT (Ā) ≤ lim inf
K→∞

1

K
log µK(Γ) ≤ lim sup

K→∞

1

K
log µK(Γ) ≤ − inf

Ā∈Γ̄
IT (Ā) , (2.9)

where the rate function7 is:

IT (Ā) ,


∫ T

0
Λ∗
(

˙̄A(t)
)
dt if Ā(·) ∈ AC[0, T ], Ā(0) = 0 ,

∞ otherwise .
(2.10)

Here AC[0, T ] is the space of absolutely continuous functions on [0, T ], and ˙̄A(t) is the

derivative of Ā at time t when the derivative exists.

Informally, this fact says the following. (Suppose the leftmost term and rightmost

term in (2.9) are equal.) The probability exponent (with respect to K) for the event Γ

is equal to the exponent for the most likely fluid sample path (a limit of scaled sample

paths, see Section 2.5.1) of demand Ā such that the event occurs. The exponent for Ā

is the time integral of the exponent for its time derivative, and the latter is given by the

function (2.8) where the summand is the large deviations exponent of a (sequence of)

Poisson random variable(s) with mean φ̂j′k.

In the present work, the relevant Γ will be the demand-loss event. The reason the

sample paths of accumulated demand arrivals fully determine whether this event occurs

is because given any deterministic policy (as the policies we propose will be), the arrival

process A(·) and the initial configuration X(0) uniquely determine the evolution of the

system state X(·), and hence determine demand loss. The key will be to understand the

most likely sample paths of the arrival process which lead to demand loss. Our converse

(impossibility) bound on the exponent will be established by constructing a fluid sample

path of demand arrivals that always leads to demand loss regardless of the policy.
7Since absolutely continuous functions are differentiable almost everywhere, the rate function is well-

defined.
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2.3 Scaled MaxWeight Policies

The traditional MaxWeight policy is a celebrated approach to scheduling which has

been effectively deployed in many applications such as cloud computing, communication

networks, traffic management, etc., [see, e.g., 4, 55]. MaxWeight (hereafter referred

to as vanilla MaxWeight) allocates the service capacity to the queue(s) with largest

“weight” (where weight can be any relevant parameter such as queue length, head-of-

the-line waiting time, etc.). In our setting, supply units form queues and demand is like

service tokens, and vanilla MaxWeight would correspond to assigning from the compatible

supply node with most supply units (with appropriate tie-breaking rules).

Besides its simplicity, one reason for the popularity of MaxWeight is that it is known

to be asymptotically optimal in many problem settings (e.g., see [47, 16, 36, 6]). In our

setting too, we will find that vanilla MaxWeight is asymptotically optimal. In fact, we

will show that it achieves an exponentially small loss. However, we will find that, in

general, vanilla MaxWeight does not achieve the largest possible loss exponent. (We will

provide a concrete example at the end of this section.) Suboptimality of the exponent

prompts us to consider alternate control policies.

We generalize vanilla MaxWeight by attaching a positive scaling parameter αi to

each queue i ∈ VS, and assign from the compatible queue with largest scaled queue

length Xi/αi. Without loss of generality, we normalize α s.t. 1Tα = 1, or equivalently,

α ∈ relint(Ω). We call this family of policies Scaled MaxWeight (SMW) policies, and use

SMW(α) to denote SMW with parameter α.

The formal definition of SMW is as follows.

Definition 2.1 (Scaled MaxWeight SMW(α)). Fix α ∈ relint(Ω), i.e., α ∈ Rm such

that αi > 0 ∀i ∈ VS and
∑

i∈VS αi = 1. Given system state X(t−r ) just before the r-th

demand arrival and for demand arriving at demand node j′, SMW(α) assigns from

argmaxi∈∂(j′)

Xi(t
−
r )

αi
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if maxi∈∂(j′)
Xi(t

−
r )

αi
> 0; otherwise the demand is lost. (If there are ties when determining

the argmax, it assigns from the location with highest index.8)

As may be expected, SMW policies tend to equalize the scaled queue lengths if CRP

holds. The following fact is formalized later in Proposition 2.5 in Section 2.5.

Remark 2.1 (Resting state under SMW(α)). If Assumptions 2.1, 2.2 and 2.3 hold then

for any α ∈ relint(Ω), the SMW(α) policy has a “resting state” α: Specifically, consider

using SMW(α) on a sequence of systems indexed by the number of supply units K. Then

there exists T0 = T0(α) > 0 which does not depend on K, such that for any T > T0,

lim sup
K→∞

(
max

XK(0)∈ΩK

∥∥ 1
K

XK,α(T )−α
∥∥

2

)
= 0 almost surely ,

where XK,α(T ) is the state of the K-th system at time T .

DemandSupply

1

4 4’

2

3

2’

3’

1’

Figure 2.2: An example compatibility graph.

We conclude this section with an example which illustrates our model and SMW

policies, and provides a brief preview of our main result.

Example 2.1. Consider a network with “line-of-four-nodes” compatibility graph given as

G = (VS ∪VD, E) = ({1, 2, 3, 4}∪{1′, 2′, 3′, 4′}, {11′, 12′, 21′, 22′, 23′, 32′, 33′, 34′, 43′, 44′}) ;

see Figure 2.2. Let the demand type distribution φ, supported on types {1′3, 2′4, 3′1, 4′2},

be

φ1′3 = φ2′4 = 0.25 , φ3′1 = 0.1 , φ4′2 = 0.4 .

8Our analysis and results are unchanged if any other deterministic tie-breaking rule is employed
instead.
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It is easy to verify that the network (G,φ) satisfies Assumptions 2.1 and 2.2. It also

satisfies the CRP condition (Assumption 2.3): Table 2.3 lists the limited-flexibility subsets

J , i.e., the demand node subsets J whose net demand µJ > 0, and their neighborhoods,

net supply λJ and net demand. For example, λ{1′} = φ3′1 + φ4′2 = 0.5 and µ{1′} = φ1′3 =

0.25. We see that the net supply exceeds net demand λJ > µJ for each limited-flexibility

subset, as required. We also observe that the log ratio ξJ , log
(
λJ
µJ

)
is smallest for

J = {4′}.

Our main result (in the next section) will tell us that because this network satisfies

our assumptions, for any α ∈ relint(Ω), the SMW(α) policy achieves a loss which decays

exponentially in K. The result will moreover say that the loss exponent achieved by

SMW(α) is explicitly given by γ(α) = minJ∈J 1T
∂(J)α · ξJ > 0, and establish that there is

an SMW policy which is globally exponent optimal. In particular, in this example:

• (Optimal SMW policy) The SMW policy with

α = ᾱ =
[
b
2

b
2

1−b
2

1−b
2

]T
for b = log 1.25

log 2+log 1.25
≈ 0.244 (2.11)

has (normalized) resting state ᾱ and achieves loss exponent γ(ᾱ) = log 1.25 · log 2
log 2+log 1.25

≈

0.169. SMW(ᾱ) maximizes γ(α) and is, in fact, exponent optimal among all pos-

sible policies.

• (Vanilla MaxWeight achieves a suboptimal exponent) The vanilla MaxWeight pol-

icy has (normalized) resting state
[

1
4

1
4

1
4

1
4

]T
and achieves a loss exponent

0.5 log 1.25 ≈ 0.112.

Note that the resting state ᾱ of the exponent optimal policy “protects” the subset {4′}

which has the smallest λJ/µJ by putting α3 + α4 = 1 − b ≈ 75.6% fraction of supply in

its neighborhood.9

9In this example, it turns out that the achieved exponent γ(α) = max
(
(α1 +α2)ξ{1′}, (α3 +α4)ξ{4′})

hinges entirely on the tradeoff between protecting {1′} and {4′}. Specifically, SMW with any α ∈
relint(Ω) satisfying α3 +α4 = 1− b ≈ 75.6% is exponent optimal, and α defined in (2.11) represents one
such choice.

77



Table 2.1: Limited-flexibility subsets J ∈ J in Example 2.1, their neighborhood ∂(J),
net demand µJ and net supply λJ .

J ∂(J) µJ λJ ξJ , log
(
λJ
µJ

)
{1′} {1, 2} 0.25 0.5 0.69
{1′, 2′} {1, 2, 3} 0.25 0.5 0.69
{3′, 4′} {2, 3, 4} 0.1 0.5 1.61
{4′} {3, 4} 0.4 0.5 0.22

2.4 Main Result

In this section we present our main result, which says that for any network such that

CRP holds: (i) All Scaled Maxweight (SMW) policies yield exponential decay of demand

loss in the number of supply units K, with an exponent which we explicitly specify. (ii)

For scaling parameter vector α which maximizes the exponent among SMW policies,

the SMW(α) policy is exponent optimal among all possible policies. In sharp contrast,

we show in Section 2.4.2 that that no state-independent assignment policy can achieve

loss which decays exponentially in K, and moreover that if demand arrival rates are not

perfectly known, then the loss of a state-independent policy (generically) does not vanish

as K →∞. Also, a naive state-dependent control policy suffers Ω(1) loss as K →∞.

Recall from Section 2.2.3 the set of subsets of demand nodes with limited flexibility

J =

J ( VD :
∑
j′∈J

∑
k/∈∂(J)

φj′k > 0

 . (2.12)

The following is our main result.

Theorem 2.1 (Main Result). For any network (G,φ) satisfying Assumptions 2.1, 2.2

and 2.3, we have:

1. Exponentially small loss under any SMW policy: For any α ∈ relint(Ω),
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SMW(α) achieves exponential decay of the demand loss probability with exponent 10,11

γ(α) = min
J∈J

BJ log

(
λJ
µJ

)
> 0 , (2.13)

where BJ , 1T
∂(J)α , λJ ,

∑
j′ /∈J

∑
k∈∂(J)

φj′k , and µJ ,
∑
j′∈J

∑
k/∈∂(J)

φj′k .

2. There is an exponent optimal SMW policy: Under any policy U , it must be that

γp(U) ≤ γo(U) ≤ γ̄ , where γ̄ = sup
α∈relint(Ω)

γ(α) . (2.14)

Thus, there is an SMW policy that achieves an exponent arbitrarily close to the optimal

one.

The first part of the theorem states that for any SMW policy with α in the rela-

tive interior of Ω, the policy achieves an explicitly specified positive demand loss expo-

nent γ(α), i.e., the demand loss probability decays as e−(γ(α)−o(1))K as K → ∞. The

second part of the theorem provides a universal upper bound γ̄ on the exponent that

any policy can achieve, i.e., for any assignment policy U , the demand loss probability

is at least e−(γ̄+o(1))K . Crucially, γ̄ is identical to the supremum over α of γ(α). In

other words, there is an (almost) exponent optimal SMW policy, and moreover, the scal-

ing parameters for this policy can be obtained as the solution to the explicit problem:

maximizeα∈relint(Ω)γ(α).

We note that Theorem 2.1 is qualitatively different from the numerous results showing

near optimality of (vanilla) maximum weight matching in various open queueing network

settings [e.g., 16, 17, show that vanilla MaxWeight asymptotically minimizes workload

in heavy-traffic in certain open queueing networks under the CRP condition]. Despite

our objective (minimize demand loss) being symmetric in all the m queues, our result

says that there is an optimal scaled maximum weight policy, that is not symmetric in
10We show that for SMW policies, the lim inf in (2.3) and lim sup in (2.4) are equal, i.e., γo(α) = γp(α).

(We use α to represent the policy SMW(α) in the argument of the γs.)
11Note that the argument of the logarithm has a strictly larger numerator than denominator for every

J ( VD since Assumption 2.3 holds, implying that γ(α) is the minimum of finitely many positive
numbers, and hence is positive.
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the m queues; rather, it is uses asymmetric scaling factors that optimally account for the

network primitives.

Intuition for γ(α). Consider the expression for γ(α) in (2.13). It is a minimum over

subsets J ∈ J of demand nodes of a certain “robustness” of the subset to demand loss.

For subset J , the robustness of SMW(α)’s ability to serve demand arising in J is the

product of two terms BJ × log
(
λJ
µJ

)
(see Figure 2.3 for an illustration of the quantities

involved):

• “Protection” due to α: At the resting point α (see Remark 2.1) of SMW(α), the supply

at neighboring nodes is BJ = 1T
∂(J)α, and the larger that is, the more unlikely it is that

the subset will be deprived of supply.

• “Inherent robustness” arising from excess of supply over demand: The logarithmic term

ξJ , log(λJ/µJ) captures the inherent robustness of that subset is to being drained of

supply. Recall that λJ is the (optimistic) net supply coming in to ∂(J), and that µJ

is the net demand taking supply out of ∂(J). The larger the ratio λJ/µJ , the more

oversupplied and hence robust J is.

Supply Demand

𝝀𝑱
𝝁𝑱

𝑱

𝝏(𝑱)

𝑩𝑱

𝟎

𝝀𝑱

𝝁𝑱

Figure 2.3: An illustration of the terms BJ , λJ , and µJ in Theorem 2.1.

Remarkably, the expression for robustness of subset J under SMW(α) is as large (i.e.,

as good) as the demand loss exponent for subset J alone would be, with starting state α,

under a “protect-J” policy which exclusively protects J at the expense of all other nodes.

(Similar to standard buffer overflow probability calculations, the likelihood of the supply

at ∂(J) being depleted by KBJ units under a protect-J policy is Θ((λJ/µJ)−KBJ ) =

Θ(exp(−KBJ log(λJ/µJ))). We then set BJ to the starting scaled supply at ∂(J), i.e.,
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BJ = 1T
∂(J)α, to establish the claim.) Thus, Theorem 2.1 part 1 says that given the

resting state α, SMW(α) achieves an exponent such that it suffers no loss from the

need to protecting multiple subsets J simultaneously. Given this remarkable property, it

is intuitive that the globally optimal exponent can be achieved via an SMW policy by

choosing α suitably (part 2 of the theorem).

Structural insights. The choice of scaling factors (resting state) α for SMW which

maximizes the exponent γ(α) as a function of network primitives (G,φ) is discussed in

Section 2.4.1.

Proof approach. We establish Theorem 2.1 via a novel Lyapunov analysis for a

closed queueing network. A key technical challenge we face in our closed queueing network

setting is that it is a priori unclear what the ideal state for the system is. This is

in contrast to open queueing network settings in which the ideal state is typically the

one in which all queues are empty, and the Lyapunov functions considered typically

achieve their minimum at this state. We overcome the challenge of unknown ideal state

via an innovative approach as follows: We define a policy-specific Lyapunov function

that achieves its minimum at the resting point of the SMW policy we are analyzing,

and use this Lyapunov function to characterize its exponent γ(α). Moreover, given the

optimal choice of α, our tailored Lyapunov function corresponding to this choice of α

helps us establish our converse result. In particular, the ideal state is finally revealed

as a byproduct of our analysis to be equal to the optimal choice of α. Our technical

machinery may be broadly useful in deriving large-deviation optimal controls in settings

where the appropriate target state is apriori unclear. Our analysis is described in Section

2.5.

Transient performance. Our analysis extends readily to finite horizon performance:

Considering transient behavior over a finite horizon (which is not too short), under a start-

ing scaled state XK(0)
K

= α ∈ relint(Ω), we find that the optimal demand loss exponent

is γ(α) given by (2.13) and SMW(α) achieves it. The formal statement is provided in
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Appendix B.4.4.

Utilization Rate of Supply Units. Recall that we consider the large market

regime where the number of supply units K and the demand arrival rates φ̂K , Kφ̂

scale up at the same rate. The next proposition shows that in this regime under any

SMW policy, supply units are “frequently” in use, in the sense that is formalized below.

Definition 2.2 (Resource utilization rate). Given a policy U ∈ U , the resource utilization

rate ξK,U is the average number of demands served per supply unit per unit time in steady

state in the K-th system.

Proposition 2.2. Consider any network (G,φ) satisfying Assumptions 2.1, 2.2 and 2.3

and any α ∈ relint(Ω). Consider the SMW(α) policy and denote its resource utilization

rate by ξK,α.

1. (Utilization rate) There exists c > 0 such that for any K > 0 we have ξK,α > c.

2. (Waiting time) Suppose the head-of-line unit from the queue at the supply location

is chosen in a first-in-first-out (FIFO) manner when implementing SMW(α), then

there exists w < ∞ such that for every K > 0, for every current state X(t), and

every supply unit (distinguished by its location in VS and its queue position), the

expected waiting time before the supply unit is assigned is at most12 w.

Proposition 2.2 tells us that for any SMW policy, the resource utilization rate is

bounded below by a positive constant which does not depend on K. See Appendix B.5

for the proof.

2.4.1 Optimal choice of scaling factors

In this subsection, we discuss the optimal choice of the scaling factors (resting state)

α based on Theorem 2.1. We illustrate the structure of the optimal α via two exam-

ples (formal corollaries generalizing each example to arbitrary compatibility graphs are

provided in Appendix B.5).
12The same result also holds when the supply unit is chosen uniformly at random from the queue.
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We start by defining a vulnerable subset as one with small inherent robustness.

Definition 2.3 (Vulnerable subset). Given a compatibility graph G and a sequence of

demand type distributions (φn)n∈Z+, we say that a limited-flexibility subset of demand

nodes J ⊂ J is vulnerable if its inherent robustness vanishes as n grows:

ξJ , log
(
λnJ
µnJ

)
n→∞−−−→ 0 . (2.15)

Our first example considers the case of exactly one vulnerable subset.

Example 2.2 (If one subset of nodes is vulnerable, the optimal α protects it). Consider

the “line-of-four-nodes” compatibility graph introduced in Example 2.1 and Figure 2.2,

and the sequence of demand type distribution matrices.

φn =



1 2 3 4

1′ 0 0 1/4 1/4− ηn

2′ 0 0 0 ηn

3′ δn 0 0 0

4′ 1/4− δn 1/4 0 0


for n ∈ Z+ . (2.16)

We set δn = 1/n and ηn = 1/8 in this example (and consider n > 4). Note that

(G,φn) satisfies Assumptions 2.1, 2.2 and 2.3 for all n > 4.

The subsets of demand locations with limited flexibility are the same for all φn in the

sequence J = {{1′}, {1′, 2′}, {3′, 4′}, {4′}}. Consider these subsets one by one. We have

λ{4′} = 1
2
and µ{4′} = 1

2
− 1

n
, which tells us that {4′} is a “vulnerable” subset since

ξ{4′} , log
(
λ{4′}
µ{4′}

)
= 2

n
+O

(
1
n2

)
n→∞−−−→ 0+ .

Meanwhile, the other subsets are not vulnerable in the sense that ξJ , log(λJ/µJ) remains

bounded away from zero: ξ{1′} = log
(

1/2
3/8

)
n→∞−−−→ log(4/3) > 0, and ξ{1′,2′} = ξ{3′,4′} =

log
(

1/2
1/4

)
= log 2 > 0. We deduce from Theorem 2.3 (as formalized in Corollary B.1 in

Appendix B.5), that for any ε > 0, there exists n0 < ∞ such that, for all n > n0, for

network (G,φn) we have
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(i) (Optimal exponent) The best achievable exponent γ̄ is close to ξ{4′}. Formally,

γ̄ ∈ [(1 − ε)ξ{4′}, ξ{4′}] and, as always, SMW policies suffice to achieve it γ̄ =

supα∈relint(Ω) γ(α).

(ii) (Near optimal α protects vulnerable subset {4′}.) If SMW with scaling factors

α ∈ relint(Ω) achieves a demand-loss exponent γ(α) ≥ (1− ε)ξ{4′}, then it must be

that α3 + α4 ≥ 1− ε. (Note that ∂(4′) = {3, 4}.)

(iii) (Example of near optimal α.) The SMW policy with α =
[
ε
2

ε
2

1−ε
2

1−ε
2

]T
achieves γ(α) = (1− ε)ξ{4′}.

Example 2.2 illustrates Corollary B.1 in Appendix B.5, which demonstrates that if

there is just one vulnerable subset of demand nodes J1, then the exponent optimal SMW

policy has a resting state which puts almost all the supply in the neighborhood of J1. The

intuition is that the total supply located in ∂(J1) follows a random walk which has only

slightly positive drift even if the assignment rule protects it (recall that the definition of

the net supply λJ1 assumes that the policy protects J1), and hence it is optimal to keep

the total supply in ∂(J1) at a high resting point, to minimize the likelihood of depletion.

Our next example illustrates the case of two non-overlapping vulnerable subsets.

Example 2.3 (If there are two non-overlapping vulnerable subsets, the optimal α pro-

tects them in inverse proportion to their inherent robustness). Once again consider the

same compatibility graph as in Example 2.2. We further take the sequence φn given by

(2.16) again with δn = 1/n but change the definition of ηn to ηn = η/n for some fixed

η > 0 (we consider n > 4/min(1, η)). Note that limn→∞φn = φ∗ where φ∗ is given by

(2.16) with δn and ηn both replaced by 0.

The limited-flexibility subsets of demand locations are the same for all φn in the se-

quence J = {{1′}, {1′, 2′}, {3′, 4′}, {4′}}. The two singleton subsets are vulnerable:

ξ{4′} , log
(
λ{4′}
µ{4′}

)
= log

(
1/2

1/2−1/n

)
= 2

n
+O

(
1
n2

) n→∞−−−→ 0+ , ξ{1′} = 2η
n

+O
(

1
n2

) n→∞−−−→ 0+ ,

and ξ{1′}
ξ{4′}

= η + O( 1
n
). The other subsets are not vulnerable since ξ{1′,2′} = ξ{3′,4′} =

log
(1/2

1/4

)
= log 2 > 0. We deduce from Theorem 2.3 (formalized in Corollary B.2 in
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Appendix B.5), that for any ε > 0, there exists n0 < ∞ such that, for all n > n0, for

network (G,φn) we have

(i) (Optimal exponent) The best achievable exponent γ̄ is close to H ,
ξ{4′}ξ{1′}
ξ{4′}+ξ{1′}

=

1
n
· η

1+η
+O

(
1
n2

)
. Formally, γ̄ ∈ [(1− ε)H,H], and, as always, SMW policies suffice

to achieve it γ̄ = supα∈relint(Ω) γ(α).

(ii) (Near optimal α protects vulnerable subsets in inverse proportion to their inherent

robustness.) If SMW with scaling factors α ∈ relint(Ω) achieves a demand-loss

exponent γ(α) ≥ (1− ε)H, then it must be that

α1 + α2
ε
=

ξ{4′}
ξ{4′}+ξ{1′}

= 1
1+η

+O
(

1
n

)
and α3 + α4

ε
=

ξ{1′}
ξ{4′}+ξ{1′}

= η
1+η

+O
(

1
n

)
,

where a ε
= b represents |a− b| ≤ ε. (Recall that ∂(1′) = {1, 2} and ∂(4′) = {3, 4}.)

(iii) (Example of near optimal α.) The SMW policy with

α =
[

η′

2(1+η′)
η′

2(1+η′)
1

2(1+η′)
1

2(1+η′)

]T
for η′ =

ξ{1′}
ξ{4′}

= η +O
(

1
n

)
(2.17)

achieves γ(α) ≥ (1− ε)H.

Example B.2 illustrates Corollary B.2 in Appendix B.5 which tells us that if there

are two non-overlapping vulnerable subsets of demand nodes J1 and J2, then the expo-

nent optimal SMW policy has a resting state which divides the supply between the two

neighborhoods in inverse proportion to the inherent robustness of the vulnerable subsets

1T
∂(J2)α

1T
∂(J1)α

≈ ξJ1

ξJ2

≈ η .

In this simple example, ∂(J1) ∪ ∂(J2) = VS. More generally, if ∂(J1) ∪ ∂(J2) ( VS,

then the optimal α places very little supply at nodes outside the union of neighborhoods

∂(J1) ∪ ∂(J2); see Corollary B.2.

While the examples above (and the corollaries they illustrate) focusing on the cases of

one or two vulnerable subsets are interesting in themselves; we highlight that the optimal

policy characterized in Theorem 2.1 goes much beyond to solve the generalm-dimensional

problem considering all subsets of VS simultaneously. SMW with the optimal α balances
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between the demands of protecting different subsets and is (provably) globally exponent

optimal.

Knowledge requirements. We remark that choosing the exponent optimal α requires

exact knowledge of φ. However, if a noisy estimate of the demand type distribution is

employed to choose α (by maximizing the exponent for the estimated distribution), the

resulting SMW policy will nevertheless perform well: (i) it will achieve exponentially

small loss (as long as the true φ satisfies our assumptions), (ii) if the estimate of φ is

close to the true distribution, then the exponent achieved by the chosen α will be close to

the estimated exponent based on the estimated distribution, since γ(α) given by (2.13)

varies continuously in φ for each α ∈ relint(Ω).

2.4.2 State-independent policies and naive state-dependent poli-

cies are inferior

State-independent policies. Previous works studying control of circulating re-

sources in networks, e.g., [21] and [1], have proposed state-independent control policies.

We show that in our setting, such policies are not competitive with the SMW policies we

have proposed.

We first formally define state-independent policies.

Definition 2.4 (State independent policy). We call an assignment policy U state inde-

pendent if, for each13 K ≥ 1, it maps each j′ ∈ VD, k ∈ VS, r ∈ Z+ to a distribution

uj′k(t
−
r ) over ∂(j′)∪{∅}; for the r-th demand arrival with origin j′ and destination k, the

platform dispatches from i drawn independently from distribution uj′k(t
−
r ), ignoring the

current state X(t−r ) and the history. If i = ∅ or there is no supply at the dispatch node,

the demand is lost.

The next proposition formalizes that for any state independent policy: (i) Exponen-

tially small loss is impossible (even if demand arrival rates are exactly known), (ii) Given
13We suppress the dependence on K in our notation.
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a compatibility graph G and a state independent policy, for “almost all” demand type

distributions φ the loss incurred under the policy does not vanish as K →∞; informally,

asymptotic optimality fails if φ is not exactly known. The proof is in Appendix B.6.

Proposition 2.3 (All state independent policies have inferior performance). Fix a com-

patibility graph G and any state-independent dispatch policy U . We have:

1. (Exponentially small loss is impossible.) For any demand type distribution φ,

PK,Uo = Ω
(

1
K2

)
. In particular, γo(U) = 0, where γo(·) is the optimistic exponent

defined in (2.3).

2. (For almost all φ, asymptotic optimality fails.) Let Supp(φ) , {(j′, k) ∈ VD×VS :

φj′k > 0}. Fix any subset of demand types S ⊆ VD × VS such that each demand

node j′ ∈ VD has at least one demand type in S. Let D(S) , {φ : Supp(φ) = S}

be the set of demand type distributions with support S. Then, then there is a subset

of D(S) which is open and dense in D(S) such that for all φ in this subset it holds

that lim infK→∞ PK,Uo > 0.

Proposition 2.3 makes it clear that as K grows, any state independent policy suffers

from inferior performance. There are two possibilities regarding what is known about the

demand type distribution φ:

1. φ exactly known. In this case, part 1 of Proposition 2.3 tells us that any state

independent policy has loss Ω( 1
K2 ) whereas any SMW policy produces exponentially

small loss (Theorem 2.1 part 1) and moroever SMW(α) is exponent optimal for α

chosen to maximize γ(α) in (2.13).

2. φ is not exactly known. In this case, any state independent policy typically fails to

achieve asymptotic optimality (part 2 of Proposition 2.3) whereas vanilla MaxWeight

(or any fixed SMW policy) achieves exponentially small loss.

A naive state-dependent policy. Would a naive state dependent policy do well in

our setting? For a natural state dependent policy, we show via a simple example that the

loss is Ω(1) as K →∞, even though the example network satisfies all our assumptions.
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Define the naive policy as follows: each time a demand arrives, consider the supply

nodes compatible with the origin in a uniformly random order (independently of the

past), and assign a supply unit from the first compatible supply node which has at least

one supply unit.

Example 2.4 (Naive state-dependent policy loses Ω(1)). Consider again the “line-of-

four-nodes” compatibility graph introduced in Example 2.1 and Figure 2.2, and the demand

type distribution matrix

φ =



1 2 3 4

1′ 0 0 0.21 0.21

2′ 0.08 0 0 0

3′ 0 0.1 0 0

4′ 0.4 0 0 0


. (2.18)

It is easy to verify that this network satisfies Assumptions 2.1, 2.2 and 2.3. Even so, the

naive policy incurs Ω(1) loss in this network (in fact, this is true for any demand type

distribution in a ball of positive radius centered at the right-hand side of (2.18)). The

proof is in Appendix B.6.

Variants of the naive policy which sample a compatible supply using a non-uniform

distribution can similarly be shown to fail in simple examples.

2.5 Analysis of Scaled MaxWeight Policies: Proof of

Theorem 2.1

In this section, we analyze the large deviations behavior of the system and prepare

all the elements needed to prove Theorem 2.1. In Section 2.5.1, we follow the standard

approach for large deviations analyses and characterize the system behavior in the fluid

scale through fluid sample paths and fluid limits. In Section 2.5.2 we take a novel approach

to define a family of Lyapunov functions parameterized by the desired state, since we do
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not know the ideal state for the system. In Section 2.5.3 we follow [45] and show that if

the Lyapunov function (centered at the starting state) is scale-invariant and sub-additive,

a policy that performs steepest descent on this Lyapunov function is exponent optimal. In

Section 2.5.4 we prove that each SMW policy performs steepest descent on the Lyapunov

function centered at its resting state and is hence exponent optimal given its resting

state. We also explicitly characterize the optimal exponent, the most likely sample paths

leading to demand loss, and the critical subsets (i.e., the subsets that are most likely to

be depleted of supply). Finally, we deduce Theorem 2.1.

2.5.1 Fluid Sample Paths and Fluid Limits

For any stationary assignment policy U ∈ U defined in Section 2.2, we define the

scaled demand and queue-length sample paths by (the former was defined in (2.7))

ĀK
j′k(t) ,

1

K
AK
j′k(t) , X̄K,U

i (t) ,
1

K
XK,U
i (t) , (2.19)

Note that for a fixed policy (with specified tie-breaking rules), each given demand sample

path and initial state uniquely determines the state sample path.

To obtain a large deviation result, we need to study the demand process and the

queue-length process in the fluid scaling, as captured in (2.19). We take the standard

approach of fluid sample paths (FSP) (see [47, 45]).

Definition 2.5 (Fluid sample paths). We call a pair (Ā(·), X̄U(·))T , (Ā(·), X̄U(·))t∈[0,T ]

a fluid sample path on [0, T ] (under policy U) if there exists a sequence ( (ĀK(·))t∈[0,T ],

(X̄K,U(·))t∈[0,T ] ) where ĀK(·) are scaled demand sample paths and X̄K,U(·) are state sam-

ple paths determined by the ĀK(·)’s, such that it has a subsequence which converges to

((Ā(·))t∈[0,T ], (X̄U(·))t∈[0,T ]) uniformly on [0, T ].

In short, FSPs include both typical and atypical sample paths. Recall Fact 1, which

gives the likelihood for an unlikely event to occur based on the most likely fluid sample

path that causes the event. Accordingly, the large deviations analysis in Section 2.5.4

will identify the most likely FSP that leads to demand loss.
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Fluid limits are fluid sample paths that characterize typical system behavior, as they

are the formal limits in the Functional Law of Large Numbers [56].

Definition 2.6 (Fluid limits). We call a pair (Ā(·), X̄U(·))T a fluid limit on [0, T ] (under

policy U) if (i) the pair (Ā(·), X̄U(·))T is a fluid sample path; (ii) we have Āj′k(t) = φ̂j′kt,

for all j′ ∈ VD, k ∈ VS and all t ∈ [0, T ].

2.5.2 A Family of Lyapunov Functions

Lyapunov functions are a useful tool for analyzing complex stochastic systems. In open

queuing networks the ideal state is one in which all queues are empty, and correspondingly

the Lyapunov function is chosen to achieve its minimum value in the ideal state, e.g.,

the sum of squared queue lengths Lyapunov function is a popular choice [4, etc.], while

others have also used piecewise linear Lyapunov functions ([57], etc.). Since our setting

is a closed queueing network and ideal state is unknown, we instead construct a novel

approach. We define a family of piecewise linear Lyapunov functions, parameterized by

the desired state α, such that the function achieves its minimum at α.

Definition 2.7. For each α ∈ relint(Ω), define Lyapunov function Lα(x) : Ω→ [0, 1] as

Lα(x) , 1−mini
xi
αi
.

The intuition behind our definition is as follows. The Lyapunov function value is

jointly determined by the desired state α of the system (under some policy) and our

objective of avoiding demand loss, and can be interpreted as the energy of the system

at each state. The desired state should have minimum energy, and the most undesirable

states should have maximum energy. In our case the boundary ∂Ω of Ω is most undesirable

since demand loss only happens there, and correspondingly, Lα(x) = 1 for x ∈ ∂Ω,

whereas Lα(α) = 0 as we want. See Figure 2.4 for an illustration. These functions

moreover have the properties of being scale-invariant and sub-additive, which play a key

role in our analysis. We state and prove these properties in Appendix B.1.
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𝜶

Figure 2.4: Sub-level sets of Lα when |VS| = |VD| = 3. State space Ω is the probability
simplex in R3, and its boundary coincides with {x : Lα(x) = 1,1Tx = 1}. The minimum
value is achieved at α; Lα(α) = 0.

2.5.3 Sufficient Conditions for Exponent Optimality

In this section, given a starting state, we provide a converse bound on the exponent

for any stationary policy U ∈ U , and derive sufficient conditions for a policy to achieve

this bound.

We use the intuition from differential games (see, e.g., [58]) to informally illustrate

the interplay between the control and the most likely sample path leading to demand

loss. Consider a zero-sum game between the adversary (nature) who chooses the fluid-

scale demand arrival process Ā(·), and the controller who decides the assignment rule

U , where the adversary minimizes the large-deviation “cost” of a demand sample path

that leads to demand loss. Specifically, the adversary’s cost for a demand sample path

Ā(·) is the rate function defined in (2.10), i.e., the exponent. The converse bound we will

obtain next will correspond to the adversary playing first and choosing the minimum cost

time-invariant demand sample path that ensures demand loss. The following pleasant

surprises will emerge subsequently: (i) we will find an equilibrium in pure strategies to

the aforementioned zero-sum game, (ii) the converse will turn out to be tight, i.e., the

adversary’s equilibrium demand sample path will be time invariant, (iii) the controller’s

equilibrium assignment strategy will be an SMW policy with specific α (this simple policy

will satisfy the sufficient conditions for achievability we will state immediately after our

converse, in Proposition 2.4).

We provide a policy-independent upper bound on the exponent that only depends on
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the starting state. First, for any f ∈ Rn×m
+ , define

Xf ,

∆x

∣∣∣∣∣∣∣
∆xi =

∑
j′∈VD fj′i −

∑
j′∈∂(i) dij′

(∑
k∈VS fj′k

)
, ∀i ∈ VS∑

i∈∂(j′) dij′ = 1, dij′ ≥ 0, ∀i ∈ VS, j′ ∈ VD

 ,

(2.20)

which is the attainable change of (normalized) state in unit time, given that the average

demand arrival rates during this period are f and assuming no demand is lost. (Here

(dij′)i∈∂(j′) is the chosen assignment distribution over supply nodes neighboring j′ for

assigning supply units to serve demand originating at j′.) Then given starting state α,

the attainable states at time T belong to α + TXf , {y ∈ Rm : y = α + Tx,x ∈ Xf}, if

no demand is lost during [0, T ] and the average demand arrival rate is f . We obtain an

upper bound on the demand-loss exponent by considering the most likely f and T such

that α + TXf lies entirely outside the state space Ω. Because the true state must lie in

Ω, there must be demand loss during [0, T ], no matter the assignment rule d used by the

controller.

Lemma 2.1 (Converse bound on the exponent). For any stationary policy U ∈ U , it

holds that

− lim inf
K→∞

1

K
logPK,Uo ≤ supα∈relint(Ω)γCB(α) , (2.21)

where, for Λ∗(·) given by (2.8), γCB(α) , inf
f∈Rnm+ :vα(f)>0

Λ∗(f)

vα(f)
, and vα(f) , min

∆x∈Xf

Lα(α + ∆x) .

We now provide an informal explanation for the form of this key lemma. The α

in (2.21) captures the most frequently visited (normalized) state (the “resting” state) in

steady state under U , and γCB(α) is an upper bound on the exponent given the most

frequent state α. Let us informally describe the expression for γCB(α). Suppose the

system starts in state α. Then vα(f) is the minimum rate of increase of Lα(·) under

demand arrival rates f , no matter the assignment distributions d. So, starting at α and

under time-invariant demand arrival rates f , the state hits Ω and demand is lost in time
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at most 1/vα(f), implying a demand-loss exponent of at most Λ∗(f)
vα(f)

. The upper bound

γCB(α) follows from minimizing over f since nature can choose any f . Finally, the bound

in (2.21) takes the supremum over α since the policy can choose its resting state. The

proof of Lemma 2.1 is in Appendix B.2.

The following proposition provides sufficient conditions for a policy to achieve the

converse bound exponent γCB(α). The conditions are requirements on the time derivative

of Lα(X̄U(t)). Recall that a time t ∈ (0, T ) is said to be a regular point of an FSP

(Ā(·), X̄U(·))T if Ā(·), X̄U(·), Lα(X̄U(·)) are all differentiable at time t.

Proposition 2.4 (Sufficient conditions). Fix α ∈ relint(Ω). Let U ∈ U be a stationary,

non-idling policy. Suppose that for each regular point t, the following hold:

1. (Steepest descent). For any demand fluid sample path Ā(·), we have

L̇α(X̄U(t)) = inf
U ′∈Uni

{
L̇α(X̄U ′(t))

∣∣∣X̄U ′(t) = X̄U(t)

}
,

for corresponding queue-length sample paths satisfying X̄U(t) 6= α and Lα(X̄U(t)) < 1,

where Uni is the set of non-idling policies;

2. (Negative drift). There exists η > 0 and ε > 0 such that for all FSPs (Ā(·), X̄U(·))

satisfying ˙̄A(t) ∈ B(φ, ε) and X̄(t) 6= α, we have L̇α(X̄U(t)) ≤ −η. Here B(φ, ε) is a

ball with radius ε centered on the typical demand type distribution φ.

Then we have γo(U) = γp(U) = γCB(α), i.e., γ(U) = γCB(α).

Informally, the negative drift property requires the policy to have negative Lyapunov

drift for near typical demand arrival rates, as long as the current state is not α. This

property forces the state to return to α. Faced with a policy satisfying the above sufficient

conditions, the adversary wants to force equality in (B.7) by forcing the queue-length

sample path X̄U to go radially outward starting at α. This is why our converse in

Lemma 2.1 based on a time invariant demand arrival process will turn out to be tight.

We will formalize this intuition in Section 2.5.4 and explicitly characterize the most likely

demand FSP forcing demand loss.

93



2.5.4 Optimality of SMW Policies, Explicit Exponent, and Crit-

ical Subsets

In this section, we verify that SMW policies satisfy the sufficient conditions in Propo-

sition 2.4. In doing so, we reveal the critical subset structure of the most-likely sample

paths for demand loss and derive the explicit exponent for SMW(α). Proofs for this

section are in Appendix B.4.

The following lemma shows that the Lyapunov drift only depends on the nodes with

shortest scaled queue lengths, and that SMW(α) minimizes its use of supplies from these

queues.

Lemma 2.2 (SMW(α) causes steepest descent). Let (Ā, X̄U) be any FSP under any

non-idling policy U on [0, T ], and consider any α ∈ relint(Ω). For a regular t ∈ [0, T ],

define:

S1(X̄U(t)) ,

{
k ∈ VS : k ∈ argmin

X̄U
k (t)

αk

}
,

S2

(
X̄U(t), ˙̄XU(t)

)
,

{
k ∈ S1(X̄U(t)) : k ∈ argmin

˙̄XU
k (t)

αk

}
.

All the derivatives are well defined since t is regular. We have

L̇α(X̄U(t)) = −
˙̄XU
k (t)

αk
for any k ∈ S2(X̄U(t), ˙̄XU(t)) (2.22)

≥ − 1

1T
S2
α

 ∑
j′∈VD,k∈S2

Ȧj′k(t)−
∑

j′∈VD:∂(j′)⊆S2,k∈VS

Ȧj′k(t)

 (2.23)

for X̄U(t) 6= α and Lα(X̄U(t)) < 1. Inequality (2.23) holds with equality under SMW(α),

i.e., SMW(α) satisfies the steepest descent property in Proposition 2.4.

In Lemma 2.3, we prove that SMW(α) satisfies the negative drift property. In par-

ticular, the drift η is related to the slack in the CRP condition.

Lemma 2.3 (SMW(α) satisfies negative drift). For any α ∈ relint(Ω), under Assump-

tions 2.1, 2.2 and 2.3, the policy SMW(α) satisfies the negative drift condition in Propo-

sition 2.4.

94



Before proceeding with our analysis, we point out that Lemma 2.3 implies that α is

the unique resting state of SMW(α) policy.

Proposition 2.5 (Resting state of SMW(α)). Suppose Assumptions 2.1, 2.2 and 2.3

hold. For any α ∈ relint(Ω), there exists T0 > 0 such that any fluid limit (Ā, X̄) on [0, T ]

(where T > T0) under SMW(α) satisfies X̄(t) = α for all t ∈ [T0, T ].

Combining Proposition 2.4 with Lemmas 2.2 and 2.3, we immediately deduce that

SMW(α) achieves the best possible exponent given resting state α.

Corollary 2.1. For any α ∈ relint(Ω), we have γ(α) = γCB(α).

We argued in Section 2.5.3 that the most likely queue-length sample path leading to

demand loss with initial state α should be radial. From Lemma 2.2 we see that the rate

at which the Lyapunov function increases depends on the (scaled) inflow and outflow rate

of supply in each subset. This implies that the most likely sample path should drain the

supply of one subset (the critical subset), and that subset will determine the demand loss

exponent. We next lemma obtains an explicit expression for γCB(α) and the most likely

demand FSP forcing demand loss.

Lemma 2.4. Recall the definitions of J in (2.12) and BJ , λJ and µJ in (2.13). For

any α ∈ relint(Ω), we have γCB(α) = minJ∈J BJ log(λJ/µJ). Moreover, the infimum

in the definition of γCB(α) in Lemma 2.1 is achieved by the following f∗: for any J∗ ∈

argminJ∈JBJ log(λJ/µJ),

f ∗j′k ,


φ̂j′kλJ∗/µJ∗ for j′ ∈ J∗, k /∈ ∂(J∗) ,

φ̂j′kµJ∗/λJ∗ for j′ /∈ J∗, k ∈ ∂(J∗) ,

φ̂j′k otherwise .

(2.24)

We can now prove the main theorem.

Proof of Theorem 2.1. Lemma 2.1 along with the explicit expression for γCB(α) pro-

vided by Lemma 2.4 yields the converse result (part 2 of the theorem).
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Achievability (part 1 of the theorem) follows from Corollary 2.1 along with the explicit

expression for γCB(α) provided by Lemma 2.4.

2.6 Application to Shared Transportation Systems

In this section we discuss the application of our findings to shared transportation

systems including ride-hailing and bike sharing systems, focusing on assignment control.

In these systems, for each customer (demand unit), the platform must assign a vehicle

(supply unit) which is sufficiently close to their origin location, and this limited flexibility

leads to the compatibility graph G in our model. (In bikesharing, customers are willing

to walk only a certain amount for pickup; within these constraints, they do respond to

suggestions to prefer a given pickup location as in the Bike Angels program of CitiBike;

see Section 2.1.2.) The number of bikes in a bikesharing system is typically held constant

as in our model, and in ride-hailing drivers typically do a substantial number of trips in

a session,14 and so it is common for theoretical investigations of tactical control levers to

make the approximation that cars do not enter or leave the system, e.g., [2, 22]. Shared

transportation platforms typically aim to meet as much demand as possible.15

Notably, in shared transportation systems, a supply unit must spend positive time

serving a demand before becoming available again at the destination. In Section 2.6.1,

we incorporate travel times into our theory and show that SMW policies retain their

superior performance and ensure loss which decays exponentially in K. In Section 2.6.2,

we provide a summary of simulation experiments for ridehailing based on New York City

yellow cab data. The simulation results validate our theoretical results and demonstrate

excellent performance of our policies (a full description is provided in Appendix B.10).
14For example, the average number of trips per session is over 12 in New York City https:

//toddwschneider.com/dashboards/nyc-taxi-ridehailing-uber-lyft-data/.
15Though the formal objective in Section 2.2 was to maximize the fraction of demand served, note that

all our results are unchanged if the platform is payoff-maximizing where the payoff of serving a demand
depends on the demand’s origin and destination. This is because we perform a large deviations analysis,
and the payoff values have no impact on the large-deviation asymptotics.
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Finally in Section 2.6.3 we briefly discuss additional aspects of ride-hailing and bike

sharing systems.

2.6.1 Incorporating Travel Delays

In this subsection, we relax the assumption that supply units move instantaneously

between nodes by adding travel delays. Even in the presence of travel delays, we will

show that any SMW policy with scaling parameters α ∈ relint(Ω) achieves exponential

decay of the demand loss probability in the large market regime (the practically relevant

regime).

We first describe the model with travel delays. The following model inherits all the

components of the model defined in Section 2.2 where K is the number of supply units,

except that it has an enlarged state space to keep track of in-transit supply units, and

additional parameters to characterize travel times.

Model with travel delays. Following a standard way to model travel delays which

preserves tractability [see, e.g., 59, 2, 1], we assume that the travel delays of serving

demand units are independent random variables drawn from exponential distributions

with means which depend on the source and destination of the demand. Let the mean

travel time from node j′ ∈ VD to node k ∈ VS be denoted by τj′k ∈ R+. We assume

the τs do not depend on K. We make the simplifying assumption that pickup remains

instantaneous, because travel times between neighboring locations are short relative to

travel times to all other locations. The primitives of the extended model are (G, φ̂, τ )

and the demand type distribution is again φ = φ̂

1Tφ̂1
.

The augmented state space. The state of the K-th system is now (XK(t),YK(t)),

where XK
i (t) is the number of available supply units at (supply) node i at time t, and

Y K
j′k(t) is the number of supply units in transit from node j′ to node k at time t. Note that

the travel delays follow exponential distributions, which have the memoryless property,

and therefore (XK(t),YK(t)) fully characterizes the system state.

Large market regime. As before, we consider the large market regime where the
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number of supply unitsK and the demand arrival rates φ̂K , Kφ̂ scale up proportionally.

Since the mean travel times (τj′k)j′∈VD,k∈VS do not depend on K, if a Θ(1) fraction of

demand is served on average, a Θ(K) number of supply units is in transit at any time,

on average, meaning that an Θ(1) fraction of supply units is in service, consistent with

the reality in shared transportation.

In order to order to serve (almost) all the demand, we need sufficiently many supply

units. By Little’s law, if all demand units are served, the expected number of in-transit

supply units is K
∑

j′∈VD

∑
k∈VS φ̂j′kτj′k. This number must be smaller than K to satisfy

all demand even if stochasticity is ignored. In order to obtain an exponentially small loss

despite stochasticity, we will need a slightly stronger assumption:

Assumption 2.4. The model primitives (G, φ̂, τ ) satisfy
∑

j′∈VD

∑
k∈VS φ̂j′kτj′k < 1 .

Let β , 1 −
∑

j′∈VD

∑
k∈VS φ̂j′kτj′k. Here β is the proportion of free supply units if

all demands are served, and 1 − β is the ideal utilization rate (the utilization rate if all

demands are served). Here utilization rate is the average proportion of time during which

a supply unit is engaged in serving demand. Assumption 2.4 requires that β ∈ (0, 1),

which is consistent with the reality in shared transportation, e.g., the ride-hailing industry

in New York City has an average driver utilization rate of 58% (Parrott and Reich 2018,

NYC TLC and DoT 2019), i.e., on average 42% of drivers are free at any given time

(moreover, most of these free drivers are not travelling to pick up a passenger16). In most

bikesharing systems, the fraction of bikes in transit at any time is typically quite small

(under 10%).17

The following is our main result for the setting with travel delay. For any assignment
16NYC TLC and DoT (2019) reports that the average trip duration is 20 minutes, and for each trip

that occurs a driver spends nearly 14 minutes “cruising” (free), and less than half of that time, about 5.5
minutes, is the driver traveling to pick up a passenger. Thus a driver spends roughly 8 minutes waiting
for their next trip.

17The report https://nacto.org/bike-share-statistics-2017/ tells us that U.S. dock-based sys-
tems produced an average of 1.7 rides/bike/day, while dockless bike share systems nationally had an
average of about 0.3 rides/bike/day. Average trip duration was 12 minutes for pass holders (subscribers)
and 28 mins for casual users. In other words, for most systems, each bike was used less than 1 hour per
day, which implies that less than 10% of bikes are in use at any given time during day hours (in fact the
utilization is below 10% even during rush hours).
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policy U , define the pessimistic performance measure γp(U) by (2.4).

Theorem 2.2 (Result with Travel Delays). Consider any network with travel delays

(G, φ̂, τ ). If the network satisfies Assumptions 2.1, 2.2, 2.3 and 2.4, then for any α ∈

relint(Ω), SMW(α) achieves exponential decay of the demand loss probability with strictly

positive demand loss exponent, i.e., γp(SMW(α)) > 0.

Theorem 2.2 shows that a key finding obtained from the analysis in previous sections

(where there is no travel delay), i.e., that SMW policies achieve exponentially decaying

demand loss probability as the number of supply units increases, is preserved when delay

is incorporated. The scaling regime is the natural large market regime, along with the

natural assumption that the system has a fleet size (of supply units) that is strictly larger

than what is necessary to satisfy all demand (Assumption 2.4). Thus, SMW policies are

able to deploy excess supply to effectively manage the stochasticity caused by travel time

and demand uncertainty in the system.

Meanwhile, the negative results in Section 2.4.2 on state-independent policies and

naive state-dependent policies are also preserved with travel delay, i.e., any state-independent

policy can only achieve polynomially decaying demand loss and moreover (typically) fails

asymptotic optimality if exact demand arrival rates are not known, and similarly a naive

state-dependent policy can incur Ω(1) demand loss.

Remark 2.2 (State-independent/naive state-dependent policies remain inferior and uti-

lization rate remains high). Augment the system in Propositions 2.1, 2.2 and 2.3 (and

Example 2.4) to incorporate travel delays τ as above. Then Propositions 2.1, 2.2 and 2.3

(and the claim in Example 2.4) continue to hold, and the proofs are unchanged.

Thus, SMW policies remain substantially superior to alternative policies under travel

delays.

We prove Theorem 2.2 in Appendix B.8. Similar to the previous analysis, the proof of

Theorem 2.2 is based on a novel Lyapunov analysis. The analysis is more involved than

the one in Section 2.5 because of the enlarged state space. For each α ∈ relint(Ω), we
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construct a Lyapunov function that augments the prior Lyapunov function (see Definition

2.7) with additional terms that capture how much the number of in-transit supply units

deviate from their typical values. We show that in the fluid limit, the Lyapunov function

exhibits a strictly negative drift if the current state is not at its unique minimum. Using

similar methodology as in Section 2.5, we show that the demand loss exponent can be

lower bounded by a variational problem (more complicated than the one in Section 2.5)

that has strictly positive value, leading to Theorem 2.2.

2.6.2 Simulation experiments

We use NYC yellow cab data (to estimate demand) and Google Maps (to estimate

travel times) to simulate SMW-based dispatch policies in an environment that resembles

the real-world ride-hailing system in Manhattan, New York City. In the interest of space,

we provide only a brief summary of these experiments here and refer the interested reader

to Appendix B.10 for a full description.

Our theoretical model in Section 2.2 made several simplifying assumptions:

1. Service is instantaneous (i.e., vehicles travel to their destination with no delay).

2. Pickup is instantaneous (i.e., vehicles travel to matched customers with no delay).

3. The objective is to minimize lost demand in steady state (though our characterization

extends to transient performance as shown in Appendix B.4.4).

We relax these assumptions one by one in our numerical experiments. We study three

settings: (i) steady state performance with Service times (Section B.10.2); (ii) steady

state performance with Service+Pickup times (Section B.10.3); and (iii) Transient per-

formance with Service+Pickup times (Section B.10.4). For the second and third settings,

we modify SMW policies heuristically to incorporate pickup times. In each case, we let

the number of cars in the system be only slightly (∼ 3%) above the “fluid requirement”

(see Appendix B.10.5 for a formal definition of the fluid requirement) to meet demand,

and find that we are able to meet almost all demand nevertheless (the number of free

cars in real systems is typically much larger and hence the real problem is easier along
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this dimension, see the paragraph following Assumption 2.4 in Section 2.6.1).

A highlight of SMW policies is that they are a simple family of policies with a man-

ageable number of parameters (one per location). We propose a simulation-based opti-

mization approach to choose the scaling parameters α in a practical setting.

Summary of findings (Appendix B.10). Consistently across all three settings, we

find that the vanilla MaxWeight policy, which requires no knowledge of the demand

arrival rates, outperforms static (fluid-based) control proposed in prior work by up to an

order of magnitude, and loses very little demand even with small K (just ∼ 10 free cars

per location, whereas the static policy has a lot more free cars to work with since it loses

so much more demand). Furthermore, in each of the settings, the SMW policy obtained

using simulation-based optimization further significantly outperforms vanilla MaxWeight.

Overall, we deduce that non-zero service times, non-exponential pickup times, and finite

K do not diminish the effectiveness of the SMW family policies at managing the spatial

distribution of supply. In addition, we observe that the simulation-based optimal scaling

factors α in the Service time setting are similar to the theory-based optimal α, indicating

robustness of our structural results (Section 2.4.1) to travel time.

2.6.3 Additional discussion

Role of supply as a buffer. As mentioned, less than 10% of bikes in a typical

bike sharing system are in use at any time. The vast majority of bikes serve as a “buffer”

against distributional mismatch between supply and demand, and not merely to fulfil the

“service requirement”. This aligns well with our focus in this paper on the role of supply

as a buffer. In ride-hailing systems a larger fraction ∼ 60% of cars are typically carrying

passengers at any time, but this still leaves a substantial fraction ∼ 40% free, and these

free cars again serve as a buffer.

Empty relocation. It is quite costly for bike share system operators to relocate bikes,

and they generally prefer to avoid (or minimize) this. In ride-hailing, empty relocation

incurs gas costs (it also costs driver effort and causes road congestion), and may be
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beneficial to drivers in some settings and not in others.18

Incorporating empty relocation in our theory. Drivers may independently

choose to relocate without a passenger, or the platform may make relevant suggestions

to drivers (or incentivize drivers to relocate). For example, if CRP is violated in the

absence of empty relocation, the ride-hailing platform may employ empty relocation to

ensure that CRP holds.

We point out that state-independent relocation of free supply units can be seam-

lessly incorporated into our framework following the approach in Banerjee, Freund, and

Lykouris [1, Section 5.1]: For every trip ending at node k ∈ VS, the car is redirected

to node i ∈ VS with probability rki for all i ∈ V , independently. Call (rki)k∈VS ,i∈VS

the empty-relocation rule and i the “effective destination”. This generalization of our

model is straightforward to incorporate. Throughout the paper, the demand type dis-

tribution φ is replaced with the “effective demand type distribution” φeff whose def-

inition is immediate from the empty-relocation rule: φeffj′i ,
∑

k∈VS φj′krki, and our

entire formulation, analysis and results in Sections 2.2-2.5 remain unchanged. Sec-

tion 2.6.1 incorporating travel delays also extends unchanged with the modified definition

β , 1 −
∑

j′∈VD

∑
k∈VS

∑
i∈VS φ̂j′krki(τj′k + τki) and the assumption that this β > 0 in

place of Assumption 2.4.

Future directions related to bike sharing. Our model in Section 2.2 captures

pickup flexibility in dockless bike-sharing systems (e.g., Mobike in China, the world’s

largest shared bicycle operator by number of bicycles). Beyond our model, bike sharing

may afford the platform the additional control lever of suggesting to customers where to

drop off their bike, in which case we expect that SMW policies retain their guarantees

with the recommended dropoff location being the location near the destination with the

fewest (scaled) number of bikes. In docked bike-sharing systems (e.g., CitiBike in New
18For instance, this online article by Uber data scientists https://www.uber.com/newsroom/

semi-automated-science-using-an-ai-simulation-framework finds that “. . . when dispatch dis-
tances are relatively longer, drivers maximize their earnings by using less gas by remaining stationary
between trips” instead of gravitating to high demand areas, and that this behavior causes only a few
additional trips to be lost.
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York City), there is an additional wrinkle, namely, stations have a limited number of

docks, and a bike cannot be dropped off at a location if no dock is available. We are

optimistic that our analysis can be extended to such a setting, leading to generalized SMW

policies which seek to ensure that both bikes and free docks remain available throughout

the network.

2.7 Application to Scrip Systems

Scrip systems allow agents to exchange services like babysitting, and have been pro-

posed as a way to improve the functioning of kidney exchanges (here hospitals play the

role of agents). In a scrip system, a fixed amount of artificial currency (scrips) circulates

among a set of agents, and when agent i services a request by agent k, then agent k

“pays” agent i in scrip. Given a service request, the platform has limited flexibility in

assigning the provider since, typically, only a subset of agents are able to provide the

requested service. A loss occurs when an agent runs out of scrips and is hence unable to

request service. We show that with only cosmetic modifications, our model and results

translate fully to a model of a scrip system with heterogeneous services, thus providing

novel prescriptive insights into dynamic assignment control of such systems. We show

that for any scrip system such that CRP (formally reintroduced for this application later)

holds, we can construct a family of simple service provider selection rules, which we name

Scaled Minimum Scrips (SMS) policies, and prove a very strong performance guarantee

analogous to Theorem 2.1 for these policies. In particular, SMS policies achieve exponen-

tially small loss under complete resource pooling, and moreover, there is an SMS policy

(which we characterize) which is exponent optimal among all policies.

We note that many features of our model align with real-world scrip systems. Trans-

actions in scrip systems are typically quick, which justifies our instantaneous relocation

assumption. Scrips only relocate as a result of transactions (no “empty” relocation). The

number of scrips is typically held nearly constant over significant periods of time. Fi-
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nally, the CRP assumption appears reasonable for many scrip systems: In the proposed

scrip system between hospitals for kidney exchanges [26], approximate similarity of pa-

tient pools across hospitals and partial flexibility in matching donor-patient pairs with

each other should ensure CRP. One would also expect CRP to hold for scrip systems in

contexts like babysitting, as long as participants make themselves available as providers

sufficiently often.

2.7.1 Model of Scrip Systems

We now provide a detailed description of our model of a scrip system.

Service exchange. The set of primitives is the same as in the previous model, i.e., it

consists of a compatibility graph G(VS∪VD, E) and Poisson arrivals with a demand arrival

rate matrix φ̂ and consequent demand type distribution (normalized demand arrival rate)

matrix φ = φ̂/(1Tφ̂1) (let m = |VS|, n = |VD|). Here VS is the finite set of agents, and

VD is the finite set of heterogeneous types of service. Each agent has a skill set, i.e., the

service types he19 can provide. The skill set structure is modeled by the skill compatibility

graph G (see Figure 2.5 for an illustration). The neighborhood of i ∈ VS in G is his skill

set, which is denoted by ∂(i) ⊆ VD. The neighborhood of j′ ∈ VD in G consists of the

providers of type j′ service, which is denoted by ∂(j′) ⊆ VS.

The main difference between the current model and the previous model is in the

types of requests (i.e., demand). In the previous model, each demand originates from a

demand node and has a supply node destination. The situation is reversed here: each

service request originates from an agent (i.e., “supply node”) and requires a certain service

type (i.e., “demand node”). Therefore, the arrival rate matrix φ is of dimension m × n,

and φij′ is the probability of a request to be of type (i, j′) requests, i.e., it comes from

agent i and requests type j′ service. We assume that agent i does not request service

types in ∂(i) (i.e., service types belonging to i’s own skill set); formally, φij′ = 0 for all

i ∈ VS, j′ ∈ ∂(i). (This assumption does not impose any restriction, since, if i ∈ ∂(j′) but
19For expository simplicity, we refer to an agent as “he” and the central planner as “she”.
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Figure 2.5: An example of skill compatibility graph in a service exchange with two service
types and four agents.

i wants to request service type j′, one can formally define an additional service type k′

such that ∂(k′) = ∂(j′)\{i} and classify the request as type (i, k′).) We also assume that

each agent has a positive arrival rate of requesting some service type.

Scrips. There are a fixed number (denoted by K) of scrips in the K-th system, which

are distributed among the agents. Denote the number of scrips each agent has at time t

as XK(t) = [XK
1 (t), · · · , XK

m (t)], hence XK(t) ∈ ΩK where ΩK is defined in Section 2.2.

We informally point out that there is a natural constraint on the total number of scrips

a system operator can introduce: Whereas it is tempting to think that the efficiency

of a scrip system can be increased simply by increasing the total number of scrips in

circulation, this is the case only up to the point where the system experiences a “monetary

crash”, where money is sufficiently devalued that no agent is willing to perform a service;

see, e.g., [51].

Service provider selection rule. The central planner’s control lever is the provider

selection rule: when a request of type (i, j′) arrives, the planner chooses the provider

of type j′ service. Subsequently, after providing the service, agent i pays a scrip to the

service provider. As is typical in scrip systems, if an agent i has no scrip, then his request

is lost. As in the previous model, it suffices to consider stationary policies U , which is

formally defined as a sequence of mappings, indexed by the total number of scrips K,

that map the current distribution of scrips XK and request type (i, j′) to ∂(j′) ∪ {∅}.

Let tr be the r-th service request arrival epoch after time 0. Denote the state of
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the system just before tr by XK(t−r ) (the initial state is XK(0)). Now suppose the

platform uses an assignment policy U , and the r-th request comes from agent o[r] and

the requested service type is d[r]. Let S[r] , UK [XK(t−r )](o[r], d[r]) be the chosen service

provider (potentially ∅). Formally,

XK(tr) ,

 XK(t−r )− eo[r] + eS[r] if S[r] ∈ VS ,

XK(t−r ) if S[r] = ∅ .

Performance measure. We consider a central planner who tries to maximize the

fraction of requests served. We define the optimistic and pessimistic performance mea-

sures in exactly the same way as in (2.1) and (2.2). Similarly, for policy U , we define

demand-loss exponents γo(U) and γp(U) in the same way as in (2.3) and (2.4).

Complete Resource Pooling condition (for scrip systems). We require the

following CRP condition on the network primitives G and φ for our main result in this

section.

Assumption 2.5. We assume that for all subsets I ( VS where I 6= ∅, it holds that

λI > µI for λI ,
∑

i/∈I
∑

j′∈∂(I) φij′ and µI ,
∑

i∈I
∑

j′ /∈∂(I) φij′ .

Intuitively, Assumption 2.5 assumes that for each subset I ( VS of agents, requests

(from outside I) which belong to the union of their skill sets arrive fast enough that they

can earn enough scrips to finance their own service requests.20

Discussion of the model. The skill compatibility graph can capture intricate com-

patibility structures. For example, in scrip systems for kidney exchange, for each service

(i.e., exchange) request, the ability of each other agent (hospital) to service the request

may be thought of as stochastic or else arbitrary. Happily, arbitrary compatibilities can
20Let us clarify the relationship between Assumption 2.5 and the assumptions we made in the main

model in Section 2.2: Assumption 2.5 is slightly stronger than Assumption 2.3 in that it requires strict
inequality for all strict subsets of VS and not just for subsets with µI > 0. Though we do not need this
stronger assumption for our analysis, we make it to simplify the exposition in this section by eliminating
the need for other assumptions. In particular, Assumption 2.5 automatically implies connectivity (the
analog of Assumption 2.1). Also, the analog of Assumption 2.2 (limited flexibility) holds automatically
in the present setup since each individual agent forms a “limited flexibility” subset, i.e., for all i ∈ VS we
have µ{i} > 0, which holds since ∀i ∈ VS ∃j′ ∈ VD such that φij′ > 0, and moreover φij′ > 0 ⇒ j′ /∈
∂(i)⇒ µ{i} > 0.
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be captured in our framework by including a node in VD for each element in 2VS , i.e., the

power set of VS.

2.7.2 Scaled Minimum Scrips (SMS) selection rules and main

result

Leveraging the similarity between the current model and the previous model intro-

duced in Section 2.2, we are easily able to define the following Scaled Minimum Scrip

selection rule which is similar to SMW in spirit and achieves exponentially decaying

demand loss. The formal definition of SMS is as follows.

Definition 2.8 (Scaled Minimum Scrip selection rule SMS(α)). Fix α ∈ relint(Ω), i.e.,

α ∈ Rm such that αi > 0 ∀i ∈ VS and
∑

i∈VS αi = 1. Given system state X(t−r ) just

before the r-th demand arrival and for demand with type (i, j′), SMS(α) chooses service

provider

argmink∈∂(j′)

Xk(t
−
r )

αk

if Xi(t
−
r ) > 0; otherwise the request is lost. (If there are ties when determining the

argmin, it assigns from the location with highest index.)

The following performance guarantee similar to Theorem 2.1 holds for Scaled Mini-

mum Scrip(α) under the CRP condition (Assumption 2.5).

Theorem 2.3 (Result for Scrip Systems). For any scrip system (G,φ) satisfying As-

sumption 2.5, we have:

1. Exponentially small loss under any SMS policy: For any α ∈ relint(Ω), SMS(α)

achieves exponential decay of the demand loss with exponent,

γ(α) = min
I(VS ,I 6=∅

BI log

(
λI
µI

)
> 0 , (2.25)

where BI , 1T
I α , λI ,

∑
i/∈I

∑
j′∈∂(I)

φij′ , and µI ,
∑
i∈I

∑
j′ /∈∂(I)

φij′ . (2.26)
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2. There is an exponent optimal SMS policy: Under any policy U , it must be that

γp(U) ≤ γo(U) ≤ γ̄ , where γ̄ = sup
α∈relint(Ω)

γ(α) . (2.27)

Thus, there is an SMS rule that achieves an exponent arbitrarily close to the optimal one.

The proof of Theorem 2.3 is very similar to that of Theorem 2.1; see Appendix B.7.

Remark 2.3 (Comparison with the model in [25]). [25] consider the case where there

is only one type of service which all agents can provide (i.e., G is a star graph), and

φij′ is equal for all agents i. On one hand, we significantly generalize their model by

considering heterogeneous services, asymmetric service request arrivals, and general skill

compatibility graphs. They show that the minimum scrip selection rule, a special case of

our SMS rule, is optimal for their symmetric setting, whereas we show that the family of

SMS selection rules achieve exponentially small demand loss and that there exists an SMS

rule that is globally exponent-optimal. On the other hand, our analysis of scrip systems

is meant to illustrate the versatility of SMW type policies, hence we only focused on the

central planner setting and leave a study of the incentives of agents for future work.

2.8 Discussion

In this paper we study state-dependent assignment control of a shared transportation

system modeled as a closed queueing network. We introduce a family of state-dependent

assignment policies called Scaled MaxWeight (SMW) and prove that they have superior

performance in terms of maximizing throughput, comparing with state-independent poli-

cies including previously proposed policies. In particular, we construct an SMW policy

that (almost) achieves the optimal large deviation rate of decay of demand loss. Our

analysis also uncovers the structure of the problem: given system state, demand loss is

most likely to happen within state-dependent critical subsets of locations. The optimal

SMW policy protects all critical subsets simultaneously.
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SMW policies are simple and explicit, and hence have the potential to influence prac-

tice. We discuss two applications: Towards shared transportation applications, we show

the SMW policies continue to have exponentially small loss if there are positive travel

times, and obtain promising simulation results in a realistic ridehailing environment. We

also also provide a model of a scrip system, and show that our entire formulation and

results translate to that model with only cosmetic changes, leading us to propose Scaled

Minimum Scrip (SMS) policies for service provider assignment in such systems. Our work

may inspire similar analyses in open networks, e.g., obtaining exponent optimal controls

when there is a shared finite buffer (e.g., a common waiting room) for multiple queues.
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Part II:

Equilibria Analysis in Matching

Markets
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CHAPTER 3

In Which Random Matching Markets Does the Short Side Enjoy

an Advantage?

3.1 Introduction

Ashlagi, Kanoria and Leshno [62] found that in a matching market with n men and

n + 1 women, and uniformly randomly complete preference lists, independent across

agents, there is a nearly unique stable matching, where the average rank of men for

their wives is just log n(1 + o(1)) (the same as it would have been under random serial

dictatorship, where each man in turn selects their favorite remaining woman), whereas the

average rank of women for their husbands is n
logn

(1+o(1)). For example, with n = 1, 000,

men get matched to their seventh most desired woman, whereas women are matched

to only their 145th most preferred man. Of course the situation is completely reversed

if, instead, there are 999 women, while the number of men is still 1, 000. This led [62]

to conclude “... we find that matching markets are extremely competitive, with even the

slightest imbalance greatly benefiting the short side.”

Meanwhile, over the past two decades, a large number of real world matching market

datasets from deferred acceptance (DA) based clearinghouses have become available to

different researchers in the field, e.g., from centralized labor markets like the National

Residency Matching Program (NRMP) [63] and the Israel Psychology Masters Match [64],

college admissions [e.g., 65], and school choice [e.g., 66]. Since these (and other) clearing-
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houses run the incentive-compatible deferred acceptance (DA) algorithm, the preference

rankings collected may be assumed to reflect the true underlying preferences.1 Notably,

none of these real world data sets exhibit a “stark effect of competition” phenomenon,

i.e., we do not see an abrupt change in the stable matching for a small change in mar-

ket composition. As a representative example, we provide numerical counterfactuals for

high school admissions data collected in one of the major cities in the U.S.: The data

includes the preference lists provided by nearly 75,000 applicants, and 700 programs with

a total capacity of 73,000. To study the effect of competition, we vary the market “imbal-

ance” across a wide range by dropping up to 20,000 students from the data (uniformly at

random) at one extreme, and duplicating up to 20,000 students (uniformly at random)

at the other extreme, while holding the set of programs and their capacities fixed. We

numerically evaluate the effect of thus varying the number of students on the resulting

allocation of programs to students under the student-proposing DA algorithm. As per

the usual practice, we summarize the allocation in terms of the fraction of students who

are allotted to one of their top-k most preferred programs (for k = 1, 3) and the fraction

who are unassigned; see the solid lines in Figure 3.1. Observe that the summary statis-

tics vary extremely smoothly and slowly in the number of students over a wide range.

In other words, we observe no stark effect of competition in real world data, which is at

odds with the aforementioned conclusion of [62].

The stochastic model of matching markets considered in [62] is often called a “random

matching market”; one where agents have independent, complete and uniformly random

preference lists over the other side. The model was introduced by Knuth [71], heavily

studied by Pittel and others [72, 73, 74] and this model (and variants) remains a workhorse

for research in the area [e.g., 75, 76] and even for deriving operational insights, e.g., which

tie-breaking rule to use [77], making it imperative that we understand how its predictions
1Incentive compatibility of DA for the proposing side was established by [67]. For the receiving side,

approximate IC is strongly suggested by the findings of [68] and [62], among others, and the mechanism
further seems very hard to manipulate in most practical settings. However, it is worth noting [69] has
found empirical evidence of incorrect preference reporting in certain situations, while [70] suggests that
participants may not report options they like if those options are infeasible. Since the extent and nature
of misreporting in our data (if any) is unclear, we simply assume the preference reports to be truthful.
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Figure 3.1: Fraction of students who are assigned to one of their top-k most preferred
programs (for k = 1, 3) and the fraction of students who are unassigned, as a function
of the number of students removed or duplicated uniformly at random. Simulations are
based on the actual high school admissions data containing 75k applicants and 73k seats
across 700 programs (averaged across 100 realizations). The solid lines use the student
preference rankings and program priorities in the original data, and implement a single
tie-breaking rule3. The dotted lines are based on randomizing preferences and priorities:
Each student’s preference list has unchanged length but its entries are drawn without
replacement with the sampling probability of each program being proportional to the
number of students who have applied to it in the original dataset, and each program uses
a uniformly random and independent priority ordering over students.

might depart from reality, and the role played by each of the stylized assumptions in the

model.

It is natural to ask whether correlation in preferences in real markets is the reason

that they do not exhibit a strong effect of competition. Indeed, if preferences on the

“men” side of the market are fully correlated (i.e., all agents have the same preference

ordering) while the other “women” side has arbitrary preferences, then there is a unique

stable matching which can be computed by running serial dictatorship by women (women

serially pick their favorite available man), in the order of the womens’ universal ranking

by men. One would expect this unique stable matching to transform smoothly as the
3Under single tie-breaking, each student receives a random lottery number at the beginning of match-

ing process, which is used by all programs for breaking ties between applicants with the same priority.
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number of agents on one side of the market is varied. To test whether correlation is indeed

the reason we see only a weak effect of competition in the actual high school admissions

data introduced above, we ran an additional experiment with “randomized” preferences:

We took only the student and program “degrees” (i.e., preference list lengths and number

of times the program is listed) from the data, generated both student preference lists

and program priorities independently at random, and studied the resulting allocation as

a function of the number of students; see the dotted lines in Figure 3.1 (the distribution

over preferences is precisely specified in the caption of the figure). While the effect of com-

petition under randomized preferences is somewhat stronger than in the original data,4 it

bears no resemblance to the abrupt phase transition found by [62]. Thus it appears that

even without correlation in preferences, and despite being very well connected,5 realistic

markets seem to lack a strong effect of competition. This prompts us to investigate the

effect of the level of connectivity in the random matching market model on the effect of

competition.

Model. Our model generalizes the random matching market model to allow “partially

connected” markets with each agent having an average degree d in a random (undirected)

connectivity graph. Each agent has a preference ranking over only their neighbors in the

connectivity graph. We assume there are n+k men and n women, where the “imbalance”

k may be positive or negative but we restrict to “small” imbalances |k| = o(n). For

technical convenience, the random graph model we work with is one where each man is

connected to a uniformly random subset of exactly d women, independent of other men.6

4Define the elasticity of the fraction of students who get their top choice as the percent change in this
fraction for every 1% change in the number of students. Near the status quo number of students, we
find that the elasticity of the high school market is nearly -1.0, whereas the elasticity of the randomized
high school market is nearly -2.8.

5In the high school admissions setting, both without and with randomization of preferences, over 97%
of student pairs are within two hops of each other and nearly 100% are within three hops of each other
(a pair of students is within one hop of each other if they list a program in common).

6As a result, each woman has Binomial(n + k, d/n)
d−−−−→

n→∞
Poisson(d) neighbors where d−→ denotes

convergence in distribution. Throughout the paper we will restrict attention to d = ω(1), as a result
of which Poisson(d)

p−→ d, i.e., the degree of each woman is also very close to d, and so the asymmetry
between the two sides in the model is mainly technical.
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Main findings. We characterize stable matchings as a function of d and the number

of women n and find that the short side enjoys a significant advantage only for d exceeding

log2 n: For moderately connected markets, specifically any d such that d = o(log2 n) and

d = ω(1) and large n, we find that there is no stark effect of competition, namely, the

short and long sides of the market are almost equally well off (for |k| = O(n1−ε) market

imbalance), with agents on both sides getting a
√
d(1 + o(1))-ranked partner on average.

Notably, this regime extends far beyond the connectivity threshold (above which the

connectivity graph is connected with high probability) of d = Θ(log n). On the other

hand, for densely connected markets, specifically for any d = ω(log2 n) and large n, we

find that there is a stark effect of competition: assuming a small imbalance |k| = o(n),

the short side agents get a partner of rank log n on average, while the long side agents get

a partner of (much larger) rank d/ log n on average. Numerical simulations of our model

confirm the theoretical predictions, and in fact further enhance our understanding: they

suggest a sharp threshold between the two regimes close to d ≈ 1.0× log2 n and that this

holds even for small n down to n & 10. Figure 3.2 provides a schematic depicting our

main findings (including the d ≈ 1.0 × log2 n threshold between regimes suggested by

numerics).

Since preference list lengths in most real markets are much below log2 n (the latter is

nearly 48 for n = 1000 and nearly 117 for n = 50000), and correlation in preferences only

appears to reduce the effect of competition (see Figure 3.1 for indicative evidence), our

findings may explain why real world matching datasets do not exhibit a strong effect of

competition.

We highlight that the “no stark effect” regime includes well connected markets for

connectivity in the range d ∈ (Θ(log n), o(log2 n)). This is in sharp contrast to buyer-

seller market, where, roughly, connectivity implies a stark effect of competition where

the short side of the market captures all the surplus (see Remark 3.1 in Section 3.3 for

a detailed discussion). In particular, our results imply that the informal claim in [62] of

strong similarity between the two kinds of markets is incorrect for moderately connected
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markets (parallel to the fact that most real world matching markets are well connected

but do not exhibit a stark effect of competition).

101 102 103 104 105

Market size n

0

20

40

60

80

100

120

140

160

Av
er

ag
e 

de
gr

ee
 d

d
=

n

d= log
2 n

d = log n

Stark effect of competition
RMEN log n, RWOMEN

d
log n

All men are matched

No stark effect
RMEN RWOMEN d

Some men are unmatched

Effect of competition in random matching markets

Figure 3.2: Schematic showing the two “competitiveness” regimes for partially connected
random matching markets with small imbalance, n women, men being on the short side,
and connectivity (average preference list length) d. RMEN denotes the average rank of
men for their wives, and RWOMEN the average rank of women for their husbands.

Intuition for our findings. We now provide the high level intuition behind our

main results. [62] showed a stark effect of competition for fully connected markets d = n.

We find that as d is decreased, this phenomenon remains intact if all short side agents

are matched: if women are on the long side (k < 0), though the average rank of women

for their husbands RWOMEN ≈ d/ log n decreases as d decreases, it remains true that men

are significantly better off than women RWOMEN/RMEN ≥ 1 + Ω(1). As d falls below a

certain threshold, a positive number of men remains unmatched with high probability.

The threshold turns out to be log2 n, corresponding to the fact that the maximum number

of proposals made by any man in the fully connected random market is Θ(log2 n); see

[78].

But does a few agents remaining unmatched have any bearing on the stark effect

of competition phenomenon? A priori it is unclear that this should be the case. After

all, it is easy to construct matching markets such that some short side agents remain
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unmatched, but where the short side is nevertheless significantly better off than the

long side.7 Remarkably, we find that in random matching markets there is no stark

effect of competition if some short side agents remain unmatched. We now provide some

informal intuition why random matching markets have this property: Clearly, due to the

matching constraint the number of unmatched men must be exactly k plus the number

of unmatched women. Hence, assuming a small imbalance k (the balanced market with

k = 0 being a special case), the number of unmatched agents on the two sides must be

nearly the same. But the number of unmatched men should grow with RMEN (the more

proposals men need to make in men-proposing DA, the larger the number of men that will

reach the end of their preference list), whereas the number of unmatched women should

similarly grow with RWOMEN (e.g., one can consider women-proposing DA, and assume

— or prove separately — that, as usual, the WOSM is close to the MOSM). We deduce

that we should have RMEN ≈ RWOMEN in the d � log2 n regime, i.e., there is almost no

advantage from being on the short side of the market.

Next, we provide more detailed quantitative intuition leading informally to the sharp

estimates of RMEN and RWOMEN in our characterization of moderately connected markets.

This intuition is based on a detailed heuristic picture of the stable outcome in a random

matching market (we do not formalize the full detailed picture in this paper, and instead

prove our main theorem via a “shortcut” described below). Intuitively, both RMEN and

the number of unmatched men δm should be governed by the (endogenous) probabil-

ity pMEN that a neighboring woman j (independently of other women) is “interested” in

given man i (the woman j is said to be interested if she receives no proposal which she

prefers to i): in particular, the rank of man i for his wife (his most preferred woman

who accepts his proposal) should be distributed as Geometric(pMEN) truncated at d, lead-

ing to RMEN ≈ 1/pMEN (assuming 1/pMEN � d) and δm ≈ nP(Geometric(pMEN) > d) =

n(1− pMEN)−d ≈ n exp(−dpMEN). Analogously for women, letting pWOMEN denote the (en-
7For instance, consider a densely connected random matching market with the modification that a few

agents on the short side have empty (or short) preference lists. The latter agents will remain unmatched,
but the short side agents will nevertheless have a much smaller average rank for the their partners than
the long side agents.
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dogeneous) probability that woman j receives a proposal from each neighboring man i,

we expect RWOMEN ≈ 1/pWOMEN and δw ≈ n exp(−dpWOMEN). For k small, we have that

both sides must have nearly the same number of unmatched agents δw ≈ δm and hence

pWOMEN ≈ pMEN and RMEN ≈ RWOMEN. But we can further get quantitative estimates:

the average number of proposals received by women is nearly the same as the average

number of proposals made by men (n+ k)RMEN/n ≈ RMEN ≈ 1/pMEN, and since pWOMEN ≈

average number of proposals received/(typical length of preference list) ≈ 1/(dpMEN). We

deduce that pMEN ≈ pWOMEN ≈ 1√
d
and so RMEN ≈ RWOMEN ≈

√
d and δm ≈ δw ≈ ne−

√
d.

Technical contributions. Our characterization of the stable matching in partially

connected random matching markets (as a function of connectivity d) is novel: stable

matchings have not been previously characterized either in balanced or in unbalanced

random markets under partial connectivity d < n and d = ω(1). (A few papers have

studied the extreme case of sparsely connected markets d = Θ(1) under various preference

models; see Section 3.1.1.)

Our characterization showing a stark effect of competition in densely connected mar-

kets d = ω(log2 n) is proved via an analysis similar to [62]. In contrast, our characteriza-

tion showing no stark effect of competition in moderately connected markets d = o(log2 n)

and d = ω(1) overcomes significant technical difficulties via a novel approach as we now

describe.

The main challenge we face relative to previous works studying fully connected mar-

kets [e.g., 62, 71] is the complexity in the way that DA terminates when there is a positive

(but vanishing) fraction of unmatched agents on both sides of the market. Note that DA

terminates when the number of women who have received at least one proposal equals

the number of men who have not exhausted their lists. In the large d regime (including

fully connected markets as studied in the prior literature), it is likely, assuming that men

are on the short side (k < 0), that the event of n + k distinct women each receiving at

least one proposal happens before any man reaches the bottom of his list. As a result, the

total number of proposals in DA can be well approximated by the solution of the coupon
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collector’s problem where n + k distinct coupons must be drawn, and key properties of

the MOSM can be deduced from there. In the small to medium d regime, however, it is

likely that a positive number of men have reached the end of their lists during the run

of DA. As a result, to estimate the number of proposals of DA, it is necessary to get

a handle on the number of men who have been rejected d times, which is considerably

more complicated to analyze, especially for d = ω(1) as we consider, where the fraction of

unmatched men is positive but vanishing (previous works, especially [79], have developed

a machinery to handle the case of d = Θ(1) which leads to a Θ(1) fraction of unmatched

agents). One of our technical contributions is resolving this difficulty. Instead of prov-

ing the detailed heuristic picture given in the previous paragraph, we control two main

quantities: (i) the total number of proposals before DA terminates (this quantity is the

one tracked in the related literature), and (ii) the number of unmatched men and women

when DA terminates. The matching constraint tells us that the number of unmatched

men is exactly k plus the number of unmatched women. Thus, to control (ii) it suffices

to control the number of unmatched men. We estimate (bound) this quantity by con-

structing a “fake” process where a man who is accepted and then later rejected is allowed

to make d additional proposals. It turns out this process is much easier to analyze and it

yields a sufficiently good estimate of the number of men who end up unmatched under

the assumption d = o(log2 n).

3.1.1 Related work

The closest papers to our work are the ones studying random matching markets [71,

72, 73, 74, 62, 78]. All of these papers assume complete preference lists. Whereas the

early papers focused on balanced random markets and found that the proposing side (in

DA) has a substantial advantage, [62] and follow up papers found that in unbalanced

markets, the short side has a substantial advantage. The main technical difficulty we

face relative to these papers is that a positive number of agents remain unmatched on

both sides of the market in moderately connected markets d = o(log2 n), preventing us
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from directly leveraging the analogy with the coupon collector problem as in the previous

works.

Notable papers by Immorlica and Mahdian and others [79, 68] show a small core (i.e.,

a small set of stable matchings) while working with short (constant-sized) preference lists,

leading to a linear fraction of unmatched agents. Arnosti [80] and Menzel [76] characterize

the (nearly unique) stable outcome in settings with constant-sized preference lists, and

in particular, we expect their characterizations can be used to show that the outcome

changes “smoothly” as a function of the market imbalance under short lists. In contrast to

the aforementioned papers, our work restricts attention to the case d = ω(1) and indeed

identifies the existence of a threshold at d ∼ log2 n, as a result of which the fraction

of unmatched agents in our setting is vanishing. Technically, the consequence of this

phenomenon is that “rejection chains” in the progress of DA are ω(1) in length in our

work, making them harder to analyze, and the (approximate) system “state” no longer

has bounded dimension as in [80].

Our work belongs to a vast theoretical literature on matching markets, which began

with the work of Gale and Shapley [81] introducing stable matching and the deferred ac-

ceptance algorithm, and has developed over the last six decades with major contributions

by Roth, Sotomayor, and a large number of other prominent researchers [see, e.g., 82,

83]. Key combinatorial properties of stable matchings are extremely well understood for

multiple decades now, and more recently, it has been generally accepted that in typical

matching markets, the man optimal stable matching is nearly the same as the woman

optimal stable matching [79, 68, 62], allowing one to talk about the stable matching in

typical settings.

What still remains troublingly mysterious is the nature of the stable matching as a

function of market primitives, especially in settings where there is a significant idiosyn-

cratic/horizontal component to preferences and preference lists are not short (when there

is a strong vertical component to preferences, the outcome is known to be approximately

assortative, e.g., see [84]). [62] suggested that the outcome depends heavily on which
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side is the short side of the market, but innumerable datasets and the present theoretical

work indicate that this is not the case in typical markets. The present paper aims to

explain the relative lack of competitiveness of typical matching markets, and overall to

take a small step towards a better understanding of how the stable matching depends

on market primitives. Reasoning based on [62] has the potential to lead theorists (and

perhaps practitioners) astray, given that we often want to derive operational insights,

e.g., which tie breaking rule to use [77], based on the analysis of models resembling the

random matching market model.

There is a robust and growing body of practical work on designing real world matching

markets, especially in the contexts of school and college admissions [e.g., 65, 66, 85], and

various labor markets [e.g., 63, 64]. Stability, namely, that no pair of agents should

prefer to match with each other, has been found to be crucial in the design of centralized

clearinghouses [86] and predictive of outcomes in decentralized matching markets [87,

88]. We are not aware of any real world matching dataset in which the short side of the

market is vastly better off even if the imbalance is small. It further appears that most

practitioners are aware that a platform operator cannot make one side of the market

vastly better off by slightly tilting the market imbalance in favor of that side.

Organization of the paper. In Section 3.2, we introduce our model of partially

connected random matching markets. In Section 3.3, we state our main theorems (The-

orem 3.1 and 3.2) and discuss them. An overview of our proof of our characterization of

moderately connected markets (Theorem 3.1) is provided in Section 3.4. In Section 3.5,

we provide the simulation results that confirm and sharpen our theoretical predictions.

Formal proofs are relegated to the appendix.

3.2 Model

We consider a two-sided market that consists of a set of menM = {1, . . . , n+ k} and

a set of women W = {1, . . . , n}. Here k is a positive or negative integer, which we call
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the imbalance.

We fix a positive integer d ≤ n which we call the connectivity (or average degree) of

the market. Each man i has a strict preference list �i over a uniformly random subset

Wi ⊂ W of |Wi| = d women (from among the
(
n
d

)
possibilities), where the subsets Wi

are drawn independently across men. Each woman j has strict preferences �j over only

the men who include her in their preference list8

Mj = {i ∈M : j ∈ Wi} .

Amatching is a mapping µ fromM∪W to itself such that for every i ∈M, µ(i) ∈ W∪{i},

and for every j ∈ W , µ(j) ∈ M ∪ {j}, and for every i, j ∈ M ∪W , µ(i) = j implies

µ(j) = i. We use µ(j) = j to denote that agent j is unmatched under µ.

A matching µ is unstable if there are a man i and a woman j such that j �i µ(i) and

i �j µ(j). A matching is stable if it is not unstable.

A random matching market is generated by drawing, for each man i, a uniformly

random preference list over Wi (from among the |Wi|! possibilities), and for each woman

j, a uniformly random preference list overMj, independently across agents.

A stable matching always exists, and can be found using the Deferred Acceptance

(DA) algorithm by Gale and Shapley [81]. They show that the men-proposing DA finds

the men-optimal stable matching (MOSM), in which every man is matched with his most

preferred stable woman. The MOSM matches every woman with her least preferred stable

man. Likewise, the women-proposing DA produces the women-optimal stable matching

(WOSM) with symmetric properties. All of our results will characterize the MOSM.

Given the strong evidence from [79, 68, 62] and other works that the MOSM and WOSM

are nearly the same in typical matching markets (with the exception of balanced and

densely connected random markets, which we avoid by assuming k < 0 in Theorem 3.2),

we omit to formally show this fact for our setting in the current version of the paper
8Equivalently, we sample an undirected bipartite random graph G connecting menM to women W,

where each man has degree exactly d and the d neighboring women of each man are selected uniformly
at random and independently across men. Given G, for each agent has a strict preference ranking over
all his/her neighbors in G and does not rank any other agents.
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though we believe it can be done, e.g., using the method developed in [89] (the property

MOSM ≈WOSM is found to hold consistently in our numerical simulations of our model).

We are interested in how matched agents rank their assigned partners under stable

matching, and in the number of agents who remain unmatched. Denote the rank of

woman j in the preference list �i of man i by Ranki(j) ≡ |{j′ : j′ �i j}|. A smaller rank

is better, and i’s most preferred woman has a rank of 1. Symmetrically, denote the rank

of i in the preference list of j by Rankj(i).

Definition 3.1. Given a matching µ, the men’s average rank of wives is given by

RMEN(µ) =
1

n+ k

|M̄(µ)|(d+ 1) +
∑

i∈M\M̄(µ)

Ranki(µ(i))

 ,

where M̄(µ) is the set of men who are unmatched under µ, and the number of unmatched

men is denoted by δm(µ), i.e., δm(µ) = |M̄(µ)|.

Similarly, the women’s average rank of husbands is given by

RWOMEN(µ) =
1

n

 ∑
j∈W̄(µ)

(|Mj|+ 1) +
∑

j∈W\W̄(µ)

Rankj(µ(j))


where W̄(µ) is the set of women who are unmatched under µ, and the number of un-

matched women is denoted by δw(µ), i.e., δw(µ) = |W̄(µ)|.

(Note here that if an agent is unmatched, we take the rank for the agent to be one

more than the length of the agent’s preference list.) By the rural hospital theorem [90],

the set of unmatched agents (M̄(µ) and W̄(µ)) is the same in every stable matching

µ, and therefore we simply represent the number of unmatched men and women under

stable matching by δm and δw respectively throughout the remainder of paper.

We remark that the only asymmetry in our model is that the lengths of men’s pref-

erence lists are deterministically d, whereas each woman has Binomial(n+ k, d/n)
d−−−→

n→∞

Poisson(d) neighbors where d−→ denotes convergence in distribution. Since our theoretical

analysis will assume d = ω(1), we have Poisson(d)
p−→ d, i.e., the degree of each woman is

also very close to d, and so the asymmetry between the two sides in the model is mainly
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technical.

3.3 Results

In this section we state and discuss our main results.

Before stating our results, we restate a main finding of [62] (Theorem 2 in that paper)

on the structure of stable matchings in fully connected random markets. (The statement

has been modified —and slightly weakened in the process— with the aim of allowing easy

comparison with our main theorems.)

Theorem (Ashlagi, Kanoria, and Leshno [62], Fully connected markets). Consider a

sequence of random matching markets indexed by n, with n + k men and n women, for

k = k(n) ∈ [−n/2,−1], and complete preference lists on both sides of the market (i.e.,

connectivity d = n). For fixed ε > 0, with high probability the following hold for every

stable matching9 µ:

RMEN(µ) ≤ (1 + ε)
(

n
n+k

)
log
(
n
|k|

)
,

RWOMEN(µ) ≥ n+ k

1 + (1 + ε)
(

n
n+k

)
log
(
n
|k|

) ,
and all men are matched.

The theorem shows that even a slight imbalance in the number of agents on the two

sides of the market results in a stark effect on stable outcomes that strongly favors the

agents on the short side of the market: agents on the short side are essentially able to

freely choose their partners (as [62] explain, RMEN is nearly the same as it would be under

random serial dictatorship by the men), whereas agents on the long side do only a little

better than being matched with a random partner. In particular, even with k = −1,

it holds that RMEN(µ) ≤ 1.01 log n and RWOMEN(µ) ≥ 0.99n
logn

in every stable matching,

9Though our definition of average rank is slightly different from that of [62], the bounds stated are
nevertheless valid for our definition.
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w.h.p. In the present paper, we investigate stable matchings in random partially connected

matching markets, and compare with the above finding of [62].

Moderately and sparsely connected markets. In our first main result, we show

that the short-side advantage disappears in partially connected markets (with small or

zero imbalance) whose connectivity parameter d is below log2 n.

Theorem 3.1 (Moderately Connected Markets). Consider a sequence of random match-

ing markets indexed by n, with n + k men and n women (k = k(n) can be positive

or negative or zero), and connectivity (average degree) d = d(n), with d = ω(1) and

d = o(log2 n), and10 |k| = O(ne−
√
d). Then with high probability,11 we have∣∣∣RMEN(MOSM)−

√
d
∣∣∣ ≤ d0.3 ,∣∣∣RWOMEN(MOSM)−

√
d
∣∣∣ ≤ d0.3 ,∣∣∣∣log δm − log

(
ne−

√
d
)∣∣∣∣ ≤ d0.3 ,∣∣∣∣log δw − log

(
ne−

√
d
)∣∣∣∣ ≤ d0.3 .

Informally, in large random matching markets with average degree d = o(log2 n) and

a small imbalance k = O(n1−ε), under stable matching we have RMEN ≈ RWOMEN ≈
√
d

irrespective of which side is the short side, and there are approximately ne−
√
d = ω(1)

unmatched agents on both sides of the market. Thus there is no short-side advantage

and agents on both sides are matched to their
√
d-th ranked partner on average. A

significant number of agents are left unmatched even on the short side, in contrast to

a fully connected unbalanced matching market where all agents on the short side are

matched. Though we only characterize the MOSM in the present version of the paper,

we believe the same characterization extends to the WOSM as well. We give an overview

of the proof of Theorem 3.1 in Section 3.4 and the formal proof in Appendix C.2.

The main intuition for Theorem 3.1 is that for d = o(log2 n), a positive number

of men remain unmatched with high probability, because they reach the end of their
10In particular, for arbitrary fixed ε > 0, the result holds for any k = k(n) that satisfies |k(n)| =

O(n1−ε).
11Specifically, our characterization holds with probability at least 1−O(exp(−d1/4)) = 1− o(1).
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preference lists in men-proposing DA ([78] showed that some men need to go log2 n deep

in their preference lists in the fully connected market). Clearly, the number of unmatched

men must be exactly k plus the number of unmatched women. Then, assuming a small

imbalance k, the number of unmatched agents on the two sides must be nearly the same.

But the number of unmatched men should grow withRMEN (the more men need to propose,

the larger the number that will reach the end of their preference lists), whereas the number

of unmatched women should similarly grow with RWOMEN (e.g., one can consider women

proposing DA, and assume that, as usual, the WOSM is close to the MOSM). We deduce

that we should have RMEN ≈ RWOMEN in the d � log2 n regime. (Informal quantitative

intuition leading to the precise estimates of RMEN and δm is provided in the introduction;

we avoid reproducing it here.)

We highlight that Theorem 3.1 encompasses a wide range of connectivity parameters

d = o(log2 n), which extends far beyond the connectivity threshold d ≈ log n (this is the

connectivity threshold in our model, the same as for Erdős-Rényi random graphs). Thus

our “no stark effect of competition” result does not require a disconnected or fragmented

market. Rather, the result applies even to very well connected markets.12 This is in

sharp contrast to buyer-seller markets, where, roughly, connectivity implies a stark effect

of competition, as captured in the following remark.

Remark 3.1 (Connected buyer-seller markets exhibit a stark effect of competition).

Consider a buyer-seller market where each of n+ k sellers is selling one unit of the same

commodity, and each of n buyers wants to buy one unit and has value 1 for a unit. A

bipartite graph G with sellers on one side and buyers on the other captures which trades

are feasible. (This is a special case of the Shapley-Shubik assignment model [91].) We say

that an unbalanced market with k > 0 (or k < 0) exhibits a stark effect of competition if,

in any equilibrium, all trades occur at price 0 (or 1), i.e., the agents on the short side,

namely buyers (sellers), capture all the surplus. Then we know [91] that for k 6= 0 the

12For example, with n = 1, 000, log2 n ≈ 48. Taking d = 10 (much less than 48), numerics tell us that
9.6% of pairs of men are within 1 hop of each other (i.e., there is woman who is ranked by both men),
and 99.98% of pairs of men are within 2 hops of each other.
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market exhibits a stark effect of competition if the following requirement is satisfied:

E ≡ {For each agent j on the long side, there exists a matching in G

where all short side agents are matched but agent j is unmatched } .

Requirement E is only slightly stronger than connectivity of G: Suppose, as in our model

in Section 3.2, that each seller is connected to a uniformly random subset of d buyers.

Under this stochastic model for G, for any sequence of k such that 1 ≤ |k| = O(1), event

E occurs (i.e., there is a stark effect of competition) for all d exceeding the connectivity

threshold at d = log n:

(i) For any ε > 0 and d ≥ (1 + ε) log n, with high probability, G is connected and

moreover, event E occurs, i.e., there is a stark effect of competition.

(ii) For any ε > 0 and d ≤ (1− ε) log n, with high probability, the connectivity graph G

is disconnected (in fact a positive number of buyers have degree zero).

Numerical simulations in the Section 3.5 show that the finding in Theorem 3.1 holds

up extremely well for all d . 1.0 log2 n for realistic values of n (not just asymptotically

in n for d = o(log2 n)). Now log2 n is quite large for realistic market sizes (see Figure 3.2

in the introduction), far in excess of preference list lengths in many real markets: we

have log2 n ≈ 48 for n = 1000, 85 for n = 10000 and 132 for n = 100000. In contrast,

we have n ≈ 80, 000 for the high school admissions data introduced in the Section 3.1

and preference lists have length no more than 12 (the average length is only around

6.9), n ≈ 30, 000 for the National Residency Matching Program and preference lists

have length only about 11 on average. Thus, real preference list lengths are typically

much smaller than log2 n. Moreover, correlation in preferences should only reduce the

effect of competition (e.g., see the evidence in Figure 3.1), leading us to contend that the

vast majority of real matching markets live in the “no stark effect of competition” regime

covered by Theorem 3.1. This may explain why, in simulation experiments on real data

like the one shown in Figure 3.1, only a relatively weak effect of competition is observed.
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Densely connected markets. Our next main result shows that d ∼ log2 n is the

threshold level of connectivity above which the finding of [62] holds true, i.e., the short

side is markedly better off even in (large) markets with a small imbalance. Moreover,

this benefit of being on the short side arises in conjunction with the key property that

all agents on the short side of the market are matched (an implausible occurrence in real

world markets).

Theorem 3.2 (Densely Connected Markets). Consider a sequence of random matching

markets indexed by n, with n + k men and n women, and connectivity (average degree)

d = d(n), with k = k(n) < 0 and |k| = o(n), d = ω(log2 n) and d = o(n). Then, with

high probability, all men are matched under stable matching, and we have

RMEN(MOSM) ≤ (1 + o(1)) log n ,

RWOMEN(MOSM) ≥ (1 + o(1))
d

log n
.

This result shows that the short-side advantage emerges in densely connected markets

even when the imbalance is small (including for an imbalance of one, i.e., k = −1).

More specifically, when d = ω(log2 n), it predicts that the agents on the short side are

matched to their log n-th ranked partner on average whereas the agents on the long

side are matched to their
(

d
logn

)
-th ranked partner on average. Theorem 3.2 smoothly

interpolates between the result in AKL [62] and our Theorem 3.1 (though the extremes

d = Ω(n) and d = Θ(log2 n) are not covered by the formal statement in present form):

as connectedness d increases, a phase transition happens at d = Θ(log2 n), and the short

side advantage starts to emerge for d = ω(log2 n). The magnitude of the advantage

increases as the market becomes denser. Combining Theorems 3.1 and 3.2, we conclude

that, assuming a small imbalance, a short-side advantage exists if and only if a matching

market is connected densely enough, and the threshold level of connectivity d ∼ log2 n.

The analysis leading to Theorem 3.2 is similar to that leading to [62, Theorem 2].

The number of proposals in men-proposing DA remains unaffected; the only change is

that women now have rank lists of approximate length d (instead of length n + k), and
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so, receiving about log n proposals leads to an average rank of husband of about d/ log n.

The proof is in Appendix C.3.

3.4 Overview of the proof of Theorem 3.1

This section provides an overview of the proof of Theorem 3.1, which is our char-

acterization of moderately connected random matching markets. Our proof uses the

well-known analogy between DA and the coupon collector problem to bound women’s

average rank of their husbands, but also encounters and tackles the challenge of tracking

the (strictly positive) number of men who have reached the bottom of their preference

lists by constructing a novel bound using a tractable stochastic process. The latter chal-

lenge did not arise in the setting of [62] where all short side agents are matched under

stable matching, and similarly doesn’t arise in our “densely connected markets” setting

(Theorem 3.2). Following [62] and the majority of other theoretical papers on matching

markets, we prove our characterizations for large n (and then use numerics to demonstrate

that they extend to small n; see Section 3.5). Alongside an overview of the proof this

section provides parenthetical pointers to the relevant formal lemmas; their statements

and proofs can be found in Appendix C.2.

Our analysis tracks the progress of the following McVitie-Wilson [92] (sequential pro-

posals) version of the men-proposing Deferred Acceptance algorithm that outputs MOSM

(the final outcome is known to be the MOSM, independent of the sequence in which pro-

posals are made). Under this algorithm, only one man proposes at a time, and “rejection

chains” are run to completion before the next man is allowed to make his first proposal.

The algorithm takes the preference rankings of the agents as its input.

Algorithm 3.1 (Man-proposing Deferred Acceptance). Initialize “men who have entered”

M̂ ← φ, unmatched women W̄ ← W, the number of proposals t ← 0, the number of

unmatched men δm ← 0.

1. IfM\M̂ is empty then terminate. Else, let i be the man with the smallest index in
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M\M̂. Add i to M̂.

2. If man i has not reached the end of his preference list, do t ← t + 1 and man i

proposes to his most preferred woman j whom he has not yet proposed. If he is at

the end of his list, do δm ← δm + 1 go to Step 1.

3. Decision of j:

(a) If j ∈ W̄, i.e., j is currently unmatched, then she accepts i. Remove j from

W̄. Go to Step 1.

(b) If j is currently matched, she accepts the better of her current partner and i,

and rejects the other. Set i to be the rejected man and continue at Step 2.

Principle of deferred decisions. As we are interested in the behavior of Algo-

rithm 3.1 on a random matching market, we think of the deterministic algorithm on a

random input as a randomized algorithm, which is easier to analyze. The randomized,

or coin flipping, version of the algorithm does not receive preferences as input, but draws

them through the process of the algorithm. This is often called the principle of deferred

decisions. The algorithm reads the next woman in the preference of a man in step 2 and

whether a woman prefers a man over her current proposal in step 3b. No man applies

twice to the same woman during the algorithm, and therefore the algorithm never reads

previously revealed preferences. In step 2 the randomized algorithm selects the woman

j uniformly at random from those to whom man i has not yet proposed. In step 3b,

the probability that j prefers i over her current match is 1/(ν(j) + 1) where ν(j) is the

number of proposals previously received by woman j.

Stopping time. Algorithm 3.1 defines that “time” t ticks whenever a man makes

a proposal. First observe that the current number of unmatched men δm[t] = δm at

time t, i.e., men who have reached the bottom of their lists and are still unmatched, is

non-decreasing over time, whereas the current number of unmatched women δw[t] = |W̄|

at time t, i.e., women who have yet to receive their first proposal, is non-increasing
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over time. The MOSM is found when the number of unmatched men exactly equals the

number of unmatched women plus k. We view this total number of proposals τ when DA

terminates as a stopping time:

τ = min{t ≥ 1 : δm[t] = δw[t] + k} . (3.1)

This total number of proposals τ serves as a key quantity enabling our formal charac-

terization of the MOSM (see Figure 3.3 for an illustration). On the men’s side, the sum
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Figure 3.3: Illustration of a sample path of the current number of unmatched men δm[t]
and unmatched women δw[t] under Man-proposing Deferred Acceptance (Algorithm 3.1).
The algorithm terminates at t = τ , the first time δm[t] = δw[t] + k. (In this illustration
k > 0).

of men’s rank of wives is approximately the total number of proposals τ (more precisely,

this sum is τ + δm[τ ] given that the rank for an unmatched agent is defined as one more

than the length of the agent’s preference list, but τ � δm[τ ] is the dominant term). On

women’s side, since each proposal goes approximately to a uniformly random woman, as

a function of the total number of proposals we can tightly control the distribution of the

number of proposals received by individual women (this distribution is close to Poisson

and tightly concentrates around its average) and therefore their average rank of husbands

(Propositions C.5 and C.6), as well as the number of unmatched women (Propositions C.2
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and13 C.4).

Therefore, the bulk of the proof of Theorem 3.1 is dedicated to bounding the total

number of proposals τ . Because of the aforementioned technical challenge that a positive

number of agents remain unmatched on both sides, a direct application of the coupon

collector analogy is not enough. Instead, we control the two stochastic processes that

track the current number of unmatched men δm[t] and unmatched women δw[t] at each

time t and make use of the identity (3.1) that δm[τ ] = δw[τ ] + k. (Upon termination,

the number of unmatched men must be k plus the number of unmatched women.) For

technical purposes, we extend the definition of δm[t] and δw[t] to t > τ as follows: if there

are no men waiting to propose (i.e., a stable matching has been found), we introduce

a fake man who is connected to d women (uniformly and independently drawn) with a

uniformly random preference ranking over them, and keep running Algorithm 3.1.

Upper bound on the total number of proposals. We show (in Proposition C.1)

that the total number of proposals cannot be too large, i.e., τ ≤ (1 + ε)n
√
d with high

probability for ε = d−1/4 = o(1). We establish this bound by showing that after a large

enough number of proposals have been made, i.e., at time t = (1 + ε)n
√
d, the current

number of unmatched women δw[t] has (with high probability) dropped below ne−
√
d

whereas the current number of unmatched men δm[t] has (with high probability) increased

above some level which is ω(ne−
√
d) and hence, since k = O(ne−

√
d), the stopping event

(δm[τ ] = δw[τ ] + k) must have happened earlier, i.e., τ ≤ (1 + ε)n
√
d. The upper bound

on δw[(1 + ε)n
√
d] (see Lemma C.7) is derived using a standard approach that utilizes

the analogy to the coupon collector problem. The lower bound on δm[(1 + ε)n
√
d] (see

Lemma C.10) is obtained by counting the number of occurrences of d-rejections-in-a-row

during the men-proposing DA procedure (whenever rejections take place d times in a row,

at least one man becomes unmatched). Thus, our lower bound on δm[(1 + ε)n
√
d] ignores

that some men are first accepted, and then later rejected causing them to reach the end
13In Proposition C.4, we first upper bound the number of unmatched women, and then use the afore-

mentioned observation to lower bound the number of proposals.
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of their preference lists via less than d consecutive rejections. Our conservative approach

provides tractability and saves us from needing to track how far down their preference

lists the currently matched men are. Nevertheless, the slack in this step necessitates

our stronger assumption d = o(log2 n), despite our conjecture that the characterization

extends for all d < 0.99 log2 n.

Lower bound on the total number of proposals. We prove (in Proposition C.4)

that the total number of proposals cannot be too small, i.e., τ ≥ (1 − ε)n
√
d with high

probability for some ε = o(1). We start with upper bounding (in Lemma C.13) the

expected number of unmatched men in the stable matching, E[δm], by showing that the

probability of the last proposing man being rejected cannot be too large given that each

woman has received at most (1 + ε)
√
d proposals on average (recall that τ ≤ (1 + ε)n

√
d

w.h.p.). We then use Markov’s inequality to derive an upper bound on δm which holds

with high probability, and deduce (in Proposition C.3) an upper bound on δw using the

identity δm = δw + k. Then we again use the coupon collector analogy to bound τ from

below: the process cannot stop too early since the current number of unmatched women

δw[t] does not decay fast enough to satisfy the upper bound on δw[τ ] (= δw) if τ is too

small.

3.5 Numerical Simulations

This section provides simulation results that confirm and sharpen the theoretical pre-

dictions made in Section 3.3. Our simulations reveal (i) a sharp threshold at connectivity

d ≈ 1.0 log2 n with no stark effect of competition observed for d below this threshold, and

(ii) that our findings hold even for small values of n. We also investigate the role of im-

balance k. Finally, we observe that the connectivity in the actual high school admissions

data resembles that in a market with n = 500 and d = 7 � log2 500 ≈ 40, providing

some explanation for why that dataset does not exhibit a stark effect of competition.

We first examine the effect of connectivity on stable matchings in a random matching
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market of a fixed size. Specifically, we consider a market with 1,000 men and 1,001 women

(n = 1001, k = −1) where the length of each man’s preference list d varies from 5 to 150.

For each degree d we generate 500 random realizations of matching markets according to

the generative model described in Section 3.2, and for each realization we compute the

MOSM via the men-proposing DA algorithm. Figure 3.4 reports the men’s average rank

of wives and the women’s average rank of husbands (left) and the number of unmatched

men and women (right) at each d. While not reported here to avoid cluttering the figures,

we observe almost identical results for the WOSM. Observe that when d < log2 n both

men’s average rank and women’s average rank are highly concentrated at
√
d and both

the number of unmatched men and the number of unmatched women are close to ne−
√
d,

which confirms the estimates in Theorem 3.1. As d grows beyond log2 n, the average

rank of men and women start to deviate from each other, and specifically, the average

rank of short side (men) stops increasing whereas the average rank of long side (women)

increases linearly: i.e., RMEN ≈ log n and RWOMEN ≈ d
logn

when d > log2 n, confirming

Theorem 3.2. We also remark that the number of unmatched men quickly vanishes as d

increases beyond log2 n (note that the y-axis of the plot has a log-scale).

The above observation extends to a wide range of market size n (even for small

n ≤ 50). To better illustrate, we investigate three kinds of threshold degree levels d∗rank(n),

d∗δ(n), and d∗conn(n) that sharply characterize the phase transitions that occur when degree

d varies in random matching markets of size n. We define these thresholds as follows:

given that k = −1 as above,

d∗rank(n) = min
d

{
En,d[RWOMEN(MOSM)]/En,d[RMEN(MOSM)] ≥ 1.15

}
, (3.2)

d∗δ(n) = min
d

{
En,d[δm] ≤ 0.5

}
, (3.3)

d∗conn(n) = min
d

{
En,d[the number of connected components] ≤ 2

}
, (3.4)

where En,d[·] represents the expected value of some random variable in a random matching

market with n − 1 men each of whose degree is d and n women. The rank-gap thresh-

old d∗rank(n) indicates the degree value beyond which men’s average rank and women’s
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Figure 3.4: Men’s average rank of wives RMEN and women’s average rank of husbands
RWOMEN (left) and the number of unmatched men δm and the number of unmatched
women δw (right) under MOSM in random matching markets with 1,000 men and 1,001
women (n = 1001, k = −1), and a varying length of men’s preference list d. In both
figures, solid lines indicate the average value across 500 random realizations, and gray
dashed lines indicate our theoretical predictions (Theorem 3.1 and 3.2) annotated with
their expressions. In the left figure, the shaded areas surrounding solid lines represent
the range between the top and bottom 10th percentiles of 500 realizations of men’s and
women’s average rank.

average rank start to deviate from each other (in particular, we require a 15% or larger

difference in the average ranks on the two sides of the market); the unmatched-man

threshold d∗δ(n) is the degree value beyond which all men are (typically) matched; and

the connectivity threshold d∗conn(n) is the degree value beyond which the entire market is

typically connected. We quantify these threshold values based on numerical simulations.

More specifically, we vary the number of men n from 10 to 2,500, and for each n we use

bisection method with a varying d to find the threshold degrees, where the expected val-

ues are approximated with sample averages across 500 random realizations. We find that

bisection method is adequate since each of the measures on which the above thresholds

are defined is observed to monotonically increase or decrease in d, and further to change

rapidly near the threshold value d∗ that we want to estimate.

Figure 3.5 plots the measured threshold degrees. Remarkably, the thresholds d∗rank(n)

and d∗δ(n) are very close to log2 n for all tested values of n. This suggests that our

predicted threshold is fairly sharp: the short-side advantage emerges if and only if d &
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1.0× log2 n. Also note that this threshold is much larger than the connectivity threshold

d∗conn(n) ≈ log n.
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Figure 3.5: Threshold degrees d∗rank(n), d∗δ(n), and d∗conn(n), defined in (3.2)–(3.4), in
random matching markets with n−1 men and n women where n ranges from 10 to 2,500.
For each n, the threshold values are found using bisection method in which we simulate
500 realizations at each attempted d. The gray dashed lines indicate the theoretical
predictions annotated with their expressions.

We next investigate the effect of imbalance k on the stable outcomes and characterize

it at the different levels of connectivity d. Analogous to the numerical experiment for the

high school admissions discussed in Section 3.1, we fix the number of women n = 500

(so log2 n ≈ 40), and measure men’s average rank under MOSM (averaged across 500

realizations) where the number of men varies from 450 to 550. To facilitate easier com-

parison, we compute the normalized average rank RMEN/d: e.g., RMEN/d ≈ 0.2 implies

that in average a man is matched to his top-20% most preferred woman out of his prefer-

ence list. Figure 3.6 shows how the (normalized) men’s average rank changes as we add

or remove men in the market, tested with different values of d. Observe that for large

d > log2 n (e.g., d = 100, 450) there is a stark effect when we inject a slight imbalance into

the balanced market; compare 500 men vs. 501 men. In contrast, for small d < log2 n

(e.g., d = 10, 20), the stable outcome changes very “smoothly” across a wide range of
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imbalance, which is consistent with simulation results based on high school admissions

data (see Figure 3.1).
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Figure 3.6: The effect of imbalance k on men’s average rank in random matching markets
with a fixed number of women n = 500 (log2 n ≈ 40). For each d ∈ {10, 20, 40, 100, 450},
the corresponding curve reports men’s average rank under MOSM normalized by d,
i.e., E[RMEN(MOSM)]/d, where the number of men varies from 450 to 550 (i.e., k =
−50, . . . , 50). Each data point reports the average value across 500 realizations.

We conclude this section by providing some statistics that illustrate the level of con-

nectivity in the high school admissions example and showing that random matching

markets with n = 500 and d = 7 exhibit a similar level of connectivity. We focus on

the pairwise distance among students as a measure of the connectivity of a matching

market: e.g., the distance between two students is one hop if they applied to the same

program. On the actual high school admissions data, we sample 1,000 students out of

total 75,202 students, and measure the distance from each of selected students to all the

other 75,201 students. We observe that 10.1% of student pairs are within 1 hop, 97.8% of

pairs are within 2 hops, and 100.0% of pairs are within 3 hops. (Recall that the average

preference list length in this high school admissions data was 6.9.) We apply the same

analysis on our random matching market model and find that the model with n = 500

and d = 7 yields a comparable outcome: 9.4% of man pairs are within 1 hop, 98.1% of

pairs are within 2 hops, and 100.0% of pairs are within 3 hops. Given that log2 n ≈ 40
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for n = 500, far in excess of d = 7, and since correlation in preferences seems only to

reduce the effect of competition (see evidence in Figure 3.1), we deduce that the high

school admissions market seems to lie well within the “no stark effect” regime covered by

Theorem 3.1, which provides an explanation as to why we do not see a stark effect of

competition (Figure 3.1).

3.6 Discussion

We investigated stable matchings in random matching markets which are partially

connected, and asked which random matching markets exhibit a stark effect of competi-

tion. In particular, unlike many previous papers which study whether there is a nearly

unique stable matching, we focus on the issue of how well (or poorly) agents do under

stable matching, as a function of market primitives. The parameter d captured the con-

nectivity (average degree), n captured the market size and k captured the imbalance,

whereas preferences were assumed to be uniformly random and independent. We found

that, in densely connected markets d = ω(log2 n), the short side of the market enjoys a

significant advantage, generalizing the finding of [62] in fully connected markets. In con-

trast, in moderately connected markets d = o(log2 n), we found that for any k = o(n), the

two sides of the market do almost equally well, challenging the claim of [62] that “match-

ing markets are extremely competitive”. Notably, this “no stark effect of competition”

regime extends far beyond the connectivity threshold of d = log n and thus includes well

connected markets. Numerical simulation results not only support our theory but further

indicate that our findings extend to small n and that there is a sharp threshold between

the two regimes at d ≈ 1.0 log2 n. We argued informally that most real world matching

markets lie in the no stark effect of competition regime, providing some explanation why

matching market datasets do not exhibit a stark effect of competition.

Following the theoretical matching literature, we have analyzed a highly stylized model

in the interest of tractability and obtaining sharp results. (Even so, we encounter and
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overcome significant new technical challenges.) We leave as interesting and challenging

directions for future work to characterize stable matchings while incorporating various

features of real world market such as many-to-one matching, correlation in preferences,

and small market sizes.
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CHAPTER 4

Price Discovery and Efficiency in Waiting Lists: A Connection to

Stochastic Gradient Descent

4.1 Introduction

Public scarce resources are often allocated through waiting lists, in which agents can

select which resource to wait for For example, the New York Public Housing Authority

asks applicants to choose a project specific queue. If utilities are quasi-linear in waiting

costs and total waiting costs are constant across assignments, waiting times act as prices

that clear the market and create an efficient assignment. In this sense, waiting lists are

similar to standard competitive equilibrium (CE) models, with the exception that prices

are quoted in waiting times instead of monetary transfers. Waiting lists mechanisms

have a natural price formation process. Indeed, waiting times, or prices, are naturally

adjusted with arrival of agents and resources. This paper is concerned with how the price

dynamics that are inherent to waiting lists impact allocative efficiency.

The economy considered has items of different types as well as agents arriving over

time. A waiting list mechanism maintains one observable queue for each item type.

Agents have unit demand, heterogeneous private values for items. The utility of an

agent is quasi-linear in waiting costs. Upon arrival, the agent, who maximizes expected

utility, chooses either a single queue and waits until she is assigned an item, or, leaves

immediately and receives an outside option. When an item arrives, it is assigned to an
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agent in the respective queue or discarded if that queue is empty.

Prices in this economy depend on the current state of the queues; the price of an

item type decreases when such an item is assigned to an agent, and increases when an

agent joins the corresponding queue. This means that different agents may face different

prices upon arrival. This stochastic evolution creates a challenge to analyze this simple

economy.

To understand how price adjustments affect welfare, it is helpful to first relate the

economy to a canonical CE model. Suppose that instead of dynamically assigning items,

a center could wait for a large time frame and then simultaneously assign all accumulated

items to the agents By the first welfare theorem, prices that clear the market and form a

CE will generate an assignment of items to agents that maximizes the total value agents

ascribe to their assigned items. Assuming that total waiting costs are constant across

assignments, the value generated by the CE assignment gives an upper bound on the

welfare in the dynamic model. Moreover, this welfare can be achieved if prices (expected

waiting costs at each queue) remain constant at CE prices.

Since prices in the economy fluctuate, they may fail to generate the same welfare

as CE prices. To illustrate this consider a simple example with a single type of item.

Agents’ valuations are distributed uniformly between 0 and 1 and they arrive twice as

fast as items. Since only half the agents can be assigned, it is optimal to set a price

equal to 1/2 and assign the item to the agents with valuation above that price. But in

the waiting list the price fluctuates below and above 1/2. This results in some agents

with lower values being assigned and some agents with high values selecting the outside

option.

With multiple types of items, prices follow a multidimensional Markov process. While

this process is easy to describe, the stationary distribution cannot be derived tractably.

For this reason, several related papers restricted attention to economies with at most

two item types (see, e.g., Baccara, Lee, and Yariv [93] and Leshno [94]). However, we

can bound the welfare loss in the economy by drawing a connection between the price
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dynamics under the waiting list mechanism, and the stochastic gradient descent (SGD)

optimization algorithm. The main insight is that while price adjustments are stochastic,

prices tend to adjust towards their CE levels. Formally, the expected price adjustment is

a subgradient of a dual of the welfare maximization problem.

A key quantity is the granularity of price adjustments ∆, defined as the maximal

increase in price (waiting costs) due to the addition of one agent to a queue. Equivalently,

∆ determines the size of the adjustment step taken by the SGD algorithm after seeing one

sample. This granularity is a key distinction between the price adjustment process in our

economy and standard usage of SGD in optimization: to make the SGD converge the step

size is reduced to zero over time, while in waiting lists the step size is exogenously given

by agent sensitivity to waiting costs and remains constant. Despite this distinction, the

connection to SGD allows us to leverage tools from Lyapunov theory to obtain tractable

bounds for welfare.

The main finding is that the welfare loss in waiting lists is bounded by the granularity

of price adjustments ∆ times a factor that depends only on the relative arrival rates of

agents and items. The dynamic price adjustments keep prices “close” to the CE prices,

despite never converging. The welfare loss due to constant fluctuation of prices depends

on the magnitude of these fluctuations, which become small as ∆ becomes small.

For further intuition, consider again the simple example and assume waiting costs are

linear. If waiting behind 10 agents in the queue gives a waiting cost of 1/2, then each

arrival or departure of an agent changes the price by 10% of the item’s maximal value. If

agents are more patient and waiting behind 100 agents in the queue gives a waiting cost

of 1/2, then each arrival or departure of an agent changes the price by only 1% of the

item’s maximal value. So ∆ is smaller when agents are more patient. Intuitively, prices

will fluctuate less when agents are patient resulting in less welfare loss.

Two additional results complement the main finding. We show that the bound is

essentially tight (up to constant factors) by explicitly constructing an economy in which

welfare loss is high. A distinct and important feature of this economy is the multiplicity
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of CE prices.

Finally, it is shown that the loss is generically much smaller for economies with finitely

many agent types. When the number of agent types is finite, the CE prices are unique

for all but a zero measure of arrival rates. And when CE prices are unique the welfare

loss becomes exponentially small as ∆ tends to zero.

The analysis can offer insight for general price adaptation algorithms. Consider a

planner who is able to choose the granularity of price adjustments ∆. Increasing ∆ will

make the prices adjust more quickly if the distribution of agent valuations changes. But

a higher value of ∆ will also cause losses when agent valuations remains the same, but

prices change due to the random arrivals. This tension is inherent to any price adaptation

mechanism that can only observe noisy signals, and needs to trade-off overreactions due to

imprecise information and slow reaction time due to the need to accumulate sufficiently

precise information. A particular feature may be of interest: firms that adjust prices

according to an SGD heuristic may find it optimal to react slowly to changes in monetary

policy if these changes have unclear implications for their demand new prices new to be

learned through the dynamics.

The first area this paper is related is about dynamic matching motivated by applica-

tions in public housing Kaplan [95, 96] and organ allocation Zenios [97]. Several papers

compare the efficiency across queuing and lottery mechanisms for restricted set of prefer-

ences [98, 99, 100]. Some papers consider optimal design of dynamic allocation without

accounting for the stochastic process [101, 102, 103, 104]. Our paper focuses on under-

standing the relation between the dynamics in the queueing mechanism the economic

efficiency.

Several papers are concerned with the stochasticty in dynamic two-sided trading mar-

kets in order to optimize clearing timing decisions Mendelson [105], Kelly and Yudovina

[106], and Loertscher, Muir, and Taylor [107]. These papers also restrict attention to

either a single asset or a binary type space.

This paper also relates to papers that are concerned with convergence of tâtonnement
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processes using gradient descent. Numerous paper analyze these processes in markets

with multiple goods [108, 109, 110, 111] and in congestion or transportation settings

[112, 113]. These papers consider static market and study identify an adjustment process

that converges to equilibrium. In contrast, in the dynamic market considered here “prices"

never converge.1

Similar ideas have been considered in the network control literature [see, e.g., 5], but

the model consider a much more general settings (continuum of types, nonlinear waiting

costs) and establish novel results (exponential loss).

4.2 A Simple Illustrative Example

We consider a simple market to illustrate the loss from price-fluctuations. There is

a single kind of item, which arrives according to a Poisson process with rate 1. Agents

arrive according to a Poisson process with rate 2. Arriving agents choose whether to join

the queue and wait to receive an item, or be immediately assigned an outside option and

receive 0 utility. The utility of an agent who joins the queue is

v − c · w

where w is the amount of time the agent waits, c = 0.02 is equal to the expected waiting

costs of waiting for one item’s arrival, and v is the agent’s value of receiving the item.

Each agent’s value v is independently drawn from the uniform distribution on [0, 1].

Agents observe the current number of agents in the queue when they arrive. Agents in

the queue are assigned in the order in which they joined the queue (First-Come First-

Served). When an agent with value v arrive, she will join the queue if v − c · E[w|q] > 0

where E[w|q] = q+ 1 is the expected wait given there are currently q agents in the queue.

As a benchmark, consider a planner who collects all agents and items that arrive up to

time T and assigns all items at time T . If T is large, the planner collects approximately
1Some papers identify price adjustments processes that converge to market clearing prices in a static

version of our assignment problem though with finite many types of agents (e.g., Bertsekas [114] and
Demange, Gale, and Sotomayor [115]).
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twice as many agents as items, and the distribution of agent values is approximately

U [0, 1]. Because only half the agents can be assigned an item, allocative efficiency is

maximized by allocating items only to agents with a value v ∈ [1/2, 1].

Figure 4.2 shows the distribution of queue length an arriving agent faces. On average,

the queue length implies an expected waiting cost equal to 1/2. If all agents faced a price

(in waiting cost) equal to 1/2, only agents with a value v ∈ [1/2, 1] would be assigned

items and the maximal allocative efficiency would be generated.
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Figure 4.1: Queue length distribution for the example

However, Figure 4.2 shows there is considerable variation in the prices agents face.

As a result, the allocation may be inefficient. An agent with a value of v = 0.41 may be

assigned if she is lucky to arrive when the queue happens to be short. An agent with a

value of v = 0.59 may not be assigned if she is arrives when the queue happens to be

long. Figure 4.2 shows the implies probability that an agent is assigned as a function of

the agent’s value. It shows that agents with a value of 0.41, 0.59 are assigned the item

with probabilities 18% and 81%, respectively.

4.3 Model

We study an infinite horizon economy, in which agents and items arrive randomly over

time. We describe the economy, set benchmarks for allocative efficiency, and describe the
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Figure 4.2: Implied probability of assignment given the agent’s value

waiting list mechanism.

Economy We consider a market in which items and unit-demand agents arrive over

time. Agents arrive according to a Poisson process with rate λ. Each agent has a type

θ drawn independently according to distribution F over the set of types Θ. We assume

that Θ is a compact subset of an Euclidean space, and allow for both finitely many agent

types as well as a continuum of agents. We say that there are finitely many agent types

if F corresponds to finitely many atoms.

Items arrive according to a Poisson process with total rate normalized to 1. The

agent and item arrival processes are independent. Each arriving item is of a type j ∈

J = {1, 2, . . . , J}. An item is of type j with probability µj > 0, where
∑

j∈J µj = 1.

Denote by µmin , minj∈J µj > 0, µmax , maxj∈J µj > 0. We define an auxiliary item

type ∅, which denotes being unassigned and use J∅ , J ∪ {∅}.

The value an agent of type θ ∈ Θ obtains from getting assigned to an item of type

j ∈ J∅ is given by v(θ, j), where we normalize v(θ, ∅) = 0. Agents’ utilities are quasi-

linear in waiting costs; An agent of type θ that is assigned to type j after waiting w units

of time receives a utility of

uθ(j, w) , v(θ, j)− c(w) ,

where c(w) is the cost of waiting w units of time.

146



We make the following technical assumptions. We assume that for each j ∈ J , v(θ, j)

is continuous in θ and bounded from above by vmax ∈ R. We assume that the waiting cost

function is smooth, strictly increasing, weakly concave,2 and c(0) = 0, limw→∞ c(w) =∞.

To simplify notation, we consider an equivalent discrete time process3 indexed by t

which records the sequence of arrivals. For each arrival epoch t, the indicator ξt equals

one if the t-th arrival is an agent, and equals zero if the t-th arrival is an item arrives. If

ξt = 1, let θt denote the type of the agent arriving at t. If ξt = 0, let jt ∈ J denote the

type of item arriving at t.

Assignments and Allocative Efficiency An allocation η assigns each agent with

one item, and each non-auxiliary item is assigned to at most one agent. The allocative

efficiency of a matching is defined as the average item’s value to its assigned agent.

Formally, given allocation η, for each epoch t such that ξt = 1 let ηt ∈ J∅ be the kind of

item assigned under η to the agent of type θt that arrived in epoch t. Let AT =
∑

t≤T ξt

be the total number of agents that arrived up to epoch T . Allocative efficiency under η

is defined as

W (η) = lim inf
T→∞

1

AT

T∑
t=1

ξtv(θt, ηt) . (4.1)

We restrict attention to allocations that satisfy a no-Ponzi condition. Loosely speak-

ing, this condition ensures the assignment is approximately valid if the market terminates

at some large finite time.4 Formally, let RT (η) denote the number of agents and items

that arrived by time T and are waiting to be assigned at time T .5 The assignment η

satisfies the no-Ponzi condition if there exists a finite M ∈ R such that RT (η) < M for

all T .
2Our results also extend to convex c(w) such that both c′(w) and c′′(w) are subexponential, i.e., there

exists α such that c′(w), c′′(w) ≤ eαw for all w ≥ 0.
3The equivalence is due to the Arrival Theorem of Poisson-driven processes [see, e.g., 116].
4For example, an allocation that assigns all agents to items in the market described in Section 4.2

is not valid if the market terminates at any finite time, as only (approximately) half the agents can be
assigned items.

5In other words, RT (η) counts the number of agents who arrived before time T and are assigned
under η to an item that arrives after time T , plus the number of items that arrive before time T and are
assigned to agents that arrive after time T .
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Define optimal allocative efficiency to be

WOPT = E

[
sup
η∈H

W (η)

]
,

where H is the set of no-Ponzi allocations and the expectation is taken over all possible

realizations.

Allocation by a Waiting List Our main interest is to analyze the allocative effi-

ciency of the allocation generated by a standard waiting list mechanism. The mechanism

holds a separate First-Come-First-Served queue for each item. An arriving agent observes

the length of the queue for each item and chooses to join the end of one of the queues, or

take the auxiliary item immediately (i.e., balk). An agent who joins a queue will wait in

that queue until receiving an item. When an item arrives, it is assigned to the agent at

the head of its queue, if there is any; if the item’s queue is empty, the item is discarded.

To formally describe the mechanism, let q = (q1, . . . , qJ) ∈ ZJ+ denote the state where

there are qj agents in the queue for item j. An arriving agent of type θ who observes q

and chooses to join the queue for item j will wait a random amount of time wj before

receiving item j ∈ J∅, and will receive an expected utility of v(θ, j)− E[c(wj)|qj]. Thus,

the agent will choose to join the queue for item a(θ,q) ∈ defined by6

a(θ,q) = arg max
j∈J∅

{
v(θ, j)− pj(qj)

}
, (4.2)

where we define pj(qj) , E[c(wj)|qj]. We allow agents to leave without joining any

queue, and simplify notation by setting p∅(·) ≡ 0. For notation simplicity, denote p(q) ,

[p1(q1), · · · , pJ(qJ)]. Denote the queue lengths just before the t-th arrival by qt. That is,

an agent that arrives at epoch t will face prices pt = p(qt), which depend on the current

state of the queues qt.

Given a realization, let ηWL denote the allocation induced by the waiting list. Under
6To simplify notation, we assume that the arg max is unique and implicitly rely on a tie-breaking rule

to ensure a unique selection if the agent is indifferent between multiple items. Our results do not depend
on the choice of tie-breaking rule. For example, agents may randomly choose an item in the arg max or
choose the lowest index item within the arg max.
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our assumptions, ηWL satisfies the no-Ponzi condition.7 We denote the expected allocative

efficiency of the waiting list mechanism by

WWL , E
[
W (ηWL)

]
.

and refer to WOPT −WWL as the allocative efficiency loss, or loss for short.

4.4 Bounding the Allocative Efficiency Loss

In the waiting list mechanism, each agent is presented a menu of items and associated

expected waiting costs. We consider the waiting cost of an item as the item’s price, and

henceforth refer to the expected waiting cost of item j as the price of item j.

Standard intuition from competitive equilibria tells us that appropriately set prices

can guide agent’s choices and lead to an allocation that maximizes allocative efficiency.

But in the waiting list there is no planner that sets prices. Instead, prices are determined

by the current state of the queues. Prices adapt over time in a process that is similar to

a tâtonnement process: the price of item j increases when an agent chooses to join queue

j, and the price of item j decreases when item j arrives and one agent is removed from

queue j.

Because prices are state-dependent, prices fluctuate over time. For example, if an

agent θ arrives immediately after several copies of the item j happened to arrive, agent

θ will face a lower price pj (i.e., expected waiting cost for item j). The example in

Section 4.2 shows that such stochastic price fluctuations can lead to lower allocative

efficiency.

We seek to understand the allocative efficiency of the fluctuating state-dependent

prices in the waiting list. A natural approach would be to calculate the stationary dis-

tribution of prices. Unfortunately, this stationary distribution is not tractable when

|J | > 2, that is, there are strictly more than 2 kinds of items.8 We therefore take a
7Because no queue length can ever exceed qmax , maxj∈J p−1

j (vmax) we have that Rt(ηWL) ≤ |J | ·
qmax.

8Because of this limitation, previous papers that relied on calculation of the exact stationary distri-
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different approach that allows us to analyze general markets with any number of items,

a general (possibly continuous) distribution of agent types, and nonlinear waiting costs.

Our analysis shows that the following attribute plays an central role in determining

allocative efficiency:

Definition 4.1. The step size ∆ is the maximal change in price due to a single arrive

and is given by9

∆ , max
j∈J

max
0≤q≤qmax

(
pj(q)− pj(q − 1)

)
.

In other words, each arrival of an item j reduces the price of item j by at most ∆.

Each arrival of an agent who joins the queue of item j increases the price of item j by at

most ∆. If waiting costs are linear, i.e., c(t) = c · t for some c > 0, we have ∆ = c/µmin.

That is, ∆ is the expected cost of waiting for a single arrival of the least frequent item.

We can now state our main result.

Theorem 4.1. The allocative efficiency under the waiting list is

WWL ≥ WOPT − λ+ 2

2λ
∆ . (4.3)

I redid the calculation for the case p = c(q + 1)/µ (previously it was p = cq/µ), and

the numerator of the coefficient of ∆ goes from λ+ 1 to λ+ 2.

Theorem 4.1 shows that the queueing mechanism achieves allocative efficiency that

is close to optimal in general dynamic markets. To illustrate the result, suppose waiting

costs are linear and that the agent arrival rate is equal to the item arrival rate (that is,

λ = µ = 1). In this case, the allocative efficiency loss is bounded by the cost of waiting

for a single arrival of the least frequent item times 3
2
. In Section 4.4.2 we provide an

example giving a lower bound on the allocative efficiency loss.

To gain intuition for Theorem 4.1, we draw connections to two related problems.

bution of the underlying Markov chain were limited to a model with 2 items (e.g., [94, 99, 93]).
9Let pj(−1) = 0 so that ∆ is well-defined. Note that pj(0) > 0 because even if the agent arrives to

an empty queue, she still needs to wait for the next to item to arrive.
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Problem I: Duality for Static Allocation Consider the static allocation problem

in which a planner chooses a static assignment of the expected amount of agents that

arrive per unit time to the expected amount of items that arrive per unit time in order to

maximize allocative efficiency. We refer to the maximal value per agent the assignment

can generate as the optimal static allocative efficiency and denote it by W ∗. The value

of W ∗ is the optimal value of assignment problem (4.4).

W ∗ = max
{xθj}θ∈Θ,j∈J

∑
j∈J

∫
Θ

xθj v(θ, j) dF (θ)

subject to
∑
j∈J

xθj ≤ 1, xθj ∈ [0, 1] ∀θ ∈ Θ (4.4)∫
Θ

λxθj dF (θ) ≤ µj ∀j ∈ J

In problem (4.4), xθj is the share of agents of type θ that are assigned item j. The

first constraint requires that the shares xθj are well defined. The second constraint is the

resource constraint, it requires that the expected amount of item j arriving per unit time

should at least as large as the expected amount of agents that arrive per unit time and

are assigned to item j.

Proposition 4.1. The optimal allocative efficiency is WOPT = W ∗, where W ∗ is the

optimal static allocative efficiency.

The proof of Proposition 4.1 is in Appendix D.1.

It will be useful to consider the dual problem of the assignment problem (4.4), which

optimizes over possible prices. The following strong duality result is well-known and we

therefore omit the proof.10

Lemma 4.1 (Monge-Kantorovich duality). The optimal value W ∗ of assignment problem

(4.4), coincides with the optimal value of the following dual optimization problem:

minimize
p≥0

h(p)

10Problem (4.4) is known as the (unbalanced) optimal transport problem, which has the strong duality
property stated in Lemma 4.1. For further details, see, e.g., [117].
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where (here we let pφ , 0)

h(p) ,
∫

Θ

max
j∈J∅

[
v(θ, j)− pj

]
dF (θ) +

1

λ

∑
j∈J

µjpj . (4.5)

We use p∗ to denote some optimal value for the dual problem, and refer to p∗ as

optimal prices.

Problem II: Stochastic Gradient Descent We relate the price adaptation in the

waiting list to the run of the stochastic gradient descent optimization algorithm. The SGD

algorithm can be regarded as a stochastic version of the gradient descent optimization

algorithm. Each step of the SGD is random, but the expected step of SGD correspond

to a step of gradient descent. SGD optimization is commonly used in machine learning,

e.g., for training a neural networks [118]. By understanding the connection between our

problem and the SGD algorithm we are able to leverage the substantial theory on SGD

algorithms.

The following lemma establishes the connection between the waiting list and the SGD

algorithm:

Lemma 4.2. If the system is in state qt the expected change to the queue length from a

single arrival E[qt − qt+1] equals λ
1+λ

times a subgradient of the dual objective h(pt) at

pt = p(qt).

Proof. The expected adjustment to the length of queue j from a single arrival is

E[qj,t+1 − qj,t] = E
[
1{ξt=1, a(θt,qt)=j} − 1{ξt=0, jt=j}

]
(4.6)

=
λ

1 + λ

∫
Θ

1{j=arg maxj∈J∅
{v(θ,j)−pj(qj,t)}dF (θ)− 1

1 + λ
µj .

It is straightforward to verify that 1+λ
λ
E[qj,t+1 − qj,t] is a subgradient of h(pt) at pt =

p(qt).

In other words, Lemma 4.2 says that the stochastic price adjustment from one arrival

corresponds to a step of an SGD algorithm for the dual objective h(p) (Lemma 4.1).

Loosely speaking, the waiting lists adjusts prices in the right direction on average, but the
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adjustment is random because it depends on the realization of a single arrival. However,

in order for gradient descent and SGD algorithms to converge, the step size must decrease

to zero as the algorithm approaches the optimal value. In the waiting list, the size of the

adjustment is fixed and bounded by the step size ∆. Therefore, the price adjustment in

the waiting list corresponds to the run of an SGD with a fixed step size that will never

converge.

Intuition for Theorem 4.1 The connection to SGD allows us to apply the techniques

developed to better understand SGD algorithms. The main part of the proof uses a

Lyapunov potential function to decompose the expected value from the next arrival.

Each agent’s arrival generates a value of assignment, and the value generated depends on

the current state of the queues. This value is related to the dual objective (4.5) evaluated

at the current prices pt, which by Lemma 4.1 is at least as high as W ∗. Each arrival also

changes the current state. We use a Lyapunov function to capture the “potential” given

the current price L(pt). We decompose the expected value from the next arrival into a

combination of the objective, change in potential, and a per-period loss.

E[v(θt, a(θt,qt))ξt|qt] ≥
λ

λ+ 1
W ∗ − 1

µmin ·∆
(
L(pt)− E[L(pt+1)|qt]

)
︸ ︷︷ ︸

(I) change in potential

− 2 + λ

2(1 + λ)
∆︸ ︷︷ ︸

(II) loss

(4.7)

To interpret equation (4.7), observe that λ
λ+1

W ∗ = λ
λ+1

WOPT is the average per-arrival

(including both agents and items) value under the optimal assignment. Equation (4.7)

shows that the waiting list achieves this value minus change in potential and a per-period

loss. Summing over many periods, the change in potential (I) forms a telescoping series,

and will therefore remain bounded. Therefore, as we average over many periods, we have

that (I) tends to zero. The loss term (II) is uniformly bounded for any pt, allowing us to

obtain the bound in Theorem 4.1 without calculating the stationary distribution.

Proof of Theorem 4.1. The proof adopts the Lyapunov analysis approach. We give the

main arguments of the proof for the special case of linear waiting cost here and relegate
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technical lemmas and the proof of general cases to the appendix.

Let WT (ηWL) be the total value of items assigned to agents that arrive before epoch

T , that is

WT (ηWL) =
T∑
t=1

ξt · v(θt, a(θt,qt)) .

We have that

WWL =
1 + λ

λ
E

[
lim inf
T→∞

WT (ηWL)

T

]
We introduce several definitions for the analysis. As is standard in Lyapunov analysis,

let the Lyapunov function be the following quadratic function:

L(p) =
1

2

∑
j∈J

µjp
2
j .

Let at and dt be the vectors representing the arriving agent and item at time t, respec-

tively:

at , ea(θt,qt)ξt , dt , ejt(1− ξt) .

Let uj,t , max
{

0, dj,t − qj,t − aj,t
}

denote the number of discarded items of type j at

time t.11 The evolution of the length of queue j is governed by

qj,t+1 =
[
qj,t + aj,t − dj,t

]+
= qj,t + aj,t − dj,t + uj,t , for each j ∈ J .

By Lemma 4.3 we have that

E[v(θt, a(θt,qt))ξt|qt] =
λ

1 + λ
h(pt)−

1

c

(
L(pt)− E[L(pt+1) | qt]

)
(4.8)

− 1

2

∑
j∈J

c

µj
E[(aj,t − dj,t)2 + u2

j,t | qt]

By Lemma 4.4 we have that 1
2

∑
j∈J

c
µj
E[(aj,t−dj,t)2 +u2

j,t | qt] ≤ 2+λ
2(1+λ)

∆. By Lemma

4.1 we have that h(pt) ≥ W ∗. Together, we have that

E[v(θt, a(θt,qt))ξt|qt] ≥
λ

1 + λ
W ∗ − 1

c

(
L(pt)− E[L(pt+1) | qt]

)
− 2 + λ

2(1 + λ)
∆ .

11Recall that under our definition of the waiting list mechanism, an item is discarded it the item finds
its corresponding queue to be empty when it arrives.
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Therefore, we have that

E
[
WT (ηWL)

]
= E

 T∑
t=1

ξt · v(θt, a(θt,qt))


= E

E
 T∑
t=1

ξt · v(θt, a(θt,qt)) | qt




= E

 T∑
t=1

E
[
ξt · v(θt, a(θt,qt)) | qt

]
≥ E

 T∑
t=1

λ

1 + λ
W ∗ − 1

c

(
L(pt)− E[L(pt+1 | qt]

)
− 2 + λ

2(1 + λ)
∆


= T

λ

1 + λ
W ∗ − 1

c

(
L(p1)− E[L(pT+1)]

)
− T 2 + λ

2(1 + λ)
∆ . (4.9)

By Lemma 4.5 we can translate the bound for E[WT (ηWL)] to a bound for WWL, i.e.,

WWL =
1 + λ

λ
lim
T→∞

1

T
E
[
WT (ηWL)

]
.

Plugging in (4.9) to the above equality, we have

WWL ≥ W ∗ − 2 + λ

2λ
∆ .

This concludes the proof.

Lemma 4.3. If c(w) = c · w, we have that

E[v(θt, a(θt,qt))ξt|qt] =
λ

1 + λ
h(pt)−

1

c

(
L(pt)− E[L(pt+1) | qt]

)
− 1

2

∑
j∈J

c

µj
E[(aj,t − dj,t)2 + u2

j,t | qt] .

Proof. We have that the drift of Lyapunov function L(p) in one period is

L(pt)− L(pt+1)

=
1

2

∑
j∈J

µj

p2
j,t −

(
pj,t +

c

µj
(aj,t − dj,t + uj,t)

)2


=
1

2

∑
j∈J

µj

p2
j,t −

(
pj,t +

c

µj
(aj,t − dj,t)

)2

− c2

µ2
j

u2
j,t −

2c

µj

(
pj,t +

c

µj
(aj,t − dj,t)

)
uj,t


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(a)
=

1

2

∑
j∈J

µj

p2
j,t −

(
pj,t +

c

µj
(aj,t − dj,t)

)2

− c2

µ2
j

u2
j,t

 ,

where the equality (a) follows from the fact that
(
pj,t + c

µj
(aj,t − dj,t)

)
uj,t ≡ 0 for all

j ∈ J .

We further simplify the Lyapunov drift as follows.

L(pt)− L(pt+1) =
1

2

∑
j∈J

µj

p2
j,t −

(
pj,t +

c

µj
(aj,t − dj,t)

)2
− 1

2

∑
j∈J

c2

µj
u2
j,t

= − 1

2

∑
j∈J

µj

[
2c

µj
(aj,t − dj,t)pj,t +

c2

µ2
j

(aj,t − dj,t)2

]
− 1

2

∑
j∈J

c2

µj
u2
j,t

= − c
∑
j∈J

(aj,t − dj,t)pj,t −
1

2

∑
j∈J

c2

µj

(
(aj,t − dj,t)2 + u2

j,t

)
. (4.10)

We expanded the expected value of the next arrival E
[
v(θt, a(θt,qt))ξt | qt

]
plus the

expected value of the term 〈pt, at − dt〉 to show these are related to the dual objective

given in (4.5).

E
[
v(θt, a(θt,qt))ξt − 〈pt, at − dt〉 | qt

]
= E

[
v(θt, a(θt,qt))ξt −

∑
j∈J

pj,t(aj,t − dj,t) | qt
]

= E
[

max
j∈J∅

[
v(θt, j)− pj,t

]
ξt +

∑
j∈J

pj,tdj,t | qt
]

= E[ξt]E
[

max
j∈J∅

[
v(θt, j)− pj,t

]
| qt
]

+ E
[∑
j∈J

pj,tdj,t | qt
]

(4.11)

=
λ

1 + λ

∫
Θ

max
j∈J∅

[
v(θt, j)− pj,t

]
dF (θ) +

1

1 + λ

∑
j∈J

µjpj,t

=
λ

1 + λ
h(pt) .

By adding c · v(θt, a(θt,qt))ξt to both sides of equation (4.10), taking expectation

conditional on qt and applying equation (4.11) we obtain the required identity.

Lemma 4.4. If c(w) = c · w, we have that for any qt,

1

2

∑
j∈J

c

µj
E[(aj,t − dj,t)2 + u2

j,t | qt] ≤
2 + λ

2(1 + λ)
∆ .
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Proof. We have

c

2µj
(aj,t − dj,t)2 +

c

2µj
u2
j,t =


c
µj

if dj,t = 1 and qj = 0 ,

c
2µj

otherwise .

That is, the term above is equal to c/µj ≤ ∆ for arrivals that correspond to an item

that is discarded because its queue is empty, and equal to c/2µj ≤ ∆/2 for all other

arrivals. Note that the probability that an item is discarded must be at most 1/(1 + λ).

We thus have

1

2

∑
j∈J

c

µj
E[(aj,t − dj,t)2 + u2

j,t | qt]

≤ 1

1 + λ
∆ +

λ

1 + λ

∆

2

=
2 + λ

2(1 + λ)
∆ .

Lemma 4.5. For the model defined in Section 4.3, we have that

WWL =
1 + λ

λ
lim
T→∞

1

T
E
[
WT (ηWL)

]
.

Proof. We need to argue that the limiting operator and the expectation can be inter-

changed. We proceed in two steps.

First, we show that the stochastic process {(ξt, v(θt, a(θt,qt)))}t≥0 is ergodic. Note

that v(θt, a(θt,qt)) only depends on qt and independent variables θt. The finite state

Markov chain {qt}t≥0 is irreducible and aperiodic,12 therefore it has a unique steady

state distribution and {(ξt, v(θt, a(θt,qt)))}t≥0 is ergodic.

Second, we exchange the order of limit and expectation. It follows from the Birkhoff’s

ergodic theorem that WT (ηWL)
AT

converges almost surely to E[v∞|ξ∞ = 1], where (ξ∞, v∞)

is the steady state distribution of (ξt, v(θt, a(θt,qt))). Since WT (ηWL)
AT

is non-negative and

12Irreducibility follows from the fact that all states can go to 0 with positive probability. Aperiodicity
comes from the fact that the state can stay at 0 for an arbitrary number of periods.
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uniformly bounded from above by vmax for all T > 0, we have

WWL = E

[
lim
T→∞

WT (ηWL)

AT

]
= lim

T→∞
E

[
WT (ηWL)

AT

]
= E[v∞|ξ∞ = 1] ,

where we apply the bounded convergence theorem in the second equality to exchange the

limits; the last equality holds because the boundedness of WT (ηWL)
AT

and its almost sure

convergence implies L1 convergence. Finally, observe that

E[v∞] = E[v∞|ξ∞ = 1] · P(ξ∞ = 1) + E[v∞|ξ∞ = 0] · P(ξ∞ = 0)

= E[v∞|ξ∞ = 1] · λ

1 + λ
+ 0

= WWL · λ

1 + λ
,

where the second equality follows from the fact that all the rewards are collected when

agents arrive, i.e., ξt = 1. Note that

lim
T→∞

1

T
E
[
WT (ηWL)

]
= E[v∞] ,

we have

WWL =
1 + λ

λ
E[v∞] =

1 + λ

λ
lim
T→∞

1

T
E
[
WT (ηWL)

]
.

4.4.1 Asymptotic Optimality

Theorem 4.1 bounds the allocate efficiency loss in the waiting list. The following

corollaries imply that the loss tends to zero when agents’ patience increases or when the

market size grows large.

As agents are increasingly patient, the marginal expected waiting cost becomes smaller.

For example if c(w) = c · w, then ∆ = c/µmin → 0 as c→ 0. This implies:

Corollary 4.1. Fix F, {µ}j∈J , λ and consider a sequence of markets indexed by ` in which

waiting cost is c(w) = c` · w. Let WWL
` denote the allocative efficiency of the waiting list
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for market `. If c` → 0 as `→∞, then

WWL
` −−−→

`→∞
WOPT .

Note that WOPT and the optimal prices p∗ are independent of c`. As c` tends to

zero, the length of queue j that generates the optimal price, q∗j = p∗j/c`, is increasing.

Moreover, there are smaller fluctuations in queue lengths and there fore in prices.This

implies lower variation in prices and higher allocative efficiency.

If the market thickens in the sense that arrivals of agents and items become more

frequent, the expected cost of waiting for a single arrival becomes lower. For example, if

c(w) = c · w and µmin →∞, then ∆ = c/µmin → 0. Therefore:

Corollary 4.2. Fix F, {µ}j∈J , λ and c(·). Consider a sequence of markets indexed by `

in the agent arrival rate is ` · λ and the arrival rate of item j is ` · µj. Let WWL
` denote

the allocative efficiency of the waiting list for market `. If `→∞ then

WWL
` −−−→

`→∞
WOPT .

4.4.2 Lower Bound for the Allocative Efficiency Loss

A natural question is whether the bound given in Theorem 4.1 is tight. We give a

lower bound for the allocative efficiency loss by constructing an economy in which the

loss is approximately ∆.

Example 4.1. Consider a dynamic market in which Θ = J , that is, the set of items

is J = {1, 2, . . . , J} and there is a corresponding agent type for each agent type. The

distribution of agent types and item types are uniform, i.e., P(θ = j) = µj = 1/J, ∀j ∈ J .

The total agent arrival rate is λ = 1, and the waiting cost is linear, i.e. c(w) = c · w.

The value of agent θ for item j is

v(θ, j) =

 γ if θ = j ,

0 if θ 6= j .
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Proposition 4.2. For any J and any ∆ > 0 and ε > 0, there exists a market with J

items as in Example 4.1 in which the allocative efficiency loss under the waiting list is

WOPT −WWL ≥ ∆− ε

Proof of Proposition 4.2. We prove the result by calculating the allocative efficiency loss

in the market of Example 4.1. By Proposition 4.1, we have that WOPT = γ.

Under the waiting list, an agent of type θ will only join the queue for item j = θ. An

agent arriving in epoch t of type θt = j will choose to join queue j to receive a value of

1 only if

γ ≥ pj(qj) =
c

µj
(1 + qt,j) = ∆(1 + qt,j) ,

or

qt,j ≤
γ

∆
− 1 .

Therefore, the possible states of each queue j ∈ J are 0, 1, . . . , K with K = bγ/∆c.

Let πj(k)0≤k≤K denote the steady distributions over the length of queue j. Because the

length of the queue follows a reflected unbiased random walk, all states are equally likely

and πj(k) = 1
K+1

.13

The allocative efficiency under the waiting list is given by

WOPT −WWL = γ −
∑
j∈Θ

F (j)

πj(K) · 0 +
∑
k<K

πj(k) · γ


= γ − J 1

J

(
1

K + 1
· 0 +

K

K + 1
· γ
)

=
1

K + 1
· γ

=
1

bγ/∆c+ 1
· γ

By choosing γ such that bγ/∆c ≈ γ/∆− 1 we get that

WOPT −WWL ≥ 1
γ/∆− 1 + 1

· γ − ε

13To see this directly, observe that equating probability flows across a cut gives for any 0 < k < K
that πj(k)λ/J = πj(k + 1)µj , which implies that πj(0) = πj(1) = · · · = πj(K).
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= ∆− ε

4.4.3 Welfare of the Queueing Mechanism

As the market grows large, the welfare converges to the optimal allocation minus the

predicted waiting times. This follows from the following result that restricts attention to

the convergence of prices.

Proposition 4.3. Fix F, {µ}j∈J , λ and consider a sequence of markets indexed by ` in

which waiting cost is c(w) = c` · w. Let P∗ be the set of minimizers of the dual function

h(p), let p`,∞ be the random variable of steady-state price in the market indexed by `. If

c` → 0 as `→∞, then

lim sup
`→∞

P
(
p`,∞ /∈ P∗

)
= 0 .

Proof sketch. Let p∗ be any minimizer of the dual function h(p). Consider the following

centered Lyapunov function:

L̄(p) =
1

2

∑
j∈J

µj(pj − p∗j)2 .

We first fix ` and omit the subscript `. Recall that pj,t+1 = pj,t + c
µj

(aj,t − dj,t + uj,t).

Similar to the proof of Lemma 4.3, we have

L̄(pt+1)− L̄(pt)

=
1

2

∑
j∈J

µj

(
c2

µ2
j

(aj,t − dj,t + uj,t)
2 +

2c

µj
(pj,t − p∗j)(aj,t − dj,t + uj,t)

)

= c〈pt − p∗, at − dt〉+
1

2

∑
j∈J

µj

(
c2

µ2
j

(aj,t − dj,t + uj,t)
2 +

2c

µj
(pj,t − p∗j)uj,t

)
(a)

≤ c〈pt − p∗, at − dt〉+
1

2

∑
j∈J

µj

(
c2

µ2
j

(aj,t − dj,t + uj,t)
2 +

2c

µj
pj,t · uj,t

)

= c〈pt − p∗, at − dt〉+
1

2

∑
j∈J

µj

 c2

µ2
j

(
(aj,t − dj,t)2 + u2

j,t

)
+

2c

µj

(
pj,t +

c

µj
(aj,t − dj,t)

)
uj,t

 .
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Here inequality (a) is because p∗j ≥ 0 and uj,t ≥ 0. Note that (pj,t+
c
µj

(aj,t−dj,t))uj,t ≡ 0.

Using arguments similar to those in the proof of Lemma 4.4, we have

L̄(pt+1)− L̄(pt) ≤ c〈pt − p∗, at − dt〉+ c ·∆ .

Take expectations on both sides conditioned on qt, and use the fact that E[at − dt|qt] ∈

−∂h(pt), we have

E[L̄(pt+1)|qt]− L̄(pt) ≤ −c
(
h(pt)− h(p∗)

)
+ c ·∆ . (4.12)

For ε > 0, let B(ε) , max{L̄(p) : h(p) ≤ h(p∗) + ε}. It is straightforward to verify

that for the Markov chain {pt}∞t=1 and ∆ ≤ ε
2
, the Lyapunov function L̄(·) has negative

drift − cε
2

when h(p) ≥ h(p∗) + ε. Notice that the maximum increase of L̄(p) in one

period is cvmax. Applying Theorem 1 in [57], we have

P(L̄(p∞) > B(ε) + 2cvmaxm) ≤
(

2vmax

2vmax + ε

)m+1

Letm = B(ε)
cvmax

. Let `→∞ therefore c` → 0, and this shows that P(L̄(p`,∞) > 3B(ε))→ 0.

Since ε can be chosen arbitrarily, this concludes the proof.

4.5 Exponentially Small Loss for Generic Problems

The magnitude of the loss generated by miss-allocations depends naturally on the

parameters of the economy and this section further isolates sources of the inefficiency.

Indeed it is shown here that in economies with finitely many agents and item types, the

loss is generically much smaller than the stated in Theorem 4.1. The following natural

assumption will drive the result.

Assumption 4.1 (Unique shadow price). The dual problem (4.5) with finite types of

items and agents has a unique minimizer p∗.

Assumption 4.1 holds generically when there are finitely many agent types.
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Proposition 4.4. Let λ ∈ R|Θ|++ be the vector of arrival rates of each type of agent. The

vectors (v,λ,µ) satisfying Assumption 4.1 are open and dense in R|Θ|×|J |+|Θ|+|J |++ .

Proof of Proposition 4.4. We say that the problem instance (λ,µ) satisfies generalized

imbalance (GI) if there are no pair of nonempty subsets of agent types I ′ ⊂ Θ and item

types J ′ ⊂ J such that the total arrival rate of agents with type in I ′ exactly matches the

total arrival rate of items with types in J ′. The proposition holds because the problem

instances satisfying GI are open and dense in R|I|+|J |++ , and that GI implies Assumption

4.1 (see Proposition C.2 of [119]).

Theorem 4.2. Suppose there are a finite number of agent types, the primitives v =

(v(θ, j))θ∈Θ,j∈J , λ = (λθ)θ∈Θ, µ = (µj)j∈J satisfy Assumption 4.1, and consider a se-

quence of markets indexed by ` in which waiting cost is c(w) = c` ·w. If c` → 0 as `→∞,

then there exists α = α(v,λ,µ) > 0, such that

WOPT −WWL
` = O

(
exp(−α/∆`)

)
`→∞ .

The intuition behind Theorem 4.2 is the following. Assumption 4.1 led to the robust-

ness of the optimal dual prices; indeed as long as prices are within some δ > 0 distance

from the unique dual prices p∗, items are allocated efficiently due to complementary

slackness. And when prices are further away from p∗, they adjust towards the optimal

dual prices at some minimal rate γ > 0. So prices follow a biased random walk towards

p∗, implying that that they are far from the optimal dual prices with probability that is

exponentially small in step size ∆`’s inverse. The exponent α in the theorem is roughly

proportional to the product of δ and γ.

The remainder of this section formalizes this intuition. For this purpose consider an

economy that satisfies Assumption 4.1 with the unique dual price p∗ and assume that

agents have linear waiting costs as stated in the theorem.
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Robustness of dual prices. The following sets will serve to define the robustness

of dual prices. Define the set of active agent types as:

Θ∗ ,

{
θ ∈ Θ : max

j∈J
(v(θ, j)− p∗j) > 0

}
,

the set of active item types as:

J ∗ ,
{
j ∈ J : p∗j > 0

}
,

and for each type of agent θ ∈ Θ, its set of active matches as:

J ∗θ , argmaxj∈J [v(θ, j)− p∗j ]+ .

From complementary slackness conditions, an allocation x is an optimal solution of

the static allocation problem (4.4) if and only if (i) all active agent types are assigned

items, (ii) all active item types are assigned to agents, (iii) for each (θ, j) such that

xθ,j > 0, (θ, j) is an active match, and, (iv) x satisfies the primal constraints.

For uniquely defined p∗, observe that there exists a constant δ > 0 such that when

the price is within δ of p∗, conditions (i)-(iii) are satisfied.

Definition 4.2. Consider a problem instance (v,λ,µ) that satisfies Assumption 4.1. Let

δλ , min
θ∈Θ∗

max
j∈J

(v(θ, j)− p∗j) ,

δµ , min
j∈J ∗

p∗j ,

δv , min
{θ∈Θ:J ∗θ 6=∅}

min
j∈J ∗θ ,j′ /∈J

∗
θ

(
[v(θ, j)− p∗j ]+ − v(θ, j′) + p∗j′

)
.

We refer to δ , min{δλ, δµ, δv} > 0 as the robustness of dual price of the problem

instance.

Define the following set of near-optimal dual prices.

P ,

{
p : ||p− p∗||∞ <

δ

2

}
.

The following lemma and its proof states that the loss arises only when p /∈ P .
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Lemma 4.6. If prices in steady state satisfy that P(p∞ /∈ P) ≤ κ, then

WOPT −WWL ≤ 1 + λ

λ
vmaxκ .

Proof. Let xθ,j,t be the match in the t-th period, which equals to 1 if a type θ agent is

assigned a type j item in the t-th period, and equals to zero otherwise. For prices that

satisfy pt ∈ P , it holds by definition (robustness of the dual price) that

∑
j∈J

xθ,j,t = 1{a type θ agent arrives at t} , ∀θ ∈ Θ∗

∑
θ∈Θ

xθ,j,t = 1{a type j item arrives at t} , ∀j ∈ J ∗

xθ,j,t = 0 , ∀θ ∈ Θ , θ /∈ J ∗θ .

Denote by w∞ the match value obtained in a period in steady state (by the Arrival

Theorem, the steady state of the discrete time process we are considering is the same as

the steady state distribution of the original continuous time process). Note that

WWL =
1 + λ

λ
E[w∞] ≥ 1 + λ

λ
E[w∞|p∞ ∈ P ] · P(p∞ ∈ P) . (4.13)

The last term on the RHS is bounded from below 1− κ by assumption. It remains to

show 1+λ
λ
E[w∞|p∞ ∈ P ] = WOPT because

WWL ≥ (1− κ)WOPT ≥ WOPT − 1 + λ

λ
vmaxκ .

By linearity of expectation, we have

E[w∞|p∞ ∈ P ] =
∑

θ∈Θ,j∈J

v(θ, j)E[xθ,j,∞|p∞ ∈ P ] .

Note that

∑
j∈J

E[xθ,j,∞|p∞ ∈ P ] = λθ , ∀θ ∈ Θ∗ (4.14)

∑
θ∈Θ

E[xθ,j,∞|p∞ ∈ P ] = µj , ∀j ∈ J ∗ (4.15)

E[xθ,j,∞|p∞ ∈ P ] = 0 , ∀θ ∈ Θ , j /∈ J ∗θ . (4.16)
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This completes the proof since equalities (4.14)-(4.16) correspond to the complemen-

tary slackness condition of the static allocation problem.

Rate of adjustment. Next we show that prices are very likely to be in P , by showing

that prices that deviates from p∗ quickly adjusts back. The rate of price adjustment is

related to the “sharpness” of the dual objective (4.5).

Lemma 4.7 (Geometry of dual function). Suppose Assumption 4.1 holds. Then there

exists γ(v,λ,µ) > 0 such that for any p ∈ R|J |, we have

h(p)− h(p∗) ≥ γ(v,λ,µ)||p− p∗||2 . (4.17)

Moreover,

γ(v,λ,µ) ≥ 1

λ

{
min
I⊂J

λ−
∑

j∈I µj√
|I|

, min
{I:I⊂J ,I⊃∪θ∈Θ∗J ∗θ }

∑
j∈I µj −

∑
θ∈Θ∗ λθ√

|I|
, min
j∈J

µj

}
.

The proof of this technical lemma appear in Appendix D.4.1. The proof shows that

the rate of adjustment is positive for p ∈ P and by convexity of h(p)− h(p∗) this holds

also also for prices not in P . The proof Theorem 4.2 can now be completed.

current progress

Proof of Theorem 4.2. Using Lemma 4.6, we have that

WOPT −WWL ≤ 1 + λ

λ
vmaxP(p∞ /∈ P) .

Lemma D.5 in the appendix provides the following concentration bound (using further

Lyapunov analysis and using the established bound on the rate of adjustment):

P(p∞ /∈ P) ≤ exp

(
− log

(
1 +

γµmin

4

)(
δ

12∆

))
.

Therefore the allocative efficiency loss is bounded by:

WOPT −WWL ≤ 1 + λ

λ
vmax exp

(
− log

(
1 +

γµmin

4

)(
δ

12∆

))
.

where δ is the robustness of price, and γ is the rate of price adjustment.
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4.6 Conclusion

This paper considers a dynamic economy, in which the waiting times play the role

of prices in guiding the allocation and rationing items. It studies the impact of the

fluctuations in waiting times resulting from the stochasticity in the arrival of demand and

supply, and quantifies the allocative efficiency loss resulting from this fluctuation. We

observe that the efficiency loss compared to an optimum offline assignment is fairly small

and is captured by the marginal increase in expected waiting cost from having one more

agent in the queue. Furthermore, when equilibrium waiting times are essentially unique,

there is almost no efficiency loss. Our results show that despite the decentralized nature

of these markets and the underlying stochasticity, simple waiting mechanisms obtain near

optimum allocative efficiency. They also justify deterministic or “fluid” approximations

for modeling the behavior of such queueing systems.

167



References

[1] S. Banerjee, D. Freund, and T. Lykouris, “Pricing and optimization in shared
vehicle systems: An approximation framework”, CoRR abs/1608.06819, 2016.

[2] A. Braverman, J. G. Dai, X. Liu, and L. Ying, “Empty-car routing in rideshar-
ing systems”, Operations Research, vol. 67, no. 5, pp. 1437–1452, 2019.

[3] S. Banerjee, Y. Kanoria, and P. Qian, “Dynamic assignment control of a closed
queueing network under complete resource pooling”, arXiv preprint arXiv:1803.04959,
2018, Also in ACM SIGMETRICS 2018.

[4] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks”, IEEE transactions on automatic control, vol. 37, no. 12, pp. 1936–
1948, 1992.

[5] L. Georgiadis, M. J. Neely, L. Tassiulas, et al., “Resource allocation and cross-
layer control in wireless networks”, Foundations and Trends® in Networking,
vol. 1, no. 1, pp. 1–144, 2006.

[6] S. T. Maguluri and R Srikant, “Heavy traffic queue length behavior in a switch
under the maxweight algorithm”, Stochastic Systems, vol. 6, no. 1, pp. 211–250,
2016.

[7] J. G. Dai and W. Lin, “Maximum pressure policies in stochastic processing
networks”, Operations Research, vol. 53, no. 2, pp. 197–218, 2005.

[8] A. L. Stolyar, “Maximizing queueing network utility subject to stability: Greedy
primal-dual algorithm”, Queueing Systems, vol. 50, no. 4, pp. 401–457, 2005.

[9] L. Huang and M. J. Neely, “Utility optimal scheduling in processing networks”,
Performance Evaluation, vol. 68, no. 11, pp. 1002–1021, 2011.

[10] I. Gurvich and A. Ward, “On the dynamic control of matching queues”, Stochas-
tic Systems, vol. 4, no. 2, pp. 479–523, 2014.

168



[11] L. Jiang and J. Walrand, “Stable and utility-maximizing scheduling for stochas-
tic processing networks”, in 2009 47th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), IEEE, 2009, pp. 1111–1119.

[12] A. S. Nemirovsky and D. B. Yudin, “Problem complexity and method efficiency
in optimization.”, 1983.

[13] A. Beck and M. Teboulle, “Mirror descent and nonlinear projected subgradient
methods for convex optimization”, Operations Research Letters, vol. 31, no. 3,
pp. 167–175, 2003.

[14] A. Eryilmaz and R Srikant, “Fair resource allocation in wireless networks using
queue-length-based scheduling and congestion control”, IEEE/ACM Transac-
tions on Networking (TON), vol. 15, no. 6, pp. 1333–1344, 2007.

[15] J. M. Harrison, “Brownian models of open processing networks: Canonical rep-
resentation of workload”, Annals of Applied Probability, pp. 75–103, 2000.

[16] A. L. Stolyar, “Maxweight scheduling in a generalized switch: State space col-
lapse and workload minimization in heavy traffic”, Annals of Applied Probabil-
ity, vol. 14, no. 1, pp. 1–53, 2004.

[17] J. G. Dai and W. Lin, “Asymptotic optimality of maximum pressure policies in
stochastic processing networks”, Annals of Applied Probability, vol. 18, no. 6,
pp. 2239–2299, 2008.

[18] A. Eryilmaz and R Srikant, “Asymptotically tight steady-state queue length
bounds implied by drift conditions”,Queueing Systems, vol. 72, no. 3-4, pp. 311–
359, 2012.

[19] V. Gupta and A. Radovanović, “Interior-point-based online stochastic bin pack-
ing”, Operations Research, 2020.

[20] S. Bubeck, M. B. Cohen, Y. T. Lee, J. R. Lee, and A. Ma̧dry, “K-server via
multiscale entropic regularization”, in Proceedings of the 50th annual ACM
SIGACT symposium on theory of computing, 2018, pp. 3–16.

[21] E. Özkan and A. R. Ward, “Dynamic matching for real-time ride sharing”,
Stochastic Systems, vol. 10, no. 1, pp. 29–70, 2020.

[22] S. R. Balseiro, D. B. Brown, and C. Chen, “Dynamic pricing of relocating
resources in large networks”, Management Science, 2020.

[23] H. Ma, F. Fang, and D. C. Parkes, “Spatio-temporal pricing for ridesharing
platforms”, in Proceedings of the 2019 ACM Conference on Economics and
Computation, 2019, pp. 583–583.

169



[24] H. Chung, D. Freund, and D. B. Shmoys, “Bike angels: An analysis of citi
bike’s incentive program”, in Proceedings of the 1st ACM SIGCAS Conference
on Computing and Sustainable Societies, ACM, 2018, p. 5.

[25] K. Johnson, D. Simchi-Levi, and P. Sun, “Analyzing scrip systems”, Operations
Research, vol. 62, no. 3, pp. 524–534, 2014.

[26] N. Agarwal, I. Ashlagi, E. Azevedo, C. R. Featherstone, and Ö. Karaduman,
“Market failure in kidney exchange”, American Economic Review, vol. 109,
no. 11, pp. 4026–70, 2019.

[27] R. Caldentey, E. H. Kaplan, and G. Weiss, “Fcfs infinite bipartite matching of
servers and customers”, Advances in Applied Probability, vol. 41, no. 3, pp. 695–
730, 2009.

[28] I. Adan and G. Weiss, “A loss system with skill-based servers under assign
to longest idle server policy”, Probability in the Engineering and Informational
Sciences, vol. 26, no. 3, pp. 307–321, 2012.

[29] A. Bušić and S. Meyn, “Approximate optimality with bounded regret in dy-
namic matching models”, ACM SIGMETRICS Performance Evaluation Re-
view, vol. 43, no. 2, pp. 75–77, 2015.

[30] J. Mairesse and P. Moyal, “Stability of the stochastic matching model”, Journal
of Applied Probability, vol. 53, no. 4, pp. 1064–1077, 2016.

[31] G. Gallego and G. Van Ryzin, “Optimal dynamic pricing of inventories with
stochastic demand over finite horizons”, Management science, vol. 40, no. 8,
pp. 999–1020, 1994.

[32] K. T. Talluri and G. J. Van Ryzin, The theory and practice of revenue man-
agement. Springer Science & Business Media, 2006, vol. 68.

[33] P. Bumpensanti and H. Wang, “A re-solving heuristic with uniformly bounded
loss for network revenue management”, Management Science, vol. 66, no. 7,
pp. 2993–3009, 2020.

[34] W. C. Jordan and S. C. Graves, “Principles on the benefits of manufacturing
process flexibility”, Management Science, vol. 41, no. 4, pp. 577–594, 1995.

[35] A. Désir, V. Goyal, Y. Wei, and J. Zhang, “Sparse process flexibility designs:
Is the long chain really optimal?”, Operations Research, vol. 64, no. 2, pp. 416–
431, 2016.

[36] C. Shi, Y. Wei, and Y. Zhong, “Process flexibility for multiperiod production
systems”, Operations Research, vol. 67, no. 5, pp. 1300–1320, 2019.

170



[37] M. J. Neely, “Stochastic network optimization with application to communica-
tion and queueing systems”, Synthesis Lectures on Communication Networks,
vol. 3, no. 1, pp. 1–211, 2010.

[38] L. Huang and M. J. Neely, “Delay reduction via lagrange multipliers in stochas-
tic network optimization”, in Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks, 2009. WiOPT 2009. 7th International Symposium on,
IEEE, 2009, pp. 1–10.

[39] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop wireless
networks”, in 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE
Cat. No. 04CH37601), IEEE, vol. 2, 2004, pp. 1484–1489.

[40] J. Sweeney and R. J. Sweeney, “Monetary theory and the great capitol hill
baby sitting co-op crisis: Comment”, Journal of Money, Credit and Banking,
vol. 9, no. 1, pp. 86–89, 1977.

[41] D. P. Bertsekas, Dynamic programming and optimal control, 2. Athena scientific
Belmont, MA, 1995, vol. 1.

[42] A. Waserhole and V. Jost, “Pricing in vehicle sharing systems: Optimization in
queuing networks with product forms”, EURO Journal on Transportation and
Logistics, vol. 5, no. 3, pp. 293–320, 2016.

[43] I. A. Kash, E. J. Friedman, and J. Y. Halpern, “An equilibrium analysis of
scrip systems”, ACM Transactions on Economics and Computation (TEAC),
vol. 3, no. 3, pp. 1–32, 2015.

[44] J. M. Harrison and M. J. López, “Heavy traffic resource pooling in parallel-
server systems”, Queueing systems, vol. 33, no. 4, pp. 339–368, 1999.

[45] V. Venkataramanan and X. Lin, “On the queue-overflow probability of wireless
systems: A new approach combining large deviations with lyapunov functions”,
IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6367–6392, 2013.

[46] A. L. Stolyar and K. Ramanan, “Largest weighted delay first scheduling: Large
deviations and optimality”, Annals of Applied Probability, pp. 1–48, 2001.

[47] A. L. Stolyar, “Control of end-to-end delay tails in a multiclass network: Lwdf
discipline optimality”, Annals of Applied Probability, pp. 1151–1206, 2003.

[48] K. Majewski and K. Ramanan, “How large queue lengths build up in a jackson
network”, 2008.

[49] J. Blanchet, “Optimal sampling of overflow paths in jackson networks”, Math-
ematics of Operations Research, vol. 38, no. 4, pp. 698–719, 2013.

171



[50] E. J. Friedman, J. Y. Halpern, and I. Kash, “Efficiency and nash equilibria in
a scrip system for p2p networks”, in Proceedings of the 7th ACM conference on
Electronic commerce, 2006, pp. 140–149.

[51] I. A. Kash, E. J. Friedman, and J. Y. Halpern, “Optimizing scrip systems:
Crashes, altruists, hoarders, sybils and collusion”,Distributed Computing, vol. 25,
no. 5, pp. 335–357, 2012.

[52] S. Jasin and S. Kumar, “A re-solving heuristic with bounded revenue loss for
network revenue management with customer choice”, Mathematics of Opera-
tions Research, vol. 37, no. 2, pp. 313–345, 2012.

[53] J. Marshall Hall, “Combinatorial theory”, NY: JohnWiley& Sons, pp. 238–243,
1986.

[54] A. Dembo and O. Zeitouni, Large deviations techniques and applications, 2nd,
ser. Application of Mathematics. Springer, 1998, vol. 38.

[55] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load balancing
and scheduling in cloud computing clusters”, in 2012 Proceedings IEEE Infocom,
IEEE, 2012, pp. 702–710.

[56] J. G. Dai, “On positive harris recurrence of multiclass queueing networks: A
unified approach via fluid limit models”, Annals of Applied Probability, pp. 49–
77, 1995.

[57] D. Bertsimas, D. Gamarnik, and J. N. Tsitsiklis, “Performance of multiclass
markovian queueing networks via piecewise linear lyapunov functions”, Annals
of Applied Probability, pp. 1384–1428, 2001.

[58] R. Atar, P. Dupuis, and A. Shwartz, “An escape-time criterion for queueing net-
works: Asymptotic risk-sensitive control via differential games”, Mathematics
of Operations Research, vol. 28, no. 4, pp. 801–835, 2003.

[59] D. K. George, “Stochastic modeling and decentralized control policies for large-
scale vehicle sharing systems via closed queueing networks”, Ph.D. dissertation,
The Ohio State University, 2012.

[60] J. A. Parrott and M. Reich, “An earnings standard for new york city’s app-
based drivers: Economic analysis and policy assessment”, 2018.

[61] New York City Taxi and Limousine Commission and Department of Trans-
portation, “Improving efficiency and managing growth in new york’s for-hire
vehicle sector”, 2019.

172



[62] I. Ashlagi, Y. Kanoria, and J. D. Leshno, “Unbalanced random matching mar-
kets: The stark effect of competition”, Journal of Political Economy, vol. 125,
no. 1, pp. 69–98, 2017.

[63] A. E. Roth and E. Peranson, “The redesign of the matching market for american
physicians: Some engineering aspects of economic design”, American Economic
Review, vol. 89, no. 4, pp. 748–780, 1999.

[64] A. Hassidim, A. Romm, and R. I. Shorrer, “Redesigning the israeli psychology
master’s match”, American Economic Review, vol. 107, no. 5, pp. 205–09, 2017.

[65] I. Rios, T. Larroucau, G. Parra, and R. Cominetti, “Improving the chilean
college admissions system”, Oper. Res, 2019.

[66] A. Abdulkadiroglu, P. A. Pathak, and A. E. Roth, “The New York City high
school match”, American Economic Review, vol. 95, no. 2, pp. 364–367, 2005.

[67] L. E. Dubins and D. A. Freedman, “Machiavelli and the Gale-Shapley algo-
rithm”, The American Mathematical Monthly, vol. 88, no. 7, pp. 485–494, 1981.

[68] F. Kojima and P. A. Pathak, “Incentives and stability in large two-sided match-
ing markets”, American Economic Review, vol. 99, no. 3, pp. 608–27, 2009.

[69] A. Hassidim, D. Marciano, A. Romm, and R. I. Shorrer, “The mechanism is
truthful, why aren’t you?”, American Economic Review, vol. 107, no. 5, pp. 220–
24, 2017.

[70] F. Echenique, R. Gonzalez, A. Wilson, and L. Yariv, “Top of the batch: Inter-
views and the match”, arXiv preprint arXiv:2002.05323, 2020.

[71] D. E. Knuth, Mariages stables et leurs relations avec d’autres problemes combi-
natoires: introduction a l’analysis mathematique des algorithmes-. Les Presses
de l’Université de Montréal, 1976.

[72] B. Pittel, “The average number of stable matchings”, SIAM J. Disc. Math,
vol. 2, no. 4, pp. 530–549, 1989.

[73] D. E. Knuth, R. Motwani, and B. Pittel, “Stable husbands”, Random Structures
& Algorithms, vol. 1, no. 1, pp. 1–14, 1990.

[74] B. Pittel, “On likely solutions of a stable marriage problem”, The Annals of
Applied Probability, pp. 358–401, 1992.

[75] S. Lee, “Incentive compatibility of large centralized matching markets”, The
Review of Economic Studies, vol. 84, no. 1, pp. 444–463, 2016.

173



[76] K. Menzel, “Large matching markets as two-sided demand systems”, Econo-
metrica, vol. 83, no. 3, pp. 897–941, 2015.

[77] I. Ashlagi and A. Nikzad, “What matters in school choice tie-breakings? how
competition guides design”, in Proceedings of the 2016 ACM Conference on
Economics and Computation, 2016, pp. 767–768.

[78] B. Pittel, “On likely solutions of the stable matching problem with unequal
numbers of men and women”, Mathematics of Operations Research, vol. 44,
no. 1, pp. 122–146, 2019.

[79] N. Immorlica and M. Mahdian, “Marriage, honesty, and stability”, in Proceed-
ings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms,
Society for Industrial and Applied Mathematics, 2005, pp. 53–62.

[80] N. Arnosti, “Short lists in centralized clearinghouses”, EC ’15: Proceedings of
the Sixteenth ACM Conference on Economics and Computation, p. 751, 2015.

[81] D. Gale and L. S. Shapley, “College admissions and the stability of marriage”,
American Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[82] A. E. Roth and M. A. O. Sotomayor, Two-sided Matching: A Study in Game-
Theoretic Modeling and Analysis, 18. Cambridge University Press, Cambridge,
UK, 1990.

[83] M. David, Algorithmics of matching under preferences. World Scientific, 2013,
vol. 2.

[84] P. Legros and A. F. Newman, “Beauty is a beast, frog is a prince: Assortative
matching with nontransferabilities”, Econometrica, vol. 75, no. 4, pp. 1073–
1102, 2007.

[85] U. Dur, S. D. Kominers, P. A. Pathak, and T. Sönmez, “Reserve design: Unin-
tended consequences and the demise of boston’s walk zones”, Journal of Political
Economy, vol. 126, no. 6, pp. 2457–2479, 2018.

[86] A. E. Roth, “A natural experiment in the organization of entry-level labor mar-
kets: Regional markets for new physicians and surgeons in the united kingdom”,
The American economic review, pp. 415–440, 1991.

[87] J. H. Kagel and A. E. Roth, “The dynamics of reorganization in matching
markets: A laboratory experiment motivated by a natural experiment”, The
Quarterly Journal of Economics, vol. 115, no. 1, pp. 201–235, 2000.

[88] G. J. Hitsch, A. Hortaçsu, and D. Ariely, “Matching and sorting in online
dating”, American Economic Review, vol. 100, no. 1, pp. 130–63, 2010.

174



[89] L. Cai and C. Thomas, “The short-side advantage in random matching mar-
kets”, arXiv preprint arXiv:1910.04406, 2019.

[90] A. E. Roth, “On the allocations of residents to rural hospitals: A general prop-
erty of two-sided matching markets”, Econometrica, vol. 54, no. 2, pp. 425–427,
1986.

[91] L. S. Shapley and M. Shubik, “The assignment game i: The core”, International
Journal of game theory, vol. 1, no. 1, pp. 111–130, 1971.

[92] D. G. McVitie and L. B. Wilson, “The stable marriage problem”, Communica-
tions of the ACM, vol. 14, no. 7, pp. 486–490, 1971.

[93] M. Baccara, S. Lee, and L. Yariv, “Optimal dynamic matching”, CEPR Dis-
cussion Papers, Tech. Rep., 2018.

[94] J. Leshno, “Dynamic matching in overloaded waiting lists”, Available at SSRN
2967011, 2017.

[95] E. H. Kaplan, “Managing the demand for public housing”, Ph.D. dissertation,
Massachusetts Institute of Technology, 1984.

[96] ——, “A public housing queue with reneging”, Decision Sciences, vol. 19, no. 2,
pp. 383–391, 1988.

[97] S. A. Zenios, “Modeling the transplant waiting list: A queueing model with
reneging”, Queueing systems, vol. 31, no. 3-4, pp. 239–251, 1999.

[98] X. Su and S. Zenios, “Patient choice in kidney allocation: The role of the
queueing discipline”, Manufacturing & Service Operations Management, vol. 6,
no. 4, pp. 280–301, 2004.

[99] F. Bloch and D. Cantala, “Dynamic assignment of objects to queuing agents”,
American Economic Journal: Microeconomics, vol. 9, no. 1, pp. 88–122, 2017.

[100] N. Arnosti and P. Shi, “Design of lotteries and wait-lists for affordable housing
allocation”, Management Science, 2020.

[101] V. Polterovich, “Rationing, queues, and black markets”, Econometrica: Journal
of the Econometric Society, pp. 1–28, 1993.

[102] M. Braverman, J. Chen, and S. Kannan, “Optimal provision-after-wait in health-
care”, Mathematics of Operations Research, vol. 41, no. 1, pp. 352–376, 2016.

[103] P. Afeche, R. Caldentey, and V. Gupta, “On the optimal design of a bipartite
matching queueing system”, Available at SSRN 3345302, 2019.

175



[104] B. Ata, Y. Ding, and S. Zenios, “An achievable-region-based approach for kid-
ney allocation policy design with endogenous patient choice”, Manufacturing &
Service Operations Management, vol. 23, no. 1, pp. 36–54, 2021.

[105] H. Mendelson, “Market behavior in a clearing house”, Econometrica: Journal
of the Econometric Society, pp. 1505–1524, 1982.

[106] F. Kelly and E. Yudovina, “A markov model of a limit order book: Thresh-
olds, recurrence, and trading strategies”, Mathematics of Operations Research,
vol. 43, no. 1, pp. 181–203, 2018.

[107] S. Loertscher, E. V. Muir, and P. G. Taylor, “Optimal market thickness and
clearing”, Unpublished paper, Department of Economics, University of Mel-
bourne.[1224], 2018.

[108] H. Uzawa, “Walras’ tatonnement in the theory of exchange”, The Review of
Economic Studies, vol. 27, no. 3, pp. 182–194, 1960.

[109] R. Cole and L. Fleischer, “Fast-converging tatonnement algorithms for one-
time and ongoing market problems”, in Proceedings of the fortieth annual ACM
symposium on Theory of computing, 2008, pp. 315–324.

[110] Y. K. Cheung, R. Cole, and Y. Tao, “Dynamics of distributed updating in
fisher markets”, in Proceedings of the 2018 ACM Conference on Economics and
Computation, 2018, pp. 351–368.

[111] Y. K. Cheung, R. Cole, and N. R. Devanur, “Tatonnement beyond gross sub-
stitutes? gradient descent to the rescue”, Games and Economic Behavior, 2019.

[112] W. B. Powell and Y. Sheffi, “The convergence of equilibrium algorithms with
predetermined step sizes”, Transportation Science, vol. 16, no. 1, pp. 45–55,
1982.

[113] J. R. Correa and N. E. Stier-Moses, “Wardrop equilibria”, Wiley encyclopedia
of operations research and management science, 2010.

[114] D. P. Bertsekas, “A distributed algorithm for the assignment problem”, Lab. for
Information and Decision Systems Working Paper, MIT, 1979.

[115] G. Demange, D. Gale, and M. Sotomayor, “Multi-item auctions”, Journal of
Political Economy, vol. 94, no. 4, pp. 863–872, 1986.

[116] R. W. Wolff, “Poisson arrivals see time averages”, Operations Research, vol. 30,
no. 2, pp. 223–231, 1982.

176



[117] A. Galichon, Optimal transport methods in economics. Princeton University
Press, 2018.

[118] E. BackProp, Y. LeCun, L. Bottou, G. B. Orr, and K. Muller, Neural networks:
Tricks of the trade, 1998.

[119] R. Johari, V. Kamble, and Y. Kanoria, “Matching while learning”, arXiv preprint
arXiv:1603.04549, 2016.

[120] D. P. Williamson, Network Flow Algorithms. Cambridge University Press, 2019.

[121] N. Buchholz, “Spatial equilibrium, search frictions and efficient regulation in
the taxi industry”, Technical report, University of Texas at Austin, Tech. Rep.,
2015.

[122] A. L. Stolyar, “Large deviations of queues sharing a randomly time-varying
server”, Queueing Systems, vol. 59, no. 1, p. 1, 2008.

[123] H. L. Royden and P. Fitzpatrick, Real analysis. Macmillan New York, 1988,
vol. 32.

[124] V. G. Subramanian, “Large deviations of max-weight scheduling policies on con-
vex rate regions”, Mathematics of Operations Research, vol. 35, no. 4, pp. 881–
910, 2010.

[125] S. M. Ross, Stochastic processes. 1996, 1996.

[126] R. Durrett, Probability: theory and examples. Cambridge university press, 2010.

[127] K. L. Chung, A course in probability theory. Academic press, 2001.

[128] A. Shwartz and A. Weiss, Large deviations for performance analysis: queues,
communication and computing. CRC Press, 1995, vol. 5.

[129] D. Dubhashi and D. Ranjan, “Balls and bins: A study in negative dependence”,
Random Structures & Algorithms, vol. 13, no. 2, pp. 99–124, 1998.

[130] K. Joan-Dev and F. Proschan, “Negative association of random variables with
applications”, The Annals of Statistics, vol. 11, no. 1, pp. 286–295, 1983.

[131] D. E. Knuth, “Stable marriage and its relation to other combinatorial prob-
lems”, in An introduction to the mathematical analysis of algorithms, vol. 10,
American Mathematical Society, 1996.

177



[132] I. Ashlagi, Y. Kanoria, and J. D. Leshno, “Unbalanced random matching mar-
kets: The stark effect of competition”, Journal of Political Economy, vol. 25,
no. 1, pp. 65–98, 2015.

[133] B. Pittel, “On likely solutions of the stable matching problem with unequal
numbers of men and women”, Mathematics of Operations Research, vol. 44,
no. 1, pp. 122–146, 2019.

[134] W Kozakiewicz et al., “On the convergence of sequences of moment generating
functions”, The Annals of Mathematical Statistics, vol. 18, no. 1, pp. 61–69,
1947.

[135] A. Postnikov, “Permutohedra, associahedra, and beyond”, International Math-
ematics Research Notices, vol. 2009, no. 6, pp. 1026–1106, 2009.

[136] J. Gallier, “Notes on convex sets, polytopes, polyhedra, combinatorial topology,
voronoi diagrams and delaunay triangulations”, arXiv preprint arXiv:0805.0292,
2008.

178



APPENDIX A

Proofs in “Blind Dynamic Resource Allocation in Closed

Networks via Mirror Backpressure”

Organization of the appendix. In this paper, we proved performance guarantees for

three settings: entry control (Theorem 1.1), joint entry-assignment control (Theorem

1.2) and joint pricing-assignment control (Theorem 1.3). In the appendix, we will only

prove the results for JEA and JPA since entry control is a special case of JEA. For

most parts of the proof, the proof of JEA can be easily extended to JPA. For particular

lemmas/propositions, the proofs of the JPA setting are more involved. For easier reading,

we put analogous results together.

The appendix is organized as follows.

1. In Appendix A.1 we prove Proposition 1.1, i.e., that the value of SPP is an upper

bound of the best achievable per customer payoff. We will prove the counterpart of

Proposition 1.1 for JEA (Proposition A.1) and JPA (Proposition A.2) settings.

2. In Appendix A.2, we perform the Lyapunov analysis and analyze the geometry of

the dual problem (1.14), and prove Lemma 1.1 and Lemma 1.2. We will prove the

counterpart of these lemmas for JEA and JPA settings.

3. In Appendix A.3 we prove Lemma 1.3. We also prove a general result (Theorem

A.1), and show that it implies Theorems 1.1, 1.2, and 1.3.

4. In Appendix A.4, we provide further details of the simulation setting.
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A.1 Finite Horizon Payoff Upper Bound: Proof of Propo-

sition 1.1

In this section, we prove the finite horizon payoff upper bounds for JEA (Proposition

A.1) and JPA setting (Proposition A.2). Proposition 1.1 is implied by Proposition A.1.

A.1.1 Joint Entry-Assignment Setting

Consider the JEA setting defined in Section 1.6.2, which allows for flexible assignment

and time-varying demand.

We will state and prove a generalization of Proposition 1.1 (fluid-based upper bound

on the payoff) to the JEA setting. Before that we introduce some linear programs which

generalize the static planning problem (1.10)-(1.12), and establish a lemma relating their

values to each other.

Relevant linear programs

Fix a horizon T . We will consider the following linear program at time t, based on

the current demand arrival rates φt:

SPPt : maximizez
∑

τ∈T ,j∈P(τ),k∈D(τ)

wjτk zjτk (A.1)

s.t.
∑

τ∈T ,j∈P(τ),k∈D(τ)

zjτk(ej − ek) = 0 (flow balance) ,

(A.2)∑
j∈P(τ),k∈D(τ)

zjτk ≤ φtτ , zjτk ≥ 0 ∀j, k ∈ V, τ ∈ T . (demand constraint) .

(A.3)

The variable zjτk can be interpreted as the flow of demand type τ being served by pickup

location j and dropoff location k. (Note that our LP formulation here has a cosmetic

difference from that in (1.10)-(1.12): here we find that it simplifies our analysis to use
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the flows zjτk as the LP variables instead of using the fractions xjτk of demand of type τ

served by pickup location j and dropoff location k as the variables. The correspondence

is simply zjτk ↔ φtτxjτk.) We denote the value of SPPt by W SPPt .

Define the average demand arrival rates

φ ,
1

T

T−1∑
t=0

φt . (A.4)

We define an “average” linear program SPP as the linear program given by (A.1), (A.2),

and the averaged demand constraint

∑
j∈P(τ),k∈D(τ)

zjτk ≤ φτ , zjτk ≥ 0 ∀j, k ∈ V, τ ∈ T . (demand constraint) . (A.5)

We denote the value of SPP by W SPP.

Although we will not use this property, note that W SPP ≥ 1
T

∑T−1
t=0 W

SPPt since if zt

is feasible for SPPt for each t then z = 1
T

∑T−1
t=0 zt is feasible for SPP. Rather, we will

prove and then leverage the property that W SPP is not much larger than W SPPt for any

t ≤ T − 1 if the demand arrival rates vary slowly with t.

Lemma A.1. Suppose the demand arrival rates vary η-slowly (Definition 1.1) for some

η > 0. Fix a horizon T . For any 0 ≤ t ≤ T − 1 we have

W SPPt ≥ W SPP − ηTm/2 . (A.6)

Proof. Since ‖φt′+1 − φt′‖1 ≤ η for all t′, we know that

‖φt − φ‖1 ≤ ηT/2 . (A.7)

Let z be an optimal solution to SPP. If z is feasible for SPPt we are done. Suppose not.

Using the standard flow decomposition approach [see, e.g., 120, the interested reader can

also find the flow decomposition argument in the proof of Lemma A.3 below], the flow

z can be decomposed into flows along directed cycles, since it satisfies the flow balance

constraints (A.2): directed cycles C carrying flow fC > 0 in the decomposition take the

form C =
(
(j1, τ1, j2), (j2, τ2, j3), · · · , (js, τs, js+1 = j1)

)
where the nodes j1, j2, . . . , js are
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distinct from each other, and for each r = 1, 2, . . . , s, there is a flow from jr to jr+1 due

to demand type τr. We have

zjτk =
∑
C3(j,τ,k)

fC for all τ ∈ T , j ∈ P(τ), k ∈ D(τ) . (A.8)

(The number of cycles in the decomposition is bounded above by
∑

τ∈T |P(τ)||D(τ)|, but

our argument will not be affected by the number of cycles. In fact our argument can

handle an infinity of demand types by replacing sums with integrals.)

Starting from the flow z and the associated cycle decomposition (A.8), we reduce the

flows (fC) along the cycles via the following iterative process, in order to obtain zt which

is feasible for the problem SPPt:

Consider each demand type τ ∈ T in turn and do the following. Define the (current)

arrival rate violation as

δτ ,

∑
C

fC · count(C, τ) − φtτ


+

.

where count(C, τ) is the number of times demand type τ appears in cycle C. If δτ = 0

do nothing. If δτ > 0, reduce the flows in cycles containing τ sufficiently that after

the reduction
∑
C fC · count(C, τ) = φtτ holds (the reduction can be divided arbitrarily

between the different cycles containing τ ; subject to the constraints that no cycle-flow

should increase and no cycle-flow should go below zero). Note that the payoff loss resulting

from this reduction is bounded above by δτm since each cycle length is at most m (since

no node is repeated in a cycle), the ws are assumed to be bounded by 1, and the total

reduction in cycle flows is at most δτ .

This simple process maintains the following properties:

• The flow balance constraint (A.2) is satisfied throughout.

• Cycle-flows are non-increasing during the process. Cycle-flows never drop below

zero.

• For all demand types which have already been processed so far, the arrival rate

182



constraint is satisfied. Formally: During the process, denote the current value of the

right-hand side of (A.8) by zjτk. Then
∑

j∈P(τ),k∈D(τ) zjτk =
∑
C fC ·count(C, τ) ≤ φtτ

for all demand types τ which have already been processed.

In particular, at the end of the process, we arrive at flows zt which are feasible for

SPPt. It remains to show that the payoff lost due to the reduction in flows is bounded

by ηTm/2.

Since flows are non-increasing and the initial flows are feasible for SPP, we have that

δτ ≤
(
φτ − φtτ

)
+
for all τ ∈ T . Since the payoff lost while processing demand type τ is

bounded above by δτm (as we argued above), the total loss in payoff lost is then bounded

above by

m
∑
τ∈T

δτ ≤ m
∑
τ∈T

(
φτ − φtτ

)
+
≤ m‖φt − φ‖1 ≤ mηT/2 ,

where we used (A.7) in the last inequality. Thus, we have constructed a feasible solution

zt to SPPt which achieves payoff at least W SPP − ηTm/2. The lemma follows.

Upper bound on the payoff

We state below the generalization of Proposition 1.1 to the JEA setting with time-

varying demand arrival rates.

Proposition A.1. For any horizon T <∞, any K and any starting state q[0], the best

achievable finite horizon average payoff W ∗
T in the JEA setting is upper bounded as

W ∗
T ≤ W SPP +m · K

T
.

Here W SPP is the optimal value of SPP given by (A.1), (A.2) and (A.5).

The idea behind Proposition A.1 is as follows. As is typical in such settings,W SPP is an

upper bound on the payoff if the flow constraints are satisfied in expectation. However,

since the flow constraints can be slightly violated in the finite horizon setting under

consideration, we obtain an upper bound by slightly relaxing the flow constraint (A.2) in
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the SPP to ∣∣∣∣∣∣1T
S

 ∑
τ∈T ,j∈P(τ),k∈D(τ)

zjτk(ej − ek)

∣∣∣∣∣∣ ≤ K

T
∀ S ⊆ V , (A.9)

where 1S is the vector with 1s at nodes in S and 0s at all other nodes.

We establish two key lemmas to facilitate the proof of Proposition A.1. The first

lemma (Lemma A.2) shows that the expected payoff cannot exceed the value of the finite

horizon demand-averaged SPP, i.e., the linear program defined by (A.1), (A.9) and (A.5).

Lemma A.2. For any horizon T < ∞, any K and any starting state q[0], the expected

payoff generated by any feasible joint entry-assignment control policy π is upper bounded

by the value of the linear program defined by (A.1), the approximate flow balance con-

straints (A.9) and time-averaged demand constraints (A.5).

Proof. Let π be any feasible policy. For each τ ∈ T and j ∈ P(τ), k ∈ D(τ), define

zjτk ,
1

T

T−1∑
t=0

E[xjτk[t]I{τ [t] = τ}] .

In words, zjτk is the average flow over 1 ≤ t ≤ T of the demand type τ being served by

pickup location j and dropoff location k. Since for each t, zjτk[t] , E[I{τ [t] = τ}xjτk]

satisfies the period-specific demand constraint (A.3) for all τ ∈ T , j ∈ P [τ ], k ∈ D(τ),

the averaged constraints (A.5) must hold for z.

We can write the expected per-period payoff collected in the first T periods as:

W π
T =

1

T

T−1∑
t=0

E

 ∑
τ∈T ,j∈P(τ),k∈D(τ)

wjτk · xjτk[t]I{τ [t] = τ}


=

∑
τ∈T ,j∈P(τ),k∈D(τ)

wjτk · zjτk ,

where we only used linearity of expectation. In words, the expected per-period payoff is

the objective (A.1) evaluated at z. Similarly, for the time-average of the change of queue

length we have:

1

T
· E[q[T ]− q[0]] =

∑
τ∈T ,j∈P(τ),k∈D(τ)

zjτk · (ej − ek) ,
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which implies that z satisfies the approximate flow constraints (A.9) since |
∑

j∈S qj[T ]−

qj[0]| ≤ K for all S ⊂ V . (Because there are only K resources circulating in the system,

the net outflow from any subset of nodes S ⊆ V should not exceed K in magnitude.)

We have shown that z is feasible for the given linear program with constraints (A.9)

and (A.5), and the expected payoff earnedW π
T is identical to objective (A.1) evaluated at

z. It follows that W π
T is upper bounded by the value of the optimization problem defined

by (A.1), (A.9) and (A.5) regardless of the initial configuration q[0]. This concludes the

proof.

In order to facilitate the second key lemma, we first prove a supporting lemma (Lemma

A.3). We call z a (directed) acyclic flow if there is no (directed) cycle

C =
(

(j1, τ1, j2), (j2, τ2, j3), · · · , (js, τs, js+1 = j1)
)
, where jr ∈ V and τr ∈ T for r = 1, 2, · · · , s ,

such that

zjr,τr,jr+1 > 0 for all r = 1, · · · , s .

In words, there is no cycle C such that there is a positive flow along C.

Lemma A.3. Any feasible solution zF of the finite horizon averaged SPP satisfying ap-

proximate flow balance (A.9) and the average demand constraint (A.5) can be decomposed

as

zF = zS + zDAG , (A.10)

where zS is a feasible solution for the SPP satisfying exact flow balance (A.2) and (A.5),

and zDAG is an acyclic flow satisfying (A.9) and (A.5).

Proof. The existence of such a decomposition can be established using a standard flow

decomposition argument [see, e.g., 120]: Start with zS = 0 and zDAG = zF. Then,

iteratively, if zDAG includes a cycle C with a positive flow along C as above, move a flow
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of u(C) , min1≤r≤s zjr,τr,jr+1 along C from zDAG to zS, via the updates

zS
jr,τr,jr+1

← zS
jr,τr,jr+1

+ u(C) , zDAG
jr,τr,jr+1

← zDAG
jr,τr,jr+1

− u(C) ,

for all r = 1, 2, . . . , s. This iterative process maintains the following invariants which hold

at the end of each iteration:

• zS remains feasible for the SPP, in particular, it satisfies flow balance (A.2).

• zF = zS + zDAG remains true.

• It remains true that

∑
τ∈T ,j∈P(τ),k∈D(τ)

zDAG
jτk (ej − ek) =

∑
τ∈T ,j∈P(τ),k∈D(τ)

zF
jτk(ej − ek) .

i.e., zDAG has the same net inflow/outflow from each supply node as zF. In particular,

zDAG satisfies approximate flow balance (A.9).

Moreover, the iterative process progresses monotonically: Observe that zS coordinate-

wise (weakly) increases monotonically, whereas zDAG coordinate-wise (weakly) decreases

monotonically (but preserves zDAG ≥ 0). Since we also know that zS is bounded, it

follows that this iterative process converges. Moreover, in the limit it must be that there

is no remaining cycle with positive flow in zDAG (else we observe a contradiction with

the fact that the process has converged). Hence, zS and zDAG at the end of the process

provide the claimed decomposition.

Using this supporting lemma, we now establish the second key lemma which shows

that the value of the averaged SPP with approximate flow balance constraints (A.9)

cannot be much larger than the value of the averaged program SPP which imposes exact

flow balance constraints (A.2).

Lemma A.4. The value of the linear program defined by (A.1), the approximate flow

balance constraints (A.9) and time-averaged demand constraints (A.5) is bounded above

by

W SPP +m · K
T
.
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where W SPP is the value of the linear program SPP which imposes exact flow balance

constraints (A.2).

Proof. We appeal to the decomposition from Lemma A.3 to decompose any feasible so-

lution zF to the finite horizon fluid problem as

zF = zS + zDAG ,

where zS is feasible for SPP and zDAG is a directed acyclic flow that satisfies approximate

flow balance (A.9) and the averaged demand constraints (A.3). Hence, the objective

(A.1) can be written as the sum of two terms

∑
τ∈T ,j∈P(τ),k∈D(τ)

wjτk · zF
jτk =

∑
τ∈T ,j∈P(τ),k∈D(τ)

wjτk · (zS
jτk + zDAG

jτk ) , (A.11)

and each of the terms can be bounded from above. By definition of W SPP we know that

∑
τ∈T ,j∈P(τ),k∈D(τ)

wjτk · zS
jτk ≤ W SPP .

We will now show that

∑
τ∈T ,j∈P(τ),k∈D(τ)

wjτk · zDAG
jτk ≤ (m− 1) · K

T
< m · K

T
.

The lemma will follow, since this will imply an upper bound of W SPP + m · K
T

on the

objective for any zF satisfying (A.9) and (A.5).

Consider zDAG. Since it is an acyclic flow, there is an ordering (j1, j2, . . . , jm) of the

nodes in V such that all positive flows move supply from an earlier node to a later node

in this ordering. More precisely, it holds that for any τ ∈ T ,

zDAG
jl,τ,jr

= 0 ∀ l > r s.t. jl ∈ P(τ), jr ∈ D(τ) . (A.12)

Now consider the subsets A` , {j1, j2, . . . , j`} ⊂ V for ` = 1, 2, . . . ,m − 1. Note that

from (A.12), zDAG does not move any supply from V \A` to A`. Hence we have

1T
A`

 ∑
τ∈T ,j∈P(τ),k∈D(τ)

zDAG
jτk (ej − ek)

 =
∑

τ∈T ,j∈P(τ)∩A`,k∈D(τ)∩(V \A`)

zDAG
jτk
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≤ K

T
∀ l = 1, 2, . . . ,m− 1 , (A.13)

We made use of (A.9) to obtain the upper bound. Further, note that for each zDAG
jl,τ,jr

with

l < r, the term zDAG
jl,τ,jr

is part of the above sum for ` = l. Motivated by this observation, we

bound the expected payoff of zDAG by first using our assumption maxj,k∈V,τ∈T |wjτk| ≤ 1

to bound the payoff by the sum of zDAGs (the first inequality below), and then bounding

the sum of zDAGs by “allocating” zDAG
jl,τ,jr

to the left-hand side of (A.13) with ` = l and

summing over ` (the second inequality below):

∑
τ∈T ,j∈P(τ),k∈D(τ)

wjτk · zDAG
jτk

≤
∑

τ∈T ,j∈P(τ),k∈D(τ)

zDAG
jτk

≤
∑

1≤`<m

∑
τ∈T ,j∈P(τ)∩A`,k∈D(τ)∩(V \A`)

zDAG
jτk

≤ (m− 1) · K
T
.

The last inequality uses (A.13) summed over `. This completes the proof.

Proof of Proposition A.1. The proposition follows immediately from Lemmas A.2 and

A.4.

A.1.2 Joint Pricing-Assignment Setting

Consider the JPA setting defined in Section 1.6.3. Recall that we assumed stationary

demand arrival rates (in contrast to the JEA setting). The static planning problem (SPP)

in the JPA setting is

maximizex
∑
τ∈T

φτ

rτ
 ∑
j∈P(τ),k∈D(τ)

xjτk

− ∑
j∈P(τ),k∈D(τ)

cjτk · xjτk

 (A.14)

s.t.
∑
τ∈T

φτ
∑

j∈P(τ),k∈D(τ)

xjτk(ej − ek) = 0 (flow balance)

(A.15)
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∑
j∈P(τ),k∈D(τ)

xjτk ≤ 1 , xjτk ≥ 0 ∀j, k ∈ V , τ ∈ T (demand constraint) .

(A.16)

Proposition A.2. For any horizon T <∞, any K and any starting state q[0], the finite

and infinite horizon average payoff W ∗
T and W ∗ in the JPA setting are upper bounded as

W ∗
T ≤ W SPP +m · K

T
, W ∗ ≤ W SPP .

Here W SPP is the optimal value of SPP (A.14)-(A.16).

The main twist of the proof comparing to Proposition A.1 is that the objective function

in (A.14) is no longer linear. We first prove a JPA version of Lemma A.2.

Lemma A.5. For any horizon T < ∞, any K and any starting state q[0], the expected

payoff generated by any JPA policy π is upper bounded by the value of the finite horizon

SPP:

maximizex
∑
τ∈T

φτ ·

rτ
 ∑
j∈P(τ),k∈D(τ)

xjτk

− ∑
j∈P(τ),k∈D(τ)

cjτk · xjτk


s.t. 1T

S

∑
τ∈T

φτ
∑

j∈P(τ),k∈D(τ)

xjτk(ej − ek)

 ≤ K

T
∀S ⊆ V

∑
j∈P(τ),k∈D(τ)

xjτk ≤ 1 , xjτk ≥ 0 ∀j, k ∈ V , τ ∈ T .

Proof. Let π be any feasible JPA policy. For each demand type τ ∈ T and j ∈ P(τ),

k ∈ D(τ), define

x̄jτk ,
1

T

T−1∑
t=0

E[F̄τ (pτ [t]) · xjτk[t]|τ [t] = τ ] .

In words, x̄jτk is the average rate over the first T periods of picking up type τ demands

from node j and dropping them off at node k.

Let Uτ [t] be the willingness-to-pay of a type τ demand arriving at time t. We decom-

pose the time-average of payoff collected in the first T periods as:

W π
T =

1

T

T−1∑
t=0

E

∑
τ∈T

1{τ [t] = τ, Uτ [t] ≥ pτ [t]}
∑

j∈P(τ),k∈D(τ)

(pτ [t]− cjτk) · xjτk[t]


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=
1

T

T−1∑
t=0

∑
τ∈T

φτ · E

1{Uτ [t] ≥ pτ [t]}
∑

j∈P(τ),k∈D(τ)

(pτ [t]− cjτk) · xjτk[t]
∣∣τ [t] = τ

 .

Because Uτ [t] is independent of pτ [t] and xjτk[t], we have

W π
T =

1

T

T−1∑
t=0

∑
τ∈T

φτ · E

F̄τ (pτ [t]) ∑
j∈P(τ),k∈D(τ)

(pτ [t]− cjτk) · xjτk[t]
∣∣τ [t] = τ

 .

Let µτ [t] , F̄τ (pτ [t]), and let x̂jτk[t] , µτ [t] · xjτk[t], we have

W π
T =

1

T

T−1∑
t=0

∑
τ∈T

φτ · E


 ∑
j∈P(τ),k∈D(τ)

x̂jτk[t]

 · F̄−1
τ (µτ [t])−

∑
j∈P(τ),k∈D(τ)

cjτk · x̂jτk[t]
∣∣τ [t] = τ


≤ 1

T

T−1∑
t=0

∑
τ∈T

φτ · E


 ∑
j∈P(τ),k∈D(τ)

x̂jτk[t]

 · F̄−1
τ

 ∑
j∈P(τ),k∈D(τ)

x̂jτk[t]


−

∑
j∈P(τ),k∈D(τ)

cjτk · x̂jτk[t]
∣∣τ [t] = τ


=

1

T

T−1∑
t=0

∑
τ∈T

φτ · E

rτ
 ∑
j∈P(τ),k∈D(τ)

x̂jτk[t]

− ∑
j∈P(τ),k∈D(τ)

cjτk · x̂jτk[t]
∣∣τ [t] = τ

 .

Here the first inequality follows from the fact that F̄−1
τ (·) is non-increasing, the last

equality uses the definition of revenue function rτ (·). Linearity of conditional expectation

and conditional Jensen’s inequality yields:

W π
T ≤

∑
τ∈T

φτ ·

− ∑
j∈P(τ),k∈D(τ)

cjτk · x̄jτk +
1

T

T−1∑
t=0

rτ

E

 ∑
j∈P(τ),k∈D(τ)

x̂jτk[t]
∣∣τ [t] = τ



 .

Use Jensen’s inequality again, we have

W π
T ≤

∑
τ∈T

φτ ·

− ∑
j∈P(τ),k∈D(τ)

cjτk · x̄jτk + rτ

 ∑
j∈P(τ),k∈D(τ)

x̄jτk


 .

For the time-average of the change of queue length we have:

1

T
· E[q[T ]− q[0]] =

∑
τ∈T

φτ
∑

j∈P(τ),k∈D(τ)

x̄jτk · (ej − ek) .

Because there are only K resources in the system, the net outflow from any subset of
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nodes should not exceed K. Note that x̄ must satisfy constraint (A.16). Optimizing over

x̄ yields the desired result.

Proof Sketch of Proposition A.2. The rest of the proof proceeds almost exactly the same

as in Proposition A.1. The only caveat is that the equation (A.11) should be replaced by

inequality

∑
τ∈T

φτ

− ∑
j∈P(τ),k∈D(τ)

cjτk · xFjτk + rτ

 ∑
j∈P(τ),k∈D(τ)

xFjτk




≤
∑
τ∈T

φτ

− ∑
j∈P(τ),k∈D(τ)

cjτk · xSjτk + rτ

 ∑
j∈P(τ),k∈D(τ)

xSjτk




+
∑
τ∈T

φτ

− ∑
j∈P(τ),k∈D(τ)

cjτk · xDAGjτk + rτ

 ∑
j∈P(τ),k∈D(τ)

xDAGjτk


 .

Here the inequality follows from xF = xS + xDAG and the fact that rτ (·) is subadditive

by virtue of being a non-negative concave function.

A.2 Lyapunov Analysis: Proof of Lemma 1.1 and Lemma

1.2

In this section, we prove the counterparts of Lemma 1.1 and Lemma 1.2 for JEA

(Lemma A.6 and Lemma A.8, resp.) and JPA setting (Lemma A.7 and Lemma A.9,

resp.). Lemma 1.1 is implied by Lemma A.6, and Lemma 1.2 is implied by Lemma A.8.

A.2.1 Decomposition of Optimality Gap

Generalization of Lemma 1.1 for the JEA Setting

The following lemma generalizes Lemma 1.1 for the JEA setting.

Lemma A.6. Consider congestion functions fj(·)s that are strictly increasing and con-

tinuously differentiable, and that fj(q̄j) ≤ fk(q̄k) (i) for any k ∈ V if qj = 0, and (ii) for
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any j ∈ V if qk = dk, k ∈ Vb. We have the following decomposition (W SPPt is defined

in Appendix A.1.1 and gtJEA is defined in (1.25)):

W SPPt − E[vMBP[t]|q̄[t]] ≤ K̃
(
F (q̄[t])− E[F (q̄[t+ 1])|q̄[t]]

)︸ ︷︷ ︸
V1

+
1

2K̃
·max
j∈V

f ′j(q̄j[t])︸ ︷︷ ︸
V2

+
(
W SPPt − gtJEA(f(q̄[t]))

)
︸ ︷︷ ︸

V3

+1
{
qj[t] = 0 or dj,∃j ∈ V

}︸ ︷︷ ︸
V4

.

Proof. For congestion functions fj(q̄j) that are strictly increasing and continuous for

each j, we consider the Lyapunov function F (q̄) which is the antiderivative of f(q̄). The

Bregman divergence associated with f(q̄) is defined as:

DF (q̄1, q̄2) = F (q̄1)− F (q̄2)− 〈f(q̄1), q̄1 − q̄2〉 . (A.17)

Plugging q̄1 = q̄[t+ 1], q̄2 = q̄[t] into (A.17) and rearranging the terms, we have:

F (q̄[t+ 1])− F (q̄[t]) = 〈f(q̄[t]), q̄[t+ 1]− q̄[t]〉+DF (q̄[t+ 1], q̄[t]) .

Subtracting 1
K̃

∑
τ∈T φ

t
τ

∑
j∈P(τ),k∈D(τ) wjτk · xjτk[t] on both sides and taking conditional

expectation given q̄[t], we have:

E[F (q̄[t+ 1])|q̄[t]]− F (q̄[t])− 1

K̃

∑
τ∈T

φtτ
∑

j∈P(τ),k∈D(τ)

wjτkE[xjτk[t]|q̄[t]]

= − 1

K̃

∑
τ∈T

φtτ
∑

j∈P(τ),k∈D(τ)

wjτkE[xjτk[t]|q̄[t]] + 〈f(q̄[t]),E[q̄[t+ 1]|q̄[t]]− q̄[t]〉

︸ ︷︷ ︸
(I)

+E
[
DF (q̄[t+ 1], q̄[t])|q̄[t]

]︸ ︷︷ ︸
(II)

.

(A.18)

Let xNOM
jτk [t] be the “nominal” control that ignores the no-underflow constraint, i.e.

(xNOM
jτk )[t] =

 1 if wjτk + fj(q̄j[t])− fk(q̄k[t]) ≥ 0

0 otherwise.
(A.19)

It immediately follows that

(xMBP
jτk )[t] = (xNOM

jτk )[t] · 1{qj[t] > 0, qk[t] < dk} . (A.20)

With a slight abuse of notation, denote xNOM as x̃, xMBP as x. Rearranging the terms
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in (I) and plugging in (A.20), we have

(I) = − 1

K̃

∑
τ∈T

φtτ
∑

j∈P(τ),k∈D(τ)

(
wjτk + fj(q̄j[t])− fk(q̄k[t])

)
· E[xjτk[t]|q̄[t]]

= − 1

K̃

∑
τ∈T

φtτ
∑

j∈P(τ),k∈D(τ)

(
wjτk + fj(q̄j[t])− fk(q̄k[t])

)
· E[x̃jτk[t]|q̄[t]]

+
1

K̃

∑
τ∈T

φtτ
∑

j∈P(τ),k∈D(τ)

(
wjτk + fj(q̄j[t])− fk(q̄k[t])

)
· E[x̃jτk[t]|q̄[t]] · 1

{
qj[t] = 0 or qk[t] = dk

}
.

By definition of the nominal control x̃, we have:

− 1

K̃

∑
τ∈T

φtτ
∑

j∈P(τ),k∈D(τ)

(
wjτk + fj(q̄j[t])− fk(q̄k[t])

)
· E[x̃jτk[t]|q̄[t]]

= − 1

K̃

∑
τ∈T

φtτ
∑

j∈P(τ),k∈D(τ)

(
wjτk + fj(q̄j[t])− fk(q̄k[t])

)+

= − 1

K̃
· gtJEA(f(q̄[t])) .

Using the fact that maxj,k∈V,τ∈T |wjτk| = 1, we have

1

K̃

∑
τ∈T

φtτ
∑

j∈P(τ),k∈D(τ)

(
wjτk + fj(q̄j[t])− fk(q̄k[t])

)
· E[x̃jτk[t]|q̄[t]] · 1

{
qj[t] = 0 or qk[t] = dk

}
≤ 1

K̃

∑
τ∈T

φtτ · 1
{
qj[t] = 0 or dj, ∃j

}
+

1

K̃

∑
τ∈T

φtτ
∑

j∈P(τ),k∈D(τ)

(
fj(q̄j[t])− fk(q̄k[t])

)+ · 1
{
qj[t] = 0 or qk[t] = dk

}
≤ 1

K̃
· 1
{
qj[t] = 0 or dj, ∃j

}
.

Here the last inequality follows from the assumption that fj(q̄j[t]) ≤ fk(q̄k[t]) for any

j, k ∈ V when qj[t] = 0 or qk[t] = dk. (Condition (ii) in the lemma as stated only covers

k ∈ Vb. However, in case where k /∈ Vb, i.e., dk = K, and qk[t] = dk holds, then we

automatically have qk[t] = K ⇒ qj[t] = 0 and condition (i) kicks in, i.e., condition (ii)

in fact holds for all k ∈ V .) Note that when no queue has finite buffer constraints as

in the illustrative model in Section 1.2, such assumption is satisfied by any congestion

function such that fj(q̄j) = f(q̄j) for all j ∈ V where f(·) is a monotonically increasing

function.

193



Combining the above inequality and equality yields

(I) ≤ − 1

K̃
· gtJEA(f(q̄[t])) +

1

K̃
· 1
{
qj[t] = 0 or dj, ∃j

}
.

Now we proceed to bound (II). By definition of Bregman divergence, (II) is the second

order remainder of the Taylor series of F (·). Using the fact that f(·) is increasing, we

have1

(II) ≤ 1

2

∑
j∈V

E
[
f ′j(q̄j[t])(q̄j[t]− q̄j[t+ 1])2|q̄[t]

]
≤ 1

2K̃2
·max
j∈V

f ′j(q̄j[t]) .

Plugging the above bounds on (I) and (II) into (A.18), we have

E[F (q̄[t+ 1])|q̄[t]]− F (q̄[t])− 1

K̃
E[vMBP[t]|q̄[t]]

≤ − 1

K̃
· gtJEA(f(q̄[t])) +

1

2K̃2
·max
j∈V

f ′j(q̄j[t]) +
1

K̃
· 1
{
qj[t] = 0 or dj, ∃j

}
.

Rearranging the terms yields:

−E[vMBP[t]|q̄[t]] ≤ K̃
(
F (q̄[t])− E[F (q̄[t+ 1])|q̄[t]]

)
+

1

2K̃
·max
j∈V

f ′j(q̄j[t])

− gtJEA(f(q̄[t])) + 1
{
qj[t] = 0 or dj,∃j

}
.

Adding W SPPt to both sides concludes the proof.

Joint Pricing-Assignment Setting

For JPA setting, we have the following lemma which is analogous to Lemma 1.1.

Lemma A.7. Consider congestion functions fj(·)s that are strictly increasing and con-

tinuously differentiable, and that fj(q̄j) ≤ fk(q̄k) (i) for any k ∈ V if qj = 0, and (ii) for

any j ∈ V if qk = dk, k ∈ Vb. We have the following decomposition:

W ∗ − E[vMBP[t]|q̄[t]] ≤ K̃
(
F (q̄[t])− E[F (q̄[t+ 1])|q̄[t]]

)
+

1

2K̃
·max
j∈V

f ′j(q̄j[t]) (A.21)

+
(
W SPP − gJPA(f(q̄[t]))

)
+ 1

{
qj[t] = 0 or dj,∃j

}
,

where gJPA(y) is defined in (1.29).
1For exposition simplicity, we ignore the difference between f ′(q̄j [t]) and f ′(q̄j [t + 1]) in the Taylor

expansion.
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Proof Sketch. The proof is analogous to Lemma A.6. To use the strong duality argument,

we prove below that gJPA(·) defined in (1.29) is indeed the partial dual function of the

SPP (A.14)-(A.16). Then because the primal problem is a concave optimization problem

with linear constraint, strong duality must hold.

Let y be the Lagrange multipliers corresponding to constraints (A.15). We have

gJPA(y) = max∑
j∈P(τ),k∈D(τ) xjτk≤1,xjτk≥0

∑
τ∈T

φτ

rτ
 ∑
j∈P(τ),k∈D(τ)

xjτk


+

∑
j∈P(τ),k∈D(τ)

(
−cjτk + yj − yk

)
xjτk


=
∑
τ∈T

φτ max∑
j∈P(τ),k∈D(τ) xjτk≤1,xjτk≥0

rτ
 ∑
j∈P(τ),k∈D(τ)

xjτk


+

∑
j∈P(τ),k∈D(τ)

(
−cjτk + yj − yk

)
xjτk

 .

Let µτ =
∑

j∈P(τ),k∈D(τ) xjτk, we have

gJPA(y) =
∑
τ∈T

φτ max
0≤µτ≤1

max∑
j∈P(τ),k∈D(τ) xjτk=µτ ,xjτk≥0

rτ (µτ ) +
∑

j∈P(τ),k∈D(τ)

(
−cjτk + yj − yk

)
xjτk


=
∑
τ∈T

max
0≤µτ≤1

(
rτ (µτ ) + µτ max

j∈P(τ),k∈D(τ)

(
−cjτk + yj − yk

))
.

A.2.2 Geometry of the Dual Function

Generalization of Lemma 1.2 for the JEA Setting

The following lemma generalizes Lemma 1.2 for the JEA setting.

Lemma A.8. Consider congestion functions (fj(·))j∈V that are strictly increasing and

continuously differentiable, and any triple (φt,P ,D) with connectedness at least αmin > 0.
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Then the term V3 = W SPPt − gtJEA(q̄[t]) (see Lemma A.6) is bounded above as

V3 ≤ −αmin ·
[
max
j∈V

fj(q̄j[t])−min
j∈V

fj(q̄j[t])− 2m

]+

.

Proof. Consider y , (fj(q̄j[t])j∈V and order the nodes in V in decreasing order of yj

as yi1 ≥ yi2 ≥ · · · yim . For r = 1 to r = m − 1, we repeat the following procedure: if

yir − yir+1 ≤ 2, then do nothing and move on to r+ 1; if otherwise, perform the following

update:

yik ← yik −
(
yir − yir+1 − 2

)
∀1 ≤ k ≤ r .

Recall that g(y) =
∑

τ∈T φτ
∑

j∈P(τ),k∈D(τ)[wjτk + yj − yk]+. For the terms where j, k ∈

{i1, · · · , ir} or j, k ∈ {ir+1, · · · , im}, their value are not affected by the update. Consider

the terms where j ∈ {i1, · · · , ir}, k ∈ {ir+1, · · · , im}: If yir − yir+1 > 2, then after the

update, for τ ∈ P−1(j) ∩ D−1(k),

wjτk + yj − yk ≥ wjτk + yir −
(
yir − yir+1 − 2

)
− yir+1 ≥ wjτk + 2 > 0 ,

hence the update decrease these terms each by yir−yir+1−2. Finally, for the terms where

j ∈ {ir+1, · · · , im}, k ∈ {i1, · · · , ir}, it is easy to verify that their value stay at zero after

the update. To sum up, such an update decreases g(y) by at least ∑
τ∈P−1({i1,··· ,ir})∩D−1({ir+1,··· ,im})

φτ

 · [yir − yir+1 − 2
]+

.

Note that the first term is lower bounded by αmin defined in (1.26). As a result, after the

finishing the procedure, g(y) decreased by at least:

αmin ·
m−1∑
r=1

[
yir − yir+1 − 2

]+ ≥ αmin · [yi1 − yim − 2m]+ .

By strong duality we have miny g
t
JEA(y) = W SPPt , hence

gtJEA(y)−W SPPt ≥ αmin ·
[
max
j∈V

yj −min
k∈V

yk − 2m

]+

.

This concludes the proof.
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Joint Pricing-Assignment Setting

The following lemma is the counterpart of Lemma 1.2 for the JPA setting.

Lemma A.9. Consider congestion functions (fj(·))j∈V that are strictly increasing and

continuously differentiable, and any φ with connectedness α(φ,P ,D) > 0. We have

gJPA(y)−W SPP ≥ α(φ,P ,D) ·
[
max
j∈V

yj −min
k∈V

yk − 2m

]+

,

where W SPP is the value of SPP (A.14)-(A.16), and α(φ,P ,D) is defined in (1.26).

Proof Sketch. The proof is a direct extension of the proof of Lemma 1.2. The key obser-

vation is that: if yj− yk ≥ 2 ≥ 2 maxj,k∈V,τ∈T |cjτk|+ p̄, then for any τ ∈ P−1(j)∩D−1(k)

we have

argmax{0≤µτ≤1}

(
rτ (µτ ) + µτ · max

j∈P(τ),k∈D(τ)

(
−cjτk + yj − yk

))
= 1 ,

for any τ ∈ P−1(k) ∩ D−1(j) we have:

argmax{0≤µτ≤1}

(
rτ (µτ ) + µτ · max

k∈P(τ),j∈D(τ)

(
−ckτj + yk − yj

))
= 0 .

A.3 Proofs of Lemma 1.3 and Theorems 1.2 and 1.3

In this section, we first show that Lemma 1.3 and its counterparts for JEA and JPA

settings hold if the congestion function satisfy certain growth conditions. Together with

the lemmas derived in Appendix A.2, we conclude that Theorems 1.2 and 1.3 hold for any

congestion function that satisfies the growth conditions. Finally, we verify the growth

condition for several congestion functions including (1.22).
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A.3.1 A Sufficient Condition of Lemma 1.3 and its Counterparts

for JEA and JPA

Since the statements and proofs for the JEA and JPA settings are almost identical,

we only provide them for the JEA setting to avoid redundancy. The generalization of

Lemma 1.3 to the JEA setting is as follows:

Lemma A.10. Consider the congestion function (1.22). Consider a set V ofm = |V | > 1

nodes, a subset Vb ⊂ V of buffer-constrained nodes with scaled buffer sizes d̄j ∈ (0, 1)

(recall that we define d̄j , 1 for all j ∈ V \Vb) satisfying
∑

j∈V d̄j > 1, and any (φt,P ,D)

that satisfies Condition 1.2 with αmin > 0. Then there exists K1 = poly
(
m, d̄, 1

αmin

)
such

that for K ≥ K1,

V2 + V3 + V4 ≤M2 ·
1

K̃
, for M2 = C

√
m

minj∈V d̄j

( ∑
j∈V d̄j

min{
∑

j∈V d̄j − 1, 1}

)3/2

,

where V2,V3,V4 were defined in Lemma A.6, K̃ was defined in (1.21), and C > 0 is a

universal constant that is independent of m, d̄, K, or αmin.

Since the congestion function (1.7) is a special case of (1.22), and the illustrative

model introduced in Section 1.2 is a special case of JEA model, Lemma A.10 will imply

Lemma 1.3.

We define below a growth condition for congestion functions. Lemma A.11 will imply

that if the congestion function satisfies this growth condition (with certain parameters),

then Lemma A.10 holds.

Condition A.1 (Growth condition for congestion functions). We say the congestion

functions (fj(·))j∈V satisfy the growth condition with parameters (α,K1,M1,M2) ∈ R4
++

if the following holds:

1. For each j ∈ V , fj(·) is strictly increasing and continuously differentiable. More-

over,
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(a) For any K > K1, fj(q̄j) ≤ fk(q̄k) (i) for any k ∈ V if qj = 0, and (ii) for any

j ∈ V if qk = dk, k ∈ Vb.

(b) For any j, k ∈ V , we have fj
(

d̄j∑
j∈V d̄j

)
= fk

(
d̄k∑
j∈V d̄j

)
.

2. Define

B(f) ,

q̄ ∈ Ω : max
j∈V

∣∣∣∣∣∣fj
(

d̄j∑
j∈V d̄j

)
− fj(q̄j)

∣∣∣∣∣∣ ≤ 4m

 .

Denote B̄(f) , Ω\B(f).

(a) For any K > K1, ∀q̄ ∈ B̄(f),

α

max
j∈V

∣∣∣∣∣∣fj
(

d̄j∑
j∈V d̄j

)
− fj(q̄j)

∣∣∣∣∣∣− 2m


+

≥ 1

2K̃
·max
j∈V

f ′j(q̄j) + 1{qj = 0 or dj,∃j} .

(A.22)

(b) Let F (q̄) be the antiderivative of f(q̄) , (fj(q̄j))j∈V , we have supq,q′∈Ω(F (q̄)−

F (q̄′)) ≤M1.

(c) We have supq̄∈B(f) maxj∈V f
′
j(q̄j) ≤M2.

(d) If ∃j ∈ V such that qj = 0 or qj = dj, then q̄ ∈ B̄(f).

Lemma A.11. In the JEA setting, if the congestion functions (fj(·))j∈V satisfy the

growth conditions (Condition A.1) with parameters (αmin, K1,M1,M2), then for K ≥ K1,

V2 + V3 + V4 ≤M2 ·
1

K̃
, (A.23)

where V2,V3,V4 were defined in Lemma A.6 and K̃ was defined in (1.21).

Proof of Lemma A.11. Recall that

V2 + V3 + V4 =
1

2K̃
·max
j∈V

f ′j(q̄j[t]) +
(
W SPP − gtJEA(f(q̄[t]))

)
+ 1

{
qj[t] = 0 or dj, ∃j ∈ V

}
.

For q̄ ∈ B(f), since the congestion functions satisfy Condition A.1, we have V4 = 0.
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By definition of W SPP we have V3 ≤ 0. As a result, it follows from Condition A.1 that

V2 + V3 + V4 ≤
1

2K̃
· sup
q̄∈B(f)

max
j∈V

f ′j(q̄j[t]) = M2 ·
1

K̃
.

For q̄ ∈ B̄(f), it follows from Lemma A.8 that

V3 ≤ −αmin ·
[
max
j∈V

fj(q̄j)−min
j∈V

fj(q̄j)− 2m

]+

.

Note that

max
j∈V

∣∣∣∣∣∣fj
(

d̄j∑
j∈V d̄j

)
− fj(q̄j)

∣∣∣∣∣∣
≤ max

max
j∈V

fj(q̄j)−min
j∈V

fj

(
d̄j∑
j∈V d̄j

)
,max
j∈V

fj

(
d̄j∑
j∈V d̄j

)
−min

j∈V
fj(q̄j)

 .

Note that there must exists j∗ ∈ V such that q̄j∗ ≤
d̄j∗∑
j∈V d̄j

, hence fj∗(q̄j∗) ≤ fj

(
d̄j∗∑
j∈V d̄j

)
.

Because the congestion functions satisfy Condition A.1 point 1(d), we have fj
(

d̄j∑
j∈V d̄j

)
has the same value for all j ∈ V , therefore

max
j∈V

fj(q̄j)−min
j∈V

fj

(
d̄j∑
j∈V d̄j

)
= max

j∈V
fj(q̄j)− fj∗

(
d̄j∗∑
j∈V d̄j

)
≤ max

j∈V
fj(q̄j)− fj∗(q̄j∗)

≤ max
j∈V

fj(q̄j)−min
j∈V

fj(q̄j) .

Similarly, we can show that

max
j∈V

fj

(
d̄j∑
j∈V d̄j

)
−min

j∈V
fj(q̄j) ≤ max

j∈V
fj(q̄j)−min

j∈V
fj(q̄j) .

Combined, we have

V3 ≤ −αmin ·

max
j∈V

∣∣∣∣∣∣fj
(

d̄j∑
j∈V d̄j

)
− fj(q̄j)

∣∣∣∣∣∣− 2m


+

.

Plugging in Condition A.1 point 2(a), we have for q̄ ∈ B̄(f),

V2 + V3 + V4 ≤ 0 .
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Combine the above two cases, we conclude the proof.

It remains to be shown that the congestion function (1.22) satisfies Condition A.1.

Lemma A.12. The congestion function (1.22) satisfies the growth conditions (Condi-

tion A.1) with parameters (αmin, K1,M1,M2) where

K1 = poly
(
m, d̄,

1

αmin

)
, M1 = Cm , M2 = C

1

minj∈V d̄j

( ∑
j∈V d̄j

min{
∑

j∈V d̄j − 1, 1}

)3/2
√
m.

Here C is a universal constant that is independent of m, d̄, K and αmin.

We delay the proof of Lemma A.12 to Appendix A.3.3. We are now ready to prove

Lemma A.10.

Proof of Lemma A.10. Lemma A.10 immediately follows from Lemma A.11 and Lemma

A.12.

A.3.2 Proof of Main Theorems

Recall that we proved Theorem 1.1 in Section 1.5 using Lemmas 1.1, 1.2, and 1.3.

Similarly, we can prove Theorem 1.2 and 1.3.

Proof of Theorem 1.2. We draw inspiration from the proof of Theorem 1.1, along with

some additional work to handle time-varying demand arrival rates, for which we draw

upon Lemma A.1 and Proposition A.1.

Note that for the congestion functions defined in (1.22), we have fj(q̄j[t]) ≤ fk(q̄k[t])

when qj[t] = 0 or qk[t] = dk. Also, the functions are strictly increasing and continuously

differentiable. Hence, Lemmas A.6, A.8, and A.10 (the JEA versions of Lemmas 1.1, 1.2

and A.10) apply to the congestion functions (1.22).

As in the proof of Theorem 1.1, we argue as follows: Plugging in Lemma A.10 into

the bound in Lemma A.6 and taking expectation, we obtain

W SPPt − E[vMBP[t]] ≤ K̃
(
E[F (q̄[t])]− E[F (q̄[t+ 1])]

)
+M2

1

K̃
, (A.24)
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for all K ≥ K2 = poly
(
m, d̄, 1

αmin

)
, where M2 = C2

√
m

minj∈V d̄j

( ∑
j∈V d̄j

min{
∑
j∈V d̄j−1,1}

)3/2

for a

universal constant C2. Consider the first T0 periods. Take the sum of both sides of the

inequality (A.24) from t = 0 to t = T0 − 1, and divide the sum by T0. This yields

1
T0

T0−1∑
t=0

W SPPt − WMBP
T0

≤ K̃

T0

(
E[F (q̄[0])]− E[F (q̄[T0])]

)
+M2

1

K̃

≤ K̃

T0

(
sup

q̄,q̄′∈Ω

(
F (q̄)− F (q̄′)

))
+M2

1

K̃

≤ K̃

T0

C1m+M2
1

K̃
, (A.25)

for allK ≥ K2, where C1 is a universal constant. Here we used the bound supq,q′∈Ω(F (q̄)−

F (q̄′)) ≤ C1m from Lemma A.12 (specifically the part of the lemma about Condition A.1

part 2(b)).

Using Proposition A.1 and then Lemma A.1, we have

LMBP
T0

= W ∗
T0
−WMBP

T0
≤ W SPP −WMBP

T0
+m

K

T0

≤ ηT0m/2 + 1
T0

T0−1∑
t=0

W SPPt −WMBP
T0

+m
K

T0

≤ K̃

T0

m(C1 + 1) +M2
1

K̃
+ ηT0 ·m/2

≤ K

T0

2m(C1 + 1) +M2
1

K
+ T0η ·m/2 . (A.26)

where we used (A.25) in the third inequality, and K ≤ K̃ ≤ 2K for all K ≥ K3 = m2

in the last inequality. It remains to choose T0 appropriately, i.e., to divide the horizon

T into intervals of appropriate length. Note that the bound on per period loss (A.26) is

minimized for T0 = T∗ = 2
√

(C1 + 1)K/η, which makes the first and third terms equal.

This observation will guide our choice of T0.

If T ≤ T∗, we set T0 = T and we immediately have

LMBP
T ≤ K

T
4m(C1 + 1) +M2

1

K
∀T < T∗ , (A.27)

since the first term is larger than the third term in (A.26). If T > T∗ then we divide T

into dT/T∗e intervals of equal length (up to rounding error). In particular, each interval
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has length T0 ∈ [T∗/2, T∗], the first term is again larger than the third term in (A.26) and

so the per period loss in each interval is bounded above by

K

T0

4m(C1 + 1) +M2
1

K
≤ K

T∗/2
4m(C1 + 1) +M2

1

K
=
√
ηK4m

√
C1 + 1 +M2

1

K
.

Since this bound holds for each interval, it holds for the full horizon of length T , i.e.,

LMBP
T ≤

√
ηK4m

√
C1 + 1 +M2

1

K
∀T ≥ T∗ . (A.28)

Combining (A.27) and (A.28), we obtain that for any K ≥ K1 , max(K2, K3) and any

horizon T , we have

LMBP
T ≤

√
ηK4m

√
C1 + 1 +M2

1

K
+
K

T
4m(C1 + 1) ≤M1

(
K

T
+
√
ηK

)
+M2

1

K
,

for M1 , 4m(C1 + 1). Defining C , max(C2, 4(C1 + 1)) we obtain the bound claimed in

the theorem.

Proof sketch for Theorem 1.3. The proof is a direct extension of the proof of Theorem

1.1, and follows from Lemmas A.7, A.9, and the JPA counterpart of Lemma A.10 (which

is almost identical to Lemma A.10, and was hence omitted). We boundM1 using Lemma

A.12.

Since Condition A.1 implies Lemma A.10 (using Lemma A.11), we have the following

general version of Theorem 1.2 using the exact same proof as that of Theorem 1.2.

Theorem A.1 (General result for the JEA setting). Consider a set V of m , |V | >

1 nodes, a subset Vb ⊆ V of buffer-constrained nodes with scaled buffer sizes d̄j ∈

(0, 1) ∀j ∈ Vb satisfying2
∑

j∈V d̄j > 1, and a minimum connectivity αmin > 0. Con-

sider any congestion functions (fj(·))j∈V that satisfy Condition A.1 with parameters

(α = αmin, K1,M1,M2) ∈ R4
++. Then for any horizon T , any K ≥ K1, and any se-

quence of demand arrival rates (φt)T−1
t=0 which varies η-slowly (for some η ∈ [0, 2]) and

pickup and dropoff neighborhoods P and D such that (φt,P ,D) is αmin-strongly connected

2Recall that we define d̄j , 1 for all j ∈ V \Vb.
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(Condition 1.2) for all t ≤ T − 1, we have

LMBP
T ≤ 4(M1 +m) ·

(
K

T
+
√
ηK

)
+M2 ·

1

K
.

In the following subsection, we will show examples of alternate congestion functions

that satisfy Condition A.1 and obtain the corresponding parameters K1, M1 and M2.

A.3.3 Validating Condition A.1 for Congestion Functions

In this section, we prove Lemma A.12. We will go a step further and show that Lemma

A.12 holds several other congestion functions.

Recall the congestion function defined in (1.22): let Vb ⊂ V be the subset of buffer-

constrained nodes with scaled buffer sizes d̄j ∈ (0, 1), and

fj(q̄j) =
√
m · Cb ·

(1− q̄j
d̄j

)− 1
2

−

(
q̄j
d̄j

)− 1
2

−Db

 , ∀j ∈ Vb

fj(q̄j) = −
√
m · q̄−

1
2

j , ∀j ∈ V \Vb

Here Cb and Db are normalizing constants chosen as follows. Define ε , δK
K̃

(where δK

and K̃ were defined in (1.21)). Let hb(q̄) , (1 − q̄)− 1
2 − q̄− 1

2 and h(q̄) , −q̄− 1
2 . Define

Cb ,
h(ε)−h(1/

∑
j∈V d̄j)

hb(ε)−hb(1/
∑
j∈V d̄j)

and Db , hb(1/
∑

j∈V d̄j)− C
−1
b h(1/

∑
j∈V d̄j). These definitions

ensure that Condition A.1 point 1(b) holds, and are useful in establishing Condition A.1

point 1(a).

Proof of Lemma A.12. (The proof of this lemma involves a lot of notations and compu-

tation. For readability, we use the following simplifying notation (with a slight abuse of

notation): for xa, ya ∈ R+ where a ∈ A ⊂ Z+, {xa} = O({ya}) ({xa} = Ω({ya}), resp.)

means that there exists a universal constant C > 0 that does not depend on m,K, d̄, or

αmin such that xa ≤ Cya (x ≥ Cya, resp.) for each a ∈ A. We say {xa} = Θ({ya}) if

{xa} = O({ya}) and {xa} = Ω({ya}).) Denote d̄Σ ,
∑

j∈V d̄j, d̄g , min{1,
∑

j∈V d̄j − 1},

d̄min , minj∈V d̄j. Recall that d̄j ∈ (0, 1) for any j ∈ Vb, and that d̄Σ > 1.
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• Point 1. It is not hard to see that the congestion functions (fj(q̄j))j∈V are strictly

increasing and continuously differentiable. For any K > 0, we have fj(q̄j) = fk(q̄k)

for any j, k ∈ V if qj = qk = 0. As a result, if qj = 0, we have fj(q̄j) ≤ fk(q̄k) for

any k ∈ V . It can be easily verified that Point 1(b) is also satisfied by any K > 0.

It remains to be shown that there exists K1 < ∞ such that for K ≥ K1, we have

fj(q̄j) ≤ fk(q̄k) for any j ∈ V if qk = dk and k ∈ Vb. To this end, if suffices to check

the inequality fj(q̄j) ≤ fk(q̄k) for qj = dj, qk = dk where j ∈ V \Vb and k ∈ Vb:

In this case, we have fj(q̄j) ≤ 0; for K = Ω(max{d̄2
Σ,

d̄2
Σ

d̄2
g
}), we have Cb = Θ(1),

Db = O(
√

d̄Σ

d̄g
) hence fk(q̄k) = Ω(

√
mK1/4

d̄
1/2
g

) ≥ 0. Therefore point 1 is satisfied for

K1 = O(max{d̄2
Σ,

d̄2
Σ

d̄2
g
}) = O(

d̄2
Σ

d̄2
g
).

• Point 2(a). For q such that q̄ ∈ B̄(f) and 0 < qj < dj for any j ∈ V , we have, by

definition of q̄ ∈ B̄(f),

LHS of (A.22) ≥ 2mα .

On the other hand, we have for K = Ω(
d̄2

Σ

d̄2
g
), we have Cb = Θ(1) hence

RHS of (A.22) = O

(
1

K
·
√
m ·K3/4 · d̄−1

mind̄
−3/2
g

)
Here the RHS of (A.22) is maximized when qj = 0 or qj = dj. Therefore (A.22)

holds for K ≥ K1 = Ω

(
max

{
d̄2

Σ

d̄2
g
, 1
m2α4d̄4

mind̄
6
g

})
. For q such that q̄ ∈ B̄(f) and

qj = 0 or dj for some j′ ∈ V , we have

LHS of (A.22) ≥ α
√
m · Ω

(
K1/4 −

√
d̄Σ

)
,

which is obtained by plugging in qj′ . For K = Ω(
d̄2

Σ

d̄2
g
), we also have

RHS of (A.22) = O

(
1

K
·
√
m ·K3/4 · d̄−1

mind̄
−3/2
g + 1

)
,

Using the analysis above, for K ≥ Ω
(

m2

d̄4
mind̄

6
g

)
, the first term in the parentheses is
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O(1). In this case we have RHS of (A.22) = O(1). Therefore (A.22) holds for

K = Ω

max

{
1

m2α4d̄4
mind̄

6
g

,
m2

d̄4
mind̄

6
g

,
1

α2d̄3
g

,
d̄2

Σ

d̄2
g

} .

Combined, (A.22) holds for K1 = O

(
max

{
1

m2α4d̄4
mind̄

6
g
, m2

d̄4
mind̄

6
g
, 1
α2d̄3

g
,
d̄2

Σ

d̄2
g

})
.

• Point 2(b). Note that for K = Ω(
d̄2

Σ

d̄2
g
),

sup
q,q′∈ΩK

(
F (q̄)− F (q̄′)

)
≤ max{Cb, 1} ·O

√m sup
q,q′∈ΩK

∑
j∈V

√
d̄j

(
−
√
q̄j −

√
d̄j − q̄j +

√
q̄′j +

√
d̄j − q̄′j

)


≤ O

√m max
q′∈ΩK

∑
j∈V

√
d̄j

(√
q̄′j +

√
d̄j − q̄′j

)
= O(m) .

Hence

M1 = poly(m) = O(m) .

• Point 2(c). Note that for q̄ ∈ Bf , we have q̄j = Θ
(
d̄j
d̄Σ

)
, hence

M2 = max
q̄∈Bf

max
j∈V
|f ′(q̄j)| ≤

1

d̄min

(
d̄Σ

d̄g

)3/2

O(
√
m) .

For the special case where Vb = ∅ hence d̄j = 1 for all j ∈ V , we have d̄Σ = m,

d̄min = 1, d̄g = 1 and M2 = O(m2).

• Point 2(d). Note that for q̄ ∈ Bf , we have q̄j = Θ
(
d̄j
d̄Σ

)
, hence point 2(d) holds.

In the following (Lemma A.13), we verify Condition A.1 for two congestion functions

other than the one given in (1.22).

Let Vb ⊂ V be the subset of buffer-constrained nodes with scaled buffer sizes d̄j ∈

(0, 1), and define
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• Logarithmic congestion function.

fj(q̄j) = c · Cb ·

log

(
q̄j
d̄j

)
− log

(
1− q̄j

d̄j

)
−Db

 , ∀j ∈ Vb

fj(q̄j) = c · log q̄j , ∀j ∈ V \Vb (A.29)

Here Cb and Db are normalizing constants chosen as follows. Define ε , δK
K̃

(where

δK and K̃ were defined in (1.21)). Let hb(q̄) , log q̄ − log(1− q̄) and h(q̄) , log q̄.

Define Cb ,
h(ε)−h(1/

∑
j∈V d̄j)

hb(ε)−hb(1/
∑
j∈V d̄j)

and Db , hb(1/
∑

j∈V d̄j)−C
−1
b h(1/

∑
j∈V d̄j). Here

c = Ω
(
max{ 1

α
,m}

)
.

• Linear congestion function.

fj(q̄j) = c · q̄j
d̄j
, ∀j ∈ V , (A.30)

where c = Ω
(
d̄Σ

α

)
.

Lemma A.13. Let d̄Σ ,
∑

j∈V d̄j, d̄g , min{1,
∑

j∈V d̄j − 1} and d̄min , minj∈V d̄j. The

congestion functions (A.29) and (A.30) satisfy the growth conditions (Condition A.1)

with parameters (α,K1,M1,M2) where

• Logarithmic congestion function:

K1 =C ·max

{
c2

d̄2
mind̄

2
gm

2α2
,

c2

d̄2
mind̄

2
g

,
d̄2

Σ

d̄2
mind̄

2
g

}
,

M1 =C · c · logm, M2 = C · d̄Σ

d̄min

· c

for a universal constant C > 0.

• Linear congestion function:

K1 = C ·max

{
c

mα
, d̄2

Σ

}
, M1 = C · c , M2 = C ·m2

for a universal constant C > 0.

Proof of Lemma A.13. Logarithmic function. Point 1 in Condition A.1 is obvious.

Now we verify the other points one by one:

• Point 1. It is not hard to see that the congestion functions (fj(q̄j))j∈V are strictly
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increasing and continuously differentiable. For any K > 0, we have fj(q̄j) = fk(q̄k)

for any j, k ∈ V if qj = qk = 0. As a result, if qj = 0, we have fj(q̄j) ≤ fk(q̄k) for

any k ∈ V . It can be easily verified that Point 1(b) is also satisfied by any K > 0.

It remains to be shown that there exists K1 < ∞ such that for K ≥ K1, we have

fj(q̄j) ≤ fk(q̄k) for any j ∈ V if qk = dk and k ∈ Vb. To this end, if suffices to check

the inequality fj(q̄j) ≤ fk(q̄k) for qj = dj, qk = dk where j ∈ V \Vb and k ∈ Vb:

In this case, we have fj(q̄j) ≤ 0; for K = Ω(max{d̄2
Σ,

d̄2
Σ

d̄2
g
}), we have Cb = Θ(1),

Db = O(log d̄Σ

d̄g
) hence fk(q̄k) = Ω(c · log

√
K
d̄g

) ≥ 0. Therefore point 1 is satisfied for

K1 = O(max{d̄2
Σ,

d̄2
Σ

d̄2
g
}) = O(

d̄2
Σ

d̄2
g
).

• Point 2(a). For q such that q̄ ∈ B̄(f) and 0 < qj < dj for any j ∈ V , we have, by

definition of q̄ ∈ B̄(f),

LHS of (A.22) ≥ 2mα .

On the other hand, we have for K = Ω(
d̄2

Σ

d̄2
g
), we have Cb = Θ(1), hence

RHS of (A.22) = O

(
1

K
· c · Cb ·

√
K

d̄mind̄g

)
.

Here the RHS of (A.22) is maximized when qj = 0 or qj = dj. Therefore (A.22)

holds for K1 = O

(
max

{
d̄2

Σ

d̄2
g
, c2

d̄2
mind̄

2
gm

2α2

})
.

For q such that q̄ ∈ B̄(f) and qj = 0 or dj for some j′ ∈ V , we have

LHS of (A.22) ≥ αc · Ω
(

1

2
logK − log(d̄mind̄g)− log d̄Σ

)
,

which is obtained by plugging in qj′ . We also have

RHS of (A.22) ≤ O

(
1

K
· c · Cb ·

√
K

d̄mind̄g
+ 1

)
,

Using the analysis above, for K = Ω

(
max

{
d̄2

Σ

d̄2
g
, c2

d̄2
mind̄

2
g

})
, the first term in the

parentheses is O(1). In this case we have RHS of (A.22) ≤ O(1). Therefore when

c = Ω
(

1
α

)
, (A.22) holds for K = Ω

((
d̄Σ

d̄mind̄g

)2
)
.
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Combined, for c = Ω
(

1
α

)
, Point 2(a) holds for

K1 = Ω

max

{
c2

d̄2
mind̄

2
gm

2α2
,

c2

d̄2
mind̄

2
g

,
d̄2

Σ

d̄2
mind̄

2
g

} .

• Point 2(b). Note that

sup
q,q′∈ΩK

(
F (q̄)− F (q̄′)

)
= O

c · sup
q,q′∈ΩK

∑
j∈V

(
q̄j log q̄j + (d̄j − q̄j) log(d̄j − q̄j)− q̄j log q̄j

−(d̄j − q̄′j) log(d̄j − q̄′j)
)))

≤ O

−c · min
q′∈ΩK

∑
j∈V

(
q̄′j log q̄′j + (d̄j − q̄′j) log(d̄j − q̄′j)

)
= O(c · logm) ,

where the inequality follows from the fact that q̄j, d̄j− q̄j ∈ (0, 1) hence q̄j log q̄j < 0

and (d̄j − q̄j) log(d̄j − q̄j) < 0. Hence

M1 = poly(c,m) = O(c · logm) .

• Point 2(c). For q̄ ∈ Bf , we have d̄j
d̄Σ
e
− 4m
c·Cb ≤ q̄j ≤ d̄j

d̄Σ
e

4m
c·Cb . Choose c ≥ 8m

Cb
= Ω(m),

we have

M2 = max
q̄∈Bf

max
j
|f ′(q̄j)| ≤ max

q̄∈Bf
max
j∈V
|q̄−1
j | ≤ poly(c, d̄) =

d̄Σ

d̄min

·O(c) .

• Point 2(d). Note that q̄ ∈ Bf , we have d̄j
d̄Σ
e
− 4m
c·Cb ≤ q̄j ≤ d̄j

d̄Σ
e

4m
c·Cb . Given the choice

of c derived in the last bullet point, we know point 2(d) holds.

Linear Function. Now we consider the linear congestion function.

• Point 1. It is easy to verify Point 1, therefore we omit the proof.

• Point 2(a). For q such that q̄ ∈ B̄(f) and 0 < qj < dj for any j ∈ V , we have, by
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definition of q̄ ∈ B̄(f),

LHS of (A.22) ≥ 2mα .

We also have

RHS of (A.22) ≤ O

(
1

K
· c
)

Therefore (A.22) holds for K = Ω
(

c
mα

)
. For q such that q̄ ∈ B̄(f) and qj = 0 or dj

for some j′ ∈ V , we have

LHS of (A.22) ≥ αc · Ω
(

1

d̄Σ

− 1√
K

)
,

which is obtained by plugging in qj′ . We also have

RHS of (A.22) ≤ O

(
1

K
· c+ 1

)
,

for K = Ω(c), the first term in the parenthese is O(1), therefore we have RHS of

(A.22) = O (1). Choosing c = Ω
(
d̄Σ

α

)
, then (A.22) holds for K = Ω(d̄2

Σ).

Combined, when choosing c = Ω
(
d̄Σ

α

)
, Point 2(a) holds forK1 = O

(
max{ c

mα
, d̄2

Σ}
)
.

• Point 2(b). Note that

sup
q,q′∈ΩK

(
F (q̄)− F (q̄′)

)
= O

c sup
q,q′∈ΩK

∑
j∈V

d̄−1
j

(
q̄2
j − (q̄′j)

2
)


≤ O

c max
q′∈ΩK

∑
j∈V

d̄−1
j

(
q̄2
j

)
= O(c) .

Hence

M1 = poly(c) = O(c) .
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Figure A.1: A 30 location model of Manhattan below 110-th street, excluding the Central
Park. (tessellation is based on [121])

• Point 2(c). For q̄ ∈ Bf , we have q̄j = Θ
(
d̄j
d̄Σ

)
, hence

M2 = max
q̄∈Bf

max
j∈V
|f ′(q̄j)| = O(c) .

• Point 2(d). For q̄ ∈ Bf , we have q̄j = Θ
(
d̄j
dΣ

)
. Hence point 2(d) holds.

A.4 Appendix to Section 1.7.1

In this section we provide a full description of our simulation environment and the

benchmark we employ.

A.4.1 Simulation Setup and Benchmark Policies

Throughout the numerical experiments, we use the following model primitives.

• Payoff structure. In many scenarios, ride-hailing platforms take a commission propor-

tional to the trip fare, which increases with trip distance/duration. Motivated by this,

we present results for wijk set to be the travel time from j to3 k.
3We tested a variety of payoff structures, and found that our results are robust to the choice of w. One

211



• Graph topology. We consider a 30-location model of Manhattan below 110-th street

excluding Central Park (see Figure A.1), as defined in Buchholz [121]. We let pairs of

regions which share a non-trivial boundary be pickup compatible with each other, e.g.,

regions 23 and 24 are compatible but regions 23 and 20 are not.

• Demand arrival process, and pickup/service times. We consider a stationary demand

arrival process, whose rate is the average decensored demand from 8 a.m. to 12 p.m.

estimated in [121]. This period includes the morning rush hour and has significant

imbalance of demand flow across geographical locations (for many customers the destina-

tion is in Midtown Manhattan).4 We estimate travel times between location pairs using

Google Maps.5

• Number of cars, and steady state upper bound.

— Excess supply. We use as a baseline the fluid requirement Kfl on number of cars

needed to achieve optimal payoff. A simple workload conservation argument (using Lit-

tle’s Law) gives the fluid requirement as follows. Applying Little’s Law, if the opti-

mal solution z∗ of SPP (A.1)-(A.3) is realized as the average long run assignment, the

mean number of cars who are currently occupied, i.e. serving or picking up customers is∑
j,k∈V

∑
i∈P(j) Dijk · z∗ijk , for Dijk , D̃ij + D̂jk, where D̃ij is the pickup time from i to j

and D̂jk is the travel time from j to k. In our case, it turns out that Kfl = 7, 307. We

use 1.05×Kfl as the total number of cars in the system to study the excess supply case,

i.e., there are 5% extra (idle) cars in the system beyond the number needed to achieve

the W SPP benchmark.

— Scarce supply. When the number of cars in the system is fewer than the fluid re-

quirement, i.e., K = κKfl for κ < 1, no policy can achieve a steady state performance of

set of tests was to generate 100 random payoff vectors w, with each wijk drawn i.i.d. from Uniform(0,1);
we found that the results obtained are similar.

4We also simulated the MBP and greedy policy with time-varying demand arrival rates, where the
demand arrival rate is estimated (from the real data) for every 5 min interval. Our MBP policy still
significantly outperforms the greedy policy.

5We extract the pairwise travel time between region centroids (marked by the dots in Figure A.1)
using Google Maps, denoted by D̂ij ’s (i, j = 1, · · · , 30). We use D̂jk as service time for customers
traveling from j to k. For each customer at j who is picked up by a supply from i we add a pickup
time 6 of D̃ij = max{D̂ij , 2 minutes}. The average travel time across all demand is 13.1 minutes, and
the average pickup time is about 4 minutes (it is policy dependent).
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W SPP. A tighter upper bound on the steady state performance is then the value of the

SPP (A.1)-(A.3) with the additional supply constraint

∑
j,k∈V

∑
i∈P(j)

Dijk · zijk ≤ K .

We denote the value of this problem for K = κKfl by W SPP(κ). We study the case

κ = 0.75 as an example of scarce supply. For our simulation environment, it turns out

that W SPP(0.75) ≈ 0.86W SPP, i.e., 0.86W SPP is an upper bound on the per period payoff

achievable in steady state.

We compare the performance of our MBP-based policy against the following two

policies:

1. Static (fluid-based) policy. The fluid-based policy is a static randomization based

on the solution to the SPP, given exactly correct demand arrival rates [see, e.g., 1,

21]: Let z∗ be a solution of SPP. When a type (j, k) demand arrives at location j,

the randomized fluid-based policy dispatches from location i ∈ P(j) with probability

z∗ijk/φjk.

2. Greedy non-idling policy. For each demand type (j, k), the greedy policy dispatches

from supply location i that has the highest payoff wijk among all compatible neighbors

of j′ which have at least one supply unit available. If there are ties (as is the case if

the payoff wijk does not depend on i), the policy prefers a supply location with shorter

pickup time.

A.4.2 The Excess Supply Case

We simulate the (stationary) system from 8 a.m. to 12 p.m. with 100 randomly

generated initial states7. The simulation results on performance are shown in Figure A.2.

The result confirms that the MBP policy significantly outperforms both the static policy
7We first uniformly sample 100 points from the simplex {q :

∑
i∈V qi = K}, which are used as the

system’s initial states at 6 a.m. (note that all the cars are free). Then we “warm-up” the system by
employing the static policy from 6 a.m. to 8 a.m., assuming the demand arrival process during this
period to be stationary (with the average demand arrival rate during this period as mean). Finally, we
use the system’s states at 8 a.m. as the initial states.
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Figure A.2: Per period payoff under the
MBP policy, static fluid-based policy and
greedy policy (with 90% confidence inter-
vals), relative to W SPP.
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Figure A.3: Per period payoff under the
modified MBP policy, static fluid-based
policy and greedy policy (with 90% confi-
dence intervals), relative to W SPP(0.75),
the value of SPP along with constraint
(1.30) for K = 0.75Kfl.

and the greedy policy: the average payoff under MBP over 4 hours is about 105% of

W SPP (here W SPP is again an upper bound on the steady state performance8), while the

static policy and greedy policy only achieve 65% and 68% of W SPP, respectively. The

performance of the static policy converges very slowly to W SPP, leading to poor transient

performance.9 The performance of the greedy policy quickly deteriorates over time be-

cause it ignores the flow balance constraints and creates huge geographical imbalances in

supply availability.

A.4.3 The Scarce Supply Case

In the scarce supply case, e.g., K = 0.75Kfl, no policy can achieve a stationary

performance of W SPP; rather we have an steady state upper bound of W SPP(0.75) ≈

0.86W SPP. We use this as our benchmark.

Figure A.3 shows that the MBP policy also vastly outperforms the static policy and
8W SPP is still an upper bound on stationary performance when pickup and service times are included

in our model. However, in this case a transient upper bound is difficult to derive. As a result, we use
the ratio of average per period payoff to W SPP as a performance measure, with the understanding that
it may exceed 1 at early times.

9For example, after running for 20 hours, and the average payoff generated by static policy in the
20-th hour is 0.96W SPP.
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greedy policy in the scarce supply case. MBP generates average per period payoff that is

99% of the benchmarkW SPP(0.75) over 4 hours, while the static policy and greedy policy

only achieves 69% and 74% resp. of the benchmark over the same period. Reassuringly,

the mean value of v(t) in our simulations of supply-aware MBP is within 10% of the

optimal dual variable to the tightened supply constraint (1.31) in the SPP along with

(1.31) (both values are close to 0.50). Again, we observe that the average performance

of static policy improves (slowly) as the time horizon gets longer, while the performance

of greedy deteriorates.
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APPENDIX B

Proofs in “Dynamic Assignment Control of Closed Networks

under Complete Resource Pooling”

This technical appendix is organized as follows.

• We prove our main result, Theorem 2.1, in Appendices B.1-B.4. In particular:

• Appendix B.1 discusses fluid sample paths in detail and establishes key properties

of our Lyapunov functions, including the proof of Lemma B.1.

• Appendix B.2 includes the proof of Lemma 2.1, a converse bound on the demand

loss exponent.

• Appendix B.3 includes the proof of Proposition 2.4, containing sufficient condi-

tions for a policy to achieve the optimal exponent.

• Appendix B.4 shows that the SMW policy satisfies the sufficient conditions for

exponent optimality, and derives explicitly the optimal exponent and most-likely

sample paths, including the proofs of Lemma 2.2, Lemma 2.3, and Lemma 2.4.

It also formally establishes exponent optimality of SMW policies for transient

performance.

• Appendix B.5 includes the proof of Proposition 2.2 showing frequent utilization of

supply units under SMW, and provides the structural corollaries (of Theorem 2.1)

illustrated in Section 2.4.1.

• Appendix B.6 shows the necessity of the assumptions and state-dependent control,
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including the proofs of Propositions B.1, 2.1 and 2.3, and the claim in Example 2.4.

• Appendix B.7 proves Theorem 2.3, the extension of our main result to scrip systems.

• Appendix B.8 proves Theorem 2.2, the extension of our main result to the shared

transportation setting with travel delays.

• Appendix B.9 proves that the Assumption 3 in our paper is implied by the CRP

condition defined in [17].

• Appendix B.10 provides the full description of our simulation experiments.

B.1 Lyapunov Functions and Fluid Sample Paths

B.1.1 Properties of the Lyapunov Functions

Scale-invariance and sub-additivity (about α)

Lemma B.1 (Key properties of Lα(·)). For Lα(·) with α ∈ relint(Ω), we have:

1. Scale-invariance (about α). Lα(α+c∆x) = cLα(α+∆x) for any c > 0 and ∆x ∈ Rm

such that 1T∆x = 0 and α + ∆x ∈ Ω,α + c∆x ∈ Ω.

2. Sub-additivity (about α). Lα(α + ∆x + ∆x′) ≤ Lα(α + ∆x) + Lα(α + ∆x′) for any

∆x,∆x′ ∈ Rm such that 1T∆x = 1T∆x′ = 0 and α+∆x+∆x′,α+∆x,α+∆x′ ∈ Ω.

Proof of Lemma B.1. (i) For c > 0, α ∈ relint(Ω), we have

Lα(α + c∆x) = 1−min
i

αi + c∆xi
αi

= −min
i

c∆xi
αi

= −cmin
i

∆xi
αi

= cLα(α + ∆x) .

(ii) For α ∈ relint(Ω), we have

Lα(α + ∆x + ∆x′) = 1−min
i

αi + ∆xi + ∆x′i
αi

= −min
i

∆xi + ∆x′i
αi

≤ −min
i

∆xi
αi
−min

i

∆x′i
αi

= Lα(α + ∆x) + Lα(α + ∆x′) .
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Regularity properties

The following lemma is a collection of regularity properties of Lα(x) that are useful

in the following proofs.

Lemma B.2. For α ∈ relint(Ω) and Lα(x) specified in Definition 2.7, we have

1. Lα(x) ≥ 0 for all x ∈ Ω, and Lα(x) = 0 if and only if x = α.

2. Lα(x) is globally Lipschitz on Ω, i.e. for any x1,x2 ∈ Ω, we have

|Lα(x1)− Lα(x2)| ≤ 1

mini αi
||x1 − x2||∞ .

Proof of Lemma B.2. Property 1 is easy to verify hence we omit the proof.

For property 2, note that

|Lα(x1)− Lα(x2)| =
∣∣∣∣min

i

x1,i

αi
−min

i

x2,i

αi

∣∣∣∣ ≤ min
i

|x1,i − x2,i|
αi

≤ 1

mini αi
||x1 − x2||∞ .

B.1.2 Formal Definition of FSPs

We denote the correspondence from the given demand sample path and initial state

to the uniquely determined state sample path by ΨK,U : (ĀK(·), X̄K,U(0)) 7→ X̄K,U(·).

In this section, we discuss the existence of fluid sample paths (FSPs) and techniques

related to FSP in large deviations analysis. FSP is a technique used to establish large

deviation bounds of the queue lengths using the sample path large deviation principle of

demand arrival processes (Fact 2.1), see, e.g., [122, 45].

We briefly comment on the existence of FSP. Consider a sequence of demand sam-

ple paths {ĀK(·)}∞K=1 where in the K-th system the interarrival times of type (j′, k)

demand are deterministic with value 1

Kφ̂j′k
. It is trivial to show that {ĀK(·)}∞K=1 con-

verges uniformly on compact intervals (u.o.c.) to the fluid limit Ā(t) = tφ̂. For any

policy U ∈ U , because at most one relocation happens at each demand arrival, each

(normalized) queue length process X̄K(·) = ΨK,U(ĀK(·), X̄K(0)) is Lipschitz continuous
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with Lipschitz constant 1Tφ̂1, hence equicontinuous; see, for example, [123]. Thus, there

must exist a subsequence of {X̄K(·)}∞K=1 that converges u.o.c. to a continuous function

X̄(·). Therefore (Ā(·), X̄(·)) is an FSP. This establishes the existence of FSP.

In the large-deviations literature, a technique named the “contraction principle” is

often used to translate large deviations principles (LDP) for the arrival process to LDP

for the state process, see [54]. The translation step is important in most of the large

deviations analysis in the literature, including the one in this paper. However, to apply

the contraction principle one needs to prove that the mapping from demand sample path

Ā(·) to queue length sample path X̄(·) is continuous with respect to suitable topologies for

the corresponding functional spaces. The continuity is usually technically challenging to

establish (see [124] for an application of the contraction principle to MaxWeight policies

under a different setting). The FSP technique partly circumvents this issue.

B.2 Converse Bound on the Exponent: Proof of Lemma 2.1

In this section, we prove Lemma 2.1, the converse bound on the exponent for any

policy U ∈ U . The proof consists of three steps:

• Step 1: For each stationary policy U ∈ U we define a state α̃ ∈ relint(Ω) such that

the state visits the neighborhood of α̃ frequently enough. In the following steps we

will bound the demand loss exponent of U by γCB(α̃).

• Step 2: Given that the system’s initial state is close to α̃, we construct a set of

demand sample paths that are guaranteed to lead to a demand loss regardless of the

policy used. To this end, we compute vα̃(f), which the minimum rate of increase of

Lα̃(·) under demand arrival rates f no matter the assignment distributions. This

step is used to lower bound the “one-shot” probability of demand-loss.

• Step 3: We use renewal-reward theorem to translate the one-shot demand loss

probability to steady-state demand loss probability. The final bound in (2.21)
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takes the supremum over α since the policy can choose its resting state.

The technique used in step 2 follows from Proposition 9 in [45]. The approach in steps 1

and 3 is novel (to the best of our knowledge) and tackles the key challenge of our closed

network model, i.e., the policy has the flexibility to choose a resting state, as opposed to

open network settings where the resting state is always 0.

Proof of Lemma 2.1. Step 1: Find the “frequently visited” state α. Fix a stationary policy

U ∈ U . For each K, the K-th system under policy U is a finite-state Markov chain, whose

state space has cardinality smaller than Km. Since we are considering the optimistic

exponent, let the K-th system start within a communication class that minimizes steady

state demand loss among all communication classes. Denote the stationary distribution

(henceforth it refers to the stationary distribution of the communication class where the

initial state belongs to) of (normalized) states as πK(X̄K). Then there must exist a

(normalized) state X̃K such that πK(X̃K) ≥ K−m. Take a subsequence {Kr} of {K}

such that

lim
r→∞

1

Kr

logPKr,Uo = lim inf
K→∞

1

K
logPK,Uo .

By compactness of Ω, there must exist a further subsequence of {Kr}, which we denote

by {Kr′}, and α ∈ Ω such that limr′→∞ X̃Kr′ = α.

For any 0 < ε1 <
1
2

(
minj:αj>0 αj

)
, define α̃ ∈ relint(Ω) such that

0 < α̃j < ε1/2 for j such that αj = 0 ,

|α̃j − αj| < ε1/2 for j such that αj > 0 .

Since α is the limit point of X̃Kr′ , there exists r′0(ε) > 0 such that ∀r′ ≥ r′0(ε),

0 ≤ X̃
Kr′
j < α̃j for j such that αj = 0 , (B.1)

|X̃Kr′
j − αj| < ε1/2 for j such that αj > 0 . (B.2)

Inequalities (B.1) and (B.2) imply that for r′ ≥ r′0(ε)

|X̃Kr′
j − α̃j| ≤ α̃j < ε1, for j such that αj = 0
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|X̃Kr′
j − α̃j| ≤ |X̃

Kr′
j − αj|+ |α̃j − αj| < ε1, for j such that αj > 0 .

Hence ||X̃Kr′ − α̃||∞ < ε1 for r′ ≥ r′0(ε).

We quantify the fact that α̃ is a “frequently visited” state in the following claim.

Claim: FixK = Kr′ that comes from the subsequence defined above. In theK-th system,

define

τK , inf
{
t > 0 : X̄K(t) = X̃K |X̄K(0) = X̃K

}
, (B.3)

then we have

E[τK ] ≤ Km

1Tφ̂1
.

Proof of claim: Consider the discrete-time embedded chain of {X̄K(·)}. Since the initial

state X̃K is positive recurrent within its communication class, the expected number of

jumps between two consecutive visits to X̃K is inversely proportional to its steady state

measure πK(X̃K). By definition of X̃K , the expected number of jumps must be no larger

than Km. Since the time between two jumps are i.i.d. exponential variables with mean

(1Tφ1)−1, this concludes the proof.

Step 2: Lower bound on the “one-shot” demand-loss probability. Fix Kr′ and a demand

sample path ĀKr′ (·). For t > 0, define fj′k(t) , 1
t
ĀKr′ (t), i.e. the average arrival rate of

type (j′, k) demand during [0, t]. For stationary policy U , denote the average fraction of

demand arriving at j′ that is served by supply at i during this period as dUij′(t) (we omit

the superscript U in the following for notational simplicity). For t ≥ 0, if X̄Kr′ (0) = X̃Kr′

and no demand is lost prior to t, we have for any i ∈ VS

X̄
Kr′
i (t)− X̃Kr′

i = t

∑
j′∈VD

fj′i(t)−
∑
j′∈∂(i)

dij′(t)

∑
k∈VS

fj′k(t)


 .

Since α̃j > 0 for any j ∈ VS, the Lyapunov function Lα̃(·) is well-defined. Evaluate the
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Lyapunov function at
(
α̃ + X̄Kr′ (t)− X̃Kr′

)
, we have:

Lα̃

(
α̃ + X̄Kr′ (t)− X̃Kr′

)
(B.4)

= Lα̃

α̃ + t

∑
j′∈VD

fj′i(t)−
∑
j′∈∂(i)

dij′(t)

∑
k∈VS

fj′k(t)



i∈VS


(a)
= tLα̃

α̃ +

∑
j′∈VD

fj′i(t)−
∑
j′∈∂(i)

dij′(t)

∑
k∈VS

fj′k(t)



i∈VS


≥ t min

∆x∈Xf

Lα̃(α̃ + ∆x). (B.5)

Equality (a) holds because the Lyapunov function is scale-invariant with respect to α̃.

Here ∆x is the change of (normalized) state in unit time given average demand arrival

rate during this period f , and Xf is defined in (2.20).

Define vα̃(f) , min∆x∈Xf
Lα̃(α̃ + ∆x), which is the minimum rate the Lyapunov

function increases under any policy, given demand arrival rate f . Now we construct a set

of demand sample paths that must lead to demand loss before the system returns to the

starting state. First note that {f : vα̃(f) > 0} is non-empty. To see this, let f ′j′k equal

to 1 for some j′ and k /∈ ∂(j′), and 0 otherwise (such a pair (j′, k) exists by Assumption

2.2). This f ′ results in a strictly positive1 vα̃(f ′). Therefore for any ε2 > 0 there exists

demand arrival rate f̃ such that

vα̃(f̃) > 0 and
Λ∗(f̃)

vα̃(f̃)
≤ inf

f :vα̃(f)>0

Λ∗(f)

vα̃(f)
+ ε2.

It is not hard to show that vα̃(f) is continuous in f , hence there exists ε3 > 0 such that

for any f̂ : ||f̂ − f̃ ||∞ < ε3, we have

vα̃(f̂) > (1− ε2)vα̃(f̃) > 0 .

1To see this, notice that Lα̃(x) > 0 for any x ∈ Ω\{α̃}, hence it suffices to show that 0 /∈ Xf ′ . Because
for any ∆x ∈ Xf ′ , we have ∆xk = f ′j′k > 0, hence 0 /∈ Xf ′ . This concludes the proof.
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Denote T ,
1+

ε1
minj:αj>0 αj

(1−ε2)vα̃(f̃)
, define

Bα̃ ,

Ā(·) ∈ C [0, T ]

∣∣∣∣∣ sup
t∈[0,T ]

||Ā(t)− tf̃ ||∞ ≤ ε3

 .

For any demand arrival sample path Ā(·) ∈ Bα̃, we will show that for t ∈ [0, T ] the

followings are true: (i) normalized state X̄Kr′ (t) does not hit X̃Kr′ before any demand is

lost; (ii) at least one demand is lost.

To prove (i), define function L̃α̃(X̄) , Lα̃

(
α̃ + X̄− X̃Kr′

)
. By definition, we have

Lα̃(x) > 0 for any x ∈ {x ∈ Rm : 1Tx = 1}\{α̃}, hence we have that L̃α̃(X̄) > 0 for any

X̄ ∈ Ω\{X̃Kr′}. By inequality (B.5), if no demand is lost during [0, T ] we have:

L̃α̃

(
X̄Kr′ (t)

)
≥ tv

(
1

t
Ā(t)

)
≥ t min

Ā(·)∈B
v

(
1

t
Ā(t)

)
> t(1− ε2)vα̃(f̃) > 0.

We prove (ii) by contradiction. Suppose no demand is lost given (fluid scale) demand

arrival sample path Ā(·) ∈ B, then

L̃α̃

(
X̄Kr′ (T )

)
≥ T min

Ā(·)∈B
v

(
1

T
Ā(T )

)
>

1 + ε1
minj:αj>0 αj

(1− ε2)vα̃(f̃)
(1− ε2)vα̃(f̃) = 1 +

ε1
minj:αj>0 αj

.

Expand the expression of L̃α̃

(
X̄Kr′ (T )

)
on the LHS, we have

1−min
j

X̄
Kr′
j (T ) +

(
α̃j − x̃

Kr′
j

)
α̃j

> 1 +
ε1

minj:αj>0 αj
.

Therefore

min

 min
j:αj=0

X̄
Kr′
j (T )

α̃j
, min
j:αj>0

X̄
Kr′
j (T )− ε1/2

α̃j

 ≤ min
j

X̄
Kr′
j (T ) +

(
α̃j − x̃

Kr′
j

)
α̃j

< − ε1
minj:αj>0 αj

. (B.6)

Note that the first inequality in (B.6) holds because of (B.1) and (B.2). Inequality

(B.6) implies that minj X̄
Kr′
j (T ) < 0, which is impossible as queue lengths must be non-

negative.

Step 3: Asymptotic steady-state lower bound on demand loss probability. We use renewal-
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reward theorem [see, e.g., 125] to lower bound the demand-loss probability. Consider the

regenerative process that restarts each time X̄Kr′ (t) = X̃Kr′ . Without loss of generality,

let X̄Kr′ (0) = X̃Kr′ . Recall the definition of τK in (B.3). Using the claim in step 1 and

the result in step 2, we have:

PKr′ ,Uo =
E
[
#{demand lost during [0, τ ]}

]
E[τ ]

≥ Kr′
−m(1Tφ̂1)E

[
#{demand lost during [0, τ ]}

]
≥ Kr′

−m(1Tφ̂1)P
(
#{demand lost during [0, τ ]} ≥ 1

)
≥ Kr′

−m(1Tφ̂1)P
(
ĀKr′ (·) ∈ Bα̃

)
.

Take asymptotic limit on both sides, we have:

lim inf
r′→∞

1

Kr′
logPKr′ ,Uo ≥ lim inf

r′→∞

1

Kr′
logP

(
ĀKr′ (·) ∈ Bα̃

)
(a)

≥ − inf
Ā(·)∈Boα̃∩AC[0,T ]

∫ T

0

Λ∗
(

˙̄A(t)
)
dt

(b)

≥ −TΛ∗(f̃)

= −
1 + ε1

minj:αj>0 αj

(1− ε2)vα̃(f̃)
Λ∗(f̃)

≥ −
1 + ε1

minj:αj>0 αj

1− ε2

(
inf

f :vα̃(f)>0

Λ∗(f)

vα̃(f)
+ ε2

)
.

Here (a) holds because of Mogulskii’s Theorem (Fact 2.1), (b) holds because demand

sample path Ā(t) = tf̃ ∈ AC[0, T ] is a member of Bα̃. For any δ > 0, by choosing small

enough ε1(δ), ε2(δ) > 0, we have

− lim inf
r′→∞

1

Kr′
logPKr′ ,Uo ≤ (1 + δ)(γCB(α̃(δ)) + δ).

Here the choice of α̃ depends on δ. To get rid of the multiplicative term (1+δ), it suffices

to show that supα∈relint(Ω) γCB(α) <∞. This can be proved by the following construction:

let Ā(t) = tf ′ for t ∈ [0, 1] where fj′k = 1 for some j′ ∈ VD and k /∈ ∂(j′). Because γCB(α)

is defined by an infimum γCB(α) , inff∈Rnm+ :vα(f)>0
Λ∗(f)
vα(f)

, we have γCB(α) ≤ Λ∗(f ′)
vα̃(f ′)

. By
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definition, vα̃(f ′) = 1−max∆x∈Xf ′
mini

α̃i+∆xi
α̃i

= −max∆x∈Xf ′
mini

∆xi
α̃i

. Note that

Xf ′ = {∆x ∈ R|VS | :
∑
i∈∂(j′)

∆xi = −1 ,∆xi ≤ 0 for i ∈ ∂(j′) ,∆xk = 1

∆xi = 0 for i /∈ ∂(j′) ∪ {k}} .

Therefore

max
∆x∈Xf ′

min
i∈VS

∆xi
α̃i

= max
∆x∈Xf ′

min
i∈∂(j′)

∆xi
α̃i
≤ max

∆x∈Xf ′
min
i∈∂(j′)

∆xi ≤ −
1

|∂(j′)|
≤ − 1

m
.

Hence vα̃(f ′) ≥ 1
m
. Hence γCB(α) ≤ Λ∗(f ′)

vα̃(f ′)
≤ mΛ∗(f ′) < ∞. Therefore by choosing a

small enough δ, we have

− lim inf
r′→∞

1

Kr′
logPKr′ ,Uo ≤ γCB(α̃(ε)) + ε.

By the definition of subsequence {Kr′}, we have

− lim inf
K→∞

1

K
logPK,Uo ≤ γCB(α̃(ε)) + ε.

As a result, for any ε > 0 there exists α ∈ Ω such that − lim infK→∞
1
K

logPK,Uo ≤

supα∈relint(Ω) γCB(α) + ε, therefore − lim infK→∞
1
K

logPK,Uo ≤ supα∈relint(Ω) γCB(α).

B.3 Sufficient Conditions for Exponent Optimality: Proof

of Proposition 2.4

The proof of Proposition 2.4 consists of two parts. We first derive an achievability

bound for policies that, for a given α ∈ relint(Ω), satisfy the negative drift property

in Proposition 2.4; we then show it matches the converse bound in Lemma 2.1 for that

specific α (i.e., γCB(α)) if the steepest descent property in Proposition 2.4 is also satisfied.

The full proof of Proposition 2.4 is quite technical, but the key idea is straightforward.

Given starting state α, the (i) steepest descent property of U and (ii) the scale-invariance

and sub-additivity of Lα(·), together ensure that the speed at which Lα(·) increases under

U cannot exceed the minimum speed vα(f) in the converse construction (Lemma 2.1) for
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f , ˙̄A(t). Mathematically,

L̇α(X̄U(t))
∣∣∣ ˙̄A(t)=f

= inf
U ′∈Uni

{
L̇α(X̄U ′(t))

∣∣∣ ˙̄A(t) = f

}
(steepest descent)

= min
∆x∈Xf

lim
∆t→0

Lα(X̄U(t) + ∆x∆t)− Lα(X̄U(t))

∆t
(definition of Xf )

≤ min
∆x∈Xf

lim
∆t→0

Lα(α + ∆x∆t)

∆t
(sub-additivity of Lα, Lemma B.1)

(B.7)

= min
∆x∈Xf

Lα(α + ∆x) = vα(f) . (scale-invariance of Lα, Lemma B.1)

As a result, the demand loss exponent under U is no worse than γCB(α).

B.3.1 An achievability bound

The following lemma is an adaptation of Theorem 5 and Proposition 7 in [45] to our

setting. It gives the achievability bound for the exponent of the steady state demand-loss

probability, for any policy such that the negative drift condition in Proposition 2.4 is met

for Lα(·) where α ∈ relint(Ω). The main technical difficulty comes from the fact that it

characterizes the steady state of the system. The analysis uses Freidlin-Wentzell theory

and follows from [47, 45]. While the main proof idea follows that in [45], we refine the

results there by dropping the assumption that all FSPs are Lipschitz continuous with a

universal Lipschitz constant. This allows us to deal with Poisson-driven demand arrival

processes which does not satisfy this assumption.

Lemma B.3 (Achievability bound). For the system being considered, if policy U satisfies

the negative drift condition in Proposition 2.4 for Lα(·) where α ∈ relint(Ω), we have

(the subscript “AB” stands for achievability bound)

− lim sup
K→∞

1

K
logPK,Up ≥ γAB(α) . (B.8)
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Here for fixed 2 T > 0,

γAB(α) , inf
v>0,f ,Ā,X̄

Λ∗(f)

v
,

where (Ā, X̄) is a FSP on [0, T ] under U such that for some regular t ∈ [0, T ]

˙̄A(t) = f , Lα(X̄(t)) < 1 , L̇α(X̄(t)) = v .

Proof of Lemma B.3. Step 1. Define stopping times and consider the sampling chain.

In this step, we mostly follow the approach in [45] (Freidlin-Wentzell theory) and decom-

pose the expression for the likelihood of the Lyapunov function taking on a large value.

There are minor differences between our proof and proof of Theorem 4 in [45] because of

our closed queueing network setting, so we will write down each step for completeness.

Let X̄K,U
z (∞) be a random vector distributed as the stationary distribution of recur-

rent class associated with initial (normalized) state z ∈ Ω. For notation simplicity, we

suppress the dependence on z and U and keep them fixed. We want to upper bound:

lim sup
K→∞

1

K
logP

(
Lα(X̄K(∞)) ≥ 1

)
.

Choose positive constants δ, ε such that 0 < δ < ε < 1. Consider the following

stopping times defined on a sample path X̄K(·):

βK1 , inf{t ≥ 0 : Lα(X̄K(t)) ≤ δ},

ηKi , inf{t ≥ βKi : Lα(X̄K(t)) ≥ ε}, i = 1, 2, · · ·

βKi , inf{t ≥ ηK,Ui−1 : Lα(X̄K(t)) ≤ δ}, i = 2, 3, · · ·

Let the discrete-time Markov chain X̂K [i] be obtained by sampling X̄K(t) at the stop-

ping times ηKi . Since X̄K(·) is stationary, there must also exist a stationary distribution

for Markov chain X̂K [·]. Let ΘK denote the state space of the sampled chain X̂K [·], π̂K

is the sampled chain’s stationary distribution.

The above construction was based on the following idea: first divide time into cycles,

where the i-th cycle is the interval of time between consecutive ηi’s, i.e., a cycle is com-

pleted each time the value of Lα(X̄K) goes down below δ and then rises above ε. Then
2The definition of quantity γAB(α) is based on the local behavior of Ā and X̄ for times close to t. In

particular, the value of T plays no role.
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the fraction of time the Lyapunov function spent above 1 is equal to the ratio

E[time for which Lα(X̄K) ≥ 1 during a cycle]/(E[length of cycle])

in steady state. We sample the initial state as X̄K(0) = x ∼ π̂K , hence the first cycle

itself characterizes the steady state ratio. Therefore, the stationary likelihood of event

{Lα(X̄K) ≥ 1} can be expressed as (see Lemma 10.1 in [47]):

P
(
Lα(X̄K) ≥ 1

)
=

∫
ΘK

π̂K(dx) · E
(∫ ηK1

0
I
{
Lα(X̄K(t)) ≥ 1

}
dt
∣∣X̄K(0) = x

)
∫

ΘK
π̂K(dx) · E(ηK1 |X̄K(0) = x)

. (B.9)

Step 2. Bounding the RHS of (B.9). To upper bound P
(
Lα(X̄K) ≥ 1

)
, we lower bound

the denominator in the RHS of (B.9) and upper bound the numerator.

• Step 2a. Bounding the Denominator. To lower bound the denominator, we focus on

the discrete-time embedded chain of {X̄K(·)}. Note each exactly one demand arrives

at each jump of the chain, therefore ||X̄K(·)||∞ change by at most 1
K

at each jump.

Using property 2 of Lα(·) in Lemma B.2, we further have that Lα(X̄K(·)) change by at

most 1
K·mini αi

at each jump. Since the Lyapunov function Lα(X̄K(·)) has to increase

from δ to ε during [0, ηK1 ], there exists K1 = K1(ε, δ) > 0 such that for any K > K1,

at least K·mini αi
2

(ε − δ) jumps occur during [0, ηK1 ]. Because the times between two

consecutive jumps follow i.i.d. exponential distribution with rate K1Tφ̂1, therefore for

any K > K1,

E(ηK1 |X̄K(0) = x) ≥ K ·mini αi
2

(ε− δ) 1

K1Tφ̂1
=

mini αi

2 · 1Tφ̂1
(ε− δ) . (B.10)

• Step 2b. Bounding the Numerator. This part is more complex, and we first decom-

pose the numerator into several terms. Let ρ ∈ (ε, 1). Because each (normalized)

queue length change by at most 1
K

at each jump almost surely, and that Lα(·) is Lip-

schitz continuous, there exists K2 = K2(ε, ρ) > 0, such that for all K ≥ K2, we have

L(X̄K(ηKi )) ≤ ρ.
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We define another stopping time:

ηK,↑ , inf{t ≥ 0 : Lα(X̄K(t)) ≥ 1} .

Then for any x ∈ ΘK , we must have:

E

(∫ ηK1

0

I{Lα(X̄K(t)) ≥ 1}dt
∣∣∣X̄K(0) = x

)
≤ E

(
I{ηK,↑ ≤ βK1 }(βK1 − ηK,↑)

∣∣∣X̄K(0) = x

)
.

The above inequality holds because:

• if βK1 ≤ ηK,↑, then both sides are zero (because the Lyapunov function will hit ε

before 1);

• if βK1 > ηK,↑, then Lα(X̄K(t)) ≥ 1 can occur only for a subset of t ∈ [ηK,↑, βK1 ],

and this time interval has length βK1 − ηK,↑.

Hence

E

(∫ ηK1

0

I
{
Lα(X̄K(t)) ≥ 1

}
dt
∣∣∣X̄K(0) = x

)
≤ E

(
βK1 − ηK,↑

∣∣∣ηK,↑ ≤ βK1 , X̄
K(0) = x

)
P
(
ηK,↑ ≤ βK1

∣∣∣X̄K(0) = x

)
.

Define

βK(x) , inf

{
t ≥ 0 : Lα(X̄K(t)) ≤ δ

∣∣∣X̄K(0) = x

}
.

Using the properties of Markov chains and conditional expectation, we have:

E
(
βK1 − ηK,↑

∣∣∣ηK,↑ ≤ βK1 , X̄
K(0) = x

)
= E

(
E
(
βK
(
X̄K(ηK,↑)

)) ∣∣∣ηK,↑ ≤ βK1 , X̄
K(0) = x

)
≤ sup

x∈Ω
E
(
βK1

∣∣∣X̄K(0) = x

)
.

Let T be a positive number which will be chosen later. Recall that Lα(x) ≤ ρ for all

x ∈ ΘK almost surely when K ≥ K2. Hence, for any such x ∈ ΘK , we have,

E

(∫ ηK1

0

I
{
Lα(X̄K(t)) ≥ 1

}
dt
∣∣∣X̄K(0) = x

)
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≤ E
(
βK1 − ηK,↑

∣∣∣ηK,↑ ≤ βK1 , X̄
K(0) = x

)
P
(
ηK,↑ ≤ βK1

∣∣∣X̄K(0) = x

)
≤

(
sup
x∈Ω

E
(
βK1

∣∣∣X̄K(0) = x

))[
P
(
ηK,↑ ≤ T

∣∣∣X̄K(0) = x

)
+P
(
βK1 ≥ T

∣∣∣X̄K(0) = x

)] (
using ηK,↑ ≤ βK1 ⇒ ηK,↑ ≤ T or T ≤ βK1

)

≤

(
sup
x∈Ω

E
(
βK1

∣∣∣X̄K(0) = x

))
︸ ︷︷ ︸

(a)

 sup
x:Lα(x)≤ρ

P
(
ηK,↑ ≤ T

∣∣∣X̄K(0) = x

)
︸ ︷︷ ︸

(b)

+ sup
x:Lα(x)≤ρ

P
(
βK1 ≥ T

∣∣∣X̄K(0) = x

)
︸ ︷︷ ︸

(c)

 . (B.11)

— Step 2b(i). Bounding term (a). Term (a) is the upper bound of the expected time

for the Lyapunov function to hit a lower level δ starting from a higher level ε.

Because the policy U satisfies the negative drift condition, it follows from standard

argument (see Part B(1) of the proof of Theorem 4 in [45], which applies the classical

results in [56]) that there exists K3 = K3(δ, ε) and constant C > 0 such that for

K ≥ K3, we have (a) ≤ C .

— Step 2b(ii). Asymptotics for (b). Let K → ∞ and apply Proposition 2 in [45] to

X̄K(·). We have:

lim sup
K→∞

1

K
log

(
sup

x:Lα(x)≤ρ
P
(
ηK,↑ ≤ T

∣∣∣X̄K(0) = x

))
≤ − inf

Ā,X̄

∫ T

0

Λ∗
(

˙̄A(t)
)
dt, where (Ā, X̄) is an FSP

such that Lα(X̄(0)) ≤ ρ, Lα(X̄(t)) ≥ 1 for some t ∈ [0, T ] .

— Step 2b(iii). Asymptotics for (c). Intuitively, term (c) is the tail probability of the

duration of a cycle that terminates when the Lyapunov function hit δ. It remains

to be shown that this term is negligible comparing to (b) as T →∞. Let K →∞

230



and apply Proposition 2 in [45] to X̄K(·). We obtain:

lim sup
K→∞

1

K
log

(
sup

x:Lα(x)≤ρ
P
(
βK1 ≥ T

∣∣∣X̄K(0) = x

))
≤ − inf

Ā,X̄

∫ T

0

Λ∗
(

˙̄A(t)
)
dt, where (Ā, X̄) is an FSP

such that Lα(X̄(0)) ≤ ρ, Lα(X̄(t)) ≥ δ for all t ∈ [0, T ] .

We focus on the variational problem on the RHS. Note that any FSP that is feasible

to the variational problem must satisfy:

δ ≤ Lα(X̄(0)) +

∫ T

t=1

L̇(X̄(t))dt ≤ ρ+

∫ T

t=1

L̇(X̄(t))dt .

For any fixed FSP, define T0 , {t ∈ [0, T ] : L̇(X̄(t)) > −η}, where η is the negative

drift parameter in the statement of Proposition 2.4. Denote the measure of T0 by

t0. Therefore it must hold that:

ρ+

∫ T

t=1

L̇(X̄(t))dt = ρ+

∫
t/∈T0

L̇(X̄(t))dt+

∫
t∈T0

L̇(X̄(t))dt

≤ ρ− η(T − t0) +

∫
t∈T0

L̇(X̄(t))dt .

Hence ∫
t∈T0

L̇(X̄(t))dt ≥ η(T − t0) + δ − ρ ≥ η(T − t0)− 1 .

There are two cases:

Case 1: When t0 > T
2
. Define

Jmin , min Λ∗( ˙̄A(t)) (B.12)

subject to L̇(Ā(t)) ≥ −η , t ∈ [0, T ] , (Ā(t), X̄(t)) is an FSP.

Note that Jmin ≥ minf /∈B(φ,ε′) Λ∗(f) > 0 and ε′ is the ε specified in condition (2) of

Proposition 2.4. Therefore a lower bound of the exponent of these sample paths is∫ T

0

Λ∗
(

˙̄A(t)
)
dt ≥ T

2
Jmin .
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Case 2: When t0 ≤ T
2
. We have∫
t∈T0

L̇(X̄(t))dt ≥ η(T − t0)− 1 ≥ ηT

2
− 1 .

We choose T > 4
η
, therefore ηT

2
− 1 ≥ ηT

4
. A lower bound of the exponent of these

sample paths is the value of the following variational problem:

J(T ) , − inf
Ā,X̄

∫ T

0

Λ∗
(

˙̄A(t)
)
dt, where (Ā, X̄) is an FSP

such that
∫ T

0

max{L̇α(X̄(t)), 0}dt ≥ ηT

4
.

We claim that J(T )→∞ as T →∞ and prove the claim in step 3.

Combine the two cases, we have:

lim sup
K→∞

1

K
log

(
sup

x:Lα(x)≤ρ
P
(
βK1 ≥ T

∣∣∣X̄K(0) = x

))
≤ −min

{
T

2
Jmin , J(T )

}
.

It is not hard to see that as T →∞, the exponent of term (c) tends to −∞ hence

is negligible.

Now combine all the terms. For fixed ε, δ, ρ, note that the denominator of (B.9)

and (a) in (B.11) are bounded by a constant term, so they have no contribution to the

exponent of (B.9). Since as T → ∞, (c) in (B.11) have an exponent that is at most

− lim infT→∞ J(T ), we have

lim sup
K→∞

1

K
logPK,Up

≤ − lim inf
T→∞

J(T ) , lim sup
K→∞

1

K
log

(
max

X̄K(0)∈Ω
P
(
Lα(X̄K(∞)) ≥ 1

))
(B.13)

≤ − inf
T>0

inf
Ā,X̄

∫ T

0

Λ∗
(

˙̄A(t)
)
dt

where (Ā, X̄) is an FSP such that Lα(X̄(0)) = ρ, Lα(X̄(T )) ≥ 1 . (B.14)

Finally, let δ, ε, ρ→ 0, we have

lim sup
K→∞

1

K
logPK,Up

≤ − inf
T>0

inf
Ā,X̄

∫ T

0

Λ∗
(

˙̄A(t)
)
dt
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where (Ā, X̄) is an FSP such that Lα(X̄(0)) = 0, Lα(X̄(T )) ≥ 1 .

We briefly summarize Step 2 and provide some intuition. The goal is to upper bound

the stationary likelihood that the Lyapunov function equals 1. To study the stationary

behavior, we first divide time into cycles, where a cycle is completed each time the

Lyapunov function goes down below δ then rises above ε, where δ < ε � 1. Then using

a variant of renewal-reward theorem (equation (B.9)), we only need to lower bound the

expected cycle duration, and upper bound the expected time the Lyapunov function stays

at 1 during a cycle. The Lipschitz property of the Lyapunov function ensures that the

cycle duration is bounded away from 0 hence has no contribution to the exponent of

the desired likelihood (Lemma B.2). Meanwhile, the negative drift condition ensures the

expected time until the Lyapunov function returns to δ after hitting 1. This leaves the

exponent of the desired likelihood to be solely dependent on the probability that the

Lyapunov function ever hit 1 during a cycle. Finally we apply the sample path large

deviation principle (Fact 2.1) to bound this quantity.

Step 3. Reduce (B.13) to an one-dimensional variational problem. This rest of the proof

is exactly the same as the proof of Theorem 5 and Proposition 7 in [45]; we provide the

intuition and omit the details.

The proof up until this point dealt with the steady state of the system. Recall the

link between the exponent and value of a differential game described in Section 2.5.3.

We now lower bound the exponent of the steady state demand loss probability by a

variational problem (differential game), namely, (B.14). Since we are trying to lower

bound the adversary’s cost, we consider an “ideal adversary” who can increase Lα(x) at

the minimum cost at each level set. Mathematically,

The quantity in (B.14) ≤ − inf
T>0

θT , (B.15)

where

θT , inf
Lα(·)

∫ T

0

lα,T

(
L(t), L̇(t)

)
dt
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s.t. L(·) is absolutely continuous and L(0) = 0, L(T ) ≥ 1 .

lα,T (y, v) , inf
Ā,X̄

Λ∗(f)

s.t. (Ā, X̄) is an FSP on [0, T ] such that for some regular t ∈ [0, T ]

˙̄A(t) = f , Lα(X̄(t)) = y, L̇α(X̄(t)) = v .

Using the scale-invariance property of Lα(x) (Lemma B.1), we can show that lα,T (y, v)

is independent of y (Proposition 7 in [45]). As a result, the above variational problem

reduces to an one-dimensional problem where the “ideal adversary” chooses a single rate

(i.e., v in the statement of Lemma B.3) at which Lα(x) increases. This problem is exactly

the one in the statement of Lemma B.3.

(We prove the claim in step 2 that lim infT→∞ J(T ) =∞ here. Using exactly the same

argument as in step 3, we can show that J(T ) ≥ ηT
4
γAB(α) where the RHS is defined in

(B.8). This concludes the proof.)

B.3.2 Converse Bound Matches Achievability Bound

In Lemma 2.1 we obtain a converse bound which holds for any state-dependent policy.

However, for a given policy U can we obtain a tighter policy-specific converse bound? In

the following Lemma, we show that for policies that satisfy the negative drift property

in Proposition 2.4 for Lyapunov function Lα(·) where α ∈ relint(Ω), there is a tighter

converse bound given by γCB(α).

Lemma B.4. For policies U ∈ U that satisfy the negative drift condition in the statement

of Proposition 2.4 for α ∈ relint(Ω), we have

− lim inf
K→∞

1

K
logPK,U

o ≤ γCB(α) .

Proof. The following proof is very similar to the proof of Lemma 2.1. We will emphasize

the parts that are different and skip the repetitive arguments. In the proof of Lemma
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2.1, we divide the process into cycles and apply the renewal-reward theorem. We follow

the same approach here except that we define the cycles differently.

Step 1: Show that α is the “resting point” of U . Fix ε1 > 0 and define

τK , inf
{
t ≥ 0 : Lα(X̄K(t)) ≤ ε1

}
.

Using the argument in Step 2b(i) of the proof of Lemma B.3, we can show that there

exists K0 = K0(ε1) > 0 and constant C > 0 such that for K ≥ K0,

sup
x∈Ω

E
(
τK |X̄K(0) = x

)
≤ C .

In other words, starting from any state, the expected time for the system state to reach

the O(ε1)-neighborhood of α is bounded from above by a constant.

Step 2: Lower bound the demand-loss probability. Proceed exactly as Step 2 and Step 3 in

the proof of Lemma 2.1, we explicitly construct a demand sample path that guarantees a

demand loss within Θ(1) units of time given the starting state satisfies Lα
(
X̄K(T + τK)

)
<

ε1. Then we obtain the desired result.

Now we combine Lemma B.3 and Lemma B.4 to prove Proposition 2.4 by showing

that γAB(α) = γCB(α). Lemma B.1 and the steepest descent property in Proposition 2.4

are crucial in showing γAB(α) ≥ γCB(α) (the other direction is obvious).

Proof of Proposition 2.4. Let U ∈ U satisfy the conditions in Proposition 2.4. Then for

regular t we have

L̇α(X̄(t)) ≤ inf
U ′∈U

{
L̇α(X̄U ′(t))

∣∣∣ ˙̄A′(t) = f

}
(steepest descent)

= min
∆x∈Xf

lim
∆t→0

Lα(X̄U ′(t) + ∆x∆t)− Lα(X̄U ′(t))

∆t

≤ min
∆x∈Xf

lim
∆t→0

Lα(α + ∆x∆t)

∆t
(sub-additivity, Lemma B.1)

= min
∆x∈Xf

Lα(α + ∆x) = vα(f) . (scale-invariance, Lemma B.1)

Let v = L̇α(X̄(t)), from v ≤ vα(f) we have {v > 0} ⊂ {vα(f) > 0}, hence using Lemma
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B.3 we have

γAB(α) = inf
v>0,f ,Ā,X̄

Λ∗(f)

v
≥ inf

f :vα(f)>0

Λ∗(f)

vα(f)
= γCB(α) .

But since by Lemma B.4 we know γCB(α) is a converse bound for policy U , hence γAB(α) ≤

γCB(α). Therefore γAB(α) = γCB(α).

B.4 SMW Policies and Explicit Exponent

Appendix B.4 shows that the SMW policy satisfies the sufficient conditions for ex-

ponent optimality, and derives explicitly the optimal exponent and most-likely sample

paths, including the proofs of Lemma 2.2, Lemma 2.3, and Lemma 2.4. The last subsec-

tion formally establishes exponent optimality of SMW policies for transient performance.

B.4.1 Lyapunov Drift of FSPs under SMW: Proof of Lemma 2.2

In this subsection we prove Lemma 2.2 which establishes that SMW(α) policies per-

form steepest descent on Lα(·).

Proof of Lemma 2.2. For notation simplicity, we will write S1(X̄(t)) as S1, S2

(
X̄(t), ˙̄X(t)

)
as S2, and mink∈S1

˙̄Xk(t)
αk

as c in the following. Let (Ā, X̄) be an FSP under policy U ∈ U .

• Proof of (2.22). Note that t is a regular time, hence Lα(X̄(·)) and X̄(·) are differentiable

at t. It follows from the definition of derivatives that L̇α(X̄(t)) is determined by the

queues in S2 alone, hence we have L̇α(X̄(t)) = −mink∈S1

˙̄Xk(t)
αk

= −c.

• Proof of (2.23). For the K-th system, define auxiliary processes:

ĒK,U
ij′k (t) , #

{
Type (j′, k) demand units that arrive during [0, t]

and are served by supply units at i under policy U ∈ U} i, k ∈ VS , j′ ∈ VD .

Using standard argument [see, e.g., 7], we can extend the definition of FSP (Definition

2.5) to (Ā(·), X̄(·), Ē(·)), where a subsequence of ĒK,U(·) converges u.o.c. to Ē(·). We

focus on the regular times t where ˙̄E(t) exists, which includes almost all regular times
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because ˙̄E(t) is differentiable almost everywhere.

Consider any non-idling policy U ′ ∈ U , and X̄U ′(t) such that X̄U ′(t) 6= α, Lα(X̄U ′(t)) <

1. The flow of supply units entering S2 is
∑

j′∈VD,k∈S2

˙̄Aj′k(t) because U ′ is non-idling.

The flow of supply units leaving S2 is at least
∑

j′∈VD:∂(j′)⊂S2,k∈VS
˙̄Aj′k(t) because U ′

is non-idling and that the supply units in VS\S2 cannot be used to serve demand

originating from {j′ ∈ VD : ∂(j′) ⊂ S2}. Therefore,∑
k∈S2

˙̄XU ′

k (t) ≤
∑

j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′∈VD:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t) . (B.16)

Now we consider SMW(α) policies and X̄SMW(α)(t) such that X̄SMW(α)(t) 6= α. For

the process Ē(t) (resp. X̄(t)), we use notation ∆Ē(t) (resp. ∆X̄(t)) to denote Ē(t +

∆t)− Ē(t) (resp. X̄(t+ ∆t)− X̄(t)). It holds that

∑
k∈S2

∆X̄K,U
k (t) =

∑
j′∈VD,k∈S2

∑
i∈∂(j′)

∆ĒK,U
ij′k (t)−

∑
i∈S2,k∈VS

∑
j′∈∂(i)

∆ĒK,U
ij′k (t) .

For regular t, it follows from the definition of derivative that

∑
k∈S2

˙̄XU
k (t) =

∑
j′∈VD,k∈S2

∑
i∈∂(j′)

˙̄EU
ij′k(t)−

∑
i∈S2,k∈VS

∑
j′∈∂(i)

˙̄EU
ij′k(t) .

For SMW(α) policy, using exactly the same argument as in Lemma 4 of [7], we have

˙̄E
SMW(α)
ij′k (t) = 0 if

X̄
SMW(α)
i (t)

αi
< max

`∈∂(j′)

X̄
SMW(α)
` (t)

α`
. (B.17)

By definition of S2, there exists ε > 0 such that any (scaled) queue length in S2 is

strictly smaller than all (scaled) queue lengths in VS\S2 in (t, t+ ε), which also implies

that the queue lengths in VS\S2 remain strictly positive during (t, t+ ε). Apply (B.17),

we know that the system will use the supplies within VS\S2 to serve all demands

arriving at ∂(VS\S2) during (t, t+ ε). Hence we have

∑
k∈VS\S2

˙̄X
SMW(α)
k (t) =

∑
j′∈VD,k∈VS\S2

∑
i∈∂(j′)

˙̄E
SMW(α)
ij′k (t)−

∑
j′∈∂(VS\S2),k∈VS

˙̄Aj′k(t)

≤
∑

j′∈VD,k∈VS\S2

˙̄Aj′k(t)−
∑

j′∈∂(VS\S2),k∈VS

˙̄Aj′k(t) .
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Since it is a closed system, we have:

∑
k∈S2

˙̄X
SMW(α)
k (t) = −

∑
k∈VS\S2

˙̄X
SMW(α)
k (t)

≥
∑

j′∈∂(VS\S2),k∈VS

˙̄Aj′k(t)−
∑

j′∈VD,k∈VS\S2

˙̄Aj′k(t) . (B.18)

Note that

RHS of (B.18) =
∑

j′∈∂(VS\S2),k∈VS

˙̄Aj′k(t)−
∑

j′∈VD,k∈VS\S2

˙̄Aj′k(t)

=

 ∑
j′∈VD,k∈VS

˙̄Aj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)


−

 ∑
j′∈VD,k∈VS

˙̄Aj′k(t)−
∑

j′∈VD,k∈S2

˙̄Aj′k(t)


=

∑
j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)

= RHS of (B.16) .

Finally, observe that for any k ∈ S2,

L̇α(X̄(t)) = −
˙̄XU ′

k (t)

αk
= − 1

1T
S2
α

∑
k∈S2

αk
˙̄XU ′

k (t)

αk
= − 1

1T
S2
α

∑
k∈S2

˙̄XU ′

k (t) . (B.19)

Plug (B.18) and (B.16) into (B.19), we know that inequality (2.22) holds, and it be-

comes equality for SMW(α) policy.

B.4.2 Lyapunov Drift of FLs under SMW: Proof of Lemma 2.3

Proof of Lemma 2.3. Negative drift. Let (Ā, X̄) be a fluid limit of the system under

SMW(α), and t be its regular point. Simply plug in Lemma 2.2, and replace ˙̄Aj′k(t) with
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φ̂j′k, we have (S2 is defined in Lemma 2.2, S2 6= ∅)

L̇α(X̄(t)) = − 1

1T
S2
α

 ∑
j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′∈VD:∂(j′)⊆S2,k∈VS

˙̄Aj′k(t)


≤ − min

S2(VS ,S2 6=∅

1

1T
S2
α

 ∑
j′∈VD,k∈S2

φ̂j′k −
∑

j′∈VD:∂(j′)⊆S2,k∈VS

φ̂j′k


≤ − min

S2(VS ,S2 6=∅

 ∑
j′∈VD,k∈S2

φ̂j′k −
∑

j′∈VD:∂(j′)⊆S2,k∈VS

φ̂j′k


(a)

≤ −min{ξ, φ̂min} .

Here (a) holds for the following reason. First note that when X̄(t) 6= α, we have S2 6= VS.

Let J , {j′ ∈ VD : ∂(j′) ⊂ S2;∃k ∈ VS\S2 s.t. φj′k > 0}. If J = ∅, we have

∑
j′∈VD,k∈S2

φ̂j′k −
∑

j′∈VD:∂(j′)⊆S2,k∈VS

φ̂j′k

=
∑

j′∈VD:∂(j′)∩(VS\S2) 6=∅,k∈S2

φ̂j′k −
∑

j′∈VD:∂(j′)⊆S2,k∈VS\S2

φ̂j′k

≥
∑

j′∈VD:∂(j′)∩(VS\S2) 6=∅,k∈S2

φ̂j′k ≥ φ̂min ,

where φ̂min , minj′∈VS ,k∈VS ,φ̂j′k>0 φ̂j′k is the minimum positive arrival rate for any demand

type (j′, k) (the last inequality holds because of Assumption 1). If J 6= ∅, we must have

J ∈ J , hence

∑
j′∈VD,k∈S2

φ̂j′k −
∑

j′∈VD:∂(j′)⊆S2,k∈VS

φ̂j′k ≥
∑

j′∈VD,k∈∂(J)

φ̂j′k −
∑

j′∈J,k∈VS

φ̂j′k ≥ ξ ,

where ξ , minJ∈J

(∑
i∈∂(J) 1Tφ̂(i) −

∑
j′∈J 1Tφ̂j′

)
> 0 is the Hall’s gap of the system.

Robustness of drift. Define

G(f) , min
S(VS ,S 6=∅

 ∑
j′∈VD,k∈S

fj′k −
∑

j′:∂(j′)⊆S,k∈VS

fj′k

 .

Note that G(f) is continuous in f . Since G(φ̂) ≤ −min{ξ, φ̂min} < 0, by continuity there

exists ε such that for any ˙̄A(t) ∈ B(φ̂, ε),

L̇α(X̄(t)) = G
(

˙̄A(t)
)
≤ −1

2
min{ξ, φ̂min} .
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B.4.3 Explicit Exponent and Most Likely Sample Path: Proof of

Lemma 2.4

Proof of Lemma 2.4. Explicit exponent. Let (Ā(·), X̄(·)) be a fluid sample path under

SMW(α). For a regular point t of this FSP, denote f , ˙̄A(t).

For notation simplicity, for S ⊂ VS denote

gapS(f) ,
∑

j′:∂(j′)⊆S,k∈VS

fj′k −
∑

j′∈VD,k∈S

fj′k .

In words, gapS(f) is the minimum net rate at which supply in S is drained given current

demand arrival rate f , assuming no demand is dropped. Using the result of Lemma 2.2,

we have:

L̇α(X̄(t)) =
gapS2

(f)

1T
S2
α

, (B.20)

where S2 , S2(X̄(t), ˙̄X(t)) and the latter is defined in Lemma 2.2. Given ˙̄A(t) = f , we

define

v̄(f) , sup
X̄(t)∈Ω\{α}

L̇α(X̄(t)) = max
S 6=∅,S(VS

gapS(f)

1T
Sα

.

Recall the definition of γAB(α) in Lemma B.3, we have

γAB(α) = inf
f≥0:v̄(f)>0

Λ∗(f)

v̄(f)

= inf
f≥0:maxS⊆VS gapS(f)>0

Λ∗(f)

maxS⊆VS
gapS(f)

1T
Sα

= inf
f≥0:maxS⊆VS gapS(f)>0

{
min

S⊆VS :gapS(f)>0

(
1T
Sα
) Λ∗(f)

gapS(f)

}
(B.21)

(a)
= min

S⊆VS

{
inf

f≥0:gapS(f)>0

(
1TSα

) Λ∗(f)

gapS(f)

}
. (B.22)

For completeness, define the minimum over the empty set as +∞. Here (a) holds because:

For a minimizer f∗ ≥ 0 of the outer problem of (B.21) and a minimizer S∗ ⊆ VS of the

inner problem of (B.21), S∗ ⊆ VS is feasible for the inner problem of (B.22) while f∗ ≥ 0
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is feasible for the outer problem of (B.22), hence (B.21) ≥ (B.22). Similarly we can show

(B.21) ≤ (B.22).

We claim that

(B.22) = min
J∈J

{
inf

f≥0:gap∂(J)(f)>0

(
1T
∂(J)α

) Λ∗(f)

gap∂(J)(f)

}
. (B.23)

Recall that the definition of J :

J =

J ( VD :
∑
j′∈J

∑
k/∈∂(J)

φj′k > 0

 .

To see (B.23), first note that for S ⊆ VS where {j′ ∈ VD : ∂(j′) ⊂ S} is empty, gapS(f)

is non-positive regardless of f ≥ 0, hence such S can never be the minimizer. For other

S, let J , {j′ ∈ VD : ∂(j′) ⊂ S}, then ∂(J) ⊂ S. Note that

gap∂(J)(f) =
∑

j′∈J,k∈VS

fj′k −
∑

j′∈VD,k∈∂(J)

fj′k

=
∑

j′:∂(j′)⊂S,k∈VS

fj′k −
∑

j′∈VD,k∈S

fj′k +
∑

j′∈VD,k∈S\∂(J)

fj′k

= gapS(f) +
∑

j′∈VD,k∈S\∂(J)

fj′k

≥ gapS(f) .

As a result, for f such that gapS(f) > 0, we have(
1T
Sα
) Λ∗(f)

gapS(f)
≥
(
1T
∂(J)α

) Λ∗(f)

gap∂(J)(f)
.

Hence only those S ⊆ VS where S = ∂(J) for J ⊆ VD can be the minimizer. If J /∈ J ,

then gap∂(J)(f) ≤ 0 regardless of f ≥ 0, so these sets are also ruled out. Therefore (B.23)

holds.

Suppose the outer minimum of (B.23) is achieved by J∗ ∈ J . Denote the optimal

value of the inner infimum of (B.23) as (1T
∂(J∗)α)g(φ̂, J) > 0, then we have:

inf
f≥0:gap∂(J)(f)>0

Λ∗(f)− g(φ̂, J)

 ∑
j′∈J,k∈VS

fj′k −
∑

j′∈VD,k∈∂(J)

fj′k

 = 0 . (B.24)

We can get rid of the constraint on f because for f where gap∂(J)(f) ≤ 0, the argument
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of minimization in (B.24) is negative; and for f that has negative components, its rate

function is ∞ by definition. Using Legendre transform, we have:

inf
f

Λ∗(f)− g(φ̂, J)

 ∑
j′∈J,k∈VS

fj′k −
∑

j′∈VD,k∈∂(J)

fj′k


= inf

f
Λ∗(f)− fT

g(φ̂, J)
∑

j′∈J,k∈VS

ej′k − g(φ̂, J)
∑

j′∈VD,k∈∂(J)

ej′k


= − Λ

g(φ̂, J)
∑

j′∈J,k∈VS

ej′k − g(φ̂, J)
∑

j′∈VD,k∈∂(J)

ej′k


(b)
= −

∑
j′∈VD,k∈VS

φ̂j′k

(
eg(φ̂,J)I{j′∈J}−g(φ̂,J)I{k∈∂(J)} − 1

)
.

In (b) we use the fact that the dual function of Λ∗(f) is Λ(x) =
∑

j′∈VD,k∈VS φ̂j′k(e
xj′k−1)

where x ∈ Rn×m. Hence Eq. (B.24) reduces to the nonlinear equation ∑
j′ /∈J,k∈∂(J)

φ̂j′k

 e−g(φ̂,J) +

 ∑
j′∈J,k/∈∂(J)

φ̂j′k

 eg(φ̂,J) =
∑

j′ /∈J,k∈∂(J)

φ̂j′k +
∑

j′∈J,k/∈∂(J)

φ̂j′k .

Let y , eg(φ̂,J), this becomes a quadratic equation: ∑
j′∈J,k/∈∂(J)

φ̂j′k

 y2 −

 ∑
j′ /∈J,k∈∂(J)

φ̂j′k +
∑

j′∈J,k/∈∂(J)

φ̂j′k

 y +

 ∑
j′ /∈J,k∈∂(J)

φ̂j′k

 = 0 .

Hence

y =

∑
j′ /∈J,k∈∂(J) φ̂j′k∑
j′∈J,k/∈∂(J) φ̂j′k

or 1 .

Since g(φ̂, J) > 0, we have

g(φ̂, J) = log

∑j′ /∈J,k∈∂(J) φ̂j′k∑
j′∈J,k/∈∂(J) φ̂j′k

 = log

(∑
j′ /∈J,k∈∂(J) φj′k∑
j′∈J,k/∈∂(J) φj′k

)
.

Plugging into (B.23), we have:

γAB(α) = min
J∈J

(
1T
∂(J)α

)
log

(∑
j′ /∈J,k∈∂(J) φj′k∑
j′∈J,k/∈∂(J) φj′k

)
.

Remark: For J ∈ J , if there exists j′ ∈ VD such that j′ /∈ J but ∂(j′) ⊆ ∂(J),
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then such subsets J are “spurious” in the sense that they cannot achieve the minimum in

the expression of γAB(α) (the term corresponding to J ∪ {j′} is no larger than the term

correpsonding to J). Therefore only the “maximal” J ’s matter to the value of exponent.

Most likely demand sample path leading to demand loss. Denote

c , g(φ̂, J)

 ∑
j′∈J,k∈VS

ej′k −
∑

j′∈VD,k∈∂(J)

ej′k

 ,

denote fJ as the minimizer of the inner minimization problem on the RHS of (B.23). We

have

fJ = argminf≥0

∑
j′∈VD

∑
k∈VS

(
Λ∗j′k(fj′k)− cj′kfj′k

)
= argminf≥0

∑
j′∈VD

∑
k∈VS

(
fj′k log

fj′k

φ̂j′k
+ φ̂j′k − fj′k − cj′kfj′k

)
.

First order condition implies: (fJ)j′k = φ̂j′k
e
cj′k+1∑

j′,k φ̂j′ke
cj′k+1 = φ̂j′k

e
cj′k∑

j′,k φ̂j′ke
cj′k . Recall the

definition of λJ , µJ in (2.13), we have

∑
j′,k

φ̂j′ke
cj′k =

∑
j′∈J,k/∈∂(J)

φ̂j′k
λJ
µJ

+
∑

j′ /∈J,k∈∂(J)

φ̂j′k
µJ
λJ

+

1−
∑

j′∈J,k/∈∂(J)

φ̂j′k −
∑

j′ /∈J,k∈∂(J)

φ̂j′k


= µJ

λJ
µJ

+ λJ
µJ
λJ

+ (1− λJ − µJ)

= 1 .

Hence

(fJ)j′k =


φ̂j′k(λJ/µJ), for j′ ∈ J, k /∈ ∂(J)

φ̂j′k(µJ/λJ), for j′ /∈ J, k ∈ ∂(J)

φ̂j′k, otherwise

.

Let J∗ = argminJ∈JBJ log(λJ/µJ), then demand sample path with constant derivative

fJ∗ is the most likely sample path leading to demand drop.
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B.4.4 Transient behavior

Consider transient behavior over [0, T ] of our model with starting state XK(0) ∈ ΩK .

We modify our objective appropriately: For any policy U which may be time dependent,

we define

PK,U(XK(0), T ) , E

 1

AΣ(T )

∑
r:tr∈[0,T ]

I
{
UK
tr [XK,U(t−r )](o[r], d[r]) = ∅

} , (B.25)

where AΣ ,
∑

j′∈VD,k∈VS Aj′k(T ) is the total number of demand arrivals during [0, T ], tr

is the r-th demand arrival epoch. We then define

γo(U) , − lim inf
K→∞

1

K
logPK,U(XK(0), T ) , (B.26)

γp(U) , − lim sup
K→∞

1

K
logPK,U(XK(0), T ) . (B.27)

If γo(U) = γp(U), we denote this value by γ(U) and call it the exponent achieved by

policy U .

Theorem B.1. Fix any α ∈ relint(Ω) and any T ≥ T0 for T0 = 1
vα(f∗)

, where vα(·)

was defined in Lemma 2.1 and f∗ is given by Lemma 2.4. Consider a sequence of initial

states XK(0) ∈ ΩK such that XK(0)
K

K→∞−−−→ α and transient behavior over [0, T ]. Then,

the SMW(α) policy achieves exponent γ(α) as given by (2.13). No other policy can do

better: for any policy U , we have γp(U) ≤ γo(U) ≤ γ(α).

Sketch of proof of Theorem B.1. The converse bound γo(U) ≤ γ(α) follows from the

proof of Lemma 2.1. The adversary (nature) can ensure at least this much demand

loss by using the demand arrival rates f∗ given in Lemma 2.4.

Achievability is straightforward to show. The sufficient conditions for exponent opti-

mality in Proposition 2.4 (steepest descent and negative drift) apply to transient behavior

starting at scaled state α and for any finite horizon T ≥ 1/vα(f∗): The proof of the propo-

sition goes through verbatim since it is fundamentally an argument about what happens

over a finite horizon. It then remains to check that SMW(α) satisfies these conditions,
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but we know this is true from Lemmas 2.2 and 2.3.

B.5 Proof of Proposition 2.2 and appendix to Section 2.4.1

In this appendix, the first subsection provides the proof of Proposition 2.2 showing

frequent utilization of supply units under SMW. The second subsection provides the

structural corollaries (of Theorem 2.1) illustrated in Section 2.4.1.

B.5.1 Utilization rate of supply units: Proof of Proposition 2.2

Proof of Proposition 2.2. 1. Because supply units relocate only when assigned to an

incoming demand, we have

ξK,α =
E(number of demand fulfilled in unit time in steady state)

(number of supply units)

=
K · 1Tφ̂1− E(number of lost demand in unit time in steady state)

K

≥ 1Tφ̂1− PK,αp ,

where PK,αp is the pessimistic demand loss probability defined in (2.2). Apply The-

orem 2.1, we have for any α ∈ relint(Ω), limK→∞ ξ
K,α = 1Tφ̂1 > 0 . Note that

the above argument only uses the fact that the probability of losing demand is

diminishing as K → ∞, hence it holds with travel delays as well (apply Theorem

2.2).

2. Sketch of proof. The key observation is that under FIFO, if a supply unit is not

assigned, neither do all the supply units that join the same queue later. Fix a

supply unit which is the end-of-line unit in the i-th queue at time 0. Let ε, ζ be

positive constants to be speficied later. Let T ′ , 4
εη

+ max{T0,
2

λmin
} > 0 where η is

the Lyapunov drift under SMW(α) defined in Lemma 2.3, T0 is defined in Theorem

B.1, and λmin , mini∈VS
∑

j′∈VD φ̂j′i. We have η > 0, λmin > 0, where the former

is ensured by Lemma 2.3, and the latter holds because of Assumption 2.1. We
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consider the time intervals [0, T ′), [T ′, 2T ′), · · · .

In the following, we upper bound the probability that the fixed unit is not assigned

during [kT ′, (k + 1)T ′) given it is not assigned during [0, kT ′) (here k ≥ 0). Let

kT ′ + τK be the first time Lα(X̄K(t)) hit level ζ
K

or below during [kT ′, (k + 1)T ′).

Define the following three events:

EK1 ,

{
τK ≤ 4

εη

∣∣∣∣ X̄K(kT ′)

}
,

EK2 ,
{
Lα(X̄K(t)) < 1 for all t ∈ [kT ′ + τK , (k + 1)T ′ + τK ]

}
,

EK3 ,

∑
j′∈VD

(Āj′i((k + 1)T ′)− Āj′i(kT ′ + τ)) ≤ 3

2

 ,

Note that if event EK1 ∩ EK2 ∩ EK3 happens, then the fixed supply unit must be

assigned during [kT ′, (k+ 1)T ′): otherwise, the length of the i-th queue will exceed

3
2
K, which is impossible. Now we use union bound to lower bound EK1 ∩ EK2 ∩ EK3 .

Using the argument in the proof of Theorem 4 in [45], there exists ε > 0, ζ >

0 independent of X̄K(kT ′) such that for large enough K, E[τK ] ≤ 1
εη
. Let the

undetermined constants ε, ζ to be such ε, ζ. Using Markov’s inequality we have

P(EK1 ) ≥ 1− 1
4

= 3
4
. Using Theorem B.1 we have for large enough K, the probability

of EK2 converges to 1, hence P(EK2 ) ≥ 3
4
for large enough K. Using Chernoff bound

of Poisson arrivals, we have for large enough K, P(EK3 ) ≥ 3
4
. As a result,

P(EK1 ∩ EK2 ∩ EK3 ) ≥ 1

4
.

Let ωKi (x) be the waiting time of the fixed supply unit given the (normalized) initial

state converges to x as K →∞. Then for large enough K, we have

E[ωKi (x)] ≤
∞∑
k=0

(
1− 1

4

)k
1

4
(k + 1)T ′ = 4T ′ <∞ .

This concludes the proof. Note that the above argument only uses the fact that

the probability of losing demand is diminishing as K →∞, and that the Lypuanov
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drift in fluid limit is negative, hence it should hold with travel delays as well (apply

Theorem 2.2).

B.5.2 Appendix to Section 2.4.1: optimal choice of scaling factors

The following corollary of Theorem 2.1 considers the case where there is exactly one

vulnerable subset of demand nodes (Definition 2.3).

Corollary B.1 (If one subset of nodes is vulnerable, the optimal α protects it). Fix a

compatibility graph G. Consider a sequence of demand type distributions (φn)∞n=1 satis-

fying the following properties:

• (Limiting distribution) There is a demand type distribution φ∗ such that limn→∞φn =

φ∗ and such that (G,φ∗) satisfies Assumptions 2.1 and 2.2.

• (Vulnerable subset) There is a subset J1 ∈ J ∗ such that λ∗J1
= µ∗J1

, whereas for

all other subsets J ∈ J ∗\J1, we have λ∗J > µ∗J , cf. Assumption 2.3 (here λ∗J ,

µ∗J and J ∗ are the quantities under distribution φ∗). The distributions φn satisfy

Assumption 2.3; in particular, λnJ1
/µnJ1

→ 1+.

Fix any ε ∈ (0, 1/2). There exists n0 = n0(ε) <∞ such that, for all n > n0, the following

holds on network (G, φn):

(i) (Optimal exponent) The best achievable exponent γ̄ satisfies

γ̄ ∈ [(1− ε)ξJ1 , ξJ1 ] for ξJ1 , log(λnJ1
/µnJ1

) .

As always, SMW policies suffice to achieve it, i.e., γ̄ = supα∈relint(Ω) γ(α).

(ii) (Near optimal α protects supply near J1.) If SMW with scaling factors α ∈ relint(Ω)

achieves a demand-loss exponent γ(α) ≥ (1− ε)ξJ1, then it must be that

1T∂(J1)α ≥ 1− ε .
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(iii) (Example of near optimal α.) The SMW(α) policy with

αi ,


1−ε
|∂(J1)| for all i ∈ ∂(J1) ,

ε
m−|∂(J1)| for all i ∈ VS\∂(J1) .

(B.28)

achieves γ(α) = (1− ε)ξJ1.

Informally speaking, Corollary B.1 says that if there is just one vulnerable subset of

demand nodes J1, then the exponent optimal SMW policy has a resting state which puts

almost all the supply in the neighborhood of J1. The intuition is that the supply at ∂(J1)

follows a random walk which has only slightly positive drift even if the assignment rule

protects it (recall that the definition of the net supply λJ1 is optimistic), and hence it is

optimal to keep the total supply at these nodes at a high resting point, to minimize the

likelihood of depletion.

It is easy to verify that Example 2.2 satisfies the conditions in Corollary B.1: Note that

in the example limn→∞φn = φ∗ where φ∗ is given by (2.16) with δn replaced by 0 and ηn

replaced by 1/8. Clearly, the limit demand type distribution φ∗ satisfies Assumptions 2.1

and 2.2, and φn satisfies Assumption 2.3 for all n > 4. Furthermore, the limited-flexibility

subset {4′} is vulnerable, whereas all the other limited-flexibility subsets (namely, {1′},

{1′, 2′} and {3′, 4′}) are not vulnerable.

We now prove the corollary.

Proof of Corollary B.1. We are given that (G,φn) satisfies Assumption 2.3 for all n ∈ Z+.

We start by showing that for all large enough n, we have that (G,φn) also satisfies

Assumptions 2.1 and 2.2: We are given that (G,φ∗) satisfies Assumptions 2.1 and 2.2.

For any demand type distribution φ, let the support of φ be the set of demand types

which occur with positive probability

support(φ) , {(j′, i) ∈ VD × VS : φj′i > 0} .

Since limn→∞φn = φ∗, it is clear that there exists n0 such that for all n > n0, the support

of φn is a superset of the support of φ∗, i.e., support(φn) ⊇ support(φ∗). It is then clear
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from the form of Assumptions 2.1 and 2.2 that (G,φn) satisfies them, given that (G,φ∗)

satisfies them (the assumptions are requirements on the support of the demand type

distribution, and if a given distribution satisfies them, then it is easy to see that any

distribution supported on a superset of demand types also satisfies them).

For all n > n0, since (G,φn) satisfies all three assumptions, Theorem 2.1 is applicable.

From Theorem 2.1 part 1, we know γ(α) ≤ 1T∂(J1)α log(λnJ1
/µnJ1

) = 1T∂(J1)ξJ1 . We deduce

both part (ii) of the corollary, as well as γ̄ ≤ ξJ1 towards part (i) (to reach the latter

conclusion we further use 1T∂(J1)α ≤ 1 and Theorem 2.3 part 2).

We now prove part (iii), namely, that for α defined in (B.28), SMW(α) achieves an

exponent

γ(α) = (1− ε) log(λnJ1
/µnJ1

) . (B.29)

(It will follow immediately that γ̄ ≥ (1− ε) log(λnJ1
/µnJ1

), completing the proof of part (i)

as well.) We will again use Theorem 2.1 part 1 to establish (B.29). It is clear from the

definition (B.28) that 1T∂(J1)α = 1−ε and hence 1T∂(J1)α log(λnJ1
/µnJ1

) = (1−ε) log(λnJ1
/µnJ1

).

Hence, to show that (B.29) holds, it suffices to show that we have

1T∂(J)α · log(λnJ/µ
n
J) ≥ (1− ε) log(λnJ1

/µnJ1
) (B.30)

for all J ∈ J n\{J1}. We will show that this holds for all large enough n.

Consider any J 6= J1 such that J ∈ J n for infinitely many n (if J ∈ J n for finitely

many n, we can eliminate it from consideration simply by taking n large enough). We

will show that (B.30) holds for J for all n large enough. Note that for the chosen α we

have 1T∂(J)α ≥ ε/m > 0 (since |∂(J)| ≥ 1, using Assumption 2.3), and so it suffices to

show that

lim inf
n→∞

log(λnJ/µ
n
J) > 0 , (B.31)

since the right-hand side of (B.30) tends to 0 as n → ∞. (Here we define any positive

number divided by 0 as ∞.) If J ∈ J ∗, it is easy to see that (B.31) holds: we know
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that λnJ → λ∗J and µnJ → µ∗J > 0, and so log(λnJ/µ
n
J)→ log(λ∗J/µ

∗
J) > 0. To complete the

proof consider the complementary case J /∈ J ∗, i.e., µ∗J = 0. We will establish (B.31)

by showing that λ∗J > 0. Since J ∈ J n for some n > n0, by definition of J n we know

that ∂(J) is a strict subset of VS (else there cannot be a demand type with origin in J

and destination in VS\∂(J)). Consider any i1 ∈ VS\∂(J) and any i2 ∈ ∂(J). Since we

know that φ∗ satisfies Assumption 2.1, there is a path to move supply from i1 to i2, and

so there must exist a demand type (j′, k) with j′ ∈ VD\J and k ∈ ∂(J) with φ∗j′k > 0,

which immediately implies λ∗J > 0. We deduce from λnJ → λ∗J > 0 and µnJ → µ∗J = 0 that

log(λnJ/µ
n
J)→∞, and hence that (B.31) holds.

Since there are only finitely many subsets J to consider, we deduce from (B.31) that

there exists n0 such that, for all n > n0, (B.30) holds for all J ∈ J n\{J1}.

The second corollary considers the case of two non-overlapping vulnerable subsets of

nodes.

Corollary B.2 (If there are two non-overlapping vulnerable subsets, the optimal α pro-

tects them in inverse proportion to their inherent robustness). Fix a compatibility graph

G. Consider a sequence of demand type distributions (φn)∞n=1 satisfying the following

properties:

• (Limiting distribution) There is a demand type distribution φ∗ such that limn→∞φn =

φ∗ and such that (G,φ∗) satisfies Assumptions 2.1 and 2.2.

• (Vulnerable subsets) There are two non-overlapping subsets J1, J2 ∈ J ∗, J1 ∩ J2 =

∅, ∂(J1)∩∂(J2) = ∅ such that λ∗J1
= µ∗J1

and λ∗J2
= µ∗J2

, whereas for all other subsets

J ∈ J ∗\{J1, J2}, we have λ∗J > µ∗J , cf. Assumption 2.3 (here λ∗J , µ∗J and J ∗ are

the quantities under distribution φ∗). The distributions φn satisfy Assumption 2.3;

in particular, λnJ1
/µnJ1

→ 1+ and λnJ2
/µnJ2

→ 1+.

Fix any ε ∈ (0, 1/2). There exists n0 = n0(ε) <∞ such that, for all n > n0, the following

holds on network (G, φn):
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(i) (Optimal exponent) The best achievable exponent γ̄ satisfies

γ̄ ∈ [(1− ε)H,H] for H ,
ξJ1ξJ2

ξJ1 + ξJ2

, ξJ , log(λnJ/µ
n
J) .

As always, SMW policies suffice to achieve it, i.e., γ̄ = supα∈relint(Ω) γ(α).

(ii) (Near optimal α protects supply near J1.) If SMW with scaling factors α ∈ relint(Ω)

achieves a demand-loss exponent γ(α) ≥ (1− ε)H, then it must be that

1T∂(J1)α
ε
=

ξJ2

ξJ1 + ξJ2

and 1T∂(J2)α
ε
=

ξJ1

ξJ1 + ξJ2

,

where a ε
= b represents |a− b| ≤ ε.

(iii) (Example of near optimal α.) The SMW(α) policy with

αi ,


1−ε1
|∂(J1)| ·

ξJ2

ξJ1
+ξJ2

for all i ∈ ∂(J1) ,

1−ε1
|∂(J2)| ·

ξJ1

ξJ1
+ξJ2

for all i ∈ ∂(J2) ,

ε
m−|∂(J1)|−|∂(J2)| for all i ∈ VS\(∂(J1) ∪ ∂(J2))

(B.32)

for ε1 , ε · I
(
VS\(∂(J1) ∪ ∂(J2)) 6= ∅

)
, achieves γ(α) ≥ (1− ε)H.

Corollary B.2 says that if there are two non-overlapping vulnerable subsets of demand

nodes J1 and J2, then the exponent optimal SMW policy has a resting state (i) which puts

almost all the supply in the union of their neighborhoods ∂(J1) ∪ ∂(J2), (ii) divides the

supply between the two neighborhoods in inverse proportion to the inherent robustness

of the vulnerable subsets

1T∂(J2)α

1T∂(J1)α
≈ ξJ1

ξJ2

.

Example 2.3 follows from Corollary B.2: Clearly, the limit demand type distribution

φ∗ in the example satisfies Assumptions 2.1 and 2.2, and φn satisfies Assumption 2.3

for all n > 4/min(1, η). Furthermore, the limited-flexibility subsets {1′} and {4′} are

non-overlapping and vulnerable, whereas all the other limited-flexibility subsets (namely,

{1′, 2′} and {3′, 4′}) are not vulnerable. Note that VS\(∂(J1) ∪ ∂(J2)) = ∅ and hence

ε1 = 0 in the example.
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We now prove the corollary.

Proof of Corollary B.2. The proof is analogous to that of Corollary B.1.

From Theorem 2.1 part we know that for any α, it holds that

γ(α) ≤ 1T∂(J1)α · ξJ1 and γ(α) ≤ 1T∂(J2)α · ξJ2 . (B.33)

Since ∂(J1) ∩ ∂(J2) = ∅, we know that

1T∂(J1)α + 1T∂(J2)α ≤ 1Tα = 1 .

We then deduce from (B.33) that

γ(α) ≤ H =
ξJ1ξJ2

ξJ1 + ξJ2

.

holds for all α ∈ relint(Ω), and hence, using Theorem 2.1 part 2, we obtain γ̄ ≤ H. This

is the upper bound in part (i) of the corollary.

We now prove part (ii). If γ(α) ≥ (1− ε)H then using (B.33) we have

1T∂(J1)α · ξJ1 ≥ (1− ε) · ξJ1ξJ2

ξJ1 + ξJ2

⇒ 1T∂(J1)α ≥ (1− ε) · ξJ2

ξJ1 + ξJ2

≥ ξJ2

ξJ1 + ξJ2

− ε (B.34)

and similarly

1T∂(J2)α ≥
ξJ1

ξJ1 + ξJ2

− ε . (B.35)

But (B.35) further implies

1T∂(J1)α ≤ 1− 1T∂(J2)α ≤
ξJ2

ξJ1 + ξJ2

+ ε .

Combining with (B.34) we have shown 1T∂(J1)α
ε
=

ξJ2

ξJ1
+ξJ2

, and analogously obtain 1T∂(J2)α
ε
=

ξJ1

ξJ1
+ξJ2

. This completes the proof of part (ii).

It remains to show part (iii) which will further imply the lower bound γ̄ ≥ H(1 − ε)

in part (i). Part (iii) states that α defined in (B.32), we have γ(α) ≥ (1− ε)H for large
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enough n. Using Theorem 2.1 part 1, it suffices to show that for large enough n, we have

1T∂(J)αξJ ≥ (1− ε)H (B.36)

for all J ∈ J n. For J = J1, it clear that the left-hand side of (B.36) is (1−ε1)H ≥ (1−ε)H,

and similarly for J2. It remains to consider the other subsets. Note that H n→∞−−−→ 0. Now

to prove that for large enough n, (B.36) holds for all J ∈ J n\{J1, J2}, we can use the

proof of (B.30) (in the proof of Corollary B.1) verbatim.

B.6 Necessity of the Assumptions and the Inferiority

of State-Independent Control

This section shows the necessity of our assumptions, and of state-dependent control,

including the proofs of Propositions B.1, 2.1 and 2.3. It also demonstrates poor perfor-

mance of the naive state-dependent policy by establishing the claim in Example 2.4.

B.6.1 Necessity of Assumption 2.2: Proof of Proposition B.1

Proposition B.1 (Ample flexibility renders the control problem trivial). Consider any

network (G,φ) which satisfies Assumption 2.1 and such that for all j′ ∈ VD and k ∈ VS

such φj′k > 0 it holds that k ∈ ∂(j′). Then for any K ≥ n , |VD|, there is a control

policy which loses an identically zero fraction of demand in the long run. Formally, there

is a policy U such that PK,Up = 0, for PK,Up defined in (2.2) below.

Proof of Proposition B.1. We define the following policy U which ensures no demand

loss in the long run, i.e., PK,Up = 0. Arbitrarily choose n of theK supply units and dedicate

one of the chosen supply units to each of the demand nodes. Suppose the supply unit

dedicated to demand node j′ is initially at supply node i. Since Assumption 2.1 is

satisfied, there is a way to move the supply unit from i to a supply node compatible with
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j′ in a finite (random) time. Move the supply unit to some node in ∂(j′). Similarly,

move each of the n dedicated demand units into the neighborhood of the corresponding

demand node. All this is completed in an initial transient of finite (random) duration (the

expected duration is also finite). Thereafter, for each demand arrival, use the supply unit

dedicated to the origin of the demand to serve it. We are guaranteed that the destination

k ∈ ∂(j′), i.e., the supply unit remains within the neighborhood of j′ after completing

service (we are told that demand types with k /∈ ∂(j′) have zero arrival rate φj′k = 0).

B.6.2 Necessity of CRP Condition: Proof of Proposition 2.1

Proof of Proposition 2.1. There are two cases:

Case 1: There exists J ( VD s.t. λJ < µJ ⇐⇒
∑

i∈∂(J) 1Tφ(i) <
∑

j′∈J 1Tφj′.

The main proof idea in this case is simply that since the net supply to ∂(J) is less

than the net demand originating in J , a positive fraction of demand must be lost.

Consider the following balance equation:

#{demands originating in J during [0, T ] which are lost}

= #{demands originating in J during [0, T ]}

−#{demands originating in J during [0, T ] which are fulfilled}

≥ #{demands originating in J during [0, T ]} −#{supplies assigned from ∂(J) during [0, T ]}

≥
∑

r:tr∈[0,T ]

I{o[r] ∈ J} −
∑

r:tr∈[0,T ]

I{d[r] ∈ ∂(J)} −#{initial supply in ∂(J)} .

The first inequality holds because the demands originating in J can only be fulfilled by

supply units from ∂(J). The second inequality holds because the total number of supply

units assigned from ∂(J) during [0, T ] cannot exceed the initial supply there plus the

number of demand arrivals with destination in ∂(J). Divide both sides by AΣ(T ) which

is the total number of demand arrivals during [0, T ], and let T →∞. By the strong law

of large numbers, we have:

lim inf
T→∞

{fraction of lost in [0, T ]} ≥
∑
j′∈J

1Tφj′ −
∑
i∈∂(J)

1Tφ(i) > 0 .
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Hence a positive fraction of demand will be lost in the long run, and the loss exponent is

0.

Case 2: We have λJ ′ ≥ µJ ′ for all J ′ ∈ J but there exists J ∈ J such that λJ = µJ ⇔∑
i∈∂(J) 1Tφ(i) =

∑
j′∈J 1Tφj′.

The high-level idea in this case is that if all the demand originating in J is served (if

possible), then, at best, the total quantity of supply in ∂(J) follows an unbiased random

walk on 0, 1, . . . , K. Such a random walk spends a positive fraction of time at 0, and all

demand originating in J when there is zero supply in ∂(J) is lost. The proof is somewhat

more intricate than this argument may suggest; in particular because we need to allow

for idling policies (those which sometimes lose demand even though supply is available

at a neighboring node).

Divide the demand arrivals into cycles with MK2 arrivals each, where

M ,
1

µJ
,

for µJ =
∑

j′∈J,k/∈∂(J) φj′k > 0 as before. Without loss of generality, consider the first

cycle t1, · · · , tMK2 . Define random walk Sr with the following dynamics:

• S0 = 1T
∂(J)X(0).

• Sr+1 = Sr + 1 if o[r] /∈ J, d[r] ∈ ∂(J).

• Sr+1 = Sr − 1 if o[r] ∈ J, d[r] /∈ ∂(J).

• Sr+1 = Sr otherwise.

It is not hard to see that if no demand is lost during r ≤MK2 under some policy U , then

Sr is a pathwise upper bound on the number of supply units in ∂(J), namely, 1T
∂(J)X(tr),

for any r ≤MK2. With this observation, we have:

P
(
some demand is lost during r ≤MK2

)
≥ P

(
Sr′ = 0 for some r′ < MK2

)
· (1Tφj′) . (B.37)
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The above is true because when the event on RHS happens, either (1) some demand is

lost before t′r, or (2) no demand is lost before tr′ , then since 0 = Sr′ ≥ 1T
∂(J)X(tr′) we

have 1T
∂(J)X(tr′) = 0 and so any demand with origin in J is lost at tr′+1. Importantly,

(B.37) holds for any policy.

For the given J we have λJ = µJ > 0 and so Sr is a “lazy” simple random walk, which

takes a step with probability 2µJ independently at each r. Define the stopping time τ as

τ , inf
{
r ∈ Z+ : Sr ∈

{
1T
∂(J)X(0)−K,1T

∂(J)X(0) +K
}}

.

Using [Example 4.1.6, 126] on the lazy simple random walk Sr − 1T
∂(J)X(0), we obtain3

E[τ ] =
K2

2µJ
.

Using Markov’s inequality, we have

P
(
τ ≥MK2

)
≤ E[τ ]

MK2
=

1

2

By symmetry

P
(
Sτ − 1T

∂(J)X(0) = −K and τ < mK2
)

=
1

2
P
(
τ < mK2

)
≥ 1

2
· 1

2
=

1

4
. (B.38)

Now, Sτ − 1T
∂(J)X(0) = −K and τ < MK2, i.e., Sr hits 1T

∂(J)X(0)−K during r < MK2,

implies that Sr hits 0 during t < MK2, since Sr must hit 0 (weakly) before it hits

1T
∂(J)X(0)−K. Hence, plugging (B.38) into (B.37) we obtain that

P
(
some demand is lost during r ≤MK2

)
≥ 1Tφj′

4
,

and this uniform and strictly positive lower bound holds for any policy, during any cycle

consisting of MK2 consecutive arrivals.

It follows that

PK,Up ≥ PK,Uo = Ω

(
1

K2

)
,

3Since Sr − 1T
∂(J)X(0) is a lazy version of a simple random walk, which takes a step with probability

2µJ independently at each time, the expectation of the time τ to hit ±K is inflated by a factor of 1/(2µJ)
relative to that of a simple random walk (this follows from using the natural coupling between the steps
in the two walks, and noting that the lazy walk takes expected time 1/(2µJ) between consecutive steps).
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and hence γp(U) = γo(U) = 0 for any U .

B.6.3 Necessity of State-Dependent Control: Proof of Proposi-

tion 2.3

Proof of Proposition 2.3.

• Proof of first part. For notation simplicity, denoteX(tr) byX[r], similar for another

notations. Denote the probability mass function of distribution uj′k[t] by uj′k[t](·).

We first define an “augmented” policy Ũ for any state-independent policy U . Policy

Ũ is also state independent with distribution ũj′k[t], where:

ũj′k[t](i) = uj′k[t](i) +
1

|∂(j′)|
uj′k[t](∅) for i ∈ ∂(j′) ,

ũj′k[t](∅) = 0 .

In the following analysis, we couple U and Ũ in such a way that if U dispatches

from i to serve the t-th demand, then Ũ will do the same.

Divide the demand arrivals into cycles with K2 arrivals each. We will lower bound

the probability of demand loss in any cycle. Without loss of generality, consider

the first cycle [1, K2]. Suppose XK,U [0] = X0. By Assumption 2.2, ∃j′ ∈ VD, k /∈

∂(j′) ⊂ VS such that φj′k > 0. Consider the random walk St with the following

dynamics, which is the “virtual” net change of supply in ∂(j′):

• S0 = 0.

• St+1 = St + 1 if d[t] ∈ ∂(j′) and policy Ũ assigns a supply unit from outside of

∂(j′) to serve it (regardless of whether there is available supply to assign).

• St+1 = St−1 if d[t] /∈ ∂(j′) and policy Ũ assigns a supply unit from ∂(j′) to serve

it (regardless of whether there is available supply to assign).

• St+1 = St if otherwise.
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Using similar argument as in eq. (B.37), we have

P
(
some demand is lost in epoch [1, K2]

)
≥ P

(
SK2 + 1T

∂(j′)X0 > K or < 0
)
≥ P

(
|SK2| > K

)
. (B.39)

Note that SK2 is the sum of K2 independent random variables Zt, where Zt =

St−St−1. Here independence holds because we ignore demand losses in the definition

of the process. Here Zt has support {−1, 0, 1} and satisfies:

P(Zt = −1) ≥ δ , φj′k > 0 , (B.40)

where k /∈ ∂(j). There are two cases:

1. If E[SK2 ] ≤ −K2

2
, then for K ≥ 8, we have

1− P
(
SK2 ∈ [−K,K]

)
≥ 1− P

(
SK2 − E[SK2 ] ≥ −K +

K2

2

)

≥ 1− 2 exp

(
−K

2

32

)
(Hoeffding’s inequality, −K +K2/2 ≥ K2/4)

≥ 1

2
.

Plugging into (B.39) establishes that demand is lost with likelihood at least 1/2.

2. If E[SK2 ] > −K2

2
, then using linearity of expectation and simple algebra we

obtain that the number of t’s such that E[Zt] ≥ −3
4
is at least K2

7
.

Denote the set of these t’s as T . Hence

K2 ≥ Var(SK2) =
K2∑
t=1

Var(Zt) ≥
∑
t∈T

Var(Zt) ≥
K2

7
· δ
(

1− 3

4

)2

=
δ

102
K2 ,

(B.41)

using (B.40).

Note from (B.39) that to show a constant lower bound of demand-loss probability

on [1, K2], it suffices to derive a uniform upper bound on P
(
SK2 ∈ [−K,K]

)
that

is strictly smaller than 1. To this end, apply Theorem 7.4.1 in [127] (Berry-Esseen
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Theorem) to obtain:

sup
x∈R

∣∣∣∣P(SK2 − E[SK2 ] ≤ x
√

Var[SK2 ]
)
− Φ(x)

∣∣∣∣
≤
∑K2

t=1 E|Zt − EZt|3(
Var[SK2 ]

)3/2
≤ 5000

Kδ3/2
, (B.42)

where Φ(·) is the cumulative distribution function of the standard normal dis-

tribution.

Denote B(x, a) , [x− a, x+ a]. Note that there are two subcases (indexed 2(i)

and 2(ii)):

[−K,K] ⊂ B
(
E[SK2 ], 4K

)
, [−K,K] ∩B

(
E[SK2 ], 2K

)
= ∅ .

In subcase 2(i),

P
(
SK2 ∈ [−K,K]

)
≤ P

(
SK2 ∈ B

(
E[SK2 ], 4K

))
,

whereas in subcase 2(ii),

P
(
SK2 ∈ [−K,K]

)
≤ 1− P

(
SK2 ∈ B

(
E[SK2 ], 2K

))
.

Hence

P
(
SK2 ∈ [−K,K]

)
≤ max

{
P
(
SK2 ∈ B

(
E[SK2 ], 4K

))
, 1− P

(
SK2 ∈ B

(
E[SK2 ], 2K

))}
.

(B.43)

Use (B.42) and Var(SK2) ≤ K2 to obtain

P
(
SK2 ∈ B

(
E[SK2 ], 4K

))
≤ P

(
SK2 − E[SK2 ] ≤

√
Var[SK2 ]

4K√
Var[SK2 ]

)

≤ 5000δ−3/2K−1 + Φ

(
4K√

Var[SK2 ]

)
≤ 5000δ−3/2K−1 + Φ

(
50δ−1/2

)
,

1− P
(
SK2 ∈ B

(
E[SK2 ], 2K

))
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= P

(
SK2 − E[SK2 ] ≤

√
Var[SK2 ]

−2K√
Var[SK2 ]

)

+ P

(
SK2 − E[SK2 ] ≥

√
Var[SK2 ]

2K√
Var[SK2 ]

)

≤ 10000δ−3/2K−1 + 2Φ

(
−2K√
Var[SK2 ]

)
≤ 10000δ−3/2K−1 + 2Φ (−2) .

Hence for K > max

{
10000δ−3/2

Φ̄(50δ−1/2)
, 10000δ−3/2

1
2
−Φ(−2)

}
, plugging into (B.43) and then into

(B.39), we obtain

P(some demand is lost in [1, K2]) ≥ min

{
1

2
Φ̄
(

50δ−1/2
)
,
1

2
− Φ(−2)

}
> 0 .

Since we obtained a uniform lower bound on the likelihood of dropping demand in

both cases, we conclude that the steady state demand-loss probability is Ω(1/K2)

as K →∞.

• Proof of second part. Consider any k ∈ VS such that ∃j′ ∈ VD such that (j′, k) ∈

S. Given a demand type distribution φ ∈ D(S), suppose U achieves asymptotic

optimality PK,Uo = o(1), i.e., 1−o(1) fraction of demand is served. This implies that

a fraction
∑

j′∈VD:(j′,k)∈S φj′k−o(1) of demand has destination k and is served under

U . And that a fraction
∑

(j′,i)∈S φj′iuj′k − o(1) of demand is assigned a supply unit

from k and is served under U . (Our proof will focus on the case where uj′k is time

invariant and independent of K. The proof for the general case of time varying

uj′k(t) which can depend on K is very similar, though the latter fraction can now

vary over time, increasing the notational burden. We omit the details.) But in

steady state, the inflow of supply units to node k must be equal to the outflow of

supply units, i.e., it must be that

∑
j′∈VD:(j′,k)∈S

φj′k =
∑

(j′,i)∈S

φj′iuj′k .

This is a knife edge requirement. In particular, the set of φ ∈ D(S) which do not
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satisfy this condition is clearly an open and dense subset of D(S). For all such φ,

the above argument implies that lim infK→∞ PK,Uo > 0, completing the proof.

B.6.4 Proof of Example 2.4

We will prove by contradiction that the naive policy incurs an Ω(1) loss. Suppose the

loss is vanishing PKo = o(1), i.e., all but a o(1) fraction of demands are served. Consider the

subset of supply nodes {3, 4} (demand type (4′1) is entirely dependent on this subset). We

will show that supply units arrive at these nodes slower than they are assigned from these

nodes, which cannot possibly be the case in steady state: The fraction of demands which

lead to a supply unit arriving to {3, 4} is at most
∑

j′∈VD

∑
k∈{3,4} φj′k = φ1′3+φ1′4 = 0.42.

All demands of type (4′1) which are served are assigned a supply unit from {3, 4}. Since

all but o(1) fraction of demands of type (4′1) are served:

(i) There is a supply unit present in at least one of {3, 4} a 1 − o(1) fraction of the

time.

(ii) A fraction of demands 0.4 − o(1) are of type (4′1) and are assigned a supply unit

from {3, 4}.

Now consider demands of type (3′2): When such a demand arrives, using point (i) above,

with probability 1−o(1) there is a supply unit present in at least one of {3, 4}. The other

compatible supply (with the origin 3′) is 2. In all cases where there is a supply unit present

in at least one of {3, 4}, the naive policy assigns a supply unit from one of {3, 4} with

probability at least 1/2, by definition of the policy. It follows that a fraction 1/2−o(1) of

demands of type (3′2) are assigned a supply unit from one of {3, 4}, and hence a fraction

0.1×1/2−o(1) = 0.05−o(1) of demands are of type (3′2) and are assigned a supply unit

from one of {3, 4}. In total (adding across the demand types (4′1) and (3′2)), a supply

unit from one of {3, 4} is assigned to serve at least a fraction 0.45− o(1) of all demand.
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But this (minimum possible) “outflow rate” exceeds the maximum possible “inflow rate”

of 0.42 established above, which is impossible in steady state. Thus we have obtained

a contradiction. We infer that the naive policy incurs an Ω(1) loss in this network. We

further observe that both the (minimum possible) outflow rate and the maximum possible

inflow rate are continuous in φ, hence the above argument goes through for any demand

type distribution which is sufficiently close to φ given by (2.18).

B.7 Extension to Scrip Systems: Proof of Theorem 2.3

The proof of Theorem 2.3 is almost identical to the proof of Theorem 2.1. To avoid

redundancy, we skip the parts of the proof which are mere repetitions of their counterparts

in the proof of Theorem 2.1.

Proof of Theorem 2.3. Recall that the converse result in Theorem 2.1 follows from Lem-

mas 2.1 and 2.4, the achievablity result follows from Lemmas 2.2, 2.3, 2.4 and Proposition

2.4.

Here we can prove a result identical to Lemma 2.1 except that vα(f) is now defined

as

vα(f) , min
∆x∈X ′f

Lα(α + ∆x) ,

where

X ′f ,

∆x

∣∣∣∣∣∣∣
∆xi =

∑
j′∈∂(i) dij′

(∑
k∈VS fkj′

)
−
∑

j′∈VD fij′ , ∀i ∈ VS∑
i∈∂(j′) dij′ = 1, dij′ ≥ 0, ∀i ∈ VS, j′ ∈ VD

 .

Here (dij′)i∈∂(j′) is the chosen service provider distribution over agents neighboring j′

for assigning agents to serve demand of service j′. Lemmas 2.2, 2.3, 2.4 are replaced

by Lemmas B.5, B.6, B.7 below, respectively. Proposition 2.4 continues to hold. This

concludes the proof.

Lemma B.5 (SMS(α) causes steepest descent). Let (Ā, X̄U) be any FSP under any
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non-idling policy U on [0, T ], and consider any α ∈ relint(Ω). For a regular t ∈ [0, T ],

define:

S1(X̄U(t)) ,

{
k ∈ VS : k ∈ argmin

X̄U
k (t)

αk

}
,

S2

(
X̄U(t), ˙̄XU(t)

)
,

{
k ∈ S1(X̄U(t)) : k ∈ argmin

˙̄XU
k (t)

αk

}
.

All the derivatives are well defined since t is regular. We have

L̇α(X̄U(t)) = −
˙̄XU
k (t)

αk
for any k ∈ S2(X̄U(t)) (B.44)

≥ − 1

1T
S2
α

 ∑
i∈VS ,j′∈∂(S2)

˙̄Aij′(t)−
∑

i∈S2,j′∈VD

˙̄Aij′(t)

 (B.45)

for X̄U(t) 6= α and Lα(X̄U(t)) < 1. Inequality (B.45) holds with equality under SMS(α),

i.e., SMS(α) satisfies the steepest descent property in Proposition 2.4.

Proof. We will write S1(X̄(t)) as S1, S2

(
X̄(t), ˙̄X(t)

)
as S2, and mink∈S1

˙̄Xk(t)
αk

as c in the

following. Let (Ā, X̄U) be an FSP under policy U ∈ U .

• Proof of (B.44). The proof is exactly the same as the proof of (2.22).

• Proof of (B.45). For the K-th system, define auxiliary processes:

ĒK,U
ij′k (t) , #

{
Type (i, j′) demand units that arrive during [0, t]

and are served by agents at k under policy U ∈ U} i, k ∈ VS , j′ ∈ VD .

Similar to the proof of (2.23), extend the definition of FSP to (Ā(·), X̄(·), Ē(·)). For

regular times t, we have

∑
i∈S2

˙̄XU
i (t) =

∑
k∈VS ,i∈S2

∑
j′∈∂(i)

˙̄EU
kj′i(t)−

∑
i∈S2,j′∈VD

∑
k∈∂(j′)

˙̄EU
ij′k(t) .

Consider any non-idling policy U ′ ∈ U , it cannot use the agents in S2 to serve the

demand of service types out of ∂(S2). Therefore for any policy U ′ we have

∑
k∈S2

˙̄XU ′

k (t) ≤
∑

i∈VS ,j′∈∂(S2)

˙̄Aij′(t)−
∑

i∈S2,j′∈VD

˙̄Aij′(t) . (B.46)

For SMS(α) policy, using similar argument as in the proof of (2.23), we know that all
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the demands for service type j′ ∈ ∂(S2) will be served by agents i ∈ S2 during (t, t+ ε)

for some ε > 0. Hence we have

∑
k∈S2

˙̄X
SMS(α)
k (t) =

∑
i∈VS ,j′∈∂(S2)

˙̄Aij′(t)−
∑

i∈S2,j′∈VD

∑
k∈∂(j′)

˙̄E
SMS(α)
ij′k (t)

≥
∑

i∈VS ,j′∈∂(S2)

˙̄Aij′(t)−
∑

i∈S2,j′∈VD

˙̄Aij′(t) .

Finally, observe that for any k ∈ S2,

L̇α(X̄(t)) = −
˙̄XU ′

k (t)

αk
= − 1

1T
S2
α

∑
k∈S2

αk
˙̄XU ′

k (t)

αk
= − 1

1T
S2
α

∑
k∈S2

˙̄XU ′

k (t) . (B.47)

Plug (B.46) into (B.47), we know that inequality (B.44) holds, and it becomes equality

for SMS(α) policy.

Lemma B.6 (SMS(α) satisfies negative drift). For any α ∈ relint(Ω), under Assumption

2.5, the policy SMS(α) satisfies the negative drift condition in Proposition 2.4.

Proof. It follows from Lemma B.5 that for any fluid limit under SMS(α) (Ā(·), X̄(t)) and

regular t, we have

L̇α(t) ≤ − min
S2(VS ,S2 6=∅

 ∑
i∈VS ,j′∈∂(S2)

φij′ −
∑

i∈S2,j′∈VD

φij′

 .

Because of Assumption 2.5, we have L̇α(t) < 0, and the rest of the proof proceeds exactly

the same as the proof of Lemma 2.3.

Lemma B.7. Recall the definitions of BJ , λJ and µJ in (2.26). For any α ∈ relint(Ω),

we have γ(α) = minI(VS ,I 6=∅BI log
(
λI
µI

)
.

Proof. We omit the proof because it is almost identical to the proof of Lemma 2.4.

B.8 SMW with Travel Delays: Proof of Theorem 2.2

This section provides a proof of Theorem 2.2, our guarantee of exponentially small

loss under SMW in the presence of travel delays (Section 2.6.1).
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B.8.1 Fluid Sample Paths, Fluid Limits, and Large Deviations

Principle

Similar to the development in Section 2.5.1, we first define the fluid sample paths and

fluid limits of the system with delay. Consider the K-th system under SMW(α) policy.

We make the following definitions:

• For j′ ∈ VD, k ∈ VS, let AK
j′k(·) be an independent Poisson process with rate

φ̂K
j′k = Kφ̂j′k.

• For α ∈ relint(Ω) and i ∈ VS, we denote by XK,α
i (t) the number of available supply

units at node i at time t.

• For j′ ∈ VD, k ∈ VS, we denote by Y K,α
j′k (t) the number of supply units transporting

type (j′, k) demands at time t.

• For j′ ∈ VD, k ∈ VS, we denote by RK,α
j′k (t) be the cumulative number of supply

units that arrive at node k carrying type (j′, k) demand during time [0, t].

Define the scaled version of the above sample paths as follows:

ĀKj′k(t) ,
1

K
AKj′k(t) , X̄K,α

i (t) ,
1

K
X̄K,α
i (t) , (B.48)

Ȳ K,α
j′k (t) ,

1

K
Y K,α
j′k (t) , R̄K,α

j′k (t) ,
1

K
R̄K,α
j′k (t) . (B.49)

We define fluid sample paths and fluid limits as follows.

Definition B.1 (Fluid sample paths). We call (Ā(·), X̄α(·), Ȳα(·), R̄α(·))T a fluid sam-

ple path (under SMW(α)) on [0, T ] if there exists a sequence of sample paths ( ĀK(·),

X̄K,α(·), ȲK,α(·), R̄K,α(·) )∞K=1 (which are defined in (B.48) and (B.49)), such that it has

a subsequence which converges to (Ā(·), X̄α(·), Ȳα(·), R̄α(·)) uniformly on [0, T ].

Definition B.2 (Fluid limits). We call (Ā(·), X̄α(·), Ȳα(·), R̄α(·))T a fluid limit (under

SMW(α)) on [0, T ] if (i) it is a fluid sample path; (ii) we have Āj′k(t) = φ̂j′kt and

R̄j′k(t) = 1
τj′k

∫ t
s=0

Ȳ α
j′k(s)ds, for all j′ ∈ VD, k ∈ VS and all t ∈ [0, T ].

265



Large deviations principle for M/M/∞ queue. Because the system with travel

delay consists of M/M/∞ queues, the following result [Theorem 12.18, 128] is useful.

Let Y K(·) be the sample path of the content of an M/M/∞ queue with job arrival

rate Kφ̂ and service rate τ−1; AK(t) be the number of job arrivals to the queue during

[0, t]; RK(t) be the number of served jobs during [0, t]. Let

Ȳ K(t) ,
1

K
Y K(t) , ĀK(t) ,

1

K
AK(t) , R̄K(t) ,

1

K
RK(t) .

Let µK be the law of (Ȳ K(·), ĀK(·), R̄K(·)) in (L∞[0, T ])3. Let Λ∗(`, ·) be the large

deviation rate function of Poisson random variable with mean `:

Λ∗(`, f) ,

 f log f
`
− f + ` if f > 0 ,

∞ otherwise .
(B.50)

For any set Γ, let Γ̄ be its closure, and Γo be its interior. We have the following sample

path large deviations principle.4

Fact B.1. For measures {µK} defined above, and any arbitrary measurable set Γ ⊆

(L∞[0, T ])3, we have

− inf
(Ȳ ,Ā,R̄)∈Γo

IT (Ȳ ) ≤ lim inf
K→∞

1

K
log µK(Γ) ≤ lim sup

K→∞

1

K
log µK(Γ) ≤ − inf

(Ȳ ,Ā,R̄)∈Γ̄
IT (Ȳ ) ,

(B.51)

where the rate function is:

IT (Ȳ , Ā, R̄) ,



∫ T
0

(
Λ∗
(
φ̂, ˙̄A(t)

)
+ Λ∗

(
Ȳ (t)
τ
, ˙̄R(t)

))
dt if Ȳ (·), Ā(·), R̄(·) ∈ AC[0, T ] ,

Ȳ (0) = 0 ,

∞ otherwise .
(B.52)

Here AC[0, T ] is the space of absolutely continuous functions on [0, T ].
4The original formulation in [128] is more compact than the following one, but the following formu-

lation turns out to be more useful in our analysis.
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B.8.2 Lyapunov Functions and Drift

Our analysis relies on a novel family of piecewise linear Lyapunov functions, which

we construct below. Let Ω` be the (`− 1)-dimensional simplex.

Definition B.3. For each α ∈ relint(Ω), define Lyapunov function Lα(x,y) : Ωm+n×m →

R as

Lα(x,y) = L1,α(x) +
2

mini∈VS αi
L2(y)

where L1,α(x) = β −mini∈VS
xi
αi
, L2(y) =

∑
j′∈VD,k∈VS |yj′k − τjkφ̂j′k|.

The intuition of such choices of Lyapunov functions is as follows. The first part of the

Lyapunov function, L1,α(x), is almost identical to the Lyapunov function for the no-delay

case (see Definition 2.7) except for the constant term since only β portion of the cars are

available at the system equilibrium. It captures how much the current distribution of

available supply units deviates from the distribution at equilibrium. The second part of

the Lyapunov function characterizes the deviation of the number of in-transit cars from

their typical values. The Lyapunov function attains minimum value 0 at Ωm+n×m at

( (βαi)i∈VS , (τj′kφ̂j′k)j′∈VD,k∈VS ), and is strictly positive elsewhere on Ωm+n×m.

Same as before, the demand-loss probability can be upper bounded by the probability

that the Lyapunov function exceeds a certain value. Note that demand loss only happens

when xi = 0 for some i ∈ VS, which implies L1,α = β. In the following, we bound the

probability of the event where Lα(X̄, Ȳ) ≥ β.

Because we only need an achievability bound, it suffices to prove a result analogous

to Lemma B.3. As a first step, we establish in the following lemma that the Lyapunov

function has negative drift under SMW(α) policies in the fluid limit.

A time t ∈ (0, T ) is said to be a regular point of an FSP (Ā(·), X̄α(·), Ȳα(·), R̄α(·))T

if Ā(·), X̄α(·), Ȳα(·), R̄α(·), Lα(X̄α(·), Ȳα(·)) are all differentiable at time t.

Because of the Large Deviations Principle (Facts 2.1 and B.1), it will suffice in our

analysis to consider only the FSPs that have absolutely continuous demand sample paths

267



Ā(·). Now, if Ā(·) is absolutely continuous, then so are X̄α(·) and Lα(X̄α(·)), and as a

result almost all t are regular.

As a first step to bound the drift of Lα we first bound the drift of L1,α in Lemma B.8.

For notation simplicity, we drop the FSP’s superscript α.

Lemma B.8. Let (Ā(·), X̄(·), Ȳ(·), R̄(·))T be any FSP under SMW(α) on [0, T ], where

α ∈ relint(Ω). Define:

S1(X̄(t)) ,

{
k ∈ VS : k ∈ argmin

X̄k(t)

αk

}
,

S2

(
X̄(t), ˙̄X(t)

)
,

{
k ∈ S1(X̄(t)) : k ∈ argmin

˙̄Xk(t)

αk

}
. (B.53)

For a regular t ∈ [0, T ], we have

L̇1,α(X̄(t)) ≤ − 1

1T
S2
α

 ∑
j′∈VD,k∈S2

˙̄Rj′k(t)−
∑

j′∈VD:∂(j)⊂S2,k∈VS

˙̄Aj′k(t)

 .

Proof. From (B.19) we have

L̇1,α(X̄(t)) = − 1

1T
S2
α

∑
k∈S2

˙̄Xk(t) . (B.54)

Because we are considering a closed system, it holds that:

∑
j′∈VD,k∈VS

˙̄Yj′k(t) +
∑
k∈VS

˙̄Xk(t) = 0 . (B.55)

Therefore

∑
k∈S2

˙̄Xk(t) = −
∑

j′∈VD,k∈VS

˙̄Yj′k(t)−
∑

k∈VS\S2

˙̄Xk(t) . (B.56)

Note that

˙̄Yj′k(t) ≤ ˙̄Aj′k(t)− ˙̄Rj′k(t) , (B.57)

where the equality is achieved when no type (j′, k) demand is lost at time t. Using the

same argument as in the proof of Lemma 2.2, we know that under SMW(α) policy all

demand in ∂(VS\S2) are served by supplies in VS\S2, and that no demand whose origin
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is in ∂(VS\S2) is lost. We have

∑
k∈VS\S2

˙̄Xk(t) =
∑

j′∈VD,k∈VS\S2

˙̄Rj′k(t)−
∑

j′∈∂(VS\S2),k∈VS

˙̄Aj′k(t) . (B.58)

Plug in (B.57) and (B.58) to (B.56), we have

∑
k∈S2

˙̄Xk(t) ≥
∑

j′∈VD,k∈VS

(
˙̄Rj′k(t)− ˙̄Aj′k(t)

)
−

∑
j′∈VD,k∈VS\S2

˙̄Rj′k(t) +
∑

j′∈∂(VS\S2),k∈VS

˙̄Aj′k(t)

=
∑

j′∈VD,k∈S2

˙̄Rj′k(t)−
∑

j′∈VD:∂(j)⊂S2,k∈VS

˙̄Aj′k(t) .

Plugging the above to (B.54) and we conclude the proof.

Now we are ready to bound the drift of Lα.

Lemma B.9. Let (Ā(·), X̄(·), Ȳ(·), R̄(·))T be any FSP under SMW(α) on [0, T ], where

α ∈ relint(Ω). Recall the definition of S2 in (B.53).

• If for any i ∈ S2, X̄i(t) > 0 or X̄i(t) = 0, ˙̄Xi(t) > 0, we have

L̇(X̄(t), Ȳ(t))

, F1(X̄(t), Ȳ(t), ˙̄A(t), ˙̄R(t))

≤ − 1

αmin

∑
j′∈VD,k∈VS

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣
− 1

1T
S2
α

 ∑
j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)


+

3

αmin

∑
j′∈VD,k∈VS

∣∣∣ ˙̄Aj′k(t)− φ̂j′k
∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣
 .

• If for i ∈ S2, X̄i(t) = 0 and ˙̄Xi(t) = 0, we have

L̇(X̄(t), Ȳ(t))

, F2(X̄(t), Ȳ(t), ˙̄A(t), ˙̄R(t))

≤ − 2

αmin

 ∑
j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)


− 2

αmin

∑
j′∈VD,k∈S2

[
φ̂j′k −

Ȳj′k(t)

τj′k

]−
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− 2

αmin

∑
j′∈VD,k /∈S2

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣
+

4

αmin

∑
j′∈VD,k∈VS

∣∣∣ ˙̄Aj′k(t)− φ̂j′k
∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣
 .

Proof. Recall the definition of S2 in (B.53). To analyze the Lyapunov drift of Lα, we

consider two cases depending on, roughly speaking, whether the queues in S2 are empty

at t and shortly after t.

• Case 1: for any i ∈ S2, X̄i(t) > 0 or X̄i(t) = 0, ˙̄Xi(t) > 0. Let αmin , mini∈VS αi. We

have

L̇α(X̄(t), Ȳ(t))

≤ − 1

1T
S2
α

 ∑
j′∈VD,k∈S2

˙̄Rj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k

 (B.59)

− 2

αmin

∑
j′∈VD,k∈VS

(
˙̄Aj′k(t)− ˙̄Rj′k(t)

)
(
I
{
Ȳj′k(t) ≤ φ̂j′kτj′k

}
− I
{
Ȳj′k(t) > φ̂j′kτj′k

})
(B.60)

, F1(X̄(t), Ȳ(t), ˙̄A(t), ˙̄R(t)) .

Here the term (B.59) comes from Lemma B.8. Note that

∑
j′∈VD,k∈S2

˙̄Rj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k

=

 ∑
j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)

− ∑
j′∈VD,k∈S2

(
˙̄Aj′k(t)− ˙̄Rj′k(t)

)
Simple algebra yields that: for j′ ∈ VD, k ∈ VS.

˙̄Aj′k(t)− ˙̄Rj′k(t) ≤ φ̂j′k −
Ȳj′k(t)

τj′k
+
∣∣∣ ˙̄Aj′k(t)− φ̂j′k

∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣ .
Combined, we have

∑
j′∈VD,k∈S2

˙̄Rj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k

270



≥

 ∑
j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)

− ∑
j′∈VD,k∈S2

(
φ̂j′k −

Ȳj′k(t)

τj′k

)

−
∑

j′∈VD,k∈S2

∣∣∣ ˙̄Aj′k(t)− φ̂j′k
∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣
 .

Now we focus on the term (B.60). For j′ ∈ VD, k ∈ VS, we have(
˙̄Aj′k(t)− ˙̄Rj′k(t)

)(
I
{
Ȳj′k(t) ≤ φ̂j′kτj′k

}
− I
{
Ȳj′k(t) > φ̂j′kτj′k

})
=
(

˙̄Aj′k(t)− ˙̄Rj′k(t)
)I

{
φ̂j′k ≥

Ȳj′k(t)

τj′k

}
− I

{
φ̂j′k <

Ȳj′k(t)

τj′k

}
=

( ˙̄Aj′k(t)− φ̂j′k
)
−

(
˙̄Rj′k(t)−

Ȳj′k(t)

τj′k

)
I

{
φ̂j′k ≥

Ȳj′k(t)

τj′k

}
− I

{
φ̂j′k <

Ȳj′k(t)

τj′k

}
+

(
φ̂j′k −

Ȳj′k(t)

τj′k

)I

{
φ̂j′k ≥

Ȳj′k(t)

τj′k

}
− I

{
φ̂j′k <

Ȳj′k(t)

τj′k

} .

Note that(
φ̂j′k −

Ȳj′k(t)

τj′k

)I

{
φ̂j′k ≥

Ȳj′k(t)

τj′k

}
− I

{
φ̂j′k <

Ȳj′k(t)

τj′k

} =

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣ ,
and that ( ˙̄Aj′k(t)− φ̂j′k

)
−

(
˙̄Rj′k(t)−

Ȳj′k(t)

τj′k

)
I

{
φ̂j′k ≥

Ȳj′k(t)

τj′k

}
− I

{
φ̂j′k <

Ȳj′k(t)

τj′k

}
≥ −

∣∣∣ ˙̄Aj′k(t)− φ̂j′k
∣∣∣− ∣∣∣∣∣ ˙̄Rj′k(t)−

Ȳj′k(t)

τj′k

∣∣∣∣∣ .
Therefore we have(

˙̄Aj′k(t)− ˙̄Rj′k(t)
)(

I
{
Ȳj′k(t) ≤ φ̂j′kτj′k

}
− I
{
Ȳj′k(t) > φ̂j′kτj′k

})
≥

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣−
∣∣∣ ˙̄Aj′k(t)− φ̂j′k

∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣
 .
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Plugging into (B.59) and (B.60), we have

F1(X̄(t), Ȳ(t), ˙̄A(t), ˙̄R(t))

≤ − 1

αmin

∑
j′∈VD,k∈VS

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣− 1

1T
S2
α

 ∑
j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)


+

3

αmin

∑
j′∈VD,k∈VS

∣∣∣ ˙̄Aj′k(t)− φ̂j′k
∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣
 .

• Case 2: for i ∈ S2, X̄i(t) = 0 and ˙̄Xi(t) = 0. In this case, L̇1,α(X̄(t)) = 0. Similar to

the proof of Lemma 2.2, for i, k ∈ VS, j′ ∈ VD, let Ēij′k(t) be the FSP of the number

of type (j′, k) demand served by supply units at i during [0, t]. Define

Uj′k(t) , Aj′k(t)−
∑
i∈∂(j′)

Ēij′k(t)

as the number of type (j′, k) demand lost during [0, t].

We have

L̇2(Ȳ(t))

= −
∑

j′∈VD,k∈VS

(
˙̄Aj′k(t)− ˙̄Uj′k(t)− ˙̄Rj′k(t)

)
I
{
Ȳj′k(t) ≤ φ̂j′kτj′k

}
+

∑
j′∈VD,k∈VS

(
˙̄Aj′k(t)− ˙̄Uj′k(t)− ˙̄Rj′k(t)

)
I
{
Ȳj′k(t) > φ̂j′kτj′k

}
≤ −

∑
j′∈VD,k∈VS

(
˙̄Aj′k(t)− ˙̄Rj′k(t)

)I

{
φ̂j′k ≥

Ȳj′k(t)

τj′k

}
− I

{
φ̂j′k <

Ȳj′k(t)

τj′k

}
+

∑
j′∈VD,k∈VS

˙̄Uj′k(t) .

Note that by definition of the set S2, no queue in ∂(VS\S2) loses demand at time t.

We have

∑
j′∈VD,k∈VS

˙̄Uj′k(t) =
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)−
∑

j′∈VD,k∈S2

˙̄Rj′k(t) .

Combining, and using the same algebra as in Case 1, we have:

L̇2(Ȳ(t))
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= −
∑

j′∈VD,k∈VS

(
˙̄Aj′k(t)− ˙̄Rj′k(t)

)I

{
φ̂j′k ≥

Ȳj′k(t)

τj′k

}
− I

{
φ̂j′k <

Ȳj′k(t)

τj′k

}
+

∑
j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)−
∑

j′∈VD,k∈S2

˙̄Rj′k(t)

≤ −
∑

j′∈VD,k∈VS

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣+
∑

j′∈VD,k∈VS

∣∣∣ ˙̄Aj′k(t)− φ̂j′k
∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣


−

 ∑
j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)

+
∑

j′∈VD,k∈S2

(
˙̄Aj′k(t)− ˙̄Rj′k(t)

)

≤ −

 ∑
j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)

− ∑
j′∈VD,k∈S2

[
φ̂j′k −

Ȳj′k(t)

τj′k

]−

−
∑

j′∈VD,k /∈S2

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣+ 2
∑

j′∈VD,k∈VS

∣∣∣ ˙̄Aj′k(t)− φ̂j′k
∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣
 .

Here [x]− , −min{x, 0}.

Therefore we have

L̇(X̄(t), Ȳ(t))

, F2(X̄(t), Ȳ(t), ˙̄A(t), ˙̄R(t))

≤ − 2

αmin

 ∑
j′∈VD,k∈S2

˙̄Aj′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

˙̄Aj′k(t)


− 2

αmin

∑
j′∈VD,k∈S2

[
φ̂j′k −

Ȳj′k(t)

τj′k

]−

− 2

αmin

∑
j′∈VD,k /∈S2

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣
+

4

αmin

∑
j′∈VD,k∈VS

∣∣∣ ˙̄Aj′k(t)− φ̂j′k
∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣
 .

Using the result in Lemma B.9, we can show that the system has strictly negative Lya-

punov drift in the fluid limit, and that the drift remains negative for perturbed demand

arrival rates and travel times given the perturbation is small enough.
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Lemma B.10. Fix α ∈ relint(Ω). Then there exists η > 0 and ε > 0 such that for

all FSPs (Ā(·), X̄(·), Ȳ(·), R̄(·))T (under the SMW(α) policy), if t ∈ (0, T ) is regular,

Lα(X̄(t), Ȳ(t)) > β
2
, and that ˙̄A(t) ∈ B(φ̂, ε), maxj′∈VD,k∈VS | ˙̄Rj′k − Ȳj′k(t)/τj′k| ≤ ε, we

have L̇α(X̄(t), Ȳ(t)) ≤ −η.

Proof. Same as in the proof of Lemma B.9, we consider two cases. Recall the definition

of S2 in (B.53).

• If for any i ∈ S2, X̄i(t) > 0 or X̄i(t) = 0, ˙̄Xi(t) > 0, we have

L̇(X̄(t), Ȳ(t))

, F1(X̄(t), Ȳ(t), ˙̄A(t), ˙̄R(t))

≤ − 1

αmin

∑
j′∈VD,k∈VS

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣︸ ︷︷ ︸
(I)

− 1

1T
S2
α

 ∑
j′∈VD,k∈S2

φ̂j′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

φ̂j′k(t)


︸ ︷︷ ︸

(II)

.

Depending on whether S2 = VS, there are two sub-cases:

– When S2 6= VS, if follows from Assumption 2.3 that (II)> 0. Since (I)≥ 0, we

have

L̇(X̄(t), Ȳ(t)) ≤ −(II) ≤ −min{λmin, ξ} .

Here λmin , mini∈VS 1Tφ̂(i) > 0 is the minimum supply arrival rate at any

node (that has positive arrival rate), and

ξ , min
J(VD,J 6=∅

∑
i∈∂(J)

1Tφ̂(i) −
∑
j′∈J

1Tφ̂j′

 > 0

is the Hall’s gap of the system.

– When S2 = VS, observe that (II)= 0, hence we only analyze (I). Recall that

we focus on the case where Lα(X̄(t), Ȳ(t)) > β
2
. Denote κ ,

∑
i∈VS X̄i(t). We
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have

∑
j′∈VD,k∈VS

(
Ȳj′k(t)− φ̂j′kτj′k

)
= β − κ ,

hence

∑
j′∈VD,k∈VS

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣ ≥ |β − κ|τmax

. (B.61)

Here τmax , maxj′∈VD,k∈VS τj′k. Plug in to the expression of F1, we have

L̇(X̄(t), Ȳ(t)) ≤ − 1

αmin

|β − κ|
τmax

.

On the other hand, since S2 = VS, it must be that X̄i(t) = αiκ for all i ∈ VS,

hence

L1,α(X̄(t)) = β − κ .

Since Lα(X̄(t), Ȳ(t)) > β
2
, we have

L2(Ȳ(t)) >

(
κ− β

2

)
αmin

2
.

When κ < 3
4
β, plugging into (B.61), we have

L̇α(X̄(t), Ȳ(t)) ≤ − β

4τmax

.

When κ ≥ 3
4
β, we have

L2(Ȳ(t)) =
∑

j′∈VD,k∈VS

|Ȳj′k(t)− τj′kφ̂j′k| ≥
αminβ

8
.

hence

∑
j′∈VD,k∈VS

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣ ≥ αminβ

8τmax

,

therefore

L̇α(X̄(t), Ȳ(t)) ≤ −αminβ

8τmax

.
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Combine all the above analysis, we have

L̇α(X̄(t), Ȳ(t)) ≤ −min

{
λmin, ξ,

αminβ

8τmax

}
.

• If for i ∈ S2, X̄i(t) = 0 and ˙̄Xi(t) = 0, we have

L̇(X̄(t), Ȳ(t))

, F2(X̄(t), Ȳ(t), ˙̄A(t), ˙̄R(t))

≤ − 2

αmin

 ∑
j′∈VD,k∈S2

φ̂j′k(t)−
∑

j′:∂(j′)⊂S2,k∈VS

φ̂j′k(t)

− 2

αmin

∑
j′∈VD,k∈S2

[
φ̂j′k −

Ȳj′k(t)

τj′k

]−

− 2

αmin

∑
j′∈VD,k /∈S2

∣∣∣∣∣φ̂j′k − Ȳj′k(t)

τj′k

∣∣∣∣∣ .
– When S2 6= VS, we have

L̇(X̄(t), Ȳ(t)) ≤ −min{λmin, ξ} .

– When S2 = VS. Since all the cars are in-transit, we have

∑
j′∈VD,k∈VS

φ̂j′kτj′k −
∑

j′∈VD,k∈VS

Ȳj′k(t) = −β

Hence

−
∑

j′∈VD,k∈VS

[
φ̂j′kτj′k − Ȳj′k(t)

]−
≤ −β ,

and

−
∑

j′∈VD,k∈VS

[
φ̂j′k −

Ȳj′k(t)

τj′k

]−
≤ − β

τmax

,

Therefore

L̇(X̄(t), Ȳ(t)) ≤ − β

τmax

.

Combine all the cases above, we have for any fluid limit, when Lα(X̄(t), Ȳ(t)) > β
2
, we

have

L̇α(X̄(t), Ȳ(t)) ≤ −min

{
λmin, ξ,

αminβ

8τmax

}
.
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Repeat the analysis above for FSP, we have

L̇α(X̄(t), Ȳ(t)) ≤ −min

min
J∈J

 ∑
j′∈VD,k∈∂(J)

˙̄Aj′k −
∑

j′∈J,k∈VS

˙̄Aj′k

 ,min
i∈VS

∑
j′∈VS

˙̄Aj′i,
αminβ

8τmax


+

4

αmin

∑
j′∈VD,k∈VS

∣∣∣ ˙̄Aj′k(t)− φ̂j′k
∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣
 . (B.62)

Using the same argument as at end of proof of Lemma 2.3, we conclude that the drift

is strictly negative for small enough perturbation of demand arrival rates and travel

times.

B.8.3 Proof of Theorem 2.2

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Since we only need an achievability result, it suffices to repeat

Steps 1 and 2 in the proof of Lemma B.3. Since the technical analysis is almost identical,

we make the following claim and omit its proof.

Claim: Consider the system under SMW(α) policy for some α ∈ relint(Ω). Let PK,Up

be the pessimistic demand-loss probability defined in (2.1), then we have

− lim sup
K→∞

1

K
logPK,Up ≥ β

2
γAB(α) . (B.63)

Here for fixed T > 0,

γAB(α) , inf
v>0,f ,(Ā,X̄,Ȳ,R̄)

∑
j′∈VD,k∈VS Λ∗(φ̂j′k, fj′k) +

∑
j′∈VD,k∈VS Λ∗(

Ȳj′k(t)

τj′k
, rj′k)

v
,

where (Ā, X̄, Ȳ, R̄) is a FSP on [0, T ] under SMW(α) such that for some regular t ∈ (0, T )

˙̄A(t) = f , ˙̄R(t) = r , Lα(X̄(t), Ȳ(t)) ∈
(
β

2
, β

)
, L̇α(X̄(t), Ȳ(t)) = v .

It remains to show that γAB(α) > 0. Recall eq. (B.62):

L̇α(X̄(t), Ȳ(t)) ≤ −min

min
J∈J

 ∑
j′∈VD,k∈∂(J)

˙̄Aj′k −
∑

j′∈J,k∈VS

˙̄Aj′k

 ,min
i∈VS

∑
j′∈VS

˙̄Aj′i,
αminβ

8τmax


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+
4

αmin

∑
j′∈VD,k∈VS

∣∣∣ ˙̄Aj′k(t)− φ̂j′k
∣∣∣+

∣∣∣∣∣ ˙̄Rj′k(t)−
Ȳj′k(t)

τj′k

∣∣∣∣∣
 .

For v > 0, define

γ(v) , min
f>0,r>0,y∈Ωn×m

∑
j′∈VD,k∈VS

Λ∗(φ̂j′k, fj′k) +
∑

j′∈VD,k∈VS

Λ∗

(
yj′k
τj′k

, rj′k

)

s.t. −min

min
J∈J

 ∑
j′∈VD,k∈∂(J)

fj′k −
∑

j′∈J,k∈VS

fj′k

 ,min
i∈VS

∑
j′∈VS

fj′i,
αminβ

8τmax


+

4

αmin

∑
j′∈VD,k∈VS

∣∣∣fj′k − φ̂j′k∣∣∣+

∣∣∣∣∣rj′k − yj′k
τj′k

∣∣∣∣∣
 ≥ v .

Then it holds that γAB(α) ≥ infv>0
γ(v)
v
. We define the following three quantities:

γ1(v) , min
f>0

∑
j′∈VD,k∈VS

Λ∗(φ̂j′k, fj′k)

s.t. −min

min
J∈J

 ∑
j′∈VD,k∈∂(J)

fj′k −
∑

j′∈J,k∈VS

fj′k

 ,min
i∈VS

∑
j′∈VS

fj′i,
αminβ

8τmax


≥ −1

2
min

{
ξ, λmin,

αminβ

8τmax

}
.

γ2(v) , min
f>0

∑
j′∈VD,k∈VS

Λ∗(φ̂j′k, fj′k)

s.t.
4

αmin

∑
j′∈VD,k∈VS

∣∣∣fj′k − φ̂j′k∣∣∣ ≥ v

2
+

1

4
min

{
ξ, λmin,

αminβ

8τmax

}
.

γ3(v) , min
r>0,y∈Ωn×m

∑
j′∈VD,k∈VS

Λ∗

(
yj′k
τj′k

, rj′k

)

s.t.
4

αmin

∑
j′∈VD,k∈VS

∣∣∣∣∣rj′k − yj′k
τj′k

∣∣∣∣∣ ≥ v

2
+

1

4
min

{
ξ, λmin,

αminβ

8τmax

}
.

Note that if (f , r,y) satisfies the constraint in the definition of γ(v), then it must satisfy

at least one of the constraints in the definition of γ1(v), γ2(v), and γ3(v). Hence

γ(v) ≥ min{γ1(v), γ2(v), γ3(v)} .

Therefore

inf
v>0

γ(v)

v
≥ min

{
inf
v>0

γ1(v)

v
, inf
v>0

γ2(v)

v
, inf
v>0

γ3(v)

v

}
.
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Now we bound the three quantities on the RHS one by one. Using the same argument

as in the no-delay case, we can show that there exists δ1 > 0 such that infv>0
γ1(v)
v

> δ1.

For the other two quantities, we first prove the following bound. For ` > 0, f > 0,

since d2

df2 Λ∗(`, f) = 1
f
, using Taylor expansion we have

Λ∗(`, f) = f log
f

`
− f + ` ≥ 1

2f
(f − `)2 .

If f ≤ 2φ we have

1

2f
(f − φ)2 ≥ 1

4φ
(f − φ)2

Otherwise f−φ
f
≥ 1

2
, hence

1

2f
(f − φ)2 ≥ 1

2
(f − φ) .

Combined, we have

Λ∗(`, f) ≥ 1

max{2, 4φ}
min

{
(f − φ)2, |f − φ|

}
.

Looking at the constraint in the definition of γ2(v), it can be deduced that there must

exist j̃′ ∈ VD, k̃ ∈ VS such that

|fj̃′k̃ − φ̂j̃′k̃| ≥
αmin

4nm

(
v

2
+

1

4
min

{
ξ, λmin,

αminβ

8τmax

})
.

Denote g , 1
4

min
{
ξ, λmin,

αminβ
8τmax

}
> 0. Hence

γ2(v)

v
≥

Λ∗
j̃′k̃

(φ̂j̃′k̃, fj̃′k̃)

v

≥ 1

max{2, 4φ̂max}
1

v
min

{
α2

min

16n2m2

(
v

2
+ g

)2

,
αmin

8nm
v

}

≥ 1

max{2, 4φ̂max}
1

v
min

{
α2

min

16n2m2

(
g2 + gv

)
,
αmin

8nm
v

}

≥ 1

max{2, 4φ̂max}
min

{
α2

ming

16n2m2
,
αmin

8nm

}
.

Note that the last term is independent of v and is strictly positive. Therefore there exists

δ2 > 0 such that infv>0
γ2(v)
v

> δ2. Similarly, we can show that there exists δ3 > 0 such
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that infv>0
γ3(v)
v

> δ3. This establishes that γAB(α) > 0 and concludes the proof.

B.9 Classical CRP Condition Implies Assumption 3

In this section, we show that the Assumption 3 in our paper is implied by the CRP

condition defined in [17]. This justifies our naming of Assumption 3 as the CRP condition.

Note that the CRP condition is defined for open networks in the literature. To

facilitate the comparison between the CRP condition and Assumption 3, we first define

an open network counterpart of our model: Consider an one-hop queueing system with

m queues (indexed by i ∈ VS) and n servers (indexed by j′ ∈ VD). Jobs arrive to the i-th

queue at rate

λi ,
∑
j′∈VD

φ̂j′i , (B.64)

and the j′-th server processes jobs at rate

µj′ ,
∑
k∈VS

φ̂j′k . (B.65)

Let G = (VS ∪ VD, E) be the compatibility graph defined in our paper, and denote the

neighborhood of i ∈ VS (or j′ ∈ VD) in G by ∂(i) (or ∂(j′)). To defined the classical

CRP condition, we first need to make the following definitions. Define the (primal) static

planning problem as the following linear program:

minimizex,ρ ρ

subject to
∑
j′∈∂(i)

µj′xij′ = λi ∀i ∈ VS ,

∑
i∈∂(j′)

xij′ ≤ ρ ∀j′ ∈ VD ,

xij′ ≥ 0 ∀i ∈ VS , j′ ∈ VD .

The dual problem of the static planning problem is the following:

maximizey,z
∑
i∈VS

λiyi
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subject to zj′ ≥ yiµj′ ∀(i, j′) ∈ E,∑
j′∈VD

zj′ = 1

zj′ ≥ 0 ∀j′ ∈ VD .

Assumption B.1 (Heavy-traffic CRP condition (Assumptions 1,2 in [17])). A triple

(λ,µ, G) is said to be in heavy traffic if the primal static planning problem has a unique

solution (x∗, ρ∗), where
∑

i∈∂(j′) x
∗
ij′ = 1 for all j′ ∈ VD and ρ∗ = 1. The triple is said to

satisfy the CRP condition if the dual static planning problem has a nonnegative, unique

optimal solution (y∗, z∗).

Proposition B.2. For primitives (φ̂, G), define λ,µ according to (B.66) and (B.67). If

(λ,µ, G) satisfy Assumption B.1, then (φ̂, G) satisfy Assumption 3 in our paper.

Proof of Proposition B.2. Consider (φ̂, G) such that (λ,µ, G) satisfy Assumption B.1.

Let (y∗, z∗) be the unique optimal solution to the dual static planning problem. Applying

Corollary A.1 in [17], we have that y∗ is the unique vector which satisfies

max
v∈V

y∗ · v = 0 , (B.66)∑
i∈VS

λiy
∗
i = 1 . (B.67)

Here V is defined as

V ,

v ∈ Rm

∣∣∣∣∣∣∣
vi =

∑
j′∈∂(i) dij′µj′ − λi, ∀i ∈ VS∑

i∈∂(j′) dij′ ≤ 1, dij′ ≥ 0, ∀i ∈ VS, j′ ∈ VD

 ,

which is the set of all possible flow rates out of the queues.

Let ỹ = 1∑
i∈VS

λi
1, we will show that ỹ satisfies (B.66) and (B.67), and hence y∗ = ỹ.

Eq. (B.67) is easy to verify. For (B.66), because (λ,µ, G) satisfy Assumption B.1, we

have

ỹ · v =
1∑

i∈VS λi

∑
i∈VS

∑
j′∈∂(i)

dij′µj′ −
∑
i∈VS

λi

 =
1∑

i∈VS λi

∑
j′∈VD

µj′
∑
i∈∂(j′)

dij′ −
∑
i∈VS

λi

 .
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According to the definition of V , we have
∑

i∈∂(i) dij′ ≤ 1, hence

ỹ · v ≤ 1∑
i∈VS λi

∑
j′∈VD

µj′ −
∑
i∈VS

λi

 ,

where the equality can be achieved. Applying Assumption B.1, we have

∑
i∈VS

λi =
∑
i∈VS

∑
j′∈∂(i)

µj′x
∗
ij′ =

∑
j′∈VD

µj′
∑
i∈∂(j′)

x∗ij′ =
∑
j′∈VD

µj′ .

Hence ỹ satisfies (B.66).

We now prove that
∑

i∈I λi <
∑

j′∈∂(I) µj′ for all I ( VS, I 6= ∅. For any I ( VS, I 6= ∅,

consider the vector v ∈ Rm where

vi = 1 for i ∈ I ,

vi = − |I|
m− |I|

for i ∈ VS\I .

Because (λ,µ, G) satisfy Assumption B.1, by applying Lemma 5 in [17] we have: for

V o , {v ∈ Rm : 1Tv = 0}, there exists δ > 0 such that {v ∈ V o : ||v||2 ≤ δ} ⊂ V . It

can be easily verified that v ∈ V o. As a result, there exists δ > 0 such that δv ∈ V . We

have:

0 < δ|I| =
∑
i∈I

δvi ≤
∑
j′∈∂(I)

µj′ −
∑
i∈I

λi ,

We have so far proved that
∑

i∈I λi <
∑

j′∈∂(I) µj′ for all I ( VS, I 6= ∅, we now show

that this implies Assumption 3. First, we establish

∑
i∈∂(J)

λi >
∑
j′∈J

µj ∀ J ( VD, J 6= ∅ , (B.68)

because, for I , VS\∂(J), we know

∑
i∈I

λi <
∑
j′∈∂(I)

µj′

⇒
∑
i∈VS

λi −
∑
i∈∂(J)

λi <
∑
j′∈∂(I)

µj′ ≤
∑
j′∈VD

µj′ −
∑
j′∈J

µj′

⇒
∑
i∈∂(J)

λi >
∑
j′∈J

µj′ .

282



Figure B.1: A 30 location model of Manhattan below 110-th street, excluding the Central
Park. (Source: tessellation is based on [121], the figure is generated using Google Maps.)

where we used ∂(I)∩J = ∅ by definition of I in the second line, and we used
∑

i∈VS λi =∑
j′∈VD µj′ to get the third line. Our Assumption 3 follows by restricting attention to

limited-flexibility subsets J and cancelling the terms which are common on the two sides

of the inequality. This concludes the proof.

B.10 Simulation experiments (full description)

In this appendix, we provide a full description of our simulations in an environment

that resembles ride-hailing in Manhattan, New York City. We use demand estimates from

[121] (the estimates are based on NYC yellow cab data) and Google Maps to estimate

travel times, and simulate SMW-based dispatch policies.

B.10.1 The Data, Simulation Environment and Benchmark

Throughout this section, we use the following set of model primitives.

• Graph topology. We consider a 30-location model of Manhattan below 110-th street

excluding Central Park (see Figure B.1), based on [121]. We let pairs of regions which

share a non-trivial boundary be compatible with each other.
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• Demand arrival process, Pickup/service times, and number of cars. Throughout this

section, we consider a stationary demand arrival rate5 that satisfies the CRP condition,

which is obtained by “symmetrizing”6 the decensored demand estimated in [121] (see

subsection B.10.5 for a full description). We estimate travel times between location

pairs using Google Maps, and use as a baseline the fluid requirement Kfl on number of

cars needed to meet demand. We use Ktot (not K) to denote the total number of cars,

and Kslack = Ktot −Kfl to denote the excess over the fluid requirement. Here Kslack is

similar to the K in our theory since it is the average number of free cars assuming all

demand is met.

Simulation Design. We consider the following simulation settings:

1. Stationary performance with Service time. We investigate steady state performance;

steady state is reached in ∼1-2 hours under SMW policies.

2. Stationary performance with Service+Pickup time. Same as above.

3. Transient performance with Service + Pickup time. We investigate performance over

a short horizon (below 2 hours) for different initial configurations.

Benchmark policy: fluid-based policy. The benchmark policy we consider is a static

randomization based on the solution to the fluid problem [1, 21]. See subsection B.10.5

for details.

Learning the optimal parameters. We use MATLAB’s built-in particleswarm solver

to learn the optimal SMW scaling parameters via simulation-based optimization in each

setting.
5We leave the cases where demand is time-varying for future research. Our numerical study in

Section B.10.4 regarding transient performance may be seen as a first step towards the time-varying
case.

6Instead of symmetrizing, an alternative would be to consider an “empty” relocation rule (see Sec-
tion 2.8) such that CRP holds. We obtained similar results under this alternative (we omit those results
in the interest of space).
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B.10.2 Steady state with Service times

A preliminary simulation of the setting in our paper (i.e., pickup and service are both

instantaneous) showed that under vanilla MaxWeight policy we only need Kslack = 120 to

obtain a demand-loss rate below 1%, under SMW(α) with α defined in Theorem 2.1 the

number further reduces to 80. However, the demand-loss rate stays above 5% under the

fluid-based policy even when Kslack = 200.7 We then proceeded to simulate the Service

time setting, and obtained similarly encouraging results. In this setting, the average trip

time is 13.2 minutes, and the fluid requirement is Kfl = 7, 061 cars.

Results. The simulation results on performance8 are shown in Figure B.2, and the

theoretical and learned α are shown in Figure B.3. Figure B.2 confirms that SMW policies

including vanilla MaxWeight outperform the fluid-based policy; in fact only Kslack = 100

extra cars (<1.5% of Ktot, or < 4 free cars per location on average if all demand is met)

in the system lead to a negligible fraction of demand lost. The demand loss probability

decays rapidly with Kslack under SMW policies, while it decays much slower under the

fluid-based policy. SMW with parameters chosen based on Theorem 2.1 performs nearly

as well as the learned SMW policy, despite small Kslack = 100. Figure B.3 shows that

the learned α is very similar to the theoretically optimal α structurally. Both policies

allocate larger parameters (i.e., give more protection to the supply) in the Upper West

Side area which has a small Hall’s gap (i.e., small slack in the CRP condition).

B.10.3 Steady state with Service and Pickup times

In the following experiment we further incorporate pickup times. The average pickup

time is 5.5 minutes, and the fluid requirement increases to Kfl = 10, 002 cars. Our

objective here is to show that SMW policies can be heuristically adapted to more gen-

eral settings, and retain their good performance. We propose the following SMW-based
7The results remain similar when service time is included, hence we only include the graph of the

latter case.
8We also tested stochastic service times and found no significant difference in performance.
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Figure B.2: Service times setting: Stationary demand-loss probability under the static
fluid-based policy, vanilla MaxWeight policy, SMW policy with theoretically optimal α,
and SMW policy with learned α. Note that the y-axis is in log-scale. Here Kfl = 7, 061.
The plots indicate significant separation between fluid and SMW policies at all values of
K, and separation between vanilla MaxWeight and optimized SMW. For each data point
we run 200 trials and take the average.

Figure B.3: Service times setting: Theoretically optimal α derived from Theorem 2.1
(left) and the α learned via simulation-based optimization (right), both for the NYC
dataset with Kslack = 200. Darker shades indicate smaller values of αi, while lighter
shades correspond to larger values.

heuristic policy. Intuitively, pickup times need to be taken into consideration when mak-

ing dispatch decisions, because every minute spent on picking up a customer leads to an

opportunity cost. We consider policies of the following form. When demand arrives at
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Figure B.4: Service+Pickup times setting: Stationary demand-loss probability under the
fluid-based policy, the vanilla MaxWeight policy, and the SMW policy with α learned via
simulation optimization. Here Kfl = 10, 002 cars. For each data point we average over
200 trials.

location j, dispatch from

argmaxi∈∂(j)

xi
αi
− zDij,

where xi is the number of free cars at i, and Dij is the pickup time between i and j. In

addition to scaling parameters α, we have an additional parameter z which captures the

importance given to pickup delay in making dispatch decisions.

Results. Simulation results are shown in Figure B.4. We observe that the SMW-

based policies including vanilla MaxWeight significantly outperform the fluid-based pol-

icy. A few hundred extra cars (< 3% of Ktot) in the system suffice to ensure that only

∼ 1% of demand is lost.

B.10.4 Transient Behavior with Service and Pickup times

In the last experiment, we consider transient behavior instead of steady state perfor-

mance. We fixKslack to be 200. For initial configurations, we sample 4 initial queue-length

vectors uniformly from the simplex {x : x1 + · · · + x30 = 200}, and the cars initially in

transit are based on picking up all demand that arose in the last hour. For each ini-

tial state we consider 4 time horizons: 0.5, 1, 1.5 and 2 hours. We learn the optimal
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Figure B.5: Transient Performance with Service+Pickup times : The plots show the
demand-loss probability under the fluid-based policy, the vanilla MaxWeight policy, and
the SMW policy with learned α, with 4 different initial configurations, chosen randomly
on the simplex. We fix Kslack = 200, and consider time horizons ranging from 0.5 to 2
hours. For each data point we run 200 trials and take the average.

SMW parameters for each initial state and time horizon pair to minimize the fraction

of demand lost and then compare the performance of SMW policies, vanilla MaxWeight

and the fluid-based policy. The results are shown in Figure B.5. It turns out that SMW

policies outperform the fluid-based policy by an even larger margin in this case since they

are able to quickly (in under an hour) spread the supply out across locations.

B.10.5 Simulation Settings

In this subsection, we fill in the missing details in the previous subsections.

Model Primitives.

• Demand arrival process (φ). Using the estimation in [121], which is based on Man-

hattan’s taxi trip data during August and September in 2012, we obtain the (average)

demand arrival rates for each origin-destination pair during the day (7 a.m. to 4 p.m.)

denoted by φ̃ij (i, j = 1, · · · , 30). However, we find that φ̃ij violates CRP (there are

a lot more rides to Midtown than from Midtown). We consider the following “sym-
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Figure B.6: Hall’s gap of symmetrized matrix φ(η) (see Eq. (B.69)) versus parameter
η, based on the demand arrival rates φ̃ computed from the Manhattan taxi data. Our
simulations use η = 0.21, which corresponds to a small but non-zero Hall’s gap (< 10).

metrization” of φ̃ , (φ̃ij)30×30 to ensure that CRP holds (ride-hailing platforms may

use spatially varying prices and repositioning to obtain CRP, see Section 2.1):

φ(η) , ηφ̃+ (1− η)
1

2
(φ̃+ φ̃T), η ∈ (0, 1). (B.69)

Figure B.6 shows how the Hall’s gap of φ(η) varies with η. We pick η = 0.21 such that

CRP is “almost violated”9. The subset of locations with smallest Hall’s gap is then the

Upper West Side (locations 19, 23, 24, 27, 28 in Figure B.1).

• Pickup/service times (D/D̃). We extract the pairwise travel time between region

centroids (marked by the dots in Figure B.1) using Google Maps, denoted by Dij’s

(i, j = 1, · · · , 30). We use Dij as service time for customers traveling from i to j. For

each customer at i who is picked up by a supply from k we add a pickup time 10 of

D̃ki = max{3
2
Dki, 3 minutes}.

Benchmark policy: fluid-based policy. We consider the fluid-based randomized

policy [1, 21] as a benchmark. Let X be the solution set of the feasibility problem

∑
j∈∂(i)

xij = λi ∀i,
∑
i∈∂(j)

xij = µj ∀j. (B.70)

9We also ran simulations for η = 0.15 such that Hall’s gap is large. There is no significant difference
in the policies’ relative performances, so we didn’t include it here.

10We use the inflated Dij ’s as pickup times to account for delays in finding or waiting for the customer.
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Since CRP holds, X 6= ∅. Let x∗ , argminx∈X
∑

(i,j)∈E D̃ijxij. When demand arrives

at location j, the randomized fluid-based policy dispatches from location i ∈ ∂(j) with

probability x∗ij/µj. Then x∗ij is the rate of dispatching cars from i to serve demand at

j. From [1], we know that x∗ leads to a zero demand-loss as K → ∞ with and without

pickup times (assuming demand remains constant). Moreover, with pickup times, Little’s

Law gives that the fluid-based policy minimizes the expected number of cars on-route to

pick up customers.

Benchmark fleet-size. In the Service time setting, a fraction of cars are in transit

under the stationary distribution; in the Service+Pickup time setting, there is an addi-

tional fraction of cars on-route to pick up customers. A simple workload conservation

argument (using Little’s Law) gives the benchmark fleet-sizes as follows.

• Service time. Assuming no demand is lost, the mean number of cars in transit is:

Kfl =
∑

i,j φijDij. In our setting, we have Kin-transit ≈ 7, 061. Since CRP holds and

demand-loss probability goes to 0 under both fluid-based policy and SMW policies,

Kin-transit is a reasonable benchmark fleet-size Kfl. We will vary the number of

cars in the system denoted by Ktot = Kfl + Kslack and compare the performance

of different policies. Here Kslack is the number of free cars in the system when no

demand is lost.

• Service+Pickup time. Applying Little’s Law, if no demand is lost, the mean number

of cars picking up customers is at least Kpickup = minx∈X D̃ijxij. In our case, we have

Kpickup ≈ 2, 941. Hence, the benchmark fleet size is Kfl = Kin-transit + Kpickup =

10, 002. Note that this number is close to the real-world fleet size: there were

approximately 11,500 active medallions when [121] was written.
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APPENDIX C

Proofs in “In Which Random Matching Markets Does the Short

Side Enjoy an Advantage”

Organization of the appendix. The technical appendix is organized as follows.

• Appendix C.1 describes several concentration inequalities and auxiliary stochastic

processes that will be heavily used in the following theoretical analysis.

• Appendix C.2 establishes Theorem 3.1, the main result for moderately connected

markets. The proof is lengthy and will be further divided into several steps, with

an overview provided at the beginning of each step.

• Appendix C.3 establishes Theorem 3.2, the main result for densely connected mar-

kets.

C.1 Preliminaries

C.1.1 Basic Inequalities

Lemma C.1. The following inequalities hold:

• For any |x| ≤ 1
2
, we have e−x−x2 ≤ 1− x ≤ e−x.

• For any k > 0 and ε ∈
(
0, 1

k

)
, we have 1 + kε ≤ 1

1−kε .
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C.1.2 Negative Association of Random Variables

The concept of negative association provides a stronger notion of negative correlation,

which is useful to analyze the concentration of the sum of dependent random variables.

Definition C.1 (Negatively Associated Random Variables [129]). A set of random vari-

ables X1, X2, . . . , Xn are negatively associated (NA) if for any two disjoint index sets

I, J ⊆ {1, . . . , n},

E
[
f(Xi : i ∈ I) · g(Xj : j ∈ J)

]
≤ E

[
f(Xi : i ∈ I)

]
· E
[
g(Xj : j ∈ J)

]
for any two functions f : R|I| 7→ R and g : R|J | 7→ R that are both non-decreasing or both

non-increasing (in each argument).

The following lemma formalizes that the sum of negatively associated (NA) random

variables is as concentrated as the sum of independent random variables:

Lemma C.2 (Chernoff-Hoeffding Bound for Negatively Associated Random Variables

[129]). Let X1, X2, . . . , Xn be NA random variables with Xi ∈ [ai, bi] always. Then,

S,
∑n

i=1 Xi satisfies the following tail bound:

P
(
|S − E[S]| ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
. (C.1)

We refer to [129] for the proof.

The following lemma provides sufficient conditions for a set of random variables to

be NA. For each sufficient condition, we provide a pointer to a paper where it has been

established.

Lemma C.3 (Sufficient Conditions for Negative Association). The followings hold:

(i) (Permutation distribution [130, Theorem 2.11]) Let x1, x2, . . . , xn be n real num-

bers and let X1, X2, . . . , Xn be random variables such that (X1, X2, . . . , Xn) is a

uniformly random permutation of (x1, x2, . . . , xn). Then X1, X2, . . . , Xn are NA.
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(ii) (Union of independent sets of NA random variables [130, Property 7]) If X1, X2, . . . , Xn

are NA, Y1, Y2, . . . , Ym are NA, and {Xi}i are independent of {Yj}j, then X1, . . . , Xn, Y1, . . . , Ym

are NA.

(iii) (Concordant monotone functions [130, Property 6]) Increasing functions defined on

disjoint subsets of a set of NA random variables are NA. More precisely, suppose

f1, f2, . . . , fk are all non-decreasing in each coordinate, or all non-increasing in

each coordinate, with each fj : R|Ij | 7→ R defined on (Xi)i∈Ij for some disjoint index

subsets I1, . . . , Ik ⊆ {1, . . . , n}. If X1, X2, . . . , Xn are NA, then the set of random

variables Y1 , f1(Xi : i ∈ I1), Y2 , f2(Xi : i ∈ I2), . . . , Yk , fk(Xi : i ∈ Ik) are NA.

C.1.3 Balls-into-bins

A balls-into-bins process with T balls and n bins is defined as follows: at each time

t = 1, . . . , T , a ball is placed into one of n bins uniformly at random, independently of

the past. Index the bins by j ∈ {1, . . . , n}, and let Ij,t be an indicator variable that

equals one if the tth ball is placed in the jth bin and equals zero otherwise. Further define

Wj ,
∑T

t=1 Ij,t representing the total number of balls placed into the jth bin.

A particular random variable of interest is the number of empty bins at the end of

the process, for which we have the following concentration inequality.

Lemma C.4 (Number of empty bins). Let X be the number of empty bins at the end of

a balls-into-bins process with T balls and n bins. For any ε > 0, we have

P

(
1

n
X −

(
1− 1

n

)T
≥ ε

)
≤ exp

(
−2nε2

)
,

P

(
1

n
X −

(
1− 1

n

)T
≤ ε

)
≤ exp

(
−2nε2

)
.

Proof. Observe that {Ij,t}j∈{1,...,n},t∈{1,...,T} are negatively associated (NA) since {Ij,t}j∈{1,...,n}

are NA for each t (by Lemma C.3–((i)), since {Ij,t}j∈{1,...,n} is a uniformly random per-

mutation of n−1 zeros and a single one) and they are independent across t (Lemma C.3–

((ii))). Consequently,W1, . . . ,Wn are NA due to Lemma C.3–((iii)), since fj(Ij,1, . . . , Ij,T ),
∑T

t=1 Ij,t
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is non-decreasing in each coordinate.

Define Yj , I(Wj = 0) indicating whether the jth bin is empty at the end. Although

Yj’s are not independent, they are NA (again, by Lemma C.3–((iii))). Because Yj ∼

Bernoulli
((

1− 1
n

)T) and X =
∑n

j=1 Yj, by applying Hoeffding’s bound (Lemma C.2),

we obtain the desired result.

Lemma C.5. Let Wj denotes the number of balls in the jth bin at the end of a balls-into-

bins process with T balls and n bins. For any ∆ > 0, we have

P

 1

n

n∑
j=1

1

Wj + 1
≥ n

T
+ ∆

 ≤ exp
(
−2n∆2

)
.

Proof. Since Wj ∼ Binomial
(
T, 1

n

)
, we have

E

[
1

Wj + 1

]
=

T∑
k=0

1

k + 1
×
(
T

k

)(
1

n

)k (
1− 1

n

)T−k
=

n

T + 1

T∑
k=0

(
T + 1

k + 1

)(
1

n

)k+1(
1− 1

n

)(T+1)−(k+1)

=
n

T + 1
×

(
1−

(
1− 1

n

)T+1
)
≤ n

T
.

In the proof of Lemma C.4, we have shown that W1, . . . ,Wn are NA. By Lemma C.3–

((iii)), 1
W1+1

, . . . , 1
Wn+1

are also NA. Therefore, by applying Hoeffding’s bound (Lemma

C.2), we obtain the desired result.

C.1.4 Chernoff’s Bound on Random Sum

Lemma C.6. Fix any p ∈ (0, 1) and any p′ ∈ (0, 1). Define the random sum

S ,
N∑
i=1

Xi ,

where Xi’s are i.i.d. random variables and have distribution1 Geometric(p), and N ∼

Geometric(p′) and is independent of Xi’s. Let Si’s be i.i.d. random variables and have
1Here, by Geometric(p) we mean the distribution P(Xi = k) = p(1−p)k−1 for k ≥ 1, i.e., the support

of the distribution is {1, 2, . . . }, and its expectation is 1/p > 1.
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the same distribution as S, for λ > E[S] = 1/(pp′) we have

P

 1

n

n∑
i=1

Si ≥ λ

 ≤ exp

(
− n

2λ2

(
λ− E[S]

)2
)
.

Proof. Denote q , 1− p, q′ , 1− p′. In the first step, we derive the moment generating

function of S, which we denote by M(t). Note that

M(t) = E[etS] = E
[
et
∑N
i=1Xi

]
= E

[[
EetX

]N]
= E

[
γN
]
.

where

γ ,


pet

1−qet if qet < 1 ,

∞ otherwise .
(C.2)

we have

E[γN ] =
∞∑
k=1

γk(1− p′)k−1p′ = p′γ
∞∑
k=1

γk−1(q′)k−1 =


p′γ

1−γq′ if γq′ < 1 ,

∞ otherwise .

By plugging in γ, we obtain

M(t) =


p′ pet

1−qet

1−q′ pet

1−qet
= p′pet

1−et(q+q′p) if t < t̄ , log(1/(q + q′p)) ,

∞ otherwise .

Here we used that q+q′p > q to simplify the condition forM(t) to be finite to et(q+q′p) <

1⇔ t < t̄.

Now we derive the convex conjugate of logM(t), a.k.a. the large deviation rate

function. Note that E[S] = 1/(pp′). Define Λ∗ : [1/(pp′),∞)→ R as

Λ∗(λ) , sup
t≥0

(
λt− logM(t)

)
= sup

t∈[0,t̄)

(
λt− logM(t)

)
Fix λ ≥ 1/(pp′) and let t∗ be the maximizer of the supremum above. The derivative of

λt− logM(t) with respect to t for t ∈ [0, t̄) is

λ− 1− et(q + q′p)

1− et(q + q′p)
= λ− 1

1− et(q + q′p)
,

and in particular it is decreasing in t, corresponding to the fact that λt − logM(t) is
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concave in t (we already knew concavity holds because the log moment generating function

is always convex). Note further that the derivative at t = 0 is non-negative since

λ− 1

1− (q + q′p)
= λ− 1/(pp′) ≥ 0 ,

and that the derivative eventually becomes negative since it tends to −∞ as t → t̄−.

Hence the first order condition will give us the maximizer t∗ ∈ [0, t̄) of λt − logM(t) as

follows:

λ =
1

1− et∗(q + q′p)
⇒ et

∗
=

1− 1
λ

q + q′p
.

Therefore, we have

Λ∗(λ) = λ log

(
1− 1

λ

)
− λ log

(
q + q′p

)
− log

p′p 1− 1
λ

q+q′p

1/λ


= λ log

(
1− 1

λ

)
− λ log

(
q + q′p

)
− log (λ− 1) + C,

where C is a constant. A short calculation tells us that

dΛ∗

dλ
(λ) = log

(
1− 1

λ

)
− log

(
q + q′p

)
,

d2Λ∗

dλ2
(λ) =

1

λ(λ− 1)
. (C.3)

Let S1, · · · , Sn be i.i.d. random variables with the same distribution as S. Using

Chernoff’s bound, for λ ≥ E[S] we have

P

 1

n

n∑
i=1

Si ≥ λ

 ≤ exp
(
−nΛ∗(λ)

)
. (C.4)

Since Λ∗(·) is a large deviation rate function, we have that Λ∗(E[S]) = 0 and dΛ∗

dλ
(E[S]) =

0. We will now use Taylor’s theorem taking terms up to second order for Λ∗(λ) around

E[S] to obtain the desired bound. Note that at any λ′ ∈ (E[S], λ) , using the explicit

form of d2Λ∗

dλ2 in (C.3) we have

d2Λ∗

dλ2
(λ′) ≥ 1

(λ′)2
≥ 1

λ2
,

where we used E[S] > 1. Now, using Taylor’s theorem, we know that for some λ′ ∈ (0, λ)
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we have

Λ∗(λ) =
1

2

d2Λ∗

dλ2
(λ′)

(
λ− E[S]

)2 ≥ 1

2λ2

(
λ− E[S]

)2
.

Plugging into (C.4), we obtain

P

 1

n

n∑
i=1

Si ≥ λ

 ≤ exp

(
− n

2λ2

(
λ− E[S]

)2
)

as required.

C.1.5 Notations and Preliminary Observations

We here introduce the variables that formally describe the state of a random matching

market over the course of the men-proposing deferred-acceptance (MPDA) procedure

(Algorithm 3.1).

The time t ticks whenever a man makes a proposal. Let It ∈ M be the man who

proposes at time t, and Jt ∈ W be the woman who receives that proposal. We define

Mi,t ,
∑t

s=1 I(Is = i) that counts the number of proposals that a man i has made up

to time t, and define Wj,t ,
∑t

s=1 I(Js = j) that counts the number of proposals that a

woman j has received up to time t. We will often use ~Mt , (Mi,t)i∈M and ~Wt , (Wj,t)j∈W

as vectorized notations. By definition, we have

∑
i∈M

Mi,t =
∑
j∈W

Wj,t = t ,

for any 0 ≤ t ≤ τ where τ is the total number of proposals under MPDA.

Let Ht ⊆ W be the set of women that the man It had proposed to before time t: i.e.,

Ht , {Js : Is = i for some s ≤ t − 1} and we have |Ht| < d.According to the principle

of deferred decisions, the tth proposal goes to one of women that the man It had not

proposed to yet: i.e., Jt is sampled from W \ Ht uniformly at random. And then, the

proposal gets accepted by the woman Jt with probability 1/(WJt,t−1 + 1).

We denote the current number of unmatched men and women at time t by δm[t]

and δw[t], respectively. More precisely, δm[t] represents the number of men who have
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exhausted all his preference list but left unmatched2 at time t: i.e., δm[t] ,
∑

i∈M I(Mi,t =

d, µt(i) = i) where µt is the current matching at time t. Also note that once a woman

receives a proposal, she remains matched until the end of MPDA procedure: i.e., δw[t] ,∑
j∈W I(µt(j) = j) =

∑
j∈W I(Wj,t = 0). We observe that δm[t] starts from zero (at t = 0)

and is non-decreasing over time, and δw[t] starts from n and is non-increasing over time.

Recall that τ is the the total number of proposals that is made until the end of MPDA,

i.e., the time at which the men-optimal stable matching (MOSM) is found. MPDA ends

when there is no more man to make a proposal, i.e., when every unmatched man had

already exhausted his preference list. In (3.1), we expressed τ as a stopping time, namely,

τ = min{t ≥ 1 : δm[t] = δw[t] + k} .

In particular, we have

δm[τ ] = δw[τ ] + k ,

since the number of matched men equals to the number of matched women under any

feasible matching. Furthermore, we have

RMEN(MOSM) =
τ + δm[τ ]

n+ k
,

by the definition of men’s rank.

An extended process. We introduce an extended process as a natural continuation

of the MPDA procedure that continues to evolve even after the MOSM is found (i.e.,

the extended process continues for t > τ). Recall that the MPDA procedure under the

principle of deferred decisions works as follows: As described in Algorithm 3.1, n + k

men in M sequentially enter the market one by one, and whenever a new man enters,

he makes a proposal and the acceptance/rejection process continues until all men who
2It is important that the definition of δm[t] does not count the men who have not entered the market

until time t. In other words, it counts the number of men who are “confirmed” to be unmatched under
MOSM, and correspond to the variable δm described in Algorithm 3.1. This quantity is different from
the number of unmatched men under the current matching µt, which may decrease when a man proposes
to a woman who has never received any proposal.
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have entered are either matched or have reached the bottom of their preference lists (i.e.,

until it finds a new MOSM among the men who have entered including the newly entered

man).

To define the extended process, we start by defining an extended market, which has

the same n women but an infinite supply of men: n + k “real” menM who are present

in the original market, and an infinity of “fake” menMfake in addition. The distribution

of preferences in the extended market is again as described in Section 3.2 (in particular,

the preference distribution does not distinguish real and fake men). We then define the

extended process as tracking the progress of Algorithm 3.1 on the extended market: the

n+k real men enter first in Algorithm 3.1, as before, and we then continue Algorithm 3.1

after time τ for all t > τ by continuing to introduce additional (fake) men sequentially

after time τ . In particular, the extended process is identical to the original MPDA process

until the MOSM is found (i.e., for t ≤ τ).

Observe that in this extended process, the MOSM amongM∪W can be understood

as a stable outcome found after n + k men have entered the market. Therefore, all the

aforementioned notations (It, Jt, Mi,t, Wj,t, Ht, µt, δm[t], δw[t]) are well-defined for any

time t ≥ 0 while preserving all their properties characterized above, and we similarly

denote by M̂[t] ⊂ M ∪Mfake the set of men who have entered so far (consistent with

the notation in Algorithm 3.1). In the later proofs, we utilize these notations and their

properties (e.g., δm[τ ] ≤ δm[t] implies that τ ≤ t since δm[t] is non-decreasing over time

for t = 0, 1, . . .).

Balls-into-bins process analogy. When we analyze the women side, we heavily utilize

the balls-into-bins process as done in [71]. We make an analogy between the number of

proposals that each of n women has received (denoted by Wj,t) and the number of balls

that had been placed into each of n bins. For example, the number of unmatched women

at time t corresponds to the number of empty bins after t balls had been placed.

Recall that, according to the principle of deferred decisions, the tth proposal goes
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to one of women uniformly at random among whom he had not yet proposed to (i.e.,

W \ Ht), and thus the recipients of proposals, J1, J2, . . ., are not independent. In the

balls-into-bins process, in contrast, the tth ball is placed into one of n bins uniformly at

random, independently of the other balls’ placement. Despite this difference (sampling

without replacement v.s. sampling with replacement), the balls-into-bins process provides

a good enough approximation as the number of proposals made by an individual man

(i.e., |Ht|) is much smaller than the total number of men and women. We will show

that (e.g., in Lemma C.8 in the next section) that the corresponding error term can be

effectively bounded.

C.2 Proof for Small to Medium-Sized d: the case of

d = o(log2 n), d = ω(1)

In this section, we consider the case such that d = o(log2 n) and d = ω(1). We will

prove the following quantitative version of Theorem 3.1.

Theorem C.1 (Quantitative version of Theorem 3.1). Consider a sequence of random

matching markets indexed by n, with n+ k men and n women (k = k(n) can be positive

or negative), and the men’s degrees are d = d(n). If |k| = O(ne−
√
d), d = ω(1) and

d = o(log2 n), then with probability 1−O(exp(−d 1
4 )) we have

1. (Men’s average rank of wives)∣∣∣RMEN(MOSM)−
√
d
∣∣∣ ≤ 6d

1
4 .

2. (Women’s average rank of husbands)∣∣∣RWOMEN(MOSM)−
√
d
∣∣∣ ≤ 8d

1
4 .

3. (The number of unmatched men)∣∣∣log δm − log ne−
√
d
∣∣∣ ≤ 3d

1
4 .
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4. (The number of unmatched women)∣∣∣log δw − log ne−
√
d
∣∣∣ ≤ 2.5d

1
4 .

The proofs are organized as follows:

• (Section C.2.1) We first show that with high probability, the stopping time of MPDA

(Algorithm 3.1), namely, τ , is bounded above as τ ≤ n
(√

d+ d
1
4

)
, by utilizing the

coupled extended process defined in Section C.1.5. This yields a high probability

upper bound on RMEN(MOSM) and a lower bound on the number of unmatched

men δm and unmatched women δw.

• (Section C.2.2) We prove the complementary bounds on RMEN(MOSM), δm, and δw:

a lower bound on RMEN(MOSM) and an upper bound on the number of unmatched

men δm and unmatched women δw. To this end, we start by analyzing the rejection

chains triggered by the last man to enter in MPDA, and deduce upper bounds on

E[δm] and E[δw], using the fact that the order in which men enter does not matter.

Using Markov’s inequality, we then obtain high probability upper bounds on δm

and δw, which lead to lower bounds on τ and RMEN(MOSM).

• (Section C.2.3) We construct the concentration bounds on RWOMEN(MOSM) based

upon the concentration results on τ . In this step, we utilizes the balls-into-bins pro-

cess to analyze the women’s side while carefully controlling the difference between

the MPDA procedure and the balls-into-bins process. This completes the proof of

Theorem C.1.

C.2.1 Step 1: Upper Bound on the Total Number of Proposals τ

We prove the following two propositions.

Proposition C.1 (Upper bound on men’s average rank). Consider the setting of Theorem

3.1. With probability 1−O(exp(−
√
n)), we have the following upper bounds on the total
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number of proposals and men’s average rank:

τ ≤ n
(√

d+ d
1
4

)
, RMEN(MOSM) ≤

√
d+ 2d

1
4 .

Proposition C.2 (Lower bound on the number of unmatched women). Consider the

setting of Theorem 3.1. With probability 1− O(exp(−
√
n)), we have the following lower

bounds on the number of unmatched men δm and unmatched women δw:

δm ≥ n exp
(
−
√
d− 3d

1
4

)
, δw ≥ n exp

(
−
√
d− 2d

1
4

)
.

Throughout the proofs we utilize the extended process defined in Section C.1.5, which

enables us to analyze the state dynamics even after the termination of original DA pro-

cedure. Most of the work is in proving Proposition C.1, which is done in Sections C.2.1–

C.2.1. We then deduce Proposition C.2 from Proposition C.1 in Section C.2.1. The

overall proof structure is as follows:

• (Sections C.2.1 and C.2.1) We first analyze the women side using balls-into-bins

process analogy: Given that a sufficient number of proposals have been made (in

particular, for t = (1 + ε)n
√
d), we construct a high probability upper bound on

the current number of unmatched women δw[t] and the probability pt of a proposal

being accepted.

• (Sections C.2.1 and C.2.1) We then analyze the men side and obtain a lower bound

on the current number of unmatched men δm[t] at t = (1 + ε)n
√
d by utilizing

the upper bound on acceptance probability pt. Since this lower bound exceeds the

upper bound on δw[t] (plus k) which holds at the same t, we deduce that, whp,

the algorithm has already terminated, τ ≤ t = (1 + ε)n
√
d, since we know that

δm[τ ] = δw[τ ] + k. See Figure 3.3 in Section 3.4 for illustration. Consequently, an

upper bound on RMEN follows from the identity RMEN = τ+δm

n+k
, thus completing the

proof of Proposition C.1.

• (Section C.2.1) Given the upper bound on τ , we obtain a lower bound on δw using

the balls-into-bins analogy again. This leads to a lower bound on δm due to the
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identity δm = δw + k, which completes the proof of Proposition C.2.

Upper bound on number of unmatched women after a sufficient number of

proposals

The following result formalizes the fact that there cannot be too many unmatched

women after a sufficient number of proposals have been made.

Lemma C.7. Consider the setting of Theorem 3.1 and the extended process defined in

Section C.1.5. For any ε ∈ (0, 1
2
) and n ∈ Z+, we have

P
(
δw[(1 + ε)n

√
d] > ne−(1+ ε

2
)
√
d
)
≤ exp

(
−1

2
ndε2e−3

√
d

)
. (C.5)

In words, after t = (1 + ε)n
√
d proposals have been made, at most ne−(1+ ε

2
)
√
d women

remain unmatched with high probability.

Proof. It is well known that for any t > 0, δw[t] is stochastically dominated by the

number of empty bins at the end of a balls-into-bins process (defined in Section C.1.3)

with t balls and n bins, which we denote by Xt,n. (See, e.g., [131]; the idea is that

since men’s preference lists sample women without replacement, the actual process has

a weakly larger probability of proposing to an unmatched woman at each step relative

to picking a uniformly random woman, and hence a stochastically smaller number of

unmatched women at any given t.) Therefore we have

P
(
δw[(1 + ε)n

√
d] > ne−(1+ ε

2
)
√
d
)

≤ P
(
X(1+ε)n

√
d,n > ne−(1+ ε

2
)
√
d
)

= P

 1

n
X(1+ε)n

√
d,n −

(
1− 1

n

)(1+ε)n
√
d

> e−(1+ ε
2

)
√
d −

(
1− 1

n

)(1+ε)n
√
d
 .

By Lemma C.1 and Lemma C.4, we further have

P
(
δw[(1 + ε)n

√
d] > ne−(1+ ε

2
)
√
d
)

≤ P

 1

n
X(1+ε)n

√
d,n −

(
1− 1

n

)(1+ε)n
√
d

> e−(1+ ε
2

)
√
d − e−(1+ε)

√
d


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≤ exp

(
−2n

(
e−(1+ ε

2
)
√
d − e−(1+ε)

√
d
)2
)
.

For 0 < a < b, using the convexity of function f(x) = e−x we have e−a−e−b ≥ e−b(b−a),

and therefore for ε ∈ (0, 1
2
) and any n ∈ Z+,

P
(
δw[(1 + ε)n

√
d] > ne−(1+ ε

2
)
√
d
)
≤ exp

(
−2nd

(
ε− ε

2

)2

e−2(1+ε)
√
d

)
≤ exp

(
−1

2
ndε2e−3

√
d

)
.

This concludes the proof.

Upper bound on ex-ante acceptance probability

We define the ex-ante acceptance probability as

pt ,
1

|W \ Ht|
∑

j∈W\Ht

1

Wj,t−1 + 1
. (C.6)

This is the probability that the tth proposal is accepted after the proposer It is declared

but the recipient Jt is not yet revealed (recall that It is the identity of the man who

makes the tth proposal, Jt is the identity of the woman who receives it, and Ht is the set

of women whom It has previously proposed to). In the following lemma, we construct

a high probability upper bound on the summation in (C.6), and the subsequent lemma

will use it to obtain an upper bound on p(1+ ε
2

)n
√
d for small ε.

Lemma C.8. For any ∆ > 0 and t such that 1 ≤ t ≤ nd, we have

P

 1

n

∑
j∈W

1

Wj,t + 1
≥ n

t
+
d2

n
+ ∆

 ≤ 2 exp

(
−n∆2

8d

)
.

This is also valid for the extended process (i.e., when t ≥ τ).

Proof. Consider a balls-into-bins process with t balls and n bins, and let J̃s ∈ {1, . . . , n}

be the index of bin into which the sth ball is placed, and let W̃j,t,
∑t

s=1 I(J̃s = j) be

the total number of balls placed in the jth bin. Recall that J̃s is being sampled from

{1, . . . , n} (=W) uniformly at random.

We make a coupling between the MPDA procedure and the balls-into-bins process as

follows: when determining the sth recipient Js, we take Js ← J̃s if J̃s /∈ Hs, or otherwise,
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sample Js among W \Hs uniformly at random. In other words, the man Is first picks a

woman J̃s among the entire W uniformly at random, and then proposes to her only if he

had not proposed to her yet; if he already had proposed before, he proposes to another

woman randomly sampled among W \ Hs. It is straightforward that the evolution of

the recipient process Js under this coupling is identical to that under the usual MPDA

procedure.

Define Dt,
∑t

s=1 I(Js 6= J̃s) representing the total discrepancy between the MPDA

procedure and its coupled balls-into-bins process. Observe that I(J̃s 6= Js) = I
(
J̃s ∈ Hs

)
and thus P

(
J̃s 6= Js

∣∣∣Fs−1

)
= P

(
J̃s ∈ Hs

∣∣∣Fs−1

)
≤ d

n
where Fs−1 represents all in-

formation revealed up to time s − 1. Let Zs,Ds − d
n
s and observe that (Ms)s≥0 is a

supermartingale with Z0 = 0 and |Zs+1 − Zs| ≤ 1. By Azuma’s inequality, we have for

any ∆0 > 0,

P
(
Dt ≥

dt

n
+ ∆0

)
≤ P(Zt − Z0 ≥ ∆0) ≤ exp

(
−∆2

0

2t

)
.

On the other hand, since 0 ≤ 1
w+1
≤ 1 for any w ≥ 0, we deduce that

∑
j∈W

1

Wj,t + 1
−
∑
j∈W

1

W̃j,t + 1
≤

∑
j∈W:Wj,t<W̃j,t

(
1

Wj,t + 1
− 1

W̃j,t + 1

)

≤
∣∣∣{j ∈ W : Wj,t < W̃j,t}

∣∣∣ ≤ Dt ,

where the last inequality follows from the fact that in order to observe Wj,t < W̃j,t for

some j, at least one mismatch {J̃s 6= Js} should take place. Based on the high probability

upper bound on Dt obtained above, we have for any ∆1 > 0,

P

 1

n

∑
j∈W

1

Wj,t + 1
− 1

n

∑
j∈W

1

W̃j,t + 1
≥ dt

n2
+ ∆1

 ≤ P
(
Dt ≥

dt

n
+ n∆1

)
≤ exp

(
−n

2∆2
1

2t

)
.

(C.7)

We now utilize the result derived for the balls-into-bins process. From Lemma C.5,

we have for any ∆2 > 0,

P

 1

n

∑
j∈W

1

W̃j,t + 1
≥ n

t
+ ∆2

 ≤ exp
(
−2n∆2

2

)
.
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Combined with (C.7),

P

 1

n

∑
j∈W

1

Wj,t + 1
≥ n

t
+ ∆2 +

dt

n2
+ ∆1


≤ P

 1

n

∑
j∈W

1

Wj,t + 1
≥ n

t
+ ∆2 +

dt

n2
+ ∆1,

1

n

∑
j∈W

1

W̃j,t + 1
<
n

t
+ ∆2


+ P

 1

n

∑
j∈W

1

W̃j,t + 1
≥ n

t
+ ∆2


≤ P

 1

n

∑
j∈W

1

Wj,t + 1
− 1

n

∑
j∈W

1

W̃j,t + 1
≥ dt

n2
+ ∆1

+ exp
(
−2n∆2

2

)
≤ exp

(
−n

2∆2
1

2t

)
+ exp

(
−2n∆2

2

)
,

for any ∆1 > 0 and ∆2 > 0.

We are ready to prove the claim. Given any ∆ > 0, take ∆1 = ∆2 = ∆/2. Then,

P

 1

n

∑
j∈W

1

Wj,t + 1
≥ n

t
+
d2

n
+ ∆


≤ P

 1

n

∑
j∈W

1

Wj,t + 1
≥ n

t
+
dt

n2
+ ∆1 + ∆2


≤ exp

(
−n

2∆2
1

2t

)
+ exp

(
−2n∆2

2

)
= exp

(
−n

2∆2

8t

)
+ exp

(
−1

2
n∆2

)
≤ exp

(
−n∆2

8d

)
+ exp

(
−1

2
n∆2

)
≤ 2 exp

(
−n∆2

8d

)
,

where we utilized the fact that dt
n2 ≤ d2

n
and n

d
≤ n2

t
under the given condition t ≤ nd.

Lemma C.9. Fix any α ∈ (0, 1), ε < 0.2 and sequences (d(n))n∈N, and (γ(n))n∈N such

that d = d(n) = ω(1) and d = o(log2 n), and γ = γ(n) = Θ
(
n−α

)
. Define the maximal
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ex-ante acceptance probability (for any t ≤ nd) as

pt, max
H⊂W:|H|≤d

 1

|W \ H|
∑

j∈W\H

1

Wj,t−1 + 1

 . (C.8)

Then there exists n0 <∞ such that for all n > n0, we have

P

(
p(1+ ε

2
)n
√
d ≥

1 + γ

(1 + ε
2
)
√
d

)
≤ 2 exp

(
−γ

2

32

n

d2

)
.

This is also valid for the extended process (i.e., when (1 + ε
2
)n
√
d ≥ τ).

Proof. Let t,(1+ ε
2
)n
√
d andH∗ be the maximizer of (C.8). Observe that |W\H∗| ≥ n−d

and
∑

j∈W\H∗
1

Wj,t−1+1
≤
∑

j∈W
1

Wj,t−1+1
, and hence

pt =
1

|W \ H∗|
∑

j∈W\H∗

1

Wj,t−1 + 1
≤ 1

n− d
∑
j∈W

1

Wj,t−1 + 1
≤ 1

n− d

1 +
∑
j∈W

1

Wj,t + 1

 .

The last inequality uses that at most one of the terms in the summation decreases from

t− 1 to t, and the decrease in that term is less than 1.

Let r , t
n

= (1 + ε
2
)
√
d, and ∆ , γ

2
√
d
. Under the specified asymptotic conditions, for

n large enough we have

r∆ = (1+ ε
2
)
√
d · γ

2
√
d
≤ 0.6γ ,

r

n
=

(1 + ε
2
)
√
d

n
≤ 0.1γ ,

rd2

n
≤

(1 + ε
2
)d5/2

n
≤ 0.1γ ,

d

n
≤ 0.1γ .

Consequently, since γ = o(1), for large enough n we have

n

n− d

(
1

r
+
d2

n
+ ∆ +

1

n

)
=

1

1− d/n
· 1

r
·

(
1 +

rd2

n
+ r∆ +

r

n

)
≤ 1

r
· 1

1− 0.1γ
· (1 + 0.1γ + 0.6γ + 0.1γ)

≤ 1

r
· (1 + γ) =

1 + γ

(1 + ε
2
)
√
d
.

As a result,

P

(
p(1+ ε

2
)τ∗ ≥

1 + γ

(1 + ε
2
)
√
d

)
≤ P

 1

n− d

1 +
∑
j∈W

1

Wj,t + 1

 ≥ 1 + γ

(1 + ε
2
)
√
d


≤ P

 1

n− d

1 +
∑
j∈W

1

Wj,t + 1

 ≥ n

n− d
×

(
1

r
+
d2

n
+ ∆ +

1

n

)
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= P

 1

n

∑
j∈W

1

Wj,t + 1
≥ n

t
+
d2

n
+ ∆


≤ 2 exp

(
−n∆2

8d

)
= 2 exp

(
−γ

2

32

n

d2

)
,

where the last inequality follows from Lemma C.8.

Lower bound on the number of unmatched men after a sufficient number

of proposals

The following result formalizes the fact that there cannot be too few unmatched men

after an enough number of proposals have been made.

Lemma C.10. Consider the setting of Theorem 3.1 and the extended process defined in

Section C.1.5. For any sequence (ε(n))n∈N such that ε = ε(n) < 0.2 and ε(n) = ω
(

1
n0.49

)
,

there exists n0 <∞ such that for all n > n0, we have

P
(
δm[(1 + ε)n

√
d] ≤ ε

16
ne−(1− ε

3
)
√
d

)
≤ exp

(
−
√
n
)
. (C.9)

In words, after (1 + ε)n
√
d proposals have been made, at least ε

16
ne−(1− ε

3
)
√
d men become

unmatched with high probability.

Proof. Let τ ∗ , n
√
d. To obtain a lower bound on the number of unmatched men

at time (1 + ε)τ ∗, we count the number of d-rejection-in-a-row events that occur during

[(1+ ε
2
)τ ∗, (1+ε)τ ∗]. This will provide a lower bound since whenever the rejection happens

d times in a row the number of unmatched men increases at least by one.

For this purpose, we first utilize the upper bound on the ex-ante acceptance prob-

ability. By Lemma C.9 we have: given that γ = γ(n) = Θ
(

1
nα

)
for some α ∈ (0, 1),

ε = ε(n) < 0.2, and that d = d(n) = ω(1) and d = o(log2 n), there exists n0 > 0 such

that for all n > n0,

P

(
p(1+ ε

2
)τ∗ ≥

1 + γ

(1 + ε
2
)
√
d

)
≤ 2 exp

(
−γ

2

32

n

d2

)
. (C.10)

Let p̂ , 1+γ

(1+ ε
2

)
√
d
and consider the events where p(1+ ε

2
)τ∗ ≤ p̂ is satisifed. Since pt is
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non-increasing over time on each sample path, we have pt ≤ p̂ for all t ≥ (1+ ε
2
)τ ∗ on this

sample path: i.e., a proposal after time (1 + ε
2
)τ ∗ is accepted with probability at most p̂.

As an analogy, we imagine a coin tossing process with head probability p̂ (which

is an exaggeration of the actual acceptance probability, making it underestimate the

occurrence of rejections and provides a valid lower bound on the actual number of d-

rejection-in-a-row events), and count how many times d-tail-in-a-row takes place during

ε
2
τ ∗ coin tosses. WithXi

i.i.d.∼ Geometric(p̂) representing the number of coin tosses required

to observe one head (acceptance), the total number of coin tosses required to observe

one d-tail-in-a-row is given by
∑N

i=1 min{Xi, d} where N is the smallest i such that

Xi > d. Note that N ∼ Geometric
(

(1− p̂)d
)
. However, N is correlated with Xi’s.

To upper bound the random sum, observe that conditioned on N , {X1, · · · , XN−1} are

independent truncated Geomtric(p̂) variables that only take value on {1, · · · , d}, which

are stochastically dominated by Geomtric(p̂) random variables. Since min{XN , d} ≤ d,

the random sum of interest is stochastically dominated by d + S, where S =
∑N ′

i=1Xi ,

and N ′ ∼ Geometric
(

(1− p̂)d
)
independent of Xi’s. (Note that by Wald’s identity we

have E[S] = p̂−1 (1− p̂)−d.) Consequently, the total number of coin tosses required to

observe ε
8
ne−dp̂ d-tail-in-a-row’s is stochastically dominated by

ε
8
ne−dp̂∑
j=1

(d+ Sj) ,

where S1, S2, . . . are i.i.d. random variables with the same distribution as S defined above.

Let R denote the total number of d-tail-in-a-row events that occur during [(1 +

ε
2
)τ ∗, (1 + ε)τ ∗]. From the above argument, we deduce that

P
(
R ≤ ε

8
ne−dp̂

)
≤ P

 ε
8
ne−dp̂∑
j=1

(d+ Sj) ≥
ε

2
τ ∗

 = P

 ε
8
ne−dp̂∑
j=1

Sj ≥
ε

2
τ ∗ − ε

8
nde−dp̂

 .

(C.11)
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We now proceed to bound the RHS of (C.11). Note that

ε
2
τ ∗ − ε

8
nde−dp̂

ε
8
ne−dp̂

=
4n
√
d

ne
− 1+γ

1+ ε
2

√
d
− d = 4

√
de

1+γ
1+ ε

2

√
d − d .

Recall that γ = Θ
(

1
nα

)
, ε < 0.2, and d = ω(1), we have for large enough n, 4

√
de

1+γ
1+ ε

2

√
d−

d > 3.9
√
de

1+γ
1+ ε

2

√
d
. Plugging λ, 3.9

√
de

1+γ
1+ ε

2

√
d
into Lemma C.6, we obtain

P

 ε
8
ne−dp̂∑
j=1

Sj ≥
ε

2
τ ∗ − ε

8
nde−dp̂

 ≤ exp

(
−

ε
8
ne−dp̂

2λ2

(
λ− E[S]

)2

)

≤ exp

(
−εn

16
e
− 1+γ

1+ ε
2

√
d
(

1− E[S]

λ

)2
)
. (C.12)

We also have p̂ = 1+γ

(1+ ε
2

)
√
d

= o(1) and thus for large enough n,

(1− p̂)−d ≤
(
e−p̂−p̂

2
)−d

= e
1+γ
1+ ε

2

√
d+

(
1+γ
1+ ε

2

)2

,

where we use the fact that 1 − x ≥ e−x−x
2 for any |x| ≤ 0.5. Further observe that for

large enough n,

1 + ε
2

1 + γ
e

(
1+γ
1+ ε

2

)2

≤ 1.2e < 3.3 ,

and therefore,

E[S] = p̂−1 (1− p̂)−d ≤
1 + ε

2

1 + γ

√
de

1+γ
1+ ε

2

√
d+

(
1+γ
1+ ε

2

)2

≤ 3.3
√
de

1+γ
1+ ε

2

√
d
.

For RHS of (C.12), we deduce that for large enough n,

exp

(
−εn

16
e
− 1+γ

1+ ε
2

√
d
(

1− E[S]

λ

)2
)
≤ exp

(
−εn

16
e
− 1+γ

1+ ε
2

√
d
(

1− 3.3

3.9

)2
)

≤ exp

(
− εn

800
e
− 1+γ

1+ ε
2

√
d
)
.

Combining all these results, for large enough n, we obtain

P
(
R ≤ ε

8
ne−dp̂

)
≤ exp

(
− εn

800
e
− 1+γ

1+ ε
2

√
d
)
.

As a result, we obtain a high probability lower bound on the number of unmatched
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men for the sample paths satisfying p(1+ ε
2

)τ∗ ≤ p̂:

P

(
δm[(1 + ε)τ ∗] ≤ ε

8
ne
− 1+γ

1+ ε
2

√
d
∣∣∣∣ p(1+ ε

2
)τ∗ ≤

1 + γ

(1 + ε
2
)
√
d

)
≤ P

(
R ≤ ε

8
ne
− 1+γ

1+ ε
2

√
d
)

≤ exp

(
− εn

800
e
− 1+γ

1+ ε
2

√
d
)
.

Combining with (C.10), we obtain

P
(
δm[(1 + ε)τ ∗] ≤ ε

8
ne
− 1+γ

1+ ε
2

√
d
)

≤ P

(
δm[(1 + ε)τ ∗] ≤ ε

8
ne
− 1+γ

1+ ε
2

√
d
∣∣∣∣ p(1+ ε

2
)τ∗ ≤

1 + γ

(1 + ε
2
)
√
d

)
+ P

(
p(1+ ε

2
)τ∗ ≥

1 + γ

(1 + ε
2
)
√
d

)

≤ exp

(
− εn

800
e
− 1+γ

1+ ε
2

√
d
)

+ 2 exp

(
−γ

2

32

n

d2

)
.

Now we take γ = n−1/5. First observe that, for large enough n, since d = o(log2 n),

we have

2 exp

(
−γ

2

32

n

d2

)
= 2 exp

(
− 1

32

n3/5

d2

)
≤ 1

2
exp

(
−
√
n
)
,

and furthermore, since ε < 0.2,

e
− 1+γ

1+ ε
2

√
d ≥ e−(1+γ)(1− ε

3
)
√
d = e−(1− ε

3
)γ
√
d · e−(1− ε

3
)
√
d ≥ 1

2
e−(1− ε

3
)
√
d .

Therefore, we obtain

P
(
δm[(1 + ε)τ ∗] ≤ ε

16
ne−(1− ε

3
)
√
d

)
≤ P

(
δm[(1 + ε)τ ∗] ≤ ε

8
ne
− 1+γ

1+ ε
2

√
d
)

≤ exp

(
− εn

800
e
− 1+γ

1+ ε
2

√
d
)

+ 2 exp

(
−γ

2

32

n

d2

)
≤ exp

(
− εn

1600
e−(1− ε

3
)
√
d

)
+

1

2
exp

(
−
√
n
)

≤ exp

(
− εn

1600
e−
√
d

)
+

1

2
exp

(
−
√
n
)
.

Given that ε = ω( 1
n0.49 ), we further have for large enough n,

εn

1600
e−
√
d ≥ 1

1600
n0.51e−

√
d ≥
√
n+ log 2 ,
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thus,

exp

(
− ε

1600
ne−2

√
d

)
≤ 1

2
exp

(
−
√
n
)
,

which concludes the proof.

Upper bound on the total number of proposals τ and men’s average rank

RMEN (Proposition C.1)

With the help of the coupling between the extended process and the men-proposing

DA, we are now able to prove Proposition C.1.

Proof of Proposition C.1. We make use of Lemma C.7. Denote n
√
d by τ ∗. Plug ε = d−

1
4

in (C.5). For the RHS of (C.5) we have

exp

(
−1

2
ndε2e−3

√
d

)
= exp

(
−1

2
n
√
de−3

√
d

)
≤ exp

(
−1

2
ne−3

√
d

)
≤ exp

(
−
√
n
)
.

Here the last inequality holds because d = o(log2 n), and it follows that for any α > 0,

e−3
√
d = ω

(
1
nα

)
. Therefore,

P
(
δw[(1 + d−

1
4 )τ ∗] > ne−

√
d
)
≤ exp

(
−
√
n
)
. (C.13)

We further utilize Lemma C.10. Plug ε = d−
1
4 in (C.9). For the LHS of (C.9), because

1
16

1
x
e

1
3
x ≥ e

1
4
x for large enough x, we have for large enough n,

ε

16
ne−(1− ε

3
)
√
d =

1

16
ne−

√
dd−

1
4 e

1
3
d

1
4 ≥ ne−

√
de

1
4
d

1
4 ,

and hence

P
(
δm[(1 + ε)τ ∗] ≤ ne−

√
de

1
4
d

1
4

)
≤ P

(
δm[(1 + ε)τ ∗] ≤ ε

16
ne−(1− ε

3
)
√
d

)
≤ exp

(
−
√
n
)
.

(C.14)

Note that by assumption on the imbalance k, i.e., |k| = O(ne−
√
d), there exists some

constant C such that |k| ≤ Cne−
√
d for large enough n. Consequently, since C+1 ≤ e

1
4
d

1
4

for large enough d (and hence for large enough n as d = ω(1)), we have for large enough
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n,

|k| ≤ Cne−
√
d ≤ ne−

√
d

(
e

1
4
d

1
4 − 1

)
.

Recall that τ is the smallest t such that

δm[t]− δw[t] = k ,

where the process δm[t]− δw[t] is non-decreasing over time. Therefore, we have

P
(
τ ≥ (1 + d−

1
4 )τ ∗

)
≤ P

(
δm[(1 + d−

1
4 )τ ∗]− δw[(1 + d−

1
4 )τ ∗] ≤ k

)
= P

(
δm[(1 + d−

1
4 )τ ∗]− δw[(1 + d−

1
4 )τ ∗] ≤ k, δw[(1 + d−

1
4 )τ ∗] ≤ ne−

√
d
)

+ P
(
δm[(1 + d−

1
4 )τ ∗]− δw[(1 + d−

1
4 )τ ∗] ≤ k, δw[(1 + d−

1
4 )τ ∗] > ne−

√
d
)

≤ P
(
δm[(1 + d−

1
4 )τ ∗] ≤ ne−

√
d + k

)
+ P

(
δw[(1 + d−

1
4 )τ ∗] > ne−

√
d
)

≤ P
(
δm[(1 + d−

1
4 )τ ∗] ≤ ne−

√
de

1
4
d

1
4

)
+ P

(
δw[(1 + d−

1
4 )τ ∗] > ne−

√
d
)

≤ 2 exp
(
−
√
n
)
,

where we made use of (C.13) and (C.14) in the last step.

As a result, when the imbalance satisfies |k| = O(ne−
√
d), with probability 1 −

O(exp(−
√
n)), we have

τ ≤ n
(√

d+ d
1
4

)
.

By definition of RMEN(MOSM), we have

RMEN(MOSM) =
τ + δm

n+ k
≤ τ + n

n+ k
.

Hence for τ ≤ n
(√

d+ d
1
4

)
, we have for large enough n,

RMEN(MOSM) ≤ n

n+ k

(√
d+ d

1
4 + 1

)
≤
(

1 + 0.5d−
1
4

)(√
d+ d

1
4 + 1

)
≤
√
d+ 2d

1
4 ,

where we utilized the fact that n
n+k
≤ n

n−|k| ≤
1

1−Ce−
√
d
≤ 1 + 2Ce−

√
d ≤ 1 + 0.5d−

1
4 for

large enough d.
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Lower bounds on the number of unmatched women δw and unmatched men

δm (Proposition C.2)

We now derive a lower on the number of unmatched women δw. Similar to the proof of

Lemma C.7, we again make an analogy between balls-into-bins process and DA procedure,

but we now consider a variation of balls-into-bins process that exaggerates the effect of

“sampling without replacement” as opposed to the original balls-into-bins process that

assumes sampling with replacement. The lower bound on the number of empty bins

in this process provides a lower bound on the number of unmatched women δw, which

immediately leads to a lower bound on the number of unmatched men δm by the identity

δm = δw + k.

Lemma C.11. For any t ≥ d and ∆ > 0, we have

P

(
δw[t]

n− d
−
(

1− 1

n− d

)t−d
≤ −∆

)
≤ exp

(
−2(n− d)∆2

)
.

This is also valid for the extended process defined in Section C.1.5.

Proof. Note that the tth proposal goes to a woman chosen uniformly at random after

excluding the set of women Ht that the man has previously proposed to. Therefore,

P
(
tth proposal goes to one of unmatched women

∣∣∣ δw[t− 1],Ht

)
=
δw[t− 1]

n− |Ht|
≤ δw[t− 1]

n− d
,

since |Ht| ≤ d. Consider a process δw[t] defined as

δw[t] = δw[t− 1]−Xt where Xt ∼ Bernoulli

(
min

{
δw[t− 1]

n− d
, 1

})
.

Since the process δw[t] exaggerates the likelihood of an unmatched woman receiving a

proposal and hence exaggerates the likelihood of decrementing by 1 at each level, δw[t]

stochastically dominates δw[t]: i.e., P
(
δw[t] ≤ x

)
≤ P

(
δw[t] ≤ x

)
for all x ∈ N. We also

observe that δw[t] counts the number of empty bins in a process (we refer to it below as

the original process) similar to balls-into-bins process where d bins are occupied during

the first d periods, and then the regular balls-into-bins process begins with n− d empty

bins. Consider Lemma C.4 applied to the “modified” balls-into-bins process of putting t′
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balls into n− d bins, where the bins correspond to those which are not occupied by the

first d balls in the original process, and t′ is the total number of balls which go into these

bins in the original process up to t. Clearly, t′ ≤ t − d, since the first d balls do not go

into these bins. We hence deduce from Lemma C.4 that

P

(
δw[t]

n− d
−
(

1− 1

n− d

)t−d
≤ −∆

)
≤ P

(
δw[t]

n− d
−
(

1− 1

n− d

)t′
≤ −∆

)
≤ exp

(
−2(n− d)∆2

)
.

Lemma C.12. Consider the setting of Theorem 3.1 and the extended process defined in

Section C.1.5. Then there exists n0 <∞ such that for all n > n0, we have the following

lower bounds on the number of unmatched women:

P
(
δw[(1 + d−

1
4 )n
√
d] ≤ ne−(1+2d−

1
4 )
√
d

)
≤ exp

(
−
√
n
)
, (C.15)

P
(
δw[(1− 5d−

1
4 )n
√
d] ≤ ne−(1−2.5d−

1
4 )
√
d

)
≤ exp

(
−
√
n
)
. (C.16)

Proof. Let τ ∗ , n
√
d.

Proof of (C.15). Fix t = (1 + d−
1
4 )τ ∗ = (1 + d−

1
4 )n
√
d. For large enough n, we have

d

n
≤ d

e
√
d
≤ 0.1d−

1
4 ,

t− d
n− d

≤ t

n
· 1

1− d/n
≤
√
d · 1 + d−

1
4

1− 0.1d−
1
4

≤
√
d(1 + 1.2d−

1
4 ).

Consequently, with ∆, e−(1+2d−
1
4 )
√
d, for large enough n we have

n− d
n

[(
1− 1

n− d

)t−d
−∆

]
≥
(

1− d

n

)
·

[
exp

(
− t− d
n− d

− t− d
(n− d)2

)
− e−(1+2d−

1
4 )
√
d

]
≥ 1

2
·
[
exp

(
−
√
d(1 + 1.2d−

1
4 ) · (1 + 1/(n− d))

)
− e−(1+2d−

1
4 )
√
d

]
≥ 1

2
·
[
exp

(
−
√
d(1 + 1.4d−

1
4 )
)
− exp

(
−
√
d(1 + 2d−

1
4 )
)]

= e−
√
d × 1

2
·
(

exp
(
−1.4d

1
4

)
− exp

(
−2d

1
4

))
≥ e−

√
d × 1

2
· e−2d

1
4

(
2.0d

1
4 − 1.4d

1
4

)
= e−

√
d × e−2d

1
4 × 0.3d

1
4 ≥ e−(1+2d−

1
4 )
√
d .

In the second last inequality, we utilize the fact that e−a − e−b ≥ e−b(b − a) for any

315



0 < a < b. Therefore, by Lemma C.11,

P
(
δw[t] ≤ ne−(1+2d−

1
4 )
√
d

)
= P

(
δw[t]

n
≤ e−(1+2d−

1
4 )
√
d

)
≤ P

δw[t]

n
≤ n− d

n

((
1− 1

n− d

)t−d
−∆

)
≤ P

(
δw[t]

n− d
−
(

1− 1

n− d

)t−d
≤ −∆

)
≤ exp

(
−2(n− d)∆2

)
= exp

(
−2(n− d)e−2(1+d−

1
4 )
√
d

)
.

The claim follows from the fact that 2(n− d)e−2(1+d−
1
4 )
√
d ≥
√
n for large enough n.

Proof of (C.16). Fix t = (1− 5d−
1
4 )τ ∗ = (1− 5d−

1
4 )n
√
d. For large enough n, we have

d

n
≤ d

e
√
d
≤ 0.1d−

1
4 ,

t− d
n− d

≤ t

n
· 1

1− d/n
≤
√
d · 1− 5d−

1
4

1− 0.1d−
1
4

≤
√
d(1− 4.8d−

1
4 ),

Consequently, with ∆, e−(1−2.5d−
1
4 )
√
d,

n− d
n

[(
1− 1

n− d

)t−d
−∆

]
≥
(

1− d

n

)
·

[
exp

(
− t− d
n− d

− t− d
(n− d)2

)
− e−(1−2.5d−

1
4 )
√
d

]
≥ 1

2
·
[
exp

(
−
√
d(1− 4.8d−

1
4 ) · (1 + 1/(n− d))

)
− e−(1−2.5d−

1
4 )
√
d

]
≥ 1

2
·
[
exp

(
−
√
d(1− 4.6d−

1
4 )
)
− exp

(
−
√
d(1− 2.5d−

1
4 )
)]

= e−
√
d × 1

2
·
(

exp
(

4.6d
1
4

)
− exp

(
2.5d

1
4

))
(a)

≥ e−
√
d × 1

2
· e2.5d

1
4

(
4.6d

1
4 − 2.5d

1
4

)
≥ e−

√
d × e2.5d

1
4 × d

1
4 ≥ e−(1−2.5d−

1
4 )
√
d ,

for large enough n. Here (a) follows from the fact that f(x) = ex is convex hence

f(x2)− f(x1) ≥ f ′(x1)(x2 − x1) for x2 > x1. Therefore, by Lemma C.11,

P
(
δw[t] ≤ ne−(1−2.5d−

1
4 )
√
d

)
= P

(
δw[t]

n
≤ e−(1−2.5d−

1
4 )
√
d

)
≤ P

δw[t]

n
≤ n− d

n

((
1− 1

n− d

)t−d
−∆

)
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≤ P

(
δw[t]

n− d
−
(

1− 1

n− d

)t−d
≤ −∆

)
≤ exp

(
−2(n− d)∆2

)
= exp

(
−2(n− d)e−2(1−2.5d−

1
4 )
√
d

)
.

The claim follows from the fact that 2(n−d)e−2(1−2.5d−
1
4 )
√
d ≥
√
n for large enough n.

We are now able to prove Proposition C.2.

Proof of Proposition C.2. By Proposition C.1 and the monotonicity of δw[t], we have for

large enough n,

P
(
δw[τ ] ≤ e−2d

1
4 ne−

√
d

)
≤ P

(
δw[τ ] ≤ e−2d

1
4 ne−

√
d , τ ≤ (1 + d−

1
4 )τ ∗

)
+ P

(
τ ≥ (1 + d−

1
4 )τ ∗

)
≤ P

(
δw[(1 + d−

1
4 )τ ∗] ≤ e−2d

1
4 ne−

√
d

)
+ exp

(
−
√
n
)
. (C.17)

Moreover, by Lemma C.12, we have for large enough n,

P
(
δw[(1 + d−

1
4 )τ ∗] ≤ e−2d

1
4 ne−

√
d

)
≤ exp

(
−
√
n
)
.

From (C.17), we conclude that with probability 1− 2 exp(−
√
n),

δw ≥ ne−
√
d−2d

1
4 .

Since |δm − δw| = |k| ≤ O(ne−
√
d), it follows that with probability 1− 2 exp(−

√
n),

δm ≥ ne−
√
d−3d

1
4 .

C.2.2 Step 2: Lower Bound on the Total Number of Proposals τ

In this section, we prove the following two propositions.

Proposition C.3. Consider the setting in Theorem 3.1. With probability 1−O
(

exp
(
−d 1

4

))
,we have the following upper bounds on the number of unmatched men δm and unmatched

women δw:

δm ≤ n exp
(
−
√
d+ 2.5d

1
4

)
, δw ≤ n exp

(
−
√
d+ 2.5d

1
4

)
.
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Proposition C.4. Consider the setting of Theorem 3.1. With probability 1−O
(

exp
(
−d 1

4

))
,

we have the following lower bound on the total number of proposals and men’s average

rank under the men-optimal stable matching:

τ ≥ n
(√

d− 5d
1
4

)
, RMEN(MOSM) ≥

√
d− 6d

1
4 .

The proofs of Proposition C.3 and C.4 have the following structure:

• (Sections C.2.2 and C.2.2) Proof of Proposition C.3: We first derive an upper

bound on the expected number of unmatched men E[δm] in Lemma C.13, utilizing

the fact that the probability of the last proposing man being rejected cannot be

too large given that the total number of proposals τ is limited by its upper bound

(Proposition C.1). We immediately deduce an upper bound E[δw] by using the

identity δm = δw + k. The high probability upper bounds on δm and δw follow by

applying Markov’s inequality.

• (Section C.2.2) Proof of Proposition C.4: We obtain a lower bound on the total

number of proposals τ by showing that the current number of unmatched women

δw[t] does not decay fast enough (again argued with a balls-into-bins analogy) and

hence it will violate the upper bound on δw[τ ] (= δw) derived in Proposition C.3 if

τ is too small. The lower bound on τ immediately translates into the lower bound

on RMEN(MOSM) due to the identity RMEN(MOSM) = τ+δm

n+k
.

Upper bound on the expected number of unmatched women E[δw]

Using a careful analysis of the rejection chains triggered by the last proposing man’s

proposal, we are able to derive an upper bound on the expected number of unmatched

women.

Lemma C.13. Consider the setting of Theorem 3.1. There exists n0 <∞ such that for

all n > n0, we have the following upper bounds on the expected number of unmatched men
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and women under stable matching

E[δm] ≤ n exp(−
√
d+ 1.4d1/4) , E[δw] ≤ n exp(−

√
d+ 1.5d1/4) . (C.18)

Proof. We will track the progress of the man proposing DA algorithm making use of the

principle of deferred decisions, and further make use of a particular sequence of proposals:

we will specify beforehand an arbitrary man i (before any information whatsoever is

revealed), and then run DA to convergence on the other men, before man i makes a

single proposal. We will show that the probability that the man i remains unmatched is

bounded as

P(µ(i) = i) ≤ exp(−
√
d+ 1.4d1/4) (C.19)

for large enough n. This will imply that, by symmetry across men, the expected number

of unmatched men under stable matching will be bounded above as

E[δm] ≤ (n+ k) exp(−
√
d+ 1.4d1/4) .

Finally the number of unmatched women at the end is exactly δw = δm − k, and so

E[δw] = E[δm]− k ≤ (n+ k) exp(−
√
d+ 1.4d1/4)− k ≤ n exp(−

√
d+ 1.5d1/4)

for large enough n as required, using k = O(ne−
√
d). The rest of proof is devoted to

establishing (C.19).

Using Proposition C.1, we have that with probability 1 − O(exp(−
√
n)), at the end

of DA, τ is bounded above as

τ ≤ n
(√

d+ d
1
4

)
, (C.20)

and using Proposition C.2, we have that with probability 1−O(exp(−
√
n)),

δw ≥ ne−
√
d−2d

1
4 , (C.21)

at the end of DA. Note that if (C.20) holds at the end of DA, then the RHS of (C.20) is

an upper bound on t throughout the run of DA. Similarly, since the number of unmatched
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woman δw[t] is monotone non-increasing in t, if (C.21) holds at the end of DA, then the

RHS of (C.21) is a lower bound on δw[t] throughout the run of DA. If, at any stage

during the run of DA either (C.20) (with t instead of τ) or (C.21) (with δw[t] instead

of δw) is violated, declare a “failure” event E ≡ Eτ . By union bound, we know that

P(E) = O(exp(−
√
n)). For t ≤ τ , let Et denote the event that no failure has occurred

during the first t proposals of DA. We will prove (C.19) by showing an upper bound on

the likelihood that man i remains unmatched for sample paths where no failure occurs,

and assuming the worst (i.e., that i certainly remains unmatched) in the rare cases where

there is a failure.

Run DA to convergence on men besides i. Now consider proposals by i. At each

such proposal, the recipient woman is drawn uniformly at random from among at least

n− d + 1 “candidate” women (the ones to whom i has not yet proposed). Assuming Ect ,

we know that

t ≤ n
(√

d+ d
1
4

)
, (C.22)

and hence the total number of proposals received by candidate women is at most n
(√

d+

d
1
4

)
, and hence the average number of proposals received by candidate women is at most

n(
√
d+ d

1
4 )/(n− d+ 1) ≤

√
d(1 + d−1/4 + log2 n/n) ≤

√
d(1 + 1.1d−

1
4 ) ≤

√
d+ 1.1d

1
4 for

large enough n, using d = o(log2 n). If the proposal goes to woman j, the probability

of it being accepted is 1
wj,t+1

. Averaging over the candidate women and using Jensen’s

inequality for the function f(x) = 1
x+1

, the probability of the proposal being accepted is at

least 1√
d+1.1d1/4+1

≥ 1√
d+1.2d1/4 . If the proposal is accepted, say by woman j, this triggers

a rejection chain. We show that it is very unlikely that this rejection chain will cause an

additional proposal to woman j (which will imply that it is very unlikely that the rejection

chain will cause i himself to be rejected): For every additional proposal in the rejection

chain, the likelihood that it goes to an unmatched woman far exceeds the likelihood

that it goes to woman j: if the current time is t′ and Ect′ holds, then, since all δw[t′]

unmatched women are certainly candidate recipients of the next proposal, the likelihood
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of the proposal being to an unmatched woman is at least δw[t′] ≥ ne−
√
d−2d

1
4 ≥
√
n times

the likelihood of it being to woman j for n large enough, using d = o(log2 n). Now if the

proposal is to an unmatched woman, this causes the rejection chain to terminate, hence

the expected number of proposals to an unmatched woman in the rejection chain is at

most 1. We immediately deduce that if a failure does not occur prior to termination of

the chain, the expected number of proposals to woman j in the rejection chain is at most

1√
n
. It follows that

P(i is displaced from j by the rejection chain triggered when j accepts his proposal)

≤ P(j receives a proposal in the rejection chain triggered)

≤ E[Number of proposals received by j in the rejection chain triggered]

≤ 1√
n
,

for n large enough. Overall, the probability of the proposal by i being “successful” in that

it is both (a) accepted, and then (b) man i is not pushed out by the rejection chain, is

at least

1√
d+ 1.2d1/4

(
1− 1√

n

)
≤ 1√

d+ 1.3d1/4
,

for large enough n. Hence the probability of an unsuccessful proposal (if there is no

failure) is at most

1− 1√
d+ 1.3d1/4

≤ exp

{
− 1√

d+ 1.3d1/4

}
,

and so the probability of all d proposals being unsuccessful (if there is no failure) is at

most

exp

{
− d√

d+ 1.3d1/4

}
≤ exp

{
−
√
d+ 1.3d1/4

}
.

Formally, what we have obtained is an upper bound on the quantity E
[
I(µ(i) = i)I(Ec)

]
,

namely,

E
[
I(µ(i) = i)I(Ec)

]
≤ exp

{
−
√
d+ 1.3d1/4

}
.
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Since the probability of failure is bounded as P(E) ≤ O(exp(−
√
n)), the overall prob-

ability that of man i remaining unmatched is bounded above as

P(µ(i) = i) ≤ E
[
I(µ(i) = i)I(Ec)

]
+ P(E)

≤ exp
{
−
√
d+ 1.3d1/4

}
+O(exp(−

√
n)) ≤ exp

{
−
√
d+ 1.4d1/4

}
for large enough n, i.e., the bound (C.19) which we set out to show.

Upper bound on the number of unmatched men δm and unmatched women

δw (Proposition C.3)

Proof. Proof of Proposition C.3. Recall the results in Lemma C.13:

E[δm] ≤ n exp(−
√
d+ 1.4d1/4) , E[δw] ≤ n exp(−

√
d+ 1.5d1/4) . (C.23)

We use Markov’s inequality for each δm and δw:

P
(
δm > n exp(−

√
d+ 2.4d1/4)

)
≤ E[δm]

n exp(−
√
d+ 2.4d1/4)

≤ exp(−d1/4) ,

P
(
δw > n exp(−

√
d+ 2.5d1/4)

)
≤ E[δw]

n exp(−
√
d+ 2.5d1/4)

≤ exp(−d1/4) .

Lower bound on the number of total proposals τ (Proposition C.4)

Proof. Proof of Proposition C.4. Consider the extended process defined in Appendix C.1.5,

and let δw[t] be the number of unmatched woman at time t of the extended process. Let

τ be the time when the men-optimal stable matching is found, i.e., δw = δw[τ ]. Let

ε , d−1/4. We have

P
(
τ < (1− 5ε)n

√
d
)
≤ P

(
τ < (1− 5ε)n

√
d, δw[τ ] < ne−(1−2.5ε)

√
d
)

+ P
(
δw[τ ] ≥ ne−(1−2.5ε)

√
d
)

≤ P
(
δw[(1− 5ε)n

√
d] < ne−(1−2.5ε)

√
d
)

+ P
(
δw[τ ] ≥ ne−(1−2.5ε)

√
d
)
.

(C.24)

Here the last inequality holds because δw[t] is non-increasing over t on each sample path.

It follows from Proposition C.3 that the second term on the RHS of (C.24) is O(e−d
1/4

).
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It remains to bound the first term on the RHS of (C.24). By Lemma C.12, we have

P
(
δw[(1− 5ε)n

√
d] < ne−(1−2.5ε)

√
d
)
≤ exp(−

√
n),

for large enough n. By plugging this in the RHS of (C.24), we obtain

P
(
τ < (1− 5ε)n

√
d
)

= O
(

exp(−d
1
4 )
)
. (C.25)

Note that by the definition of RMEN(MOSM), we have

RMEN(MOSM) ≥ τ

n+ k
.

Since |k| = O(ne−
√
d), using an argument similar to the one at the end of the proof of

Proposition C.1, we can deduce from (C.25) that

P
(
RMEN(MOSM) < (1− 6ε)

√
d
)

= O
(

exp
(
− d

1
4

))
.

This concludes the proof.

C.2.3 Step 3: Upper and Lower Bounds on Women’s Average

Rank RWOMEN

In this section, we prove the following two propositions.

Proposition C.5 (Lower bound on women’s average rank). Consider the setting of

Theorem 3.1. With probability 1 − 3
n
, we have the following lower bound on women’s

average rank:

RWOMEN(MOSM) ≥
√
d− 3d

1
4 ,

Proposition C.6 (Upper bound on women’s average). Consider the setting of Theorem

3.1. With probability 1−O(exp(−d 1
4 )), we have the following upper bound on the women’s

average rank:

RWOMEN(MOSM) ≤
√
d+ 8d

1
4 .
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In order to characterize the women side, we introduce a different extended process

which we call the continue-proposing process that is slightly different from one introduced

in Section C.1.5. Until the MOSM is found (i.e., t ≤ τ), the continue-proposing process

is identical to the original DA procedure. After the MOSM is found (i.e., t > τ), the

proposing man It is chosen arbitrarily among the men who have not yet exhausted their

preference list (i.e., {i ∈M : Mi,t−1 < d}), and we let him propose to his next candidate.

We do not care about the matching nor the acceptance/rejection after τ , since we only

keep track of the number of proposals that each man has made, Mi,t, and each woman

has received, Wj,t. The continue-proposing process terminates at time t = (n+k)d, when

all men exhaust their preference lists.

To analyze the concentration of RWOMEN, we first construct upper and lower bounds

on its conditional expectation. More formally, we define

R̄[t] ,
1

n

∑
j∈W

Wj,(n+k)d −Wj,t

Wj,t + 1
, (C.26)

where Wj,(n+k)d represents the degree of woman j in a random matching market so that

Wj,(n+k)d −Wj,t represents the number of remaining proposals that woman j will receive

after time t. In Lemma C.15, we prove that R̄[τ ] is concentrated around
√
d given τ ≈

n
√
d. In Lemma C.16, we show that R̄[τ ] (plus 1) is indeed the conditional expectation of

RWOMEN given Wj,τ ’s and Wj,(n+k)d’s, and further characterize the conditional distribution

of RWOMEN given R̄[τ ], which leads to the concentration bounds on RWOMEN. Within the

proofs, we also utilize the fact that R̄[t] is decreasing over time on each sample path.

Concentration of expected women’s average rank R̄t

We first state a preliminary lemma that will be used to show the concentration of R̄t.

Lemma C.14. Fix any t and T such that t < T and positive numbers c1, . . . , cn such

that cj ∈ [0, 1] for all j, and define

Yt,T ,
∑
j∈W

cj(Wj,T −Wj,t).

324



With S,
∑n

j=1 cj, we have

P

(
Yt,T ≥ (1 + ε)

(T − t)S
n− d

∣∣∣∣ ~Wt

)
≤ exp

(
−1

4
ε2 × (T − t)S

n

)
(C.27)

P

(
Yt,T ≤ (1− ε)(T − t)(S − d)

n− d

∣∣∣∣ ~Wt

)
≤ exp

(
−1

4
ε2 × (T − t)(S − d)

n− d

)
(C.28)

for any ε ∈ [0, 1].

Proof. Throughout this proof, we assume thatW1,t, . . . ,Wn,t are revealed, i.e. we consider

the conditional probabilities/expectations given W1,t, . . . ,Wn,t. In addition, we assume

that c1 ≤ c2 ≤ . . . ≤ cn without loss of generality.

Proof of (C.27): We first establish an upper bound using a coupling argument. Recall

thatWj,s counts the number of proposals that a woman j had received up to time s, which

is governed by the recipient process Js. We construct a coupled process
(
W j,s

)
j∈W,s≥t

that counts based on Js as follows:

(i) Initialize W j,t ← Wj,t for all j.

(ii) At each time s = t + 1, t + 2, . . . , T , after the recipient Js is revealed (which is

uniformly sampled among W \Hs), determine Js ∈ {d+ 1, . . . , n}:

• If Js ∈ {d+ 1, . . . , n}, set Js ← Js.

• If Js ∈ {1, . . . , d}, sample Js according to the probability distribution ps(·)

defined as (the motivation for this definition is provided below)

ps(j) =


0 if j ∈ {1, . . . , d},

1
n−d

/ |{1,...,d}\Hs|
|W\Hs| if j ∈ {d+ 1, . . . , n} ∩ Hs,(

1
n−d −

1
|W\Hs|

)/ |{1,...,d}\Hs|
|W\Hs| if j ∈ {d+ 1, . . . , n} \ Hs.

(iii) Increase the counter of Js instead of Js: i.e., W j,s ← W j,s−1 + I{Js = j} for all j.

In words, whenever a proposal goes to one of d women who have smallest cj values

(i.e., when Js ∈ {1, . . . , d}), we randomly pick one among the other n − d women (i.e.,
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Js ∈ {d + 1, . . . , n}) and increase that woman’s counter W Js
. Otherwise (i.e., when

Js ∈ {d + 1, . . . , n}), we count the proposal as in the original process. In any case, we

have cJs ≥ cJs .

Note that we do not alter the proposal mechanism in this coupled process, but just

count the proposals in a different way. Therefore, we have

∑
j∈W

cj(Wj,T −Wj,t) ≤
∑
j∈W

cj(W j,T −W j,t), (C.29)

Also note that the (re-)sampling distribution ps(·) was constructed in a way that Js is

chosen uniformly at random among {d + 1, . . . , n}, unconditioned on Js, independently

of Hs. More formally, we have for any j ∈ {d+ 1, . . . , n} \ Hs,

P(Js = j|Hs) = P(Js = j|Hs) + P(Js = j|Hs, Js ∈ {1, . . . , d}) · P(Js ∈ {1, . . . , d}|Hs)

=
1

|W \ Hs|
+

(
1

n− d
− 1

|W \ Hs|

)
=

1

n− d
.

Similarly it can be verified that P(Js = j|Hs) = 1
n−d also for any j ∈ {d+ 1, . . . , n}∩Hs.

The fact that |Hs| < d guarantees that ps(·) is a well-defined probability mass function.

Therefore,

∑
j∈W

cj(W j,T −W j,t)
d
=

n∑
j=d+1

cjXj,

where Xj ∼ Binomial
(
T − t, 1

n−d

)
for j ∈ {d+1, . . . , n}. Although Xj’s are not indepen-

dent, they are negatively associated as in the balls-into-bins process (see Section C.1.3).

For any λ ∈ R, exp(λcjXj)’s are also NA due to Lemma C.3–((iii)), and therefore,

E

exp

λ n∑
j=d+1

cjXj


 ≤ n∏

j=d+1

E
[
eλcjXj

]

=
n∏

j=d+1

(
1− 1

n− d
+

1

n− d
eλcj
)T−t

≤
n∏

j=d+1

exp

(
− 1

n− d
+

1

n− d
eλcj
)T−t
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= exp

(T − t)

−1 +
1

n− d

n∑
j=d+1

eλcj

 .

Since cj ∈ [0, 1] and ex ≤ 1 + x+ x2 for any x ∈ (−∞, 1], we have for any λ ∈ [0, 1],

−1 +
1

n− d

n∑
j=d+1

eλcj ≤ −1 +
1

n− d

n∑
j=d+1

(1 + λcj + λ2c2
j) ≤

λ+ λ2

n− d

n∑
j=d+1

cj.

By Markov’s inequality, for any λ ∈ [0, 1],

P

 n∑
j=d+1

cjXj ≥ (1 + ε)
T − t
n− d

n∑
j=d+1

cj


≤

E
[
exp

(
λ
∑n

j=d+1 cjXj

)]
exp

(
λ(1 + ε)T−t

n−d
∑n

j=d+1 cj

)
≤ exp

(T − t) · λ+ λ2

n− d

n∑
j=d+1

cj − λ(1 + ε)
T − t
n− d

n∑
j=d+1

cj


≤ exp

(λ2 − λε) · T − t
n− d

n∑
j=d+1

cj

 .

By taking λ, ε
2
, we obtain

P

 n∑
j=d+1

cjXj ≥ (1 + ε)
T − t
n− d

n∑
j=d+1

cj

 ≤ exp

−1

4
ε2 × T − t

n− d

n∑
j=d+1

cj

 .

Also note that

S

n
=

1

n

n∑
j=1

cj ≤
1

n− d

n∑
j=d+1

cj.

Therefore, together with (C.29),

P

(
Yt,T ≥ (1 + ε)

(T − t)S
n− d

∣∣∣∣W1,t, . . . ,Wn,t

)

≤P

Yt,T ≥ (1 + ε)
T − t
n− d

n∑
j=d+1

cj

∣∣∣∣∣∣W1,t, . . . ,Wn,t


≤ exp

−1

4
ε2 × T − t

n− d

n∑
j=d+1

cj


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≤ exp

(
−1

4
ε2 × (T − t)S

n

)
.

Proof of (C.28): Similarly to above, we can construct a coupled process
(
W j,s

)
s≥t

under

which Js is resampled among {1, . . . , n− d} whenever a proposal goes to one of d women

who have largest cj values (i.e., when Js ∈ {n−d+1, . . . , n}) while P
(
Js = j|Hs

)
= 1

n−d

for any j ∈ {1, · · · , n− d} and any Hs. With this process, we have

∑
j∈W

cj(Wj,T −Wj,t) ≥
∑
j∈W

cj(W j,T −W j,t)
d
=

n−d∑
j=1

cjXj,

where Xj ∼ Binomial
(
T − t, 1

n−d

)
for j ∈ {1, . . . , n− d} and Xj’s are NA.

For any λ ∈ [−1, 0],

E

exp

λ n−d∑
j=1

cjXj


 ≤ n−d∏

j=1

E
[
eλcjXj

]

=
n−d∏
j=1

(
1− 1

n− d
+

1

n− d
eλcj
)T−t

≤
n−d∏
j=1

exp

(
− 1

n− d
+

1

n− d
eλcj
)T−t

= exp

(T − t)

−1 +
1

n− d

n−d∑
j=1

eλcj

 .

Since cj ∈ [0, 1] and ex ≤ 1 + x+ x2 for any x ∈ (−∞, 1], we have for any λ ∈ [−1, 0],

−1 +
1

n− d

n−d∑
j=1

eλcj ≤ −1 +
1

n− d

n−d∑
j=1

(1 + λcj + λ2c2
j) ≤

λ+ λ2

n− d

n−d∑
j=1

cj .

Using Markov’s inequality, we have

P

n−d∑
j=1

cjXj ≤ (1− ε)T − t
n− d

n−d∑
j=1

cj


= P

exp

λ n−d∑
j=1

cjXj

 ≥ exp

λ(1− ε)T − t
n− d

n−d∑
j=1

cj




≤
E
[
exp

(
λ
∑n−d

j=1 cjXj

)]
exp

(
λ(1− ε)T−t

n−d
∑n−d

j=1 cj

)
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≤ exp

(T − t) · λ+ λ2

n− d

n−d∑
j=1

cj − λ(1− ε)T − t
n− d

n−d∑
j=1

cj


≤ exp

(λ2 + λε) · T − t
n− d

n−d∑
j=1

cj

 .

With λ,− ε
2
, we obtain

P

n−d∑
j=1

cjXj ≤ (1− ε)T − t
n− d

n−d∑
j=1

cj

 ≤ exp

−1

4
ε2 × T − t

n− d

n−d∑
j=1

cj

 .

Consequently, since S − d =
∑n

j=1 cj − d ≤
∑n−d

j=1 cj,

P

(
Yt,T ≤ (1− ε)(T − t)(S − d)

n− d

∣∣∣∣W1,t, . . . ,Wn,t

)

≤ P

Yt,T ≤ (1− ε)T − t
n− d

n−d∑
j=1

cj

∣∣∣∣∣∣W1,t, . . . ,Wn,t


≤ exp

−1

4
ε2 × T − t

n− d

n−d∑
j=1

cj


≤ exp

(
−1

4
ε2 × (T − t)(S − d)

n− d

)
.

Lemma C.15. Consider the setting of Theorem 3.1 and R̄[t] defined in (C.26). There

exists n0 <∞ such that for all n > n0, we have

P
(
R̄
[
n(
√
d+ d

1
4 )
]
≤
√
d− 2.3d

1
4

)
≤ exp

(
−n

8

)
. (C.30)

P
(
R̄
[
n(
√
d− 5d

1
4 )
]
≥
√
d+ 7.5d

1
4

)
≤ exp

(
− n
d4

)
. (C.31)

Proof. Proof of (C.30): Fix t = n
(√

d+ d
1
4

)
and let S ,

∑
j∈W

1
Wj,t+1

. Due to the

convexity of f(x) , 1
x+1

, we have for large enough d (i.e. large enough n since d = ω(1)),

S

n
=

1

n

∑
j∈W

f(Wj,t) ≥ f

 1

n

∑
j∈W

Wj,t

 = f

(
t

n

)
=

1

t/n+ 1
≥ 1√

d+ 1.05d
1
4

. (C.32)
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Given the asymptotic condition, for large enough n,

|k|
n

= O(e−
√
d) ≤ 0.1d−

1
4 ,

t

nd
≤
√
d+ d

1
4

d
= d−

1
2 + d−

3
4 ≤ 0.1d−

1
4 ,

S − d
n/
√
d
≥ 1

1 + 1.05d−
1
4

− d
3
2

n
≥ 1− 1.1d−

1
4 .

Therefore,

((n+ k)d− t)(S − d)

n− d
≥ ((n+ k)d− t)(S − d)

n

≥ d

(
1− |k|

n
− t

nd

)
× n√

d
· S − d
n/
√
d

≥ n
√
d×

(
1− 0.1d−

1
4 − 0.1d−

1
4

)
×
(

1− 1.1d−
1
4

)
≥ n
√
d
(

1− 1.3d−
1
4

)
. (C.33)

Utilizing Lemma C.14, with3 cj , 1
Wj,t+1

, T , (n+ k)d and ε , d−
1
4 , we obtain

P
(
R̄[t] ≤

√
d− 2.3d

1
4

∣∣∣ ~Wt

)
= P

(
nR̄[t] ≤ n

√
d
(

1− 2.3d−
1
4

)∣∣∣∣ ~Wt

)

≤ P

(
nR̄[t] ≤ (1− ε)× n

√
d
(

1− 1.3d−
1
4

)∣∣∣∣ ~Wt

)

≤ P

(
nR̄[t] ≤ (1− ε)× ((n+ k)d− t)(S − d)

n− d

∣∣∣∣ ~Wt

)
≤ exp

(
−1

4
ε2 × ((n+ k)d− t)(S − d)

n− d

)
≤ exp

(
−1

4
d−

1
2 × n

√
d
(

1− 1.3d−
1
4

))
≤ exp(−n/8) ,

where the last inequality follows from the fact that 1 − 1.3d−
1
4 ≥ 1

2
for large enough d.

Since the above result holds for any realization of ~Wt, the claim follows.

Proof of (C.31): Fix t = n(
√
d− 5d

1
4 ). Define

A ,

 ~Wt

∣∣∣∣∣∣ 1n
∑
j∈W

1

Wj,t + 1
≤ n

t
+
d2

n
+ d−

3
4

 ⊂ N|W| .

3In Lemma C.14, we assume that cj ’s are some deterministic constants whereas we set cj , 1
Wj,t+1

here. This is fine because the results of Lemma C.14 are stated in terms of conditional probability given
~Wt.
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Applying Lemma C.8 with ∆, d−
3
4 , we obtain

P
(
~Wt /∈ A

)
= P

(
S

n
>
n

t
+
d2

n
+ d−

3
4

)
≤ 2 exp

(
−n∆2

8d

)
= 2 exp

(
−1

8
nd−

5
2

)
.

Regarding the last term, observe that for large enough d, we have

2 exp

(
−1

8
nd−

5
2

)
≤ 1

2
exp

(
−nd−4

)
.

For any ~Wt ∈ A, we have for large enough n,

S

n
≤n
t

+
d2

n
+ d−

3
4 =

1√
d− 5d

1
4

+
d2

n
+ d−

3
4 =

1√
d

(
1

1− 5d−
1
4

+
d

5
2

n
+ d−

1
4

)
≤ 1√

d

(
1 + 6.1d−

1
4

)
,

Furthermore, given the asymptotic conditions,

((n+ k)d− t)S
n− d

≤ (n+ k)dS

n− d
≤ n+ |k|

n
· n

n− d
· dS

≤ n+ |k|
n

· n

n− d
· n
√
d
(

1 + 6.1d−
1
4

)
=

(
1 +
|k|
n

)
· 1

1− d/n
· n
√
d
(

1 + 6.1d−
1
4

)
≤
(

1 + 0.1d−
1
4

)
·
(

1 + 0.1d−
1
4

)
· n
√
d
(

1 + 6.1d−
1
4

)
≤ n
√
d
(

1 + 6.4d−
1
4

)
,

where we used the fact that |k|
n

= O(e−
√
d) ≤ 0.1d−

1
4 and d

n
≤ 0.1d−

1
4 for large enough n.

We further utilize Lemma C.14: By taking cj , 1
Wj,t+1

, T , (n + k)d and ε , d−
1
4 , we

obtain

P
(
R̄[t] ≥

√
d+ 7.5d

1
4

∣∣∣ ~Wt

)
= P

(
nR̄[t] ≥ n

√
d
(

1 + 7.5d−
1
4

)∣∣∣∣ ~Wt

)

≤ P

(
nR̄[t] ≥ (1 + ε)× n

√
d
(

1 + 6.4d−
1
4

)∣∣∣∣ ~Wt

)

≤ P

(
nR̄[t] ≥ (1 + ε)× ((n+ k)d− t)S

n− d

∣∣∣∣ ~Wt

)
≤ exp

(
−1

4
ε2 × ((n+ k)d− t)S

n

)
.
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for any ~Wt ∈ A. Also note that, from (C.33), for large enough n,

((n+ k)d− t)S
n

≥

((
1− |k|

n

)
d− t

n

)
S ≥

((
1− 0.1d−

1
4

)
d−
√
d+ 5d

1
4

)
S ,

where we used the fact that |k|
n

= O(e−
√
d) ≤ 0.1d−

1
4 . Because

(
1− 0.1d−

1
4

)
d −
√
d +

5d
1
4 ≥ d− 1.3d

3
4 for large enough n, and that S ≥ n

t/n+1
as derived in (C.32), we have

((n+ k)d− t)S
n

≥
(
d− 1.3d

3
4

) n

t/n+ 1
≥
(
d− 1.3d

3
4

) n√
d
≥ n
√
d
(

1− 1.3d−
1
4

)
,

and therefore,

exp

(
−1

4
ε2 × ((n+ k)d− t)S

n

)
≤ exp

(
−1

4
d−

1
2 × n

√
d
(

1− 1.3d−
1
4

))
≤ exp

(
−n/8

)
.

Combining all results, we obtain the desired result: for large enough n,

P
(
R̄[t] ≥

√
d+ 7.5d

1
4

)
≤ P

(
R̄[t] ≥

√
d+ 7.5d

1
4

∣∣∣ ~Wt ∈ A
)
· P
(
~Wt ∈ A

)
+ P

(
~Wt /∈ A

)
≤ exp

(
−n/8

)
+

1

2
exp

(
−nd−4

)
≤ exp

(
−nd−4

)
,

where the last inequality follows from that n
8
≥ n

d4 + log 2 for large enough n and d.

Concentration of women’s average rank RWOMEN

The following lemma states that conditioned on ( ~Wτ , ~W(n+k)d), RWOMEN(MOSM) is

concentrated around R̄[τ ].

Lemma C.16. For any given n, k and d and ( ~Wτ , ~W(n+k)d) which arises with positive

probability, we have E[RWOMEN(MOSM)| ~Wτ , ~W(n+k)d] = 1 + R̄[τ ]. Furthermore, for any

ε > 0 we have

P
(
RWOMEN(MOSM) ≥ 1 + (1 + ε)R̄[τ ]

∣∣ ~Wτ , ~W(n+k)d

)
≤ exp

(
− 2ε2n2R̄[τ ]2∑

j∈WW
2
j,(n+k)d

)
,

(C.34)
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P
(
RWOMEN(MOSM) ≤ 1 + (1− ε)R̄[τ ]

∣∣ ~Wτ , ~W(n+k)d

)
≤ exp

(
− 2ε2n2R̄[τ ]2∑

j∈WW
2
j,(n+k)d

)
.

(C.35)

Proof. Within this proof, we assume that τ , ~Wτ =
(
Wj,τ

)
j∈W , and ~W(n+k)d =

(
Wj,(n+k)d

)
j∈W

are revealed (and hence so is R̄[τ ]). In what follows, P(·) and E[·] denote the associated

conditional probability and the conditional expectation, respectively.

For brevity, let wj , Wj,τ , w′j , Wj,(n+k)d−Wj,τ , andRj , Rankj(MOSM)| ~Wτ , ~W(n+k)d.

Note that a woman j receives wj proposals until time τ and receives w′j proposals after

time τ (the total number of proposals wj + w′j = Wj,(n+k)d equals to her degree). Under

MOSM, each woman j is matched to her most preferred one among the first wj propos-

als, and the rank of her matched partner under MOSM, Rj, can be determined by the

number of men among the remaining (at time τ) w′j men on her list that she prefers to

her matched partner.

More specifically, fix j and let Zj
t be the indicator that the woman j prefers her tth

proposal to all of her first wj proposals for t ∈ {wj + 1, . . . , wj +w′j}. Then, the rank Rj

can be represented as

Rj = 1 +

wj+w
′
j∑

t=wj+1

I
(
woman j prefers her tth proposal to all of her first wj proposals

)

= 1 +

wj+w
′
j∑

t=wj+1

Zj
t .

Note that (Zj
t )
wj+w

′
j

t=wj+1 has the same distribution as (I{U j
t > Vj})

wj+w
′
j

t=wj+1, where (U j
t )
wj+w

′
j

t=wj+1

are i.i.d. Uniform[0, 1] random variables, Vj is the largest order statistic of wj i.i.d.

Uniform[0, 1] random variables, and Vj is independent of U j
t ’s. Therefore,

E
[
Rj

]
= 1 + w′j · E[Zj

wj+1] = 1 + w′j · P(U j
wj+1 > Vj) = 1 +

w′j
wj + 1

,

and

E[RWOMEN(MOSM)| ~Wτ , ~W(n+k)d] =
1

n

∑
j∈W

E[Rj] = 1 + R̄[τ ] ,
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which proves the first claim in Lemma C.16.

Note that (Rj)j∈W are i.i.d. and that Rj ∈ [0, w′j]. Applying Hoeffding’s inequality,

we have

P
(
RWOMEN(MOSM) ≥ 1 + (1 + ε)R̄[τ ]

∣∣ ~Wτ , ~W(n+k)d

)
= P

(
1

n
Rj ≥ 1 + (1 + ε)E[R̄[τ ]]

)
≤ exp

(
− 2ε2n2R̄[τ ]2∑

j∈WW
2
j,(n+k)d

)
.

Similarly, we can show that

P
(
RWOMEN(MOSM) ≤ 1 + (1− ε)R̄[τ ]

∣∣ ~Wτ , ~W(n+k)d

)
≤ exp

(
− 2ε2n2R̄[τ ]2∑

j∈WW
2
j,(n+k)d

)
.

This concludes the proof.

Proof of Proposition C.5. We obtain a high probability lower bound on RWOMEN by com-

bining the results of Proposition C.1, and Lemmas C.15 and C.16. By Proposition C.1

and Lemma C.15 and by the fact that R̄[t] is decreasing on each sample path,

P
(
R̄[τ ] ≤

√
d− 2.3d

1
4

)
≤ P

(
R̄[τ ] ≤

√
d− 2.3d

1
4 , τ < n(

√
d+ d

1
4 )
)

+ P
(
τ ≥ n(

√
d+ d

1
4 )
)

≤ P
(
R̄[n(
√
d+ d

1
4 )] ≤

√
d− 2.3d

1
4 , τ < n(

√
d+ d

1
4 )
)

+ P
(
τ ≥ n(

√
d+ d

1
4 )
)

≤ exp

(
−n

8

)
+O(exp(−

√
n)) = O(exp(−

√
n)) . (C.36)

We also need a high probability upper bound on
∑

j∈WW
2
j,(n+k)d. Since Wj,(n+k)d ∼

Binomial((n+ k)d, 1
n
), we have for large enough n,

E
[
W 2
j,(n+k)d

]
= E2

[
Wj,(n+k)d

]
+ Var

[
Wj,(n+k)d

]
= (n+ k)2d2 1

n2

(
1 + (1− 1

n
)2

)
≤ 2d2 .

Denote µ , E[W1,(n+k)d] = (n+k)d
n

. Looking up the table of the central moments of

Binomial distribution, we have

E[(W1,(n+k)d − µ)4] = (n+ k)d
1

n

(
1− 1

n

)(
1 + (3(n+ k)d− 6)

1

n

(
1− 1

n

))
.
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Using the fact that k = o(n), d = o(n) and d = ω(1), we have for large enough n,

E[(W1,(n+k)d − µ)4] ≤ 2d

(
1 + 3(n+ k)d

1

n

)
≤ 2d · 4d = 8d2 .

Therefore, for large enough n,

Var[W 2
1,(n+k)d] ≤ E[W 4

1,(n+k)d]

= E[(µ+ (W1,(n+k)d − µ))4]

≤ 8µ4 + 8E[(W1,(n+k)d − µ)4]

= 8
(n+ k)4d4

n4
+ 64d2

≤ 10d4 .

In the proof of Lemma C.4, we have shown that W1,(n+k)d, . . . ,Wn,(n+k)d are NA. By

Lemma C.3–((iii)), W 2
1,(n+k)d, . . . ,W

2
n,(n+k)d are NA, hence we have for large enough n,

Var

∑
j∈W

W 2
j,(n+k)d

 ≤ nVar
[
W 2

1,(n+k)d

]
≤ 10nd4 .

Applying Chebyshev’s inequality, we have for large enough n,

P

∑
j∈W

W 2
j,(n+k)d ≥ 4nd2


≤ P

∑
j∈W

(W 2
j,(n+k)d − E[W 2

j,(n+k)d]) ≥ 2nd2


= P

∑
j∈W

(W 2
j,(n+k)d − E[W 2

j,(n+k)d]) ≥
2
√
n√

10

√
10nd4


≤ P

∑
j∈W

(W 2
j,(n+k)d − E[W 2

j,(n+k)d]) ≥
2
√
n√

10

√√√√√Var

∑
j∈W

W 2
j,(n+k)d




≤ 5

2n
≤ 3

n
. (C.37)

Given that R̄[τ ] >
√
d− 2.3d

1
4 , by plugging ε , 0.5d−

1
4 in (C.35) of Lemma C.16, we

obtain for large enough n,

1 + (1− ε)R̄[τ ] ≥ 1 + (1−0.5d−
1
4 ) ·
√
d(1−2.3d−

1
4 ) ≥

√
d(1−3d−

1
4 ) =

√
d−3d

1
4 . (C.38)
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Therefore,

P
(
RWOMEN ≤

√
d− 3d

1
4

)
≤ P

RWOMEN ≤
√
d− 3d

1
4

∣∣∣ R̄[τ ] >
√
d− 2.3d

1
4 ,
∑
j∈W

W 2
j,(n+k)d < 4nd2


+ P

(
R̄[τ ] ≤

√
d− 2.3d

1
4

)
+ P

∑
j∈W

W 2
j,(n+k)d ≥ 4nd2


(a)
≤ P

RWOMEN ≤ 1 + (1− ε)R̄[τ ]
∣∣ R̄[τ ] >

√
d− 2.3d

1
4 ,
∑
j∈W

W 2
j,(n+k)d < 4nd2


+O(exp(−

√
n)) +

3

n

(b)
≤ E

exp

(
−

1
2
d−

1
2n2R̄[τ ]2

4nd2

)∣∣∣∣∣∣ R̄[τ ] >
√
d− 2.3d

1
4

+
4

n

≤ exp

(
−1

8
d−

5
2n · d(1− 2.3d−

1
4 )2

)
+

4

n

≤ exp

(
−nd

− 3
2

16

)
+

4

n

≤ 5

n
.

Here inequality (a) follows from (C.38), (C.36), and (C.37); inequality (b) follows from

Lemma C.16.

Proof of Proposition C.6. We obtain a high probability lower bound on RWOMEN by com-

bining the results of Proposition C.4, and Lemma C.15 and C.16. By Proposition C.4

and Lemma C.15,

P
(
R̄[τ ] ≥

√
d+ 7.5d

1
4

)
≤ P

(
R̄[τ ] ≥

√
d+ 7.5d

1
4 , τ > n(

√
d− 5d

1
4 )
)

+ P
(
τ ≤ n(

√
d− 5d

1
4 )
)

≤ P
(
R̄[n(
√
d− 5d

1
4 )] ≥

√
d+ 7.5d

1
4 , τ > n(

√
d− 5d

1
4 )
)

+ P
(
τ ≤ n(

√
d− 5d

1
4 )
)

≤ exp

(
− n
d4

)
+O(exp(−d

1
4 ))

≤ O(exp(−d
1
4 )) .

Given that R̄[τ ] <
√
d + 7.5d

1
4 , by plugging ε , 0.1d−

1
4 in (C.34) of Lemma C.16, we
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obtain

1 + (1 + ε)R̄[τ ] ≤ 1 + (1 + 0.1d−
1
4 ) ·
√
d(1 + 7.5d−

1
4 ) ≤

√
d(1 + 8d−

1
4 ) =

√
d+ 8d

1
4 ,

for large enough n. Recall that we have shown in the proof of Proposition C.5 that

P

∑
j∈W

W 2
j,(n+k)d ≥ 4nd2

 ≤ 3

n
.

Therefore, similar to the proof of Proposition C.5, we have

P
(
RWOMEN ≥

√
d+ 8d

1
4

)
≤ P

RWOMEN ≥
√
d+ 8d

1
4

∣∣∣√d− 2.3d
1
4 < R̄[τ ] <

√
d+ 7.5d

1
4 ,
∑
j∈W

W 2
j,(n+k)d < 4nd2


+ P

(
R̄[τ ] ≤

√
d− 2.3d

1
4

)
+ P

(
R̄[τ ] ≥

√
d+ 7.5d

1
4

)
+ P

∑
j∈W

W 2
j,(n+k)d ≥ 4nd2


≤ P

RWOMEN ≥ 1 + (1 + ε)R̄[τ ]
∣∣√d− 2.3d

1
4 < R̄[τ ] <

√
d+ 7.5d

1
4 ,
∑
j∈W

W 2
j,(n+k)d < 4nd2


+O(exp(−d

1
4 ))

≤ E

exp

(
− 2ε2n2R̄[τ ]2∑

j∈WW
2
j,(n+k)d

)∣∣∣∣∣∣√d− 2.3d
1
4 < R̄[τ ] <

√
d+ 7.5d

1
4 ,
∑
j∈W

W 2
j,(n+k)d < 4nd2


+O(exp(−d

1
4 ))

≤ exp

(
− 1

200
d−

5
2n · d(1− 2.3d−

1
4 )2

)
+O(exp(−d

1
4 ))

≤ exp

(
−nd

− 3
2

300

)
+O(exp(−d

1
4 )) = O(exp(−d

1
4 )) .

C.2.4 Proof of Theorem C.1

Theorem C.1 immediately follows from Propositions C.1, C.2, C.3, C.4, C.5, and C.6.
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C.3 Proof for Large Sized d: the Case of d = ω(log2 n),

d = o(n)

In this section, we consider the case such that d = ω(log2 n) and d = o(n). We will

prove a quantitative version of Theorem 3.2.

Theorem C.2 (Quantitative version of Theorem 3.2). Consider a sequence of random

matching markets indexed by n, with n + k men and n women (k = k(n) is negative),

and the men’s degrees are d = d(n). If |k| = o(n), d = ω(log2 n) and d = o(n), we have

the following results.

1. Men’s average rank of wives. With probability 1− exp(−
√

log n), we have

RMEN(MOSM) ≤
(

1 + 2
|k|
n

+ 2
1√

log n

)
log n .

2. Women’s average rank of husbands. With probability 1−O(exp(−
√

log n)), we have

RWOMEN(MOSM) ≥

(
1− 1.1

(
|k|
n

+
3√

log n
+

d

n/ log n

))
d

log n
.

Proof of Theorem C.2. Proof of Theorem C.2 part 1. Recall that τ is the the total

number of proposals that are made until the end of MPDA, i.e., the time at which

the men-optimal stable matching (MOSM) is found. We introduce an extended process

(which is different from the one defined in Appendix C.1.5) as a natural continuation

of the MPDA procedure that continues to evolve even after the MOSM is found (i.e.,

the extended process continues for t > τ). To define the extended process, we start by

defining an extended market, which has the same n women and n + k men, but each

man has a complete preference list, i.e. each man ranks all n women. We call the first

d women of a man’s preference list his “real” preferences and the last n − d women his

“fake” preferences. The distribution of preferences in the extended market is again as

described in Section 3.2. We then define the extended process as tracking the progress

of Algorithm 3.1 on the extended market: the n + k men enter first in Algorithm 3.1
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with only their real preferences, as before. After time τ , we let the men see their fake

preferences and continue Algorithm 3.1 until the MOSM with full preferences is found.

We denote by τ ′ the total number of proposals to find the MOSM with full preferences.

It is easy to see that τ is stochastically dominated by τ ′.

Note that τ ′ is the total number of proposals needed to find the MOSM in a completely-

connected market, which has been studied in previous works including [132, 133]. It is

well-known that τ ′ is stochastically dominated by the number of draws in a coupon

collector’s problem, in which one coupon is chosen out of n coupons uniformly at random

at a time and it runs until n distinct coupons are collected. Let X be the number of

draws in the coupon collector’s problem. A widely used tail bound of X is the following:

for β > 1, P(X ≥ βn log n) ≤ n−β+1. By taking β = 1 + 1√
logn

, we have

P
(
X ≥ n log n+ n

√
log n

)
≤ n

− 1√
logn = e−

√
logn = o(1) .

Hence with probability 1− e−
√

logn, we have τ ≤ n(log n+
√

log n). Because X stochas-

tically dominates τ , we have, with probability 1− e−
√

logn,

RMEN(MOSM) ≤ n

n+ k
(log n+

√
log n) + 1 .

Because k = o(n) and k < 0, for large enough n we have n
n+k
≤ 1 + 2|k|

n
, |k|

n
< 1

3
,

1 ≤ 1
3

√
log n, hence

n

n+ k
(log n+

√
log n) + 1

≤
(

1 + 2
|k|
n

)
log n+ (1 +

2

3
)
√

log n+
1

3

√
log n

=

(
1 + 2

|k|
n

+ 2
1√

log n

)
log n .

This concludes the proof.

Proof of Theorem C.2 part 2.

The proof is similar to that of Proposition C.5. Recall that the proof of Proposition

C.5 relies on Proposition C.1, Lemma C.15, and Lemma C.16. In the following, we first

establish the counterparts of these results in dense markets.
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Counterpart of Proposition C.1 in dense markets. We have shown in the proof of

Theorem C.2(1) that with probability 1− exp(−
√

log n), we have

τ ≤ n
(

log n+
√

log n
)
. (C.39)

Counterpart of Lemma C.15 in dense markets. Fix t = n
(
log n+

√
log n

)
. Given the

asymptotic condition, we have for large enough n,

t

nd
=

log n+
√

log n

d
≤ 0.1(log n)−1 .

By examining the proof of Lemma C.14, we can see that we have proved the following

result (see the statement of Lemma C.14 for the definition of the notations), which is

stronger than than (C.28):

P

Yt,T ≤ (1− ε)T − t
n− d

n−d∑
j=1

cj

∣∣∣∣∣∣ ~Wt

 ≤ exp

−1

4
ε2 × T − t

n− d

n−d∑
j=1

cj

 (C.40)

Let cj , 1
Wj,t+1

where W1,t ≥ W2,t ≥ · · · ≥ Wn,T , and T , (n+ k)d. Due to the convexity

of f(x) , 1
x+1

, we have for large enough n,

1

n− d

n−d∑
j=1

cj =
1

n− d

n−d∑
j=1

f(Wj,t) ≥ f

 1

n− d

n−d∑
j=1

Wj,t

 ≥ f

(
t

n− d

)
=

1

t/(n− d) + 1
≥ 1

log n
(

1 + 1.05 1√
logn

+ 1.05 d
n

) . (C.41)

Therefore, for large enough n,

T − t
n− d

n−d∑
j=1

cj ≥ n
(n+ k)d− t

n

1

log n
(

1 + 1.05 1√
logn

+ 1.05 d
n

)
≥ nd

(
1− |k|

n
− t

nd

)
1

log n
(

1 + 1.05 1√
logn

+ 1.05 d
n

)
≥ nd

(
1− |k|

n
− 0.1

log n

)
1

log n

(
1− 1.05

1√
log n

− 1.05
d

n

)
≥ nd

log n

(
1− 1.1

|k|
n
− 1.1

1√
log n

− 1.1
d

n

)
. (C.42)
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Utilizing Lemma C.14 (which does not use assumptions on d) with ε , 1√
logn

, we obtain

P

R̄[t] ≤ d

log n

(
1−

(
1.1
|k|
n

+
2.1√
log n

+ 1.1
d

n

))∣∣∣∣∣∣ ~Wt


= P

nR̄[t] ≤ nd

log n

(
1−

(
1.1
|k|
n

+
2.1√
log n

+ 1.1
d

n

))∣∣∣∣∣∣ ~Wt


≤ P

nR̄[t] ≤ (1− ε)× nd

log n

(
1− 1.1

(
|k|
n

+
1√

log n
+
d

n

))∣∣∣∣∣∣ ~Wt


(a)
≤ P

nR̄[t] ≤ (1− ε)× (n+ k)d− t
n− d

n−d∑
j=1

cj

∣∣∣∣∣∣ ~Wt


(b)
≤ exp

−1

4
ε2 × (n+ k)d− t

n− d

n−d∑
j=1

cj


(c)
≤ exp

−1

4

1

log n
× nd

log n

(
1− 1.1

(
|k|
n

+
1√

log n
+
d

n

))
≤ exp(−n/8) .

Here inequalities (a) and (c) follow from (C.42), inequality (b) follows from Lemma C.14,

and the last inequality follows from the fact that d = ω(log2 n). Since the above result

holds for any realization of ~Wt, we have

P

R̄ [n(log n+
√

log n)
]
≤ d

log n

(
1− 1.1

(
|k|
n

+
2√

log n
+
d

n

)) ≤ exp

(
−n

8

)
.

(C.43)

Counterpart of Lemma C.16 in dense markets. Note that the proof of Lemma C.16

does not make any assumption on d, hence (C.35) still holds.

Proof of Theorem C.2 part 2. Using (C.39) and (C.43), and the fact that R̄[t] is

decreasing on each sample path,

P

R̄[τ ] ≤ d

log n

(
1− 1.1

(
|k|
n

+
2√

log n
+
d

n

))
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≤ P

R̄[τ ] ≤ d

log n

(
1− 1.1

(
|k|
n

+
2√

log n
+
d

n

))
, τ < n(log n+

√
log n)


+ P

(
τ ≥ n(log n+

√
log n)

)
≤ P

R̄ [n(log n+
√

log n)
]
≤ d

log n

(
1− 1.1

(
|k|
n

+
2√

log n
+
d

n

))
+ P

(
τ ≥ n(log n+

√
log n)

)
(a)
≤ exp

(
−n

8

)
+O(exp(−

√
log n)) = O(exp(−

√
log n)) . (C.44)

Here inequality (a) follows from (C.43). Recall inequality (C.37): for large enough n

P

∑
j∈W

W 2
j,(n+k)d ≥ 4nd2

 ≤ 3

n
.

In the derivation of the above inequality, we only used the fact that d = ω(1), d = o(n)

and k = o(n), which also holds in dense markets.

Given that R̄[τ ] > d
logn

(
1− 1.1

(
|k|
n

+ 2√
logn

+ d
n

))
, by plugging ε , 0.5 1√

logn
in

(C.35) of Lemma C.16, we obtain for large enough n,

1 + (1− ε)R̄[τ ] ≥ 1 +

(
1− 0.5

1√
log n

)
d

log n

(
1− 1.1

(
|k|
n

+
2√

log n
+
d

n

))

≥ d

log n

(
1− 1.1

(
|k|
n

+
3√

log n
+
d

n

))
. (C.45)

Therefore,

P

RWOMEN ≤
d

log n

(
1− 1.1

(
|k|
n

+
3√

log n
+
d

n

))
≤ P

RWOMEN ≤
d

log n

(
1− 1.1

(
|k|
n

+
3√

log n
+
d

n

))∣∣∣∣∣∣
R̄[τ ] >

d

log n

(
1− 1.1

(
|k|
n

+
2√

log n
+
d

n

))
,
∑
j∈W

W 2
j,(n+k)d < 4nd2


+ P

R̄[τ ] ≤ d

log n

(
1− 1.1

(
|k|
n

+
2√

log n
+
d

n

))+ P

∑
j∈W

W 2
j,(n+k)d ≥ 4nd2


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(a)
≤ P

RWOMEN ≤ 1 + (1− ε)R̄[τ ]

∣∣∣∣R̄[τ ] >
d

log n

(
1− 1.1

(
|k|
n

+
2√

log n
+
d

n

))
,

∑
j∈W

W 2
j,(n+k)d < 4nd2

+O(exp(−
√

log n)) +
3

n

(b)
≤ E

exp

(
−

1
2 logn

n2R̄[τ ]2

4nd2

)∣∣∣∣∣∣ R̄[τ ] >
d

log n

(
1− 1.1

(
|k|
n

+
2√

log n
+
d

n

))
+O(exp(−

√
log n))

≤ exp

(
−1

8

n

d2 log n
· d2

2 log2 n

)
+O(exp(−

√
log n))

≤ exp

(
−n(log n)−3

16

)
+O(exp(−

√
log n))

≤ O(exp(−
√

log n)) .

Here inequality (a) follows from (C.45), (C.44), and (C.37); inequality (b) follows from

Lemma C.16. This concludes the proof.
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APPENDIX D

Proofs in “Price Discovery and Efficiency in Waiting Lists: A

Connection to Stochastic Gradient Descent”

Organization of the Mathematical Appendices. The appendix is organized as

follows.

1. In Appendix D.1, we prove Proposition 4.1, which shows that the optimal allocative

efficiency equals the value of the static allocation problem.

2. In Appendix D.2, we prove Theorem 4.1.

3. In Appendix D.3, we bound the price change granularity ∆ using the property of

the waiting cost functions.

4. In Appendix D.4, we establish the genericity of Assumption 4.1, and prove Theorem

4.2, which shows that for generic instances with finite agent types, the efficiency loss

of the queueing mechanism is exponentially small in N as market size N increases.

D.1 Optimal Allocative Efficiency: Proof of Proposi-

tion 4.1

In this section we prove Proposition 4.1.
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Proof of Proposition 4.1. We first show that WOPT ≤ W ∗. This part of the proof mostly

consists of a careful treatment of expectations and limits.

Let η ∈ H be any no-Ponzi allocation. Recall that ηt ∈ J∅ is the kind of item assigned

under η to the agent that arrived at epoch t. For each j ∈ J and θ ∈ Θ, define ĜT
j (θ) as

ĜT
j (θ) ,

1

AT

∑
t≤T

ξt1{θt≤θ,ηt=j} .

Recall that AT is the number of agents that arrived in the first T epochs. Therefore,

ĜT
j (θ) is proportional to the empirical cumulative distribution function of the types of

the agents in AT who are assigned a type j item. When AT = 0, we set ĜT
j (θ) = 0 for

all j ∈ J and θ ∈ Θ. By definition, the allocative efficiency under η is defined as

W (η) = lim inf
T→∞

1

AT

∑
j∈J

∑
t≤T

ξtv(θt, j) = lim inf
T→∞

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜT
j (θ) . (D.1)

Note that for any T , ĜT
j (θ) satisfies

∑
j∈J

ĜT
j (θ) ≤ 1

AT

∑
t≤T

ξt1{θt≤θ} , ∀θ ∈ Θ (D.2)

ĜT
j (0) = 0 , ĜT

j (1) ≤ 1

AT

∑
t≤T

1{ηt=j} +M

 ∀j ∈ J (D.3)

ĜT
j (θ) is non-decreasing and right-continuous. ∀j ∈ J (D.4)

for some M ∈ R. Here (D.2) and (D.4) are trivial. (D.3) is satisfied by any no-Ponzi

assignment for the following reason: The agents in AT who are assigned a type j ∈ J

item are either assigned before the T -th epoch or after the T -th epoch. The number

of those who are assigned before T cannot exceed the the total number of type j items

that arrive before T . The number of those who are assigned after T is bounded by some

M ∈ R by the definition of no-Ponzi assignments.

Combining the above, we have

E

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜT
j (θ)

 ≤ E

 max
Ĝj(θ) satisfying (D.2)(D.3)(D.4)

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜj(θ)

 .

It is easy to check that the optimal value of the inner maximization problem above is
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concave and non-decreasing in the RHS of (D.2) and (D.3). Note that

Expectation of RHS of (D.2) = F (θ) , ∀θ ∈ Θ ,

Expectation of RHS of (D.3) =
µj
λ

+
(1 + λ)M

λT
, ∀j ∈ J .

It follows from Fatou’s Lemma that

E[W (η)] = E

lim inf
T→∞

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜT
j (θ)

 ≤ lim inf
T→∞

E

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜT
j (θ)

 .

Applying Jensen’s inequality, we have

lim inf
T→∞

E

∑
j∈J

∫
θ∈Θ

v(θ, j)dĜT
j (θ)

 ≤ W ∗ ,

where W ∗ is defined in (4.4). Therefore E[W (η)] ≤ W ∗ for any η ∈ H. Since W (η) is

uniformly bounded above by vmax, by Bounded Convergence Theorem we have WOPT =

E[supη∈HW (η)] = supη∈H E[W (η)] ≤ W ∗. This concludes the proof.

Next we prove that WOPT ≥ W ∗. We explicitly construct a sequence of randomized

policies that can achieve allocative efficiencies which are arbitrarily close to W ∗. Note

that the constructed policies are more of technical devices used to prove the desired

bound, rather than practical policies.

Denote the optimal solution of the optimization problem (4.4) by x∗. Consider the

following randomized policy: Maintain a separate First-Come-First-Served queue for each

item. An arriving agent will be assigned to one of the queues or rejected, based on a

coin-toss (to be specified later). An agent who joins a queue will wait in that queue until

receiving an item. When an item arrives, it is assigned to the agent at the head of its

queue, if there is any; and the item is discarded if the item’s queue is empty. The coin-toss

is defined as follows: Fix M ∈ Z+. If the arriving agent is of type θ, it is assigned to

queue j with probability x∗θj, or rejected with probability 1−
∑

j∈J x
∗
θj. If the length of

the queue to which the agent is assigned exceeds M , the agent is also rejected.

Denote the match value collected by the randomized policy in epoch t by vRDt . Then
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by definition of the policy, we have

E[vRDt |qj,t < M,∀j ∈ J ] =
λ

1 + λ

∑
j∈J

∫
Θ

x∗θj v(θ, j)dF (θ) =
λ

1 + λ
W ∗ .

It follows that

E[vRDt ] ≥ λ

1 + λ
W ∗ · P(qj,t < M,∀j ∈ J ) .

Let WRD be the allocative efficiency of the randomized policy, we therefore have

WRD ≥ W ∗ · P(qj,∞ < M,∀j ∈ J ) ,

where q∞ is the steady-state queue length distribution. The allocative efficiency loss of

the randomized policy can be bounded as:

W ∗ −WRD ≤ W ∗ −W ∗ · P(qj,∞ < M,∀j ∈ J )

≤ vmax · P(qj,∞ = M,∃j ∈ J )

≤ vmax ·
∑
j∈J

P(qj,∞ = M) , (D.5)

where the second inequality follows from the fact that W ∗ ≤ vmax, and the last inequality

comes from the union bound. It remains to bound P(qj,∞ = M) for any j ∈ J under the

randomized policy. Fix j ∈ J , then qj,t is a birth-death process on {0, 1, · · · ,M} with

death rate µj and birth rate

λ∗j = λ

∫
Θ

x∗θjdF (θ) .

It follows from the constraint in (4.4) that λ∗j ≤ µj. As a result, P(qj,∞ = M) ≤ P(qj,∞ =

M − 1) ≤ · · · ≤ P(qj,∞ = 0), hence P(qj,∞ = M) ≤ 1
M+1

. Plugging in the bound on

P(qj,∞ = M) to (D.5), we have

W ∗ −WRD ≤ vmax|J |
M + 1

.

Notice that by definition, WRD ≤ WOPT, hence

W ∗ −WOPT ≤ vmax|J |
M + 1

.
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Since M can be chosen arbitrarily, it must be true that W ∗−WOPT ≤ 0. This concludes

the proof.

D.2 Upper Bound on the Allocative Efficiency Loss of

the Queueing Mechanism

In this section we prove Theorem 4.1.

Proof of Theorem 4.1. The following proof generalizes the one described in the main

paper which focuses on the special case of linear waiting cost.

Recall that WT (ηWL) is the total value of items assigned to agents that arrive before

epoch T , that is

WT (ηWL) =
T∑
t=1

ξt · v(θt, a(θt,qt)) ,

and that

WWL =
1 + λ

λ
E

[
lim inf
T→∞

WT (ηWL)

T

]
.

Similar to the proof in the main paper, we use the Lyapunov analysis to bound the

allocative efficiency. It turns out for general waiting costs, using the Lyapunov function of

queue lengths is notationally simpler than using the Lyapunov function of waiting costs.

As a result, we use the following Lyapunov function: let the Lyapunov function L(q) be

such that ∇L(q) = p(q). The analysis uses the Bregman divergence generated by L(q)

as the notion of proximity, which is defined as follows

DL(q1,q2) , L(q1)− L(q2)−
〈
∇L(q2),q1 − q2

〉
.

Let at and dt be the vectors representing the arriving agent and item at time t, respec-

tively:

at , ea(θt,qt)ξt , dt , ejt(1− ξt) ,
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and let uj,t , max
{

0, dj,t − qj,t − aj,t
}
denote the number of discarded items of type j at

time t. The evolution of the length of queue j is governed by

qj,t+1 =
[
qj,t + aj,t − dj,t

]+
= qj,t + aj,t − dj,t + uj,t , for each j ∈ J .

By Lemma D.2 we have that

E[v(θt, a(θt,qt))ξt|qt] ≥
λ

1 + λ
h(pt)−

(
L(qt)− E[L(qt+1) | qt]

)
− ∆

2(1 + λ)
(D.6)

− E[DL(qt + at − dt,qt) | qt] .

By Lemma D.3 we have that DL(qt+at−dt,qt) ≤ ∆/2. By Lemma 4.1 we have that

h(pt) ≥ W ∗. Together, we have that

E[v(θt, a(θt,qt))ξt|qt] ≥
λ

1 + λ
W ∗ −

(
L(qt)− E[L(qt+1) | qt]

)
−
(

∆

2(1 + λ)
+

∆

2

)
.

Therefore, we have that

E
[
WT (ηWL)

]
= E

 T∑
t=1

ξt · v(θt, a(θt,qt))


= E

E
 T∑
t=1

ξt · v(θt, a(θt,qt)) | qt




= E

 T∑
t=1

E
[
ξt · v(θt, a(θt,qt)) | qt

]
≥ E

 T∑
t=1

λ

1 + λ
W ∗ −

(
L(pt)− E[L(qt+1) | qt]

)
− 2 + λ

2(1 + λ)
∆


= T

λ

1 + λ
W ∗ −

(
L(p1)− E[L(qT+1)]

)
− T 2 + λ

2(1 + λ)
∆ . (D.7)

By Lemma 4.5, we have

WWL =
1 + λ

λ
lim
T→∞

1

T
E
[
WT (ηWL)

]
.

Plugging in (D.7) to the above equality, we have

WWL ≥ W ∗ − 2 + λ

2λ
∆ .
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This concludes the proof.

Lemma D.1. We have that

L(qt+1) ≤ L(qt + at − dt) +
∆

2
· 1{ξt = 0} .

Proof. By definition of Bregman divergence, we have

DL(qt + at − dt,qt+1) = L(qt + at − dt)− L(qt+1)− 〈p(qt+1),qt + at − dt − qt+1〉

= L(qt + at − dt)− L(qt+1) + 〈p(qt+1),ut〉 .

Therefore

L(qt+1) = L(qt + at − dt) + 〈p(qt+1),ut〉 −DL(qt + at − dt,qt+1) . (D.8)

To bound the RHS of (D.8), we consider two cases:

Case 1. If ∃j ∈ J such that dj,t = 1 and qj,t = 0, we have qj,t+1 = 0 and uj,t = 1. Note

that in this case ξt = 0. Let Pj(q) be an anti-derivative of pj(q), then L(q) =
∑

j∈J Pj(q)

is a Lyapunov function because it satisfies ∇L(q) = p(q). We have

〈p(qt+1),ut〉 −DL(qt + at − dt,qt+1)

= pj(0)−
(
Pj(−1)− Pj(0)− pj(0) · (−1)

)
= Pj(0)− Pj(−1) . (D.9)

Since pj(·) is non-negative and ∆-Lipshitz, we have

Pj(0) ≤ Pj(−1) +

∫ 1

0

∆ · xdx = Pj(−1) + ∆/2 .

Plugging in the above equality to (D.9), we have

〈p(qt+1),ut〉 −DL(qt + at − dt,qt+1) ≤ ∆

2
· 1{ξt = 0} . (D.10)

Case 2. If the condition in Case 1 does not hold, we have ut = 0 and qt+at−dt = qt+1,

hence

〈p(qt+1),ut〉 −DL(qt + at − dt,qt+1) = 0 .
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Therefore, plugging in the above two cases to (D.8), we have

L(qt+1) ≤ L(qt + at − dt) +
∆

2
· 1{ξt = 0} .

Lemma D.2. For the model defined in Section 4.3, we have that

E[v(θt, a(θt,qt))ξt|qt] ≥
λ

1 + λ
h(pt)−

(
L(qt)− E[L(qt+1) | qt]

)
− ∆

2(1 + λ)

− E[DL(qt + at − dt,qt) | qt] .

Proof. We have that the drift of Lyapunov function L(q) in one period is

L(qt)− L(qt+1)

≥ L(qt)− L(qt + at − dt)−
∆

2
· 1{ξt = 0}

= − 〈p(qt), at − dt〉 −DL(qt + at − dt,qt)−
∆

2
· 1{ξt = 0} , (D.11)

where the inequality follows from Lemma D.1, and the equality comes from the definition

of Bregman divergence.

We expanded the expected value of the next arrival E
[
v(θt, a(θt,qt))ξt | qt

]
plus the

expected value of the term 〈pt, at − dt〉 to show these are related to the dual objective

given in (4.5).

E
[
v(θt, a(θt,qt))ξt − 〈pt, at − dt〉 | qt

]
= E

[
v(θt, a(θt,qt))ξt −

∑
j∈J

pj,t(aj,t − dj,t) | qt
]

= E
[

max
j∈J∅

[
v(θt, j)− pj,t

]
ξt +

∑
j∈J

pj,tdj,t | qt
]

= E[ξt]E
[

max
j∈J∅

[
v(θt, j)− pj,t

]
| qt
]

+ E
[∑
j∈J

pj,tdj,t | qt
]

=
λ

1 + λ

∫
Θ

max
j∈J∅

[
v(θt, j)− pj,t

]
dF (θ) +

1

1 + λ

∑
j∈J

µjpj,t

=
λ

1 + λ
h(pt) . (D.12)
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Adding v(θt, a(θt,qt))ξt to both sides of equation (D.11), we have

v(θt, a(θt,qt))ξt + L(qt)− L(qt+1)

≥ v(θt, a(θt,qt))ξt − 〈p(qt), at − dt〉 −DL(qt + at − dt,qt)−
∆

2
· 1{ξt = 0} .

Taking expectation conditional on qt and applying equation (D.12), we have

E[v(θt, a(θt,qt))ξt|qt] +
(
L(qt)− E[L(qt+1) | qt]

)
≥ λ

1 + λ
h(pt)− E[DL(qt + at − dt,qt) | qt]−

∆

2(1 + λ)
.

Rearranging the terms, and we obtain the desired inequality.

Lemma D.3. For the model defined in Section 4.3, we have that for any qt,

E[DL(qt + at − dt,qt) | qt] ≤
∆

2
.

Proof. Note that L(q) is convex because its gradient ∇L(q) = p(q) is increasing in each

coordinate. Also note that L(q) has ∆-Lipschitz gradient, because for queue lengths

q1,q2,

||∇L(q1)−∇L(q2)|| = ||p(q1)− p(q2)|| ≤ ∆||q1 − q2|| .

Equivalently, L(q) is ∆-strongly smooth, i.e.,

L(q2)− L(q1) ≤ 〈∇L(q1),q2 − q1〉+
∆

2
||p(q2)− p(q1)||2 .

By definition of Bregman divergence, we have

DL(qt + at − dt,qt)

= L(qt + at − dt)− L(qt)− 〈∇L(qt), at − dt〉

≤ ∆

2
||at − dt||2

=
∆

2
.

Here the second last inequality follows from the strong smoothness of L(q). This con-

cludes the proof.
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D.3 Price Change Granularity of Nonlinear Waiting

Cost Functions

We stated our main result (Theorem 4.1) in terms of the price change granularity

∆. However, for nonlinear waiting costs, it remains to be shown how ∆ is related to the

waiting cost function c(w). In this section, we focus on the waiting costs that satisfy the

assumption below.

Assumption D.1. We consider the following classes of waiting cost functions.

• Convex waiting costs. c(w) is convex, twice-differentiable for w ≥ 0, and that c′(w)

and c′′(w) are subexponential, i.e., there exists α such that c′(w), c′′(w) ≤ eαw for

all w ≥ 0.

• Concave waiting costs. c(w) is concave and twice-differentiable for w ≥ 0.

Proposition D.1. Consider the asymptotic regime in Corollary 4.2 and waiting cost

functions satisfying Assumption D.1. The following holds:

1. For convex c(w), there exists `0 <∞ such that for ` ≥ `0, ∆ ≤ 2c′(c−1(vmax))
`µmin

.

2. For concave c(w), for any ` > 0, ∆ ≤ c′(0)
`µmin

.

Proof of Proposition D.1. Consider the system with index `. Let Xt be the interarrival

time between the t-th type j item and the (t+1)-th type j item, henceXt is an exponential

random variable with rate `µj, and {Xt}∞t=1 are i.i.d. Let Sn ,
∑n

t=1Xt.

Let qmax,` be the threshold queue length above which no arriving agent will join that

queue. Then approximately

vmax = pj(qmax,`) = E[c(Sqmax,`
)] .

For convex cost function c(w), by Jensen’s inequality we have

E[c(Sqmax,`
)] ≥ c

(
E[Sqmax,`

]
)

= c

(
qmax,`

`µj

)
.
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Compare the above two inequalities, we have qmax,` ≤ `µjc
−1(vmax). Notice that

pj(qj + 1)− pj(qj) = E[c(Sqj +Xqj+1)− c(Sqj)] ≤ E[c′(Sqj +Xqj+1) ·Xqj+1] ,

where the inequality follows from the convexity of c(w). Take supremum over all 0 ≤

qj ≤ qmax,` on both sides of the above inequality. Because c(w) is convex, c′(w) must be

non-decreasing, hence

∆ = sup
0≤qj≤qmax,`

(
pj(qj + 1)− pj(qj)

)
≤ E[c′(Sqmax,`

+Xqmax,`+1) ·Xqmax,`+1] .

Using Holder’s inequality, we have

E[c′(Sqmax,`
+Xqmax,`+1) ·Xqmax,`+1] ≤ α

√
E[(c′(Sqmax,`+1))α] · β

√
E[Xβ

1 ] ,

where α, β ∈ (1,∞) and 1
α

+ 1
β

= 1. Because c(w) satisfies Assumption D.1, for any

α ∈ (1,∞) we can apply Lemma D.4 and it follows that

lim
`→∞

α

√
E[(c′(Sqmax,`

))α] = α

√
c′
(
E[Sqmax,`

]
)α

= c′

(
qmax,`

`µj

)
.

Therefore

lim
`→∞

E[c′(Sqmax,`
+Xqmax,`+1) ·Xqmax,`+1] ≤ c′

(
qmax,`

`µj

)
inf
β>1

β

√
E[Xβ

1 ]

≤ c′

(
qmax,`

`µj

)
E[X1] =

c′
(
qmax,`

`µj

)
`µj

.

As a result, there exists `0 > 0 such that for ` ≥ `0, it holds that

∆ ≤
2c′
(
qmax,`

`µj

)
`µj

≤
2c′
(
c−1(vmax)

)
`µj

. (D.13)

For concave c(w), using its concavity we have for any 0 ≤ qj ≤ qmax,`,

pj(qj + 1)− pj(qj) = E[c(Sqj +Xqj+1)− c(Sqj)] ≤ E[c′(0)X1] =
c′(0)

`µj
. (D.14)

Combine (D.13) and (D.14), we conclude the proof.

Lemma D.4. Let {Xi}∞i=1 be i.i.d. exponential random variables with rate 1, X̄n ,

1
n

∑n
i=1 Xi, and α ∈ (0,∞). For any continuously differentiable function f(x) defined
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on R+ such that there exists C1, C2 ∈ (0,∞) and f(x) ≤ C1e
C2x, f ′(x) ≤ C1e

C2x for all

x ∈ R+, we have

lim
N→∞

E
[
f(α · X̄N)

]
= f(α) .

Proof of Lemma D.4. The result simply follows the proof of Theorem 1(c) in [134], there-

fore we omit the details.

D.4 Proof of Exponentially Small Loss

In this section, we prove the results in Section 4.5.

D.4.1 Rate of price adjustment

Proof of Lemma 4.7. We proceed in two steps.

Step 1. We first show that we can lower bound h(p)− h(p∗) by a support function:

h(p)− h(p∗) ≥ sup
s∈S
〈p∗ − p, s〉 .

for some convex set S.

For each agent type θ ∈ Θ, define

∆θ ,

x ∈ R|J |+ :
∑
j∈J

xj = 1 , xj = 0 for j /∈ J ∗θ

 ,

∆̃θ ,

x ∈ R|J |+ :
∑
j∈J

xj ≤ 1 , xj = 0 for j /∈ J ∗θ

 ,

∆ ,

x ∈ R|J |+ :
∑
j∈J

xj = 1

 , ∆̃ ,

x ∈ R|J |+ :
∑
j∈J

xj ≤ 1

 .

Using the definitions above, we can rewrite the dual function 4.5 as

h(p) =
1

λ

∑
θ∈Θ

λθ

max
xθ∈∆̃

∑
j∈J

(v(θ, j)− pj)xθ,j

+
1

λ

∑
j∈J

µjpj .

355



Let x∗θ be a maximizer of the inner maximization problem above. Define s ∈ R|J | where

sj =
∑
θ∈Θ

λθ · x∗θ,j − µj ,

then it is easy to see that − 1
λ
s is a subgradient of h(p) at p, denoted by − 1

λ
s ∈ ∂h(p).

For θ ∈ Θ∗, let

x′θ , argmaxxθ∈∆θ

∑
j∈J

(p∗j − pj)xθ,j ,

for θ ∈ Θ\Θ∗, let

x′θ , argmaxxθ∈∆̃θ

∑
j∈J

(p∗j − pj)xθ,j .

The interpretation of x′θ is as follows. Consider a type θ agent. If the current price is

exactly p∗, then the agent is indifferent between the items in J ∗θ , and strictly prefers

these items to other items. If the price deviates a little from p∗: (1) if θ ∈ Θ∗, the

agent will prefer the item in J ∗θ that is the cheapest; (2) if θ /∈ Θ∗, the agent’s optimal

utility is zero, hence she will choose an item in J ∗θ that is the cheapest only if the price

is lower than the optimal price, otherwise she will not choose any item. x′θ characterizes

the choice of an agent when p is sufficiently close to p∗.

A key observation is that when p ∈ P , the above observation for “sufficiently close”

p holds. Therefore for s′ ∈ R|J | defined as

s′j ,
∑
θ∈Θ

λθ · x′θ,j − µj ,

we have − 1
λ
s′ ∈ ∂h(p), and that for p ∈ P∗,

λh(p) =
∑
θ∈Θ

λθ
∑
j∈J

(v(θ, j)− pj)x′θ,j +
∑
j∈J

µjpj

=
∑
θ∈Θ

λθ
∑
j∈J

(p∗j − pj)x′θ,j +
∑
j∈J

µj(pj − p∗j)

+
∑
θ∈Θ

λθ
∑
j∈J

(v(θ, j)− p∗j)x′θ,j +
∑
j∈J

µjp
∗
j

Note that the sum of the terms in the last row is exactly λh(p∗). This is because for
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agent of type θ ∈ Θ∗, under price p she must choose an item from J ∗θ , hence∑
j∈J

(v(θ, j)− p∗j)x′θ,j = max
j∈J

(v(θ, j)− p∗j) ,

whereas for agent of type θ /∈ Θ∗, she either chooses an item from J ∗θ , or she balks. Hence∑
j∈J

(v(θ, j)− p∗j)x′θ,j = 0 = max
j∈J

(v(θ, j)− p∗j) .

Thus we have

λ(h(p)− h(p∗)) =
∑
θ∈Θ∗

λθ

max
xθ∈∆θ

∑
j∈J

(p∗j − pj)xθ,j

+
∑

θ∈Θ\Θ∗
λθ

max
xθ∈∆̃θ

∑
j∈J

(p∗j − pj)xθ,j


+
∑
j∈J

µj(pj − p∗j) . (D.15)

Define the rate region S as:

S ,

∑
θ∈Θ

λθxθ − µ : xθ ∈ ∆θ for θ ∈ Θ∗ ,xθ ∈ ∆̃θ for θ ∈ Θ\Θ∗
 ,

which is the set of possible rates of change of dual prices when p ∈ P . Therefore we can

rewrite the RHS of (D.15) as

sup
s∈S
〈p∗ − p, s〉 .

Using the fact that h(p) is convex, we have for any p,

h(p)− h(p∗) ≥ 1

λ
sup
s∈S
〈p∗ − p, s〉 .

This concludes step 1.

Step 2. Characterizing the set S. Note that S is the Minkowski sum of simplices

shifted by µ, which is known as the generalized permutohedron [see, e.g., 135]. Using

Proposition 6.3 from [135], we have the following defining inequalities of S:

∑
j∈I

sj ≤ λ−
∑
j∈I

µj , ∀I ⊂ J ,

∑
j∈I

sj ≥
∑
θ∈Θ∗

λθ −
∑
j∈I

µj , ∀I : I ⊂ J , I ⊃ ∪θ∈Θ∗J ∗θ ,

357



sj ≥ − µj , ∀j ∈ J .

We first argue that there exists ε > 0 such that the ball B(0, ε) is contained in S.

This can be proved by contradiction: if it is not true, then using (D.15), we can show

that the minimizer of h(p) is non-unique, leading to contradiction with Assumption 4.1.

Note that this already leads to a lower bound of h(p) − h(p∗): we have ε p∗−p
||p∗−p||2 ⊂ S,

hence λ(h(p)− h(p∗)) ≥ ε||p∗ − p||2.

It remains to quantitatively characterize ε. To simplify the notation, we consider the

centered version of p, defined as p̃ , p∗ − p; let h̃(p̃) , h(p)− h(p∗).

Since S is defined “locally” (i.e., for p ∈ P), all the arguments below assume that

p ∈ P . We have derived that h̃(p̃) = sups∈S 〈p̃, s〉. Define the level sets of h̃(p̃):

L ,
{

p̃ ∈ R|J | : p̃j ≤ 0 for j 6= J ∗, h̃(p̃) ≤ 1
}
.

Here the constraints p̃j ≤ 0 for j 6= J ∗ come from the fact that p ≥ 0. Using the theory

of polar duality [see, e.g., 136], since the ball B(0, ε) is contained in S, we have that

(
S ∩ {p̃ : p̃j ≤ 0 for j 6= J ∗}

)∗ ⊂ (B(0, ε) ∩ {p̃ : p̃j ≤ 0 for j 6= J ∗}
)∗
.

Here the asterisk outside stands for polar set. Denote the LHS set as B∗, the RHS set as

L∗. We have

B∗ =

s +
∑
j /∈J ∗

γjej : ||s||2 ≤ ε , γj ≥ 0

 ,

L∗ =

s +
∑
j /∈J ∗

γjej : s ∈ S , γj ≥ 0

 .

Because B∗ ⊂ L∗, ε can take value up to the inradius of S, which is larger than the

minimum of the distances between 0 and the defining hyperplanes of S. It follows that

ε ≥

{
min
I⊂J

λ−
∑

j∈I µj√
|I|

, min
{I:I⊂J ,I⊃∪θ∈Θ∗J ∗θ }

∑
j∈I µj −

∑
θ∈Θ∗ λθ√

|I|
, min
j∈J

µj

}
.
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D.4.2 Proof of Theorem 4.2

Building on the observations obtained in the last two sections, we first prove a lemma

that establishes the exponential concentration of p around p∗, then complete the proof

of Theorem 4.2.

Lemma D.5 (Concentration of dual prices). Suppose Assumption 4.1 holds. Then for

any c ≤ µminδγ
36

, we have

P(p∞ /∈ P) ≤ exp

(
− log

(
1 +

γµmin

4

)(
δ

12∆

))
.

Proof. We prove the result using the Lyapunov functions:

L̄(p) =
1

2

∑
j∈J

µj(pj − p∗j)2 and V (p) ,
√
L(p) .

Using (4.12), we have

E[L̄(pt+1)|qt]− L̄(pt) ≤ −c
(
h(pt)− h(p∗)

)
+ c∆ .

Plugging in the result in Lemma 4.7, we have

E[L̄(pt+1)|qt]− L̄(pt) ≤ −cγ||pt − p∗||2 + c∆ . (D.16)

Use the fact that f(x) =
√
x is concave for x ≥ 0 so that for y > x > 0, f(y) − f(x) ≤

(y − x)f ′(x) = y−x
2
√
x
, we have

V (pt+1)− V (pt) ≤
L(pt+1)− L(pt)

2V (pt)
. (D.17)

Take conditional expectation given qt on both sides of (D.17) and plug in (D.16), we

have current progress, mind the constants.

E[V (pt+1)|qt]− V (pt) ≤
E[L(pt+1)|qt]− L(pt)

2V (pt)

≤ − cγ

2
+

c2

2µminV (pt)
.

Now we use a concentration bound from [57] to prove the desired result. Let p∞ be
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the steady-state distribution of the prices. For pt such that

V (pt) ≥
2c

µminγ
,

we have

E[V (pt+1)|qt]− V (pt) ≤ −
cγ

4
.

As a result, V (·) is a Lyapunov function with exception parameter 2c
µminγ

and negative

drift cγ
4
. Note that in each step, the Lyapunov function can increase by at most c

µmin
.

Using Theorem 1 in [57], we have for any r = 0, 1, · · · ,

P
(
V (p∞) >

2c

µminγ
+ 2r

c

µmin

)
≤

(
c

µmin

c
µmin

+ cγ
4

)r+1

=

(
1

1 + γµmin

4

)r+1

.

Note that {
p : V (p) ≤ δ

3

}
⊂
{

p : ||p− p∗||∞ ≤
δ

2

}
.

As a result, for c ≤ µminδγ
36

, plugging in r = µminδ
12c

, we have

P(p∞ /∈ P) ≤ P
(
V (p∞) >

δ

3

)
≤

(
1

1 + γµmin

4

)µminδ

12c

= exp

(
− log

(
1 +

γµmin

4

)(
δ

12∆

))
.
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